1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CommentDiagnostic.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/PartialDiagnostic.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
31 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
32 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
33 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
34 #include "clang/Sema/CXXFieldCollector.h"
35 #include "clang/Sema/DeclSpec.h"
36 #include "clang/Sema/DelayedDiagnostic.h"
37 #include "clang/Sema/Initialization.h"
38 #include "clang/Sema/Lookup.h"
39 #include "clang/Sema/ParsedTemplate.h"
40 #include "clang/Sema/Scope.h"
41 #include "clang/Sema/ScopeInfo.h"
42 #include "clang/Sema/SemaInternal.h"
43 #include "clang/Sema/Template.h"
44 #include "llvm/ADT/SmallString.h"
45 #include "llvm/ADT/Triple.h"
46 #include <algorithm>
47 #include <cstring>
48 #include <functional>
49 
50 using namespace clang;
51 using namespace sema;
52 
53 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
54   if (OwnedType) {
55     Decl *Group[2] = { OwnedType, Ptr };
56     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
57   }
58 
59   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
60 }
61 
62 namespace {
63 
64 class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
65  public:
66    TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
67                         bool AllowTemplates = false,
68                         bool AllowNonTemplates = true)
69        : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
70          AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
71      WantExpressionKeywords = false;
72      WantCXXNamedCasts = false;
73      WantRemainingKeywords = false;
74   }
75 
76   bool ValidateCandidate(const TypoCorrection &candidate) override {
77     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
78       if (!AllowInvalidDecl && ND->isInvalidDecl())
79         return false;
80 
81       if (getAsTypeTemplateDecl(ND))
82         return AllowTemplates;
83 
84       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
85       if (!IsType)
86         return false;
87 
88       if (AllowNonTemplates)
89         return true;
90 
91       // An injected-class-name of a class template (specialization) is valid
92       // as a template or as a non-template.
93       if (AllowTemplates) {
94         auto *RD = dyn_cast<CXXRecordDecl>(ND);
95         if (!RD || !RD->isInjectedClassName())
96           return false;
97         RD = cast<CXXRecordDecl>(RD->getDeclContext());
98         return RD->getDescribedClassTemplate() ||
99                isa<ClassTemplateSpecializationDecl>(RD);
100       }
101 
102       return false;
103     }
104 
105     return !WantClassName && candidate.isKeyword();
106   }
107 
108   std::unique_ptr<CorrectionCandidateCallback> clone() override {
109     return llvm::make_unique<TypeNameValidatorCCC>(*this);
110   }
111 
112  private:
113   bool AllowInvalidDecl;
114   bool WantClassName;
115   bool AllowTemplates;
116   bool AllowNonTemplates;
117 };
118 
119 } // end anonymous namespace
120 
121 /// Determine whether the token kind starts a simple-type-specifier.
122 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
123   switch (Kind) {
124   // FIXME: Take into account the current language when deciding whether a
125   // token kind is a valid type specifier
126   case tok::kw_short:
127   case tok::kw_long:
128   case tok::kw___int64:
129   case tok::kw___int128:
130   case tok::kw_signed:
131   case tok::kw_unsigned:
132   case tok::kw_void:
133   case tok::kw_char:
134   case tok::kw_int:
135   case tok::kw_half:
136   case tok::kw_float:
137   case tok::kw_double:
138   case tok::kw__Float16:
139   case tok::kw___float128:
140   case tok::kw_wchar_t:
141   case tok::kw_bool:
142   case tok::kw___underlying_type:
143   case tok::kw___auto_type:
144     return true;
145 
146   case tok::annot_typename:
147   case tok::kw_char16_t:
148   case tok::kw_char32_t:
149   case tok::kw_typeof:
150   case tok::annot_decltype:
151   case tok::kw_decltype:
152     return getLangOpts().CPlusPlus;
153 
154   case tok::kw_char8_t:
155     return getLangOpts().Char8;
156 
157   default:
158     break;
159   }
160 
161   return false;
162 }
163 
164 namespace {
165 enum class UnqualifiedTypeNameLookupResult {
166   NotFound,
167   FoundNonType,
168   FoundType
169 };
170 } // end anonymous namespace
171 
172 /// Tries to perform unqualified lookup of the type decls in bases for
173 /// dependent class.
174 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
175 /// type decl, \a FoundType if only type decls are found.
176 static UnqualifiedTypeNameLookupResult
177 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
178                                 SourceLocation NameLoc,
179                                 const CXXRecordDecl *RD) {
180   if (!RD->hasDefinition())
181     return UnqualifiedTypeNameLookupResult::NotFound;
182   // Look for type decls in base classes.
183   UnqualifiedTypeNameLookupResult FoundTypeDecl =
184       UnqualifiedTypeNameLookupResult::NotFound;
185   for (const auto &Base : RD->bases()) {
186     const CXXRecordDecl *BaseRD = nullptr;
187     if (auto *BaseTT = Base.getType()->getAs<TagType>())
188       BaseRD = BaseTT->getAsCXXRecordDecl();
189     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
190       // Look for type decls in dependent base classes that have known primary
191       // templates.
192       if (!TST || !TST->isDependentType())
193         continue;
194       auto *TD = TST->getTemplateName().getAsTemplateDecl();
195       if (!TD)
196         continue;
197       if (auto *BasePrimaryTemplate =
198           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
199         if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
200           BaseRD = BasePrimaryTemplate;
201         else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
202           if (const ClassTemplatePartialSpecializationDecl *PS =
203                   CTD->findPartialSpecialization(Base.getType()))
204             if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
205               BaseRD = PS;
206         }
207       }
208     }
209     if (BaseRD) {
210       for (NamedDecl *ND : BaseRD->lookup(&II)) {
211         if (!isa<TypeDecl>(ND))
212           return UnqualifiedTypeNameLookupResult::FoundNonType;
213         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
214       }
215       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
216         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
217         case UnqualifiedTypeNameLookupResult::FoundNonType:
218           return UnqualifiedTypeNameLookupResult::FoundNonType;
219         case UnqualifiedTypeNameLookupResult::FoundType:
220           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
221           break;
222         case UnqualifiedTypeNameLookupResult::NotFound:
223           break;
224         }
225       }
226     }
227   }
228 
229   return FoundTypeDecl;
230 }
231 
232 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
233                                                       const IdentifierInfo &II,
234                                                       SourceLocation NameLoc) {
235   // Lookup in the parent class template context, if any.
236   const CXXRecordDecl *RD = nullptr;
237   UnqualifiedTypeNameLookupResult FoundTypeDecl =
238       UnqualifiedTypeNameLookupResult::NotFound;
239   for (DeclContext *DC = S.CurContext;
240        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
241        DC = DC->getParent()) {
242     // Look for type decls in dependent base classes that have known primary
243     // templates.
244     RD = dyn_cast<CXXRecordDecl>(DC);
245     if (RD && RD->getDescribedClassTemplate())
246       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
247   }
248   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
249     return nullptr;
250 
251   // We found some types in dependent base classes.  Recover as if the user
252   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
253   // lookup during template instantiation.
254   S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
255 
256   ASTContext &Context = S.Context;
257   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
258                                           cast<Type>(Context.getRecordType(RD)));
259   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
260 
261   CXXScopeSpec SS;
262   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
263 
264   TypeLocBuilder Builder;
265   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
266   DepTL.setNameLoc(NameLoc);
267   DepTL.setElaboratedKeywordLoc(SourceLocation());
268   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
269   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
270 }
271 
272 /// If the identifier refers to a type name within this scope,
273 /// return the declaration of that type.
274 ///
275 /// This routine performs ordinary name lookup of the identifier II
276 /// within the given scope, with optional C++ scope specifier SS, to
277 /// determine whether the name refers to a type. If so, returns an
278 /// opaque pointer (actually a QualType) corresponding to that
279 /// type. Otherwise, returns NULL.
280 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
281                              Scope *S, CXXScopeSpec *SS,
282                              bool isClassName, bool HasTrailingDot,
283                              ParsedType ObjectTypePtr,
284                              bool IsCtorOrDtorName,
285                              bool WantNontrivialTypeSourceInfo,
286                              bool IsClassTemplateDeductionContext,
287                              IdentifierInfo **CorrectedII) {
288   // FIXME: Consider allowing this outside C++1z mode as an extension.
289   bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
290                               getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
291                               !isClassName && !HasTrailingDot;
292 
293   // Determine where we will perform name lookup.
294   DeclContext *LookupCtx = nullptr;
295   if (ObjectTypePtr) {
296     QualType ObjectType = ObjectTypePtr.get();
297     if (ObjectType->isRecordType())
298       LookupCtx = computeDeclContext(ObjectType);
299   } else if (SS && SS->isNotEmpty()) {
300     LookupCtx = computeDeclContext(*SS, false);
301 
302     if (!LookupCtx) {
303       if (isDependentScopeSpecifier(*SS)) {
304         // C++ [temp.res]p3:
305         //   A qualified-id that refers to a type and in which the
306         //   nested-name-specifier depends on a template-parameter (14.6.2)
307         //   shall be prefixed by the keyword typename to indicate that the
308         //   qualified-id denotes a type, forming an
309         //   elaborated-type-specifier (7.1.5.3).
310         //
311         // We therefore do not perform any name lookup if the result would
312         // refer to a member of an unknown specialization.
313         if (!isClassName && !IsCtorOrDtorName)
314           return nullptr;
315 
316         // We know from the grammar that this name refers to a type,
317         // so build a dependent node to describe the type.
318         if (WantNontrivialTypeSourceInfo)
319           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
320 
321         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
322         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
323                                        II, NameLoc);
324         return ParsedType::make(T);
325       }
326 
327       return nullptr;
328     }
329 
330     if (!LookupCtx->isDependentContext() &&
331         RequireCompleteDeclContext(*SS, LookupCtx))
332       return nullptr;
333   }
334 
335   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
336   // lookup for class-names.
337   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
338                                       LookupOrdinaryName;
339   LookupResult Result(*this, &II, NameLoc, Kind);
340   if (LookupCtx) {
341     // Perform "qualified" name lookup into the declaration context we
342     // computed, which is either the type of the base of a member access
343     // expression or the declaration context associated with a prior
344     // nested-name-specifier.
345     LookupQualifiedName(Result, LookupCtx);
346 
347     if (ObjectTypePtr && Result.empty()) {
348       // C++ [basic.lookup.classref]p3:
349       //   If the unqualified-id is ~type-name, the type-name is looked up
350       //   in the context of the entire postfix-expression. If the type T of
351       //   the object expression is of a class type C, the type-name is also
352       //   looked up in the scope of class C. At least one of the lookups shall
353       //   find a name that refers to (possibly cv-qualified) T.
354       LookupName(Result, S);
355     }
356   } else {
357     // Perform unqualified name lookup.
358     LookupName(Result, S);
359 
360     // For unqualified lookup in a class template in MSVC mode, look into
361     // dependent base classes where the primary class template is known.
362     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
363       if (ParsedType TypeInBase =
364               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
365         return TypeInBase;
366     }
367   }
368 
369   NamedDecl *IIDecl = nullptr;
370   switch (Result.getResultKind()) {
371   case LookupResult::NotFound:
372   case LookupResult::NotFoundInCurrentInstantiation:
373     if (CorrectedII) {
374       TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
375                                AllowDeducedTemplate);
376       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
377                                               S, SS, CCC, CTK_ErrorRecovery);
378       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
379       TemplateTy Template;
380       bool MemberOfUnknownSpecialization;
381       UnqualifiedId TemplateName;
382       TemplateName.setIdentifier(NewII, NameLoc);
383       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
384       CXXScopeSpec NewSS, *NewSSPtr = SS;
385       if (SS && NNS) {
386         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
387         NewSSPtr = &NewSS;
388       }
389       if (Correction && (NNS || NewII != &II) &&
390           // Ignore a correction to a template type as the to-be-corrected
391           // identifier is not a template (typo correction for template names
392           // is handled elsewhere).
393           !(getLangOpts().CPlusPlus && NewSSPtr &&
394             isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
395                            Template, MemberOfUnknownSpecialization))) {
396         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
397                                     isClassName, HasTrailingDot, ObjectTypePtr,
398                                     IsCtorOrDtorName,
399                                     WantNontrivialTypeSourceInfo,
400                                     IsClassTemplateDeductionContext);
401         if (Ty) {
402           diagnoseTypo(Correction,
403                        PDiag(diag::err_unknown_type_or_class_name_suggest)
404                          << Result.getLookupName() << isClassName);
405           if (SS && NNS)
406             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
407           *CorrectedII = NewII;
408           return Ty;
409         }
410       }
411     }
412     // If typo correction failed or was not performed, fall through
413     LLVM_FALLTHROUGH;
414   case LookupResult::FoundOverloaded:
415   case LookupResult::FoundUnresolvedValue:
416     Result.suppressDiagnostics();
417     return nullptr;
418 
419   case LookupResult::Ambiguous:
420     // Recover from type-hiding ambiguities by hiding the type.  We'll
421     // do the lookup again when looking for an object, and we can
422     // diagnose the error then.  If we don't do this, then the error
423     // about hiding the type will be immediately followed by an error
424     // that only makes sense if the identifier was treated like a type.
425     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
426       Result.suppressDiagnostics();
427       return nullptr;
428     }
429 
430     // Look to see if we have a type anywhere in the list of results.
431     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
432          Res != ResEnd; ++Res) {
433       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
434           (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
435         if (!IIDecl ||
436             (*Res)->getLocation().getRawEncoding() <
437               IIDecl->getLocation().getRawEncoding())
438           IIDecl = *Res;
439       }
440     }
441 
442     if (!IIDecl) {
443       // None of the entities we found is a type, so there is no way
444       // to even assume that the result is a type. In this case, don't
445       // complain about the ambiguity. The parser will either try to
446       // perform this lookup again (e.g., as an object name), which
447       // will produce the ambiguity, or will complain that it expected
448       // a type name.
449       Result.suppressDiagnostics();
450       return nullptr;
451     }
452 
453     // We found a type within the ambiguous lookup; diagnose the
454     // ambiguity and then return that type. This might be the right
455     // answer, or it might not be, but it suppresses any attempt to
456     // perform the name lookup again.
457     break;
458 
459   case LookupResult::Found:
460     IIDecl = Result.getFoundDecl();
461     break;
462   }
463 
464   assert(IIDecl && "Didn't find decl");
465 
466   QualType T;
467   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
468     // C++ [class.qual]p2: A lookup that would find the injected-class-name
469     // instead names the constructors of the class, except when naming a class.
470     // This is ill-formed when we're not actually forming a ctor or dtor name.
471     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
472     auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
473     if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
474         FoundRD->isInjectedClassName() &&
475         declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
476       Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
477           << &II << /*Type*/1;
478 
479     DiagnoseUseOfDecl(IIDecl, NameLoc);
480 
481     T = Context.getTypeDeclType(TD);
482     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
483   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
484     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
485     if (!HasTrailingDot)
486       T = Context.getObjCInterfaceType(IDecl);
487   } else if (AllowDeducedTemplate) {
488     if (auto *TD = getAsTypeTemplateDecl(IIDecl))
489       T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
490                                                        QualType(), false);
491   }
492 
493   if (T.isNull()) {
494     // If it's not plausibly a type, suppress diagnostics.
495     Result.suppressDiagnostics();
496     return nullptr;
497   }
498 
499   // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
500   // constructor or destructor name (in such a case, the scope specifier
501   // will be attached to the enclosing Expr or Decl node).
502   if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
503       !isa<ObjCInterfaceDecl>(IIDecl)) {
504     if (WantNontrivialTypeSourceInfo) {
505       // Construct a type with type-source information.
506       TypeLocBuilder Builder;
507       Builder.pushTypeSpec(T).setNameLoc(NameLoc);
508 
509       T = getElaboratedType(ETK_None, *SS, T);
510       ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
511       ElabTL.setElaboratedKeywordLoc(SourceLocation());
512       ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
513       return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
514     } else {
515       T = getElaboratedType(ETK_None, *SS, T);
516     }
517   }
518 
519   return ParsedType::make(T);
520 }
521 
522 // Builds a fake NNS for the given decl context.
523 static NestedNameSpecifier *
524 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
525   for (;; DC = DC->getLookupParent()) {
526     DC = DC->getPrimaryContext();
527     auto *ND = dyn_cast<NamespaceDecl>(DC);
528     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
529       return NestedNameSpecifier::Create(Context, nullptr, ND);
530     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
531       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
532                                          RD->getTypeForDecl());
533     else if (isa<TranslationUnitDecl>(DC))
534       return NestedNameSpecifier::GlobalSpecifier(Context);
535   }
536   llvm_unreachable("something isn't in TU scope?");
537 }
538 
539 /// Find the parent class with dependent bases of the innermost enclosing method
540 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
541 /// up allowing unqualified dependent type names at class-level, which MSVC
542 /// correctly rejects.
543 static const CXXRecordDecl *
544 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
545   for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
546     DC = DC->getPrimaryContext();
547     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
548       if (MD->getParent()->hasAnyDependentBases())
549         return MD->getParent();
550   }
551   return nullptr;
552 }
553 
554 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
555                                           SourceLocation NameLoc,
556                                           bool IsTemplateTypeArg) {
557   assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
558 
559   NestedNameSpecifier *NNS = nullptr;
560   if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
561     // If we weren't able to parse a default template argument, delay lookup
562     // until instantiation time by making a non-dependent DependentTypeName. We
563     // pretend we saw a NestedNameSpecifier referring to the current scope, and
564     // lookup is retried.
565     // FIXME: This hurts our diagnostic quality, since we get errors like "no
566     // type named 'Foo' in 'current_namespace'" when the user didn't write any
567     // name specifiers.
568     NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
569     Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
570   } else if (const CXXRecordDecl *RD =
571                  findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
572     // Build a DependentNameType that will perform lookup into RD at
573     // instantiation time.
574     NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
575                                       RD->getTypeForDecl());
576 
577     // Diagnose that this identifier was undeclared, and retry the lookup during
578     // template instantiation.
579     Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
580                                                                       << RD;
581   } else {
582     // This is not a situation that we should recover from.
583     return ParsedType();
584   }
585 
586   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
587 
588   // Build type location information.  We synthesized the qualifier, so we have
589   // to build a fake NestedNameSpecifierLoc.
590   NestedNameSpecifierLocBuilder NNSLocBuilder;
591   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
592   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
593 
594   TypeLocBuilder Builder;
595   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
596   DepTL.setNameLoc(NameLoc);
597   DepTL.setElaboratedKeywordLoc(SourceLocation());
598   DepTL.setQualifierLoc(QualifierLoc);
599   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
600 }
601 
602 /// isTagName() - This method is called *for error recovery purposes only*
603 /// to determine if the specified name is a valid tag name ("struct foo").  If
604 /// so, this returns the TST for the tag corresponding to it (TST_enum,
605 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
606 /// cases in C where the user forgot to specify the tag.
607 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
608   // Do a tag name lookup in this scope.
609   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
610   LookupName(R, S, false);
611   R.suppressDiagnostics();
612   if (R.getResultKind() == LookupResult::Found)
613     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
614       switch (TD->getTagKind()) {
615       case TTK_Struct: return DeclSpec::TST_struct;
616       case TTK_Interface: return DeclSpec::TST_interface;
617       case TTK_Union:  return DeclSpec::TST_union;
618       case TTK_Class:  return DeclSpec::TST_class;
619       case TTK_Enum:   return DeclSpec::TST_enum;
620       }
621     }
622 
623   return DeclSpec::TST_unspecified;
624 }
625 
626 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
627 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
628 /// then downgrade the missing typename error to a warning.
629 /// This is needed for MSVC compatibility; Example:
630 /// @code
631 /// template<class T> class A {
632 /// public:
633 ///   typedef int TYPE;
634 /// };
635 /// template<class T> class B : public A<T> {
636 /// public:
637 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
638 /// };
639 /// @endcode
640 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
641   if (CurContext->isRecord()) {
642     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
643       return true;
644 
645     const Type *Ty = SS->getScopeRep()->getAsType();
646 
647     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
648     for (const auto &Base : RD->bases())
649       if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
650         return true;
651     return S->isFunctionPrototypeScope();
652   }
653   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
654 }
655 
656 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
657                                    SourceLocation IILoc,
658                                    Scope *S,
659                                    CXXScopeSpec *SS,
660                                    ParsedType &SuggestedType,
661                                    bool IsTemplateName) {
662   // Don't report typename errors for editor placeholders.
663   if (II->isEditorPlaceholder())
664     return;
665   // We don't have anything to suggest (yet).
666   SuggestedType = nullptr;
667 
668   // There may have been a typo in the name of the type. Look up typo
669   // results, in case we have something that we can suggest.
670   TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
671                            /*AllowTemplates=*/IsTemplateName,
672                            /*AllowNonTemplates=*/!IsTemplateName);
673   if (TypoCorrection Corrected =
674           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
675                       CCC, CTK_ErrorRecovery)) {
676     // FIXME: Support error recovery for the template-name case.
677     bool CanRecover = !IsTemplateName;
678     if (Corrected.isKeyword()) {
679       // We corrected to a keyword.
680       diagnoseTypo(Corrected,
681                    PDiag(IsTemplateName ? diag::err_no_template_suggest
682                                         : diag::err_unknown_typename_suggest)
683                        << II);
684       II = Corrected.getCorrectionAsIdentifierInfo();
685     } else {
686       // We found a similarly-named type or interface; suggest that.
687       if (!SS || !SS->isSet()) {
688         diagnoseTypo(Corrected,
689                      PDiag(IsTemplateName ? diag::err_no_template_suggest
690                                           : diag::err_unknown_typename_suggest)
691                          << II, CanRecover);
692       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
693         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
694         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
695                                 II->getName().equals(CorrectedStr);
696         diagnoseTypo(Corrected,
697                      PDiag(IsTemplateName
698                                ? diag::err_no_member_template_suggest
699                                : diag::err_unknown_nested_typename_suggest)
700                          << II << DC << DroppedSpecifier << SS->getRange(),
701                      CanRecover);
702       } else {
703         llvm_unreachable("could not have corrected a typo here");
704       }
705 
706       if (!CanRecover)
707         return;
708 
709       CXXScopeSpec tmpSS;
710       if (Corrected.getCorrectionSpecifier())
711         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
712                           SourceRange(IILoc));
713       // FIXME: Support class template argument deduction here.
714       SuggestedType =
715           getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
716                       tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
717                       /*IsCtorOrDtorName=*/false,
718                       /*NonTrivialTypeSourceInfo=*/true);
719     }
720     return;
721   }
722 
723   if (getLangOpts().CPlusPlus && !IsTemplateName) {
724     // See if II is a class template that the user forgot to pass arguments to.
725     UnqualifiedId Name;
726     Name.setIdentifier(II, IILoc);
727     CXXScopeSpec EmptySS;
728     TemplateTy TemplateResult;
729     bool MemberOfUnknownSpecialization;
730     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
731                        Name, nullptr, true, TemplateResult,
732                        MemberOfUnknownSpecialization) == TNK_Type_template) {
733       diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
734       return;
735     }
736   }
737 
738   // FIXME: Should we move the logic that tries to recover from a missing tag
739   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
740 
741   if (!SS || (!SS->isSet() && !SS->isInvalid()))
742     Diag(IILoc, IsTemplateName ? diag::err_no_template
743                                : diag::err_unknown_typename)
744         << II;
745   else if (DeclContext *DC = computeDeclContext(*SS, false))
746     Diag(IILoc, IsTemplateName ? diag::err_no_member_template
747                                : diag::err_typename_nested_not_found)
748         << II << DC << SS->getRange();
749   else if (isDependentScopeSpecifier(*SS)) {
750     unsigned DiagID = diag::err_typename_missing;
751     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
752       DiagID = diag::ext_typename_missing;
753 
754     Diag(SS->getRange().getBegin(), DiagID)
755       << SS->getScopeRep() << II->getName()
756       << SourceRange(SS->getRange().getBegin(), IILoc)
757       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
758     SuggestedType = ActOnTypenameType(S, SourceLocation(),
759                                       *SS, *II, IILoc).get();
760   } else {
761     assert(SS && SS->isInvalid() &&
762            "Invalid scope specifier has already been diagnosed");
763   }
764 }
765 
766 /// Determine whether the given result set contains either a type name
767 /// or
768 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
769   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
770                        NextToken.is(tok::less);
771 
772   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
773     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
774       return true;
775 
776     if (CheckTemplate && isa<TemplateDecl>(*I))
777       return true;
778   }
779 
780   return false;
781 }
782 
783 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
784                                     Scope *S, CXXScopeSpec &SS,
785                                     IdentifierInfo *&Name,
786                                     SourceLocation NameLoc) {
787   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
788   SemaRef.LookupParsedName(R, S, &SS);
789   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
790     StringRef FixItTagName;
791     switch (Tag->getTagKind()) {
792       case TTK_Class:
793         FixItTagName = "class ";
794         break;
795 
796       case TTK_Enum:
797         FixItTagName = "enum ";
798         break;
799 
800       case TTK_Struct:
801         FixItTagName = "struct ";
802         break;
803 
804       case TTK_Interface:
805         FixItTagName = "__interface ";
806         break;
807 
808       case TTK_Union:
809         FixItTagName = "union ";
810         break;
811     }
812 
813     StringRef TagName = FixItTagName.drop_back();
814     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
815       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
816       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
817 
818     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
819          I != IEnd; ++I)
820       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
821         << Name << TagName;
822 
823     // Replace lookup results with just the tag decl.
824     Result.clear(Sema::LookupTagName);
825     SemaRef.LookupParsedName(Result, S, &SS);
826     return true;
827   }
828 
829   return false;
830 }
831 
832 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
833 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
834                                   QualType T, SourceLocation NameLoc) {
835   ASTContext &Context = S.Context;
836 
837   TypeLocBuilder Builder;
838   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
839 
840   T = S.getElaboratedType(ETK_None, SS, T);
841   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
842   ElabTL.setElaboratedKeywordLoc(SourceLocation());
843   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
844   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
845 }
846 
847 Sema::NameClassification
848 Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
849                    SourceLocation NameLoc, const Token &NextToken,
850                    bool IsAddressOfOperand, CorrectionCandidateCallback *CCC) {
851   DeclarationNameInfo NameInfo(Name, NameLoc);
852   ObjCMethodDecl *CurMethod = getCurMethodDecl();
853 
854   if (NextToken.is(tok::coloncolon)) {
855     NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation());
856     BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false);
857   } else if (getLangOpts().CPlusPlus && SS.isSet() &&
858              isCurrentClassName(*Name, S, &SS)) {
859     // Per [class.qual]p2, this names the constructors of SS, not the
860     // injected-class-name. We don't have a classification for that.
861     // There's not much point caching this result, since the parser
862     // will reject it later.
863     return NameClassification::Unknown();
864   }
865 
866   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
867   LookupParsedName(Result, S, &SS, !CurMethod);
868 
869   // For unqualified lookup in a class template in MSVC mode, look into
870   // dependent base classes where the primary class template is known.
871   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
872     if (ParsedType TypeInBase =
873             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
874       return TypeInBase;
875   }
876 
877   // Perform lookup for Objective-C instance variables (including automatically
878   // synthesized instance variables), if we're in an Objective-C method.
879   // FIXME: This lookup really, really needs to be folded in to the normal
880   // unqualified lookup mechanism.
881   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
882     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
883     if (E.get() || E.isInvalid())
884       return E;
885   }
886 
887   bool SecondTry = false;
888   bool IsFilteredTemplateName = false;
889 
890 Corrected:
891   switch (Result.getResultKind()) {
892   case LookupResult::NotFound:
893     // If an unqualified-id is followed by a '(', then we have a function
894     // call.
895     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
896       // In C++, this is an ADL-only call.
897       // FIXME: Reference?
898       if (getLangOpts().CPlusPlus)
899         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
900 
901       // C90 6.3.2.2:
902       //   If the expression that precedes the parenthesized argument list in a
903       //   function call consists solely of an identifier, and if no
904       //   declaration is visible for this identifier, the identifier is
905       //   implicitly declared exactly as if, in the innermost block containing
906       //   the function call, the declaration
907       //
908       //     extern int identifier ();
909       //
910       //   appeared.
911       //
912       // We also allow this in C99 as an extension.
913       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
914         Result.addDecl(D);
915         Result.resolveKind();
916         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
917       }
918     }
919 
920     if (getLangOpts().CPlusPlus2a && !SS.isSet() && NextToken.is(tok::less)) {
921       // In C++20 onwards, this could be an ADL-only call to a function
922       // template, and we're required to assume that this is a template name.
923       //
924       // FIXME: Find a way to still do typo correction in this case.
925       TemplateName Template =
926           Context.getAssumedTemplateName(NameInfo.getName());
927       return NameClassification::UndeclaredTemplate(Template);
928     }
929 
930     // In C, we first see whether there is a tag type by the same name, in
931     // which case it's likely that the user just forgot to write "enum",
932     // "struct", or "union".
933     if (!getLangOpts().CPlusPlus && !SecondTry &&
934         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
935       break;
936     }
937 
938     // Perform typo correction to determine if there is another name that is
939     // close to this name.
940     if (!SecondTry && CCC) {
941       SecondTry = true;
942       if (TypoCorrection Corrected =
943               CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
944                           &SS, *CCC, CTK_ErrorRecovery)) {
945         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
946         unsigned QualifiedDiag = diag::err_no_member_suggest;
947 
948         NamedDecl *FirstDecl = Corrected.getFoundDecl();
949         NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
950         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
951             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
952           UnqualifiedDiag = diag::err_no_template_suggest;
953           QualifiedDiag = diag::err_no_member_template_suggest;
954         } else if (UnderlyingFirstDecl &&
955                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
956                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
957                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
958           UnqualifiedDiag = diag::err_unknown_typename_suggest;
959           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
960         }
961 
962         if (SS.isEmpty()) {
963           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
964         } else {// FIXME: is this even reachable? Test it.
965           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
966           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
967                                   Name->getName().equals(CorrectedStr);
968           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
969                                     << Name << computeDeclContext(SS, false)
970                                     << DroppedSpecifier << SS.getRange());
971         }
972 
973         // Update the name, so that the caller has the new name.
974         Name = Corrected.getCorrectionAsIdentifierInfo();
975 
976         // Typo correction corrected to a keyword.
977         if (Corrected.isKeyword())
978           return Name;
979 
980         // Also update the LookupResult...
981         // FIXME: This should probably go away at some point
982         Result.clear();
983         Result.setLookupName(Corrected.getCorrection());
984         if (FirstDecl)
985           Result.addDecl(FirstDecl);
986 
987         // If we found an Objective-C instance variable, let
988         // LookupInObjCMethod build the appropriate expression to
989         // reference the ivar.
990         // FIXME: This is a gross hack.
991         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
992           Result.clear();
993           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
994           return E;
995         }
996 
997         goto Corrected;
998       }
999     }
1000 
1001     // We failed to correct; just fall through and let the parser deal with it.
1002     Result.suppressDiagnostics();
1003     return NameClassification::Unknown();
1004 
1005   case LookupResult::NotFoundInCurrentInstantiation: {
1006     // We performed name lookup into the current instantiation, and there were
1007     // dependent bases, so we treat this result the same way as any other
1008     // dependent nested-name-specifier.
1009 
1010     // C++ [temp.res]p2:
1011     //   A name used in a template declaration or definition and that is
1012     //   dependent on a template-parameter is assumed not to name a type
1013     //   unless the applicable name lookup finds a type name or the name is
1014     //   qualified by the keyword typename.
1015     //
1016     // FIXME: If the next token is '<', we might want to ask the parser to
1017     // perform some heroics to see if we actually have a
1018     // template-argument-list, which would indicate a missing 'template'
1019     // keyword here.
1020     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1021                                       NameInfo, IsAddressOfOperand,
1022                                       /*TemplateArgs=*/nullptr);
1023   }
1024 
1025   case LookupResult::Found:
1026   case LookupResult::FoundOverloaded:
1027   case LookupResult::FoundUnresolvedValue:
1028     break;
1029 
1030   case LookupResult::Ambiguous:
1031     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1032         hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1033                                       /*AllowDependent=*/false)) {
1034       // C++ [temp.local]p3:
1035       //   A lookup that finds an injected-class-name (10.2) can result in an
1036       //   ambiguity in certain cases (for example, if it is found in more than
1037       //   one base class). If all of the injected-class-names that are found
1038       //   refer to specializations of the same class template, and if the name
1039       //   is followed by a template-argument-list, the reference refers to the
1040       //   class template itself and not a specialization thereof, and is not
1041       //   ambiguous.
1042       //
1043       // This filtering can make an ambiguous result into an unambiguous one,
1044       // so try again after filtering out template names.
1045       FilterAcceptableTemplateNames(Result);
1046       if (!Result.isAmbiguous()) {
1047         IsFilteredTemplateName = true;
1048         break;
1049       }
1050     }
1051 
1052     // Diagnose the ambiguity and return an error.
1053     return NameClassification::Error();
1054   }
1055 
1056   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1057       (IsFilteredTemplateName ||
1058        hasAnyAcceptableTemplateNames(
1059            Result, /*AllowFunctionTemplates=*/true,
1060            /*AllowDependent=*/false,
1061            /*AllowNonTemplateFunctions*/ !SS.isSet() &&
1062                getLangOpts().CPlusPlus2a))) {
1063     // C++ [temp.names]p3:
1064     //   After name lookup (3.4) finds that a name is a template-name or that
1065     //   an operator-function-id or a literal- operator-id refers to a set of
1066     //   overloaded functions any member of which is a function template if
1067     //   this is followed by a <, the < is always taken as the delimiter of a
1068     //   template-argument-list and never as the less-than operator.
1069     // C++2a [temp.names]p2:
1070     //   A name is also considered to refer to a template if it is an
1071     //   unqualified-id followed by a < and name lookup finds either one
1072     //   or more functions or finds nothing.
1073     if (!IsFilteredTemplateName)
1074       FilterAcceptableTemplateNames(Result);
1075 
1076     bool IsFunctionTemplate;
1077     bool IsVarTemplate;
1078     TemplateName Template;
1079     if (Result.end() - Result.begin() > 1) {
1080       IsFunctionTemplate = true;
1081       Template = Context.getOverloadedTemplateName(Result.begin(),
1082                                                    Result.end());
1083     } else if (!Result.empty()) {
1084       auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1085           *Result.begin(), /*AllowFunctionTemplates=*/true,
1086           /*AllowDependent=*/false));
1087       IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1088       IsVarTemplate = isa<VarTemplateDecl>(TD);
1089 
1090       if (SS.isSet() && !SS.isInvalid())
1091         Template =
1092             Context.getQualifiedTemplateName(SS.getScopeRep(),
1093                                              /*TemplateKeyword=*/false, TD);
1094       else
1095         Template = TemplateName(TD);
1096     } else {
1097       // All results were non-template functions. This is a function template
1098       // name.
1099       IsFunctionTemplate = true;
1100       Template = Context.getAssumedTemplateName(NameInfo.getName());
1101     }
1102 
1103     if (IsFunctionTemplate) {
1104       // Function templates always go through overload resolution, at which
1105       // point we'll perform the various checks (e.g., accessibility) we need
1106       // to based on which function we selected.
1107       Result.suppressDiagnostics();
1108 
1109       return NameClassification::FunctionTemplate(Template);
1110     }
1111 
1112     return IsVarTemplate ? NameClassification::VarTemplate(Template)
1113                          : NameClassification::TypeTemplate(Template);
1114   }
1115 
1116   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1117   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1118     DiagnoseUseOfDecl(Type, NameLoc);
1119     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1120     QualType T = Context.getTypeDeclType(Type);
1121     if (SS.isNotEmpty())
1122       return buildNestedType(*this, SS, T, NameLoc);
1123     return ParsedType::make(T);
1124   }
1125 
1126   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1127   if (!Class) {
1128     // FIXME: It's unfortunate that we don't have a Type node for handling this.
1129     if (ObjCCompatibleAliasDecl *Alias =
1130             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1131       Class = Alias->getClassInterface();
1132   }
1133 
1134   if (Class) {
1135     DiagnoseUseOfDecl(Class, NameLoc);
1136 
1137     if (NextToken.is(tok::period)) {
1138       // Interface. <something> is parsed as a property reference expression.
1139       // Just return "unknown" as a fall-through for now.
1140       Result.suppressDiagnostics();
1141       return NameClassification::Unknown();
1142     }
1143 
1144     QualType T = Context.getObjCInterfaceType(Class);
1145     return ParsedType::make(T);
1146   }
1147 
1148   // We can have a type template here if we're classifying a template argument.
1149   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1150       !isa<VarTemplateDecl>(FirstDecl))
1151     return NameClassification::TypeTemplate(
1152         TemplateName(cast<TemplateDecl>(FirstDecl)));
1153 
1154   // Check for a tag type hidden by a non-type decl in a few cases where it
1155   // seems likely a type is wanted instead of the non-type that was found.
1156   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1157   if ((NextToken.is(tok::identifier) ||
1158        (NextIsOp &&
1159         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1160       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1161     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1162     DiagnoseUseOfDecl(Type, NameLoc);
1163     QualType T = Context.getTypeDeclType(Type);
1164     if (SS.isNotEmpty())
1165       return buildNestedType(*this, SS, T, NameLoc);
1166     return ParsedType::make(T);
1167   }
1168 
1169   if (FirstDecl->isCXXClassMember())
1170     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1171                                            nullptr, S);
1172 
1173   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1174   return BuildDeclarationNameExpr(SS, Result, ADL);
1175 }
1176 
1177 Sema::TemplateNameKindForDiagnostics
1178 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1179   auto *TD = Name.getAsTemplateDecl();
1180   if (!TD)
1181     return TemplateNameKindForDiagnostics::DependentTemplate;
1182   if (isa<ClassTemplateDecl>(TD))
1183     return TemplateNameKindForDiagnostics::ClassTemplate;
1184   if (isa<FunctionTemplateDecl>(TD))
1185     return TemplateNameKindForDiagnostics::FunctionTemplate;
1186   if (isa<VarTemplateDecl>(TD))
1187     return TemplateNameKindForDiagnostics::VarTemplate;
1188   if (isa<TypeAliasTemplateDecl>(TD))
1189     return TemplateNameKindForDiagnostics::AliasTemplate;
1190   if (isa<TemplateTemplateParmDecl>(TD))
1191     return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1192   return TemplateNameKindForDiagnostics::DependentTemplate;
1193 }
1194 
1195 // Determines the context to return to after temporarily entering a
1196 // context.  This depends in an unnecessarily complicated way on the
1197 // exact ordering of callbacks from the parser.
1198 DeclContext *Sema::getContainingDC(DeclContext *DC) {
1199 
1200   // Functions defined inline within classes aren't parsed until we've
1201   // finished parsing the top-level class, so the top-level class is
1202   // the context we'll need to return to.
1203   // A Lambda call operator whose parent is a class must not be treated
1204   // as an inline member function.  A Lambda can be used legally
1205   // either as an in-class member initializer or a default argument.  These
1206   // are parsed once the class has been marked complete and so the containing
1207   // context would be the nested class (when the lambda is defined in one);
1208   // If the class is not complete, then the lambda is being used in an
1209   // ill-formed fashion (such as to specify the width of a bit-field, or
1210   // in an array-bound) - in which case we still want to return the
1211   // lexically containing DC (which could be a nested class).
1212   if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1213     DC = DC->getLexicalParent();
1214 
1215     // A function not defined within a class will always return to its
1216     // lexical context.
1217     if (!isa<CXXRecordDecl>(DC))
1218       return DC;
1219 
1220     // A C++ inline method/friend is parsed *after* the topmost class
1221     // it was declared in is fully parsed ("complete");  the topmost
1222     // class is the context we need to return to.
1223     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1224       DC = RD;
1225 
1226     // Return the declaration context of the topmost class the inline method is
1227     // declared in.
1228     return DC;
1229   }
1230 
1231   return DC->getLexicalParent();
1232 }
1233 
1234 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1235   assert(getContainingDC(DC) == CurContext &&
1236       "The next DeclContext should be lexically contained in the current one.");
1237   CurContext = DC;
1238   S->setEntity(DC);
1239 }
1240 
1241 void Sema::PopDeclContext() {
1242   assert(CurContext && "DeclContext imbalance!");
1243 
1244   CurContext = getContainingDC(CurContext);
1245   assert(CurContext && "Popped translation unit!");
1246 }
1247 
1248 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1249                                                                     Decl *D) {
1250   // Unlike PushDeclContext, the context to which we return is not necessarily
1251   // the containing DC of TD, because the new context will be some pre-existing
1252   // TagDecl definition instead of a fresh one.
1253   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1254   CurContext = cast<TagDecl>(D)->getDefinition();
1255   assert(CurContext && "skipping definition of undefined tag");
1256   // Start lookups from the parent of the current context; we don't want to look
1257   // into the pre-existing complete definition.
1258   S->setEntity(CurContext->getLookupParent());
1259   return Result;
1260 }
1261 
1262 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1263   CurContext = static_cast<decltype(CurContext)>(Context);
1264 }
1265 
1266 /// EnterDeclaratorContext - Used when we must lookup names in the context
1267 /// of a declarator's nested name specifier.
1268 ///
1269 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1270   // C++0x [basic.lookup.unqual]p13:
1271   //   A name used in the definition of a static data member of class
1272   //   X (after the qualified-id of the static member) is looked up as
1273   //   if the name was used in a member function of X.
1274   // C++0x [basic.lookup.unqual]p14:
1275   //   If a variable member of a namespace is defined outside of the
1276   //   scope of its namespace then any name used in the definition of
1277   //   the variable member (after the declarator-id) is looked up as
1278   //   if the definition of the variable member occurred in its
1279   //   namespace.
1280   // Both of these imply that we should push a scope whose context
1281   // is the semantic context of the declaration.  We can't use
1282   // PushDeclContext here because that context is not necessarily
1283   // lexically contained in the current context.  Fortunately,
1284   // the containing scope should have the appropriate information.
1285 
1286   assert(!S->getEntity() && "scope already has entity");
1287 
1288 #ifndef NDEBUG
1289   Scope *Ancestor = S->getParent();
1290   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1291   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1292 #endif
1293 
1294   CurContext = DC;
1295   S->setEntity(DC);
1296 }
1297 
1298 void Sema::ExitDeclaratorContext(Scope *S) {
1299   assert(S->getEntity() == CurContext && "Context imbalance!");
1300 
1301   // Switch back to the lexical context.  The safety of this is
1302   // enforced by an assert in EnterDeclaratorContext.
1303   Scope *Ancestor = S->getParent();
1304   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1305   CurContext = Ancestor->getEntity();
1306 
1307   // We don't need to do anything with the scope, which is going to
1308   // disappear.
1309 }
1310 
1311 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1312   // We assume that the caller has already called
1313   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1314   FunctionDecl *FD = D->getAsFunction();
1315   if (!FD)
1316     return;
1317 
1318   // Same implementation as PushDeclContext, but enters the context
1319   // from the lexical parent, rather than the top-level class.
1320   assert(CurContext == FD->getLexicalParent() &&
1321     "The next DeclContext should be lexically contained in the current one.");
1322   CurContext = FD;
1323   S->setEntity(CurContext);
1324 
1325   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1326     ParmVarDecl *Param = FD->getParamDecl(P);
1327     // If the parameter has an identifier, then add it to the scope
1328     if (Param->getIdentifier()) {
1329       S->AddDecl(Param);
1330       IdResolver.AddDecl(Param);
1331     }
1332   }
1333 }
1334 
1335 void Sema::ActOnExitFunctionContext() {
1336   // Same implementation as PopDeclContext, but returns to the lexical parent,
1337   // rather than the top-level class.
1338   assert(CurContext && "DeclContext imbalance!");
1339   CurContext = CurContext->getLexicalParent();
1340   assert(CurContext && "Popped translation unit!");
1341 }
1342 
1343 /// Determine whether we allow overloading of the function
1344 /// PrevDecl with another declaration.
1345 ///
1346 /// This routine determines whether overloading is possible, not
1347 /// whether some new function is actually an overload. It will return
1348 /// true in C++ (where we can always provide overloads) or, as an
1349 /// extension, in C when the previous function is already an
1350 /// overloaded function declaration or has the "overloadable"
1351 /// attribute.
1352 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1353                                        ASTContext &Context,
1354                                        const FunctionDecl *New) {
1355   if (Context.getLangOpts().CPlusPlus)
1356     return true;
1357 
1358   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1359     return true;
1360 
1361   return Previous.getResultKind() == LookupResult::Found &&
1362          (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1363           New->hasAttr<OverloadableAttr>());
1364 }
1365 
1366 /// Add this decl to the scope shadowed decl chains.
1367 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1368   // Move up the scope chain until we find the nearest enclosing
1369   // non-transparent context. The declaration will be introduced into this
1370   // scope.
1371   while (S->getEntity() && S->getEntity()->isTransparentContext())
1372     S = S->getParent();
1373 
1374   // Add scoped declarations into their context, so that they can be
1375   // found later. Declarations without a context won't be inserted
1376   // into any context.
1377   if (AddToContext)
1378     CurContext->addDecl(D);
1379 
1380   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1381   // are function-local declarations.
1382   if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1383       !D->getDeclContext()->getRedeclContext()->Equals(
1384         D->getLexicalDeclContext()->getRedeclContext()) &&
1385       !D->getLexicalDeclContext()->isFunctionOrMethod())
1386     return;
1387 
1388   // Template instantiations should also not be pushed into scope.
1389   if (isa<FunctionDecl>(D) &&
1390       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1391     return;
1392 
1393   // If this replaces anything in the current scope,
1394   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1395                                IEnd = IdResolver.end();
1396   for (; I != IEnd; ++I) {
1397     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1398       S->RemoveDecl(*I);
1399       IdResolver.RemoveDecl(*I);
1400 
1401       // Should only need to replace one decl.
1402       break;
1403     }
1404   }
1405 
1406   S->AddDecl(D);
1407 
1408   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1409     // Implicitly-generated labels may end up getting generated in an order that
1410     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1411     // the label at the appropriate place in the identifier chain.
1412     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1413       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1414       if (IDC == CurContext) {
1415         if (!S->isDeclScope(*I))
1416           continue;
1417       } else if (IDC->Encloses(CurContext))
1418         break;
1419     }
1420 
1421     IdResolver.InsertDeclAfter(I, D);
1422   } else {
1423     IdResolver.AddDecl(D);
1424   }
1425 }
1426 
1427 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1428                          bool AllowInlineNamespace) {
1429   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1430 }
1431 
1432 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1433   DeclContext *TargetDC = DC->getPrimaryContext();
1434   do {
1435     if (DeclContext *ScopeDC = S->getEntity())
1436       if (ScopeDC->getPrimaryContext() == TargetDC)
1437         return S;
1438   } while ((S = S->getParent()));
1439 
1440   return nullptr;
1441 }
1442 
1443 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1444                                             DeclContext*,
1445                                             ASTContext&);
1446 
1447 /// Filters out lookup results that don't fall within the given scope
1448 /// as determined by isDeclInScope.
1449 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1450                                 bool ConsiderLinkage,
1451                                 bool AllowInlineNamespace) {
1452   LookupResult::Filter F = R.makeFilter();
1453   while (F.hasNext()) {
1454     NamedDecl *D = F.next();
1455 
1456     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1457       continue;
1458 
1459     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1460       continue;
1461 
1462     F.erase();
1463   }
1464 
1465   F.done();
1466 }
1467 
1468 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1469 /// have compatible owning modules.
1470 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1471   // FIXME: The Modules TS is not clear about how friend declarations are
1472   // to be treated. It's not meaningful to have different owning modules for
1473   // linkage in redeclarations of the same entity, so for now allow the
1474   // redeclaration and change the owning modules to match.
1475   if (New->getFriendObjectKind() &&
1476       Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1477     New->setLocalOwningModule(Old->getOwningModule());
1478     makeMergedDefinitionVisible(New);
1479     return false;
1480   }
1481 
1482   Module *NewM = New->getOwningModule();
1483   Module *OldM = Old->getOwningModule();
1484 
1485   if (NewM && NewM->Kind == Module::PrivateModuleFragment)
1486     NewM = NewM->Parent;
1487   if (OldM && OldM->Kind == Module::PrivateModuleFragment)
1488     OldM = OldM->Parent;
1489 
1490   if (NewM == OldM)
1491     return false;
1492 
1493   bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1494   bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1495   if (NewIsModuleInterface || OldIsModuleInterface) {
1496     // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1497     //   if a declaration of D [...] appears in the purview of a module, all
1498     //   other such declarations shall appear in the purview of the same module
1499     Diag(New->getLocation(), diag::err_mismatched_owning_module)
1500       << New
1501       << NewIsModuleInterface
1502       << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1503       << OldIsModuleInterface
1504       << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1505     Diag(Old->getLocation(), diag::note_previous_declaration);
1506     New->setInvalidDecl();
1507     return true;
1508   }
1509 
1510   return false;
1511 }
1512 
1513 static bool isUsingDecl(NamedDecl *D) {
1514   return isa<UsingShadowDecl>(D) ||
1515          isa<UnresolvedUsingTypenameDecl>(D) ||
1516          isa<UnresolvedUsingValueDecl>(D);
1517 }
1518 
1519 /// Removes using shadow declarations from the lookup results.
1520 static void RemoveUsingDecls(LookupResult &R) {
1521   LookupResult::Filter F = R.makeFilter();
1522   while (F.hasNext())
1523     if (isUsingDecl(F.next()))
1524       F.erase();
1525 
1526   F.done();
1527 }
1528 
1529 /// Check for this common pattern:
1530 /// @code
1531 /// class S {
1532 ///   S(const S&); // DO NOT IMPLEMENT
1533 ///   void operator=(const S&); // DO NOT IMPLEMENT
1534 /// };
1535 /// @endcode
1536 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1537   // FIXME: Should check for private access too but access is set after we get
1538   // the decl here.
1539   if (D->doesThisDeclarationHaveABody())
1540     return false;
1541 
1542   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1543     return CD->isCopyConstructor();
1544   return D->isCopyAssignmentOperator();
1545 }
1546 
1547 // We need this to handle
1548 //
1549 // typedef struct {
1550 //   void *foo() { return 0; }
1551 // } A;
1552 //
1553 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1554 // for example. If 'A', foo will have external linkage. If we have '*A',
1555 // foo will have no linkage. Since we can't know until we get to the end
1556 // of the typedef, this function finds out if D might have non-external linkage.
1557 // Callers should verify at the end of the TU if it D has external linkage or
1558 // not.
1559 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1560   const DeclContext *DC = D->getDeclContext();
1561   while (!DC->isTranslationUnit()) {
1562     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1563       if (!RD->hasNameForLinkage())
1564         return true;
1565     }
1566     DC = DC->getParent();
1567   }
1568 
1569   return !D->isExternallyVisible();
1570 }
1571 
1572 // FIXME: This needs to be refactored; some other isInMainFile users want
1573 // these semantics.
1574 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1575   if (S.TUKind != TU_Complete)
1576     return false;
1577   return S.SourceMgr.isInMainFile(Loc);
1578 }
1579 
1580 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1581   assert(D);
1582 
1583   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1584     return false;
1585 
1586   // Ignore all entities declared within templates, and out-of-line definitions
1587   // of members of class templates.
1588   if (D->getDeclContext()->isDependentContext() ||
1589       D->getLexicalDeclContext()->isDependentContext())
1590     return false;
1591 
1592   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1593     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1594       return false;
1595     // A non-out-of-line declaration of a member specialization was implicitly
1596     // instantiated; it's the out-of-line declaration that we're interested in.
1597     if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1598         FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1599       return false;
1600 
1601     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1602       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1603         return false;
1604     } else {
1605       // 'static inline' functions are defined in headers; don't warn.
1606       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1607         return false;
1608     }
1609 
1610     if (FD->doesThisDeclarationHaveABody() &&
1611         Context.DeclMustBeEmitted(FD))
1612       return false;
1613   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1614     // Constants and utility variables are defined in headers with internal
1615     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1616     // like "inline".)
1617     if (!isMainFileLoc(*this, VD->getLocation()))
1618       return false;
1619 
1620     if (Context.DeclMustBeEmitted(VD))
1621       return false;
1622 
1623     if (VD->isStaticDataMember() &&
1624         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1625       return false;
1626     if (VD->isStaticDataMember() &&
1627         VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1628         VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1629       return false;
1630 
1631     if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1632       return false;
1633   } else {
1634     return false;
1635   }
1636 
1637   // Only warn for unused decls internal to the translation unit.
1638   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1639   // for inline functions defined in the main source file, for instance.
1640   return mightHaveNonExternalLinkage(D);
1641 }
1642 
1643 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1644   if (!D)
1645     return;
1646 
1647   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1648     const FunctionDecl *First = FD->getFirstDecl();
1649     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1650       return; // First should already be in the vector.
1651   }
1652 
1653   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1654     const VarDecl *First = VD->getFirstDecl();
1655     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1656       return; // First should already be in the vector.
1657   }
1658 
1659   if (ShouldWarnIfUnusedFileScopedDecl(D))
1660     UnusedFileScopedDecls.push_back(D);
1661 }
1662 
1663 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1664   if (D->isInvalidDecl())
1665     return false;
1666 
1667   bool Referenced = false;
1668   if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1669     // For a decomposition declaration, warn if none of the bindings are
1670     // referenced, instead of if the variable itself is referenced (which
1671     // it is, by the bindings' expressions).
1672     for (auto *BD : DD->bindings()) {
1673       if (BD->isReferenced()) {
1674         Referenced = true;
1675         break;
1676       }
1677     }
1678   } else if (!D->getDeclName()) {
1679     return false;
1680   } else if (D->isReferenced() || D->isUsed()) {
1681     Referenced = true;
1682   }
1683 
1684   if (Referenced || D->hasAttr<UnusedAttr>() ||
1685       D->hasAttr<ObjCPreciseLifetimeAttr>())
1686     return false;
1687 
1688   if (isa<LabelDecl>(D))
1689     return true;
1690 
1691   // Except for labels, we only care about unused decls that are local to
1692   // functions.
1693   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1694   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1695     // For dependent types, the diagnostic is deferred.
1696     WithinFunction =
1697         WithinFunction || (R->isLocalClass() && !R->isDependentType());
1698   if (!WithinFunction)
1699     return false;
1700 
1701   if (isa<TypedefNameDecl>(D))
1702     return true;
1703 
1704   // White-list anything that isn't a local variable.
1705   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1706     return false;
1707 
1708   // Types of valid local variables should be complete, so this should succeed.
1709   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1710 
1711     // White-list anything with an __attribute__((unused)) type.
1712     const auto *Ty = VD->getType().getTypePtr();
1713 
1714     // Only look at the outermost level of typedef.
1715     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1716       if (TT->getDecl()->hasAttr<UnusedAttr>())
1717         return false;
1718     }
1719 
1720     // If we failed to complete the type for some reason, or if the type is
1721     // dependent, don't diagnose the variable.
1722     if (Ty->isIncompleteType() || Ty->isDependentType())
1723       return false;
1724 
1725     // Look at the element type to ensure that the warning behaviour is
1726     // consistent for both scalars and arrays.
1727     Ty = Ty->getBaseElementTypeUnsafe();
1728 
1729     if (const TagType *TT = Ty->getAs<TagType>()) {
1730       const TagDecl *Tag = TT->getDecl();
1731       if (Tag->hasAttr<UnusedAttr>())
1732         return false;
1733 
1734       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1735         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1736           return false;
1737 
1738         if (const Expr *Init = VD->getInit()) {
1739           if (const ExprWithCleanups *Cleanups =
1740                   dyn_cast<ExprWithCleanups>(Init))
1741             Init = Cleanups->getSubExpr();
1742           const CXXConstructExpr *Construct =
1743             dyn_cast<CXXConstructExpr>(Init);
1744           if (Construct && !Construct->isElidable()) {
1745             CXXConstructorDecl *CD = Construct->getConstructor();
1746             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1747                 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1748               return false;
1749           }
1750         }
1751       }
1752     }
1753 
1754     // TODO: __attribute__((unused)) templates?
1755   }
1756 
1757   return true;
1758 }
1759 
1760 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1761                                      FixItHint &Hint) {
1762   if (isa<LabelDecl>(D)) {
1763     SourceLocation AfterColon = Lexer::findLocationAfterToken(
1764         D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1765         true);
1766     if (AfterColon.isInvalid())
1767       return;
1768     Hint = FixItHint::CreateRemoval(
1769         CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1770   }
1771 }
1772 
1773 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1774   if (D->getTypeForDecl()->isDependentType())
1775     return;
1776 
1777   for (auto *TmpD : D->decls()) {
1778     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1779       DiagnoseUnusedDecl(T);
1780     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1781       DiagnoseUnusedNestedTypedefs(R);
1782   }
1783 }
1784 
1785 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1786 /// unless they are marked attr(unused).
1787 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1788   if (!ShouldDiagnoseUnusedDecl(D))
1789     return;
1790 
1791   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1792     // typedefs can be referenced later on, so the diagnostics are emitted
1793     // at end-of-translation-unit.
1794     UnusedLocalTypedefNameCandidates.insert(TD);
1795     return;
1796   }
1797 
1798   FixItHint Hint;
1799   GenerateFixForUnusedDecl(D, Context, Hint);
1800 
1801   unsigned DiagID;
1802   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1803     DiagID = diag::warn_unused_exception_param;
1804   else if (isa<LabelDecl>(D))
1805     DiagID = diag::warn_unused_label;
1806   else
1807     DiagID = diag::warn_unused_variable;
1808 
1809   Diag(D->getLocation(), DiagID) << D << Hint;
1810 }
1811 
1812 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1813   // Verify that we have no forward references left.  If so, there was a goto
1814   // or address of a label taken, but no definition of it.  Label fwd
1815   // definitions are indicated with a null substmt which is also not a resolved
1816   // MS inline assembly label name.
1817   bool Diagnose = false;
1818   if (L->isMSAsmLabel())
1819     Diagnose = !L->isResolvedMSAsmLabel();
1820   else
1821     Diagnose = L->getStmt() == nullptr;
1822   if (Diagnose)
1823     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1824 }
1825 
1826 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1827   S->mergeNRVOIntoParent();
1828 
1829   if (S->decl_empty()) return;
1830   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1831          "Scope shouldn't contain decls!");
1832 
1833   for (auto *TmpD : S->decls()) {
1834     assert(TmpD && "This decl didn't get pushed??");
1835 
1836     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1837     NamedDecl *D = cast<NamedDecl>(TmpD);
1838 
1839     // Diagnose unused variables in this scope.
1840     if (!S->hasUnrecoverableErrorOccurred()) {
1841       DiagnoseUnusedDecl(D);
1842       if (const auto *RD = dyn_cast<RecordDecl>(D))
1843         DiagnoseUnusedNestedTypedefs(RD);
1844     }
1845 
1846     if (!D->getDeclName()) continue;
1847 
1848     // If this was a forward reference to a label, verify it was defined.
1849     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1850       CheckPoppedLabel(LD, *this);
1851 
1852     // Remove this name from our lexical scope, and warn on it if we haven't
1853     // already.
1854     IdResolver.RemoveDecl(D);
1855     auto ShadowI = ShadowingDecls.find(D);
1856     if (ShadowI != ShadowingDecls.end()) {
1857       if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1858         Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1859             << D << FD << FD->getParent();
1860         Diag(FD->getLocation(), diag::note_previous_declaration);
1861       }
1862       ShadowingDecls.erase(ShadowI);
1863     }
1864   }
1865 }
1866 
1867 /// Look for an Objective-C class in the translation unit.
1868 ///
1869 /// \param Id The name of the Objective-C class we're looking for. If
1870 /// typo-correction fixes this name, the Id will be updated
1871 /// to the fixed name.
1872 ///
1873 /// \param IdLoc The location of the name in the translation unit.
1874 ///
1875 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1876 /// if there is no class with the given name.
1877 ///
1878 /// \returns The declaration of the named Objective-C class, or NULL if the
1879 /// class could not be found.
1880 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1881                                               SourceLocation IdLoc,
1882                                               bool DoTypoCorrection) {
1883   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1884   // creation from this context.
1885   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1886 
1887   if (!IDecl && DoTypoCorrection) {
1888     // Perform typo correction at the given location, but only if we
1889     // find an Objective-C class name.
1890     DeclFilterCCC<ObjCInterfaceDecl> CCC{};
1891     if (TypoCorrection C =
1892             CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1893                         TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
1894       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1895       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1896       Id = IDecl->getIdentifier();
1897     }
1898   }
1899   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1900   // This routine must always return a class definition, if any.
1901   if (Def && Def->getDefinition())
1902       Def = Def->getDefinition();
1903   return Def;
1904 }
1905 
1906 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1907 /// from S, where a non-field would be declared. This routine copes
1908 /// with the difference between C and C++ scoping rules in structs and
1909 /// unions. For example, the following code is well-formed in C but
1910 /// ill-formed in C++:
1911 /// @code
1912 /// struct S6 {
1913 ///   enum { BAR } e;
1914 /// };
1915 ///
1916 /// void test_S6() {
1917 ///   struct S6 a;
1918 ///   a.e = BAR;
1919 /// }
1920 /// @endcode
1921 /// For the declaration of BAR, this routine will return a different
1922 /// scope. The scope S will be the scope of the unnamed enumeration
1923 /// within S6. In C++, this routine will return the scope associated
1924 /// with S6, because the enumeration's scope is a transparent
1925 /// context but structures can contain non-field names. In C, this
1926 /// routine will return the translation unit scope, since the
1927 /// enumeration's scope is a transparent context and structures cannot
1928 /// contain non-field names.
1929 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1930   while (((S->getFlags() & Scope::DeclScope) == 0) ||
1931          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1932          (S->isClassScope() && !getLangOpts().CPlusPlus))
1933     S = S->getParent();
1934   return S;
1935 }
1936 
1937 /// Looks up the declaration of "struct objc_super" and
1938 /// saves it for later use in building builtin declaration of
1939 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1940 /// pre-existing declaration exists no action takes place.
1941 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1942                                         IdentifierInfo *II) {
1943   if (!II->isStr("objc_msgSendSuper"))
1944     return;
1945   ASTContext &Context = ThisSema.Context;
1946 
1947   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1948                       SourceLocation(), Sema::LookupTagName);
1949   ThisSema.LookupName(Result, S);
1950   if (Result.getResultKind() == LookupResult::Found)
1951     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1952       Context.setObjCSuperType(Context.getTagDeclType(TD));
1953 }
1954 
1955 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
1956                                ASTContext::GetBuiltinTypeError Error) {
1957   switch (Error) {
1958   case ASTContext::GE_None:
1959     return "";
1960   case ASTContext::GE_Missing_type:
1961     return BuiltinInfo.getHeaderName(ID);
1962   case ASTContext::GE_Missing_stdio:
1963     return "stdio.h";
1964   case ASTContext::GE_Missing_setjmp:
1965     return "setjmp.h";
1966   case ASTContext::GE_Missing_ucontext:
1967     return "ucontext.h";
1968   }
1969   llvm_unreachable("unhandled error kind");
1970 }
1971 
1972 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1973 /// file scope.  lazily create a decl for it. ForRedeclaration is true
1974 /// if we're creating this built-in in anticipation of redeclaring the
1975 /// built-in.
1976 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1977                                      Scope *S, bool ForRedeclaration,
1978                                      SourceLocation Loc) {
1979   LookupPredefedObjCSuperType(*this, S, II);
1980 
1981   ASTContext::GetBuiltinTypeError Error;
1982   QualType R = Context.GetBuiltinType(ID, Error);
1983   if (Error) {
1984     if (ForRedeclaration)
1985       Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1986           << getHeaderName(Context.BuiltinInfo, ID, Error)
1987           << Context.BuiltinInfo.getName(ID);
1988     return nullptr;
1989   }
1990 
1991   if (!ForRedeclaration &&
1992       (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
1993        Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
1994     Diag(Loc, diag::ext_implicit_lib_function_decl)
1995         << Context.BuiltinInfo.getName(ID) << R;
1996     if (Context.BuiltinInfo.getHeaderName(ID) &&
1997         !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1998       Diag(Loc, diag::note_include_header_or_declare)
1999           << Context.BuiltinInfo.getHeaderName(ID)
2000           << Context.BuiltinInfo.getName(ID);
2001   }
2002 
2003   if (R.isNull())
2004     return nullptr;
2005 
2006   DeclContext *Parent = Context.getTranslationUnitDecl();
2007   if (getLangOpts().CPlusPlus) {
2008     LinkageSpecDecl *CLinkageDecl =
2009         LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
2010                                 LinkageSpecDecl::lang_c, false);
2011     CLinkageDecl->setImplicit();
2012     Parent->addDecl(CLinkageDecl);
2013     Parent = CLinkageDecl;
2014   }
2015 
2016   FunctionDecl *New = FunctionDecl::Create(Context,
2017                                            Parent,
2018                                            Loc, Loc, II, R, /*TInfo=*/nullptr,
2019                                            SC_Extern,
2020                                            false,
2021                                            R->isFunctionProtoType());
2022   New->setImplicit();
2023 
2024   // Create Decl objects for each parameter, adding them to the
2025   // FunctionDecl.
2026   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
2027     SmallVector<ParmVarDecl*, 16> Params;
2028     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2029       ParmVarDecl *parm =
2030           ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
2031                               nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
2032                               SC_None, nullptr);
2033       parm->setScopeInfo(0, i);
2034       Params.push_back(parm);
2035     }
2036     New->setParams(Params);
2037   }
2038 
2039   AddKnownFunctionAttributes(New);
2040   RegisterLocallyScopedExternCDecl(New, S);
2041 
2042   // TUScope is the translation-unit scope to insert this function into.
2043   // FIXME: This is hideous. We need to teach PushOnScopeChains to
2044   // relate Scopes to DeclContexts, and probably eliminate CurContext
2045   // entirely, but we're not there yet.
2046   DeclContext *SavedContext = CurContext;
2047   CurContext = Parent;
2048   PushOnScopeChains(New, TUScope);
2049   CurContext = SavedContext;
2050   return New;
2051 }
2052 
2053 /// Typedef declarations don't have linkage, but they still denote the same
2054 /// entity if their types are the same.
2055 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2056 /// isSameEntity.
2057 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2058                                                      TypedefNameDecl *Decl,
2059                                                      LookupResult &Previous) {
2060   // This is only interesting when modules are enabled.
2061   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2062     return;
2063 
2064   // Empty sets are uninteresting.
2065   if (Previous.empty())
2066     return;
2067 
2068   LookupResult::Filter Filter = Previous.makeFilter();
2069   while (Filter.hasNext()) {
2070     NamedDecl *Old = Filter.next();
2071 
2072     // Non-hidden declarations are never ignored.
2073     if (S.isVisible(Old))
2074       continue;
2075 
2076     // Declarations of the same entity are not ignored, even if they have
2077     // different linkages.
2078     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2079       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2080                                 Decl->getUnderlyingType()))
2081         continue;
2082 
2083       // If both declarations give a tag declaration a typedef name for linkage
2084       // purposes, then they declare the same entity.
2085       if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2086           Decl->getAnonDeclWithTypedefName())
2087         continue;
2088     }
2089 
2090     Filter.erase();
2091   }
2092 
2093   Filter.done();
2094 }
2095 
2096 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2097   QualType OldType;
2098   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2099     OldType = OldTypedef->getUnderlyingType();
2100   else
2101     OldType = Context.getTypeDeclType(Old);
2102   QualType NewType = New->getUnderlyingType();
2103 
2104   if (NewType->isVariablyModifiedType()) {
2105     // Must not redefine a typedef with a variably-modified type.
2106     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2107     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2108       << Kind << NewType;
2109     if (Old->getLocation().isValid())
2110       notePreviousDefinition(Old, New->getLocation());
2111     New->setInvalidDecl();
2112     return true;
2113   }
2114 
2115   if (OldType != NewType &&
2116       !OldType->isDependentType() &&
2117       !NewType->isDependentType() &&
2118       !Context.hasSameType(OldType, NewType)) {
2119     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2120     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2121       << Kind << NewType << OldType;
2122     if (Old->getLocation().isValid())
2123       notePreviousDefinition(Old, New->getLocation());
2124     New->setInvalidDecl();
2125     return true;
2126   }
2127   return false;
2128 }
2129 
2130 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2131 /// same name and scope as a previous declaration 'Old'.  Figure out
2132 /// how to resolve this situation, merging decls or emitting
2133 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2134 ///
2135 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2136                                 LookupResult &OldDecls) {
2137   // If the new decl is known invalid already, don't bother doing any
2138   // merging checks.
2139   if (New->isInvalidDecl()) return;
2140 
2141   // Allow multiple definitions for ObjC built-in typedefs.
2142   // FIXME: Verify the underlying types are equivalent!
2143   if (getLangOpts().ObjC) {
2144     const IdentifierInfo *TypeID = New->getIdentifier();
2145     switch (TypeID->getLength()) {
2146     default: break;
2147     case 2:
2148       {
2149         if (!TypeID->isStr("id"))
2150           break;
2151         QualType T = New->getUnderlyingType();
2152         if (!T->isPointerType())
2153           break;
2154         if (!T->isVoidPointerType()) {
2155           QualType PT = T->getAs<PointerType>()->getPointeeType();
2156           if (!PT->isStructureType())
2157             break;
2158         }
2159         Context.setObjCIdRedefinitionType(T);
2160         // Install the built-in type for 'id', ignoring the current definition.
2161         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2162         return;
2163       }
2164     case 5:
2165       if (!TypeID->isStr("Class"))
2166         break;
2167       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2168       // Install the built-in type for 'Class', ignoring the current definition.
2169       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2170       return;
2171     case 3:
2172       if (!TypeID->isStr("SEL"))
2173         break;
2174       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2175       // Install the built-in type for 'SEL', ignoring the current definition.
2176       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2177       return;
2178     }
2179     // Fall through - the typedef name was not a builtin type.
2180   }
2181 
2182   // Verify the old decl was also a type.
2183   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2184   if (!Old) {
2185     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2186       << New->getDeclName();
2187 
2188     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2189     if (OldD->getLocation().isValid())
2190       notePreviousDefinition(OldD, New->getLocation());
2191 
2192     return New->setInvalidDecl();
2193   }
2194 
2195   // If the old declaration is invalid, just give up here.
2196   if (Old->isInvalidDecl())
2197     return New->setInvalidDecl();
2198 
2199   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2200     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2201     auto *NewTag = New->getAnonDeclWithTypedefName();
2202     NamedDecl *Hidden = nullptr;
2203     if (OldTag && NewTag &&
2204         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2205         !hasVisibleDefinition(OldTag, &Hidden)) {
2206       // There is a definition of this tag, but it is not visible. Use it
2207       // instead of our tag.
2208       New->setTypeForDecl(OldTD->getTypeForDecl());
2209       if (OldTD->isModed())
2210         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2211                                     OldTD->getUnderlyingType());
2212       else
2213         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2214 
2215       // Make the old tag definition visible.
2216       makeMergedDefinitionVisible(Hidden);
2217 
2218       // If this was an unscoped enumeration, yank all of its enumerators
2219       // out of the scope.
2220       if (isa<EnumDecl>(NewTag)) {
2221         Scope *EnumScope = getNonFieldDeclScope(S);
2222         for (auto *D : NewTag->decls()) {
2223           auto *ED = cast<EnumConstantDecl>(D);
2224           assert(EnumScope->isDeclScope(ED));
2225           EnumScope->RemoveDecl(ED);
2226           IdResolver.RemoveDecl(ED);
2227           ED->getLexicalDeclContext()->removeDecl(ED);
2228         }
2229       }
2230     }
2231   }
2232 
2233   // If the typedef types are not identical, reject them in all languages and
2234   // with any extensions enabled.
2235   if (isIncompatibleTypedef(Old, New))
2236     return;
2237 
2238   // The types match.  Link up the redeclaration chain and merge attributes if
2239   // the old declaration was a typedef.
2240   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2241     New->setPreviousDecl(Typedef);
2242     mergeDeclAttributes(New, Old);
2243   }
2244 
2245   if (getLangOpts().MicrosoftExt)
2246     return;
2247 
2248   if (getLangOpts().CPlusPlus) {
2249     // C++ [dcl.typedef]p2:
2250     //   In a given non-class scope, a typedef specifier can be used to
2251     //   redefine the name of any type declared in that scope to refer
2252     //   to the type to which it already refers.
2253     if (!isa<CXXRecordDecl>(CurContext))
2254       return;
2255 
2256     // C++0x [dcl.typedef]p4:
2257     //   In a given class scope, a typedef specifier can be used to redefine
2258     //   any class-name declared in that scope that is not also a typedef-name
2259     //   to refer to the type to which it already refers.
2260     //
2261     // This wording came in via DR424, which was a correction to the
2262     // wording in DR56, which accidentally banned code like:
2263     //
2264     //   struct S {
2265     //     typedef struct A { } A;
2266     //   };
2267     //
2268     // in the C++03 standard. We implement the C++0x semantics, which
2269     // allow the above but disallow
2270     //
2271     //   struct S {
2272     //     typedef int I;
2273     //     typedef int I;
2274     //   };
2275     //
2276     // since that was the intent of DR56.
2277     if (!isa<TypedefNameDecl>(Old))
2278       return;
2279 
2280     Diag(New->getLocation(), diag::err_redefinition)
2281       << New->getDeclName();
2282     notePreviousDefinition(Old, New->getLocation());
2283     return New->setInvalidDecl();
2284   }
2285 
2286   // Modules always permit redefinition of typedefs, as does C11.
2287   if (getLangOpts().Modules || getLangOpts().C11)
2288     return;
2289 
2290   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2291   // is normally mapped to an error, but can be controlled with
2292   // -Wtypedef-redefinition.  If either the original or the redefinition is
2293   // in a system header, don't emit this for compatibility with GCC.
2294   if (getDiagnostics().getSuppressSystemWarnings() &&
2295       // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2296       (Old->isImplicit() ||
2297        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2298        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2299     return;
2300 
2301   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2302     << New->getDeclName();
2303   notePreviousDefinition(Old, New->getLocation());
2304 }
2305 
2306 /// DeclhasAttr - returns true if decl Declaration already has the target
2307 /// attribute.
2308 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2309   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2310   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2311   for (const auto *i : D->attrs())
2312     if (i->getKind() == A->getKind()) {
2313       if (Ann) {
2314         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2315           return true;
2316         continue;
2317       }
2318       // FIXME: Don't hardcode this check
2319       if (OA && isa<OwnershipAttr>(i))
2320         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2321       return true;
2322     }
2323 
2324   return false;
2325 }
2326 
2327 static bool isAttributeTargetADefinition(Decl *D) {
2328   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2329     return VD->isThisDeclarationADefinition();
2330   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2331     return TD->isCompleteDefinition() || TD->isBeingDefined();
2332   return true;
2333 }
2334 
2335 /// Merge alignment attributes from \p Old to \p New, taking into account the
2336 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2337 ///
2338 /// \return \c true if any attributes were added to \p New.
2339 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2340   // Look for alignas attributes on Old, and pick out whichever attribute
2341   // specifies the strictest alignment requirement.
2342   AlignedAttr *OldAlignasAttr = nullptr;
2343   AlignedAttr *OldStrictestAlignAttr = nullptr;
2344   unsigned OldAlign = 0;
2345   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2346     // FIXME: We have no way of representing inherited dependent alignments
2347     // in a case like:
2348     //   template<int A, int B> struct alignas(A) X;
2349     //   template<int A, int B> struct alignas(B) X {};
2350     // For now, we just ignore any alignas attributes which are not on the
2351     // definition in such a case.
2352     if (I->isAlignmentDependent())
2353       return false;
2354 
2355     if (I->isAlignas())
2356       OldAlignasAttr = I;
2357 
2358     unsigned Align = I->getAlignment(S.Context);
2359     if (Align > OldAlign) {
2360       OldAlign = Align;
2361       OldStrictestAlignAttr = I;
2362     }
2363   }
2364 
2365   // Look for alignas attributes on New.
2366   AlignedAttr *NewAlignasAttr = nullptr;
2367   unsigned NewAlign = 0;
2368   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2369     if (I->isAlignmentDependent())
2370       return false;
2371 
2372     if (I->isAlignas())
2373       NewAlignasAttr = I;
2374 
2375     unsigned Align = I->getAlignment(S.Context);
2376     if (Align > NewAlign)
2377       NewAlign = Align;
2378   }
2379 
2380   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2381     // Both declarations have 'alignas' attributes. We require them to match.
2382     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2383     // fall short. (If two declarations both have alignas, they must both match
2384     // every definition, and so must match each other if there is a definition.)
2385 
2386     // If either declaration only contains 'alignas(0)' specifiers, then it
2387     // specifies the natural alignment for the type.
2388     if (OldAlign == 0 || NewAlign == 0) {
2389       QualType Ty;
2390       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2391         Ty = VD->getType();
2392       else
2393         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2394 
2395       if (OldAlign == 0)
2396         OldAlign = S.Context.getTypeAlign(Ty);
2397       if (NewAlign == 0)
2398         NewAlign = S.Context.getTypeAlign(Ty);
2399     }
2400 
2401     if (OldAlign != NewAlign) {
2402       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2403         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2404         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2405       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2406     }
2407   }
2408 
2409   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2410     // C++11 [dcl.align]p6:
2411     //   if any declaration of an entity has an alignment-specifier,
2412     //   every defining declaration of that entity shall specify an
2413     //   equivalent alignment.
2414     // C11 6.7.5/7:
2415     //   If the definition of an object does not have an alignment
2416     //   specifier, any other declaration of that object shall also
2417     //   have no alignment specifier.
2418     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2419       << OldAlignasAttr;
2420     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2421       << OldAlignasAttr;
2422   }
2423 
2424   bool AnyAdded = false;
2425 
2426   // Ensure we have an attribute representing the strictest alignment.
2427   if (OldAlign > NewAlign) {
2428     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2429     Clone->setInherited(true);
2430     New->addAttr(Clone);
2431     AnyAdded = true;
2432   }
2433 
2434   // Ensure we have an alignas attribute if the old declaration had one.
2435   if (OldAlignasAttr && !NewAlignasAttr &&
2436       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2437     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2438     Clone->setInherited(true);
2439     New->addAttr(Clone);
2440     AnyAdded = true;
2441   }
2442 
2443   return AnyAdded;
2444 }
2445 
2446 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2447                                const InheritableAttr *Attr,
2448                                Sema::AvailabilityMergeKind AMK) {
2449   // This function copies an attribute Attr from a previous declaration to the
2450   // new declaration D if the new declaration doesn't itself have that attribute
2451   // yet or if that attribute allows duplicates.
2452   // If you're adding a new attribute that requires logic different from
2453   // "use explicit attribute on decl if present, else use attribute from
2454   // previous decl", for example if the attribute needs to be consistent
2455   // between redeclarations, you need to call a custom merge function here.
2456   InheritableAttr *NewAttr = nullptr;
2457   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2458   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2459     NewAttr = S.mergeAvailabilityAttr(
2460         D, AA->getRange(), AA->getPlatform(), AA->isImplicit(),
2461         AA->getIntroduced(), AA->getDeprecated(), AA->getObsoleted(),
2462         AA->getUnavailable(), AA->getMessage(), AA->getStrict(),
2463         AA->getReplacement(), AMK, AA->getPriority(), AttrSpellingListIndex);
2464   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2465     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2466                                     AttrSpellingListIndex);
2467   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2468     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2469                                         AttrSpellingListIndex);
2470   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2471     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2472                                    AttrSpellingListIndex);
2473   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2474     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2475                                    AttrSpellingListIndex);
2476   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2477     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2478                                 FA->getFormatIdx(), FA->getFirstArg(),
2479                                 AttrSpellingListIndex);
2480   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2481     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2482                                  AttrSpellingListIndex);
2483   else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2484     NewAttr = S.mergeCodeSegAttr(D, CSA->getRange(), CSA->getName(),
2485                                  AttrSpellingListIndex);
2486   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2487     NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2488                                        AttrSpellingListIndex,
2489                                        IA->getSemanticSpelling());
2490   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2491     NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2492                                       &S.Context.Idents.get(AA->getSpelling()),
2493                                       AttrSpellingListIndex);
2494   else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2495            (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2496             isa<CUDAGlobalAttr>(Attr))) {
2497     // CUDA target attributes are part of function signature for
2498     // overloading purposes and must not be merged.
2499     return false;
2500   } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2501     NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2502   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2503     NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2504   else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2505     NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2506   else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2507     NewAttr = S.mergeCommonAttr(D, *CommonA);
2508   else if (isa<AlignedAttr>(Attr))
2509     // AlignedAttrs are handled separately, because we need to handle all
2510     // such attributes on a declaration at the same time.
2511     NewAttr = nullptr;
2512   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2513            (AMK == Sema::AMK_Override ||
2514             AMK == Sema::AMK_ProtocolImplementation))
2515     NewAttr = nullptr;
2516   else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2517     NewAttr = S.mergeUuidAttr(D, UA->getRange(), AttrSpellingListIndex,
2518                               UA->getGuid());
2519   else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr))
2520     NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA);
2521   else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr))
2522     NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA);
2523   else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2524     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2525 
2526   if (NewAttr) {
2527     NewAttr->setInherited(true);
2528     D->addAttr(NewAttr);
2529     if (isa<MSInheritanceAttr>(NewAttr))
2530       S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2531     return true;
2532   }
2533 
2534   return false;
2535 }
2536 
2537 static const NamedDecl *getDefinition(const Decl *D) {
2538   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2539     return TD->getDefinition();
2540   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2541     const VarDecl *Def = VD->getDefinition();
2542     if (Def)
2543       return Def;
2544     return VD->getActingDefinition();
2545   }
2546   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2547     return FD->getDefinition();
2548   return nullptr;
2549 }
2550 
2551 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2552   for (const auto *Attribute : D->attrs())
2553     if (Attribute->getKind() == Kind)
2554       return true;
2555   return false;
2556 }
2557 
2558 /// checkNewAttributesAfterDef - If we already have a definition, check that
2559 /// there are no new attributes in this declaration.
2560 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2561   if (!New->hasAttrs())
2562     return;
2563 
2564   const NamedDecl *Def = getDefinition(Old);
2565   if (!Def || Def == New)
2566     return;
2567 
2568   AttrVec &NewAttributes = New->getAttrs();
2569   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2570     const Attr *NewAttribute = NewAttributes[I];
2571 
2572     if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2573       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2574         Sema::SkipBodyInfo SkipBody;
2575         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2576 
2577         // If we're skipping this definition, drop the "alias" attribute.
2578         if (SkipBody.ShouldSkip) {
2579           NewAttributes.erase(NewAttributes.begin() + I);
2580           --E;
2581           continue;
2582         }
2583       } else {
2584         VarDecl *VD = cast<VarDecl>(New);
2585         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2586                                 VarDecl::TentativeDefinition
2587                             ? diag::err_alias_after_tentative
2588                             : diag::err_redefinition;
2589         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2590         if (Diag == diag::err_redefinition)
2591           S.notePreviousDefinition(Def, VD->getLocation());
2592         else
2593           S.Diag(Def->getLocation(), diag::note_previous_definition);
2594         VD->setInvalidDecl();
2595       }
2596       ++I;
2597       continue;
2598     }
2599 
2600     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2601       // Tentative definitions are only interesting for the alias check above.
2602       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2603         ++I;
2604         continue;
2605       }
2606     }
2607 
2608     if (hasAttribute(Def, NewAttribute->getKind())) {
2609       ++I;
2610       continue; // regular attr merging will take care of validating this.
2611     }
2612 
2613     if (isa<C11NoReturnAttr>(NewAttribute)) {
2614       // C's _Noreturn is allowed to be added to a function after it is defined.
2615       ++I;
2616       continue;
2617     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2618       if (AA->isAlignas()) {
2619         // C++11 [dcl.align]p6:
2620         //   if any declaration of an entity has an alignment-specifier,
2621         //   every defining declaration of that entity shall specify an
2622         //   equivalent alignment.
2623         // C11 6.7.5/7:
2624         //   If the definition of an object does not have an alignment
2625         //   specifier, any other declaration of that object shall also
2626         //   have no alignment specifier.
2627         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2628           << AA;
2629         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2630           << AA;
2631         NewAttributes.erase(NewAttributes.begin() + I);
2632         --E;
2633         continue;
2634       }
2635     }
2636 
2637     S.Diag(NewAttribute->getLocation(),
2638            diag::warn_attribute_precede_definition);
2639     S.Diag(Def->getLocation(), diag::note_previous_definition);
2640     NewAttributes.erase(NewAttributes.begin() + I);
2641     --E;
2642   }
2643 }
2644 
2645 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2646 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2647                                AvailabilityMergeKind AMK) {
2648   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2649     UsedAttr *NewAttr = OldAttr->clone(Context);
2650     NewAttr->setInherited(true);
2651     New->addAttr(NewAttr);
2652   }
2653 
2654   if (!Old->hasAttrs() && !New->hasAttrs())
2655     return;
2656 
2657   // Attributes declared post-definition are currently ignored.
2658   checkNewAttributesAfterDef(*this, New, Old);
2659 
2660   if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2661     if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2662       if (OldA->getLabel() != NewA->getLabel()) {
2663         // This redeclaration changes __asm__ label.
2664         Diag(New->getLocation(), diag::err_different_asm_label);
2665         Diag(OldA->getLocation(), diag::note_previous_declaration);
2666       }
2667     } else if (Old->isUsed()) {
2668       // This redeclaration adds an __asm__ label to a declaration that has
2669       // already been ODR-used.
2670       Diag(New->getLocation(), diag::err_late_asm_label_name)
2671         << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2672     }
2673   }
2674 
2675   // Re-declaration cannot add abi_tag's.
2676   if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2677     if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2678       for (const auto &NewTag : NewAbiTagAttr->tags()) {
2679         if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2680                       NewTag) == OldAbiTagAttr->tags_end()) {
2681           Diag(NewAbiTagAttr->getLocation(),
2682                diag::err_new_abi_tag_on_redeclaration)
2683               << NewTag;
2684           Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2685         }
2686       }
2687     } else {
2688       Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2689       Diag(Old->getLocation(), diag::note_previous_declaration);
2690     }
2691   }
2692 
2693   // This redeclaration adds a section attribute.
2694   if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2695     if (auto *VD = dyn_cast<VarDecl>(New)) {
2696       if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2697         Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2698         Diag(Old->getLocation(), diag::note_previous_declaration);
2699       }
2700     }
2701   }
2702 
2703   // Redeclaration adds code-seg attribute.
2704   const auto *NewCSA = New->getAttr<CodeSegAttr>();
2705   if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2706       !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2707     Diag(New->getLocation(), diag::warn_mismatched_section)
2708          << 0 /*codeseg*/;
2709     Diag(Old->getLocation(), diag::note_previous_declaration);
2710   }
2711 
2712   if (!Old->hasAttrs())
2713     return;
2714 
2715   bool foundAny = New->hasAttrs();
2716 
2717   // Ensure that any moving of objects within the allocated map is done before
2718   // we process them.
2719   if (!foundAny) New->setAttrs(AttrVec());
2720 
2721   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2722     // Ignore deprecated/unavailable/availability attributes if requested.
2723     AvailabilityMergeKind LocalAMK = AMK_None;
2724     if (isa<DeprecatedAttr>(I) ||
2725         isa<UnavailableAttr>(I) ||
2726         isa<AvailabilityAttr>(I)) {
2727       switch (AMK) {
2728       case AMK_None:
2729         continue;
2730 
2731       case AMK_Redeclaration:
2732       case AMK_Override:
2733       case AMK_ProtocolImplementation:
2734         LocalAMK = AMK;
2735         break;
2736       }
2737     }
2738 
2739     // Already handled.
2740     if (isa<UsedAttr>(I))
2741       continue;
2742 
2743     if (mergeDeclAttribute(*this, New, I, LocalAMK))
2744       foundAny = true;
2745   }
2746 
2747   if (mergeAlignedAttrs(*this, New, Old))
2748     foundAny = true;
2749 
2750   if (!foundAny) New->dropAttrs();
2751 }
2752 
2753 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2754 /// to the new one.
2755 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2756                                      const ParmVarDecl *oldDecl,
2757                                      Sema &S) {
2758   // C++11 [dcl.attr.depend]p2:
2759   //   The first declaration of a function shall specify the
2760   //   carries_dependency attribute for its declarator-id if any declaration
2761   //   of the function specifies the carries_dependency attribute.
2762   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2763   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2764     S.Diag(CDA->getLocation(),
2765            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2766     // Find the first declaration of the parameter.
2767     // FIXME: Should we build redeclaration chains for function parameters?
2768     const FunctionDecl *FirstFD =
2769       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2770     const ParmVarDecl *FirstVD =
2771       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2772     S.Diag(FirstVD->getLocation(),
2773            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2774   }
2775 
2776   if (!oldDecl->hasAttrs())
2777     return;
2778 
2779   bool foundAny = newDecl->hasAttrs();
2780 
2781   // Ensure that any moving of objects within the allocated map is
2782   // done before we process them.
2783   if (!foundAny) newDecl->setAttrs(AttrVec());
2784 
2785   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2786     if (!DeclHasAttr(newDecl, I)) {
2787       InheritableAttr *newAttr =
2788         cast<InheritableParamAttr>(I->clone(S.Context));
2789       newAttr->setInherited(true);
2790       newDecl->addAttr(newAttr);
2791       foundAny = true;
2792     }
2793   }
2794 
2795   if (!foundAny) newDecl->dropAttrs();
2796 }
2797 
2798 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2799                                 const ParmVarDecl *OldParam,
2800                                 Sema &S) {
2801   if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2802     if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2803       if (*Oldnullability != *Newnullability) {
2804         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2805           << DiagNullabilityKind(
2806                *Newnullability,
2807                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2808                 != 0))
2809           << DiagNullabilityKind(
2810                *Oldnullability,
2811                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2812                 != 0));
2813         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2814       }
2815     } else {
2816       QualType NewT = NewParam->getType();
2817       NewT = S.Context.getAttributedType(
2818                          AttributedType::getNullabilityAttrKind(*Oldnullability),
2819                          NewT, NewT);
2820       NewParam->setType(NewT);
2821     }
2822   }
2823 }
2824 
2825 namespace {
2826 
2827 /// Used in MergeFunctionDecl to keep track of function parameters in
2828 /// C.
2829 struct GNUCompatibleParamWarning {
2830   ParmVarDecl *OldParm;
2831   ParmVarDecl *NewParm;
2832   QualType PromotedType;
2833 };
2834 
2835 } // end anonymous namespace
2836 
2837 /// getSpecialMember - get the special member enum for a method.
2838 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2839   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2840     if (Ctor->isDefaultConstructor())
2841       return Sema::CXXDefaultConstructor;
2842 
2843     if (Ctor->isCopyConstructor())
2844       return Sema::CXXCopyConstructor;
2845 
2846     if (Ctor->isMoveConstructor())
2847       return Sema::CXXMoveConstructor;
2848   } else if (isa<CXXDestructorDecl>(MD)) {
2849     return Sema::CXXDestructor;
2850   } else if (MD->isCopyAssignmentOperator()) {
2851     return Sema::CXXCopyAssignment;
2852   } else if (MD->isMoveAssignmentOperator()) {
2853     return Sema::CXXMoveAssignment;
2854   }
2855 
2856   return Sema::CXXInvalid;
2857 }
2858 
2859 // Determine whether the previous declaration was a definition, implicit
2860 // declaration, or a declaration.
2861 template <typename T>
2862 static std::pair<diag::kind, SourceLocation>
2863 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2864   diag::kind PrevDiag;
2865   SourceLocation OldLocation = Old->getLocation();
2866   if (Old->isThisDeclarationADefinition())
2867     PrevDiag = diag::note_previous_definition;
2868   else if (Old->isImplicit()) {
2869     PrevDiag = diag::note_previous_implicit_declaration;
2870     if (OldLocation.isInvalid())
2871       OldLocation = New->getLocation();
2872   } else
2873     PrevDiag = diag::note_previous_declaration;
2874   return std::make_pair(PrevDiag, OldLocation);
2875 }
2876 
2877 /// canRedefineFunction - checks if a function can be redefined. Currently,
2878 /// only extern inline functions can be redefined, and even then only in
2879 /// GNU89 mode.
2880 static bool canRedefineFunction(const FunctionDecl *FD,
2881                                 const LangOptions& LangOpts) {
2882   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2883           !LangOpts.CPlusPlus &&
2884           FD->isInlineSpecified() &&
2885           FD->getStorageClass() == SC_Extern);
2886 }
2887 
2888 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2889   const AttributedType *AT = T->getAs<AttributedType>();
2890   while (AT && !AT->isCallingConv())
2891     AT = AT->getModifiedType()->getAs<AttributedType>();
2892   return AT;
2893 }
2894 
2895 template <typename T>
2896 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2897   const DeclContext *DC = Old->getDeclContext();
2898   if (DC->isRecord())
2899     return false;
2900 
2901   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2902   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2903     return true;
2904   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2905     return true;
2906   return false;
2907 }
2908 
2909 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
2910 static bool isExternC(VarTemplateDecl *) { return false; }
2911 
2912 /// Check whether a redeclaration of an entity introduced by a
2913 /// using-declaration is valid, given that we know it's not an overload
2914 /// (nor a hidden tag declaration).
2915 template<typename ExpectedDecl>
2916 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
2917                                    ExpectedDecl *New) {
2918   // C++11 [basic.scope.declarative]p4:
2919   //   Given a set of declarations in a single declarative region, each of
2920   //   which specifies the same unqualified name,
2921   //   -- they shall all refer to the same entity, or all refer to functions
2922   //      and function templates; or
2923   //   -- exactly one declaration shall declare a class name or enumeration
2924   //      name that is not a typedef name and the other declarations shall all
2925   //      refer to the same variable or enumerator, or all refer to functions
2926   //      and function templates; in this case the class name or enumeration
2927   //      name is hidden (3.3.10).
2928 
2929   // C++11 [namespace.udecl]p14:
2930   //   If a function declaration in namespace scope or block scope has the
2931   //   same name and the same parameter-type-list as a function introduced
2932   //   by a using-declaration, and the declarations do not declare the same
2933   //   function, the program is ill-formed.
2934 
2935   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
2936   if (Old &&
2937       !Old->getDeclContext()->getRedeclContext()->Equals(
2938           New->getDeclContext()->getRedeclContext()) &&
2939       !(isExternC(Old) && isExternC(New)))
2940     Old = nullptr;
2941 
2942   if (!Old) {
2943     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2944     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
2945     S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2946     return true;
2947   }
2948   return false;
2949 }
2950 
2951 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
2952                                             const FunctionDecl *B) {
2953   assert(A->getNumParams() == B->getNumParams());
2954 
2955   auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
2956     const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
2957     const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
2958     if (AttrA == AttrB)
2959       return true;
2960     return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
2961            AttrA->isDynamic() == AttrB->isDynamic();
2962   };
2963 
2964   return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
2965 }
2966 
2967 /// If necessary, adjust the semantic declaration context for a qualified
2968 /// declaration to name the correct inline namespace within the qualifier.
2969 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
2970                                                DeclaratorDecl *OldD) {
2971   // The only case where we need to update the DeclContext is when
2972   // redeclaration lookup for a qualified name finds a declaration
2973   // in an inline namespace within the context named by the qualifier:
2974   //
2975   //   inline namespace N { int f(); }
2976   //   int ::f(); // Sema DC needs adjusting from :: to N::.
2977   //
2978   // For unqualified declarations, the semantic context *can* change
2979   // along the redeclaration chain (for local extern declarations,
2980   // extern "C" declarations, and friend declarations in particular).
2981   if (!NewD->getQualifier())
2982     return;
2983 
2984   // NewD is probably already in the right context.
2985   auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
2986   auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
2987   if (NamedDC->Equals(SemaDC))
2988     return;
2989 
2990   assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
2991           NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
2992          "unexpected context for redeclaration");
2993 
2994   auto *LexDC = NewD->getLexicalDeclContext();
2995   auto FixSemaDC = [=](NamedDecl *D) {
2996     if (!D)
2997       return;
2998     D->setDeclContext(SemaDC);
2999     D->setLexicalDeclContext(LexDC);
3000   };
3001 
3002   FixSemaDC(NewD);
3003   if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3004     FixSemaDC(FD->getDescribedFunctionTemplate());
3005   else if (auto *VD = dyn_cast<VarDecl>(NewD))
3006     FixSemaDC(VD->getDescribedVarTemplate());
3007 }
3008 
3009 /// MergeFunctionDecl - We just parsed a function 'New' from
3010 /// declarator D which has the same name and scope as a previous
3011 /// declaration 'Old'.  Figure out how to resolve this situation,
3012 /// merging decls or emitting diagnostics as appropriate.
3013 ///
3014 /// In C++, New and Old must be declarations that are not
3015 /// overloaded. Use IsOverload to determine whether New and Old are
3016 /// overloaded, and to select the Old declaration that New should be
3017 /// merged with.
3018 ///
3019 /// Returns true if there was an error, false otherwise.
3020 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
3021                              Scope *S, bool MergeTypeWithOld) {
3022   // Verify the old decl was also a function.
3023   FunctionDecl *Old = OldD->getAsFunction();
3024   if (!Old) {
3025     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3026       if (New->getFriendObjectKind()) {
3027         Diag(New->getLocation(), diag::err_using_decl_friend);
3028         Diag(Shadow->getTargetDecl()->getLocation(),
3029              diag::note_using_decl_target);
3030         Diag(Shadow->getUsingDecl()->getLocation(),
3031              diag::note_using_decl) << 0;
3032         return true;
3033       }
3034 
3035       // Check whether the two declarations might declare the same function.
3036       if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3037         return true;
3038       OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3039     } else {
3040       Diag(New->getLocation(), diag::err_redefinition_different_kind)
3041         << New->getDeclName();
3042       notePreviousDefinition(OldD, New->getLocation());
3043       return true;
3044     }
3045   }
3046 
3047   // If the old declaration is invalid, just give up here.
3048   if (Old->isInvalidDecl())
3049     return true;
3050 
3051   // Disallow redeclaration of some builtins.
3052   if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3053     Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3054     Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3055         << Old << Old->getType();
3056     return true;
3057   }
3058 
3059   diag::kind PrevDiag;
3060   SourceLocation OldLocation;
3061   std::tie(PrevDiag, OldLocation) =
3062       getNoteDiagForInvalidRedeclaration(Old, New);
3063 
3064   // Don't complain about this if we're in GNU89 mode and the old function
3065   // is an extern inline function.
3066   // Don't complain about specializations. They are not supposed to have
3067   // storage classes.
3068   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3069       New->getStorageClass() == SC_Static &&
3070       Old->hasExternalFormalLinkage() &&
3071       !New->getTemplateSpecializationInfo() &&
3072       !canRedefineFunction(Old, getLangOpts())) {
3073     if (getLangOpts().MicrosoftExt) {
3074       Diag(New->getLocation(), diag::ext_static_non_static) << New;
3075       Diag(OldLocation, PrevDiag);
3076     } else {
3077       Diag(New->getLocation(), diag::err_static_non_static) << New;
3078       Diag(OldLocation, PrevDiag);
3079       return true;
3080     }
3081   }
3082 
3083   if (New->hasAttr<InternalLinkageAttr>() &&
3084       !Old->hasAttr<InternalLinkageAttr>()) {
3085     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3086         << New->getDeclName();
3087     notePreviousDefinition(Old, New->getLocation());
3088     New->dropAttr<InternalLinkageAttr>();
3089   }
3090 
3091   if (CheckRedeclarationModuleOwnership(New, Old))
3092     return true;
3093 
3094   if (!getLangOpts().CPlusPlus) {
3095     bool OldOvl = Old->hasAttr<OverloadableAttr>();
3096     if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3097       Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3098         << New << OldOvl;
3099 
3100       // Try our best to find a decl that actually has the overloadable
3101       // attribute for the note. In most cases (e.g. programs with only one
3102       // broken declaration/definition), this won't matter.
3103       //
3104       // FIXME: We could do this if we juggled some extra state in
3105       // OverloadableAttr, rather than just removing it.
3106       const Decl *DiagOld = Old;
3107       if (OldOvl) {
3108         auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3109           const auto *A = D->getAttr<OverloadableAttr>();
3110           return A && !A->isImplicit();
3111         });
3112         // If we've implicitly added *all* of the overloadable attrs to this
3113         // chain, emitting a "previous redecl" note is pointless.
3114         DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3115       }
3116 
3117       if (DiagOld)
3118         Diag(DiagOld->getLocation(),
3119              diag::note_attribute_overloadable_prev_overload)
3120           << OldOvl;
3121 
3122       if (OldOvl)
3123         New->addAttr(OverloadableAttr::CreateImplicit(Context));
3124       else
3125         New->dropAttr<OverloadableAttr>();
3126     }
3127   }
3128 
3129   // If a function is first declared with a calling convention, but is later
3130   // declared or defined without one, all following decls assume the calling
3131   // convention of the first.
3132   //
3133   // It's OK if a function is first declared without a calling convention,
3134   // but is later declared or defined with the default calling convention.
3135   //
3136   // To test if either decl has an explicit calling convention, we look for
3137   // AttributedType sugar nodes on the type as written.  If they are missing or
3138   // were canonicalized away, we assume the calling convention was implicit.
3139   //
3140   // Note also that we DO NOT return at this point, because we still have
3141   // other tests to run.
3142   QualType OldQType = Context.getCanonicalType(Old->getType());
3143   QualType NewQType = Context.getCanonicalType(New->getType());
3144   const FunctionType *OldType = cast<FunctionType>(OldQType);
3145   const FunctionType *NewType = cast<FunctionType>(NewQType);
3146   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3147   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3148   bool RequiresAdjustment = false;
3149 
3150   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3151     FunctionDecl *First = Old->getFirstDecl();
3152     const FunctionType *FT =
3153         First->getType().getCanonicalType()->castAs<FunctionType>();
3154     FunctionType::ExtInfo FI = FT->getExtInfo();
3155     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3156     if (!NewCCExplicit) {
3157       // Inherit the CC from the previous declaration if it was specified
3158       // there but not here.
3159       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3160       RequiresAdjustment = true;
3161     } else if (New->getBuiltinID()) {
3162       // Calling Conventions on a Builtin aren't really useful and setting a
3163       // default calling convention and cdecl'ing some builtin redeclarations is
3164       // common, so warn and ignore the calling convention on the redeclaration.
3165       Diag(New->getLocation(), diag::warn_cconv_ignored)
3166           << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3167           << (int)CallingConventionIgnoredReason::BuiltinFunction;
3168       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3169       RequiresAdjustment = true;
3170     } else {
3171       // Calling conventions aren't compatible, so complain.
3172       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3173       Diag(New->getLocation(), diag::err_cconv_change)
3174         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3175         << !FirstCCExplicit
3176         << (!FirstCCExplicit ? "" :
3177             FunctionType::getNameForCallConv(FI.getCC()));
3178 
3179       // Put the note on the first decl, since it is the one that matters.
3180       Diag(First->getLocation(), diag::note_previous_declaration);
3181       return true;
3182     }
3183   }
3184 
3185   // FIXME: diagnose the other way around?
3186   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3187     NewTypeInfo = NewTypeInfo.withNoReturn(true);
3188     RequiresAdjustment = true;
3189   }
3190 
3191   // Merge regparm attribute.
3192   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3193       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3194     if (NewTypeInfo.getHasRegParm()) {
3195       Diag(New->getLocation(), diag::err_regparm_mismatch)
3196         << NewType->getRegParmType()
3197         << OldType->getRegParmType();
3198       Diag(OldLocation, diag::note_previous_declaration);
3199       return true;
3200     }
3201 
3202     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3203     RequiresAdjustment = true;
3204   }
3205 
3206   // Merge ns_returns_retained attribute.
3207   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3208     if (NewTypeInfo.getProducesResult()) {
3209       Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3210           << "'ns_returns_retained'";
3211       Diag(OldLocation, diag::note_previous_declaration);
3212       return true;
3213     }
3214 
3215     NewTypeInfo = NewTypeInfo.withProducesResult(true);
3216     RequiresAdjustment = true;
3217   }
3218 
3219   if (OldTypeInfo.getNoCallerSavedRegs() !=
3220       NewTypeInfo.getNoCallerSavedRegs()) {
3221     if (NewTypeInfo.getNoCallerSavedRegs()) {
3222       AnyX86NoCallerSavedRegistersAttr *Attr =
3223         New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3224       Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3225       Diag(OldLocation, diag::note_previous_declaration);
3226       return true;
3227     }
3228 
3229     NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3230     RequiresAdjustment = true;
3231   }
3232 
3233   if (RequiresAdjustment) {
3234     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3235     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3236     New->setType(QualType(AdjustedType, 0));
3237     NewQType = Context.getCanonicalType(New->getType());
3238     NewType = cast<FunctionType>(NewQType);
3239   }
3240 
3241   // If this redeclaration makes the function inline, we may need to add it to
3242   // UndefinedButUsed.
3243   if (!Old->isInlined() && New->isInlined() &&
3244       !New->hasAttr<GNUInlineAttr>() &&
3245       !getLangOpts().GNUInline &&
3246       Old->isUsed(false) &&
3247       !Old->isDefined() && !New->isThisDeclarationADefinition())
3248     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3249                                            SourceLocation()));
3250 
3251   // If this redeclaration makes it newly gnu_inline, we don't want to warn
3252   // about it.
3253   if (New->hasAttr<GNUInlineAttr>() &&
3254       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3255     UndefinedButUsed.erase(Old->getCanonicalDecl());
3256   }
3257 
3258   // If pass_object_size params don't match up perfectly, this isn't a valid
3259   // redeclaration.
3260   if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3261       !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3262     Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3263         << New->getDeclName();
3264     Diag(OldLocation, PrevDiag) << Old << Old->getType();
3265     return true;
3266   }
3267 
3268   if (getLangOpts().CPlusPlus) {
3269     // C++1z [over.load]p2
3270     //   Certain function declarations cannot be overloaded:
3271     //     -- Function declarations that differ only in the return type,
3272     //        the exception specification, or both cannot be overloaded.
3273 
3274     // Check the exception specifications match. This may recompute the type of
3275     // both Old and New if it resolved exception specifications, so grab the
3276     // types again after this. Because this updates the type, we do this before
3277     // any of the other checks below, which may update the "de facto" NewQType
3278     // but do not necessarily update the type of New.
3279     if (CheckEquivalentExceptionSpec(Old, New))
3280       return true;
3281     OldQType = Context.getCanonicalType(Old->getType());
3282     NewQType = Context.getCanonicalType(New->getType());
3283 
3284     // Go back to the type source info to compare the declared return types,
3285     // per C++1y [dcl.type.auto]p13:
3286     //   Redeclarations or specializations of a function or function template
3287     //   with a declared return type that uses a placeholder type shall also
3288     //   use that placeholder, not a deduced type.
3289     QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3290     QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3291     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3292         canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3293                                        OldDeclaredReturnType)) {
3294       QualType ResQT;
3295       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3296           OldDeclaredReturnType->isObjCObjectPointerType())
3297         // FIXME: This does the wrong thing for a deduced return type.
3298         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3299       if (ResQT.isNull()) {
3300         if (New->isCXXClassMember() && New->isOutOfLine())
3301           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3302               << New << New->getReturnTypeSourceRange();
3303         else
3304           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3305               << New->getReturnTypeSourceRange();
3306         Diag(OldLocation, PrevDiag) << Old << Old->getType()
3307                                     << Old->getReturnTypeSourceRange();
3308         return true;
3309       }
3310       else
3311         NewQType = ResQT;
3312     }
3313 
3314     QualType OldReturnType = OldType->getReturnType();
3315     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3316     if (OldReturnType != NewReturnType) {
3317       // If this function has a deduced return type and has already been
3318       // defined, copy the deduced value from the old declaration.
3319       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3320       if (OldAT && OldAT->isDeduced()) {
3321         New->setType(
3322             SubstAutoType(New->getType(),
3323                           OldAT->isDependentType() ? Context.DependentTy
3324                                                    : OldAT->getDeducedType()));
3325         NewQType = Context.getCanonicalType(
3326             SubstAutoType(NewQType,
3327                           OldAT->isDependentType() ? Context.DependentTy
3328                                                    : OldAT->getDeducedType()));
3329       }
3330     }
3331 
3332     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3333     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3334     if (OldMethod && NewMethod) {
3335       // Preserve triviality.
3336       NewMethod->setTrivial(OldMethod->isTrivial());
3337 
3338       // MSVC allows explicit template specialization at class scope:
3339       // 2 CXXMethodDecls referring to the same function will be injected.
3340       // We don't want a redeclaration error.
3341       bool IsClassScopeExplicitSpecialization =
3342                               OldMethod->isFunctionTemplateSpecialization() &&
3343                               NewMethod->isFunctionTemplateSpecialization();
3344       bool isFriend = NewMethod->getFriendObjectKind();
3345 
3346       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3347           !IsClassScopeExplicitSpecialization) {
3348         //    -- Member function declarations with the same name and the
3349         //       same parameter types cannot be overloaded if any of them
3350         //       is a static member function declaration.
3351         if (OldMethod->isStatic() != NewMethod->isStatic()) {
3352           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3353           Diag(OldLocation, PrevDiag) << Old << Old->getType();
3354           return true;
3355         }
3356 
3357         // C++ [class.mem]p1:
3358         //   [...] A member shall not be declared twice in the
3359         //   member-specification, except that a nested class or member
3360         //   class template can be declared and then later defined.
3361         if (!inTemplateInstantiation()) {
3362           unsigned NewDiag;
3363           if (isa<CXXConstructorDecl>(OldMethod))
3364             NewDiag = diag::err_constructor_redeclared;
3365           else if (isa<CXXDestructorDecl>(NewMethod))
3366             NewDiag = diag::err_destructor_redeclared;
3367           else if (isa<CXXConversionDecl>(NewMethod))
3368             NewDiag = diag::err_conv_function_redeclared;
3369           else
3370             NewDiag = diag::err_member_redeclared;
3371 
3372           Diag(New->getLocation(), NewDiag);
3373         } else {
3374           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3375             << New << New->getType();
3376         }
3377         Diag(OldLocation, PrevDiag) << Old << Old->getType();
3378         return true;
3379 
3380       // Complain if this is an explicit declaration of a special
3381       // member that was initially declared implicitly.
3382       //
3383       // As an exception, it's okay to befriend such methods in order
3384       // to permit the implicit constructor/destructor/operator calls.
3385       } else if (OldMethod->isImplicit()) {
3386         if (isFriend) {
3387           NewMethod->setImplicit();
3388         } else {
3389           Diag(NewMethod->getLocation(),
3390                diag::err_definition_of_implicitly_declared_member)
3391             << New << getSpecialMember(OldMethod);
3392           return true;
3393         }
3394       } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3395         Diag(NewMethod->getLocation(),
3396              diag::err_definition_of_explicitly_defaulted_member)
3397           << getSpecialMember(OldMethod);
3398         return true;
3399       }
3400     }
3401 
3402     // C++11 [dcl.attr.noreturn]p1:
3403     //   The first declaration of a function shall specify the noreturn
3404     //   attribute if any declaration of that function specifies the noreturn
3405     //   attribute.
3406     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3407     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3408       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3409       Diag(Old->getFirstDecl()->getLocation(),
3410            diag::note_noreturn_missing_first_decl);
3411     }
3412 
3413     // C++11 [dcl.attr.depend]p2:
3414     //   The first declaration of a function shall specify the
3415     //   carries_dependency attribute for its declarator-id if any declaration
3416     //   of the function specifies the carries_dependency attribute.
3417     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3418     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3419       Diag(CDA->getLocation(),
3420            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3421       Diag(Old->getFirstDecl()->getLocation(),
3422            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3423     }
3424 
3425     // (C++98 8.3.5p3):
3426     //   All declarations for a function shall agree exactly in both the
3427     //   return type and the parameter-type-list.
3428     // We also want to respect all the extended bits except noreturn.
3429 
3430     // noreturn should now match unless the old type info didn't have it.
3431     QualType OldQTypeForComparison = OldQType;
3432     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3433       auto *OldType = OldQType->castAs<FunctionProtoType>();
3434       const FunctionType *OldTypeForComparison
3435         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3436       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3437       assert(OldQTypeForComparison.isCanonical());
3438     }
3439 
3440     if (haveIncompatibleLanguageLinkages(Old, New)) {
3441       // As a special case, retain the language linkage from previous
3442       // declarations of a friend function as an extension.
3443       //
3444       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3445       // and is useful because there's otherwise no way to specify language
3446       // linkage within class scope.
3447       //
3448       // Check cautiously as the friend object kind isn't yet complete.
3449       if (New->getFriendObjectKind() != Decl::FOK_None) {
3450         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3451         Diag(OldLocation, PrevDiag);
3452       } else {
3453         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3454         Diag(OldLocation, PrevDiag);
3455         return true;
3456       }
3457     }
3458 
3459     if (OldQTypeForComparison == NewQType)
3460       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3461 
3462     // If the types are imprecise (due to dependent constructs in friends or
3463     // local extern declarations), it's OK if they differ. We'll check again
3464     // during instantiation.
3465     if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3466       return false;
3467 
3468     // Fall through for conflicting redeclarations and redefinitions.
3469   }
3470 
3471   // C: Function types need to be compatible, not identical. This handles
3472   // duplicate function decls like "void f(int); void f(enum X);" properly.
3473   if (!getLangOpts().CPlusPlus &&
3474       Context.typesAreCompatible(OldQType, NewQType)) {
3475     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3476     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3477     const FunctionProtoType *OldProto = nullptr;
3478     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3479         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3480       // The old declaration provided a function prototype, but the
3481       // new declaration does not. Merge in the prototype.
3482       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
3483       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3484       NewQType =
3485           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3486                                   OldProto->getExtProtoInfo());
3487       New->setType(NewQType);
3488       New->setHasInheritedPrototype();
3489 
3490       // Synthesize parameters with the same types.
3491       SmallVector<ParmVarDecl*, 16> Params;
3492       for (const auto &ParamType : OldProto->param_types()) {
3493         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3494                                                  SourceLocation(), nullptr,
3495                                                  ParamType, /*TInfo=*/nullptr,
3496                                                  SC_None, nullptr);
3497         Param->setScopeInfo(0, Params.size());
3498         Param->setImplicit();
3499         Params.push_back(Param);
3500       }
3501 
3502       New->setParams(Params);
3503     }
3504 
3505     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3506   }
3507 
3508   // GNU C permits a K&R definition to follow a prototype declaration
3509   // if the declared types of the parameters in the K&R definition
3510   // match the types in the prototype declaration, even when the
3511   // promoted types of the parameters from the K&R definition differ
3512   // from the types in the prototype. GCC then keeps the types from
3513   // the prototype.
3514   //
3515   // If a variadic prototype is followed by a non-variadic K&R definition,
3516   // the K&R definition becomes variadic.  This is sort of an edge case, but
3517   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3518   // C99 6.9.1p8.
3519   if (!getLangOpts().CPlusPlus &&
3520       Old->hasPrototype() && !New->hasPrototype() &&
3521       New->getType()->getAs<FunctionProtoType>() &&
3522       Old->getNumParams() == New->getNumParams()) {
3523     SmallVector<QualType, 16> ArgTypes;
3524     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3525     const FunctionProtoType *OldProto
3526       = Old->getType()->getAs<FunctionProtoType>();
3527     const FunctionProtoType *NewProto
3528       = New->getType()->getAs<FunctionProtoType>();
3529 
3530     // Determine whether this is the GNU C extension.
3531     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3532                                                NewProto->getReturnType());
3533     bool LooseCompatible = !MergedReturn.isNull();
3534     for (unsigned Idx = 0, End = Old->getNumParams();
3535          LooseCompatible && Idx != End; ++Idx) {
3536       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3537       ParmVarDecl *NewParm = New->getParamDecl(Idx);
3538       if (Context.typesAreCompatible(OldParm->getType(),
3539                                      NewProto->getParamType(Idx))) {
3540         ArgTypes.push_back(NewParm->getType());
3541       } else if (Context.typesAreCompatible(OldParm->getType(),
3542                                             NewParm->getType(),
3543                                             /*CompareUnqualified=*/true)) {
3544         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3545                                            NewProto->getParamType(Idx) };
3546         Warnings.push_back(Warn);
3547         ArgTypes.push_back(NewParm->getType());
3548       } else
3549         LooseCompatible = false;
3550     }
3551 
3552     if (LooseCompatible) {
3553       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3554         Diag(Warnings[Warn].NewParm->getLocation(),
3555              diag::ext_param_promoted_not_compatible_with_prototype)
3556           << Warnings[Warn].PromotedType
3557           << Warnings[Warn].OldParm->getType();
3558         if (Warnings[Warn].OldParm->getLocation().isValid())
3559           Diag(Warnings[Warn].OldParm->getLocation(),
3560                diag::note_previous_declaration);
3561       }
3562 
3563       if (MergeTypeWithOld)
3564         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3565                                              OldProto->getExtProtoInfo()));
3566       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3567     }
3568 
3569     // Fall through to diagnose conflicting types.
3570   }
3571 
3572   // A function that has already been declared has been redeclared or
3573   // defined with a different type; show an appropriate diagnostic.
3574 
3575   // If the previous declaration was an implicitly-generated builtin
3576   // declaration, then at the very least we should use a specialized note.
3577   unsigned BuiltinID;
3578   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3579     // If it's actually a library-defined builtin function like 'malloc'
3580     // or 'printf', just warn about the incompatible redeclaration.
3581     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3582       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3583       Diag(OldLocation, diag::note_previous_builtin_declaration)
3584         << Old << Old->getType();
3585 
3586       // If this is a global redeclaration, just forget hereafter
3587       // about the "builtin-ness" of the function.
3588       //
3589       // Doing this for local extern declarations is problematic.  If
3590       // the builtin declaration remains visible, a second invalid
3591       // local declaration will produce a hard error; if it doesn't
3592       // remain visible, a single bogus local redeclaration (which is
3593       // actually only a warning) could break all the downstream code.
3594       if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3595         New->getIdentifier()->revertBuiltin();
3596 
3597       return false;
3598     }
3599 
3600     PrevDiag = diag::note_previous_builtin_declaration;
3601   }
3602 
3603   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3604   Diag(OldLocation, PrevDiag) << Old << Old->getType();
3605   return true;
3606 }
3607 
3608 /// Completes the merge of two function declarations that are
3609 /// known to be compatible.
3610 ///
3611 /// This routine handles the merging of attributes and other
3612 /// properties of function declarations from the old declaration to
3613 /// the new declaration, once we know that New is in fact a
3614 /// redeclaration of Old.
3615 ///
3616 /// \returns false
3617 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3618                                         Scope *S, bool MergeTypeWithOld) {
3619   // Merge the attributes
3620   mergeDeclAttributes(New, Old);
3621 
3622   // Merge "pure" flag.
3623   if (Old->isPure())
3624     New->setPure();
3625 
3626   // Merge "used" flag.
3627   if (Old->getMostRecentDecl()->isUsed(false))
3628     New->setIsUsed();
3629 
3630   // Merge attributes from the parameters.  These can mismatch with K&R
3631   // declarations.
3632   if (New->getNumParams() == Old->getNumParams())
3633       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3634         ParmVarDecl *NewParam = New->getParamDecl(i);
3635         ParmVarDecl *OldParam = Old->getParamDecl(i);
3636         mergeParamDeclAttributes(NewParam, OldParam, *this);
3637         mergeParamDeclTypes(NewParam, OldParam, *this);
3638       }
3639 
3640   if (getLangOpts().CPlusPlus)
3641     return MergeCXXFunctionDecl(New, Old, S);
3642 
3643   // Merge the function types so the we get the composite types for the return
3644   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3645   // was visible.
3646   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3647   if (!Merged.isNull() && MergeTypeWithOld)
3648     New->setType(Merged);
3649 
3650   return false;
3651 }
3652 
3653 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3654                                 ObjCMethodDecl *oldMethod) {
3655   // Merge the attributes, including deprecated/unavailable
3656   AvailabilityMergeKind MergeKind =
3657     isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3658       ? AMK_ProtocolImplementation
3659       : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3660                                                        : AMK_Override;
3661 
3662   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3663 
3664   // Merge attributes from the parameters.
3665   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3666                                        oe = oldMethod->param_end();
3667   for (ObjCMethodDecl::param_iterator
3668          ni = newMethod->param_begin(), ne = newMethod->param_end();
3669        ni != ne && oi != oe; ++ni, ++oi)
3670     mergeParamDeclAttributes(*ni, *oi, *this);
3671 
3672   CheckObjCMethodOverride(newMethod, oldMethod);
3673 }
3674 
3675 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3676   assert(!S.Context.hasSameType(New->getType(), Old->getType()));
3677 
3678   S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3679          ? diag::err_redefinition_different_type
3680          : diag::err_redeclaration_different_type)
3681     << New->getDeclName() << New->getType() << Old->getType();
3682 
3683   diag::kind PrevDiag;
3684   SourceLocation OldLocation;
3685   std::tie(PrevDiag, OldLocation)
3686     = getNoteDiagForInvalidRedeclaration(Old, New);
3687   S.Diag(OldLocation, PrevDiag);
3688   New->setInvalidDecl();
3689 }
3690 
3691 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3692 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3693 /// emitting diagnostics as appropriate.
3694 ///
3695 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3696 /// to here in AddInitializerToDecl. We can't check them before the initializer
3697 /// is attached.
3698 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3699                              bool MergeTypeWithOld) {
3700   if (New->isInvalidDecl() || Old->isInvalidDecl())
3701     return;
3702 
3703   QualType MergedT;
3704   if (getLangOpts().CPlusPlus) {
3705     if (New->getType()->isUndeducedType()) {
3706       // We don't know what the new type is until the initializer is attached.
3707       return;
3708     } else if (Context.hasSameType(New->getType(), Old->getType())) {
3709       // These could still be something that needs exception specs checked.
3710       return MergeVarDeclExceptionSpecs(New, Old);
3711     }
3712     // C++ [basic.link]p10:
3713     //   [...] the types specified by all declarations referring to a given
3714     //   object or function shall be identical, except that declarations for an
3715     //   array object can specify array types that differ by the presence or
3716     //   absence of a major array bound (8.3.4).
3717     else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3718       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3719       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3720 
3721       // We are merging a variable declaration New into Old. If it has an array
3722       // bound, and that bound differs from Old's bound, we should diagnose the
3723       // mismatch.
3724       if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3725         for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3726              PrevVD = PrevVD->getPreviousDecl()) {
3727           const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
3728           if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3729             continue;
3730 
3731           if (!Context.hasSameType(NewArray, PrevVDTy))
3732             return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3733         }
3734       }
3735 
3736       if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3737         if (Context.hasSameType(OldArray->getElementType(),
3738                                 NewArray->getElementType()))
3739           MergedT = New->getType();
3740       }
3741       // FIXME: Check visibility. New is hidden but has a complete type. If New
3742       // has no array bound, it should not inherit one from Old, if Old is not
3743       // visible.
3744       else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3745         if (Context.hasSameType(OldArray->getElementType(),
3746                                 NewArray->getElementType()))
3747           MergedT = Old->getType();
3748       }
3749     }
3750     else if (New->getType()->isObjCObjectPointerType() &&
3751                Old->getType()->isObjCObjectPointerType()) {
3752       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3753                                               Old->getType());
3754     }
3755   } else {
3756     // C 6.2.7p2:
3757     //   All declarations that refer to the same object or function shall have
3758     //   compatible type.
3759     MergedT = Context.mergeTypes(New->getType(), Old->getType());
3760   }
3761   if (MergedT.isNull()) {
3762     // It's OK if we couldn't merge types if either type is dependent, for a
3763     // block-scope variable. In other cases (static data members of class
3764     // templates, variable templates, ...), we require the types to be
3765     // equivalent.
3766     // FIXME: The C++ standard doesn't say anything about this.
3767     if ((New->getType()->isDependentType() ||
3768          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3769       // If the old type was dependent, we can't merge with it, so the new type
3770       // becomes dependent for now. We'll reproduce the original type when we
3771       // instantiate the TypeSourceInfo for the variable.
3772       if (!New->getType()->isDependentType() && MergeTypeWithOld)
3773         New->setType(Context.DependentTy);
3774       return;
3775     }
3776     return diagnoseVarDeclTypeMismatch(*this, New, Old);
3777   }
3778 
3779   // Don't actually update the type on the new declaration if the old
3780   // declaration was an extern declaration in a different scope.
3781   if (MergeTypeWithOld)
3782     New->setType(MergedT);
3783 }
3784 
3785 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3786                                   LookupResult &Previous) {
3787   // C11 6.2.7p4:
3788   //   For an identifier with internal or external linkage declared
3789   //   in a scope in which a prior declaration of that identifier is
3790   //   visible, if the prior declaration specifies internal or
3791   //   external linkage, the type of the identifier at the later
3792   //   declaration becomes the composite type.
3793   //
3794   // If the variable isn't visible, we do not merge with its type.
3795   if (Previous.isShadowed())
3796     return false;
3797 
3798   if (S.getLangOpts().CPlusPlus) {
3799     // C++11 [dcl.array]p3:
3800     //   If there is a preceding declaration of the entity in the same
3801     //   scope in which the bound was specified, an omitted array bound
3802     //   is taken to be the same as in that earlier declaration.
3803     return NewVD->isPreviousDeclInSameBlockScope() ||
3804            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3805             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3806   } else {
3807     // If the old declaration was function-local, don't merge with its
3808     // type unless we're in the same function.
3809     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3810            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3811   }
3812 }
3813 
3814 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
3815 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
3816 /// situation, merging decls or emitting diagnostics as appropriate.
3817 ///
3818 /// Tentative definition rules (C99 6.9.2p2) are checked by
3819 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3820 /// definitions here, since the initializer hasn't been attached.
3821 ///
3822 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3823   // If the new decl is already invalid, don't do any other checking.
3824   if (New->isInvalidDecl())
3825     return;
3826 
3827   if (!shouldLinkPossiblyHiddenDecl(Previous, New))
3828     return;
3829 
3830   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3831 
3832   // Verify the old decl was also a variable or variable template.
3833   VarDecl *Old = nullptr;
3834   VarTemplateDecl *OldTemplate = nullptr;
3835   if (Previous.isSingleResult()) {
3836     if (NewTemplate) {
3837       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3838       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3839 
3840       if (auto *Shadow =
3841               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3842         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
3843           return New->setInvalidDecl();
3844     } else {
3845       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3846 
3847       if (auto *Shadow =
3848               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3849         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
3850           return New->setInvalidDecl();
3851     }
3852   }
3853   if (!Old) {
3854     Diag(New->getLocation(), diag::err_redefinition_different_kind)
3855         << New->getDeclName();
3856     notePreviousDefinition(Previous.getRepresentativeDecl(),
3857                            New->getLocation());
3858     return New->setInvalidDecl();
3859   }
3860 
3861   // Ensure the template parameters are compatible.
3862   if (NewTemplate &&
3863       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3864                                       OldTemplate->getTemplateParameters(),
3865                                       /*Complain=*/true, TPL_TemplateMatch))
3866     return New->setInvalidDecl();
3867 
3868   // C++ [class.mem]p1:
3869   //   A member shall not be declared twice in the member-specification [...]
3870   //
3871   // Here, we need only consider static data members.
3872   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3873     Diag(New->getLocation(), diag::err_duplicate_member)
3874       << New->getIdentifier();
3875     Diag(Old->getLocation(), diag::note_previous_declaration);
3876     New->setInvalidDecl();
3877   }
3878 
3879   mergeDeclAttributes(New, Old);
3880   // Warn if an already-declared variable is made a weak_import in a subsequent
3881   // declaration
3882   if (New->hasAttr<WeakImportAttr>() &&
3883       Old->getStorageClass() == SC_None &&
3884       !Old->hasAttr<WeakImportAttr>()) {
3885     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3886     notePreviousDefinition(Old, New->getLocation());
3887     // Remove weak_import attribute on new declaration.
3888     New->dropAttr<WeakImportAttr>();
3889   }
3890 
3891   if (New->hasAttr<InternalLinkageAttr>() &&
3892       !Old->hasAttr<InternalLinkageAttr>()) {
3893     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3894         << New->getDeclName();
3895     notePreviousDefinition(Old, New->getLocation());
3896     New->dropAttr<InternalLinkageAttr>();
3897   }
3898 
3899   // Merge the types.
3900   VarDecl *MostRecent = Old->getMostRecentDecl();
3901   if (MostRecent != Old) {
3902     MergeVarDeclTypes(New, MostRecent,
3903                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3904     if (New->isInvalidDecl())
3905       return;
3906   }
3907 
3908   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3909   if (New->isInvalidDecl())
3910     return;
3911 
3912   diag::kind PrevDiag;
3913   SourceLocation OldLocation;
3914   std::tie(PrevDiag, OldLocation) =
3915       getNoteDiagForInvalidRedeclaration(Old, New);
3916 
3917   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3918   if (New->getStorageClass() == SC_Static &&
3919       !New->isStaticDataMember() &&
3920       Old->hasExternalFormalLinkage()) {
3921     if (getLangOpts().MicrosoftExt) {
3922       Diag(New->getLocation(), diag::ext_static_non_static)
3923           << New->getDeclName();
3924       Diag(OldLocation, PrevDiag);
3925     } else {
3926       Diag(New->getLocation(), diag::err_static_non_static)
3927           << New->getDeclName();
3928       Diag(OldLocation, PrevDiag);
3929       return New->setInvalidDecl();
3930     }
3931   }
3932   // C99 6.2.2p4:
3933   //   For an identifier declared with the storage-class specifier
3934   //   extern in a scope in which a prior declaration of that
3935   //   identifier is visible,23) if the prior declaration specifies
3936   //   internal or external linkage, the linkage of the identifier at
3937   //   the later declaration is the same as the linkage specified at
3938   //   the prior declaration. If no prior declaration is visible, or
3939   //   if the prior declaration specifies no linkage, then the
3940   //   identifier has external linkage.
3941   if (New->hasExternalStorage() && Old->hasLinkage())
3942     /* Okay */;
3943   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3944            !New->isStaticDataMember() &&
3945            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3946     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3947     Diag(OldLocation, PrevDiag);
3948     return New->setInvalidDecl();
3949   }
3950 
3951   // Check if extern is followed by non-extern and vice-versa.
3952   if (New->hasExternalStorage() &&
3953       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3954     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3955     Diag(OldLocation, PrevDiag);
3956     return New->setInvalidDecl();
3957   }
3958   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3959       !New->hasExternalStorage()) {
3960     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3961     Diag(OldLocation, PrevDiag);
3962     return New->setInvalidDecl();
3963   }
3964 
3965   if (CheckRedeclarationModuleOwnership(New, Old))
3966     return;
3967 
3968   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3969 
3970   // FIXME: The test for external storage here seems wrong? We still
3971   // need to check for mismatches.
3972   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3973       // Don't complain about out-of-line definitions of static members.
3974       !(Old->getLexicalDeclContext()->isRecord() &&
3975         !New->getLexicalDeclContext()->isRecord())) {
3976     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3977     Diag(OldLocation, PrevDiag);
3978     return New->setInvalidDecl();
3979   }
3980 
3981   if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
3982     if (VarDecl *Def = Old->getDefinition()) {
3983       // C++1z [dcl.fcn.spec]p4:
3984       //   If the definition of a variable appears in a translation unit before
3985       //   its first declaration as inline, the program is ill-formed.
3986       Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
3987       Diag(Def->getLocation(), diag::note_previous_definition);
3988     }
3989   }
3990 
3991   // If this redeclaration makes the variable inline, we may need to add it to
3992   // UndefinedButUsed.
3993   if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
3994       !Old->getDefinition() && !New->isThisDeclarationADefinition())
3995     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3996                                            SourceLocation()));
3997 
3998   if (New->getTLSKind() != Old->getTLSKind()) {
3999     if (!Old->getTLSKind()) {
4000       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4001       Diag(OldLocation, PrevDiag);
4002     } else if (!New->getTLSKind()) {
4003       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4004       Diag(OldLocation, PrevDiag);
4005     } else {
4006       // Do not allow redeclaration to change the variable between requiring
4007       // static and dynamic initialization.
4008       // FIXME: GCC allows this, but uses the TLS keyword on the first
4009       // declaration to determine the kind. Do we need to be compatible here?
4010       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4011         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4012       Diag(OldLocation, PrevDiag);
4013     }
4014   }
4015 
4016   // C++ doesn't have tentative definitions, so go right ahead and check here.
4017   if (getLangOpts().CPlusPlus &&
4018       New->isThisDeclarationADefinition() == VarDecl::Definition) {
4019     if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4020         Old->getCanonicalDecl()->isConstexpr()) {
4021       // This definition won't be a definition any more once it's been merged.
4022       Diag(New->getLocation(),
4023            diag::warn_deprecated_redundant_constexpr_static_def);
4024     } else if (VarDecl *Def = Old->getDefinition()) {
4025       if (checkVarDeclRedefinition(Def, New))
4026         return;
4027     }
4028   }
4029 
4030   if (haveIncompatibleLanguageLinkages(Old, New)) {
4031     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4032     Diag(OldLocation, PrevDiag);
4033     New->setInvalidDecl();
4034     return;
4035   }
4036 
4037   // Merge "used" flag.
4038   if (Old->getMostRecentDecl()->isUsed(false))
4039     New->setIsUsed();
4040 
4041   // Keep a chain of previous declarations.
4042   New->setPreviousDecl(Old);
4043   if (NewTemplate)
4044     NewTemplate->setPreviousDecl(OldTemplate);
4045   adjustDeclContextForDeclaratorDecl(New, Old);
4046 
4047   // Inherit access appropriately.
4048   New->setAccess(Old->getAccess());
4049   if (NewTemplate)
4050     NewTemplate->setAccess(New->getAccess());
4051 
4052   if (Old->isInline())
4053     New->setImplicitlyInline();
4054 }
4055 
4056 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4057   SourceManager &SrcMgr = getSourceManager();
4058   auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4059   auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4060   auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4061   auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4062   auto &HSI = PP.getHeaderSearchInfo();
4063   StringRef HdrFilename =
4064       SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4065 
4066   auto noteFromModuleOrInclude = [&](Module *Mod,
4067                                      SourceLocation IncLoc) -> bool {
4068     // Redefinition errors with modules are common with non modular mapped
4069     // headers, example: a non-modular header H in module A that also gets
4070     // included directly in a TU. Pointing twice to the same header/definition
4071     // is confusing, try to get better diagnostics when modules is on.
4072     if (IncLoc.isValid()) {
4073       if (Mod) {
4074         Diag(IncLoc, diag::note_redefinition_modules_same_file)
4075             << HdrFilename.str() << Mod->getFullModuleName();
4076         if (!Mod->DefinitionLoc.isInvalid())
4077           Diag(Mod->DefinitionLoc, diag::note_defined_here)
4078               << Mod->getFullModuleName();
4079       } else {
4080         Diag(IncLoc, diag::note_redefinition_include_same_file)
4081             << HdrFilename.str();
4082       }
4083       return true;
4084     }
4085 
4086     return false;
4087   };
4088 
4089   // Is it the same file and same offset? Provide more information on why
4090   // this leads to a redefinition error.
4091   bool EmittedDiag = false;
4092   if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4093     SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4094     SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4095     EmittedDiag = noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4096     EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4097 
4098     // If the header has no guards, emit a note suggesting one.
4099     if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4100       Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4101 
4102     if (EmittedDiag)
4103       return;
4104   }
4105 
4106   // Redefinition coming from different files or couldn't do better above.
4107   if (Old->getLocation().isValid())
4108     Diag(Old->getLocation(), diag::note_previous_definition);
4109 }
4110 
4111 /// We've just determined that \p Old and \p New both appear to be definitions
4112 /// of the same variable. Either diagnose or fix the problem.
4113 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4114   if (!hasVisibleDefinition(Old) &&
4115       (New->getFormalLinkage() == InternalLinkage ||
4116        New->isInline() ||
4117        New->getDescribedVarTemplate() ||
4118        New->getNumTemplateParameterLists() ||
4119        New->getDeclContext()->isDependentContext())) {
4120     // The previous definition is hidden, and multiple definitions are
4121     // permitted (in separate TUs). Demote this to a declaration.
4122     New->demoteThisDefinitionToDeclaration();
4123 
4124     // Make the canonical definition visible.
4125     if (auto *OldTD = Old->getDescribedVarTemplate())
4126       makeMergedDefinitionVisible(OldTD);
4127     makeMergedDefinitionVisible(Old);
4128     return false;
4129   } else {
4130     Diag(New->getLocation(), diag::err_redefinition) << New;
4131     notePreviousDefinition(Old, New->getLocation());
4132     New->setInvalidDecl();
4133     return true;
4134   }
4135 }
4136 
4137 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4138 /// no declarator (e.g. "struct foo;") is parsed.
4139 Decl *
4140 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4141                                  RecordDecl *&AnonRecord) {
4142   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4143                                     AnonRecord);
4144 }
4145 
4146 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4147 // disambiguate entities defined in different scopes.
4148 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4149 // compatibility.
4150 // We will pick our mangling number depending on which version of MSVC is being
4151 // targeted.
4152 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4153   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4154              ? S->getMSCurManglingNumber()
4155              : S->getMSLastManglingNumber();
4156 }
4157 
4158 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4159   if (!Context.getLangOpts().CPlusPlus)
4160     return;
4161 
4162   if (isa<CXXRecordDecl>(Tag->getParent())) {
4163     // If this tag is the direct child of a class, number it if
4164     // it is anonymous.
4165     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4166       return;
4167     MangleNumberingContext &MCtx =
4168         Context.getManglingNumberContext(Tag->getParent());
4169     Context.setManglingNumber(
4170         Tag, MCtx.getManglingNumber(
4171                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4172     return;
4173   }
4174 
4175   // If this tag isn't a direct child of a class, number it if it is local.
4176   Decl *ManglingContextDecl;
4177   if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4178           Tag->getDeclContext(), ManglingContextDecl)) {
4179     Context.setManglingNumber(
4180         Tag, MCtx->getManglingNumber(
4181                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4182   }
4183 }
4184 
4185 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4186                                         TypedefNameDecl *NewTD) {
4187   if (TagFromDeclSpec->isInvalidDecl())
4188     return;
4189 
4190   // Do nothing if the tag already has a name for linkage purposes.
4191   if (TagFromDeclSpec->hasNameForLinkage())
4192     return;
4193 
4194   // A well-formed anonymous tag must always be a TUK_Definition.
4195   assert(TagFromDeclSpec->isThisDeclarationADefinition());
4196 
4197   // The type must match the tag exactly;  no qualifiers allowed.
4198   if (!Context.hasSameType(NewTD->getUnderlyingType(),
4199                            Context.getTagDeclType(TagFromDeclSpec))) {
4200     if (getLangOpts().CPlusPlus)
4201       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4202     return;
4203   }
4204 
4205   // If we've already computed linkage for the anonymous tag, then
4206   // adding a typedef name for the anonymous decl can change that
4207   // linkage, which might be a serious problem.  Diagnose this as
4208   // unsupported and ignore the typedef name.  TODO: we should
4209   // pursue this as a language defect and establish a formal rule
4210   // for how to handle it.
4211   if (TagFromDeclSpec->hasLinkageBeenComputed()) {
4212     Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
4213 
4214     SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
4215     tagLoc = getLocForEndOfToken(tagLoc);
4216 
4217     llvm::SmallString<40> textToInsert;
4218     textToInsert += ' ';
4219     textToInsert += NewTD->getIdentifier()->getName();
4220     Diag(tagLoc, diag::note_typedef_changes_linkage)
4221         << FixItHint::CreateInsertion(tagLoc, textToInsert);
4222     return;
4223   }
4224 
4225   // Otherwise, set this is the anon-decl typedef for the tag.
4226   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4227 }
4228 
4229 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4230   switch (T) {
4231   case DeclSpec::TST_class:
4232     return 0;
4233   case DeclSpec::TST_struct:
4234     return 1;
4235   case DeclSpec::TST_interface:
4236     return 2;
4237   case DeclSpec::TST_union:
4238     return 3;
4239   case DeclSpec::TST_enum:
4240     return 4;
4241   default:
4242     llvm_unreachable("unexpected type specifier");
4243   }
4244 }
4245 
4246 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4247 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4248 /// parameters to cope with template friend declarations.
4249 Decl *
4250 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4251                                  MultiTemplateParamsArg TemplateParams,
4252                                  bool IsExplicitInstantiation,
4253                                  RecordDecl *&AnonRecord) {
4254   Decl *TagD = nullptr;
4255   TagDecl *Tag = nullptr;
4256   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4257       DS.getTypeSpecType() == DeclSpec::TST_struct ||
4258       DS.getTypeSpecType() == DeclSpec::TST_interface ||
4259       DS.getTypeSpecType() == DeclSpec::TST_union ||
4260       DS.getTypeSpecType() == DeclSpec::TST_enum) {
4261     TagD = DS.getRepAsDecl();
4262 
4263     if (!TagD) // We probably had an error
4264       return nullptr;
4265 
4266     // Note that the above type specs guarantee that the
4267     // type rep is a Decl, whereas in many of the others
4268     // it's a Type.
4269     if (isa<TagDecl>(TagD))
4270       Tag = cast<TagDecl>(TagD);
4271     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4272       Tag = CTD->getTemplatedDecl();
4273   }
4274 
4275   if (Tag) {
4276     handleTagNumbering(Tag, S);
4277     Tag->setFreeStanding();
4278     if (Tag->isInvalidDecl())
4279       return Tag;
4280   }
4281 
4282   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4283     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4284     // or incomplete types shall not be restrict-qualified."
4285     if (TypeQuals & DeclSpec::TQ_restrict)
4286       Diag(DS.getRestrictSpecLoc(),
4287            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4288            << DS.getSourceRange();
4289   }
4290 
4291   if (DS.isInlineSpecified())
4292     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4293         << getLangOpts().CPlusPlus17;
4294 
4295   if (DS.isConstexprSpecified()) {
4296     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4297     // and definitions of functions and variables.
4298     if (Tag)
4299       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4300           << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType());
4301     else
4302       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
4303     // Don't emit warnings after this error.
4304     return TagD;
4305   }
4306 
4307   DiagnoseFunctionSpecifiers(DS);
4308 
4309   if (DS.isFriendSpecified()) {
4310     // If we're dealing with a decl but not a TagDecl, assume that
4311     // whatever routines created it handled the friendship aspect.
4312     if (TagD && !Tag)
4313       return nullptr;
4314     return ActOnFriendTypeDecl(S, DS, TemplateParams);
4315   }
4316 
4317   const CXXScopeSpec &SS = DS.getTypeSpecScope();
4318   bool IsExplicitSpecialization =
4319     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4320   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4321       !IsExplicitInstantiation && !IsExplicitSpecialization &&
4322       !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4323     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4324     // nested-name-specifier unless it is an explicit instantiation
4325     // or an explicit specialization.
4326     //
4327     // FIXME: We allow class template partial specializations here too, per the
4328     // obvious intent of DR1819.
4329     //
4330     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4331     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4332         << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4333     return nullptr;
4334   }
4335 
4336   // Track whether this decl-specifier declares anything.
4337   bool DeclaresAnything = true;
4338 
4339   // Handle anonymous struct definitions.
4340   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4341     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4342         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4343       if (getLangOpts().CPlusPlus ||
4344           Record->getDeclContext()->isRecord()) {
4345         // If CurContext is a DeclContext that can contain statements,
4346         // RecursiveASTVisitor won't visit the decls that
4347         // BuildAnonymousStructOrUnion() will put into CurContext.
4348         // Also store them here so that they can be part of the
4349         // DeclStmt that gets created in this case.
4350         // FIXME: Also return the IndirectFieldDecls created by
4351         // BuildAnonymousStructOr union, for the same reason?
4352         if (CurContext->isFunctionOrMethod())
4353           AnonRecord = Record;
4354         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4355                                            Context.getPrintingPolicy());
4356       }
4357 
4358       DeclaresAnything = false;
4359     }
4360   }
4361 
4362   // C11 6.7.2.1p2:
4363   //   A struct-declaration that does not declare an anonymous structure or
4364   //   anonymous union shall contain a struct-declarator-list.
4365   //
4366   // This rule also existed in C89 and C99; the grammar for struct-declaration
4367   // did not permit a struct-declaration without a struct-declarator-list.
4368   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4369       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4370     // Check for Microsoft C extension: anonymous struct/union member.
4371     // Handle 2 kinds of anonymous struct/union:
4372     //   struct STRUCT;
4373     //   union UNION;
4374     // and
4375     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
4376     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
4377     if ((Tag && Tag->getDeclName()) ||
4378         DS.getTypeSpecType() == DeclSpec::TST_typename) {
4379       RecordDecl *Record = nullptr;
4380       if (Tag)
4381         Record = dyn_cast<RecordDecl>(Tag);
4382       else if (const RecordType *RT =
4383                    DS.getRepAsType().get()->getAsStructureType())
4384         Record = RT->getDecl();
4385       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4386         Record = UT->getDecl();
4387 
4388       if (Record && getLangOpts().MicrosoftExt) {
4389         Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4390             << Record->isUnion() << DS.getSourceRange();
4391         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4392       }
4393 
4394       DeclaresAnything = false;
4395     }
4396   }
4397 
4398   // Skip all the checks below if we have a type error.
4399   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4400       (TagD && TagD->isInvalidDecl()))
4401     return TagD;
4402 
4403   if (getLangOpts().CPlusPlus &&
4404       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4405     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4406       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4407           !Enum->getIdentifier() && !Enum->isInvalidDecl())
4408         DeclaresAnything = false;
4409 
4410   if (!DS.isMissingDeclaratorOk()) {
4411     // Customize diagnostic for a typedef missing a name.
4412     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4413       Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4414           << DS.getSourceRange();
4415     else
4416       DeclaresAnything = false;
4417   }
4418 
4419   if (DS.isModulePrivateSpecified() &&
4420       Tag && Tag->getDeclContext()->isFunctionOrMethod())
4421     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4422       << Tag->getTagKind()
4423       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4424 
4425   ActOnDocumentableDecl(TagD);
4426 
4427   // C 6.7/2:
4428   //   A declaration [...] shall declare at least a declarator [...], a tag,
4429   //   or the members of an enumeration.
4430   // C++ [dcl.dcl]p3:
4431   //   [If there are no declarators], and except for the declaration of an
4432   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
4433   //   names into the program, or shall redeclare a name introduced by a
4434   //   previous declaration.
4435   if (!DeclaresAnything) {
4436     // In C, we allow this as a (popular) extension / bug. Don't bother
4437     // producing further diagnostics for redundant qualifiers after this.
4438     Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
4439     return TagD;
4440   }
4441 
4442   // C++ [dcl.stc]p1:
4443   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4444   //   init-declarator-list of the declaration shall not be empty.
4445   // C++ [dcl.fct.spec]p1:
4446   //   If a cv-qualifier appears in a decl-specifier-seq, the
4447   //   init-declarator-list of the declaration shall not be empty.
4448   //
4449   // Spurious qualifiers here appear to be valid in C.
4450   unsigned DiagID = diag::warn_standalone_specifier;
4451   if (getLangOpts().CPlusPlus)
4452     DiagID = diag::ext_standalone_specifier;
4453 
4454   // Note that a linkage-specification sets a storage class, but
4455   // 'extern "C" struct foo;' is actually valid and not theoretically
4456   // useless.
4457   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4458     if (SCS == DeclSpec::SCS_mutable)
4459       // Since mutable is not a viable storage class specifier in C, there is
4460       // no reason to treat it as an extension. Instead, diagnose as an error.
4461       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4462     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4463       Diag(DS.getStorageClassSpecLoc(), DiagID)
4464         << DeclSpec::getSpecifierName(SCS);
4465   }
4466 
4467   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4468     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4469       << DeclSpec::getSpecifierName(TSCS);
4470   if (DS.getTypeQualifiers()) {
4471     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4472       Diag(DS.getConstSpecLoc(), DiagID) << "const";
4473     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4474       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4475     // Restrict is covered above.
4476     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4477       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4478     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4479       Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4480   }
4481 
4482   // Warn about ignored type attributes, for example:
4483   // __attribute__((aligned)) struct A;
4484   // Attributes should be placed after tag to apply to type declaration.
4485   if (!DS.getAttributes().empty()) {
4486     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4487     if (TypeSpecType == DeclSpec::TST_class ||
4488         TypeSpecType == DeclSpec::TST_struct ||
4489         TypeSpecType == DeclSpec::TST_interface ||
4490         TypeSpecType == DeclSpec::TST_union ||
4491         TypeSpecType == DeclSpec::TST_enum) {
4492       for (const ParsedAttr &AL : DS.getAttributes())
4493         Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4494             << AL.getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
4495     }
4496   }
4497 
4498   return TagD;
4499 }
4500 
4501 /// We are trying to inject an anonymous member into the given scope;
4502 /// check if there's an existing declaration that can't be overloaded.
4503 ///
4504 /// \return true if this is a forbidden redeclaration
4505 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4506                                          Scope *S,
4507                                          DeclContext *Owner,
4508                                          DeclarationName Name,
4509                                          SourceLocation NameLoc,
4510                                          bool IsUnion) {
4511   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4512                  Sema::ForVisibleRedeclaration);
4513   if (!SemaRef.LookupName(R, S)) return false;
4514 
4515   // Pick a representative declaration.
4516   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4517   assert(PrevDecl && "Expected a non-null Decl");
4518 
4519   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4520     return false;
4521 
4522   SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4523     << IsUnion << Name;
4524   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4525 
4526   return true;
4527 }
4528 
4529 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
4530 /// anonymous struct or union AnonRecord into the owning context Owner
4531 /// and scope S. This routine will be invoked just after we realize
4532 /// that an unnamed union or struct is actually an anonymous union or
4533 /// struct, e.g.,
4534 ///
4535 /// @code
4536 /// union {
4537 ///   int i;
4538 ///   float f;
4539 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4540 ///    // f into the surrounding scope.x
4541 /// @endcode
4542 ///
4543 /// This routine is recursive, injecting the names of nested anonymous
4544 /// structs/unions into the owning context and scope as well.
4545 static bool
4546 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4547                                     RecordDecl *AnonRecord, AccessSpecifier AS,
4548                                     SmallVectorImpl<NamedDecl *> &Chaining) {
4549   bool Invalid = false;
4550 
4551   // Look every FieldDecl and IndirectFieldDecl with a name.
4552   for (auto *D : AnonRecord->decls()) {
4553     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4554         cast<NamedDecl>(D)->getDeclName()) {
4555       ValueDecl *VD = cast<ValueDecl>(D);
4556       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4557                                        VD->getLocation(),
4558                                        AnonRecord->isUnion())) {
4559         // C++ [class.union]p2:
4560         //   The names of the members of an anonymous union shall be
4561         //   distinct from the names of any other entity in the
4562         //   scope in which the anonymous union is declared.
4563         Invalid = true;
4564       } else {
4565         // C++ [class.union]p2:
4566         //   For the purpose of name lookup, after the anonymous union
4567         //   definition, the members of the anonymous union are
4568         //   considered to have been defined in the scope in which the
4569         //   anonymous union is declared.
4570         unsigned OldChainingSize = Chaining.size();
4571         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4572           Chaining.append(IF->chain_begin(), IF->chain_end());
4573         else
4574           Chaining.push_back(VD);
4575 
4576         assert(Chaining.size() >= 2);
4577         NamedDecl **NamedChain =
4578           new (SemaRef.Context)NamedDecl*[Chaining.size()];
4579         for (unsigned i = 0; i < Chaining.size(); i++)
4580           NamedChain[i] = Chaining[i];
4581 
4582         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4583             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4584             VD->getType(), {NamedChain, Chaining.size()});
4585 
4586         for (const auto *Attr : VD->attrs())
4587           IndirectField->addAttr(Attr->clone(SemaRef.Context));
4588 
4589         IndirectField->setAccess(AS);
4590         IndirectField->setImplicit();
4591         SemaRef.PushOnScopeChains(IndirectField, S);
4592 
4593         // That includes picking up the appropriate access specifier.
4594         if (AS != AS_none) IndirectField->setAccess(AS);
4595 
4596         Chaining.resize(OldChainingSize);
4597       }
4598     }
4599   }
4600 
4601   return Invalid;
4602 }
4603 
4604 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4605 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
4606 /// illegal input values are mapped to SC_None.
4607 static StorageClass
4608 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4609   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4610   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
4611          "Parser allowed 'typedef' as storage class VarDecl.");
4612   switch (StorageClassSpec) {
4613   case DeclSpec::SCS_unspecified:    return SC_None;
4614   case DeclSpec::SCS_extern:
4615     if (DS.isExternInLinkageSpec())
4616       return SC_None;
4617     return SC_Extern;
4618   case DeclSpec::SCS_static:         return SC_Static;
4619   case DeclSpec::SCS_auto:           return SC_Auto;
4620   case DeclSpec::SCS_register:       return SC_Register;
4621   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4622     // Illegal SCSs map to None: error reporting is up to the caller.
4623   case DeclSpec::SCS_mutable:        // Fall through.
4624   case DeclSpec::SCS_typedef:        return SC_None;
4625   }
4626   llvm_unreachable("unknown storage class specifier");
4627 }
4628 
4629 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4630   assert(Record->hasInClassInitializer());
4631 
4632   for (const auto *I : Record->decls()) {
4633     const auto *FD = dyn_cast<FieldDecl>(I);
4634     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4635       FD = IFD->getAnonField();
4636     if (FD && FD->hasInClassInitializer())
4637       return FD->getLocation();
4638   }
4639 
4640   llvm_unreachable("couldn't find in-class initializer");
4641 }
4642 
4643 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4644                                       SourceLocation DefaultInitLoc) {
4645   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4646     return;
4647 
4648   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4649   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4650 }
4651 
4652 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4653                                       CXXRecordDecl *AnonUnion) {
4654   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4655     return;
4656 
4657   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4658 }
4659 
4660 /// BuildAnonymousStructOrUnion - Handle the declaration of an
4661 /// anonymous structure or union. Anonymous unions are a C++ feature
4662 /// (C++ [class.union]) and a C11 feature; anonymous structures
4663 /// are a C11 feature and GNU C++ extension.
4664 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4665                                         AccessSpecifier AS,
4666                                         RecordDecl *Record,
4667                                         const PrintingPolicy &Policy) {
4668   DeclContext *Owner = Record->getDeclContext();
4669 
4670   // Diagnose whether this anonymous struct/union is an extension.
4671   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4672     Diag(Record->getLocation(), diag::ext_anonymous_union);
4673   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4674     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4675   else if (!Record->isUnion() && !getLangOpts().C11)
4676     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4677 
4678   // C and C++ require different kinds of checks for anonymous
4679   // structs/unions.
4680   bool Invalid = false;
4681   if (getLangOpts().CPlusPlus) {
4682     const char *PrevSpec = nullptr;
4683     unsigned DiagID;
4684     if (Record->isUnion()) {
4685       // C++ [class.union]p6:
4686       // C++17 [class.union.anon]p2:
4687       //   Anonymous unions declared in a named namespace or in the
4688       //   global namespace shall be declared static.
4689       DeclContext *OwnerScope = Owner->getRedeclContext();
4690       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4691           (OwnerScope->isTranslationUnit() ||
4692            (OwnerScope->isNamespace() &&
4693             !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
4694         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4695           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4696 
4697         // Recover by adding 'static'.
4698         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4699                                PrevSpec, DiagID, Policy);
4700       }
4701       // C++ [class.union]p6:
4702       //   A storage class is not allowed in a declaration of an
4703       //   anonymous union in a class scope.
4704       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4705                isa<RecordDecl>(Owner)) {
4706         Diag(DS.getStorageClassSpecLoc(),
4707              diag::err_anonymous_union_with_storage_spec)
4708           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4709 
4710         // Recover by removing the storage specifier.
4711         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
4712                                SourceLocation(),
4713                                PrevSpec, DiagID, Context.getPrintingPolicy());
4714       }
4715     }
4716 
4717     // Ignore const/volatile/restrict qualifiers.
4718     if (DS.getTypeQualifiers()) {
4719       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4720         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4721           << Record->isUnion() << "const"
4722           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4723       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4724         Diag(DS.getVolatileSpecLoc(),
4725              diag::ext_anonymous_struct_union_qualified)
4726           << Record->isUnion() << "volatile"
4727           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4728       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4729         Diag(DS.getRestrictSpecLoc(),
4730              diag::ext_anonymous_struct_union_qualified)
4731           << Record->isUnion() << "restrict"
4732           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4733       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4734         Diag(DS.getAtomicSpecLoc(),
4735              diag::ext_anonymous_struct_union_qualified)
4736           << Record->isUnion() << "_Atomic"
4737           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4738       if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4739         Diag(DS.getUnalignedSpecLoc(),
4740              diag::ext_anonymous_struct_union_qualified)
4741           << Record->isUnion() << "__unaligned"
4742           << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
4743 
4744       DS.ClearTypeQualifiers();
4745     }
4746 
4747     // C++ [class.union]p2:
4748     //   The member-specification of an anonymous union shall only
4749     //   define non-static data members. [Note: nested types and
4750     //   functions cannot be declared within an anonymous union. ]
4751     for (auto *Mem : Record->decls()) {
4752       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4753         // C++ [class.union]p3:
4754         //   An anonymous union shall not have private or protected
4755         //   members (clause 11).
4756         assert(FD->getAccess() != AS_none);
4757         if (FD->getAccess() != AS_public) {
4758           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4759             << Record->isUnion() << (FD->getAccess() == AS_protected);
4760           Invalid = true;
4761         }
4762 
4763         // C++ [class.union]p1
4764         //   An object of a class with a non-trivial constructor, a non-trivial
4765         //   copy constructor, a non-trivial destructor, or a non-trivial copy
4766         //   assignment operator cannot be a member of a union, nor can an
4767         //   array of such objects.
4768         if (CheckNontrivialField(FD))
4769           Invalid = true;
4770       } else if (Mem->isImplicit()) {
4771         // Any implicit members are fine.
4772       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4773         // This is a type that showed up in an
4774         // elaborated-type-specifier inside the anonymous struct or
4775         // union, but which actually declares a type outside of the
4776         // anonymous struct or union. It's okay.
4777       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4778         if (!MemRecord->isAnonymousStructOrUnion() &&
4779             MemRecord->getDeclName()) {
4780           // Visual C++ allows type definition in anonymous struct or union.
4781           if (getLangOpts().MicrosoftExt)
4782             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4783               << Record->isUnion();
4784           else {
4785             // This is a nested type declaration.
4786             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4787               << Record->isUnion();
4788             Invalid = true;
4789           }
4790         } else {
4791           // This is an anonymous type definition within another anonymous type.
4792           // This is a popular extension, provided by Plan9, MSVC and GCC, but
4793           // not part of standard C++.
4794           Diag(MemRecord->getLocation(),
4795                diag::ext_anonymous_record_with_anonymous_type)
4796             << Record->isUnion();
4797         }
4798       } else if (isa<AccessSpecDecl>(Mem)) {
4799         // Any access specifier is fine.
4800       } else if (isa<StaticAssertDecl>(Mem)) {
4801         // In C++1z, static_assert declarations are also fine.
4802       } else {
4803         // We have something that isn't a non-static data
4804         // member. Complain about it.
4805         unsigned DK = diag::err_anonymous_record_bad_member;
4806         if (isa<TypeDecl>(Mem))
4807           DK = diag::err_anonymous_record_with_type;
4808         else if (isa<FunctionDecl>(Mem))
4809           DK = diag::err_anonymous_record_with_function;
4810         else if (isa<VarDecl>(Mem))
4811           DK = diag::err_anonymous_record_with_static;
4812 
4813         // Visual C++ allows type definition in anonymous struct or union.
4814         if (getLangOpts().MicrosoftExt &&
4815             DK == diag::err_anonymous_record_with_type)
4816           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4817             << Record->isUnion();
4818         else {
4819           Diag(Mem->getLocation(), DK) << Record->isUnion();
4820           Invalid = true;
4821         }
4822       }
4823     }
4824 
4825     // C++11 [class.union]p8 (DR1460):
4826     //   At most one variant member of a union may have a
4827     //   brace-or-equal-initializer.
4828     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4829         Owner->isRecord())
4830       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4831                                 cast<CXXRecordDecl>(Record));
4832   }
4833 
4834   if (!Record->isUnion() && !Owner->isRecord()) {
4835     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4836       << getLangOpts().CPlusPlus;
4837     Invalid = true;
4838   }
4839 
4840   // C++ [dcl.dcl]p3:
4841   //   [If there are no declarators], and except for the declaration of an
4842   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
4843   //   names into the program
4844   // C++ [class.mem]p2:
4845   //   each such member-declaration shall either declare at least one member
4846   //   name of the class or declare at least one unnamed bit-field
4847   //
4848   // For C this is an error even for a named struct, and is diagnosed elsewhere.
4849   if (getLangOpts().CPlusPlus && Record->field_empty())
4850     Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
4851 
4852   // Mock up a declarator.
4853   Declarator Dc(DS, DeclaratorContext::MemberContext);
4854   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4855   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
4856 
4857   // Create a declaration for this anonymous struct/union.
4858   NamedDecl *Anon = nullptr;
4859   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4860     Anon = FieldDecl::Create(
4861         Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
4862         /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
4863         /*BitWidth=*/nullptr, /*Mutable=*/false,
4864         /*InitStyle=*/ICIS_NoInit);
4865     Anon->setAccess(AS);
4866     if (getLangOpts().CPlusPlus)
4867       FieldCollector->Add(cast<FieldDecl>(Anon));
4868   } else {
4869     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4870     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4871     if (SCSpec == DeclSpec::SCS_mutable) {
4872       // mutable can only appear on non-static class members, so it's always
4873       // an error here
4874       Diag(Record->getLocation(), diag::err_mutable_nonmember);
4875       Invalid = true;
4876       SC = SC_None;
4877     }
4878 
4879     Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
4880                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
4881                            Context.getTypeDeclType(Record), TInfo, SC);
4882 
4883     // Default-initialize the implicit variable. This initialization will be
4884     // trivial in almost all cases, except if a union member has an in-class
4885     // initializer:
4886     //   union { int n = 0; };
4887     ActOnUninitializedDecl(Anon);
4888   }
4889   Anon->setImplicit();
4890 
4891   // Mark this as an anonymous struct/union type.
4892   Record->setAnonymousStructOrUnion(true);
4893 
4894   // Add the anonymous struct/union object to the current
4895   // context. We'll be referencing this object when we refer to one of
4896   // its members.
4897   Owner->addDecl(Anon);
4898 
4899   // Inject the members of the anonymous struct/union into the owning
4900   // context and into the identifier resolver chain for name lookup
4901   // purposes.
4902   SmallVector<NamedDecl*, 2> Chain;
4903   Chain.push_back(Anon);
4904 
4905   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
4906     Invalid = true;
4907 
4908   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4909     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4910       Decl *ManglingContextDecl;
4911       if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4912               NewVD->getDeclContext(), ManglingContextDecl)) {
4913         Context.setManglingNumber(
4914             NewVD, MCtx->getManglingNumber(
4915                        NewVD, getMSManglingNumber(getLangOpts(), S)));
4916         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4917       }
4918     }
4919   }
4920 
4921   if (Invalid)
4922     Anon->setInvalidDecl();
4923 
4924   return Anon;
4925 }
4926 
4927 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4928 /// Microsoft C anonymous structure.
4929 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4930 /// Example:
4931 ///
4932 /// struct A { int a; };
4933 /// struct B { struct A; int b; };
4934 ///
4935 /// void foo() {
4936 ///   B var;
4937 ///   var.a = 3;
4938 /// }
4939 ///
4940 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4941                                            RecordDecl *Record) {
4942   assert(Record && "expected a record!");
4943 
4944   // Mock up a declarator.
4945   Declarator Dc(DS, DeclaratorContext::TypeNameContext);
4946   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4947   assert(TInfo && "couldn't build declarator info for anonymous struct");
4948 
4949   auto *ParentDecl = cast<RecordDecl>(CurContext);
4950   QualType RecTy = Context.getTypeDeclType(Record);
4951 
4952   // Create a declaration for this anonymous struct.
4953   NamedDecl *Anon =
4954       FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
4955                         /*IdentifierInfo=*/nullptr, RecTy, TInfo,
4956                         /*BitWidth=*/nullptr, /*Mutable=*/false,
4957                         /*InitStyle=*/ICIS_NoInit);
4958   Anon->setImplicit();
4959 
4960   // Add the anonymous struct object to the current context.
4961   CurContext->addDecl(Anon);
4962 
4963   // Inject the members of the anonymous struct into the current
4964   // context and into the identifier resolver chain for name lookup
4965   // purposes.
4966   SmallVector<NamedDecl*, 2> Chain;
4967   Chain.push_back(Anon);
4968 
4969   RecordDecl *RecordDef = Record->getDefinition();
4970   if (RequireCompleteType(Anon->getLocation(), RecTy,
4971                           diag::err_field_incomplete) ||
4972       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4973                                           AS_none, Chain)) {
4974     Anon->setInvalidDecl();
4975     ParentDecl->setInvalidDecl();
4976   }
4977 
4978   return Anon;
4979 }
4980 
4981 /// GetNameForDeclarator - Determine the full declaration name for the
4982 /// given Declarator.
4983 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4984   return GetNameFromUnqualifiedId(D.getName());
4985 }
4986 
4987 /// Retrieves the declaration name from a parsed unqualified-id.
4988 DeclarationNameInfo
4989 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4990   DeclarationNameInfo NameInfo;
4991   NameInfo.setLoc(Name.StartLocation);
4992 
4993   switch (Name.getKind()) {
4994 
4995   case UnqualifiedIdKind::IK_ImplicitSelfParam:
4996   case UnqualifiedIdKind::IK_Identifier:
4997     NameInfo.setName(Name.Identifier);
4998     return NameInfo;
4999 
5000   case UnqualifiedIdKind::IK_DeductionGuideName: {
5001     // C++ [temp.deduct.guide]p3:
5002     //   The simple-template-id shall name a class template specialization.
5003     //   The template-name shall be the same identifier as the template-name
5004     //   of the simple-template-id.
5005     // These together intend to imply that the template-name shall name a
5006     // class template.
5007     // FIXME: template<typename T> struct X {};
5008     //        template<typename T> using Y = X<T>;
5009     //        Y(int) -> Y<int>;
5010     //   satisfies these rules but does not name a class template.
5011     TemplateName TN = Name.TemplateName.get().get();
5012     auto *Template = TN.getAsTemplateDecl();
5013     if (!Template || !isa<ClassTemplateDecl>(Template)) {
5014       Diag(Name.StartLocation,
5015            diag::err_deduction_guide_name_not_class_template)
5016         << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5017       if (Template)
5018         Diag(Template->getLocation(), diag::note_template_decl_here);
5019       return DeclarationNameInfo();
5020     }
5021 
5022     NameInfo.setName(
5023         Context.DeclarationNames.getCXXDeductionGuideName(Template));
5024     return NameInfo;
5025   }
5026 
5027   case UnqualifiedIdKind::IK_OperatorFunctionId:
5028     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5029                                            Name.OperatorFunctionId.Operator));
5030     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
5031       = Name.OperatorFunctionId.SymbolLocations[0];
5032     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
5033       = Name.EndLocation.getRawEncoding();
5034     return NameInfo;
5035 
5036   case UnqualifiedIdKind::IK_LiteralOperatorId:
5037     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5038                                                            Name.Identifier));
5039     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5040     return NameInfo;
5041 
5042   case UnqualifiedIdKind::IK_ConversionFunctionId: {
5043     TypeSourceInfo *TInfo;
5044     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5045     if (Ty.isNull())
5046       return DeclarationNameInfo();
5047     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5048                                                Context.getCanonicalType(Ty)));
5049     NameInfo.setNamedTypeInfo(TInfo);
5050     return NameInfo;
5051   }
5052 
5053   case UnqualifiedIdKind::IK_ConstructorName: {
5054     TypeSourceInfo *TInfo;
5055     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5056     if (Ty.isNull())
5057       return DeclarationNameInfo();
5058     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5059                                               Context.getCanonicalType(Ty)));
5060     NameInfo.setNamedTypeInfo(TInfo);
5061     return NameInfo;
5062   }
5063 
5064   case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5065     // In well-formed code, we can only have a constructor
5066     // template-id that refers to the current context, so go there
5067     // to find the actual type being constructed.
5068     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5069     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5070       return DeclarationNameInfo();
5071 
5072     // Determine the type of the class being constructed.
5073     QualType CurClassType = Context.getTypeDeclType(CurClass);
5074 
5075     // FIXME: Check two things: that the template-id names the same type as
5076     // CurClassType, and that the template-id does not occur when the name
5077     // was qualified.
5078 
5079     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5080                                     Context.getCanonicalType(CurClassType)));
5081     // FIXME: should we retrieve TypeSourceInfo?
5082     NameInfo.setNamedTypeInfo(nullptr);
5083     return NameInfo;
5084   }
5085 
5086   case UnqualifiedIdKind::IK_DestructorName: {
5087     TypeSourceInfo *TInfo;
5088     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5089     if (Ty.isNull())
5090       return DeclarationNameInfo();
5091     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5092                                               Context.getCanonicalType(Ty)));
5093     NameInfo.setNamedTypeInfo(TInfo);
5094     return NameInfo;
5095   }
5096 
5097   case UnqualifiedIdKind::IK_TemplateId: {
5098     TemplateName TName = Name.TemplateId->Template.get();
5099     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5100     return Context.getNameForTemplate(TName, TNameLoc);
5101   }
5102 
5103   } // switch (Name.getKind())
5104 
5105   llvm_unreachable("Unknown name kind");
5106 }
5107 
5108 static QualType getCoreType(QualType Ty) {
5109   do {
5110     if (Ty->isPointerType() || Ty->isReferenceType())
5111       Ty = Ty->getPointeeType();
5112     else if (Ty->isArrayType())
5113       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5114     else
5115       return Ty.withoutLocalFastQualifiers();
5116   } while (true);
5117 }
5118 
5119 /// hasSimilarParameters - Determine whether the C++ functions Declaration
5120 /// and Definition have "nearly" matching parameters. This heuristic is
5121 /// used to improve diagnostics in the case where an out-of-line function
5122 /// definition doesn't match any declaration within the class or namespace.
5123 /// Also sets Params to the list of indices to the parameters that differ
5124 /// between the declaration and the definition. If hasSimilarParameters
5125 /// returns true and Params is empty, then all of the parameters match.
5126 static bool hasSimilarParameters(ASTContext &Context,
5127                                      FunctionDecl *Declaration,
5128                                      FunctionDecl *Definition,
5129                                      SmallVectorImpl<unsigned> &Params) {
5130   Params.clear();
5131   if (Declaration->param_size() != Definition->param_size())
5132     return false;
5133   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5134     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5135     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5136 
5137     // The parameter types are identical
5138     if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5139       continue;
5140 
5141     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5142     QualType DefParamBaseTy = getCoreType(DefParamTy);
5143     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5144     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5145 
5146     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5147         (DeclTyName && DeclTyName == DefTyName))
5148       Params.push_back(Idx);
5149     else  // The two parameters aren't even close
5150       return false;
5151   }
5152 
5153   return true;
5154 }
5155 
5156 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5157 /// declarator needs to be rebuilt in the current instantiation.
5158 /// Any bits of declarator which appear before the name are valid for
5159 /// consideration here.  That's specifically the type in the decl spec
5160 /// and the base type in any member-pointer chunks.
5161 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5162                                                     DeclarationName Name) {
5163   // The types we specifically need to rebuild are:
5164   //   - typenames, typeofs, and decltypes
5165   //   - types which will become injected class names
5166   // Of course, we also need to rebuild any type referencing such a
5167   // type.  It's safest to just say "dependent", but we call out a
5168   // few cases here.
5169 
5170   DeclSpec &DS = D.getMutableDeclSpec();
5171   switch (DS.getTypeSpecType()) {
5172   case DeclSpec::TST_typename:
5173   case DeclSpec::TST_typeofType:
5174   case DeclSpec::TST_underlyingType:
5175   case DeclSpec::TST_atomic: {
5176     // Grab the type from the parser.
5177     TypeSourceInfo *TSI = nullptr;
5178     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5179     if (T.isNull() || !T->isDependentType()) break;
5180 
5181     // Make sure there's a type source info.  This isn't really much
5182     // of a waste; most dependent types should have type source info
5183     // attached already.
5184     if (!TSI)
5185       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5186 
5187     // Rebuild the type in the current instantiation.
5188     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5189     if (!TSI) return true;
5190 
5191     // Store the new type back in the decl spec.
5192     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5193     DS.UpdateTypeRep(LocType);
5194     break;
5195   }
5196 
5197   case DeclSpec::TST_decltype:
5198   case DeclSpec::TST_typeofExpr: {
5199     Expr *E = DS.getRepAsExpr();
5200     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5201     if (Result.isInvalid()) return true;
5202     DS.UpdateExprRep(Result.get());
5203     break;
5204   }
5205 
5206   default:
5207     // Nothing to do for these decl specs.
5208     break;
5209   }
5210 
5211   // It doesn't matter what order we do this in.
5212   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5213     DeclaratorChunk &Chunk = D.getTypeObject(I);
5214 
5215     // The only type information in the declarator which can come
5216     // before the declaration name is the base type of a member
5217     // pointer.
5218     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5219       continue;
5220 
5221     // Rebuild the scope specifier in-place.
5222     CXXScopeSpec &SS = Chunk.Mem.Scope();
5223     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5224       return true;
5225   }
5226 
5227   return false;
5228 }
5229 
5230 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5231   D.setFunctionDefinitionKind(FDK_Declaration);
5232   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5233 
5234   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5235       Dcl && Dcl->getDeclContext()->isFileContext())
5236     Dcl->setTopLevelDeclInObjCContainer();
5237 
5238   if (getLangOpts().OpenCL)
5239     setCurrentOpenCLExtensionForDecl(Dcl);
5240 
5241   return Dcl;
5242 }
5243 
5244 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5245 ///   If T is the name of a class, then each of the following shall have a
5246 ///   name different from T:
5247 ///     - every static data member of class T;
5248 ///     - every member function of class T
5249 ///     - every member of class T that is itself a type;
5250 /// \returns true if the declaration name violates these rules.
5251 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5252                                    DeclarationNameInfo NameInfo) {
5253   DeclarationName Name = NameInfo.getName();
5254 
5255   CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5256   while (Record && Record->isAnonymousStructOrUnion())
5257     Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5258   if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5259     Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5260     return true;
5261   }
5262 
5263   return false;
5264 }
5265 
5266 /// Diagnose a declaration whose declarator-id has the given
5267 /// nested-name-specifier.
5268 ///
5269 /// \param SS The nested-name-specifier of the declarator-id.
5270 ///
5271 /// \param DC The declaration context to which the nested-name-specifier
5272 /// resolves.
5273 ///
5274 /// \param Name The name of the entity being declared.
5275 ///
5276 /// \param Loc The location of the name of the entity being declared.
5277 ///
5278 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5279 /// we're declaring an explicit / partial specialization / instantiation.
5280 ///
5281 /// \returns true if we cannot safely recover from this error, false otherwise.
5282 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5283                                         DeclarationName Name,
5284                                         SourceLocation Loc, bool IsTemplateId) {
5285   DeclContext *Cur = CurContext;
5286   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5287     Cur = Cur->getParent();
5288 
5289   // If the user provided a superfluous scope specifier that refers back to the
5290   // class in which the entity is already declared, diagnose and ignore it.
5291   //
5292   // class X {
5293   //   void X::f();
5294   // };
5295   //
5296   // Note, it was once ill-formed to give redundant qualification in all
5297   // contexts, but that rule was removed by DR482.
5298   if (Cur->Equals(DC)) {
5299     if (Cur->isRecord()) {
5300       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5301                                       : diag::err_member_extra_qualification)
5302         << Name << FixItHint::CreateRemoval(SS.getRange());
5303       SS.clear();
5304     } else {
5305       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5306     }
5307     return false;
5308   }
5309 
5310   // Check whether the qualifying scope encloses the scope of the original
5311   // declaration. For a template-id, we perform the checks in
5312   // CheckTemplateSpecializationScope.
5313   if (!Cur->Encloses(DC) && !IsTemplateId) {
5314     if (Cur->isRecord())
5315       Diag(Loc, diag::err_member_qualification)
5316         << Name << SS.getRange();
5317     else if (isa<TranslationUnitDecl>(DC))
5318       Diag(Loc, diag::err_invalid_declarator_global_scope)
5319         << Name << SS.getRange();
5320     else if (isa<FunctionDecl>(Cur))
5321       Diag(Loc, diag::err_invalid_declarator_in_function)
5322         << Name << SS.getRange();
5323     else if (isa<BlockDecl>(Cur))
5324       Diag(Loc, diag::err_invalid_declarator_in_block)
5325         << Name << SS.getRange();
5326     else
5327       Diag(Loc, diag::err_invalid_declarator_scope)
5328       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5329 
5330     return true;
5331   }
5332 
5333   if (Cur->isRecord()) {
5334     // Cannot qualify members within a class.
5335     Diag(Loc, diag::err_member_qualification)
5336       << Name << SS.getRange();
5337     SS.clear();
5338 
5339     // C++ constructors and destructors with incorrect scopes can break
5340     // our AST invariants by having the wrong underlying types. If
5341     // that's the case, then drop this declaration entirely.
5342     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5343          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5344         !Context.hasSameType(Name.getCXXNameType(),
5345                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5346       return true;
5347 
5348     return false;
5349   }
5350 
5351   // C++11 [dcl.meaning]p1:
5352   //   [...] "The nested-name-specifier of the qualified declarator-id shall
5353   //   not begin with a decltype-specifer"
5354   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5355   while (SpecLoc.getPrefix())
5356     SpecLoc = SpecLoc.getPrefix();
5357   if (dyn_cast_or_null<DecltypeType>(
5358         SpecLoc.getNestedNameSpecifier()->getAsType()))
5359     Diag(Loc, diag::err_decltype_in_declarator)
5360       << SpecLoc.getTypeLoc().getSourceRange();
5361 
5362   return false;
5363 }
5364 
5365 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5366                                   MultiTemplateParamsArg TemplateParamLists) {
5367   // TODO: consider using NameInfo for diagnostic.
5368   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5369   DeclarationName Name = NameInfo.getName();
5370 
5371   // All of these full declarators require an identifier.  If it doesn't have
5372   // one, the ParsedFreeStandingDeclSpec action should be used.
5373   if (D.isDecompositionDeclarator()) {
5374     return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5375   } else if (!Name) {
5376     if (!D.isInvalidType())  // Reject this if we think it is valid.
5377       Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5378           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5379     return nullptr;
5380   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5381     return nullptr;
5382 
5383   // The scope passed in may not be a decl scope.  Zip up the scope tree until
5384   // we find one that is.
5385   while ((S->getFlags() & Scope::DeclScope) == 0 ||
5386          (S->getFlags() & Scope::TemplateParamScope) != 0)
5387     S = S->getParent();
5388 
5389   DeclContext *DC = CurContext;
5390   if (D.getCXXScopeSpec().isInvalid())
5391     D.setInvalidType();
5392   else if (D.getCXXScopeSpec().isSet()) {
5393     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5394                                         UPPC_DeclarationQualifier))
5395       return nullptr;
5396 
5397     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5398     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5399     if (!DC || isa<EnumDecl>(DC)) {
5400       // If we could not compute the declaration context, it's because the
5401       // declaration context is dependent but does not refer to a class,
5402       // class template, or class template partial specialization. Complain
5403       // and return early, to avoid the coming semantic disaster.
5404       Diag(D.getIdentifierLoc(),
5405            diag::err_template_qualified_declarator_no_match)
5406         << D.getCXXScopeSpec().getScopeRep()
5407         << D.getCXXScopeSpec().getRange();
5408       return nullptr;
5409     }
5410     bool IsDependentContext = DC->isDependentContext();
5411 
5412     if (!IsDependentContext &&
5413         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5414       return nullptr;
5415 
5416     // If a class is incomplete, do not parse entities inside it.
5417     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5418       Diag(D.getIdentifierLoc(),
5419            diag::err_member_def_undefined_record)
5420         << Name << DC << D.getCXXScopeSpec().getRange();
5421       return nullptr;
5422     }
5423     if (!D.getDeclSpec().isFriendSpecified()) {
5424       if (diagnoseQualifiedDeclaration(
5425               D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5426               D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5427         if (DC->isRecord())
5428           return nullptr;
5429 
5430         D.setInvalidType();
5431       }
5432     }
5433 
5434     // Check whether we need to rebuild the type of the given
5435     // declaration in the current instantiation.
5436     if (EnteringContext && IsDependentContext &&
5437         TemplateParamLists.size() != 0) {
5438       ContextRAII SavedContext(*this, DC);
5439       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5440         D.setInvalidType();
5441     }
5442   }
5443 
5444   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5445   QualType R = TInfo->getType();
5446 
5447   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5448                                       UPPC_DeclarationType))
5449     D.setInvalidType();
5450 
5451   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5452                         forRedeclarationInCurContext());
5453 
5454   // See if this is a redefinition of a variable in the same scope.
5455   if (!D.getCXXScopeSpec().isSet()) {
5456     bool IsLinkageLookup = false;
5457     bool CreateBuiltins = false;
5458 
5459     // If the declaration we're planning to build will be a function
5460     // or object with linkage, then look for another declaration with
5461     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5462     //
5463     // If the declaration we're planning to build will be declared with
5464     // external linkage in the translation unit, create any builtin with
5465     // the same name.
5466     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5467       /* Do nothing*/;
5468     else if (CurContext->isFunctionOrMethod() &&
5469              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5470               R->isFunctionType())) {
5471       IsLinkageLookup = true;
5472       CreateBuiltins =
5473           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5474     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5475                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5476       CreateBuiltins = true;
5477 
5478     if (IsLinkageLookup) {
5479       Previous.clear(LookupRedeclarationWithLinkage);
5480       Previous.setRedeclarationKind(ForExternalRedeclaration);
5481     }
5482 
5483     LookupName(Previous, S, CreateBuiltins);
5484   } else { // Something like "int foo::x;"
5485     LookupQualifiedName(Previous, DC);
5486 
5487     // C++ [dcl.meaning]p1:
5488     //   When the declarator-id is qualified, the declaration shall refer to a
5489     //  previously declared member of the class or namespace to which the
5490     //  qualifier refers (or, in the case of a namespace, of an element of the
5491     //  inline namespace set of that namespace (7.3.1)) or to a specialization
5492     //  thereof; [...]
5493     //
5494     // Note that we already checked the context above, and that we do not have
5495     // enough information to make sure that Previous contains the declaration
5496     // we want to match. For example, given:
5497     //
5498     //   class X {
5499     //     void f();
5500     //     void f(float);
5501     //   };
5502     //
5503     //   void X::f(int) { } // ill-formed
5504     //
5505     // In this case, Previous will point to the overload set
5506     // containing the two f's declared in X, but neither of them
5507     // matches.
5508 
5509     // C++ [dcl.meaning]p1:
5510     //   [...] the member shall not merely have been introduced by a
5511     //   using-declaration in the scope of the class or namespace nominated by
5512     //   the nested-name-specifier of the declarator-id.
5513     RemoveUsingDecls(Previous);
5514   }
5515 
5516   if (Previous.isSingleResult() &&
5517       Previous.getFoundDecl()->isTemplateParameter()) {
5518     // Maybe we will complain about the shadowed template parameter.
5519     if (!D.isInvalidType())
5520       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5521                                       Previous.getFoundDecl());
5522 
5523     // Just pretend that we didn't see the previous declaration.
5524     Previous.clear();
5525   }
5526 
5527   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5528     // Forget that the previous declaration is the injected-class-name.
5529     Previous.clear();
5530 
5531   // In C++, the previous declaration we find might be a tag type
5532   // (class or enum). In this case, the new declaration will hide the
5533   // tag type. Note that this applies to functions, function templates, and
5534   // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5535   if (Previous.isSingleTagDecl() &&
5536       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5537       (TemplateParamLists.size() == 0 || R->isFunctionType()))
5538     Previous.clear();
5539 
5540   // Check that there are no default arguments other than in the parameters
5541   // of a function declaration (C++ only).
5542   if (getLangOpts().CPlusPlus)
5543     CheckExtraCXXDefaultArguments(D);
5544 
5545   NamedDecl *New;
5546 
5547   bool AddToScope = true;
5548   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5549     if (TemplateParamLists.size()) {
5550       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5551       return nullptr;
5552     }
5553 
5554     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5555   } else if (R->isFunctionType()) {
5556     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5557                                   TemplateParamLists,
5558                                   AddToScope);
5559   } else {
5560     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5561                                   AddToScope);
5562   }
5563 
5564   if (!New)
5565     return nullptr;
5566 
5567   // If this has an identifier and is not a function template specialization,
5568   // add it to the scope stack.
5569   if (New->getDeclName() && AddToScope)
5570     PushOnScopeChains(New, S);
5571 
5572   if (isInOpenMPDeclareTargetContext())
5573     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5574 
5575   return New;
5576 }
5577 
5578 /// Helper method to turn variable array types into constant array
5579 /// types in certain situations which would otherwise be errors (for
5580 /// GCC compatibility).
5581 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5582                                                     ASTContext &Context,
5583                                                     bool &SizeIsNegative,
5584                                                     llvm::APSInt &Oversized) {
5585   // This method tries to turn a variable array into a constant
5586   // array even when the size isn't an ICE.  This is necessary
5587   // for compatibility with code that depends on gcc's buggy
5588   // constant expression folding, like struct {char x[(int)(char*)2];}
5589   SizeIsNegative = false;
5590   Oversized = 0;
5591 
5592   if (T->isDependentType())
5593     return QualType();
5594 
5595   QualifierCollector Qs;
5596   const Type *Ty = Qs.strip(T);
5597 
5598   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5599     QualType Pointee = PTy->getPointeeType();
5600     QualType FixedType =
5601         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5602                                             Oversized);
5603     if (FixedType.isNull()) return FixedType;
5604     FixedType = Context.getPointerType(FixedType);
5605     return Qs.apply(Context, FixedType);
5606   }
5607   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5608     QualType Inner = PTy->getInnerType();
5609     QualType FixedType =
5610         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5611                                             Oversized);
5612     if (FixedType.isNull()) return FixedType;
5613     FixedType = Context.getParenType(FixedType);
5614     return Qs.apply(Context, FixedType);
5615   }
5616 
5617   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5618   if (!VLATy)
5619     return QualType();
5620   // FIXME: We should probably handle this case
5621   if (VLATy->getElementType()->isVariablyModifiedType())
5622     return QualType();
5623 
5624   Expr::EvalResult Result;
5625   if (!VLATy->getSizeExpr() ||
5626       !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
5627     return QualType();
5628 
5629   llvm::APSInt Res = Result.Val.getInt();
5630 
5631   // Check whether the array size is negative.
5632   if (Res.isSigned() && Res.isNegative()) {
5633     SizeIsNegative = true;
5634     return QualType();
5635   }
5636 
5637   // Check whether the array is too large to be addressed.
5638   unsigned ActiveSizeBits
5639     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5640                                               Res);
5641   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5642     Oversized = Res;
5643     return QualType();
5644   }
5645 
5646   return Context.getConstantArrayType(VLATy->getElementType(),
5647                                       Res, ArrayType::Normal, 0);
5648 }
5649 
5650 static void
5651 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5652   SrcTL = SrcTL.getUnqualifiedLoc();
5653   DstTL = DstTL.getUnqualifiedLoc();
5654   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5655     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5656     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5657                                       DstPTL.getPointeeLoc());
5658     DstPTL.setStarLoc(SrcPTL.getStarLoc());
5659     return;
5660   }
5661   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5662     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5663     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5664                                       DstPTL.getInnerLoc());
5665     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5666     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5667     return;
5668   }
5669   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5670   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5671   TypeLoc SrcElemTL = SrcATL.getElementLoc();
5672   TypeLoc DstElemTL = DstATL.getElementLoc();
5673   DstElemTL.initializeFullCopy(SrcElemTL);
5674   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5675   DstATL.setSizeExpr(SrcATL.getSizeExpr());
5676   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5677 }
5678 
5679 /// Helper method to turn variable array types into constant array
5680 /// types in certain situations which would otherwise be errors (for
5681 /// GCC compatibility).
5682 static TypeSourceInfo*
5683 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5684                                               ASTContext &Context,
5685                                               bool &SizeIsNegative,
5686                                               llvm::APSInt &Oversized) {
5687   QualType FixedTy
5688     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5689                                           SizeIsNegative, Oversized);
5690   if (FixedTy.isNull())
5691     return nullptr;
5692   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5693   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5694                                     FixedTInfo->getTypeLoc());
5695   return FixedTInfo;
5696 }
5697 
5698 /// Register the given locally-scoped extern "C" declaration so
5699 /// that it can be found later for redeclarations. We include any extern "C"
5700 /// declaration that is not visible in the translation unit here, not just
5701 /// function-scope declarations.
5702 void
5703 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
5704   if (!getLangOpts().CPlusPlus &&
5705       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
5706     // Don't need to track declarations in the TU in C.
5707     return;
5708 
5709   // Note that we have a locally-scoped external with this name.
5710   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
5711 }
5712 
5713 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
5714   // FIXME: We can have multiple results via __attribute__((overloadable)).
5715   auto Result = Context.getExternCContextDecl()->lookup(Name);
5716   return Result.empty() ? nullptr : *Result.begin();
5717 }
5718 
5719 /// Diagnose function specifiers on a declaration of an identifier that
5720 /// does not identify a function.
5721 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
5722   // FIXME: We should probably indicate the identifier in question to avoid
5723   // confusion for constructs like "virtual int a(), b;"
5724   if (DS.isVirtualSpecified())
5725     Diag(DS.getVirtualSpecLoc(),
5726          diag::err_virtual_non_function);
5727 
5728   if (DS.hasExplicitSpecifier())
5729     Diag(DS.getExplicitSpecLoc(),
5730          diag::err_explicit_non_function);
5731 
5732   if (DS.isNoreturnSpecified())
5733     Diag(DS.getNoreturnSpecLoc(),
5734          diag::err_noreturn_non_function);
5735 }
5736 
5737 NamedDecl*
5738 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
5739                              TypeSourceInfo *TInfo, LookupResult &Previous) {
5740   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5741   if (D.getCXXScopeSpec().isSet()) {
5742     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5743       << D.getCXXScopeSpec().getRange();
5744     D.setInvalidType();
5745     // Pretend we didn't see the scope specifier.
5746     DC = CurContext;
5747     Previous.clear();
5748   }
5749 
5750   DiagnoseFunctionSpecifiers(D.getDeclSpec());
5751 
5752   if (D.getDeclSpec().isInlineSpecified())
5753     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
5754         << getLangOpts().CPlusPlus17;
5755   if (D.getDeclSpec().isConstexprSpecified())
5756     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5757       << 1;
5758 
5759   if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
5760     if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
5761       Diag(D.getName().StartLocation,
5762            diag::err_deduction_guide_invalid_specifier)
5763           << "typedef";
5764     else
5765       Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5766           << D.getName().getSourceRange();
5767     return nullptr;
5768   }
5769 
5770   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5771   if (!NewTD) return nullptr;
5772 
5773   // Handle attributes prior to checking for duplicates in MergeVarDecl
5774   ProcessDeclAttributes(S, NewTD, D);
5775 
5776   CheckTypedefForVariablyModifiedType(S, NewTD);
5777 
5778   bool Redeclaration = D.isRedeclaration();
5779   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5780   D.setRedeclaration(Redeclaration);
5781   return ND;
5782 }
5783 
5784 void
5785 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5786   // C99 6.7.7p2: If a typedef name specifies a variably modified type
5787   // then it shall have block scope.
5788   // Note that variably modified types must be fixed before merging the decl so
5789   // that redeclarations will match.
5790   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5791   QualType T = TInfo->getType();
5792   if (T->isVariablyModifiedType()) {
5793     setFunctionHasBranchProtectedScope();
5794 
5795     if (S->getFnParent() == nullptr) {
5796       bool SizeIsNegative;
5797       llvm::APSInt Oversized;
5798       TypeSourceInfo *FixedTInfo =
5799         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5800                                                       SizeIsNegative,
5801                                                       Oversized);
5802       if (FixedTInfo) {
5803         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5804         NewTD->setTypeSourceInfo(FixedTInfo);
5805       } else {
5806         if (SizeIsNegative)
5807           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5808         else if (T->isVariableArrayType())
5809           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5810         else if (Oversized.getBoolValue())
5811           Diag(NewTD->getLocation(), diag::err_array_too_large)
5812             << Oversized.toString(10);
5813         else
5814           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5815         NewTD->setInvalidDecl();
5816       }
5817     }
5818   }
5819 }
5820 
5821 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5822 /// declares a typedef-name, either using the 'typedef' type specifier or via
5823 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5824 NamedDecl*
5825 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5826                            LookupResult &Previous, bool &Redeclaration) {
5827 
5828   // Find the shadowed declaration before filtering for scope.
5829   NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
5830 
5831   // Merge the decl with the existing one if appropriate. If the decl is
5832   // in an outer scope, it isn't the same thing.
5833   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5834                        /*AllowInlineNamespace*/false);
5835   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
5836   if (!Previous.empty()) {
5837     Redeclaration = true;
5838     MergeTypedefNameDecl(S, NewTD, Previous);
5839   }
5840 
5841   if (ShadowedDecl && !Redeclaration)
5842     CheckShadow(NewTD, ShadowedDecl, Previous);
5843 
5844   // If this is the C FILE type, notify the AST context.
5845   if (IdentifierInfo *II = NewTD->getIdentifier())
5846     if (!NewTD->isInvalidDecl() &&
5847         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5848       if (II->isStr("FILE"))
5849         Context.setFILEDecl(NewTD);
5850       else if (II->isStr("jmp_buf"))
5851         Context.setjmp_bufDecl(NewTD);
5852       else if (II->isStr("sigjmp_buf"))
5853         Context.setsigjmp_bufDecl(NewTD);
5854       else if (II->isStr("ucontext_t"))
5855         Context.setucontext_tDecl(NewTD);
5856     }
5857 
5858   return NewTD;
5859 }
5860 
5861 /// Determines whether the given declaration is an out-of-scope
5862 /// previous declaration.
5863 ///
5864 /// This routine should be invoked when name lookup has found a
5865 /// previous declaration (PrevDecl) that is not in the scope where a
5866 /// new declaration by the same name is being introduced. If the new
5867 /// declaration occurs in a local scope, previous declarations with
5868 /// linkage may still be considered previous declarations (C99
5869 /// 6.2.2p4-5, C++ [basic.link]p6).
5870 ///
5871 /// \param PrevDecl the previous declaration found by name
5872 /// lookup
5873 ///
5874 /// \param DC the context in which the new declaration is being
5875 /// declared.
5876 ///
5877 /// \returns true if PrevDecl is an out-of-scope previous declaration
5878 /// for a new delcaration with the same name.
5879 static bool
5880 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5881                                 ASTContext &Context) {
5882   if (!PrevDecl)
5883     return false;
5884 
5885   if (!PrevDecl->hasLinkage())
5886     return false;
5887 
5888   if (Context.getLangOpts().CPlusPlus) {
5889     // C++ [basic.link]p6:
5890     //   If there is a visible declaration of an entity with linkage
5891     //   having the same name and type, ignoring entities declared
5892     //   outside the innermost enclosing namespace scope, the block
5893     //   scope declaration declares that same entity and receives the
5894     //   linkage of the previous declaration.
5895     DeclContext *OuterContext = DC->getRedeclContext();
5896     if (!OuterContext->isFunctionOrMethod())
5897       // This rule only applies to block-scope declarations.
5898       return false;
5899 
5900     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5901     if (PrevOuterContext->isRecord())
5902       // We found a member function: ignore it.
5903       return false;
5904 
5905     // Find the innermost enclosing namespace for the new and
5906     // previous declarations.
5907     OuterContext = OuterContext->getEnclosingNamespaceContext();
5908     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5909 
5910     // The previous declaration is in a different namespace, so it
5911     // isn't the same function.
5912     if (!OuterContext->Equals(PrevOuterContext))
5913       return false;
5914   }
5915 
5916   return true;
5917 }
5918 
5919 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
5920   CXXScopeSpec &SS = D.getCXXScopeSpec();
5921   if (!SS.isSet()) return;
5922   DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
5923 }
5924 
5925 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5926   QualType type = decl->getType();
5927   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5928   if (lifetime == Qualifiers::OCL_Autoreleasing) {
5929     // Various kinds of declaration aren't allowed to be __autoreleasing.
5930     unsigned kind = -1U;
5931     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5932       if (var->hasAttr<BlocksAttr>())
5933         kind = 0; // __block
5934       else if (!var->hasLocalStorage())
5935         kind = 1; // global
5936     } else if (isa<ObjCIvarDecl>(decl)) {
5937       kind = 3; // ivar
5938     } else if (isa<FieldDecl>(decl)) {
5939       kind = 2; // field
5940     }
5941 
5942     if (kind != -1U) {
5943       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5944         << kind;
5945     }
5946   } else if (lifetime == Qualifiers::OCL_None) {
5947     // Try to infer lifetime.
5948     if (!type->isObjCLifetimeType())
5949       return false;
5950 
5951     lifetime = type->getObjCARCImplicitLifetime();
5952     type = Context.getLifetimeQualifiedType(type, lifetime);
5953     decl->setType(type);
5954   }
5955 
5956   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5957     // Thread-local variables cannot have lifetime.
5958     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5959         var->getTLSKind()) {
5960       Diag(var->getLocation(), diag::err_arc_thread_ownership)
5961         << var->getType();
5962       return true;
5963     }
5964   }
5965 
5966   return false;
5967 }
5968 
5969 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5970   // Ensure that an auto decl is deduced otherwise the checks below might cache
5971   // the wrong linkage.
5972   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
5973 
5974   // 'weak' only applies to declarations with external linkage.
5975   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5976     if (!ND.isExternallyVisible()) {
5977       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5978       ND.dropAttr<WeakAttr>();
5979     }
5980   }
5981   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5982     if (ND.isExternallyVisible()) {
5983       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5984       ND.dropAttr<WeakRefAttr>();
5985       ND.dropAttr<AliasAttr>();
5986     }
5987   }
5988 
5989   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
5990     if (VD->hasInit()) {
5991       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
5992         assert(VD->isThisDeclarationADefinition() &&
5993                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
5994         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
5995         VD->dropAttr<AliasAttr>();
5996       }
5997     }
5998   }
5999 
6000   // 'selectany' only applies to externally visible variable declarations.
6001   // It does not apply to functions.
6002   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6003     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6004       S.Diag(Attr->getLocation(),
6005              diag::err_attribute_selectany_non_extern_data);
6006       ND.dropAttr<SelectAnyAttr>();
6007     }
6008   }
6009 
6010   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6011     auto *VD = dyn_cast<VarDecl>(&ND);
6012     bool IsAnonymousNS = false;
6013     bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6014     if (VD) {
6015       const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6016       while (NS && !IsAnonymousNS) {
6017         IsAnonymousNS = NS->isAnonymousNamespace();
6018         NS = dyn_cast<NamespaceDecl>(NS->getParent());
6019       }
6020     }
6021     // dll attributes require external linkage. Static locals may have external
6022     // linkage but still cannot be explicitly imported or exported.
6023     // In Microsoft mode, a variable defined in anonymous namespace must have
6024     // external linkage in order to be exported.
6025     bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6026     if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6027         (!AnonNSInMicrosoftMode &&
6028          (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6029       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6030         << &ND << Attr;
6031       ND.setInvalidDecl();
6032     }
6033   }
6034 
6035   // Virtual functions cannot be marked as 'notail'.
6036   if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
6037     if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
6038       if (MD->isVirtual()) {
6039         S.Diag(ND.getLocation(),
6040                diag::err_invalid_attribute_on_virtual_function)
6041             << Attr;
6042         ND.dropAttr<NotTailCalledAttr>();
6043       }
6044 
6045   // Check the attributes on the function type, if any.
6046   if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6047     // Don't declare this variable in the second operand of the for-statement;
6048     // GCC miscompiles that by ending its lifetime before evaluating the
6049     // third operand. See gcc.gnu.org/PR86769.
6050     AttributedTypeLoc ATL;
6051     for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6052          (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6053          TL = ATL.getModifiedLoc()) {
6054       // The [[lifetimebound]] attribute can be applied to the implicit object
6055       // parameter of a non-static member function (other than a ctor or dtor)
6056       // by applying it to the function type.
6057       if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6058         const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6059         if (!MD || MD->isStatic()) {
6060           S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6061               << !MD << A->getRange();
6062         } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6063           S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6064               << isa<CXXDestructorDecl>(MD) << A->getRange();
6065         }
6066       }
6067     }
6068   }
6069 }
6070 
6071 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6072                                            NamedDecl *NewDecl,
6073                                            bool IsSpecialization,
6074                                            bool IsDefinition) {
6075   if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6076     return;
6077 
6078   bool IsTemplate = false;
6079   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6080     OldDecl = OldTD->getTemplatedDecl();
6081     IsTemplate = true;
6082     if (!IsSpecialization)
6083       IsDefinition = false;
6084   }
6085   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6086     NewDecl = NewTD->getTemplatedDecl();
6087     IsTemplate = true;
6088   }
6089 
6090   if (!OldDecl || !NewDecl)
6091     return;
6092 
6093   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6094   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6095   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6096   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6097 
6098   // dllimport and dllexport are inheritable attributes so we have to exclude
6099   // inherited attribute instances.
6100   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6101                     (NewExportAttr && !NewExportAttr->isInherited());
6102 
6103   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6104   // the only exception being explicit specializations.
6105   // Implicitly generated declarations are also excluded for now because there
6106   // is no other way to switch these to use dllimport or dllexport.
6107   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6108 
6109   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6110     // Allow with a warning for free functions and global variables.
6111     bool JustWarn = false;
6112     if (!OldDecl->isCXXClassMember()) {
6113       auto *VD = dyn_cast<VarDecl>(OldDecl);
6114       if (VD && !VD->getDescribedVarTemplate())
6115         JustWarn = true;
6116       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6117       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6118         JustWarn = true;
6119     }
6120 
6121     // We cannot change a declaration that's been used because IR has already
6122     // been emitted. Dllimported functions will still work though (modulo
6123     // address equality) as they can use the thunk.
6124     if (OldDecl->isUsed())
6125       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6126         JustWarn = false;
6127 
6128     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6129                                : diag::err_attribute_dll_redeclaration;
6130     S.Diag(NewDecl->getLocation(), DiagID)
6131         << NewDecl
6132         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6133     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6134     if (!JustWarn) {
6135       NewDecl->setInvalidDecl();
6136       return;
6137     }
6138   }
6139 
6140   // A redeclaration is not allowed to drop a dllimport attribute, the only
6141   // exceptions being inline function definitions (except for function
6142   // templates), local extern declarations, qualified friend declarations or
6143   // special MSVC extension: in the last case, the declaration is treated as if
6144   // it were marked dllexport.
6145   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6146   bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6147   if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6148     // Ignore static data because out-of-line definitions are diagnosed
6149     // separately.
6150     IsStaticDataMember = VD->isStaticDataMember();
6151     IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6152                    VarDecl::DeclarationOnly;
6153   } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6154     IsInline = FD->isInlined();
6155     IsQualifiedFriend = FD->getQualifier() &&
6156                         FD->getFriendObjectKind() == Decl::FOK_Declared;
6157   }
6158 
6159   if (OldImportAttr && !HasNewAttr &&
6160       (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember &&
6161       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6162     if (IsMicrosoft && IsDefinition) {
6163       S.Diag(NewDecl->getLocation(),
6164              diag::warn_redeclaration_without_import_attribute)
6165           << NewDecl;
6166       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6167       NewDecl->dropAttr<DLLImportAttr>();
6168       NewDecl->addAttr(::new (S.Context) DLLExportAttr(
6169           NewImportAttr->getRange(), S.Context,
6170           NewImportAttr->getSpellingListIndex()));
6171     } else {
6172       S.Diag(NewDecl->getLocation(),
6173              diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6174           << NewDecl << OldImportAttr;
6175       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6176       S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6177       OldDecl->dropAttr<DLLImportAttr>();
6178       NewDecl->dropAttr<DLLImportAttr>();
6179     }
6180   } else if (IsInline && OldImportAttr && !IsMicrosoft) {
6181     // In MinGW, seeing a function declared inline drops the dllimport
6182     // attribute.
6183     OldDecl->dropAttr<DLLImportAttr>();
6184     NewDecl->dropAttr<DLLImportAttr>();
6185     S.Diag(NewDecl->getLocation(),
6186            diag::warn_dllimport_dropped_from_inline_function)
6187         << NewDecl << OldImportAttr;
6188   }
6189 
6190   // A specialization of a class template member function is processed here
6191   // since it's a redeclaration. If the parent class is dllexport, the
6192   // specialization inherits that attribute. This doesn't happen automatically
6193   // since the parent class isn't instantiated until later.
6194   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6195     if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6196         !NewImportAttr && !NewExportAttr) {
6197       if (const DLLExportAttr *ParentExportAttr =
6198               MD->getParent()->getAttr<DLLExportAttr>()) {
6199         DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6200         NewAttr->setInherited(true);
6201         NewDecl->addAttr(NewAttr);
6202       }
6203     }
6204   }
6205 }
6206 
6207 /// Given that we are within the definition of the given function,
6208 /// will that definition behave like C99's 'inline', where the
6209 /// definition is discarded except for optimization purposes?
6210 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6211   // Try to avoid calling GetGVALinkageForFunction.
6212 
6213   // All cases of this require the 'inline' keyword.
6214   if (!FD->isInlined()) return false;
6215 
6216   // This is only possible in C++ with the gnu_inline attribute.
6217   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6218     return false;
6219 
6220   // Okay, go ahead and call the relatively-more-expensive function.
6221   return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6222 }
6223 
6224 /// Determine whether a variable is extern "C" prior to attaching
6225 /// an initializer. We can't just call isExternC() here, because that
6226 /// will also compute and cache whether the declaration is externally
6227 /// visible, which might change when we attach the initializer.
6228 ///
6229 /// This can only be used if the declaration is known to not be a
6230 /// redeclaration of an internal linkage declaration.
6231 ///
6232 /// For instance:
6233 ///
6234 ///   auto x = []{};
6235 ///
6236 /// Attaching the initializer here makes this declaration not externally
6237 /// visible, because its type has internal linkage.
6238 ///
6239 /// FIXME: This is a hack.
6240 template<typename T>
6241 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6242   if (S.getLangOpts().CPlusPlus) {
6243     // In C++, the overloadable attribute negates the effects of extern "C".
6244     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6245       return false;
6246 
6247     // So do CUDA's host/device attributes.
6248     if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6249                                  D->template hasAttr<CUDAHostAttr>()))
6250       return false;
6251   }
6252   return D->isExternC();
6253 }
6254 
6255 static bool shouldConsiderLinkage(const VarDecl *VD) {
6256   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6257   if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
6258       isa<OMPDeclareMapperDecl>(DC))
6259     return VD->hasExternalStorage();
6260   if (DC->isFileContext())
6261     return true;
6262   if (DC->isRecord())
6263     return false;
6264   llvm_unreachable("Unexpected context");
6265 }
6266 
6267 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6268   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6269   if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6270       isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
6271     return true;
6272   if (DC->isRecord())
6273     return false;
6274   llvm_unreachable("Unexpected context");
6275 }
6276 
6277 static bool hasParsedAttr(Scope *S, const Declarator &PD,
6278                           ParsedAttr::Kind Kind) {
6279   // Check decl attributes on the DeclSpec.
6280   if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6281     return true;
6282 
6283   // Walk the declarator structure, checking decl attributes that were in a type
6284   // position to the decl itself.
6285   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6286     if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6287       return true;
6288   }
6289 
6290   // Finally, check attributes on the decl itself.
6291   return PD.getAttributes().hasAttribute(Kind);
6292 }
6293 
6294 /// Adjust the \c DeclContext for a function or variable that might be a
6295 /// function-local external declaration.
6296 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6297   if (!DC->isFunctionOrMethod())
6298     return false;
6299 
6300   // If this is a local extern function or variable declared within a function
6301   // template, don't add it into the enclosing namespace scope until it is
6302   // instantiated; it might have a dependent type right now.
6303   if (DC->isDependentContext())
6304     return true;
6305 
6306   // C++11 [basic.link]p7:
6307   //   When a block scope declaration of an entity with linkage is not found to
6308   //   refer to some other declaration, then that entity is a member of the
6309   //   innermost enclosing namespace.
6310   //
6311   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6312   // semantically-enclosing namespace, not a lexically-enclosing one.
6313   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6314     DC = DC->getParent();
6315   return true;
6316 }
6317 
6318 /// Returns true if given declaration has external C language linkage.
6319 static bool isDeclExternC(const Decl *D) {
6320   if (const auto *FD = dyn_cast<FunctionDecl>(D))
6321     return FD->isExternC();
6322   if (const auto *VD = dyn_cast<VarDecl>(D))
6323     return VD->isExternC();
6324 
6325   llvm_unreachable("Unknown type of decl!");
6326 }
6327 
6328 NamedDecl *Sema::ActOnVariableDeclarator(
6329     Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6330     LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6331     bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6332   QualType R = TInfo->getType();
6333   DeclarationName Name = GetNameForDeclarator(D).getName();
6334 
6335   IdentifierInfo *II = Name.getAsIdentifierInfo();
6336 
6337   if (D.isDecompositionDeclarator()) {
6338     // Take the name of the first declarator as our name for diagnostic
6339     // purposes.
6340     auto &Decomp = D.getDecompositionDeclarator();
6341     if (!Decomp.bindings().empty()) {
6342       II = Decomp.bindings()[0].Name;
6343       Name = II;
6344     }
6345   } else if (!II) {
6346     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6347     return nullptr;
6348   }
6349 
6350   if (getLangOpts().OpenCL) {
6351     // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6352     // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6353     // argument.
6354     if (R->isImageType() || R->isPipeType()) {
6355       Diag(D.getIdentifierLoc(),
6356            diag::err_opencl_type_can_only_be_used_as_function_parameter)
6357           << R;
6358       D.setInvalidType();
6359       return nullptr;
6360     }
6361 
6362     // OpenCL v1.2 s6.9.r:
6363     // The event type cannot be used to declare a program scope variable.
6364     // OpenCL v2.0 s6.9.q:
6365     // The clk_event_t and reserve_id_t types cannot be declared in program scope.
6366     if (NULL == S->getParent()) {
6367       if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6368         Diag(D.getIdentifierLoc(),
6369              diag::err_invalid_type_for_program_scope_var) << R;
6370         D.setInvalidType();
6371         return nullptr;
6372       }
6373     }
6374 
6375     // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6376     QualType NR = R;
6377     while (NR->isPointerType()) {
6378       if (NR->isFunctionPointerType()) {
6379         Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
6380         D.setInvalidType();
6381         break;
6382       }
6383       NR = NR->getPointeeType();
6384     }
6385 
6386     if (!getOpenCLOptions().isEnabled("cl_khr_fp16")) {
6387       // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6388       // half array type (unless the cl_khr_fp16 extension is enabled).
6389       if (Context.getBaseElementType(R)->isHalfType()) {
6390         Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
6391         D.setInvalidType();
6392       }
6393     }
6394 
6395     if (R->isSamplerT()) {
6396       // OpenCL v1.2 s6.9.b p4:
6397       // The sampler type cannot be used with the __local and __global address
6398       // space qualifiers.
6399       if (R.getAddressSpace() == LangAS::opencl_local ||
6400           R.getAddressSpace() == LangAS::opencl_global) {
6401         Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
6402       }
6403 
6404       // OpenCL v1.2 s6.12.14.1:
6405       // A global sampler must be declared with either the constant address
6406       // space qualifier or with the const qualifier.
6407       if (DC->isTranslationUnit() &&
6408           !(R.getAddressSpace() == LangAS::opencl_constant ||
6409           R.isConstQualified())) {
6410         Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
6411         D.setInvalidType();
6412       }
6413     }
6414 
6415     // OpenCL v1.2 s6.9.r:
6416     // The event type cannot be used with the __local, __constant and __global
6417     // address space qualifiers.
6418     if (R->isEventT()) {
6419       if (R.getAddressSpace() != LangAS::opencl_private) {
6420         Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual);
6421         D.setInvalidType();
6422       }
6423     }
6424 
6425     // OpenCL C++ 1.0 s2.9: the thread_local storage qualifier is not
6426     // supported.  OpenCL C does not support thread_local either, and
6427     // also reject all other thread storage class specifiers.
6428     DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
6429     if (TSC != TSCS_unspecified) {
6430       bool IsCXX = getLangOpts().OpenCLCPlusPlus;
6431       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6432            diag::err_opencl_unknown_type_specifier)
6433           << IsCXX << getLangOpts().getOpenCLVersionTuple().getAsString()
6434           << DeclSpec::getSpecifierName(TSC) << 1;
6435       D.setInvalidType();
6436       return nullptr;
6437     }
6438   }
6439 
6440   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6441   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6442 
6443   // dllimport globals without explicit storage class are treated as extern. We
6444   // have to change the storage class this early to get the right DeclContext.
6445   if (SC == SC_None && !DC->isRecord() &&
6446       hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6447       !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6448     SC = SC_Extern;
6449 
6450   DeclContext *OriginalDC = DC;
6451   bool IsLocalExternDecl = SC == SC_Extern &&
6452                            adjustContextForLocalExternDecl(DC);
6453 
6454   if (SCSpec == DeclSpec::SCS_mutable) {
6455     // mutable can only appear on non-static class members, so it's always
6456     // an error here
6457     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6458     D.setInvalidType();
6459     SC = SC_None;
6460   }
6461 
6462   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6463       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6464                               D.getDeclSpec().getStorageClassSpecLoc())) {
6465     // In C++11, the 'register' storage class specifier is deprecated.
6466     // Suppress the warning in system macros, it's used in macros in some
6467     // popular C system headers, such as in glibc's htonl() macro.
6468     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6469          getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6470                                    : diag::warn_deprecated_register)
6471       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6472   }
6473 
6474   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6475 
6476   if (!DC->isRecord() && S->getFnParent() == nullptr) {
6477     // C99 6.9p2: The storage-class specifiers auto and register shall not
6478     // appear in the declaration specifiers in an external declaration.
6479     // Global Register+Asm is a GNU extension we support.
6480     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6481       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6482       D.setInvalidType();
6483     }
6484   }
6485 
6486   bool IsMemberSpecialization = false;
6487   bool IsVariableTemplateSpecialization = false;
6488   bool IsPartialSpecialization = false;
6489   bool IsVariableTemplate = false;
6490   VarDecl *NewVD = nullptr;
6491   VarTemplateDecl *NewTemplate = nullptr;
6492   TemplateParameterList *TemplateParams = nullptr;
6493   if (!getLangOpts().CPlusPlus) {
6494     NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
6495                             II, R, TInfo, SC);
6496 
6497     if (R->getContainedDeducedType())
6498       ParsingInitForAutoVars.insert(NewVD);
6499 
6500     if (D.isInvalidType())
6501       NewVD->setInvalidDecl();
6502   } else {
6503     bool Invalid = false;
6504 
6505     if (DC->isRecord() && !CurContext->isRecord()) {
6506       // This is an out-of-line definition of a static data member.
6507       switch (SC) {
6508       case SC_None:
6509         break;
6510       case SC_Static:
6511         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6512              diag::err_static_out_of_line)
6513           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6514         break;
6515       case SC_Auto:
6516       case SC_Register:
6517       case SC_Extern:
6518         // [dcl.stc] p2: The auto or register specifiers shall be applied only
6519         // to names of variables declared in a block or to function parameters.
6520         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
6521         // of class members
6522 
6523         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6524              diag::err_storage_class_for_static_member)
6525           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6526         break;
6527       case SC_PrivateExtern:
6528         llvm_unreachable("C storage class in c++!");
6529       }
6530     }
6531 
6532     if (SC == SC_Static && CurContext->isRecord()) {
6533       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
6534         if (RD->isLocalClass())
6535           Diag(D.getIdentifierLoc(),
6536                diag::err_static_data_member_not_allowed_in_local_class)
6537             << Name << RD->getDeclName();
6538 
6539         // C++98 [class.union]p1: If a union contains a static data member,
6540         // the program is ill-formed. C++11 drops this restriction.
6541         if (RD->isUnion())
6542           Diag(D.getIdentifierLoc(),
6543                getLangOpts().CPlusPlus11
6544                  ? diag::warn_cxx98_compat_static_data_member_in_union
6545                  : diag::ext_static_data_member_in_union) << Name;
6546         // We conservatively disallow static data members in anonymous structs.
6547         else if (!RD->getDeclName())
6548           Diag(D.getIdentifierLoc(),
6549                diag::err_static_data_member_not_allowed_in_anon_struct)
6550             << Name << RD->isUnion();
6551       }
6552     }
6553 
6554     // Match up the template parameter lists with the scope specifier, then
6555     // determine whether we have a template or a template specialization.
6556     TemplateParams = MatchTemplateParametersToScopeSpecifier(
6557         D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
6558         D.getCXXScopeSpec(),
6559         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
6560             ? D.getName().TemplateId
6561             : nullptr,
6562         TemplateParamLists,
6563         /*never a friend*/ false, IsMemberSpecialization, Invalid);
6564 
6565     if (TemplateParams) {
6566       if (!TemplateParams->size() &&
6567           D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
6568         // There is an extraneous 'template<>' for this variable. Complain
6569         // about it, but allow the declaration of the variable.
6570         Diag(TemplateParams->getTemplateLoc(),
6571              diag::err_template_variable_noparams)
6572           << II
6573           << SourceRange(TemplateParams->getTemplateLoc(),
6574                          TemplateParams->getRAngleLoc());
6575         TemplateParams = nullptr;
6576       } else {
6577         if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
6578           // This is an explicit specialization or a partial specialization.
6579           // FIXME: Check that we can declare a specialization here.
6580           IsVariableTemplateSpecialization = true;
6581           IsPartialSpecialization = TemplateParams->size() > 0;
6582         } else { // if (TemplateParams->size() > 0)
6583           // This is a template declaration.
6584           IsVariableTemplate = true;
6585 
6586           // Check that we can declare a template here.
6587           if (CheckTemplateDeclScope(S, TemplateParams))
6588             return nullptr;
6589 
6590           // Only C++1y supports variable templates (N3651).
6591           Diag(D.getIdentifierLoc(),
6592                getLangOpts().CPlusPlus14
6593                    ? diag::warn_cxx11_compat_variable_template
6594                    : diag::ext_variable_template);
6595         }
6596       }
6597     } else {
6598       assert((Invalid ||
6599               D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
6600              "should have a 'template<>' for this decl");
6601     }
6602 
6603     if (IsVariableTemplateSpecialization) {
6604       SourceLocation TemplateKWLoc =
6605           TemplateParamLists.size() > 0
6606               ? TemplateParamLists[0]->getTemplateLoc()
6607               : SourceLocation();
6608       DeclResult Res = ActOnVarTemplateSpecialization(
6609           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
6610           IsPartialSpecialization);
6611       if (Res.isInvalid())
6612         return nullptr;
6613       NewVD = cast<VarDecl>(Res.get());
6614       AddToScope = false;
6615     } else if (D.isDecompositionDeclarator()) {
6616       NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
6617                                         D.getIdentifierLoc(), R, TInfo, SC,
6618                                         Bindings);
6619     } else
6620       NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
6621                               D.getIdentifierLoc(), II, R, TInfo, SC);
6622 
6623     // If this is supposed to be a variable template, create it as such.
6624     if (IsVariableTemplate) {
6625       NewTemplate =
6626           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
6627                                   TemplateParams, NewVD);
6628       NewVD->setDescribedVarTemplate(NewTemplate);
6629     }
6630 
6631     // If this decl has an auto type in need of deduction, make a note of the
6632     // Decl so we can diagnose uses of it in its own initializer.
6633     if (R->getContainedDeducedType())
6634       ParsingInitForAutoVars.insert(NewVD);
6635 
6636     if (D.isInvalidType() || Invalid) {
6637       NewVD->setInvalidDecl();
6638       if (NewTemplate)
6639         NewTemplate->setInvalidDecl();
6640     }
6641 
6642     SetNestedNameSpecifier(*this, NewVD, D);
6643 
6644     // If we have any template parameter lists that don't directly belong to
6645     // the variable (matching the scope specifier), store them.
6646     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
6647     if (TemplateParamLists.size() > VDTemplateParamLists)
6648       NewVD->setTemplateParameterListsInfo(
6649           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
6650 
6651     if (D.getDeclSpec().isConstexprSpecified()) {
6652       NewVD->setConstexpr(true);
6653       // C++1z [dcl.spec.constexpr]p1:
6654       //   A static data member declared with the constexpr specifier is
6655       //   implicitly an inline variable.
6656       if (NewVD->isStaticDataMember() && getLangOpts().CPlusPlus17)
6657         NewVD->setImplicitlyInline();
6658     }
6659   }
6660 
6661   if (D.getDeclSpec().isInlineSpecified()) {
6662     if (!getLangOpts().CPlusPlus) {
6663       Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6664           << 0;
6665     } else if (CurContext->isFunctionOrMethod()) {
6666       // 'inline' is not allowed on block scope variable declaration.
6667       Diag(D.getDeclSpec().getInlineSpecLoc(),
6668            diag::err_inline_declaration_block_scope) << Name
6669         << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6670     } else {
6671       Diag(D.getDeclSpec().getInlineSpecLoc(),
6672            getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
6673                                      : diag::ext_inline_variable);
6674       NewVD->setInlineSpecified();
6675     }
6676   }
6677 
6678   // Set the lexical context. If the declarator has a C++ scope specifier, the
6679   // lexical context will be different from the semantic context.
6680   NewVD->setLexicalDeclContext(CurContext);
6681   if (NewTemplate)
6682     NewTemplate->setLexicalDeclContext(CurContext);
6683 
6684   if (IsLocalExternDecl) {
6685     if (D.isDecompositionDeclarator())
6686       for (auto *B : Bindings)
6687         B->setLocalExternDecl();
6688     else
6689       NewVD->setLocalExternDecl();
6690   }
6691 
6692   bool EmitTLSUnsupportedError = false;
6693   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
6694     // C++11 [dcl.stc]p4:
6695     //   When thread_local is applied to a variable of block scope the
6696     //   storage-class-specifier static is implied if it does not appear
6697     //   explicitly.
6698     // Core issue: 'static' is not implied if the variable is declared
6699     //   'extern'.
6700     if (NewVD->hasLocalStorage() &&
6701         (SCSpec != DeclSpec::SCS_unspecified ||
6702          TSCS != DeclSpec::TSCS_thread_local ||
6703          !DC->isFunctionOrMethod()))
6704       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6705            diag::err_thread_non_global)
6706         << DeclSpec::getSpecifierName(TSCS);
6707     else if (!Context.getTargetInfo().isTLSSupported()) {
6708       if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6709         // Postpone error emission until we've collected attributes required to
6710         // figure out whether it's a host or device variable and whether the
6711         // error should be ignored.
6712         EmitTLSUnsupportedError = true;
6713         // We still need to mark the variable as TLS so it shows up in AST with
6714         // proper storage class for other tools to use even if we're not going
6715         // to emit any code for it.
6716         NewVD->setTSCSpec(TSCS);
6717       } else
6718         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6719              diag::err_thread_unsupported);
6720     } else
6721       NewVD->setTSCSpec(TSCS);
6722   }
6723 
6724   // C99 6.7.4p3
6725   //   An inline definition of a function with external linkage shall
6726   //   not contain a definition of a modifiable object with static or
6727   //   thread storage duration...
6728   // We only apply this when the function is required to be defined
6729   // elsewhere, i.e. when the function is not 'extern inline'.  Note
6730   // that a local variable with thread storage duration still has to
6731   // be marked 'static'.  Also note that it's possible to get these
6732   // semantics in C++ using __attribute__((gnu_inline)).
6733   if (SC == SC_Static && S->getFnParent() != nullptr &&
6734       !NewVD->getType().isConstQualified()) {
6735     FunctionDecl *CurFD = getCurFunctionDecl();
6736     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
6737       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6738            diag::warn_static_local_in_extern_inline);
6739       MaybeSuggestAddingStaticToDecl(CurFD);
6740     }
6741   }
6742 
6743   if (D.getDeclSpec().isModulePrivateSpecified()) {
6744     if (IsVariableTemplateSpecialization)
6745       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6746           << (IsPartialSpecialization ? 1 : 0)
6747           << FixItHint::CreateRemoval(
6748                  D.getDeclSpec().getModulePrivateSpecLoc());
6749     else if (IsMemberSpecialization)
6750       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6751         << 2
6752         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6753     else if (NewVD->hasLocalStorage())
6754       Diag(NewVD->getLocation(), diag::err_module_private_local)
6755         << 0 << NewVD->getDeclName()
6756         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6757         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6758     else {
6759       NewVD->setModulePrivate();
6760       if (NewTemplate)
6761         NewTemplate->setModulePrivate();
6762       for (auto *B : Bindings)
6763         B->setModulePrivate();
6764     }
6765   }
6766 
6767   // Handle attributes prior to checking for duplicates in MergeVarDecl
6768   ProcessDeclAttributes(S, NewVD, D);
6769 
6770   if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6771     if (EmitTLSUnsupportedError &&
6772         ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
6773          (getLangOpts().OpenMPIsDevice &&
6774           NewVD->hasAttr<OMPDeclareTargetDeclAttr>())))
6775       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6776            diag::err_thread_unsupported);
6777     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
6778     // storage [duration]."
6779     if (SC == SC_None && S->getFnParent() != nullptr &&
6780         (NewVD->hasAttr<CUDASharedAttr>() ||
6781          NewVD->hasAttr<CUDAConstantAttr>())) {
6782       NewVD->setStorageClass(SC_Static);
6783     }
6784   }
6785 
6786   // Ensure that dllimport globals without explicit storage class are treated as
6787   // extern. The storage class is set above using parsed attributes. Now we can
6788   // check the VarDecl itself.
6789   assert(!NewVD->hasAttr<DLLImportAttr>() ||
6790          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
6791          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
6792 
6793   // In auto-retain/release, infer strong retension for variables of
6794   // retainable type.
6795   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
6796     NewVD->setInvalidDecl();
6797 
6798   // Handle GNU asm-label extension (encoded as an attribute).
6799   if (Expr *E = (Expr*)D.getAsmLabel()) {
6800     // The parser guarantees this is a string.
6801     StringLiteral *SE = cast<StringLiteral>(E);
6802     StringRef Label = SE->getString();
6803     if (S->getFnParent() != nullptr) {
6804       switch (SC) {
6805       case SC_None:
6806       case SC_Auto:
6807         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
6808         break;
6809       case SC_Register:
6810         // Local Named register
6811         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
6812             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
6813           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6814         break;
6815       case SC_Static:
6816       case SC_Extern:
6817       case SC_PrivateExtern:
6818         break;
6819       }
6820     } else if (SC == SC_Register) {
6821       // Global Named register
6822       if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
6823         const auto &TI = Context.getTargetInfo();
6824         bool HasSizeMismatch;
6825 
6826         if (!TI.isValidGCCRegisterName(Label))
6827           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6828         else if (!TI.validateGlobalRegisterVariable(Label,
6829                                                     Context.getTypeSize(R),
6830                                                     HasSizeMismatch))
6831           Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
6832         else if (HasSizeMismatch)
6833           Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
6834       }
6835 
6836       if (!R->isIntegralType(Context) && !R->isPointerType()) {
6837         Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
6838         NewVD->setInvalidDecl(true);
6839       }
6840     }
6841 
6842     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
6843                                                 Context, Label, 0));
6844   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6845     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6846       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
6847     if (I != ExtnameUndeclaredIdentifiers.end()) {
6848       if (isDeclExternC(NewVD)) {
6849         NewVD->addAttr(I->second);
6850         ExtnameUndeclaredIdentifiers.erase(I);
6851       } else
6852         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
6853             << /*Variable*/1 << NewVD;
6854     }
6855   }
6856 
6857   // Find the shadowed declaration before filtering for scope.
6858   NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
6859                                 ? getShadowedDeclaration(NewVD, Previous)
6860                                 : nullptr;
6861 
6862   // Don't consider existing declarations that are in a different
6863   // scope and are out-of-semantic-context declarations (if the new
6864   // declaration has linkage).
6865   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
6866                        D.getCXXScopeSpec().isNotEmpty() ||
6867                        IsMemberSpecialization ||
6868                        IsVariableTemplateSpecialization);
6869 
6870   // Check whether the previous declaration is in the same block scope. This
6871   // affects whether we merge types with it, per C++11 [dcl.array]p3.
6872   if (getLangOpts().CPlusPlus &&
6873       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
6874     NewVD->setPreviousDeclInSameBlockScope(
6875         Previous.isSingleResult() && !Previous.isShadowed() &&
6876         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
6877 
6878   if (!getLangOpts().CPlusPlus) {
6879     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6880   } else {
6881     // If this is an explicit specialization of a static data member, check it.
6882     if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
6883         CheckMemberSpecialization(NewVD, Previous))
6884       NewVD->setInvalidDecl();
6885 
6886     // Merge the decl with the existing one if appropriate.
6887     if (!Previous.empty()) {
6888       if (Previous.isSingleResult() &&
6889           isa<FieldDecl>(Previous.getFoundDecl()) &&
6890           D.getCXXScopeSpec().isSet()) {
6891         // The user tried to define a non-static data member
6892         // out-of-line (C++ [dcl.meaning]p1).
6893         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
6894           << D.getCXXScopeSpec().getRange();
6895         Previous.clear();
6896         NewVD->setInvalidDecl();
6897       }
6898     } else if (D.getCXXScopeSpec().isSet()) {
6899       // No previous declaration in the qualifying scope.
6900       Diag(D.getIdentifierLoc(), diag::err_no_member)
6901         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
6902         << D.getCXXScopeSpec().getRange();
6903       NewVD->setInvalidDecl();
6904     }
6905 
6906     if (!IsVariableTemplateSpecialization)
6907       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6908 
6909     if (NewTemplate) {
6910       VarTemplateDecl *PrevVarTemplate =
6911           NewVD->getPreviousDecl()
6912               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
6913               : nullptr;
6914 
6915       // Check the template parameter list of this declaration, possibly
6916       // merging in the template parameter list from the previous variable
6917       // template declaration.
6918       if (CheckTemplateParameterList(
6919               TemplateParams,
6920               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
6921                               : nullptr,
6922               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
6923                DC->isDependentContext())
6924                   ? TPC_ClassTemplateMember
6925                   : TPC_VarTemplate))
6926         NewVD->setInvalidDecl();
6927 
6928       // If we are providing an explicit specialization of a static variable
6929       // template, make a note of that.
6930       if (PrevVarTemplate &&
6931           PrevVarTemplate->getInstantiatedFromMemberTemplate())
6932         PrevVarTemplate->setMemberSpecialization();
6933     }
6934   }
6935 
6936   // Diagnose shadowed variables iff this isn't a redeclaration.
6937   if (ShadowedDecl && !D.isRedeclaration())
6938     CheckShadow(NewVD, ShadowedDecl, Previous);
6939 
6940   ProcessPragmaWeak(S, NewVD);
6941 
6942   // If this is the first declaration of an extern C variable, update
6943   // the map of such variables.
6944   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
6945       isIncompleteDeclExternC(*this, NewVD))
6946     RegisterLocallyScopedExternCDecl(NewVD, S);
6947 
6948   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
6949     Decl *ManglingContextDecl;
6950     if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
6951             NewVD->getDeclContext(), ManglingContextDecl)) {
6952       Context.setManglingNumber(
6953           NewVD, MCtx->getManglingNumber(
6954                      NewVD, getMSManglingNumber(getLangOpts(), S)));
6955       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
6956     }
6957   }
6958 
6959   // Special handling of variable named 'main'.
6960   if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
6961       NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6962       !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
6963 
6964     // C++ [basic.start.main]p3
6965     // A program that declares a variable main at global scope is ill-formed.
6966     if (getLangOpts().CPlusPlus)
6967       Diag(D.getBeginLoc(), diag::err_main_global_variable);
6968 
6969     // In C, and external-linkage variable named main results in undefined
6970     // behavior.
6971     else if (NewVD->hasExternalFormalLinkage())
6972       Diag(D.getBeginLoc(), diag::warn_main_redefined);
6973   }
6974 
6975   if (D.isRedeclaration() && !Previous.empty()) {
6976     NamedDecl *Prev = Previous.getRepresentativeDecl();
6977     checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
6978                                    D.isFunctionDefinition());
6979   }
6980 
6981   if (NewTemplate) {
6982     if (NewVD->isInvalidDecl())
6983       NewTemplate->setInvalidDecl();
6984     ActOnDocumentableDecl(NewTemplate);
6985     return NewTemplate;
6986   }
6987 
6988   if (IsMemberSpecialization && !NewVD->isInvalidDecl())
6989     CompleteMemberSpecialization(NewVD, Previous);
6990 
6991   return NewVD;
6992 }
6993 
6994 /// Enum describing the %select options in diag::warn_decl_shadow.
6995 enum ShadowedDeclKind {
6996   SDK_Local,
6997   SDK_Global,
6998   SDK_StaticMember,
6999   SDK_Field,
7000   SDK_Typedef,
7001   SDK_Using
7002 };
7003 
7004 /// Determine what kind of declaration we're shadowing.
7005 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
7006                                                 const DeclContext *OldDC) {
7007   if (isa<TypeAliasDecl>(ShadowedDecl))
7008     return SDK_Using;
7009   else if (isa<TypedefDecl>(ShadowedDecl))
7010     return SDK_Typedef;
7011   else if (isa<RecordDecl>(OldDC))
7012     return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
7013 
7014   return OldDC->isFileContext() ? SDK_Global : SDK_Local;
7015 }
7016 
7017 /// Return the location of the capture if the given lambda captures the given
7018 /// variable \p VD, or an invalid source location otherwise.
7019 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
7020                                          const VarDecl *VD) {
7021   for (const Capture &Capture : LSI->Captures) {
7022     if (Capture.isVariableCapture() && Capture.getVariable() == VD)
7023       return Capture.getLocation();
7024   }
7025   return SourceLocation();
7026 }
7027 
7028 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
7029                                      const LookupResult &R) {
7030   // Only diagnose if we're shadowing an unambiguous field or variable.
7031   if (R.getResultKind() != LookupResult::Found)
7032     return false;
7033 
7034   // Return false if warning is ignored.
7035   return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
7036 }
7037 
7038 /// Return the declaration shadowed by the given variable \p D, or null
7039 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7040 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
7041                                         const LookupResult &R) {
7042   if (!shouldWarnIfShadowedDecl(Diags, R))
7043     return nullptr;
7044 
7045   // Don't diagnose declarations at file scope.
7046   if (D->hasGlobalStorage())
7047     return nullptr;
7048 
7049   NamedDecl *ShadowedDecl = R.getFoundDecl();
7050   return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
7051              ? ShadowedDecl
7052              : nullptr;
7053 }
7054 
7055 /// Return the declaration shadowed by the given typedef \p D, or null
7056 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7057 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
7058                                         const LookupResult &R) {
7059   // Don't warn if typedef declaration is part of a class
7060   if (D->getDeclContext()->isRecord())
7061     return nullptr;
7062 
7063   if (!shouldWarnIfShadowedDecl(Diags, R))
7064     return nullptr;
7065 
7066   NamedDecl *ShadowedDecl = R.getFoundDecl();
7067   return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7068 }
7069 
7070 /// Diagnose variable or built-in function shadowing.  Implements
7071 /// -Wshadow.
7072 ///
7073 /// This method is called whenever a VarDecl is added to a "useful"
7074 /// scope.
7075 ///
7076 /// \param ShadowedDecl the declaration that is shadowed by the given variable
7077 /// \param R the lookup of the name
7078 ///
7079 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7080                        const LookupResult &R) {
7081   DeclContext *NewDC = D->getDeclContext();
7082 
7083   if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7084     // Fields are not shadowed by variables in C++ static methods.
7085     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7086       if (MD->isStatic())
7087         return;
7088 
7089     // Fields shadowed by constructor parameters are a special case. Usually
7090     // the constructor initializes the field with the parameter.
7091     if (isa<CXXConstructorDecl>(NewDC))
7092       if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7093         // Remember that this was shadowed so we can either warn about its
7094         // modification or its existence depending on warning settings.
7095         ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7096         return;
7097       }
7098   }
7099 
7100   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7101     if (shadowedVar->isExternC()) {
7102       // For shadowing external vars, make sure that we point to the global
7103       // declaration, not a locally scoped extern declaration.
7104       for (auto I : shadowedVar->redecls())
7105         if (I->isFileVarDecl()) {
7106           ShadowedDecl = I;
7107           break;
7108         }
7109     }
7110 
7111   DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7112 
7113   unsigned WarningDiag = diag::warn_decl_shadow;
7114   SourceLocation CaptureLoc;
7115   if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7116       isa<CXXMethodDecl>(NewDC)) {
7117     if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7118       if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7119         if (RD->getLambdaCaptureDefault() == LCD_None) {
7120           // Try to avoid warnings for lambdas with an explicit capture list.
7121           const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7122           // Warn only when the lambda captures the shadowed decl explicitly.
7123           CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7124           if (CaptureLoc.isInvalid())
7125             WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7126         } else {
7127           // Remember that this was shadowed so we can avoid the warning if the
7128           // shadowed decl isn't captured and the warning settings allow it.
7129           cast<LambdaScopeInfo>(getCurFunction())
7130               ->ShadowingDecls.push_back(
7131                   {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7132           return;
7133         }
7134       }
7135 
7136       if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7137         // A variable can't shadow a local variable in an enclosing scope, if
7138         // they are separated by a non-capturing declaration context.
7139         for (DeclContext *ParentDC = NewDC;
7140              ParentDC && !ParentDC->Equals(OldDC);
7141              ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7142           // Only block literals, captured statements, and lambda expressions
7143           // can capture; other scopes don't.
7144           if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7145               !isLambdaCallOperator(ParentDC)) {
7146             return;
7147           }
7148         }
7149       }
7150     }
7151   }
7152 
7153   // Only warn about certain kinds of shadowing for class members.
7154   if (NewDC && NewDC->isRecord()) {
7155     // In particular, don't warn about shadowing non-class members.
7156     if (!OldDC->isRecord())
7157       return;
7158 
7159     // TODO: should we warn about static data members shadowing
7160     // static data members from base classes?
7161 
7162     // TODO: don't diagnose for inaccessible shadowed members.
7163     // This is hard to do perfectly because we might friend the
7164     // shadowing context, but that's just a false negative.
7165   }
7166 
7167 
7168   DeclarationName Name = R.getLookupName();
7169 
7170   // Emit warning and note.
7171   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7172     return;
7173   ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7174   Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7175   if (!CaptureLoc.isInvalid())
7176     Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7177         << Name << /*explicitly*/ 1;
7178   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7179 }
7180 
7181 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7182 /// when these variables are captured by the lambda.
7183 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7184   for (const auto &Shadow : LSI->ShadowingDecls) {
7185     const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7186     // Try to avoid the warning when the shadowed decl isn't captured.
7187     SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7188     const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7189     Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7190                                        ? diag::warn_decl_shadow_uncaptured_local
7191                                        : diag::warn_decl_shadow)
7192         << Shadow.VD->getDeclName()
7193         << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7194     if (!CaptureLoc.isInvalid())
7195       Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7196           << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7197     Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7198   }
7199 }
7200 
7201 /// Check -Wshadow without the advantage of a previous lookup.
7202 void Sema::CheckShadow(Scope *S, VarDecl *D) {
7203   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7204     return;
7205 
7206   LookupResult R(*this, D->getDeclName(), D->getLocation(),
7207                  Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7208   LookupName(R, S);
7209   if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7210     CheckShadow(D, ShadowedDecl, R);
7211 }
7212 
7213 /// Check if 'E', which is an expression that is about to be modified, refers
7214 /// to a constructor parameter that shadows a field.
7215 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7216   // Quickly ignore expressions that can't be shadowing ctor parameters.
7217   if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7218     return;
7219   E = E->IgnoreParenImpCasts();
7220   auto *DRE = dyn_cast<DeclRefExpr>(E);
7221   if (!DRE)
7222     return;
7223   const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7224   auto I = ShadowingDecls.find(D);
7225   if (I == ShadowingDecls.end())
7226     return;
7227   const NamedDecl *ShadowedDecl = I->second;
7228   const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7229   Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7230   Diag(D->getLocation(), diag::note_var_declared_here) << D;
7231   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7232 
7233   // Avoid issuing multiple warnings about the same decl.
7234   ShadowingDecls.erase(I);
7235 }
7236 
7237 /// Check for conflict between this global or extern "C" declaration and
7238 /// previous global or extern "C" declarations. This is only used in C++.
7239 template<typename T>
7240 static bool checkGlobalOrExternCConflict(
7241     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7242   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
7243   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7244 
7245   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7246     // The common case: this global doesn't conflict with any extern "C"
7247     // declaration.
7248     return false;
7249   }
7250 
7251   if (Prev) {
7252     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7253       // Both the old and new declarations have C language linkage. This is a
7254       // redeclaration.
7255       Previous.clear();
7256       Previous.addDecl(Prev);
7257       return true;
7258     }
7259 
7260     // This is a global, non-extern "C" declaration, and there is a previous
7261     // non-global extern "C" declaration. Diagnose if this is a variable
7262     // declaration.
7263     if (!isa<VarDecl>(ND))
7264       return false;
7265   } else {
7266     // The declaration is extern "C". Check for any declaration in the
7267     // translation unit which might conflict.
7268     if (IsGlobal) {
7269       // We have already performed the lookup into the translation unit.
7270       IsGlobal = false;
7271       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7272            I != E; ++I) {
7273         if (isa<VarDecl>(*I)) {
7274           Prev = *I;
7275           break;
7276         }
7277       }
7278     } else {
7279       DeclContext::lookup_result R =
7280           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7281       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7282            I != E; ++I) {
7283         if (isa<VarDecl>(*I)) {
7284           Prev = *I;
7285           break;
7286         }
7287         // FIXME: If we have any other entity with this name in global scope,
7288         // the declaration is ill-formed, but that is a defect: it breaks the
7289         // 'stat' hack, for instance. Only variables can have mangled name
7290         // clashes with extern "C" declarations, so only they deserve a
7291         // diagnostic.
7292       }
7293     }
7294 
7295     if (!Prev)
7296       return false;
7297   }
7298 
7299   // Use the first declaration's location to ensure we point at something which
7300   // is lexically inside an extern "C" linkage-spec.
7301   assert(Prev && "should have found a previous declaration to diagnose");
7302   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7303     Prev = FD->getFirstDecl();
7304   else
7305     Prev = cast<VarDecl>(Prev)->getFirstDecl();
7306 
7307   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7308     << IsGlobal << ND;
7309   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7310     << IsGlobal;
7311   return false;
7312 }
7313 
7314 /// Apply special rules for handling extern "C" declarations. Returns \c true
7315 /// if we have found that this is a redeclaration of some prior entity.
7316 ///
7317 /// Per C++ [dcl.link]p6:
7318 ///   Two declarations [for a function or variable] with C language linkage
7319 ///   with the same name that appear in different scopes refer to the same
7320 ///   [entity]. An entity with C language linkage shall not be declared with
7321 ///   the same name as an entity in global scope.
7322 template<typename T>
7323 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7324                                                   LookupResult &Previous) {
7325   if (!S.getLangOpts().CPlusPlus) {
7326     // In C, when declaring a global variable, look for a corresponding 'extern'
7327     // variable declared in function scope. We don't need this in C++, because
7328     // we find local extern decls in the surrounding file-scope DeclContext.
7329     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7330       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7331         Previous.clear();
7332         Previous.addDecl(Prev);
7333         return true;
7334       }
7335     }
7336     return false;
7337   }
7338 
7339   // A declaration in the translation unit can conflict with an extern "C"
7340   // declaration.
7341   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7342     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7343 
7344   // An extern "C" declaration can conflict with a declaration in the
7345   // translation unit or can be a redeclaration of an extern "C" declaration
7346   // in another scope.
7347   if (isIncompleteDeclExternC(S,ND))
7348     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7349 
7350   // Neither global nor extern "C": nothing to do.
7351   return false;
7352 }
7353 
7354 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7355   // If the decl is already known invalid, don't check it.
7356   if (NewVD->isInvalidDecl())
7357     return;
7358 
7359   QualType T = NewVD->getType();
7360 
7361   // Defer checking an 'auto' type until its initializer is attached.
7362   if (T->isUndeducedType())
7363     return;
7364 
7365   if (NewVD->hasAttrs())
7366     CheckAlignasUnderalignment(NewVD);
7367 
7368   if (T->isObjCObjectType()) {
7369     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7370       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7371     T = Context.getObjCObjectPointerType(T);
7372     NewVD->setType(T);
7373   }
7374 
7375   // Emit an error if an address space was applied to decl with local storage.
7376   // This includes arrays of objects with address space qualifiers, but not
7377   // automatic variables that point to other address spaces.
7378   // ISO/IEC TR 18037 S5.1.2
7379   if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7380       T.getAddressSpace() != LangAS::Default) {
7381     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7382     NewVD->setInvalidDecl();
7383     return;
7384   }
7385 
7386   // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7387   // scope.
7388   if (getLangOpts().OpenCLVersion == 120 &&
7389       !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
7390       NewVD->isStaticLocal()) {
7391     Diag(NewVD->getLocation(), diag::err_static_function_scope);
7392     NewVD->setInvalidDecl();
7393     return;
7394   }
7395 
7396   if (getLangOpts().OpenCL) {
7397     // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
7398     if (NewVD->hasAttr<BlocksAttr>()) {
7399       Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
7400       return;
7401     }
7402 
7403     if (T->isBlockPointerType()) {
7404       // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
7405       // can't use 'extern' storage class.
7406       if (!T.isConstQualified()) {
7407         Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
7408             << 0 /*const*/;
7409         NewVD->setInvalidDecl();
7410         return;
7411       }
7412       if (NewVD->hasExternalStorage()) {
7413         Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
7414         NewVD->setInvalidDecl();
7415         return;
7416       }
7417     }
7418     // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the
7419     // __constant address space.
7420     // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static
7421     // variables inside a function can also be declared in the global
7422     // address space.
7423     // OpenCL C++ v1.0 s2.5 inherits rule from OpenCL C v2.0 and allows local
7424     // address space additionally.
7425     // FIXME: Add local AS for OpenCL C++.
7426     if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
7427         NewVD->hasExternalStorage()) {
7428       if (!T->isSamplerT() &&
7429           !(T.getAddressSpace() == LangAS::opencl_constant ||
7430             (T.getAddressSpace() == LangAS::opencl_global &&
7431              (getLangOpts().OpenCLVersion == 200 ||
7432               getLangOpts().OpenCLCPlusPlus)))) {
7433         int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
7434         if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus)
7435           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7436               << Scope << "global or constant";
7437         else
7438           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7439               << Scope << "constant";
7440         NewVD->setInvalidDecl();
7441         return;
7442       }
7443     } else {
7444       if (T.getAddressSpace() == LangAS::opencl_global) {
7445         Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7446             << 1 /*is any function*/ << "global";
7447         NewVD->setInvalidDecl();
7448         return;
7449       }
7450       if (T.getAddressSpace() == LangAS::opencl_constant ||
7451           T.getAddressSpace() == LangAS::opencl_local) {
7452         FunctionDecl *FD = getCurFunctionDecl();
7453         // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
7454         // in functions.
7455         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
7456           if (T.getAddressSpace() == LangAS::opencl_constant)
7457             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7458                 << 0 /*non-kernel only*/ << "constant";
7459           else
7460             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7461                 << 0 /*non-kernel only*/ << "local";
7462           NewVD->setInvalidDecl();
7463           return;
7464         }
7465         // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
7466         // in the outermost scope of a kernel function.
7467         if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
7468           if (!getCurScope()->isFunctionScope()) {
7469             if (T.getAddressSpace() == LangAS::opencl_constant)
7470               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7471                   << "constant";
7472             else
7473               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7474                   << "local";
7475             NewVD->setInvalidDecl();
7476             return;
7477           }
7478         }
7479       } else if (T.getAddressSpace() != LangAS::opencl_private) {
7480         // Do not allow other address spaces on automatic variable.
7481         Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
7482         NewVD->setInvalidDecl();
7483         return;
7484       }
7485     }
7486   }
7487 
7488   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
7489       && !NewVD->hasAttr<BlocksAttr>()) {
7490     if (getLangOpts().getGC() != LangOptions::NonGC)
7491       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
7492     else {
7493       assert(!getLangOpts().ObjCAutoRefCount);
7494       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
7495     }
7496   }
7497 
7498   bool isVM = T->isVariablyModifiedType();
7499   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
7500       NewVD->hasAttr<BlocksAttr>())
7501     setFunctionHasBranchProtectedScope();
7502 
7503   if ((isVM && NewVD->hasLinkage()) ||
7504       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
7505     bool SizeIsNegative;
7506     llvm::APSInt Oversized;
7507     TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
7508         NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
7509     QualType FixedT;
7510     if (FixedTInfo &&  T == NewVD->getTypeSourceInfo()->getType())
7511       FixedT = FixedTInfo->getType();
7512     else if (FixedTInfo) {
7513       // Type and type-as-written are canonically different. We need to fix up
7514       // both types separately.
7515       FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
7516                                                    Oversized);
7517     }
7518     if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
7519       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
7520       // FIXME: This won't give the correct result for
7521       // int a[10][n];
7522       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
7523 
7524       if (NewVD->isFileVarDecl())
7525         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
7526         << SizeRange;
7527       else if (NewVD->isStaticLocal())
7528         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
7529         << SizeRange;
7530       else
7531         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
7532         << SizeRange;
7533       NewVD->setInvalidDecl();
7534       return;
7535     }
7536 
7537     if (!FixedTInfo) {
7538       if (NewVD->isFileVarDecl())
7539         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
7540       else
7541         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
7542       NewVD->setInvalidDecl();
7543       return;
7544     }
7545 
7546     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
7547     NewVD->setType(FixedT);
7548     NewVD->setTypeSourceInfo(FixedTInfo);
7549   }
7550 
7551   if (T->isVoidType()) {
7552     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
7553     //                    of objects and functions.
7554     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
7555       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
7556         << T;
7557       NewVD->setInvalidDecl();
7558       return;
7559     }
7560   }
7561 
7562   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
7563     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
7564     NewVD->setInvalidDecl();
7565     return;
7566   }
7567 
7568   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
7569     Diag(NewVD->getLocation(), diag::err_block_on_vm);
7570     NewVD->setInvalidDecl();
7571     return;
7572   }
7573 
7574   if (NewVD->isConstexpr() && !T->isDependentType() &&
7575       RequireLiteralType(NewVD->getLocation(), T,
7576                          diag::err_constexpr_var_non_literal)) {
7577     NewVD->setInvalidDecl();
7578     return;
7579   }
7580 }
7581 
7582 /// Perform semantic checking on a newly-created variable
7583 /// declaration.
7584 ///
7585 /// This routine performs all of the type-checking required for a
7586 /// variable declaration once it has been built. It is used both to
7587 /// check variables after they have been parsed and their declarators
7588 /// have been translated into a declaration, and to check variables
7589 /// that have been instantiated from a template.
7590 ///
7591 /// Sets NewVD->isInvalidDecl() if an error was encountered.
7592 ///
7593 /// Returns true if the variable declaration is a redeclaration.
7594 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
7595   CheckVariableDeclarationType(NewVD);
7596 
7597   // If the decl is already known invalid, don't check it.
7598   if (NewVD->isInvalidDecl())
7599     return false;
7600 
7601   // If we did not find anything by this name, look for a non-visible
7602   // extern "C" declaration with the same name.
7603   if (Previous.empty() &&
7604       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
7605     Previous.setShadowed();
7606 
7607   if (!Previous.empty()) {
7608     MergeVarDecl(NewVD, Previous);
7609     return true;
7610   }
7611   return false;
7612 }
7613 
7614 namespace {
7615 struct FindOverriddenMethod {
7616   Sema *S;
7617   CXXMethodDecl *Method;
7618 
7619   /// Member lookup function that determines whether a given C++
7620   /// method overrides a method in a base class, to be used with
7621   /// CXXRecordDecl::lookupInBases().
7622   bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7623     RecordDecl *BaseRecord =
7624         Specifier->getType()->getAs<RecordType>()->getDecl();
7625 
7626     DeclarationName Name = Method->getDeclName();
7627 
7628     // FIXME: Do we care about other names here too?
7629     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7630       // We really want to find the base class destructor here.
7631       QualType T = S->Context.getTypeDeclType(BaseRecord);
7632       CanQualType CT = S->Context.getCanonicalType(T);
7633 
7634       Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
7635     }
7636 
7637     for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7638          Path.Decls = Path.Decls.slice(1)) {
7639       NamedDecl *D = Path.Decls.front();
7640       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7641         if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
7642           return true;
7643       }
7644     }
7645 
7646     return false;
7647   }
7648 };
7649 
7650 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
7651 } // end anonymous namespace
7652 
7653 /// Report an error regarding overriding, along with any relevant
7654 /// overridden methods.
7655 ///
7656 /// \param DiagID the primary error to report.
7657 /// \param MD the overriding method.
7658 /// \param OEK which overrides to include as notes.
7659 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
7660                             OverrideErrorKind OEK = OEK_All) {
7661   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
7662   for (const CXXMethodDecl *O : MD->overridden_methods()) {
7663     // This check (& the OEK parameter) could be replaced by a predicate, but
7664     // without lambdas that would be overkill. This is still nicer than writing
7665     // out the diag loop 3 times.
7666     if ((OEK == OEK_All) ||
7667         (OEK == OEK_NonDeleted && !O->isDeleted()) ||
7668         (OEK == OEK_Deleted && O->isDeleted()))
7669       S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
7670   }
7671 }
7672 
7673 /// AddOverriddenMethods - See if a method overrides any in the base classes,
7674 /// and if so, check that it's a valid override and remember it.
7675 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
7676   // Look for methods in base classes that this method might override.
7677   CXXBasePaths Paths;
7678   FindOverriddenMethod FOM;
7679   FOM.Method = MD;
7680   FOM.S = this;
7681   bool hasDeletedOverridenMethods = false;
7682   bool hasNonDeletedOverridenMethods = false;
7683   bool AddedAny = false;
7684   if (DC->lookupInBases(FOM, Paths)) {
7685     for (auto *I : Paths.found_decls()) {
7686       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
7687         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
7688         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
7689             !CheckOverridingFunctionAttributes(MD, OldMD) &&
7690             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
7691             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
7692           hasDeletedOverridenMethods |= OldMD->isDeleted();
7693           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
7694           AddedAny = true;
7695         }
7696       }
7697     }
7698   }
7699 
7700   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
7701     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
7702   }
7703   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
7704     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
7705   }
7706 
7707   return AddedAny;
7708 }
7709 
7710 namespace {
7711   // Struct for holding all of the extra arguments needed by
7712   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
7713   struct ActOnFDArgs {
7714     Scope *S;
7715     Declarator &D;
7716     MultiTemplateParamsArg TemplateParamLists;
7717     bool AddToScope;
7718   };
7719 } // end anonymous namespace
7720 
7721 namespace {
7722 
7723 // Callback to only accept typo corrections that have a non-zero edit distance.
7724 // Also only accept corrections that have the same parent decl.
7725 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
7726  public:
7727   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
7728                             CXXRecordDecl *Parent)
7729       : Context(Context), OriginalFD(TypoFD),
7730         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
7731 
7732   bool ValidateCandidate(const TypoCorrection &candidate) override {
7733     if (candidate.getEditDistance() == 0)
7734       return false;
7735 
7736     SmallVector<unsigned, 1> MismatchedParams;
7737     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
7738                                           CDeclEnd = candidate.end();
7739          CDecl != CDeclEnd; ++CDecl) {
7740       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7741 
7742       if (FD && !FD->hasBody() &&
7743           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
7744         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7745           CXXRecordDecl *Parent = MD->getParent();
7746           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
7747             return true;
7748         } else if (!ExpectedParent) {
7749           return true;
7750         }
7751       }
7752     }
7753 
7754     return false;
7755   }
7756 
7757   std::unique_ptr<CorrectionCandidateCallback> clone() override {
7758     return llvm::make_unique<DifferentNameValidatorCCC>(*this);
7759   }
7760 
7761  private:
7762   ASTContext &Context;
7763   FunctionDecl *OriginalFD;
7764   CXXRecordDecl *ExpectedParent;
7765 };
7766 
7767 } // end anonymous namespace
7768 
7769 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
7770   TypoCorrectedFunctionDefinitions.insert(F);
7771 }
7772 
7773 /// Generate diagnostics for an invalid function redeclaration.
7774 ///
7775 /// This routine handles generating the diagnostic messages for an invalid
7776 /// function redeclaration, including finding possible similar declarations
7777 /// or performing typo correction if there are no previous declarations with
7778 /// the same name.
7779 ///
7780 /// Returns a NamedDecl iff typo correction was performed and substituting in
7781 /// the new declaration name does not cause new errors.
7782 static NamedDecl *DiagnoseInvalidRedeclaration(
7783     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
7784     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
7785   DeclarationName Name = NewFD->getDeclName();
7786   DeclContext *NewDC = NewFD->getDeclContext();
7787   SmallVector<unsigned, 1> MismatchedParams;
7788   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
7789   TypoCorrection Correction;
7790   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
7791   unsigned DiagMsg =
7792     IsLocalFriend ? diag::err_no_matching_local_friend :
7793     NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
7794     diag::err_member_decl_does_not_match;
7795   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
7796                     IsLocalFriend ? Sema::LookupLocalFriendName
7797                                   : Sema::LookupOrdinaryName,
7798                     Sema::ForVisibleRedeclaration);
7799 
7800   NewFD->setInvalidDecl();
7801   if (IsLocalFriend)
7802     SemaRef.LookupName(Prev, S);
7803   else
7804     SemaRef.LookupQualifiedName(Prev, NewDC);
7805   assert(!Prev.isAmbiguous() &&
7806          "Cannot have an ambiguity in previous-declaration lookup");
7807   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7808   DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
7809                                 MD ? MD->getParent() : nullptr);
7810   if (!Prev.empty()) {
7811     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
7812          Func != FuncEnd; ++Func) {
7813       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
7814       if (FD &&
7815           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7816         // Add 1 to the index so that 0 can mean the mismatch didn't
7817         // involve a parameter
7818         unsigned ParamNum =
7819             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
7820         NearMatches.push_back(std::make_pair(FD, ParamNum));
7821       }
7822     }
7823   // If the qualified name lookup yielded nothing, try typo correction
7824   } else if ((Correction = SemaRef.CorrectTypo(
7825                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
7826                   &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
7827                   IsLocalFriend ? nullptr : NewDC))) {
7828     // Set up everything for the call to ActOnFunctionDeclarator
7829     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
7830                               ExtraArgs.D.getIdentifierLoc());
7831     Previous.clear();
7832     Previous.setLookupName(Correction.getCorrection());
7833     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
7834                                     CDeclEnd = Correction.end();
7835          CDecl != CDeclEnd; ++CDecl) {
7836       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7837       if (FD && !FD->hasBody() &&
7838           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7839         Previous.addDecl(FD);
7840       }
7841     }
7842     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
7843 
7844     NamedDecl *Result;
7845     // Retry building the function declaration with the new previous
7846     // declarations, and with errors suppressed.
7847     {
7848       // Trap errors.
7849       Sema::SFINAETrap Trap(SemaRef);
7850 
7851       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
7852       // pieces need to verify the typo-corrected C++ declaration and hopefully
7853       // eliminate the need for the parameter pack ExtraArgs.
7854       Result = SemaRef.ActOnFunctionDeclarator(
7855           ExtraArgs.S, ExtraArgs.D,
7856           Correction.getCorrectionDecl()->getDeclContext(),
7857           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
7858           ExtraArgs.AddToScope);
7859 
7860       if (Trap.hasErrorOccurred())
7861         Result = nullptr;
7862     }
7863 
7864     if (Result) {
7865       // Determine which correction we picked.
7866       Decl *Canonical = Result->getCanonicalDecl();
7867       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7868            I != E; ++I)
7869         if ((*I)->getCanonicalDecl() == Canonical)
7870           Correction.setCorrectionDecl(*I);
7871 
7872       // Let Sema know about the correction.
7873       SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
7874       SemaRef.diagnoseTypo(
7875           Correction,
7876           SemaRef.PDiag(IsLocalFriend
7877                           ? diag::err_no_matching_local_friend_suggest
7878                           : diag::err_member_decl_does_not_match_suggest)
7879             << Name << NewDC << IsDefinition);
7880       return Result;
7881     }
7882 
7883     // Pretend the typo correction never occurred
7884     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
7885                               ExtraArgs.D.getIdentifierLoc());
7886     ExtraArgs.D.setRedeclaration(wasRedeclaration);
7887     Previous.clear();
7888     Previous.setLookupName(Name);
7889   }
7890 
7891   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
7892       << Name << NewDC << IsDefinition << NewFD->getLocation();
7893 
7894   bool NewFDisConst = false;
7895   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
7896     NewFDisConst = NewMD->isConst();
7897 
7898   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
7899        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
7900        NearMatch != NearMatchEnd; ++NearMatch) {
7901     FunctionDecl *FD = NearMatch->first;
7902     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7903     bool FDisConst = MD && MD->isConst();
7904     bool IsMember = MD || !IsLocalFriend;
7905 
7906     // FIXME: These notes are poorly worded for the local friend case.
7907     if (unsigned Idx = NearMatch->second) {
7908       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
7909       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
7910       if (Loc.isInvalid()) Loc = FD->getLocation();
7911       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
7912                                  : diag::note_local_decl_close_param_match)
7913         << Idx << FDParam->getType()
7914         << NewFD->getParamDecl(Idx - 1)->getType();
7915     } else if (FDisConst != NewFDisConst) {
7916       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
7917           << NewFDisConst << FD->getSourceRange().getEnd();
7918     } else
7919       SemaRef.Diag(FD->getLocation(),
7920                    IsMember ? diag::note_member_def_close_match
7921                             : diag::note_local_decl_close_match);
7922   }
7923   return nullptr;
7924 }
7925 
7926 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
7927   switch (D.getDeclSpec().getStorageClassSpec()) {
7928   default: llvm_unreachable("Unknown storage class!");
7929   case DeclSpec::SCS_auto:
7930   case DeclSpec::SCS_register:
7931   case DeclSpec::SCS_mutable:
7932     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7933                  diag::err_typecheck_sclass_func);
7934     D.getMutableDeclSpec().ClearStorageClassSpecs();
7935     D.setInvalidType();
7936     break;
7937   case DeclSpec::SCS_unspecified: break;
7938   case DeclSpec::SCS_extern:
7939     if (D.getDeclSpec().isExternInLinkageSpec())
7940       return SC_None;
7941     return SC_Extern;
7942   case DeclSpec::SCS_static: {
7943     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7944       // C99 6.7.1p5:
7945       //   The declaration of an identifier for a function that has
7946       //   block scope shall have no explicit storage-class specifier
7947       //   other than extern
7948       // See also (C++ [dcl.stc]p4).
7949       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7950                    diag::err_static_block_func);
7951       break;
7952     } else
7953       return SC_Static;
7954   }
7955   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
7956   }
7957 
7958   // No explicit storage class has already been returned
7959   return SC_None;
7960 }
7961 
7962 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
7963                                            DeclContext *DC, QualType &R,
7964                                            TypeSourceInfo *TInfo,
7965                                            StorageClass SC,
7966                                            bool &IsVirtualOkay) {
7967   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
7968   DeclarationName Name = NameInfo.getName();
7969 
7970   FunctionDecl *NewFD = nullptr;
7971   bool isInline = D.getDeclSpec().isInlineSpecified();
7972 
7973   if (!SemaRef.getLangOpts().CPlusPlus) {
7974     // Determine whether the function was written with a
7975     // prototype. This true when:
7976     //   - there is a prototype in the declarator, or
7977     //   - the type R of the function is some kind of typedef or other non-
7978     //     attributed reference to a type name (which eventually refers to a
7979     //     function type).
7980     bool HasPrototype =
7981       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
7982       (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
7983 
7984     NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
7985                                  R, TInfo, SC, isInline, HasPrototype, false);
7986     if (D.isInvalidType())
7987       NewFD->setInvalidDecl();
7988 
7989     return NewFD;
7990   }
7991 
7992   ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
7993   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
7994 
7995   // Check that the return type is not an abstract class type.
7996   // For record types, this is done by the AbstractClassUsageDiagnoser once
7997   // the class has been completely parsed.
7998   if (!DC->isRecord() &&
7999       SemaRef.RequireNonAbstractType(
8000           D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
8001           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
8002     D.setInvalidType();
8003 
8004   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
8005     // This is a C++ constructor declaration.
8006     assert(DC->isRecord() &&
8007            "Constructors can only be declared in a member context");
8008 
8009     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
8010     return CXXConstructorDecl::Create(
8011         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8012         TInfo, ExplicitSpecifier, isInline,
8013         /*isImplicitlyDeclared=*/false, isConstexpr);
8014 
8015   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8016     // This is a C++ destructor declaration.
8017     if (DC->isRecord()) {
8018       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
8019       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
8020       CXXDestructorDecl *NewDD =
8021           CXXDestructorDecl::Create(SemaRef.Context, Record, D.getBeginLoc(),
8022                                     NameInfo, R, TInfo, isInline,
8023                                     /*isImplicitlyDeclared=*/false);
8024 
8025       // If the destructor needs an implicit exception specification, set it
8026       // now. FIXME: It'd be nice to be able to create the right type to start
8027       // with, but the type needs to reference the destructor declaration.
8028       if (SemaRef.getLangOpts().CPlusPlus11)
8029         SemaRef.AdjustDestructorExceptionSpec(NewDD);
8030 
8031       IsVirtualOkay = true;
8032       return NewDD;
8033 
8034     } else {
8035       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
8036       D.setInvalidType();
8037 
8038       // Create a FunctionDecl to satisfy the function definition parsing
8039       // code path.
8040       return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8041                                   D.getIdentifierLoc(), Name, R, TInfo, SC,
8042                                   isInline,
8043                                   /*hasPrototype=*/true, isConstexpr);
8044     }
8045 
8046   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
8047     if (!DC->isRecord()) {
8048       SemaRef.Diag(D.getIdentifierLoc(),
8049            diag::err_conv_function_not_member);
8050       return nullptr;
8051     }
8052 
8053     SemaRef.CheckConversionDeclarator(D, R, SC);
8054     IsVirtualOkay = true;
8055     return CXXConversionDecl::Create(
8056         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8057         TInfo, isInline, ExplicitSpecifier, isConstexpr, SourceLocation());
8058 
8059   } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
8060     SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
8061 
8062     return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8063                                          ExplicitSpecifier, NameInfo, R, TInfo,
8064                                          D.getEndLoc());
8065   } else if (DC->isRecord()) {
8066     // If the name of the function is the same as the name of the record,
8067     // then this must be an invalid constructor that has a return type.
8068     // (The parser checks for a return type and makes the declarator a
8069     // constructor if it has no return type).
8070     if (Name.getAsIdentifierInfo() &&
8071         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8072       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8073         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8074         << SourceRange(D.getIdentifierLoc());
8075       return nullptr;
8076     }
8077 
8078     // This is a C++ method declaration.
8079     CXXMethodDecl *Ret = CXXMethodDecl::Create(
8080         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8081         TInfo, SC, isInline, isConstexpr, SourceLocation());
8082     IsVirtualOkay = !Ret->isStatic();
8083     return Ret;
8084   } else {
8085     bool isFriend =
8086         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8087     if (!isFriend && SemaRef.CurContext->isRecord())
8088       return nullptr;
8089 
8090     // Determine whether the function was written with a
8091     // prototype. This true when:
8092     //   - we're in C++ (where every function has a prototype),
8093     return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8094                                 R, TInfo, SC, isInline, true /*HasPrototype*/,
8095                                 isConstexpr);
8096   }
8097 }
8098 
8099 enum OpenCLParamType {
8100   ValidKernelParam,
8101   PtrPtrKernelParam,
8102   PtrKernelParam,
8103   InvalidAddrSpacePtrKernelParam,
8104   InvalidKernelParam,
8105   RecordKernelParam
8106 };
8107 
8108 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8109   // Size dependent types are just typedefs to normal integer types
8110   // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8111   // integers other than by their names.
8112   StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8113 
8114   // Remove typedefs one by one until we reach a typedef
8115   // for a size dependent type.
8116   QualType DesugaredTy = Ty;
8117   do {
8118     ArrayRef<StringRef> Names(SizeTypeNames);
8119     auto Match = llvm::find(Names, DesugaredTy.getAsString());
8120     if (Names.end() != Match)
8121       return true;
8122 
8123     Ty = DesugaredTy;
8124     DesugaredTy = Ty.getSingleStepDesugaredType(C);
8125   } while (DesugaredTy != Ty);
8126 
8127   return false;
8128 }
8129 
8130 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8131   if (PT->isPointerType()) {
8132     QualType PointeeType = PT->getPointeeType();
8133     if (PointeeType->isPointerType())
8134       return PtrPtrKernelParam;
8135     if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8136         PointeeType.getAddressSpace() == LangAS::opencl_private ||
8137         PointeeType.getAddressSpace() == LangAS::Default)
8138       return InvalidAddrSpacePtrKernelParam;
8139     return PtrKernelParam;
8140   }
8141 
8142   // OpenCL v1.2 s6.9.k:
8143   // Arguments to kernel functions in a program cannot be declared with the
8144   // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8145   // uintptr_t or a struct and/or union that contain fields declared to be one
8146   // of these built-in scalar types.
8147   if (isOpenCLSizeDependentType(S.getASTContext(), PT))
8148     return InvalidKernelParam;
8149 
8150   if (PT->isImageType())
8151     return PtrKernelParam;
8152 
8153   if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8154     return InvalidKernelParam;
8155 
8156   // OpenCL extension spec v1.2 s9.5:
8157   // This extension adds support for half scalar and vector types as built-in
8158   // types that can be used for arithmetic operations, conversions etc.
8159   if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
8160     return InvalidKernelParam;
8161 
8162   if (PT->isRecordType())
8163     return RecordKernelParam;
8164 
8165   // Look into an array argument to check if it has a forbidden type.
8166   if (PT->isArrayType()) {
8167     const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8168     // Call ourself to check an underlying type of an array. Since the
8169     // getPointeeOrArrayElementType returns an innermost type which is not an
8170     // array, this recursive call only happens once.
8171     return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8172   }
8173 
8174   return ValidKernelParam;
8175 }
8176 
8177 static void checkIsValidOpenCLKernelParameter(
8178   Sema &S,
8179   Declarator &D,
8180   ParmVarDecl *Param,
8181   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8182   QualType PT = Param->getType();
8183 
8184   // Cache the valid types we encounter to avoid rechecking structs that are
8185   // used again
8186   if (ValidTypes.count(PT.getTypePtr()))
8187     return;
8188 
8189   switch (getOpenCLKernelParameterType(S, PT)) {
8190   case PtrPtrKernelParam:
8191     // OpenCL v1.2 s6.9.a:
8192     // A kernel function argument cannot be declared as a
8193     // pointer to a pointer type.
8194     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8195     D.setInvalidType();
8196     return;
8197 
8198   case InvalidAddrSpacePtrKernelParam:
8199     // OpenCL v1.0 s6.5:
8200     // __kernel function arguments declared to be a pointer of a type can point
8201     // to one of the following address spaces only : __global, __local or
8202     // __constant.
8203     S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8204     D.setInvalidType();
8205     return;
8206 
8207     // OpenCL v1.2 s6.9.k:
8208     // Arguments to kernel functions in a program cannot be declared with the
8209     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8210     // uintptr_t or a struct and/or union that contain fields declared to be
8211     // one of these built-in scalar types.
8212 
8213   case InvalidKernelParam:
8214     // OpenCL v1.2 s6.8 n:
8215     // A kernel function argument cannot be declared
8216     // of event_t type.
8217     // Do not diagnose half type since it is diagnosed as invalid argument
8218     // type for any function elsewhere.
8219     if (!PT->isHalfType()) {
8220       S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8221 
8222       // Explain what typedefs are involved.
8223       const TypedefType *Typedef = nullptr;
8224       while ((Typedef = PT->getAs<TypedefType>())) {
8225         SourceLocation Loc = Typedef->getDecl()->getLocation();
8226         // SourceLocation may be invalid for a built-in type.
8227         if (Loc.isValid())
8228           S.Diag(Loc, diag::note_entity_declared_at) << PT;
8229         PT = Typedef->desugar();
8230       }
8231     }
8232 
8233     D.setInvalidType();
8234     return;
8235 
8236   case PtrKernelParam:
8237   case ValidKernelParam:
8238     ValidTypes.insert(PT.getTypePtr());
8239     return;
8240 
8241   case RecordKernelParam:
8242     break;
8243   }
8244 
8245   // Track nested structs we will inspect
8246   SmallVector<const Decl *, 4> VisitStack;
8247 
8248   // Track where we are in the nested structs. Items will migrate from
8249   // VisitStack to HistoryStack as we do the DFS for bad field.
8250   SmallVector<const FieldDecl *, 4> HistoryStack;
8251   HistoryStack.push_back(nullptr);
8252 
8253   // At this point we already handled everything except of a RecordType or
8254   // an ArrayType of a RecordType.
8255   assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
8256   const RecordType *RecTy =
8257       PT->getPointeeOrArrayElementType()->getAs<RecordType>();
8258   const RecordDecl *OrigRecDecl = RecTy->getDecl();
8259 
8260   VisitStack.push_back(RecTy->getDecl());
8261   assert(VisitStack.back() && "First decl null?");
8262 
8263   do {
8264     const Decl *Next = VisitStack.pop_back_val();
8265     if (!Next) {
8266       assert(!HistoryStack.empty());
8267       // Found a marker, we have gone up a level
8268       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8269         ValidTypes.insert(Hist->getType().getTypePtr());
8270 
8271       continue;
8272     }
8273 
8274     // Adds everything except the original parameter declaration (which is not a
8275     // field itself) to the history stack.
8276     const RecordDecl *RD;
8277     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8278       HistoryStack.push_back(Field);
8279 
8280       QualType FieldTy = Field->getType();
8281       // Other field types (known to be valid or invalid) are handled while we
8282       // walk around RecordDecl::fields().
8283       assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
8284              "Unexpected type.");
8285       const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8286 
8287       RD = FieldRecTy->castAs<RecordType>()->getDecl();
8288     } else {
8289       RD = cast<RecordDecl>(Next);
8290     }
8291 
8292     // Add a null marker so we know when we've gone back up a level
8293     VisitStack.push_back(nullptr);
8294 
8295     for (const auto *FD : RD->fields()) {
8296       QualType QT = FD->getType();
8297 
8298       if (ValidTypes.count(QT.getTypePtr()))
8299         continue;
8300 
8301       OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8302       if (ParamType == ValidKernelParam)
8303         continue;
8304 
8305       if (ParamType == RecordKernelParam) {
8306         VisitStack.push_back(FD);
8307         continue;
8308       }
8309 
8310       // OpenCL v1.2 s6.9.p:
8311       // Arguments to kernel functions that are declared to be a struct or union
8312       // do not allow OpenCL objects to be passed as elements of the struct or
8313       // union.
8314       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8315           ParamType == InvalidAddrSpacePtrKernelParam) {
8316         S.Diag(Param->getLocation(),
8317                diag::err_record_with_pointers_kernel_param)
8318           << PT->isUnionType()
8319           << PT;
8320       } else {
8321         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8322       }
8323 
8324       S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8325           << OrigRecDecl->getDeclName();
8326 
8327       // We have an error, now let's go back up through history and show where
8328       // the offending field came from
8329       for (ArrayRef<const FieldDecl *>::const_iterator
8330                I = HistoryStack.begin() + 1,
8331                E = HistoryStack.end();
8332            I != E; ++I) {
8333         const FieldDecl *OuterField = *I;
8334         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8335           << OuterField->getType();
8336       }
8337 
8338       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8339         << QT->isPointerType()
8340         << QT;
8341       D.setInvalidType();
8342       return;
8343     }
8344   } while (!VisitStack.empty());
8345 }
8346 
8347 /// Find the DeclContext in which a tag is implicitly declared if we see an
8348 /// elaborated type specifier in the specified context, and lookup finds
8349 /// nothing.
8350 static DeclContext *getTagInjectionContext(DeclContext *DC) {
8351   while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8352     DC = DC->getParent();
8353   return DC;
8354 }
8355 
8356 /// Find the Scope in which a tag is implicitly declared if we see an
8357 /// elaborated type specifier in the specified context, and lookup finds
8358 /// nothing.
8359 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8360   while (S->isClassScope() ||
8361          (LangOpts.CPlusPlus &&
8362           S->isFunctionPrototypeScope()) ||
8363          ((S->getFlags() & Scope::DeclScope) == 0) ||
8364          (S->getEntity() && S->getEntity()->isTransparentContext()))
8365     S = S->getParent();
8366   return S;
8367 }
8368 
8369 NamedDecl*
8370 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
8371                               TypeSourceInfo *TInfo, LookupResult &Previous,
8372                               MultiTemplateParamsArg TemplateParamLists,
8373                               bool &AddToScope) {
8374   QualType R = TInfo->getType();
8375 
8376   assert(R->isFunctionType());
8377 
8378   // TODO: consider using NameInfo for diagnostic.
8379   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8380   DeclarationName Name = NameInfo.getName();
8381   StorageClass SC = getFunctionStorageClass(*this, D);
8382 
8383   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
8384     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8385          diag::err_invalid_thread)
8386       << DeclSpec::getSpecifierName(TSCS);
8387 
8388   if (D.isFirstDeclarationOfMember())
8389     adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
8390                            D.getIdentifierLoc());
8391 
8392   bool isFriend = false;
8393   FunctionTemplateDecl *FunctionTemplate = nullptr;
8394   bool isMemberSpecialization = false;
8395   bool isFunctionTemplateSpecialization = false;
8396 
8397   bool isDependentClassScopeExplicitSpecialization = false;
8398   bool HasExplicitTemplateArgs = false;
8399   TemplateArgumentListInfo TemplateArgs;
8400 
8401   bool isVirtualOkay = false;
8402 
8403   DeclContext *OriginalDC = DC;
8404   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
8405 
8406   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
8407                                               isVirtualOkay);
8408   if (!NewFD) return nullptr;
8409 
8410   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
8411     NewFD->setTopLevelDeclInObjCContainer();
8412 
8413   // Set the lexical context. If this is a function-scope declaration, or has a
8414   // C++ scope specifier, or is the object of a friend declaration, the lexical
8415   // context will be different from the semantic context.
8416   NewFD->setLexicalDeclContext(CurContext);
8417 
8418   if (IsLocalExternDecl)
8419     NewFD->setLocalExternDecl();
8420 
8421   if (getLangOpts().CPlusPlus) {
8422     bool isInline = D.getDeclSpec().isInlineSpecified();
8423     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8424     bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
8425     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
8426     isFriend = D.getDeclSpec().isFriendSpecified();
8427     if (isFriend && !isInline && D.isFunctionDefinition()) {
8428       // C++ [class.friend]p5
8429       //   A function can be defined in a friend declaration of a
8430       //   class . . . . Such a function is implicitly inline.
8431       NewFD->setImplicitlyInline();
8432     }
8433 
8434     // If this is a method defined in an __interface, and is not a constructor
8435     // or an overloaded operator, then set the pure flag (isVirtual will already
8436     // return true).
8437     if (const CXXRecordDecl *Parent =
8438           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
8439       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
8440         NewFD->setPure(true);
8441 
8442       // C++ [class.union]p2
8443       //   A union can have member functions, but not virtual functions.
8444       if (isVirtual && Parent->isUnion())
8445         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
8446     }
8447 
8448     SetNestedNameSpecifier(*this, NewFD, D);
8449     isMemberSpecialization = false;
8450     isFunctionTemplateSpecialization = false;
8451     if (D.isInvalidType())
8452       NewFD->setInvalidDecl();
8453 
8454     // Match up the template parameter lists with the scope specifier, then
8455     // determine whether we have a template or a template specialization.
8456     bool Invalid = false;
8457     if (TemplateParameterList *TemplateParams =
8458             MatchTemplateParametersToScopeSpecifier(
8459                 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
8460                 D.getCXXScopeSpec(),
8461                 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
8462                     ? D.getName().TemplateId
8463                     : nullptr,
8464                 TemplateParamLists, isFriend, isMemberSpecialization,
8465                 Invalid)) {
8466       if (TemplateParams->size() > 0) {
8467         // This is a function template
8468 
8469         // Check that we can declare a template here.
8470         if (CheckTemplateDeclScope(S, TemplateParams))
8471           NewFD->setInvalidDecl();
8472 
8473         // A destructor cannot be a template.
8474         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8475           Diag(NewFD->getLocation(), diag::err_destructor_template);
8476           NewFD->setInvalidDecl();
8477         }
8478 
8479         // If we're adding a template to a dependent context, we may need to
8480         // rebuilding some of the types used within the template parameter list,
8481         // now that we know what the current instantiation is.
8482         if (DC->isDependentContext()) {
8483           ContextRAII SavedContext(*this, DC);
8484           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
8485             Invalid = true;
8486         }
8487 
8488         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
8489                                                         NewFD->getLocation(),
8490                                                         Name, TemplateParams,
8491                                                         NewFD);
8492         FunctionTemplate->setLexicalDeclContext(CurContext);
8493         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
8494 
8495         // For source fidelity, store the other template param lists.
8496         if (TemplateParamLists.size() > 1) {
8497           NewFD->setTemplateParameterListsInfo(Context,
8498                                                TemplateParamLists.drop_back(1));
8499         }
8500       } else {
8501         // This is a function template specialization.
8502         isFunctionTemplateSpecialization = true;
8503         // For source fidelity, store all the template param lists.
8504         if (TemplateParamLists.size() > 0)
8505           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8506 
8507         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
8508         if (isFriend) {
8509           // We want to remove the "template<>", found here.
8510           SourceRange RemoveRange = TemplateParams->getSourceRange();
8511 
8512           // If we remove the template<> and the name is not a
8513           // template-id, we're actually silently creating a problem:
8514           // the friend declaration will refer to an untemplated decl,
8515           // and clearly the user wants a template specialization.  So
8516           // we need to insert '<>' after the name.
8517           SourceLocation InsertLoc;
8518           if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
8519             InsertLoc = D.getName().getSourceRange().getEnd();
8520             InsertLoc = getLocForEndOfToken(InsertLoc);
8521           }
8522 
8523           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
8524             << Name << RemoveRange
8525             << FixItHint::CreateRemoval(RemoveRange)
8526             << FixItHint::CreateInsertion(InsertLoc, "<>");
8527         }
8528       }
8529     } else {
8530       // All template param lists were matched against the scope specifier:
8531       // this is NOT (an explicit specialization of) a template.
8532       if (TemplateParamLists.size() > 0)
8533         // For source fidelity, store all the template param lists.
8534         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8535     }
8536 
8537     if (Invalid) {
8538       NewFD->setInvalidDecl();
8539       if (FunctionTemplate)
8540         FunctionTemplate->setInvalidDecl();
8541     }
8542 
8543     // C++ [dcl.fct.spec]p5:
8544     //   The virtual specifier shall only be used in declarations of
8545     //   nonstatic class member functions that appear within a
8546     //   member-specification of a class declaration; see 10.3.
8547     //
8548     if (isVirtual && !NewFD->isInvalidDecl()) {
8549       if (!isVirtualOkay) {
8550         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8551              diag::err_virtual_non_function);
8552       } else if (!CurContext->isRecord()) {
8553         // 'virtual' was specified outside of the class.
8554         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8555              diag::err_virtual_out_of_class)
8556           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8557       } else if (NewFD->getDescribedFunctionTemplate()) {
8558         // C++ [temp.mem]p3:
8559         //  A member function template shall not be virtual.
8560         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8561              diag::err_virtual_member_function_template)
8562           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8563       } else {
8564         // Okay: Add virtual to the method.
8565         NewFD->setVirtualAsWritten(true);
8566       }
8567 
8568       if (getLangOpts().CPlusPlus14 &&
8569           NewFD->getReturnType()->isUndeducedType())
8570         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
8571     }
8572 
8573     if (getLangOpts().CPlusPlus14 &&
8574         (NewFD->isDependentContext() ||
8575          (isFriend && CurContext->isDependentContext())) &&
8576         NewFD->getReturnType()->isUndeducedType()) {
8577       // If the function template is referenced directly (for instance, as a
8578       // member of the current instantiation), pretend it has a dependent type.
8579       // This is not really justified by the standard, but is the only sane
8580       // thing to do.
8581       // FIXME: For a friend function, we have not marked the function as being
8582       // a friend yet, so 'isDependentContext' on the FD doesn't work.
8583       const FunctionProtoType *FPT =
8584           NewFD->getType()->castAs<FunctionProtoType>();
8585       QualType Result =
8586           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
8587       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
8588                                              FPT->getExtProtoInfo()));
8589     }
8590 
8591     // C++ [dcl.fct.spec]p3:
8592     //  The inline specifier shall not appear on a block scope function
8593     //  declaration.
8594     if (isInline && !NewFD->isInvalidDecl()) {
8595       if (CurContext->isFunctionOrMethod()) {
8596         // 'inline' is not allowed on block scope function declaration.
8597         Diag(D.getDeclSpec().getInlineSpecLoc(),
8598              diag::err_inline_declaration_block_scope) << Name
8599           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
8600       }
8601     }
8602 
8603     // C++ [dcl.fct.spec]p6:
8604     //  The explicit specifier shall be used only in the declaration of a
8605     //  constructor or conversion function within its class definition;
8606     //  see 12.3.1 and 12.3.2.
8607     if (hasExplicit && !NewFD->isInvalidDecl() &&
8608         !isa<CXXDeductionGuideDecl>(NewFD)) {
8609       if (!CurContext->isRecord()) {
8610         // 'explicit' was specified outside of the class.
8611         Diag(D.getDeclSpec().getExplicitSpecLoc(),
8612              diag::err_explicit_out_of_class)
8613             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
8614       } else if (!isa<CXXConstructorDecl>(NewFD) &&
8615                  !isa<CXXConversionDecl>(NewFD)) {
8616         // 'explicit' was specified on a function that wasn't a constructor
8617         // or conversion function.
8618         Diag(D.getDeclSpec().getExplicitSpecLoc(),
8619              diag::err_explicit_non_ctor_or_conv_function)
8620             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
8621       }
8622     }
8623 
8624     if (isConstexpr) {
8625       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
8626       // are implicitly inline.
8627       NewFD->setImplicitlyInline();
8628 
8629       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
8630       // be either constructors or to return a literal type. Therefore,
8631       // destructors cannot be declared constexpr.
8632       if (isa<CXXDestructorDecl>(NewFD))
8633         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
8634     }
8635 
8636     // If __module_private__ was specified, mark the function accordingly.
8637     if (D.getDeclSpec().isModulePrivateSpecified()) {
8638       if (isFunctionTemplateSpecialization) {
8639         SourceLocation ModulePrivateLoc
8640           = D.getDeclSpec().getModulePrivateSpecLoc();
8641         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
8642           << 0
8643           << FixItHint::CreateRemoval(ModulePrivateLoc);
8644       } else {
8645         NewFD->setModulePrivate();
8646         if (FunctionTemplate)
8647           FunctionTemplate->setModulePrivate();
8648       }
8649     }
8650 
8651     if (isFriend) {
8652       if (FunctionTemplate) {
8653         FunctionTemplate->setObjectOfFriendDecl();
8654         FunctionTemplate->setAccess(AS_public);
8655       }
8656       NewFD->setObjectOfFriendDecl();
8657       NewFD->setAccess(AS_public);
8658     }
8659 
8660     // If a function is defined as defaulted or deleted, mark it as such now.
8661     // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
8662     // definition kind to FDK_Definition.
8663     switch (D.getFunctionDefinitionKind()) {
8664       case FDK_Declaration:
8665       case FDK_Definition:
8666         break;
8667 
8668       case FDK_Defaulted:
8669         NewFD->setDefaulted();
8670         break;
8671 
8672       case FDK_Deleted:
8673         NewFD->setDeletedAsWritten();
8674         break;
8675     }
8676 
8677     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
8678         D.isFunctionDefinition()) {
8679       // C++ [class.mfct]p2:
8680       //   A member function may be defined (8.4) in its class definition, in
8681       //   which case it is an inline member function (7.1.2)
8682       NewFD->setImplicitlyInline();
8683     }
8684 
8685     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
8686         !CurContext->isRecord()) {
8687       // C++ [class.static]p1:
8688       //   A data or function member of a class may be declared static
8689       //   in a class definition, in which case it is a static member of
8690       //   the class.
8691 
8692       // Complain about the 'static' specifier if it's on an out-of-line
8693       // member function definition.
8694 
8695       // MSVC permits the use of a 'static' storage specifier on an out-of-line
8696       // member function template declaration and class member template
8697       // declaration (MSVC versions before 2015), warn about this.
8698       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8699            ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
8700              cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
8701            (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
8702            ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
8703         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
8704     }
8705 
8706     // C++11 [except.spec]p15:
8707     //   A deallocation function with no exception-specification is treated
8708     //   as if it were specified with noexcept(true).
8709     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
8710     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
8711          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
8712         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
8713       NewFD->setType(Context.getFunctionType(
8714           FPT->getReturnType(), FPT->getParamTypes(),
8715           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
8716   }
8717 
8718   // Filter out previous declarations that don't match the scope.
8719   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
8720                        D.getCXXScopeSpec().isNotEmpty() ||
8721                        isMemberSpecialization ||
8722                        isFunctionTemplateSpecialization);
8723 
8724   // Handle GNU asm-label extension (encoded as an attribute).
8725   if (Expr *E = (Expr*) D.getAsmLabel()) {
8726     // The parser guarantees this is a string.
8727     StringLiteral *SE = cast<StringLiteral>(E);
8728     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
8729                                                 SE->getString(), 0));
8730   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
8731     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
8732       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
8733     if (I != ExtnameUndeclaredIdentifiers.end()) {
8734       if (isDeclExternC(NewFD)) {
8735         NewFD->addAttr(I->second);
8736         ExtnameUndeclaredIdentifiers.erase(I);
8737       } else
8738         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
8739             << /*Variable*/0 << NewFD;
8740     }
8741   }
8742 
8743   // Copy the parameter declarations from the declarator D to the function
8744   // declaration NewFD, if they are available.  First scavenge them into Params.
8745   SmallVector<ParmVarDecl*, 16> Params;
8746   unsigned FTIIdx;
8747   if (D.isFunctionDeclarator(FTIIdx)) {
8748     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
8749 
8750     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
8751     // function that takes no arguments, not a function that takes a
8752     // single void argument.
8753     // We let through "const void" here because Sema::GetTypeForDeclarator
8754     // already checks for that case.
8755     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
8756       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
8757         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
8758         assert(Param->getDeclContext() != NewFD && "Was set before ?");
8759         Param->setDeclContext(NewFD);
8760         Params.push_back(Param);
8761 
8762         if (Param->isInvalidDecl())
8763           NewFD->setInvalidDecl();
8764       }
8765     }
8766 
8767     if (!getLangOpts().CPlusPlus) {
8768       // In C, find all the tag declarations from the prototype and move them
8769       // into the function DeclContext. Remove them from the surrounding tag
8770       // injection context of the function, which is typically but not always
8771       // the TU.
8772       DeclContext *PrototypeTagContext =
8773           getTagInjectionContext(NewFD->getLexicalDeclContext());
8774       for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
8775         auto *TD = dyn_cast<TagDecl>(NonParmDecl);
8776 
8777         // We don't want to reparent enumerators. Look at their parent enum
8778         // instead.
8779         if (!TD) {
8780           if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
8781             TD = cast<EnumDecl>(ECD->getDeclContext());
8782         }
8783         if (!TD)
8784           continue;
8785         DeclContext *TagDC = TD->getLexicalDeclContext();
8786         if (!TagDC->containsDecl(TD))
8787           continue;
8788         TagDC->removeDecl(TD);
8789         TD->setDeclContext(NewFD);
8790         NewFD->addDecl(TD);
8791 
8792         // Preserve the lexical DeclContext if it is not the surrounding tag
8793         // injection context of the FD. In this example, the semantic context of
8794         // E will be f and the lexical context will be S, while both the
8795         // semantic and lexical contexts of S will be f:
8796         //   void f(struct S { enum E { a } f; } s);
8797         if (TagDC != PrototypeTagContext)
8798           TD->setLexicalDeclContext(TagDC);
8799       }
8800     }
8801   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
8802     // When we're declaring a function with a typedef, typeof, etc as in the
8803     // following example, we'll need to synthesize (unnamed)
8804     // parameters for use in the declaration.
8805     //
8806     // @code
8807     // typedef void fn(int);
8808     // fn f;
8809     // @endcode
8810 
8811     // Synthesize a parameter for each argument type.
8812     for (const auto &AI : FT->param_types()) {
8813       ParmVarDecl *Param =
8814           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
8815       Param->setScopeInfo(0, Params.size());
8816       Params.push_back(Param);
8817     }
8818   } else {
8819     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
8820            "Should not need args for typedef of non-prototype fn");
8821   }
8822 
8823   // Finally, we know we have the right number of parameters, install them.
8824   NewFD->setParams(Params);
8825 
8826   if (D.getDeclSpec().isNoreturnSpecified())
8827     NewFD->addAttr(
8828         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
8829                                        Context, 0));
8830 
8831   // Functions returning a variably modified type violate C99 6.7.5.2p2
8832   // because all functions have linkage.
8833   if (!NewFD->isInvalidDecl() &&
8834       NewFD->getReturnType()->isVariablyModifiedType()) {
8835     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
8836     NewFD->setInvalidDecl();
8837   }
8838 
8839   // Apply an implicit SectionAttr if '#pragma clang section text' is active
8840   if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
8841       !NewFD->hasAttr<SectionAttr>()) {
8842     NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(Context,
8843                                                  PragmaClangTextSection.SectionName,
8844                                                  PragmaClangTextSection.PragmaLocation));
8845   }
8846 
8847   // Apply an implicit SectionAttr if #pragma code_seg is active.
8848   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
8849       !NewFD->hasAttr<SectionAttr>()) {
8850     NewFD->addAttr(
8851         SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
8852                                     CodeSegStack.CurrentValue->getString(),
8853                                     CodeSegStack.CurrentPragmaLocation));
8854     if (UnifySection(CodeSegStack.CurrentValue->getString(),
8855                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
8856                          ASTContext::PSF_Read,
8857                      NewFD))
8858       NewFD->dropAttr<SectionAttr>();
8859   }
8860 
8861   // Apply an implicit CodeSegAttr from class declspec or
8862   // apply an implicit SectionAttr from #pragma code_seg if active.
8863   if (!NewFD->hasAttr<CodeSegAttr>()) {
8864     if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
8865                                                                  D.isFunctionDefinition())) {
8866       NewFD->addAttr(SAttr);
8867     }
8868   }
8869 
8870   // Handle attributes.
8871   ProcessDeclAttributes(S, NewFD, D);
8872 
8873   if (getLangOpts().OpenCL) {
8874     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
8875     // type declaration will generate a compilation error.
8876     LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
8877     if (AddressSpace != LangAS::Default) {
8878       Diag(NewFD->getLocation(),
8879            diag::err_opencl_return_value_with_address_space);
8880       NewFD->setInvalidDecl();
8881     }
8882   }
8883 
8884   if (!getLangOpts().CPlusPlus) {
8885     // Perform semantic checking on the function declaration.
8886     if (!NewFD->isInvalidDecl() && NewFD->isMain())
8887       CheckMain(NewFD, D.getDeclSpec());
8888 
8889     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8890       CheckMSVCRTEntryPoint(NewFD);
8891 
8892     if (!NewFD->isInvalidDecl())
8893       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8894                                                   isMemberSpecialization));
8895     else if (!Previous.empty())
8896       // Recover gracefully from an invalid redeclaration.
8897       D.setRedeclaration(true);
8898     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
8899             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
8900            "previous declaration set still overloaded");
8901 
8902     // Diagnose no-prototype function declarations with calling conventions that
8903     // don't support variadic calls. Only do this in C and do it after merging
8904     // possibly prototyped redeclarations.
8905     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
8906     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
8907       CallingConv CC = FT->getExtInfo().getCC();
8908       if (!supportsVariadicCall(CC)) {
8909         // Windows system headers sometimes accidentally use stdcall without
8910         // (void) parameters, so we relax this to a warning.
8911         int DiagID =
8912             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
8913         Diag(NewFD->getLocation(), DiagID)
8914             << FunctionType::getNameForCallConv(CC);
8915       }
8916     }
8917   } else {
8918     // C++11 [replacement.functions]p3:
8919     //  The program's definitions shall not be specified as inline.
8920     //
8921     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
8922     //
8923     // Suppress the diagnostic if the function is __attribute__((used)), since
8924     // that forces an external definition to be emitted.
8925     if (D.getDeclSpec().isInlineSpecified() &&
8926         NewFD->isReplaceableGlobalAllocationFunction() &&
8927         !NewFD->hasAttr<UsedAttr>())
8928       Diag(D.getDeclSpec().getInlineSpecLoc(),
8929            diag::ext_operator_new_delete_declared_inline)
8930         << NewFD->getDeclName();
8931 
8932     // If the declarator is a template-id, translate the parser's template
8933     // argument list into our AST format.
8934     if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
8935       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
8936       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
8937       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
8938       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8939                                          TemplateId->NumArgs);
8940       translateTemplateArguments(TemplateArgsPtr,
8941                                  TemplateArgs);
8942 
8943       HasExplicitTemplateArgs = true;
8944 
8945       if (NewFD->isInvalidDecl()) {
8946         HasExplicitTemplateArgs = false;
8947       } else if (FunctionTemplate) {
8948         // Function template with explicit template arguments.
8949         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
8950           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
8951 
8952         HasExplicitTemplateArgs = false;
8953       } else {
8954         assert((isFunctionTemplateSpecialization ||
8955                 D.getDeclSpec().isFriendSpecified()) &&
8956                "should have a 'template<>' for this decl");
8957         // "friend void foo<>(int);" is an implicit specialization decl.
8958         isFunctionTemplateSpecialization = true;
8959       }
8960     } else if (isFriend && isFunctionTemplateSpecialization) {
8961       // This combination is only possible in a recovery case;  the user
8962       // wrote something like:
8963       //   template <> friend void foo(int);
8964       // which we're recovering from as if the user had written:
8965       //   friend void foo<>(int);
8966       // Go ahead and fake up a template id.
8967       HasExplicitTemplateArgs = true;
8968       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
8969       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
8970     }
8971 
8972     // We do not add HD attributes to specializations here because
8973     // they may have different constexpr-ness compared to their
8974     // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
8975     // may end up with different effective targets. Instead, a
8976     // specialization inherits its target attributes from its template
8977     // in the CheckFunctionTemplateSpecialization() call below.
8978     if (getLangOpts().CUDA & !isFunctionTemplateSpecialization)
8979       maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
8980 
8981     // If it's a friend (and only if it's a friend), it's possible
8982     // that either the specialized function type or the specialized
8983     // template is dependent, and therefore matching will fail.  In
8984     // this case, don't check the specialization yet.
8985     bool InstantiationDependent = false;
8986     if (isFunctionTemplateSpecialization && isFriend &&
8987         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
8988          TemplateSpecializationType::anyDependentTemplateArguments(
8989             TemplateArgs,
8990             InstantiationDependent))) {
8991       assert(HasExplicitTemplateArgs &&
8992              "friend function specialization without template args");
8993       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
8994                                                        Previous))
8995         NewFD->setInvalidDecl();
8996     } else if (isFunctionTemplateSpecialization) {
8997       if (CurContext->isDependentContext() && CurContext->isRecord()
8998           && !isFriend) {
8999         isDependentClassScopeExplicitSpecialization = true;
9000       } else if (!NewFD->isInvalidDecl() &&
9001                  CheckFunctionTemplateSpecialization(
9002                      NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
9003                      Previous))
9004         NewFD->setInvalidDecl();
9005 
9006       // C++ [dcl.stc]p1:
9007       //   A storage-class-specifier shall not be specified in an explicit
9008       //   specialization (14.7.3)
9009       FunctionTemplateSpecializationInfo *Info =
9010           NewFD->getTemplateSpecializationInfo();
9011       if (Info && SC != SC_None) {
9012         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
9013           Diag(NewFD->getLocation(),
9014                diag::err_explicit_specialization_inconsistent_storage_class)
9015             << SC
9016             << FixItHint::CreateRemoval(
9017                                       D.getDeclSpec().getStorageClassSpecLoc());
9018 
9019         else
9020           Diag(NewFD->getLocation(),
9021                diag::ext_explicit_specialization_storage_class)
9022             << FixItHint::CreateRemoval(
9023                                       D.getDeclSpec().getStorageClassSpecLoc());
9024       }
9025     } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
9026       if (CheckMemberSpecialization(NewFD, Previous))
9027           NewFD->setInvalidDecl();
9028     }
9029 
9030     // Perform semantic checking on the function declaration.
9031     if (!isDependentClassScopeExplicitSpecialization) {
9032       if (!NewFD->isInvalidDecl() && NewFD->isMain())
9033         CheckMain(NewFD, D.getDeclSpec());
9034 
9035       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9036         CheckMSVCRTEntryPoint(NewFD);
9037 
9038       if (!NewFD->isInvalidDecl())
9039         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9040                                                     isMemberSpecialization));
9041       else if (!Previous.empty())
9042         // Recover gracefully from an invalid redeclaration.
9043         D.setRedeclaration(true);
9044     }
9045 
9046     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9047             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
9048            "previous declaration set still overloaded");
9049 
9050     NamedDecl *PrincipalDecl = (FunctionTemplate
9051                                 ? cast<NamedDecl>(FunctionTemplate)
9052                                 : NewFD);
9053 
9054     if (isFriend && NewFD->getPreviousDecl()) {
9055       AccessSpecifier Access = AS_public;
9056       if (!NewFD->isInvalidDecl())
9057         Access = NewFD->getPreviousDecl()->getAccess();
9058 
9059       NewFD->setAccess(Access);
9060       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
9061     }
9062 
9063     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
9064         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
9065       PrincipalDecl->setNonMemberOperator();
9066 
9067     // If we have a function template, check the template parameter
9068     // list. This will check and merge default template arguments.
9069     if (FunctionTemplate) {
9070       FunctionTemplateDecl *PrevTemplate =
9071                                      FunctionTemplate->getPreviousDecl();
9072       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
9073                        PrevTemplate ? PrevTemplate->getTemplateParameters()
9074                                     : nullptr,
9075                             D.getDeclSpec().isFriendSpecified()
9076                               ? (D.isFunctionDefinition()
9077                                    ? TPC_FriendFunctionTemplateDefinition
9078                                    : TPC_FriendFunctionTemplate)
9079                               : (D.getCXXScopeSpec().isSet() &&
9080                                  DC && DC->isRecord() &&
9081                                  DC->isDependentContext())
9082                                   ? TPC_ClassTemplateMember
9083                                   : TPC_FunctionTemplate);
9084     }
9085 
9086     if (NewFD->isInvalidDecl()) {
9087       // Ignore all the rest of this.
9088     } else if (!D.isRedeclaration()) {
9089       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9090                                        AddToScope };
9091       // Fake up an access specifier if it's supposed to be a class member.
9092       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9093         NewFD->setAccess(AS_public);
9094 
9095       // Qualified decls generally require a previous declaration.
9096       if (D.getCXXScopeSpec().isSet()) {
9097         // ...with the major exception of templated-scope or
9098         // dependent-scope friend declarations.
9099 
9100         // TODO: we currently also suppress this check in dependent
9101         // contexts because (1) the parameter depth will be off when
9102         // matching friend templates and (2) we might actually be
9103         // selecting a friend based on a dependent factor.  But there
9104         // are situations where these conditions don't apply and we
9105         // can actually do this check immediately.
9106         //
9107         // Unless the scope is dependent, it's always an error if qualified
9108         // redeclaration lookup found nothing at all. Diagnose that now;
9109         // nothing will diagnose that error later.
9110         if (isFriend &&
9111             (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
9112              (!Previous.empty() && CurContext->isDependentContext()))) {
9113           // ignore these
9114         } else {
9115           // The user tried to provide an out-of-line definition for a
9116           // function that is a member of a class or namespace, but there
9117           // was no such member function declared (C++ [class.mfct]p2,
9118           // C++ [namespace.memdef]p2). For example:
9119           //
9120           // class X {
9121           //   void f() const;
9122           // };
9123           //
9124           // void X::f() { } // ill-formed
9125           //
9126           // Complain about this problem, and attempt to suggest close
9127           // matches (e.g., those that differ only in cv-qualifiers and
9128           // whether the parameter types are references).
9129 
9130           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9131                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9132             AddToScope = ExtraArgs.AddToScope;
9133             return Result;
9134           }
9135         }
9136 
9137         // Unqualified local friend declarations are required to resolve
9138         // to something.
9139       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9140         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9141                 *this, Previous, NewFD, ExtraArgs, true, S)) {
9142           AddToScope = ExtraArgs.AddToScope;
9143           return Result;
9144         }
9145       }
9146     } else if (!D.isFunctionDefinition() &&
9147                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9148                !isFriend && !isFunctionTemplateSpecialization &&
9149                !isMemberSpecialization) {
9150       // An out-of-line member function declaration must also be a
9151       // definition (C++ [class.mfct]p2).
9152       // Note that this is not the case for explicit specializations of
9153       // function templates or member functions of class templates, per
9154       // C++ [temp.expl.spec]p2. We also allow these declarations as an
9155       // extension for compatibility with old SWIG code which likes to
9156       // generate them.
9157       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9158         << D.getCXXScopeSpec().getRange();
9159     }
9160   }
9161 
9162   ProcessPragmaWeak(S, NewFD);
9163   checkAttributesAfterMerging(*this, *NewFD);
9164 
9165   AddKnownFunctionAttributes(NewFD);
9166 
9167   if (NewFD->hasAttr<OverloadableAttr>() &&
9168       !NewFD->getType()->getAs<FunctionProtoType>()) {
9169     Diag(NewFD->getLocation(),
9170          diag::err_attribute_overloadable_no_prototype)
9171       << NewFD;
9172 
9173     // Turn this into a variadic function with no parameters.
9174     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9175     FunctionProtoType::ExtProtoInfo EPI(
9176         Context.getDefaultCallingConvention(true, false));
9177     EPI.Variadic = true;
9178     EPI.ExtInfo = FT->getExtInfo();
9179 
9180     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9181     NewFD->setType(R);
9182   }
9183 
9184   // If there's a #pragma GCC visibility in scope, and this isn't a class
9185   // member, set the visibility of this function.
9186   if (!DC->isRecord() && NewFD->isExternallyVisible())
9187     AddPushedVisibilityAttribute(NewFD);
9188 
9189   // If there's a #pragma clang arc_cf_code_audited in scope, consider
9190   // marking the function.
9191   AddCFAuditedAttribute(NewFD);
9192 
9193   // If this is a function definition, check if we have to apply optnone due to
9194   // a pragma.
9195   if(D.isFunctionDefinition())
9196     AddRangeBasedOptnone(NewFD);
9197 
9198   // If this is the first declaration of an extern C variable, update
9199   // the map of such variables.
9200   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9201       isIncompleteDeclExternC(*this, NewFD))
9202     RegisterLocallyScopedExternCDecl(NewFD, S);
9203 
9204   // Set this FunctionDecl's range up to the right paren.
9205   NewFD->setRangeEnd(D.getSourceRange().getEnd());
9206 
9207   if (D.isRedeclaration() && !Previous.empty()) {
9208     NamedDecl *Prev = Previous.getRepresentativeDecl();
9209     checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9210                                    isMemberSpecialization ||
9211                                        isFunctionTemplateSpecialization,
9212                                    D.isFunctionDefinition());
9213   }
9214 
9215   if (getLangOpts().CUDA) {
9216     IdentifierInfo *II = NewFD->getIdentifier();
9217     if (II && II->isStr(getCudaConfigureFuncName()) &&
9218         !NewFD->isInvalidDecl() &&
9219         NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9220       if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
9221         Diag(NewFD->getLocation(), diag::err_config_scalar_return)
9222             << getCudaConfigureFuncName();
9223       Context.setcudaConfigureCallDecl(NewFD);
9224     }
9225 
9226     // Variadic functions, other than a *declaration* of printf, are not allowed
9227     // in device-side CUDA code, unless someone passed
9228     // -fcuda-allow-variadic-functions.
9229     if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9230         (NewFD->hasAttr<CUDADeviceAttr>() ||
9231          NewFD->hasAttr<CUDAGlobalAttr>()) &&
9232         !(II && II->isStr("printf") && NewFD->isExternC() &&
9233           !D.isFunctionDefinition())) {
9234       Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9235     }
9236   }
9237 
9238   MarkUnusedFileScopedDecl(NewFD);
9239 
9240 
9241 
9242   if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
9243     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9244     if ((getLangOpts().OpenCLVersion >= 120)
9245         && (SC == SC_Static)) {
9246       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9247       D.setInvalidType();
9248     }
9249 
9250     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9251     if (!NewFD->getReturnType()->isVoidType()) {
9252       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9253       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9254           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9255                                 : FixItHint());
9256       D.setInvalidType();
9257     }
9258 
9259     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9260     for (auto Param : NewFD->parameters())
9261       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9262 
9263     if (getLangOpts().OpenCLCPlusPlus) {
9264       if (DC->isRecord()) {
9265         Diag(D.getIdentifierLoc(), diag::err_method_kernel);
9266         D.setInvalidType();
9267       }
9268       if (FunctionTemplate) {
9269         Diag(D.getIdentifierLoc(), diag::err_template_kernel);
9270         D.setInvalidType();
9271       }
9272     }
9273   }
9274 
9275   if (getLangOpts().CPlusPlus) {
9276     if (FunctionTemplate) {
9277       if (NewFD->isInvalidDecl())
9278         FunctionTemplate->setInvalidDecl();
9279       return FunctionTemplate;
9280     }
9281 
9282     if (isMemberSpecialization && !NewFD->isInvalidDecl())
9283       CompleteMemberSpecialization(NewFD, Previous);
9284   }
9285 
9286   for (const ParmVarDecl *Param : NewFD->parameters()) {
9287     QualType PT = Param->getType();
9288 
9289     // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
9290     // types.
9291     if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
9292       if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
9293         QualType ElemTy = PipeTy->getElementType();
9294           if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
9295             Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
9296             D.setInvalidType();
9297           }
9298       }
9299     }
9300   }
9301 
9302   // Here we have an function template explicit specialization at class scope.
9303   // The actual specialization will be postponed to template instatiation
9304   // time via the ClassScopeFunctionSpecializationDecl node.
9305   if (isDependentClassScopeExplicitSpecialization) {
9306     ClassScopeFunctionSpecializationDecl *NewSpec =
9307                          ClassScopeFunctionSpecializationDecl::Create(
9308                                 Context, CurContext, NewFD->getLocation(),
9309                                 cast<CXXMethodDecl>(NewFD),
9310                                 HasExplicitTemplateArgs, TemplateArgs);
9311     CurContext->addDecl(NewSpec);
9312     AddToScope = false;
9313   }
9314 
9315   // Diagnose availability attributes. Availability cannot be used on functions
9316   // that are run during load/unload.
9317   if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
9318     if (NewFD->hasAttr<ConstructorAttr>()) {
9319       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9320           << 1;
9321       NewFD->dropAttr<AvailabilityAttr>();
9322     }
9323     if (NewFD->hasAttr<DestructorAttr>()) {
9324       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9325           << 2;
9326       NewFD->dropAttr<AvailabilityAttr>();
9327     }
9328   }
9329 
9330   return NewFD;
9331 }
9332 
9333 /// Return a CodeSegAttr from a containing class.  The Microsoft docs say
9334 /// when __declspec(code_seg) "is applied to a class, all member functions of
9335 /// the class and nested classes -- this includes compiler-generated special
9336 /// member functions -- are put in the specified segment."
9337 /// The actual behavior is a little more complicated. The Microsoft compiler
9338 /// won't check outer classes if there is an active value from #pragma code_seg.
9339 /// The CodeSeg is always applied from the direct parent but only from outer
9340 /// classes when the #pragma code_seg stack is empty. See:
9341 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
9342 /// available since MS has removed the page.
9343 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
9344   const auto *Method = dyn_cast<CXXMethodDecl>(FD);
9345   if (!Method)
9346     return nullptr;
9347   const CXXRecordDecl *Parent = Method->getParent();
9348   if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9349     Attr *NewAttr = SAttr->clone(S.getASTContext());
9350     NewAttr->setImplicit(true);
9351     return NewAttr;
9352   }
9353 
9354   // The Microsoft compiler won't check outer classes for the CodeSeg
9355   // when the #pragma code_seg stack is active.
9356   if (S.CodeSegStack.CurrentValue)
9357    return nullptr;
9358 
9359   while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
9360     if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9361       Attr *NewAttr = SAttr->clone(S.getASTContext());
9362       NewAttr->setImplicit(true);
9363       return NewAttr;
9364     }
9365   }
9366   return nullptr;
9367 }
9368 
9369 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
9370 /// containing class. Otherwise it will return implicit SectionAttr if the
9371 /// function is a definition and there is an active value on CodeSegStack
9372 /// (from the current #pragma code-seg value).
9373 ///
9374 /// \param FD Function being declared.
9375 /// \param IsDefinition Whether it is a definition or just a declarartion.
9376 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
9377 ///          nullptr if no attribute should be added.
9378 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
9379                                                        bool IsDefinition) {
9380   if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
9381     return A;
9382   if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
9383       CodeSegStack.CurrentValue) {
9384     return SectionAttr::CreateImplicit(getASTContext(),
9385                                        SectionAttr::Declspec_allocate,
9386                                        CodeSegStack.CurrentValue->getString(),
9387                                        CodeSegStack.CurrentPragmaLocation);
9388   }
9389   return nullptr;
9390 }
9391 
9392 /// Determines if we can perform a correct type check for \p D as a
9393 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
9394 /// best-effort check.
9395 ///
9396 /// \param NewD The new declaration.
9397 /// \param OldD The old declaration.
9398 /// \param NewT The portion of the type of the new declaration to check.
9399 /// \param OldT The portion of the type of the old declaration to check.
9400 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
9401                                           QualType NewT, QualType OldT) {
9402   if (!NewD->getLexicalDeclContext()->isDependentContext())
9403     return true;
9404 
9405   // For dependently-typed local extern declarations and friends, we can't
9406   // perform a correct type check in general until instantiation:
9407   //
9408   //   int f();
9409   //   template<typename T> void g() { T f(); }
9410   //
9411   // (valid if g() is only instantiated with T = int).
9412   if (NewT->isDependentType() &&
9413       (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
9414     return false;
9415 
9416   // Similarly, if the previous declaration was a dependent local extern
9417   // declaration, we don't really know its type yet.
9418   if (OldT->isDependentType() && OldD->isLocalExternDecl())
9419     return false;
9420 
9421   return true;
9422 }
9423 
9424 /// Checks if the new declaration declared in dependent context must be
9425 /// put in the same redeclaration chain as the specified declaration.
9426 ///
9427 /// \param D Declaration that is checked.
9428 /// \param PrevDecl Previous declaration found with proper lookup method for the
9429 ///                 same declaration name.
9430 /// \returns True if D must be added to the redeclaration chain which PrevDecl
9431 ///          belongs to.
9432 ///
9433 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
9434   if (!D->getLexicalDeclContext()->isDependentContext())
9435     return true;
9436 
9437   // Don't chain dependent friend function definitions until instantiation, to
9438   // permit cases like
9439   //
9440   //   void func();
9441   //   template<typename T> class C1 { friend void func() {} };
9442   //   template<typename T> class C2 { friend void func() {} };
9443   //
9444   // ... which is valid if only one of C1 and C2 is ever instantiated.
9445   //
9446   // FIXME: This need only apply to function definitions. For now, we proxy
9447   // this by checking for a file-scope function. We do not want this to apply
9448   // to friend declarations nominating member functions, because that gets in
9449   // the way of access checks.
9450   if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
9451     return false;
9452 
9453   auto *VD = dyn_cast<ValueDecl>(D);
9454   auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
9455   return !VD || !PrevVD ||
9456          canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
9457                                         PrevVD->getType());
9458 }
9459 
9460 /// Check the target attribute of the function for MultiVersion
9461 /// validity.
9462 ///
9463 /// Returns true if there was an error, false otherwise.
9464 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
9465   const auto *TA = FD->getAttr<TargetAttr>();
9466   assert(TA && "MultiVersion Candidate requires a target attribute");
9467   TargetAttr::ParsedTargetAttr ParseInfo = TA->parse();
9468   const TargetInfo &TargetInfo = S.Context.getTargetInfo();
9469   enum ErrType { Feature = 0, Architecture = 1 };
9470 
9471   if (!ParseInfo.Architecture.empty() &&
9472       !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
9473     S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9474         << Architecture << ParseInfo.Architecture;
9475     return true;
9476   }
9477 
9478   for (const auto &Feat : ParseInfo.Features) {
9479     auto BareFeat = StringRef{Feat}.substr(1);
9480     if (Feat[0] == '-') {
9481       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9482           << Feature << ("no-" + BareFeat).str();
9483       return true;
9484     }
9485 
9486     if (!TargetInfo.validateCpuSupports(BareFeat) ||
9487         !TargetInfo.isValidFeatureName(BareFeat)) {
9488       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9489           << Feature << BareFeat;
9490       return true;
9491     }
9492   }
9493   return false;
9494 }
9495 
9496 static bool HasNonMultiVersionAttributes(const FunctionDecl *FD,
9497                                          MultiVersionKind MVType) {
9498   for (const Attr *A : FD->attrs()) {
9499     switch (A->getKind()) {
9500     case attr::CPUDispatch:
9501     case attr::CPUSpecific:
9502       if (MVType != MultiVersionKind::CPUDispatch &&
9503           MVType != MultiVersionKind::CPUSpecific)
9504         return true;
9505       break;
9506     case attr::Target:
9507       if (MVType != MultiVersionKind::Target)
9508         return true;
9509       break;
9510     default:
9511       return true;
9512     }
9513   }
9514   return false;
9515 }
9516 
9517 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
9518                                              const FunctionDecl *NewFD,
9519                                              bool CausesMV,
9520                                              MultiVersionKind MVType) {
9521   enum DoesntSupport {
9522     FuncTemplates = 0,
9523     VirtFuncs = 1,
9524     DeducedReturn = 2,
9525     Constructors = 3,
9526     Destructors = 4,
9527     DeletedFuncs = 5,
9528     DefaultedFuncs = 6,
9529     ConstexprFuncs = 7,
9530   };
9531   enum Different {
9532     CallingConv = 0,
9533     ReturnType = 1,
9534     ConstexprSpec = 2,
9535     InlineSpec = 3,
9536     StorageClass = 4,
9537     Linkage = 5
9538   };
9539 
9540   bool IsCPUSpecificCPUDispatchMVType =
9541       MVType == MultiVersionKind::CPUDispatch ||
9542       MVType == MultiVersionKind::CPUSpecific;
9543 
9544   if (OldFD && !OldFD->getType()->getAs<FunctionProtoType>()) {
9545     S.Diag(OldFD->getLocation(), diag::err_multiversion_noproto);
9546     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9547     return true;
9548   }
9549 
9550   if (!NewFD->getType()->getAs<FunctionProtoType>())
9551     return S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto);
9552 
9553   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9554     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9555     if (OldFD)
9556       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9557     return true;
9558   }
9559 
9560   // For now, disallow all other attributes.  These should be opt-in, but
9561   // an analysis of all of them is a future FIXME.
9562   if (CausesMV && OldFD && HasNonMultiVersionAttributes(OldFD, MVType)) {
9563     S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs)
9564         << IsCPUSpecificCPUDispatchMVType;
9565     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9566     return true;
9567   }
9568 
9569   if (HasNonMultiVersionAttributes(NewFD, MVType))
9570     return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs)
9571            << IsCPUSpecificCPUDispatchMVType;
9572 
9573   if (NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
9574     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9575            << IsCPUSpecificCPUDispatchMVType << FuncTemplates;
9576 
9577   if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
9578     if (NewCXXFD->isVirtual())
9579       return S.Diag(NewCXXFD->getLocation(),
9580                     diag::err_multiversion_doesnt_support)
9581              << IsCPUSpecificCPUDispatchMVType << VirtFuncs;
9582 
9583     if (const auto *NewCXXCtor = dyn_cast<CXXConstructorDecl>(NewFD))
9584       return S.Diag(NewCXXCtor->getLocation(),
9585                     diag::err_multiversion_doesnt_support)
9586              << IsCPUSpecificCPUDispatchMVType << Constructors;
9587 
9588     if (const auto *NewCXXDtor = dyn_cast<CXXDestructorDecl>(NewFD))
9589       return S.Diag(NewCXXDtor->getLocation(),
9590                     diag::err_multiversion_doesnt_support)
9591              << IsCPUSpecificCPUDispatchMVType << Destructors;
9592   }
9593 
9594   if (NewFD->isDeleted())
9595     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9596            << IsCPUSpecificCPUDispatchMVType << DeletedFuncs;
9597 
9598   if (NewFD->isDefaulted())
9599     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9600            << IsCPUSpecificCPUDispatchMVType << DefaultedFuncs;
9601 
9602   if (NewFD->isConstexpr() && (MVType == MultiVersionKind::CPUDispatch ||
9603                                MVType == MultiVersionKind::CPUSpecific))
9604     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9605            << IsCPUSpecificCPUDispatchMVType << ConstexprFuncs;
9606 
9607   QualType NewQType = S.getASTContext().getCanonicalType(NewFD->getType());
9608   const auto *NewType = cast<FunctionType>(NewQType);
9609   QualType NewReturnType = NewType->getReturnType();
9610 
9611   if (NewReturnType->isUndeducedType())
9612     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9613            << IsCPUSpecificCPUDispatchMVType << DeducedReturn;
9614 
9615   // Only allow transition to MultiVersion if it hasn't been used.
9616   if (OldFD && CausesMV && OldFD->isUsed(false))
9617     return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
9618 
9619   // Ensure the return type is identical.
9620   if (OldFD) {
9621     QualType OldQType = S.getASTContext().getCanonicalType(OldFD->getType());
9622     const auto *OldType = cast<FunctionType>(OldQType);
9623     FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
9624     FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
9625 
9626     if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
9627       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9628              << CallingConv;
9629 
9630     QualType OldReturnType = OldType->getReturnType();
9631 
9632     if (OldReturnType != NewReturnType)
9633       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9634              << ReturnType;
9635 
9636     if (OldFD->isConstexpr() != NewFD->isConstexpr())
9637       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9638              << ConstexprSpec;
9639 
9640     if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
9641       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9642              << InlineSpec;
9643 
9644     if (OldFD->getStorageClass() != NewFD->getStorageClass())
9645       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9646              << StorageClass;
9647 
9648     if (OldFD->isExternC() != NewFD->isExternC())
9649       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9650              << Linkage;
9651 
9652     if (S.CheckEquivalentExceptionSpec(
9653             OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
9654             NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
9655       return true;
9656   }
9657   return false;
9658 }
9659 
9660 /// Check the validity of a multiversion function declaration that is the
9661 /// first of its kind. Also sets the multiversion'ness' of the function itself.
9662 ///
9663 /// This sets NewFD->isInvalidDecl() to true if there was an error.
9664 ///
9665 /// Returns true if there was an error, false otherwise.
9666 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
9667                                            MultiVersionKind MVType,
9668                                            const TargetAttr *TA) {
9669   assert(MVType != MultiVersionKind::None &&
9670          "Function lacks multiversion attribute");
9671 
9672   // Target only causes MV if it is default, otherwise this is a normal
9673   // function.
9674   if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
9675     return false;
9676 
9677   if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
9678     FD->setInvalidDecl();
9679     return true;
9680   }
9681 
9682   if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
9683     FD->setInvalidDecl();
9684     return true;
9685   }
9686 
9687   FD->setIsMultiVersion();
9688   return false;
9689 }
9690 
9691 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
9692   for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
9693     if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
9694       return true;
9695   }
9696 
9697   return false;
9698 }
9699 
9700 static bool CheckTargetCausesMultiVersioning(
9701     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
9702     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
9703     LookupResult &Previous) {
9704   const auto *OldTA = OldFD->getAttr<TargetAttr>();
9705   TargetAttr::ParsedTargetAttr NewParsed = NewTA->parse();
9706   // Sort order doesn't matter, it just needs to be consistent.
9707   llvm::sort(NewParsed.Features);
9708 
9709   // If the old decl is NOT MultiVersioned yet, and we don't cause that
9710   // to change, this is a simple redeclaration.
9711   if (!NewTA->isDefaultVersion() &&
9712       (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
9713     return false;
9714 
9715   // Otherwise, this decl causes MultiVersioning.
9716   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9717     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9718     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9719     NewFD->setInvalidDecl();
9720     return true;
9721   }
9722 
9723   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
9724                                        MultiVersionKind::Target)) {
9725     NewFD->setInvalidDecl();
9726     return true;
9727   }
9728 
9729   if (CheckMultiVersionValue(S, NewFD)) {
9730     NewFD->setInvalidDecl();
9731     return true;
9732   }
9733 
9734   // If this is 'default', permit the forward declaration.
9735   if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
9736     Redeclaration = true;
9737     OldDecl = OldFD;
9738     OldFD->setIsMultiVersion();
9739     NewFD->setIsMultiVersion();
9740     return false;
9741   }
9742 
9743   if (CheckMultiVersionValue(S, OldFD)) {
9744     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9745     NewFD->setInvalidDecl();
9746     return true;
9747   }
9748 
9749   TargetAttr::ParsedTargetAttr OldParsed =
9750       OldTA->parse(std::less<std::string>());
9751 
9752   if (OldParsed == NewParsed) {
9753     S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9754     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9755     NewFD->setInvalidDecl();
9756     return true;
9757   }
9758 
9759   for (const auto *FD : OldFD->redecls()) {
9760     const auto *CurTA = FD->getAttr<TargetAttr>();
9761     // We allow forward declarations before ANY multiversioning attributes, but
9762     // nothing after the fact.
9763     if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
9764         (!CurTA || CurTA->isInherited())) {
9765       S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
9766           << 0;
9767       S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9768       NewFD->setInvalidDecl();
9769       return true;
9770     }
9771   }
9772 
9773   OldFD->setIsMultiVersion();
9774   NewFD->setIsMultiVersion();
9775   Redeclaration = false;
9776   MergeTypeWithPrevious = false;
9777   OldDecl = nullptr;
9778   Previous.clear();
9779   return false;
9780 }
9781 
9782 /// Check the validity of a new function declaration being added to an existing
9783 /// multiversioned declaration collection.
9784 static bool CheckMultiVersionAdditionalDecl(
9785     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
9786     MultiVersionKind NewMVType, const TargetAttr *NewTA,
9787     const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
9788     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
9789     LookupResult &Previous) {
9790 
9791   MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
9792   // Disallow mixing of multiversioning types.
9793   if ((OldMVType == MultiVersionKind::Target &&
9794        NewMVType != MultiVersionKind::Target) ||
9795       (NewMVType == MultiVersionKind::Target &&
9796        OldMVType != MultiVersionKind::Target)) {
9797     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
9798     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9799     NewFD->setInvalidDecl();
9800     return true;
9801   }
9802 
9803   TargetAttr::ParsedTargetAttr NewParsed;
9804   if (NewTA) {
9805     NewParsed = NewTA->parse();
9806     llvm::sort(NewParsed.Features);
9807   }
9808 
9809   bool UseMemberUsingDeclRules =
9810       S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
9811 
9812   // Next, check ALL non-overloads to see if this is a redeclaration of a
9813   // previous member of the MultiVersion set.
9814   for (NamedDecl *ND : Previous) {
9815     FunctionDecl *CurFD = ND->getAsFunction();
9816     if (!CurFD)
9817       continue;
9818     if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
9819       continue;
9820 
9821     if (NewMVType == MultiVersionKind::Target) {
9822       const auto *CurTA = CurFD->getAttr<TargetAttr>();
9823       if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
9824         NewFD->setIsMultiVersion();
9825         Redeclaration = true;
9826         OldDecl = ND;
9827         return false;
9828       }
9829 
9830       TargetAttr::ParsedTargetAttr CurParsed =
9831           CurTA->parse(std::less<std::string>());
9832       if (CurParsed == NewParsed) {
9833         S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9834         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9835         NewFD->setInvalidDecl();
9836         return true;
9837       }
9838     } else {
9839       const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
9840       const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
9841       // Handle CPUDispatch/CPUSpecific versions.
9842       // Only 1 CPUDispatch function is allowed, this will make it go through
9843       // the redeclaration errors.
9844       if (NewMVType == MultiVersionKind::CPUDispatch &&
9845           CurFD->hasAttr<CPUDispatchAttr>()) {
9846         if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
9847             std::equal(
9848                 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
9849                 NewCPUDisp->cpus_begin(),
9850                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
9851                   return Cur->getName() == New->getName();
9852                 })) {
9853           NewFD->setIsMultiVersion();
9854           Redeclaration = true;
9855           OldDecl = ND;
9856           return false;
9857         }
9858 
9859         // If the declarations don't match, this is an error condition.
9860         S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
9861         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9862         NewFD->setInvalidDecl();
9863         return true;
9864       }
9865       if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
9866 
9867         if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
9868             std::equal(
9869                 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
9870                 NewCPUSpec->cpus_begin(),
9871                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
9872                   return Cur->getName() == New->getName();
9873                 })) {
9874           NewFD->setIsMultiVersion();
9875           Redeclaration = true;
9876           OldDecl = ND;
9877           return false;
9878         }
9879 
9880         // Only 1 version of CPUSpecific is allowed for each CPU.
9881         for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
9882           for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
9883             if (CurII == NewII) {
9884               S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
9885                   << NewII;
9886               S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9887               NewFD->setInvalidDecl();
9888               return true;
9889             }
9890           }
9891         }
9892       }
9893       // If the two decls aren't the same MVType, there is no possible error
9894       // condition.
9895     }
9896   }
9897 
9898   // Else, this is simply a non-redecl case.  Checking the 'value' is only
9899   // necessary in the Target case, since The CPUSpecific/Dispatch cases are
9900   // handled in the attribute adding step.
9901   if (NewMVType == MultiVersionKind::Target &&
9902       CheckMultiVersionValue(S, NewFD)) {
9903     NewFD->setInvalidDecl();
9904     return true;
9905   }
9906 
9907   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
9908                                        !OldFD->isMultiVersion(), NewMVType)) {
9909     NewFD->setInvalidDecl();
9910     return true;
9911   }
9912 
9913   // Permit forward declarations in the case where these two are compatible.
9914   if (!OldFD->isMultiVersion()) {
9915     OldFD->setIsMultiVersion();
9916     NewFD->setIsMultiVersion();
9917     Redeclaration = true;
9918     OldDecl = OldFD;
9919     return false;
9920   }
9921 
9922   NewFD->setIsMultiVersion();
9923   Redeclaration = false;
9924   MergeTypeWithPrevious = false;
9925   OldDecl = nullptr;
9926   Previous.clear();
9927   return false;
9928 }
9929 
9930 
9931 /// Check the validity of a mulitversion function declaration.
9932 /// Also sets the multiversion'ness' of the function itself.
9933 ///
9934 /// This sets NewFD->isInvalidDecl() to true if there was an error.
9935 ///
9936 /// Returns true if there was an error, false otherwise.
9937 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
9938                                       bool &Redeclaration, NamedDecl *&OldDecl,
9939                                       bool &MergeTypeWithPrevious,
9940                                       LookupResult &Previous) {
9941   const auto *NewTA = NewFD->getAttr<TargetAttr>();
9942   const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
9943   const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
9944 
9945   // Mixing Multiversioning types is prohibited.
9946   if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
9947       (NewCPUDisp && NewCPUSpec)) {
9948     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
9949     NewFD->setInvalidDecl();
9950     return true;
9951   }
9952 
9953   MultiVersionKind  MVType = NewFD->getMultiVersionKind();
9954 
9955   // Main isn't allowed to become a multiversion function, however it IS
9956   // permitted to have 'main' be marked with the 'target' optimization hint.
9957   if (NewFD->isMain()) {
9958     if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
9959         MVType == MultiVersionKind::CPUDispatch ||
9960         MVType == MultiVersionKind::CPUSpecific) {
9961       S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
9962       NewFD->setInvalidDecl();
9963       return true;
9964     }
9965     return false;
9966   }
9967 
9968   if (!OldDecl || !OldDecl->getAsFunction() ||
9969       OldDecl->getDeclContext()->getRedeclContext() !=
9970           NewFD->getDeclContext()->getRedeclContext()) {
9971     // If there's no previous declaration, AND this isn't attempting to cause
9972     // multiversioning, this isn't an error condition.
9973     if (MVType == MultiVersionKind::None)
9974       return false;
9975     return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA);
9976   }
9977 
9978   FunctionDecl *OldFD = OldDecl->getAsFunction();
9979 
9980   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
9981     return false;
9982 
9983   if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
9984     S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
9985         << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
9986     NewFD->setInvalidDecl();
9987     return true;
9988   }
9989 
9990   // Handle the target potentially causes multiversioning case.
9991   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
9992     return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
9993                                             Redeclaration, OldDecl,
9994                                             MergeTypeWithPrevious, Previous);
9995 
9996   // At this point, we have a multiversion function decl (in OldFD) AND an
9997   // appropriate attribute in the current function decl.  Resolve that these are
9998   // still compatible with previous declarations.
9999   return CheckMultiVersionAdditionalDecl(
10000       S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
10001       OldDecl, MergeTypeWithPrevious, Previous);
10002 }
10003 
10004 /// Perform semantic checking of a new function declaration.
10005 ///
10006 /// Performs semantic analysis of the new function declaration
10007 /// NewFD. This routine performs all semantic checking that does not
10008 /// require the actual declarator involved in the declaration, and is
10009 /// used both for the declaration of functions as they are parsed
10010 /// (called via ActOnDeclarator) and for the declaration of functions
10011 /// that have been instantiated via C++ template instantiation (called
10012 /// via InstantiateDecl).
10013 ///
10014 /// \param IsMemberSpecialization whether this new function declaration is
10015 /// a member specialization (that replaces any definition provided by the
10016 /// previous declaration).
10017 ///
10018 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10019 ///
10020 /// \returns true if the function declaration is a redeclaration.
10021 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
10022                                     LookupResult &Previous,
10023                                     bool IsMemberSpecialization) {
10024   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
10025          "Variably modified return types are not handled here");
10026 
10027   // Determine whether the type of this function should be merged with
10028   // a previous visible declaration. This never happens for functions in C++,
10029   // and always happens in C if the previous declaration was visible.
10030   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
10031                                !Previous.isShadowed();
10032 
10033   bool Redeclaration = false;
10034   NamedDecl *OldDecl = nullptr;
10035   bool MayNeedOverloadableChecks = false;
10036 
10037   // Merge or overload the declaration with an existing declaration of
10038   // the same name, if appropriate.
10039   if (!Previous.empty()) {
10040     // Determine whether NewFD is an overload of PrevDecl or
10041     // a declaration that requires merging. If it's an overload,
10042     // there's no more work to do here; we'll just add the new
10043     // function to the scope.
10044     if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
10045       NamedDecl *Candidate = Previous.getRepresentativeDecl();
10046       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
10047         Redeclaration = true;
10048         OldDecl = Candidate;
10049       }
10050     } else {
10051       MayNeedOverloadableChecks = true;
10052       switch (CheckOverload(S, NewFD, Previous, OldDecl,
10053                             /*NewIsUsingDecl*/ false)) {
10054       case Ovl_Match:
10055         Redeclaration = true;
10056         break;
10057 
10058       case Ovl_NonFunction:
10059         Redeclaration = true;
10060         break;
10061 
10062       case Ovl_Overload:
10063         Redeclaration = false;
10064         break;
10065       }
10066     }
10067   }
10068 
10069   // Check for a previous extern "C" declaration with this name.
10070   if (!Redeclaration &&
10071       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
10072     if (!Previous.empty()) {
10073       // This is an extern "C" declaration with the same name as a previous
10074       // declaration, and thus redeclares that entity...
10075       Redeclaration = true;
10076       OldDecl = Previous.getFoundDecl();
10077       MergeTypeWithPrevious = false;
10078 
10079       // ... except in the presence of __attribute__((overloadable)).
10080       if (OldDecl->hasAttr<OverloadableAttr>() ||
10081           NewFD->hasAttr<OverloadableAttr>()) {
10082         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
10083           MayNeedOverloadableChecks = true;
10084           Redeclaration = false;
10085           OldDecl = nullptr;
10086         }
10087       }
10088     }
10089   }
10090 
10091   if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10092                                 MergeTypeWithPrevious, Previous))
10093     return Redeclaration;
10094 
10095   // C++11 [dcl.constexpr]p8:
10096   //   A constexpr specifier for a non-static member function that is not
10097   //   a constructor declares that member function to be const.
10098   //
10099   // This needs to be delayed until we know whether this is an out-of-line
10100   // definition of a static member function.
10101   //
10102   // This rule is not present in C++1y, so we produce a backwards
10103   // compatibility warning whenever it happens in C++11.
10104   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10105   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10106       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10107       !MD->getMethodQualifiers().hasConst()) {
10108     CXXMethodDecl *OldMD = nullptr;
10109     if (OldDecl)
10110       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10111     if (!OldMD || !OldMD->isStatic()) {
10112       const FunctionProtoType *FPT =
10113         MD->getType()->castAs<FunctionProtoType>();
10114       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10115       EPI.TypeQuals.addConst();
10116       MD->setType(Context.getFunctionType(FPT->getReturnType(),
10117                                           FPT->getParamTypes(), EPI));
10118 
10119       // Warn that we did this, if we're not performing template instantiation.
10120       // In that case, we'll have warned already when the template was defined.
10121       if (!inTemplateInstantiation()) {
10122         SourceLocation AddConstLoc;
10123         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10124                 .IgnoreParens().getAs<FunctionTypeLoc>())
10125           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10126 
10127         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10128           << FixItHint::CreateInsertion(AddConstLoc, " const");
10129       }
10130     }
10131   }
10132 
10133   if (Redeclaration) {
10134     // NewFD and OldDecl represent declarations that need to be
10135     // merged.
10136     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10137       NewFD->setInvalidDecl();
10138       return Redeclaration;
10139     }
10140 
10141     Previous.clear();
10142     Previous.addDecl(OldDecl);
10143 
10144     if (FunctionTemplateDecl *OldTemplateDecl =
10145             dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10146       auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10147       FunctionTemplateDecl *NewTemplateDecl
10148         = NewFD->getDescribedFunctionTemplate();
10149       assert(NewTemplateDecl && "Template/non-template mismatch");
10150 
10151       // The call to MergeFunctionDecl above may have created some state in
10152       // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10153       // can add it as a redeclaration.
10154       NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10155 
10156       NewFD->setPreviousDeclaration(OldFD);
10157       adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10158       if (NewFD->isCXXClassMember()) {
10159         NewFD->setAccess(OldTemplateDecl->getAccess());
10160         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10161       }
10162 
10163       // If this is an explicit specialization of a member that is a function
10164       // template, mark it as a member specialization.
10165       if (IsMemberSpecialization &&
10166           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10167         NewTemplateDecl->setMemberSpecialization();
10168         assert(OldTemplateDecl->isMemberSpecialization());
10169         // Explicit specializations of a member template do not inherit deleted
10170         // status from the parent member template that they are specializing.
10171         if (OldFD->isDeleted()) {
10172           // FIXME: This assert will not hold in the presence of modules.
10173           assert(OldFD->getCanonicalDecl() == OldFD);
10174           // FIXME: We need an update record for this AST mutation.
10175           OldFD->setDeletedAsWritten(false);
10176         }
10177       }
10178 
10179     } else {
10180       if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10181         auto *OldFD = cast<FunctionDecl>(OldDecl);
10182         // This needs to happen first so that 'inline' propagates.
10183         NewFD->setPreviousDeclaration(OldFD);
10184         adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10185         if (NewFD->isCXXClassMember())
10186           NewFD->setAccess(OldFD->getAccess());
10187       }
10188     }
10189   } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10190              !NewFD->getAttr<OverloadableAttr>()) {
10191     assert((Previous.empty() ||
10192             llvm::any_of(Previous,
10193                          [](const NamedDecl *ND) {
10194                            return ND->hasAttr<OverloadableAttr>();
10195                          })) &&
10196            "Non-redecls shouldn't happen without overloadable present");
10197 
10198     auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10199       const auto *FD = dyn_cast<FunctionDecl>(ND);
10200       return FD && !FD->hasAttr<OverloadableAttr>();
10201     });
10202 
10203     if (OtherUnmarkedIter != Previous.end()) {
10204       Diag(NewFD->getLocation(),
10205            diag::err_attribute_overloadable_multiple_unmarked_overloads);
10206       Diag((*OtherUnmarkedIter)->getLocation(),
10207            diag::note_attribute_overloadable_prev_overload)
10208           << false;
10209 
10210       NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
10211     }
10212   }
10213 
10214   // Semantic checking for this function declaration (in isolation).
10215 
10216   if (getLangOpts().CPlusPlus) {
10217     // C++-specific checks.
10218     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
10219       CheckConstructor(Constructor);
10220     } else if (CXXDestructorDecl *Destructor =
10221                 dyn_cast<CXXDestructorDecl>(NewFD)) {
10222       CXXRecordDecl *Record = Destructor->getParent();
10223       QualType ClassType = Context.getTypeDeclType(Record);
10224 
10225       // FIXME: Shouldn't we be able to perform this check even when the class
10226       // type is dependent? Both gcc and edg can handle that.
10227       if (!ClassType->isDependentType()) {
10228         DeclarationName Name
10229           = Context.DeclarationNames.getCXXDestructorName(
10230                                         Context.getCanonicalType(ClassType));
10231         if (NewFD->getDeclName() != Name) {
10232           Diag(NewFD->getLocation(), diag::err_destructor_name);
10233           NewFD->setInvalidDecl();
10234           return Redeclaration;
10235         }
10236       }
10237     } else if (CXXConversionDecl *Conversion
10238                = dyn_cast<CXXConversionDecl>(NewFD)) {
10239       ActOnConversionDeclarator(Conversion);
10240     } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
10241       if (auto *TD = Guide->getDescribedFunctionTemplate())
10242         CheckDeductionGuideTemplate(TD);
10243 
10244       // A deduction guide is not on the list of entities that can be
10245       // explicitly specialized.
10246       if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
10247         Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
10248             << /*explicit specialization*/ 1;
10249     }
10250 
10251     // Find any virtual functions that this function overrides.
10252     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
10253       if (!Method->isFunctionTemplateSpecialization() &&
10254           !Method->getDescribedFunctionTemplate() &&
10255           Method->isCanonicalDecl()) {
10256         if (AddOverriddenMethods(Method->getParent(), Method)) {
10257           // If the function was marked as "static", we have a problem.
10258           if (NewFD->getStorageClass() == SC_Static) {
10259             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
10260           }
10261         }
10262       }
10263 
10264       if (Method->isStatic())
10265         checkThisInStaticMemberFunctionType(Method);
10266     }
10267 
10268     // Extra checking for C++ overloaded operators (C++ [over.oper]).
10269     if (NewFD->isOverloadedOperator() &&
10270         CheckOverloadedOperatorDeclaration(NewFD)) {
10271       NewFD->setInvalidDecl();
10272       return Redeclaration;
10273     }
10274 
10275     // Extra checking for C++0x literal operators (C++0x [over.literal]).
10276     if (NewFD->getLiteralIdentifier() &&
10277         CheckLiteralOperatorDeclaration(NewFD)) {
10278       NewFD->setInvalidDecl();
10279       return Redeclaration;
10280     }
10281 
10282     // In C++, check default arguments now that we have merged decls. Unless
10283     // the lexical context is the class, because in this case this is done
10284     // during delayed parsing anyway.
10285     if (!CurContext->isRecord())
10286       CheckCXXDefaultArguments(NewFD);
10287 
10288     // If this function declares a builtin function, check the type of this
10289     // declaration against the expected type for the builtin.
10290     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
10291       ASTContext::GetBuiltinTypeError Error;
10292       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
10293       QualType T = Context.GetBuiltinType(BuiltinID, Error);
10294       // If the type of the builtin differs only in its exception
10295       // specification, that's OK.
10296       // FIXME: If the types do differ in this way, it would be better to
10297       // retain the 'noexcept' form of the type.
10298       if (!T.isNull() &&
10299           !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
10300                                                             NewFD->getType()))
10301         // The type of this function differs from the type of the builtin,
10302         // so forget about the builtin entirely.
10303         Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
10304     }
10305 
10306     // If this function is declared as being extern "C", then check to see if
10307     // the function returns a UDT (class, struct, or union type) that is not C
10308     // compatible, and if it does, warn the user.
10309     // But, issue any diagnostic on the first declaration only.
10310     if (Previous.empty() && NewFD->isExternC()) {
10311       QualType R = NewFD->getReturnType();
10312       if (R->isIncompleteType() && !R->isVoidType())
10313         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
10314             << NewFD << R;
10315       else if (!R.isPODType(Context) && !R->isVoidType() &&
10316                !R->isObjCObjectPointerType())
10317         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
10318     }
10319 
10320     // C++1z [dcl.fct]p6:
10321     //   [...] whether the function has a non-throwing exception-specification
10322     //   [is] part of the function type
10323     //
10324     // This results in an ABI break between C++14 and C++17 for functions whose
10325     // declared type includes an exception-specification in a parameter or
10326     // return type. (Exception specifications on the function itself are OK in
10327     // most cases, and exception specifications are not permitted in most other
10328     // contexts where they could make it into a mangling.)
10329     if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
10330       auto HasNoexcept = [&](QualType T) -> bool {
10331         // Strip off declarator chunks that could be between us and a function
10332         // type. We don't need to look far, exception specifications are very
10333         // restricted prior to C++17.
10334         if (auto *RT = T->getAs<ReferenceType>())
10335           T = RT->getPointeeType();
10336         else if (T->isAnyPointerType())
10337           T = T->getPointeeType();
10338         else if (auto *MPT = T->getAs<MemberPointerType>())
10339           T = MPT->getPointeeType();
10340         if (auto *FPT = T->getAs<FunctionProtoType>())
10341           if (FPT->isNothrow())
10342             return true;
10343         return false;
10344       };
10345 
10346       auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
10347       bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
10348       for (QualType T : FPT->param_types())
10349         AnyNoexcept |= HasNoexcept(T);
10350       if (AnyNoexcept)
10351         Diag(NewFD->getLocation(),
10352              diag::warn_cxx17_compat_exception_spec_in_signature)
10353             << NewFD;
10354     }
10355 
10356     if (!Redeclaration && LangOpts.CUDA)
10357       checkCUDATargetOverload(NewFD, Previous);
10358   }
10359   return Redeclaration;
10360 }
10361 
10362 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
10363   // C++11 [basic.start.main]p3:
10364   //   A program that [...] declares main to be inline, static or
10365   //   constexpr is ill-formed.
10366   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
10367   //   appear in a declaration of main.
10368   // static main is not an error under C99, but we should warn about it.
10369   // We accept _Noreturn main as an extension.
10370   if (FD->getStorageClass() == SC_Static)
10371     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
10372          ? diag::err_static_main : diag::warn_static_main)
10373       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
10374   if (FD->isInlineSpecified())
10375     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
10376       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
10377   if (DS.isNoreturnSpecified()) {
10378     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
10379     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
10380     Diag(NoreturnLoc, diag::ext_noreturn_main);
10381     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
10382       << FixItHint::CreateRemoval(NoreturnRange);
10383   }
10384   if (FD->isConstexpr()) {
10385     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
10386       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
10387     FD->setConstexpr(false);
10388   }
10389 
10390   if (getLangOpts().OpenCL) {
10391     Diag(FD->getLocation(), diag::err_opencl_no_main)
10392         << FD->hasAttr<OpenCLKernelAttr>();
10393     FD->setInvalidDecl();
10394     return;
10395   }
10396 
10397   QualType T = FD->getType();
10398   assert(T->isFunctionType() && "function decl is not of function type");
10399   const FunctionType* FT = T->castAs<FunctionType>();
10400 
10401   // Set default calling convention for main()
10402   if (FT->getCallConv() != CC_C) {
10403     FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
10404     FD->setType(QualType(FT, 0));
10405     T = Context.getCanonicalType(FD->getType());
10406   }
10407 
10408   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
10409     // In C with GNU extensions we allow main() to have non-integer return
10410     // type, but we should warn about the extension, and we disable the
10411     // implicit-return-zero rule.
10412 
10413     // GCC in C mode accepts qualified 'int'.
10414     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
10415       FD->setHasImplicitReturnZero(true);
10416     else {
10417       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
10418       SourceRange RTRange = FD->getReturnTypeSourceRange();
10419       if (RTRange.isValid())
10420         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
10421             << FixItHint::CreateReplacement(RTRange, "int");
10422     }
10423   } else {
10424     // In C and C++, main magically returns 0 if you fall off the end;
10425     // set the flag which tells us that.
10426     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
10427 
10428     // All the standards say that main() should return 'int'.
10429     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
10430       FD->setHasImplicitReturnZero(true);
10431     else {
10432       // Otherwise, this is just a flat-out error.
10433       SourceRange RTRange = FD->getReturnTypeSourceRange();
10434       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
10435           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
10436                                 : FixItHint());
10437       FD->setInvalidDecl(true);
10438     }
10439   }
10440 
10441   // Treat protoless main() as nullary.
10442   if (isa<FunctionNoProtoType>(FT)) return;
10443 
10444   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
10445   unsigned nparams = FTP->getNumParams();
10446   assert(FD->getNumParams() == nparams);
10447 
10448   bool HasExtraParameters = (nparams > 3);
10449 
10450   if (FTP->isVariadic()) {
10451     Diag(FD->getLocation(), diag::ext_variadic_main);
10452     // FIXME: if we had information about the location of the ellipsis, we
10453     // could add a FixIt hint to remove it as a parameter.
10454   }
10455 
10456   // Darwin passes an undocumented fourth argument of type char**.  If
10457   // other platforms start sprouting these, the logic below will start
10458   // getting shifty.
10459   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
10460     HasExtraParameters = false;
10461 
10462   if (HasExtraParameters) {
10463     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
10464     FD->setInvalidDecl(true);
10465     nparams = 3;
10466   }
10467 
10468   // FIXME: a lot of the following diagnostics would be improved
10469   // if we had some location information about types.
10470 
10471   QualType CharPP =
10472     Context.getPointerType(Context.getPointerType(Context.CharTy));
10473   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
10474 
10475   for (unsigned i = 0; i < nparams; ++i) {
10476     QualType AT = FTP->getParamType(i);
10477 
10478     bool mismatch = true;
10479 
10480     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
10481       mismatch = false;
10482     else if (Expected[i] == CharPP) {
10483       // As an extension, the following forms are okay:
10484       //   char const **
10485       //   char const * const *
10486       //   char * const *
10487 
10488       QualifierCollector qs;
10489       const PointerType* PT;
10490       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
10491           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
10492           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
10493                               Context.CharTy)) {
10494         qs.removeConst();
10495         mismatch = !qs.empty();
10496       }
10497     }
10498 
10499     if (mismatch) {
10500       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
10501       // TODO: suggest replacing given type with expected type
10502       FD->setInvalidDecl(true);
10503     }
10504   }
10505 
10506   if (nparams == 1 && !FD->isInvalidDecl()) {
10507     Diag(FD->getLocation(), diag::warn_main_one_arg);
10508   }
10509 
10510   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10511     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10512     FD->setInvalidDecl();
10513   }
10514 }
10515 
10516 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
10517   QualType T = FD->getType();
10518   assert(T->isFunctionType() && "function decl is not of function type");
10519   const FunctionType *FT = T->castAs<FunctionType>();
10520 
10521   // Set an implicit return of 'zero' if the function can return some integral,
10522   // enumeration, pointer or nullptr type.
10523   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
10524       FT->getReturnType()->isAnyPointerType() ||
10525       FT->getReturnType()->isNullPtrType())
10526     // DllMain is exempt because a return value of zero means it failed.
10527     if (FD->getName() != "DllMain")
10528       FD->setHasImplicitReturnZero(true);
10529 
10530   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10531     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10532     FD->setInvalidDecl();
10533   }
10534 }
10535 
10536 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
10537   // FIXME: Need strict checking.  In C89, we need to check for
10538   // any assignment, increment, decrement, function-calls, or
10539   // commas outside of a sizeof.  In C99, it's the same list,
10540   // except that the aforementioned are allowed in unevaluated
10541   // expressions.  Everything else falls under the
10542   // "may accept other forms of constant expressions" exception.
10543   // (We never end up here for C++, so the constant expression
10544   // rules there don't matter.)
10545   const Expr *Culprit;
10546   if (Init->isConstantInitializer(Context, false, &Culprit))
10547     return false;
10548   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
10549     << Culprit->getSourceRange();
10550   return true;
10551 }
10552 
10553 namespace {
10554   // Visits an initialization expression to see if OrigDecl is evaluated in
10555   // its own initialization and throws a warning if it does.
10556   class SelfReferenceChecker
10557       : public EvaluatedExprVisitor<SelfReferenceChecker> {
10558     Sema &S;
10559     Decl *OrigDecl;
10560     bool isRecordType;
10561     bool isPODType;
10562     bool isReferenceType;
10563 
10564     bool isInitList;
10565     llvm::SmallVector<unsigned, 4> InitFieldIndex;
10566 
10567   public:
10568     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
10569 
10570     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
10571                                                     S(S), OrigDecl(OrigDecl) {
10572       isPODType = false;
10573       isRecordType = false;
10574       isReferenceType = false;
10575       isInitList = false;
10576       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
10577         isPODType = VD->getType().isPODType(S.Context);
10578         isRecordType = VD->getType()->isRecordType();
10579         isReferenceType = VD->getType()->isReferenceType();
10580       }
10581     }
10582 
10583     // For most expressions, just call the visitor.  For initializer lists,
10584     // track the index of the field being initialized since fields are
10585     // initialized in order allowing use of previously initialized fields.
10586     void CheckExpr(Expr *E) {
10587       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
10588       if (!InitList) {
10589         Visit(E);
10590         return;
10591       }
10592 
10593       // Track and increment the index here.
10594       isInitList = true;
10595       InitFieldIndex.push_back(0);
10596       for (auto Child : InitList->children()) {
10597         CheckExpr(cast<Expr>(Child));
10598         ++InitFieldIndex.back();
10599       }
10600       InitFieldIndex.pop_back();
10601     }
10602 
10603     // Returns true if MemberExpr is checked and no further checking is needed.
10604     // Returns false if additional checking is required.
10605     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
10606       llvm::SmallVector<FieldDecl*, 4> Fields;
10607       Expr *Base = E;
10608       bool ReferenceField = false;
10609 
10610       // Get the field members used.
10611       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10612         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
10613         if (!FD)
10614           return false;
10615         Fields.push_back(FD);
10616         if (FD->getType()->isReferenceType())
10617           ReferenceField = true;
10618         Base = ME->getBase()->IgnoreParenImpCasts();
10619       }
10620 
10621       // Keep checking only if the base Decl is the same.
10622       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
10623       if (!DRE || DRE->getDecl() != OrigDecl)
10624         return false;
10625 
10626       // A reference field can be bound to an unininitialized field.
10627       if (CheckReference && !ReferenceField)
10628         return true;
10629 
10630       // Convert FieldDecls to their index number.
10631       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
10632       for (const FieldDecl *I : llvm::reverse(Fields))
10633         UsedFieldIndex.push_back(I->getFieldIndex());
10634 
10635       // See if a warning is needed by checking the first difference in index
10636       // numbers.  If field being used has index less than the field being
10637       // initialized, then the use is safe.
10638       for (auto UsedIter = UsedFieldIndex.begin(),
10639                 UsedEnd = UsedFieldIndex.end(),
10640                 OrigIter = InitFieldIndex.begin(),
10641                 OrigEnd = InitFieldIndex.end();
10642            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
10643         if (*UsedIter < *OrigIter)
10644           return true;
10645         if (*UsedIter > *OrigIter)
10646           break;
10647       }
10648 
10649       // TODO: Add a different warning which will print the field names.
10650       HandleDeclRefExpr(DRE);
10651       return true;
10652     }
10653 
10654     // For most expressions, the cast is directly above the DeclRefExpr.
10655     // For conditional operators, the cast can be outside the conditional
10656     // operator if both expressions are DeclRefExpr's.
10657     void HandleValue(Expr *E) {
10658       E = E->IgnoreParens();
10659       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
10660         HandleDeclRefExpr(DRE);
10661         return;
10662       }
10663 
10664       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
10665         Visit(CO->getCond());
10666         HandleValue(CO->getTrueExpr());
10667         HandleValue(CO->getFalseExpr());
10668         return;
10669       }
10670 
10671       if (BinaryConditionalOperator *BCO =
10672               dyn_cast<BinaryConditionalOperator>(E)) {
10673         Visit(BCO->getCond());
10674         HandleValue(BCO->getFalseExpr());
10675         return;
10676       }
10677 
10678       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
10679         HandleValue(OVE->getSourceExpr());
10680         return;
10681       }
10682 
10683       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
10684         if (BO->getOpcode() == BO_Comma) {
10685           Visit(BO->getLHS());
10686           HandleValue(BO->getRHS());
10687           return;
10688         }
10689       }
10690 
10691       if (isa<MemberExpr>(E)) {
10692         if (isInitList) {
10693           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
10694                                       false /*CheckReference*/))
10695             return;
10696         }
10697 
10698         Expr *Base = E->IgnoreParenImpCasts();
10699         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10700           // Check for static member variables and don't warn on them.
10701           if (!isa<FieldDecl>(ME->getMemberDecl()))
10702             return;
10703           Base = ME->getBase()->IgnoreParenImpCasts();
10704         }
10705         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
10706           HandleDeclRefExpr(DRE);
10707         return;
10708       }
10709 
10710       Visit(E);
10711     }
10712 
10713     // Reference types not handled in HandleValue are handled here since all
10714     // uses of references are bad, not just r-value uses.
10715     void VisitDeclRefExpr(DeclRefExpr *E) {
10716       if (isReferenceType)
10717         HandleDeclRefExpr(E);
10718     }
10719 
10720     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
10721       if (E->getCastKind() == CK_LValueToRValue) {
10722         HandleValue(E->getSubExpr());
10723         return;
10724       }
10725 
10726       Inherited::VisitImplicitCastExpr(E);
10727     }
10728 
10729     void VisitMemberExpr(MemberExpr *E) {
10730       if (isInitList) {
10731         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
10732           return;
10733       }
10734 
10735       // Don't warn on arrays since they can be treated as pointers.
10736       if (E->getType()->canDecayToPointerType()) return;
10737 
10738       // Warn when a non-static method call is followed by non-static member
10739       // field accesses, which is followed by a DeclRefExpr.
10740       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
10741       bool Warn = (MD && !MD->isStatic());
10742       Expr *Base = E->getBase()->IgnoreParenImpCasts();
10743       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10744         if (!isa<FieldDecl>(ME->getMemberDecl()))
10745           Warn = false;
10746         Base = ME->getBase()->IgnoreParenImpCasts();
10747       }
10748 
10749       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
10750         if (Warn)
10751           HandleDeclRefExpr(DRE);
10752         return;
10753       }
10754 
10755       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
10756       // Visit that expression.
10757       Visit(Base);
10758     }
10759 
10760     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
10761       Expr *Callee = E->getCallee();
10762 
10763       if (isa<UnresolvedLookupExpr>(Callee))
10764         return Inherited::VisitCXXOperatorCallExpr(E);
10765 
10766       Visit(Callee);
10767       for (auto Arg: E->arguments())
10768         HandleValue(Arg->IgnoreParenImpCasts());
10769     }
10770 
10771     void VisitUnaryOperator(UnaryOperator *E) {
10772       // For POD record types, addresses of its own members are well-defined.
10773       if (E->getOpcode() == UO_AddrOf && isRecordType &&
10774           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
10775         if (!isPODType)
10776           HandleValue(E->getSubExpr());
10777         return;
10778       }
10779 
10780       if (E->isIncrementDecrementOp()) {
10781         HandleValue(E->getSubExpr());
10782         return;
10783       }
10784 
10785       Inherited::VisitUnaryOperator(E);
10786     }
10787 
10788     void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
10789 
10790     void VisitCXXConstructExpr(CXXConstructExpr *E) {
10791       if (E->getConstructor()->isCopyConstructor()) {
10792         Expr *ArgExpr = E->getArg(0);
10793         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
10794           if (ILE->getNumInits() == 1)
10795             ArgExpr = ILE->getInit(0);
10796         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
10797           if (ICE->getCastKind() == CK_NoOp)
10798             ArgExpr = ICE->getSubExpr();
10799         HandleValue(ArgExpr);
10800         return;
10801       }
10802       Inherited::VisitCXXConstructExpr(E);
10803     }
10804 
10805     void VisitCallExpr(CallExpr *E) {
10806       // Treat std::move as a use.
10807       if (E->isCallToStdMove()) {
10808         HandleValue(E->getArg(0));
10809         return;
10810       }
10811 
10812       Inherited::VisitCallExpr(E);
10813     }
10814 
10815     void VisitBinaryOperator(BinaryOperator *E) {
10816       if (E->isCompoundAssignmentOp()) {
10817         HandleValue(E->getLHS());
10818         Visit(E->getRHS());
10819         return;
10820       }
10821 
10822       Inherited::VisitBinaryOperator(E);
10823     }
10824 
10825     // A custom visitor for BinaryConditionalOperator is needed because the
10826     // regular visitor would check the condition and true expression separately
10827     // but both point to the same place giving duplicate diagnostics.
10828     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
10829       Visit(E->getCond());
10830       Visit(E->getFalseExpr());
10831     }
10832 
10833     void HandleDeclRefExpr(DeclRefExpr *DRE) {
10834       Decl* ReferenceDecl = DRE->getDecl();
10835       if (OrigDecl != ReferenceDecl) return;
10836       unsigned diag;
10837       if (isReferenceType) {
10838         diag = diag::warn_uninit_self_reference_in_reference_init;
10839       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
10840         diag = diag::warn_static_self_reference_in_init;
10841       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
10842                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
10843                  DRE->getDecl()->getType()->isRecordType()) {
10844         diag = diag::warn_uninit_self_reference_in_init;
10845       } else {
10846         // Local variables will be handled by the CFG analysis.
10847         return;
10848       }
10849 
10850       S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
10851                             S.PDiag(diag)
10852                                 << DRE->getDecl() << OrigDecl->getLocation()
10853                                 << DRE->getSourceRange());
10854     }
10855   };
10856 
10857   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
10858   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
10859                                  bool DirectInit) {
10860     // Parameters arguments are occassionially constructed with itself,
10861     // for instance, in recursive functions.  Skip them.
10862     if (isa<ParmVarDecl>(OrigDecl))
10863       return;
10864 
10865     E = E->IgnoreParens();
10866 
10867     // Skip checking T a = a where T is not a record or reference type.
10868     // Doing so is a way to silence uninitialized warnings.
10869     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
10870       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
10871         if (ICE->getCastKind() == CK_LValueToRValue)
10872           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
10873             if (DRE->getDecl() == OrigDecl)
10874               return;
10875 
10876     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
10877   }
10878 } // end anonymous namespace
10879 
10880 namespace {
10881   // Simple wrapper to add the name of a variable or (if no variable is
10882   // available) a DeclarationName into a diagnostic.
10883   struct VarDeclOrName {
10884     VarDecl *VDecl;
10885     DeclarationName Name;
10886 
10887     friend const Sema::SemaDiagnosticBuilder &
10888     operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
10889       return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
10890     }
10891   };
10892 } // end anonymous namespace
10893 
10894 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
10895                                             DeclarationName Name, QualType Type,
10896                                             TypeSourceInfo *TSI,
10897                                             SourceRange Range, bool DirectInit,
10898                                             Expr *Init) {
10899   bool IsInitCapture = !VDecl;
10900   assert((!VDecl || !VDecl->isInitCapture()) &&
10901          "init captures are expected to be deduced prior to initialization");
10902 
10903   VarDeclOrName VN{VDecl, Name};
10904 
10905   DeducedType *Deduced = Type->getContainedDeducedType();
10906   assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
10907 
10908   // C++11 [dcl.spec.auto]p3
10909   if (!Init) {
10910     assert(VDecl && "no init for init capture deduction?");
10911 
10912     // Except for class argument deduction, and then for an initializing
10913     // declaration only, i.e. no static at class scope or extern.
10914     if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
10915         VDecl->hasExternalStorage() ||
10916         VDecl->isStaticDataMember()) {
10917       Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
10918         << VDecl->getDeclName() << Type;
10919       return QualType();
10920     }
10921   }
10922 
10923   ArrayRef<Expr*> DeduceInits;
10924   if (Init)
10925     DeduceInits = Init;
10926 
10927   if (DirectInit) {
10928     if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
10929       DeduceInits = PL->exprs();
10930   }
10931 
10932   if (isa<DeducedTemplateSpecializationType>(Deduced)) {
10933     assert(VDecl && "non-auto type for init capture deduction?");
10934     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
10935     InitializationKind Kind = InitializationKind::CreateForInit(
10936         VDecl->getLocation(), DirectInit, Init);
10937     // FIXME: Initialization should not be taking a mutable list of inits.
10938     SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
10939     return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
10940                                                        InitsCopy);
10941   }
10942 
10943   if (DirectInit) {
10944     if (auto *IL = dyn_cast<InitListExpr>(Init))
10945       DeduceInits = IL->inits();
10946   }
10947 
10948   // Deduction only works if we have exactly one source expression.
10949   if (DeduceInits.empty()) {
10950     // It isn't possible to write this directly, but it is possible to
10951     // end up in this situation with "auto x(some_pack...);"
10952     Diag(Init->getBeginLoc(), IsInitCapture
10953                                   ? diag::err_init_capture_no_expression
10954                                   : diag::err_auto_var_init_no_expression)
10955         << VN << Type << Range;
10956     return QualType();
10957   }
10958 
10959   if (DeduceInits.size() > 1) {
10960     Diag(DeduceInits[1]->getBeginLoc(),
10961          IsInitCapture ? diag::err_init_capture_multiple_expressions
10962                        : diag::err_auto_var_init_multiple_expressions)
10963         << VN << Type << Range;
10964     return QualType();
10965   }
10966 
10967   Expr *DeduceInit = DeduceInits[0];
10968   if (DirectInit && isa<InitListExpr>(DeduceInit)) {
10969     Diag(Init->getBeginLoc(), IsInitCapture
10970                                   ? diag::err_init_capture_paren_braces
10971                                   : diag::err_auto_var_init_paren_braces)
10972         << isa<InitListExpr>(Init) << VN << Type << Range;
10973     return QualType();
10974   }
10975 
10976   // Expressions default to 'id' when we're in a debugger.
10977   bool DefaultedAnyToId = false;
10978   if (getLangOpts().DebuggerCastResultToId &&
10979       Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
10980     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
10981     if (Result.isInvalid()) {
10982       return QualType();
10983     }
10984     Init = Result.get();
10985     DefaultedAnyToId = true;
10986   }
10987 
10988   // C++ [dcl.decomp]p1:
10989   //   If the assignment-expression [...] has array type A and no ref-qualifier
10990   //   is present, e has type cv A
10991   if (VDecl && isa<DecompositionDecl>(VDecl) &&
10992       Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
10993       DeduceInit->getType()->isConstantArrayType())
10994     return Context.getQualifiedType(DeduceInit->getType(),
10995                                     Type.getQualifiers());
10996 
10997   QualType DeducedType;
10998   if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
10999     if (!IsInitCapture)
11000       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
11001     else if (isa<InitListExpr>(Init))
11002       Diag(Range.getBegin(),
11003            diag::err_init_capture_deduction_failure_from_init_list)
11004           << VN
11005           << (DeduceInit->getType().isNull() ? TSI->getType()
11006                                              : DeduceInit->getType())
11007           << DeduceInit->getSourceRange();
11008     else
11009       Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
11010           << VN << TSI->getType()
11011           << (DeduceInit->getType().isNull() ? TSI->getType()
11012                                              : DeduceInit->getType())
11013           << DeduceInit->getSourceRange();
11014   }
11015 
11016   // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
11017   // 'id' instead of a specific object type prevents most of our usual
11018   // checks.
11019   // We only want to warn outside of template instantiations, though:
11020   // inside a template, the 'id' could have come from a parameter.
11021   if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
11022       !DeducedType.isNull() && DeducedType->isObjCIdType()) {
11023     SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
11024     Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
11025   }
11026 
11027   return DeducedType;
11028 }
11029 
11030 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
11031                                          Expr *Init) {
11032   QualType DeducedType = deduceVarTypeFromInitializer(
11033       VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
11034       VDecl->getSourceRange(), DirectInit, Init);
11035   if (DeducedType.isNull()) {
11036     VDecl->setInvalidDecl();
11037     return true;
11038   }
11039 
11040   VDecl->setType(DeducedType);
11041   assert(VDecl->isLinkageValid());
11042 
11043   // In ARC, infer lifetime.
11044   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
11045     VDecl->setInvalidDecl();
11046 
11047   // If this is a redeclaration, check that the type we just deduced matches
11048   // the previously declared type.
11049   if (VarDecl *Old = VDecl->getPreviousDecl()) {
11050     // We never need to merge the type, because we cannot form an incomplete
11051     // array of auto, nor deduce such a type.
11052     MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
11053   }
11054 
11055   // Check the deduced type is valid for a variable declaration.
11056   CheckVariableDeclarationType(VDecl);
11057   return VDecl->isInvalidDecl();
11058 }
11059 
11060 /// AddInitializerToDecl - Adds the initializer Init to the
11061 /// declaration dcl. If DirectInit is true, this is C++ direct
11062 /// initialization rather than copy initialization.
11063 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
11064   // If there is no declaration, there was an error parsing it.  Just ignore
11065   // the initializer.
11066   if (!RealDecl || RealDecl->isInvalidDecl()) {
11067     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
11068     return;
11069   }
11070 
11071   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
11072     // Pure-specifiers are handled in ActOnPureSpecifier.
11073     Diag(Method->getLocation(), diag::err_member_function_initialization)
11074       << Method->getDeclName() << Init->getSourceRange();
11075     Method->setInvalidDecl();
11076     return;
11077   }
11078 
11079   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
11080   if (!VDecl) {
11081     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
11082     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
11083     RealDecl->setInvalidDecl();
11084     return;
11085   }
11086 
11087   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
11088   if (VDecl->getType()->isUndeducedType()) {
11089     // Attempt typo correction early so that the type of the init expression can
11090     // be deduced based on the chosen correction if the original init contains a
11091     // TypoExpr.
11092     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
11093     if (!Res.isUsable()) {
11094       RealDecl->setInvalidDecl();
11095       return;
11096     }
11097     Init = Res.get();
11098 
11099     if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
11100       return;
11101   }
11102 
11103   // dllimport cannot be used on variable definitions.
11104   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
11105     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
11106     VDecl->setInvalidDecl();
11107     return;
11108   }
11109 
11110   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
11111     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
11112     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
11113     VDecl->setInvalidDecl();
11114     return;
11115   }
11116 
11117   if (!VDecl->getType()->isDependentType()) {
11118     // A definition must end up with a complete type, which means it must be
11119     // complete with the restriction that an array type might be completed by
11120     // the initializer; note that later code assumes this restriction.
11121     QualType BaseDeclType = VDecl->getType();
11122     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
11123       BaseDeclType = Array->getElementType();
11124     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
11125                             diag::err_typecheck_decl_incomplete_type)) {
11126       RealDecl->setInvalidDecl();
11127       return;
11128     }
11129 
11130     // The variable can not have an abstract class type.
11131     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
11132                                diag::err_abstract_type_in_decl,
11133                                AbstractVariableType))
11134       VDecl->setInvalidDecl();
11135   }
11136 
11137   // If adding the initializer will turn this declaration into a definition,
11138   // and we already have a definition for this variable, diagnose or otherwise
11139   // handle the situation.
11140   VarDecl *Def;
11141   if ((Def = VDecl->getDefinition()) && Def != VDecl &&
11142       (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
11143       !VDecl->isThisDeclarationADemotedDefinition() &&
11144       checkVarDeclRedefinition(Def, VDecl))
11145     return;
11146 
11147   if (getLangOpts().CPlusPlus) {
11148     // C++ [class.static.data]p4
11149     //   If a static data member is of const integral or const
11150     //   enumeration type, its declaration in the class definition can
11151     //   specify a constant-initializer which shall be an integral
11152     //   constant expression (5.19). In that case, the member can appear
11153     //   in integral constant expressions. The member shall still be
11154     //   defined in a namespace scope if it is used in the program and the
11155     //   namespace scope definition shall not contain an initializer.
11156     //
11157     // We already performed a redefinition check above, but for static
11158     // data members we also need to check whether there was an in-class
11159     // declaration with an initializer.
11160     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
11161       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
11162           << VDecl->getDeclName();
11163       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
11164            diag::note_previous_initializer)
11165           << 0;
11166       return;
11167     }
11168 
11169     if (VDecl->hasLocalStorage())
11170       setFunctionHasBranchProtectedScope();
11171 
11172     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
11173       VDecl->setInvalidDecl();
11174       return;
11175     }
11176   }
11177 
11178   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
11179   // a kernel function cannot be initialized."
11180   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
11181     Diag(VDecl->getLocation(), diag::err_local_cant_init);
11182     VDecl->setInvalidDecl();
11183     return;
11184   }
11185 
11186   // Get the decls type and save a reference for later, since
11187   // CheckInitializerTypes may change it.
11188   QualType DclT = VDecl->getType(), SavT = DclT;
11189 
11190   // Expressions default to 'id' when we're in a debugger
11191   // and we are assigning it to a variable of Objective-C pointer type.
11192   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
11193       Init->getType() == Context.UnknownAnyTy) {
11194     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11195     if (Result.isInvalid()) {
11196       VDecl->setInvalidDecl();
11197       return;
11198     }
11199     Init = Result.get();
11200   }
11201 
11202   // Perform the initialization.
11203   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
11204   if (!VDecl->isInvalidDecl()) {
11205     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11206     InitializationKind Kind = InitializationKind::CreateForInit(
11207         VDecl->getLocation(), DirectInit, Init);
11208 
11209     MultiExprArg Args = Init;
11210     if (CXXDirectInit)
11211       Args = MultiExprArg(CXXDirectInit->getExprs(),
11212                           CXXDirectInit->getNumExprs());
11213 
11214     // Try to correct any TypoExprs in the initialization arguments.
11215     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
11216       ExprResult Res = CorrectDelayedTyposInExpr(
11217           Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
11218             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
11219             return Init.Failed() ? ExprError() : E;
11220           });
11221       if (Res.isInvalid()) {
11222         VDecl->setInvalidDecl();
11223       } else if (Res.get() != Args[Idx]) {
11224         Args[Idx] = Res.get();
11225       }
11226     }
11227     if (VDecl->isInvalidDecl())
11228       return;
11229 
11230     InitializationSequence InitSeq(*this, Entity, Kind, Args,
11231                                    /*TopLevelOfInitList=*/false,
11232                                    /*TreatUnavailableAsInvalid=*/false);
11233     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
11234     if (Result.isInvalid()) {
11235       VDecl->setInvalidDecl();
11236       return;
11237     }
11238 
11239     Init = Result.getAs<Expr>();
11240   }
11241 
11242   // Check for self-references within variable initializers.
11243   // Variables declared within a function/method body (except for references)
11244   // are handled by a dataflow analysis.
11245   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
11246       VDecl->getType()->isReferenceType()) {
11247     CheckSelfReference(*this, RealDecl, Init, DirectInit);
11248   }
11249 
11250   // If the type changed, it means we had an incomplete type that was
11251   // completed by the initializer. For example:
11252   //   int ary[] = { 1, 3, 5 };
11253   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
11254   if (!VDecl->isInvalidDecl() && (DclT != SavT))
11255     VDecl->setType(DclT);
11256 
11257   if (!VDecl->isInvalidDecl()) {
11258     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
11259 
11260     if (VDecl->hasAttr<BlocksAttr>())
11261       checkRetainCycles(VDecl, Init);
11262 
11263     // It is safe to assign a weak reference into a strong variable.
11264     // Although this code can still have problems:
11265     //   id x = self.weakProp;
11266     //   id y = self.weakProp;
11267     // we do not warn to warn spuriously when 'x' and 'y' are on separate
11268     // paths through the function. This should be revisited if
11269     // -Wrepeated-use-of-weak is made flow-sensitive.
11270     if (FunctionScopeInfo *FSI = getCurFunction())
11271       if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
11272            VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
11273           !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
11274                            Init->getBeginLoc()))
11275         FSI->markSafeWeakUse(Init);
11276   }
11277 
11278   // The initialization is usually a full-expression.
11279   //
11280   // FIXME: If this is a braced initialization of an aggregate, it is not
11281   // an expression, and each individual field initializer is a separate
11282   // full-expression. For instance, in:
11283   //
11284   //   struct Temp { ~Temp(); };
11285   //   struct S { S(Temp); };
11286   //   struct T { S a, b; } t = { Temp(), Temp() }
11287   //
11288   // we should destroy the first Temp before constructing the second.
11289   ExprResult Result =
11290       ActOnFinishFullExpr(Init, VDecl->getLocation(),
11291                           /*DiscardedValue*/ false, VDecl->isConstexpr());
11292   if (Result.isInvalid()) {
11293     VDecl->setInvalidDecl();
11294     return;
11295   }
11296   Init = Result.get();
11297 
11298   // Attach the initializer to the decl.
11299   VDecl->setInit(Init);
11300 
11301   if (VDecl->isLocalVarDecl()) {
11302     // Don't check the initializer if the declaration is malformed.
11303     if (VDecl->isInvalidDecl()) {
11304       // do nothing
11305 
11306     // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
11307     // This is true even in OpenCL C++.
11308     } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
11309       CheckForConstantInitializer(Init, DclT);
11310 
11311     // Otherwise, C++ does not restrict the initializer.
11312     } else if (getLangOpts().CPlusPlus) {
11313       // do nothing
11314 
11315     // C99 6.7.8p4: All the expressions in an initializer for an object that has
11316     // static storage duration shall be constant expressions or string literals.
11317     } else if (VDecl->getStorageClass() == SC_Static) {
11318       CheckForConstantInitializer(Init, DclT);
11319 
11320     // C89 is stricter than C99 for aggregate initializers.
11321     // C89 6.5.7p3: All the expressions [...] in an initializer list
11322     // for an object that has aggregate or union type shall be
11323     // constant expressions.
11324     } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
11325                isa<InitListExpr>(Init)) {
11326       const Expr *Culprit;
11327       if (!Init->isConstantInitializer(Context, false, &Culprit)) {
11328         Diag(Culprit->getExprLoc(),
11329              diag::ext_aggregate_init_not_constant)
11330           << Culprit->getSourceRange();
11331       }
11332     }
11333 
11334     if (auto *E = dyn_cast<ExprWithCleanups>(Init))
11335       if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
11336         if (VDecl->hasLocalStorage())
11337           BE->getBlockDecl()->setCanAvoidCopyToHeap();
11338   } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
11339              VDecl->getLexicalDeclContext()->isRecord()) {
11340     // This is an in-class initialization for a static data member, e.g.,
11341     //
11342     // struct S {
11343     //   static const int value = 17;
11344     // };
11345 
11346     // C++ [class.mem]p4:
11347     //   A member-declarator can contain a constant-initializer only
11348     //   if it declares a static member (9.4) of const integral or
11349     //   const enumeration type, see 9.4.2.
11350     //
11351     // C++11 [class.static.data]p3:
11352     //   If a non-volatile non-inline const static data member is of integral
11353     //   or enumeration type, its declaration in the class definition can
11354     //   specify a brace-or-equal-initializer in which every initializer-clause
11355     //   that is an assignment-expression is a constant expression. A static
11356     //   data member of literal type can be declared in the class definition
11357     //   with the constexpr specifier; if so, its declaration shall specify a
11358     //   brace-or-equal-initializer in which every initializer-clause that is
11359     //   an assignment-expression is a constant expression.
11360 
11361     // Do nothing on dependent types.
11362     if (DclT->isDependentType()) {
11363 
11364     // Allow any 'static constexpr' members, whether or not they are of literal
11365     // type. We separately check that every constexpr variable is of literal
11366     // type.
11367     } else if (VDecl->isConstexpr()) {
11368 
11369     // Require constness.
11370     } else if (!DclT.isConstQualified()) {
11371       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
11372         << Init->getSourceRange();
11373       VDecl->setInvalidDecl();
11374 
11375     // We allow integer constant expressions in all cases.
11376     } else if (DclT->isIntegralOrEnumerationType()) {
11377       // Check whether the expression is a constant expression.
11378       SourceLocation Loc;
11379       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
11380         // In C++11, a non-constexpr const static data member with an
11381         // in-class initializer cannot be volatile.
11382         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
11383       else if (Init->isValueDependent())
11384         ; // Nothing to check.
11385       else if (Init->isIntegerConstantExpr(Context, &Loc))
11386         ; // Ok, it's an ICE!
11387       else if (Init->getType()->isScopedEnumeralType() &&
11388                Init->isCXX11ConstantExpr(Context))
11389         ; // Ok, it is a scoped-enum constant expression.
11390       else if (Init->isEvaluatable(Context)) {
11391         // If we can constant fold the initializer through heroics, accept it,
11392         // but report this as a use of an extension for -pedantic.
11393         Diag(Loc, diag::ext_in_class_initializer_non_constant)
11394           << Init->getSourceRange();
11395       } else {
11396         // Otherwise, this is some crazy unknown case.  Report the issue at the
11397         // location provided by the isIntegerConstantExpr failed check.
11398         Diag(Loc, diag::err_in_class_initializer_non_constant)
11399           << Init->getSourceRange();
11400         VDecl->setInvalidDecl();
11401       }
11402 
11403     // We allow foldable floating-point constants as an extension.
11404     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
11405       // In C++98, this is a GNU extension. In C++11, it is not, but we support
11406       // it anyway and provide a fixit to add the 'constexpr'.
11407       if (getLangOpts().CPlusPlus11) {
11408         Diag(VDecl->getLocation(),
11409              diag::ext_in_class_initializer_float_type_cxx11)
11410             << DclT << Init->getSourceRange();
11411         Diag(VDecl->getBeginLoc(),
11412              diag::note_in_class_initializer_float_type_cxx11)
11413             << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
11414       } else {
11415         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
11416           << DclT << Init->getSourceRange();
11417 
11418         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
11419           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
11420             << Init->getSourceRange();
11421           VDecl->setInvalidDecl();
11422         }
11423       }
11424 
11425     // Suggest adding 'constexpr' in C++11 for literal types.
11426     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
11427       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
11428           << DclT << Init->getSourceRange()
11429           << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
11430       VDecl->setConstexpr(true);
11431 
11432     } else {
11433       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
11434         << DclT << Init->getSourceRange();
11435       VDecl->setInvalidDecl();
11436     }
11437   } else if (VDecl->isFileVarDecl()) {
11438     // In C, extern is typically used to avoid tentative definitions when
11439     // declaring variables in headers, but adding an intializer makes it a
11440     // definition. This is somewhat confusing, so GCC and Clang both warn on it.
11441     // In C++, extern is often used to give implictly static const variables
11442     // external linkage, so don't warn in that case. If selectany is present,
11443     // this might be header code intended for C and C++ inclusion, so apply the
11444     // C++ rules.
11445     if (VDecl->getStorageClass() == SC_Extern &&
11446         ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
11447          !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
11448         !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
11449         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
11450       Diag(VDecl->getLocation(), diag::warn_extern_init);
11451 
11452     // In Microsoft C++ mode, a const variable defined in namespace scope has
11453     // external linkage by default if the variable is declared with
11454     // __declspec(dllexport).
11455     if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11456         getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
11457         VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
11458       VDecl->setStorageClass(SC_Extern);
11459 
11460     // C99 6.7.8p4. All file scoped initializers need to be constant.
11461     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
11462       CheckForConstantInitializer(Init, DclT);
11463   }
11464 
11465   // We will represent direct-initialization similarly to copy-initialization:
11466   //    int x(1);  -as-> int x = 1;
11467   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
11468   //
11469   // Clients that want to distinguish between the two forms, can check for
11470   // direct initializer using VarDecl::getInitStyle().
11471   // A major benefit is that clients that don't particularly care about which
11472   // exactly form was it (like the CodeGen) can handle both cases without
11473   // special case code.
11474 
11475   // C++ 8.5p11:
11476   // The form of initialization (using parentheses or '=') is generally
11477   // insignificant, but does matter when the entity being initialized has a
11478   // class type.
11479   if (CXXDirectInit) {
11480     assert(DirectInit && "Call-style initializer must be direct init.");
11481     VDecl->setInitStyle(VarDecl::CallInit);
11482   } else if (DirectInit) {
11483     // This must be list-initialization. No other way is direct-initialization.
11484     VDecl->setInitStyle(VarDecl::ListInit);
11485   }
11486 
11487   CheckCompleteVariableDeclaration(VDecl);
11488 }
11489 
11490 /// ActOnInitializerError - Given that there was an error parsing an
11491 /// initializer for the given declaration, try to return to some form
11492 /// of sanity.
11493 void Sema::ActOnInitializerError(Decl *D) {
11494   // Our main concern here is re-establishing invariants like "a
11495   // variable's type is either dependent or complete".
11496   if (!D || D->isInvalidDecl()) return;
11497 
11498   VarDecl *VD = dyn_cast<VarDecl>(D);
11499   if (!VD) return;
11500 
11501   // Bindings are not usable if we can't make sense of the initializer.
11502   if (auto *DD = dyn_cast<DecompositionDecl>(D))
11503     for (auto *BD : DD->bindings())
11504       BD->setInvalidDecl();
11505 
11506   // Auto types are meaningless if we can't make sense of the initializer.
11507   if (ParsingInitForAutoVars.count(D)) {
11508     D->setInvalidDecl();
11509     return;
11510   }
11511 
11512   QualType Ty = VD->getType();
11513   if (Ty->isDependentType()) return;
11514 
11515   // Require a complete type.
11516   if (RequireCompleteType(VD->getLocation(),
11517                           Context.getBaseElementType(Ty),
11518                           diag::err_typecheck_decl_incomplete_type)) {
11519     VD->setInvalidDecl();
11520     return;
11521   }
11522 
11523   // Require a non-abstract type.
11524   if (RequireNonAbstractType(VD->getLocation(), Ty,
11525                              diag::err_abstract_type_in_decl,
11526                              AbstractVariableType)) {
11527     VD->setInvalidDecl();
11528     return;
11529   }
11530 
11531   // Don't bother complaining about constructors or destructors,
11532   // though.
11533 }
11534 
11535 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
11536   // If there is no declaration, there was an error parsing it. Just ignore it.
11537   if (!RealDecl)
11538     return;
11539 
11540   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
11541     QualType Type = Var->getType();
11542 
11543     // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
11544     if (isa<DecompositionDecl>(RealDecl)) {
11545       Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
11546       Var->setInvalidDecl();
11547       return;
11548     }
11549 
11550     if (Type->isUndeducedType() &&
11551         DeduceVariableDeclarationType(Var, false, nullptr))
11552       return;
11553 
11554     // C++11 [class.static.data]p3: A static data member can be declared with
11555     // the constexpr specifier; if so, its declaration shall specify
11556     // a brace-or-equal-initializer.
11557     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
11558     // the definition of a variable [...] or the declaration of a static data
11559     // member.
11560     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
11561         !Var->isThisDeclarationADemotedDefinition()) {
11562       if (Var->isStaticDataMember()) {
11563         // C++1z removes the relevant rule; the in-class declaration is always
11564         // a definition there.
11565         if (!getLangOpts().CPlusPlus17) {
11566           Diag(Var->getLocation(),
11567                diag::err_constexpr_static_mem_var_requires_init)
11568             << Var->getDeclName();
11569           Var->setInvalidDecl();
11570           return;
11571         }
11572       } else {
11573         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
11574         Var->setInvalidDecl();
11575         return;
11576       }
11577     }
11578 
11579     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
11580     // be initialized.
11581     if (!Var->isInvalidDecl() &&
11582         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
11583         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
11584       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
11585       Var->setInvalidDecl();
11586       return;
11587     }
11588 
11589     switch (Var->isThisDeclarationADefinition()) {
11590     case VarDecl::Definition:
11591       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
11592         break;
11593 
11594       // We have an out-of-line definition of a static data member
11595       // that has an in-class initializer, so we type-check this like
11596       // a declaration.
11597       //
11598       LLVM_FALLTHROUGH;
11599 
11600     case VarDecl::DeclarationOnly:
11601       // It's only a declaration.
11602 
11603       // Block scope. C99 6.7p7: If an identifier for an object is
11604       // declared with no linkage (C99 6.2.2p6), the type for the
11605       // object shall be complete.
11606       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
11607           !Var->hasLinkage() && !Var->isInvalidDecl() &&
11608           RequireCompleteType(Var->getLocation(), Type,
11609                               diag::err_typecheck_decl_incomplete_type))
11610         Var->setInvalidDecl();
11611 
11612       // Make sure that the type is not abstract.
11613       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11614           RequireNonAbstractType(Var->getLocation(), Type,
11615                                  diag::err_abstract_type_in_decl,
11616                                  AbstractVariableType))
11617         Var->setInvalidDecl();
11618       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11619           Var->getStorageClass() == SC_PrivateExtern) {
11620         Diag(Var->getLocation(), diag::warn_private_extern);
11621         Diag(Var->getLocation(), diag::note_private_extern);
11622       }
11623 
11624       return;
11625 
11626     case VarDecl::TentativeDefinition:
11627       // File scope. C99 6.9.2p2: A declaration of an identifier for an
11628       // object that has file scope without an initializer, and without a
11629       // storage-class specifier or with the storage-class specifier "static",
11630       // constitutes a tentative definition. Note: A tentative definition with
11631       // external linkage is valid (C99 6.2.2p5).
11632       if (!Var->isInvalidDecl()) {
11633         if (const IncompleteArrayType *ArrayT
11634                                     = Context.getAsIncompleteArrayType(Type)) {
11635           if (RequireCompleteType(Var->getLocation(),
11636                                   ArrayT->getElementType(),
11637                                   diag::err_illegal_decl_array_incomplete_type))
11638             Var->setInvalidDecl();
11639         } else if (Var->getStorageClass() == SC_Static) {
11640           // C99 6.9.2p3: If the declaration of an identifier for an object is
11641           // a tentative definition and has internal linkage (C99 6.2.2p3), the
11642           // declared type shall not be an incomplete type.
11643           // NOTE: code such as the following
11644           //     static struct s;
11645           //     struct s { int a; };
11646           // is accepted by gcc. Hence here we issue a warning instead of
11647           // an error and we do not invalidate the static declaration.
11648           // NOTE: to avoid multiple warnings, only check the first declaration.
11649           if (Var->isFirstDecl())
11650             RequireCompleteType(Var->getLocation(), Type,
11651                                 diag::ext_typecheck_decl_incomplete_type);
11652         }
11653       }
11654 
11655       // Record the tentative definition; we're done.
11656       if (!Var->isInvalidDecl())
11657         TentativeDefinitions.push_back(Var);
11658       return;
11659     }
11660 
11661     // Provide a specific diagnostic for uninitialized variable
11662     // definitions with incomplete array type.
11663     if (Type->isIncompleteArrayType()) {
11664       Diag(Var->getLocation(),
11665            diag::err_typecheck_incomplete_array_needs_initializer);
11666       Var->setInvalidDecl();
11667       return;
11668     }
11669 
11670     // Provide a specific diagnostic for uninitialized variable
11671     // definitions with reference type.
11672     if (Type->isReferenceType()) {
11673       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
11674         << Var->getDeclName()
11675         << SourceRange(Var->getLocation(), Var->getLocation());
11676       Var->setInvalidDecl();
11677       return;
11678     }
11679 
11680     // Do not attempt to type-check the default initializer for a
11681     // variable with dependent type.
11682     if (Type->isDependentType())
11683       return;
11684 
11685     if (Var->isInvalidDecl())
11686       return;
11687 
11688     if (!Var->hasAttr<AliasAttr>()) {
11689       if (RequireCompleteType(Var->getLocation(),
11690                               Context.getBaseElementType(Type),
11691                               diag::err_typecheck_decl_incomplete_type)) {
11692         Var->setInvalidDecl();
11693         return;
11694       }
11695     } else {
11696       return;
11697     }
11698 
11699     // The variable can not have an abstract class type.
11700     if (RequireNonAbstractType(Var->getLocation(), Type,
11701                                diag::err_abstract_type_in_decl,
11702                                AbstractVariableType)) {
11703       Var->setInvalidDecl();
11704       return;
11705     }
11706 
11707     // Check for jumps past the implicit initializer.  C++0x
11708     // clarifies that this applies to a "variable with automatic
11709     // storage duration", not a "local variable".
11710     // C++11 [stmt.dcl]p3
11711     //   A program that jumps from a point where a variable with automatic
11712     //   storage duration is not in scope to a point where it is in scope is
11713     //   ill-formed unless the variable has scalar type, class type with a
11714     //   trivial default constructor and a trivial destructor, a cv-qualified
11715     //   version of one of these types, or an array of one of the preceding
11716     //   types and is declared without an initializer.
11717     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
11718       if (const RecordType *Record
11719             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
11720         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
11721         // Mark the function (if we're in one) for further checking even if the
11722         // looser rules of C++11 do not require such checks, so that we can
11723         // diagnose incompatibilities with C++98.
11724         if (!CXXRecord->isPOD())
11725           setFunctionHasBranchProtectedScope();
11726       }
11727     }
11728     // In OpenCL, we can't initialize objects in the __local address space,
11729     // even implicitly, so don't synthesize an implicit initializer.
11730     if (getLangOpts().OpenCL &&
11731         Var->getType().getAddressSpace() == LangAS::opencl_local)
11732       return;
11733     // C++03 [dcl.init]p9:
11734     //   If no initializer is specified for an object, and the
11735     //   object is of (possibly cv-qualified) non-POD class type (or
11736     //   array thereof), the object shall be default-initialized; if
11737     //   the object is of const-qualified type, the underlying class
11738     //   type shall have a user-declared default
11739     //   constructor. Otherwise, if no initializer is specified for
11740     //   a non- static object, the object and its subobjects, if
11741     //   any, have an indeterminate initial value); if the object
11742     //   or any of its subobjects are of const-qualified type, the
11743     //   program is ill-formed.
11744     // C++0x [dcl.init]p11:
11745     //   If no initializer is specified for an object, the object is
11746     //   default-initialized; [...].
11747     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
11748     InitializationKind Kind
11749       = InitializationKind::CreateDefault(Var->getLocation());
11750 
11751     InitializationSequence InitSeq(*this, Entity, Kind, None);
11752     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
11753     if (Init.isInvalid())
11754       Var->setInvalidDecl();
11755     else if (Init.get()) {
11756       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
11757       // This is important for template substitution.
11758       Var->setInitStyle(VarDecl::CallInit);
11759     }
11760 
11761     CheckCompleteVariableDeclaration(Var);
11762   }
11763 }
11764 
11765 void Sema::ActOnCXXForRangeDecl(Decl *D) {
11766   // If there is no declaration, there was an error parsing it. Ignore it.
11767   if (!D)
11768     return;
11769 
11770   VarDecl *VD = dyn_cast<VarDecl>(D);
11771   if (!VD) {
11772     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
11773     D->setInvalidDecl();
11774     return;
11775   }
11776 
11777   VD->setCXXForRangeDecl(true);
11778 
11779   // for-range-declaration cannot be given a storage class specifier.
11780   int Error = -1;
11781   switch (VD->getStorageClass()) {
11782   case SC_None:
11783     break;
11784   case SC_Extern:
11785     Error = 0;
11786     break;
11787   case SC_Static:
11788     Error = 1;
11789     break;
11790   case SC_PrivateExtern:
11791     Error = 2;
11792     break;
11793   case SC_Auto:
11794     Error = 3;
11795     break;
11796   case SC_Register:
11797     Error = 4;
11798     break;
11799   }
11800   if (Error != -1) {
11801     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
11802       << VD->getDeclName() << Error;
11803     D->setInvalidDecl();
11804   }
11805 }
11806 
11807 StmtResult
11808 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
11809                                  IdentifierInfo *Ident,
11810                                  ParsedAttributes &Attrs,
11811                                  SourceLocation AttrEnd) {
11812   // C++1y [stmt.iter]p1:
11813   //   A range-based for statement of the form
11814   //      for ( for-range-identifier : for-range-initializer ) statement
11815   //   is equivalent to
11816   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
11817   DeclSpec DS(Attrs.getPool().getFactory());
11818 
11819   const char *PrevSpec;
11820   unsigned DiagID;
11821   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
11822                      getPrintingPolicy());
11823 
11824   Declarator D(DS, DeclaratorContext::ForContext);
11825   D.SetIdentifier(Ident, IdentLoc);
11826   D.takeAttributes(Attrs, AttrEnd);
11827 
11828   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
11829                 IdentLoc);
11830   Decl *Var = ActOnDeclarator(S, D);
11831   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
11832   FinalizeDeclaration(Var);
11833   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
11834                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
11835 }
11836 
11837 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
11838   if (var->isInvalidDecl()) return;
11839 
11840   if (getLangOpts().OpenCL) {
11841     // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
11842     // initialiser
11843     if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
11844         !var->hasInit()) {
11845       Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
11846           << 1 /*Init*/;
11847       var->setInvalidDecl();
11848       return;
11849     }
11850   }
11851 
11852   // In Objective-C, don't allow jumps past the implicit initialization of a
11853   // local retaining variable.
11854   if (getLangOpts().ObjC &&
11855       var->hasLocalStorage()) {
11856     switch (var->getType().getObjCLifetime()) {
11857     case Qualifiers::OCL_None:
11858     case Qualifiers::OCL_ExplicitNone:
11859     case Qualifiers::OCL_Autoreleasing:
11860       break;
11861 
11862     case Qualifiers::OCL_Weak:
11863     case Qualifiers::OCL_Strong:
11864       setFunctionHasBranchProtectedScope();
11865       break;
11866     }
11867   }
11868 
11869   if (var->hasLocalStorage() &&
11870       var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
11871     setFunctionHasBranchProtectedScope();
11872 
11873   // Warn about externally-visible variables being defined without a
11874   // prior declaration.  We only want to do this for global
11875   // declarations, but we also specifically need to avoid doing it for
11876   // class members because the linkage of an anonymous class can
11877   // change if it's later given a typedef name.
11878   if (var->isThisDeclarationADefinition() &&
11879       var->getDeclContext()->getRedeclContext()->isFileContext() &&
11880       var->isExternallyVisible() && var->hasLinkage() &&
11881       !var->isInline() && !var->getDescribedVarTemplate() &&
11882       !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
11883       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
11884                                   var->getLocation())) {
11885     // Find a previous declaration that's not a definition.
11886     VarDecl *prev = var->getPreviousDecl();
11887     while (prev && prev->isThisDeclarationADefinition())
11888       prev = prev->getPreviousDecl();
11889 
11890     if (!prev)
11891       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
11892   }
11893 
11894   // Cache the result of checking for constant initialization.
11895   Optional<bool> CacheHasConstInit;
11896   const Expr *CacheCulprit;
11897   auto checkConstInit = [&]() mutable {
11898     if (!CacheHasConstInit)
11899       CacheHasConstInit = var->getInit()->isConstantInitializer(
11900             Context, var->getType()->isReferenceType(), &CacheCulprit);
11901     return *CacheHasConstInit;
11902   };
11903 
11904   if (var->getTLSKind() == VarDecl::TLS_Static) {
11905     if (var->getType().isDestructedType()) {
11906       // GNU C++98 edits for __thread, [basic.start.term]p3:
11907       //   The type of an object with thread storage duration shall not
11908       //   have a non-trivial destructor.
11909       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
11910       if (getLangOpts().CPlusPlus11)
11911         Diag(var->getLocation(), diag::note_use_thread_local);
11912     } else if (getLangOpts().CPlusPlus && var->hasInit()) {
11913       if (!checkConstInit()) {
11914         // GNU C++98 edits for __thread, [basic.start.init]p4:
11915         //   An object of thread storage duration shall not require dynamic
11916         //   initialization.
11917         // FIXME: Need strict checking here.
11918         Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
11919           << CacheCulprit->getSourceRange();
11920         if (getLangOpts().CPlusPlus11)
11921           Diag(var->getLocation(), diag::note_use_thread_local);
11922       }
11923     }
11924   }
11925 
11926   // Apply section attributes and pragmas to global variables.
11927   bool GlobalStorage = var->hasGlobalStorage();
11928   if (GlobalStorage && var->isThisDeclarationADefinition() &&
11929       !inTemplateInstantiation()) {
11930     PragmaStack<StringLiteral *> *Stack = nullptr;
11931     int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
11932     if (var->getType().isConstQualified())
11933       Stack = &ConstSegStack;
11934     else if (!var->getInit()) {
11935       Stack = &BSSSegStack;
11936       SectionFlags |= ASTContext::PSF_Write;
11937     } else {
11938       Stack = &DataSegStack;
11939       SectionFlags |= ASTContext::PSF_Write;
11940     }
11941     if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
11942       var->addAttr(SectionAttr::CreateImplicit(
11943           Context, SectionAttr::Declspec_allocate,
11944           Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
11945     }
11946     if (const SectionAttr *SA = var->getAttr<SectionAttr>())
11947       if (UnifySection(SA->getName(), SectionFlags, var))
11948         var->dropAttr<SectionAttr>();
11949 
11950     // Apply the init_seg attribute if this has an initializer.  If the
11951     // initializer turns out to not be dynamic, we'll end up ignoring this
11952     // attribute.
11953     if (CurInitSeg && var->getInit())
11954       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
11955                                                CurInitSegLoc));
11956   }
11957 
11958   // All the following checks are C++ only.
11959   if (!getLangOpts().CPlusPlus) {
11960       // If this variable must be emitted, add it as an initializer for the
11961       // current module.
11962      if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
11963        Context.addModuleInitializer(ModuleScopes.back().Module, var);
11964      return;
11965   }
11966 
11967   if (auto *DD = dyn_cast<DecompositionDecl>(var))
11968     CheckCompleteDecompositionDeclaration(DD);
11969 
11970   QualType type = var->getType();
11971   if (type->isDependentType()) return;
11972 
11973   if (var->hasAttr<BlocksAttr>())
11974     getCurFunction()->addByrefBlockVar(var);
11975 
11976   Expr *Init = var->getInit();
11977   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
11978   QualType baseType = Context.getBaseElementType(type);
11979 
11980   if (Init && !Init->isValueDependent()) {
11981     if (var->isConstexpr()) {
11982       SmallVector<PartialDiagnosticAt, 8> Notes;
11983       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
11984         SourceLocation DiagLoc = var->getLocation();
11985         // If the note doesn't add any useful information other than a source
11986         // location, fold it into the primary diagnostic.
11987         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
11988               diag::note_invalid_subexpr_in_const_expr) {
11989           DiagLoc = Notes[0].first;
11990           Notes.clear();
11991         }
11992         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
11993           << var << Init->getSourceRange();
11994         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
11995           Diag(Notes[I].first, Notes[I].second);
11996       }
11997     } else if (var->isUsableInConstantExpressions(Context)) {
11998       // Check whether the initializer of a const variable of integral or
11999       // enumeration type is an ICE now, since we can't tell whether it was
12000       // initialized by a constant expression if we check later.
12001       var->checkInitIsICE();
12002     }
12003 
12004     // Don't emit further diagnostics about constexpr globals since they
12005     // were just diagnosed.
12006     if (!var->isConstexpr() && GlobalStorage &&
12007             var->hasAttr<RequireConstantInitAttr>()) {
12008       // FIXME: Need strict checking in C++03 here.
12009       bool DiagErr = getLangOpts().CPlusPlus11
12010           ? !var->checkInitIsICE() : !checkConstInit();
12011       if (DiagErr) {
12012         auto attr = var->getAttr<RequireConstantInitAttr>();
12013         Diag(var->getLocation(), diag::err_require_constant_init_failed)
12014           << Init->getSourceRange();
12015         Diag(attr->getLocation(), diag::note_declared_required_constant_init_here)
12016           << attr->getRange();
12017         if (getLangOpts().CPlusPlus11) {
12018           APValue Value;
12019           SmallVector<PartialDiagnosticAt, 8> Notes;
12020           Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes);
12021           for (auto &it : Notes)
12022             Diag(it.first, it.second);
12023         } else {
12024           Diag(CacheCulprit->getExprLoc(),
12025                diag::note_invalid_subexpr_in_const_expr)
12026               << CacheCulprit->getSourceRange();
12027         }
12028       }
12029     }
12030     else if (!var->isConstexpr() && IsGlobal &&
12031              !getDiagnostics().isIgnored(diag::warn_global_constructor,
12032                                     var->getLocation())) {
12033       // Warn about globals which don't have a constant initializer.  Don't
12034       // warn about globals with a non-trivial destructor because we already
12035       // warned about them.
12036       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
12037       if (!(RD && !RD->hasTrivialDestructor())) {
12038         if (!checkConstInit())
12039           Diag(var->getLocation(), diag::warn_global_constructor)
12040             << Init->getSourceRange();
12041       }
12042     }
12043   }
12044 
12045   // Require the destructor.
12046   if (const RecordType *recordType = baseType->getAs<RecordType>())
12047     FinalizeVarWithDestructor(var, recordType);
12048 
12049   // If this variable must be emitted, add it as an initializer for the current
12050   // module.
12051   if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
12052     Context.addModuleInitializer(ModuleScopes.back().Module, var);
12053 }
12054 
12055 /// Determines if a variable's alignment is dependent.
12056 static bool hasDependentAlignment(VarDecl *VD) {
12057   if (VD->getType()->isDependentType())
12058     return true;
12059   for (auto *I : VD->specific_attrs<AlignedAttr>())
12060     if (I->isAlignmentDependent())
12061       return true;
12062   return false;
12063 }
12064 
12065 /// Check if VD needs to be dllexport/dllimport due to being in a
12066 /// dllexport/import function.
12067 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
12068   assert(VD->isStaticLocal());
12069 
12070   auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
12071 
12072   // Find outermost function when VD is in lambda function.
12073   while (FD && !getDLLAttr(FD) &&
12074          !FD->hasAttr<DLLExportStaticLocalAttr>() &&
12075          !FD->hasAttr<DLLImportStaticLocalAttr>()) {
12076     FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
12077   }
12078 
12079   if (!FD)
12080     return;
12081 
12082   // Static locals inherit dll attributes from their function.
12083   if (Attr *A = getDLLAttr(FD)) {
12084     auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
12085     NewAttr->setInherited(true);
12086     VD->addAttr(NewAttr);
12087   } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
12088     auto *NewAttr = ::new (getASTContext()) DLLExportAttr(A->getRange(),
12089                                                           getASTContext(),
12090                                                           A->getSpellingListIndex());
12091     NewAttr->setInherited(true);
12092     VD->addAttr(NewAttr);
12093 
12094     // Export this function to enforce exporting this static variable even
12095     // if it is not used in this compilation unit.
12096     if (!FD->hasAttr<DLLExportAttr>())
12097       FD->addAttr(NewAttr);
12098 
12099   } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
12100     auto *NewAttr = ::new (getASTContext()) DLLImportAttr(A->getRange(),
12101                                                           getASTContext(),
12102                                                           A->getSpellingListIndex());
12103     NewAttr->setInherited(true);
12104     VD->addAttr(NewAttr);
12105   }
12106 }
12107 
12108 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
12109 /// any semantic actions necessary after any initializer has been attached.
12110 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
12111   // Note that we are no longer parsing the initializer for this declaration.
12112   ParsingInitForAutoVars.erase(ThisDecl);
12113 
12114   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
12115   if (!VD)
12116     return;
12117 
12118   // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
12119   if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
12120       !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
12121     if (PragmaClangBSSSection.Valid)
12122       VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(Context,
12123                                                             PragmaClangBSSSection.SectionName,
12124                                                             PragmaClangBSSSection.PragmaLocation));
12125     if (PragmaClangDataSection.Valid)
12126       VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(Context,
12127                                                              PragmaClangDataSection.SectionName,
12128                                                              PragmaClangDataSection.PragmaLocation));
12129     if (PragmaClangRodataSection.Valid)
12130       VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(Context,
12131                                                                PragmaClangRodataSection.SectionName,
12132                                                                PragmaClangRodataSection.PragmaLocation));
12133   }
12134 
12135   if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
12136     for (auto *BD : DD->bindings()) {
12137       FinalizeDeclaration(BD);
12138     }
12139   }
12140 
12141   checkAttributesAfterMerging(*this, *VD);
12142 
12143   // Perform TLS alignment check here after attributes attached to the variable
12144   // which may affect the alignment have been processed. Only perform the check
12145   // if the target has a maximum TLS alignment (zero means no constraints).
12146   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
12147     // Protect the check so that it's not performed on dependent types and
12148     // dependent alignments (we can't determine the alignment in that case).
12149     if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
12150         !VD->isInvalidDecl()) {
12151       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
12152       if (Context.getDeclAlign(VD) > MaxAlignChars) {
12153         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
12154           << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
12155           << (unsigned)MaxAlignChars.getQuantity();
12156       }
12157     }
12158   }
12159 
12160   if (VD->isStaticLocal()) {
12161     CheckStaticLocalForDllExport(VD);
12162 
12163     if (dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
12164       // CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__
12165       // function, only __shared__ variables or variables without any device
12166       // memory qualifiers may be declared with static storage class.
12167       // Note: It is unclear how a function-scope non-const static variable
12168       // without device memory qualifier is implemented, therefore only static
12169       // const variable without device memory qualifier is allowed.
12170       [&]() {
12171         if (!getLangOpts().CUDA)
12172           return;
12173         if (VD->hasAttr<CUDASharedAttr>())
12174           return;
12175         if (VD->getType().isConstQualified() &&
12176             !(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
12177           return;
12178         if (CUDADiagIfDeviceCode(VD->getLocation(),
12179                                  diag::err_device_static_local_var)
12180             << CurrentCUDATarget())
12181           VD->setInvalidDecl();
12182       }();
12183     }
12184   }
12185 
12186   // Perform check for initializers of device-side global variables.
12187   // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
12188   // 7.5). We must also apply the same checks to all __shared__
12189   // variables whether they are local or not. CUDA also allows
12190   // constant initializers for __constant__ and __device__ variables.
12191   if (getLangOpts().CUDA)
12192     checkAllowedCUDAInitializer(VD);
12193 
12194   // Grab the dllimport or dllexport attribute off of the VarDecl.
12195   const InheritableAttr *DLLAttr = getDLLAttr(VD);
12196 
12197   // Imported static data members cannot be defined out-of-line.
12198   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
12199     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
12200         VD->isThisDeclarationADefinition()) {
12201       // We allow definitions of dllimport class template static data members
12202       // with a warning.
12203       CXXRecordDecl *Context =
12204         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
12205       bool IsClassTemplateMember =
12206           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
12207           Context->getDescribedClassTemplate();
12208 
12209       Diag(VD->getLocation(),
12210            IsClassTemplateMember
12211                ? diag::warn_attribute_dllimport_static_field_definition
12212                : diag::err_attribute_dllimport_static_field_definition);
12213       Diag(IA->getLocation(), diag::note_attribute);
12214       if (!IsClassTemplateMember)
12215         VD->setInvalidDecl();
12216     }
12217   }
12218 
12219   // dllimport/dllexport variables cannot be thread local, their TLS index
12220   // isn't exported with the variable.
12221   if (DLLAttr && VD->getTLSKind()) {
12222     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
12223     if (F && getDLLAttr(F)) {
12224       assert(VD->isStaticLocal());
12225       // But if this is a static local in a dlimport/dllexport function, the
12226       // function will never be inlined, which means the var would never be
12227       // imported, so having it marked import/export is safe.
12228     } else {
12229       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
12230                                                                     << DLLAttr;
12231       VD->setInvalidDecl();
12232     }
12233   }
12234 
12235   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
12236     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
12237       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
12238       VD->dropAttr<UsedAttr>();
12239     }
12240   }
12241 
12242   const DeclContext *DC = VD->getDeclContext();
12243   // If there's a #pragma GCC visibility in scope, and this isn't a class
12244   // member, set the visibility of this variable.
12245   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
12246     AddPushedVisibilityAttribute(VD);
12247 
12248   // FIXME: Warn on unused var template partial specializations.
12249   if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
12250     MarkUnusedFileScopedDecl(VD);
12251 
12252   // Now we have parsed the initializer and can update the table of magic
12253   // tag values.
12254   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
12255       !VD->getType()->isIntegralOrEnumerationType())
12256     return;
12257 
12258   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
12259     const Expr *MagicValueExpr = VD->getInit();
12260     if (!MagicValueExpr) {
12261       continue;
12262     }
12263     llvm::APSInt MagicValueInt;
12264     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
12265       Diag(I->getRange().getBegin(),
12266            diag::err_type_tag_for_datatype_not_ice)
12267         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12268       continue;
12269     }
12270     if (MagicValueInt.getActiveBits() > 64) {
12271       Diag(I->getRange().getBegin(),
12272            diag::err_type_tag_for_datatype_too_large)
12273         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12274       continue;
12275     }
12276     uint64_t MagicValue = MagicValueInt.getZExtValue();
12277     RegisterTypeTagForDatatype(I->getArgumentKind(),
12278                                MagicValue,
12279                                I->getMatchingCType(),
12280                                I->getLayoutCompatible(),
12281                                I->getMustBeNull());
12282   }
12283 }
12284 
12285 static bool hasDeducedAuto(DeclaratorDecl *DD) {
12286   auto *VD = dyn_cast<VarDecl>(DD);
12287   return VD && !VD->getType()->hasAutoForTrailingReturnType();
12288 }
12289 
12290 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
12291                                                    ArrayRef<Decl *> Group) {
12292   SmallVector<Decl*, 8> Decls;
12293 
12294   if (DS.isTypeSpecOwned())
12295     Decls.push_back(DS.getRepAsDecl());
12296 
12297   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
12298   DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
12299   bool DiagnosedMultipleDecomps = false;
12300   DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
12301   bool DiagnosedNonDeducedAuto = false;
12302 
12303   for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12304     if (Decl *D = Group[i]) {
12305       // For declarators, there are some additional syntactic-ish checks we need
12306       // to perform.
12307       if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
12308         if (!FirstDeclaratorInGroup)
12309           FirstDeclaratorInGroup = DD;
12310         if (!FirstDecompDeclaratorInGroup)
12311           FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
12312         if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
12313             !hasDeducedAuto(DD))
12314           FirstNonDeducedAutoInGroup = DD;
12315 
12316         if (FirstDeclaratorInGroup != DD) {
12317           // A decomposition declaration cannot be combined with any other
12318           // declaration in the same group.
12319           if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
12320             Diag(FirstDecompDeclaratorInGroup->getLocation(),
12321                  diag::err_decomp_decl_not_alone)
12322                 << FirstDeclaratorInGroup->getSourceRange()
12323                 << DD->getSourceRange();
12324             DiagnosedMultipleDecomps = true;
12325           }
12326 
12327           // A declarator that uses 'auto' in any way other than to declare a
12328           // variable with a deduced type cannot be combined with any other
12329           // declarator in the same group.
12330           if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
12331             Diag(FirstNonDeducedAutoInGroup->getLocation(),
12332                  diag::err_auto_non_deduced_not_alone)
12333                 << FirstNonDeducedAutoInGroup->getType()
12334                        ->hasAutoForTrailingReturnType()
12335                 << FirstDeclaratorInGroup->getSourceRange()
12336                 << DD->getSourceRange();
12337             DiagnosedNonDeducedAuto = true;
12338           }
12339         }
12340       }
12341 
12342       Decls.push_back(D);
12343     }
12344   }
12345 
12346   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
12347     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
12348       handleTagNumbering(Tag, S);
12349       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
12350           getLangOpts().CPlusPlus)
12351         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
12352     }
12353   }
12354 
12355   return BuildDeclaratorGroup(Decls);
12356 }
12357 
12358 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
12359 /// group, performing any necessary semantic checking.
12360 Sema::DeclGroupPtrTy
12361 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
12362   // C++14 [dcl.spec.auto]p7: (DR1347)
12363   //   If the type that replaces the placeholder type is not the same in each
12364   //   deduction, the program is ill-formed.
12365   if (Group.size() > 1) {
12366     QualType Deduced;
12367     VarDecl *DeducedDecl = nullptr;
12368     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12369       VarDecl *D = dyn_cast<VarDecl>(Group[i]);
12370       if (!D || D->isInvalidDecl())
12371         break;
12372       DeducedType *DT = D->getType()->getContainedDeducedType();
12373       if (!DT || DT->getDeducedType().isNull())
12374         continue;
12375       if (Deduced.isNull()) {
12376         Deduced = DT->getDeducedType();
12377         DeducedDecl = D;
12378       } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
12379         auto *AT = dyn_cast<AutoType>(DT);
12380         Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
12381              diag::err_auto_different_deductions)
12382           << (AT ? (unsigned)AT->getKeyword() : 3)
12383           << Deduced << DeducedDecl->getDeclName()
12384           << DT->getDeducedType() << D->getDeclName()
12385           << DeducedDecl->getInit()->getSourceRange()
12386           << D->getInit()->getSourceRange();
12387         D->setInvalidDecl();
12388         break;
12389       }
12390     }
12391   }
12392 
12393   ActOnDocumentableDecls(Group);
12394 
12395   return DeclGroupPtrTy::make(
12396       DeclGroupRef::Create(Context, Group.data(), Group.size()));
12397 }
12398 
12399 void Sema::ActOnDocumentableDecl(Decl *D) {
12400   ActOnDocumentableDecls(D);
12401 }
12402 
12403 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
12404   // Don't parse the comment if Doxygen diagnostics are ignored.
12405   if (Group.empty() || !Group[0])
12406     return;
12407 
12408   if (Diags.isIgnored(diag::warn_doc_param_not_found,
12409                       Group[0]->getLocation()) &&
12410       Diags.isIgnored(diag::warn_unknown_comment_command_name,
12411                       Group[0]->getLocation()))
12412     return;
12413 
12414   if (Group.size() >= 2) {
12415     // This is a decl group.  Normally it will contain only declarations
12416     // produced from declarator list.  But in case we have any definitions or
12417     // additional declaration references:
12418     //   'typedef struct S {} S;'
12419     //   'typedef struct S *S;'
12420     //   'struct S *pS;'
12421     // FinalizeDeclaratorGroup adds these as separate declarations.
12422     Decl *MaybeTagDecl = Group[0];
12423     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
12424       Group = Group.slice(1);
12425     }
12426   }
12427 
12428   // See if there are any new comments that are not attached to a decl.
12429   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
12430   if (!Comments.empty() &&
12431       !Comments.back()->isAttached()) {
12432     // There is at least one comment that not attached to a decl.
12433     // Maybe it should be attached to one of these decls?
12434     //
12435     // Note that this way we pick up not only comments that precede the
12436     // declaration, but also comments that *follow* the declaration -- thanks to
12437     // the lookahead in the lexer: we've consumed the semicolon and looked
12438     // ahead through comments.
12439     for (unsigned i = 0, e = Group.size(); i != e; ++i)
12440       Context.getCommentForDecl(Group[i], &PP);
12441   }
12442 }
12443 
12444 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
12445 /// to introduce parameters into function prototype scope.
12446 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
12447   const DeclSpec &DS = D.getDeclSpec();
12448 
12449   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
12450 
12451   // C++03 [dcl.stc]p2 also permits 'auto'.
12452   StorageClass SC = SC_None;
12453   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
12454     SC = SC_Register;
12455     // In C++11, the 'register' storage class specifier is deprecated.
12456     // In C++17, it is not allowed, but we tolerate it as an extension.
12457     if (getLangOpts().CPlusPlus11) {
12458       Diag(DS.getStorageClassSpecLoc(),
12459            getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
12460                                      : diag::warn_deprecated_register)
12461         << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
12462     }
12463   } else if (getLangOpts().CPlusPlus &&
12464              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
12465     SC = SC_Auto;
12466   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
12467     Diag(DS.getStorageClassSpecLoc(),
12468          diag::err_invalid_storage_class_in_func_decl);
12469     D.getMutableDeclSpec().ClearStorageClassSpecs();
12470   }
12471 
12472   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
12473     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
12474       << DeclSpec::getSpecifierName(TSCS);
12475   if (DS.isInlineSpecified())
12476     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
12477         << getLangOpts().CPlusPlus17;
12478   if (DS.isConstexprSpecified())
12479     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
12480       << 0;
12481 
12482   DiagnoseFunctionSpecifiers(DS);
12483 
12484   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12485   QualType parmDeclType = TInfo->getType();
12486 
12487   if (getLangOpts().CPlusPlus) {
12488     // Check that there are no default arguments inside the type of this
12489     // parameter.
12490     CheckExtraCXXDefaultArguments(D);
12491 
12492     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
12493     if (D.getCXXScopeSpec().isSet()) {
12494       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
12495         << D.getCXXScopeSpec().getRange();
12496       D.getCXXScopeSpec().clear();
12497     }
12498   }
12499 
12500   // Ensure we have a valid name
12501   IdentifierInfo *II = nullptr;
12502   if (D.hasName()) {
12503     II = D.getIdentifier();
12504     if (!II) {
12505       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
12506         << GetNameForDeclarator(D).getName();
12507       D.setInvalidType(true);
12508     }
12509   }
12510 
12511   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
12512   if (II) {
12513     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
12514                    ForVisibleRedeclaration);
12515     LookupName(R, S);
12516     if (R.isSingleResult()) {
12517       NamedDecl *PrevDecl = R.getFoundDecl();
12518       if (PrevDecl->isTemplateParameter()) {
12519         // Maybe we will complain about the shadowed template parameter.
12520         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12521         // Just pretend that we didn't see the previous declaration.
12522         PrevDecl = nullptr;
12523       } else if (S->isDeclScope(PrevDecl)) {
12524         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
12525         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12526 
12527         // Recover by removing the name
12528         II = nullptr;
12529         D.SetIdentifier(nullptr, D.getIdentifierLoc());
12530         D.setInvalidType(true);
12531       }
12532     }
12533   }
12534 
12535   // Temporarily put parameter variables in the translation unit, not
12536   // the enclosing context.  This prevents them from accidentally
12537   // looking like class members in C++.
12538   ParmVarDecl *New =
12539       CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
12540                      D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
12541 
12542   if (D.isInvalidType())
12543     New->setInvalidDecl();
12544 
12545   assert(S->isFunctionPrototypeScope());
12546   assert(S->getFunctionPrototypeDepth() >= 1);
12547   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
12548                     S->getNextFunctionPrototypeIndex());
12549 
12550   // Add the parameter declaration into this scope.
12551   S->AddDecl(New);
12552   if (II)
12553     IdResolver.AddDecl(New);
12554 
12555   ProcessDeclAttributes(S, New, D);
12556 
12557   if (D.getDeclSpec().isModulePrivateSpecified())
12558     Diag(New->getLocation(), diag::err_module_private_local)
12559       << 1 << New->getDeclName()
12560       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
12561       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
12562 
12563   if (New->hasAttr<BlocksAttr>()) {
12564     Diag(New->getLocation(), diag::err_block_on_nonlocal);
12565   }
12566   return New;
12567 }
12568 
12569 /// Synthesizes a variable for a parameter arising from a
12570 /// typedef.
12571 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
12572                                               SourceLocation Loc,
12573                                               QualType T) {
12574   /* FIXME: setting StartLoc == Loc.
12575      Would it be worth to modify callers so as to provide proper source
12576      location for the unnamed parameters, embedding the parameter's type? */
12577   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
12578                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
12579                                            SC_None, nullptr);
12580   Param->setImplicit();
12581   return Param;
12582 }
12583 
12584 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
12585   // Don't diagnose unused-parameter errors in template instantiations; we
12586   // will already have done so in the template itself.
12587   if (inTemplateInstantiation())
12588     return;
12589 
12590   for (const ParmVarDecl *Parameter : Parameters) {
12591     if (!Parameter->isReferenced() && Parameter->getDeclName() &&
12592         !Parameter->hasAttr<UnusedAttr>()) {
12593       Diag(Parameter->getLocation(), diag::warn_unused_parameter)
12594         << Parameter->getDeclName();
12595     }
12596   }
12597 }
12598 
12599 void Sema::DiagnoseSizeOfParametersAndReturnValue(
12600     ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
12601   if (LangOpts.NumLargeByValueCopy == 0) // No check.
12602     return;
12603 
12604   // Warn if the return value is pass-by-value and larger than the specified
12605   // threshold.
12606   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
12607     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
12608     if (Size > LangOpts.NumLargeByValueCopy)
12609       Diag(D->getLocation(), diag::warn_return_value_size)
12610           << D->getDeclName() << Size;
12611   }
12612 
12613   // Warn if any parameter is pass-by-value and larger than the specified
12614   // threshold.
12615   for (const ParmVarDecl *Parameter : Parameters) {
12616     QualType T = Parameter->getType();
12617     if (T->isDependentType() || !T.isPODType(Context))
12618       continue;
12619     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
12620     if (Size > LangOpts.NumLargeByValueCopy)
12621       Diag(Parameter->getLocation(), diag::warn_parameter_size)
12622           << Parameter->getDeclName() << Size;
12623   }
12624 }
12625 
12626 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
12627                                   SourceLocation NameLoc, IdentifierInfo *Name,
12628                                   QualType T, TypeSourceInfo *TSInfo,
12629                                   StorageClass SC) {
12630   // In ARC, infer a lifetime qualifier for appropriate parameter types.
12631   if (getLangOpts().ObjCAutoRefCount &&
12632       T.getObjCLifetime() == Qualifiers::OCL_None &&
12633       T->isObjCLifetimeType()) {
12634 
12635     Qualifiers::ObjCLifetime lifetime;
12636 
12637     // Special cases for arrays:
12638     //   - if it's const, use __unsafe_unretained
12639     //   - otherwise, it's an error
12640     if (T->isArrayType()) {
12641       if (!T.isConstQualified()) {
12642         if (DelayedDiagnostics.shouldDelayDiagnostics())
12643           DelayedDiagnostics.add(
12644               sema::DelayedDiagnostic::makeForbiddenType(
12645               NameLoc, diag::err_arc_array_param_no_ownership, T, false));
12646         else
12647           Diag(NameLoc, diag::err_arc_array_param_no_ownership)
12648               << TSInfo->getTypeLoc().getSourceRange();
12649       }
12650       lifetime = Qualifiers::OCL_ExplicitNone;
12651     } else {
12652       lifetime = T->getObjCARCImplicitLifetime();
12653     }
12654     T = Context.getLifetimeQualifiedType(T, lifetime);
12655   }
12656 
12657   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
12658                                          Context.getAdjustedParameterType(T),
12659                                          TSInfo, SC, nullptr);
12660 
12661   // Parameters can not be abstract class types.
12662   // For record types, this is done by the AbstractClassUsageDiagnoser once
12663   // the class has been completely parsed.
12664   if (!CurContext->isRecord() &&
12665       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
12666                              AbstractParamType))
12667     New->setInvalidDecl();
12668 
12669   // Parameter declarators cannot be interface types. All ObjC objects are
12670   // passed by reference.
12671   if (T->isObjCObjectType()) {
12672     SourceLocation TypeEndLoc =
12673         getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
12674     Diag(NameLoc,
12675          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
12676       << FixItHint::CreateInsertion(TypeEndLoc, "*");
12677     T = Context.getObjCObjectPointerType(T);
12678     New->setType(T);
12679   }
12680 
12681   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
12682   // duration shall not be qualified by an address-space qualifier."
12683   // Since all parameters have automatic store duration, they can not have
12684   // an address space.
12685   if (T.getAddressSpace() != LangAS::Default &&
12686       // OpenCL allows function arguments declared to be an array of a type
12687       // to be qualified with an address space.
12688       !(getLangOpts().OpenCL &&
12689         (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
12690     Diag(NameLoc, diag::err_arg_with_address_space);
12691     New->setInvalidDecl();
12692   }
12693 
12694   return New;
12695 }
12696 
12697 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
12698                                            SourceLocation LocAfterDecls) {
12699   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
12700 
12701   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
12702   // for a K&R function.
12703   if (!FTI.hasPrototype) {
12704     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
12705       --i;
12706       if (FTI.Params[i].Param == nullptr) {
12707         SmallString<256> Code;
12708         llvm::raw_svector_ostream(Code)
12709             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
12710         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
12711             << FTI.Params[i].Ident
12712             << FixItHint::CreateInsertion(LocAfterDecls, Code);
12713 
12714         // Implicitly declare the argument as type 'int' for lack of a better
12715         // type.
12716         AttributeFactory attrs;
12717         DeclSpec DS(attrs);
12718         const char* PrevSpec; // unused
12719         unsigned DiagID; // unused
12720         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
12721                            DiagID, Context.getPrintingPolicy());
12722         // Use the identifier location for the type source range.
12723         DS.SetRangeStart(FTI.Params[i].IdentLoc);
12724         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
12725         Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext);
12726         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
12727         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
12728       }
12729     }
12730   }
12731 }
12732 
12733 Decl *
12734 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
12735                               MultiTemplateParamsArg TemplateParameterLists,
12736                               SkipBodyInfo *SkipBody) {
12737   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
12738   assert(D.isFunctionDeclarator() && "Not a function declarator!");
12739   Scope *ParentScope = FnBodyScope->getParent();
12740 
12741   D.setFunctionDefinitionKind(FDK_Definition);
12742   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
12743   return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
12744 }
12745 
12746 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
12747   Consumer.HandleInlineFunctionDefinition(D);
12748 }
12749 
12750 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
12751                              const FunctionDecl*& PossibleZeroParamPrototype) {
12752   // Don't warn about invalid declarations.
12753   if (FD->isInvalidDecl())
12754     return false;
12755 
12756   // Or declarations that aren't global.
12757   if (!FD->isGlobal())
12758     return false;
12759 
12760   // Don't warn about C++ member functions.
12761   if (isa<CXXMethodDecl>(FD))
12762     return false;
12763 
12764   // Don't warn about 'main'.
12765   if (FD->isMain())
12766     return false;
12767 
12768   // Don't warn about inline functions.
12769   if (FD->isInlined())
12770     return false;
12771 
12772   // Don't warn about function templates.
12773   if (FD->getDescribedFunctionTemplate())
12774     return false;
12775 
12776   // Don't warn about function template specializations.
12777   if (FD->isFunctionTemplateSpecialization())
12778     return false;
12779 
12780   // Don't warn for OpenCL kernels.
12781   if (FD->hasAttr<OpenCLKernelAttr>())
12782     return false;
12783 
12784   // Don't warn on explicitly deleted functions.
12785   if (FD->isDeleted())
12786     return false;
12787 
12788   bool MissingPrototype = true;
12789   for (const FunctionDecl *Prev = FD->getPreviousDecl();
12790        Prev; Prev = Prev->getPreviousDecl()) {
12791     // Ignore any declarations that occur in function or method
12792     // scope, because they aren't visible from the header.
12793     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
12794       continue;
12795 
12796     MissingPrototype = !Prev->getType()->isFunctionProtoType();
12797     if (FD->getNumParams() == 0)
12798       PossibleZeroParamPrototype = Prev;
12799     break;
12800   }
12801 
12802   return MissingPrototype;
12803 }
12804 
12805 void
12806 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
12807                                    const FunctionDecl *EffectiveDefinition,
12808                                    SkipBodyInfo *SkipBody) {
12809   const FunctionDecl *Definition = EffectiveDefinition;
12810   if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) {
12811     // If this is a friend function defined in a class template, it does not
12812     // have a body until it is used, nevertheless it is a definition, see
12813     // [temp.inst]p2:
12814     //
12815     // ... for the purpose of determining whether an instantiated redeclaration
12816     // is valid according to [basic.def.odr] and [class.mem], a declaration that
12817     // corresponds to a definition in the template is considered to be a
12818     // definition.
12819     //
12820     // The following code must produce redefinition error:
12821     //
12822     //     template<typename T> struct C20 { friend void func_20() {} };
12823     //     C20<int> c20i;
12824     //     void func_20() {}
12825     //
12826     for (auto I : FD->redecls()) {
12827       if (I != FD && !I->isInvalidDecl() &&
12828           I->getFriendObjectKind() != Decl::FOK_None) {
12829         if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) {
12830           if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
12831             // A merged copy of the same function, instantiated as a member of
12832             // the same class, is OK.
12833             if (declaresSameEntity(OrigFD, Original) &&
12834                 declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()),
12835                                    cast<Decl>(FD->getLexicalDeclContext())))
12836               continue;
12837           }
12838 
12839           if (Original->isThisDeclarationADefinition()) {
12840             Definition = I;
12841             break;
12842           }
12843         }
12844       }
12845     }
12846   }
12847 
12848   if (!Definition)
12849     // Similar to friend functions a friend function template may be a
12850     // definition and do not have a body if it is instantiated in a class
12851     // template.
12852     if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) {
12853       for (auto I : FTD->redecls()) {
12854         auto D = cast<FunctionTemplateDecl>(I);
12855         if (D != FTD) {
12856           assert(!D->isThisDeclarationADefinition() &&
12857                  "More than one definition in redeclaration chain");
12858           if (D->getFriendObjectKind() != Decl::FOK_None)
12859             if (FunctionTemplateDecl *FT =
12860                                        D->getInstantiatedFromMemberTemplate()) {
12861               if (FT->isThisDeclarationADefinition()) {
12862                 Definition = D->getTemplatedDecl();
12863                 break;
12864               }
12865             }
12866         }
12867       }
12868     }
12869 
12870   if (!Definition)
12871     return;
12872 
12873   if (canRedefineFunction(Definition, getLangOpts()))
12874     return;
12875 
12876   // Don't emit an error when this is redefinition of a typo-corrected
12877   // definition.
12878   if (TypoCorrectedFunctionDefinitions.count(Definition))
12879     return;
12880 
12881   // If we don't have a visible definition of the function, and it's inline or
12882   // a template, skip the new definition.
12883   if (SkipBody && !hasVisibleDefinition(Definition) &&
12884       (Definition->getFormalLinkage() == InternalLinkage ||
12885        Definition->isInlined() ||
12886        Definition->getDescribedFunctionTemplate() ||
12887        Definition->getNumTemplateParameterLists())) {
12888     SkipBody->ShouldSkip = true;
12889     SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
12890     if (auto *TD = Definition->getDescribedFunctionTemplate())
12891       makeMergedDefinitionVisible(TD);
12892     makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
12893     return;
12894   }
12895 
12896   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
12897       Definition->getStorageClass() == SC_Extern)
12898     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
12899         << FD->getDeclName() << getLangOpts().CPlusPlus;
12900   else
12901     Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
12902 
12903   Diag(Definition->getLocation(), diag::note_previous_definition);
12904   FD->setInvalidDecl();
12905 }
12906 
12907 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
12908                                    Sema &S) {
12909   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
12910 
12911   LambdaScopeInfo *LSI = S.PushLambdaScope();
12912   LSI->CallOperator = CallOperator;
12913   LSI->Lambda = LambdaClass;
12914   LSI->ReturnType = CallOperator->getReturnType();
12915   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
12916 
12917   if (LCD == LCD_None)
12918     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
12919   else if (LCD == LCD_ByCopy)
12920     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
12921   else if (LCD == LCD_ByRef)
12922     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
12923   DeclarationNameInfo DNI = CallOperator->getNameInfo();
12924 
12925   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
12926   LSI->Mutable = !CallOperator->isConst();
12927 
12928   // Add the captures to the LSI so they can be noted as already
12929   // captured within tryCaptureVar.
12930   auto I = LambdaClass->field_begin();
12931   for (const auto &C : LambdaClass->captures()) {
12932     if (C.capturesVariable()) {
12933       VarDecl *VD = C.getCapturedVar();
12934       if (VD->isInitCapture())
12935         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
12936       QualType CaptureType = VD->getType();
12937       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
12938       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
12939           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
12940           /*EllipsisLoc*/C.isPackExpansion()
12941                          ? C.getEllipsisLoc() : SourceLocation(),
12942           CaptureType, /*Expr*/ nullptr);
12943 
12944     } else if (C.capturesThis()) {
12945       LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
12946                               /*Expr*/ nullptr,
12947                               C.getCaptureKind() == LCK_StarThis);
12948     } else {
12949       LSI->addVLATypeCapture(C.getLocation(), I->getType());
12950     }
12951     ++I;
12952   }
12953 }
12954 
12955 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
12956                                     SkipBodyInfo *SkipBody) {
12957   if (!D) {
12958     // Parsing the function declaration failed in some way. Push on a fake scope
12959     // anyway so we can try to parse the function body.
12960     PushFunctionScope();
12961     PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
12962     return D;
12963   }
12964 
12965   FunctionDecl *FD = nullptr;
12966 
12967   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
12968     FD = FunTmpl->getTemplatedDecl();
12969   else
12970     FD = cast<FunctionDecl>(D);
12971 
12972   // Do not push if it is a lambda because one is already pushed when building
12973   // the lambda in ActOnStartOfLambdaDefinition().
12974   if (!isLambdaCallOperator(FD))
12975     PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
12976 
12977   // Check for defining attributes before the check for redefinition.
12978   if (const auto *Attr = FD->getAttr<AliasAttr>()) {
12979     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
12980     FD->dropAttr<AliasAttr>();
12981     FD->setInvalidDecl();
12982   }
12983   if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
12984     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
12985     FD->dropAttr<IFuncAttr>();
12986     FD->setInvalidDecl();
12987   }
12988 
12989   // See if this is a redefinition. If 'will have body' is already set, then
12990   // these checks were already performed when it was set.
12991   if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) {
12992     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
12993 
12994     // If we're skipping the body, we're done. Don't enter the scope.
12995     if (SkipBody && SkipBody->ShouldSkip)
12996       return D;
12997   }
12998 
12999   // Mark this function as "will have a body eventually".  This lets users to
13000   // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
13001   // this function.
13002   FD->setWillHaveBody();
13003 
13004   // If we are instantiating a generic lambda call operator, push
13005   // a LambdaScopeInfo onto the function stack.  But use the information
13006   // that's already been calculated (ActOnLambdaExpr) to prime the current
13007   // LambdaScopeInfo.
13008   // When the template operator is being specialized, the LambdaScopeInfo,
13009   // has to be properly restored so that tryCaptureVariable doesn't try
13010   // and capture any new variables. In addition when calculating potential
13011   // captures during transformation of nested lambdas, it is necessary to
13012   // have the LSI properly restored.
13013   if (isGenericLambdaCallOperatorSpecialization(FD)) {
13014     assert(inTemplateInstantiation() &&
13015            "There should be an active template instantiation on the stack "
13016            "when instantiating a generic lambda!");
13017     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
13018   } else {
13019     // Enter a new function scope
13020     PushFunctionScope();
13021   }
13022 
13023   // Builtin functions cannot be defined.
13024   if (unsigned BuiltinID = FD->getBuiltinID()) {
13025     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
13026         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
13027       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
13028       FD->setInvalidDecl();
13029     }
13030   }
13031 
13032   // The return type of a function definition must be complete
13033   // (C99 6.9.1p3, C++ [dcl.fct]p6).
13034   QualType ResultType = FD->getReturnType();
13035   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
13036       !FD->isInvalidDecl() &&
13037       RequireCompleteType(FD->getLocation(), ResultType,
13038                           diag::err_func_def_incomplete_result))
13039     FD->setInvalidDecl();
13040 
13041   if (FnBodyScope)
13042     PushDeclContext(FnBodyScope, FD);
13043 
13044   // Check the validity of our function parameters
13045   CheckParmsForFunctionDef(FD->parameters(),
13046                            /*CheckParameterNames=*/true);
13047 
13048   // Add non-parameter declarations already in the function to the current
13049   // scope.
13050   if (FnBodyScope) {
13051     for (Decl *NPD : FD->decls()) {
13052       auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
13053       if (!NonParmDecl)
13054         continue;
13055       assert(!isa<ParmVarDecl>(NonParmDecl) &&
13056              "parameters should not be in newly created FD yet");
13057 
13058       // If the decl has a name, make it accessible in the current scope.
13059       if (NonParmDecl->getDeclName())
13060         PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
13061 
13062       // Similarly, dive into enums and fish their constants out, making them
13063       // accessible in this scope.
13064       if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
13065         for (auto *EI : ED->enumerators())
13066           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
13067       }
13068     }
13069   }
13070 
13071   // Introduce our parameters into the function scope
13072   for (auto Param : FD->parameters()) {
13073     Param->setOwningFunction(FD);
13074 
13075     // If this has an identifier, add it to the scope stack.
13076     if (Param->getIdentifier() && FnBodyScope) {
13077       CheckShadow(FnBodyScope, Param);
13078 
13079       PushOnScopeChains(Param, FnBodyScope);
13080     }
13081   }
13082 
13083   // Ensure that the function's exception specification is instantiated.
13084   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
13085     ResolveExceptionSpec(D->getLocation(), FPT);
13086 
13087   // dllimport cannot be applied to non-inline function definitions.
13088   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
13089       !FD->isTemplateInstantiation()) {
13090     assert(!FD->hasAttr<DLLExportAttr>());
13091     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
13092     FD->setInvalidDecl();
13093     return D;
13094   }
13095   // We want to attach documentation to original Decl (which might be
13096   // a function template).
13097   ActOnDocumentableDecl(D);
13098   if (getCurLexicalContext()->isObjCContainer() &&
13099       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
13100       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
13101     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
13102 
13103   return D;
13104 }
13105 
13106 /// Given the set of return statements within a function body,
13107 /// compute the variables that are subject to the named return value
13108 /// optimization.
13109 ///
13110 /// Each of the variables that is subject to the named return value
13111 /// optimization will be marked as NRVO variables in the AST, and any
13112 /// return statement that has a marked NRVO variable as its NRVO candidate can
13113 /// use the named return value optimization.
13114 ///
13115 /// This function applies a very simplistic algorithm for NRVO: if every return
13116 /// statement in the scope of a variable has the same NRVO candidate, that
13117 /// candidate is an NRVO variable.
13118 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
13119   ReturnStmt **Returns = Scope->Returns.data();
13120 
13121   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
13122     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
13123       if (!NRVOCandidate->isNRVOVariable())
13124         Returns[I]->setNRVOCandidate(nullptr);
13125     }
13126   }
13127 }
13128 
13129 bool Sema::canDelayFunctionBody(const Declarator &D) {
13130   // We can't delay parsing the body of a constexpr function template (yet).
13131   if (D.getDeclSpec().isConstexprSpecified())
13132     return false;
13133 
13134   // We can't delay parsing the body of a function template with a deduced
13135   // return type (yet).
13136   if (D.getDeclSpec().hasAutoTypeSpec()) {
13137     // If the placeholder introduces a non-deduced trailing return type,
13138     // we can still delay parsing it.
13139     if (D.getNumTypeObjects()) {
13140       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
13141       if (Outer.Kind == DeclaratorChunk::Function &&
13142           Outer.Fun.hasTrailingReturnType()) {
13143         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
13144         return Ty.isNull() || !Ty->isUndeducedType();
13145       }
13146     }
13147     return false;
13148   }
13149 
13150   return true;
13151 }
13152 
13153 bool Sema::canSkipFunctionBody(Decl *D) {
13154   // We cannot skip the body of a function (or function template) which is
13155   // constexpr, since we may need to evaluate its body in order to parse the
13156   // rest of the file.
13157   // We cannot skip the body of a function with an undeduced return type,
13158   // because any callers of that function need to know the type.
13159   if (const FunctionDecl *FD = D->getAsFunction()) {
13160     if (FD->isConstexpr())
13161       return false;
13162     // We can't simply call Type::isUndeducedType here, because inside template
13163     // auto can be deduced to a dependent type, which is not considered
13164     // "undeduced".
13165     if (FD->getReturnType()->getContainedDeducedType())
13166       return false;
13167   }
13168   return Consumer.shouldSkipFunctionBody(D);
13169 }
13170 
13171 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
13172   if (!Decl)
13173     return nullptr;
13174   if (FunctionDecl *FD = Decl->getAsFunction())
13175     FD->setHasSkippedBody();
13176   else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
13177     MD->setHasSkippedBody();
13178   return Decl;
13179 }
13180 
13181 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
13182   return ActOnFinishFunctionBody(D, BodyArg, false);
13183 }
13184 
13185 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
13186 /// body.
13187 class ExitFunctionBodyRAII {
13188 public:
13189   ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
13190   ~ExitFunctionBodyRAII() {
13191     if (!IsLambda)
13192       S.PopExpressionEvaluationContext();
13193   }
13194 
13195 private:
13196   Sema &S;
13197   bool IsLambda = false;
13198 };
13199 
13200 static void diagnoseImplicitlyRetainedSelf(Sema &S) {
13201   llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
13202 
13203   auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
13204     if (EscapeInfo.count(BD))
13205       return EscapeInfo[BD];
13206 
13207     bool R = false;
13208     const BlockDecl *CurBD = BD;
13209 
13210     do {
13211       R = !CurBD->doesNotEscape();
13212       if (R)
13213         break;
13214       CurBD = CurBD->getParent()->getInnermostBlockDecl();
13215     } while (CurBD);
13216 
13217     return EscapeInfo[BD] = R;
13218   };
13219 
13220   // If the location where 'self' is implicitly retained is inside a escaping
13221   // block, emit a diagnostic.
13222   for (const std::pair<SourceLocation, const BlockDecl *> &P :
13223        S.ImplicitlyRetainedSelfLocs)
13224     if (IsOrNestedInEscapingBlock(P.second))
13225       S.Diag(P.first, diag::warn_implicitly_retains_self)
13226           << FixItHint::CreateInsertion(P.first, "self->");
13227 }
13228 
13229 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
13230                                     bool IsInstantiation) {
13231   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
13232 
13233   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
13234   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
13235 
13236   if (getLangOpts().Coroutines && getCurFunction()->isCoroutine())
13237     CheckCompletedCoroutineBody(FD, Body);
13238 
13239   // Do not call PopExpressionEvaluationContext() if it is a lambda because one
13240   // is already popped when finishing the lambda in BuildLambdaExpr(). This is
13241   // meant to pop the context added in ActOnStartOfFunctionDef().
13242   ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
13243 
13244   if (FD) {
13245     FD->setBody(Body);
13246     FD->setWillHaveBody(false);
13247 
13248     if (getLangOpts().CPlusPlus14) {
13249       if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
13250           FD->getReturnType()->isUndeducedType()) {
13251         // If the function has a deduced result type but contains no 'return'
13252         // statements, the result type as written must be exactly 'auto', and
13253         // the deduced result type is 'void'.
13254         if (!FD->getReturnType()->getAs<AutoType>()) {
13255           Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
13256               << FD->getReturnType();
13257           FD->setInvalidDecl();
13258         } else {
13259           // Substitute 'void' for the 'auto' in the type.
13260           TypeLoc ResultType = getReturnTypeLoc(FD);
13261           Context.adjustDeducedFunctionResultType(
13262               FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
13263         }
13264       }
13265     } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
13266       // In C++11, we don't use 'auto' deduction rules for lambda call
13267       // operators because we don't support return type deduction.
13268       auto *LSI = getCurLambda();
13269       if (LSI->HasImplicitReturnType) {
13270         deduceClosureReturnType(*LSI);
13271 
13272         // C++11 [expr.prim.lambda]p4:
13273         //   [...] if there are no return statements in the compound-statement
13274         //   [the deduced type is] the type void
13275         QualType RetType =
13276             LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
13277 
13278         // Update the return type to the deduced type.
13279         const FunctionProtoType *Proto =
13280             FD->getType()->getAs<FunctionProtoType>();
13281         FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
13282                                             Proto->getExtProtoInfo()));
13283       }
13284     }
13285 
13286     // If the function implicitly returns zero (like 'main') or is naked,
13287     // don't complain about missing return statements.
13288     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
13289       WP.disableCheckFallThrough();
13290 
13291     // MSVC permits the use of pure specifier (=0) on function definition,
13292     // defined at class scope, warn about this non-standard construct.
13293     if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
13294       Diag(FD->getLocation(), diag::ext_pure_function_definition);
13295 
13296     if (!FD->isInvalidDecl()) {
13297       // Don't diagnose unused parameters of defaulted or deleted functions.
13298       if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
13299         DiagnoseUnusedParameters(FD->parameters());
13300       DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
13301                                              FD->getReturnType(), FD);
13302 
13303       // If this is a structor, we need a vtable.
13304       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
13305         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
13306       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
13307         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
13308 
13309       // Try to apply the named return value optimization. We have to check
13310       // if we can do this here because lambdas keep return statements around
13311       // to deduce an implicit return type.
13312       if (FD->getReturnType()->isRecordType() &&
13313           (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
13314         computeNRVO(Body, getCurFunction());
13315     }
13316 
13317     // GNU warning -Wmissing-prototypes:
13318     //   Warn if a global function is defined without a previous
13319     //   prototype declaration. This warning is issued even if the
13320     //   definition itself provides a prototype. The aim is to detect
13321     //   global functions that fail to be declared in header files.
13322     const FunctionDecl *PossibleZeroParamPrototype = nullptr;
13323     if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
13324       Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
13325 
13326       if (PossibleZeroParamPrototype) {
13327         // We found a declaration that is not a prototype,
13328         // but that could be a zero-parameter prototype
13329         if (TypeSourceInfo *TI =
13330                 PossibleZeroParamPrototype->getTypeSourceInfo()) {
13331           TypeLoc TL = TI->getTypeLoc();
13332           if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
13333             Diag(PossibleZeroParamPrototype->getLocation(),
13334                  diag::note_declaration_not_a_prototype)
13335                 << PossibleZeroParamPrototype
13336                 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
13337         }
13338       }
13339 
13340       // GNU warning -Wstrict-prototypes
13341       //   Warn if K&R function is defined without a previous declaration.
13342       //   This warning is issued only if the definition itself does not provide
13343       //   a prototype. Only K&R definitions do not provide a prototype.
13344       //   An empty list in a function declarator that is part of a definition
13345       //   of that function specifies that the function has no parameters
13346       //   (C99 6.7.5.3p14)
13347       if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 &&
13348           !LangOpts.CPlusPlus) {
13349         TypeSourceInfo *TI = FD->getTypeSourceInfo();
13350         TypeLoc TL = TI->getTypeLoc();
13351         FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
13352         Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
13353       }
13354     }
13355 
13356     // Warn on CPUDispatch with an actual body.
13357     if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
13358       if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
13359         if (!CmpndBody->body_empty())
13360           Diag(CmpndBody->body_front()->getBeginLoc(),
13361                diag::warn_dispatch_body_ignored);
13362 
13363     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
13364       const CXXMethodDecl *KeyFunction;
13365       if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
13366           MD->isVirtual() &&
13367           (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
13368           MD == KeyFunction->getCanonicalDecl()) {
13369         // Update the key-function state if necessary for this ABI.
13370         if (FD->isInlined() &&
13371             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
13372           Context.setNonKeyFunction(MD);
13373 
13374           // If the newly-chosen key function is already defined, then we
13375           // need to mark the vtable as used retroactively.
13376           KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
13377           const FunctionDecl *Definition;
13378           if (KeyFunction && KeyFunction->isDefined(Definition))
13379             MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
13380         } else {
13381           // We just defined they key function; mark the vtable as used.
13382           MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
13383         }
13384       }
13385     }
13386 
13387     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
13388            "Function parsing confused");
13389   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
13390     assert(MD == getCurMethodDecl() && "Method parsing confused");
13391     MD->setBody(Body);
13392     if (!MD->isInvalidDecl()) {
13393       DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
13394                                              MD->getReturnType(), MD);
13395 
13396       if (Body)
13397         computeNRVO(Body, getCurFunction());
13398     }
13399     if (getCurFunction()->ObjCShouldCallSuper) {
13400       Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
13401           << MD->getSelector().getAsString();
13402       getCurFunction()->ObjCShouldCallSuper = false;
13403     }
13404     if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
13405       const ObjCMethodDecl *InitMethod = nullptr;
13406       bool isDesignated =
13407           MD->isDesignatedInitializerForTheInterface(&InitMethod);
13408       assert(isDesignated && InitMethod);
13409       (void)isDesignated;
13410 
13411       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
13412         auto IFace = MD->getClassInterface();
13413         if (!IFace)
13414           return false;
13415         auto SuperD = IFace->getSuperClass();
13416         if (!SuperD)
13417           return false;
13418         return SuperD->getIdentifier() ==
13419             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
13420       };
13421       // Don't issue this warning for unavailable inits or direct subclasses
13422       // of NSObject.
13423       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
13424         Diag(MD->getLocation(),
13425              diag::warn_objc_designated_init_missing_super_call);
13426         Diag(InitMethod->getLocation(),
13427              diag::note_objc_designated_init_marked_here);
13428       }
13429       getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
13430     }
13431     if (getCurFunction()->ObjCWarnForNoInitDelegation) {
13432       // Don't issue this warning for unavaialable inits.
13433       if (!MD->isUnavailable())
13434         Diag(MD->getLocation(),
13435              diag::warn_objc_secondary_init_missing_init_call);
13436       getCurFunction()->ObjCWarnForNoInitDelegation = false;
13437     }
13438 
13439     diagnoseImplicitlyRetainedSelf(*this);
13440   } else {
13441     // Parsing the function declaration failed in some way. Pop the fake scope
13442     // we pushed on.
13443     PopFunctionScopeInfo(ActivePolicy, dcl);
13444     return nullptr;
13445   }
13446 
13447   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
13448     DiagnoseUnguardedAvailabilityViolations(dcl);
13449 
13450   assert(!getCurFunction()->ObjCShouldCallSuper &&
13451          "This should only be set for ObjC methods, which should have been "
13452          "handled in the block above.");
13453 
13454   // Verify and clean out per-function state.
13455   if (Body && (!FD || !FD->isDefaulted())) {
13456     // C++ constructors that have function-try-blocks can't have return
13457     // statements in the handlers of that block. (C++ [except.handle]p14)
13458     // Verify this.
13459     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
13460       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
13461 
13462     // Verify that gotos and switch cases don't jump into scopes illegally.
13463     if (getCurFunction()->NeedsScopeChecking() &&
13464         !PP.isCodeCompletionEnabled())
13465       DiagnoseInvalidJumps(Body);
13466 
13467     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
13468       if (!Destructor->getParent()->isDependentType())
13469         CheckDestructor(Destructor);
13470 
13471       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
13472                                              Destructor->getParent());
13473     }
13474 
13475     // If any errors have occurred, clear out any temporaries that may have
13476     // been leftover. This ensures that these temporaries won't be picked up for
13477     // deletion in some later function.
13478     if (getDiagnostics().hasErrorOccurred() ||
13479         getDiagnostics().getSuppressAllDiagnostics()) {
13480       DiscardCleanupsInEvaluationContext();
13481     }
13482     if (!getDiagnostics().hasUncompilableErrorOccurred() &&
13483         !isa<FunctionTemplateDecl>(dcl)) {
13484       // Since the body is valid, issue any analysis-based warnings that are
13485       // enabled.
13486       ActivePolicy = &WP;
13487     }
13488 
13489     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
13490         (!CheckConstexprFunctionDecl(FD) ||
13491          !CheckConstexprFunctionBody(FD, Body)))
13492       FD->setInvalidDecl();
13493 
13494     if (FD && FD->hasAttr<NakedAttr>()) {
13495       for (const Stmt *S : Body->children()) {
13496         // Allow local register variables without initializer as they don't
13497         // require prologue.
13498         bool RegisterVariables = false;
13499         if (auto *DS = dyn_cast<DeclStmt>(S)) {
13500           for (const auto *Decl : DS->decls()) {
13501             if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
13502               RegisterVariables =
13503                   Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
13504               if (!RegisterVariables)
13505                 break;
13506             }
13507           }
13508         }
13509         if (RegisterVariables)
13510           continue;
13511         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
13512           Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
13513           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
13514           FD->setInvalidDecl();
13515           break;
13516         }
13517       }
13518     }
13519 
13520     assert(ExprCleanupObjects.size() ==
13521                ExprEvalContexts.back().NumCleanupObjects &&
13522            "Leftover temporaries in function");
13523     assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
13524     assert(MaybeODRUseExprs.empty() &&
13525            "Leftover expressions for odr-use checking");
13526   }
13527 
13528   if (!IsInstantiation)
13529     PopDeclContext();
13530 
13531   PopFunctionScopeInfo(ActivePolicy, dcl);
13532   // If any errors have occurred, clear out any temporaries that may have
13533   // been leftover. This ensures that these temporaries won't be picked up for
13534   // deletion in some later function.
13535   if (getDiagnostics().hasErrorOccurred()) {
13536     DiscardCleanupsInEvaluationContext();
13537   }
13538 
13539   return dcl;
13540 }
13541 
13542 /// When we finish delayed parsing of an attribute, we must attach it to the
13543 /// relevant Decl.
13544 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
13545                                        ParsedAttributes &Attrs) {
13546   // Always attach attributes to the underlying decl.
13547   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
13548     D = TD->getTemplatedDecl();
13549   ProcessDeclAttributeList(S, D, Attrs);
13550 
13551   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
13552     if (Method->isStatic())
13553       checkThisInStaticMemberFunctionAttributes(Method);
13554 }
13555 
13556 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
13557 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
13558 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
13559                                           IdentifierInfo &II, Scope *S) {
13560   // Find the scope in which the identifier is injected and the corresponding
13561   // DeclContext.
13562   // FIXME: C89 does not say what happens if there is no enclosing block scope.
13563   // In that case, we inject the declaration into the translation unit scope
13564   // instead.
13565   Scope *BlockScope = S;
13566   while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
13567     BlockScope = BlockScope->getParent();
13568 
13569   Scope *ContextScope = BlockScope;
13570   while (!ContextScope->getEntity())
13571     ContextScope = ContextScope->getParent();
13572   ContextRAII SavedContext(*this, ContextScope->getEntity());
13573 
13574   // Before we produce a declaration for an implicitly defined
13575   // function, see whether there was a locally-scoped declaration of
13576   // this name as a function or variable. If so, use that
13577   // (non-visible) declaration, and complain about it.
13578   NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
13579   if (ExternCPrev) {
13580     // We still need to inject the function into the enclosing block scope so
13581     // that later (non-call) uses can see it.
13582     PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
13583 
13584     // C89 footnote 38:
13585     //   If in fact it is not defined as having type "function returning int",
13586     //   the behavior is undefined.
13587     if (!isa<FunctionDecl>(ExternCPrev) ||
13588         !Context.typesAreCompatible(
13589             cast<FunctionDecl>(ExternCPrev)->getType(),
13590             Context.getFunctionNoProtoType(Context.IntTy))) {
13591       Diag(Loc, diag::ext_use_out_of_scope_declaration)
13592           << ExternCPrev << !getLangOpts().C99;
13593       Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
13594       return ExternCPrev;
13595     }
13596   }
13597 
13598   // Extension in C99.  Legal in C90, but warn about it.
13599   unsigned diag_id;
13600   if (II.getName().startswith("__builtin_"))
13601     diag_id = diag::warn_builtin_unknown;
13602   // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
13603   else if (getLangOpts().OpenCL)
13604     diag_id = diag::err_opencl_implicit_function_decl;
13605   else if (getLangOpts().C99)
13606     diag_id = diag::ext_implicit_function_decl;
13607   else
13608     diag_id = diag::warn_implicit_function_decl;
13609   Diag(Loc, diag_id) << &II;
13610 
13611   // If we found a prior declaration of this function, don't bother building
13612   // another one. We've already pushed that one into scope, so there's nothing
13613   // more to do.
13614   if (ExternCPrev)
13615     return ExternCPrev;
13616 
13617   // Because typo correction is expensive, only do it if the implicit
13618   // function declaration is going to be treated as an error.
13619   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
13620     TypoCorrection Corrected;
13621     DeclFilterCCC<FunctionDecl> CCC{};
13622     if (S && (Corrected =
13623                   CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
13624                               S, nullptr, CCC, CTK_NonError)))
13625       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
13626                    /*ErrorRecovery*/false);
13627   }
13628 
13629   // Set a Declarator for the implicit definition: int foo();
13630   const char *Dummy;
13631   AttributeFactory attrFactory;
13632   DeclSpec DS(attrFactory);
13633   unsigned DiagID;
13634   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
13635                                   Context.getPrintingPolicy());
13636   (void)Error; // Silence warning.
13637   assert(!Error && "Error setting up implicit decl!");
13638   SourceLocation NoLoc;
13639   Declarator D(DS, DeclaratorContext::BlockContext);
13640   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
13641                                              /*IsAmbiguous=*/false,
13642                                              /*LParenLoc=*/NoLoc,
13643                                              /*Params=*/nullptr,
13644                                              /*NumParams=*/0,
13645                                              /*EllipsisLoc=*/NoLoc,
13646                                              /*RParenLoc=*/NoLoc,
13647                                              /*RefQualifierIsLvalueRef=*/true,
13648                                              /*RefQualifierLoc=*/NoLoc,
13649                                              /*MutableLoc=*/NoLoc, EST_None,
13650                                              /*ESpecRange=*/SourceRange(),
13651                                              /*Exceptions=*/nullptr,
13652                                              /*ExceptionRanges=*/nullptr,
13653                                              /*NumExceptions=*/0,
13654                                              /*NoexceptExpr=*/nullptr,
13655                                              /*ExceptionSpecTokens=*/nullptr,
13656                                              /*DeclsInPrototype=*/None, Loc,
13657                                              Loc, D),
13658                 std::move(DS.getAttributes()), SourceLocation());
13659   D.SetIdentifier(&II, Loc);
13660 
13661   // Insert this function into the enclosing block scope.
13662   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
13663   FD->setImplicit();
13664 
13665   AddKnownFunctionAttributes(FD);
13666 
13667   return FD;
13668 }
13669 
13670 /// Adds any function attributes that we know a priori based on
13671 /// the declaration of this function.
13672 ///
13673 /// These attributes can apply both to implicitly-declared builtins
13674 /// (like __builtin___printf_chk) or to library-declared functions
13675 /// like NSLog or printf.
13676 ///
13677 /// We need to check for duplicate attributes both here and where user-written
13678 /// attributes are applied to declarations.
13679 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
13680   if (FD->isInvalidDecl())
13681     return;
13682 
13683   // If this is a built-in function, map its builtin attributes to
13684   // actual attributes.
13685   if (unsigned BuiltinID = FD->getBuiltinID()) {
13686     // Handle printf-formatting attributes.
13687     unsigned FormatIdx;
13688     bool HasVAListArg;
13689     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
13690       if (!FD->hasAttr<FormatAttr>()) {
13691         const char *fmt = "printf";
13692         unsigned int NumParams = FD->getNumParams();
13693         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
13694             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
13695           fmt = "NSString";
13696         FD->addAttr(FormatAttr::CreateImplicit(Context,
13697                                                &Context.Idents.get(fmt),
13698                                                FormatIdx+1,
13699                                                HasVAListArg ? 0 : FormatIdx+2,
13700                                                FD->getLocation()));
13701       }
13702     }
13703     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
13704                                              HasVAListArg)) {
13705      if (!FD->hasAttr<FormatAttr>())
13706        FD->addAttr(FormatAttr::CreateImplicit(Context,
13707                                               &Context.Idents.get("scanf"),
13708                                               FormatIdx+1,
13709                                               HasVAListArg ? 0 : FormatIdx+2,
13710                                               FD->getLocation()));
13711     }
13712 
13713     // Handle automatically recognized callbacks.
13714     SmallVector<int, 4> Encoding;
13715     if (!FD->hasAttr<CallbackAttr>() &&
13716         Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
13717       FD->addAttr(CallbackAttr::CreateImplicit(
13718           Context, Encoding.data(), Encoding.size(), FD->getLocation()));
13719 
13720     // Mark const if we don't care about errno and that is the only thing
13721     // preventing the function from being const. This allows IRgen to use LLVM
13722     // intrinsics for such functions.
13723     if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
13724         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
13725       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13726 
13727     // We make "fma" on some platforms const because we know it does not set
13728     // errno in those environments even though it could set errno based on the
13729     // C standard.
13730     const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
13731     if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
13732         !FD->hasAttr<ConstAttr>()) {
13733       switch (BuiltinID) {
13734       case Builtin::BI__builtin_fma:
13735       case Builtin::BI__builtin_fmaf:
13736       case Builtin::BI__builtin_fmal:
13737       case Builtin::BIfma:
13738       case Builtin::BIfmaf:
13739       case Builtin::BIfmal:
13740         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13741         break;
13742       default:
13743         break;
13744       }
13745     }
13746 
13747     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
13748         !FD->hasAttr<ReturnsTwiceAttr>())
13749       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
13750                                          FD->getLocation()));
13751     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
13752       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
13753     if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
13754       FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
13755     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
13756       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13757     if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
13758         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
13759       // Add the appropriate attribute, depending on the CUDA compilation mode
13760       // and which target the builtin belongs to. For example, during host
13761       // compilation, aux builtins are __device__, while the rest are __host__.
13762       if (getLangOpts().CUDAIsDevice !=
13763           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
13764         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
13765       else
13766         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
13767     }
13768   }
13769 
13770   // If C++ exceptions are enabled but we are told extern "C" functions cannot
13771   // throw, add an implicit nothrow attribute to any extern "C" function we come
13772   // across.
13773   if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
13774       FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
13775     const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
13776     if (!FPT || FPT->getExceptionSpecType() == EST_None)
13777       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
13778   }
13779 
13780   IdentifierInfo *Name = FD->getIdentifier();
13781   if (!Name)
13782     return;
13783   if ((!getLangOpts().CPlusPlus &&
13784        FD->getDeclContext()->isTranslationUnit()) ||
13785       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
13786        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
13787        LinkageSpecDecl::lang_c)) {
13788     // Okay: this could be a libc/libm/Objective-C function we know
13789     // about.
13790   } else
13791     return;
13792 
13793   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
13794     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
13795     // target-specific builtins, perhaps?
13796     if (!FD->hasAttr<FormatAttr>())
13797       FD->addAttr(FormatAttr::CreateImplicit(Context,
13798                                              &Context.Idents.get("printf"), 2,
13799                                              Name->isStr("vasprintf") ? 0 : 3,
13800                                              FD->getLocation()));
13801   }
13802 
13803   if (Name->isStr("__CFStringMakeConstantString")) {
13804     // We already have a __builtin___CFStringMakeConstantString,
13805     // but builds that use -fno-constant-cfstrings don't go through that.
13806     if (!FD->hasAttr<FormatArgAttr>())
13807       FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
13808                                                 FD->getLocation()));
13809   }
13810 }
13811 
13812 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
13813                                     TypeSourceInfo *TInfo) {
13814   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
13815   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
13816 
13817   if (!TInfo) {
13818     assert(D.isInvalidType() && "no declarator info for valid type");
13819     TInfo = Context.getTrivialTypeSourceInfo(T);
13820   }
13821 
13822   // Scope manipulation handled by caller.
13823   TypedefDecl *NewTD =
13824       TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
13825                           D.getIdentifierLoc(), D.getIdentifier(), TInfo);
13826 
13827   // Bail out immediately if we have an invalid declaration.
13828   if (D.isInvalidType()) {
13829     NewTD->setInvalidDecl();
13830     return NewTD;
13831   }
13832 
13833   if (D.getDeclSpec().isModulePrivateSpecified()) {
13834     if (CurContext->isFunctionOrMethod())
13835       Diag(NewTD->getLocation(), diag::err_module_private_local)
13836         << 2 << NewTD->getDeclName()
13837         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13838         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13839     else
13840       NewTD->setModulePrivate();
13841   }
13842 
13843   // C++ [dcl.typedef]p8:
13844   //   If the typedef declaration defines an unnamed class (or
13845   //   enum), the first typedef-name declared by the declaration
13846   //   to be that class type (or enum type) is used to denote the
13847   //   class type (or enum type) for linkage purposes only.
13848   // We need to check whether the type was declared in the declaration.
13849   switch (D.getDeclSpec().getTypeSpecType()) {
13850   case TST_enum:
13851   case TST_struct:
13852   case TST_interface:
13853   case TST_union:
13854   case TST_class: {
13855     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
13856     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
13857     break;
13858   }
13859 
13860   default:
13861     break;
13862   }
13863 
13864   return NewTD;
13865 }
13866 
13867 /// Check that this is a valid underlying type for an enum declaration.
13868 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
13869   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
13870   QualType T = TI->getType();
13871 
13872   if (T->isDependentType())
13873     return false;
13874 
13875   if (const BuiltinType *BT = T->getAs<BuiltinType>())
13876     if (BT->isInteger())
13877       return false;
13878 
13879   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
13880   return true;
13881 }
13882 
13883 /// Check whether this is a valid redeclaration of a previous enumeration.
13884 /// \return true if the redeclaration was invalid.
13885 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
13886                                   QualType EnumUnderlyingTy, bool IsFixed,
13887                                   const EnumDecl *Prev) {
13888   if (IsScoped != Prev->isScoped()) {
13889     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
13890       << Prev->isScoped();
13891     Diag(Prev->getLocation(), diag::note_previous_declaration);
13892     return true;
13893   }
13894 
13895   if (IsFixed && Prev->isFixed()) {
13896     if (!EnumUnderlyingTy->isDependentType() &&
13897         !Prev->getIntegerType()->isDependentType() &&
13898         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
13899                                         Prev->getIntegerType())) {
13900       // TODO: Highlight the underlying type of the redeclaration.
13901       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
13902         << EnumUnderlyingTy << Prev->getIntegerType();
13903       Diag(Prev->getLocation(), diag::note_previous_declaration)
13904           << Prev->getIntegerTypeRange();
13905       return true;
13906     }
13907   } else if (IsFixed != Prev->isFixed()) {
13908     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
13909       << Prev->isFixed();
13910     Diag(Prev->getLocation(), diag::note_previous_declaration);
13911     return true;
13912   }
13913 
13914   return false;
13915 }
13916 
13917 /// Get diagnostic %select index for tag kind for
13918 /// redeclaration diagnostic message.
13919 /// WARNING: Indexes apply to particular diagnostics only!
13920 ///
13921 /// \returns diagnostic %select index.
13922 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
13923   switch (Tag) {
13924   case TTK_Struct: return 0;
13925   case TTK_Interface: return 1;
13926   case TTK_Class:  return 2;
13927   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
13928   }
13929 }
13930 
13931 /// Determine if tag kind is a class-key compatible with
13932 /// class for redeclaration (class, struct, or __interface).
13933 ///
13934 /// \returns true iff the tag kind is compatible.
13935 static bool isClassCompatTagKind(TagTypeKind Tag)
13936 {
13937   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
13938 }
13939 
13940 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
13941                                              TagTypeKind TTK) {
13942   if (isa<TypedefDecl>(PrevDecl))
13943     return NTK_Typedef;
13944   else if (isa<TypeAliasDecl>(PrevDecl))
13945     return NTK_TypeAlias;
13946   else if (isa<ClassTemplateDecl>(PrevDecl))
13947     return NTK_Template;
13948   else if (isa<TypeAliasTemplateDecl>(PrevDecl))
13949     return NTK_TypeAliasTemplate;
13950   else if (isa<TemplateTemplateParmDecl>(PrevDecl))
13951     return NTK_TemplateTemplateArgument;
13952   switch (TTK) {
13953   case TTK_Struct:
13954   case TTK_Interface:
13955   case TTK_Class:
13956     return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
13957   case TTK_Union:
13958     return NTK_NonUnion;
13959   case TTK_Enum:
13960     return NTK_NonEnum;
13961   }
13962   llvm_unreachable("invalid TTK");
13963 }
13964 
13965 /// Determine whether a tag with a given kind is acceptable
13966 /// as a redeclaration of the given tag declaration.
13967 ///
13968 /// \returns true if the new tag kind is acceptable, false otherwise.
13969 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
13970                                         TagTypeKind NewTag, bool isDefinition,
13971                                         SourceLocation NewTagLoc,
13972                                         const IdentifierInfo *Name) {
13973   // C++ [dcl.type.elab]p3:
13974   //   The class-key or enum keyword present in the
13975   //   elaborated-type-specifier shall agree in kind with the
13976   //   declaration to which the name in the elaborated-type-specifier
13977   //   refers. This rule also applies to the form of
13978   //   elaborated-type-specifier that declares a class-name or
13979   //   friend class since it can be construed as referring to the
13980   //   definition of the class. Thus, in any
13981   //   elaborated-type-specifier, the enum keyword shall be used to
13982   //   refer to an enumeration (7.2), the union class-key shall be
13983   //   used to refer to a union (clause 9), and either the class or
13984   //   struct class-key shall be used to refer to a class (clause 9)
13985   //   declared using the class or struct class-key.
13986   TagTypeKind OldTag = Previous->getTagKind();
13987   if (OldTag != NewTag &&
13988       !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
13989     return false;
13990 
13991   // Tags are compatible, but we might still want to warn on mismatched tags.
13992   // Non-class tags can't be mismatched at this point.
13993   if (!isClassCompatTagKind(NewTag))
13994     return true;
13995 
13996   // Declarations for which -Wmismatched-tags is disabled are entirely ignored
13997   // by our warning analysis. We don't want to warn about mismatches with (eg)
13998   // declarations in system headers that are designed to be specialized, but if
13999   // a user asks us to warn, we should warn if their code contains mismatched
14000   // declarations.
14001   auto IsIgnoredLoc = [&](SourceLocation Loc) {
14002     return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
14003                                       Loc);
14004   };
14005   if (IsIgnoredLoc(NewTagLoc))
14006     return true;
14007 
14008   auto IsIgnored = [&](const TagDecl *Tag) {
14009     return IsIgnoredLoc(Tag->getLocation());
14010   };
14011   while (IsIgnored(Previous)) {
14012     Previous = Previous->getPreviousDecl();
14013     if (!Previous)
14014       return true;
14015     OldTag = Previous->getTagKind();
14016   }
14017 
14018   bool isTemplate = false;
14019   if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
14020     isTemplate = Record->getDescribedClassTemplate();
14021 
14022   if (inTemplateInstantiation()) {
14023     if (OldTag != NewTag) {
14024       // In a template instantiation, do not offer fix-its for tag mismatches
14025       // since they usually mess up the template instead of fixing the problem.
14026       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
14027         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14028         << getRedeclDiagFromTagKind(OldTag);
14029       // FIXME: Note previous location?
14030     }
14031     return true;
14032   }
14033 
14034   if (isDefinition) {
14035     // On definitions, check all previous tags and issue a fix-it for each
14036     // one that doesn't match the current tag.
14037     if (Previous->getDefinition()) {
14038       // Don't suggest fix-its for redefinitions.
14039       return true;
14040     }
14041 
14042     bool previousMismatch = false;
14043     for (const TagDecl *I : Previous->redecls()) {
14044       if (I->getTagKind() != NewTag) {
14045         // Ignore previous declarations for which the warning was disabled.
14046         if (IsIgnored(I))
14047           continue;
14048 
14049         if (!previousMismatch) {
14050           previousMismatch = true;
14051           Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
14052             << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14053             << getRedeclDiagFromTagKind(I->getTagKind());
14054         }
14055         Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
14056           << getRedeclDiagFromTagKind(NewTag)
14057           << FixItHint::CreateReplacement(I->getInnerLocStart(),
14058                TypeWithKeyword::getTagTypeKindName(NewTag));
14059       }
14060     }
14061     return true;
14062   }
14063 
14064   // Identify the prevailing tag kind: this is the kind of the definition (if
14065   // there is a non-ignored definition), or otherwise the kind of the prior
14066   // (non-ignored) declaration.
14067   const TagDecl *PrevDef = Previous->getDefinition();
14068   if (PrevDef && IsIgnored(PrevDef))
14069     PrevDef = nullptr;
14070   const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
14071   if (Redecl->getTagKind() != NewTag) {
14072     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
14073       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14074       << getRedeclDiagFromTagKind(OldTag);
14075     Diag(Redecl->getLocation(), diag::note_previous_use);
14076 
14077     // If there is a previous definition, suggest a fix-it.
14078     if (PrevDef) {
14079       Diag(NewTagLoc, diag::note_struct_class_suggestion)
14080         << getRedeclDiagFromTagKind(Redecl->getTagKind())
14081         << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
14082              TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
14083     }
14084   }
14085 
14086   return true;
14087 }
14088 
14089 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
14090 /// from an outer enclosing namespace or file scope inside a friend declaration.
14091 /// This should provide the commented out code in the following snippet:
14092 ///   namespace N {
14093 ///     struct X;
14094 ///     namespace M {
14095 ///       struct Y { friend struct /*N::*/ X; };
14096 ///     }
14097 ///   }
14098 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
14099                                          SourceLocation NameLoc) {
14100   // While the decl is in a namespace, do repeated lookup of that name and see
14101   // if we get the same namespace back.  If we do not, continue until
14102   // translation unit scope, at which point we have a fully qualified NNS.
14103   SmallVector<IdentifierInfo *, 4> Namespaces;
14104   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
14105   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
14106     // This tag should be declared in a namespace, which can only be enclosed by
14107     // other namespaces.  Bail if there's an anonymous namespace in the chain.
14108     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
14109     if (!Namespace || Namespace->isAnonymousNamespace())
14110       return FixItHint();
14111     IdentifierInfo *II = Namespace->getIdentifier();
14112     Namespaces.push_back(II);
14113     NamedDecl *Lookup = SemaRef.LookupSingleName(
14114         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
14115     if (Lookup == Namespace)
14116       break;
14117   }
14118 
14119   // Once we have all the namespaces, reverse them to go outermost first, and
14120   // build an NNS.
14121   SmallString<64> Insertion;
14122   llvm::raw_svector_ostream OS(Insertion);
14123   if (DC->isTranslationUnit())
14124     OS << "::";
14125   std::reverse(Namespaces.begin(), Namespaces.end());
14126   for (auto *II : Namespaces)
14127     OS << II->getName() << "::";
14128   return FixItHint::CreateInsertion(NameLoc, Insertion);
14129 }
14130 
14131 /// Determine whether a tag originally declared in context \p OldDC can
14132 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
14133 /// found a declaration in \p OldDC as a previous decl, perhaps through a
14134 /// using-declaration).
14135 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
14136                                          DeclContext *NewDC) {
14137   OldDC = OldDC->getRedeclContext();
14138   NewDC = NewDC->getRedeclContext();
14139 
14140   if (OldDC->Equals(NewDC))
14141     return true;
14142 
14143   // In MSVC mode, we allow a redeclaration if the contexts are related (either
14144   // encloses the other).
14145   if (S.getLangOpts().MSVCCompat &&
14146       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
14147     return true;
14148 
14149   return false;
14150 }
14151 
14152 /// This is invoked when we see 'struct foo' or 'struct {'.  In the
14153 /// former case, Name will be non-null.  In the later case, Name will be null.
14154 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
14155 /// reference/declaration/definition of a tag.
14156 ///
14157 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
14158 /// trailing-type-specifier) other than one in an alias-declaration.
14159 ///
14160 /// \param SkipBody If non-null, will be set to indicate if the caller should
14161 /// skip the definition of this tag and treat it as if it were a declaration.
14162 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
14163                      SourceLocation KWLoc, CXXScopeSpec &SS,
14164                      IdentifierInfo *Name, SourceLocation NameLoc,
14165                      const ParsedAttributesView &Attrs, AccessSpecifier AS,
14166                      SourceLocation ModulePrivateLoc,
14167                      MultiTemplateParamsArg TemplateParameterLists,
14168                      bool &OwnedDecl, bool &IsDependent,
14169                      SourceLocation ScopedEnumKWLoc,
14170                      bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
14171                      bool IsTypeSpecifier, bool IsTemplateParamOrArg,
14172                      SkipBodyInfo *SkipBody) {
14173   // If this is not a definition, it must have a name.
14174   IdentifierInfo *OrigName = Name;
14175   assert((Name != nullptr || TUK == TUK_Definition) &&
14176          "Nameless record must be a definition!");
14177   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
14178 
14179   OwnedDecl = false;
14180   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
14181   bool ScopedEnum = ScopedEnumKWLoc.isValid();
14182 
14183   // FIXME: Check member specializations more carefully.
14184   bool isMemberSpecialization = false;
14185   bool Invalid = false;
14186 
14187   // We only need to do this matching if we have template parameters
14188   // or a scope specifier, which also conveniently avoids this work
14189   // for non-C++ cases.
14190   if (TemplateParameterLists.size() > 0 ||
14191       (SS.isNotEmpty() && TUK != TUK_Reference)) {
14192     if (TemplateParameterList *TemplateParams =
14193             MatchTemplateParametersToScopeSpecifier(
14194                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
14195                 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
14196       if (Kind == TTK_Enum) {
14197         Diag(KWLoc, diag::err_enum_template);
14198         return nullptr;
14199       }
14200 
14201       if (TemplateParams->size() > 0) {
14202         // This is a declaration or definition of a class template (which may
14203         // be a member of another template).
14204 
14205         if (Invalid)
14206           return nullptr;
14207 
14208         OwnedDecl = false;
14209         DeclResult Result = CheckClassTemplate(
14210             S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
14211             AS, ModulePrivateLoc,
14212             /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
14213             TemplateParameterLists.data(), SkipBody);
14214         return Result.get();
14215       } else {
14216         // The "template<>" header is extraneous.
14217         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
14218           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
14219         isMemberSpecialization = true;
14220       }
14221     }
14222   }
14223 
14224   // Figure out the underlying type if this a enum declaration. We need to do
14225   // this early, because it's needed to detect if this is an incompatible
14226   // redeclaration.
14227   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
14228   bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
14229 
14230   if (Kind == TTK_Enum) {
14231     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
14232       // No underlying type explicitly specified, or we failed to parse the
14233       // type, default to int.
14234       EnumUnderlying = Context.IntTy.getTypePtr();
14235     } else if (UnderlyingType.get()) {
14236       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
14237       // integral type; any cv-qualification is ignored.
14238       TypeSourceInfo *TI = nullptr;
14239       GetTypeFromParser(UnderlyingType.get(), &TI);
14240       EnumUnderlying = TI;
14241 
14242       if (CheckEnumUnderlyingType(TI))
14243         // Recover by falling back to int.
14244         EnumUnderlying = Context.IntTy.getTypePtr();
14245 
14246       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
14247                                           UPPC_FixedUnderlyingType))
14248         EnumUnderlying = Context.IntTy.getTypePtr();
14249 
14250     } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14251       // For MSVC ABI compatibility, unfixed enums must use an underlying type
14252       // of 'int'. However, if this is an unfixed forward declaration, don't set
14253       // the underlying type unless the user enables -fms-compatibility. This
14254       // makes unfixed forward declared enums incomplete and is more conforming.
14255       if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
14256         EnumUnderlying = Context.IntTy.getTypePtr();
14257     }
14258   }
14259 
14260   DeclContext *SearchDC = CurContext;
14261   DeclContext *DC = CurContext;
14262   bool isStdBadAlloc = false;
14263   bool isStdAlignValT = false;
14264 
14265   RedeclarationKind Redecl = forRedeclarationInCurContext();
14266   if (TUK == TUK_Friend || TUK == TUK_Reference)
14267     Redecl = NotForRedeclaration;
14268 
14269   /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
14270   /// implemented asks for structural equivalence checking, the returned decl
14271   /// here is passed back to the parser, allowing the tag body to be parsed.
14272   auto createTagFromNewDecl = [&]() -> TagDecl * {
14273     assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
14274     // If there is an identifier, use the location of the identifier as the
14275     // location of the decl, otherwise use the location of the struct/union
14276     // keyword.
14277     SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14278     TagDecl *New = nullptr;
14279 
14280     if (Kind == TTK_Enum) {
14281       New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
14282                              ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
14283       // If this is an undefined enum, bail.
14284       if (TUK != TUK_Definition && !Invalid)
14285         return nullptr;
14286       if (EnumUnderlying) {
14287         EnumDecl *ED = cast<EnumDecl>(New);
14288         if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
14289           ED->setIntegerTypeSourceInfo(TI);
14290         else
14291           ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
14292         ED->setPromotionType(ED->getIntegerType());
14293       }
14294     } else { // struct/union
14295       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14296                                nullptr);
14297     }
14298 
14299     if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
14300       // Add alignment attributes if necessary; these attributes are checked
14301       // when the ASTContext lays out the structure.
14302       //
14303       // It is important for implementing the correct semantics that this
14304       // happen here (in ActOnTag). The #pragma pack stack is
14305       // maintained as a result of parser callbacks which can occur at
14306       // many points during the parsing of a struct declaration (because
14307       // the #pragma tokens are effectively skipped over during the
14308       // parsing of the struct).
14309       if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
14310         AddAlignmentAttributesForRecord(RD);
14311         AddMsStructLayoutForRecord(RD);
14312       }
14313     }
14314     New->setLexicalDeclContext(CurContext);
14315     return New;
14316   };
14317 
14318   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
14319   if (Name && SS.isNotEmpty()) {
14320     // We have a nested-name tag ('struct foo::bar').
14321 
14322     // Check for invalid 'foo::'.
14323     if (SS.isInvalid()) {
14324       Name = nullptr;
14325       goto CreateNewDecl;
14326     }
14327 
14328     // If this is a friend or a reference to a class in a dependent
14329     // context, don't try to make a decl for it.
14330     if (TUK == TUK_Friend || TUK == TUK_Reference) {
14331       DC = computeDeclContext(SS, false);
14332       if (!DC) {
14333         IsDependent = true;
14334         return nullptr;
14335       }
14336     } else {
14337       DC = computeDeclContext(SS, true);
14338       if (!DC) {
14339         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
14340           << SS.getRange();
14341         return nullptr;
14342       }
14343     }
14344 
14345     if (RequireCompleteDeclContext(SS, DC))
14346       return nullptr;
14347 
14348     SearchDC = DC;
14349     // Look-up name inside 'foo::'.
14350     LookupQualifiedName(Previous, DC);
14351 
14352     if (Previous.isAmbiguous())
14353       return nullptr;
14354 
14355     if (Previous.empty()) {
14356       // Name lookup did not find anything. However, if the
14357       // nested-name-specifier refers to the current instantiation,
14358       // and that current instantiation has any dependent base
14359       // classes, we might find something at instantiation time: treat
14360       // this as a dependent elaborated-type-specifier.
14361       // But this only makes any sense for reference-like lookups.
14362       if (Previous.wasNotFoundInCurrentInstantiation() &&
14363           (TUK == TUK_Reference || TUK == TUK_Friend)) {
14364         IsDependent = true;
14365         return nullptr;
14366       }
14367 
14368       // A tag 'foo::bar' must already exist.
14369       Diag(NameLoc, diag::err_not_tag_in_scope)
14370         << Kind << Name << DC << SS.getRange();
14371       Name = nullptr;
14372       Invalid = true;
14373       goto CreateNewDecl;
14374     }
14375   } else if (Name) {
14376     // C++14 [class.mem]p14:
14377     //   If T is the name of a class, then each of the following shall have a
14378     //   name different from T:
14379     //    -- every member of class T that is itself a type
14380     if (TUK != TUK_Reference && TUK != TUK_Friend &&
14381         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
14382       return nullptr;
14383 
14384     // If this is a named struct, check to see if there was a previous forward
14385     // declaration or definition.
14386     // FIXME: We're looking into outer scopes here, even when we
14387     // shouldn't be. Doing so can result in ambiguities that we
14388     // shouldn't be diagnosing.
14389     LookupName(Previous, S);
14390 
14391     // When declaring or defining a tag, ignore ambiguities introduced
14392     // by types using'ed into this scope.
14393     if (Previous.isAmbiguous() &&
14394         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
14395       LookupResult::Filter F = Previous.makeFilter();
14396       while (F.hasNext()) {
14397         NamedDecl *ND = F.next();
14398         if (!ND->getDeclContext()->getRedeclContext()->Equals(
14399                 SearchDC->getRedeclContext()))
14400           F.erase();
14401       }
14402       F.done();
14403     }
14404 
14405     // C++11 [namespace.memdef]p3:
14406     //   If the name in a friend declaration is neither qualified nor
14407     //   a template-id and the declaration is a function or an
14408     //   elaborated-type-specifier, the lookup to determine whether
14409     //   the entity has been previously declared shall not consider
14410     //   any scopes outside the innermost enclosing namespace.
14411     //
14412     // MSVC doesn't implement the above rule for types, so a friend tag
14413     // declaration may be a redeclaration of a type declared in an enclosing
14414     // scope.  They do implement this rule for friend functions.
14415     //
14416     // Does it matter that this should be by scope instead of by
14417     // semantic context?
14418     if (!Previous.empty() && TUK == TUK_Friend) {
14419       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
14420       LookupResult::Filter F = Previous.makeFilter();
14421       bool FriendSawTagOutsideEnclosingNamespace = false;
14422       while (F.hasNext()) {
14423         NamedDecl *ND = F.next();
14424         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
14425         if (DC->isFileContext() &&
14426             !EnclosingNS->Encloses(ND->getDeclContext())) {
14427           if (getLangOpts().MSVCCompat)
14428             FriendSawTagOutsideEnclosingNamespace = true;
14429           else
14430             F.erase();
14431         }
14432       }
14433       F.done();
14434 
14435       // Diagnose this MSVC extension in the easy case where lookup would have
14436       // unambiguously found something outside the enclosing namespace.
14437       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
14438         NamedDecl *ND = Previous.getFoundDecl();
14439         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
14440             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
14441       }
14442     }
14443 
14444     // Note:  there used to be some attempt at recovery here.
14445     if (Previous.isAmbiguous())
14446       return nullptr;
14447 
14448     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
14449       // FIXME: This makes sure that we ignore the contexts associated
14450       // with C structs, unions, and enums when looking for a matching
14451       // tag declaration or definition. See the similar lookup tweak
14452       // in Sema::LookupName; is there a better way to deal with this?
14453       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
14454         SearchDC = SearchDC->getParent();
14455     }
14456   }
14457 
14458   if (Previous.isSingleResult() &&
14459       Previous.getFoundDecl()->isTemplateParameter()) {
14460     // Maybe we will complain about the shadowed template parameter.
14461     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
14462     // Just pretend that we didn't see the previous declaration.
14463     Previous.clear();
14464   }
14465 
14466   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
14467       DC->Equals(getStdNamespace())) {
14468     if (Name->isStr("bad_alloc")) {
14469       // This is a declaration of or a reference to "std::bad_alloc".
14470       isStdBadAlloc = true;
14471 
14472       // If std::bad_alloc has been implicitly declared (but made invisible to
14473       // name lookup), fill in this implicit declaration as the previous
14474       // declaration, so that the declarations get chained appropriately.
14475       if (Previous.empty() && StdBadAlloc)
14476         Previous.addDecl(getStdBadAlloc());
14477     } else if (Name->isStr("align_val_t")) {
14478       isStdAlignValT = true;
14479       if (Previous.empty() && StdAlignValT)
14480         Previous.addDecl(getStdAlignValT());
14481     }
14482   }
14483 
14484   // If we didn't find a previous declaration, and this is a reference
14485   // (or friend reference), move to the correct scope.  In C++, we
14486   // also need to do a redeclaration lookup there, just in case
14487   // there's a shadow friend decl.
14488   if (Name && Previous.empty() &&
14489       (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
14490     if (Invalid) goto CreateNewDecl;
14491     assert(SS.isEmpty());
14492 
14493     if (TUK == TUK_Reference || IsTemplateParamOrArg) {
14494       // C++ [basic.scope.pdecl]p5:
14495       //   -- for an elaborated-type-specifier of the form
14496       //
14497       //          class-key identifier
14498       //
14499       //      if the elaborated-type-specifier is used in the
14500       //      decl-specifier-seq or parameter-declaration-clause of a
14501       //      function defined in namespace scope, the identifier is
14502       //      declared as a class-name in the namespace that contains
14503       //      the declaration; otherwise, except as a friend
14504       //      declaration, the identifier is declared in the smallest
14505       //      non-class, non-function-prototype scope that contains the
14506       //      declaration.
14507       //
14508       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
14509       // C structs and unions.
14510       //
14511       // It is an error in C++ to declare (rather than define) an enum
14512       // type, including via an elaborated type specifier.  We'll
14513       // diagnose that later; for now, declare the enum in the same
14514       // scope as we would have picked for any other tag type.
14515       //
14516       // GNU C also supports this behavior as part of its incomplete
14517       // enum types extension, while GNU C++ does not.
14518       //
14519       // Find the context where we'll be declaring the tag.
14520       // FIXME: We would like to maintain the current DeclContext as the
14521       // lexical context,
14522       SearchDC = getTagInjectionContext(SearchDC);
14523 
14524       // Find the scope where we'll be declaring the tag.
14525       S = getTagInjectionScope(S, getLangOpts());
14526     } else {
14527       assert(TUK == TUK_Friend);
14528       // C++ [namespace.memdef]p3:
14529       //   If a friend declaration in a non-local class first declares a
14530       //   class or function, the friend class or function is a member of
14531       //   the innermost enclosing namespace.
14532       SearchDC = SearchDC->getEnclosingNamespaceContext();
14533     }
14534 
14535     // In C++, we need to do a redeclaration lookup to properly
14536     // diagnose some problems.
14537     // FIXME: redeclaration lookup is also used (with and without C++) to find a
14538     // hidden declaration so that we don't get ambiguity errors when using a
14539     // type declared by an elaborated-type-specifier.  In C that is not correct
14540     // and we should instead merge compatible types found by lookup.
14541     if (getLangOpts().CPlusPlus) {
14542       Previous.setRedeclarationKind(forRedeclarationInCurContext());
14543       LookupQualifiedName(Previous, SearchDC);
14544     } else {
14545       Previous.setRedeclarationKind(forRedeclarationInCurContext());
14546       LookupName(Previous, S);
14547     }
14548   }
14549 
14550   // If we have a known previous declaration to use, then use it.
14551   if (Previous.empty() && SkipBody && SkipBody->Previous)
14552     Previous.addDecl(SkipBody->Previous);
14553 
14554   if (!Previous.empty()) {
14555     NamedDecl *PrevDecl = Previous.getFoundDecl();
14556     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
14557 
14558     // It's okay to have a tag decl in the same scope as a typedef
14559     // which hides a tag decl in the same scope.  Finding this
14560     // insanity with a redeclaration lookup can only actually happen
14561     // in C++.
14562     //
14563     // This is also okay for elaborated-type-specifiers, which is
14564     // technically forbidden by the current standard but which is
14565     // okay according to the likely resolution of an open issue;
14566     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
14567     if (getLangOpts().CPlusPlus) {
14568       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
14569         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
14570           TagDecl *Tag = TT->getDecl();
14571           if (Tag->getDeclName() == Name &&
14572               Tag->getDeclContext()->getRedeclContext()
14573                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
14574             PrevDecl = Tag;
14575             Previous.clear();
14576             Previous.addDecl(Tag);
14577             Previous.resolveKind();
14578           }
14579         }
14580       }
14581     }
14582 
14583     // If this is a redeclaration of a using shadow declaration, it must
14584     // declare a tag in the same context. In MSVC mode, we allow a
14585     // redefinition if either context is within the other.
14586     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
14587       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
14588       if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
14589           isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
14590           !(OldTag && isAcceptableTagRedeclContext(
14591                           *this, OldTag->getDeclContext(), SearchDC))) {
14592         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
14593         Diag(Shadow->getTargetDecl()->getLocation(),
14594              diag::note_using_decl_target);
14595         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
14596             << 0;
14597         // Recover by ignoring the old declaration.
14598         Previous.clear();
14599         goto CreateNewDecl;
14600       }
14601     }
14602 
14603     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
14604       // If this is a use of a previous tag, or if the tag is already declared
14605       // in the same scope (so that the definition/declaration completes or
14606       // rementions the tag), reuse the decl.
14607       if (TUK == TUK_Reference || TUK == TUK_Friend ||
14608           isDeclInScope(DirectPrevDecl, SearchDC, S,
14609                         SS.isNotEmpty() || isMemberSpecialization)) {
14610         // Make sure that this wasn't declared as an enum and now used as a
14611         // struct or something similar.
14612         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
14613                                           TUK == TUK_Definition, KWLoc,
14614                                           Name)) {
14615           bool SafeToContinue
14616             = (PrevTagDecl->getTagKind() != TTK_Enum &&
14617                Kind != TTK_Enum);
14618           if (SafeToContinue)
14619             Diag(KWLoc, diag::err_use_with_wrong_tag)
14620               << Name
14621               << FixItHint::CreateReplacement(SourceRange(KWLoc),
14622                                               PrevTagDecl->getKindName());
14623           else
14624             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
14625           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
14626 
14627           if (SafeToContinue)
14628             Kind = PrevTagDecl->getTagKind();
14629           else {
14630             // Recover by making this an anonymous redefinition.
14631             Name = nullptr;
14632             Previous.clear();
14633             Invalid = true;
14634           }
14635         }
14636 
14637         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
14638           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
14639 
14640           // If this is an elaborated-type-specifier for a scoped enumeration,
14641           // the 'class' keyword is not necessary and not permitted.
14642           if (TUK == TUK_Reference || TUK == TUK_Friend) {
14643             if (ScopedEnum)
14644               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
14645                 << PrevEnum->isScoped()
14646                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
14647             return PrevTagDecl;
14648           }
14649 
14650           QualType EnumUnderlyingTy;
14651           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
14652             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
14653           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
14654             EnumUnderlyingTy = QualType(T, 0);
14655 
14656           // All conflicts with previous declarations are recovered by
14657           // returning the previous declaration, unless this is a definition,
14658           // in which case we want the caller to bail out.
14659           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
14660                                      ScopedEnum, EnumUnderlyingTy,
14661                                      IsFixed, PrevEnum))
14662             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
14663         }
14664 
14665         // C++11 [class.mem]p1:
14666         //   A member shall not be declared twice in the member-specification,
14667         //   except that a nested class or member class template can be declared
14668         //   and then later defined.
14669         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
14670             S->isDeclScope(PrevDecl)) {
14671           Diag(NameLoc, diag::ext_member_redeclared);
14672           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
14673         }
14674 
14675         if (!Invalid) {
14676           // If this is a use, just return the declaration we found, unless
14677           // we have attributes.
14678           if (TUK == TUK_Reference || TUK == TUK_Friend) {
14679             if (!Attrs.empty()) {
14680               // FIXME: Diagnose these attributes. For now, we create a new
14681               // declaration to hold them.
14682             } else if (TUK == TUK_Reference &&
14683                        (PrevTagDecl->getFriendObjectKind() ==
14684                             Decl::FOK_Undeclared ||
14685                         PrevDecl->getOwningModule() != getCurrentModule()) &&
14686                        SS.isEmpty()) {
14687               // This declaration is a reference to an existing entity, but
14688               // has different visibility from that entity: it either makes
14689               // a friend visible or it makes a type visible in a new module.
14690               // In either case, create a new declaration. We only do this if
14691               // the declaration would have meant the same thing if no prior
14692               // declaration were found, that is, if it was found in the same
14693               // scope where we would have injected a declaration.
14694               if (!getTagInjectionContext(CurContext)->getRedeclContext()
14695                        ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
14696                 return PrevTagDecl;
14697               // This is in the injected scope, create a new declaration in
14698               // that scope.
14699               S = getTagInjectionScope(S, getLangOpts());
14700             } else {
14701               return PrevTagDecl;
14702             }
14703           }
14704 
14705           // Diagnose attempts to redefine a tag.
14706           if (TUK == TUK_Definition) {
14707             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
14708               // If we're defining a specialization and the previous definition
14709               // is from an implicit instantiation, don't emit an error
14710               // here; we'll catch this in the general case below.
14711               bool IsExplicitSpecializationAfterInstantiation = false;
14712               if (isMemberSpecialization) {
14713                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
14714                   IsExplicitSpecializationAfterInstantiation =
14715                     RD->getTemplateSpecializationKind() !=
14716                     TSK_ExplicitSpecialization;
14717                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
14718                   IsExplicitSpecializationAfterInstantiation =
14719                     ED->getTemplateSpecializationKind() !=
14720                     TSK_ExplicitSpecialization;
14721               }
14722 
14723               // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
14724               // not keep more that one definition around (merge them). However,
14725               // ensure the decl passes the structural compatibility check in
14726               // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
14727               NamedDecl *Hidden = nullptr;
14728               if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
14729                 // There is a definition of this tag, but it is not visible. We
14730                 // explicitly make use of C++'s one definition rule here, and
14731                 // assume that this definition is identical to the hidden one
14732                 // we already have. Make the existing definition visible and
14733                 // use it in place of this one.
14734                 if (!getLangOpts().CPlusPlus) {
14735                   // Postpone making the old definition visible until after we
14736                   // complete parsing the new one and do the structural
14737                   // comparison.
14738                   SkipBody->CheckSameAsPrevious = true;
14739                   SkipBody->New = createTagFromNewDecl();
14740                   SkipBody->Previous = Def;
14741                   return Def;
14742                 } else {
14743                   SkipBody->ShouldSkip = true;
14744                   SkipBody->Previous = Def;
14745                   makeMergedDefinitionVisible(Hidden);
14746                   // Carry on and handle it like a normal definition. We'll
14747                   // skip starting the definitiion later.
14748                 }
14749               } else if (!IsExplicitSpecializationAfterInstantiation) {
14750                 // A redeclaration in function prototype scope in C isn't
14751                 // visible elsewhere, so merely issue a warning.
14752                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
14753                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
14754                 else
14755                   Diag(NameLoc, diag::err_redefinition) << Name;
14756                 notePreviousDefinition(Def,
14757                                        NameLoc.isValid() ? NameLoc : KWLoc);
14758                 // If this is a redefinition, recover by making this
14759                 // struct be anonymous, which will make any later
14760                 // references get the previous definition.
14761                 Name = nullptr;
14762                 Previous.clear();
14763                 Invalid = true;
14764               }
14765             } else {
14766               // If the type is currently being defined, complain
14767               // about a nested redefinition.
14768               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
14769               if (TD->isBeingDefined()) {
14770                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
14771                 Diag(PrevTagDecl->getLocation(),
14772                      diag::note_previous_definition);
14773                 Name = nullptr;
14774                 Previous.clear();
14775                 Invalid = true;
14776               }
14777             }
14778 
14779             // Okay, this is definition of a previously declared or referenced
14780             // tag. We're going to create a new Decl for it.
14781           }
14782 
14783           // Okay, we're going to make a redeclaration.  If this is some kind
14784           // of reference, make sure we build the redeclaration in the same DC
14785           // as the original, and ignore the current access specifier.
14786           if (TUK == TUK_Friend || TUK == TUK_Reference) {
14787             SearchDC = PrevTagDecl->getDeclContext();
14788             AS = AS_none;
14789           }
14790         }
14791         // If we get here we have (another) forward declaration or we
14792         // have a definition.  Just create a new decl.
14793 
14794       } else {
14795         // If we get here, this is a definition of a new tag type in a nested
14796         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
14797         // new decl/type.  We set PrevDecl to NULL so that the entities
14798         // have distinct types.
14799         Previous.clear();
14800       }
14801       // If we get here, we're going to create a new Decl. If PrevDecl
14802       // is non-NULL, it's a definition of the tag declared by
14803       // PrevDecl. If it's NULL, we have a new definition.
14804 
14805     // Otherwise, PrevDecl is not a tag, but was found with tag
14806     // lookup.  This is only actually possible in C++, where a few
14807     // things like templates still live in the tag namespace.
14808     } else {
14809       // Use a better diagnostic if an elaborated-type-specifier
14810       // found the wrong kind of type on the first
14811       // (non-redeclaration) lookup.
14812       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
14813           !Previous.isForRedeclaration()) {
14814         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
14815         Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
14816                                                        << Kind;
14817         Diag(PrevDecl->getLocation(), diag::note_declared_at);
14818         Invalid = true;
14819 
14820       // Otherwise, only diagnose if the declaration is in scope.
14821       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
14822                                 SS.isNotEmpty() || isMemberSpecialization)) {
14823         // do nothing
14824 
14825       // Diagnose implicit declarations introduced by elaborated types.
14826       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
14827         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
14828         Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
14829         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
14830         Invalid = true;
14831 
14832       // Otherwise it's a declaration.  Call out a particularly common
14833       // case here.
14834       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
14835         unsigned Kind = 0;
14836         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
14837         Diag(NameLoc, diag::err_tag_definition_of_typedef)
14838           << Name << Kind << TND->getUnderlyingType();
14839         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
14840         Invalid = true;
14841 
14842       // Otherwise, diagnose.
14843       } else {
14844         // The tag name clashes with something else in the target scope,
14845         // issue an error and recover by making this tag be anonymous.
14846         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
14847         notePreviousDefinition(PrevDecl, NameLoc);
14848         Name = nullptr;
14849         Invalid = true;
14850       }
14851 
14852       // The existing declaration isn't relevant to us; we're in a
14853       // new scope, so clear out the previous declaration.
14854       Previous.clear();
14855     }
14856   }
14857 
14858 CreateNewDecl:
14859 
14860   TagDecl *PrevDecl = nullptr;
14861   if (Previous.isSingleResult())
14862     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
14863 
14864   // If there is an identifier, use the location of the identifier as the
14865   // location of the decl, otherwise use the location of the struct/union
14866   // keyword.
14867   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14868 
14869   // Otherwise, create a new declaration. If there is a previous
14870   // declaration of the same entity, the two will be linked via
14871   // PrevDecl.
14872   TagDecl *New;
14873 
14874   if (Kind == TTK_Enum) {
14875     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
14876     // enum X { A, B, C } D;    D should chain to X.
14877     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
14878                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
14879                            ScopedEnumUsesClassTag, IsFixed);
14880 
14881     if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
14882       StdAlignValT = cast<EnumDecl>(New);
14883 
14884     // If this is an undefined enum, warn.
14885     if (TUK != TUK_Definition && !Invalid) {
14886       TagDecl *Def;
14887       if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
14888         // C++0x: 7.2p2: opaque-enum-declaration.
14889         // Conflicts are diagnosed above. Do nothing.
14890       }
14891       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
14892         Diag(Loc, diag::ext_forward_ref_enum_def)
14893           << New;
14894         Diag(Def->getLocation(), diag::note_previous_definition);
14895       } else {
14896         unsigned DiagID = diag::ext_forward_ref_enum;
14897         if (getLangOpts().MSVCCompat)
14898           DiagID = diag::ext_ms_forward_ref_enum;
14899         else if (getLangOpts().CPlusPlus)
14900           DiagID = diag::err_forward_ref_enum;
14901         Diag(Loc, DiagID);
14902       }
14903     }
14904 
14905     if (EnumUnderlying) {
14906       EnumDecl *ED = cast<EnumDecl>(New);
14907       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
14908         ED->setIntegerTypeSourceInfo(TI);
14909       else
14910         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
14911       ED->setPromotionType(ED->getIntegerType());
14912       assert(ED->isComplete() && "enum with type should be complete");
14913     }
14914   } else {
14915     // struct/union/class
14916 
14917     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
14918     // struct X { int A; } D;    D should chain to X.
14919     if (getLangOpts().CPlusPlus) {
14920       // FIXME: Look for a way to use RecordDecl for simple structs.
14921       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14922                                   cast_or_null<CXXRecordDecl>(PrevDecl));
14923 
14924       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
14925         StdBadAlloc = cast<CXXRecordDecl>(New);
14926     } else
14927       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14928                                cast_or_null<RecordDecl>(PrevDecl));
14929   }
14930 
14931   // C++11 [dcl.type]p3:
14932   //   A type-specifier-seq shall not define a class or enumeration [...].
14933   if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
14934       TUK == TUK_Definition) {
14935     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
14936       << Context.getTagDeclType(New);
14937     Invalid = true;
14938   }
14939 
14940   if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
14941       DC->getDeclKind() == Decl::Enum) {
14942     Diag(New->getLocation(), diag::err_type_defined_in_enum)
14943       << Context.getTagDeclType(New);
14944     Invalid = true;
14945   }
14946 
14947   // Maybe add qualifier info.
14948   if (SS.isNotEmpty()) {
14949     if (SS.isSet()) {
14950       // If this is either a declaration or a definition, check the
14951       // nested-name-specifier against the current context.
14952       if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
14953           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
14954                                        isMemberSpecialization))
14955         Invalid = true;
14956 
14957       New->setQualifierInfo(SS.getWithLocInContext(Context));
14958       if (TemplateParameterLists.size() > 0) {
14959         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
14960       }
14961     }
14962     else
14963       Invalid = true;
14964   }
14965 
14966   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
14967     // Add alignment attributes if necessary; these attributes are checked when
14968     // the ASTContext lays out the structure.
14969     //
14970     // It is important for implementing the correct semantics that this
14971     // happen here (in ActOnTag). The #pragma pack stack is
14972     // maintained as a result of parser callbacks which can occur at
14973     // many points during the parsing of a struct declaration (because
14974     // the #pragma tokens are effectively skipped over during the
14975     // parsing of the struct).
14976     if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
14977       AddAlignmentAttributesForRecord(RD);
14978       AddMsStructLayoutForRecord(RD);
14979     }
14980   }
14981 
14982   if (ModulePrivateLoc.isValid()) {
14983     if (isMemberSpecialization)
14984       Diag(New->getLocation(), diag::err_module_private_specialization)
14985         << 2
14986         << FixItHint::CreateRemoval(ModulePrivateLoc);
14987     // __module_private__ does not apply to local classes. However, we only
14988     // diagnose this as an error when the declaration specifiers are
14989     // freestanding. Here, we just ignore the __module_private__.
14990     else if (!SearchDC->isFunctionOrMethod())
14991       New->setModulePrivate();
14992   }
14993 
14994   // If this is a specialization of a member class (of a class template),
14995   // check the specialization.
14996   if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
14997     Invalid = true;
14998 
14999   // If we're declaring or defining a tag in function prototype scope in C,
15000   // note that this type can only be used within the function and add it to
15001   // the list of decls to inject into the function definition scope.
15002   if ((Name || Kind == TTK_Enum) &&
15003       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
15004     if (getLangOpts().CPlusPlus) {
15005       // C++ [dcl.fct]p6:
15006       //   Types shall not be defined in return or parameter types.
15007       if (TUK == TUK_Definition && !IsTypeSpecifier) {
15008         Diag(Loc, diag::err_type_defined_in_param_type)
15009             << Name;
15010         Invalid = true;
15011       }
15012     } else if (!PrevDecl) {
15013       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
15014     }
15015   }
15016 
15017   if (Invalid)
15018     New->setInvalidDecl();
15019 
15020   // Set the lexical context. If the tag has a C++ scope specifier, the
15021   // lexical context will be different from the semantic context.
15022   New->setLexicalDeclContext(CurContext);
15023 
15024   // Mark this as a friend decl if applicable.
15025   // In Microsoft mode, a friend declaration also acts as a forward
15026   // declaration so we always pass true to setObjectOfFriendDecl to make
15027   // the tag name visible.
15028   if (TUK == TUK_Friend)
15029     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
15030 
15031   // Set the access specifier.
15032   if (!Invalid && SearchDC->isRecord())
15033     SetMemberAccessSpecifier(New, PrevDecl, AS);
15034 
15035   if (PrevDecl)
15036     CheckRedeclarationModuleOwnership(New, PrevDecl);
15037 
15038   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
15039     New->startDefinition();
15040 
15041   ProcessDeclAttributeList(S, New, Attrs);
15042   AddPragmaAttributes(S, New);
15043 
15044   // If this has an identifier, add it to the scope stack.
15045   if (TUK == TUK_Friend) {
15046     // We might be replacing an existing declaration in the lookup tables;
15047     // if so, borrow its access specifier.
15048     if (PrevDecl)
15049       New->setAccess(PrevDecl->getAccess());
15050 
15051     DeclContext *DC = New->getDeclContext()->getRedeclContext();
15052     DC->makeDeclVisibleInContext(New);
15053     if (Name) // can be null along some error paths
15054       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
15055         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
15056   } else if (Name) {
15057     S = getNonFieldDeclScope(S);
15058     PushOnScopeChains(New, S, true);
15059   } else {
15060     CurContext->addDecl(New);
15061   }
15062 
15063   // If this is the C FILE type, notify the AST context.
15064   if (IdentifierInfo *II = New->getIdentifier())
15065     if (!New->isInvalidDecl() &&
15066         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
15067         II->isStr("FILE"))
15068       Context.setFILEDecl(New);
15069 
15070   if (PrevDecl)
15071     mergeDeclAttributes(New, PrevDecl);
15072 
15073   // If there's a #pragma GCC visibility in scope, set the visibility of this
15074   // record.
15075   AddPushedVisibilityAttribute(New);
15076 
15077   if (isMemberSpecialization && !New->isInvalidDecl())
15078     CompleteMemberSpecialization(New, Previous);
15079 
15080   OwnedDecl = true;
15081   // In C++, don't return an invalid declaration. We can't recover well from
15082   // the cases where we make the type anonymous.
15083   if (Invalid && getLangOpts().CPlusPlus) {
15084     if (New->isBeingDefined())
15085       if (auto RD = dyn_cast<RecordDecl>(New))
15086         RD->completeDefinition();
15087     return nullptr;
15088   } else if (SkipBody && SkipBody->ShouldSkip) {
15089     return SkipBody->Previous;
15090   } else {
15091     return New;
15092   }
15093 }
15094 
15095 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
15096   AdjustDeclIfTemplate(TagD);
15097   TagDecl *Tag = cast<TagDecl>(TagD);
15098 
15099   // Enter the tag context.
15100   PushDeclContext(S, Tag);
15101 
15102   ActOnDocumentableDecl(TagD);
15103 
15104   // If there's a #pragma GCC visibility in scope, set the visibility of this
15105   // record.
15106   AddPushedVisibilityAttribute(Tag);
15107 }
15108 
15109 bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
15110                                     SkipBodyInfo &SkipBody) {
15111   if (!hasStructuralCompatLayout(Prev, SkipBody.New))
15112     return false;
15113 
15114   // Make the previous decl visible.
15115   makeMergedDefinitionVisible(SkipBody.Previous);
15116   return true;
15117 }
15118 
15119 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
15120   assert(isa<ObjCContainerDecl>(IDecl) &&
15121          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
15122   DeclContext *OCD = cast<DeclContext>(IDecl);
15123   assert(getContainingDC(OCD) == CurContext &&
15124       "The next DeclContext should be lexically contained in the current one.");
15125   CurContext = OCD;
15126   return IDecl;
15127 }
15128 
15129 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
15130                                            SourceLocation FinalLoc,
15131                                            bool IsFinalSpelledSealed,
15132                                            SourceLocation LBraceLoc) {
15133   AdjustDeclIfTemplate(TagD);
15134   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
15135 
15136   FieldCollector->StartClass();
15137 
15138   if (!Record->getIdentifier())
15139     return;
15140 
15141   if (FinalLoc.isValid())
15142     Record->addAttr(new (Context)
15143                     FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
15144 
15145   // C++ [class]p2:
15146   //   [...] The class-name is also inserted into the scope of the
15147   //   class itself; this is known as the injected-class-name. For
15148   //   purposes of access checking, the injected-class-name is treated
15149   //   as if it were a public member name.
15150   CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
15151       Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
15152       Record->getLocation(), Record->getIdentifier(),
15153       /*PrevDecl=*/nullptr,
15154       /*DelayTypeCreation=*/true);
15155   Context.getTypeDeclType(InjectedClassName, Record);
15156   InjectedClassName->setImplicit();
15157   InjectedClassName->setAccess(AS_public);
15158   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
15159       InjectedClassName->setDescribedClassTemplate(Template);
15160   PushOnScopeChains(InjectedClassName, S);
15161   assert(InjectedClassName->isInjectedClassName() &&
15162          "Broken injected-class-name");
15163 }
15164 
15165 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
15166                                     SourceRange BraceRange) {
15167   AdjustDeclIfTemplate(TagD);
15168   TagDecl *Tag = cast<TagDecl>(TagD);
15169   Tag->setBraceRange(BraceRange);
15170 
15171   // Make sure we "complete" the definition even it is invalid.
15172   if (Tag->isBeingDefined()) {
15173     assert(Tag->isInvalidDecl() && "We should already have completed it");
15174     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15175       RD->completeDefinition();
15176   }
15177 
15178   if (isa<CXXRecordDecl>(Tag)) {
15179     FieldCollector->FinishClass();
15180   }
15181 
15182   // Exit this scope of this tag's definition.
15183   PopDeclContext();
15184 
15185   if (getCurLexicalContext()->isObjCContainer() &&
15186       Tag->getDeclContext()->isFileContext())
15187     Tag->setTopLevelDeclInObjCContainer();
15188 
15189   // Notify the consumer that we've defined a tag.
15190   if (!Tag->isInvalidDecl())
15191     Consumer.HandleTagDeclDefinition(Tag);
15192 }
15193 
15194 void Sema::ActOnObjCContainerFinishDefinition() {
15195   // Exit this scope of this interface definition.
15196   PopDeclContext();
15197 }
15198 
15199 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
15200   assert(DC == CurContext && "Mismatch of container contexts");
15201   OriginalLexicalContext = DC;
15202   ActOnObjCContainerFinishDefinition();
15203 }
15204 
15205 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
15206   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
15207   OriginalLexicalContext = nullptr;
15208 }
15209 
15210 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
15211   AdjustDeclIfTemplate(TagD);
15212   TagDecl *Tag = cast<TagDecl>(TagD);
15213   Tag->setInvalidDecl();
15214 
15215   // Make sure we "complete" the definition even it is invalid.
15216   if (Tag->isBeingDefined()) {
15217     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15218       RD->completeDefinition();
15219   }
15220 
15221   // We're undoing ActOnTagStartDefinition here, not
15222   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
15223   // the FieldCollector.
15224 
15225   PopDeclContext();
15226 }
15227 
15228 // Note that FieldName may be null for anonymous bitfields.
15229 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
15230                                 IdentifierInfo *FieldName,
15231                                 QualType FieldTy, bool IsMsStruct,
15232                                 Expr *BitWidth, bool *ZeroWidth) {
15233   // Default to true; that shouldn't confuse checks for emptiness
15234   if (ZeroWidth)
15235     *ZeroWidth = true;
15236 
15237   // C99 6.7.2.1p4 - verify the field type.
15238   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
15239   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
15240     // Handle incomplete types with specific error.
15241     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
15242       return ExprError();
15243     if (FieldName)
15244       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
15245         << FieldName << FieldTy << BitWidth->getSourceRange();
15246     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
15247       << FieldTy << BitWidth->getSourceRange();
15248   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
15249                                              UPPC_BitFieldWidth))
15250     return ExprError();
15251 
15252   // If the bit-width is type- or value-dependent, don't try to check
15253   // it now.
15254   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
15255     return BitWidth;
15256 
15257   llvm::APSInt Value;
15258   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
15259   if (ICE.isInvalid())
15260     return ICE;
15261   BitWidth = ICE.get();
15262 
15263   if (Value != 0 && ZeroWidth)
15264     *ZeroWidth = false;
15265 
15266   // Zero-width bitfield is ok for anonymous field.
15267   if (Value == 0 && FieldName)
15268     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
15269 
15270   if (Value.isSigned() && Value.isNegative()) {
15271     if (FieldName)
15272       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
15273                << FieldName << Value.toString(10);
15274     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
15275       << Value.toString(10);
15276   }
15277 
15278   if (!FieldTy->isDependentType()) {
15279     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
15280     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
15281     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
15282 
15283     // Over-wide bitfields are an error in C or when using the MSVC bitfield
15284     // ABI.
15285     bool CStdConstraintViolation =
15286         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
15287     bool MSBitfieldViolation =
15288         Value.ugt(TypeStorageSize) &&
15289         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
15290     if (CStdConstraintViolation || MSBitfieldViolation) {
15291       unsigned DiagWidth =
15292           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
15293       if (FieldName)
15294         return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
15295                << FieldName << (unsigned)Value.getZExtValue()
15296                << !CStdConstraintViolation << DiagWidth;
15297 
15298       return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
15299              << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
15300              << DiagWidth;
15301     }
15302 
15303     // Warn on types where the user might conceivably expect to get all
15304     // specified bits as value bits: that's all integral types other than
15305     // 'bool'.
15306     if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
15307       if (FieldName)
15308         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
15309             << FieldName << (unsigned)Value.getZExtValue()
15310             << (unsigned)TypeWidth;
15311       else
15312         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
15313             << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
15314     }
15315   }
15316 
15317   return BitWidth;
15318 }
15319 
15320 /// ActOnField - Each field of a C struct/union is passed into this in order
15321 /// to create a FieldDecl object for it.
15322 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
15323                        Declarator &D, Expr *BitfieldWidth) {
15324   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
15325                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
15326                                /*InitStyle=*/ICIS_NoInit, AS_public);
15327   return Res;
15328 }
15329 
15330 /// HandleField - Analyze a field of a C struct or a C++ data member.
15331 ///
15332 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
15333                              SourceLocation DeclStart,
15334                              Declarator &D, Expr *BitWidth,
15335                              InClassInitStyle InitStyle,
15336                              AccessSpecifier AS) {
15337   if (D.isDecompositionDeclarator()) {
15338     const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
15339     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
15340       << Decomp.getSourceRange();
15341     return nullptr;
15342   }
15343 
15344   IdentifierInfo *II = D.getIdentifier();
15345   SourceLocation Loc = DeclStart;
15346   if (II) Loc = D.getIdentifierLoc();
15347 
15348   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15349   QualType T = TInfo->getType();
15350   if (getLangOpts().CPlusPlus) {
15351     CheckExtraCXXDefaultArguments(D);
15352 
15353     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
15354                                         UPPC_DataMemberType)) {
15355       D.setInvalidType();
15356       T = Context.IntTy;
15357       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
15358     }
15359   }
15360 
15361   DiagnoseFunctionSpecifiers(D.getDeclSpec());
15362 
15363   if (D.getDeclSpec().isInlineSpecified())
15364     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
15365         << getLangOpts().CPlusPlus17;
15366   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
15367     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
15368          diag::err_invalid_thread)
15369       << DeclSpec::getSpecifierName(TSCS);
15370 
15371   // Check to see if this name was declared as a member previously
15372   NamedDecl *PrevDecl = nullptr;
15373   LookupResult Previous(*this, II, Loc, LookupMemberName,
15374                         ForVisibleRedeclaration);
15375   LookupName(Previous, S);
15376   switch (Previous.getResultKind()) {
15377     case LookupResult::Found:
15378     case LookupResult::FoundUnresolvedValue:
15379       PrevDecl = Previous.getAsSingle<NamedDecl>();
15380       break;
15381 
15382     case LookupResult::FoundOverloaded:
15383       PrevDecl = Previous.getRepresentativeDecl();
15384       break;
15385 
15386     case LookupResult::NotFound:
15387     case LookupResult::NotFoundInCurrentInstantiation:
15388     case LookupResult::Ambiguous:
15389       break;
15390   }
15391   Previous.suppressDiagnostics();
15392 
15393   if (PrevDecl && PrevDecl->isTemplateParameter()) {
15394     // Maybe we will complain about the shadowed template parameter.
15395     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15396     // Just pretend that we didn't see the previous declaration.
15397     PrevDecl = nullptr;
15398   }
15399 
15400   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
15401     PrevDecl = nullptr;
15402 
15403   bool Mutable
15404     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
15405   SourceLocation TSSL = D.getBeginLoc();
15406   FieldDecl *NewFD
15407     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
15408                      TSSL, AS, PrevDecl, &D);
15409 
15410   if (NewFD->isInvalidDecl())
15411     Record->setInvalidDecl();
15412 
15413   if (D.getDeclSpec().isModulePrivateSpecified())
15414     NewFD->setModulePrivate();
15415 
15416   if (NewFD->isInvalidDecl() && PrevDecl) {
15417     // Don't introduce NewFD into scope; there's already something
15418     // with the same name in the same scope.
15419   } else if (II) {
15420     PushOnScopeChains(NewFD, S);
15421   } else
15422     Record->addDecl(NewFD);
15423 
15424   return NewFD;
15425 }
15426 
15427 /// Build a new FieldDecl and check its well-formedness.
15428 ///
15429 /// This routine builds a new FieldDecl given the fields name, type,
15430 /// record, etc. \p PrevDecl should refer to any previous declaration
15431 /// with the same name and in the same scope as the field to be
15432 /// created.
15433 ///
15434 /// \returns a new FieldDecl.
15435 ///
15436 /// \todo The Declarator argument is a hack. It will be removed once
15437 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
15438                                 TypeSourceInfo *TInfo,
15439                                 RecordDecl *Record, SourceLocation Loc,
15440                                 bool Mutable, Expr *BitWidth,
15441                                 InClassInitStyle InitStyle,
15442                                 SourceLocation TSSL,
15443                                 AccessSpecifier AS, NamedDecl *PrevDecl,
15444                                 Declarator *D) {
15445   IdentifierInfo *II = Name.getAsIdentifierInfo();
15446   bool InvalidDecl = false;
15447   if (D) InvalidDecl = D->isInvalidType();
15448 
15449   // If we receive a broken type, recover by assuming 'int' and
15450   // marking this declaration as invalid.
15451   if (T.isNull()) {
15452     InvalidDecl = true;
15453     T = Context.IntTy;
15454   }
15455 
15456   QualType EltTy = Context.getBaseElementType(T);
15457   if (!EltTy->isDependentType()) {
15458     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
15459       // Fields of incomplete type force their record to be invalid.
15460       Record->setInvalidDecl();
15461       InvalidDecl = true;
15462     } else {
15463       NamedDecl *Def;
15464       EltTy->isIncompleteType(&Def);
15465       if (Def && Def->isInvalidDecl()) {
15466         Record->setInvalidDecl();
15467         InvalidDecl = true;
15468       }
15469     }
15470   }
15471 
15472   // TR 18037 does not allow fields to be declared with address space
15473   if (T.getQualifiers().hasAddressSpace() || T->isDependentAddressSpaceType() ||
15474       T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
15475     Diag(Loc, diag::err_field_with_address_space);
15476     Record->setInvalidDecl();
15477     InvalidDecl = true;
15478   }
15479 
15480   if (LangOpts.OpenCL) {
15481     // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
15482     // used as structure or union field: image, sampler, event or block types.
15483     if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
15484         T->isBlockPointerType()) {
15485       Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
15486       Record->setInvalidDecl();
15487       InvalidDecl = true;
15488     }
15489     // OpenCL v1.2 s6.9.c: bitfields are not supported.
15490     if (BitWidth) {
15491       Diag(Loc, diag::err_opencl_bitfields);
15492       InvalidDecl = true;
15493     }
15494   }
15495 
15496   // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
15497   if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
15498       T.hasQualifiers()) {
15499     InvalidDecl = true;
15500     Diag(Loc, diag::err_anon_bitfield_qualifiers);
15501   }
15502 
15503   // C99 6.7.2.1p8: A member of a structure or union may have any type other
15504   // than a variably modified type.
15505   if (!InvalidDecl && T->isVariablyModifiedType()) {
15506     bool SizeIsNegative;
15507     llvm::APSInt Oversized;
15508 
15509     TypeSourceInfo *FixedTInfo =
15510       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
15511                                                     SizeIsNegative,
15512                                                     Oversized);
15513     if (FixedTInfo) {
15514       Diag(Loc, diag::warn_illegal_constant_array_size);
15515       TInfo = FixedTInfo;
15516       T = FixedTInfo->getType();
15517     } else {
15518       if (SizeIsNegative)
15519         Diag(Loc, diag::err_typecheck_negative_array_size);
15520       else if (Oversized.getBoolValue())
15521         Diag(Loc, diag::err_array_too_large)
15522           << Oversized.toString(10);
15523       else
15524         Diag(Loc, diag::err_typecheck_field_variable_size);
15525       InvalidDecl = true;
15526     }
15527   }
15528 
15529   // Fields can not have abstract class types
15530   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
15531                                              diag::err_abstract_type_in_decl,
15532                                              AbstractFieldType))
15533     InvalidDecl = true;
15534 
15535   bool ZeroWidth = false;
15536   if (InvalidDecl)
15537     BitWidth = nullptr;
15538   // If this is declared as a bit-field, check the bit-field.
15539   if (BitWidth) {
15540     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
15541                               &ZeroWidth).get();
15542     if (!BitWidth) {
15543       InvalidDecl = true;
15544       BitWidth = nullptr;
15545       ZeroWidth = false;
15546     }
15547   }
15548 
15549   // Check that 'mutable' is consistent with the type of the declaration.
15550   if (!InvalidDecl && Mutable) {
15551     unsigned DiagID = 0;
15552     if (T->isReferenceType())
15553       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
15554                                         : diag::err_mutable_reference;
15555     else if (T.isConstQualified())
15556       DiagID = diag::err_mutable_const;
15557 
15558     if (DiagID) {
15559       SourceLocation ErrLoc = Loc;
15560       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
15561         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
15562       Diag(ErrLoc, DiagID);
15563       if (DiagID != diag::ext_mutable_reference) {
15564         Mutable = false;
15565         InvalidDecl = true;
15566       }
15567     }
15568   }
15569 
15570   // C++11 [class.union]p8 (DR1460):
15571   //   At most one variant member of a union may have a
15572   //   brace-or-equal-initializer.
15573   if (InitStyle != ICIS_NoInit)
15574     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
15575 
15576   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
15577                                        BitWidth, Mutable, InitStyle);
15578   if (InvalidDecl)
15579     NewFD->setInvalidDecl();
15580 
15581   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
15582     Diag(Loc, diag::err_duplicate_member) << II;
15583     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15584     NewFD->setInvalidDecl();
15585   }
15586 
15587   if (!InvalidDecl && getLangOpts().CPlusPlus) {
15588     if (Record->isUnion()) {
15589       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15590         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
15591         if (RDecl->getDefinition()) {
15592           // C++ [class.union]p1: An object of a class with a non-trivial
15593           // constructor, a non-trivial copy constructor, a non-trivial
15594           // destructor, or a non-trivial copy assignment operator
15595           // cannot be a member of a union, nor can an array of such
15596           // objects.
15597           if (CheckNontrivialField(NewFD))
15598             NewFD->setInvalidDecl();
15599         }
15600       }
15601 
15602       // C++ [class.union]p1: If a union contains a member of reference type,
15603       // the program is ill-formed, except when compiling with MSVC extensions
15604       // enabled.
15605       if (EltTy->isReferenceType()) {
15606         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
15607                                     diag::ext_union_member_of_reference_type :
15608                                     diag::err_union_member_of_reference_type)
15609           << NewFD->getDeclName() << EltTy;
15610         if (!getLangOpts().MicrosoftExt)
15611           NewFD->setInvalidDecl();
15612       }
15613     }
15614   }
15615 
15616   // FIXME: We need to pass in the attributes given an AST
15617   // representation, not a parser representation.
15618   if (D) {
15619     // FIXME: The current scope is almost... but not entirely... correct here.
15620     ProcessDeclAttributes(getCurScope(), NewFD, *D);
15621 
15622     if (NewFD->hasAttrs())
15623       CheckAlignasUnderalignment(NewFD);
15624   }
15625 
15626   // In auto-retain/release, infer strong retension for fields of
15627   // retainable type.
15628   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
15629     NewFD->setInvalidDecl();
15630 
15631   if (T.isObjCGCWeak())
15632     Diag(Loc, diag::warn_attribute_weak_on_field);
15633 
15634   NewFD->setAccess(AS);
15635   return NewFD;
15636 }
15637 
15638 bool Sema::CheckNontrivialField(FieldDecl *FD) {
15639   assert(FD);
15640   assert(getLangOpts().CPlusPlus && "valid check only for C++");
15641 
15642   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
15643     return false;
15644 
15645   QualType EltTy = Context.getBaseElementType(FD->getType());
15646   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15647     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
15648     if (RDecl->getDefinition()) {
15649       // We check for copy constructors before constructors
15650       // because otherwise we'll never get complaints about
15651       // copy constructors.
15652 
15653       CXXSpecialMember member = CXXInvalid;
15654       // We're required to check for any non-trivial constructors. Since the
15655       // implicit default constructor is suppressed if there are any
15656       // user-declared constructors, we just need to check that there is a
15657       // trivial default constructor and a trivial copy constructor. (We don't
15658       // worry about move constructors here, since this is a C++98 check.)
15659       if (RDecl->hasNonTrivialCopyConstructor())
15660         member = CXXCopyConstructor;
15661       else if (!RDecl->hasTrivialDefaultConstructor())
15662         member = CXXDefaultConstructor;
15663       else if (RDecl->hasNonTrivialCopyAssignment())
15664         member = CXXCopyAssignment;
15665       else if (RDecl->hasNonTrivialDestructor())
15666         member = CXXDestructor;
15667 
15668       if (member != CXXInvalid) {
15669         if (!getLangOpts().CPlusPlus11 &&
15670             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
15671           // Objective-C++ ARC: it is an error to have a non-trivial field of
15672           // a union. However, system headers in Objective-C programs
15673           // occasionally have Objective-C lifetime objects within unions,
15674           // and rather than cause the program to fail, we make those
15675           // members unavailable.
15676           SourceLocation Loc = FD->getLocation();
15677           if (getSourceManager().isInSystemHeader(Loc)) {
15678             if (!FD->hasAttr<UnavailableAttr>())
15679               FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
15680                             UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
15681             return false;
15682           }
15683         }
15684 
15685         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
15686                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
15687                diag::err_illegal_union_or_anon_struct_member)
15688           << FD->getParent()->isUnion() << FD->getDeclName() << member;
15689         DiagnoseNontrivial(RDecl, member);
15690         return !getLangOpts().CPlusPlus11;
15691       }
15692     }
15693   }
15694 
15695   return false;
15696 }
15697 
15698 /// TranslateIvarVisibility - Translate visibility from a token ID to an
15699 ///  AST enum value.
15700 static ObjCIvarDecl::AccessControl
15701 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
15702   switch (ivarVisibility) {
15703   default: llvm_unreachable("Unknown visitibility kind");
15704   case tok::objc_private: return ObjCIvarDecl::Private;
15705   case tok::objc_public: return ObjCIvarDecl::Public;
15706   case tok::objc_protected: return ObjCIvarDecl::Protected;
15707   case tok::objc_package: return ObjCIvarDecl::Package;
15708   }
15709 }
15710 
15711 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
15712 /// in order to create an IvarDecl object for it.
15713 Decl *Sema::ActOnIvar(Scope *S,
15714                                 SourceLocation DeclStart,
15715                                 Declarator &D, Expr *BitfieldWidth,
15716                                 tok::ObjCKeywordKind Visibility) {
15717 
15718   IdentifierInfo *II = D.getIdentifier();
15719   Expr *BitWidth = (Expr*)BitfieldWidth;
15720   SourceLocation Loc = DeclStart;
15721   if (II) Loc = D.getIdentifierLoc();
15722 
15723   // FIXME: Unnamed fields can be handled in various different ways, for
15724   // example, unnamed unions inject all members into the struct namespace!
15725 
15726   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15727   QualType T = TInfo->getType();
15728 
15729   if (BitWidth) {
15730     // 6.7.2.1p3, 6.7.2.1p4
15731     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
15732     if (!BitWidth)
15733       D.setInvalidType();
15734   } else {
15735     // Not a bitfield.
15736 
15737     // validate II.
15738 
15739   }
15740   if (T->isReferenceType()) {
15741     Diag(Loc, diag::err_ivar_reference_type);
15742     D.setInvalidType();
15743   }
15744   // C99 6.7.2.1p8: A member of a structure or union may have any type other
15745   // than a variably modified type.
15746   else if (T->isVariablyModifiedType()) {
15747     Diag(Loc, diag::err_typecheck_ivar_variable_size);
15748     D.setInvalidType();
15749   }
15750 
15751   // Get the visibility (access control) for this ivar.
15752   ObjCIvarDecl::AccessControl ac =
15753     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
15754                                         : ObjCIvarDecl::None;
15755   // Must set ivar's DeclContext to its enclosing interface.
15756   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
15757   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
15758     return nullptr;
15759   ObjCContainerDecl *EnclosingContext;
15760   if (ObjCImplementationDecl *IMPDecl =
15761       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
15762     if (LangOpts.ObjCRuntime.isFragile()) {
15763     // Case of ivar declared in an implementation. Context is that of its class.
15764       EnclosingContext = IMPDecl->getClassInterface();
15765       assert(EnclosingContext && "Implementation has no class interface!");
15766     }
15767     else
15768       EnclosingContext = EnclosingDecl;
15769   } else {
15770     if (ObjCCategoryDecl *CDecl =
15771         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
15772       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
15773         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
15774         return nullptr;
15775       }
15776     }
15777     EnclosingContext = EnclosingDecl;
15778   }
15779 
15780   // Construct the decl.
15781   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
15782                                              DeclStart, Loc, II, T,
15783                                              TInfo, ac, (Expr *)BitfieldWidth);
15784 
15785   if (II) {
15786     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
15787                                            ForVisibleRedeclaration);
15788     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
15789         && !isa<TagDecl>(PrevDecl)) {
15790       Diag(Loc, diag::err_duplicate_member) << II;
15791       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15792       NewID->setInvalidDecl();
15793     }
15794   }
15795 
15796   // Process attributes attached to the ivar.
15797   ProcessDeclAttributes(S, NewID, D);
15798 
15799   if (D.isInvalidType())
15800     NewID->setInvalidDecl();
15801 
15802   // In ARC, infer 'retaining' for ivars of retainable type.
15803   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
15804     NewID->setInvalidDecl();
15805 
15806   if (D.getDeclSpec().isModulePrivateSpecified())
15807     NewID->setModulePrivate();
15808 
15809   if (II) {
15810     // FIXME: When interfaces are DeclContexts, we'll need to add
15811     // these to the interface.
15812     S->AddDecl(NewID);
15813     IdResolver.AddDecl(NewID);
15814   }
15815 
15816   if (LangOpts.ObjCRuntime.isNonFragile() &&
15817       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
15818     Diag(Loc, diag::warn_ivars_in_interface);
15819 
15820   return NewID;
15821 }
15822 
15823 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
15824 /// class and class extensions. For every class \@interface and class
15825 /// extension \@interface, if the last ivar is a bitfield of any type,
15826 /// then add an implicit `char :0` ivar to the end of that interface.
15827 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
15828                              SmallVectorImpl<Decl *> &AllIvarDecls) {
15829   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
15830     return;
15831 
15832   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
15833   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
15834 
15835   if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
15836     return;
15837   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
15838   if (!ID) {
15839     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
15840       if (!CD->IsClassExtension())
15841         return;
15842     }
15843     // No need to add this to end of @implementation.
15844     else
15845       return;
15846   }
15847   // All conditions are met. Add a new bitfield to the tail end of ivars.
15848   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
15849   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
15850 
15851   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
15852                               DeclLoc, DeclLoc, nullptr,
15853                               Context.CharTy,
15854                               Context.getTrivialTypeSourceInfo(Context.CharTy,
15855                                                                DeclLoc),
15856                               ObjCIvarDecl::Private, BW,
15857                               true);
15858   AllIvarDecls.push_back(Ivar);
15859 }
15860 
15861 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
15862                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
15863                        SourceLocation RBrac,
15864                        const ParsedAttributesView &Attrs) {
15865   assert(EnclosingDecl && "missing record or interface decl");
15866 
15867   // If this is an Objective-C @implementation or category and we have
15868   // new fields here we should reset the layout of the interface since
15869   // it will now change.
15870   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
15871     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
15872     switch (DC->getKind()) {
15873     default: break;
15874     case Decl::ObjCCategory:
15875       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
15876       break;
15877     case Decl::ObjCImplementation:
15878       Context.
15879         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
15880       break;
15881     }
15882   }
15883 
15884   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
15885   CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
15886 
15887   // Start counting up the number of named members; make sure to include
15888   // members of anonymous structs and unions in the total.
15889   unsigned NumNamedMembers = 0;
15890   if (Record) {
15891     for (const auto *I : Record->decls()) {
15892       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
15893         if (IFD->getDeclName())
15894           ++NumNamedMembers;
15895     }
15896   }
15897 
15898   // Verify that all the fields are okay.
15899   SmallVector<FieldDecl*, 32> RecFields;
15900 
15901   bool ObjCFieldLifetimeErrReported = false;
15902   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
15903        i != end; ++i) {
15904     FieldDecl *FD = cast<FieldDecl>(*i);
15905 
15906     // Get the type for the field.
15907     const Type *FDTy = FD->getType().getTypePtr();
15908 
15909     if (!FD->isAnonymousStructOrUnion()) {
15910       // Remember all fields written by the user.
15911       RecFields.push_back(FD);
15912     }
15913 
15914     // If the field is already invalid for some reason, don't emit more
15915     // diagnostics about it.
15916     if (FD->isInvalidDecl()) {
15917       EnclosingDecl->setInvalidDecl();
15918       continue;
15919     }
15920 
15921     // C99 6.7.2.1p2:
15922     //   A structure or union shall not contain a member with
15923     //   incomplete or function type (hence, a structure shall not
15924     //   contain an instance of itself, but may contain a pointer to
15925     //   an instance of itself), except that the last member of a
15926     //   structure with more than one named member may have incomplete
15927     //   array type; such a structure (and any union containing,
15928     //   possibly recursively, a member that is such a structure)
15929     //   shall not be a member of a structure or an element of an
15930     //   array.
15931     bool IsLastField = (i + 1 == Fields.end());
15932     if (FDTy->isFunctionType()) {
15933       // Field declared as a function.
15934       Diag(FD->getLocation(), diag::err_field_declared_as_function)
15935         << FD->getDeclName();
15936       FD->setInvalidDecl();
15937       EnclosingDecl->setInvalidDecl();
15938       continue;
15939     } else if (FDTy->isIncompleteArrayType() &&
15940                (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
15941       if (Record) {
15942         // Flexible array member.
15943         // Microsoft and g++ is more permissive regarding flexible array.
15944         // It will accept flexible array in union and also
15945         // as the sole element of a struct/class.
15946         unsigned DiagID = 0;
15947         if (!Record->isUnion() && !IsLastField) {
15948           Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
15949             << FD->getDeclName() << FD->getType() << Record->getTagKind();
15950           Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
15951           FD->setInvalidDecl();
15952           EnclosingDecl->setInvalidDecl();
15953           continue;
15954         } else if (Record->isUnion())
15955           DiagID = getLangOpts().MicrosoftExt
15956                        ? diag::ext_flexible_array_union_ms
15957                        : getLangOpts().CPlusPlus
15958                              ? diag::ext_flexible_array_union_gnu
15959                              : diag::err_flexible_array_union;
15960         else if (NumNamedMembers < 1)
15961           DiagID = getLangOpts().MicrosoftExt
15962                        ? diag::ext_flexible_array_empty_aggregate_ms
15963                        : getLangOpts().CPlusPlus
15964                              ? diag::ext_flexible_array_empty_aggregate_gnu
15965                              : diag::err_flexible_array_empty_aggregate;
15966 
15967         if (DiagID)
15968           Diag(FD->getLocation(), DiagID) << FD->getDeclName()
15969                                           << Record->getTagKind();
15970         // While the layout of types that contain virtual bases is not specified
15971         // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
15972         // virtual bases after the derived members.  This would make a flexible
15973         // array member declared at the end of an object not adjacent to the end
15974         // of the type.
15975         if (CXXRecord && CXXRecord->getNumVBases() != 0)
15976           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
15977               << FD->getDeclName() << Record->getTagKind();
15978         if (!getLangOpts().C99)
15979           Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
15980             << FD->getDeclName() << Record->getTagKind();
15981 
15982         // If the element type has a non-trivial destructor, we would not
15983         // implicitly destroy the elements, so disallow it for now.
15984         //
15985         // FIXME: GCC allows this. We should probably either implicitly delete
15986         // the destructor of the containing class, or just allow this.
15987         QualType BaseElem = Context.getBaseElementType(FD->getType());
15988         if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
15989           Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
15990             << FD->getDeclName() << FD->getType();
15991           FD->setInvalidDecl();
15992           EnclosingDecl->setInvalidDecl();
15993           continue;
15994         }
15995         // Okay, we have a legal flexible array member at the end of the struct.
15996         Record->setHasFlexibleArrayMember(true);
15997       } else {
15998         // In ObjCContainerDecl ivars with incomplete array type are accepted,
15999         // unless they are followed by another ivar. That check is done
16000         // elsewhere, after synthesized ivars are known.
16001       }
16002     } else if (!FDTy->isDependentType() &&
16003                RequireCompleteType(FD->getLocation(), FD->getType(),
16004                                    diag::err_field_incomplete)) {
16005       // Incomplete type
16006       FD->setInvalidDecl();
16007       EnclosingDecl->setInvalidDecl();
16008       continue;
16009     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
16010       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
16011         // A type which contains a flexible array member is considered to be a
16012         // flexible array member.
16013         Record->setHasFlexibleArrayMember(true);
16014         if (!Record->isUnion()) {
16015           // If this is a struct/class and this is not the last element, reject
16016           // it.  Note that GCC supports variable sized arrays in the middle of
16017           // structures.
16018           if (!IsLastField)
16019             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
16020               << FD->getDeclName() << FD->getType();
16021           else {
16022             // We support flexible arrays at the end of structs in
16023             // other structs as an extension.
16024             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
16025               << FD->getDeclName();
16026           }
16027         }
16028       }
16029       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
16030           RequireNonAbstractType(FD->getLocation(), FD->getType(),
16031                                  diag::err_abstract_type_in_decl,
16032                                  AbstractIvarType)) {
16033         // Ivars can not have abstract class types
16034         FD->setInvalidDecl();
16035       }
16036       if (Record && FDTTy->getDecl()->hasObjectMember())
16037         Record->setHasObjectMember(true);
16038       if (Record && FDTTy->getDecl()->hasVolatileMember())
16039         Record->setHasVolatileMember(true);
16040       if (Record && Record->isUnion() &&
16041           FD->getType().isNonTrivialPrimitiveCType(Context))
16042         Diag(FD->getLocation(),
16043              diag::err_nontrivial_primitive_type_in_union);
16044     } else if (FDTy->isObjCObjectType()) {
16045       /// A field cannot be an Objective-c object
16046       Diag(FD->getLocation(), diag::err_statically_allocated_object)
16047         << FixItHint::CreateInsertion(FD->getLocation(), "*");
16048       QualType T = Context.getObjCObjectPointerType(FD->getType());
16049       FD->setType(T);
16050     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
16051                Record && !ObjCFieldLifetimeErrReported && Record->isUnion() &&
16052                !getLangOpts().CPlusPlus) {
16053       // It's an error in ARC or Weak if a field has lifetime.
16054       // We don't want to report this in a system header, though,
16055       // so we just make the field unavailable.
16056       // FIXME: that's really not sufficient; we need to make the type
16057       // itself invalid to, say, initialize or copy.
16058       QualType T = FD->getType();
16059       if (T.hasNonTrivialObjCLifetime()) {
16060         SourceLocation loc = FD->getLocation();
16061         if (getSourceManager().isInSystemHeader(loc)) {
16062           if (!FD->hasAttr<UnavailableAttr>()) {
16063             FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
16064                           UnavailableAttr::IR_ARCFieldWithOwnership, loc));
16065           }
16066         } else {
16067           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
16068             << T->isBlockPointerType() << Record->getTagKind();
16069         }
16070         ObjCFieldLifetimeErrReported = true;
16071       }
16072     } else if (getLangOpts().ObjC &&
16073                getLangOpts().getGC() != LangOptions::NonGC &&
16074                Record && !Record->hasObjectMember()) {
16075       if (FD->getType()->isObjCObjectPointerType() ||
16076           FD->getType().isObjCGCStrong())
16077         Record->setHasObjectMember(true);
16078       else if (Context.getAsArrayType(FD->getType())) {
16079         QualType BaseType = Context.getBaseElementType(FD->getType());
16080         if (BaseType->isRecordType() &&
16081             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
16082           Record->setHasObjectMember(true);
16083         else if (BaseType->isObjCObjectPointerType() ||
16084                  BaseType.isObjCGCStrong())
16085                Record->setHasObjectMember(true);
16086       }
16087     }
16088 
16089     if (Record && !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>()) {
16090       QualType FT = FD->getType();
16091       if (FT.isNonTrivialToPrimitiveDefaultInitialize())
16092         Record->setNonTrivialToPrimitiveDefaultInitialize(true);
16093       QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
16094       if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial)
16095         Record->setNonTrivialToPrimitiveCopy(true);
16096       if (FT.isDestructedType()) {
16097         Record->setNonTrivialToPrimitiveDestroy(true);
16098         Record->setParamDestroyedInCallee(true);
16099       }
16100 
16101       if (const auto *RT = FT->getAs<RecordType>()) {
16102         if (RT->getDecl()->getArgPassingRestrictions() ==
16103             RecordDecl::APK_CanNeverPassInRegs)
16104           Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
16105       } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
16106         Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
16107     }
16108 
16109     if (Record && FD->getType().isVolatileQualified())
16110       Record->setHasVolatileMember(true);
16111     // Keep track of the number of named members.
16112     if (FD->getIdentifier())
16113       ++NumNamedMembers;
16114   }
16115 
16116   // Okay, we successfully defined 'Record'.
16117   if (Record) {
16118     bool Completed = false;
16119     if (CXXRecord) {
16120       if (!CXXRecord->isInvalidDecl()) {
16121         // Set access bits correctly on the directly-declared conversions.
16122         for (CXXRecordDecl::conversion_iterator
16123                I = CXXRecord->conversion_begin(),
16124                E = CXXRecord->conversion_end(); I != E; ++I)
16125           I.setAccess((*I)->getAccess());
16126       }
16127 
16128       if (!CXXRecord->isDependentType()) {
16129         // Add any implicitly-declared members to this class.
16130         AddImplicitlyDeclaredMembersToClass(CXXRecord);
16131 
16132         if (!CXXRecord->isInvalidDecl()) {
16133           // If we have virtual base classes, we may end up finding multiple
16134           // final overriders for a given virtual function. Check for this
16135           // problem now.
16136           if (CXXRecord->getNumVBases()) {
16137             CXXFinalOverriderMap FinalOverriders;
16138             CXXRecord->getFinalOverriders(FinalOverriders);
16139 
16140             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
16141                                              MEnd = FinalOverriders.end();
16142                  M != MEnd; ++M) {
16143               for (OverridingMethods::iterator SO = M->second.begin(),
16144                                             SOEnd = M->second.end();
16145                    SO != SOEnd; ++SO) {
16146                 assert(SO->second.size() > 0 &&
16147                        "Virtual function without overriding functions?");
16148                 if (SO->second.size() == 1)
16149                   continue;
16150 
16151                 // C++ [class.virtual]p2:
16152                 //   In a derived class, if a virtual member function of a base
16153                 //   class subobject has more than one final overrider the
16154                 //   program is ill-formed.
16155                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
16156                   << (const NamedDecl *)M->first << Record;
16157                 Diag(M->first->getLocation(),
16158                      diag::note_overridden_virtual_function);
16159                 for (OverridingMethods::overriding_iterator
16160                           OM = SO->second.begin(),
16161                        OMEnd = SO->second.end();
16162                      OM != OMEnd; ++OM)
16163                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
16164                     << (const NamedDecl *)M->first << OM->Method->getParent();
16165 
16166                 Record->setInvalidDecl();
16167               }
16168             }
16169             CXXRecord->completeDefinition(&FinalOverriders);
16170             Completed = true;
16171           }
16172         }
16173       }
16174     }
16175 
16176     if (!Completed)
16177       Record->completeDefinition();
16178 
16179     // Handle attributes before checking the layout.
16180     ProcessDeclAttributeList(S, Record, Attrs);
16181 
16182     // We may have deferred checking for a deleted destructor. Check now.
16183     if (CXXRecord) {
16184       auto *Dtor = CXXRecord->getDestructor();
16185       if (Dtor && Dtor->isImplicit() &&
16186           ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
16187         CXXRecord->setImplicitDestructorIsDeleted();
16188         SetDeclDeleted(Dtor, CXXRecord->getLocation());
16189       }
16190     }
16191 
16192     if (Record->hasAttrs()) {
16193       CheckAlignasUnderalignment(Record);
16194 
16195       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
16196         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
16197                                            IA->getRange(), IA->getBestCase(),
16198                                            IA->getSemanticSpelling());
16199     }
16200 
16201     // Check if the structure/union declaration is a type that can have zero
16202     // size in C. For C this is a language extension, for C++ it may cause
16203     // compatibility problems.
16204     bool CheckForZeroSize;
16205     if (!getLangOpts().CPlusPlus) {
16206       CheckForZeroSize = true;
16207     } else {
16208       // For C++ filter out types that cannot be referenced in C code.
16209       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
16210       CheckForZeroSize =
16211           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
16212           !CXXRecord->isDependentType() &&
16213           CXXRecord->isCLike();
16214     }
16215     if (CheckForZeroSize) {
16216       bool ZeroSize = true;
16217       bool IsEmpty = true;
16218       unsigned NonBitFields = 0;
16219       for (RecordDecl::field_iterator I = Record->field_begin(),
16220                                       E = Record->field_end();
16221            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
16222         IsEmpty = false;
16223         if (I->isUnnamedBitfield()) {
16224           if (!I->isZeroLengthBitField(Context))
16225             ZeroSize = false;
16226         } else {
16227           ++NonBitFields;
16228           QualType FieldType = I->getType();
16229           if (FieldType->isIncompleteType() ||
16230               !Context.getTypeSizeInChars(FieldType).isZero())
16231             ZeroSize = false;
16232         }
16233       }
16234 
16235       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
16236       // allowed in C++, but warn if its declaration is inside
16237       // extern "C" block.
16238       if (ZeroSize) {
16239         Diag(RecLoc, getLangOpts().CPlusPlus ?
16240                          diag::warn_zero_size_struct_union_in_extern_c :
16241                          diag::warn_zero_size_struct_union_compat)
16242           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
16243       }
16244 
16245       // Structs without named members are extension in C (C99 6.7.2.1p7),
16246       // but are accepted by GCC.
16247       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
16248         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
16249                                diag::ext_no_named_members_in_struct_union)
16250           << Record->isUnion();
16251       }
16252     }
16253   } else {
16254     ObjCIvarDecl **ClsFields =
16255       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
16256     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
16257       ID->setEndOfDefinitionLoc(RBrac);
16258       // Add ivar's to class's DeclContext.
16259       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16260         ClsFields[i]->setLexicalDeclContext(ID);
16261         ID->addDecl(ClsFields[i]);
16262       }
16263       // Must enforce the rule that ivars in the base classes may not be
16264       // duplicates.
16265       if (ID->getSuperClass())
16266         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
16267     } else if (ObjCImplementationDecl *IMPDecl =
16268                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16269       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
16270       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
16271         // Ivar declared in @implementation never belongs to the implementation.
16272         // Only it is in implementation's lexical context.
16273         ClsFields[I]->setLexicalDeclContext(IMPDecl);
16274       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
16275       IMPDecl->setIvarLBraceLoc(LBrac);
16276       IMPDecl->setIvarRBraceLoc(RBrac);
16277     } else if (ObjCCategoryDecl *CDecl =
16278                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16279       // case of ivars in class extension; all other cases have been
16280       // reported as errors elsewhere.
16281       // FIXME. Class extension does not have a LocEnd field.
16282       // CDecl->setLocEnd(RBrac);
16283       // Add ivar's to class extension's DeclContext.
16284       // Diagnose redeclaration of private ivars.
16285       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
16286       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16287         if (IDecl) {
16288           if (const ObjCIvarDecl *ClsIvar =
16289               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
16290             Diag(ClsFields[i]->getLocation(),
16291                  diag::err_duplicate_ivar_declaration);
16292             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
16293             continue;
16294           }
16295           for (const auto *Ext : IDecl->known_extensions()) {
16296             if (const ObjCIvarDecl *ClsExtIvar
16297                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
16298               Diag(ClsFields[i]->getLocation(),
16299                    diag::err_duplicate_ivar_declaration);
16300               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
16301               continue;
16302             }
16303           }
16304         }
16305         ClsFields[i]->setLexicalDeclContext(CDecl);
16306         CDecl->addDecl(ClsFields[i]);
16307       }
16308       CDecl->setIvarLBraceLoc(LBrac);
16309       CDecl->setIvarRBraceLoc(RBrac);
16310     }
16311   }
16312 }
16313 
16314 /// Determine whether the given integral value is representable within
16315 /// the given type T.
16316 static bool isRepresentableIntegerValue(ASTContext &Context,
16317                                         llvm::APSInt &Value,
16318                                         QualType T) {
16319   assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
16320          "Integral type required!");
16321   unsigned BitWidth = Context.getIntWidth(T);
16322 
16323   if (Value.isUnsigned() || Value.isNonNegative()) {
16324     if (T->isSignedIntegerOrEnumerationType())
16325       --BitWidth;
16326     return Value.getActiveBits() <= BitWidth;
16327   }
16328   return Value.getMinSignedBits() <= BitWidth;
16329 }
16330 
16331 // Given an integral type, return the next larger integral type
16332 // (or a NULL type of no such type exists).
16333 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
16334   // FIXME: Int128/UInt128 support, which also needs to be introduced into
16335   // enum checking below.
16336   assert((T->isIntegralType(Context) ||
16337          T->isEnumeralType()) && "Integral type required!");
16338   const unsigned NumTypes = 4;
16339   QualType SignedIntegralTypes[NumTypes] = {
16340     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
16341   };
16342   QualType UnsignedIntegralTypes[NumTypes] = {
16343     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
16344     Context.UnsignedLongLongTy
16345   };
16346 
16347   unsigned BitWidth = Context.getTypeSize(T);
16348   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
16349                                                         : UnsignedIntegralTypes;
16350   for (unsigned I = 0; I != NumTypes; ++I)
16351     if (Context.getTypeSize(Types[I]) > BitWidth)
16352       return Types[I];
16353 
16354   return QualType();
16355 }
16356 
16357 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
16358                                           EnumConstantDecl *LastEnumConst,
16359                                           SourceLocation IdLoc,
16360                                           IdentifierInfo *Id,
16361                                           Expr *Val) {
16362   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
16363   llvm::APSInt EnumVal(IntWidth);
16364   QualType EltTy;
16365 
16366   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
16367     Val = nullptr;
16368 
16369   if (Val)
16370     Val = DefaultLvalueConversion(Val).get();
16371 
16372   if (Val) {
16373     if (Enum->isDependentType() || Val->isTypeDependent())
16374       EltTy = Context.DependentTy;
16375     else {
16376       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
16377           !getLangOpts().MSVCCompat) {
16378         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
16379         // constant-expression in the enumerator-definition shall be a converted
16380         // constant expression of the underlying type.
16381         EltTy = Enum->getIntegerType();
16382         ExprResult Converted =
16383           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
16384                                            CCEK_Enumerator);
16385         if (Converted.isInvalid())
16386           Val = nullptr;
16387         else
16388           Val = Converted.get();
16389       } else if (!Val->isValueDependent() &&
16390                  !(Val = VerifyIntegerConstantExpression(Val,
16391                                                          &EnumVal).get())) {
16392         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
16393       } else {
16394         if (Enum->isComplete()) {
16395           EltTy = Enum->getIntegerType();
16396 
16397           // In Obj-C and Microsoft mode, require the enumeration value to be
16398           // representable in the underlying type of the enumeration. In C++11,
16399           // we perform a non-narrowing conversion as part of converted constant
16400           // expression checking.
16401           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
16402             if (getLangOpts().MSVCCompat) {
16403               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
16404               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
16405             } else
16406               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
16407           } else
16408             Val = ImpCastExprToType(Val, EltTy,
16409                                     EltTy->isBooleanType() ?
16410                                     CK_IntegralToBoolean : CK_IntegralCast)
16411                     .get();
16412         } else if (getLangOpts().CPlusPlus) {
16413           // C++11 [dcl.enum]p5:
16414           //   If the underlying type is not fixed, the type of each enumerator
16415           //   is the type of its initializing value:
16416           //     - If an initializer is specified for an enumerator, the
16417           //       initializing value has the same type as the expression.
16418           EltTy = Val->getType();
16419         } else {
16420           // C99 6.7.2.2p2:
16421           //   The expression that defines the value of an enumeration constant
16422           //   shall be an integer constant expression that has a value
16423           //   representable as an int.
16424 
16425           // Complain if the value is not representable in an int.
16426           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
16427             Diag(IdLoc, diag::ext_enum_value_not_int)
16428               << EnumVal.toString(10) << Val->getSourceRange()
16429               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
16430           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
16431             // Force the type of the expression to 'int'.
16432             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
16433           }
16434           EltTy = Val->getType();
16435         }
16436       }
16437     }
16438   }
16439 
16440   if (!Val) {
16441     if (Enum->isDependentType())
16442       EltTy = Context.DependentTy;
16443     else if (!LastEnumConst) {
16444       // C++0x [dcl.enum]p5:
16445       //   If the underlying type is not fixed, the type of each enumerator
16446       //   is the type of its initializing value:
16447       //     - If no initializer is specified for the first enumerator, the
16448       //       initializing value has an unspecified integral type.
16449       //
16450       // GCC uses 'int' for its unspecified integral type, as does
16451       // C99 6.7.2.2p3.
16452       if (Enum->isFixed()) {
16453         EltTy = Enum->getIntegerType();
16454       }
16455       else {
16456         EltTy = Context.IntTy;
16457       }
16458     } else {
16459       // Assign the last value + 1.
16460       EnumVal = LastEnumConst->getInitVal();
16461       ++EnumVal;
16462       EltTy = LastEnumConst->getType();
16463 
16464       // Check for overflow on increment.
16465       if (EnumVal < LastEnumConst->getInitVal()) {
16466         // C++0x [dcl.enum]p5:
16467         //   If the underlying type is not fixed, the type of each enumerator
16468         //   is the type of its initializing value:
16469         //
16470         //     - Otherwise the type of the initializing value is the same as
16471         //       the type of the initializing value of the preceding enumerator
16472         //       unless the incremented value is not representable in that type,
16473         //       in which case the type is an unspecified integral type
16474         //       sufficient to contain the incremented value. If no such type
16475         //       exists, the program is ill-formed.
16476         QualType T = getNextLargerIntegralType(Context, EltTy);
16477         if (T.isNull() || Enum->isFixed()) {
16478           // There is no integral type larger enough to represent this
16479           // value. Complain, then allow the value to wrap around.
16480           EnumVal = LastEnumConst->getInitVal();
16481           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
16482           ++EnumVal;
16483           if (Enum->isFixed())
16484             // When the underlying type is fixed, this is ill-formed.
16485             Diag(IdLoc, diag::err_enumerator_wrapped)
16486               << EnumVal.toString(10)
16487               << EltTy;
16488           else
16489             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
16490               << EnumVal.toString(10);
16491         } else {
16492           EltTy = T;
16493         }
16494 
16495         // Retrieve the last enumerator's value, extent that type to the
16496         // type that is supposed to be large enough to represent the incremented
16497         // value, then increment.
16498         EnumVal = LastEnumConst->getInitVal();
16499         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
16500         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
16501         ++EnumVal;
16502 
16503         // If we're not in C++, diagnose the overflow of enumerator values,
16504         // which in C99 means that the enumerator value is not representable in
16505         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
16506         // permits enumerator values that are representable in some larger
16507         // integral type.
16508         if (!getLangOpts().CPlusPlus && !T.isNull())
16509           Diag(IdLoc, diag::warn_enum_value_overflow);
16510       } else if (!getLangOpts().CPlusPlus &&
16511                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
16512         // Enforce C99 6.7.2.2p2 even when we compute the next value.
16513         Diag(IdLoc, diag::ext_enum_value_not_int)
16514           << EnumVal.toString(10) << 1;
16515       }
16516     }
16517   }
16518 
16519   if (!EltTy->isDependentType()) {
16520     // Make the enumerator value match the signedness and size of the
16521     // enumerator's type.
16522     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
16523     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
16524   }
16525 
16526   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
16527                                   Val, EnumVal);
16528 }
16529 
16530 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
16531                                                 SourceLocation IILoc) {
16532   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
16533       !getLangOpts().CPlusPlus)
16534     return SkipBodyInfo();
16535 
16536   // We have an anonymous enum definition. Look up the first enumerator to
16537   // determine if we should merge the definition with an existing one and
16538   // skip the body.
16539   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
16540                                          forRedeclarationInCurContext());
16541   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
16542   if (!PrevECD)
16543     return SkipBodyInfo();
16544 
16545   EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
16546   NamedDecl *Hidden;
16547   if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
16548     SkipBodyInfo Skip;
16549     Skip.Previous = Hidden;
16550     return Skip;
16551   }
16552 
16553   return SkipBodyInfo();
16554 }
16555 
16556 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
16557                               SourceLocation IdLoc, IdentifierInfo *Id,
16558                               const ParsedAttributesView &Attrs,
16559                               SourceLocation EqualLoc, Expr *Val) {
16560   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
16561   EnumConstantDecl *LastEnumConst =
16562     cast_or_null<EnumConstantDecl>(lastEnumConst);
16563 
16564   // The scope passed in may not be a decl scope.  Zip up the scope tree until
16565   // we find one that is.
16566   S = getNonFieldDeclScope(S);
16567 
16568   // Verify that there isn't already something declared with this name in this
16569   // scope.
16570   LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
16571   LookupName(R, S);
16572   NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
16573 
16574   if (PrevDecl && PrevDecl->isTemplateParameter()) {
16575     // Maybe we will complain about the shadowed template parameter.
16576     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
16577     // Just pretend that we didn't see the previous declaration.
16578     PrevDecl = nullptr;
16579   }
16580 
16581   // C++ [class.mem]p15:
16582   // If T is the name of a class, then each of the following shall have a name
16583   // different from T:
16584   // - every enumerator of every member of class T that is an unscoped
16585   // enumerated type
16586   if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
16587     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
16588                             DeclarationNameInfo(Id, IdLoc));
16589 
16590   EnumConstantDecl *New =
16591     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
16592   if (!New)
16593     return nullptr;
16594 
16595   if (PrevDecl) {
16596     if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
16597       // Check for other kinds of shadowing not already handled.
16598       CheckShadow(New, PrevDecl, R);
16599     }
16600 
16601     // When in C++, we may get a TagDecl with the same name; in this case the
16602     // enum constant will 'hide' the tag.
16603     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
16604            "Received TagDecl when not in C++!");
16605     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
16606       if (isa<EnumConstantDecl>(PrevDecl))
16607         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
16608       else
16609         Diag(IdLoc, diag::err_redefinition) << Id;
16610       notePreviousDefinition(PrevDecl, IdLoc);
16611       return nullptr;
16612     }
16613   }
16614 
16615   // Process attributes.
16616   ProcessDeclAttributeList(S, New, Attrs);
16617   AddPragmaAttributes(S, New);
16618 
16619   // Register this decl in the current scope stack.
16620   New->setAccess(TheEnumDecl->getAccess());
16621   PushOnScopeChains(New, S);
16622 
16623   ActOnDocumentableDecl(New);
16624 
16625   return New;
16626 }
16627 
16628 // Returns true when the enum initial expression does not trigger the
16629 // duplicate enum warning.  A few common cases are exempted as follows:
16630 // Element2 = Element1
16631 // Element2 = Element1 + 1
16632 // Element2 = Element1 - 1
16633 // Where Element2 and Element1 are from the same enum.
16634 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
16635   Expr *InitExpr = ECD->getInitExpr();
16636   if (!InitExpr)
16637     return true;
16638   InitExpr = InitExpr->IgnoreImpCasts();
16639 
16640   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
16641     if (!BO->isAdditiveOp())
16642       return true;
16643     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
16644     if (!IL)
16645       return true;
16646     if (IL->getValue() != 1)
16647       return true;
16648 
16649     InitExpr = BO->getLHS();
16650   }
16651 
16652   // This checks if the elements are from the same enum.
16653   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
16654   if (!DRE)
16655     return true;
16656 
16657   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
16658   if (!EnumConstant)
16659     return true;
16660 
16661   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
16662       Enum)
16663     return true;
16664 
16665   return false;
16666 }
16667 
16668 // Emits a warning when an element is implicitly set a value that
16669 // a previous element has already been set to.
16670 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
16671                                         EnumDecl *Enum, QualType EnumType) {
16672   // Avoid anonymous enums
16673   if (!Enum->getIdentifier())
16674     return;
16675 
16676   // Only check for small enums.
16677   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
16678     return;
16679 
16680   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
16681     return;
16682 
16683   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
16684   typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
16685 
16686   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
16687   typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
16688 
16689   // Use int64_t as a key to avoid needing special handling for DenseMap keys.
16690   auto EnumConstantToKey = [](const EnumConstantDecl *D) {
16691     llvm::APSInt Val = D->getInitVal();
16692     return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
16693   };
16694 
16695   DuplicatesVector DupVector;
16696   ValueToVectorMap EnumMap;
16697 
16698   // Populate the EnumMap with all values represented by enum constants without
16699   // an initializer.
16700   for (auto *Element : Elements) {
16701     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
16702 
16703     // Null EnumConstantDecl means a previous diagnostic has been emitted for
16704     // this constant.  Skip this enum since it may be ill-formed.
16705     if (!ECD) {
16706       return;
16707     }
16708 
16709     // Constants with initalizers are handled in the next loop.
16710     if (ECD->getInitExpr())
16711       continue;
16712 
16713     // Duplicate values are handled in the next loop.
16714     EnumMap.insert({EnumConstantToKey(ECD), ECD});
16715   }
16716 
16717   if (EnumMap.size() == 0)
16718     return;
16719 
16720   // Create vectors for any values that has duplicates.
16721   for (auto *Element : Elements) {
16722     // The last loop returned if any constant was null.
16723     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
16724     if (!ValidDuplicateEnum(ECD, Enum))
16725       continue;
16726 
16727     auto Iter = EnumMap.find(EnumConstantToKey(ECD));
16728     if (Iter == EnumMap.end())
16729       continue;
16730 
16731     DeclOrVector& Entry = Iter->second;
16732     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
16733       // Ensure constants are different.
16734       if (D == ECD)
16735         continue;
16736 
16737       // Create new vector and push values onto it.
16738       auto Vec = llvm::make_unique<ECDVector>();
16739       Vec->push_back(D);
16740       Vec->push_back(ECD);
16741 
16742       // Update entry to point to the duplicates vector.
16743       Entry = Vec.get();
16744 
16745       // Store the vector somewhere we can consult later for quick emission of
16746       // diagnostics.
16747       DupVector.emplace_back(std::move(Vec));
16748       continue;
16749     }
16750 
16751     ECDVector *Vec = Entry.get<ECDVector*>();
16752     // Make sure constants are not added more than once.
16753     if (*Vec->begin() == ECD)
16754       continue;
16755 
16756     Vec->push_back(ECD);
16757   }
16758 
16759   // Emit diagnostics.
16760   for (const auto &Vec : DupVector) {
16761     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
16762 
16763     // Emit warning for one enum constant.
16764     auto *FirstECD = Vec->front();
16765     S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
16766       << FirstECD << FirstECD->getInitVal().toString(10)
16767       << FirstECD->getSourceRange();
16768 
16769     // Emit one note for each of the remaining enum constants with
16770     // the same value.
16771     for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
16772       S.Diag(ECD->getLocation(), diag::note_duplicate_element)
16773         << ECD << ECD->getInitVal().toString(10)
16774         << ECD->getSourceRange();
16775   }
16776 }
16777 
16778 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
16779                              bool AllowMask) const {
16780   assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
16781   assert(ED->isCompleteDefinition() && "expected enum definition");
16782 
16783   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
16784   llvm::APInt &FlagBits = R.first->second;
16785 
16786   if (R.second) {
16787     for (auto *E : ED->enumerators()) {
16788       const auto &EVal = E->getInitVal();
16789       // Only single-bit enumerators introduce new flag values.
16790       if (EVal.isPowerOf2())
16791         FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
16792     }
16793   }
16794 
16795   // A value is in a flag enum if either its bits are a subset of the enum's
16796   // flag bits (the first condition) or we are allowing masks and the same is
16797   // true of its complement (the second condition). When masks are allowed, we
16798   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
16799   //
16800   // While it's true that any value could be used as a mask, the assumption is
16801   // that a mask will have all of the insignificant bits set. Anything else is
16802   // likely a logic error.
16803   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
16804   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
16805 }
16806 
16807 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
16808                          Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
16809                          const ParsedAttributesView &Attrs) {
16810   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
16811   QualType EnumType = Context.getTypeDeclType(Enum);
16812 
16813   ProcessDeclAttributeList(S, Enum, Attrs);
16814 
16815   if (Enum->isDependentType()) {
16816     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
16817       EnumConstantDecl *ECD =
16818         cast_or_null<EnumConstantDecl>(Elements[i]);
16819       if (!ECD) continue;
16820 
16821       ECD->setType(EnumType);
16822     }
16823 
16824     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
16825     return;
16826   }
16827 
16828   // TODO: If the result value doesn't fit in an int, it must be a long or long
16829   // long value.  ISO C does not support this, but GCC does as an extension,
16830   // emit a warning.
16831   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
16832   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
16833   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
16834 
16835   // Verify that all the values are okay, compute the size of the values, and
16836   // reverse the list.
16837   unsigned NumNegativeBits = 0;
16838   unsigned NumPositiveBits = 0;
16839 
16840   // Keep track of whether all elements have type int.
16841   bool AllElementsInt = true;
16842 
16843   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
16844     EnumConstantDecl *ECD =
16845       cast_or_null<EnumConstantDecl>(Elements[i]);
16846     if (!ECD) continue;  // Already issued a diagnostic.
16847 
16848     const llvm::APSInt &InitVal = ECD->getInitVal();
16849 
16850     // Keep track of the size of positive and negative values.
16851     if (InitVal.isUnsigned() || InitVal.isNonNegative())
16852       NumPositiveBits = std::max(NumPositiveBits,
16853                                  (unsigned)InitVal.getActiveBits());
16854     else
16855       NumNegativeBits = std::max(NumNegativeBits,
16856                                  (unsigned)InitVal.getMinSignedBits());
16857 
16858     // Keep track of whether every enum element has type int (very common).
16859     if (AllElementsInt)
16860       AllElementsInt = ECD->getType() == Context.IntTy;
16861   }
16862 
16863   // Figure out the type that should be used for this enum.
16864   QualType BestType;
16865   unsigned BestWidth;
16866 
16867   // C++0x N3000 [conv.prom]p3:
16868   //   An rvalue of an unscoped enumeration type whose underlying
16869   //   type is not fixed can be converted to an rvalue of the first
16870   //   of the following types that can represent all the values of
16871   //   the enumeration: int, unsigned int, long int, unsigned long
16872   //   int, long long int, or unsigned long long int.
16873   // C99 6.4.4.3p2:
16874   //   An identifier declared as an enumeration constant has type int.
16875   // The C99 rule is modified by a gcc extension
16876   QualType BestPromotionType;
16877 
16878   bool Packed = Enum->hasAttr<PackedAttr>();
16879   // -fshort-enums is the equivalent to specifying the packed attribute on all
16880   // enum definitions.
16881   if (LangOpts.ShortEnums)
16882     Packed = true;
16883 
16884   // If the enum already has a type because it is fixed or dictated by the
16885   // target, promote that type instead of analyzing the enumerators.
16886   if (Enum->isComplete()) {
16887     BestType = Enum->getIntegerType();
16888     if (BestType->isPromotableIntegerType())
16889       BestPromotionType = Context.getPromotedIntegerType(BestType);
16890     else
16891       BestPromotionType = BestType;
16892 
16893     BestWidth = Context.getIntWidth(BestType);
16894   }
16895   else if (NumNegativeBits) {
16896     // If there is a negative value, figure out the smallest integer type (of
16897     // int/long/longlong) that fits.
16898     // If it's packed, check also if it fits a char or a short.
16899     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
16900       BestType = Context.SignedCharTy;
16901       BestWidth = CharWidth;
16902     } else if (Packed && NumNegativeBits <= ShortWidth &&
16903                NumPositiveBits < ShortWidth) {
16904       BestType = Context.ShortTy;
16905       BestWidth = ShortWidth;
16906     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
16907       BestType = Context.IntTy;
16908       BestWidth = IntWidth;
16909     } else {
16910       BestWidth = Context.getTargetInfo().getLongWidth();
16911 
16912       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
16913         BestType = Context.LongTy;
16914       } else {
16915         BestWidth = Context.getTargetInfo().getLongLongWidth();
16916 
16917         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
16918           Diag(Enum->getLocation(), diag::ext_enum_too_large);
16919         BestType = Context.LongLongTy;
16920       }
16921     }
16922     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
16923   } else {
16924     // If there is no negative value, figure out the smallest type that fits
16925     // all of the enumerator values.
16926     // If it's packed, check also if it fits a char or a short.
16927     if (Packed && NumPositiveBits <= CharWidth) {
16928       BestType = Context.UnsignedCharTy;
16929       BestPromotionType = Context.IntTy;
16930       BestWidth = CharWidth;
16931     } else if (Packed && NumPositiveBits <= ShortWidth) {
16932       BestType = Context.UnsignedShortTy;
16933       BestPromotionType = Context.IntTy;
16934       BestWidth = ShortWidth;
16935     } else if (NumPositiveBits <= IntWidth) {
16936       BestType = Context.UnsignedIntTy;
16937       BestWidth = IntWidth;
16938       BestPromotionType
16939         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16940                            ? Context.UnsignedIntTy : Context.IntTy;
16941     } else if (NumPositiveBits <=
16942                (BestWidth = Context.getTargetInfo().getLongWidth())) {
16943       BestType = Context.UnsignedLongTy;
16944       BestPromotionType
16945         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16946                            ? Context.UnsignedLongTy : Context.LongTy;
16947     } else {
16948       BestWidth = Context.getTargetInfo().getLongLongWidth();
16949       assert(NumPositiveBits <= BestWidth &&
16950              "How could an initializer get larger than ULL?");
16951       BestType = Context.UnsignedLongLongTy;
16952       BestPromotionType
16953         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16954                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
16955     }
16956   }
16957 
16958   // Loop over all of the enumerator constants, changing their types to match
16959   // the type of the enum if needed.
16960   for (auto *D : Elements) {
16961     auto *ECD = cast_or_null<EnumConstantDecl>(D);
16962     if (!ECD) continue;  // Already issued a diagnostic.
16963 
16964     // Standard C says the enumerators have int type, but we allow, as an
16965     // extension, the enumerators to be larger than int size.  If each
16966     // enumerator value fits in an int, type it as an int, otherwise type it the
16967     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
16968     // that X has type 'int', not 'unsigned'.
16969 
16970     // Determine whether the value fits into an int.
16971     llvm::APSInt InitVal = ECD->getInitVal();
16972 
16973     // If it fits into an integer type, force it.  Otherwise force it to match
16974     // the enum decl type.
16975     QualType NewTy;
16976     unsigned NewWidth;
16977     bool NewSign;
16978     if (!getLangOpts().CPlusPlus &&
16979         !Enum->isFixed() &&
16980         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
16981       NewTy = Context.IntTy;
16982       NewWidth = IntWidth;
16983       NewSign = true;
16984     } else if (ECD->getType() == BestType) {
16985       // Already the right type!
16986       if (getLangOpts().CPlusPlus)
16987         // C++ [dcl.enum]p4: Following the closing brace of an
16988         // enum-specifier, each enumerator has the type of its
16989         // enumeration.
16990         ECD->setType(EnumType);
16991       continue;
16992     } else {
16993       NewTy = BestType;
16994       NewWidth = BestWidth;
16995       NewSign = BestType->isSignedIntegerOrEnumerationType();
16996     }
16997 
16998     // Adjust the APSInt value.
16999     InitVal = InitVal.extOrTrunc(NewWidth);
17000     InitVal.setIsSigned(NewSign);
17001     ECD->setInitVal(InitVal);
17002 
17003     // Adjust the Expr initializer and type.
17004     if (ECD->getInitExpr() &&
17005         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
17006       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
17007                                                 CK_IntegralCast,
17008                                                 ECD->getInitExpr(),
17009                                                 /*base paths*/ nullptr,
17010                                                 VK_RValue));
17011     if (getLangOpts().CPlusPlus)
17012       // C++ [dcl.enum]p4: Following the closing brace of an
17013       // enum-specifier, each enumerator has the type of its
17014       // enumeration.
17015       ECD->setType(EnumType);
17016     else
17017       ECD->setType(NewTy);
17018   }
17019 
17020   Enum->completeDefinition(BestType, BestPromotionType,
17021                            NumPositiveBits, NumNegativeBits);
17022 
17023   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
17024 
17025   if (Enum->isClosedFlag()) {
17026     for (Decl *D : Elements) {
17027       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
17028       if (!ECD) continue;  // Already issued a diagnostic.
17029 
17030       llvm::APSInt InitVal = ECD->getInitVal();
17031       if (InitVal != 0 && !InitVal.isPowerOf2() &&
17032           !IsValueInFlagEnum(Enum, InitVal, true))
17033         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
17034           << ECD << Enum;
17035     }
17036   }
17037 
17038   // Now that the enum type is defined, ensure it's not been underaligned.
17039   if (Enum->hasAttrs())
17040     CheckAlignasUnderalignment(Enum);
17041 }
17042 
17043 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
17044                                   SourceLocation StartLoc,
17045                                   SourceLocation EndLoc) {
17046   StringLiteral *AsmString = cast<StringLiteral>(expr);
17047 
17048   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
17049                                                    AsmString, StartLoc,
17050                                                    EndLoc);
17051   CurContext->addDecl(New);
17052   return New;
17053 }
17054 
17055 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
17056                                       IdentifierInfo* AliasName,
17057                                       SourceLocation PragmaLoc,
17058                                       SourceLocation NameLoc,
17059                                       SourceLocation AliasNameLoc) {
17060   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
17061                                          LookupOrdinaryName);
17062   AsmLabelAttr *Attr =
17063       AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc);
17064 
17065   // If a declaration that:
17066   // 1) declares a function or a variable
17067   // 2) has external linkage
17068   // already exists, add a label attribute to it.
17069   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17070     if (isDeclExternC(PrevDecl))
17071       PrevDecl->addAttr(Attr);
17072     else
17073       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
17074           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
17075   // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
17076   } else
17077     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
17078 }
17079 
17080 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
17081                              SourceLocation PragmaLoc,
17082                              SourceLocation NameLoc) {
17083   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
17084 
17085   if (PrevDecl) {
17086     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
17087   } else {
17088     (void)WeakUndeclaredIdentifiers.insert(
17089       std::pair<IdentifierInfo*,WeakInfo>
17090         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
17091   }
17092 }
17093 
17094 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
17095                                 IdentifierInfo* AliasName,
17096                                 SourceLocation PragmaLoc,
17097                                 SourceLocation NameLoc,
17098                                 SourceLocation AliasNameLoc) {
17099   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
17100                                     LookupOrdinaryName);
17101   WeakInfo W = WeakInfo(Name, NameLoc);
17102 
17103   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17104     if (!PrevDecl->hasAttr<AliasAttr>())
17105       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
17106         DeclApplyPragmaWeak(TUScope, ND, W);
17107   } else {
17108     (void)WeakUndeclaredIdentifiers.insert(
17109       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
17110   }
17111 }
17112 
17113 Decl *Sema::getObjCDeclContext() const {
17114   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
17115 }
17116