1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTLambda.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/CommentDiagnostic.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/EvaluatedExprVisitor.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/NonTrivialTypeVisitor.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/PartialDiagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex 33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex 35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled() 36 #include "clang/Sema/CXXFieldCollector.h" 37 #include "clang/Sema/DeclSpec.h" 38 #include "clang/Sema/DelayedDiagnostic.h" 39 #include "clang/Sema/Initialization.h" 40 #include "clang/Sema/Lookup.h" 41 #include "clang/Sema/ParsedTemplate.h" 42 #include "clang/Sema/Scope.h" 43 #include "clang/Sema/ScopeInfo.h" 44 #include "clang/Sema/SemaInternal.h" 45 #include "clang/Sema/Template.h" 46 #include "llvm/ADT/SmallString.h" 47 #include "llvm/ADT/Triple.h" 48 #include <algorithm> 49 #include <cstring> 50 #include <functional> 51 #include <unordered_map> 52 53 using namespace clang; 54 using namespace sema; 55 56 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { 57 if (OwnedType) { 58 Decl *Group[2] = { OwnedType, Ptr }; 59 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2)); 60 } 61 62 return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); 63 } 64 65 namespace { 66 67 class TypeNameValidatorCCC final : public CorrectionCandidateCallback { 68 public: 69 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false, 70 bool AllowTemplates = false, 71 bool AllowNonTemplates = true) 72 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass), 73 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) { 74 WantExpressionKeywords = false; 75 WantCXXNamedCasts = false; 76 WantRemainingKeywords = false; 77 } 78 79 bool ValidateCandidate(const TypoCorrection &candidate) override { 80 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 81 if (!AllowInvalidDecl && ND->isInvalidDecl()) 82 return false; 83 84 if (getAsTypeTemplateDecl(ND)) 85 return AllowTemplates; 86 87 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND); 88 if (!IsType) 89 return false; 90 91 if (AllowNonTemplates) 92 return true; 93 94 // An injected-class-name of a class template (specialization) is valid 95 // as a template or as a non-template. 96 if (AllowTemplates) { 97 auto *RD = dyn_cast<CXXRecordDecl>(ND); 98 if (!RD || !RD->isInjectedClassName()) 99 return false; 100 RD = cast<CXXRecordDecl>(RD->getDeclContext()); 101 return RD->getDescribedClassTemplate() || 102 isa<ClassTemplateSpecializationDecl>(RD); 103 } 104 105 return false; 106 } 107 108 return !WantClassName && candidate.isKeyword(); 109 } 110 111 std::unique_ptr<CorrectionCandidateCallback> clone() override { 112 return std::make_unique<TypeNameValidatorCCC>(*this); 113 } 114 115 private: 116 bool AllowInvalidDecl; 117 bool WantClassName; 118 bool AllowTemplates; 119 bool AllowNonTemplates; 120 }; 121 122 } // end anonymous namespace 123 124 /// Determine whether the token kind starts a simple-type-specifier. 125 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const { 126 switch (Kind) { 127 // FIXME: Take into account the current language when deciding whether a 128 // token kind is a valid type specifier 129 case tok::kw_short: 130 case tok::kw_long: 131 case tok::kw___int64: 132 case tok::kw___int128: 133 case tok::kw_signed: 134 case tok::kw_unsigned: 135 case tok::kw_void: 136 case tok::kw_char: 137 case tok::kw_int: 138 case tok::kw_half: 139 case tok::kw_float: 140 case tok::kw_double: 141 case tok::kw___bf16: 142 case tok::kw__Float16: 143 case tok::kw___float128: 144 case tok::kw_wchar_t: 145 case tok::kw_bool: 146 case tok::kw___underlying_type: 147 case tok::kw___auto_type: 148 return true; 149 150 case tok::annot_typename: 151 case tok::kw_char16_t: 152 case tok::kw_char32_t: 153 case tok::kw_typeof: 154 case tok::annot_decltype: 155 case tok::kw_decltype: 156 return getLangOpts().CPlusPlus; 157 158 case tok::kw_char8_t: 159 return getLangOpts().Char8; 160 161 default: 162 break; 163 } 164 165 return false; 166 } 167 168 namespace { 169 enum class UnqualifiedTypeNameLookupResult { 170 NotFound, 171 FoundNonType, 172 FoundType 173 }; 174 } // end anonymous namespace 175 176 /// Tries to perform unqualified lookup of the type decls in bases for 177 /// dependent class. 178 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a 179 /// type decl, \a FoundType if only type decls are found. 180 static UnqualifiedTypeNameLookupResult 181 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II, 182 SourceLocation NameLoc, 183 const CXXRecordDecl *RD) { 184 if (!RD->hasDefinition()) 185 return UnqualifiedTypeNameLookupResult::NotFound; 186 // Look for type decls in base classes. 187 UnqualifiedTypeNameLookupResult FoundTypeDecl = 188 UnqualifiedTypeNameLookupResult::NotFound; 189 for (const auto &Base : RD->bases()) { 190 const CXXRecordDecl *BaseRD = nullptr; 191 if (auto *BaseTT = Base.getType()->getAs<TagType>()) 192 BaseRD = BaseTT->getAsCXXRecordDecl(); 193 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) { 194 // Look for type decls in dependent base classes that have known primary 195 // templates. 196 if (!TST || !TST->isDependentType()) 197 continue; 198 auto *TD = TST->getTemplateName().getAsTemplateDecl(); 199 if (!TD) 200 continue; 201 if (auto *BasePrimaryTemplate = 202 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) { 203 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl()) 204 BaseRD = BasePrimaryTemplate; 205 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) { 206 if (const ClassTemplatePartialSpecializationDecl *PS = 207 CTD->findPartialSpecialization(Base.getType())) 208 if (PS->getCanonicalDecl() != RD->getCanonicalDecl()) 209 BaseRD = PS; 210 } 211 } 212 } 213 if (BaseRD) { 214 for (NamedDecl *ND : BaseRD->lookup(&II)) { 215 if (!isa<TypeDecl>(ND)) 216 return UnqualifiedTypeNameLookupResult::FoundNonType; 217 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; 218 } 219 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) { 220 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) { 221 case UnqualifiedTypeNameLookupResult::FoundNonType: 222 return UnqualifiedTypeNameLookupResult::FoundNonType; 223 case UnqualifiedTypeNameLookupResult::FoundType: 224 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; 225 break; 226 case UnqualifiedTypeNameLookupResult::NotFound: 227 break; 228 } 229 } 230 } 231 } 232 233 return FoundTypeDecl; 234 } 235 236 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, 237 const IdentifierInfo &II, 238 SourceLocation NameLoc) { 239 // Lookup in the parent class template context, if any. 240 const CXXRecordDecl *RD = nullptr; 241 UnqualifiedTypeNameLookupResult FoundTypeDecl = 242 UnqualifiedTypeNameLookupResult::NotFound; 243 for (DeclContext *DC = S.CurContext; 244 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound; 245 DC = DC->getParent()) { 246 // Look for type decls in dependent base classes that have known primary 247 // templates. 248 RD = dyn_cast<CXXRecordDecl>(DC); 249 if (RD && RD->getDescribedClassTemplate()) 250 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD); 251 } 252 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType) 253 return nullptr; 254 255 // We found some types in dependent base classes. Recover as if the user 256 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the 257 // lookup during template instantiation. 258 S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II; 259 260 ASTContext &Context = S.Context; 261 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false, 262 cast<Type>(Context.getRecordType(RD))); 263 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II); 264 265 CXXScopeSpec SS; 266 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 267 268 TypeLocBuilder Builder; 269 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); 270 DepTL.setNameLoc(NameLoc); 271 DepTL.setElaboratedKeywordLoc(SourceLocation()); 272 DepTL.setQualifierLoc(SS.getWithLocInContext(Context)); 273 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 274 } 275 276 /// If the identifier refers to a type name within this scope, 277 /// return the declaration of that type. 278 /// 279 /// This routine performs ordinary name lookup of the identifier II 280 /// within the given scope, with optional C++ scope specifier SS, to 281 /// determine whether the name refers to a type. If so, returns an 282 /// opaque pointer (actually a QualType) corresponding to that 283 /// type. Otherwise, returns NULL. 284 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, 285 Scope *S, CXXScopeSpec *SS, 286 bool isClassName, bool HasTrailingDot, 287 ParsedType ObjectTypePtr, 288 bool IsCtorOrDtorName, 289 bool WantNontrivialTypeSourceInfo, 290 bool IsClassTemplateDeductionContext, 291 IdentifierInfo **CorrectedII) { 292 // FIXME: Consider allowing this outside C++1z mode as an extension. 293 bool AllowDeducedTemplate = IsClassTemplateDeductionContext && 294 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName && 295 !isClassName && !HasTrailingDot; 296 297 // Determine where we will perform name lookup. 298 DeclContext *LookupCtx = nullptr; 299 if (ObjectTypePtr) { 300 QualType ObjectType = ObjectTypePtr.get(); 301 if (ObjectType->isRecordType()) 302 LookupCtx = computeDeclContext(ObjectType); 303 } else if (SS && SS->isNotEmpty()) { 304 LookupCtx = computeDeclContext(*SS, false); 305 306 if (!LookupCtx) { 307 if (isDependentScopeSpecifier(*SS)) { 308 // C++ [temp.res]p3: 309 // A qualified-id that refers to a type and in which the 310 // nested-name-specifier depends on a template-parameter (14.6.2) 311 // shall be prefixed by the keyword typename to indicate that the 312 // qualified-id denotes a type, forming an 313 // elaborated-type-specifier (7.1.5.3). 314 // 315 // We therefore do not perform any name lookup if the result would 316 // refer to a member of an unknown specialization. 317 if (!isClassName && !IsCtorOrDtorName) 318 return nullptr; 319 320 // We know from the grammar that this name refers to a type, 321 // so build a dependent node to describe the type. 322 if (WantNontrivialTypeSourceInfo) 323 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get(); 324 325 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); 326 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc, 327 II, NameLoc); 328 return ParsedType::make(T); 329 } 330 331 return nullptr; 332 } 333 334 if (!LookupCtx->isDependentContext() && 335 RequireCompleteDeclContext(*SS, LookupCtx)) 336 return nullptr; 337 } 338 339 // FIXME: LookupNestedNameSpecifierName isn't the right kind of 340 // lookup for class-names. 341 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : 342 LookupOrdinaryName; 343 LookupResult Result(*this, &II, NameLoc, Kind); 344 if (LookupCtx) { 345 // Perform "qualified" name lookup into the declaration context we 346 // computed, which is either the type of the base of a member access 347 // expression or the declaration context associated with a prior 348 // nested-name-specifier. 349 LookupQualifiedName(Result, LookupCtx); 350 351 if (ObjectTypePtr && Result.empty()) { 352 // C++ [basic.lookup.classref]p3: 353 // If the unqualified-id is ~type-name, the type-name is looked up 354 // in the context of the entire postfix-expression. If the type T of 355 // the object expression is of a class type C, the type-name is also 356 // looked up in the scope of class C. At least one of the lookups shall 357 // find a name that refers to (possibly cv-qualified) T. 358 LookupName(Result, S); 359 } 360 } else { 361 // Perform unqualified name lookup. 362 LookupName(Result, S); 363 364 // For unqualified lookup in a class template in MSVC mode, look into 365 // dependent base classes where the primary class template is known. 366 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) { 367 if (ParsedType TypeInBase = 368 recoverFromTypeInKnownDependentBase(*this, II, NameLoc)) 369 return TypeInBase; 370 } 371 } 372 373 NamedDecl *IIDecl = nullptr; 374 switch (Result.getResultKind()) { 375 case LookupResult::NotFound: 376 case LookupResult::NotFoundInCurrentInstantiation: 377 if (CorrectedII) { 378 TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName, 379 AllowDeducedTemplate); 380 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind, 381 S, SS, CCC, CTK_ErrorRecovery); 382 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo(); 383 TemplateTy Template; 384 bool MemberOfUnknownSpecialization; 385 UnqualifiedId TemplateName; 386 TemplateName.setIdentifier(NewII, NameLoc); 387 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier(); 388 CXXScopeSpec NewSS, *NewSSPtr = SS; 389 if (SS && NNS) { 390 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 391 NewSSPtr = &NewSS; 392 } 393 if (Correction && (NNS || NewII != &II) && 394 // Ignore a correction to a template type as the to-be-corrected 395 // identifier is not a template (typo correction for template names 396 // is handled elsewhere). 397 !(getLangOpts().CPlusPlus && NewSSPtr && 398 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false, 399 Template, MemberOfUnknownSpecialization))) { 400 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr, 401 isClassName, HasTrailingDot, ObjectTypePtr, 402 IsCtorOrDtorName, 403 WantNontrivialTypeSourceInfo, 404 IsClassTemplateDeductionContext); 405 if (Ty) { 406 diagnoseTypo(Correction, 407 PDiag(diag::err_unknown_type_or_class_name_suggest) 408 << Result.getLookupName() << isClassName); 409 if (SS && NNS) 410 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc)); 411 *CorrectedII = NewII; 412 return Ty; 413 } 414 } 415 } 416 // If typo correction failed or was not performed, fall through 417 LLVM_FALLTHROUGH; 418 case LookupResult::FoundOverloaded: 419 case LookupResult::FoundUnresolvedValue: 420 Result.suppressDiagnostics(); 421 return nullptr; 422 423 case LookupResult::Ambiguous: 424 // Recover from type-hiding ambiguities by hiding the type. We'll 425 // do the lookup again when looking for an object, and we can 426 // diagnose the error then. If we don't do this, then the error 427 // about hiding the type will be immediately followed by an error 428 // that only makes sense if the identifier was treated like a type. 429 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { 430 Result.suppressDiagnostics(); 431 return nullptr; 432 } 433 434 // Look to see if we have a type anywhere in the list of results. 435 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); 436 Res != ResEnd; ++Res) { 437 NamedDecl *RealRes = (*Res)->getUnderlyingDecl(); 438 if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>( 439 RealRes) || 440 (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) { 441 if (!IIDecl || 442 // Make the selection of the recovery decl deterministic. 443 RealRes->getLocation() < IIDecl->getLocation()) 444 IIDecl = RealRes; 445 } 446 } 447 448 if (!IIDecl) { 449 // None of the entities we found is a type, so there is no way 450 // to even assume that the result is a type. In this case, don't 451 // complain about the ambiguity. The parser will either try to 452 // perform this lookup again (e.g., as an object name), which 453 // will produce the ambiguity, or will complain that it expected 454 // a type name. 455 Result.suppressDiagnostics(); 456 return nullptr; 457 } 458 459 // We found a type within the ambiguous lookup; diagnose the 460 // ambiguity and then return that type. This might be the right 461 // answer, or it might not be, but it suppresses any attempt to 462 // perform the name lookup again. 463 break; 464 465 case LookupResult::Found: 466 IIDecl = Result.getFoundDecl(); 467 break; 468 } 469 470 assert(IIDecl && "Didn't find decl"); 471 472 QualType T; 473 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { 474 // C++ [class.qual]p2: A lookup that would find the injected-class-name 475 // instead names the constructors of the class, except when naming a class. 476 // This is ill-formed when we're not actually forming a ctor or dtor name. 477 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 478 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD); 479 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD && 480 FoundRD->isInjectedClassName() && 481 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) 482 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor) 483 << &II << /*Type*/1; 484 485 DiagnoseUseOfDecl(IIDecl, NameLoc); 486 487 T = Context.getTypeDeclType(TD); 488 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 489 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { 490 (void)DiagnoseUseOfDecl(IDecl, NameLoc); 491 if (!HasTrailingDot) 492 T = Context.getObjCInterfaceType(IDecl); 493 } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(IIDecl)) { 494 (void)DiagnoseUseOfDecl(UD, NameLoc); 495 // Recover with 'int' 496 T = Context.IntTy; 497 } else if (AllowDeducedTemplate) { 498 if (auto *TD = getAsTypeTemplateDecl(IIDecl)) 499 T = Context.getDeducedTemplateSpecializationType(TemplateName(TD), 500 QualType(), false); 501 } 502 503 if (T.isNull()) { 504 // If it's not plausibly a type, suppress diagnostics. 505 Result.suppressDiagnostics(); 506 return nullptr; 507 } 508 509 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a 510 // constructor or destructor name (in such a case, the scope specifier 511 // will be attached to the enclosing Expr or Decl node). 512 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName && 513 !isa<ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>(IIDecl)) { 514 if (WantNontrivialTypeSourceInfo) { 515 // Construct a type with type-source information. 516 TypeLocBuilder Builder; 517 Builder.pushTypeSpec(T).setNameLoc(NameLoc); 518 519 T = getElaboratedType(ETK_None, *SS, T); 520 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); 521 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 522 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context)); 523 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 524 } else { 525 T = getElaboratedType(ETK_None, *SS, T); 526 } 527 } 528 529 return ParsedType::make(T); 530 } 531 532 // Builds a fake NNS for the given decl context. 533 static NestedNameSpecifier * 534 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) { 535 for (;; DC = DC->getLookupParent()) { 536 DC = DC->getPrimaryContext(); 537 auto *ND = dyn_cast<NamespaceDecl>(DC); 538 if (ND && !ND->isInline() && !ND->isAnonymousNamespace()) 539 return NestedNameSpecifier::Create(Context, nullptr, ND); 540 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) 541 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), 542 RD->getTypeForDecl()); 543 else if (isa<TranslationUnitDecl>(DC)) 544 return NestedNameSpecifier::GlobalSpecifier(Context); 545 } 546 llvm_unreachable("something isn't in TU scope?"); 547 } 548 549 /// Find the parent class with dependent bases of the innermost enclosing method 550 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end 551 /// up allowing unqualified dependent type names at class-level, which MSVC 552 /// correctly rejects. 553 static const CXXRecordDecl * 554 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) { 555 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) { 556 DC = DC->getPrimaryContext(); 557 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) 558 if (MD->getParent()->hasAnyDependentBases()) 559 return MD->getParent(); 560 } 561 return nullptr; 562 } 563 564 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II, 565 SourceLocation NameLoc, 566 bool IsTemplateTypeArg) { 567 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode"); 568 569 NestedNameSpecifier *NNS = nullptr; 570 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) { 571 // If we weren't able to parse a default template argument, delay lookup 572 // until instantiation time by making a non-dependent DependentTypeName. We 573 // pretend we saw a NestedNameSpecifier referring to the current scope, and 574 // lookup is retried. 575 // FIXME: This hurts our diagnostic quality, since we get errors like "no 576 // type named 'Foo' in 'current_namespace'" when the user didn't write any 577 // name specifiers. 578 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext); 579 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II; 580 } else if (const CXXRecordDecl *RD = 581 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) { 582 // Build a DependentNameType that will perform lookup into RD at 583 // instantiation time. 584 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), 585 RD->getTypeForDecl()); 586 587 // Diagnose that this identifier was undeclared, and retry the lookup during 588 // template instantiation. 589 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II 590 << RD; 591 } else { 592 // This is not a situation that we should recover from. 593 return ParsedType(); 594 } 595 596 QualType T = Context.getDependentNameType(ETK_None, NNS, &II); 597 598 // Build type location information. We synthesized the qualifier, so we have 599 // to build a fake NestedNameSpecifierLoc. 600 NestedNameSpecifierLocBuilder NNSLocBuilder; 601 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 602 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context); 603 604 TypeLocBuilder Builder; 605 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); 606 DepTL.setNameLoc(NameLoc); 607 DepTL.setElaboratedKeywordLoc(SourceLocation()); 608 DepTL.setQualifierLoc(QualifierLoc); 609 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 610 } 611 612 /// isTagName() - This method is called *for error recovery purposes only* 613 /// to determine if the specified name is a valid tag name ("struct foo"). If 614 /// so, this returns the TST for the tag corresponding to it (TST_enum, 615 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose 616 /// cases in C where the user forgot to specify the tag. 617 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { 618 // Do a tag name lookup in this scope. 619 LookupResult R(*this, &II, SourceLocation(), LookupTagName); 620 LookupName(R, S, false); 621 R.suppressDiagnostics(); 622 if (R.getResultKind() == LookupResult::Found) 623 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { 624 switch (TD->getTagKind()) { 625 case TTK_Struct: return DeclSpec::TST_struct; 626 case TTK_Interface: return DeclSpec::TST_interface; 627 case TTK_Union: return DeclSpec::TST_union; 628 case TTK_Class: return DeclSpec::TST_class; 629 case TTK_Enum: return DeclSpec::TST_enum; 630 } 631 } 632 633 return DeclSpec::TST_unspecified; 634 } 635 636 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope, 637 /// if a CXXScopeSpec's type is equal to the type of one of the base classes 638 /// then downgrade the missing typename error to a warning. 639 /// This is needed for MSVC compatibility; Example: 640 /// @code 641 /// template<class T> class A { 642 /// public: 643 /// typedef int TYPE; 644 /// }; 645 /// template<class T> class B : public A<T> { 646 /// public: 647 /// A<T>::TYPE a; // no typename required because A<T> is a base class. 648 /// }; 649 /// @endcode 650 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) { 651 if (CurContext->isRecord()) { 652 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super) 653 return true; 654 655 const Type *Ty = SS->getScopeRep()->getAsType(); 656 657 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext); 658 for (const auto &Base : RD->bases()) 659 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType())) 660 return true; 661 return S->isFunctionPrototypeScope(); 662 } 663 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope(); 664 } 665 666 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II, 667 SourceLocation IILoc, 668 Scope *S, 669 CXXScopeSpec *SS, 670 ParsedType &SuggestedType, 671 bool IsTemplateName) { 672 // Don't report typename errors for editor placeholders. 673 if (II->isEditorPlaceholder()) 674 return; 675 // We don't have anything to suggest (yet). 676 SuggestedType = nullptr; 677 678 // There may have been a typo in the name of the type. Look up typo 679 // results, in case we have something that we can suggest. 680 TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false, 681 /*AllowTemplates=*/IsTemplateName, 682 /*AllowNonTemplates=*/!IsTemplateName); 683 if (TypoCorrection Corrected = 684 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS, 685 CCC, CTK_ErrorRecovery)) { 686 // FIXME: Support error recovery for the template-name case. 687 bool CanRecover = !IsTemplateName; 688 if (Corrected.isKeyword()) { 689 // We corrected to a keyword. 690 diagnoseTypo(Corrected, 691 PDiag(IsTemplateName ? diag::err_no_template_suggest 692 : diag::err_unknown_typename_suggest) 693 << II); 694 II = Corrected.getCorrectionAsIdentifierInfo(); 695 } else { 696 // We found a similarly-named type or interface; suggest that. 697 if (!SS || !SS->isSet()) { 698 diagnoseTypo(Corrected, 699 PDiag(IsTemplateName ? diag::err_no_template_suggest 700 : diag::err_unknown_typename_suggest) 701 << II, CanRecover); 702 } else if (DeclContext *DC = computeDeclContext(*SS, false)) { 703 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 704 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 705 II->getName().equals(CorrectedStr); 706 diagnoseTypo(Corrected, 707 PDiag(IsTemplateName 708 ? diag::err_no_member_template_suggest 709 : diag::err_unknown_nested_typename_suggest) 710 << II << DC << DroppedSpecifier << SS->getRange(), 711 CanRecover); 712 } else { 713 llvm_unreachable("could not have corrected a typo here"); 714 } 715 716 if (!CanRecover) 717 return; 718 719 CXXScopeSpec tmpSS; 720 if (Corrected.getCorrectionSpecifier()) 721 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 722 SourceRange(IILoc)); 723 // FIXME: Support class template argument deduction here. 724 SuggestedType = 725 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S, 726 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr, 727 /*IsCtorOrDtorName=*/false, 728 /*WantNontrivialTypeSourceInfo=*/true); 729 } 730 return; 731 } 732 733 if (getLangOpts().CPlusPlus && !IsTemplateName) { 734 // See if II is a class template that the user forgot to pass arguments to. 735 UnqualifiedId Name; 736 Name.setIdentifier(II, IILoc); 737 CXXScopeSpec EmptySS; 738 TemplateTy TemplateResult; 739 bool MemberOfUnknownSpecialization; 740 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, 741 Name, nullptr, true, TemplateResult, 742 MemberOfUnknownSpecialization) == TNK_Type_template) { 743 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc); 744 return; 745 } 746 } 747 748 // FIXME: Should we move the logic that tries to recover from a missing tag 749 // (struct, union, enum) from Parser::ParseImplicitInt here, instead? 750 751 if (!SS || (!SS->isSet() && !SS->isInvalid())) 752 Diag(IILoc, IsTemplateName ? diag::err_no_template 753 : diag::err_unknown_typename) 754 << II; 755 else if (DeclContext *DC = computeDeclContext(*SS, false)) 756 Diag(IILoc, IsTemplateName ? diag::err_no_member_template 757 : diag::err_typename_nested_not_found) 758 << II << DC << SS->getRange(); 759 else if (SS->isValid() && SS->getScopeRep()->containsErrors()) { 760 SuggestedType = 761 ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get(); 762 } else if (isDependentScopeSpecifier(*SS)) { 763 unsigned DiagID = diag::err_typename_missing; 764 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S)) 765 DiagID = diag::ext_typename_missing; 766 767 Diag(SS->getRange().getBegin(), DiagID) 768 << SS->getScopeRep() << II->getName() 769 << SourceRange(SS->getRange().getBegin(), IILoc) 770 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); 771 SuggestedType = ActOnTypenameType(S, SourceLocation(), 772 *SS, *II, IILoc).get(); 773 } else { 774 assert(SS && SS->isInvalid() && 775 "Invalid scope specifier has already been diagnosed"); 776 } 777 } 778 779 /// Determine whether the given result set contains either a type name 780 /// or 781 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { 782 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus && 783 NextToken.is(tok::less); 784 785 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 786 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I)) 787 return true; 788 789 if (CheckTemplate && isa<TemplateDecl>(*I)) 790 return true; 791 } 792 793 return false; 794 } 795 796 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, 797 Scope *S, CXXScopeSpec &SS, 798 IdentifierInfo *&Name, 799 SourceLocation NameLoc) { 800 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName); 801 SemaRef.LookupParsedName(R, S, &SS); 802 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) { 803 StringRef FixItTagName; 804 switch (Tag->getTagKind()) { 805 case TTK_Class: 806 FixItTagName = "class "; 807 break; 808 809 case TTK_Enum: 810 FixItTagName = "enum "; 811 break; 812 813 case TTK_Struct: 814 FixItTagName = "struct "; 815 break; 816 817 case TTK_Interface: 818 FixItTagName = "__interface "; 819 break; 820 821 case TTK_Union: 822 FixItTagName = "union "; 823 break; 824 } 825 826 StringRef TagName = FixItTagName.drop_back(); 827 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag) 828 << Name << TagName << SemaRef.getLangOpts().CPlusPlus 829 << FixItHint::CreateInsertion(NameLoc, FixItTagName); 830 831 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end(); 832 I != IEnd; ++I) 833 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) 834 << Name << TagName; 835 836 // Replace lookup results with just the tag decl. 837 Result.clear(Sema::LookupTagName); 838 SemaRef.LookupParsedName(Result, S, &SS); 839 return true; 840 } 841 842 return false; 843 } 844 845 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier. 846 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS, 847 QualType T, SourceLocation NameLoc) { 848 ASTContext &Context = S.Context; 849 850 TypeLocBuilder Builder; 851 Builder.pushTypeSpec(T).setNameLoc(NameLoc); 852 853 T = S.getElaboratedType(ETK_None, SS, T); 854 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); 855 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 856 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 857 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 858 } 859 860 Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, 861 IdentifierInfo *&Name, 862 SourceLocation NameLoc, 863 const Token &NextToken, 864 CorrectionCandidateCallback *CCC) { 865 DeclarationNameInfo NameInfo(Name, NameLoc); 866 ObjCMethodDecl *CurMethod = getCurMethodDecl(); 867 868 assert(NextToken.isNot(tok::coloncolon) && 869 "parse nested name specifiers before calling ClassifyName"); 870 if (getLangOpts().CPlusPlus && SS.isSet() && 871 isCurrentClassName(*Name, S, &SS)) { 872 // Per [class.qual]p2, this names the constructors of SS, not the 873 // injected-class-name. We don't have a classification for that. 874 // There's not much point caching this result, since the parser 875 // will reject it later. 876 return NameClassification::Unknown(); 877 } 878 879 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 880 LookupParsedName(Result, S, &SS, !CurMethod); 881 882 if (SS.isInvalid()) 883 return NameClassification::Error(); 884 885 // For unqualified lookup in a class template in MSVC mode, look into 886 // dependent base classes where the primary class template is known. 887 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) { 888 if (ParsedType TypeInBase = 889 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc)) 890 return TypeInBase; 891 } 892 893 // Perform lookup for Objective-C instance variables (including automatically 894 // synthesized instance variables), if we're in an Objective-C method. 895 // FIXME: This lookup really, really needs to be folded in to the normal 896 // unqualified lookup mechanism. 897 if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) { 898 DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name); 899 if (Ivar.isInvalid()) 900 return NameClassification::Error(); 901 if (Ivar.isUsable()) 902 return NameClassification::NonType(cast<NamedDecl>(Ivar.get())); 903 904 // We defer builtin creation until after ivar lookup inside ObjC methods. 905 if (Result.empty()) 906 LookupBuiltin(Result); 907 } 908 909 bool SecondTry = false; 910 bool IsFilteredTemplateName = false; 911 912 Corrected: 913 switch (Result.getResultKind()) { 914 case LookupResult::NotFound: 915 // If an unqualified-id is followed by a '(', then we have a function 916 // call. 917 if (SS.isEmpty() && NextToken.is(tok::l_paren)) { 918 // In C++, this is an ADL-only call. 919 // FIXME: Reference? 920 if (getLangOpts().CPlusPlus) 921 return NameClassification::UndeclaredNonType(); 922 923 // C90 6.3.2.2: 924 // If the expression that precedes the parenthesized argument list in a 925 // function call consists solely of an identifier, and if no 926 // declaration is visible for this identifier, the identifier is 927 // implicitly declared exactly as if, in the innermost block containing 928 // the function call, the declaration 929 // 930 // extern int identifier (); 931 // 932 // appeared. 933 // 934 // We also allow this in C99 as an extension. 935 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) 936 return NameClassification::NonType(D); 937 } 938 939 if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) { 940 // In C++20 onwards, this could be an ADL-only call to a function 941 // template, and we're required to assume that this is a template name. 942 // 943 // FIXME: Find a way to still do typo correction in this case. 944 TemplateName Template = 945 Context.getAssumedTemplateName(NameInfo.getName()); 946 return NameClassification::UndeclaredTemplate(Template); 947 } 948 949 // In C, we first see whether there is a tag type by the same name, in 950 // which case it's likely that the user just forgot to write "enum", 951 // "struct", or "union". 952 if (!getLangOpts().CPlusPlus && !SecondTry && 953 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { 954 break; 955 } 956 957 // Perform typo correction to determine if there is another name that is 958 // close to this name. 959 if (!SecondTry && CCC) { 960 SecondTry = true; 961 if (TypoCorrection Corrected = 962 CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S, 963 &SS, *CCC, CTK_ErrorRecovery)) { 964 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; 965 unsigned QualifiedDiag = diag::err_no_member_suggest; 966 967 NamedDecl *FirstDecl = Corrected.getFoundDecl(); 968 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl(); 969 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 970 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) { 971 UnqualifiedDiag = diag::err_no_template_suggest; 972 QualifiedDiag = diag::err_no_member_template_suggest; 973 } else if (UnderlyingFirstDecl && 974 (isa<TypeDecl>(UnderlyingFirstDecl) || 975 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) || 976 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) { 977 UnqualifiedDiag = diag::err_unknown_typename_suggest; 978 QualifiedDiag = diag::err_unknown_nested_typename_suggest; 979 } 980 981 if (SS.isEmpty()) { 982 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name); 983 } else {// FIXME: is this even reachable? Test it. 984 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 985 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 986 Name->getName().equals(CorrectedStr); 987 diagnoseTypo(Corrected, PDiag(QualifiedDiag) 988 << Name << computeDeclContext(SS, false) 989 << DroppedSpecifier << SS.getRange()); 990 } 991 992 // Update the name, so that the caller has the new name. 993 Name = Corrected.getCorrectionAsIdentifierInfo(); 994 995 // Typo correction corrected to a keyword. 996 if (Corrected.isKeyword()) 997 return Name; 998 999 // Also update the LookupResult... 1000 // FIXME: This should probably go away at some point 1001 Result.clear(); 1002 Result.setLookupName(Corrected.getCorrection()); 1003 if (FirstDecl) 1004 Result.addDecl(FirstDecl); 1005 1006 // If we found an Objective-C instance variable, let 1007 // LookupInObjCMethod build the appropriate expression to 1008 // reference the ivar. 1009 // FIXME: This is a gross hack. 1010 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { 1011 DeclResult R = 1012 LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier()); 1013 if (R.isInvalid()) 1014 return NameClassification::Error(); 1015 if (R.isUsable()) 1016 return NameClassification::NonType(Ivar); 1017 } 1018 1019 goto Corrected; 1020 } 1021 } 1022 1023 // We failed to correct; just fall through and let the parser deal with it. 1024 Result.suppressDiagnostics(); 1025 return NameClassification::Unknown(); 1026 1027 case LookupResult::NotFoundInCurrentInstantiation: { 1028 // We performed name lookup into the current instantiation, and there were 1029 // dependent bases, so we treat this result the same way as any other 1030 // dependent nested-name-specifier. 1031 1032 // C++ [temp.res]p2: 1033 // A name used in a template declaration or definition and that is 1034 // dependent on a template-parameter is assumed not to name a type 1035 // unless the applicable name lookup finds a type name or the name is 1036 // qualified by the keyword typename. 1037 // 1038 // FIXME: If the next token is '<', we might want to ask the parser to 1039 // perform some heroics to see if we actually have a 1040 // template-argument-list, which would indicate a missing 'template' 1041 // keyword here. 1042 return NameClassification::DependentNonType(); 1043 } 1044 1045 case LookupResult::Found: 1046 case LookupResult::FoundOverloaded: 1047 case LookupResult::FoundUnresolvedValue: 1048 break; 1049 1050 case LookupResult::Ambiguous: 1051 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 1052 hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true, 1053 /*AllowDependent=*/false)) { 1054 // C++ [temp.local]p3: 1055 // A lookup that finds an injected-class-name (10.2) can result in an 1056 // ambiguity in certain cases (for example, if it is found in more than 1057 // one base class). If all of the injected-class-names that are found 1058 // refer to specializations of the same class template, and if the name 1059 // is followed by a template-argument-list, the reference refers to the 1060 // class template itself and not a specialization thereof, and is not 1061 // ambiguous. 1062 // 1063 // This filtering can make an ambiguous result into an unambiguous one, 1064 // so try again after filtering out template names. 1065 FilterAcceptableTemplateNames(Result); 1066 if (!Result.isAmbiguous()) { 1067 IsFilteredTemplateName = true; 1068 break; 1069 } 1070 } 1071 1072 // Diagnose the ambiguity and return an error. 1073 return NameClassification::Error(); 1074 } 1075 1076 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 1077 (IsFilteredTemplateName || 1078 hasAnyAcceptableTemplateNames( 1079 Result, /*AllowFunctionTemplates=*/true, 1080 /*AllowDependent=*/false, 1081 /*AllowNonTemplateFunctions*/ SS.isEmpty() && 1082 getLangOpts().CPlusPlus20))) { 1083 // C++ [temp.names]p3: 1084 // After name lookup (3.4) finds that a name is a template-name or that 1085 // an operator-function-id or a literal- operator-id refers to a set of 1086 // overloaded functions any member of which is a function template if 1087 // this is followed by a <, the < is always taken as the delimiter of a 1088 // template-argument-list and never as the less-than operator. 1089 // C++2a [temp.names]p2: 1090 // A name is also considered to refer to a template if it is an 1091 // unqualified-id followed by a < and name lookup finds either one 1092 // or more functions or finds nothing. 1093 if (!IsFilteredTemplateName) 1094 FilterAcceptableTemplateNames(Result); 1095 1096 bool IsFunctionTemplate; 1097 bool IsVarTemplate; 1098 TemplateName Template; 1099 if (Result.end() - Result.begin() > 1) { 1100 IsFunctionTemplate = true; 1101 Template = Context.getOverloadedTemplateName(Result.begin(), 1102 Result.end()); 1103 } else if (!Result.empty()) { 1104 auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl( 1105 *Result.begin(), /*AllowFunctionTemplates=*/true, 1106 /*AllowDependent=*/false)); 1107 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD); 1108 IsVarTemplate = isa<VarTemplateDecl>(TD); 1109 1110 if (SS.isNotEmpty()) 1111 Template = 1112 Context.getQualifiedTemplateName(SS.getScopeRep(), 1113 /*TemplateKeyword=*/false, TD); 1114 else 1115 Template = TemplateName(TD); 1116 } else { 1117 // All results were non-template functions. This is a function template 1118 // name. 1119 IsFunctionTemplate = true; 1120 Template = Context.getAssumedTemplateName(NameInfo.getName()); 1121 } 1122 1123 if (IsFunctionTemplate) { 1124 // Function templates always go through overload resolution, at which 1125 // point we'll perform the various checks (e.g., accessibility) we need 1126 // to based on which function we selected. 1127 Result.suppressDiagnostics(); 1128 1129 return NameClassification::FunctionTemplate(Template); 1130 } 1131 1132 return IsVarTemplate ? NameClassification::VarTemplate(Template) 1133 : NameClassification::TypeTemplate(Template); 1134 } 1135 1136 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); 1137 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) { 1138 DiagnoseUseOfDecl(Type, NameLoc); 1139 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 1140 QualType T = Context.getTypeDeclType(Type); 1141 if (SS.isNotEmpty()) 1142 return buildNestedType(*this, SS, T, NameLoc); 1143 return ParsedType::make(T); 1144 } 1145 1146 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl); 1147 if (!Class) { 1148 // FIXME: It's unfortunate that we don't have a Type node for handling this. 1149 if (ObjCCompatibleAliasDecl *Alias = 1150 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl)) 1151 Class = Alias->getClassInterface(); 1152 } 1153 1154 if (Class) { 1155 DiagnoseUseOfDecl(Class, NameLoc); 1156 1157 if (NextToken.is(tok::period)) { 1158 // Interface. <something> is parsed as a property reference expression. 1159 // Just return "unknown" as a fall-through for now. 1160 Result.suppressDiagnostics(); 1161 return NameClassification::Unknown(); 1162 } 1163 1164 QualType T = Context.getObjCInterfaceType(Class); 1165 return ParsedType::make(T); 1166 } 1167 1168 if (isa<ConceptDecl>(FirstDecl)) 1169 return NameClassification::Concept( 1170 TemplateName(cast<TemplateDecl>(FirstDecl))); 1171 1172 if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(FirstDecl)) { 1173 (void)DiagnoseUseOfDecl(EmptyD, NameLoc); 1174 return NameClassification::Error(); 1175 } 1176 1177 // We can have a type template here if we're classifying a template argument. 1178 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) && 1179 !isa<VarTemplateDecl>(FirstDecl)) 1180 return NameClassification::TypeTemplate( 1181 TemplateName(cast<TemplateDecl>(FirstDecl))); 1182 1183 // Check for a tag type hidden by a non-type decl in a few cases where it 1184 // seems likely a type is wanted instead of the non-type that was found. 1185 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star); 1186 if ((NextToken.is(tok::identifier) || 1187 (NextIsOp && 1188 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) && 1189 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { 1190 TypeDecl *Type = Result.getAsSingle<TypeDecl>(); 1191 DiagnoseUseOfDecl(Type, NameLoc); 1192 QualType T = Context.getTypeDeclType(Type); 1193 if (SS.isNotEmpty()) 1194 return buildNestedType(*this, SS, T, NameLoc); 1195 return ParsedType::make(T); 1196 } 1197 1198 // If we already know which single declaration is referenced, just annotate 1199 // that declaration directly. Defer resolving even non-overloaded class 1200 // member accesses, as we need to defer certain access checks until we know 1201 // the context. 1202 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); 1203 if (Result.isSingleResult() && !ADL && !FirstDecl->isCXXClassMember()) 1204 return NameClassification::NonType(Result.getRepresentativeDecl()); 1205 1206 // Otherwise, this is an overload set that we will need to resolve later. 1207 Result.suppressDiagnostics(); 1208 return NameClassification::OverloadSet(UnresolvedLookupExpr::Create( 1209 Context, Result.getNamingClass(), SS.getWithLocInContext(Context), 1210 Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(), 1211 Result.begin(), Result.end())); 1212 } 1213 1214 ExprResult 1215 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name, 1216 SourceLocation NameLoc) { 1217 assert(getLangOpts().CPlusPlus && "ADL-only call in C?"); 1218 CXXScopeSpec SS; 1219 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 1220 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true); 1221 } 1222 1223 ExprResult 1224 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS, 1225 IdentifierInfo *Name, 1226 SourceLocation NameLoc, 1227 bool IsAddressOfOperand) { 1228 DeclarationNameInfo NameInfo(Name, NameLoc); 1229 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(), 1230 NameInfo, IsAddressOfOperand, 1231 /*TemplateArgs=*/nullptr); 1232 } 1233 1234 ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS, 1235 NamedDecl *Found, 1236 SourceLocation NameLoc, 1237 const Token &NextToken) { 1238 if (getCurMethodDecl() && SS.isEmpty()) 1239 if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl())) 1240 return BuildIvarRefExpr(S, NameLoc, Ivar); 1241 1242 // Reconstruct the lookup result. 1243 LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName); 1244 Result.addDecl(Found); 1245 Result.resolveKind(); 1246 1247 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); 1248 return BuildDeclarationNameExpr(SS, Result, ADL); 1249 } 1250 1251 ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) { 1252 // For an implicit class member access, transform the result into a member 1253 // access expression if necessary. 1254 auto *ULE = cast<UnresolvedLookupExpr>(E); 1255 if ((*ULE->decls_begin())->isCXXClassMember()) { 1256 CXXScopeSpec SS; 1257 SS.Adopt(ULE->getQualifierLoc()); 1258 1259 // Reconstruct the lookup result. 1260 LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(), 1261 LookupOrdinaryName); 1262 Result.setNamingClass(ULE->getNamingClass()); 1263 for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I) 1264 Result.addDecl(*I, I.getAccess()); 1265 Result.resolveKind(); 1266 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 1267 nullptr, S); 1268 } 1269 1270 // Otherwise, this is already in the form we needed, and no further checks 1271 // are necessary. 1272 return ULE; 1273 } 1274 1275 Sema::TemplateNameKindForDiagnostics 1276 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) { 1277 auto *TD = Name.getAsTemplateDecl(); 1278 if (!TD) 1279 return TemplateNameKindForDiagnostics::DependentTemplate; 1280 if (isa<ClassTemplateDecl>(TD)) 1281 return TemplateNameKindForDiagnostics::ClassTemplate; 1282 if (isa<FunctionTemplateDecl>(TD)) 1283 return TemplateNameKindForDiagnostics::FunctionTemplate; 1284 if (isa<VarTemplateDecl>(TD)) 1285 return TemplateNameKindForDiagnostics::VarTemplate; 1286 if (isa<TypeAliasTemplateDecl>(TD)) 1287 return TemplateNameKindForDiagnostics::AliasTemplate; 1288 if (isa<TemplateTemplateParmDecl>(TD)) 1289 return TemplateNameKindForDiagnostics::TemplateTemplateParam; 1290 if (isa<ConceptDecl>(TD)) 1291 return TemplateNameKindForDiagnostics::Concept; 1292 return TemplateNameKindForDiagnostics::DependentTemplate; 1293 } 1294 1295 void Sema::PushDeclContext(Scope *S, DeclContext *DC) { 1296 assert(DC->getLexicalParent() == CurContext && 1297 "The next DeclContext should be lexically contained in the current one."); 1298 CurContext = DC; 1299 S->setEntity(DC); 1300 } 1301 1302 void Sema::PopDeclContext() { 1303 assert(CurContext && "DeclContext imbalance!"); 1304 1305 CurContext = CurContext->getLexicalParent(); 1306 assert(CurContext && "Popped translation unit!"); 1307 } 1308 1309 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S, 1310 Decl *D) { 1311 // Unlike PushDeclContext, the context to which we return is not necessarily 1312 // the containing DC of TD, because the new context will be some pre-existing 1313 // TagDecl definition instead of a fresh one. 1314 auto Result = static_cast<SkippedDefinitionContext>(CurContext); 1315 CurContext = cast<TagDecl>(D)->getDefinition(); 1316 assert(CurContext && "skipping definition of undefined tag"); 1317 // Start lookups from the parent of the current context; we don't want to look 1318 // into the pre-existing complete definition. 1319 S->setEntity(CurContext->getLookupParent()); 1320 return Result; 1321 } 1322 1323 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) { 1324 CurContext = static_cast<decltype(CurContext)>(Context); 1325 } 1326 1327 /// EnterDeclaratorContext - Used when we must lookup names in the context 1328 /// of a declarator's nested name specifier. 1329 /// 1330 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { 1331 // C++0x [basic.lookup.unqual]p13: 1332 // A name used in the definition of a static data member of class 1333 // X (after the qualified-id of the static member) is looked up as 1334 // if the name was used in a member function of X. 1335 // C++0x [basic.lookup.unqual]p14: 1336 // If a variable member of a namespace is defined outside of the 1337 // scope of its namespace then any name used in the definition of 1338 // the variable member (after the declarator-id) is looked up as 1339 // if the definition of the variable member occurred in its 1340 // namespace. 1341 // Both of these imply that we should push a scope whose context 1342 // is the semantic context of the declaration. We can't use 1343 // PushDeclContext here because that context is not necessarily 1344 // lexically contained in the current context. Fortunately, 1345 // the containing scope should have the appropriate information. 1346 1347 assert(!S->getEntity() && "scope already has entity"); 1348 1349 #ifndef NDEBUG 1350 Scope *Ancestor = S->getParent(); 1351 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); 1352 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch"); 1353 #endif 1354 1355 CurContext = DC; 1356 S->setEntity(DC); 1357 1358 if (S->getParent()->isTemplateParamScope()) { 1359 // Also set the corresponding entities for all immediately-enclosing 1360 // template parameter scopes. 1361 EnterTemplatedContext(S->getParent(), DC); 1362 } 1363 } 1364 1365 void Sema::ExitDeclaratorContext(Scope *S) { 1366 assert(S->getEntity() == CurContext && "Context imbalance!"); 1367 1368 // Switch back to the lexical context. The safety of this is 1369 // enforced by an assert in EnterDeclaratorContext. 1370 Scope *Ancestor = S->getParent(); 1371 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); 1372 CurContext = Ancestor->getEntity(); 1373 1374 // We don't need to do anything with the scope, which is going to 1375 // disappear. 1376 } 1377 1378 void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) { 1379 assert(S->isTemplateParamScope() && 1380 "expected to be initializing a template parameter scope"); 1381 1382 // C++20 [temp.local]p7: 1383 // In the definition of a member of a class template that appears outside 1384 // of the class template definition, the name of a member of the class 1385 // template hides the name of a template-parameter of any enclosing class 1386 // templates (but not a template-parameter of the member if the member is a 1387 // class or function template). 1388 // C++20 [temp.local]p9: 1389 // In the definition of a class template or in the definition of a member 1390 // of such a template that appears outside of the template definition, for 1391 // each non-dependent base class (13.8.2.1), if the name of the base class 1392 // or the name of a member of the base class is the same as the name of a 1393 // template-parameter, the base class name or member name hides the 1394 // template-parameter name (6.4.10). 1395 // 1396 // This means that a template parameter scope should be searched immediately 1397 // after searching the DeclContext for which it is a template parameter 1398 // scope. For example, for 1399 // template<typename T> template<typename U> template<typename V> 1400 // void N::A<T>::B<U>::f(...) 1401 // we search V then B<U> (and base classes) then U then A<T> (and base 1402 // classes) then T then N then ::. 1403 unsigned ScopeDepth = getTemplateDepth(S); 1404 for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) { 1405 DeclContext *SearchDCAfterScope = DC; 1406 for (; DC; DC = DC->getLookupParent()) { 1407 if (const TemplateParameterList *TPL = 1408 cast<Decl>(DC)->getDescribedTemplateParams()) { 1409 unsigned DCDepth = TPL->getDepth() + 1; 1410 if (DCDepth > ScopeDepth) 1411 continue; 1412 if (ScopeDepth == DCDepth) 1413 SearchDCAfterScope = DC = DC->getLookupParent(); 1414 break; 1415 } 1416 } 1417 S->setLookupEntity(SearchDCAfterScope); 1418 } 1419 } 1420 1421 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { 1422 // We assume that the caller has already called 1423 // ActOnReenterTemplateScope so getTemplatedDecl() works. 1424 FunctionDecl *FD = D->getAsFunction(); 1425 if (!FD) 1426 return; 1427 1428 // Same implementation as PushDeclContext, but enters the context 1429 // from the lexical parent, rather than the top-level class. 1430 assert(CurContext == FD->getLexicalParent() && 1431 "The next DeclContext should be lexically contained in the current one."); 1432 CurContext = FD; 1433 S->setEntity(CurContext); 1434 1435 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { 1436 ParmVarDecl *Param = FD->getParamDecl(P); 1437 // If the parameter has an identifier, then add it to the scope 1438 if (Param->getIdentifier()) { 1439 S->AddDecl(Param); 1440 IdResolver.AddDecl(Param); 1441 } 1442 } 1443 } 1444 1445 void Sema::ActOnExitFunctionContext() { 1446 // Same implementation as PopDeclContext, but returns to the lexical parent, 1447 // rather than the top-level class. 1448 assert(CurContext && "DeclContext imbalance!"); 1449 CurContext = CurContext->getLexicalParent(); 1450 assert(CurContext && "Popped translation unit!"); 1451 } 1452 1453 /// Determine whether we allow overloading of the function 1454 /// PrevDecl with another declaration. 1455 /// 1456 /// This routine determines whether overloading is possible, not 1457 /// whether some new function is actually an overload. It will return 1458 /// true in C++ (where we can always provide overloads) or, as an 1459 /// extension, in C when the previous function is already an 1460 /// overloaded function declaration or has the "overloadable" 1461 /// attribute. 1462 static bool AllowOverloadingOfFunction(LookupResult &Previous, 1463 ASTContext &Context, 1464 const FunctionDecl *New) { 1465 if (Context.getLangOpts().CPlusPlus) 1466 return true; 1467 1468 if (Previous.getResultKind() == LookupResult::FoundOverloaded) 1469 return true; 1470 1471 return Previous.getResultKind() == LookupResult::Found && 1472 (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() || 1473 New->hasAttr<OverloadableAttr>()); 1474 } 1475 1476 /// Add this decl to the scope shadowed decl chains. 1477 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { 1478 // Move up the scope chain until we find the nearest enclosing 1479 // non-transparent context. The declaration will be introduced into this 1480 // scope. 1481 while (S->getEntity() && S->getEntity()->isTransparentContext()) 1482 S = S->getParent(); 1483 1484 // Add scoped declarations into their context, so that they can be 1485 // found later. Declarations without a context won't be inserted 1486 // into any context. 1487 if (AddToContext) 1488 CurContext->addDecl(D); 1489 1490 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they 1491 // are function-local declarations. 1492 if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent()) 1493 return; 1494 1495 // Template instantiations should also not be pushed into scope. 1496 if (isa<FunctionDecl>(D) && 1497 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) 1498 return; 1499 1500 // If this replaces anything in the current scope, 1501 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), 1502 IEnd = IdResolver.end(); 1503 for (; I != IEnd; ++I) { 1504 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { 1505 S->RemoveDecl(*I); 1506 IdResolver.RemoveDecl(*I); 1507 1508 // Should only need to replace one decl. 1509 break; 1510 } 1511 } 1512 1513 S->AddDecl(D); 1514 1515 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) { 1516 // Implicitly-generated labels may end up getting generated in an order that 1517 // isn't strictly lexical, which breaks name lookup. Be careful to insert 1518 // the label at the appropriate place in the identifier chain. 1519 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) { 1520 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); 1521 if (IDC == CurContext) { 1522 if (!S->isDeclScope(*I)) 1523 continue; 1524 } else if (IDC->Encloses(CurContext)) 1525 break; 1526 } 1527 1528 IdResolver.InsertDeclAfter(I, D); 1529 } else { 1530 IdResolver.AddDecl(D); 1531 } 1532 warnOnReservedIdentifier(D); 1533 } 1534 1535 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S, 1536 bool AllowInlineNamespace) { 1537 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace); 1538 } 1539 1540 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { 1541 DeclContext *TargetDC = DC->getPrimaryContext(); 1542 do { 1543 if (DeclContext *ScopeDC = S->getEntity()) 1544 if (ScopeDC->getPrimaryContext() == TargetDC) 1545 return S; 1546 } while ((S = S->getParent())); 1547 1548 return nullptr; 1549 } 1550 1551 static bool isOutOfScopePreviousDeclaration(NamedDecl *, 1552 DeclContext*, 1553 ASTContext&); 1554 1555 /// Filters out lookup results that don't fall within the given scope 1556 /// as determined by isDeclInScope. 1557 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, 1558 bool ConsiderLinkage, 1559 bool AllowInlineNamespace) { 1560 LookupResult::Filter F = R.makeFilter(); 1561 while (F.hasNext()) { 1562 NamedDecl *D = F.next(); 1563 1564 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace)) 1565 continue; 1566 1567 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context)) 1568 continue; 1569 1570 F.erase(); 1571 } 1572 1573 F.done(); 1574 } 1575 1576 /// We've determined that \p New is a redeclaration of \p Old. Check that they 1577 /// have compatible owning modules. 1578 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) { 1579 // FIXME: The Modules TS is not clear about how friend declarations are 1580 // to be treated. It's not meaningful to have different owning modules for 1581 // linkage in redeclarations of the same entity, so for now allow the 1582 // redeclaration and change the owning modules to match. 1583 if (New->getFriendObjectKind() && 1584 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) { 1585 New->setLocalOwningModule(Old->getOwningModule()); 1586 makeMergedDefinitionVisible(New); 1587 return false; 1588 } 1589 1590 Module *NewM = New->getOwningModule(); 1591 Module *OldM = Old->getOwningModule(); 1592 1593 if (NewM && NewM->Kind == Module::PrivateModuleFragment) 1594 NewM = NewM->Parent; 1595 if (OldM && OldM->Kind == Module::PrivateModuleFragment) 1596 OldM = OldM->Parent; 1597 1598 if (NewM == OldM) 1599 return false; 1600 1601 bool NewIsModuleInterface = NewM && NewM->isModulePurview(); 1602 bool OldIsModuleInterface = OldM && OldM->isModulePurview(); 1603 if (NewIsModuleInterface || OldIsModuleInterface) { 1604 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]: 1605 // if a declaration of D [...] appears in the purview of a module, all 1606 // other such declarations shall appear in the purview of the same module 1607 Diag(New->getLocation(), diag::err_mismatched_owning_module) 1608 << New 1609 << NewIsModuleInterface 1610 << (NewIsModuleInterface ? NewM->getFullModuleName() : "") 1611 << OldIsModuleInterface 1612 << (OldIsModuleInterface ? OldM->getFullModuleName() : ""); 1613 Diag(Old->getLocation(), diag::note_previous_declaration); 1614 New->setInvalidDecl(); 1615 return true; 1616 } 1617 1618 return false; 1619 } 1620 1621 static bool isUsingDecl(NamedDecl *D) { 1622 return isa<UsingShadowDecl>(D) || 1623 isa<UnresolvedUsingTypenameDecl>(D) || 1624 isa<UnresolvedUsingValueDecl>(D); 1625 } 1626 1627 /// Removes using shadow declarations from the lookup results. 1628 static void RemoveUsingDecls(LookupResult &R) { 1629 LookupResult::Filter F = R.makeFilter(); 1630 while (F.hasNext()) 1631 if (isUsingDecl(F.next())) 1632 F.erase(); 1633 1634 F.done(); 1635 } 1636 1637 /// Check for this common pattern: 1638 /// @code 1639 /// class S { 1640 /// S(const S&); // DO NOT IMPLEMENT 1641 /// void operator=(const S&); // DO NOT IMPLEMENT 1642 /// }; 1643 /// @endcode 1644 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { 1645 // FIXME: Should check for private access too but access is set after we get 1646 // the decl here. 1647 if (D->doesThisDeclarationHaveABody()) 1648 return false; 1649 1650 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 1651 return CD->isCopyConstructor(); 1652 return D->isCopyAssignmentOperator(); 1653 } 1654 1655 // We need this to handle 1656 // 1657 // typedef struct { 1658 // void *foo() { return 0; } 1659 // } A; 1660 // 1661 // When we see foo we don't know if after the typedef we will get 'A' or '*A' 1662 // for example. If 'A', foo will have external linkage. If we have '*A', 1663 // foo will have no linkage. Since we can't know until we get to the end 1664 // of the typedef, this function finds out if D might have non-external linkage. 1665 // Callers should verify at the end of the TU if it D has external linkage or 1666 // not. 1667 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) { 1668 const DeclContext *DC = D->getDeclContext(); 1669 while (!DC->isTranslationUnit()) { 1670 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){ 1671 if (!RD->hasNameForLinkage()) 1672 return true; 1673 } 1674 DC = DC->getParent(); 1675 } 1676 1677 return !D->isExternallyVisible(); 1678 } 1679 1680 // FIXME: This needs to be refactored; some other isInMainFile users want 1681 // these semantics. 1682 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) { 1683 if (S.TUKind != TU_Complete) 1684 return false; 1685 return S.SourceMgr.isInMainFile(Loc); 1686 } 1687 1688 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { 1689 assert(D); 1690 1691 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) 1692 return false; 1693 1694 // Ignore all entities declared within templates, and out-of-line definitions 1695 // of members of class templates. 1696 if (D->getDeclContext()->isDependentContext() || 1697 D->getLexicalDeclContext()->isDependentContext()) 1698 return false; 1699 1700 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1701 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1702 return false; 1703 // A non-out-of-line declaration of a member specialization was implicitly 1704 // instantiated; it's the out-of-line declaration that we're interested in. 1705 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 1706 FD->getMemberSpecializationInfo() && !FD->isOutOfLine()) 1707 return false; 1708 1709 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 1710 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) 1711 return false; 1712 } else { 1713 // 'static inline' functions are defined in headers; don't warn. 1714 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation())) 1715 return false; 1716 } 1717 1718 if (FD->doesThisDeclarationHaveABody() && 1719 Context.DeclMustBeEmitted(FD)) 1720 return false; 1721 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1722 // Constants and utility variables are defined in headers with internal 1723 // linkage; don't warn. (Unlike functions, there isn't a convenient marker 1724 // like "inline".) 1725 if (!isMainFileLoc(*this, VD->getLocation())) 1726 return false; 1727 1728 if (Context.DeclMustBeEmitted(VD)) 1729 return false; 1730 1731 if (VD->isStaticDataMember() && 1732 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1733 return false; 1734 if (VD->isStaticDataMember() && 1735 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 1736 VD->getMemberSpecializationInfo() && !VD->isOutOfLine()) 1737 return false; 1738 1739 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation())) 1740 return false; 1741 } else { 1742 return false; 1743 } 1744 1745 // Only warn for unused decls internal to the translation unit. 1746 // FIXME: This seems like a bogus check; it suppresses -Wunused-function 1747 // for inline functions defined in the main source file, for instance. 1748 return mightHaveNonExternalLinkage(D); 1749 } 1750 1751 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { 1752 if (!D) 1753 return; 1754 1755 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1756 const FunctionDecl *First = FD->getFirstDecl(); 1757 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) 1758 return; // First should already be in the vector. 1759 } 1760 1761 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1762 const VarDecl *First = VD->getFirstDecl(); 1763 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) 1764 return; // First should already be in the vector. 1765 } 1766 1767 if (ShouldWarnIfUnusedFileScopedDecl(D)) 1768 UnusedFileScopedDecls.push_back(D); 1769 } 1770 1771 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { 1772 if (D->isInvalidDecl()) 1773 return false; 1774 1775 if (auto *DD = dyn_cast<DecompositionDecl>(D)) { 1776 // For a decomposition declaration, warn if none of the bindings are 1777 // referenced, instead of if the variable itself is referenced (which 1778 // it is, by the bindings' expressions). 1779 for (auto *BD : DD->bindings()) 1780 if (BD->isReferenced()) 1781 return false; 1782 } else if (!D->getDeclName()) { 1783 return false; 1784 } else if (D->isReferenced() || D->isUsed()) { 1785 return false; 1786 } 1787 1788 if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>()) 1789 return false; 1790 1791 if (isa<LabelDecl>(D)) 1792 return true; 1793 1794 // Except for labels, we only care about unused decls that are local to 1795 // functions. 1796 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod(); 1797 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext())) 1798 // For dependent types, the diagnostic is deferred. 1799 WithinFunction = 1800 WithinFunction || (R->isLocalClass() && !R->isDependentType()); 1801 if (!WithinFunction) 1802 return false; 1803 1804 if (isa<TypedefNameDecl>(D)) 1805 return true; 1806 1807 // White-list anything that isn't a local variable. 1808 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) 1809 return false; 1810 1811 // Types of valid local variables should be complete, so this should succeed. 1812 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1813 1814 // White-list anything with an __attribute__((unused)) type. 1815 const auto *Ty = VD->getType().getTypePtr(); 1816 1817 // Only look at the outermost level of typedef. 1818 if (const TypedefType *TT = Ty->getAs<TypedefType>()) { 1819 if (TT->getDecl()->hasAttr<UnusedAttr>()) 1820 return false; 1821 } 1822 1823 // If we failed to complete the type for some reason, or if the type is 1824 // dependent, don't diagnose the variable. 1825 if (Ty->isIncompleteType() || Ty->isDependentType()) 1826 return false; 1827 1828 // Look at the element type to ensure that the warning behaviour is 1829 // consistent for both scalars and arrays. 1830 Ty = Ty->getBaseElementTypeUnsafe(); 1831 1832 if (const TagType *TT = Ty->getAs<TagType>()) { 1833 const TagDecl *Tag = TT->getDecl(); 1834 if (Tag->hasAttr<UnusedAttr>()) 1835 return false; 1836 1837 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { 1838 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>()) 1839 return false; 1840 1841 if (const Expr *Init = VD->getInit()) { 1842 if (const ExprWithCleanups *Cleanups = 1843 dyn_cast<ExprWithCleanups>(Init)) 1844 Init = Cleanups->getSubExpr(); 1845 const CXXConstructExpr *Construct = 1846 dyn_cast<CXXConstructExpr>(Init); 1847 if (Construct && !Construct->isElidable()) { 1848 CXXConstructorDecl *CD = Construct->getConstructor(); 1849 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() && 1850 (VD->getInit()->isValueDependent() || !VD->evaluateValue())) 1851 return false; 1852 } 1853 1854 // Suppress the warning if we don't know how this is constructed, and 1855 // it could possibly be non-trivial constructor. 1856 if (Init->isTypeDependent()) 1857 for (const CXXConstructorDecl *Ctor : RD->ctors()) 1858 if (!Ctor->isTrivial()) 1859 return false; 1860 } 1861 } 1862 } 1863 1864 // TODO: __attribute__((unused)) templates? 1865 } 1866 1867 return true; 1868 } 1869 1870 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, 1871 FixItHint &Hint) { 1872 if (isa<LabelDecl>(D)) { 1873 SourceLocation AfterColon = Lexer::findLocationAfterToken( 1874 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), 1875 true); 1876 if (AfterColon.isInvalid()) 1877 return; 1878 Hint = FixItHint::CreateRemoval( 1879 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon)); 1880 } 1881 } 1882 1883 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) { 1884 if (D->getTypeForDecl()->isDependentType()) 1885 return; 1886 1887 for (auto *TmpD : D->decls()) { 1888 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD)) 1889 DiagnoseUnusedDecl(T); 1890 else if(const auto *R = dyn_cast<RecordDecl>(TmpD)) 1891 DiagnoseUnusedNestedTypedefs(R); 1892 } 1893 } 1894 1895 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used 1896 /// unless they are marked attr(unused). 1897 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { 1898 if (!ShouldDiagnoseUnusedDecl(D)) 1899 return; 1900 1901 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 1902 // typedefs can be referenced later on, so the diagnostics are emitted 1903 // at end-of-translation-unit. 1904 UnusedLocalTypedefNameCandidates.insert(TD); 1905 return; 1906 } 1907 1908 FixItHint Hint; 1909 GenerateFixForUnusedDecl(D, Context, Hint); 1910 1911 unsigned DiagID; 1912 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) 1913 DiagID = diag::warn_unused_exception_param; 1914 else if (isa<LabelDecl>(D)) 1915 DiagID = diag::warn_unused_label; 1916 else 1917 DiagID = diag::warn_unused_variable; 1918 1919 Diag(D->getLocation(), DiagID) << D << Hint; 1920 } 1921 1922 void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD) { 1923 // If it's not referenced, it can't be set. 1924 if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<UnusedAttr>()) 1925 return; 1926 1927 const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe(); 1928 1929 if (Ty->isReferenceType() || Ty->isDependentType()) 1930 return; 1931 1932 if (const TagType *TT = Ty->getAs<TagType>()) { 1933 const TagDecl *Tag = TT->getDecl(); 1934 if (Tag->hasAttr<UnusedAttr>()) 1935 return; 1936 // In C++, don't warn for record types that don't have WarnUnusedAttr, to 1937 // mimic gcc's behavior. 1938 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { 1939 if (!RD->hasAttr<WarnUnusedAttr>()) 1940 return; 1941 } 1942 } 1943 1944 auto iter = RefsMinusAssignments.find(VD); 1945 if (iter == RefsMinusAssignments.end()) 1946 return; 1947 1948 assert(iter->getSecond() >= 0 && 1949 "Found a negative number of references to a VarDecl"); 1950 if (iter->getSecond() != 0) 1951 return; 1952 unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter 1953 : diag::warn_unused_but_set_variable; 1954 Diag(VD->getLocation(), DiagID) << VD; 1955 } 1956 1957 static void CheckPoppedLabel(LabelDecl *L, Sema &S) { 1958 // Verify that we have no forward references left. If so, there was a goto 1959 // or address of a label taken, but no definition of it. Label fwd 1960 // definitions are indicated with a null substmt which is also not a resolved 1961 // MS inline assembly label name. 1962 bool Diagnose = false; 1963 if (L->isMSAsmLabel()) 1964 Diagnose = !L->isResolvedMSAsmLabel(); 1965 else 1966 Diagnose = L->getStmt() == nullptr; 1967 if (Diagnose) 1968 S.Diag(L->getLocation(), diag::err_undeclared_label_use) << L; 1969 } 1970 1971 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { 1972 S->mergeNRVOIntoParent(); 1973 1974 if (S->decl_empty()) return; 1975 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && 1976 "Scope shouldn't contain decls!"); 1977 1978 for (auto *TmpD : S->decls()) { 1979 assert(TmpD && "This decl didn't get pushed??"); 1980 1981 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"); 1982 NamedDecl *D = cast<NamedDecl>(TmpD); 1983 1984 // Diagnose unused variables in this scope. 1985 if (!S->hasUnrecoverableErrorOccurred()) { 1986 DiagnoseUnusedDecl(D); 1987 if (const auto *RD = dyn_cast<RecordDecl>(D)) 1988 DiagnoseUnusedNestedTypedefs(RD); 1989 if (VarDecl *VD = dyn_cast<VarDecl>(D)) { 1990 DiagnoseUnusedButSetDecl(VD); 1991 RefsMinusAssignments.erase(VD); 1992 } 1993 } 1994 1995 if (!D->getDeclName()) continue; 1996 1997 // If this was a forward reference to a label, verify it was defined. 1998 if (LabelDecl *LD = dyn_cast<LabelDecl>(D)) 1999 CheckPoppedLabel(LD, *this); 2000 2001 // Remove this name from our lexical scope, and warn on it if we haven't 2002 // already. 2003 IdResolver.RemoveDecl(D); 2004 auto ShadowI = ShadowingDecls.find(D); 2005 if (ShadowI != ShadowingDecls.end()) { 2006 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) { 2007 Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field) 2008 << D << FD << FD->getParent(); 2009 Diag(FD->getLocation(), diag::note_previous_declaration); 2010 } 2011 ShadowingDecls.erase(ShadowI); 2012 } 2013 } 2014 } 2015 2016 /// Look for an Objective-C class in the translation unit. 2017 /// 2018 /// \param Id The name of the Objective-C class we're looking for. If 2019 /// typo-correction fixes this name, the Id will be updated 2020 /// to the fixed name. 2021 /// 2022 /// \param IdLoc The location of the name in the translation unit. 2023 /// 2024 /// \param DoTypoCorrection If true, this routine will attempt typo correction 2025 /// if there is no class with the given name. 2026 /// 2027 /// \returns The declaration of the named Objective-C class, or NULL if the 2028 /// class could not be found. 2029 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, 2030 SourceLocation IdLoc, 2031 bool DoTypoCorrection) { 2032 // The third "scope" argument is 0 since we aren't enabling lazy built-in 2033 // creation from this context. 2034 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); 2035 2036 if (!IDecl && DoTypoCorrection) { 2037 // Perform typo correction at the given location, but only if we 2038 // find an Objective-C class name. 2039 DeclFilterCCC<ObjCInterfaceDecl> CCC{}; 2040 if (TypoCorrection C = 2041 CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, 2042 TUScope, nullptr, CCC, CTK_ErrorRecovery)) { 2043 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id); 2044 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); 2045 Id = IDecl->getIdentifier(); 2046 } 2047 } 2048 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); 2049 // This routine must always return a class definition, if any. 2050 if (Def && Def->getDefinition()) 2051 Def = Def->getDefinition(); 2052 return Def; 2053 } 2054 2055 /// getNonFieldDeclScope - Retrieves the innermost scope, starting 2056 /// from S, where a non-field would be declared. This routine copes 2057 /// with the difference between C and C++ scoping rules in structs and 2058 /// unions. For example, the following code is well-formed in C but 2059 /// ill-formed in C++: 2060 /// @code 2061 /// struct S6 { 2062 /// enum { BAR } e; 2063 /// }; 2064 /// 2065 /// void test_S6() { 2066 /// struct S6 a; 2067 /// a.e = BAR; 2068 /// } 2069 /// @endcode 2070 /// For the declaration of BAR, this routine will return a different 2071 /// scope. The scope S will be the scope of the unnamed enumeration 2072 /// within S6. In C++, this routine will return the scope associated 2073 /// with S6, because the enumeration's scope is a transparent 2074 /// context but structures can contain non-field names. In C, this 2075 /// routine will return the translation unit scope, since the 2076 /// enumeration's scope is a transparent context and structures cannot 2077 /// contain non-field names. 2078 Scope *Sema::getNonFieldDeclScope(Scope *S) { 2079 while (((S->getFlags() & Scope::DeclScope) == 0) || 2080 (S->getEntity() && S->getEntity()->isTransparentContext()) || 2081 (S->isClassScope() && !getLangOpts().CPlusPlus)) 2082 S = S->getParent(); 2083 return S; 2084 } 2085 2086 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID, 2087 ASTContext::GetBuiltinTypeError Error) { 2088 switch (Error) { 2089 case ASTContext::GE_None: 2090 return ""; 2091 case ASTContext::GE_Missing_type: 2092 return BuiltinInfo.getHeaderName(ID); 2093 case ASTContext::GE_Missing_stdio: 2094 return "stdio.h"; 2095 case ASTContext::GE_Missing_setjmp: 2096 return "setjmp.h"; 2097 case ASTContext::GE_Missing_ucontext: 2098 return "ucontext.h"; 2099 } 2100 llvm_unreachable("unhandled error kind"); 2101 } 2102 2103 FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type, 2104 unsigned ID, SourceLocation Loc) { 2105 DeclContext *Parent = Context.getTranslationUnitDecl(); 2106 2107 if (getLangOpts().CPlusPlus) { 2108 LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create( 2109 Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false); 2110 CLinkageDecl->setImplicit(); 2111 Parent->addDecl(CLinkageDecl); 2112 Parent = CLinkageDecl; 2113 } 2114 2115 FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type, 2116 /*TInfo=*/nullptr, SC_Extern, 2117 getCurFPFeatures().isFPConstrained(), 2118 false, Type->isFunctionProtoType()); 2119 New->setImplicit(); 2120 New->addAttr(BuiltinAttr::CreateImplicit(Context, ID)); 2121 2122 // Create Decl objects for each parameter, adding them to the 2123 // FunctionDecl. 2124 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) { 2125 SmallVector<ParmVarDecl *, 16> Params; 2126 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 2127 ParmVarDecl *parm = ParmVarDecl::Create( 2128 Context, New, SourceLocation(), SourceLocation(), nullptr, 2129 FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr); 2130 parm->setScopeInfo(0, i); 2131 Params.push_back(parm); 2132 } 2133 New->setParams(Params); 2134 } 2135 2136 AddKnownFunctionAttributes(New); 2137 return New; 2138 } 2139 2140 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at 2141 /// file scope. lazily create a decl for it. ForRedeclaration is true 2142 /// if we're creating this built-in in anticipation of redeclaring the 2143 /// built-in. 2144 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, 2145 Scope *S, bool ForRedeclaration, 2146 SourceLocation Loc) { 2147 LookupNecessaryTypesForBuiltin(S, ID); 2148 2149 ASTContext::GetBuiltinTypeError Error; 2150 QualType R = Context.GetBuiltinType(ID, Error); 2151 if (Error) { 2152 if (!ForRedeclaration) 2153 return nullptr; 2154 2155 // If we have a builtin without an associated type we should not emit a 2156 // warning when we were not able to find a type for it. 2157 if (Error == ASTContext::GE_Missing_type || 2158 Context.BuiltinInfo.allowTypeMismatch(ID)) 2159 return nullptr; 2160 2161 // If we could not find a type for setjmp it is because the jmp_buf type was 2162 // not defined prior to the setjmp declaration. 2163 if (Error == ASTContext::GE_Missing_setjmp) { 2164 Diag(Loc, diag::warn_implicit_decl_no_jmp_buf) 2165 << Context.BuiltinInfo.getName(ID); 2166 return nullptr; 2167 } 2168 2169 // Generally, we emit a warning that the declaration requires the 2170 // appropriate header. 2171 Diag(Loc, diag::warn_implicit_decl_requires_sysheader) 2172 << getHeaderName(Context.BuiltinInfo, ID, Error) 2173 << Context.BuiltinInfo.getName(ID); 2174 return nullptr; 2175 } 2176 2177 if (!ForRedeclaration && 2178 (Context.BuiltinInfo.isPredefinedLibFunction(ID) || 2179 Context.BuiltinInfo.isHeaderDependentFunction(ID))) { 2180 Diag(Loc, diag::ext_implicit_lib_function_decl) 2181 << Context.BuiltinInfo.getName(ID) << R; 2182 if (const char *Header = Context.BuiltinInfo.getHeaderName(ID)) 2183 Diag(Loc, diag::note_include_header_or_declare) 2184 << Header << Context.BuiltinInfo.getName(ID); 2185 } 2186 2187 if (R.isNull()) 2188 return nullptr; 2189 2190 FunctionDecl *New = CreateBuiltin(II, R, ID, Loc); 2191 RegisterLocallyScopedExternCDecl(New, S); 2192 2193 // TUScope is the translation-unit scope to insert this function into. 2194 // FIXME: This is hideous. We need to teach PushOnScopeChains to 2195 // relate Scopes to DeclContexts, and probably eliminate CurContext 2196 // entirely, but we're not there yet. 2197 DeclContext *SavedContext = CurContext; 2198 CurContext = New->getDeclContext(); 2199 PushOnScopeChains(New, TUScope); 2200 CurContext = SavedContext; 2201 return New; 2202 } 2203 2204 /// Typedef declarations don't have linkage, but they still denote the same 2205 /// entity if their types are the same. 2206 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's 2207 /// isSameEntity. 2208 static void filterNonConflictingPreviousTypedefDecls(Sema &S, 2209 TypedefNameDecl *Decl, 2210 LookupResult &Previous) { 2211 // This is only interesting when modules are enabled. 2212 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility) 2213 return; 2214 2215 // Empty sets are uninteresting. 2216 if (Previous.empty()) 2217 return; 2218 2219 LookupResult::Filter Filter = Previous.makeFilter(); 2220 while (Filter.hasNext()) { 2221 NamedDecl *Old = Filter.next(); 2222 2223 // Non-hidden declarations are never ignored. 2224 if (S.isVisible(Old)) 2225 continue; 2226 2227 // Declarations of the same entity are not ignored, even if they have 2228 // different linkages. 2229 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { 2230 if (S.Context.hasSameType(OldTD->getUnderlyingType(), 2231 Decl->getUnderlyingType())) 2232 continue; 2233 2234 // If both declarations give a tag declaration a typedef name for linkage 2235 // purposes, then they declare the same entity. 2236 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) && 2237 Decl->getAnonDeclWithTypedefName()) 2238 continue; 2239 } 2240 2241 Filter.erase(); 2242 } 2243 2244 Filter.done(); 2245 } 2246 2247 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) { 2248 QualType OldType; 2249 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old)) 2250 OldType = OldTypedef->getUnderlyingType(); 2251 else 2252 OldType = Context.getTypeDeclType(Old); 2253 QualType NewType = New->getUnderlyingType(); 2254 2255 if (NewType->isVariablyModifiedType()) { 2256 // Must not redefine a typedef with a variably-modified type. 2257 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; 2258 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef) 2259 << Kind << NewType; 2260 if (Old->getLocation().isValid()) 2261 notePreviousDefinition(Old, New->getLocation()); 2262 New->setInvalidDecl(); 2263 return true; 2264 } 2265 2266 if (OldType != NewType && 2267 !OldType->isDependentType() && 2268 !NewType->isDependentType() && 2269 !Context.hasSameType(OldType, NewType)) { 2270 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; 2271 Diag(New->getLocation(), diag::err_redefinition_different_typedef) 2272 << Kind << NewType << OldType; 2273 if (Old->getLocation().isValid()) 2274 notePreviousDefinition(Old, New->getLocation()); 2275 New->setInvalidDecl(); 2276 return true; 2277 } 2278 return false; 2279 } 2280 2281 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the 2282 /// same name and scope as a previous declaration 'Old'. Figure out 2283 /// how to resolve this situation, merging decls or emitting 2284 /// diagnostics as appropriate. If there was an error, set New to be invalid. 2285 /// 2286 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, 2287 LookupResult &OldDecls) { 2288 // If the new decl is known invalid already, don't bother doing any 2289 // merging checks. 2290 if (New->isInvalidDecl()) return; 2291 2292 // Allow multiple definitions for ObjC built-in typedefs. 2293 // FIXME: Verify the underlying types are equivalent! 2294 if (getLangOpts().ObjC) { 2295 const IdentifierInfo *TypeID = New->getIdentifier(); 2296 switch (TypeID->getLength()) { 2297 default: break; 2298 case 2: 2299 { 2300 if (!TypeID->isStr("id")) 2301 break; 2302 QualType T = New->getUnderlyingType(); 2303 if (!T->isPointerType()) 2304 break; 2305 if (!T->isVoidPointerType()) { 2306 QualType PT = T->castAs<PointerType>()->getPointeeType(); 2307 if (!PT->isStructureType()) 2308 break; 2309 } 2310 Context.setObjCIdRedefinitionType(T); 2311 // Install the built-in type for 'id', ignoring the current definition. 2312 New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); 2313 return; 2314 } 2315 case 5: 2316 if (!TypeID->isStr("Class")) 2317 break; 2318 Context.setObjCClassRedefinitionType(New->getUnderlyingType()); 2319 // Install the built-in type for 'Class', ignoring the current definition. 2320 New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); 2321 return; 2322 case 3: 2323 if (!TypeID->isStr("SEL")) 2324 break; 2325 Context.setObjCSelRedefinitionType(New->getUnderlyingType()); 2326 // Install the built-in type for 'SEL', ignoring the current definition. 2327 New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); 2328 return; 2329 } 2330 // Fall through - the typedef name was not a builtin type. 2331 } 2332 2333 // Verify the old decl was also a type. 2334 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); 2335 if (!Old) { 2336 Diag(New->getLocation(), diag::err_redefinition_different_kind) 2337 << New->getDeclName(); 2338 2339 NamedDecl *OldD = OldDecls.getRepresentativeDecl(); 2340 if (OldD->getLocation().isValid()) 2341 notePreviousDefinition(OldD, New->getLocation()); 2342 2343 return New->setInvalidDecl(); 2344 } 2345 2346 // If the old declaration is invalid, just give up here. 2347 if (Old->isInvalidDecl()) 2348 return New->setInvalidDecl(); 2349 2350 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { 2351 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true); 2352 auto *NewTag = New->getAnonDeclWithTypedefName(); 2353 NamedDecl *Hidden = nullptr; 2354 if (OldTag && NewTag && 2355 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() && 2356 !hasVisibleDefinition(OldTag, &Hidden)) { 2357 // There is a definition of this tag, but it is not visible. Use it 2358 // instead of our tag. 2359 New->setTypeForDecl(OldTD->getTypeForDecl()); 2360 if (OldTD->isModed()) 2361 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(), 2362 OldTD->getUnderlyingType()); 2363 else 2364 New->setTypeSourceInfo(OldTD->getTypeSourceInfo()); 2365 2366 // Make the old tag definition visible. 2367 makeMergedDefinitionVisible(Hidden); 2368 2369 // If this was an unscoped enumeration, yank all of its enumerators 2370 // out of the scope. 2371 if (isa<EnumDecl>(NewTag)) { 2372 Scope *EnumScope = getNonFieldDeclScope(S); 2373 for (auto *D : NewTag->decls()) { 2374 auto *ED = cast<EnumConstantDecl>(D); 2375 assert(EnumScope->isDeclScope(ED)); 2376 EnumScope->RemoveDecl(ED); 2377 IdResolver.RemoveDecl(ED); 2378 ED->getLexicalDeclContext()->removeDecl(ED); 2379 } 2380 } 2381 } 2382 } 2383 2384 // If the typedef types are not identical, reject them in all languages and 2385 // with any extensions enabled. 2386 if (isIncompatibleTypedef(Old, New)) 2387 return; 2388 2389 // The types match. Link up the redeclaration chain and merge attributes if 2390 // the old declaration was a typedef. 2391 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) { 2392 New->setPreviousDecl(Typedef); 2393 mergeDeclAttributes(New, Old); 2394 } 2395 2396 if (getLangOpts().MicrosoftExt) 2397 return; 2398 2399 if (getLangOpts().CPlusPlus) { 2400 // C++ [dcl.typedef]p2: 2401 // In a given non-class scope, a typedef specifier can be used to 2402 // redefine the name of any type declared in that scope to refer 2403 // to the type to which it already refers. 2404 if (!isa<CXXRecordDecl>(CurContext)) 2405 return; 2406 2407 // C++0x [dcl.typedef]p4: 2408 // In a given class scope, a typedef specifier can be used to redefine 2409 // any class-name declared in that scope that is not also a typedef-name 2410 // to refer to the type to which it already refers. 2411 // 2412 // This wording came in via DR424, which was a correction to the 2413 // wording in DR56, which accidentally banned code like: 2414 // 2415 // struct S { 2416 // typedef struct A { } A; 2417 // }; 2418 // 2419 // in the C++03 standard. We implement the C++0x semantics, which 2420 // allow the above but disallow 2421 // 2422 // struct S { 2423 // typedef int I; 2424 // typedef int I; 2425 // }; 2426 // 2427 // since that was the intent of DR56. 2428 if (!isa<TypedefNameDecl>(Old)) 2429 return; 2430 2431 Diag(New->getLocation(), diag::err_redefinition) 2432 << New->getDeclName(); 2433 notePreviousDefinition(Old, New->getLocation()); 2434 return New->setInvalidDecl(); 2435 } 2436 2437 // Modules always permit redefinition of typedefs, as does C11. 2438 if (getLangOpts().Modules || getLangOpts().C11) 2439 return; 2440 2441 // If we have a redefinition of a typedef in C, emit a warning. This warning 2442 // is normally mapped to an error, but can be controlled with 2443 // -Wtypedef-redefinition. If either the original or the redefinition is 2444 // in a system header, don't emit this for compatibility with GCC. 2445 if (getDiagnostics().getSuppressSystemWarnings() && 2446 // Some standard types are defined implicitly in Clang (e.g. OpenCL). 2447 (Old->isImplicit() || 2448 Context.getSourceManager().isInSystemHeader(Old->getLocation()) || 2449 Context.getSourceManager().isInSystemHeader(New->getLocation()))) 2450 return; 2451 2452 Diag(New->getLocation(), diag::ext_redefinition_of_typedef) 2453 << New->getDeclName(); 2454 notePreviousDefinition(Old, New->getLocation()); 2455 } 2456 2457 /// DeclhasAttr - returns true if decl Declaration already has the target 2458 /// attribute. 2459 static bool DeclHasAttr(const Decl *D, const Attr *A) { 2460 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); 2461 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); 2462 for (const auto *i : D->attrs()) 2463 if (i->getKind() == A->getKind()) { 2464 if (Ann) { 2465 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation()) 2466 return true; 2467 continue; 2468 } 2469 // FIXME: Don't hardcode this check 2470 if (OA && isa<OwnershipAttr>(i)) 2471 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind(); 2472 return true; 2473 } 2474 2475 return false; 2476 } 2477 2478 static bool isAttributeTargetADefinition(Decl *D) { 2479 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 2480 return VD->isThisDeclarationADefinition(); 2481 if (TagDecl *TD = dyn_cast<TagDecl>(D)) 2482 return TD->isCompleteDefinition() || TD->isBeingDefined(); 2483 return true; 2484 } 2485 2486 /// Merge alignment attributes from \p Old to \p New, taking into account the 2487 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute. 2488 /// 2489 /// \return \c true if any attributes were added to \p New. 2490 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) { 2491 // Look for alignas attributes on Old, and pick out whichever attribute 2492 // specifies the strictest alignment requirement. 2493 AlignedAttr *OldAlignasAttr = nullptr; 2494 AlignedAttr *OldStrictestAlignAttr = nullptr; 2495 unsigned OldAlign = 0; 2496 for (auto *I : Old->specific_attrs<AlignedAttr>()) { 2497 // FIXME: We have no way of representing inherited dependent alignments 2498 // in a case like: 2499 // template<int A, int B> struct alignas(A) X; 2500 // template<int A, int B> struct alignas(B) X {}; 2501 // For now, we just ignore any alignas attributes which are not on the 2502 // definition in such a case. 2503 if (I->isAlignmentDependent()) 2504 return false; 2505 2506 if (I->isAlignas()) 2507 OldAlignasAttr = I; 2508 2509 unsigned Align = I->getAlignment(S.Context); 2510 if (Align > OldAlign) { 2511 OldAlign = Align; 2512 OldStrictestAlignAttr = I; 2513 } 2514 } 2515 2516 // Look for alignas attributes on New. 2517 AlignedAttr *NewAlignasAttr = nullptr; 2518 unsigned NewAlign = 0; 2519 for (auto *I : New->specific_attrs<AlignedAttr>()) { 2520 if (I->isAlignmentDependent()) 2521 return false; 2522 2523 if (I->isAlignas()) 2524 NewAlignasAttr = I; 2525 2526 unsigned Align = I->getAlignment(S.Context); 2527 if (Align > NewAlign) 2528 NewAlign = Align; 2529 } 2530 2531 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) { 2532 // Both declarations have 'alignas' attributes. We require them to match. 2533 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but 2534 // fall short. (If two declarations both have alignas, they must both match 2535 // every definition, and so must match each other if there is a definition.) 2536 2537 // If either declaration only contains 'alignas(0)' specifiers, then it 2538 // specifies the natural alignment for the type. 2539 if (OldAlign == 0 || NewAlign == 0) { 2540 QualType Ty; 2541 if (ValueDecl *VD = dyn_cast<ValueDecl>(New)) 2542 Ty = VD->getType(); 2543 else 2544 Ty = S.Context.getTagDeclType(cast<TagDecl>(New)); 2545 2546 if (OldAlign == 0) 2547 OldAlign = S.Context.getTypeAlign(Ty); 2548 if (NewAlign == 0) 2549 NewAlign = S.Context.getTypeAlign(Ty); 2550 } 2551 2552 if (OldAlign != NewAlign) { 2553 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch) 2554 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity() 2555 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity(); 2556 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration); 2557 } 2558 } 2559 2560 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) { 2561 // C++11 [dcl.align]p6: 2562 // if any declaration of an entity has an alignment-specifier, 2563 // every defining declaration of that entity shall specify an 2564 // equivalent alignment. 2565 // C11 6.7.5/7: 2566 // If the definition of an object does not have an alignment 2567 // specifier, any other declaration of that object shall also 2568 // have no alignment specifier. 2569 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition) 2570 << OldAlignasAttr; 2571 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration) 2572 << OldAlignasAttr; 2573 } 2574 2575 bool AnyAdded = false; 2576 2577 // Ensure we have an attribute representing the strictest alignment. 2578 if (OldAlign > NewAlign) { 2579 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context); 2580 Clone->setInherited(true); 2581 New->addAttr(Clone); 2582 AnyAdded = true; 2583 } 2584 2585 // Ensure we have an alignas attribute if the old declaration had one. 2586 if (OldAlignasAttr && !NewAlignasAttr && 2587 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) { 2588 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context); 2589 Clone->setInherited(true); 2590 New->addAttr(Clone); 2591 AnyAdded = true; 2592 } 2593 2594 return AnyAdded; 2595 } 2596 2597 #define WANT_DECL_MERGE_LOGIC 2598 #include "clang/Sema/AttrParsedAttrImpl.inc" 2599 #undef WANT_DECL_MERGE_LOGIC 2600 2601 static bool mergeDeclAttribute(Sema &S, NamedDecl *D, 2602 const InheritableAttr *Attr, 2603 Sema::AvailabilityMergeKind AMK) { 2604 // Diagnose any mutual exclusions between the attribute that we want to add 2605 // and attributes that already exist on the declaration. 2606 if (!DiagnoseMutualExclusions(S, D, Attr)) 2607 return false; 2608 2609 // This function copies an attribute Attr from a previous declaration to the 2610 // new declaration D if the new declaration doesn't itself have that attribute 2611 // yet or if that attribute allows duplicates. 2612 // If you're adding a new attribute that requires logic different from 2613 // "use explicit attribute on decl if present, else use attribute from 2614 // previous decl", for example if the attribute needs to be consistent 2615 // between redeclarations, you need to call a custom merge function here. 2616 InheritableAttr *NewAttr = nullptr; 2617 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr)) 2618 NewAttr = S.mergeAvailabilityAttr( 2619 D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(), 2620 AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(), 2621 AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK, 2622 AA->getPriority()); 2623 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr)) 2624 NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility()); 2625 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr)) 2626 NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility()); 2627 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr)) 2628 NewAttr = S.mergeDLLImportAttr(D, *ImportA); 2629 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr)) 2630 NewAttr = S.mergeDLLExportAttr(D, *ExportA); 2631 else if (const auto *FA = dyn_cast<FormatAttr>(Attr)) 2632 NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(), 2633 FA->getFirstArg()); 2634 else if (const auto *SA = dyn_cast<SectionAttr>(Attr)) 2635 NewAttr = S.mergeSectionAttr(D, *SA, SA->getName()); 2636 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr)) 2637 NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName()); 2638 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr)) 2639 NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(), 2640 IA->getInheritanceModel()); 2641 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr)) 2642 NewAttr = S.mergeAlwaysInlineAttr(D, *AA, 2643 &S.Context.Idents.get(AA->getSpelling())); 2644 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) && 2645 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) || 2646 isa<CUDAGlobalAttr>(Attr))) { 2647 // CUDA target attributes are part of function signature for 2648 // overloading purposes and must not be merged. 2649 return false; 2650 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr)) 2651 NewAttr = S.mergeMinSizeAttr(D, *MA); 2652 else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr)) 2653 NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName()); 2654 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr)) 2655 NewAttr = S.mergeOptimizeNoneAttr(D, *OA); 2656 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr)) 2657 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA); 2658 else if (isa<AlignedAttr>(Attr)) 2659 // AlignedAttrs are handled separately, because we need to handle all 2660 // such attributes on a declaration at the same time. 2661 NewAttr = nullptr; 2662 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) && 2663 (AMK == Sema::AMK_Override || 2664 AMK == Sema::AMK_ProtocolImplementation || 2665 AMK == Sema::AMK_OptionalProtocolImplementation)) 2666 NewAttr = nullptr; 2667 else if (const auto *UA = dyn_cast<UuidAttr>(Attr)) 2668 NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl()); 2669 else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr)) 2670 NewAttr = S.mergeImportModuleAttr(D, *IMA); 2671 else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr)) 2672 NewAttr = S.mergeImportNameAttr(D, *INA); 2673 else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr)) 2674 NewAttr = S.mergeEnforceTCBAttr(D, *TCBA); 2675 else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr)) 2676 NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA); 2677 else if (const auto *BTFA = dyn_cast<BTFTagAttr>(Attr)) 2678 NewAttr = S.mergeBTFTagAttr(D, *BTFA); 2679 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr)) 2680 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context)); 2681 2682 if (NewAttr) { 2683 NewAttr->setInherited(true); 2684 D->addAttr(NewAttr); 2685 if (isa<MSInheritanceAttr>(NewAttr)) 2686 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); 2687 return true; 2688 } 2689 2690 return false; 2691 } 2692 2693 static const NamedDecl *getDefinition(const Decl *D) { 2694 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) 2695 return TD->getDefinition(); 2696 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2697 const VarDecl *Def = VD->getDefinition(); 2698 if (Def) 2699 return Def; 2700 return VD->getActingDefinition(); 2701 } 2702 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 2703 const FunctionDecl *Def = nullptr; 2704 if (FD->isDefined(Def, true)) 2705 return Def; 2706 } 2707 return nullptr; 2708 } 2709 2710 static bool hasAttribute(const Decl *D, attr::Kind Kind) { 2711 for (const auto *Attribute : D->attrs()) 2712 if (Attribute->getKind() == Kind) 2713 return true; 2714 return false; 2715 } 2716 2717 /// checkNewAttributesAfterDef - If we already have a definition, check that 2718 /// there are no new attributes in this declaration. 2719 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) { 2720 if (!New->hasAttrs()) 2721 return; 2722 2723 const NamedDecl *Def = getDefinition(Old); 2724 if (!Def || Def == New) 2725 return; 2726 2727 AttrVec &NewAttributes = New->getAttrs(); 2728 for (unsigned I = 0, E = NewAttributes.size(); I != E;) { 2729 const Attr *NewAttribute = NewAttributes[I]; 2730 2731 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) { 2732 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) { 2733 Sema::SkipBodyInfo SkipBody; 2734 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody); 2735 2736 // If we're skipping this definition, drop the "alias" attribute. 2737 if (SkipBody.ShouldSkip) { 2738 NewAttributes.erase(NewAttributes.begin() + I); 2739 --E; 2740 continue; 2741 } 2742 } else { 2743 VarDecl *VD = cast<VarDecl>(New); 2744 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() == 2745 VarDecl::TentativeDefinition 2746 ? diag::err_alias_after_tentative 2747 : diag::err_redefinition; 2748 S.Diag(VD->getLocation(), Diag) << VD->getDeclName(); 2749 if (Diag == diag::err_redefinition) 2750 S.notePreviousDefinition(Def, VD->getLocation()); 2751 else 2752 S.Diag(Def->getLocation(), diag::note_previous_definition); 2753 VD->setInvalidDecl(); 2754 } 2755 ++I; 2756 continue; 2757 } 2758 2759 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) { 2760 // Tentative definitions are only interesting for the alias check above. 2761 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) { 2762 ++I; 2763 continue; 2764 } 2765 } 2766 2767 if (hasAttribute(Def, NewAttribute->getKind())) { 2768 ++I; 2769 continue; // regular attr merging will take care of validating this. 2770 } 2771 2772 if (isa<C11NoReturnAttr>(NewAttribute)) { 2773 // C's _Noreturn is allowed to be added to a function after it is defined. 2774 ++I; 2775 continue; 2776 } else if (isa<UuidAttr>(NewAttribute)) { 2777 // msvc will allow a subsequent definition to add an uuid to a class 2778 ++I; 2779 continue; 2780 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) { 2781 if (AA->isAlignas()) { 2782 // C++11 [dcl.align]p6: 2783 // if any declaration of an entity has an alignment-specifier, 2784 // every defining declaration of that entity shall specify an 2785 // equivalent alignment. 2786 // C11 6.7.5/7: 2787 // If the definition of an object does not have an alignment 2788 // specifier, any other declaration of that object shall also 2789 // have no alignment specifier. 2790 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition) 2791 << AA; 2792 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration) 2793 << AA; 2794 NewAttributes.erase(NewAttributes.begin() + I); 2795 --E; 2796 continue; 2797 } 2798 } else if (isa<LoaderUninitializedAttr>(NewAttribute)) { 2799 // If there is a C definition followed by a redeclaration with this 2800 // attribute then there are two different definitions. In C++, prefer the 2801 // standard diagnostics. 2802 if (!S.getLangOpts().CPlusPlus) { 2803 S.Diag(NewAttribute->getLocation(), 2804 diag::err_loader_uninitialized_redeclaration); 2805 S.Diag(Def->getLocation(), diag::note_previous_definition); 2806 NewAttributes.erase(NewAttributes.begin() + I); 2807 --E; 2808 continue; 2809 } 2810 } else if (isa<SelectAnyAttr>(NewAttribute) && 2811 cast<VarDecl>(New)->isInline() && 2812 !cast<VarDecl>(New)->isInlineSpecified()) { 2813 // Don't warn about applying selectany to implicitly inline variables. 2814 // Older compilers and language modes would require the use of selectany 2815 // to make such variables inline, and it would have no effect if we 2816 // honored it. 2817 ++I; 2818 continue; 2819 } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) { 2820 // We allow to add OMP[Begin]DeclareVariantAttr to be added to 2821 // declarations after defintions. 2822 ++I; 2823 continue; 2824 } 2825 2826 S.Diag(NewAttribute->getLocation(), 2827 diag::warn_attribute_precede_definition); 2828 S.Diag(Def->getLocation(), diag::note_previous_definition); 2829 NewAttributes.erase(NewAttributes.begin() + I); 2830 --E; 2831 } 2832 } 2833 2834 static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl, 2835 const ConstInitAttr *CIAttr, 2836 bool AttrBeforeInit) { 2837 SourceLocation InsertLoc = InitDecl->getInnerLocStart(); 2838 2839 // Figure out a good way to write this specifier on the old declaration. 2840 // FIXME: We should just use the spelling of CIAttr, but we don't preserve 2841 // enough of the attribute list spelling information to extract that without 2842 // heroics. 2843 std::string SuitableSpelling; 2844 if (S.getLangOpts().CPlusPlus20) 2845 SuitableSpelling = std::string( 2846 S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit})); 2847 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) 2848 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( 2849 InsertLoc, {tok::l_square, tok::l_square, 2850 S.PP.getIdentifierInfo("clang"), tok::coloncolon, 2851 S.PP.getIdentifierInfo("require_constant_initialization"), 2852 tok::r_square, tok::r_square})); 2853 if (SuitableSpelling.empty()) 2854 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( 2855 InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren, 2856 S.PP.getIdentifierInfo("require_constant_initialization"), 2857 tok::r_paren, tok::r_paren})); 2858 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20) 2859 SuitableSpelling = "constinit"; 2860 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) 2861 SuitableSpelling = "[[clang::require_constant_initialization]]"; 2862 if (SuitableSpelling.empty()) 2863 SuitableSpelling = "__attribute__((require_constant_initialization))"; 2864 SuitableSpelling += " "; 2865 2866 if (AttrBeforeInit) { 2867 // extern constinit int a; 2868 // int a = 0; // error (missing 'constinit'), accepted as extension 2869 assert(CIAttr->isConstinit() && "should not diagnose this for attribute"); 2870 S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing) 2871 << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); 2872 S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here); 2873 } else { 2874 // int a = 0; 2875 // constinit extern int a; // error (missing 'constinit') 2876 S.Diag(CIAttr->getLocation(), 2877 CIAttr->isConstinit() ? diag::err_constinit_added_too_late 2878 : diag::warn_require_const_init_added_too_late) 2879 << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation())); 2880 S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here) 2881 << CIAttr->isConstinit() 2882 << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); 2883 } 2884 } 2885 2886 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one. 2887 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old, 2888 AvailabilityMergeKind AMK) { 2889 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) { 2890 UsedAttr *NewAttr = OldAttr->clone(Context); 2891 NewAttr->setInherited(true); 2892 New->addAttr(NewAttr); 2893 } 2894 if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) { 2895 RetainAttr *NewAttr = OldAttr->clone(Context); 2896 NewAttr->setInherited(true); 2897 New->addAttr(NewAttr); 2898 } 2899 2900 if (!Old->hasAttrs() && !New->hasAttrs()) 2901 return; 2902 2903 // [dcl.constinit]p1: 2904 // If the [constinit] specifier is applied to any declaration of a 2905 // variable, it shall be applied to the initializing declaration. 2906 const auto *OldConstInit = Old->getAttr<ConstInitAttr>(); 2907 const auto *NewConstInit = New->getAttr<ConstInitAttr>(); 2908 if (bool(OldConstInit) != bool(NewConstInit)) { 2909 const auto *OldVD = cast<VarDecl>(Old); 2910 auto *NewVD = cast<VarDecl>(New); 2911 2912 // Find the initializing declaration. Note that we might not have linked 2913 // the new declaration into the redeclaration chain yet. 2914 const VarDecl *InitDecl = OldVD->getInitializingDeclaration(); 2915 if (!InitDecl && 2916 (NewVD->hasInit() || NewVD->isThisDeclarationADefinition())) 2917 InitDecl = NewVD; 2918 2919 if (InitDecl == NewVD) { 2920 // This is the initializing declaration. If it would inherit 'constinit', 2921 // that's ill-formed. (Note that we do not apply this to the attribute 2922 // form). 2923 if (OldConstInit && OldConstInit->isConstinit()) 2924 diagnoseMissingConstinit(*this, NewVD, OldConstInit, 2925 /*AttrBeforeInit=*/true); 2926 } else if (NewConstInit) { 2927 // This is the first time we've been told that this declaration should 2928 // have a constant initializer. If we already saw the initializing 2929 // declaration, this is too late. 2930 if (InitDecl && InitDecl != NewVD) { 2931 diagnoseMissingConstinit(*this, InitDecl, NewConstInit, 2932 /*AttrBeforeInit=*/false); 2933 NewVD->dropAttr<ConstInitAttr>(); 2934 } 2935 } 2936 } 2937 2938 // Attributes declared post-definition are currently ignored. 2939 checkNewAttributesAfterDef(*this, New, Old); 2940 2941 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) { 2942 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) { 2943 if (!OldA->isEquivalent(NewA)) { 2944 // This redeclaration changes __asm__ label. 2945 Diag(New->getLocation(), diag::err_different_asm_label); 2946 Diag(OldA->getLocation(), diag::note_previous_declaration); 2947 } 2948 } else if (Old->isUsed()) { 2949 // This redeclaration adds an __asm__ label to a declaration that has 2950 // already been ODR-used. 2951 Diag(New->getLocation(), diag::err_late_asm_label_name) 2952 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange(); 2953 } 2954 } 2955 2956 // Re-declaration cannot add abi_tag's. 2957 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) { 2958 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) { 2959 for (const auto &NewTag : NewAbiTagAttr->tags()) { 2960 if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(), 2961 NewTag) == OldAbiTagAttr->tags_end()) { 2962 Diag(NewAbiTagAttr->getLocation(), 2963 diag::err_new_abi_tag_on_redeclaration) 2964 << NewTag; 2965 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration); 2966 } 2967 } 2968 } else { 2969 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration); 2970 Diag(Old->getLocation(), diag::note_previous_declaration); 2971 } 2972 } 2973 2974 // This redeclaration adds a section attribute. 2975 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) { 2976 if (auto *VD = dyn_cast<VarDecl>(New)) { 2977 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) { 2978 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration); 2979 Diag(Old->getLocation(), diag::note_previous_declaration); 2980 } 2981 } 2982 } 2983 2984 // Redeclaration adds code-seg attribute. 2985 const auto *NewCSA = New->getAttr<CodeSegAttr>(); 2986 if (NewCSA && !Old->hasAttr<CodeSegAttr>() && 2987 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) { 2988 Diag(New->getLocation(), diag::warn_mismatched_section) 2989 << 0 /*codeseg*/; 2990 Diag(Old->getLocation(), diag::note_previous_declaration); 2991 } 2992 2993 if (!Old->hasAttrs()) 2994 return; 2995 2996 bool foundAny = New->hasAttrs(); 2997 2998 // Ensure that any moving of objects within the allocated map is done before 2999 // we process them. 3000 if (!foundAny) New->setAttrs(AttrVec()); 3001 3002 for (auto *I : Old->specific_attrs<InheritableAttr>()) { 3003 // Ignore deprecated/unavailable/availability attributes if requested. 3004 AvailabilityMergeKind LocalAMK = AMK_None; 3005 if (isa<DeprecatedAttr>(I) || 3006 isa<UnavailableAttr>(I) || 3007 isa<AvailabilityAttr>(I)) { 3008 switch (AMK) { 3009 case AMK_None: 3010 continue; 3011 3012 case AMK_Redeclaration: 3013 case AMK_Override: 3014 case AMK_ProtocolImplementation: 3015 case AMK_OptionalProtocolImplementation: 3016 LocalAMK = AMK; 3017 break; 3018 } 3019 } 3020 3021 // Already handled. 3022 if (isa<UsedAttr>(I) || isa<RetainAttr>(I)) 3023 continue; 3024 3025 if (mergeDeclAttribute(*this, New, I, LocalAMK)) 3026 foundAny = true; 3027 } 3028 3029 if (mergeAlignedAttrs(*this, New, Old)) 3030 foundAny = true; 3031 3032 if (!foundAny) New->dropAttrs(); 3033 } 3034 3035 /// mergeParamDeclAttributes - Copy attributes from the old parameter 3036 /// to the new one. 3037 static void mergeParamDeclAttributes(ParmVarDecl *newDecl, 3038 const ParmVarDecl *oldDecl, 3039 Sema &S) { 3040 // C++11 [dcl.attr.depend]p2: 3041 // The first declaration of a function shall specify the 3042 // carries_dependency attribute for its declarator-id if any declaration 3043 // of the function specifies the carries_dependency attribute. 3044 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>(); 3045 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) { 3046 S.Diag(CDA->getLocation(), 3047 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/; 3048 // Find the first declaration of the parameter. 3049 // FIXME: Should we build redeclaration chains for function parameters? 3050 const FunctionDecl *FirstFD = 3051 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl(); 3052 const ParmVarDecl *FirstVD = 3053 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex()); 3054 S.Diag(FirstVD->getLocation(), 3055 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/; 3056 } 3057 3058 if (!oldDecl->hasAttrs()) 3059 return; 3060 3061 bool foundAny = newDecl->hasAttrs(); 3062 3063 // Ensure that any moving of objects within the allocated map is 3064 // done before we process them. 3065 if (!foundAny) newDecl->setAttrs(AttrVec()); 3066 3067 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) { 3068 if (!DeclHasAttr(newDecl, I)) { 3069 InheritableAttr *newAttr = 3070 cast<InheritableParamAttr>(I->clone(S.Context)); 3071 newAttr->setInherited(true); 3072 newDecl->addAttr(newAttr); 3073 foundAny = true; 3074 } 3075 } 3076 3077 if (!foundAny) newDecl->dropAttrs(); 3078 } 3079 3080 static void mergeParamDeclTypes(ParmVarDecl *NewParam, 3081 const ParmVarDecl *OldParam, 3082 Sema &S) { 3083 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) { 3084 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) { 3085 if (*Oldnullability != *Newnullability) { 3086 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr) 3087 << DiagNullabilityKind( 3088 *Newnullability, 3089 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 3090 != 0)) 3091 << DiagNullabilityKind( 3092 *Oldnullability, 3093 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 3094 != 0)); 3095 S.Diag(OldParam->getLocation(), diag::note_previous_declaration); 3096 } 3097 } else { 3098 QualType NewT = NewParam->getType(); 3099 NewT = S.Context.getAttributedType( 3100 AttributedType::getNullabilityAttrKind(*Oldnullability), 3101 NewT, NewT); 3102 NewParam->setType(NewT); 3103 } 3104 } 3105 } 3106 3107 namespace { 3108 3109 /// Used in MergeFunctionDecl to keep track of function parameters in 3110 /// C. 3111 struct GNUCompatibleParamWarning { 3112 ParmVarDecl *OldParm; 3113 ParmVarDecl *NewParm; 3114 QualType PromotedType; 3115 }; 3116 3117 } // end anonymous namespace 3118 3119 // Determine whether the previous declaration was a definition, implicit 3120 // declaration, or a declaration. 3121 template <typename T> 3122 static std::pair<diag::kind, SourceLocation> 3123 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { 3124 diag::kind PrevDiag; 3125 SourceLocation OldLocation = Old->getLocation(); 3126 if (Old->isThisDeclarationADefinition()) 3127 PrevDiag = diag::note_previous_definition; 3128 else if (Old->isImplicit()) { 3129 PrevDiag = diag::note_previous_implicit_declaration; 3130 if (OldLocation.isInvalid()) 3131 OldLocation = New->getLocation(); 3132 } else 3133 PrevDiag = diag::note_previous_declaration; 3134 return std::make_pair(PrevDiag, OldLocation); 3135 } 3136 3137 /// canRedefineFunction - checks if a function can be redefined. Currently, 3138 /// only extern inline functions can be redefined, and even then only in 3139 /// GNU89 mode. 3140 static bool canRedefineFunction(const FunctionDecl *FD, 3141 const LangOptions& LangOpts) { 3142 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && 3143 !LangOpts.CPlusPlus && 3144 FD->isInlineSpecified() && 3145 FD->getStorageClass() == SC_Extern); 3146 } 3147 3148 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const { 3149 const AttributedType *AT = T->getAs<AttributedType>(); 3150 while (AT && !AT->isCallingConv()) 3151 AT = AT->getModifiedType()->getAs<AttributedType>(); 3152 return AT; 3153 } 3154 3155 template <typename T> 3156 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { 3157 const DeclContext *DC = Old->getDeclContext(); 3158 if (DC->isRecord()) 3159 return false; 3160 3161 LanguageLinkage OldLinkage = Old->getLanguageLinkage(); 3162 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) 3163 return true; 3164 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) 3165 return true; 3166 return false; 3167 } 3168 3169 template<typename T> static bool isExternC(T *D) { return D->isExternC(); } 3170 static bool isExternC(VarTemplateDecl *) { return false; } 3171 static bool isExternC(FunctionTemplateDecl *) { return false; } 3172 3173 /// Check whether a redeclaration of an entity introduced by a 3174 /// using-declaration is valid, given that we know it's not an overload 3175 /// (nor a hidden tag declaration). 3176 template<typename ExpectedDecl> 3177 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS, 3178 ExpectedDecl *New) { 3179 // C++11 [basic.scope.declarative]p4: 3180 // Given a set of declarations in a single declarative region, each of 3181 // which specifies the same unqualified name, 3182 // -- they shall all refer to the same entity, or all refer to functions 3183 // and function templates; or 3184 // -- exactly one declaration shall declare a class name or enumeration 3185 // name that is not a typedef name and the other declarations shall all 3186 // refer to the same variable or enumerator, or all refer to functions 3187 // and function templates; in this case the class name or enumeration 3188 // name is hidden (3.3.10). 3189 3190 // C++11 [namespace.udecl]p14: 3191 // If a function declaration in namespace scope or block scope has the 3192 // same name and the same parameter-type-list as a function introduced 3193 // by a using-declaration, and the declarations do not declare the same 3194 // function, the program is ill-formed. 3195 3196 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl()); 3197 if (Old && 3198 !Old->getDeclContext()->getRedeclContext()->Equals( 3199 New->getDeclContext()->getRedeclContext()) && 3200 !(isExternC(Old) && isExternC(New))) 3201 Old = nullptr; 3202 3203 if (!Old) { 3204 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); 3205 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target); 3206 S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0; 3207 return true; 3208 } 3209 return false; 3210 } 3211 3212 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A, 3213 const FunctionDecl *B) { 3214 assert(A->getNumParams() == B->getNumParams()); 3215 3216 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) { 3217 const auto *AttrA = A->getAttr<PassObjectSizeAttr>(); 3218 const auto *AttrB = B->getAttr<PassObjectSizeAttr>(); 3219 if (AttrA == AttrB) 3220 return true; 3221 return AttrA && AttrB && AttrA->getType() == AttrB->getType() && 3222 AttrA->isDynamic() == AttrB->isDynamic(); 3223 }; 3224 3225 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq); 3226 } 3227 3228 /// If necessary, adjust the semantic declaration context for a qualified 3229 /// declaration to name the correct inline namespace within the qualifier. 3230 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD, 3231 DeclaratorDecl *OldD) { 3232 // The only case where we need to update the DeclContext is when 3233 // redeclaration lookup for a qualified name finds a declaration 3234 // in an inline namespace within the context named by the qualifier: 3235 // 3236 // inline namespace N { int f(); } 3237 // int ::f(); // Sema DC needs adjusting from :: to N::. 3238 // 3239 // For unqualified declarations, the semantic context *can* change 3240 // along the redeclaration chain (for local extern declarations, 3241 // extern "C" declarations, and friend declarations in particular). 3242 if (!NewD->getQualifier()) 3243 return; 3244 3245 // NewD is probably already in the right context. 3246 auto *NamedDC = NewD->getDeclContext()->getRedeclContext(); 3247 auto *SemaDC = OldD->getDeclContext()->getRedeclContext(); 3248 if (NamedDC->Equals(SemaDC)) 3249 return; 3250 3251 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || 3252 NewD->isInvalidDecl() || OldD->isInvalidDecl()) && 3253 "unexpected context for redeclaration"); 3254 3255 auto *LexDC = NewD->getLexicalDeclContext(); 3256 auto FixSemaDC = [=](NamedDecl *D) { 3257 if (!D) 3258 return; 3259 D->setDeclContext(SemaDC); 3260 D->setLexicalDeclContext(LexDC); 3261 }; 3262 3263 FixSemaDC(NewD); 3264 if (auto *FD = dyn_cast<FunctionDecl>(NewD)) 3265 FixSemaDC(FD->getDescribedFunctionTemplate()); 3266 else if (auto *VD = dyn_cast<VarDecl>(NewD)) 3267 FixSemaDC(VD->getDescribedVarTemplate()); 3268 } 3269 3270 /// MergeFunctionDecl - We just parsed a function 'New' from 3271 /// declarator D which has the same name and scope as a previous 3272 /// declaration 'Old'. Figure out how to resolve this situation, 3273 /// merging decls or emitting diagnostics as appropriate. 3274 /// 3275 /// In C++, New and Old must be declarations that are not 3276 /// overloaded. Use IsOverload to determine whether New and Old are 3277 /// overloaded, and to select the Old declaration that New should be 3278 /// merged with. 3279 /// 3280 /// Returns true if there was an error, false otherwise. 3281 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, 3282 Scope *S, bool MergeTypeWithOld) { 3283 // Verify the old decl was also a function. 3284 FunctionDecl *Old = OldD->getAsFunction(); 3285 if (!Old) { 3286 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { 3287 if (New->getFriendObjectKind()) { 3288 Diag(New->getLocation(), diag::err_using_decl_friend); 3289 Diag(Shadow->getTargetDecl()->getLocation(), 3290 diag::note_using_decl_target); 3291 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) 3292 << 0; 3293 return true; 3294 } 3295 3296 // Check whether the two declarations might declare the same function or 3297 // function template. 3298 if (FunctionTemplateDecl *NewTemplate = 3299 New->getDescribedFunctionTemplate()) { 3300 if (checkUsingShadowRedecl<FunctionTemplateDecl>(*this, Shadow, 3301 NewTemplate)) 3302 return true; 3303 OldD = Old = cast<FunctionTemplateDecl>(Shadow->getTargetDecl()) 3304 ->getAsFunction(); 3305 } else { 3306 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New)) 3307 return true; 3308 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl()); 3309 } 3310 } else { 3311 Diag(New->getLocation(), diag::err_redefinition_different_kind) 3312 << New->getDeclName(); 3313 notePreviousDefinition(OldD, New->getLocation()); 3314 return true; 3315 } 3316 } 3317 3318 // If the old declaration was found in an inline namespace and the new 3319 // declaration was qualified, update the DeclContext to match. 3320 adjustDeclContextForDeclaratorDecl(New, Old); 3321 3322 // If the old declaration is invalid, just give up here. 3323 if (Old->isInvalidDecl()) 3324 return true; 3325 3326 // Disallow redeclaration of some builtins. 3327 if (!getASTContext().canBuiltinBeRedeclared(Old)) { 3328 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName(); 3329 Diag(Old->getLocation(), diag::note_previous_builtin_declaration) 3330 << Old << Old->getType(); 3331 return true; 3332 } 3333 3334 diag::kind PrevDiag; 3335 SourceLocation OldLocation; 3336 std::tie(PrevDiag, OldLocation) = 3337 getNoteDiagForInvalidRedeclaration(Old, New); 3338 3339 // Don't complain about this if we're in GNU89 mode and the old function 3340 // is an extern inline function. 3341 // Don't complain about specializations. They are not supposed to have 3342 // storage classes. 3343 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && 3344 New->getStorageClass() == SC_Static && 3345 Old->hasExternalFormalLinkage() && 3346 !New->getTemplateSpecializationInfo() && 3347 !canRedefineFunction(Old, getLangOpts())) { 3348 if (getLangOpts().MicrosoftExt) { 3349 Diag(New->getLocation(), diag::ext_static_non_static) << New; 3350 Diag(OldLocation, PrevDiag); 3351 } else { 3352 Diag(New->getLocation(), diag::err_static_non_static) << New; 3353 Diag(OldLocation, PrevDiag); 3354 return true; 3355 } 3356 } 3357 3358 if (const auto *ILA = New->getAttr<InternalLinkageAttr>()) 3359 if (!Old->hasAttr<InternalLinkageAttr>()) { 3360 Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl) 3361 << ILA; 3362 Diag(Old->getLocation(), diag::note_previous_declaration); 3363 New->dropAttr<InternalLinkageAttr>(); 3364 } 3365 3366 if (CheckRedeclarationModuleOwnership(New, Old)) 3367 return true; 3368 3369 if (!getLangOpts().CPlusPlus) { 3370 bool OldOvl = Old->hasAttr<OverloadableAttr>(); 3371 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) { 3372 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch) 3373 << New << OldOvl; 3374 3375 // Try our best to find a decl that actually has the overloadable 3376 // attribute for the note. In most cases (e.g. programs with only one 3377 // broken declaration/definition), this won't matter. 3378 // 3379 // FIXME: We could do this if we juggled some extra state in 3380 // OverloadableAttr, rather than just removing it. 3381 const Decl *DiagOld = Old; 3382 if (OldOvl) { 3383 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) { 3384 const auto *A = D->getAttr<OverloadableAttr>(); 3385 return A && !A->isImplicit(); 3386 }); 3387 // If we've implicitly added *all* of the overloadable attrs to this 3388 // chain, emitting a "previous redecl" note is pointless. 3389 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter; 3390 } 3391 3392 if (DiagOld) 3393 Diag(DiagOld->getLocation(), 3394 diag::note_attribute_overloadable_prev_overload) 3395 << OldOvl; 3396 3397 if (OldOvl) 3398 New->addAttr(OverloadableAttr::CreateImplicit(Context)); 3399 else 3400 New->dropAttr<OverloadableAttr>(); 3401 } 3402 } 3403 3404 // If a function is first declared with a calling convention, but is later 3405 // declared or defined without one, all following decls assume the calling 3406 // convention of the first. 3407 // 3408 // It's OK if a function is first declared without a calling convention, 3409 // but is later declared or defined with the default calling convention. 3410 // 3411 // To test if either decl has an explicit calling convention, we look for 3412 // AttributedType sugar nodes on the type as written. If they are missing or 3413 // were canonicalized away, we assume the calling convention was implicit. 3414 // 3415 // Note also that we DO NOT return at this point, because we still have 3416 // other tests to run. 3417 QualType OldQType = Context.getCanonicalType(Old->getType()); 3418 QualType NewQType = Context.getCanonicalType(New->getType()); 3419 const FunctionType *OldType = cast<FunctionType>(OldQType); 3420 const FunctionType *NewType = cast<FunctionType>(NewQType); 3421 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); 3422 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); 3423 bool RequiresAdjustment = false; 3424 3425 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) { 3426 FunctionDecl *First = Old->getFirstDecl(); 3427 const FunctionType *FT = 3428 First->getType().getCanonicalType()->castAs<FunctionType>(); 3429 FunctionType::ExtInfo FI = FT->getExtInfo(); 3430 bool NewCCExplicit = getCallingConvAttributedType(New->getType()); 3431 if (!NewCCExplicit) { 3432 // Inherit the CC from the previous declaration if it was specified 3433 // there but not here. 3434 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); 3435 RequiresAdjustment = true; 3436 } else if (Old->getBuiltinID()) { 3437 // Builtin attribute isn't propagated to the new one yet at this point, 3438 // so we check if the old one is a builtin. 3439 3440 // Calling Conventions on a Builtin aren't really useful and setting a 3441 // default calling convention and cdecl'ing some builtin redeclarations is 3442 // common, so warn and ignore the calling convention on the redeclaration. 3443 Diag(New->getLocation(), diag::warn_cconv_unsupported) 3444 << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) 3445 << (int)CallingConventionIgnoredReason::BuiltinFunction; 3446 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); 3447 RequiresAdjustment = true; 3448 } else { 3449 // Calling conventions aren't compatible, so complain. 3450 bool FirstCCExplicit = getCallingConvAttributedType(First->getType()); 3451 Diag(New->getLocation(), diag::err_cconv_change) 3452 << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) 3453 << !FirstCCExplicit 3454 << (!FirstCCExplicit ? "" : 3455 FunctionType::getNameForCallConv(FI.getCC())); 3456 3457 // Put the note on the first decl, since it is the one that matters. 3458 Diag(First->getLocation(), diag::note_previous_declaration); 3459 return true; 3460 } 3461 } 3462 3463 // FIXME: diagnose the other way around? 3464 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { 3465 NewTypeInfo = NewTypeInfo.withNoReturn(true); 3466 RequiresAdjustment = true; 3467 } 3468 3469 // Merge regparm attribute. 3470 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || 3471 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { 3472 if (NewTypeInfo.getHasRegParm()) { 3473 Diag(New->getLocation(), diag::err_regparm_mismatch) 3474 << NewType->getRegParmType() 3475 << OldType->getRegParmType(); 3476 Diag(OldLocation, diag::note_previous_declaration); 3477 return true; 3478 } 3479 3480 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); 3481 RequiresAdjustment = true; 3482 } 3483 3484 // Merge ns_returns_retained attribute. 3485 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) { 3486 if (NewTypeInfo.getProducesResult()) { 3487 Diag(New->getLocation(), diag::err_function_attribute_mismatch) 3488 << "'ns_returns_retained'"; 3489 Diag(OldLocation, diag::note_previous_declaration); 3490 return true; 3491 } 3492 3493 NewTypeInfo = NewTypeInfo.withProducesResult(true); 3494 RequiresAdjustment = true; 3495 } 3496 3497 if (OldTypeInfo.getNoCallerSavedRegs() != 3498 NewTypeInfo.getNoCallerSavedRegs()) { 3499 if (NewTypeInfo.getNoCallerSavedRegs()) { 3500 AnyX86NoCallerSavedRegistersAttr *Attr = 3501 New->getAttr<AnyX86NoCallerSavedRegistersAttr>(); 3502 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr; 3503 Diag(OldLocation, diag::note_previous_declaration); 3504 return true; 3505 } 3506 3507 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true); 3508 RequiresAdjustment = true; 3509 } 3510 3511 if (RequiresAdjustment) { 3512 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>(); 3513 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo); 3514 New->setType(QualType(AdjustedType, 0)); 3515 NewQType = Context.getCanonicalType(New->getType()); 3516 } 3517 3518 // If this redeclaration makes the function inline, we may need to add it to 3519 // UndefinedButUsed. 3520 if (!Old->isInlined() && New->isInlined() && 3521 !New->hasAttr<GNUInlineAttr>() && 3522 !getLangOpts().GNUInline && 3523 Old->isUsed(false) && 3524 !Old->isDefined() && !New->isThisDeclarationADefinition()) 3525 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), 3526 SourceLocation())); 3527 3528 // If this redeclaration makes it newly gnu_inline, we don't want to warn 3529 // about it. 3530 if (New->hasAttr<GNUInlineAttr>() && 3531 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) { 3532 UndefinedButUsed.erase(Old->getCanonicalDecl()); 3533 } 3534 3535 // If pass_object_size params don't match up perfectly, this isn't a valid 3536 // redeclaration. 3537 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() && 3538 !hasIdenticalPassObjectSizeAttrs(Old, New)) { 3539 Diag(New->getLocation(), diag::err_different_pass_object_size_params) 3540 << New->getDeclName(); 3541 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3542 return true; 3543 } 3544 3545 if (getLangOpts().CPlusPlus) { 3546 // C++1z [over.load]p2 3547 // Certain function declarations cannot be overloaded: 3548 // -- Function declarations that differ only in the return type, 3549 // the exception specification, or both cannot be overloaded. 3550 3551 // Check the exception specifications match. This may recompute the type of 3552 // both Old and New if it resolved exception specifications, so grab the 3553 // types again after this. Because this updates the type, we do this before 3554 // any of the other checks below, which may update the "de facto" NewQType 3555 // but do not necessarily update the type of New. 3556 if (CheckEquivalentExceptionSpec(Old, New)) 3557 return true; 3558 OldQType = Context.getCanonicalType(Old->getType()); 3559 NewQType = Context.getCanonicalType(New->getType()); 3560 3561 // Go back to the type source info to compare the declared return types, 3562 // per C++1y [dcl.type.auto]p13: 3563 // Redeclarations or specializations of a function or function template 3564 // with a declared return type that uses a placeholder type shall also 3565 // use that placeholder, not a deduced type. 3566 QualType OldDeclaredReturnType = Old->getDeclaredReturnType(); 3567 QualType NewDeclaredReturnType = New->getDeclaredReturnType(); 3568 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) && 3569 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType, 3570 OldDeclaredReturnType)) { 3571 QualType ResQT; 3572 if (NewDeclaredReturnType->isObjCObjectPointerType() && 3573 OldDeclaredReturnType->isObjCObjectPointerType()) 3574 // FIXME: This does the wrong thing for a deduced return type. 3575 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); 3576 if (ResQT.isNull()) { 3577 if (New->isCXXClassMember() && New->isOutOfLine()) 3578 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type) 3579 << New << New->getReturnTypeSourceRange(); 3580 else 3581 Diag(New->getLocation(), diag::err_ovl_diff_return_type) 3582 << New->getReturnTypeSourceRange(); 3583 Diag(OldLocation, PrevDiag) << Old << Old->getType() 3584 << Old->getReturnTypeSourceRange(); 3585 return true; 3586 } 3587 else 3588 NewQType = ResQT; 3589 } 3590 3591 QualType OldReturnType = OldType->getReturnType(); 3592 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType(); 3593 if (OldReturnType != NewReturnType) { 3594 // If this function has a deduced return type and has already been 3595 // defined, copy the deduced value from the old declaration. 3596 AutoType *OldAT = Old->getReturnType()->getContainedAutoType(); 3597 if (OldAT && OldAT->isDeduced()) { 3598 New->setType( 3599 SubstAutoType(New->getType(), 3600 OldAT->isDependentType() ? Context.DependentTy 3601 : OldAT->getDeducedType())); 3602 NewQType = Context.getCanonicalType( 3603 SubstAutoType(NewQType, 3604 OldAT->isDependentType() ? Context.DependentTy 3605 : OldAT->getDeducedType())); 3606 } 3607 } 3608 3609 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); 3610 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); 3611 if (OldMethod && NewMethod) { 3612 // Preserve triviality. 3613 NewMethod->setTrivial(OldMethod->isTrivial()); 3614 3615 // MSVC allows explicit template specialization at class scope: 3616 // 2 CXXMethodDecls referring to the same function will be injected. 3617 // We don't want a redeclaration error. 3618 bool IsClassScopeExplicitSpecialization = 3619 OldMethod->isFunctionTemplateSpecialization() && 3620 NewMethod->isFunctionTemplateSpecialization(); 3621 bool isFriend = NewMethod->getFriendObjectKind(); 3622 3623 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && 3624 !IsClassScopeExplicitSpecialization) { 3625 // -- Member function declarations with the same name and the 3626 // same parameter types cannot be overloaded if any of them 3627 // is a static member function declaration. 3628 if (OldMethod->isStatic() != NewMethod->isStatic()) { 3629 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); 3630 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3631 return true; 3632 } 3633 3634 // C++ [class.mem]p1: 3635 // [...] A member shall not be declared twice in the 3636 // member-specification, except that a nested class or member 3637 // class template can be declared and then later defined. 3638 if (!inTemplateInstantiation()) { 3639 unsigned NewDiag; 3640 if (isa<CXXConstructorDecl>(OldMethod)) 3641 NewDiag = diag::err_constructor_redeclared; 3642 else if (isa<CXXDestructorDecl>(NewMethod)) 3643 NewDiag = diag::err_destructor_redeclared; 3644 else if (isa<CXXConversionDecl>(NewMethod)) 3645 NewDiag = diag::err_conv_function_redeclared; 3646 else 3647 NewDiag = diag::err_member_redeclared; 3648 3649 Diag(New->getLocation(), NewDiag); 3650 } else { 3651 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation) 3652 << New << New->getType(); 3653 } 3654 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3655 return true; 3656 3657 // Complain if this is an explicit declaration of a special 3658 // member that was initially declared implicitly. 3659 // 3660 // As an exception, it's okay to befriend such methods in order 3661 // to permit the implicit constructor/destructor/operator calls. 3662 } else if (OldMethod->isImplicit()) { 3663 if (isFriend) { 3664 NewMethod->setImplicit(); 3665 } else { 3666 Diag(NewMethod->getLocation(), 3667 diag::err_definition_of_implicitly_declared_member) 3668 << New << getSpecialMember(OldMethod); 3669 return true; 3670 } 3671 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) { 3672 Diag(NewMethod->getLocation(), 3673 diag::err_definition_of_explicitly_defaulted_member) 3674 << getSpecialMember(OldMethod); 3675 return true; 3676 } 3677 } 3678 3679 // C++11 [dcl.attr.noreturn]p1: 3680 // The first declaration of a function shall specify the noreturn 3681 // attribute if any declaration of that function specifies the noreturn 3682 // attribute. 3683 if (const auto *NRA = New->getAttr<CXX11NoReturnAttr>()) 3684 if (!Old->hasAttr<CXX11NoReturnAttr>()) { 3685 Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl) 3686 << NRA; 3687 Diag(Old->getLocation(), diag::note_previous_declaration); 3688 } 3689 3690 // C++11 [dcl.attr.depend]p2: 3691 // The first declaration of a function shall specify the 3692 // carries_dependency attribute for its declarator-id if any declaration 3693 // of the function specifies the carries_dependency attribute. 3694 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>(); 3695 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) { 3696 Diag(CDA->getLocation(), 3697 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/; 3698 Diag(Old->getFirstDecl()->getLocation(), 3699 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/; 3700 } 3701 3702 // (C++98 8.3.5p3): 3703 // All declarations for a function shall agree exactly in both the 3704 // return type and the parameter-type-list. 3705 // We also want to respect all the extended bits except noreturn. 3706 3707 // noreturn should now match unless the old type info didn't have it. 3708 QualType OldQTypeForComparison = OldQType; 3709 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { 3710 auto *OldType = OldQType->castAs<FunctionProtoType>(); 3711 const FunctionType *OldTypeForComparison 3712 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); 3713 OldQTypeForComparison = QualType(OldTypeForComparison, 0); 3714 assert(OldQTypeForComparison.isCanonical()); 3715 } 3716 3717 if (haveIncompatibleLanguageLinkages(Old, New)) { 3718 // As a special case, retain the language linkage from previous 3719 // declarations of a friend function as an extension. 3720 // 3721 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC 3722 // and is useful because there's otherwise no way to specify language 3723 // linkage within class scope. 3724 // 3725 // Check cautiously as the friend object kind isn't yet complete. 3726 if (New->getFriendObjectKind() != Decl::FOK_None) { 3727 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New; 3728 Diag(OldLocation, PrevDiag); 3729 } else { 3730 Diag(New->getLocation(), diag::err_different_language_linkage) << New; 3731 Diag(OldLocation, PrevDiag); 3732 return true; 3733 } 3734 } 3735 3736 // If the function types are compatible, merge the declarations. Ignore the 3737 // exception specifier because it was already checked above in 3738 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics 3739 // about incompatible types under -fms-compatibility. 3740 if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison, 3741 NewQType)) 3742 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 3743 3744 // If the types are imprecise (due to dependent constructs in friends or 3745 // local extern declarations), it's OK if they differ. We'll check again 3746 // during instantiation. 3747 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType)) 3748 return false; 3749 3750 // Fall through for conflicting redeclarations and redefinitions. 3751 } 3752 3753 // C: Function types need to be compatible, not identical. This handles 3754 // duplicate function decls like "void f(int); void f(enum X);" properly. 3755 if (!getLangOpts().CPlusPlus && 3756 Context.typesAreCompatible(OldQType, NewQType)) { 3757 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); 3758 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); 3759 const FunctionProtoType *OldProto = nullptr; 3760 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) && 3761 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { 3762 // The old declaration provided a function prototype, but the 3763 // new declaration does not. Merge in the prototype. 3764 assert(!OldProto->hasExceptionSpec() && "Exception spec in C"); 3765 SmallVector<QualType, 16> ParamTypes(OldProto->param_types()); 3766 NewQType = 3767 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes, 3768 OldProto->getExtProtoInfo()); 3769 New->setType(NewQType); 3770 New->setHasInheritedPrototype(); 3771 3772 // Synthesize parameters with the same types. 3773 SmallVector<ParmVarDecl*, 16> Params; 3774 for (const auto &ParamType : OldProto->param_types()) { 3775 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(), 3776 SourceLocation(), nullptr, 3777 ParamType, /*TInfo=*/nullptr, 3778 SC_None, nullptr); 3779 Param->setScopeInfo(0, Params.size()); 3780 Param->setImplicit(); 3781 Params.push_back(Param); 3782 } 3783 3784 New->setParams(Params); 3785 } 3786 3787 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 3788 } 3789 3790 // Check if the function types are compatible when pointer size address 3791 // spaces are ignored. 3792 if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType)) 3793 return false; 3794 3795 // GNU C permits a K&R definition to follow a prototype declaration 3796 // if the declared types of the parameters in the K&R definition 3797 // match the types in the prototype declaration, even when the 3798 // promoted types of the parameters from the K&R definition differ 3799 // from the types in the prototype. GCC then keeps the types from 3800 // the prototype. 3801 // 3802 // If a variadic prototype is followed by a non-variadic K&R definition, 3803 // the K&R definition becomes variadic. This is sort of an edge case, but 3804 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and 3805 // C99 6.9.1p8. 3806 if (!getLangOpts().CPlusPlus && 3807 Old->hasPrototype() && !New->hasPrototype() && 3808 New->getType()->getAs<FunctionProtoType>() && 3809 Old->getNumParams() == New->getNumParams()) { 3810 SmallVector<QualType, 16> ArgTypes; 3811 SmallVector<GNUCompatibleParamWarning, 16> Warnings; 3812 const FunctionProtoType *OldProto 3813 = Old->getType()->getAs<FunctionProtoType>(); 3814 const FunctionProtoType *NewProto 3815 = New->getType()->getAs<FunctionProtoType>(); 3816 3817 // Determine whether this is the GNU C extension. 3818 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(), 3819 NewProto->getReturnType()); 3820 bool LooseCompatible = !MergedReturn.isNull(); 3821 for (unsigned Idx = 0, End = Old->getNumParams(); 3822 LooseCompatible && Idx != End; ++Idx) { 3823 ParmVarDecl *OldParm = Old->getParamDecl(Idx); 3824 ParmVarDecl *NewParm = New->getParamDecl(Idx); 3825 if (Context.typesAreCompatible(OldParm->getType(), 3826 NewProto->getParamType(Idx))) { 3827 ArgTypes.push_back(NewParm->getType()); 3828 } else if (Context.typesAreCompatible(OldParm->getType(), 3829 NewParm->getType(), 3830 /*CompareUnqualified=*/true)) { 3831 GNUCompatibleParamWarning Warn = { OldParm, NewParm, 3832 NewProto->getParamType(Idx) }; 3833 Warnings.push_back(Warn); 3834 ArgTypes.push_back(NewParm->getType()); 3835 } else 3836 LooseCompatible = false; 3837 } 3838 3839 if (LooseCompatible) { 3840 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { 3841 Diag(Warnings[Warn].NewParm->getLocation(), 3842 diag::ext_param_promoted_not_compatible_with_prototype) 3843 << Warnings[Warn].PromotedType 3844 << Warnings[Warn].OldParm->getType(); 3845 if (Warnings[Warn].OldParm->getLocation().isValid()) 3846 Diag(Warnings[Warn].OldParm->getLocation(), 3847 diag::note_previous_declaration); 3848 } 3849 3850 if (MergeTypeWithOld) 3851 New->setType(Context.getFunctionType(MergedReturn, ArgTypes, 3852 OldProto->getExtProtoInfo())); 3853 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 3854 } 3855 3856 // Fall through to diagnose conflicting types. 3857 } 3858 3859 // A function that has already been declared has been redeclared or 3860 // defined with a different type; show an appropriate diagnostic. 3861 3862 // If the previous declaration was an implicitly-generated builtin 3863 // declaration, then at the very least we should use a specialized note. 3864 unsigned BuiltinID; 3865 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) { 3866 // If it's actually a library-defined builtin function like 'malloc' 3867 // or 'printf', just warn about the incompatible redeclaration. 3868 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { 3869 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; 3870 Diag(OldLocation, diag::note_previous_builtin_declaration) 3871 << Old << Old->getType(); 3872 return false; 3873 } 3874 3875 PrevDiag = diag::note_previous_builtin_declaration; 3876 } 3877 3878 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); 3879 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3880 return true; 3881 } 3882 3883 /// Completes the merge of two function declarations that are 3884 /// known to be compatible. 3885 /// 3886 /// This routine handles the merging of attributes and other 3887 /// properties of function declarations from the old declaration to 3888 /// the new declaration, once we know that New is in fact a 3889 /// redeclaration of Old. 3890 /// 3891 /// \returns false 3892 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, 3893 Scope *S, bool MergeTypeWithOld) { 3894 // Merge the attributes 3895 mergeDeclAttributes(New, Old); 3896 3897 // Merge "pure" flag. 3898 if (Old->isPure()) 3899 New->setPure(); 3900 3901 // Merge "used" flag. 3902 if (Old->getMostRecentDecl()->isUsed(false)) 3903 New->setIsUsed(); 3904 3905 // Merge attributes from the parameters. These can mismatch with K&R 3906 // declarations. 3907 if (New->getNumParams() == Old->getNumParams()) 3908 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) { 3909 ParmVarDecl *NewParam = New->getParamDecl(i); 3910 ParmVarDecl *OldParam = Old->getParamDecl(i); 3911 mergeParamDeclAttributes(NewParam, OldParam, *this); 3912 mergeParamDeclTypes(NewParam, OldParam, *this); 3913 } 3914 3915 if (getLangOpts().CPlusPlus) 3916 return MergeCXXFunctionDecl(New, Old, S); 3917 3918 // Merge the function types so the we get the composite types for the return 3919 // and argument types. Per C11 6.2.7/4, only update the type if the old decl 3920 // was visible. 3921 QualType Merged = Context.mergeTypes(Old->getType(), New->getType()); 3922 if (!Merged.isNull() && MergeTypeWithOld) 3923 New->setType(Merged); 3924 3925 return false; 3926 } 3927 3928 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, 3929 ObjCMethodDecl *oldMethod) { 3930 // Merge the attributes, including deprecated/unavailable 3931 AvailabilityMergeKind MergeKind = 3932 isa<ObjCProtocolDecl>(oldMethod->getDeclContext()) 3933 ? (oldMethod->isOptional() ? AMK_OptionalProtocolImplementation 3934 : AMK_ProtocolImplementation) 3935 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration 3936 : AMK_Override; 3937 3938 mergeDeclAttributes(newMethod, oldMethod, MergeKind); 3939 3940 // Merge attributes from the parameters. 3941 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(), 3942 oe = oldMethod->param_end(); 3943 for (ObjCMethodDecl::param_iterator 3944 ni = newMethod->param_begin(), ne = newMethod->param_end(); 3945 ni != ne && oi != oe; ++ni, ++oi) 3946 mergeParamDeclAttributes(*ni, *oi, *this); 3947 3948 CheckObjCMethodOverride(newMethod, oldMethod); 3949 } 3950 3951 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) { 3952 assert(!S.Context.hasSameType(New->getType(), Old->getType())); 3953 3954 S.Diag(New->getLocation(), New->isThisDeclarationADefinition() 3955 ? diag::err_redefinition_different_type 3956 : diag::err_redeclaration_different_type) 3957 << New->getDeclName() << New->getType() << Old->getType(); 3958 3959 diag::kind PrevDiag; 3960 SourceLocation OldLocation; 3961 std::tie(PrevDiag, OldLocation) 3962 = getNoteDiagForInvalidRedeclaration(Old, New); 3963 S.Diag(OldLocation, PrevDiag); 3964 New->setInvalidDecl(); 3965 } 3966 3967 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and 3968 /// scope as a previous declaration 'Old'. Figure out how to merge their types, 3969 /// emitting diagnostics as appropriate. 3970 /// 3971 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back 3972 /// to here in AddInitializerToDecl. We can't check them before the initializer 3973 /// is attached. 3974 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, 3975 bool MergeTypeWithOld) { 3976 if (New->isInvalidDecl() || Old->isInvalidDecl()) 3977 return; 3978 3979 QualType MergedT; 3980 if (getLangOpts().CPlusPlus) { 3981 if (New->getType()->isUndeducedType()) { 3982 // We don't know what the new type is until the initializer is attached. 3983 return; 3984 } else if (Context.hasSameType(New->getType(), Old->getType())) { 3985 // These could still be something that needs exception specs checked. 3986 return MergeVarDeclExceptionSpecs(New, Old); 3987 } 3988 // C++ [basic.link]p10: 3989 // [...] the types specified by all declarations referring to a given 3990 // object or function shall be identical, except that declarations for an 3991 // array object can specify array types that differ by the presence or 3992 // absence of a major array bound (8.3.4). 3993 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) { 3994 const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); 3995 const ArrayType *NewArray = Context.getAsArrayType(New->getType()); 3996 3997 // We are merging a variable declaration New into Old. If it has an array 3998 // bound, and that bound differs from Old's bound, we should diagnose the 3999 // mismatch. 4000 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) { 4001 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD; 4002 PrevVD = PrevVD->getPreviousDecl()) { 4003 QualType PrevVDTy = PrevVD->getType(); 4004 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType()) 4005 continue; 4006 4007 if (!Context.hasSameType(New->getType(), PrevVDTy)) 4008 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD); 4009 } 4010 } 4011 4012 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) { 4013 if (Context.hasSameType(OldArray->getElementType(), 4014 NewArray->getElementType())) 4015 MergedT = New->getType(); 4016 } 4017 // FIXME: Check visibility. New is hidden but has a complete type. If New 4018 // has no array bound, it should not inherit one from Old, if Old is not 4019 // visible. 4020 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) { 4021 if (Context.hasSameType(OldArray->getElementType(), 4022 NewArray->getElementType())) 4023 MergedT = Old->getType(); 4024 } 4025 } 4026 else if (New->getType()->isObjCObjectPointerType() && 4027 Old->getType()->isObjCObjectPointerType()) { 4028 MergedT = Context.mergeObjCGCQualifiers(New->getType(), 4029 Old->getType()); 4030 } 4031 } else { 4032 // C 6.2.7p2: 4033 // All declarations that refer to the same object or function shall have 4034 // compatible type. 4035 MergedT = Context.mergeTypes(New->getType(), Old->getType()); 4036 } 4037 if (MergedT.isNull()) { 4038 // It's OK if we couldn't merge types if either type is dependent, for a 4039 // block-scope variable. In other cases (static data members of class 4040 // templates, variable templates, ...), we require the types to be 4041 // equivalent. 4042 // FIXME: The C++ standard doesn't say anything about this. 4043 if ((New->getType()->isDependentType() || 4044 Old->getType()->isDependentType()) && New->isLocalVarDecl()) { 4045 // If the old type was dependent, we can't merge with it, so the new type 4046 // becomes dependent for now. We'll reproduce the original type when we 4047 // instantiate the TypeSourceInfo for the variable. 4048 if (!New->getType()->isDependentType() && MergeTypeWithOld) 4049 New->setType(Context.DependentTy); 4050 return; 4051 } 4052 return diagnoseVarDeclTypeMismatch(*this, New, Old); 4053 } 4054 4055 // Don't actually update the type on the new declaration if the old 4056 // declaration was an extern declaration in a different scope. 4057 if (MergeTypeWithOld) 4058 New->setType(MergedT); 4059 } 4060 4061 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, 4062 LookupResult &Previous) { 4063 // C11 6.2.7p4: 4064 // For an identifier with internal or external linkage declared 4065 // in a scope in which a prior declaration of that identifier is 4066 // visible, if the prior declaration specifies internal or 4067 // external linkage, the type of the identifier at the later 4068 // declaration becomes the composite type. 4069 // 4070 // If the variable isn't visible, we do not merge with its type. 4071 if (Previous.isShadowed()) 4072 return false; 4073 4074 if (S.getLangOpts().CPlusPlus) { 4075 // C++11 [dcl.array]p3: 4076 // If there is a preceding declaration of the entity in the same 4077 // scope in which the bound was specified, an omitted array bound 4078 // is taken to be the same as in that earlier declaration. 4079 return NewVD->isPreviousDeclInSameBlockScope() || 4080 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() && 4081 !NewVD->getLexicalDeclContext()->isFunctionOrMethod()); 4082 } else { 4083 // If the old declaration was function-local, don't merge with its 4084 // type unless we're in the same function. 4085 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() || 4086 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext(); 4087 } 4088 } 4089 4090 /// MergeVarDecl - We just parsed a variable 'New' which has the same name 4091 /// and scope as a previous declaration 'Old'. Figure out how to resolve this 4092 /// situation, merging decls or emitting diagnostics as appropriate. 4093 /// 4094 /// Tentative definition rules (C99 6.9.2p2) are checked by 4095 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative 4096 /// definitions here, since the initializer hasn't been attached. 4097 /// 4098 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { 4099 // If the new decl is already invalid, don't do any other checking. 4100 if (New->isInvalidDecl()) 4101 return; 4102 4103 if (!shouldLinkPossiblyHiddenDecl(Previous, New)) 4104 return; 4105 4106 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate(); 4107 4108 // Verify the old decl was also a variable or variable template. 4109 VarDecl *Old = nullptr; 4110 VarTemplateDecl *OldTemplate = nullptr; 4111 if (Previous.isSingleResult()) { 4112 if (NewTemplate) { 4113 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl()); 4114 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr; 4115 4116 if (auto *Shadow = 4117 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) 4118 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate)) 4119 return New->setInvalidDecl(); 4120 } else { 4121 Old = dyn_cast<VarDecl>(Previous.getFoundDecl()); 4122 4123 if (auto *Shadow = 4124 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) 4125 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New)) 4126 return New->setInvalidDecl(); 4127 } 4128 } 4129 if (!Old) { 4130 Diag(New->getLocation(), diag::err_redefinition_different_kind) 4131 << New->getDeclName(); 4132 notePreviousDefinition(Previous.getRepresentativeDecl(), 4133 New->getLocation()); 4134 return New->setInvalidDecl(); 4135 } 4136 4137 // If the old declaration was found in an inline namespace and the new 4138 // declaration was qualified, update the DeclContext to match. 4139 adjustDeclContextForDeclaratorDecl(New, Old); 4140 4141 // Ensure the template parameters are compatible. 4142 if (NewTemplate && 4143 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 4144 OldTemplate->getTemplateParameters(), 4145 /*Complain=*/true, TPL_TemplateMatch)) 4146 return New->setInvalidDecl(); 4147 4148 // C++ [class.mem]p1: 4149 // A member shall not be declared twice in the member-specification [...] 4150 // 4151 // Here, we need only consider static data members. 4152 if (Old->isStaticDataMember() && !New->isOutOfLine()) { 4153 Diag(New->getLocation(), diag::err_duplicate_member) 4154 << New->getIdentifier(); 4155 Diag(Old->getLocation(), diag::note_previous_declaration); 4156 New->setInvalidDecl(); 4157 } 4158 4159 mergeDeclAttributes(New, Old); 4160 // Warn if an already-declared variable is made a weak_import in a subsequent 4161 // declaration 4162 if (New->hasAttr<WeakImportAttr>() && 4163 Old->getStorageClass() == SC_None && 4164 !Old->hasAttr<WeakImportAttr>()) { 4165 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); 4166 Diag(Old->getLocation(), diag::note_previous_declaration); 4167 // Remove weak_import attribute on new declaration. 4168 New->dropAttr<WeakImportAttr>(); 4169 } 4170 4171 if (const auto *ILA = New->getAttr<InternalLinkageAttr>()) 4172 if (!Old->hasAttr<InternalLinkageAttr>()) { 4173 Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl) 4174 << ILA; 4175 Diag(Old->getLocation(), diag::note_previous_declaration); 4176 New->dropAttr<InternalLinkageAttr>(); 4177 } 4178 4179 // Merge the types. 4180 VarDecl *MostRecent = Old->getMostRecentDecl(); 4181 if (MostRecent != Old) { 4182 MergeVarDeclTypes(New, MostRecent, 4183 mergeTypeWithPrevious(*this, New, MostRecent, Previous)); 4184 if (New->isInvalidDecl()) 4185 return; 4186 } 4187 4188 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous)); 4189 if (New->isInvalidDecl()) 4190 return; 4191 4192 diag::kind PrevDiag; 4193 SourceLocation OldLocation; 4194 std::tie(PrevDiag, OldLocation) = 4195 getNoteDiagForInvalidRedeclaration(Old, New); 4196 4197 // [dcl.stc]p8: Check if we have a non-static decl followed by a static. 4198 if (New->getStorageClass() == SC_Static && 4199 !New->isStaticDataMember() && 4200 Old->hasExternalFormalLinkage()) { 4201 if (getLangOpts().MicrosoftExt) { 4202 Diag(New->getLocation(), diag::ext_static_non_static) 4203 << New->getDeclName(); 4204 Diag(OldLocation, PrevDiag); 4205 } else { 4206 Diag(New->getLocation(), diag::err_static_non_static) 4207 << New->getDeclName(); 4208 Diag(OldLocation, PrevDiag); 4209 return New->setInvalidDecl(); 4210 } 4211 } 4212 // C99 6.2.2p4: 4213 // For an identifier declared with the storage-class specifier 4214 // extern in a scope in which a prior declaration of that 4215 // identifier is visible,23) if the prior declaration specifies 4216 // internal or external linkage, the linkage of the identifier at 4217 // the later declaration is the same as the linkage specified at 4218 // the prior declaration. If no prior declaration is visible, or 4219 // if the prior declaration specifies no linkage, then the 4220 // identifier has external linkage. 4221 if (New->hasExternalStorage() && Old->hasLinkage()) 4222 /* Okay */; 4223 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static && 4224 !New->isStaticDataMember() && 4225 Old->getCanonicalDecl()->getStorageClass() == SC_Static) { 4226 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); 4227 Diag(OldLocation, PrevDiag); 4228 return New->setInvalidDecl(); 4229 } 4230 4231 // Check if extern is followed by non-extern and vice-versa. 4232 if (New->hasExternalStorage() && 4233 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) { 4234 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); 4235 Diag(OldLocation, PrevDiag); 4236 return New->setInvalidDecl(); 4237 } 4238 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() && 4239 !New->hasExternalStorage()) { 4240 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); 4241 Diag(OldLocation, PrevDiag); 4242 return New->setInvalidDecl(); 4243 } 4244 4245 if (CheckRedeclarationModuleOwnership(New, Old)) 4246 return; 4247 4248 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. 4249 4250 // FIXME: The test for external storage here seems wrong? We still 4251 // need to check for mismatches. 4252 if (!New->hasExternalStorage() && !New->isFileVarDecl() && 4253 // Don't complain about out-of-line definitions of static members. 4254 !(Old->getLexicalDeclContext()->isRecord() && 4255 !New->getLexicalDeclContext()->isRecord())) { 4256 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); 4257 Diag(OldLocation, PrevDiag); 4258 return New->setInvalidDecl(); 4259 } 4260 4261 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) { 4262 if (VarDecl *Def = Old->getDefinition()) { 4263 // C++1z [dcl.fcn.spec]p4: 4264 // If the definition of a variable appears in a translation unit before 4265 // its first declaration as inline, the program is ill-formed. 4266 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 4267 Diag(Def->getLocation(), diag::note_previous_definition); 4268 } 4269 } 4270 4271 // If this redeclaration makes the variable inline, we may need to add it to 4272 // UndefinedButUsed. 4273 if (!Old->isInline() && New->isInline() && Old->isUsed(false) && 4274 !Old->getDefinition() && !New->isThisDeclarationADefinition()) 4275 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), 4276 SourceLocation())); 4277 4278 if (New->getTLSKind() != Old->getTLSKind()) { 4279 if (!Old->getTLSKind()) { 4280 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); 4281 Diag(OldLocation, PrevDiag); 4282 } else if (!New->getTLSKind()) { 4283 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); 4284 Diag(OldLocation, PrevDiag); 4285 } else { 4286 // Do not allow redeclaration to change the variable between requiring 4287 // static and dynamic initialization. 4288 // FIXME: GCC allows this, but uses the TLS keyword on the first 4289 // declaration to determine the kind. Do we need to be compatible here? 4290 Diag(New->getLocation(), diag::err_thread_thread_different_kind) 4291 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic); 4292 Diag(OldLocation, PrevDiag); 4293 } 4294 } 4295 4296 // C++ doesn't have tentative definitions, so go right ahead and check here. 4297 if (getLangOpts().CPlusPlus && 4298 New->isThisDeclarationADefinition() == VarDecl::Definition) { 4299 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() && 4300 Old->getCanonicalDecl()->isConstexpr()) { 4301 // This definition won't be a definition any more once it's been merged. 4302 Diag(New->getLocation(), 4303 diag::warn_deprecated_redundant_constexpr_static_def); 4304 } else if (VarDecl *Def = Old->getDefinition()) { 4305 if (checkVarDeclRedefinition(Def, New)) 4306 return; 4307 } 4308 } 4309 4310 if (haveIncompatibleLanguageLinkages(Old, New)) { 4311 Diag(New->getLocation(), diag::err_different_language_linkage) << New; 4312 Diag(OldLocation, PrevDiag); 4313 New->setInvalidDecl(); 4314 return; 4315 } 4316 4317 // Merge "used" flag. 4318 if (Old->getMostRecentDecl()->isUsed(false)) 4319 New->setIsUsed(); 4320 4321 // Keep a chain of previous declarations. 4322 New->setPreviousDecl(Old); 4323 if (NewTemplate) 4324 NewTemplate->setPreviousDecl(OldTemplate); 4325 4326 // Inherit access appropriately. 4327 New->setAccess(Old->getAccess()); 4328 if (NewTemplate) 4329 NewTemplate->setAccess(New->getAccess()); 4330 4331 if (Old->isInline()) 4332 New->setImplicitlyInline(); 4333 } 4334 4335 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) { 4336 SourceManager &SrcMgr = getSourceManager(); 4337 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New); 4338 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation()); 4339 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first); 4340 auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first); 4341 auto &HSI = PP.getHeaderSearchInfo(); 4342 StringRef HdrFilename = 4343 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation())); 4344 4345 auto noteFromModuleOrInclude = [&](Module *Mod, 4346 SourceLocation IncLoc) -> bool { 4347 // Redefinition errors with modules are common with non modular mapped 4348 // headers, example: a non-modular header H in module A that also gets 4349 // included directly in a TU. Pointing twice to the same header/definition 4350 // is confusing, try to get better diagnostics when modules is on. 4351 if (IncLoc.isValid()) { 4352 if (Mod) { 4353 Diag(IncLoc, diag::note_redefinition_modules_same_file) 4354 << HdrFilename.str() << Mod->getFullModuleName(); 4355 if (!Mod->DefinitionLoc.isInvalid()) 4356 Diag(Mod->DefinitionLoc, diag::note_defined_here) 4357 << Mod->getFullModuleName(); 4358 } else { 4359 Diag(IncLoc, diag::note_redefinition_include_same_file) 4360 << HdrFilename.str(); 4361 } 4362 return true; 4363 } 4364 4365 return false; 4366 }; 4367 4368 // Is it the same file and same offset? Provide more information on why 4369 // this leads to a redefinition error. 4370 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) { 4371 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first); 4372 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first); 4373 bool EmittedDiag = 4374 noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc); 4375 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc); 4376 4377 // If the header has no guards, emit a note suggesting one. 4378 if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld)) 4379 Diag(Old->getLocation(), diag::note_use_ifdef_guards); 4380 4381 if (EmittedDiag) 4382 return; 4383 } 4384 4385 // Redefinition coming from different files or couldn't do better above. 4386 if (Old->getLocation().isValid()) 4387 Diag(Old->getLocation(), diag::note_previous_definition); 4388 } 4389 4390 /// We've just determined that \p Old and \p New both appear to be definitions 4391 /// of the same variable. Either diagnose or fix the problem. 4392 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) { 4393 if (!hasVisibleDefinition(Old) && 4394 (New->getFormalLinkage() == InternalLinkage || 4395 New->isInline() || 4396 New->getDescribedVarTemplate() || 4397 New->getNumTemplateParameterLists() || 4398 New->getDeclContext()->isDependentContext())) { 4399 // The previous definition is hidden, and multiple definitions are 4400 // permitted (in separate TUs). Demote this to a declaration. 4401 New->demoteThisDefinitionToDeclaration(); 4402 4403 // Make the canonical definition visible. 4404 if (auto *OldTD = Old->getDescribedVarTemplate()) 4405 makeMergedDefinitionVisible(OldTD); 4406 makeMergedDefinitionVisible(Old); 4407 return false; 4408 } else { 4409 Diag(New->getLocation(), diag::err_redefinition) << New; 4410 notePreviousDefinition(Old, New->getLocation()); 4411 New->setInvalidDecl(); 4412 return true; 4413 } 4414 } 4415 4416 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with 4417 /// no declarator (e.g. "struct foo;") is parsed. 4418 Decl * 4419 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, 4420 RecordDecl *&AnonRecord) { 4421 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false, 4422 AnonRecord); 4423 } 4424 4425 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to 4426 // disambiguate entities defined in different scopes. 4427 // While the VS2015 ABI fixes potential miscompiles, it is also breaks 4428 // compatibility. 4429 // We will pick our mangling number depending on which version of MSVC is being 4430 // targeted. 4431 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) { 4432 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015) 4433 ? S->getMSCurManglingNumber() 4434 : S->getMSLastManglingNumber(); 4435 } 4436 4437 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) { 4438 if (!Context.getLangOpts().CPlusPlus) 4439 return; 4440 4441 if (isa<CXXRecordDecl>(Tag->getParent())) { 4442 // If this tag is the direct child of a class, number it if 4443 // it is anonymous. 4444 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl()) 4445 return; 4446 MangleNumberingContext &MCtx = 4447 Context.getManglingNumberContext(Tag->getParent()); 4448 Context.setManglingNumber( 4449 Tag, MCtx.getManglingNumber( 4450 Tag, getMSManglingNumber(getLangOpts(), TagScope))); 4451 return; 4452 } 4453 4454 // If this tag isn't a direct child of a class, number it if it is local. 4455 MangleNumberingContext *MCtx; 4456 Decl *ManglingContextDecl; 4457 std::tie(MCtx, ManglingContextDecl) = 4458 getCurrentMangleNumberContext(Tag->getDeclContext()); 4459 if (MCtx) { 4460 Context.setManglingNumber( 4461 Tag, MCtx->getManglingNumber( 4462 Tag, getMSManglingNumber(getLangOpts(), TagScope))); 4463 } 4464 } 4465 4466 namespace { 4467 struct NonCLikeKind { 4468 enum { 4469 None, 4470 BaseClass, 4471 DefaultMemberInit, 4472 Lambda, 4473 Friend, 4474 OtherMember, 4475 Invalid, 4476 } Kind = None; 4477 SourceRange Range; 4478 4479 explicit operator bool() { return Kind != None; } 4480 }; 4481 } 4482 4483 /// Determine whether a class is C-like, according to the rules of C++ 4484 /// [dcl.typedef] for anonymous classes with typedef names for linkage. 4485 static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) { 4486 if (RD->isInvalidDecl()) 4487 return {NonCLikeKind::Invalid, {}}; 4488 4489 // C++ [dcl.typedef]p9: [P1766R1] 4490 // An unnamed class with a typedef name for linkage purposes shall not 4491 // 4492 // -- have any base classes 4493 if (RD->getNumBases()) 4494 return {NonCLikeKind::BaseClass, 4495 SourceRange(RD->bases_begin()->getBeginLoc(), 4496 RD->bases_end()[-1].getEndLoc())}; 4497 bool Invalid = false; 4498 for (Decl *D : RD->decls()) { 4499 // Don't complain about things we already diagnosed. 4500 if (D->isInvalidDecl()) { 4501 Invalid = true; 4502 continue; 4503 } 4504 4505 // -- have any [...] default member initializers 4506 if (auto *FD = dyn_cast<FieldDecl>(D)) { 4507 if (FD->hasInClassInitializer()) { 4508 auto *Init = FD->getInClassInitializer(); 4509 return {NonCLikeKind::DefaultMemberInit, 4510 Init ? Init->getSourceRange() : D->getSourceRange()}; 4511 } 4512 continue; 4513 } 4514 4515 // FIXME: We don't allow friend declarations. This violates the wording of 4516 // P1766, but not the intent. 4517 if (isa<FriendDecl>(D)) 4518 return {NonCLikeKind::Friend, D->getSourceRange()}; 4519 4520 // -- declare any members other than non-static data members, member 4521 // enumerations, or member classes, 4522 if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) || 4523 isa<EnumDecl>(D)) 4524 continue; 4525 auto *MemberRD = dyn_cast<CXXRecordDecl>(D); 4526 if (!MemberRD) { 4527 if (D->isImplicit()) 4528 continue; 4529 return {NonCLikeKind::OtherMember, D->getSourceRange()}; 4530 } 4531 4532 // -- contain a lambda-expression, 4533 if (MemberRD->isLambda()) 4534 return {NonCLikeKind::Lambda, MemberRD->getSourceRange()}; 4535 4536 // and all member classes shall also satisfy these requirements 4537 // (recursively). 4538 if (MemberRD->isThisDeclarationADefinition()) { 4539 if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD)) 4540 return Kind; 4541 } 4542 } 4543 4544 return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}}; 4545 } 4546 4547 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, 4548 TypedefNameDecl *NewTD) { 4549 if (TagFromDeclSpec->isInvalidDecl()) 4550 return; 4551 4552 // Do nothing if the tag already has a name for linkage purposes. 4553 if (TagFromDeclSpec->hasNameForLinkage()) 4554 return; 4555 4556 // A well-formed anonymous tag must always be a TUK_Definition. 4557 assert(TagFromDeclSpec->isThisDeclarationADefinition()); 4558 4559 // The type must match the tag exactly; no qualifiers allowed. 4560 if (!Context.hasSameType(NewTD->getUnderlyingType(), 4561 Context.getTagDeclType(TagFromDeclSpec))) { 4562 if (getLangOpts().CPlusPlus) 4563 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD); 4564 return; 4565 } 4566 4567 // C++ [dcl.typedef]p9: [P1766R1, applied as DR] 4568 // An unnamed class with a typedef name for linkage purposes shall [be 4569 // C-like]. 4570 // 4571 // FIXME: Also diagnose if we've already computed the linkage. That ideally 4572 // shouldn't happen, but there are constructs that the language rule doesn't 4573 // disallow for which we can't reasonably avoid computing linkage early. 4574 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec); 4575 NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD) 4576 : NonCLikeKind(); 4577 bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed(); 4578 if (NonCLike || ChangesLinkage) { 4579 if (NonCLike.Kind == NonCLikeKind::Invalid) 4580 return; 4581 4582 unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef; 4583 if (ChangesLinkage) { 4584 // If the linkage changes, we can't accept this as an extension. 4585 if (NonCLike.Kind == NonCLikeKind::None) 4586 DiagID = diag::err_typedef_changes_linkage; 4587 else 4588 DiagID = diag::err_non_c_like_anon_struct_in_typedef; 4589 } 4590 4591 SourceLocation FixitLoc = 4592 getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart()); 4593 llvm::SmallString<40> TextToInsert; 4594 TextToInsert += ' '; 4595 TextToInsert += NewTD->getIdentifier()->getName(); 4596 4597 Diag(FixitLoc, DiagID) 4598 << isa<TypeAliasDecl>(NewTD) 4599 << FixItHint::CreateInsertion(FixitLoc, TextToInsert); 4600 if (NonCLike.Kind != NonCLikeKind::None) { 4601 Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct) 4602 << NonCLike.Kind - 1 << NonCLike.Range; 4603 } 4604 Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here) 4605 << NewTD << isa<TypeAliasDecl>(NewTD); 4606 4607 if (ChangesLinkage) 4608 return; 4609 } 4610 4611 // Otherwise, set this as the anon-decl typedef for the tag. 4612 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); 4613 } 4614 4615 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) { 4616 switch (T) { 4617 case DeclSpec::TST_class: 4618 return 0; 4619 case DeclSpec::TST_struct: 4620 return 1; 4621 case DeclSpec::TST_interface: 4622 return 2; 4623 case DeclSpec::TST_union: 4624 return 3; 4625 case DeclSpec::TST_enum: 4626 return 4; 4627 default: 4628 llvm_unreachable("unexpected type specifier"); 4629 } 4630 } 4631 4632 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with 4633 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template 4634 /// parameters to cope with template friend declarations. 4635 Decl * 4636 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, 4637 MultiTemplateParamsArg TemplateParams, 4638 bool IsExplicitInstantiation, 4639 RecordDecl *&AnonRecord) { 4640 Decl *TagD = nullptr; 4641 TagDecl *Tag = nullptr; 4642 if (DS.getTypeSpecType() == DeclSpec::TST_class || 4643 DS.getTypeSpecType() == DeclSpec::TST_struct || 4644 DS.getTypeSpecType() == DeclSpec::TST_interface || 4645 DS.getTypeSpecType() == DeclSpec::TST_union || 4646 DS.getTypeSpecType() == DeclSpec::TST_enum) { 4647 TagD = DS.getRepAsDecl(); 4648 4649 if (!TagD) // We probably had an error 4650 return nullptr; 4651 4652 // Note that the above type specs guarantee that the 4653 // type rep is a Decl, whereas in many of the others 4654 // it's a Type. 4655 if (isa<TagDecl>(TagD)) 4656 Tag = cast<TagDecl>(TagD); 4657 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD)) 4658 Tag = CTD->getTemplatedDecl(); 4659 } 4660 4661 if (Tag) { 4662 handleTagNumbering(Tag, S); 4663 Tag->setFreeStanding(); 4664 if (Tag->isInvalidDecl()) 4665 return Tag; 4666 } 4667 4668 if (unsigned TypeQuals = DS.getTypeQualifiers()) { 4669 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object 4670 // or incomplete types shall not be restrict-qualified." 4671 if (TypeQuals & DeclSpec::TQ_restrict) 4672 Diag(DS.getRestrictSpecLoc(), 4673 diag::err_typecheck_invalid_restrict_not_pointer_noarg) 4674 << DS.getSourceRange(); 4675 } 4676 4677 if (DS.isInlineSpecified()) 4678 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) 4679 << getLangOpts().CPlusPlus17; 4680 4681 if (DS.hasConstexprSpecifier()) { 4682 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations 4683 // and definitions of functions and variables. 4684 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to 4685 // the declaration of a function or function template 4686 if (Tag) 4687 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) 4688 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) 4689 << static_cast<int>(DS.getConstexprSpecifier()); 4690 else 4691 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind) 4692 << static_cast<int>(DS.getConstexprSpecifier()); 4693 // Don't emit warnings after this error. 4694 return TagD; 4695 } 4696 4697 DiagnoseFunctionSpecifiers(DS); 4698 4699 if (DS.isFriendSpecified()) { 4700 // If we're dealing with a decl but not a TagDecl, assume that 4701 // whatever routines created it handled the friendship aspect. 4702 if (TagD && !Tag) 4703 return nullptr; 4704 return ActOnFriendTypeDecl(S, DS, TemplateParams); 4705 } 4706 4707 const CXXScopeSpec &SS = DS.getTypeSpecScope(); 4708 bool IsExplicitSpecialization = 4709 !TemplateParams.empty() && TemplateParams.back()->size() == 0; 4710 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() && 4711 !IsExplicitInstantiation && !IsExplicitSpecialization && 4712 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) { 4713 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a 4714 // nested-name-specifier unless it is an explicit instantiation 4715 // or an explicit specialization. 4716 // 4717 // FIXME: We allow class template partial specializations here too, per the 4718 // obvious intent of DR1819. 4719 // 4720 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either. 4721 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier) 4722 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange(); 4723 return nullptr; 4724 } 4725 4726 // Track whether this decl-specifier declares anything. 4727 bool DeclaresAnything = true; 4728 4729 // Handle anonymous struct definitions. 4730 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { 4731 if (!Record->getDeclName() && Record->isCompleteDefinition() && 4732 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { 4733 if (getLangOpts().CPlusPlus || 4734 Record->getDeclContext()->isRecord()) { 4735 // If CurContext is a DeclContext that can contain statements, 4736 // RecursiveASTVisitor won't visit the decls that 4737 // BuildAnonymousStructOrUnion() will put into CurContext. 4738 // Also store them here so that they can be part of the 4739 // DeclStmt that gets created in this case. 4740 // FIXME: Also return the IndirectFieldDecls created by 4741 // BuildAnonymousStructOr union, for the same reason? 4742 if (CurContext->isFunctionOrMethod()) 4743 AnonRecord = Record; 4744 return BuildAnonymousStructOrUnion(S, DS, AS, Record, 4745 Context.getPrintingPolicy()); 4746 } 4747 4748 DeclaresAnything = false; 4749 } 4750 } 4751 4752 // C11 6.7.2.1p2: 4753 // A struct-declaration that does not declare an anonymous structure or 4754 // anonymous union shall contain a struct-declarator-list. 4755 // 4756 // This rule also existed in C89 and C99; the grammar for struct-declaration 4757 // did not permit a struct-declaration without a struct-declarator-list. 4758 if (!getLangOpts().CPlusPlus && CurContext->isRecord() && 4759 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { 4760 // Check for Microsoft C extension: anonymous struct/union member. 4761 // Handle 2 kinds of anonymous struct/union: 4762 // struct STRUCT; 4763 // union UNION; 4764 // and 4765 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct. 4766 // UNION_TYPE; <- where UNION_TYPE is a typedef union. 4767 if ((Tag && Tag->getDeclName()) || 4768 DS.getTypeSpecType() == DeclSpec::TST_typename) { 4769 RecordDecl *Record = nullptr; 4770 if (Tag) 4771 Record = dyn_cast<RecordDecl>(Tag); 4772 else if (const RecordType *RT = 4773 DS.getRepAsType().get()->getAsStructureType()) 4774 Record = RT->getDecl(); 4775 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType()) 4776 Record = UT->getDecl(); 4777 4778 if (Record && getLangOpts().MicrosoftExt) { 4779 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record) 4780 << Record->isUnion() << DS.getSourceRange(); 4781 return BuildMicrosoftCAnonymousStruct(S, DS, Record); 4782 } 4783 4784 DeclaresAnything = false; 4785 } 4786 } 4787 4788 // Skip all the checks below if we have a type error. 4789 if (DS.getTypeSpecType() == DeclSpec::TST_error || 4790 (TagD && TagD->isInvalidDecl())) 4791 return TagD; 4792 4793 if (getLangOpts().CPlusPlus && 4794 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) 4795 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) 4796 if (Enum->enumerator_begin() == Enum->enumerator_end() && 4797 !Enum->getIdentifier() && !Enum->isInvalidDecl()) 4798 DeclaresAnything = false; 4799 4800 if (!DS.isMissingDeclaratorOk()) { 4801 // Customize diagnostic for a typedef missing a name. 4802 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 4803 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name) 4804 << DS.getSourceRange(); 4805 else 4806 DeclaresAnything = false; 4807 } 4808 4809 if (DS.isModulePrivateSpecified() && 4810 Tag && Tag->getDeclContext()->isFunctionOrMethod()) 4811 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) 4812 << Tag->getTagKind() 4813 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); 4814 4815 ActOnDocumentableDecl(TagD); 4816 4817 // C 6.7/2: 4818 // A declaration [...] shall declare at least a declarator [...], a tag, 4819 // or the members of an enumeration. 4820 // C++ [dcl.dcl]p3: 4821 // [If there are no declarators], and except for the declaration of an 4822 // unnamed bit-field, the decl-specifier-seq shall introduce one or more 4823 // names into the program, or shall redeclare a name introduced by a 4824 // previous declaration. 4825 if (!DeclaresAnything) { 4826 // In C, we allow this as a (popular) extension / bug. Don't bother 4827 // producing further diagnostics for redundant qualifiers after this. 4828 Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty()) 4829 ? diag::err_no_declarators 4830 : diag::ext_no_declarators) 4831 << DS.getSourceRange(); 4832 return TagD; 4833 } 4834 4835 // C++ [dcl.stc]p1: 4836 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the 4837 // init-declarator-list of the declaration shall not be empty. 4838 // C++ [dcl.fct.spec]p1: 4839 // If a cv-qualifier appears in a decl-specifier-seq, the 4840 // init-declarator-list of the declaration shall not be empty. 4841 // 4842 // Spurious qualifiers here appear to be valid in C. 4843 unsigned DiagID = diag::warn_standalone_specifier; 4844 if (getLangOpts().CPlusPlus) 4845 DiagID = diag::ext_standalone_specifier; 4846 4847 // Note that a linkage-specification sets a storage class, but 4848 // 'extern "C" struct foo;' is actually valid and not theoretically 4849 // useless. 4850 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { 4851 if (SCS == DeclSpec::SCS_mutable) 4852 // Since mutable is not a viable storage class specifier in C, there is 4853 // no reason to treat it as an extension. Instead, diagnose as an error. 4854 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember); 4855 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef) 4856 Diag(DS.getStorageClassSpecLoc(), DiagID) 4857 << DeclSpec::getSpecifierName(SCS); 4858 } 4859 4860 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) 4861 Diag(DS.getThreadStorageClassSpecLoc(), DiagID) 4862 << DeclSpec::getSpecifierName(TSCS); 4863 if (DS.getTypeQualifiers()) { 4864 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 4865 Diag(DS.getConstSpecLoc(), DiagID) << "const"; 4866 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 4867 Diag(DS.getConstSpecLoc(), DiagID) << "volatile"; 4868 // Restrict is covered above. 4869 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 4870 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic"; 4871 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 4872 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned"; 4873 } 4874 4875 // Warn about ignored type attributes, for example: 4876 // __attribute__((aligned)) struct A; 4877 // Attributes should be placed after tag to apply to type declaration. 4878 if (!DS.getAttributes().empty()) { 4879 DeclSpec::TST TypeSpecType = DS.getTypeSpecType(); 4880 if (TypeSpecType == DeclSpec::TST_class || 4881 TypeSpecType == DeclSpec::TST_struct || 4882 TypeSpecType == DeclSpec::TST_interface || 4883 TypeSpecType == DeclSpec::TST_union || 4884 TypeSpecType == DeclSpec::TST_enum) { 4885 for (const ParsedAttr &AL : DS.getAttributes()) 4886 Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored) 4887 << AL << GetDiagnosticTypeSpecifierID(TypeSpecType); 4888 } 4889 } 4890 4891 return TagD; 4892 } 4893 4894 /// We are trying to inject an anonymous member into the given scope; 4895 /// check if there's an existing declaration that can't be overloaded. 4896 /// 4897 /// \return true if this is a forbidden redeclaration 4898 static bool CheckAnonMemberRedeclaration(Sema &SemaRef, 4899 Scope *S, 4900 DeclContext *Owner, 4901 DeclarationName Name, 4902 SourceLocation NameLoc, 4903 bool IsUnion) { 4904 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, 4905 Sema::ForVisibleRedeclaration); 4906 if (!SemaRef.LookupName(R, S)) return false; 4907 4908 // Pick a representative declaration. 4909 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); 4910 assert(PrevDecl && "Expected a non-null Decl"); 4911 4912 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) 4913 return false; 4914 4915 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl) 4916 << IsUnion << Name; 4917 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 4918 4919 return true; 4920 } 4921 4922 /// InjectAnonymousStructOrUnionMembers - Inject the members of the 4923 /// anonymous struct or union AnonRecord into the owning context Owner 4924 /// and scope S. This routine will be invoked just after we realize 4925 /// that an unnamed union or struct is actually an anonymous union or 4926 /// struct, e.g., 4927 /// 4928 /// @code 4929 /// union { 4930 /// int i; 4931 /// float f; 4932 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and 4933 /// // f into the surrounding scope.x 4934 /// @endcode 4935 /// 4936 /// This routine is recursive, injecting the names of nested anonymous 4937 /// structs/unions into the owning context and scope as well. 4938 static bool 4939 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner, 4940 RecordDecl *AnonRecord, AccessSpecifier AS, 4941 SmallVectorImpl<NamedDecl *> &Chaining) { 4942 bool Invalid = false; 4943 4944 // Look every FieldDecl and IndirectFieldDecl with a name. 4945 for (auto *D : AnonRecord->decls()) { 4946 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) && 4947 cast<NamedDecl>(D)->getDeclName()) { 4948 ValueDecl *VD = cast<ValueDecl>(D); 4949 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), 4950 VD->getLocation(), 4951 AnonRecord->isUnion())) { 4952 // C++ [class.union]p2: 4953 // The names of the members of an anonymous union shall be 4954 // distinct from the names of any other entity in the 4955 // scope in which the anonymous union is declared. 4956 Invalid = true; 4957 } else { 4958 // C++ [class.union]p2: 4959 // For the purpose of name lookup, after the anonymous union 4960 // definition, the members of the anonymous union are 4961 // considered to have been defined in the scope in which the 4962 // anonymous union is declared. 4963 unsigned OldChainingSize = Chaining.size(); 4964 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) 4965 Chaining.append(IF->chain_begin(), IF->chain_end()); 4966 else 4967 Chaining.push_back(VD); 4968 4969 assert(Chaining.size() >= 2); 4970 NamedDecl **NamedChain = 4971 new (SemaRef.Context)NamedDecl*[Chaining.size()]; 4972 for (unsigned i = 0; i < Chaining.size(); i++) 4973 NamedChain[i] = Chaining[i]; 4974 4975 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( 4976 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(), 4977 VD->getType(), {NamedChain, Chaining.size()}); 4978 4979 for (const auto *Attr : VD->attrs()) 4980 IndirectField->addAttr(Attr->clone(SemaRef.Context)); 4981 4982 IndirectField->setAccess(AS); 4983 IndirectField->setImplicit(); 4984 SemaRef.PushOnScopeChains(IndirectField, S); 4985 4986 // That includes picking up the appropriate access specifier. 4987 if (AS != AS_none) IndirectField->setAccess(AS); 4988 4989 Chaining.resize(OldChainingSize); 4990 } 4991 } 4992 } 4993 4994 return Invalid; 4995 } 4996 4997 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to 4998 /// a VarDecl::StorageClass. Any error reporting is up to the caller: 4999 /// illegal input values are mapped to SC_None. 5000 static StorageClass 5001 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) { 5002 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec(); 5003 assert(StorageClassSpec != DeclSpec::SCS_typedef && 5004 "Parser allowed 'typedef' as storage class VarDecl."); 5005 switch (StorageClassSpec) { 5006 case DeclSpec::SCS_unspecified: return SC_None; 5007 case DeclSpec::SCS_extern: 5008 if (DS.isExternInLinkageSpec()) 5009 return SC_None; 5010 return SC_Extern; 5011 case DeclSpec::SCS_static: return SC_Static; 5012 case DeclSpec::SCS_auto: return SC_Auto; 5013 case DeclSpec::SCS_register: return SC_Register; 5014 case DeclSpec::SCS_private_extern: return SC_PrivateExtern; 5015 // Illegal SCSs map to None: error reporting is up to the caller. 5016 case DeclSpec::SCS_mutable: // Fall through. 5017 case DeclSpec::SCS_typedef: return SC_None; 5018 } 5019 llvm_unreachable("unknown storage class specifier"); 5020 } 5021 5022 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) { 5023 assert(Record->hasInClassInitializer()); 5024 5025 for (const auto *I : Record->decls()) { 5026 const auto *FD = dyn_cast<FieldDecl>(I); 5027 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) 5028 FD = IFD->getAnonField(); 5029 if (FD && FD->hasInClassInitializer()) 5030 return FD->getLocation(); 5031 } 5032 5033 llvm_unreachable("couldn't find in-class initializer"); 5034 } 5035 5036 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, 5037 SourceLocation DefaultInitLoc) { 5038 if (!Parent->isUnion() || !Parent->hasInClassInitializer()) 5039 return; 5040 5041 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization); 5042 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0; 5043 } 5044 5045 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, 5046 CXXRecordDecl *AnonUnion) { 5047 if (!Parent->isUnion() || !Parent->hasInClassInitializer()) 5048 return; 5049 5050 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion)); 5051 } 5052 5053 /// BuildAnonymousStructOrUnion - Handle the declaration of an 5054 /// anonymous structure or union. Anonymous unions are a C++ feature 5055 /// (C++ [class.union]) and a C11 feature; anonymous structures 5056 /// are a C11 feature and GNU C++ extension. 5057 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, 5058 AccessSpecifier AS, 5059 RecordDecl *Record, 5060 const PrintingPolicy &Policy) { 5061 DeclContext *Owner = Record->getDeclContext(); 5062 5063 // Diagnose whether this anonymous struct/union is an extension. 5064 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11) 5065 Diag(Record->getLocation(), diag::ext_anonymous_union); 5066 else if (!Record->isUnion() && getLangOpts().CPlusPlus) 5067 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct); 5068 else if (!Record->isUnion() && !getLangOpts().C11) 5069 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct); 5070 5071 // C and C++ require different kinds of checks for anonymous 5072 // structs/unions. 5073 bool Invalid = false; 5074 if (getLangOpts().CPlusPlus) { 5075 const char *PrevSpec = nullptr; 5076 if (Record->isUnion()) { 5077 // C++ [class.union]p6: 5078 // C++17 [class.union.anon]p2: 5079 // Anonymous unions declared in a named namespace or in the 5080 // global namespace shall be declared static. 5081 unsigned DiagID; 5082 DeclContext *OwnerScope = Owner->getRedeclContext(); 5083 if (DS.getStorageClassSpec() != DeclSpec::SCS_static && 5084 (OwnerScope->isTranslationUnit() || 5085 (OwnerScope->isNamespace() && 5086 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) { 5087 Diag(Record->getLocation(), diag::err_anonymous_union_not_static) 5088 << FixItHint::CreateInsertion(Record->getLocation(), "static "); 5089 5090 // Recover by adding 'static'. 5091 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(), 5092 PrevSpec, DiagID, Policy); 5093 } 5094 // C++ [class.union]p6: 5095 // A storage class is not allowed in a declaration of an 5096 // anonymous union in a class scope. 5097 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && 5098 isa<RecordDecl>(Owner)) { 5099 Diag(DS.getStorageClassSpecLoc(), 5100 diag::err_anonymous_union_with_storage_spec) 5101 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 5102 5103 // Recover by removing the storage specifier. 5104 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, 5105 SourceLocation(), 5106 PrevSpec, DiagID, Context.getPrintingPolicy()); 5107 } 5108 } 5109 5110 // Ignore const/volatile/restrict qualifiers. 5111 if (DS.getTypeQualifiers()) { 5112 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 5113 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) 5114 << Record->isUnion() << "const" 5115 << FixItHint::CreateRemoval(DS.getConstSpecLoc()); 5116 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 5117 Diag(DS.getVolatileSpecLoc(), 5118 diag::ext_anonymous_struct_union_qualified) 5119 << Record->isUnion() << "volatile" 5120 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); 5121 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 5122 Diag(DS.getRestrictSpecLoc(), 5123 diag::ext_anonymous_struct_union_qualified) 5124 << Record->isUnion() << "restrict" 5125 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); 5126 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 5127 Diag(DS.getAtomicSpecLoc(), 5128 diag::ext_anonymous_struct_union_qualified) 5129 << Record->isUnion() << "_Atomic" 5130 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc()); 5131 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 5132 Diag(DS.getUnalignedSpecLoc(), 5133 diag::ext_anonymous_struct_union_qualified) 5134 << Record->isUnion() << "__unaligned" 5135 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc()); 5136 5137 DS.ClearTypeQualifiers(); 5138 } 5139 5140 // C++ [class.union]p2: 5141 // The member-specification of an anonymous union shall only 5142 // define non-static data members. [Note: nested types and 5143 // functions cannot be declared within an anonymous union. ] 5144 for (auto *Mem : Record->decls()) { 5145 // Ignore invalid declarations; we already diagnosed them. 5146 if (Mem->isInvalidDecl()) 5147 continue; 5148 5149 if (auto *FD = dyn_cast<FieldDecl>(Mem)) { 5150 // C++ [class.union]p3: 5151 // An anonymous union shall not have private or protected 5152 // members (clause 11). 5153 assert(FD->getAccess() != AS_none); 5154 if (FD->getAccess() != AS_public) { 5155 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) 5156 << Record->isUnion() << (FD->getAccess() == AS_protected); 5157 Invalid = true; 5158 } 5159 5160 // C++ [class.union]p1 5161 // An object of a class with a non-trivial constructor, a non-trivial 5162 // copy constructor, a non-trivial destructor, or a non-trivial copy 5163 // assignment operator cannot be a member of a union, nor can an 5164 // array of such objects. 5165 if (CheckNontrivialField(FD)) 5166 Invalid = true; 5167 } else if (Mem->isImplicit()) { 5168 // Any implicit members are fine. 5169 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) { 5170 // This is a type that showed up in an 5171 // elaborated-type-specifier inside the anonymous struct or 5172 // union, but which actually declares a type outside of the 5173 // anonymous struct or union. It's okay. 5174 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) { 5175 if (!MemRecord->isAnonymousStructOrUnion() && 5176 MemRecord->getDeclName()) { 5177 // Visual C++ allows type definition in anonymous struct or union. 5178 if (getLangOpts().MicrosoftExt) 5179 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) 5180 << Record->isUnion(); 5181 else { 5182 // This is a nested type declaration. 5183 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) 5184 << Record->isUnion(); 5185 Invalid = true; 5186 } 5187 } else { 5188 // This is an anonymous type definition within another anonymous type. 5189 // This is a popular extension, provided by Plan9, MSVC and GCC, but 5190 // not part of standard C++. 5191 Diag(MemRecord->getLocation(), 5192 diag::ext_anonymous_record_with_anonymous_type) 5193 << Record->isUnion(); 5194 } 5195 } else if (isa<AccessSpecDecl>(Mem)) { 5196 // Any access specifier is fine. 5197 } else if (isa<StaticAssertDecl>(Mem)) { 5198 // In C++1z, static_assert declarations are also fine. 5199 } else { 5200 // We have something that isn't a non-static data 5201 // member. Complain about it. 5202 unsigned DK = diag::err_anonymous_record_bad_member; 5203 if (isa<TypeDecl>(Mem)) 5204 DK = diag::err_anonymous_record_with_type; 5205 else if (isa<FunctionDecl>(Mem)) 5206 DK = diag::err_anonymous_record_with_function; 5207 else if (isa<VarDecl>(Mem)) 5208 DK = diag::err_anonymous_record_with_static; 5209 5210 // Visual C++ allows type definition in anonymous struct or union. 5211 if (getLangOpts().MicrosoftExt && 5212 DK == diag::err_anonymous_record_with_type) 5213 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type) 5214 << Record->isUnion(); 5215 else { 5216 Diag(Mem->getLocation(), DK) << Record->isUnion(); 5217 Invalid = true; 5218 } 5219 } 5220 } 5221 5222 // C++11 [class.union]p8 (DR1460): 5223 // At most one variant member of a union may have a 5224 // brace-or-equal-initializer. 5225 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() && 5226 Owner->isRecord()) 5227 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner), 5228 cast<CXXRecordDecl>(Record)); 5229 } 5230 5231 if (!Record->isUnion() && !Owner->isRecord()) { 5232 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) 5233 << getLangOpts().CPlusPlus; 5234 Invalid = true; 5235 } 5236 5237 // C++ [dcl.dcl]p3: 5238 // [If there are no declarators], and except for the declaration of an 5239 // unnamed bit-field, the decl-specifier-seq shall introduce one or more 5240 // names into the program 5241 // C++ [class.mem]p2: 5242 // each such member-declaration shall either declare at least one member 5243 // name of the class or declare at least one unnamed bit-field 5244 // 5245 // For C this is an error even for a named struct, and is diagnosed elsewhere. 5246 if (getLangOpts().CPlusPlus && Record->field_empty()) 5247 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange(); 5248 5249 // Mock up a declarator. 5250 Declarator Dc(DS, DeclaratorContext::Member); 5251 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); 5252 assert(TInfo && "couldn't build declarator info for anonymous struct/union"); 5253 5254 // Create a declaration for this anonymous struct/union. 5255 NamedDecl *Anon = nullptr; 5256 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { 5257 Anon = FieldDecl::Create( 5258 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(), 5259 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo, 5260 /*BitWidth=*/nullptr, /*Mutable=*/false, 5261 /*InitStyle=*/ICIS_NoInit); 5262 Anon->setAccess(AS); 5263 ProcessDeclAttributes(S, Anon, Dc); 5264 5265 if (getLangOpts().CPlusPlus) 5266 FieldCollector->Add(cast<FieldDecl>(Anon)); 5267 } else { 5268 DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); 5269 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS); 5270 if (SCSpec == DeclSpec::SCS_mutable) { 5271 // mutable can only appear on non-static class members, so it's always 5272 // an error here 5273 Diag(Record->getLocation(), diag::err_mutable_nonmember); 5274 Invalid = true; 5275 SC = SC_None; 5276 } 5277 5278 assert(DS.getAttributes().empty() && "No attribute expected"); 5279 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(), 5280 Record->getLocation(), /*IdentifierInfo=*/nullptr, 5281 Context.getTypeDeclType(Record), TInfo, SC); 5282 5283 // Default-initialize the implicit variable. This initialization will be 5284 // trivial in almost all cases, except if a union member has an in-class 5285 // initializer: 5286 // union { int n = 0; }; 5287 if (!Invalid) 5288 ActOnUninitializedDecl(Anon); 5289 } 5290 Anon->setImplicit(); 5291 5292 // Mark this as an anonymous struct/union type. 5293 Record->setAnonymousStructOrUnion(true); 5294 5295 // Add the anonymous struct/union object to the current 5296 // context. We'll be referencing this object when we refer to one of 5297 // its members. 5298 Owner->addDecl(Anon); 5299 5300 // Inject the members of the anonymous struct/union into the owning 5301 // context and into the identifier resolver chain for name lookup 5302 // purposes. 5303 SmallVector<NamedDecl*, 2> Chain; 5304 Chain.push_back(Anon); 5305 5306 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain)) 5307 Invalid = true; 5308 5309 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) { 5310 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { 5311 MangleNumberingContext *MCtx; 5312 Decl *ManglingContextDecl; 5313 std::tie(MCtx, ManglingContextDecl) = 5314 getCurrentMangleNumberContext(NewVD->getDeclContext()); 5315 if (MCtx) { 5316 Context.setManglingNumber( 5317 NewVD, MCtx->getManglingNumber( 5318 NewVD, getMSManglingNumber(getLangOpts(), S))); 5319 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); 5320 } 5321 } 5322 } 5323 5324 if (Invalid) 5325 Anon->setInvalidDecl(); 5326 5327 return Anon; 5328 } 5329 5330 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an 5331 /// Microsoft C anonymous structure. 5332 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx 5333 /// Example: 5334 /// 5335 /// struct A { int a; }; 5336 /// struct B { struct A; int b; }; 5337 /// 5338 /// void foo() { 5339 /// B var; 5340 /// var.a = 3; 5341 /// } 5342 /// 5343 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, 5344 RecordDecl *Record) { 5345 assert(Record && "expected a record!"); 5346 5347 // Mock up a declarator. 5348 Declarator Dc(DS, DeclaratorContext::TypeName); 5349 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); 5350 assert(TInfo && "couldn't build declarator info for anonymous struct"); 5351 5352 auto *ParentDecl = cast<RecordDecl>(CurContext); 5353 QualType RecTy = Context.getTypeDeclType(Record); 5354 5355 // Create a declaration for this anonymous struct. 5356 NamedDecl *Anon = 5357 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(), 5358 /*IdentifierInfo=*/nullptr, RecTy, TInfo, 5359 /*BitWidth=*/nullptr, /*Mutable=*/false, 5360 /*InitStyle=*/ICIS_NoInit); 5361 Anon->setImplicit(); 5362 5363 // Add the anonymous struct object to the current context. 5364 CurContext->addDecl(Anon); 5365 5366 // Inject the members of the anonymous struct into the current 5367 // context and into the identifier resolver chain for name lookup 5368 // purposes. 5369 SmallVector<NamedDecl*, 2> Chain; 5370 Chain.push_back(Anon); 5371 5372 RecordDecl *RecordDef = Record->getDefinition(); 5373 if (RequireCompleteSizedType(Anon->getLocation(), RecTy, 5374 diag::err_field_incomplete_or_sizeless) || 5375 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef, 5376 AS_none, Chain)) { 5377 Anon->setInvalidDecl(); 5378 ParentDecl->setInvalidDecl(); 5379 } 5380 5381 return Anon; 5382 } 5383 5384 /// GetNameForDeclarator - Determine the full declaration name for the 5385 /// given Declarator. 5386 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { 5387 return GetNameFromUnqualifiedId(D.getName()); 5388 } 5389 5390 /// Retrieves the declaration name from a parsed unqualified-id. 5391 DeclarationNameInfo 5392 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { 5393 DeclarationNameInfo NameInfo; 5394 NameInfo.setLoc(Name.StartLocation); 5395 5396 switch (Name.getKind()) { 5397 5398 case UnqualifiedIdKind::IK_ImplicitSelfParam: 5399 case UnqualifiedIdKind::IK_Identifier: 5400 NameInfo.setName(Name.Identifier); 5401 return NameInfo; 5402 5403 case UnqualifiedIdKind::IK_DeductionGuideName: { 5404 // C++ [temp.deduct.guide]p3: 5405 // The simple-template-id shall name a class template specialization. 5406 // The template-name shall be the same identifier as the template-name 5407 // of the simple-template-id. 5408 // These together intend to imply that the template-name shall name a 5409 // class template. 5410 // FIXME: template<typename T> struct X {}; 5411 // template<typename T> using Y = X<T>; 5412 // Y(int) -> Y<int>; 5413 // satisfies these rules but does not name a class template. 5414 TemplateName TN = Name.TemplateName.get().get(); 5415 auto *Template = TN.getAsTemplateDecl(); 5416 if (!Template || !isa<ClassTemplateDecl>(Template)) { 5417 Diag(Name.StartLocation, 5418 diag::err_deduction_guide_name_not_class_template) 5419 << (int)getTemplateNameKindForDiagnostics(TN) << TN; 5420 if (Template) 5421 Diag(Template->getLocation(), diag::note_template_decl_here); 5422 return DeclarationNameInfo(); 5423 } 5424 5425 NameInfo.setName( 5426 Context.DeclarationNames.getCXXDeductionGuideName(Template)); 5427 return NameInfo; 5428 } 5429 5430 case UnqualifiedIdKind::IK_OperatorFunctionId: 5431 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( 5432 Name.OperatorFunctionId.Operator)); 5433 NameInfo.setCXXOperatorNameRange(SourceRange( 5434 Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation)); 5435 return NameInfo; 5436 5437 case UnqualifiedIdKind::IK_LiteralOperatorId: 5438 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( 5439 Name.Identifier)); 5440 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); 5441 return NameInfo; 5442 5443 case UnqualifiedIdKind::IK_ConversionFunctionId: { 5444 TypeSourceInfo *TInfo; 5445 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); 5446 if (Ty.isNull()) 5447 return DeclarationNameInfo(); 5448 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( 5449 Context.getCanonicalType(Ty))); 5450 NameInfo.setNamedTypeInfo(TInfo); 5451 return NameInfo; 5452 } 5453 5454 case UnqualifiedIdKind::IK_ConstructorName: { 5455 TypeSourceInfo *TInfo; 5456 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); 5457 if (Ty.isNull()) 5458 return DeclarationNameInfo(); 5459 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 5460 Context.getCanonicalType(Ty))); 5461 NameInfo.setNamedTypeInfo(TInfo); 5462 return NameInfo; 5463 } 5464 5465 case UnqualifiedIdKind::IK_ConstructorTemplateId: { 5466 // In well-formed code, we can only have a constructor 5467 // template-id that refers to the current context, so go there 5468 // to find the actual type being constructed. 5469 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); 5470 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) 5471 return DeclarationNameInfo(); 5472 5473 // Determine the type of the class being constructed. 5474 QualType CurClassType = Context.getTypeDeclType(CurClass); 5475 5476 // FIXME: Check two things: that the template-id names the same type as 5477 // CurClassType, and that the template-id does not occur when the name 5478 // was qualified. 5479 5480 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 5481 Context.getCanonicalType(CurClassType))); 5482 // FIXME: should we retrieve TypeSourceInfo? 5483 NameInfo.setNamedTypeInfo(nullptr); 5484 return NameInfo; 5485 } 5486 5487 case UnqualifiedIdKind::IK_DestructorName: { 5488 TypeSourceInfo *TInfo; 5489 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo); 5490 if (Ty.isNull()) 5491 return DeclarationNameInfo(); 5492 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( 5493 Context.getCanonicalType(Ty))); 5494 NameInfo.setNamedTypeInfo(TInfo); 5495 return NameInfo; 5496 } 5497 5498 case UnqualifiedIdKind::IK_TemplateId: { 5499 TemplateName TName = Name.TemplateId->Template.get(); 5500 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; 5501 return Context.getNameForTemplate(TName, TNameLoc); 5502 } 5503 5504 } // switch (Name.getKind()) 5505 5506 llvm_unreachable("Unknown name kind"); 5507 } 5508 5509 static QualType getCoreType(QualType Ty) { 5510 do { 5511 if (Ty->isPointerType() || Ty->isReferenceType()) 5512 Ty = Ty->getPointeeType(); 5513 else if (Ty->isArrayType()) 5514 Ty = Ty->castAsArrayTypeUnsafe()->getElementType(); 5515 else 5516 return Ty.withoutLocalFastQualifiers(); 5517 } while (true); 5518 } 5519 5520 /// hasSimilarParameters - Determine whether the C++ functions Declaration 5521 /// and Definition have "nearly" matching parameters. This heuristic is 5522 /// used to improve diagnostics in the case where an out-of-line function 5523 /// definition doesn't match any declaration within the class or namespace. 5524 /// Also sets Params to the list of indices to the parameters that differ 5525 /// between the declaration and the definition. If hasSimilarParameters 5526 /// returns true and Params is empty, then all of the parameters match. 5527 static bool hasSimilarParameters(ASTContext &Context, 5528 FunctionDecl *Declaration, 5529 FunctionDecl *Definition, 5530 SmallVectorImpl<unsigned> &Params) { 5531 Params.clear(); 5532 if (Declaration->param_size() != Definition->param_size()) 5533 return false; 5534 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { 5535 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); 5536 QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); 5537 5538 // The parameter types are identical 5539 if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy)) 5540 continue; 5541 5542 QualType DeclParamBaseTy = getCoreType(DeclParamTy); 5543 QualType DefParamBaseTy = getCoreType(DefParamTy); 5544 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier(); 5545 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier(); 5546 5547 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) || 5548 (DeclTyName && DeclTyName == DefTyName)) 5549 Params.push_back(Idx); 5550 else // The two parameters aren't even close 5551 return false; 5552 } 5553 5554 return true; 5555 } 5556 5557 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given 5558 /// declarator needs to be rebuilt in the current instantiation. 5559 /// Any bits of declarator which appear before the name are valid for 5560 /// consideration here. That's specifically the type in the decl spec 5561 /// and the base type in any member-pointer chunks. 5562 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, 5563 DeclarationName Name) { 5564 // The types we specifically need to rebuild are: 5565 // - typenames, typeofs, and decltypes 5566 // - types which will become injected class names 5567 // Of course, we also need to rebuild any type referencing such a 5568 // type. It's safest to just say "dependent", but we call out a 5569 // few cases here. 5570 5571 DeclSpec &DS = D.getMutableDeclSpec(); 5572 switch (DS.getTypeSpecType()) { 5573 case DeclSpec::TST_typename: 5574 case DeclSpec::TST_typeofType: 5575 case DeclSpec::TST_underlyingType: 5576 case DeclSpec::TST_atomic: { 5577 // Grab the type from the parser. 5578 TypeSourceInfo *TSI = nullptr; 5579 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI); 5580 if (T.isNull() || !T->isInstantiationDependentType()) break; 5581 5582 // Make sure there's a type source info. This isn't really much 5583 // of a waste; most dependent types should have type source info 5584 // attached already. 5585 if (!TSI) 5586 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc()); 5587 5588 // Rebuild the type in the current instantiation. 5589 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name); 5590 if (!TSI) return true; 5591 5592 // Store the new type back in the decl spec. 5593 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI); 5594 DS.UpdateTypeRep(LocType); 5595 break; 5596 } 5597 5598 case DeclSpec::TST_decltype: 5599 case DeclSpec::TST_typeofExpr: { 5600 Expr *E = DS.getRepAsExpr(); 5601 ExprResult Result = S.RebuildExprInCurrentInstantiation(E); 5602 if (Result.isInvalid()) return true; 5603 DS.UpdateExprRep(Result.get()); 5604 break; 5605 } 5606 5607 default: 5608 // Nothing to do for these decl specs. 5609 break; 5610 } 5611 5612 // It doesn't matter what order we do this in. 5613 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { 5614 DeclaratorChunk &Chunk = D.getTypeObject(I); 5615 5616 // The only type information in the declarator which can come 5617 // before the declaration name is the base type of a member 5618 // pointer. 5619 if (Chunk.Kind != DeclaratorChunk::MemberPointer) 5620 continue; 5621 5622 // Rebuild the scope specifier in-place. 5623 CXXScopeSpec &SS = Chunk.Mem.Scope(); 5624 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) 5625 return true; 5626 } 5627 5628 return false; 5629 } 5630 5631 void Sema::warnOnReservedIdentifier(const NamedDecl *D) { 5632 // Avoid warning twice on the same identifier, and don't warn on redeclaration 5633 // of system decl. 5634 if (D->getPreviousDecl() || D->isImplicit()) 5635 return; 5636 ReservedIdentifierStatus Status = D->isReserved(getLangOpts()); 5637 if (Status != ReservedIdentifierStatus::NotReserved && 5638 !Context.getSourceManager().isInSystemHeader(D->getLocation())) 5639 Diag(D->getLocation(), diag::warn_reserved_extern_symbol) 5640 << D << static_cast<int>(Status); 5641 } 5642 5643 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { 5644 D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration); 5645 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg()); 5646 5647 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() && 5648 Dcl && Dcl->getDeclContext()->isFileContext()) 5649 Dcl->setTopLevelDeclInObjCContainer(); 5650 5651 return Dcl; 5652 } 5653 5654 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13: 5655 /// If T is the name of a class, then each of the following shall have a 5656 /// name different from T: 5657 /// - every static data member of class T; 5658 /// - every member function of class T 5659 /// - every member of class T that is itself a type; 5660 /// \returns true if the declaration name violates these rules. 5661 bool Sema::DiagnoseClassNameShadow(DeclContext *DC, 5662 DeclarationNameInfo NameInfo) { 5663 DeclarationName Name = NameInfo.getName(); 5664 5665 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC); 5666 while (Record && Record->isAnonymousStructOrUnion()) 5667 Record = dyn_cast<CXXRecordDecl>(Record->getParent()); 5668 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) { 5669 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name; 5670 return true; 5671 } 5672 5673 return false; 5674 } 5675 5676 /// Diagnose a declaration whose declarator-id has the given 5677 /// nested-name-specifier. 5678 /// 5679 /// \param SS The nested-name-specifier of the declarator-id. 5680 /// 5681 /// \param DC The declaration context to which the nested-name-specifier 5682 /// resolves. 5683 /// 5684 /// \param Name The name of the entity being declared. 5685 /// 5686 /// \param Loc The location of the name of the entity being declared. 5687 /// 5688 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus 5689 /// we're declaring an explicit / partial specialization / instantiation. 5690 /// 5691 /// \returns true if we cannot safely recover from this error, false otherwise. 5692 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, 5693 DeclarationName Name, 5694 SourceLocation Loc, bool IsTemplateId) { 5695 DeclContext *Cur = CurContext; 5696 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur)) 5697 Cur = Cur->getParent(); 5698 5699 // If the user provided a superfluous scope specifier that refers back to the 5700 // class in which the entity is already declared, diagnose and ignore it. 5701 // 5702 // class X { 5703 // void X::f(); 5704 // }; 5705 // 5706 // Note, it was once ill-formed to give redundant qualification in all 5707 // contexts, but that rule was removed by DR482. 5708 if (Cur->Equals(DC)) { 5709 if (Cur->isRecord()) { 5710 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification 5711 : diag::err_member_extra_qualification) 5712 << Name << FixItHint::CreateRemoval(SS.getRange()); 5713 SS.clear(); 5714 } else { 5715 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name; 5716 } 5717 return false; 5718 } 5719 5720 // Check whether the qualifying scope encloses the scope of the original 5721 // declaration. For a template-id, we perform the checks in 5722 // CheckTemplateSpecializationScope. 5723 if (!Cur->Encloses(DC) && !IsTemplateId) { 5724 if (Cur->isRecord()) 5725 Diag(Loc, diag::err_member_qualification) 5726 << Name << SS.getRange(); 5727 else if (isa<TranslationUnitDecl>(DC)) 5728 Diag(Loc, diag::err_invalid_declarator_global_scope) 5729 << Name << SS.getRange(); 5730 else if (isa<FunctionDecl>(Cur)) 5731 Diag(Loc, diag::err_invalid_declarator_in_function) 5732 << Name << SS.getRange(); 5733 else if (isa<BlockDecl>(Cur)) 5734 Diag(Loc, diag::err_invalid_declarator_in_block) 5735 << Name << SS.getRange(); 5736 else 5737 Diag(Loc, diag::err_invalid_declarator_scope) 5738 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange(); 5739 5740 return true; 5741 } 5742 5743 if (Cur->isRecord()) { 5744 // Cannot qualify members within a class. 5745 Diag(Loc, diag::err_member_qualification) 5746 << Name << SS.getRange(); 5747 SS.clear(); 5748 5749 // C++ constructors and destructors with incorrect scopes can break 5750 // our AST invariants by having the wrong underlying types. If 5751 // that's the case, then drop this declaration entirely. 5752 if ((Name.getNameKind() == DeclarationName::CXXConstructorName || 5753 Name.getNameKind() == DeclarationName::CXXDestructorName) && 5754 !Context.hasSameType(Name.getCXXNameType(), 5755 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur)))) 5756 return true; 5757 5758 return false; 5759 } 5760 5761 // C++11 [dcl.meaning]p1: 5762 // [...] "The nested-name-specifier of the qualified declarator-id shall 5763 // not begin with a decltype-specifer" 5764 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data()); 5765 while (SpecLoc.getPrefix()) 5766 SpecLoc = SpecLoc.getPrefix(); 5767 if (dyn_cast_or_null<DecltypeType>( 5768 SpecLoc.getNestedNameSpecifier()->getAsType())) 5769 Diag(Loc, diag::err_decltype_in_declarator) 5770 << SpecLoc.getTypeLoc().getSourceRange(); 5771 5772 return false; 5773 } 5774 5775 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D, 5776 MultiTemplateParamsArg TemplateParamLists) { 5777 // TODO: consider using NameInfo for diagnostic. 5778 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 5779 DeclarationName Name = NameInfo.getName(); 5780 5781 // All of these full declarators require an identifier. If it doesn't have 5782 // one, the ParsedFreeStandingDeclSpec action should be used. 5783 if (D.isDecompositionDeclarator()) { 5784 return ActOnDecompositionDeclarator(S, D, TemplateParamLists); 5785 } else if (!Name) { 5786 if (!D.isInvalidType()) // Reject this if we think it is valid. 5787 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident) 5788 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 5789 return nullptr; 5790 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType)) 5791 return nullptr; 5792 5793 // The scope passed in may not be a decl scope. Zip up the scope tree until 5794 // we find one that is. 5795 while ((S->getFlags() & Scope::DeclScope) == 0 || 5796 (S->getFlags() & Scope::TemplateParamScope) != 0) 5797 S = S->getParent(); 5798 5799 DeclContext *DC = CurContext; 5800 if (D.getCXXScopeSpec().isInvalid()) 5801 D.setInvalidType(); 5802 else if (D.getCXXScopeSpec().isSet()) { 5803 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), 5804 UPPC_DeclarationQualifier)) 5805 return nullptr; 5806 5807 bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); 5808 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext); 5809 if (!DC || isa<EnumDecl>(DC)) { 5810 // If we could not compute the declaration context, it's because the 5811 // declaration context is dependent but does not refer to a class, 5812 // class template, or class template partial specialization. Complain 5813 // and return early, to avoid the coming semantic disaster. 5814 Diag(D.getIdentifierLoc(), 5815 diag::err_template_qualified_declarator_no_match) 5816 << D.getCXXScopeSpec().getScopeRep() 5817 << D.getCXXScopeSpec().getRange(); 5818 return nullptr; 5819 } 5820 bool IsDependentContext = DC->isDependentContext(); 5821 5822 if (!IsDependentContext && 5823 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC)) 5824 return nullptr; 5825 5826 // If a class is incomplete, do not parse entities inside it. 5827 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) { 5828 Diag(D.getIdentifierLoc(), 5829 diag::err_member_def_undefined_record) 5830 << Name << DC << D.getCXXScopeSpec().getRange(); 5831 return nullptr; 5832 } 5833 if (!D.getDeclSpec().isFriendSpecified()) { 5834 if (diagnoseQualifiedDeclaration( 5835 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(), 5836 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) { 5837 if (DC->isRecord()) 5838 return nullptr; 5839 5840 D.setInvalidType(); 5841 } 5842 } 5843 5844 // Check whether we need to rebuild the type of the given 5845 // declaration in the current instantiation. 5846 if (EnteringContext && IsDependentContext && 5847 TemplateParamLists.size() != 0) { 5848 ContextRAII SavedContext(*this, DC); 5849 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name)) 5850 D.setInvalidType(); 5851 } 5852 } 5853 5854 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 5855 QualType R = TInfo->getType(); 5856 5857 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 5858 UPPC_DeclarationType)) 5859 D.setInvalidType(); 5860 5861 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 5862 forRedeclarationInCurContext()); 5863 5864 // See if this is a redefinition of a variable in the same scope. 5865 if (!D.getCXXScopeSpec().isSet()) { 5866 bool IsLinkageLookup = false; 5867 bool CreateBuiltins = false; 5868 5869 // If the declaration we're planning to build will be a function 5870 // or object with linkage, then look for another declaration with 5871 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). 5872 // 5873 // If the declaration we're planning to build will be declared with 5874 // external linkage in the translation unit, create any builtin with 5875 // the same name. 5876 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) 5877 /* Do nothing*/; 5878 else if (CurContext->isFunctionOrMethod() && 5879 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern || 5880 R->isFunctionType())) { 5881 IsLinkageLookup = true; 5882 CreateBuiltins = 5883 CurContext->getEnclosingNamespaceContext()->isTranslationUnit(); 5884 } else if (CurContext->getRedeclContext()->isTranslationUnit() && 5885 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) 5886 CreateBuiltins = true; 5887 5888 if (IsLinkageLookup) { 5889 Previous.clear(LookupRedeclarationWithLinkage); 5890 Previous.setRedeclarationKind(ForExternalRedeclaration); 5891 } 5892 5893 LookupName(Previous, S, CreateBuiltins); 5894 } else { // Something like "int foo::x;" 5895 LookupQualifiedName(Previous, DC); 5896 5897 // C++ [dcl.meaning]p1: 5898 // When the declarator-id is qualified, the declaration shall refer to a 5899 // previously declared member of the class or namespace to which the 5900 // qualifier refers (or, in the case of a namespace, of an element of the 5901 // inline namespace set of that namespace (7.3.1)) or to a specialization 5902 // thereof; [...] 5903 // 5904 // Note that we already checked the context above, and that we do not have 5905 // enough information to make sure that Previous contains the declaration 5906 // we want to match. For example, given: 5907 // 5908 // class X { 5909 // void f(); 5910 // void f(float); 5911 // }; 5912 // 5913 // void X::f(int) { } // ill-formed 5914 // 5915 // In this case, Previous will point to the overload set 5916 // containing the two f's declared in X, but neither of them 5917 // matches. 5918 5919 // C++ [dcl.meaning]p1: 5920 // [...] the member shall not merely have been introduced by a 5921 // using-declaration in the scope of the class or namespace nominated by 5922 // the nested-name-specifier of the declarator-id. 5923 RemoveUsingDecls(Previous); 5924 } 5925 5926 if (Previous.isSingleResult() && 5927 Previous.getFoundDecl()->isTemplateParameter()) { 5928 // Maybe we will complain about the shadowed template parameter. 5929 if (!D.isInvalidType()) 5930 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 5931 Previous.getFoundDecl()); 5932 5933 // Just pretend that we didn't see the previous declaration. 5934 Previous.clear(); 5935 } 5936 5937 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo)) 5938 // Forget that the previous declaration is the injected-class-name. 5939 Previous.clear(); 5940 5941 // In C++, the previous declaration we find might be a tag type 5942 // (class or enum). In this case, the new declaration will hide the 5943 // tag type. Note that this applies to functions, function templates, and 5944 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates. 5945 if (Previous.isSingleTagDecl() && 5946 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 5947 (TemplateParamLists.size() == 0 || R->isFunctionType())) 5948 Previous.clear(); 5949 5950 // Check that there are no default arguments other than in the parameters 5951 // of a function declaration (C++ only). 5952 if (getLangOpts().CPlusPlus) 5953 CheckExtraCXXDefaultArguments(D); 5954 5955 NamedDecl *New; 5956 5957 bool AddToScope = true; 5958 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 5959 if (TemplateParamLists.size()) { 5960 Diag(D.getIdentifierLoc(), diag::err_template_typedef); 5961 return nullptr; 5962 } 5963 5964 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous); 5965 } else if (R->isFunctionType()) { 5966 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous, 5967 TemplateParamLists, 5968 AddToScope); 5969 } else { 5970 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists, 5971 AddToScope); 5972 } 5973 5974 if (!New) 5975 return nullptr; 5976 5977 // If this has an identifier and is not a function template specialization, 5978 // add it to the scope stack. 5979 if (New->getDeclName() && AddToScope) 5980 PushOnScopeChains(New, S); 5981 5982 if (isInOpenMPDeclareTargetContext()) 5983 checkDeclIsAllowedInOpenMPTarget(nullptr, New); 5984 5985 return New; 5986 } 5987 5988 /// Helper method to turn variable array types into constant array 5989 /// types in certain situations which would otherwise be errors (for 5990 /// GCC compatibility). 5991 static QualType TryToFixInvalidVariablyModifiedType(QualType T, 5992 ASTContext &Context, 5993 bool &SizeIsNegative, 5994 llvm::APSInt &Oversized) { 5995 // This method tries to turn a variable array into a constant 5996 // array even when the size isn't an ICE. This is necessary 5997 // for compatibility with code that depends on gcc's buggy 5998 // constant expression folding, like struct {char x[(int)(char*)2];} 5999 SizeIsNegative = false; 6000 Oversized = 0; 6001 6002 if (T->isDependentType()) 6003 return QualType(); 6004 6005 QualifierCollector Qs; 6006 const Type *Ty = Qs.strip(T); 6007 6008 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) { 6009 QualType Pointee = PTy->getPointeeType(); 6010 QualType FixedType = 6011 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative, 6012 Oversized); 6013 if (FixedType.isNull()) return FixedType; 6014 FixedType = Context.getPointerType(FixedType); 6015 return Qs.apply(Context, FixedType); 6016 } 6017 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) { 6018 QualType Inner = PTy->getInnerType(); 6019 QualType FixedType = 6020 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative, 6021 Oversized); 6022 if (FixedType.isNull()) return FixedType; 6023 FixedType = Context.getParenType(FixedType); 6024 return Qs.apply(Context, FixedType); 6025 } 6026 6027 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); 6028 if (!VLATy) 6029 return QualType(); 6030 6031 QualType ElemTy = VLATy->getElementType(); 6032 if (ElemTy->isVariablyModifiedType()) { 6033 ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context, 6034 SizeIsNegative, Oversized); 6035 if (ElemTy.isNull()) 6036 return QualType(); 6037 } 6038 6039 Expr::EvalResult Result; 6040 if (!VLATy->getSizeExpr() || 6041 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context)) 6042 return QualType(); 6043 6044 llvm::APSInt Res = Result.Val.getInt(); 6045 6046 // Check whether the array size is negative. 6047 if (Res.isSigned() && Res.isNegative()) { 6048 SizeIsNegative = true; 6049 return QualType(); 6050 } 6051 6052 // Check whether the array is too large to be addressed. 6053 unsigned ActiveSizeBits = 6054 (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() && 6055 !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType()) 6056 ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res) 6057 : Res.getActiveBits(); 6058 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { 6059 Oversized = Res; 6060 return QualType(); 6061 } 6062 6063 QualType FoldedArrayType = Context.getConstantArrayType( 6064 ElemTy, Res, VLATy->getSizeExpr(), ArrayType::Normal, 0); 6065 return Qs.apply(Context, FoldedArrayType); 6066 } 6067 6068 static void 6069 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) { 6070 SrcTL = SrcTL.getUnqualifiedLoc(); 6071 DstTL = DstTL.getUnqualifiedLoc(); 6072 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) { 6073 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>(); 6074 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(), 6075 DstPTL.getPointeeLoc()); 6076 DstPTL.setStarLoc(SrcPTL.getStarLoc()); 6077 return; 6078 } 6079 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) { 6080 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>(); 6081 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(), 6082 DstPTL.getInnerLoc()); 6083 DstPTL.setLParenLoc(SrcPTL.getLParenLoc()); 6084 DstPTL.setRParenLoc(SrcPTL.getRParenLoc()); 6085 return; 6086 } 6087 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>(); 6088 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>(); 6089 TypeLoc SrcElemTL = SrcATL.getElementLoc(); 6090 TypeLoc DstElemTL = DstATL.getElementLoc(); 6091 if (VariableArrayTypeLoc SrcElemATL = 6092 SrcElemTL.getAs<VariableArrayTypeLoc>()) { 6093 ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>(); 6094 FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL); 6095 } else { 6096 DstElemTL.initializeFullCopy(SrcElemTL); 6097 } 6098 DstATL.setLBracketLoc(SrcATL.getLBracketLoc()); 6099 DstATL.setSizeExpr(SrcATL.getSizeExpr()); 6100 DstATL.setRBracketLoc(SrcATL.getRBracketLoc()); 6101 } 6102 6103 /// Helper method to turn variable array types into constant array 6104 /// types in certain situations which would otherwise be errors (for 6105 /// GCC compatibility). 6106 static TypeSourceInfo* 6107 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo, 6108 ASTContext &Context, 6109 bool &SizeIsNegative, 6110 llvm::APSInt &Oversized) { 6111 QualType FixedTy 6112 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context, 6113 SizeIsNegative, Oversized); 6114 if (FixedTy.isNull()) 6115 return nullptr; 6116 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy); 6117 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(), 6118 FixedTInfo->getTypeLoc()); 6119 return FixedTInfo; 6120 } 6121 6122 /// Attempt to fold a variable-sized type to a constant-sized type, returning 6123 /// true if we were successful. 6124 bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo, 6125 QualType &T, SourceLocation Loc, 6126 unsigned FailedFoldDiagID) { 6127 bool SizeIsNegative; 6128 llvm::APSInt Oversized; 6129 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo( 6130 TInfo, Context, SizeIsNegative, Oversized); 6131 if (FixedTInfo) { 6132 Diag(Loc, diag::ext_vla_folded_to_constant); 6133 TInfo = FixedTInfo; 6134 T = FixedTInfo->getType(); 6135 return true; 6136 } 6137 6138 if (SizeIsNegative) 6139 Diag(Loc, diag::err_typecheck_negative_array_size); 6140 else if (Oversized.getBoolValue()) 6141 Diag(Loc, diag::err_array_too_large) << toString(Oversized, 10); 6142 else if (FailedFoldDiagID) 6143 Diag(Loc, FailedFoldDiagID); 6144 return false; 6145 } 6146 6147 /// Register the given locally-scoped extern "C" declaration so 6148 /// that it can be found later for redeclarations. We include any extern "C" 6149 /// declaration that is not visible in the translation unit here, not just 6150 /// function-scope declarations. 6151 void 6152 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) { 6153 if (!getLangOpts().CPlusPlus && 6154 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit()) 6155 // Don't need to track declarations in the TU in C. 6156 return; 6157 6158 // Note that we have a locally-scoped external with this name. 6159 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND); 6160 } 6161 6162 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) { 6163 // FIXME: We can have multiple results via __attribute__((overloadable)). 6164 auto Result = Context.getExternCContextDecl()->lookup(Name); 6165 return Result.empty() ? nullptr : *Result.begin(); 6166 } 6167 6168 /// Diagnose function specifiers on a declaration of an identifier that 6169 /// does not identify a function. 6170 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) { 6171 // FIXME: We should probably indicate the identifier in question to avoid 6172 // confusion for constructs like "virtual int a(), b;" 6173 if (DS.isVirtualSpecified()) 6174 Diag(DS.getVirtualSpecLoc(), 6175 diag::err_virtual_non_function); 6176 6177 if (DS.hasExplicitSpecifier()) 6178 Diag(DS.getExplicitSpecLoc(), 6179 diag::err_explicit_non_function); 6180 6181 if (DS.isNoreturnSpecified()) 6182 Diag(DS.getNoreturnSpecLoc(), 6183 diag::err_noreturn_non_function); 6184 } 6185 6186 NamedDecl* 6187 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, 6188 TypeSourceInfo *TInfo, LookupResult &Previous) { 6189 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). 6190 if (D.getCXXScopeSpec().isSet()) { 6191 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) 6192 << D.getCXXScopeSpec().getRange(); 6193 D.setInvalidType(); 6194 // Pretend we didn't see the scope specifier. 6195 DC = CurContext; 6196 Previous.clear(); 6197 } 6198 6199 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 6200 6201 if (D.getDeclSpec().isInlineSpecified()) 6202 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 6203 << getLangOpts().CPlusPlus17; 6204 if (D.getDeclSpec().hasConstexprSpecifier()) 6205 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) 6206 << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); 6207 6208 if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) { 6209 if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName) 6210 Diag(D.getName().StartLocation, 6211 diag::err_deduction_guide_invalid_specifier) 6212 << "typedef"; 6213 else 6214 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) 6215 << D.getName().getSourceRange(); 6216 return nullptr; 6217 } 6218 6219 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo); 6220 if (!NewTD) return nullptr; 6221 6222 // Handle attributes prior to checking for duplicates in MergeVarDecl 6223 ProcessDeclAttributes(S, NewTD, D); 6224 6225 CheckTypedefForVariablyModifiedType(S, NewTD); 6226 6227 bool Redeclaration = D.isRedeclaration(); 6228 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration); 6229 D.setRedeclaration(Redeclaration); 6230 return ND; 6231 } 6232 6233 void 6234 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) { 6235 // C99 6.7.7p2: If a typedef name specifies a variably modified type 6236 // then it shall have block scope. 6237 // Note that variably modified types must be fixed before merging the decl so 6238 // that redeclarations will match. 6239 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo(); 6240 QualType T = TInfo->getType(); 6241 if (T->isVariablyModifiedType()) { 6242 setFunctionHasBranchProtectedScope(); 6243 6244 if (S->getFnParent() == nullptr) { 6245 bool SizeIsNegative; 6246 llvm::APSInt Oversized; 6247 TypeSourceInfo *FixedTInfo = 6248 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 6249 SizeIsNegative, 6250 Oversized); 6251 if (FixedTInfo) { 6252 Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant); 6253 NewTD->setTypeSourceInfo(FixedTInfo); 6254 } else { 6255 if (SizeIsNegative) 6256 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size); 6257 else if (T->isVariableArrayType()) 6258 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope); 6259 else if (Oversized.getBoolValue()) 6260 Diag(NewTD->getLocation(), diag::err_array_too_large) 6261 << toString(Oversized, 10); 6262 else 6263 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope); 6264 NewTD->setInvalidDecl(); 6265 } 6266 } 6267 } 6268 } 6269 6270 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which 6271 /// declares a typedef-name, either using the 'typedef' type specifier or via 6272 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'. 6273 NamedDecl* 6274 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD, 6275 LookupResult &Previous, bool &Redeclaration) { 6276 6277 // Find the shadowed declaration before filtering for scope. 6278 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous); 6279 6280 // Merge the decl with the existing one if appropriate. If the decl is 6281 // in an outer scope, it isn't the same thing. 6282 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false, 6283 /*AllowInlineNamespace*/false); 6284 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous); 6285 if (!Previous.empty()) { 6286 Redeclaration = true; 6287 MergeTypedefNameDecl(S, NewTD, Previous); 6288 } else { 6289 inferGslPointerAttribute(NewTD); 6290 } 6291 6292 if (ShadowedDecl && !Redeclaration) 6293 CheckShadow(NewTD, ShadowedDecl, Previous); 6294 6295 // If this is the C FILE type, notify the AST context. 6296 if (IdentifierInfo *II = NewTD->getIdentifier()) 6297 if (!NewTD->isInvalidDecl() && 6298 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 6299 if (II->isStr("FILE")) 6300 Context.setFILEDecl(NewTD); 6301 else if (II->isStr("jmp_buf")) 6302 Context.setjmp_bufDecl(NewTD); 6303 else if (II->isStr("sigjmp_buf")) 6304 Context.setsigjmp_bufDecl(NewTD); 6305 else if (II->isStr("ucontext_t")) 6306 Context.setucontext_tDecl(NewTD); 6307 } 6308 6309 return NewTD; 6310 } 6311 6312 /// Determines whether the given declaration is an out-of-scope 6313 /// previous declaration. 6314 /// 6315 /// This routine should be invoked when name lookup has found a 6316 /// previous declaration (PrevDecl) that is not in the scope where a 6317 /// new declaration by the same name is being introduced. If the new 6318 /// declaration occurs in a local scope, previous declarations with 6319 /// linkage may still be considered previous declarations (C99 6320 /// 6.2.2p4-5, C++ [basic.link]p6). 6321 /// 6322 /// \param PrevDecl the previous declaration found by name 6323 /// lookup 6324 /// 6325 /// \param DC the context in which the new declaration is being 6326 /// declared. 6327 /// 6328 /// \returns true if PrevDecl is an out-of-scope previous declaration 6329 /// for a new delcaration with the same name. 6330 static bool 6331 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, 6332 ASTContext &Context) { 6333 if (!PrevDecl) 6334 return false; 6335 6336 if (!PrevDecl->hasLinkage()) 6337 return false; 6338 6339 if (Context.getLangOpts().CPlusPlus) { 6340 // C++ [basic.link]p6: 6341 // If there is a visible declaration of an entity with linkage 6342 // having the same name and type, ignoring entities declared 6343 // outside the innermost enclosing namespace scope, the block 6344 // scope declaration declares that same entity and receives the 6345 // linkage of the previous declaration. 6346 DeclContext *OuterContext = DC->getRedeclContext(); 6347 if (!OuterContext->isFunctionOrMethod()) 6348 // This rule only applies to block-scope declarations. 6349 return false; 6350 6351 DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); 6352 if (PrevOuterContext->isRecord()) 6353 // We found a member function: ignore it. 6354 return false; 6355 6356 // Find the innermost enclosing namespace for the new and 6357 // previous declarations. 6358 OuterContext = OuterContext->getEnclosingNamespaceContext(); 6359 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); 6360 6361 // The previous declaration is in a different namespace, so it 6362 // isn't the same function. 6363 if (!OuterContext->Equals(PrevOuterContext)) 6364 return false; 6365 } 6366 6367 return true; 6368 } 6369 6370 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) { 6371 CXXScopeSpec &SS = D.getCXXScopeSpec(); 6372 if (!SS.isSet()) return; 6373 DD->setQualifierInfo(SS.getWithLocInContext(S.Context)); 6374 } 6375 6376 bool Sema::inferObjCARCLifetime(ValueDecl *decl) { 6377 QualType type = decl->getType(); 6378 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); 6379 if (lifetime == Qualifiers::OCL_Autoreleasing) { 6380 // Various kinds of declaration aren't allowed to be __autoreleasing. 6381 unsigned kind = -1U; 6382 if (VarDecl *var = dyn_cast<VarDecl>(decl)) { 6383 if (var->hasAttr<BlocksAttr>()) 6384 kind = 0; // __block 6385 else if (!var->hasLocalStorage()) 6386 kind = 1; // global 6387 } else if (isa<ObjCIvarDecl>(decl)) { 6388 kind = 3; // ivar 6389 } else if (isa<FieldDecl>(decl)) { 6390 kind = 2; // field 6391 } 6392 6393 if (kind != -1U) { 6394 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) 6395 << kind; 6396 } 6397 } else if (lifetime == Qualifiers::OCL_None) { 6398 // Try to infer lifetime. 6399 if (!type->isObjCLifetimeType()) 6400 return false; 6401 6402 lifetime = type->getObjCARCImplicitLifetime(); 6403 type = Context.getLifetimeQualifiedType(type, lifetime); 6404 decl->setType(type); 6405 } 6406 6407 if (VarDecl *var = dyn_cast<VarDecl>(decl)) { 6408 // Thread-local variables cannot have lifetime. 6409 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && 6410 var->getTLSKind()) { 6411 Diag(var->getLocation(), diag::err_arc_thread_ownership) 6412 << var->getType(); 6413 return true; 6414 } 6415 } 6416 6417 return false; 6418 } 6419 6420 void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) { 6421 if (Decl->getType().hasAddressSpace()) 6422 return; 6423 if (Decl->getType()->isDependentType()) 6424 return; 6425 if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) { 6426 QualType Type = Var->getType(); 6427 if (Type->isSamplerT() || Type->isVoidType()) 6428 return; 6429 LangAS ImplAS = LangAS::opencl_private; 6430 // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the 6431 // __opencl_c_program_scope_global_variables feature, the address space 6432 // for a variable at program scope or a static or extern variable inside 6433 // a function are inferred to be __global. 6434 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) && 6435 Var->hasGlobalStorage()) 6436 ImplAS = LangAS::opencl_global; 6437 // If the original type from a decayed type is an array type and that array 6438 // type has no address space yet, deduce it now. 6439 if (auto DT = dyn_cast<DecayedType>(Type)) { 6440 auto OrigTy = DT->getOriginalType(); 6441 if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) { 6442 // Add the address space to the original array type and then propagate 6443 // that to the element type through `getAsArrayType`. 6444 OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS); 6445 OrigTy = QualType(Context.getAsArrayType(OrigTy), 0); 6446 // Re-generate the decayed type. 6447 Type = Context.getDecayedType(OrigTy); 6448 } 6449 } 6450 Type = Context.getAddrSpaceQualType(Type, ImplAS); 6451 // Apply any qualifiers (including address space) from the array type to 6452 // the element type. This implements C99 6.7.3p8: "If the specification of 6453 // an array type includes any type qualifiers, the element type is so 6454 // qualified, not the array type." 6455 if (Type->isArrayType()) 6456 Type = QualType(Context.getAsArrayType(Type), 0); 6457 Decl->setType(Type); 6458 } 6459 } 6460 6461 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) { 6462 // Ensure that an auto decl is deduced otherwise the checks below might cache 6463 // the wrong linkage. 6464 assert(S.ParsingInitForAutoVars.count(&ND) == 0); 6465 6466 // 'weak' only applies to declarations with external linkage. 6467 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) { 6468 if (!ND.isExternallyVisible()) { 6469 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static); 6470 ND.dropAttr<WeakAttr>(); 6471 } 6472 } 6473 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) { 6474 if (ND.isExternallyVisible()) { 6475 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static); 6476 ND.dropAttr<WeakRefAttr>(); 6477 ND.dropAttr<AliasAttr>(); 6478 } 6479 } 6480 6481 if (auto *VD = dyn_cast<VarDecl>(&ND)) { 6482 if (VD->hasInit()) { 6483 if (const auto *Attr = VD->getAttr<AliasAttr>()) { 6484 assert(VD->isThisDeclarationADefinition() && 6485 !VD->isExternallyVisible() && "Broken AliasAttr handled late!"); 6486 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0; 6487 VD->dropAttr<AliasAttr>(); 6488 } 6489 } 6490 } 6491 6492 // 'selectany' only applies to externally visible variable declarations. 6493 // It does not apply to functions. 6494 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) { 6495 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) { 6496 S.Diag(Attr->getLocation(), 6497 diag::err_attribute_selectany_non_extern_data); 6498 ND.dropAttr<SelectAnyAttr>(); 6499 } 6500 } 6501 6502 if (const InheritableAttr *Attr = getDLLAttr(&ND)) { 6503 auto *VD = dyn_cast<VarDecl>(&ND); 6504 bool IsAnonymousNS = false; 6505 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft(); 6506 if (VD) { 6507 const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext()); 6508 while (NS && !IsAnonymousNS) { 6509 IsAnonymousNS = NS->isAnonymousNamespace(); 6510 NS = dyn_cast<NamespaceDecl>(NS->getParent()); 6511 } 6512 } 6513 // dll attributes require external linkage. Static locals may have external 6514 // linkage but still cannot be explicitly imported or exported. 6515 // In Microsoft mode, a variable defined in anonymous namespace must have 6516 // external linkage in order to be exported. 6517 bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft; 6518 if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) || 6519 (!AnonNSInMicrosoftMode && 6520 (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) { 6521 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern) 6522 << &ND << Attr; 6523 ND.setInvalidDecl(); 6524 } 6525 } 6526 6527 // Check the attributes on the function type, if any. 6528 if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) { 6529 // Don't declare this variable in the second operand of the for-statement; 6530 // GCC miscompiles that by ending its lifetime before evaluating the 6531 // third operand. See gcc.gnu.org/PR86769. 6532 AttributedTypeLoc ATL; 6533 for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc(); 6534 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6535 TL = ATL.getModifiedLoc()) { 6536 // The [[lifetimebound]] attribute can be applied to the implicit object 6537 // parameter of a non-static member function (other than a ctor or dtor) 6538 // by applying it to the function type. 6539 if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) { 6540 const auto *MD = dyn_cast<CXXMethodDecl>(FD); 6541 if (!MD || MD->isStatic()) { 6542 S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param) 6543 << !MD << A->getRange(); 6544 } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) { 6545 S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor) 6546 << isa<CXXDestructorDecl>(MD) << A->getRange(); 6547 } 6548 } 6549 } 6550 } 6551 } 6552 6553 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl, 6554 NamedDecl *NewDecl, 6555 bool IsSpecialization, 6556 bool IsDefinition) { 6557 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl()) 6558 return; 6559 6560 bool IsTemplate = false; 6561 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) { 6562 OldDecl = OldTD->getTemplatedDecl(); 6563 IsTemplate = true; 6564 if (!IsSpecialization) 6565 IsDefinition = false; 6566 } 6567 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) { 6568 NewDecl = NewTD->getTemplatedDecl(); 6569 IsTemplate = true; 6570 } 6571 6572 if (!OldDecl || !NewDecl) 6573 return; 6574 6575 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>(); 6576 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>(); 6577 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>(); 6578 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>(); 6579 6580 // dllimport and dllexport are inheritable attributes so we have to exclude 6581 // inherited attribute instances. 6582 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) || 6583 (NewExportAttr && !NewExportAttr->isInherited()); 6584 6585 // A redeclaration is not allowed to add a dllimport or dllexport attribute, 6586 // the only exception being explicit specializations. 6587 // Implicitly generated declarations are also excluded for now because there 6588 // is no other way to switch these to use dllimport or dllexport. 6589 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr; 6590 6591 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) { 6592 // Allow with a warning for free functions and global variables. 6593 bool JustWarn = false; 6594 if (!OldDecl->isCXXClassMember()) { 6595 auto *VD = dyn_cast<VarDecl>(OldDecl); 6596 if (VD && !VD->getDescribedVarTemplate()) 6597 JustWarn = true; 6598 auto *FD = dyn_cast<FunctionDecl>(OldDecl); 6599 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) 6600 JustWarn = true; 6601 } 6602 6603 // We cannot change a declaration that's been used because IR has already 6604 // been emitted. Dllimported functions will still work though (modulo 6605 // address equality) as they can use the thunk. 6606 if (OldDecl->isUsed()) 6607 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr) 6608 JustWarn = false; 6609 6610 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration 6611 : diag::err_attribute_dll_redeclaration; 6612 S.Diag(NewDecl->getLocation(), DiagID) 6613 << NewDecl 6614 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr); 6615 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 6616 if (!JustWarn) { 6617 NewDecl->setInvalidDecl(); 6618 return; 6619 } 6620 } 6621 6622 // A redeclaration is not allowed to drop a dllimport attribute, the only 6623 // exceptions being inline function definitions (except for function 6624 // templates), local extern declarations, qualified friend declarations or 6625 // special MSVC extension: in the last case, the declaration is treated as if 6626 // it were marked dllexport. 6627 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false; 6628 bool IsMicrosoftABI = S.Context.getTargetInfo().shouldDLLImportComdatSymbols(); 6629 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) { 6630 // Ignore static data because out-of-line definitions are diagnosed 6631 // separately. 6632 IsStaticDataMember = VD->isStaticDataMember(); 6633 IsDefinition = VD->isThisDeclarationADefinition(S.Context) != 6634 VarDecl::DeclarationOnly; 6635 } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) { 6636 IsInline = FD->isInlined(); 6637 IsQualifiedFriend = FD->getQualifier() && 6638 FD->getFriendObjectKind() == Decl::FOK_Declared; 6639 } 6640 6641 if (OldImportAttr && !HasNewAttr && 6642 (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember && 6643 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) { 6644 if (IsMicrosoftABI && IsDefinition) { 6645 S.Diag(NewDecl->getLocation(), 6646 diag::warn_redeclaration_without_import_attribute) 6647 << NewDecl; 6648 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 6649 NewDecl->dropAttr<DLLImportAttr>(); 6650 NewDecl->addAttr( 6651 DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange())); 6652 } else { 6653 S.Diag(NewDecl->getLocation(), 6654 diag::warn_redeclaration_without_attribute_prev_attribute_ignored) 6655 << NewDecl << OldImportAttr; 6656 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 6657 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute); 6658 OldDecl->dropAttr<DLLImportAttr>(); 6659 NewDecl->dropAttr<DLLImportAttr>(); 6660 } 6661 } else if (IsInline && OldImportAttr && !IsMicrosoftABI) { 6662 // In MinGW, seeing a function declared inline drops the dllimport 6663 // attribute. 6664 OldDecl->dropAttr<DLLImportAttr>(); 6665 NewDecl->dropAttr<DLLImportAttr>(); 6666 S.Diag(NewDecl->getLocation(), 6667 diag::warn_dllimport_dropped_from_inline_function) 6668 << NewDecl << OldImportAttr; 6669 } 6670 6671 // A specialization of a class template member function is processed here 6672 // since it's a redeclaration. If the parent class is dllexport, the 6673 // specialization inherits that attribute. This doesn't happen automatically 6674 // since the parent class isn't instantiated until later. 6675 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) { 6676 if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization && 6677 !NewImportAttr && !NewExportAttr) { 6678 if (const DLLExportAttr *ParentExportAttr = 6679 MD->getParent()->getAttr<DLLExportAttr>()) { 6680 DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context); 6681 NewAttr->setInherited(true); 6682 NewDecl->addAttr(NewAttr); 6683 } 6684 } 6685 } 6686 } 6687 6688 /// Given that we are within the definition of the given function, 6689 /// will that definition behave like C99's 'inline', where the 6690 /// definition is discarded except for optimization purposes? 6691 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) { 6692 // Try to avoid calling GetGVALinkageForFunction. 6693 6694 // All cases of this require the 'inline' keyword. 6695 if (!FD->isInlined()) return false; 6696 6697 // This is only possible in C++ with the gnu_inline attribute. 6698 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>()) 6699 return false; 6700 6701 // Okay, go ahead and call the relatively-more-expensive function. 6702 return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally; 6703 } 6704 6705 /// Determine whether a variable is extern "C" prior to attaching 6706 /// an initializer. We can't just call isExternC() here, because that 6707 /// will also compute and cache whether the declaration is externally 6708 /// visible, which might change when we attach the initializer. 6709 /// 6710 /// This can only be used if the declaration is known to not be a 6711 /// redeclaration of an internal linkage declaration. 6712 /// 6713 /// For instance: 6714 /// 6715 /// auto x = []{}; 6716 /// 6717 /// Attaching the initializer here makes this declaration not externally 6718 /// visible, because its type has internal linkage. 6719 /// 6720 /// FIXME: This is a hack. 6721 template<typename T> 6722 static bool isIncompleteDeclExternC(Sema &S, const T *D) { 6723 if (S.getLangOpts().CPlusPlus) { 6724 // In C++, the overloadable attribute negates the effects of extern "C". 6725 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>()) 6726 return false; 6727 6728 // So do CUDA's host/device attributes. 6729 if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() || 6730 D->template hasAttr<CUDAHostAttr>())) 6731 return false; 6732 } 6733 return D->isExternC(); 6734 } 6735 6736 static bool shouldConsiderLinkage(const VarDecl *VD) { 6737 const DeclContext *DC = VD->getDeclContext()->getRedeclContext(); 6738 if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) || 6739 isa<OMPDeclareMapperDecl>(DC)) 6740 return VD->hasExternalStorage(); 6741 if (DC->isFileContext()) 6742 return true; 6743 if (DC->isRecord()) 6744 return false; 6745 if (isa<RequiresExprBodyDecl>(DC)) 6746 return false; 6747 llvm_unreachable("Unexpected context"); 6748 } 6749 6750 static bool shouldConsiderLinkage(const FunctionDecl *FD) { 6751 const DeclContext *DC = FD->getDeclContext()->getRedeclContext(); 6752 if (DC->isFileContext() || DC->isFunctionOrMethod() || 6753 isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC)) 6754 return true; 6755 if (DC->isRecord()) 6756 return false; 6757 llvm_unreachable("Unexpected context"); 6758 } 6759 6760 static bool hasParsedAttr(Scope *S, const Declarator &PD, 6761 ParsedAttr::Kind Kind) { 6762 // Check decl attributes on the DeclSpec. 6763 if (PD.getDeclSpec().getAttributes().hasAttribute(Kind)) 6764 return true; 6765 6766 // Walk the declarator structure, checking decl attributes that were in a type 6767 // position to the decl itself. 6768 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) { 6769 if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind)) 6770 return true; 6771 } 6772 6773 // Finally, check attributes on the decl itself. 6774 return PD.getAttributes().hasAttribute(Kind); 6775 } 6776 6777 /// Adjust the \c DeclContext for a function or variable that might be a 6778 /// function-local external declaration. 6779 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) { 6780 if (!DC->isFunctionOrMethod()) 6781 return false; 6782 6783 // If this is a local extern function or variable declared within a function 6784 // template, don't add it into the enclosing namespace scope until it is 6785 // instantiated; it might have a dependent type right now. 6786 if (DC->isDependentContext()) 6787 return true; 6788 6789 // C++11 [basic.link]p7: 6790 // When a block scope declaration of an entity with linkage is not found to 6791 // refer to some other declaration, then that entity is a member of the 6792 // innermost enclosing namespace. 6793 // 6794 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a 6795 // semantically-enclosing namespace, not a lexically-enclosing one. 6796 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) 6797 DC = DC->getParent(); 6798 return true; 6799 } 6800 6801 /// Returns true if given declaration has external C language linkage. 6802 static bool isDeclExternC(const Decl *D) { 6803 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 6804 return FD->isExternC(); 6805 if (const auto *VD = dyn_cast<VarDecl>(D)) 6806 return VD->isExternC(); 6807 6808 llvm_unreachable("Unknown type of decl!"); 6809 } 6810 6811 /// Returns true if there hasn't been any invalid type diagnosed. 6812 static bool diagnoseOpenCLTypes(Sema &Se, VarDecl *NewVD) { 6813 DeclContext *DC = NewVD->getDeclContext(); 6814 QualType R = NewVD->getType(); 6815 6816 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument. 6817 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function 6818 // argument. 6819 if (R->isImageType() || R->isPipeType()) { 6820 Se.Diag(NewVD->getLocation(), 6821 diag::err_opencl_type_can_only_be_used_as_function_parameter) 6822 << R; 6823 NewVD->setInvalidDecl(); 6824 return false; 6825 } 6826 6827 // OpenCL v1.2 s6.9.r: 6828 // The event type cannot be used to declare a program scope variable. 6829 // OpenCL v2.0 s6.9.q: 6830 // The clk_event_t and reserve_id_t types cannot be declared in program 6831 // scope. 6832 if (NewVD->hasGlobalStorage() && !NewVD->isStaticLocal()) { 6833 if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) { 6834 Se.Diag(NewVD->getLocation(), 6835 diag::err_invalid_type_for_program_scope_var) 6836 << R; 6837 NewVD->setInvalidDecl(); 6838 return false; 6839 } 6840 } 6841 6842 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed. 6843 if (!Se.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers", 6844 Se.getLangOpts())) { 6845 QualType NR = R.getCanonicalType(); 6846 while (NR->isPointerType() || NR->isMemberFunctionPointerType() || 6847 NR->isReferenceType()) { 6848 if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType() || 6849 NR->isFunctionReferenceType()) { 6850 Se.Diag(NewVD->getLocation(), diag::err_opencl_function_pointer) 6851 << NR->isReferenceType(); 6852 NewVD->setInvalidDecl(); 6853 return false; 6854 } 6855 NR = NR->getPointeeType(); 6856 } 6857 } 6858 6859 if (!Se.getOpenCLOptions().isAvailableOption("cl_khr_fp16", 6860 Se.getLangOpts())) { 6861 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and 6862 // half array type (unless the cl_khr_fp16 extension is enabled). 6863 if (Se.Context.getBaseElementType(R)->isHalfType()) { 6864 Se.Diag(NewVD->getLocation(), diag::err_opencl_half_declaration) << R; 6865 NewVD->setInvalidDecl(); 6866 return false; 6867 } 6868 } 6869 6870 // OpenCL v1.2 s6.9.r: 6871 // The event type cannot be used with the __local, __constant and __global 6872 // address space qualifiers. 6873 if (R->isEventT()) { 6874 if (R.getAddressSpace() != LangAS::opencl_private) { 6875 Se.Diag(NewVD->getBeginLoc(), diag::err_event_t_addr_space_qual); 6876 NewVD->setInvalidDecl(); 6877 return false; 6878 } 6879 } 6880 6881 if (R->isSamplerT()) { 6882 // OpenCL v1.2 s6.9.b p4: 6883 // The sampler type cannot be used with the __local and __global address 6884 // space qualifiers. 6885 if (R.getAddressSpace() == LangAS::opencl_local || 6886 R.getAddressSpace() == LangAS::opencl_global) { 6887 Se.Diag(NewVD->getLocation(), diag::err_wrong_sampler_addressspace); 6888 NewVD->setInvalidDecl(); 6889 } 6890 6891 // OpenCL v1.2 s6.12.14.1: 6892 // A global sampler must be declared with either the constant address 6893 // space qualifier or with the const qualifier. 6894 if (DC->isTranslationUnit() && 6895 !(R.getAddressSpace() == LangAS::opencl_constant || 6896 R.isConstQualified())) { 6897 Se.Diag(NewVD->getLocation(), diag::err_opencl_nonconst_global_sampler); 6898 NewVD->setInvalidDecl(); 6899 } 6900 if (NewVD->isInvalidDecl()) 6901 return false; 6902 } 6903 6904 return true; 6905 } 6906 6907 template <typename AttrTy> 6908 static void copyAttrFromTypedefToDecl(Sema &S, Decl *D, const TypedefType *TT) { 6909 const TypedefNameDecl *TND = TT->getDecl(); 6910 if (const auto *Attribute = TND->getAttr<AttrTy>()) { 6911 AttrTy *Clone = Attribute->clone(S.Context); 6912 Clone->setInherited(true); 6913 D->addAttr(Clone); 6914 } 6915 } 6916 6917 NamedDecl *Sema::ActOnVariableDeclarator( 6918 Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, 6919 LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, 6920 bool &AddToScope, ArrayRef<BindingDecl *> Bindings) { 6921 QualType R = TInfo->getType(); 6922 DeclarationName Name = GetNameForDeclarator(D).getName(); 6923 6924 IdentifierInfo *II = Name.getAsIdentifierInfo(); 6925 6926 if (D.isDecompositionDeclarator()) { 6927 // Take the name of the first declarator as our name for diagnostic 6928 // purposes. 6929 auto &Decomp = D.getDecompositionDeclarator(); 6930 if (!Decomp.bindings().empty()) { 6931 II = Decomp.bindings()[0].Name; 6932 Name = II; 6933 } 6934 } else if (!II) { 6935 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name; 6936 return nullptr; 6937 } 6938 6939 6940 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); 6941 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec()); 6942 6943 // dllimport globals without explicit storage class are treated as extern. We 6944 // have to change the storage class this early to get the right DeclContext. 6945 if (SC == SC_None && !DC->isRecord() && 6946 hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) && 6947 !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport)) 6948 SC = SC_Extern; 6949 6950 DeclContext *OriginalDC = DC; 6951 bool IsLocalExternDecl = SC == SC_Extern && 6952 adjustContextForLocalExternDecl(DC); 6953 6954 if (SCSpec == DeclSpec::SCS_mutable) { 6955 // mutable can only appear on non-static class members, so it's always 6956 // an error here 6957 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); 6958 D.setInvalidType(); 6959 SC = SC_None; 6960 } 6961 6962 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register && 6963 !D.getAsmLabel() && !getSourceManager().isInSystemMacro( 6964 D.getDeclSpec().getStorageClassSpecLoc())) { 6965 // In C++11, the 'register' storage class specifier is deprecated. 6966 // Suppress the warning in system macros, it's used in macros in some 6967 // popular C system headers, such as in glibc's htonl() macro. 6968 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 6969 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class 6970 : diag::warn_deprecated_register) 6971 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6972 } 6973 6974 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 6975 6976 if (!DC->isRecord() && S->getFnParent() == nullptr) { 6977 // C99 6.9p2: The storage-class specifiers auto and register shall not 6978 // appear in the declaration specifiers in an external declaration. 6979 // Global Register+Asm is a GNU extension we support. 6980 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) { 6981 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); 6982 D.setInvalidType(); 6983 } 6984 } 6985 6986 // If this variable has a VLA type and an initializer, try to 6987 // fold to a constant-sized type. This is otherwise invalid. 6988 if (D.hasInitializer() && R->isVariableArrayType()) 6989 tryToFixVariablyModifiedVarType(TInfo, R, D.getIdentifierLoc(), 6990 /*DiagID=*/0); 6991 6992 bool IsMemberSpecialization = false; 6993 bool IsVariableTemplateSpecialization = false; 6994 bool IsPartialSpecialization = false; 6995 bool IsVariableTemplate = false; 6996 VarDecl *NewVD = nullptr; 6997 VarTemplateDecl *NewTemplate = nullptr; 6998 TemplateParameterList *TemplateParams = nullptr; 6999 if (!getLangOpts().CPlusPlus) { 7000 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), 7001 II, R, TInfo, SC); 7002 7003 if (R->getContainedDeducedType()) 7004 ParsingInitForAutoVars.insert(NewVD); 7005 7006 if (D.isInvalidType()) 7007 NewVD->setInvalidDecl(); 7008 7009 if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() && 7010 NewVD->hasLocalStorage()) 7011 checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(), 7012 NTCUC_AutoVar, NTCUK_Destruct); 7013 } else { 7014 bool Invalid = false; 7015 7016 if (DC->isRecord() && !CurContext->isRecord()) { 7017 // This is an out-of-line definition of a static data member. 7018 switch (SC) { 7019 case SC_None: 7020 break; 7021 case SC_Static: 7022 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 7023 diag::err_static_out_of_line) 7024 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 7025 break; 7026 case SC_Auto: 7027 case SC_Register: 7028 case SC_Extern: 7029 // [dcl.stc] p2: The auto or register specifiers shall be applied only 7030 // to names of variables declared in a block or to function parameters. 7031 // [dcl.stc] p6: The extern specifier cannot be used in the declaration 7032 // of class members 7033 7034 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 7035 diag::err_storage_class_for_static_member) 7036 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 7037 break; 7038 case SC_PrivateExtern: 7039 llvm_unreachable("C storage class in c++!"); 7040 } 7041 } 7042 7043 if (SC == SC_Static && CurContext->isRecord()) { 7044 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { 7045 // Walk up the enclosing DeclContexts to check for any that are 7046 // incompatible with static data members. 7047 const DeclContext *FunctionOrMethod = nullptr; 7048 const CXXRecordDecl *AnonStruct = nullptr; 7049 for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) { 7050 if (Ctxt->isFunctionOrMethod()) { 7051 FunctionOrMethod = Ctxt; 7052 break; 7053 } 7054 const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt); 7055 if (ParentDecl && !ParentDecl->getDeclName()) { 7056 AnonStruct = ParentDecl; 7057 break; 7058 } 7059 } 7060 if (FunctionOrMethod) { 7061 // C++ [class.static.data]p5: A local class shall not have static data 7062 // members. 7063 Diag(D.getIdentifierLoc(), 7064 diag::err_static_data_member_not_allowed_in_local_class) 7065 << Name << RD->getDeclName() << RD->getTagKind(); 7066 } else if (AnonStruct) { 7067 // C++ [class.static.data]p4: Unnamed classes and classes contained 7068 // directly or indirectly within unnamed classes shall not contain 7069 // static data members. 7070 Diag(D.getIdentifierLoc(), 7071 diag::err_static_data_member_not_allowed_in_anon_struct) 7072 << Name << AnonStruct->getTagKind(); 7073 Invalid = true; 7074 } else if (RD->isUnion()) { 7075 // C++98 [class.union]p1: If a union contains a static data member, 7076 // the program is ill-formed. C++11 drops this restriction. 7077 Diag(D.getIdentifierLoc(), 7078 getLangOpts().CPlusPlus11 7079 ? diag::warn_cxx98_compat_static_data_member_in_union 7080 : diag::ext_static_data_member_in_union) << Name; 7081 } 7082 } 7083 } 7084 7085 // Match up the template parameter lists with the scope specifier, then 7086 // determine whether we have a template or a template specialization. 7087 bool InvalidScope = false; 7088 TemplateParams = MatchTemplateParametersToScopeSpecifier( 7089 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), 7090 D.getCXXScopeSpec(), 7091 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId 7092 ? D.getName().TemplateId 7093 : nullptr, 7094 TemplateParamLists, 7095 /*never a friend*/ false, IsMemberSpecialization, InvalidScope); 7096 Invalid |= InvalidScope; 7097 7098 if (TemplateParams) { 7099 if (!TemplateParams->size() && 7100 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 7101 // There is an extraneous 'template<>' for this variable. Complain 7102 // about it, but allow the declaration of the variable. 7103 Diag(TemplateParams->getTemplateLoc(), 7104 diag::err_template_variable_noparams) 7105 << II 7106 << SourceRange(TemplateParams->getTemplateLoc(), 7107 TemplateParams->getRAngleLoc()); 7108 TemplateParams = nullptr; 7109 } else { 7110 // Check that we can declare a template here. 7111 if (CheckTemplateDeclScope(S, TemplateParams)) 7112 return nullptr; 7113 7114 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 7115 // This is an explicit specialization or a partial specialization. 7116 IsVariableTemplateSpecialization = true; 7117 IsPartialSpecialization = TemplateParams->size() > 0; 7118 } else { // if (TemplateParams->size() > 0) 7119 // This is a template declaration. 7120 IsVariableTemplate = true; 7121 7122 // Only C++1y supports variable templates (N3651). 7123 Diag(D.getIdentifierLoc(), 7124 getLangOpts().CPlusPlus14 7125 ? diag::warn_cxx11_compat_variable_template 7126 : diag::ext_variable_template); 7127 } 7128 } 7129 } else { 7130 // Check that we can declare a member specialization here. 7131 if (!TemplateParamLists.empty() && IsMemberSpecialization && 7132 CheckTemplateDeclScope(S, TemplateParamLists.back())) 7133 return nullptr; 7134 assert((Invalid || 7135 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && 7136 "should have a 'template<>' for this decl"); 7137 } 7138 7139 if (IsVariableTemplateSpecialization) { 7140 SourceLocation TemplateKWLoc = 7141 TemplateParamLists.size() > 0 7142 ? TemplateParamLists[0]->getTemplateLoc() 7143 : SourceLocation(); 7144 DeclResult Res = ActOnVarTemplateSpecialization( 7145 S, D, TInfo, TemplateKWLoc, TemplateParams, SC, 7146 IsPartialSpecialization); 7147 if (Res.isInvalid()) 7148 return nullptr; 7149 NewVD = cast<VarDecl>(Res.get()); 7150 AddToScope = false; 7151 } else if (D.isDecompositionDeclarator()) { 7152 NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(), 7153 D.getIdentifierLoc(), R, TInfo, SC, 7154 Bindings); 7155 } else 7156 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), 7157 D.getIdentifierLoc(), II, R, TInfo, SC); 7158 7159 // If this is supposed to be a variable template, create it as such. 7160 if (IsVariableTemplate) { 7161 NewTemplate = 7162 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name, 7163 TemplateParams, NewVD); 7164 NewVD->setDescribedVarTemplate(NewTemplate); 7165 } 7166 7167 // If this decl has an auto type in need of deduction, make a note of the 7168 // Decl so we can diagnose uses of it in its own initializer. 7169 if (R->getContainedDeducedType()) 7170 ParsingInitForAutoVars.insert(NewVD); 7171 7172 if (D.isInvalidType() || Invalid) { 7173 NewVD->setInvalidDecl(); 7174 if (NewTemplate) 7175 NewTemplate->setInvalidDecl(); 7176 } 7177 7178 SetNestedNameSpecifier(*this, NewVD, D); 7179 7180 // If we have any template parameter lists that don't directly belong to 7181 // the variable (matching the scope specifier), store them. 7182 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0; 7183 if (TemplateParamLists.size() > VDTemplateParamLists) 7184 NewVD->setTemplateParameterListsInfo( 7185 Context, TemplateParamLists.drop_back(VDTemplateParamLists)); 7186 } 7187 7188 if (D.getDeclSpec().isInlineSpecified()) { 7189 if (!getLangOpts().CPlusPlus) { 7190 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 7191 << 0; 7192 } else if (CurContext->isFunctionOrMethod()) { 7193 // 'inline' is not allowed on block scope variable declaration. 7194 Diag(D.getDeclSpec().getInlineSpecLoc(), 7195 diag::err_inline_declaration_block_scope) << Name 7196 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 7197 } else { 7198 Diag(D.getDeclSpec().getInlineSpecLoc(), 7199 getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable 7200 : diag::ext_inline_variable); 7201 NewVD->setInlineSpecified(); 7202 } 7203 } 7204 7205 // Set the lexical context. If the declarator has a C++ scope specifier, the 7206 // lexical context will be different from the semantic context. 7207 NewVD->setLexicalDeclContext(CurContext); 7208 if (NewTemplate) 7209 NewTemplate->setLexicalDeclContext(CurContext); 7210 7211 if (IsLocalExternDecl) { 7212 if (D.isDecompositionDeclarator()) 7213 for (auto *B : Bindings) 7214 B->setLocalExternDecl(); 7215 else 7216 NewVD->setLocalExternDecl(); 7217 } 7218 7219 bool EmitTLSUnsupportedError = false; 7220 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) { 7221 // C++11 [dcl.stc]p4: 7222 // When thread_local is applied to a variable of block scope the 7223 // storage-class-specifier static is implied if it does not appear 7224 // explicitly. 7225 // Core issue: 'static' is not implied if the variable is declared 7226 // 'extern'. 7227 if (NewVD->hasLocalStorage() && 7228 (SCSpec != DeclSpec::SCS_unspecified || 7229 TSCS != DeclSpec::TSCS_thread_local || 7230 !DC->isFunctionOrMethod())) 7231 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 7232 diag::err_thread_non_global) 7233 << DeclSpec::getSpecifierName(TSCS); 7234 else if (!Context.getTargetInfo().isTLSSupported()) { 7235 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice || 7236 getLangOpts().SYCLIsDevice) { 7237 // Postpone error emission until we've collected attributes required to 7238 // figure out whether it's a host or device variable and whether the 7239 // error should be ignored. 7240 EmitTLSUnsupportedError = true; 7241 // We still need to mark the variable as TLS so it shows up in AST with 7242 // proper storage class for other tools to use even if we're not going 7243 // to emit any code for it. 7244 NewVD->setTSCSpec(TSCS); 7245 } else 7246 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 7247 diag::err_thread_unsupported); 7248 } else 7249 NewVD->setTSCSpec(TSCS); 7250 } 7251 7252 switch (D.getDeclSpec().getConstexprSpecifier()) { 7253 case ConstexprSpecKind::Unspecified: 7254 break; 7255 7256 case ConstexprSpecKind::Consteval: 7257 Diag(D.getDeclSpec().getConstexprSpecLoc(), 7258 diag::err_constexpr_wrong_decl_kind) 7259 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); 7260 LLVM_FALLTHROUGH; 7261 7262 case ConstexprSpecKind::Constexpr: 7263 NewVD->setConstexpr(true); 7264 // C++1z [dcl.spec.constexpr]p1: 7265 // A static data member declared with the constexpr specifier is 7266 // implicitly an inline variable. 7267 if (NewVD->isStaticDataMember() && 7268 (getLangOpts().CPlusPlus17 || 7269 Context.getTargetInfo().getCXXABI().isMicrosoft())) 7270 NewVD->setImplicitlyInline(); 7271 break; 7272 7273 case ConstexprSpecKind::Constinit: 7274 if (!NewVD->hasGlobalStorage()) 7275 Diag(D.getDeclSpec().getConstexprSpecLoc(), 7276 diag::err_constinit_local_variable); 7277 else 7278 NewVD->addAttr(ConstInitAttr::Create( 7279 Context, D.getDeclSpec().getConstexprSpecLoc(), 7280 AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit)); 7281 break; 7282 } 7283 7284 // C99 6.7.4p3 7285 // An inline definition of a function with external linkage shall 7286 // not contain a definition of a modifiable object with static or 7287 // thread storage duration... 7288 // We only apply this when the function is required to be defined 7289 // elsewhere, i.e. when the function is not 'extern inline'. Note 7290 // that a local variable with thread storage duration still has to 7291 // be marked 'static'. Also note that it's possible to get these 7292 // semantics in C++ using __attribute__((gnu_inline)). 7293 if (SC == SC_Static && S->getFnParent() != nullptr && 7294 !NewVD->getType().isConstQualified()) { 7295 FunctionDecl *CurFD = getCurFunctionDecl(); 7296 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) { 7297 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 7298 diag::warn_static_local_in_extern_inline); 7299 MaybeSuggestAddingStaticToDecl(CurFD); 7300 } 7301 } 7302 7303 if (D.getDeclSpec().isModulePrivateSpecified()) { 7304 if (IsVariableTemplateSpecialization) 7305 Diag(NewVD->getLocation(), diag::err_module_private_specialization) 7306 << (IsPartialSpecialization ? 1 : 0) 7307 << FixItHint::CreateRemoval( 7308 D.getDeclSpec().getModulePrivateSpecLoc()); 7309 else if (IsMemberSpecialization) 7310 Diag(NewVD->getLocation(), diag::err_module_private_specialization) 7311 << 2 7312 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 7313 else if (NewVD->hasLocalStorage()) 7314 Diag(NewVD->getLocation(), diag::err_module_private_local) 7315 << 0 << NewVD 7316 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 7317 << FixItHint::CreateRemoval( 7318 D.getDeclSpec().getModulePrivateSpecLoc()); 7319 else { 7320 NewVD->setModulePrivate(); 7321 if (NewTemplate) 7322 NewTemplate->setModulePrivate(); 7323 for (auto *B : Bindings) 7324 B->setModulePrivate(); 7325 } 7326 } 7327 7328 if (getLangOpts().OpenCL) { 7329 deduceOpenCLAddressSpace(NewVD); 7330 7331 DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec(); 7332 if (TSC != TSCS_unspecified) { 7333 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 7334 diag::err_opencl_unknown_type_specifier) 7335 << getLangOpts().getOpenCLVersionString() 7336 << DeclSpec::getSpecifierName(TSC) << 1; 7337 NewVD->setInvalidDecl(); 7338 } 7339 } 7340 7341 // Handle attributes prior to checking for duplicates in MergeVarDecl 7342 ProcessDeclAttributes(S, NewVD, D); 7343 7344 // FIXME: This is probably the wrong location to be doing this and we should 7345 // probably be doing this for more attributes (especially for function 7346 // pointer attributes such as format, warn_unused_result, etc.). Ideally 7347 // the code to copy attributes would be generated by TableGen. 7348 if (R->isFunctionPointerType()) 7349 if (const auto *TT = R->getAs<TypedefType>()) 7350 copyAttrFromTypedefToDecl<AllocSizeAttr>(*this, NewVD, TT); 7351 7352 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice || 7353 getLangOpts().SYCLIsDevice) { 7354 if (EmitTLSUnsupportedError && 7355 ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) || 7356 (getLangOpts().OpenMPIsDevice && 7357 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD)))) 7358 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 7359 diag::err_thread_unsupported); 7360 7361 if (EmitTLSUnsupportedError && 7362 (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice))) 7363 targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported); 7364 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static 7365 // storage [duration]." 7366 if (SC == SC_None && S->getFnParent() != nullptr && 7367 (NewVD->hasAttr<CUDASharedAttr>() || 7368 NewVD->hasAttr<CUDAConstantAttr>())) { 7369 NewVD->setStorageClass(SC_Static); 7370 } 7371 } 7372 7373 // Ensure that dllimport globals without explicit storage class are treated as 7374 // extern. The storage class is set above using parsed attributes. Now we can 7375 // check the VarDecl itself. 7376 assert(!NewVD->hasAttr<DLLImportAttr>() || 7377 NewVD->getAttr<DLLImportAttr>()->isInherited() || 7378 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None); 7379 7380 // In auto-retain/release, infer strong retension for variables of 7381 // retainable type. 7382 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD)) 7383 NewVD->setInvalidDecl(); 7384 7385 // Handle GNU asm-label extension (encoded as an attribute). 7386 if (Expr *E = (Expr*)D.getAsmLabel()) { 7387 // The parser guarantees this is a string. 7388 StringLiteral *SE = cast<StringLiteral>(E); 7389 StringRef Label = SE->getString(); 7390 if (S->getFnParent() != nullptr) { 7391 switch (SC) { 7392 case SC_None: 7393 case SC_Auto: 7394 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label; 7395 break; 7396 case SC_Register: 7397 // Local Named register 7398 if (!Context.getTargetInfo().isValidGCCRegisterName(Label) && 7399 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl())) 7400 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; 7401 break; 7402 case SC_Static: 7403 case SC_Extern: 7404 case SC_PrivateExtern: 7405 break; 7406 } 7407 } else if (SC == SC_Register) { 7408 // Global Named register 7409 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) { 7410 const auto &TI = Context.getTargetInfo(); 7411 bool HasSizeMismatch; 7412 7413 if (!TI.isValidGCCRegisterName(Label)) 7414 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; 7415 else if (!TI.validateGlobalRegisterVariable(Label, 7416 Context.getTypeSize(R), 7417 HasSizeMismatch)) 7418 Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label; 7419 else if (HasSizeMismatch) 7420 Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label; 7421 } 7422 7423 if (!R->isIntegralType(Context) && !R->isPointerType()) { 7424 Diag(D.getBeginLoc(), diag::err_asm_bad_register_type); 7425 NewVD->setInvalidDecl(true); 7426 } 7427 } 7428 7429 NewVD->addAttr(AsmLabelAttr::Create(Context, Label, 7430 /*IsLiteralLabel=*/true, 7431 SE->getStrTokenLoc(0))); 7432 } else if (!ExtnameUndeclaredIdentifiers.empty()) { 7433 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = 7434 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier()); 7435 if (I != ExtnameUndeclaredIdentifiers.end()) { 7436 if (isDeclExternC(NewVD)) { 7437 NewVD->addAttr(I->second); 7438 ExtnameUndeclaredIdentifiers.erase(I); 7439 } else 7440 Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied) 7441 << /*Variable*/1 << NewVD; 7442 } 7443 } 7444 7445 // Find the shadowed declaration before filtering for scope. 7446 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() 7447 ? getShadowedDeclaration(NewVD, Previous) 7448 : nullptr; 7449 7450 // Don't consider existing declarations that are in a different 7451 // scope and are out-of-semantic-context declarations (if the new 7452 // declaration has linkage). 7453 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD), 7454 D.getCXXScopeSpec().isNotEmpty() || 7455 IsMemberSpecialization || 7456 IsVariableTemplateSpecialization); 7457 7458 // Check whether the previous declaration is in the same block scope. This 7459 // affects whether we merge types with it, per C++11 [dcl.array]p3. 7460 if (getLangOpts().CPlusPlus && 7461 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage()) 7462 NewVD->setPreviousDeclInSameBlockScope( 7463 Previous.isSingleResult() && !Previous.isShadowed() && 7464 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false)); 7465 7466 if (!getLangOpts().CPlusPlus) { 7467 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); 7468 } else { 7469 // If this is an explicit specialization of a static data member, check it. 7470 if (IsMemberSpecialization && !NewVD->isInvalidDecl() && 7471 CheckMemberSpecialization(NewVD, Previous)) 7472 NewVD->setInvalidDecl(); 7473 7474 // Merge the decl with the existing one if appropriate. 7475 if (!Previous.empty()) { 7476 if (Previous.isSingleResult() && 7477 isa<FieldDecl>(Previous.getFoundDecl()) && 7478 D.getCXXScopeSpec().isSet()) { 7479 // The user tried to define a non-static data member 7480 // out-of-line (C++ [dcl.meaning]p1). 7481 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) 7482 << D.getCXXScopeSpec().getRange(); 7483 Previous.clear(); 7484 NewVD->setInvalidDecl(); 7485 } 7486 } else if (D.getCXXScopeSpec().isSet()) { 7487 // No previous declaration in the qualifying scope. 7488 Diag(D.getIdentifierLoc(), diag::err_no_member) 7489 << Name << computeDeclContext(D.getCXXScopeSpec(), true) 7490 << D.getCXXScopeSpec().getRange(); 7491 NewVD->setInvalidDecl(); 7492 } 7493 7494 if (!IsVariableTemplateSpecialization) 7495 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); 7496 7497 if (NewTemplate) { 7498 VarTemplateDecl *PrevVarTemplate = 7499 NewVD->getPreviousDecl() 7500 ? NewVD->getPreviousDecl()->getDescribedVarTemplate() 7501 : nullptr; 7502 7503 // Check the template parameter list of this declaration, possibly 7504 // merging in the template parameter list from the previous variable 7505 // template declaration. 7506 if (CheckTemplateParameterList( 7507 TemplateParams, 7508 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters() 7509 : nullptr, 7510 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() && 7511 DC->isDependentContext()) 7512 ? TPC_ClassTemplateMember 7513 : TPC_VarTemplate)) 7514 NewVD->setInvalidDecl(); 7515 7516 // If we are providing an explicit specialization of a static variable 7517 // template, make a note of that. 7518 if (PrevVarTemplate && 7519 PrevVarTemplate->getInstantiatedFromMemberTemplate()) 7520 PrevVarTemplate->setMemberSpecialization(); 7521 } 7522 } 7523 7524 // Diagnose shadowed variables iff this isn't a redeclaration. 7525 if (ShadowedDecl && !D.isRedeclaration()) 7526 CheckShadow(NewVD, ShadowedDecl, Previous); 7527 7528 ProcessPragmaWeak(S, NewVD); 7529 7530 // If this is the first declaration of an extern C variable, update 7531 // the map of such variables. 7532 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() && 7533 isIncompleteDeclExternC(*this, NewVD)) 7534 RegisterLocallyScopedExternCDecl(NewVD, S); 7535 7536 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { 7537 MangleNumberingContext *MCtx; 7538 Decl *ManglingContextDecl; 7539 std::tie(MCtx, ManglingContextDecl) = 7540 getCurrentMangleNumberContext(NewVD->getDeclContext()); 7541 if (MCtx) { 7542 Context.setManglingNumber( 7543 NewVD, MCtx->getManglingNumber( 7544 NewVD, getMSManglingNumber(getLangOpts(), S))); 7545 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); 7546 } 7547 } 7548 7549 // Special handling of variable named 'main'. 7550 if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") && 7551 NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() && 7552 !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) { 7553 7554 // C++ [basic.start.main]p3 7555 // A program that declares a variable main at global scope is ill-formed. 7556 if (getLangOpts().CPlusPlus) 7557 Diag(D.getBeginLoc(), diag::err_main_global_variable); 7558 7559 // In C, and external-linkage variable named main results in undefined 7560 // behavior. 7561 else if (NewVD->hasExternalFormalLinkage()) 7562 Diag(D.getBeginLoc(), diag::warn_main_redefined); 7563 } 7564 7565 if (D.isRedeclaration() && !Previous.empty()) { 7566 NamedDecl *Prev = Previous.getRepresentativeDecl(); 7567 checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization, 7568 D.isFunctionDefinition()); 7569 } 7570 7571 if (NewTemplate) { 7572 if (NewVD->isInvalidDecl()) 7573 NewTemplate->setInvalidDecl(); 7574 ActOnDocumentableDecl(NewTemplate); 7575 return NewTemplate; 7576 } 7577 7578 if (IsMemberSpecialization && !NewVD->isInvalidDecl()) 7579 CompleteMemberSpecialization(NewVD, Previous); 7580 7581 return NewVD; 7582 } 7583 7584 /// Enum describing the %select options in diag::warn_decl_shadow. 7585 enum ShadowedDeclKind { 7586 SDK_Local, 7587 SDK_Global, 7588 SDK_StaticMember, 7589 SDK_Field, 7590 SDK_Typedef, 7591 SDK_Using, 7592 SDK_StructuredBinding 7593 }; 7594 7595 /// Determine what kind of declaration we're shadowing. 7596 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl, 7597 const DeclContext *OldDC) { 7598 if (isa<TypeAliasDecl>(ShadowedDecl)) 7599 return SDK_Using; 7600 else if (isa<TypedefDecl>(ShadowedDecl)) 7601 return SDK_Typedef; 7602 else if (isa<BindingDecl>(ShadowedDecl)) 7603 return SDK_StructuredBinding; 7604 else if (isa<RecordDecl>(OldDC)) 7605 return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember; 7606 7607 return OldDC->isFileContext() ? SDK_Global : SDK_Local; 7608 } 7609 7610 /// Return the location of the capture if the given lambda captures the given 7611 /// variable \p VD, or an invalid source location otherwise. 7612 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI, 7613 const VarDecl *VD) { 7614 for (const Capture &Capture : LSI->Captures) { 7615 if (Capture.isVariableCapture() && Capture.getVariable() == VD) 7616 return Capture.getLocation(); 7617 } 7618 return SourceLocation(); 7619 } 7620 7621 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags, 7622 const LookupResult &R) { 7623 // Only diagnose if we're shadowing an unambiguous field or variable. 7624 if (R.getResultKind() != LookupResult::Found) 7625 return false; 7626 7627 // Return false if warning is ignored. 7628 return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()); 7629 } 7630 7631 /// Return the declaration shadowed by the given variable \p D, or null 7632 /// if it doesn't shadow any declaration or shadowing warnings are disabled. 7633 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D, 7634 const LookupResult &R) { 7635 if (!shouldWarnIfShadowedDecl(Diags, R)) 7636 return nullptr; 7637 7638 // Don't diagnose declarations at file scope. 7639 if (D->hasGlobalStorage()) 7640 return nullptr; 7641 7642 NamedDecl *ShadowedDecl = R.getFoundDecl(); 7643 return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl 7644 : nullptr; 7645 } 7646 7647 /// Return the declaration shadowed by the given typedef \p D, or null 7648 /// if it doesn't shadow any declaration or shadowing warnings are disabled. 7649 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D, 7650 const LookupResult &R) { 7651 // Don't warn if typedef declaration is part of a class 7652 if (D->getDeclContext()->isRecord()) 7653 return nullptr; 7654 7655 if (!shouldWarnIfShadowedDecl(Diags, R)) 7656 return nullptr; 7657 7658 NamedDecl *ShadowedDecl = R.getFoundDecl(); 7659 return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr; 7660 } 7661 7662 /// Return the declaration shadowed by the given variable \p D, or null 7663 /// if it doesn't shadow any declaration or shadowing warnings are disabled. 7664 NamedDecl *Sema::getShadowedDeclaration(const BindingDecl *D, 7665 const LookupResult &R) { 7666 if (!shouldWarnIfShadowedDecl(Diags, R)) 7667 return nullptr; 7668 7669 NamedDecl *ShadowedDecl = R.getFoundDecl(); 7670 return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl 7671 : nullptr; 7672 } 7673 7674 /// Diagnose variable or built-in function shadowing. Implements 7675 /// -Wshadow. 7676 /// 7677 /// This method is called whenever a VarDecl is added to a "useful" 7678 /// scope. 7679 /// 7680 /// \param ShadowedDecl the declaration that is shadowed by the given variable 7681 /// \param R the lookup of the name 7682 /// 7683 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl, 7684 const LookupResult &R) { 7685 DeclContext *NewDC = D->getDeclContext(); 7686 7687 if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) { 7688 // Fields are not shadowed by variables in C++ static methods. 7689 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC)) 7690 if (MD->isStatic()) 7691 return; 7692 7693 // Fields shadowed by constructor parameters are a special case. Usually 7694 // the constructor initializes the field with the parameter. 7695 if (isa<CXXConstructorDecl>(NewDC)) 7696 if (const auto PVD = dyn_cast<ParmVarDecl>(D)) { 7697 // Remember that this was shadowed so we can either warn about its 7698 // modification or its existence depending on warning settings. 7699 ShadowingDecls.insert({PVD->getCanonicalDecl(), FD}); 7700 return; 7701 } 7702 } 7703 7704 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl)) 7705 if (shadowedVar->isExternC()) { 7706 // For shadowing external vars, make sure that we point to the global 7707 // declaration, not a locally scoped extern declaration. 7708 for (auto I : shadowedVar->redecls()) 7709 if (I->isFileVarDecl()) { 7710 ShadowedDecl = I; 7711 break; 7712 } 7713 } 7714 7715 DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext(); 7716 7717 unsigned WarningDiag = diag::warn_decl_shadow; 7718 SourceLocation CaptureLoc; 7719 if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC && 7720 isa<CXXMethodDecl>(NewDC)) { 7721 if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) { 7722 if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) { 7723 if (RD->getLambdaCaptureDefault() == LCD_None) { 7724 // Try to avoid warnings for lambdas with an explicit capture list. 7725 const auto *LSI = cast<LambdaScopeInfo>(getCurFunction()); 7726 // Warn only when the lambda captures the shadowed decl explicitly. 7727 CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl)); 7728 if (CaptureLoc.isInvalid()) 7729 WarningDiag = diag::warn_decl_shadow_uncaptured_local; 7730 } else { 7731 // Remember that this was shadowed so we can avoid the warning if the 7732 // shadowed decl isn't captured and the warning settings allow it. 7733 cast<LambdaScopeInfo>(getCurFunction()) 7734 ->ShadowingDecls.push_back( 7735 {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)}); 7736 return; 7737 } 7738 } 7739 7740 if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) { 7741 // A variable can't shadow a local variable in an enclosing scope, if 7742 // they are separated by a non-capturing declaration context. 7743 for (DeclContext *ParentDC = NewDC; 7744 ParentDC && !ParentDC->Equals(OldDC); 7745 ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) { 7746 // Only block literals, captured statements, and lambda expressions 7747 // can capture; other scopes don't. 7748 if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) && 7749 !isLambdaCallOperator(ParentDC)) { 7750 return; 7751 } 7752 } 7753 } 7754 } 7755 } 7756 7757 // Only warn about certain kinds of shadowing for class members. 7758 if (NewDC && NewDC->isRecord()) { 7759 // In particular, don't warn about shadowing non-class members. 7760 if (!OldDC->isRecord()) 7761 return; 7762 7763 // TODO: should we warn about static data members shadowing 7764 // static data members from base classes? 7765 7766 // TODO: don't diagnose for inaccessible shadowed members. 7767 // This is hard to do perfectly because we might friend the 7768 // shadowing context, but that's just a false negative. 7769 } 7770 7771 7772 DeclarationName Name = R.getLookupName(); 7773 7774 // Emit warning and note. 7775 if (getSourceManager().isInSystemMacro(R.getNameLoc())) 7776 return; 7777 ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC); 7778 Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC; 7779 if (!CaptureLoc.isInvalid()) 7780 Diag(CaptureLoc, diag::note_var_explicitly_captured_here) 7781 << Name << /*explicitly*/ 1; 7782 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 7783 } 7784 7785 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD 7786 /// when these variables are captured by the lambda. 7787 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) { 7788 for (const auto &Shadow : LSI->ShadowingDecls) { 7789 const VarDecl *ShadowedDecl = Shadow.ShadowedDecl; 7790 // Try to avoid the warning when the shadowed decl isn't captured. 7791 SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl); 7792 const DeclContext *OldDC = ShadowedDecl->getDeclContext(); 7793 Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid() 7794 ? diag::warn_decl_shadow_uncaptured_local 7795 : diag::warn_decl_shadow) 7796 << Shadow.VD->getDeclName() 7797 << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC; 7798 if (!CaptureLoc.isInvalid()) 7799 Diag(CaptureLoc, diag::note_var_explicitly_captured_here) 7800 << Shadow.VD->getDeclName() << /*explicitly*/ 0; 7801 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 7802 } 7803 } 7804 7805 /// Check -Wshadow without the advantage of a previous lookup. 7806 void Sema::CheckShadow(Scope *S, VarDecl *D) { 7807 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation())) 7808 return; 7809 7810 LookupResult R(*this, D->getDeclName(), D->getLocation(), 7811 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); 7812 LookupName(R, S); 7813 if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R)) 7814 CheckShadow(D, ShadowedDecl, R); 7815 } 7816 7817 /// Check if 'E', which is an expression that is about to be modified, refers 7818 /// to a constructor parameter that shadows a field. 7819 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) { 7820 // Quickly ignore expressions that can't be shadowing ctor parameters. 7821 if (!getLangOpts().CPlusPlus || ShadowingDecls.empty()) 7822 return; 7823 E = E->IgnoreParenImpCasts(); 7824 auto *DRE = dyn_cast<DeclRefExpr>(E); 7825 if (!DRE) 7826 return; 7827 const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl()); 7828 auto I = ShadowingDecls.find(D); 7829 if (I == ShadowingDecls.end()) 7830 return; 7831 const NamedDecl *ShadowedDecl = I->second; 7832 const DeclContext *OldDC = ShadowedDecl->getDeclContext(); 7833 Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC; 7834 Diag(D->getLocation(), diag::note_var_declared_here) << D; 7835 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 7836 7837 // Avoid issuing multiple warnings about the same decl. 7838 ShadowingDecls.erase(I); 7839 } 7840 7841 /// Check for conflict between this global or extern "C" declaration and 7842 /// previous global or extern "C" declarations. This is only used in C++. 7843 template<typename T> 7844 static bool checkGlobalOrExternCConflict( 7845 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) { 7846 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""); 7847 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName()); 7848 7849 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) { 7850 // The common case: this global doesn't conflict with any extern "C" 7851 // declaration. 7852 return false; 7853 } 7854 7855 if (Prev) { 7856 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) { 7857 // Both the old and new declarations have C language linkage. This is a 7858 // redeclaration. 7859 Previous.clear(); 7860 Previous.addDecl(Prev); 7861 return true; 7862 } 7863 7864 // This is a global, non-extern "C" declaration, and there is a previous 7865 // non-global extern "C" declaration. Diagnose if this is a variable 7866 // declaration. 7867 if (!isa<VarDecl>(ND)) 7868 return false; 7869 } else { 7870 // The declaration is extern "C". Check for any declaration in the 7871 // translation unit which might conflict. 7872 if (IsGlobal) { 7873 // We have already performed the lookup into the translation unit. 7874 IsGlobal = false; 7875 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 7876 I != E; ++I) { 7877 if (isa<VarDecl>(*I)) { 7878 Prev = *I; 7879 break; 7880 } 7881 } 7882 } else { 7883 DeclContext::lookup_result R = 7884 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName()); 7885 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end(); 7886 I != E; ++I) { 7887 if (isa<VarDecl>(*I)) { 7888 Prev = *I; 7889 break; 7890 } 7891 // FIXME: If we have any other entity with this name in global scope, 7892 // the declaration is ill-formed, but that is a defect: it breaks the 7893 // 'stat' hack, for instance. Only variables can have mangled name 7894 // clashes with extern "C" declarations, so only they deserve a 7895 // diagnostic. 7896 } 7897 } 7898 7899 if (!Prev) 7900 return false; 7901 } 7902 7903 // Use the first declaration's location to ensure we point at something which 7904 // is lexically inside an extern "C" linkage-spec. 7905 assert(Prev && "should have found a previous declaration to diagnose"); 7906 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev)) 7907 Prev = FD->getFirstDecl(); 7908 else 7909 Prev = cast<VarDecl>(Prev)->getFirstDecl(); 7910 7911 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict) 7912 << IsGlobal << ND; 7913 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict) 7914 << IsGlobal; 7915 return false; 7916 } 7917 7918 /// Apply special rules for handling extern "C" declarations. Returns \c true 7919 /// if we have found that this is a redeclaration of some prior entity. 7920 /// 7921 /// Per C++ [dcl.link]p6: 7922 /// Two declarations [for a function or variable] with C language linkage 7923 /// with the same name that appear in different scopes refer to the same 7924 /// [entity]. An entity with C language linkage shall not be declared with 7925 /// the same name as an entity in global scope. 7926 template<typename T> 7927 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND, 7928 LookupResult &Previous) { 7929 if (!S.getLangOpts().CPlusPlus) { 7930 // In C, when declaring a global variable, look for a corresponding 'extern' 7931 // variable declared in function scope. We don't need this in C++, because 7932 // we find local extern decls in the surrounding file-scope DeclContext. 7933 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 7934 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) { 7935 Previous.clear(); 7936 Previous.addDecl(Prev); 7937 return true; 7938 } 7939 } 7940 return false; 7941 } 7942 7943 // A declaration in the translation unit can conflict with an extern "C" 7944 // declaration. 7945 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) 7946 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous); 7947 7948 // An extern "C" declaration can conflict with a declaration in the 7949 // translation unit or can be a redeclaration of an extern "C" declaration 7950 // in another scope. 7951 if (isIncompleteDeclExternC(S,ND)) 7952 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous); 7953 7954 // Neither global nor extern "C": nothing to do. 7955 return false; 7956 } 7957 7958 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) { 7959 // If the decl is already known invalid, don't check it. 7960 if (NewVD->isInvalidDecl()) 7961 return; 7962 7963 QualType T = NewVD->getType(); 7964 7965 // Defer checking an 'auto' type until its initializer is attached. 7966 if (T->isUndeducedType()) 7967 return; 7968 7969 if (NewVD->hasAttrs()) 7970 CheckAlignasUnderalignment(NewVD); 7971 7972 if (T->isObjCObjectType()) { 7973 Diag(NewVD->getLocation(), diag::err_statically_allocated_object) 7974 << FixItHint::CreateInsertion(NewVD->getLocation(), "*"); 7975 T = Context.getObjCObjectPointerType(T); 7976 NewVD->setType(T); 7977 } 7978 7979 // Emit an error if an address space was applied to decl with local storage. 7980 // This includes arrays of objects with address space qualifiers, but not 7981 // automatic variables that point to other address spaces. 7982 // ISO/IEC TR 18037 S5.1.2 7983 if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() && 7984 T.getAddressSpace() != LangAS::Default) { 7985 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0; 7986 NewVD->setInvalidDecl(); 7987 return; 7988 } 7989 7990 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program 7991 // scope. 7992 if (getLangOpts().OpenCLVersion == 120 && 7993 !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers", 7994 getLangOpts()) && 7995 NewVD->isStaticLocal()) { 7996 Diag(NewVD->getLocation(), diag::err_static_function_scope); 7997 NewVD->setInvalidDecl(); 7998 return; 7999 } 8000 8001 if (getLangOpts().OpenCL) { 8002 if (!diagnoseOpenCLTypes(*this, NewVD)) 8003 return; 8004 8005 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported. 8006 if (NewVD->hasAttr<BlocksAttr>()) { 8007 Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type); 8008 return; 8009 } 8010 8011 if (T->isBlockPointerType()) { 8012 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and 8013 // can't use 'extern' storage class. 8014 if (!T.isConstQualified()) { 8015 Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration) 8016 << 0 /*const*/; 8017 NewVD->setInvalidDecl(); 8018 return; 8019 } 8020 if (NewVD->hasExternalStorage()) { 8021 Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration); 8022 NewVD->setInvalidDecl(); 8023 return; 8024 } 8025 } 8026 8027 // FIXME: Adding local AS in C++ for OpenCL might make sense. 8028 if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() || 8029 NewVD->hasExternalStorage()) { 8030 if (!T->isSamplerT() && !T->isDependentType() && 8031 !(T.getAddressSpace() == LangAS::opencl_constant || 8032 (T.getAddressSpace() == LangAS::opencl_global && 8033 getOpenCLOptions().areProgramScopeVariablesSupported( 8034 getLangOpts())))) { 8035 int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1; 8036 if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts())) 8037 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) 8038 << Scope << "global or constant"; 8039 else 8040 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) 8041 << Scope << "constant"; 8042 NewVD->setInvalidDecl(); 8043 return; 8044 } 8045 } else { 8046 if (T.getAddressSpace() == LangAS::opencl_global) { 8047 Diag(NewVD->getLocation(), diag::err_opencl_function_variable) 8048 << 1 /*is any function*/ << "global"; 8049 NewVD->setInvalidDecl(); 8050 return; 8051 } 8052 if (T.getAddressSpace() == LangAS::opencl_constant || 8053 T.getAddressSpace() == LangAS::opencl_local) { 8054 FunctionDecl *FD = getCurFunctionDecl(); 8055 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables 8056 // in functions. 8057 if (FD && !FD->hasAttr<OpenCLKernelAttr>()) { 8058 if (T.getAddressSpace() == LangAS::opencl_constant) 8059 Diag(NewVD->getLocation(), diag::err_opencl_function_variable) 8060 << 0 /*non-kernel only*/ << "constant"; 8061 else 8062 Diag(NewVD->getLocation(), diag::err_opencl_function_variable) 8063 << 0 /*non-kernel only*/ << "local"; 8064 NewVD->setInvalidDecl(); 8065 return; 8066 } 8067 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be 8068 // in the outermost scope of a kernel function. 8069 if (FD && FD->hasAttr<OpenCLKernelAttr>()) { 8070 if (!getCurScope()->isFunctionScope()) { 8071 if (T.getAddressSpace() == LangAS::opencl_constant) 8072 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) 8073 << "constant"; 8074 else 8075 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) 8076 << "local"; 8077 NewVD->setInvalidDecl(); 8078 return; 8079 } 8080 } 8081 } else if (T.getAddressSpace() != LangAS::opencl_private && 8082 // If we are parsing a template we didn't deduce an addr 8083 // space yet. 8084 T.getAddressSpace() != LangAS::Default) { 8085 // Do not allow other address spaces on automatic variable. 8086 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1; 8087 NewVD->setInvalidDecl(); 8088 return; 8089 } 8090 } 8091 } 8092 8093 if (NewVD->hasLocalStorage() && T.isObjCGCWeak() 8094 && !NewVD->hasAttr<BlocksAttr>()) { 8095 if (getLangOpts().getGC() != LangOptions::NonGC) 8096 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local); 8097 else { 8098 assert(!getLangOpts().ObjCAutoRefCount); 8099 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); 8100 } 8101 } 8102 8103 bool isVM = T->isVariablyModifiedType(); 8104 if (isVM || NewVD->hasAttr<CleanupAttr>() || 8105 NewVD->hasAttr<BlocksAttr>()) 8106 setFunctionHasBranchProtectedScope(); 8107 8108 if ((isVM && NewVD->hasLinkage()) || 8109 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) { 8110 bool SizeIsNegative; 8111 llvm::APSInt Oversized; 8112 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo( 8113 NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized); 8114 QualType FixedT; 8115 if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType()) 8116 FixedT = FixedTInfo->getType(); 8117 else if (FixedTInfo) { 8118 // Type and type-as-written are canonically different. We need to fix up 8119 // both types separately. 8120 FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, 8121 Oversized); 8122 } 8123 if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) { 8124 const VariableArrayType *VAT = Context.getAsVariableArrayType(T); 8125 // FIXME: This won't give the correct result for 8126 // int a[10][n]; 8127 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); 8128 8129 if (NewVD->isFileVarDecl()) 8130 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) 8131 << SizeRange; 8132 else if (NewVD->isStaticLocal()) 8133 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) 8134 << SizeRange; 8135 else 8136 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) 8137 << SizeRange; 8138 NewVD->setInvalidDecl(); 8139 return; 8140 } 8141 8142 if (!FixedTInfo) { 8143 if (NewVD->isFileVarDecl()) 8144 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); 8145 else 8146 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); 8147 NewVD->setInvalidDecl(); 8148 return; 8149 } 8150 8151 Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant); 8152 NewVD->setType(FixedT); 8153 NewVD->setTypeSourceInfo(FixedTInfo); 8154 } 8155 8156 if (T->isVoidType()) { 8157 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names 8158 // of objects and functions. 8159 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) { 8160 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) 8161 << T; 8162 NewVD->setInvalidDecl(); 8163 return; 8164 } 8165 } 8166 8167 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { 8168 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); 8169 NewVD->setInvalidDecl(); 8170 return; 8171 } 8172 8173 if (!NewVD->hasLocalStorage() && T->isSizelessType()) { 8174 Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T; 8175 NewVD->setInvalidDecl(); 8176 return; 8177 } 8178 8179 if (isVM && NewVD->hasAttr<BlocksAttr>()) { 8180 Diag(NewVD->getLocation(), diag::err_block_on_vm); 8181 NewVD->setInvalidDecl(); 8182 return; 8183 } 8184 8185 if (NewVD->isConstexpr() && !T->isDependentType() && 8186 RequireLiteralType(NewVD->getLocation(), T, 8187 diag::err_constexpr_var_non_literal)) { 8188 NewVD->setInvalidDecl(); 8189 return; 8190 } 8191 8192 // PPC MMA non-pointer types are not allowed as non-local variable types. 8193 if (Context.getTargetInfo().getTriple().isPPC64() && 8194 !NewVD->isLocalVarDecl() && 8195 CheckPPCMMAType(T, NewVD->getLocation())) { 8196 NewVD->setInvalidDecl(); 8197 return; 8198 } 8199 } 8200 8201 /// Perform semantic checking on a newly-created variable 8202 /// declaration. 8203 /// 8204 /// This routine performs all of the type-checking required for a 8205 /// variable declaration once it has been built. It is used both to 8206 /// check variables after they have been parsed and their declarators 8207 /// have been translated into a declaration, and to check variables 8208 /// that have been instantiated from a template. 8209 /// 8210 /// Sets NewVD->isInvalidDecl() if an error was encountered. 8211 /// 8212 /// Returns true if the variable declaration is a redeclaration. 8213 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) { 8214 CheckVariableDeclarationType(NewVD); 8215 8216 // If the decl is already known invalid, don't check it. 8217 if (NewVD->isInvalidDecl()) 8218 return false; 8219 8220 // If we did not find anything by this name, look for a non-visible 8221 // extern "C" declaration with the same name. 8222 if (Previous.empty() && 8223 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous)) 8224 Previous.setShadowed(); 8225 8226 if (!Previous.empty()) { 8227 MergeVarDecl(NewVD, Previous); 8228 return true; 8229 } 8230 return false; 8231 } 8232 8233 /// AddOverriddenMethods - See if a method overrides any in the base classes, 8234 /// and if so, check that it's a valid override and remember it. 8235 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { 8236 llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden; 8237 8238 // Look for methods in base classes that this method might override. 8239 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, 8240 /*DetectVirtual=*/false); 8241 auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 8242 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); 8243 DeclarationName Name = MD->getDeclName(); 8244 8245 if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 8246 // We really want to find the base class destructor here. 8247 QualType T = Context.getTypeDeclType(BaseRecord); 8248 CanQualType CT = Context.getCanonicalType(T); 8249 Name = Context.DeclarationNames.getCXXDestructorName(CT); 8250 } 8251 8252 for (NamedDecl *BaseND : BaseRecord->lookup(Name)) { 8253 CXXMethodDecl *BaseMD = 8254 dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl()); 8255 if (!BaseMD || !BaseMD->isVirtual() || 8256 IsOverload(MD, BaseMD, /*UseMemberUsingDeclRules=*/false, 8257 /*ConsiderCudaAttrs=*/true, 8258 // C++2a [class.virtual]p2 does not consider requires 8259 // clauses when overriding. 8260 /*ConsiderRequiresClauses=*/false)) 8261 continue; 8262 8263 if (Overridden.insert(BaseMD).second) { 8264 MD->addOverriddenMethod(BaseMD); 8265 CheckOverridingFunctionReturnType(MD, BaseMD); 8266 CheckOverridingFunctionAttributes(MD, BaseMD); 8267 CheckOverridingFunctionExceptionSpec(MD, BaseMD); 8268 CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD); 8269 } 8270 8271 // A method can only override one function from each base class. We 8272 // don't track indirectly overridden methods from bases of bases. 8273 return true; 8274 } 8275 8276 return false; 8277 }; 8278 8279 DC->lookupInBases(VisitBase, Paths); 8280 return !Overridden.empty(); 8281 } 8282 8283 namespace { 8284 // Struct for holding all of the extra arguments needed by 8285 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator. 8286 struct ActOnFDArgs { 8287 Scope *S; 8288 Declarator &D; 8289 MultiTemplateParamsArg TemplateParamLists; 8290 bool AddToScope; 8291 }; 8292 } // end anonymous namespace 8293 8294 namespace { 8295 8296 // Callback to only accept typo corrections that have a non-zero edit distance. 8297 // Also only accept corrections that have the same parent decl. 8298 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback { 8299 public: 8300 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD, 8301 CXXRecordDecl *Parent) 8302 : Context(Context), OriginalFD(TypoFD), 8303 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {} 8304 8305 bool ValidateCandidate(const TypoCorrection &candidate) override { 8306 if (candidate.getEditDistance() == 0) 8307 return false; 8308 8309 SmallVector<unsigned, 1> MismatchedParams; 8310 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(), 8311 CDeclEnd = candidate.end(); 8312 CDecl != CDeclEnd; ++CDecl) { 8313 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); 8314 8315 if (FD && !FD->hasBody() && 8316 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) { 8317 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 8318 CXXRecordDecl *Parent = MD->getParent(); 8319 if (Parent && Parent->getCanonicalDecl() == ExpectedParent) 8320 return true; 8321 } else if (!ExpectedParent) { 8322 return true; 8323 } 8324 } 8325 } 8326 8327 return false; 8328 } 8329 8330 std::unique_ptr<CorrectionCandidateCallback> clone() override { 8331 return std::make_unique<DifferentNameValidatorCCC>(*this); 8332 } 8333 8334 private: 8335 ASTContext &Context; 8336 FunctionDecl *OriginalFD; 8337 CXXRecordDecl *ExpectedParent; 8338 }; 8339 8340 } // end anonymous namespace 8341 8342 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) { 8343 TypoCorrectedFunctionDefinitions.insert(F); 8344 } 8345 8346 /// Generate diagnostics for an invalid function redeclaration. 8347 /// 8348 /// This routine handles generating the diagnostic messages for an invalid 8349 /// function redeclaration, including finding possible similar declarations 8350 /// or performing typo correction if there are no previous declarations with 8351 /// the same name. 8352 /// 8353 /// Returns a NamedDecl iff typo correction was performed and substituting in 8354 /// the new declaration name does not cause new errors. 8355 static NamedDecl *DiagnoseInvalidRedeclaration( 8356 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD, 8357 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) { 8358 DeclarationName Name = NewFD->getDeclName(); 8359 DeclContext *NewDC = NewFD->getDeclContext(); 8360 SmallVector<unsigned, 1> MismatchedParams; 8361 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches; 8362 TypoCorrection Correction; 8363 bool IsDefinition = ExtraArgs.D.isFunctionDefinition(); 8364 unsigned DiagMsg = 8365 IsLocalFriend ? diag::err_no_matching_local_friend : 8366 NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match : 8367 diag::err_member_decl_does_not_match; 8368 LookupResult Prev(SemaRef, Name, NewFD->getLocation(), 8369 IsLocalFriend ? Sema::LookupLocalFriendName 8370 : Sema::LookupOrdinaryName, 8371 Sema::ForVisibleRedeclaration); 8372 8373 NewFD->setInvalidDecl(); 8374 if (IsLocalFriend) 8375 SemaRef.LookupName(Prev, S); 8376 else 8377 SemaRef.LookupQualifiedName(Prev, NewDC); 8378 assert(!Prev.isAmbiguous() && 8379 "Cannot have an ambiguity in previous-declaration lookup"); 8380 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 8381 DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD, 8382 MD ? MD->getParent() : nullptr); 8383 if (!Prev.empty()) { 8384 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); 8385 Func != FuncEnd; ++Func) { 8386 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func); 8387 if (FD && 8388 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { 8389 // Add 1 to the index so that 0 can mean the mismatch didn't 8390 // involve a parameter 8391 unsigned ParamNum = 8392 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1; 8393 NearMatches.push_back(std::make_pair(FD, ParamNum)); 8394 } 8395 } 8396 // If the qualified name lookup yielded nothing, try typo correction 8397 } else if ((Correction = SemaRef.CorrectTypo( 8398 Prev.getLookupNameInfo(), Prev.getLookupKind(), S, 8399 &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery, 8400 IsLocalFriend ? nullptr : NewDC))) { 8401 // Set up everything for the call to ActOnFunctionDeclarator 8402 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(), 8403 ExtraArgs.D.getIdentifierLoc()); 8404 Previous.clear(); 8405 Previous.setLookupName(Correction.getCorrection()); 8406 for (TypoCorrection::decl_iterator CDecl = Correction.begin(), 8407 CDeclEnd = Correction.end(); 8408 CDecl != CDeclEnd; ++CDecl) { 8409 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); 8410 if (FD && !FD->hasBody() && 8411 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { 8412 Previous.addDecl(FD); 8413 } 8414 } 8415 bool wasRedeclaration = ExtraArgs.D.isRedeclaration(); 8416 8417 NamedDecl *Result; 8418 // Retry building the function declaration with the new previous 8419 // declarations, and with errors suppressed. 8420 { 8421 // Trap errors. 8422 Sema::SFINAETrap Trap(SemaRef); 8423 8424 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the 8425 // pieces need to verify the typo-corrected C++ declaration and hopefully 8426 // eliminate the need for the parameter pack ExtraArgs. 8427 Result = SemaRef.ActOnFunctionDeclarator( 8428 ExtraArgs.S, ExtraArgs.D, 8429 Correction.getCorrectionDecl()->getDeclContext(), 8430 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists, 8431 ExtraArgs.AddToScope); 8432 8433 if (Trap.hasErrorOccurred()) 8434 Result = nullptr; 8435 } 8436 8437 if (Result) { 8438 // Determine which correction we picked. 8439 Decl *Canonical = Result->getCanonicalDecl(); 8440 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 8441 I != E; ++I) 8442 if ((*I)->getCanonicalDecl() == Canonical) 8443 Correction.setCorrectionDecl(*I); 8444 8445 // Let Sema know about the correction. 8446 SemaRef.MarkTypoCorrectedFunctionDefinition(Result); 8447 SemaRef.diagnoseTypo( 8448 Correction, 8449 SemaRef.PDiag(IsLocalFriend 8450 ? diag::err_no_matching_local_friend_suggest 8451 : diag::err_member_decl_does_not_match_suggest) 8452 << Name << NewDC << IsDefinition); 8453 return Result; 8454 } 8455 8456 // Pretend the typo correction never occurred 8457 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(), 8458 ExtraArgs.D.getIdentifierLoc()); 8459 ExtraArgs.D.setRedeclaration(wasRedeclaration); 8460 Previous.clear(); 8461 Previous.setLookupName(Name); 8462 } 8463 8464 SemaRef.Diag(NewFD->getLocation(), DiagMsg) 8465 << Name << NewDC << IsDefinition << NewFD->getLocation(); 8466 8467 bool NewFDisConst = false; 8468 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) 8469 NewFDisConst = NewMD->isConst(); 8470 8471 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator 8472 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end(); 8473 NearMatch != NearMatchEnd; ++NearMatch) { 8474 FunctionDecl *FD = NearMatch->first; 8475 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 8476 bool FDisConst = MD && MD->isConst(); 8477 bool IsMember = MD || !IsLocalFriend; 8478 8479 // FIXME: These notes are poorly worded for the local friend case. 8480 if (unsigned Idx = NearMatch->second) { 8481 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1); 8482 SourceLocation Loc = FDParam->getTypeSpecStartLoc(); 8483 if (Loc.isInvalid()) Loc = FD->getLocation(); 8484 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match 8485 : diag::note_local_decl_close_param_match) 8486 << Idx << FDParam->getType() 8487 << NewFD->getParamDecl(Idx - 1)->getType(); 8488 } else if (FDisConst != NewFDisConst) { 8489 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match) 8490 << NewFDisConst << FD->getSourceRange().getEnd(); 8491 } else 8492 SemaRef.Diag(FD->getLocation(), 8493 IsMember ? diag::note_member_def_close_match 8494 : diag::note_local_decl_close_match); 8495 } 8496 return nullptr; 8497 } 8498 8499 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) { 8500 switch (D.getDeclSpec().getStorageClassSpec()) { 8501 default: llvm_unreachable("Unknown storage class!"); 8502 case DeclSpec::SCS_auto: 8503 case DeclSpec::SCS_register: 8504 case DeclSpec::SCS_mutable: 8505 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), 8506 diag::err_typecheck_sclass_func); 8507 D.getMutableDeclSpec().ClearStorageClassSpecs(); 8508 D.setInvalidType(); 8509 break; 8510 case DeclSpec::SCS_unspecified: break; 8511 case DeclSpec::SCS_extern: 8512 if (D.getDeclSpec().isExternInLinkageSpec()) 8513 return SC_None; 8514 return SC_Extern; 8515 case DeclSpec::SCS_static: { 8516 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) { 8517 // C99 6.7.1p5: 8518 // The declaration of an identifier for a function that has 8519 // block scope shall have no explicit storage-class specifier 8520 // other than extern 8521 // See also (C++ [dcl.stc]p4). 8522 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), 8523 diag::err_static_block_func); 8524 break; 8525 } else 8526 return SC_Static; 8527 } 8528 case DeclSpec::SCS_private_extern: return SC_PrivateExtern; 8529 } 8530 8531 // No explicit storage class has already been returned 8532 return SC_None; 8533 } 8534 8535 static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D, 8536 DeclContext *DC, QualType &R, 8537 TypeSourceInfo *TInfo, 8538 StorageClass SC, 8539 bool &IsVirtualOkay) { 8540 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D); 8541 DeclarationName Name = NameInfo.getName(); 8542 8543 FunctionDecl *NewFD = nullptr; 8544 bool isInline = D.getDeclSpec().isInlineSpecified(); 8545 8546 if (!SemaRef.getLangOpts().CPlusPlus) { 8547 // Determine whether the function was written with a 8548 // prototype. This true when: 8549 // - there is a prototype in the declarator, or 8550 // - the type R of the function is some kind of typedef or other non- 8551 // attributed reference to a type name (which eventually refers to a 8552 // function type). 8553 bool HasPrototype = 8554 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) || 8555 (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType()); 8556 8557 NewFD = FunctionDecl::Create( 8558 SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC, 8559 SemaRef.getCurFPFeatures().isFPConstrained(), isInline, HasPrototype, 8560 ConstexprSpecKind::Unspecified, 8561 /*TrailingRequiresClause=*/nullptr); 8562 if (D.isInvalidType()) 8563 NewFD->setInvalidDecl(); 8564 8565 return NewFD; 8566 } 8567 8568 ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier(); 8569 8570 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); 8571 if (ConstexprKind == ConstexprSpecKind::Constinit) { 8572 SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(), 8573 diag::err_constexpr_wrong_decl_kind) 8574 << static_cast<int>(ConstexprKind); 8575 ConstexprKind = ConstexprSpecKind::Unspecified; 8576 D.getMutableDeclSpec().ClearConstexprSpec(); 8577 } 8578 Expr *TrailingRequiresClause = D.getTrailingRequiresClause(); 8579 8580 // Check that the return type is not an abstract class type. 8581 // For record types, this is done by the AbstractClassUsageDiagnoser once 8582 // the class has been completely parsed. 8583 if (!DC->isRecord() && 8584 SemaRef.RequireNonAbstractType( 8585 D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(), 8586 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType)) 8587 D.setInvalidType(); 8588 8589 if (Name.getNameKind() == DeclarationName::CXXConstructorName) { 8590 // This is a C++ constructor declaration. 8591 assert(DC->isRecord() && 8592 "Constructors can only be declared in a member context"); 8593 8594 R = SemaRef.CheckConstructorDeclarator(D, R, SC); 8595 return CXXConstructorDecl::Create( 8596 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, 8597 TInfo, ExplicitSpecifier, SemaRef.getCurFPFeatures().isFPConstrained(), 8598 isInline, /*isImplicitlyDeclared=*/false, ConstexprKind, 8599 InheritedConstructor(), TrailingRequiresClause); 8600 8601 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 8602 // This is a C++ destructor declaration. 8603 if (DC->isRecord()) { 8604 R = SemaRef.CheckDestructorDeclarator(D, R, SC); 8605 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 8606 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create( 8607 SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo, 8608 SemaRef.getCurFPFeatures().isFPConstrained(), isInline, 8609 /*isImplicitlyDeclared=*/false, ConstexprKind, 8610 TrailingRequiresClause); 8611 8612 // If the destructor needs an implicit exception specification, set it 8613 // now. FIXME: It'd be nice to be able to create the right type to start 8614 // with, but the type needs to reference the destructor declaration. 8615 if (SemaRef.getLangOpts().CPlusPlus11) 8616 SemaRef.AdjustDestructorExceptionSpec(NewDD); 8617 8618 IsVirtualOkay = true; 8619 return NewDD; 8620 8621 } else { 8622 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); 8623 D.setInvalidType(); 8624 8625 // Create a FunctionDecl to satisfy the function definition parsing 8626 // code path. 8627 return FunctionDecl::Create( 8628 SemaRef.Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), Name, R, 8629 TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline, 8630 /*hasPrototype=*/true, ConstexprKind, TrailingRequiresClause); 8631 } 8632 8633 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { 8634 if (!DC->isRecord()) { 8635 SemaRef.Diag(D.getIdentifierLoc(), 8636 diag::err_conv_function_not_member); 8637 return nullptr; 8638 } 8639 8640 SemaRef.CheckConversionDeclarator(D, R, SC); 8641 if (D.isInvalidType()) 8642 return nullptr; 8643 8644 IsVirtualOkay = true; 8645 return CXXConversionDecl::Create( 8646 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, 8647 TInfo, SemaRef.getCurFPFeatures().isFPConstrained(), isInline, 8648 ExplicitSpecifier, ConstexprKind, SourceLocation(), 8649 TrailingRequiresClause); 8650 8651 } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { 8652 if (TrailingRequiresClause) 8653 SemaRef.Diag(TrailingRequiresClause->getBeginLoc(), 8654 diag::err_trailing_requires_clause_on_deduction_guide) 8655 << TrailingRequiresClause->getSourceRange(); 8656 SemaRef.CheckDeductionGuideDeclarator(D, R, SC); 8657 8658 return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), 8659 ExplicitSpecifier, NameInfo, R, TInfo, 8660 D.getEndLoc()); 8661 } else if (DC->isRecord()) { 8662 // If the name of the function is the same as the name of the record, 8663 // then this must be an invalid constructor that has a return type. 8664 // (The parser checks for a return type and makes the declarator a 8665 // constructor if it has no return type). 8666 if (Name.getAsIdentifierInfo() && 8667 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){ 8668 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) 8669 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 8670 << SourceRange(D.getIdentifierLoc()); 8671 return nullptr; 8672 } 8673 8674 // This is a C++ method declaration. 8675 CXXMethodDecl *Ret = CXXMethodDecl::Create( 8676 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, 8677 TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline, 8678 ConstexprKind, SourceLocation(), TrailingRequiresClause); 8679 IsVirtualOkay = !Ret->isStatic(); 8680 return Ret; 8681 } else { 8682 bool isFriend = 8683 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified(); 8684 if (!isFriend && SemaRef.CurContext->isRecord()) 8685 return nullptr; 8686 8687 // Determine whether the function was written with a 8688 // prototype. This true when: 8689 // - we're in C++ (where every function has a prototype), 8690 return FunctionDecl::Create( 8691 SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC, 8692 SemaRef.getCurFPFeatures().isFPConstrained(), isInline, 8693 true /*HasPrototype*/, ConstexprKind, TrailingRequiresClause); 8694 } 8695 } 8696 8697 enum OpenCLParamType { 8698 ValidKernelParam, 8699 PtrPtrKernelParam, 8700 PtrKernelParam, 8701 InvalidAddrSpacePtrKernelParam, 8702 InvalidKernelParam, 8703 RecordKernelParam 8704 }; 8705 8706 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) { 8707 // Size dependent types are just typedefs to normal integer types 8708 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to 8709 // integers other than by their names. 8710 StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"}; 8711 8712 // Remove typedefs one by one until we reach a typedef 8713 // for a size dependent type. 8714 QualType DesugaredTy = Ty; 8715 do { 8716 ArrayRef<StringRef> Names(SizeTypeNames); 8717 auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString()); 8718 if (Names.end() != Match) 8719 return true; 8720 8721 Ty = DesugaredTy; 8722 DesugaredTy = Ty.getSingleStepDesugaredType(C); 8723 } while (DesugaredTy != Ty); 8724 8725 return false; 8726 } 8727 8728 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) { 8729 if (PT->isDependentType()) 8730 return InvalidKernelParam; 8731 8732 if (PT->isPointerType() || PT->isReferenceType()) { 8733 QualType PointeeType = PT->getPointeeType(); 8734 if (PointeeType.getAddressSpace() == LangAS::opencl_generic || 8735 PointeeType.getAddressSpace() == LangAS::opencl_private || 8736 PointeeType.getAddressSpace() == LangAS::Default) 8737 return InvalidAddrSpacePtrKernelParam; 8738 8739 if (PointeeType->isPointerType()) { 8740 // This is a pointer to pointer parameter. 8741 // Recursively check inner type. 8742 OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType); 8743 if (ParamKind == InvalidAddrSpacePtrKernelParam || 8744 ParamKind == InvalidKernelParam) 8745 return ParamKind; 8746 8747 return PtrPtrKernelParam; 8748 } 8749 8750 // C++ for OpenCL v1.0 s2.4: 8751 // Moreover the types used in parameters of the kernel functions must be: 8752 // Standard layout types for pointer parameters. The same applies to 8753 // reference if an implementation supports them in kernel parameters. 8754 if (S.getLangOpts().OpenCLCPlusPlus && 8755 !S.getOpenCLOptions().isAvailableOption( 8756 "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) && 8757 !PointeeType->isAtomicType() && !PointeeType->isVoidType() && 8758 !PointeeType->isStandardLayoutType()) 8759 return InvalidKernelParam; 8760 8761 return PtrKernelParam; 8762 } 8763 8764 // OpenCL v1.2 s6.9.k: 8765 // Arguments to kernel functions in a program cannot be declared with the 8766 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and 8767 // uintptr_t or a struct and/or union that contain fields declared to be one 8768 // of these built-in scalar types. 8769 if (isOpenCLSizeDependentType(S.getASTContext(), PT)) 8770 return InvalidKernelParam; 8771 8772 if (PT->isImageType()) 8773 return PtrKernelParam; 8774 8775 if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT()) 8776 return InvalidKernelParam; 8777 8778 // OpenCL extension spec v1.2 s9.5: 8779 // This extension adds support for half scalar and vector types as built-in 8780 // types that can be used for arithmetic operations, conversions etc. 8781 if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S.getLangOpts()) && 8782 PT->isHalfType()) 8783 return InvalidKernelParam; 8784 8785 // Look into an array argument to check if it has a forbidden type. 8786 if (PT->isArrayType()) { 8787 const Type *UnderlyingTy = PT->getPointeeOrArrayElementType(); 8788 // Call ourself to check an underlying type of an array. Since the 8789 // getPointeeOrArrayElementType returns an innermost type which is not an 8790 // array, this recursive call only happens once. 8791 return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0)); 8792 } 8793 8794 // C++ for OpenCL v1.0 s2.4: 8795 // Moreover the types used in parameters of the kernel functions must be: 8796 // Trivial and standard-layout types C++17 [basic.types] (plain old data 8797 // types) for parameters passed by value; 8798 if (S.getLangOpts().OpenCLCPlusPlus && 8799 !S.getOpenCLOptions().isAvailableOption( 8800 "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) && 8801 !PT->isOpenCLSpecificType() && !PT.isPODType(S.Context)) 8802 return InvalidKernelParam; 8803 8804 if (PT->isRecordType()) 8805 return RecordKernelParam; 8806 8807 return ValidKernelParam; 8808 } 8809 8810 static void checkIsValidOpenCLKernelParameter( 8811 Sema &S, 8812 Declarator &D, 8813 ParmVarDecl *Param, 8814 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) { 8815 QualType PT = Param->getType(); 8816 8817 // Cache the valid types we encounter to avoid rechecking structs that are 8818 // used again 8819 if (ValidTypes.count(PT.getTypePtr())) 8820 return; 8821 8822 switch (getOpenCLKernelParameterType(S, PT)) { 8823 case PtrPtrKernelParam: 8824 // OpenCL v3.0 s6.11.a: 8825 // A kernel function argument cannot be declared as a pointer to a pointer 8826 // type. [...] This restriction only applies to OpenCL C 1.2 or below. 8827 if (S.getLangOpts().OpenCLVersion <= 120 && 8828 !S.getLangOpts().OpenCLCPlusPlus) { 8829 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param); 8830 D.setInvalidType(); 8831 return; 8832 } 8833 8834 ValidTypes.insert(PT.getTypePtr()); 8835 return; 8836 8837 case InvalidAddrSpacePtrKernelParam: 8838 // OpenCL v1.0 s6.5: 8839 // __kernel function arguments declared to be a pointer of a type can point 8840 // to one of the following address spaces only : __global, __local or 8841 // __constant. 8842 S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space); 8843 D.setInvalidType(); 8844 return; 8845 8846 // OpenCL v1.2 s6.9.k: 8847 // Arguments to kernel functions in a program cannot be declared with the 8848 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and 8849 // uintptr_t or a struct and/or union that contain fields declared to be 8850 // one of these built-in scalar types. 8851 8852 case InvalidKernelParam: 8853 // OpenCL v1.2 s6.8 n: 8854 // A kernel function argument cannot be declared 8855 // of event_t type. 8856 // Do not diagnose half type since it is diagnosed as invalid argument 8857 // type for any function elsewhere. 8858 if (!PT->isHalfType()) { 8859 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; 8860 8861 // Explain what typedefs are involved. 8862 const TypedefType *Typedef = nullptr; 8863 while ((Typedef = PT->getAs<TypedefType>())) { 8864 SourceLocation Loc = Typedef->getDecl()->getLocation(); 8865 // SourceLocation may be invalid for a built-in type. 8866 if (Loc.isValid()) 8867 S.Diag(Loc, diag::note_entity_declared_at) << PT; 8868 PT = Typedef->desugar(); 8869 } 8870 } 8871 8872 D.setInvalidType(); 8873 return; 8874 8875 case PtrKernelParam: 8876 case ValidKernelParam: 8877 ValidTypes.insert(PT.getTypePtr()); 8878 return; 8879 8880 case RecordKernelParam: 8881 break; 8882 } 8883 8884 // Track nested structs we will inspect 8885 SmallVector<const Decl *, 4> VisitStack; 8886 8887 // Track where we are in the nested structs. Items will migrate from 8888 // VisitStack to HistoryStack as we do the DFS for bad field. 8889 SmallVector<const FieldDecl *, 4> HistoryStack; 8890 HistoryStack.push_back(nullptr); 8891 8892 // At this point we already handled everything except of a RecordType or 8893 // an ArrayType of a RecordType. 8894 assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type."); 8895 const RecordType *RecTy = 8896 PT->getPointeeOrArrayElementType()->getAs<RecordType>(); 8897 const RecordDecl *OrigRecDecl = RecTy->getDecl(); 8898 8899 VisitStack.push_back(RecTy->getDecl()); 8900 assert(VisitStack.back() && "First decl null?"); 8901 8902 do { 8903 const Decl *Next = VisitStack.pop_back_val(); 8904 if (!Next) { 8905 assert(!HistoryStack.empty()); 8906 // Found a marker, we have gone up a level 8907 if (const FieldDecl *Hist = HistoryStack.pop_back_val()) 8908 ValidTypes.insert(Hist->getType().getTypePtr()); 8909 8910 continue; 8911 } 8912 8913 // Adds everything except the original parameter declaration (which is not a 8914 // field itself) to the history stack. 8915 const RecordDecl *RD; 8916 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) { 8917 HistoryStack.push_back(Field); 8918 8919 QualType FieldTy = Field->getType(); 8920 // Other field types (known to be valid or invalid) are handled while we 8921 // walk around RecordDecl::fields(). 8922 assert((FieldTy->isArrayType() || FieldTy->isRecordType()) && 8923 "Unexpected type."); 8924 const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType(); 8925 8926 RD = FieldRecTy->castAs<RecordType>()->getDecl(); 8927 } else { 8928 RD = cast<RecordDecl>(Next); 8929 } 8930 8931 // Add a null marker so we know when we've gone back up a level 8932 VisitStack.push_back(nullptr); 8933 8934 for (const auto *FD : RD->fields()) { 8935 QualType QT = FD->getType(); 8936 8937 if (ValidTypes.count(QT.getTypePtr())) 8938 continue; 8939 8940 OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT); 8941 if (ParamType == ValidKernelParam) 8942 continue; 8943 8944 if (ParamType == RecordKernelParam) { 8945 VisitStack.push_back(FD); 8946 continue; 8947 } 8948 8949 // OpenCL v1.2 s6.9.p: 8950 // Arguments to kernel functions that are declared to be a struct or union 8951 // do not allow OpenCL objects to be passed as elements of the struct or 8952 // union. 8953 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam || 8954 ParamType == InvalidAddrSpacePtrKernelParam) { 8955 S.Diag(Param->getLocation(), 8956 diag::err_record_with_pointers_kernel_param) 8957 << PT->isUnionType() 8958 << PT; 8959 } else { 8960 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; 8961 } 8962 8963 S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type) 8964 << OrigRecDecl->getDeclName(); 8965 8966 // We have an error, now let's go back up through history and show where 8967 // the offending field came from 8968 for (ArrayRef<const FieldDecl *>::const_iterator 8969 I = HistoryStack.begin() + 1, 8970 E = HistoryStack.end(); 8971 I != E; ++I) { 8972 const FieldDecl *OuterField = *I; 8973 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type) 8974 << OuterField->getType(); 8975 } 8976 8977 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here) 8978 << QT->isPointerType() 8979 << QT; 8980 D.setInvalidType(); 8981 return; 8982 } 8983 } while (!VisitStack.empty()); 8984 } 8985 8986 /// Find the DeclContext in which a tag is implicitly declared if we see an 8987 /// elaborated type specifier in the specified context, and lookup finds 8988 /// nothing. 8989 static DeclContext *getTagInjectionContext(DeclContext *DC) { 8990 while (!DC->isFileContext() && !DC->isFunctionOrMethod()) 8991 DC = DC->getParent(); 8992 return DC; 8993 } 8994 8995 /// Find the Scope in which a tag is implicitly declared if we see an 8996 /// elaborated type specifier in the specified context, and lookup finds 8997 /// nothing. 8998 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) { 8999 while (S->isClassScope() || 9000 (LangOpts.CPlusPlus && 9001 S->isFunctionPrototypeScope()) || 9002 ((S->getFlags() & Scope::DeclScope) == 0) || 9003 (S->getEntity() && S->getEntity()->isTransparentContext())) 9004 S = S->getParent(); 9005 return S; 9006 } 9007 9008 NamedDecl* 9009 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC, 9010 TypeSourceInfo *TInfo, LookupResult &Previous, 9011 MultiTemplateParamsArg TemplateParamListsRef, 9012 bool &AddToScope) { 9013 QualType R = TInfo->getType(); 9014 9015 assert(R->isFunctionType()); 9016 if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr()) 9017 Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call); 9018 9019 SmallVector<TemplateParameterList *, 4> TemplateParamLists; 9020 for (TemplateParameterList *TPL : TemplateParamListsRef) 9021 TemplateParamLists.push_back(TPL); 9022 if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) { 9023 if (!TemplateParamLists.empty() && 9024 Invented->getDepth() == TemplateParamLists.back()->getDepth()) 9025 TemplateParamLists.back() = Invented; 9026 else 9027 TemplateParamLists.push_back(Invented); 9028 } 9029 9030 // TODO: consider using NameInfo for diagnostic. 9031 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 9032 DeclarationName Name = NameInfo.getName(); 9033 StorageClass SC = getFunctionStorageClass(*this, D); 9034 9035 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 9036 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 9037 diag::err_invalid_thread) 9038 << DeclSpec::getSpecifierName(TSCS); 9039 9040 if (D.isFirstDeclarationOfMember()) 9041 adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(), 9042 D.getIdentifierLoc()); 9043 9044 bool isFriend = false; 9045 FunctionTemplateDecl *FunctionTemplate = nullptr; 9046 bool isMemberSpecialization = false; 9047 bool isFunctionTemplateSpecialization = false; 9048 9049 bool isDependentClassScopeExplicitSpecialization = false; 9050 bool HasExplicitTemplateArgs = false; 9051 TemplateArgumentListInfo TemplateArgs; 9052 9053 bool isVirtualOkay = false; 9054 9055 DeclContext *OriginalDC = DC; 9056 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC); 9057 9058 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC, 9059 isVirtualOkay); 9060 if (!NewFD) return nullptr; 9061 9062 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer()) 9063 NewFD->setTopLevelDeclInObjCContainer(); 9064 9065 // Set the lexical context. If this is a function-scope declaration, or has a 9066 // C++ scope specifier, or is the object of a friend declaration, the lexical 9067 // context will be different from the semantic context. 9068 NewFD->setLexicalDeclContext(CurContext); 9069 9070 if (IsLocalExternDecl) 9071 NewFD->setLocalExternDecl(); 9072 9073 if (getLangOpts().CPlusPlus) { 9074 bool isInline = D.getDeclSpec().isInlineSpecified(); 9075 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 9076 bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier(); 9077 isFriend = D.getDeclSpec().isFriendSpecified(); 9078 if (isFriend && !isInline && D.isFunctionDefinition()) { 9079 // C++ [class.friend]p5 9080 // A function can be defined in a friend declaration of a 9081 // class . . . . Such a function is implicitly inline. 9082 NewFD->setImplicitlyInline(); 9083 } 9084 9085 // If this is a method defined in an __interface, and is not a constructor 9086 // or an overloaded operator, then set the pure flag (isVirtual will already 9087 // return true). 9088 if (const CXXRecordDecl *Parent = 9089 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) { 9090 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided()) 9091 NewFD->setPure(true); 9092 9093 // C++ [class.union]p2 9094 // A union can have member functions, but not virtual functions. 9095 if (isVirtual && Parent->isUnion()) 9096 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union); 9097 } 9098 9099 SetNestedNameSpecifier(*this, NewFD, D); 9100 isMemberSpecialization = false; 9101 isFunctionTemplateSpecialization = false; 9102 if (D.isInvalidType()) 9103 NewFD->setInvalidDecl(); 9104 9105 // Match up the template parameter lists with the scope specifier, then 9106 // determine whether we have a template or a template specialization. 9107 bool Invalid = false; 9108 TemplateParameterList *TemplateParams = 9109 MatchTemplateParametersToScopeSpecifier( 9110 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), 9111 D.getCXXScopeSpec(), 9112 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId 9113 ? D.getName().TemplateId 9114 : nullptr, 9115 TemplateParamLists, isFriend, isMemberSpecialization, 9116 Invalid); 9117 if (TemplateParams) { 9118 // Check that we can declare a template here. 9119 if (CheckTemplateDeclScope(S, TemplateParams)) 9120 NewFD->setInvalidDecl(); 9121 9122 if (TemplateParams->size() > 0) { 9123 // This is a function template 9124 9125 // A destructor cannot be a template. 9126 if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 9127 Diag(NewFD->getLocation(), diag::err_destructor_template); 9128 NewFD->setInvalidDecl(); 9129 } 9130 9131 // If we're adding a template to a dependent context, we may need to 9132 // rebuilding some of the types used within the template parameter list, 9133 // now that we know what the current instantiation is. 9134 if (DC->isDependentContext()) { 9135 ContextRAII SavedContext(*this, DC); 9136 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 9137 Invalid = true; 9138 } 9139 9140 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC, 9141 NewFD->getLocation(), 9142 Name, TemplateParams, 9143 NewFD); 9144 FunctionTemplate->setLexicalDeclContext(CurContext); 9145 NewFD->setDescribedFunctionTemplate(FunctionTemplate); 9146 9147 // For source fidelity, store the other template param lists. 9148 if (TemplateParamLists.size() > 1) { 9149 NewFD->setTemplateParameterListsInfo(Context, 9150 ArrayRef<TemplateParameterList *>(TemplateParamLists) 9151 .drop_back(1)); 9152 } 9153 } else { 9154 // This is a function template specialization. 9155 isFunctionTemplateSpecialization = true; 9156 // For source fidelity, store all the template param lists. 9157 if (TemplateParamLists.size() > 0) 9158 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); 9159 9160 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". 9161 if (isFriend) { 9162 // We want to remove the "template<>", found here. 9163 SourceRange RemoveRange = TemplateParams->getSourceRange(); 9164 9165 // If we remove the template<> and the name is not a 9166 // template-id, we're actually silently creating a problem: 9167 // the friend declaration will refer to an untemplated decl, 9168 // and clearly the user wants a template specialization. So 9169 // we need to insert '<>' after the name. 9170 SourceLocation InsertLoc; 9171 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 9172 InsertLoc = D.getName().getSourceRange().getEnd(); 9173 InsertLoc = getLocForEndOfToken(InsertLoc); 9174 } 9175 9176 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) 9177 << Name << RemoveRange 9178 << FixItHint::CreateRemoval(RemoveRange) 9179 << FixItHint::CreateInsertion(InsertLoc, "<>"); 9180 } 9181 } 9182 } else { 9183 // Check that we can declare a template here. 9184 if (!TemplateParamLists.empty() && isMemberSpecialization && 9185 CheckTemplateDeclScope(S, TemplateParamLists.back())) 9186 NewFD->setInvalidDecl(); 9187 9188 // All template param lists were matched against the scope specifier: 9189 // this is NOT (an explicit specialization of) a template. 9190 if (TemplateParamLists.size() > 0) 9191 // For source fidelity, store all the template param lists. 9192 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); 9193 } 9194 9195 if (Invalid) { 9196 NewFD->setInvalidDecl(); 9197 if (FunctionTemplate) 9198 FunctionTemplate->setInvalidDecl(); 9199 } 9200 9201 // C++ [dcl.fct.spec]p5: 9202 // The virtual specifier shall only be used in declarations of 9203 // nonstatic class member functions that appear within a 9204 // member-specification of a class declaration; see 10.3. 9205 // 9206 if (isVirtual && !NewFD->isInvalidDecl()) { 9207 if (!isVirtualOkay) { 9208 Diag(D.getDeclSpec().getVirtualSpecLoc(), 9209 diag::err_virtual_non_function); 9210 } else if (!CurContext->isRecord()) { 9211 // 'virtual' was specified outside of the class. 9212 Diag(D.getDeclSpec().getVirtualSpecLoc(), 9213 diag::err_virtual_out_of_class) 9214 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); 9215 } else if (NewFD->getDescribedFunctionTemplate()) { 9216 // C++ [temp.mem]p3: 9217 // A member function template shall not be virtual. 9218 Diag(D.getDeclSpec().getVirtualSpecLoc(), 9219 diag::err_virtual_member_function_template) 9220 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); 9221 } else { 9222 // Okay: Add virtual to the method. 9223 NewFD->setVirtualAsWritten(true); 9224 } 9225 9226 if (getLangOpts().CPlusPlus14 && 9227 NewFD->getReturnType()->isUndeducedType()) 9228 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual); 9229 } 9230 9231 if (getLangOpts().CPlusPlus14 && 9232 (NewFD->isDependentContext() || 9233 (isFriend && CurContext->isDependentContext())) && 9234 NewFD->getReturnType()->isUndeducedType()) { 9235 // If the function template is referenced directly (for instance, as a 9236 // member of the current instantiation), pretend it has a dependent type. 9237 // This is not really justified by the standard, but is the only sane 9238 // thing to do. 9239 // FIXME: For a friend function, we have not marked the function as being 9240 // a friend yet, so 'isDependentContext' on the FD doesn't work. 9241 const FunctionProtoType *FPT = 9242 NewFD->getType()->castAs<FunctionProtoType>(); 9243 QualType Result = 9244 SubstAutoType(FPT->getReturnType(), Context.DependentTy); 9245 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(), 9246 FPT->getExtProtoInfo())); 9247 } 9248 9249 // C++ [dcl.fct.spec]p3: 9250 // The inline specifier shall not appear on a block scope function 9251 // declaration. 9252 if (isInline && !NewFD->isInvalidDecl()) { 9253 if (CurContext->isFunctionOrMethod()) { 9254 // 'inline' is not allowed on block scope function declaration. 9255 Diag(D.getDeclSpec().getInlineSpecLoc(), 9256 diag::err_inline_declaration_block_scope) << Name 9257 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 9258 } 9259 } 9260 9261 // C++ [dcl.fct.spec]p6: 9262 // The explicit specifier shall be used only in the declaration of a 9263 // constructor or conversion function within its class definition; 9264 // see 12.3.1 and 12.3.2. 9265 if (hasExplicit && !NewFD->isInvalidDecl() && 9266 !isa<CXXDeductionGuideDecl>(NewFD)) { 9267 if (!CurContext->isRecord()) { 9268 // 'explicit' was specified outside of the class. 9269 Diag(D.getDeclSpec().getExplicitSpecLoc(), 9270 diag::err_explicit_out_of_class) 9271 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); 9272 } else if (!isa<CXXConstructorDecl>(NewFD) && 9273 !isa<CXXConversionDecl>(NewFD)) { 9274 // 'explicit' was specified on a function that wasn't a constructor 9275 // or conversion function. 9276 Diag(D.getDeclSpec().getExplicitSpecLoc(), 9277 diag::err_explicit_non_ctor_or_conv_function) 9278 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); 9279 } 9280 } 9281 9282 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); 9283 if (ConstexprKind != ConstexprSpecKind::Unspecified) { 9284 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors 9285 // are implicitly inline. 9286 NewFD->setImplicitlyInline(); 9287 9288 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to 9289 // be either constructors or to return a literal type. Therefore, 9290 // destructors cannot be declared constexpr. 9291 if (isa<CXXDestructorDecl>(NewFD) && 9292 (!getLangOpts().CPlusPlus20 || 9293 ConstexprKind == ConstexprSpecKind::Consteval)) { 9294 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor) 9295 << static_cast<int>(ConstexprKind); 9296 NewFD->setConstexprKind(getLangOpts().CPlusPlus20 9297 ? ConstexprSpecKind::Unspecified 9298 : ConstexprSpecKind::Constexpr); 9299 } 9300 // C++20 [dcl.constexpr]p2: An allocation function, or a 9301 // deallocation function shall not be declared with the consteval 9302 // specifier. 9303 if (ConstexprKind == ConstexprSpecKind::Consteval && 9304 (NewFD->getOverloadedOperator() == OO_New || 9305 NewFD->getOverloadedOperator() == OO_Array_New || 9306 NewFD->getOverloadedOperator() == OO_Delete || 9307 NewFD->getOverloadedOperator() == OO_Array_Delete)) { 9308 Diag(D.getDeclSpec().getConstexprSpecLoc(), 9309 diag::err_invalid_consteval_decl_kind) 9310 << NewFD; 9311 NewFD->setConstexprKind(ConstexprSpecKind::Constexpr); 9312 } 9313 } 9314 9315 // If __module_private__ was specified, mark the function accordingly. 9316 if (D.getDeclSpec().isModulePrivateSpecified()) { 9317 if (isFunctionTemplateSpecialization) { 9318 SourceLocation ModulePrivateLoc 9319 = D.getDeclSpec().getModulePrivateSpecLoc(); 9320 Diag(ModulePrivateLoc, diag::err_module_private_specialization) 9321 << 0 9322 << FixItHint::CreateRemoval(ModulePrivateLoc); 9323 } else { 9324 NewFD->setModulePrivate(); 9325 if (FunctionTemplate) 9326 FunctionTemplate->setModulePrivate(); 9327 } 9328 } 9329 9330 if (isFriend) { 9331 if (FunctionTemplate) { 9332 FunctionTemplate->setObjectOfFriendDecl(); 9333 FunctionTemplate->setAccess(AS_public); 9334 } 9335 NewFD->setObjectOfFriendDecl(); 9336 NewFD->setAccess(AS_public); 9337 } 9338 9339 // If a function is defined as defaulted or deleted, mark it as such now. 9340 // We'll do the relevant checks on defaulted / deleted functions later. 9341 switch (D.getFunctionDefinitionKind()) { 9342 case FunctionDefinitionKind::Declaration: 9343 case FunctionDefinitionKind::Definition: 9344 break; 9345 9346 case FunctionDefinitionKind::Defaulted: 9347 NewFD->setDefaulted(); 9348 break; 9349 9350 case FunctionDefinitionKind::Deleted: 9351 NewFD->setDeletedAsWritten(); 9352 break; 9353 } 9354 9355 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && 9356 D.isFunctionDefinition()) { 9357 // C++ [class.mfct]p2: 9358 // A member function may be defined (8.4) in its class definition, in 9359 // which case it is an inline member function (7.1.2) 9360 NewFD->setImplicitlyInline(); 9361 } 9362 9363 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) && 9364 !CurContext->isRecord()) { 9365 // C++ [class.static]p1: 9366 // A data or function member of a class may be declared static 9367 // in a class definition, in which case it is a static member of 9368 // the class. 9369 9370 // Complain about the 'static' specifier if it's on an out-of-line 9371 // member function definition. 9372 9373 // MSVC permits the use of a 'static' storage specifier on an out-of-line 9374 // member function template declaration and class member template 9375 // declaration (MSVC versions before 2015), warn about this. 9376 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 9377 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 9378 cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) || 9379 (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate())) 9380 ? diag::ext_static_out_of_line : diag::err_static_out_of_line) 9381 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 9382 } 9383 9384 // C++11 [except.spec]p15: 9385 // A deallocation function with no exception-specification is treated 9386 // as if it were specified with noexcept(true). 9387 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>(); 9388 if ((Name.getCXXOverloadedOperator() == OO_Delete || 9389 Name.getCXXOverloadedOperator() == OO_Array_Delete) && 9390 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) 9391 NewFD->setType(Context.getFunctionType( 9392 FPT->getReturnType(), FPT->getParamTypes(), 9393 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept))); 9394 } 9395 9396 // Filter out previous declarations that don't match the scope. 9397 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD), 9398 D.getCXXScopeSpec().isNotEmpty() || 9399 isMemberSpecialization || 9400 isFunctionTemplateSpecialization); 9401 9402 // Handle GNU asm-label extension (encoded as an attribute). 9403 if (Expr *E = (Expr*) D.getAsmLabel()) { 9404 // The parser guarantees this is a string. 9405 StringLiteral *SE = cast<StringLiteral>(E); 9406 NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(), 9407 /*IsLiteralLabel=*/true, 9408 SE->getStrTokenLoc(0))); 9409 } else if (!ExtnameUndeclaredIdentifiers.empty()) { 9410 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = 9411 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier()); 9412 if (I != ExtnameUndeclaredIdentifiers.end()) { 9413 if (isDeclExternC(NewFD)) { 9414 NewFD->addAttr(I->second); 9415 ExtnameUndeclaredIdentifiers.erase(I); 9416 } else 9417 Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied) 9418 << /*Variable*/0 << NewFD; 9419 } 9420 } 9421 9422 // Copy the parameter declarations from the declarator D to the function 9423 // declaration NewFD, if they are available. First scavenge them into Params. 9424 SmallVector<ParmVarDecl*, 16> Params; 9425 unsigned FTIIdx; 9426 if (D.isFunctionDeclarator(FTIIdx)) { 9427 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun; 9428 9429 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs 9430 // function that takes no arguments, not a function that takes a 9431 // single void argument. 9432 // We let through "const void" here because Sema::GetTypeForDeclarator 9433 // already checks for that case. 9434 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) { 9435 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { 9436 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); 9437 assert(Param->getDeclContext() != NewFD && "Was set before ?"); 9438 Param->setDeclContext(NewFD); 9439 Params.push_back(Param); 9440 9441 if (Param->isInvalidDecl()) 9442 NewFD->setInvalidDecl(); 9443 } 9444 } 9445 9446 if (!getLangOpts().CPlusPlus) { 9447 // In C, find all the tag declarations from the prototype and move them 9448 // into the function DeclContext. Remove them from the surrounding tag 9449 // injection context of the function, which is typically but not always 9450 // the TU. 9451 DeclContext *PrototypeTagContext = 9452 getTagInjectionContext(NewFD->getLexicalDeclContext()); 9453 for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) { 9454 auto *TD = dyn_cast<TagDecl>(NonParmDecl); 9455 9456 // We don't want to reparent enumerators. Look at their parent enum 9457 // instead. 9458 if (!TD) { 9459 if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl)) 9460 TD = cast<EnumDecl>(ECD->getDeclContext()); 9461 } 9462 if (!TD) 9463 continue; 9464 DeclContext *TagDC = TD->getLexicalDeclContext(); 9465 if (!TagDC->containsDecl(TD)) 9466 continue; 9467 TagDC->removeDecl(TD); 9468 TD->setDeclContext(NewFD); 9469 NewFD->addDecl(TD); 9470 9471 // Preserve the lexical DeclContext if it is not the surrounding tag 9472 // injection context of the FD. In this example, the semantic context of 9473 // E will be f and the lexical context will be S, while both the 9474 // semantic and lexical contexts of S will be f: 9475 // void f(struct S { enum E { a } f; } s); 9476 if (TagDC != PrototypeTagContext) 9477 TD->setLexicalDeclContext(TagDC); 9478 } 9479 } 9480 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { 9481 // When we're declaring a function with a typedef, typeof, etc as in the 9482 // following example, we'll need to synthesize (unnamed) 9483 // parameters for use in the declaration. 9484 // 9485 // @code 9486 // typedef void fn(int); 9487 // fn f; 9488 // @endcode 9489 9490 // Synthesize a parameter for each argument type. 9491 for (const auto &AI : FT->param_types()) { 9492 ParmVarDecl *Param = 9493 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI); 9494 Param->setScopeInfo(0, Params.size()); 9495 Params.push_back(Param); 9496 } 9497 } else { 9498 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && 9499 "Should not need args for typedef of non-prototype fn"); 9500 } 9501 9502 // Finally, we know we have the right number of parameters, install them. 9503 NewFD->setParams(Params); 9504 9505 if (D.getDeclSpec().isNoreturnSpecified()) 9506 NewFD->addAttr(C11NoReturnAttr::Create(Context, 9507 D.getDeclSpec().getNoreturnSpecLoc(), 9508 AttributeCommonInfo::AS_Keyword)); 9509 9510 // Functions returning a variably modified type violate C99 6.7.5.2p2 9511 // because all functions have linkage. 9512 if (!NewFD->isInvalidDecl() && 9513 NewFD->getReturnType()->isVariablyModifiedType()) { 9514 Diag(NewFD->getLocation(), diag::err_vm_func_decl); 9515 NewFD->setInvalidDecl(); 9516 } 9517 9518 // Apply an implicit SectionAttr if '#pragma clang section text' is active 9519 if (PragmaClangTextSection.Valid && D.isFunctionDefinition() && 9520 !NewFD->hasAttr<SectionAttr>()) 9521 NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit( 9522 Context, PragmaClangTextSection.SectionName, 9523 PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma)); 9524 9525 // Apply an implicit SectionAttr if #pragma code_seg is active. 9526 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() && 9527 !NewFD->hasAttr<SectionAttr>()) { 9528 NewFD->addAttr(SectionAttr::CreateImplicit( 9529 Context, CodeSegStack.CurrentValue->getString(), 9530 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma, 9531 SectionAttr::Declspec_allocate)); 9532 if (UnifySection(CodeSegStack.CurrentValue->getString(), 9533 ASTContext::PSF_Implicit | ASTContext::PSF_Execute | 9534 ASTContext::PSF_Read, 9535 NewFD)) 9536 NewFD->dropAttr<SectionAttr>(); 9537 } 9538 9539 // Apply an implicit CodeSegAttr from class declspec or 9540 // apply an implicit SectionAttr from #pragma code_seg if active. 9541 if (!NewFD->hasAttr<CodeSegAttr>()) { 9542 if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD, 9543 D.isFunctionDefinition())) { 9544 NewFD->addAttr(SAttr); 9545 } 9546 } 9547 9548 // Handle attributes. 9549 ProcessDeclAttributes(S, NewFD, D); 9550 9551 if (getLangOpts().OpenCL) { 9552 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return 9553 // type declaration will generate a compilation error. 9554 LangAS AddressSpace = NewFD->getReturnType().getAddressSpace(); 9555 if (AddressSpace != LangAS::Default) { 9556 Diag(NewFD->getLocation(), 9557 diag::err_opencl_return_value_with_address_space); 9558 NewFD->setInvalidDecl(); 9559 } 9560 } 9561 9562 if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) 9563 checkDeviceDecl(NewFD, D.getBeginLoc()); 9564 9565 if (!getLangOpts().CPlusPlus) { 9566 // Perform semantic checking on the function declaration. 9567 if (!NewFD->isInvalidDecl() && NewFD->isMain()) 9568 CheckMain(NewFD, D.getDeclSpec()); 9569 9570 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) 9571 CheckMSVCRTEntryPoint(NewFD); 9572 9573 if (!NewFD->isInvalidDecl()) 9574 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, 9575 isMemberSpecialization)); 9576 else if (!Previous.empty()) 9577 // Recover gracefully from an invalid redeclaration. 9578 D.setRedeclaration(true); 9579 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || 9580 Previous.getResultKind() != LookupResult::FoundOverloaded) && 9581 "previous declaration set still overloaded"); 9582 9583 // Diagnose no-prototype function declarations with calling conventions that 9584 // don't support variadic calls. Only do this in C and do it after merging 9585 // possibly prototyped redeclarations. 9586 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>(); 9587 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) { 9588 CallingConv CC = FT->getExtInfo().getCC(); 9589 if (!supportsVariadicCall(CC)) { 9590 // Windows system headers sometimes accidentally use stdcall without 9591 // (void) parameters, so we relax this to a warning. 9592 int DiagID = 9593 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr; 9594 Diag(NewFD->getLocation(), DiagID) 9595 << FunctionType::getNameForCallConv(CC); 9596 } 9597 } 9598 9599 if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() || 9600 NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion()) 9601 checkNonTrivialCUnion(NewFD->getReturnType(), 9602 NewFD->getReturnTypeSourceRange().getBegin(), 9603 NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy); 9604 } else { 9605 // C++11 [replacement.functions]p3: 9606 // The program's definitions shall not be specified as inline. 9607 // 9608 // N.B. We diagnose declarations instead of definitions per LWG issue 2340. 9609 // 9610 // Suppress the diagnostic if the function is __attribute__((used)), since 9611 // that forces an external definition to be emitted. 9612 if (D.getDeclSpec().isInlineSpecified() && 9613 NewFD->isReplaceableGlobalAllocationFunction() && 9614 !NewFD->hasAttr<UsedAttr>()) 9615 Diag(D.getDeclSpec().getInlineSpecLoc(), 9616 diag::ext_operator_new_delete_declared_inline) 9617 << NewFD->getDeclName(); 9618 9619 // If the declarator is a template-id, translate the parser's template 9620 // argument list into our AST format. 9621 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 9622 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 9623 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 9624 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 9625 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 9626 TemplateId->NumArgs); 9627 translateTemplateArguments(TemplateArgsPtr, 9628 TemplateArgs); 9629 9630 HasExplicitTemplateArgs = true; 9631 9632 if (NewFD->isInvalidDecl()) { 9633 HasExplicitTemplateArgs = false; 9634 } else if (FunctionTemplate) { 9635 // Function template with explicit template arguments. 9636 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec) 9637 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc); 9638 9639 HasExplicitTemplateArgs = false; 9640 } else { 9641 assert((isFunctionTemplateSpecialization || 9642 D.getDeclSpec().isFriendSpecified()) && 9643 "should have a 'template<>' for this decl"); 9644 // "friend void foo<>(int);" is an implicit specialization decl. 9645 isFunctionTemplateSpecialization = true; 9646 } 9647 } else if (isFriend && isFunctionTemplateSpecialization) { 9648 // This combination is only possible in a recovery case; the user 9649 // wrote something like: 9650 // template <> friend void foo(int); 9651 // which we're recovering from as if the user had written: 9652 // friend void foo<>(int); 9653 // Go ahead and fake up a template id. 9654 HasExplicitTemplateArgs = true; 9655 TemplateArgs.setLAngleLoc(D.getIdentifierLoc()); 9656 TemplateArgs.setRAngleLoc(D.getIdentifierLoc()); 9657 } 9658 9659 // We do not add HD attributes to specializations here because 9660 // they may have different constexpr-ness compared to their 9661 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied, 9662 // may end up with different effective targets. Instead, a 9663 // specialization inherits its target attributes from its template 9664 // in the CheckFunctionTemplateSpecialization() call below. 9665 if (getLangOpts().CUDA && !isFunctionTemplateSpecialization) 9666 maybeAddCUDAHostDeviceAttrs(NewFD, Previous); 9667 9668 // If it's a friend (and only if it's a friend), it's possible 9669 // that either the specialized function type or the specialized 9670 // template is dependent, and therefore matching will fail. In 9671 // this case, don't check the specialization yet. 9672 if (isFunctionTemplateSpecialization && isFriend && 9673 (NewFD->getType()->isDependentType() || DC->isDependentContext() || 9674 TemplateSpecializationType::anyInstantiationDependentTemplateArguments( 9675 TemplateArgs.arguments()))) { 9676 assert(HasExplicitTemplateArgs && 9677 "friend function specialization without template args"); 9678 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs, 9679 Previous)) 9680 NewFD->setInvalidDecl(); 9681 } else if (isFunctionTemplateSpecialization) { 9682 if (CurContext->isDependentContext() && CurContext->isRecord() 9683 && !isFriend) { 9684 isDependentClassScopeExplicitSpecialization = true; 9685 } else if (!NewFD->isInvalidDecl() && 9686 CheckFunctionTemplateSpecialization( 9687 NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), 9688 Previous)) 9689 NewFD->setInvalidDecl(); 9690 9691 // C++ [dcl.stc]p1: 9692 // A storage-class-specifier shall not be specified in an explicit 9693 // specialization (14.7.3) 9694 FunctionTemplateSpecializationInfo *Info = 9695 NewFD->getTemplateSpecializationInfo(); 9696 if (Info && SC != SC_None) { 9697 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass()) 9698 Diag(NewFD->getLocation(), 9699 diag::err_explicit_specialization_inconsistent_storage_class) 9700 << SC 9701 << FixItHint::CreateRemoval( 9702 D.getDeclSpec().getStorageClassSpecLoc()); 9703 9704 else 9705 Diag(NewFD->getLocation(), 9706 diag::ext_explicit_specialization_storage_class) 9707 << FixItHint::CreateRemoval( 9708 D.getDeclSpec().getStorageClassSpecLoc()); 9709 } 9710 } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) { 9711 if (CheckMemberSpecialization(NewFD, Previous)) 9712 NewFD->setInvalidDecl(); 9713 } 9714 9715 // Perform semantic checking on the function declaration. 9716 if (!isDependentClassScopeExplicitSpecialization) { 9717 if (!NewFD->isInvalidDecl() && NewFD->isMain()) 9718 CheckMain(NewFD, D.getDeclSpec()); 9719 9720 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) 9721 CheckMSVCRTEntryPoint(NewFD); 9722 9723 if (!NewFD->isInvalidDecl()) 9724 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, 9725 isMemberSpecialization)); 9726 else if (!Previous.empty()) 9727 // Recover gracefully from an invalid redeclaration. 9728 D.setRedeclaration(true); 9729 } 9730 9731 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || 9732 Previous.getResultKind() != LookupResult::FoundOverloaded) && 9733 "previous declaration set still overloaded"); 9734 9735 NamedDecl *PrincipalDecl = (FunctionTemplate 9736 ? cast<NamedDecl>(FunctionTemplate) 9737 : NewFD); 9738 9739 if (isFriend && NewFD->getPreviousDecl()) { 9740 AccessSpecifier Access = AS_public; 9741 if (!NewFD->isInvalidDecl()) 9742 Access = NewFD->getPreviousDecl()->getAccess(); 9743 9744 NewFD->setAccess(Access); 9745 if (FunctionTemplate) FunctionTemplate->setAccess(Access); 9746 } 9747 9748 if (NewFD->isOverloadedOperator() && !DC->isRecord() && 9749 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) 9750 PrincipalDecl->setNonMemberOperator(); 9751 9752 // If we have a function template, check the template parameter 9753 // list. This will check and merge default template arguments. 9754 if (FunctionTemplate) { 9755 FunctionTemplateDecl *PrevTemplate = 9756 FunctionTemplate->getPreviousDecl(); 9757 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(), 9758 PrevTemplate ? PrevTemplate->getTemplateParameters() 9759 : nullptr, 9760 D.getDeclSpec().isFriendSpecified() 9761 ? (D.isFunctionDefinition() 9762 ? TPC_FriendFunctionTemplateDefinition 9763 : TPC_FriendFunctionTemplate) 9764 : (D.getCXXScopeSpec().isSet() && 9765 DC && DC->isRecord() && 9766 DC->isDependentContext()) 9767 ? TPC_ClassTemplateMember 9768 : TPC_FunctionTemplate); 9769 } 9770 9771 if (NewFD->isInvalidDecl()) { 9772 // Ignore all the rest of this. 9773 } else if (!D.isRedeclaration()) { 9774 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists, 9775 AddToScope }; 9776 // Fake up an access specifier if it's supposed to be a class member. 9777 if (isa<CXXRecordDecl>(NewFD->getDeclContext())) 9778 NewFD->setAccess(AS_public); 9779 9780 // Qualified decls generally require a previous declaration. 9781 if (D.getCXXScopeSpec().isSet()) { 9782 // ...with the major exception of templated-scope or 9783 // dependent-scope friend declarations. 9784 9785 // TODO: we currently also suppress this check in dependent 9786 // contexts because (1) the parameter depth will be off when 9787 // matching friend templates and (2) we might actually be 9788 // selecting a friend based on a dependent factor. But there 9789 // are situations where these conditions don't apply and we 9790 // can actually do this check immediately. 9791 // 9792 // Unless the scope is dependent, it's always an error if qualified 9793 // redeclaration lookup found nothing at all. Diagnose that now; 9794 // nothing will diagnose that error later. 9795 if (isFriend && 9796 (D.getCXXScopeSpec().getScopeRep()->isDependent() || 9797 (!Previous.empty() && CurContext->isDependentContext()))) { 9798 // ignore these 9799 } else if (NewFD->isCPUDispatchMultiVersion() || 9800 NewFD->isCPUSpecificMultiVersion()) { 9801 // ignore this, we allow the redeclaration behavior here to create new 9802 // versions of the function. 9803 } else { 9804 // The user tried to provide an out-of-line definition for a 9805 // function that is a member of a class or namespace, but there 9806 // was no such member function declared (C++ [class.mfct]p2, 9807 // C++ [namespace.memdef]p2). For example: 9808 // 9809 // class X { 9810 // void f() const; 9811 // }; 9812 // 9813 // void X::f() { } // ill-formed 9814 // 9815 // Complain about this problem, and attempt to suggest close 9816 // matches (e.g., those that differ only in cv-qualifiers and 9817 // whether the parameter types are references). 9818 9819 if (NamedDecl *Result = DiagnoseInvalidRedeclaration( 9820 *this, Previous, NewFD, ExtraArgs, false, nullptr)) { 9821 AddToScope = ExtraArgs.AddToScope; 9822 return Result; 9823 } 9824 } 9825 9826 // Unqualified local friend declarations are required to resolve 9827 // to something. 9828 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) { 9829 if (NamedDecl *Result = DiagnoseInvalidRedeclaration( 9830 *this, Previous, NewFD, ExtraArgs, true, S)) { 9831 AddToScope = ExtraArgs.AddToScope; 9832 return Result; 9833 } 9834 } 9835 } else if (!D.isFunctionDefinition() && 9836 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() && 9837 !isFriend && !isFunctionTemplateSpecialization && 9838 !isMemberSpecialization) { 9839 // An out-of-line member function declaration must also be a 9840 // definition (C++ [class.mfct]p2). 9841 // Note that this is not the case for explicit specializations of 9842 // function templates or member functions of class templates, per 9843 // C++ [temp.expl.spec]p2. We also allow these declarations as an 9844 // extension for compatibility with old SWIG code which likes to 9845 // generate them. 9846 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) 9847 << D.getCXXScopeSpec().getRange(); 9848 } 9849 } 9850 9851 // If this is the first declaration of a library builtin function, add 9852 // attributes as appropriate. 9853 if (!D.isRedeclaration() && 9854 NewFD->getDeclContext()->getRedeclContext()->isFileContext()) { 9855 if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) { 9856 if (unsigned BuiltinID = II->getBuiltinID()) { 9857 if (NewFD->getLanguageLinkage() == CLanguageLinkage) { 9858 // Validate the type matches unless this builtin is specified as 9859 // matching regardless of its declared type. 9860 if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) { 9861 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); 9862 } else { 9863 ASTContext::GetBuiltinTypeError Error; 9864 LookupNecessaryTypesForBuiltin(S, BuiltinID); 9865 QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error); 9866 9867 if (!Error && !BuiltinType.isNull() && 9868 Context.hasSameFunctionTypeIgnoringExceptionSpec( 9869 NewFD->getType(), BuiltinType)) 9870 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); 9871 } 9872 } else if (BuiltinID == Builtin::BI__GetExceptionInfo && 9873 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 9874 // FIXME: We should consider this a builtin only in the std namespace. 9875 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); 9876 } 9877 } 9878 } 9879 } 9880 9881 ProcessPragmaWeak(S, NewFD); 9882 checkAttributesAfterMerging(*this, *NewFD); 9883 9884 AddKnownFunctionAttributes(NewFD); 9885 9886 if (NewFD->hasAttr<OverloadableAttr>() && 9887 !NewFD->getType()->getAs<FunctionProtoType>()) { 9888 Diag(NewFD->getLocation(), 9889 diag::err_attribute_overloadable_no_prototype) 9890 << NewFD; 9891 9892 // Turn this into a variadic function with no parameters. 9893 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>(); 9894 FunctionProtoType::ExtProtoInfo EPI( 9895 Context.getDefaultCallingConvention(true, false)); 9896 EPI.Variadic = true; 9897 EPI.ExtInfo = FT->getExtInfo(); 9898 9899 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI); 9900 NewFD->setType(R); 9901 } 9902 9903 // If there's a #pragma GCC visibility in scope, and this isn't a class 9904 // member, set the visibility of this function. 9905 if (!DC->isRecord() && NewFD->isExternallyVisible()) 9906 AddPushedVisibilityAttribute(NewFD); 9907 9908 // If there's a #pragma clang arc_cf_code_audited in scope, consider 9909 // marking the function. 9910 AddCFAuditedAttribute(NewFD); 9911 9912 // If this is a function definition, check if we have to apply optnone due to 9913 // a pragma. 9914 if(D.isFunctionDefinition()) 9915 AddRangeBasedOptnone(NewFD); 9916 9917 // If this is the first declaration of an extern C variable, update 9918 // the map of such variables. 9919 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() && 9920 isIncompleteDeclExternC(*this, NewFD)) 9921 RegisterLocallyScopedExternCDecl(NewFD, S); 9922 9923 // Set this FunctionDecl's range up to the right paren. 9924 NewFD->setRangeEnd(D.getSourceRange().getEnd()); 9925 9926 if (D.isRedeclaration() && !Previous.empty()) { 9927 NamedDecl *Prev = Previous.getRepresentativeDecl(); 9928 checkDLLAttributeRedeclaration(*this, Prev, NewFD, 9929 isMemberSpecialization || 9930 isFunctionTemplateSpecialization, 9931 D.isFunctionDefinition()); 9932 } 9933 9934 if (getLangOpts().CUDA) { 9935 IdentifierInfo *II = NewFD->getIdentifier(); 9936 if (II && II->isStr(getCudaConfigureFuncName()) && 9937 !NewFD->isInvalidDecl() && 9938 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 9939 if (!R->castAs<FunctionType>()->getReturnType()->isScalarType()) 9940 Diag(NewFD->getLocation(), diag::err_config_scalar_return) 9941 << getCudaConfigureFuncName(); 9942 Context.setcudaConfigureCallDecl(NewFD); 9943 } 9944 9945 // Variadic functions, other than a *declaration* of printf, are not allowed 9946 // in device-side CUDA code, unless someone passed 9947 // -fcuda-allow-variadic-functions. 9948 if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() && 9949 (NewFD->hasAttr<CUDADeviceAttr>() || 9950 NewFD->hasAttr<CUDAGlobalAttr>()) && 9951 !(II && II->isStr("printf") && NewFD->isExternC() && 9952 !D.isFunctionDefinition())) { 9953 Diag(NewFD->getLocation(), diag::err_variadic_device_fn); 9954 } 9955 } 9956 9957 MarkUnusedFileScopedDecl(NewFD); 9958 9959 9960 9961 if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) { 9962 // OpenCL v1.2 s6.8 static is invalid for kernel functions. 9963 if ((getLangOpts().OpenCLVersion >= 120) 9964 && (SC == SC_Static)) { 9965 Diag(D.getIdentifierLoc(), diag::err_static_kernel); 9966 D.setInvalidType(); 9967 } 9968 9969 // OpenCL v1.2, s6.9 -- Kernels can only have return type void. 9970 if (!NewFD->getReturnType()->isVoidType()) { 9971 SourceRange RTRange = NewFD->getReturnTypeSourceRange(); 9972 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type) 9973 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") 9974 : FixItHint()); 9975 D.setInvalidType(); 9976 } 9977 9978 llvm::SmallPtrSet<const Type *, 16> ValidTypes; 9979 for (auto Param : NewFD->parameters()) 9980 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes); 9981 9982 if (getLangOpts().OpenCLCPlusPlus) { 9983 if (DC->isRecord()) { 9984 Diag(D.getIdentifierLoc(), diag::err_method_kernel); 9985 D.setInvalidType(); 9986 } 9987 if (FunctionTemplate) { 9988 Diag(D.getIdentifierLoc(), diag::err_template_kernel); 9989 D.setInvalidType(); 9990 } 9991 } 9992 } 9993 9994 if (getLangOpts().CPlusPlus) { 9995 if (FunctionTemplate) { 9996 if (NewFD->isInvalidDecl()) 9997 FunctionTemplate->setInvalidDecl(); 9998 return FunctionTemplate; 9999 } 10000 10001 if (isMemberSpecialization && !NewFD->isInvalidDecl()) 10002 CompleteMemberSpecialization(NewFD, Previous); 10003 } 10004 10005 for (const ParmVarDecl *Param : NewFD->parameters()) { 10006 QualType PT = Param->getType(); 10007 10008 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value 10009 // types. 10010 if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) { 10011 if(const PipeType *PipeTy = PT->getAs<PipeType>()) { 10012 QualType ElemTy = PipeTy->getElementType(); 10013 if (ElemTy->isReferenceType() || ElemTy->isPointerType()) { 10014 Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type ); 10015 D.setInvalidType(); 10016 } 10017 } 10018 } 10019 } 10020 10021 // Here we have an function template explicit specialization at class scope. 10022 // The actual specialization will be postponed to template instatiation 10023 // time via the ClassScopeFunctionSpecializationDecl node. 10024 if (isDependentClassScopeExplicitSpecialization) { 10025 ClassScopeFunctionSpecializationDecl *NewSpec = 10026 ClassScopeFunctionSpecializationDecl::Create( 10027 Context, CurContext, NewFD->getLocation(), 10028 cast<CXXMethodDecl>(NewFD), 10029 HasExplicitTemplateArgs, TemplateArgs); 10030 CurContext->addDecl(NewSpec); 10031 AddToScope = false; 10032 } 10033 10034 // Diagnose availability attributes. Availability cannot be used on functions 10035 // that are run during load/unload. 10036 if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) { 10037 if (NewFD->hasAttr<ConstructorAttr>()) { 10038 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) 10039 << 1; 10040 NewFD->dropAttr<AvailabilityAttr>(); 10041 } 10042 if (NewFD->hasAttr<DestructorAttr>()) { 10043 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) 10044 << 2; 10045 NewFD->dropAttr<AvailabilityAttr>(); 10046 } 10047 } 10048 10049 // Diagnose no_builtin attribute on function declaration that are not a 10050 // definition. 10051 // FIXME: We should really be doing this in 10052 // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to 10053 // the FunctionDecl and at this point of the code 10054 // FunctionDecl::isThisDeclarationADefinition() which always returns `false` 10055 // because Sema::ActOnStartOfFunctionDef has not been called yet. 10056 if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>()) 10057 switch (D.getFunctionDefinitionKind()) { 10058 case FunctionDefinitionKind::Defaulted: 10059 case FunctionDefinitionKind::Deleted: 10060 Diag(NBA->getLocation(), 10061 diag::err_attribute_no_builtin_on_defaulted_deleted_function) 10062 << NBA->getSpelling(); 10063 break; 10064 case FunctionDefinitionKind::Declaration: 10065 Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition) 10066 << NBA->getSpelling(); 10067 break; 10068 case FunctionDefinitionKind::Definition: 10069 break; 10070 } 10071 10072 return NewFD; 10073 } 10074 10075 /// Return a CodeSegAttr from a containing class. The Microsoft docs say 10076 /// when __declspec(code_seg) "is applied to a class, all member functions of 10077 /// the class and nested classes -- this includes compiler-generated special 10078 /// member functions -- are put in the specified segment." 10079 /// The actual behavior is a little more complicated. The Microsoft compiler 10080 /// won't check outer classes if there is an active value from #pragma code_seg. 10081 /// The CodeSeg is always applied from the direct parent but only from outer 10082 /// classes when the #pragma code_seg stack is empty. See: 10083 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer 10084 /// available since MS has removed the page. 10085 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) { 10086 const auto *Method = dyn_cast<CXXMethodDecl>(FD); 10087 if (!Method) 10088 return nullptr; 10089 const CXXRecordDecl *Parent = Method->getParent(); 10090 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { 10091 Attr *NewAttr = SAttr->clone(S.getASTContext()); 10092 NewAttr->setImplicit(true); 10093 return NewAttr; 10094 } 10095 10096 // The Microsoft compiler won't check outer classes for the CodeSeg 10097 // when the #pragma code_seg stack is active. 10098 if (S.CodeSegStack.CurrentValue) 10099 return nullptr; 10100 10101 while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) { 10102 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { 10103 Attr *NewAttr = SAttr->clone(S.getASTContext()); 10104 NewAttr->setImplicit(true); 10105 return NewAttr; 10106 } 10107 } 10108 return nullptr; 10109 } 10110 10111 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a 10112 /// containing class. Otherwise it will return implicit SectionAttr if the 10113 /// function is a definition and there is an active value on CodeSegStack 10114 /// (from the current #pragma code-seg value). 10115 /// 10116 /// \param FD Function being declared. 10117 /// \param IsDefinition Whether it is a definition or just a declarartion. 10118 /// \returns A CodeSegAttr or SectionAttr to apply to the function or 10119 /// nullptr if no attribute should be added. 10120 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD, 10121 bool IsDefinition) { 10122 if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD)) 10123 return A; 10124 if (!FD->hasAttr<SectionAttr>() && IsDefinition && 10125 CodeSegStack.CurrentValue) 10126 return SectionAttr::CreateImplicit( 10127 getASTContext(), CodeSegStack.CurrentValue->getString(), 10128 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma, 10129 SectionAttr::Declspec_allocate); 10130 return nullptr; 10131 } 10132 10133 /// Determines if we can perform a correct type check for \p D as a 10134 /// redeclaration of \p PrevDecl. If not, we can generally still perform a 10135 /// best-effort check. 10136 /// 10137 /// \param NewD The new declaration. 10138 /// \param OldD The old declaration. 10139 /// \param NewT The portion of the type of the new declaration to check. 10140 /// \param OldT The portion of the type of the old declaration to check. 10141 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD, 10142 QualType NewT, QualType OldT) { 10143 if (!NewD->getLexicalDeclContext()->isDependentContext()) 10144 return true; 10145 10146 // For dependently-typed local extern declarations and friends, we can't 10147 // perform a correct type check in general until instantiation: 10148 // 10149 // int f(); 10150 // template<typename T> void g() { T f(); } 10151 // 10152 // (valid if g() is only instantiated with T = int). 10153 if (NewT->isDependentType() && 10154 (NewD->isLocalExternDecl() || NewD->getFriendObjectKind())) 10155 return false; 10156 10157 // Similarly, if the previous declaration was a dependent local extern 10158 // declaration, we don't really know its type yet. 10159 if (OldT->isDependentType() && OldD->isLocalExternDecl()) 10160 return false; 10161 10162 return true; 10163 } 10164 10165 /// Checks if the new declaration declared in dependent context must be 10166 /// put in the same redeclaration chain as the specified declaration. 10167 /// 10168 /// \param D Declaration that is checked. 10169 /// \param PrevDecl Previous declaration found with proper lookup method for the 10170 /// same declaration name. 10171 /// \returns True if D must be added to the redeclaration chain which PrevDecl 10172 /// belongs to. 10173 /// 10174 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) { 10175 if (!D->getLexicalDeclContext()->isDependentContext()) 10176 return true; 10177 10178 // Don't chain dependent friend function definitions until instantiation, to 10179 // permit cases like 10180 // 10181 // void func(); 10182 // template<typename T> class C1 { friend void func() {} }; 10183 // template<typename T> class C2 { friend void func() {} }; 10184 // 10185 // ... which is valid if only one of C1 and C2 is ever instantiated. 10186 // 10187 // FIXME: This need only apply to function definitions. For now, we proxy 10188 // this by checking for a file-scope function. We do not want this to apply 10189 // to friend declarations nominating member functions, because that gets in 10190 // the way of access checks. 10191 if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext()) 10192 return false; 10193 10194 auto *VD = dyn_cast<ValueDecl>(D); 10195 auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl); 10196 return !VD || !PrevVD || 10197 canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(), 10198 PrevVD->getType()); 10199 } 10200 10201 /// Check the target attribute of the function for MultiVersion 10202 /// validity. 10203 /// 10204 /// Returns true if there was an error, false otherwise. 10205 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) { 10206 const auto *TA = FD->getAttr<TargetAttr>(); 10207 assert(TA && "MultiVersion Candidate requires a target attribute"); 10208 ParsedTargetAttr ParseInfo = TA->parse(); 10209 const TargetInfo &TargetInfo = S.Context.getTargetInfo(); 10210 enum ErrType { Feature = 0, Architecture = 1 }; 10211 10212 if (!ParseInfo.Architecture.empty() && 10213 !TargetInfo.validateCpuIs(ParseInfo.Architecture)) { 10214 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) 10215 << Architecture << ParseInfo.Architecture; 10216 return true; 10217 } 10218 10219 for (const auto &Feat : ParseInfo.Features) { 10220 auto BareFeat = StringRef{Feat}.substr(1); 10221 if (Feat[0] == '-') { 10222 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) 10223 << Feature << ("no-" + BareFeat).str(); 10224 return true; 10225 } 10226 10227 if (!TargetInfo.validateCpuSupports(BareFeat) || 10228 !TargetInfo.isValidFeatureName(BareFeat)) { 10229 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) 10230 << Feature << BareFeat; 10231 return true; 10232 } 10233 } 10234 return false; 10235 } 10236 10237 // Provide a white-list of attributes that are allowed to be combined with 10238 // multiversion functions. 10239 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind, 10240 MultiVersionKind MVType) { 10241 // Note: this list/diagnosis must match the list in 10242 // checkMultiversionAttributesAllSame. 10243 switch (Kind) { 10244 default: 10245 return false; 10246 case attr::Used: 10247 return MVType == MultiVersionKind::Target; 10248 case attr::NonNull: 10249 case attr::NoThrow: 10250 return true; 10251 } 10252 } 10253 10254 static bool checkNonMultiVersionCompatAttributes(Sema &S, 10255 const FunctionDecl *FD, 10256 const FunctionDecl *CausedFD, 10257 MultiVersionKind MVType) { 10258 bool IsCPUSpecificCPUDispatchMVType = 10259 MVType == MultiVersionKind::CPUDispatch || 10260 MVType == MultiVersionKind::CPUSpecific; 10261 const auto Diagnose = [FD, CausedFD, IsCPUSpecificCPUDispatchMVType]( 10262 Sema &S, const Attr *A) { 10263 S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr) 10264 << IsCPUSpecificCPUDispatchMVType << A; 10265 if (CausedFD) 10266 S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here); 10267 return true; 10268 }; 10269 10270 for (const Attr *A : FD->attrs()) { 10271 switch (A->getKind()) { 10272 case attr::CPUDispatch: 10273 case attr::CPUSpecific: 10274 if (MVType != MultiVersionKind::CPUDispatch && 10275 MVType != MultiVersionKind::CPUSpecific) 10276 return Diagnose(S, A); 10277 break; 10278 case attr::Target: 10279 if (MVType != MultiVersionKind::Target) 10280 return Diagnose(S, A); 10281 break; 10282 default: 10283 if (!AttrCompatibleWithMultiVersion(A->getKind(), MVType)) 10284 return Diagnose(S, A); 10285 break; 10286 } 10287 } 10288 return false; 10289 } 10290 10291 bool Sema::areMultiversionVariantFunctionsCompatible( 10292 const FunctionDecl *OldFD, const FunctionDecl *NewFD, 10293 const PartialDiagnostic &NoProtoDiagID, 10294 const PartialDiagnosticAt &NoteCausedDiagIDAt, 10295 const PartialDiagnosticAt &NoSupportDiagIDAt, 10296 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported, 10297 bool ConstexprSupported, bool CLinkageMayDiffer) { 10298 enum DoesntSupport { 10299 FuncTemplates = 0, 10300 VirtFuncs = 1, 10301 DeducedReturn = 2, 10302 Constructors = 3, 10303 Destructors = 4, 10304 DeletedFuncs = 5, 10305 DefaultedFuncs = 6, 10306 ConstexprFuncs = 7, 10307 ConstevalFuncs = 8, 10308 }; 10309 enum Different { 10310 CallingConv = 0, 10311 ReturnType = 1, 10312 ConstexprSpec = 2, 10313 InlineSpec = 3, 10314 StorageClass = 4, 10315 Linkage = 5, 10316 }; 10317 10318 if (NoProtoDiagID.getDiagID() != 0 && OldFD && 10319 !OldFD->getType()->getAs<FunctionProtoType>()) { 10320 Diag(OldFD->getLocation(), NoProtoDiagID); 10321 Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second); 10322 return true; 10323 } 10324 10325 if (NoProtoDiagID.getDiagID() != 0 && 10326 !NewFD->getType()->getAs<FunctionProtoType>()) 10327 return Diag(NewFD->getLocation(), NoProtoDiagID); 10328 10329 if (!TemplatesSupported && 10330 NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 10331 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10332 << FuncTemplates; 10333 10334 if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) { 10335 if (NewCXXFD->isVirtual()) 10336 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10337 << VirtFuncs; 10338 10339 if (isa<CXXConstructorDecl>(NewCXXFD)) 10340 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10341 << Constructors; 10342 10343 if (isa<CXXDestructorDecl>(NewCXXFD)) 10344 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10345 << Destructors; 10346 } 10347 10348 if (NewFD->isDeleted()) 10349 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10350 << DeletedFuncs; 10351 10352 if (NewFD->isDefaulted()) 10353 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10354 << DefaultedFuncs; 10355 10356 if (!ConstexprSupported && NewFD->isConstexpr()) 10357 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10358 << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs); 10359 10360 QualType NewQType = Context.getCanonicalType(NewFD->getType()); 10361 const auto *NewType = cast<FunctionType>(NewQType); 10362 QualType NewReturnType = NewType->getReturnType(); 10363 10364 if (NewReturnType->isUndeducedType()) 10365 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10366 << DeducedReturn; 10367 10368 // Ensure the return type is identical. 10369 if (OldFD) { 10370 QualType OldQType = Context.getCanonicalType(OldFD->getType()); 10371 const auto *OldType = cast<FunctionType>(OldQType); 10372 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); 10373 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); 10374 10375 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) 10376 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv; 10377 10378 QualType OldReturnType = OldType->getReturnType(); 10379 10380 if (OldReturnType != NewReturnType) 10381 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType; 10382 10383 if (OldFD->getConstexprKind() != NewFD->getConstexprKind()) 10384 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec; 10385 10386 if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified()) 10387 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec; 10388 10389 if (OldFD->getStorageClass() != NewFD->getStorageClass()) 10390 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << StorageClass; 10391 10392 if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC()) 10393 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage; 10394 10395 if (CheckEquivalentExceptionSpec( 10396 OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(), 10397 NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation())) 10398 return true; 10399 } 10400 return false; 10401 } 10402 10403 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD, 10404 const FunctionDecl *NewFD, 10405 bool CausesMV, 10406 MultiVersionKind MVType) { 10407 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { 10408 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); 10409 if (OldFD) 10410 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 10411 return true; 10412 } 10413 10414 bool IsCPUSpecificCPUDispatchMVType = 10415 MVType == MultiVersionKind::CPUDispatch || 10416 MVType == MultiVersionKind::CPUSpecific; 10417 10418 if (CausesMV && OldFD && 10419 checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVType)) 10420 return true; 10421 10422 if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVType)) 10423 return true; 10424 10425 // Only allow transition to MultiVersion if it hasn't been used. 10426 if (OldFD && CausesMV && OldFD->isUsed(false)) 10427 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used); 10428 10429 return S.areMultiversionVariantFunctionsCompatible( 10430 OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto), 10431 PartialDiagnosticAt(NewFD->getLocation(), 10432 S.PDiag(diag::note_multiversioning_caused_here)), 10433 PartialDiagnosticAt(NewFD->getLocation(), 10434 S.PDiag(diag::err_multiversion_doesnt_support) 10435 << IsCPUSpecificCPUDispatchMVType), 10436 PartialDiagnosticAt(NewFD->getLocation(), 10437 S.PDiag(diag::err_multiversion_diff)), 10438 /*TemplatesSupported=*/false, 10439 /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVType, 10440 /*CLinkageMayDiffer=*/false); 10441 } 10442 10443 /// Check the validity of a multiversion function declaration that is the 10444 /// first of its kind. Also sets the multiversion'ness' of the function itself. 10445 /// 10446 /// This sets NewFD->isInvalidDecl() to true if there was an error. 10447 /// 10448 /// Returns true if there was an error, false otherwise. 10449 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD, 10450 MultiVersionKind MVType, 10451 const TargetAttr *TA) { 10452 assert(MVType != MultiVersionKind::None && 10453 "Function lacks multiversion attribute"); 10454 10455 // Target only causes MV if it is default, otherwise this is a normal 10456 // function. 10457 if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion()) 10458 return false; 10459 10460 if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) { 10461 FD->setInvalidDecl(); 10462 return true; 10463 } 10464 10465 if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) { 10466 FD->setInvalidDecl(); 10467 return true; 10468 } 10469 10470 FD->setIsMultiVersion(); 10471 return false; 10472 } 10473 10474 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) { 10475 for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) { 10476 if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None) 10477 return true; 10478 } 10479 10480 return false; 10481 } 10482 10483 static bool CheckTargetCausesMultiVersioning( 10484 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA, 10485 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, 10486 LookupResult &Previous) { 10487 const auto *OldTA = OldFD->getAttr<TargetAttr>(); 10488 ParsedTargetAttr NewParsed = NewTA->parse(); 10489 // Sort order doesn't matter, it just needs to be consistent. 10490 llvm::sort(NewParsed.Features); 10491 10492 // If the old decl is NOT MultiVersioned yet, and we don't cause that 10493 // to change, this is a simple redeclaration. 10494 if (!NewTA->isDefaultVersion() && 10495 (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())) 10496 return false; 10497 10498 // Otherwise, this decl causes MultiVersioning. 10499 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { 10500 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); 10501 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 10502 NewFD->setInvalidDecl(); 10503 return true; 10504 } 10505 10506 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true, 10507 MultiVersionKind::Target)) { 10508 NewFD->setInvalidDecl(); 10509 return true; 10510 } 10511 10512 if (CheckMultiVersionValue(S, NewFD)) { 10513 NewFD->setInvalidDecl(); 10514 return true; 10515 } 10516 10517 // If this is 'default', permit the forward declaration. 10518 if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) { 10519 Redeclaration = true; 10520 OldDecl = OldFD; 10521 OldFD->setIsMultiVersion(); 10522 NewFD->setIsMultiVersion(); 10523 return false; 10524 } 10525 10526 if (CheckMultiVersionValue(S, OldFD)) { 10527 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); 10528 NewFD->setInvalidDecl(); 10529 return true; 10530 } 10531 10532 ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>()); 10533 10534 if (OldParsed == NewParsed) { 10535 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); 10536 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 10537 NewFD->setInvalidDecl(); 10538 return true; 10539 } 10540 10541 for (const auto *FD : OldFD->redecls()) { 10542 const auto *CurTA = FD->getAttr<TargetAttr>(); 10543 // We allow forward declarations before ANY multiversioning attributes, but 10544 // nothing after the fact. 10545 if (PreviousDeclsHaveMultiVersionAttribute(FD) && 10546 (!CurTA || CurTA->isInherited())) { 10547 S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl) 10548 << 0; 10549 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); 10550 NewFD->setInvalidDecl(); 10551 return true; 10552 } 10553 } 10554 10555 OldFD->setIsMultiVersion(); 10556 NewFD->setIsMultiVersion(); 10557 Redeclaration = false; 10558 MergeTypeWithPrevious = false; 10559 OldDecl = nullptr; 10560 Previous.clear(); 10561 return false; 10562 } 10563 10564 /// Check the validity of a new function declaration being added to an existing 10565 /// multiversioned declaration collection. 10566 static bool CheckMultiVersionAdditionalDecl( 10567 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, 10568 MultiVersionKind NewMVType, const TargetAttr *NewTA, 10569 const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec, 10570 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, 10571 LookupResult &Previous) { 10572 10573 MultiVersionKind OldMVType = OldFD->getMultiVersionKind(); 10574 // Disallow mixing of multiversioning types. 10575 if ((OldMVType == MultiVersionKind::Target && 10576 NewMVType != MultiVersionKind::Target) || 10577 (NewMVType == MultiVersionKind::Target && 10578 OldMVType != MultiVersionKind::Target)) { 10579 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); 10580 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 10581 NewFD->setInvalidDecl(); 10582 return true; 10583 } 10584 10585 ParsedTargetAttr NewParsed; 10586 if (NewTA) { 10587 NewParsed = NewTA->parse(); 10588 llvm::sort(NewParsed.Features); 10589 } 10590 10591 bool UseMemberUsingDeclRules = 10592 S.CurContext->isRecord() && !NewFD->getFriendObjectKind(); 10593 10594 // Next, check ALL non-overloads to see if this is a redeclaration of a 10595 // previous member of the MultiVersion set. 10596 for (NamedDecl *ND : Previous) { 10597 FunctionDecl *CurFD = ND->getAsFunction(); 10598 if (!CurFD) 10599 continue; 10600 if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules)) 10601 continue; 10602 10603 if (NewMVType == MultiVersionKind::Target) { 10604 const auto *CurTA = CurFD->getAttr<TargetAttr>(); 10605 if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) { 10606 NewFD->setIsMultiVersion(); 10607 Redeclaration = true; 10608 OldDecl = ND; 10609 return false; 10610 } 10611 10612 ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>()); 10613 if (CurParsed == NewParsed) { 10614 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); 10615 S.Diag(CurFD->getLocation(), diag::note_previous_declaration); 10616 NewFD->setInvalidDecl(); 10617 return true; 10618 } 10619 } else { 10620 const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>(); 10621 const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>(); 10622 // Handle CPUDispatch/CPUSpecific versions. 10623 // Only 1 CPUDispatch function is allowed, this will make it go through 10624 // the redeclaration errors. 10625 if (NewMVType == MultiVersionKind::CPUDispatch && 10626 CurFD->hasAttr<CPUDispatchAttr>()) { 10627 if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() && 10628 std::equal( 10629 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(), 10630 NewCPUDisp->cpus_begin(), 10631 [](const IdentifierInfo *Cur, const IdentifierInfo *New) { 10632 return Cur->getName() == New->getName(); 10633 })) { 10634 NewFD->setIsMultiVersion(); 10635 Redeclaration = true; 10636 OldDecl = ND; 10637 return false; 10638 } 10639 10640 // If the declarations don't match, this is an error condition. 10641 S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch); 10642 S.Diag(CurFD->getLocation(), diag::note_previous_declaration); 10643 NewFD->setInvalidDecl(); 10644 return true; 10645 } 10646 if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) { 10647 10648 if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() && 10649 std::equal( 10650 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(), 10651 NewCPUSpec->cpus_begin(), 10652 [](const IdentifierInfo *Cur, const IdentifierInfo *New) { 10653 return Cur->getName() == New->getName(); 10654 })) { 10655 NewFD->setIsMultiVersion(); 10656 Redeclaration = true; 10657 OldDecl = ND; 10658 return false; 10659 } 10660 10661 // Only 1 version of CPUSpecific is allowed for each CPU. 10662 for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) { 10663 for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) { 10664 if (CurII == NewII) { 10665 S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs) 10666 << NewII; 10667 S.Diag(CurFD->getLocation(), diag::note_previous_declaration); 10668 NewFD->setInvalidDecl(); 10669 return true; 10670 } 10671 } 10672 } 10673 } 10674 // If the two decls aren't the same MVType, there is no possible error 10675 // condition. 10676 } 10677 } 10678 10679 // Else, this is simply a non-redecl case. Checking the 'value' is only 10680 // necessary in the Target case, since The CPUSpecific/Dispatch cases are 10681 // handled in the attribute adding step. 10682 if (NewMVType == MultiVersionKind::Target && 10683 CheckMultiVersionValue(S, NewFD)) { 10684 NewFD->setInvalidDecl(); 10685 return true; 10686 } 10687 10688 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, 10689 !OldFD->isMultiVersion(), NewMVType)) { 10690 NewFD->setInvalidDecl(); 10691 return true; 10692 } 10693 10694 // Permit forward declarations in the case where these two are compatible. 10695 if (!OldFD->isMultiVersion()) { 10696 OldFD->setIsMultiVersion(); 10697 NewFD->setIsMultiVersion(); 10698 Redeclaration = true; 10699 OldDecl = OldFD; 10700 return false; 10701 } 10702 10703 NewFD->setIsMultiVersion(); 10704 Redeclaration = false; 10705 MergeTypeWithPrevious = false; 10706 OldDecl = nullptr; 10707 Previous.clear(); 10708 return false; 10709 } 10710 10711 10712 /// Check the validity of a mulitversion function declaration. 10713 /// Also sets the multiversion'ness' of the function itself. 10714 /// 10715 /// This sets NewFD->isInvalidDecl() to true if there was an error. 10716 /// 10717 /// Returns true if there was an error, false otherwise. 10718 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD, 10719 bool &Redeclaration, NamedDecl *&OldDecl, 10720 bool &MergeTypeWithPrevious, 10721 LookupResult &Previous) { 10722 const auto *NewTA = NewFD->getAttr<TargetAttr>(); 10723 const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>(); 10724 const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>(); 10725 10726 // Mixing Multiversioning types is prohibited. 10727 if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) || 10728 (NewCPUDisp && NewCPUSpec)) { 10729 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); 10730 NewFD->setInvalidDecl(); 10731 return true; 10732 } 10733 10734 MultiVersionKind MVType = NewFD->getMultiVersionKind(); 10735 10736 // Main isn't allowed to become a multiversion function, however it IS 10737 // permitted to have 'main' be marked with the 'target' optimization hint. 10738 if (NewFD->isMain()) { 10739 if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) || 10740 MVType == MultiVersionKind::CPUDispatch || 10741 MVType == MultiVersionKind::CPUSpecific) { 10742 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main); 10743 NewFD->setInvalidDecl(); 10744 return true; 10745 } 10746 return false; 10747 } 10748 10749 if (!OldDecl || !OldDecl->getAsFunction() || 10750 OldDecl->getDeclContext()->getRedeclContext() != 10751 NewFD->getDeclContext()->getRedeclContext()) { 10752 // If there's no previous declaration, AND this isn't attempting to cause 10753 // multiversioning, this isn't an error condition. 10754 if (MVType == MultiVersionKind::None) 10755 return false; 10756 return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA); 10757 } 10758 10759 FunctionDecl *OldFD = OldDecl->getAsFunction(); 10760 10761 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None) 10762 return false; 10763 10764 if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) { 10765 S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl) 10766 << (OldFD->getMultiVersionKind() != MultiVersionKind::Target); 10767 NewFD->setInvalidDecl(); 10768 return true; 10769 } 10770 10771 // Handle the target potentially causes multiversioning case. 10772 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target) 10773 return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA, 10774 Redeclaration, OldDecl, 10775 MergeTypeWithPrevious, Previous); 10776 10777 // At this point, we have a multiversion function decl (in OldFD) AND an 10778 // appropriate attribute in the current function decl. Resolve that these are 10779 // still compatible with previous declarations. 10780 return CheckMultiVersionAdditionalDecl( 10781 S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration, 10782 OldDecl, MergeTypeWithPrevious, Previous); 10783 } 10784 10785 /// Perform semantic checking of a new function declaration. 10786 /// 10787 /// Performs semantic analysis of the new function declaration 10788 /// NewFD. This routine performs all semantic checking that does not 10789 /// require the actual declarator involved in the declaration, and is 10790 /// used both for the declaration of functions as they are parsed 10791 /// (called via ActOnDeclarator) and for the declaration of functions 10792 /// that have been instantiated via C++ template instantiation (called 10793 /// via InstantiateDecl). 10794 /// 10795 /// \param IsMemberSpecialization whether this new function declaration is 10796 /// a member specialization (that replaces any definition provided by the 10797 /// previous declaration). 10798 /// 10799 /// This sets NewFD->isInvalidDecl() to true if there was an error. 10800 /// 10801 /// \returns true if the function declaration is a redeclaration. 10802 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, 10803 LookupResult &Previous, 10804 bool IsMemberSpecialization) { 10805 assert(!NewFD->getReturnType()->isVariablyModifiedType() && 10806 "Variably modified return types are not handled here"); 10807 10808 // Determine whether the type of this function should be merged with 10809 // a previous visible declaration. This never happens for functions in C++, 10810 // and always happens in C if the previous declaration was visible. 10811 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus && 10812 !Previous.isShadowed(); 10813 10814 bool Redeclaration = false; 10815 NamedDecl *OldDecl = nullptr; 10816 bool MayNeedOverloadableChecks = false; 10817 10818 // Merge or overload the declaration with an existing declaration of 10819 // the same name, if appropriate. 10820 if (!Previous.empty()) { 10821 // Determine whether NewFD is an overload of PrevDecl or 10822 // a declaration that requires merging. If it's an overload, 10823 // there's no more work to do here; we'll just add the new 10824 // function to the scope. 10825 if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) { 10826 NamedDecl *Candidate = Previous.getRepresentativeDecl(); 10827 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) { 10828 Redeclaration = true; 10829 OldDecl = Candidate; 10830 } 10831 } else { 10832 MayNeedOverloadableChecks = true; 10833 switch (CheckOverload(S, NewFD, Previous, OldDecl, 10834 /*NewIsUsingDecl*/ false)) { 10835 case Ovl_Match: 10836 Redeclaration = true; 10837 break; 10838 10839 case Ovl_NonFunction: 10840 Redeclaration = true; 10841 break; 10842 10843 case Ovl_Overload: 10844 Redeclaration = false; 10845 break; 10846 } 10847 } 10848 } 10849 10850 // Check for a previous extern "C" declaration with this name. 10851 if (!Redeclaration && 10852 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) { 10853 if (!Previous.empty()) { 10854 // This is an extern "C" declaration with the same name as a previous 10855 // declaration, and thus redeclares that entity... 10856 Redeclaration = true; 10857 OldDecl = Previous.getFoundDecl(); 10858 MergeTypeWithPrevious = false; 10859 10860 // ... except in the presence of __attribute__((overloadable)). 10861 if (OldDecl->hasAttr<OverloadableAttr>() || 10862 NewFD->hasAttr<OverloadableAttr>()) { 10863 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) { 10864 MayNeedOverloadableChecks = true; 10865 Redeclaration = false; 10866 OldDecl = nullptr; 10867 } 10868 } 10869 } 10870 } 10871 10872 if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, 10873 MergeTypeWithPrevious, Previous)) 10874 return Redeclaration; 10875 10876 // PPC MMA non-pointer types are not allowed as function return types. 10877 if (Context.getTargetInfo().getTriple().isPPC64() && 10878 CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) { 10879 NewFD->setInvalidDecl(); 10880 } 10881 10882 // C++11 [dcl.constexpr]p8: 10883 // A constexpr specifier for a non-static member function that is not 10884 // a constructor declares that member function to be const. 10885 // 10886 // This needs to be delayed until we know whether this is an out-of-line 10887 // definition of a static member function. 10888 // 10889 // This rule is not present in C++1y, so we produce a backwards 10890 // compatibility warning whenever it happens in C++11. 10891 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 10892 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() && 10893 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) && 10894 !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) { 10895 CXXMethodDecl *OldMD = nullptr; 10896 if (OldDecl) 10897 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction()); 10898 if (!OldMD || !OldMD->isStatic()) { 10899 const FunctionProtoType *FPT = 10900 MD->getType()->castAs<FunctionProtoType>(); 10901 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 10902 EPI.TypeQuals.addConst(); 10903 MD->setType(Context.getFunctionType(FPT->getReturnType(), 10904 FPT->getParamTypes(), EPI)); 10905 10906 // Warn that we did this, if we're not performing template instantiation. 10907 // In that case, we'll have warned already when the template was defined. 10908 if (!inTemplateInstantiation()) { 10909 SourceLocation AddConstLoc; 10910 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc() 10911 .IgnoreParens().getAs<FunctionTypeLoc>()) 10912 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc()); 10913 10914 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const) 10915 << FixItHint::CreateInsertion(AddConstLoc, " const"); 10916 } 10917 } 10918 } 10919 10920 if (Redeclaration) { 10921 // NewFD and OldDecl represent declarations that need to be 10922 // merged. 10923 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) { 10924 NewFD->setInvalidDecl(); 10925 return Redeclaration; 10926 } 10927 10928 Previous.clear(); 10929 Previous.addDecl(OldDecl); 10930 10931 if (FunctionTemplateDecl *OldTemplateDecl = 10932 dyn_cast<FunctionTemplateDecl>(OldDecl)) { 10933 auto *OldFD = OldTemplateDecl->getTemplatedDecl(); 10934 FunctionTemplateDecl *NewTemplateDecl 10935 = NewFD->getDescribedFunctionTemplate(); 10936 assert(NewTemplateDecl && "Template/non-template mismatch"); 10937 10938 // The call to MergeFunctionDecl above may have created some state in 10939 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we 10940 // can add it as a redeclaration. 10941 NewTemplateDecl->mergePrevDecl(OldTemplateDecl); 10942 10943 NewFD->setPreviousDeclaration(OldFD); 10944 if (NewFD->isCXXClassMember()) { 10945 NewFD->setAccess(OldTemplateDecl->getAccess()); 10946 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); 10947 } 10948 10949 // If this is an explicit specialization of a member that is a function 10950 // template, mark it as a member specialization. 10951 if (IsMemberSpecialization && 10952 NewTemplateDecl->getInstantiatedFromMemberTemplate()) { 10953 NewTemplateDecl->setMemberSpecialization(); 10954 assert(OldTemplateDecl->isMemberSpecialization()); 10955 // Explicit specializations of a member template do not inherit deleted 10956 // status from the parent member template that they are specializing. 10957 if (OldFD->isDeleted()) { 10958 // FIXME: This assert will not hold in the presence of modules. 10959 assert(OldFD->getCanonicalDecl() == OldFD); 10960 // FIXME: We need an update record for this AST mutation. 10961 OldFD->setDeletedAsWritten(false); 10962 } 10963 } 10964 10965 } else { 10966 if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) { 10967 auto *OldFD = cast<FunctionDecl>(OldDecl); 10968 // This needs to happen first so that 'inline' propagates. 10969 NewFD->setPreviousDeclaration(OldFD); 10970 if (NewFD->isCXXClassMember()) 10971 NewFD->setAccess(OldFD->getAccess()); 10972 } 10973 } 10974 } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks && 10975 !NewFD->getAttr<OverloadableAttr>()) { 10976 assert((Previous.empty() || 10977 llvm::any_of(Previous, 10978 [](const NamedDecl *ND) { 10979 return ND->hasAttr<OverloadableAttr>(); 10980 })) && 10981 "Non-redecls shouldn't happen without overloadable present"); 10982 10983 auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) { 10984 const auto *FD = dyn_cast<FunctionDecl>(ND); 10985 return FD && !FD->hasAttr<OverloadableAttr>(); 10986 }); 10987 10988 if (OtherUnmarkedIter != Previous.end()) { 10989 Diag(NewFD->getLocation(), 10990 diag::err_attribute_overloadable_multiple_unmarked_overloads); 10991 Diag((*OtherUnmarkedIter)->getLocation(), 10992 diag::note_attribute_overloadable_prev_overload) 10993 << false; 10994 10995 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); 10996 } 10997 } 10998 10999 if (LangOpts.OpenMP) 11000 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD); 11001 11002 // Semantic checking for this function declaration (in isolation). 11003 11004 if (getLangOpts().CPlusPlus) { 11005 // C++-specific checks. 11006 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) { 11007 CheckConstructor(Constructor); 11008 } else if (CXXDestructorDecl *Destructor = 11009 dyn_cast<CXXDestructorDecl>(NewFD)) { 11010 CXXRecordDecl *Record = Destructor->getParent(); 11011 QualType ClassType = Context.getTypeDeclType(Record); 11012 11013 // FIXME: Shouldn't we be able to perform this check even when the class 11014 // type is dependent? Both gcc and edg can handle that. 11015 if (!ClassType->isDependentType()) { 11016 DeclarationName Name 11017 = Context.DeclarationNames.getCXXDestructorName( 11018 Context.getCanonicalType(ClassType)); 11019 if (NewFD->getDeclName() != Name) { 11020 Diag(NewFD->getLocation(), diag::err_destructor_name); 11021 NewFD->setInvalidDecl(); 11022 return Redeclaration; 11023 } 11024 } 11025 } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) { 11026 if (auto *TD = Guide->getDescribedFunctionTemplate()) 11027 CheckDeductionGuideTemplate(TD); 11028 11029 // A deduction guide is not on the list of entities that can be 11030 // explicitly specialized. 11031 if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 11032 Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized) 11033 << /*explicit specialization*/ 1; 11034 } 11035 11036 // Find any virtual functions that this function overrides. 11037 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) { 11038 if (!Method->isFunctionTemplateSpecialization() && 11039 !Method->getDescribedFunctionTemplate() && 11040 Method->isCanonicalDecl()) { 11041 AddOverriddenMethods(Method->getParent(), Method); 11042 } 11043 if (Method->isVirtual() && NewFD->getTrailingRequiresClause()) 11044 // C++2a [class.virtual]p6 11045 // A virtual method shall not have a requires-clause. 11046 Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(), 11047 diag::err_constrained_virtual_method); 11048 11049 if (Method->isStatic()) 11050 checkThisInStaticMemberFunctionType(Method); 11051 } 11052 11053 if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD)) 11054 ActOnConversionDeclarator(Conversion); 11055 11056 // Extra checking for C++ overloaded operators (C++ [over.oper]). 11057 if (NewFD->isOverloadedOperator() && 11058 CheckOverloadedOperatorDeclaration(NewFD)) { 11059 NewFD->setInvalidDecl(); 11060 return Redeclaration; 11061 } 11062 11063 // Extra checking for C++0x literal operators (C++0x [over.literal]). 11064 if (NewFD->getLiteralIdentifier() && 11065 CheckLiteralOperatorDeclaration(NewFD)) { 11066 NewFD->setInvalidDecl(); 11067 return Redeclaration; 11068 } 11069 11070 // In C++, check default arguments now that we have merged decls. Unless 11071 // the lexical context is the class, because in this case this is done 11072 // during delayed parsing anyway. 11073 if (!CurContext->isRecord()) 11074 CheckCXXDefaultArguments(NewFD); 11075 11076 // If this function is declared as being extern "C", then check to see if 11077 // the function returns a UDT (class, struct, or union type) that is not C 11078 // compatible, and if it does, warn the user. 11079 // But, issue any diagnostic on the first declaration only. 11080 if (Previous.empty() && NewFD->isExternC()) { 11081 QualType R = NewFD->getReturnType(); 11082 if (R->isIncompleteType() && !R->isVoidType()) 11083 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete) 11084 << NewFD << R; 11085 else if (!R.isPODType(Context) && !R->isVoidType() && 11086 !R->isObjCObjectPointerType()) 11087 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R; 11088 } 11089 11090 // C++1z [dcl.fct]p6: 11091 // [...] whether the function has a non-throwing exception-specification 11092 // [is] part of the function type 11093 // 11094 // This results in an ABI break between C++14 and C++17 for functions whose 11095 // declared type includes an exception-specification in a parameter or 11096 // return type. (Exception specifications on the function itself are OK in 11097 // most cases, and exception specifications are not permitted in most other 11098 // contexts where they could make it into a mangling.) 11099 if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) { 11100 auto HasNoexcept = [&](QualType T) -> bool { 11101 // Strip off declarator chunks that could be between us and a function 11102 // type. We don't need to look far, exception specifications are very 11103 // restricted prior to C++17. 11104 if (auto *RT = T->getAs<ReferenceType>()) 11105 T = RT->getPointeeType(); 11106 else if (T->isAnyPointerType()) 11107 T = T->getPointeeType(); 11108 else if (auto *MPT = T->getAs<MemberPointerType>()) 11109 T = MPT->getPointeeType(); 11110 if (auto *FPT = T->getAs<FunctionProtoType>()) 11111 if (FPT->isNothrow()) 11112 return true; 11113 return false; 11114 }; 11115 11116 auto *FPT = NewFD->getType()->castAs<FunctionProtoType>(); 11117 bool AnyNoexcept = HasNoexcept(FPT->getReturnType()); 11118 for (QualType T : FPT->param_types()) 11119 AnyNoexcept |= HasNoexcept(T); 11120 if (AnyNoexcept) 11121 Diag(NewFD->getLocation(), 11122 diag::warn_cxx17_compat_exception_spec_in_signature) 11123 << NewFD; 11124 } 11125 11126 if (!Redeclaration && LangOpts.CUDA) 11127 checkCUDATargetOverload(NewFD, Previous); 11128 } 11129 return Redeclaration; 11130 } 11131 11132 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) { 11133 // C++11 [basic.start.main]p3: 11134 // A program that [...] declares main to be inline, static or 11135 // constexpr is ill-formed. 11136 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall 11137 // appear in a declaration of main. 11138 // static main is not an error under C99, but we should warn about it. 11139 // We accept _Noreturn main as an extension. 11140 if (FD->getStorageClass() == SC_Static) 11141 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus 11142 ? diag::err_static_main : diag::warn_static_main) 11143 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 11144 if (FD->isInlineSpecified()) 11145 Diag(DS.getInlineSpecLoc(), diag::err_inline_main) 11146 << FixItHint::CreateRemoval(DS.getInlineSpecLoc()); 11147 if (DS.isNoreturnSpecified()) { 11148 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc(); 11149 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc)); 11150 Diag(NoreturnLoc, diag::ext_noreturn_main); 11151 Diag(NoreturnLoc, diag::note_main_remove_noreturn) 11152 << FixItHint::CreateRemoval(NoreturnRange); 11153 } 11154 if (FD->isConstexpr()) { 11155 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main) 11156 << FD->isConsteval() 11157 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc()); 11158 FD->setConstexprKind(ConstexprSpecKind::Unspecified); 11159 } 11160 11161 if (getLangOpts().OpenCL) { 11162 Diag(FD->getLocation(), diag::err_opencl_no_main) 11163 << FD->hasAttr<OpenCLKernelAttr>(); 11164 FD->setInvalidDecl(); 11165 return; 11166 } 11167 11168 QualType T = FD->getType(); 11169 assert(T->isFunctionType() && "function decl is not of function type"); 11170 const FunctionType* FT = T->castAs<FunctionType>(); 11171 11172 // Set default calling convention for main() 11173 if (FT->getCallConv() != CC_C) { 11174 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C)); 11175 FD->setType(QualType(FT, 0)); 11176 T = Context.getCanonicalType(FD->getType()); 11177 } 11178 11179 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) { 11180 // In C with GNU extensions we allow main() to have non-integer return 11181 // type, but we should warn about the extension, and we disable the 11182 // implicit-return-zero rule. 11183 11184 // GCC in C mode accepts qualified 'int'. 11185 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy)) 11186 FD->setHasImplicitReturnZero(true); 11187 else { 11188 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint); 11189 SourceRange RTRange = FD->getReturnTypeSourceRange(); 11190 if (RTRange.isValid()) 11191 Diag(RTRange.getBegin(), diag::note_main_change_return_type) 11192 << FixItHint::CreateReplacement(RTRange, "int"); 11193 } 11194 } else { 11195 // In C and C++, main magically returns 0 if you fall off the end; 11196 // set the flag which tells us that. 11197 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3. 11198 11199 // All the standards say that main() should return 'int'. 11200 if (Context.hasSameType(FT->getReturnType(), Context.IntTy)) 11201 FD->setHasImplicitReturnZero(true); 11202 else { 11203 // Otherwise, this is just a flat-out error. 11204 SourceRange RTRange = FD->getReturnTypeSourceRange(); 11205 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint) 11206 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int") 11207 : FixItHint()); 11208 FD->setInvalidDecl(true); 11209 } 11210 } 11211 11212 // Treat protoless main() as nullary. 11213 if (isa<FunctionNoProtoType>(FT)) return; 11214 11215 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT); 11216 unsigned nparams = FTP->getNumParams(); 11217 assert(FD->getNumParams() == nparams); 11218 11219 bool HasExtraParameters = (nparams > 3); 11220 11221 if (FTP->isVariadic()) { 11222 Diag(FD->getLocation(), diag::ext_variadic_main); 11223 // FIXME: if we had information about the location of the ellipsis, we 11224 // could add a FixIt hint to remove it as a parameter. 11225 } 11226 11227 // Darwin passes an undocumented fourth argument of type char**. If 11228 // other platforms start sprouting these, the logic below will start 11229 // getting shifty. 11230 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin()) 11231 HasExtraParameters = false; 11232 11233 if (HasExtraParameters) { 11234 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; 11235 FD->setInvalidDecl(true); 11236 nparams = 3; 11237 } 11238 11239 // FIXME: a lot of the following diagnostics would be improved 11240 // if we had some location information about types. 11241 11242 QualType CharPP = 11243 Context.getPointerType(Context.getPointerType(Context.CharTy)); 11244 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; 11245 11246 for (unsigned i = 0; i < nparams; ++i) { 11247 QualType AT = FTP->getParamType(i); 11248 11249 bool mismatch = true; 11250 11251 if (Context.hasSameUnqualifiedType(AT, Expected[i])) 11252 mismatch = false; 11253 else if (Expected[i] == CharPP) { 11254 // As an extension, the following forms are okay: 11255 // char const ** 11256 // char const * const * 11257 // char * const * 11258 11259 QualifierCollector qs; 11260 const PointerType* PT; 11261 if ((PT = qs.strip(AT)->getAs<PointerType>()) && 11262 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) && 11263 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0), 11264 Context.CharTy)) { 11265 qs.removeConst(); 11266 mismatch = !qs.empty(); 11267 } 11268 } 11269 11270 if (mismatch) { 11271 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; 11272 // TODO: suggest replacing given type with expected type 11273 FD->setInvalidDecl(true); 11274 } 11275 } 11276 11277 if (nparams == 1 && !FD->isInvalidDecl()) { 11278 Diag(FD->getLocation(), diag::warn_main_one_arg); 11279 } 11280 11281 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { 11282 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; 11283 FD->setInvalidDecl(); 11284 } 11285 } 11286 11287 static bool isDefaultStdCall(FunctionDecl *FD, Sema &S) { 11288 11289 // Default calling convention for main and wmain is __cdecl 11290 if (FD->getName() == "main" || FD->getName() == "wmain") 11291 return false; 11292 11293 // Default calling convention for MinGW is __cdecl 11294 const llvm::Triple &T = S.Context.getTargetInfo().getTriple(); 11295 if (T.isWindowsGNUEnvironment()) 11296 return false; 11297 11298 // Default calling convention for WinMain, wWinMain and DllMain 11299 // is __stdcall on 32 bit Windows 11300 if (T.isOSWindows() && T.getArch() == llvm::Triple::x86) 11301 return true; 11302 11303 return false; 11304 } 11305 11306 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) { 11307 QualType T = FD->getType(); 11308 assert(T->isFunctionType() && "function decl is not of function type"); 11309 const FunctionType *FT = T->castAs<FunctionType>(); 11310 11311 // Set an implicit return of 'zero' if the function can return some integral, 11312 // enumeration, pointer or nullptr type. 11313 if (FT->getReturnType()->isIntegralOrEnumerationType() || 11314 FT->getReturnType()->isAnyPointerType() || 11315 FT->getReturnType()->isNullPtrType()) 11316 // DllMain is exempt because a return value of zero means it failed. 11317 if (FD->getName() != "DllMain") 11318 FD->setHasImplicitReturnZero(true); 11319 11320 // Explicity specified calling conventions are applied to MSVC entry points 11321 if (!hasExplicitCallingConv(T)) { 11322 if (isDefaultStdCall(FD, *this)) { 11323 if (FT->getCallConv() != CC_X86StdCall) { 11324 FT = Context.adjustFunctionType( 11325 FT, FT->getExtInfo().withCallingConv(CC_X86StdCall)); 11326 FD->setType(QualType(FT, 0)); 11327 } 11328 } else if (FT->getCallConv() != CC_C) { 11329 FT = Context.adjustFunctionType(FT, 11330 FT->getExtInfo().withCallingConv(CC_C)); 11331 FD->setType(QualType(FT, 0)); 11332 } 11333 } 11334 11335 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { 11336 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; 11337 FD->setInvalidDecl(); 11338 } 11339 } 11340 11341 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { 11342 // FIXME: Need strict checking. In C89, we need to check for 11343 // any assignment, increment, decrement, function-calls, or 11344 // commas outside of a sizeof. In C99, it's the same list, 11345 // except that the aforementioned are allowed in unevaluated 11346 // expressions. Everything else falls under the 11347 // "may accept other forms of constant expressions" exception. 11348 // 11349 // Regular C++ code will not end up here (exceptions: language extensions, 11350 // OpenCL C++ etc), so the constant expression rules there don't matter. 11351 if (Init->isValueDependent()) { 11352 assert(Init->containsErrors() && 11353 "Dependent code should only occur in error-recovery path."); 11354 return true; 11355 } 11356 const Expr *Culprit; 11357 if (Init->isConstantInitializer(Context, false, &Culprit)) 11358 return false; 11359 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant) 11360 << Culprit->getSourceRange(); 11361 return true; 11362 } 11363 11364 namespace { 11365 // Visits an initialization expression to see if OrigDecl is evaluated in 11366 // its own initialization and throws a warning if it does. 11367 class SelfReferenceChecker 11368 : public EvaluatedExprVisitor<SelfReferenceChecker> { 11369 Sema &S; 11370 Decl *OrigDecl; 11371 bool isRecordType; 11372 bool isPODType; 11373 bool isReferenceType; 11374 11375 bool isInitList; 11376 llvm::SmallVector<unsigned, 4> InitFieldIndex; 11377 11378 public: 11379 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited; 11380 11381 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context), 11382 S(S), OrigDecl(OrigDecl) { 11383 isPODType = false; 11384 isRecordType = false; 11385 isReferenceType = false; 11386 isInitList = false; 11387 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) { 11388 isPODType = VD->getType().isPODType(S.Context); 11389 isRecordType = VD->getType()->isRecordType(); 11390 isReferenceType = VD->getType()->isReferenceType(); 11391 } 11392 } 11393 11394 // For most expressions, just call the visitor. For initializer lists, 11395 // track the index of the field being initialized since fields are 11396 // initialized in order allowing use of previously initialized fields. 11397 void CheckExpr(Expr *E) { 11398 InitListExpr *InitList = dyn_cast<InitListExpr>(E); 11399 if (!InitList) { 11400 Visit(E); 11401 return; 11402 } 11403 11404 // Track and increment the index here. 11405 isInitList = true; 11406 InitFieldIndex.push_back(0); 11407 for (auto Child : InitList->children()) { 11408 CheckExpr(cast<Expr>(Child)); 11409 ++InitFieldIndex.back(); 11410 } 11411 InitFieldIndex.pop_back(); 11412 } 11413 11414 // Returns true if MemberExpr is checked and no further checking is needed. 11415 // Returns false if additional checking is required. 11416 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) { 11417 llvm::SmallVector<FieldDecl*, 4> Fields; 11418 Expr *Base = E; 11419 bool ReferenceField = false; 11420 11421 // Get the field members used. 11422 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 11423 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 11424 if (!FD) 11425 return false; 11426 Fields.push_back(FD); 11427 if (FD->getType()->isReferenceType()) 11428 ReferenceField = true; 11429 Base = ME->getBase()->IgnoreParenImpCasts(); 11430 } 11431 11432 // Keep checking only if the base Decl is the same. 11433 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base); 11434 if (!DRE || DRE->getDecl() != OrigDecl) 11435 return false; 11436 11437 // A reference field can be bound to an unininitialized field. 11438 if (CheckReference && !ReferenceField) 11439 return true; 11440 11441 // Convert FieldDecls to their index number. 11442 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 11443 for (const FieldDecl *I : llvm::reverse(Fields)) 11444 UsedFieldIndex.push_back(I->getFieldIndex()); 11445 11446 // See if a warning is needed by checking the first difference in index 11447 // numbers. If field being used has index less than the field being 11448 // initialized, then the use is safe. 11449 for (auto UsedIter = UsedFieldIndex.begin(), 11450 UsedEnd = UsedFieldIndex.end(), 11451 OrigIter = InitFieldIndex.begin(), 11452 OrigEnd = InitFieldIndex.end(); 11453 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 11454 if (*UsedIter < *OrigIter) 11455 return true; 11456 if (*UsedIter > *OrigIter) 11457 break; 11458 } 11459 11460 // TODO: Add a different warning which will print the field names. 11461 HandleDeclRefExpr(DRE); 11462 return true; 11463 } 11464 11465 // For most expressions, the cast is directly above the DeclRefExpr. 11466 // For conditional operators, the cast can be outside the conditional 11467 // operator if both expressions are DeclRefExpr's. 11468 void HandleValue(Expr *E) { 11469 E = E->IgnoreParens(); 11470 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) { 11471 HandleDeclRefExpr(DRE); 11472 return; 11473 } 11474 11475 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 11476 Visit(CO->getCond()); 11477 HandleValue(CO->getTrueExpr()); 11478 HandleValue(CO->getFalseExpr()); 11479 return; 11480 } 11481 11482 if (BinaryConditionalOperator *BCO = 11483 dyn_cast<BinaryConditionalOperator>(E)) { 11484 Visit(BCO->getCond()); 11485 HandleValue(BCO->getFalseExpr()); 11486 return; 11487 } 11488 11489 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 11490 HandleValue(OVE->getSourceExpr()); 11491 return; 11492 } 11493 11494 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 11495 if (BO->getOpcode() == BO_Comma) { 11496 Visit(BO->getLHS()); 11497 HandleValue(BO->getRHS()); 11498 return; 11499 } 11500 } 11501 11502 if (isa<MemberExpr>(E)) { 11503 if (isInitList) { 11504 if (CheckInitListMemberExpr(cast<MemberExpr>(E), 11505 false /*CheckReference*/)) 11506 return; 11507 } 11508 11509 Expr *Base = E->IgnoreParenImpCasts(); 11510 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 11511 // Check for static member variables and don't warn on them. 11512 if (!isa<FieldDecl>(ME->getMemberDecl())) 11513 return; 11514 Base = ME->getBase()->IgnoreParenImpCasts(); 11515 } 11516 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) 11517 HandleDeclRefExpr(DRE); 11518 return; 11519 } 11520 11521 Visit(E); 11522 } 11523 11524 // Reference types not handled in HandleValue are handled here since all 11525 // uses of references are bad, not just r-value uses. 11526 void VisitDeclRefExpr(DeclRefExpr *E) { 11527 if (isReferenceType) 11528 HandleDeclRefExpr(E); 11529 } 11530 11531 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 11532 if (E->getCastKind() == CK_LValueToRValue) { 11533 HandleValue(E->getSubExpr()); 11534 return; 11535 } 11536 11537 Inherited::VisitImplicitCastExpr(E); 11538 } 11539 11540 void VisitMemberExpr(MemberExpr *E) { 11541 if (isInitList) { 11542 if (CheckInitListMemberExpr(E, true /*CheckReference*/)) 11543 return; 11544 } 11545 11546 // Don't warn on arrays since they can be treated as pointers. 11547 if (E->getType()->canDecayToPointerType()) return; 11548 11549 // Warn when a non-static method call is followed by non-static member 11550 // field accesses, which is followed by a DeclRefExpr. 11551 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl()); 11552 bool Warn = (MD && !MD->isStatic()); 11553 Expr *Base = E->getBase()->IgnoreParenImpCasts(); 11554 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 11555 if (!isa<FieldDecl>(ME->getMemberDecl())) 11556 Warn = false; 11557 Base = ME->getBase()->IgnoreParenImpCasts(); 11558 } 11559 11560 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 11561 if (Warn) 11562 HandleDeclRefExpr(DRE); 11563 return; 11564 } 11565 11566 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr. 11567 // Visit that expression. 11568 Visit(Base); 11569 } 11570 11571 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 11572 Expr *Callee = E->getCallee(); 11573 11574 if (isa<UnresolvedLookupExpr>(Callee)) 11575 return Inherited::VisitCXXOperatorCallExpr(E); 11576 11577 Visit(Callee); 11578 for (auto Arg: E->arguments()) 11579 HandleValue(Arg->IgnoreParenImpCasts()); 11580 } 11581 11582 void VisitUnaryOperator(UnaryOperator *E) { 11583 // For POD record types, addresses of its own members are well-defined. 11584 if (E->getOpcode() == UO_AddrOf && isRecordType && 11585 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) { 11586 if (!isPODType) 11587 HandleValue(E->getSubExpr()); 11588 return; 11589 } 11590 11591 if (E->isIncrementDecrementOp()) { 11592 HandleValue(E->getSubExpr()); 11593 return; 11594 } 11595 11596 Inherited::VisitUnaryOperator(E); 11597 } 11598 11599 void VisitObjCMessageExpr(ObjCMessageExpr *E) {} 11600 11601 void VisitCXXConstructExpr(CXXConstructExpr *E) { 11602 if (E->getConstructor()->isCopyConstructor()) { 11603 Expr *ArgExpr = E->getArg(0); 11604 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 11605 if (ILE->getNumInits() == 1) 11606 ArgExpr = ILE->getInit(0); 11607 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 11608 if (ICE->getCastKind() == CK_NoOp) 11609 ArgExpr = ICE->getSubExpr(); 11610 HandleValue(ArgExpr); 11611 return; 11612 } 11613 Inherited::VisitCXXConstructExpr(E); 11614 } 11615 11616 void VisitCallExpr(CallExpr *E) { 11617 // Treat std::move as a use. 11618 if (E->isCallToStdMove()) { 11619 HandleValue(E->getArg(0)); 11620 return; 11621 } 11622 11623 Inherited::VisitCallExpr(E); 11624 } 11625 11626 void VisitBinaryOperator(BinaryOperator *E) { 11627 if (E->isCompoundAssignmentOp()) { 11628 HandleValue(E->getLHS()); 11629 Visit(E->getRHS()); 11630 return; 11631 } 11632 11633 Inherited::VisitBinaryOperator(E); 11634 } 11635 11636 // A custom visitor for BinaryConditionalOperator is needed because the 11637 // regular visitor would check the condition and true expression separately 11638 // but both point to the same place giving duplicate diagnostics. 11639 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { 11640 Visit(E->getCond()); 11641 Visit(E->getFalseExpr()); 11642 } 11643 11644 void HandleDeclRefExpr(DeclRefExpr *DRE) { 11645 Decl* ReferenceDecl = DRE->getDecl(); 11646 if (OrigDecl != ReferenceDecl) return; 11647 unsigned diag; 11648 if (isReferenceType) { 11649 diag = diag::warn_uninit_self_reference_in_reference_init; 11650 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) { 11651 diag = diag::warn_static_self_reference_in_init; 11652 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) || 11653 isa<NamespaceDecl>(OrigDecl->getDeclContext()) || 11654 DRE->getDecl()->getType()->isRecordType()) { 11655 diag = diag::warn_uninit_self_reference_in_init; 11656 } else { 11657 // Local variables will be handled by the CFG analysis. 11658 return; 11659 } 11660 11661 S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE, 11662 S.PDiag(diag) 11663 << DRE->getDecl() << OrigDecl->getLocation() 11664 << DRE->getSourceRange()); 11665 } 11666 }; 11667 11668 /// CheckSelfReference - Warns if OrigDecl is used in expression E. 11669 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E, 11670 bool DirectInit) { 11671 // Parameters arguments are occassionially constructed with itself, 11672 // for instance, in recursive functions. Skip them. 11673 if (isa<ParmVarDecl>(OrigDecl)) 11674 return; 11675 11676 E = E->IgnoreParens(); 11677 11678 // Skip checking T a = a where T is not a record or reference type. 11679 // Doing so is a way to silence uninitialized warnings. 11680 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType()) 11681 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 11682 if (ICE->getCastKind() == CK_LValueToRValue) 11683 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) 11684 if (DRE->getDecl() == OrigDecl) 11685 return; 11686 11687 SelfReferenceChecker(S, OrigDecl).CheckExpr(E); 11688 } 11689 } // end anonymous namespace 11690 11691 namespace { 11692 // Simple wrapper to add the name of a variable or (if no variable is 11693 // available) a DeclarationName into a diagnostic. 11694 struct VarDeclOrName { 11695 VarDecl *VDecl; 11696 DeclarationName Name; 11697 11698 friend const Sema::SemaDiagnosticBuilder & 11699 operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) { 11700 return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name; 11701 } 11702 }; 11703 } // end anonymous namespace 11704 11705 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl, 11706 DeclarationName Name, QualType Type, 11707 TypeSourceInfo *TSI, 11708 SourceRange Range, bool DirectInit, 11709 Expr *Init) { 11710 bool IsInitCapture = !VDecl; 11711 assert((!VDecl || !VDecl->isInitCapture()) && 11712 "init captures are expected to be deduced prior to initialization"); 11713 11714 VarDeclOrName VN{VDecl, Name}; 11715 11716 DeducedType *Deduced = Type->getContainedDeducedType(); 11717 assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type"); 11718 11719 // C++11 [dcl.spec.auto]p3 11720 if (!Init) { 11721 assert(VDecl && "no init for init capture deduction?"); 11722 11723 // Except for class argument deduction, and then for an initializing 11724 // declaration only, i.e. no static at class scope or extern. 11725 if (!isa<DeducedTemplateSpecializationType>(Deduced) || 11726 VDecl->hasExternalStorage() || 11727 VDecl->isStaticDataMember()) { 11728 Diag(VDecl->getLocation(), diag::err_auto_var_requires_init) 11729 << VDecl->getDeclName() << Type; 11730 return QualType(); 11731 } 11732 } 11733 11734 ArrayRef<Expr*> DeduceInits; 11735 if (Init) 11736 DeduceInits = Init; 11737 11738 if (DirectInit) { 11739 if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init)) 11740 DeduceInits = PL->exprs(); 11741 } 11742 11743 if (isa<DeducedTemplateSpecializationType>(Deduced)) { 11744 assert(VDecl && "non-auto type for init capture deduction?"); 11745 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); 11746 InitializationKind Kind = InitializationKind::CreateForInit( 11747 VDecl->getLocation(), DirectInit, Init); 11748 // FIXME: Initialization should not be taking a mutable list of inits. 11749 SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end()); 11750 return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, 11751 InitsCopy); 11752 } 11753 11754 if (DirectInit) { 11755 if (auto *IL = dyn_cast<InitListExpr>(Init)) 11756 DeduceInits = IL->inits(); 11757 } 11758 11759 // Deduction only works if we have exactly one source expression. 11760 if (DeduceInits.empty()) { 11761 // It isn't possible to write this directly, but it is possible to 11762 // end up in this situation with "auto x(some_pack...);" 11763 Diag(Init->getBeginLoc(), IsInitCapture 11764 ? diag::err_init_capture_no_expression 11765 : diag::err_auto_var_init_no_expression) 11766 << VN << Type << Range; 11767 return QualType(); 11768 } 11769 11770 if (DeduceInits.size() > 1) { 11771 Diag(DeduceInits[1]->getBeginLoc(), 11772 IsInitCapture ? diag::err_init_capture_multiple_expressions 11773 : diag::err_auto_var_init_multiple_expressions) 11774 << VN << Type << Range; 11775 return QualType(); 11776 } 11777 11778 Expr *DeduceInit = DeduceInits[0]; 11779 if (DirectInit && isa<InitListExpr>(DeduceInit)) { 11780 Diag(Init->getBeginLoc(), IsInitCapture 11781 ? diag::err_init_capture_paren_braces 11782 : diag::err_auto_var_init_paren_braces) 11783 << isa<InitListExpr>(Init) << VN << Type << Range; 11784 return QualType(); 11785 } 11786 11787 // Expressions default to 'id' when we're in a debugger. 11788 bool DefaultedAnyToId = false; 11789 if (getLangOpts().DebuggerCastResultToId && 11790 Init->getType() == Context.UnknownAnyTy && !IsInitCapture) { 11791 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); 11792 if (Result.isInvalid()) { 11793 return QualType(); 11794 } 11795 Init = Result.get(); 11796 DefaultedAnyToId = true; 11797 } 11798 11799 // C++ [dcl.decomp]p1: 11800 // If the assignment-expression [...] has array type A and no ref-qualifier 11801 // is present, e has type cv A 11802 if (VDecl && isa<DecompositionDecl>(VDecl) && 11803 Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) && 11804 DeduceInit->getType()->isConstantArrayType()) 11805 return Context.getQualifiedType(DeduceInit->getType(), 11806 Type.getQualifiers()); 11807 11808 QualType DeducedType; 11809 if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) { 11810 if (!IsInitCapture) 11811 DiagnoseAutoDeductionFailure(VDecl, DeduceInit); 11812 else if (isa<InitListExpr>(Init)) 11813 Diag(Range.getBegin(), 11814 diag::err_init_capture_deduction_failure_from_init_list) 11815 << VN 11816 << (DeduceInit->getType().isNull() ? TSI->getType() 11817 : DeduceInit->getType()) 11818 << DeduceInit->getSourceRange(); 11819 else 11820 Diag(Range.getBegin(), diag::err_init_capture_deduction_failure) 11821 << VN << TSI->getType() 11822 << (DeduceInit->getType().isNull() ? TSI->getType() 11823 : DeduceInit->getType()) 11824 << DeduceInit->getSourceRange(); 11825 } 11826 11827 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using 11828 // 'id' instead of a specific object type prevents most of our usual 11829 // checks. 11830 // We only want to warn outside of template instantiations, though: 11831 // inside a template, the 'id' could have come from a parameter. 11832 if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture && 11833 !DeducedType.isNull() && DeducedType->isObjCIdType()) { 11834 SourceLocation Loc = TSI->getTypeLoc().getBeginLoc(); 11835 Diag(Loc, diag::warn_auto_var_is_id) << VN << Range; 11836 } 11837 11838 return DeducedType; 11839 } 11840 11841 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit, 11842 Expr *Init) { 11843 assert(!Init || !Init->containsErrors()); 11844 QualType DeducedType = deduceVarTypeFromInitializer( 11845 VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(), 11846 VDecl->getSourceRange(), DirectInit, Init); 11847 if (DeducedType.isNull()) { 11848 VDecl->setInvalidDecl(); 11849 return true; 11850 } 11851 11852 VDecl->setType(DeducedType); 11853 assert(VDecl->isLinkageValid()); 11854 11855 // In ARC, infer lifetime. 11856 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl)) 11857 VDecl->setInvalidDecl(); 11858 11859 if (getLangOpts().OpenCL) 11860 deduceOpenCLAddressSpace(VDecl); 11861 11862 // If this is a redeclaration, check that the type we just deduced matches 11863 // the previously declared type. 11864 if (VarDecl *Old = VDecl->getPreviousDecl()) { 11865 // We never need to merge the type, because we cannot form an incomplete 11866 // array of auto, nor deduce such a type. 11867 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false); 11868 } 11869 11870 // Check the deduced type is valid for a variable declaration. 11871 CheckVariableDeclarationType(VDecl); 11872 return VDecl->isInvalidDecl(); 11873 } 11874 11875 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init, 11876 SourceLocation Loc) { 11877 if (auto *EWC = dyn_cast<ExprWithCleanups>(Init)) 11878 Init = EWC->getSubExpr(); 11879 11880 if (auto *CE = dyn_cast<ConstantExpr>(Init)) 11881 Init = CE->getSubExpr(); 11882 11883 QualType InitType = Init->getType(); 11884 assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 11885 InitType.hasNonTrivialToPrimitiveCopyCUnion()) && 11886 "shouldn't be called if type doesn't have a non-trivial C struct"); 11887 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 11888 for (auto I : ILE->inits()) { 11889 if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() && 11890 !I->getType().hasNonTrivialToPrimitiveCopyCUnion()) 11891 continue; 11892 SourceLocation SL = I->getExprLoc(); 11893 checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc); 11894 } 11895 return; 11896 } 11897 11898 if (isa<ImplicitValueInitExpr>(Init)) { 11899 if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) 11900 checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject, 11901 NTCUK_Init); 11902 } else { 11903 // Assume all other explicit initializers involving copying some existing 11904 // object. 11905 // TODO: ignore any explicit initializers where we can guarantee 11906 // copy-elision. 11907 if (InitType.hasNonTrivialToPrimitiveCopyCUnion()) 11908 checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy); 11909 } 11910 } 11911 11912 namespace { 11913 11914 bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) { 11915 // Ignore unavailable fields. A field can be marked as unavailable explicitly 11916 // in the source code or implicitly by the compiler if it is in a union 11917 // defined in a system header and has non-trivial ObjC ownership 11918 // qualifications. We don't want those fields to participate in determining 11919 // whether the containing union is non-trivial. 11920 return FD->hasAttr<UnavailableAttr>(); 11921 } 11922 11923 struct DiagNonTrivalCUnionDefaultInitializeVisitor 11924 : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, 11925 void> { 11926 using Super = 11927 DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, 11928 void>; 11929 11930 DiagNonTrivalCUnionDefaultInitializeVisitor( 11931 QualType OrigTy, SourceLocation OrigLoc, 11932 Sema::NonTrivialCUnionContext UseContext, Sema &S) 11933 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} 11934 11935 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT, 11936 const FieldDecl *FD, bool InNonTrivialUnion) { 11937 if (const auto *AT = S.Context.getAsArrayType(QT)) 11938 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, 11939 InNonTrivialUnion); 11940 return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion); 11941 } 11942 11943 void visitARCStrong(QualType QT, const FieldDecl *FD, 11944 bool InNonTrivialUnion) { 11945 if (InNonTrivialUnion) 11946 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11947 << 1 << 0 << QT << FD->getName(); 11948 } 11949 11950 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11951 if (InNonTrivialUnion) 11952 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11953 << 1 << 0 << QT << FD->getName(); 11954 } 11955 11956 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11957 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); 11958 if (RD->isUnion()) { 11959 if (OrigLoc.isValid()) { 11960 bool IsUnion = false; 11961 if (auto *OrigRD = OrigTy->getAsRecordDecl()) 11962 IsUnion = OrigRD->isUnion(); 11963 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) 11964 << 0 << OrigTy << IsUnion << UseContext; 11965 // Reset OrigLoc so that this diagnostic is emitted only once. 11966 OrigLoc = SourceLocation(); 11967 } 11968 InNonTrivialUnion = true; 11969 } 11970 11971 if (InNonTrivialUnion) 11972 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) 11973 << 0 << 0 << QT.getUnqualifiedType() << ""; 11974 11975 for (const FieldDecl *FD : RD->fields()) 11976 if (!shouldIgnoreForRecordTriviality(FD)) 11977 asDerived().visit(FD->getType(), FD, InNonTrivialUnion); 11978 } 11979 11980 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} 11981 11982 // The non-trivial C union type or the struct/union type that contains a 11983 // non-trivial C union. 11984 QualType OrigTy; 11985 SourceLocation OrigLoc; 11986 Sema::NonTrivialCUnionContext UseContext; 11987 Sema &S; 11988 }; 11989 11990 struct DiagNonTrivalCUnionDestructedTypeVisitor 11991 : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> { 11992 using Super = 11993 DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>; 11994 11995 DiagNonTrivalCUnionDestructedTypeVisitor( 11996 QualType OrigTy, SourceLocation OrigLoc, 11997 Sema::NonTrivialCUnionContext UseContext, Sema &S) 11998 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} 11999 12000 void visitWithKind(QualType::DestructionKind DK, QualType QT, 12001 const FieldDecl *FD, bool InNonTrivialUnion) { 12002 if (const auto *AT = S.Context.getAsArrayType(QT)) 12003 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, 12004 InNonTrivialUnion); 12005 return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion); 12006 } 12007 12008 void visitARCStrong(QualType QT, const FieldDecl *FD, 12009 bool InNonTrivialUnion) { 12010 if (InNonTrivialUnion) 12011 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 12012 << 1 << 1 << QT << FD->getName(); 12013 } 12014 12015 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 12016 if (InNonTrivialUnion) 12017 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 12018 << 1 << 1 << QT << FD->getName(); 12019 } 12020 12021 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 12022 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); 12023 if (RD->isUnion()) { 12024 if (OrigLoc.isValid()) { 12025 bool IsUnion = false; 12026 if (auto *OrigRD = OrigTy->getAsRecordDecl()) 12027 IsUnion = OrigRD->isUnion(); 12028 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) 12029 << 1 << OrigTy << IsUnion << UseContext; 12030 // Reset OrigLoc so that this diagnostic is emitted only once. 12031 OrigLoc = SourceLocation(); 12032 } 12033 InNonTrivialUnion = true; 12034 } 12035 12036 if (InNonTrivialUnion) 12037 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) 12038 << 0 << 1 << QT.getUnqualifiedType() << ""; 12039 12040 for (const FieldDecl *FD : RD->fields()) 12041 if (!shouldIgnoreForRecordTriviality(FD)) 12042 asDerived().visit(FD->getType(), FD, InNonTrivialUnion); 12043 } 12044 12045 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} 12046 void visitCXXDestructor(QualType QT, const FieldDecl *FD, 12047 bool InNonTrivialUnion) {} 12048 12049 // The non-trivial C union type or the struct/union type that contains a 12050 // non-trivial C union. 12051 QualType OrigTy; 12052 SourceLocation OrigLoc; 12053 Sema::NonTrivialCUnionContext UseContext; 12054 Sema &S; 12055 }; 12056 12057 struct DiagNonTrivalCUnionCopyVisitor 12058 : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> { 12059 using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>; 12060 12061 DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc, 12062 Sema::NonTrivialCUnionContext UseContext, 12063 Sema &S) 12064 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} 12065 12066 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT, 12067 const FieldDecl *FD, bool InNonTrivialUnion) { 12068 if (const auto *AT = S.Context.getAsArrayType(QT)) 12069 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, 12070 InNonTrivialUnion); 12071 return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion); 12072 } 12073 12074 void visitARCStrong(QualType QT, const FieldDecl *FD, 12075 bool InNonTrivialUnion) { 12076 if (InNonTrivialUnion) 12077 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 12078 << 1 << 2 << QT << FD->getName(); 12079 } 12080 12081 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 12082 if (InNonTrivialUnion) 12083 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 12084 << 1 << 2 << QT << FD->getName(); 12085 } 12086 12087 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 12088 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); 12089 if (RD->isUnion()) { 12090 if (OrigLoc.isValid()) { 12091 bool IsUnion = false; 12092 if (auto *OrigRD = OrigTy->getAsRecordDecl()) 12093 IsUnion = OrigRD->isUnion(); 12094 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) 12095 << 2 << OrigTy << IsUnion << UseContext; 12096 // Reset OrigLoc so that this diagnostic is emitted only once. 12097 OrigLoc = SourceLocation(); 12098 } 12099 InNonTrivialUnion = true; 12100 } 12101 12102 if (InNonTrivialUnion) 12103 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) 12104 << 0 << 2 << QT.getUnqualifiedType() << ""; 12105 12106 for (const FieldDecl *FD : RD->fields()) 12107 if (!shouldIgnoreForRecordTriviality(FD)) 12108 asDerived().visit(FD->getType(), FD, InNonTrivialUnion); 12109 } 12110 12111 void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT, 12112 const FieldDecl *FD, bool InNonTrivialUnion) {} 12113 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} 12114 void visitVolatileTrivial(QualType QT, const FieldDecl *FD, 12115 bool InNonTrivialUnion) {} 12116 12117 // The non-trivial C union type or the struct/union type that contains a 12118 // non-trivial C union. 12119 QualType OrigTy; 12120 SourceLocation OrigLoc; 12121 Sema::NonTrivialCUnionContext UseContext; 12122 Sema &S; 12123 }; 12124 12125 } // namespace 12126 12127 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc, 12128 NonTrivialCUnionContext UseContext, 12129 unsigned NonTrivialKind) { 12130 assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 12131 QT.hasNonTrivialToPrimitiveDestructCUnion() || 12132 QT.hasNonTrivialToPrimitiveCopyCUnion()) && 12133 "shouldn't be called if type doesn't have a non-trivial C union"); 12134 12135 if ((NonTrivialKind & NTCUK_Init) && 12136 QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) 12137 DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this) 12138 .visit(QT, nullptr, false); 12139 if ((NonTrivialKind & NTCUK_Destruct) && 12140 QT.hasNonTrivialToPrimitiveDestructCUnion()) 12141 DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this) 12142 .visit(QT, nullptr, false); 12143 if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion()) 12144 DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this) 12145 .visit(QT, nullptr, false); 12146 } 12147 12148 /// AddInitializerToDecl - Adds the initializer Init to the 12149 /// declaration dcl. If DirectInit is true, this is C++ direct 12150 /// initialization rather than copy initialization. 12151 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) { 12152 // If there is no declaration, there was an error parsing it. Just ignore 12153 // the initializer. 12154 if (!RealDecl || RealDecl->isInvalidDecl()) { 12155 CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl)); 12156 return; 12157 } 12158 12159 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) { 12160 // Pure-specifiers are handled in ActOnPureSpecifier. 12161 Diag(Method->getLocation(), diag::err_member_function_initialization) 12162 << Method->getDeclName() << Init->getSourceRange(); 12163 Method->setInvalidDecl(); 12164 return; 12165 } 12166 12167 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); 12168 if (!VDecl) { 12169 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"); 12170 Diag(RealDecl->getLocation(), diag::err_illegal_initializer); 12171 RealDecl->setInvalidDecl(); 12172 return; 12173 } 12174 12175 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. 12176 if (VDecl->getType()->isUndeducedType()) { 12177 // Attempt typo correction early so that the type of the init expression can 12178 // be deduced based on the chosen correction if the original init contains a 12179 // TypoExpr. 12180 ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl); 12181 if (!Res.isUsable()) { 12182 // There are unresolved typos in Init, just drop them. 12183 // FIXME: improve the recovery strategy to preserve the Init. 12184 RealDecl->setInvalidDecl(); 12185 return; 12186 } 12187 if (Res.get()->containsErrors()) { 12188 // Invalidate the decl as we don't know the type for recovery-expr yet. 12189 RealDecl->setInvalidDecl(); 12190 VDecl->setInit(Res.get()); 12191 return; 12192 } 12193 Init = Res.get(); 12194 12195 if (DeduceVariableDeclarationType(VDecl, DirectInit, Init)) 12196 return; 12197 } 12198 12199 // dllimport cannot be used on variable definitions. 12200 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) { 12201 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition); 12202 VDecl->setInvalidDecl(); 12203 return; 12204 } 12205 12206 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) { 12207 // C99 6.7.8p5. C++ has no such restriction, but that is a defect. 12208 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); 12209 VDecl->setInvalidDecl(); 12210 return; 12211 } 12212 12213 if (!VDecl->getType()->isDependentType()) { 12214 // A definition must end up with a complete type, which means it must be 12215 // complete with the restriction that an array type might be completed by 12216 // the initializer; note that later code assumes this restriction. 12217 QualType BaseDeclType = VDecl->getType(); 12218 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType)) 12219 BaseDeclType = Array->getElementType(); 12220 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, 12221 diag::err_typecheck_decl_incomplete_type)) { 12222 RealDecl->setInvalidDecl(); 12223 return; 12224 } 12225 12226 // The variable can not have an abstract class type. 12227 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), 12228 diag::err_abstract_type_in_decl, 12229 AbstractVariableType)) 12230 VDecl->setInvalidDecl(); 12231 } 12232 12233 // If adding the initializer will turn this declaration into a definition, 12234 // and we already have a definition for this variable, diagnose or otherwise 12235 // handle the situation. 12236 if (VarDecl *Def = VDecl->getDefinition()) 12237 if (Def != VDecl && 12238 (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) && 12239 !VDecl->isThisDeclarationADemotedDefinition() && 12240 checkVarDeclRedefinition(Def, VDecl)) 12241 return; 12242 12243 if (getLangOpts().CPlusPlus) { 12244 // C++ [class.static.data]p4 12245 // If a static data member is of const integral or const 12246 // enumeration type, its declaration in the class definition can 12247 // specify a constant-initializer which shall be an integral 12248 // constant expression (5.19). In that case, the member can appear 12249 // in integral constant expressions. The member shall still be 12250 // defined in a namespace scope if it is used in the program and the 12251 // namespace scope definition shall not contain an initializer. 12252 // 12253 // We already performed a redefinition check above, but for static 12254 // data members we also need to check whether there was an in-class 12255 // declaration with an initializer. 12256 if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) { 12257 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization) 12258 << VDecl->getDeclName(); 12259 Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(), 12260 diag::note_previous_initializer) 12261 << 0; 12262 return; 12263 } 12264 12265 if (VDecl->hasLocalStorage()) 12266 setFunctionHasBranchProtectedScope(); 12267 12268 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) { 12269 VDecl->setInvalidDecl(); 12270 return; 12271 } 12272 } 12273 12274 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside 12275 // a kernel function cannot be initialized." 12276 if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) { 12277 Diag(VDecl->getLocation(), diag::err_local_cant_init); 12278 VDecl->setInvalidDecl(); 12279 return; 12280 } 12281 12282 // The LoaderUninitialized attribute acts as a definition (of undef). 12283 if (VDecl->hasAttr<LoaderUninitializedAttr>()) { 12284 Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init); 12285 VDecl->setInvalidDecl(); 12286 return; 12287 } 12288 12289 // Get the decls type and save a reference for later, since 12290 // CheckInitializerTypes may change it. 12291 QualType DclT = VDecl->getType(), SavT = DclT; 12292 12293 // Expressions default to 'id' when we're in a debugger 12294 // and we are assigning it to a variable of Objective-C pointer type. 12295 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() && 12296 Init->getType() == Context.UnknownAnyTy) { 12297 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); 12298 if (Result.isInvalid()) { 12299 VDecl->setInvalidDecl(); 12300 return; 12301 } 12302 Init = Result.get(); 12303 } 12304 12305 // Perform the initialization. 12306 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 12307 if (!VDecl->isInvalidDecl()) { 12308 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); 12309 InitializationKind Kind = InitializationKind::CreateForInit( 12310 VDecl->getLocation(), DirectInit, Init); 12311 12312 MultiExprArg Args = Init; 12313 if (CXXDirectInit) 12314 Args = MultiExprArg(CXXDirectInit->getExprs(), 12315 CXXDirectInit->getNumExprs()); 12316 12317 // Try to correct any TypoExprs in the initialization arguments. 12318 for (size_t Idx = 0; Idx < Args.size(); ++Idx) { 12319 ExprResult Res = CorrectDelayedTyposInExpr( 12320 Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true, 12321 [this, Entity, Kind](Expr *E) { 12322 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E)); 12323 return Init.Failed() ? ExprError() : E; 12324 }); 12325 if (Res.isInvalid()) { 12326 VDecl->setInvalidDecl(); 12327 } else if (Res.get() != Args[Idx]) { 12328 Args[Idx] = Res.get(); 12329 } 12330 } 12331 if (VDecl->isInvalidDecl()) 12332 return; 12333 12334 InitializationSequence InitSeq(*this, Entity, Kind, Args, 12335 /*TopLevelOfInitList=*/false, 12336 /*TreatUnavailableAsInvalid=*/false); 12337 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 12338 if (Result.isInvalid()) { 12339 // If the provied initializer fails to initialize the var decl, 12340 // we attach a recovery expr for better recovery. 12341 auto RecoveryExpr = 12342 CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args); 12343 if (RecoveryExpr.get()) 12344 VDecl->setInit(RecoveryExpr.get()); 12345 return; 12346 } 12347 12348 Init = Result.getAs<Expr>(); 12349 } 12350 12351 // Check for self-references within variable initializers. 12352 // Variables declared within a function/method body (except for references) 12353 // are handled by a dataflow analysis. 12354 // This is undefined behavior in C++, but valid in C. 12355 if (getLangOpts().CPlusPlus) 12356 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() || 12357 VDecl->getType()->isReferenceType()) 12358 CheckSelfReference(*this, RealDecl, Init, DirectInit); 12359 12360 // If the type changed, it means we had an incomplete type that was 12361 // completed by the initializer. For example: 12362 // int ary[] = { 1, 3, 5 }; 12363 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType. 12364 if (!VDecl->isInvalidDecl() && (DclT != SavT)) 12365 VDecl->setType(DclT); 12366 12367 if (!VDecl->isInvalidDecl()) { 12368 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init); 12369 12370 if (VDecl->hasAttr<BlocksAttr>()) 12371 checkRetainCycles(VDecl, Init); 12372 12373 // It is safe to assign a weak reference into a strong variable. 12374 // Although this code can still have problems: 12375 // id x = self.weakProp; 12376 // id y = self.weakProp; 12377 // we do not warn to warn spuriously when 'x' and 'y' are on separate 12378 // paths through the function. This should be revisited if 12379 // -Wrepeated-use-of-weak is made flow-sensitive. 12380 if (FunctionScopeInfo *FSI = getCurFunction()) 12381 if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 12382 VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) && 12383 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, 12384 Init->getBeginLoc())) 12385 FSI->markSafeWeakUse(Init); 12386 } 12387 12388 // The initialization is usually a full-expression. 12389 // 12390 // FIXME: If this is a braced initialization of an aggregate, it is not 12391 // an expression, and each individual field initializer is a separate 12392 // full-expression. For instance, in: 12393 // 12394 // struct Temp { ~Temp(); }; 12395 // struct S { S(Temp); }; 12396 // struct T { S a, b; } t = { Temp(), Temp() } 12397 // 12398 // we should destroy the first Temp before constructing the second. 12399 ExprResult Result = 12400 ActOnFinishFullExpr(Init, VDecl->getLocation(), 12401 /*DiscardedValue*/ false, VDecl->isConstexpr()); 12402 if (Result.isInvalid()) { 12403 VDecl->setInvalidDecl(); 12404 return; 12405 } 12406 Init = Result.get(); 12407 12408 // Attach the initializer to the decl. 12409 VDecl->setInit(Init); 12410 12411 if (VDecl->isLocalVarDecl()) { 12412 // Don't check the initializer if the declaration is malformed. 12413 if (VDecl->isInvalidDecl()) { 12414 // do nothing 12415 12416 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized. 12417 // This is true even in C++ for OpenCL. 12418 } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) { 12419 CheckForConstantInitializer(Init, DclT); 12420 12421 // Otherwise, C++ does not restrict the initializer. 12422 } else if (getLangOpts().CPlusPlus) { 12423 // do nothing 12424 12425 // C99 6.7.8p4: All the expressions in an initializer for an object that has 12426 // static storage duration shall be constant expressions or string literals. 12427 } else if (VDecl->getStorageClass() == SC_Static) { 12428 CheckForConstantInitializer(Init, DclT); 12429 12430 // C89 is stricter than C99 for aggregate initializers. 12431 // C89 6.5.7p3: All the expressions [...] in an initializer list 12432 // for an object that has aggregate or union type shall be 12433 // constant expressions. 12434 } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() && 12435 isa<InitListExpr>(Init)) { 12436 const Expr *Culprit; 12437 if (!Init->isConstantInitializer(Context, false, &Culprit)) { 12438 Diag(Culprit->getExprLoc(), 12439 diag::ext_aggregate_init_not_constant) 12440 << Culprit->getSourceRange(); 12441 } 12442 } 12443 12444 if (auto *E = dyn_cast<ExprWithCleanups>(Init)) 12445 if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens())) 12446 if (VDecl->hasLocalStorage()) 12447 BE->getBlockDecl()->setCanAvoidCopyToHeap(); 12448 } else if (VDecl->isStaticDataMember() && !VDecl->isInline() && 12449 VDecl->getLexicalDeclContext()->isRecord()) { 12450 // This is an in-class initialization for a static data member, e.g., 12451 // 12452 // struct S { 12453 // static const int value = 17; 12454 // }; 12455 12456 // C++ [class.mem]p4: 12457 // A member-declarator can contain a constant-initializer only 12458 // if it declares a static member (9.4) of const integral or 12459 // const enumeration type, see 9.4.2. 12460 // 12461 // C++11 [class.static.data]p3: 12462 // If a non-volatile non-inline const static data member is of integral 12463 // or enumeration type, its declaration in the class definition can 12464 // specify a brace-or-equal-initializer in which every initializer-clause 12465 // that is an assignment-expression is a constant expression. A static 12466 // data member of literal type can be declared in the class definition 12467 // with the constexpr specifier; if so, its declaration shall specify a 12468 // brace-or-equal-initializer in which every initializer-clause that is 12469 // an assignment-expression is a constant expression. 12470 12471 // Do nothing on dependent types. 12472 if (DclT->isDependentType()) { 12473 12474 // Allow any 'static constexpr' members, whether or not they are of literal 12475 // type. We separately check that every constexpr variable is of literal 12476 // type. 12477 } else if (VDecl->isConstexpr()) { 12478 12479 // Require constness. 12480 } else if (!DclT.isConstQualified()) { 12481 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) 12482 << Init->getSourceRange(); 12483 VDecl->setInvalidDecl(); 12484 12485 // We allow integer constant expressions in all cases. 12486 } else if (DclT->isIntegralOrEnumerationType()) { 12487 // Check whether the expression is a constant expression. 12488 SourceLocation Loc; 12489 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified()) 12490 // In C++11, a non-constexpr const static data member with an 12491 // in-class initializer cannot be volatile. 12492 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile); 12493 else if (Init->isValueDependent()) 12494 ; // Nothing to check. 12495 else if (Init->isIntegerConstantExpr(Context, &Loc)) 12496 ; // Ok, it's an ICE! 12497 else if (Init->getType()->isScopedEnumeralType() && 12498 Init->isCXX11ConstantExpr(Context)) 12499 ; // Ok, it is a scoped-enum constant expression. 12500 else if (Init->isEvaluatable(Context)) { 12501 // If we can constant fold the initializer through heroics, accept it, 12502 // but report this as a use of an extension for -pedantic. 12503 Diag(Loc, diag::ext_in_class_initializer_non_constant) 12504 << Init->getSourceRange(); 12505 } else { 12506 // Otherwise, this is some crazy unknown case. Report the issue at the 12507 // location provided by the isIntegerConstantExpr failed check. 12508 Diag(Loc, diag::err_in_class_initializer_non_constant) 12509 << Init->getSourceRange(); 12510 VDecl->setInvalidDecl(); 12511 } 12512 12513 // We allow foldable floating-point constants as an extension. 12514 } else if (DclT->isFloatingType()) { // also permits complex, which is ok 12515 // In C++98, this is a GNU extension. In C++11, it is not, but we support 12516 // it anyway and provide a fixit to add the 'constexpr'. 12517 if (getLangOpts().CPlusPlus11) { 12518 Diag(VDecl->getLocation(), 12519 diag::ext_in_class_initializer_float_type_cxx11) 12520 << DclT << Init->getSourceRange(); 12521 Diag(VDecl->getBeginLoc(), 12522 diag::note_in_class_initializer_float_type_cxx11) 12523 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); 12524 } else { 12525 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) 12526 << DclT << Init->getSourceRange(); 12527 12528 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) { 12529 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) 12530 << Init->getSourceRange(); 12531 VDecl->setInvalidDecl(); 12532 } 12533 } 12534 12535 // Suggest adding 'constexpr' in C++11 for literal types. 12536 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) { 12537 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type) 12538 << DclT << Init->getSourceRange() 12539 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); 12540 VDecl->setConstexpr(true); 12541 12542 } else { 12543 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) 12544 << DclT << Init->getSourceRange(); 12545 VDecl->setInvalidDecl(); 12546 } 12547 } else if (VDecl->isFileVarDecl()) { 12548 // In C, extern is typically used to avoid tentative definitions when 12549 // declaring variables in headers, but adding an intializer makes it a 12550 // definition. This is somewhat confusing, so GCC and Clang both warn on it. 12551 // In C++, extern is often used to give implictly static const variables 12552 // external linkage, so don't warn in that case. If selectany is present, 12553 // this might be header code intended for C and C++ inclusion, so apply the 12554 // C++ rules. 12555 if (VDecl->getStorageClass() == SC_Extern && 12556 ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) || 12557 !Context.getBaseElementType(VDecl->getType()).isConstQualified()) && 12558 !(getLangOpts().CPlusPlus && VDecl->isExternC()) && 12559 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind())) 12560 Diag(VDecl->getLocation(), diag::warn_extern_init); 12561 12562 // In Microsoft C++ mode, a const variable defined in namespace scope has 12563 // external linkage by default if the variable is declared with 12564 // __declspec(dllexport). 12565 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 12566 getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() && 12567 VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition()) 12568 VDecl->setStorageClass(SC_Extern); 12569 12570 // C99 6.7.8p4. All file scoped initializers need to be constant. 12571 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) 12572 CheckForConstantInitializer(Init, DclT); 12573 } 12574 12575 QualType InitType = Init->getType(); 12576 if (!InitType.isNull() && 12577 (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 12578 InitType.hasNonTrivialToPrimitiveCopyCUnion())) 12579 checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc()); 12580 12581 // We will represent direct-initialization similarly to copy-initialization: 12582 // int x(1); -as-> int x = 1; 12583 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); 12584 // 12585 // Clients that want to distinguish between the two forms, can check for 12586 // direct initializer using VarDecl::getInitStyle(). 12587 // A major benefit is that clients that don't particularly care about which 12588 // exactly form was it (like the CodeGen) can handle both cases without 12589 // special case code. 12590 12591 // C++ 8.5p11: 12592 // The form of initialization (using parentheses or '=') is generally 12593 // insignificant, but does matter when the entity being initialized has a 12594 // class type. 12595 if (CXXDirectInit) { 12596 assert(DirectInit && "Call-style initializer must be direct init."); 12597 VDecl->setInitStyle(VarDecl::CallInit); 12598 } else if (DirectInit) { 12599 // This must be list-initialization. No other way is direct-initialization. 12600 VDecl->setInitStyle(VarDecl::ListInit); 12601 } 12602 12603 if (LangOpts.OpenMP && VDecl->isFileVarDecl()) 12604 DeclsToCheckForDeferredDiags.insert(VDecl); 12605 CheckCompleteVariableDeclaration(VDecl); 12606 } 12607 12608 /// ActOnInitializerError - Given that there was an error parsing an 12609 /// initializer for the given declaration, try to return to some form 12610 /// of sanity. 12611 void Sema::ActOnInitializerError(Decl *D) { 12612 // Our main concern here is re-establishing invariants like "a 12613 // variable's type is either dependent or complete". 12614 if (!D || D->isInvalidDecl()) return; 12615 12616 VarDecl *VD = dyn_cast<VarDecl>(D); 12617 if (!VD) return; 12618 12619 // Bindings are not usable if we can't make sense of the initializer. 12620 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 12621 for (auto *BD : DD->bindings()) 12622 BD->setInvalidDecl(); 12623 12624 // Auto types are meaningless if we can't make sense of the initializer. 12625 if (VD->getType()->isUndeducedType()) { 12626 D->setInvalidDecl(); 12627 return; 12628 } 12629 12630 QualType Ty = VD->getType(); 12631 if (Ty->isDependentType()) return; 12632 12633 // Require a complete type. 12634 if (RequireCompleteType(VD->getLocation(), 12635 Context.getBaseElementType(Ty), 12636 diag::err_typecheck_decl_incomplete_type)) { 12637 VD->setInvalidDecl(); 12638 return; 12639 } 12640 12641 // Require a non-abstract type. 12642 if (RequireNonAbstractType(VD->getLocation(), Ty, 12643 diag::err_abstract_type_in_decl, 12644 AbstractVariableType)) { 12645 VD->setInvalidDecl(); 12646 return; 12647 } 12648 12649 // Don't bother complaining about constructors or destructors, 12650 // though. 12651 } 12652 12653 void Sema::ActOnUninitializedDecl(Decl *RealDecl) { 12654 // If there is no declaration, there was an error parsing it. Just ignore it. 12655 if (!RealDecl) 12656 return; 12657 12658 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { 12659 QualType Type = Var->getType(); 12660 12661 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory. 12662 if (isa<DecompositionDecl>(RealDecl)) { 12663 Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var; 12664 Var->setInvalidDecl(); 12665 return; 12666 } 12667 12668 if (Type->isUndeducedType() && 12669 DeduceVariableDeclarationType(Var, false, nullptr)) 12670 return; 12671 12672 // C++11 [class.static.data]p3: A static data member can be declared with 12673 // the constexpr specifier; if so, its declaration shall specify 12674 // a brace-or-equal-initializer. 12675 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to 12676 // the definition of a variable [...] or the declaration of a static data 12677 // member. 12678 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() && 12679 !Var->isThisDeclarationADemotedDefinition()) { 12680 if (Var->isStaticDataMember()) { 12681 // C++1z removes the relevant rule; the in-class declaration is always 12682 // a definition there. 12683 if (!getLangOpts().CPlusPlus17 && 12684 !Context.getTargetInfo().getCXXABI().isMicrosoft()) { 12685 Diag(Var->getLocation(), 12686 diag::err_constexpr_static_mem_var_requires_init) 12687 << Var; 12688 Var->setInvalidDecl(); 12689 return; 12690 } 12691 } else { 12692 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl); 12693 Var->setInvalidDecl(); 12694 return; 12695 } 12696 } 12697 12698 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must 12699 // be initialized. 12700 if (!Var->isInvalidDecl() && 12701 Var->getType().getAddressSpace() == LangAS::opencl_constant && 12702 Var->getStorageClass() != SC_Extern && !Var->getInit()) { 12703 bool HasConstExprDefaultConstructor = false; 12704 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) { 12705 for (auto *Ctor : RD->ctors()) { 12706 if (Ctor->isConstexpr() && Ctor->getNumParams() == 0 && 12707 Ctor->getMethodQualifiers().getAddressSpace() == 12708 LangAS::opencl_constant) { 12709 HasConstExprDefaultConstructor = true; 12710 } 12711 } 12712 } 12713 if (!HasConstExprDefaultConstructor) { 12714 Diag(Var->getLocation(), diag::err_opencl_constant_no_init); 12715 Var->setInvalidDecl(); 12716 return; 12717 } 12718 } 12719 12720 if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) { 12721 if (Var->getStorageClass() == SC_Extern) { 12722 Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl) 12723 << Var; 12724 Var->setInvalidDecl(); 12725 return; 12726 } 12727 if (RequireCompleteType(Var->getLocation(), Var->getType(), 12728 diag::err_typecheck_decl_incomplete_type)) { 12729 Var->setInvalidDecl(); 12730 return; 12731 } 12732 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) { 12733 if (!RD->hasTrivialDefaultConstructor()) { 12734 Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor); 12735 Var->setInvalidDecl(); 12736 return; 12737 } 12738 } 12739 // The declaration is unitialized, no need for further checks. 12740 return; 12741 } 12742 12743 VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition(); 12744 if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly && 12745 Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion()) 12746 checkNonTrivialCUnion(Var->getType(), Var->getLocation(), 12747 NTCUC_DefaultInitializedObject, NTCUK_Init); 12748 12749 12750 switch (DefKind) { 12751 case VarDecl::Definition: 12752 if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) 12753 break; 12754 12755 // We have an out-of-line definition of a static data member 12756 // that has an in-class initializer, so we type-check this like 12757 // a declaration. 12758 // 12759 LLVM_FALLTHROUGH; 12760 12761 case VarDecl::DeclarationOnly: 12762 // It's only a declaration. 12763 12764 // Block scope. C99 6.7p7: If an identifier for an object is 12765 // declared with no linkage (C99 6.2.2p6), the type for the 12766 // object shall be complete. 12767 if (!Type->isDependentType() && Var->isLocalVarDecl() && 12768 !Var->hasLinkage() && !Var->isInvalidDecl() && 12769 RequireCompleteType(Var->getLocation(), Type, 12770 diag::err_typecheck_decl_incomplete_type)) 12771 Var->setInvalidDecl(); 12772 12773 // Make sure that the type is not abstract. 12774 if (!Type->isDependentType() && !Var->isInvalidDecl() && 12775 RequireNonAbstractType(Var->getLocation(), Type, 12776 diag::err_abstract_type_in_decl, 12777 AbstractVariableType)) 12778 Var->setInvalidDecl(); 12779 if (!Type->isDependentType() && !Var->isInvalidDecl() && 12780 Var->getStorageClass() == SC_PrivateExtern) { 12781 Diag(Var->getLocation(), diag::warn_private_extern); 12782 Diag(Var->getLocation(), diag::note_private_extern); 12783 } 12784 12785 if (Context.getTargetInfo().allowDebugInfoForExternalRef() && 12786 !Var->isInvalidDecl() && !getLangOpts().CPlusPlus) 12787 ExternalDeclarations.push_back(Var); 12788 12789 return; 12790 12791 case VarDecl::TentativeDefinition: 12792 // File scope. C99 6.9.2p2: A declaration of an identifier for an 12793 // object that has file scope without an initializer, and without a 12794 // storage-class specifier or with the storage-class specifier "static", 12795 // constitutes a tentative definition. Note: A tentative definition with 12796 // external linkage is valid (C99 6.2.2p5). 12797 if (!Var->isInvalidDecl()) { 12798 if (const IncompleteArrayType *ArrayT 12799 = Context.getAsIncompleteArrayType(Type)) { 12800 if (RequireCompleteSizedType( 12801 Var->getLocation(), ArrayT->getElementType(), 12802 diag::err_array_incomplete_or_sizeless_type)) 12803 Var->setInvalidDecl(); 12804 } else if (Var->getStorageClass() == SC_Static) { 12805 // C99 6.9.2p3: If the declaration of an identifier for an object is 12806 // a tentative definition and has internal linkage (C99 6.2.2p3), the 12807 // declared type shall not be an incomplete type. 12808 // NOTE: code such as the following 12809 // static struct s; 12810 // struct s { int a; }; 12811 // is accepted by gcc. Hence here we issue a warning instead of 12812 // an error and we do not invalidate the static declaration. 12813 // NOTE: to avoid multiple warnings, only check the first declaration. 12814 if (Var->isFirstDecl()) 12815 RequireCompleteType(Var->getLocation(), Type, 12816 diag::ext_typecheck_decl_incomplete_type); 12817 } 12818 } 12819 12820 // Record the tentative definition; we're done. 12821 if (!Var->isInvalidDecl()) 12822 TentativeDefinitions.push_back(Var); 12823 return; 12824 } 12825 12826 // Provide a specific diagnostic for uninitialized variable 12827 // definitions with incomplete array type. 12828 if (Type->isIncompleteArrayType()) { 12829 Diag(Var->getLocation(), 12830 diag::err_typecheck_incomplete_array_needs_initializer); 12831 Var->setInvalidDecl(); 12832 return; 12833 } 12834 12835 // Provide a specific diagnostic for uninitialized variable 12836 // definitions with reference type. 12837 if (Type->isReferenceType()) { 12838 Diag(Var->getLocation(), diag::err_reference_var_requires_init) 12839 << Var << SourceRange(Var->getLocation(), Var->getLocation()); 12840 Var->setInvalidDecl(); 12841 return; 12842 } 12843 12844 // Do not attempt to type-check the default initializer for a 12845 // variable with dependent type. 12846 if (Type->isDependentType()) 12847 return; 12848 12849 if (Var->isInvalidDecl()) 12850 return; 12851 12852 if (!Var->hasAttr<AliasAttr>()) { 12853 if (RequireCompleteType(Var->getLocation(), 12854 Context.getBaseElementType(Type), 12855 diag::err_typecheck_decl_incomplete_type)) { 12856 Var->setInvalidDecl(); 12857 return; 12858 } 12859 } else { 12860 return; 12861 } 12862 12863 // The variable can not have an abstract class type. 12864 if (RequireNonAbstractType(Var->getLocation(), Type, 12865 diag::err_abstract_type_in_decl, 12866 AbstractVariableType)) { 12867 Var->setInvalidDecl(); 12868 return; 12869 } 12870 12871 // Check for jumps past the implicit initializer. C++0x 12872 // clarifies that this applies to a "variable with automatic 12873 // storage duration", not a "local variable". 12874 // C++11 [stmt.dcl]p3 12875 // A program that jumps from a point where a variable with automatic 12876 // storage duration is not in scope to a point where it is in scope is 12877 // ill-formed unless the variable has scalar type, class type with a 12878 // trivial default constructor and a trivial destructor, a cv-qualified 12879 // version of one of these types, or an array of one of the preceding 12880 // types and is declared without an initializer. 12881 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) { 12882 if (const RecordType *Record 12883 = Context.getBaseElementType(Type)->getAs<RecordType>()) { 12884 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl()); 12885 // Mark the function (if we're in one) for further checking even if the 12886 // looser rules of C++11 do not require such checks, so that we can 12887 // diagnose incompatibilities with C++98. 12888 if (!CXXRecord->isPOD()) 12889 setFunctionHasBranchProtectedScope(); 12890 } 12891 } 12892 // In OpenCL, we can't initialize objects in the __local address space, 12893 // even implicitly, so don't synthesize an implicit initializer. 12894 if (getLangOpts().OpenCL && 12895 Var->getType().getAddressSpace() == LangAS::opencl_local) 12896 return; 12897 // C++03 [dcl.init]p9: 12898 // If no initializer is specified for an object, and the 12899 // object is of (possibly cv-qualified) non-POD class type (or 12900 // array thereof), the object shall be default-initialized; if 12901 // the object is of const-qualified type, the underlying class 12902 // type shall have a user-declared default 12903 // constructor. Otherwise, if no initializer is specified for 12904 // a non- static object, the object and its subobjects, if 12905 // any, have an indeterminate initial value); if the object 12906 // or any of its subobjects are of const-qualified type, the 12907 // program is ill-formed. 12908 // C++0x [dcl.init]p11: 12909 // If no initializer is specified for an object, the object is 12910 // default-initialized; [...]. 12911 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); 12912 InitializationKind Kind 12913 = InitializationKind::CreateDefault(Var->getLocation()); 12914 12915 InitializationSequence InitSeq(*this, Entity, Kind, None); 12916 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None); 12917 12918 if (Init.get()) { 12919 Var->setInit(MaybeCreateExprWithCleanups(Init.get())); 12920 // This is important for template substitution. 12921 Var->setInitStyle(VarDecl::CallInit); 12922 } else if (Init.isInvalid()) { 12923 // If default-init fails, attach a recovery-expr initializer to track 12924 // that initialization was attempted and failed. 12925 auto RecoveryExpr = 12926 CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {}); 12927 if (RecoveryExpr.get()) 12928 Var->setInit(RecoveryExpr.get()); 12929 } 12930 12931 CheckCompleteVariableDeclaration(Var); 12932 } 12933 } 12934 12935 void Sema::ActOnCXXForRangeDecl(Decl *D) { 12936 // If there is no declaration, there was an error parsing it. Ignore it. 12937 if (!D) 12938 return; 12939 12940 VarDecl *VD = dyn_cast<VarDecl>(D); 12941 if (!VD) { 12942 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var); 12943 D->setInvalidDecl(); 12944 return; 12945 } 12946 12947 VD->setCXXForRangeDecl(true); 12948 12949 // for-range-declaration cannot be given a storage class specifier. 12950 int Error = -1; 12951 switch (VD->getStorageClass()) { 12952 case SC_None: 12953 break; 12954 case SC_Extern: 12955 Error = 0; 12956 break; 12957 case SC_Static: 12958 Error = 1; 12959 break; 12960 case SC_PrivateExtern: 12961 Error = 2; 12962 break; 12963 case SC_Auto: 12964 Error = 3; 12965 break; 12966 case SC_Register: 12967 Error = 4; 12968 break; 12969 } 12970 12971 // for-range-declaration cannot be given a storage class specifier con't. 12972 switch (VD->getTSCSpec()) { 12973 case TSCS_thread_local: 12974 Error = 6; 12975 break; 12976 case TSCS___thread: 12977 case TSCS__Thread_local: 12978 case TSCS_unspecified: 12979 break; 12980 } 12981 12982 if (Error != -1) { 12983 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class) 12984 << VD << Error; 12985 D->setInvalidDecl(); 12986 } 12987 } 12988 12989 StmtResult 12990 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, 12991 IdentifierInfo *Ident, 12992 ParsedAttributes &Attrs, 12993 SourceLocation AttrEnd) { 12994 // C++1y [stmt.iter]p1: 12995 // A range-based for statement of the form 12996 // for ( for-range-identifier : for-range-initializer ) statement 12997 // is equivalent to 12998 // for ( auto&& for-range-identifier : for-range-initializer ) statement 12999 DeclSpec DS(Attrs.getPool().getFactory()); 13000 13001 const char *PrevSpec; 13002 unsigned DiagID; 13003 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID, 13004 getPrintingPolicy()); 13005 13006 Declarator D(DS, DeclaratorContext::ForInit); 13007 D.SetIdentifier(Ident, IdentLoc); 13008 D.takeAttributes(Attrs, AttrEnd); 13009 13010 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false), 13011 IdentLoc); 13012 Decl *Var = ActOnDeclarator(S, D); 13013 cast<VarDecl>(Var)->setCXXForRangeDecl(true); 13014 FinalizeDeclaration(Var); 13015 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc, 13016 AttrEnd.isValid() ? AttrEnd : IdentLoc); 13017 } 13018 13019 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) { 13020 if (var->isInvalidDecl()) return; 13021 13022 MaybeAddCUDAConstantAttr(var); 13023 13024 if (getLangOpts().OpenCL) { 13025 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an 13026 // initialiser 13027 if (var->getTypeSourceInfo()->getType()->isBlockPointerType() && 13028 !var->hasInit()) { 13029 Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration) 13030 << 1 /*Init*/; 13031 var->setInvalidDecl(); 13032 return; 13033 } 13034 } 13035 13036 // In Objective-C, don't allow jumps past the implicit initialization of a 13037 // local retaining variable. 13038 if (getLangOpts().ObjC && 13039 var->hasLocalStorage()) { 13040 switch (var->getType().getObjCLifetime()) { 13041 case Qualifiers::OCL_None: 13042 case Qualifiers::OCL_ExplicitNone: 13043 case Qualifiers::OCL_Autoreleasing: 13044 break; 13045 13046 case Qualifiers::OCL_Weak: 13047 case Qualifiers::OCL_Strong: 13048 setFunctionHasBranchProtectedScope(); 13049 break; 13050 } 13051 } 13052 13053 if (var->hasLocalStorage() && 13054 var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 13055 setFunctionHasBranchProtectedScope(); 13056 13057 // Warn about externally-visible variables being defined without a 13058 // prior declaration. We only want to do this for global 13059 // declarations, but we also specifically need to avoid doing it for 13060 // class members because the linkage of an anonymous class can 13061 // change if it's later given a typedef name. 13062 if (var->isThisDeclarationADefinition() && 13063 var->getDeclContext()->getRedeclContext()->isFileContext() && 13064 var->isExternallyVisible() && var->hasLinkage() && 13065 !var->isInline() && !var->getDescribedVarTemplate() && 13066 !isa<VarTemplatePartialSpecializationDecl>(var) && 13067 !isTemplateInstantiation(var->getTemplateSpecializationKind()) && 13068 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations, 13069 var->getLocation())) { 13070 // Find a previous declaration that's not a definition. 13071 VarDecl *prev = var->getPreviousDecl(); 13072 while (prev && prev->isThisDeclarationADefinition()) 13073 prev = prev->getPreviousDecl(); 13074 13075 if (!prev) { 13076 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var; 13077 Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage) 13078 << /* variable */ 0; 13079 } 13080 } 13081 13082 // Cache the result of checking for constant initialization. 13083 Optional<bool> CacheHasConstInit; 13084 const Expr *CacheCulprit = nullptr; 13085 auto checkConstInit = [&]() mutable { 13086 if (!CacheHasConstInit) 13087 CacheHasConstInit = var->getInit()->isConstantInitializer( 13088 Context, var->getType()->isReferenceType(), &CacheCulprit); 13089 return *CacheHasConstInit; 13090 }; 13091 13092 if (var->getTLSKind() == VarDecl::TLS_Static) { 13093 if (var->getType().isDestructedType()) { 13094 // GNU C++98 edits for __thread, [basic.start.term]p3: 13095 // The type of an object with thread storage duration shall not 13096 // have a non-trivial destructor. 13097 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor); 13098 if (getLangOpts().CPlusPlus11) 13099 Diag(var->getLocation(), diag::note_use_thread_local); 13100 } else if (getLangOpts().CPlusPlus && var->hasInit()) { 13101 if (!checkConstInit()) { 13102 // GNU C++98 edits for __thread, [basic.start.init]p4: 13103 // An object of thread storage duration shall not require dynamic 13104 // initialization. 13105 // FIXME: Need strict checking here. 13106 Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init) 13107 << CacheCulprit->getSourceRange(); 13108 if (getLangOpts().CPlusPlus11) 13109 Diag(var->getLocation(), diag::note_use_thread_local); 13110 } 13111 } 13112 } 13113 13114 13115 if (!var->getType()->isStructureType() && var->hasInit() && 13116 isa<InitListExpr>(var->getInit())) { 13117 const auto *ILE = cast<InitListExpr>(var->getInit()); 13118 unsigned NumInits = ILE->getNumInits(); 13119 if (NumInits > 2) 13120 for (unsigned I = 0; I < NumInits; ++I) { 13121 const auto *Init = ILE->getInit(I); 13122 if (!Init) 13123 break; 13124 const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts()); 13125 if (!SL) 13126 break; 13127 13128 unsigned NumConcat = SL->getNumConcatenated(); 13129 // Diagnose missing comma in string array initialization. 13130 // Do not warn when all the elements in the initializer are concatenated 13131 // together. Do not warn for macros too. 13132 if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) { 13133 bool OnlyOneMissingComma = true; 13134 for (unsigned J = I + 1; J < NumInits; ++J) { 13135 const auto *Init = ILE->getInit(J); 13136 if (!Init) 13137 break; 13138 const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts()); 13139 if (!SLJ || SLJ->getNumConcatenated() > 1) { 13140 OnlyOneMissingComma = false; 13141 break; 13142 } 13143 } 13144 13145 if (OnlyOneMissingComma) { 13146 SmallVector<FixItHint, 1> Hints; 13147 for (unsigned i = 0; i < NumConcat - 1; ++i) 13148 Hints.push_back(FixItHint::CreateInsertion( 13149 PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ",")); 13150 13151 Diag(SL->getStrTokenLoc(1), 13152 diag::warn_concatenated_literal_array_init) 13153 << Hints; 13154 Diag(SL->getBeginLoc(), 13155 diag::note_concatenated_string_literal_silence); 13156 } 13157 // In any case, stop now. 13158 break; 13159 } 13160 } 13161 } 13162 13163 13164 QualType type = var->getType(); 13165 13166 if (var->hasAttr<BlocksAttr>()) 13167 getCurFunction()->addByrefBlockVar(var); 13168 13169 Expr *Init = var->getInit(); 13170 bool GlobalStorage = var->hasGlobalStorage(); 13171 bool IsGlobal = GlobalStorage && !var->isStaticLocal(); 13172 QualType baseType = Context.getBaseElementType(type); 13173 bool HasConstInit = true; 13174 13175 // Check whether the initializer is sufficiently constant. 13176 if (getLangOpts().CPlusPlus && !type->isDependentType() && Init && 13177 !Init->isValueDependent() && 13178 (GlobalStorage || var->isConstexpr() || 13179 var->mightBeUsableInConstantExpressions(Context))) { 13180 // If this variable might have a constant initializer or might be usable in 13181 // constant expressions, check whether or not it actually is now. We can't 13182 // do this lazily, because the result might depend on things that change 13183 // later, such as which constexpr functions happen to be defined. 13184 SmallVector<PartialDiagnosticAt, 8> Notes; 13185 if (!getLangOpts().CPlusPlus11) { 13186 // Prior to C++11, in contexts where a constant initializer is required, 13187 // the set of valid constant initializers is described by syntactic rules 13188 // in [expr.const]p2-6. 13189 // FIXME: Stricter checking for these rules would be useful for constinit / 13190 // -Wglobal-constructors. 13191 HasConstInit = checkConstInit(); 13192 13193 // Compute and cache the constant value, and remember that we have a 13194 // constant initializer. 13195 if (HasConstInit) { 13196 (void)var->checkForConstantInitialization(Notes); 13197 Notes.clear(); 13198 } else if (CacheCulprit) { 13199 Notes.emplace_back(CacheCulprit->getExprLoc(), 13200 PDiag(diag::note_invalid_subexpr_in_const_expr)); 13201 Notes.back().second << CacheCulprit->getSourceRange(); 13202 } 13203 } else { 13204 // Evaluate the initializer to see if it's a constant initializer. 13205 HasConstInit = var->checkForConstantInitialization(Notes); 13206 } 13207 13208 if (HasConstInit) { 13209 // FIXME: Consider replacing the initializer with a ConstantExpr. 13210 } else if (var->isConstexpr()) { 13211 SourceLocation DiagLoc = var->getLocation(); 13212 // If the note doesn't add any useful information other than a source 13213 // location, fold it into the primary diagnostic. 13214 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 13215 diag::note_invalid_subexpr_in_const_expr) { 13216 DiagLoc = Notes[0].first; 13217 Notes.clear(); 13218 } 13219 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init) 13220 << var << Init->getSourceRange(); 13221 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 13222 Diag(Notes[I].first, Notes[I].second); 13223 } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) { 13224 auto *Attr = var->getAttr<ConstInitAttr>(); 13225 Diag(var->getLocation(), diag::err_require_constant_init_failed) 13226 << Init->getSourceRange(); 13227 Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here) 13228 << Attr->getRange() << Attr->isConstinit(); 13229 for (auto &it : Notes) 13230 Diag(it.first, it.second); 13231 } else if (IsGlobal && 13232 !getDiagnostics().isIgnored(diag::warn_global_constructor, 13233 var->getLocation())) { 13234 // Warn about globals which don't have a constant initializer. Don't 13235 // warn about globals with a non-trivial destructor because we already 13236 // warned about them. 13237 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl(); 13238 if (!(RD && !RD->hasTrivialDestructor())) { 13239 // checkConstInit() here permits trivial default initialization even in 13240 // C++11 onwards, where such an initializer is not a constant initializer 13241 // but nonetheless doesn't require a global constructor. 13242 if (!checkConstInit()) 13243 Diag(var->getLocation(), diag::warn_global_constructor) 13244 << Init->getSourceRange(); 13245 } 13246 } 13247 } 13248 13249 // Apply section attributes and pragmas to global variables. 13250 if (GlobalStorage && var->isThisDeclarationADefinition() && 13251 !inTemplateInstantiation()) { 13252 PragmaStack<StringLiteral *> *Stack = nullptr; 13253 int SectionFlags = ASTContext::PSF_Read; 13254 if (var->getType().isConstQualified()) { 13255 if (HasConstInit) 13256 Stack = &ConstSegStack; 13257 else { 13258 Stack = &BSSSegStack; 13259 SectionFlags |= ASTContext::PSF_Write; 13260 } 13261 } else if (var->hasInit() && HasConstInit) { 13262 Stack = &DataSegStack; 13263 SectionFlags |= ASTContext::PSF_Write; 13264 } else { 13265 Stack = &BSSSegStack; 13266 SectionFlags |= ASTContext::PSF_Write; 13267 } 13268 if (const SectionAttr *SA = var->getAttr<SectionAttr>()) { 13269 if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec) 13270 SectionFlags |= ASTContext::PSF_Implicit; 13271 UnifySection(SA->getName(), SectionFlags, var); 13272 } else if (Stack->CurrentValue) { 13273 SectionFlags |= ASTContext::PSF_Implicit; 13274 auto SectionName = Stack->CurrentValue->getString(); 13275 var->addAttr(SectionAttr::CreateImplicit( 13276 Context, SectionName, Stack->CurrentPragmaLocation, 13277 AttributeCommonInfo::AS_Pragma, SectionAttr::Declspec_allocate)); 13278 if (UnifySection(SectionName, SectionFlags, var)) 13279 var->dropAttr<SectionAttr>(); 13280 } 13281 13282 // Apply the init_seg attribute if this has an initializer. If the 13283 // initializer turns out to not be dynamic, we'll end up ignoring this 13284 // attribute. 13285 if (CurInitSeg && var->getInit()) 13286 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(), 13287 CurInitSegLoc, 13288 AttributeCommonInfo::AS_Pragma)); 13289 } 13290 13291 // All the following checks are C++ only. 13292 if (!getLangOpts().CPlusPlus) { 13293 // If this variable must be emitted, add it as an initializer for the 13294 // current module. 13295 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) 13296 Context.addModuleInitializer(ModuleScopes.back().Module, var); 13297 return; 13298 } 13299 13300 // Require the destructor. 13301 if (!type->isDependentType()) 13302 if (const RecordType *recordType = baseType->getAs<RecordType>()) 13303 FinalizeVarWithDestructor(var, recordType); 13304 13305 // If this variable must be emitted, add it as an initializer for the current 13306 // module. 13307 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) 13308 Context.addModuleInitializer(ModuleScopes.back().Module, var); 13309 13310 // Build the bindings if this is a structured binding declaration. 13311 if (auto *DD = dyn_cast<DecompositionDecl>(var)) 13312 CheckCompleteDecompositionDeclaration(DD); 13313 } 13314 13315 /// Check if VD needs to be dllexport/dllimport due to being in a 13316 /// dllexport/import function. 13317 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) { 13318 assert(VD->isStaticLocal()); 13319 13320 auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); 13321 13322 // Find outermost function when VD is in lambda function. 13323 while (FD && !getDLLAttr(FD) && 13324 !FD->hasAttr<DLLExportStaticLocalAttr>() && 13325 !FD->hasAttr<DLLImportStaticLocalAttr>()) { 13326 FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod()); 13327 } 13328 13329 if (!FD) 13330 return; 13331 13332 // Static locals inherit dll attributes from their function. 13333 if (Attr *A = getDLLAttr(FD)) { 13334 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext())); 13335 NewAttr->setInherited(true); 13336 VD->addAttr(NewAttr); 13337 } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) { 13338 auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A); 13339 NewAttr->setInherited(true); 13340 VD->addAttr(NewAttr); 13341 13342 // Export this function to enforce exporting this static variable even 13343 // if it is not used in this compilation unit. 13344 if (!FD->hasAttr<DLLExportAttr>()) 13345 FD->addAttr(NewAttr); 13346 13347 } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) { 13348 auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A); 13349 NewAttr->setInherited(true); 13350 VD->addAttr(NewAttr); 13351 } 13352 } 13353 13354 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform 13355 /// any semantic actions necessary after any initializer has been attached. 13356 void Sema::FinalizeDeclaration(Decl *ThisDecl) { 13357 // Note that we are no longer parsing the initializer for this declaration. 13358 ParsingInitForAutoVars.erase(ThisDecl); 13359 13360 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl); 13361 if (!VD) 13362 return; 13363 13364 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active 13365 if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() && 13366 !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) { 13367 if (PragmaClangBSSSection.Valid) 13368 VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit( 13369 Context, PragmaClangBSSSection.SectionName, 13370 PragmaClangBSSSection.PragmaLocation, 13371 AttributeCommonInfo::AS_Pragma)); 13372 if (PragmaClangDataSection.Valid) 13373 VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit( 13374 Context, PragmaClangDataSection.SectionName, 13375 PragmaClangDataSection.PragmaLocation, 13376 AttributeCommonInfo::AS_Pragma)); 13377 if (PragmaClangRodataSection.Valid) 13378 VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit( 13379 Context, PragmaClangRodataSection.SectionName, 13380 PragmaClangRodataSection.PragmaLocation, 13381 AttributeCommonInfo::AS_Pragma)); 13382 if (PragmaClangRelroSection.Valid) 13383 VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit( 13384 Context, PragmaClangRelroSection.SectionName, 13385 PragmaClangRelroSection.PragmaLocation, 13386 AttributeCommonInfo::AS_Pragma)); 13387 } 13388 13389 if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) { 13390 for (auto *BD : DD->bindings()) { 13391 FinalizeDeclaration(BD); 13392 } 13393 } 13394 13395 checkAttributesAfterMerging(*this, *VD); 13396 13397 // Perform TLS alignment check here after attributes attached to the variable 13398 // which may affect the alignment have been processed. Only perform the check 13399 // if the target has a maximum TLS alignment (zero means no constraints). 13400 if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) { 13401 // Protect the check so that it's not performed on dependent types and 13402 // dependent alignments (we can't determine the alignment in that case). 13403 if (VD->getTLSKind() && !VD->hasDependentAlignment()) { 13404 CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign); 13405 if (Context.getDeclAlign(VD) > MaxAlignChars) { 13406 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) 13407 << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD 13408 << (unsigned)MaxAlignChars.getQuantity(); 13409 } 13410 } 13411 } 13412 13413 if (VD->isStaticLocal()) 13414 CheckStaticLocalForDllExport(VD); 13415 13416 // Perform check for initializers of device-side global variables. 13417 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA 13418 // 7.5). We must also apply the same checks to all __shared__ 13419 // variables whether they are local or not. CUDA also allows 13420 // constant initializers for __constant__ and __device__ variables. 13421 if (getLangOpts().CUDA) 13422 checkAllowedCUDAInitializer(VD); 13423 13424 // Grab the dllimport or dllexport attribute off of the VarDecl. 13425 const InheritableAttr *DLLAttr = getDLLAttr(VD); 13426 13427 // Imported static data members cannot be defined out-of-line. 13428 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) { 13429 if (VD->isStaticDataMember() && VD->isOutOfLine() && 13430 VD->isThisDeclarationADefinition()) { 13431 // We allow definitions of dllimport class template static data members 13432 // with a warning. 13433 CXXRecordDecl *Context = 13434 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext()); 13435 bool IsClassTemplateMember = 13436 isa<ClassTemplatePartialSpecializationDecl>(Context) || 13437 Context->getDescribedClassTemplate(); 13438 13439 Diag(VD->getLocation(), 13440 IsClassTemplateMember 13441 ? diag::warn_attribute_dllimport_static_field_definition 13442 : diag::err_attribute_dllimport_static_field_definition); 13443 Diag(IA->getLocation(), diag::note_attribute); 13444 if (!IsClassTemplateMember) 13445 VD->setInvalidDecl(); 13446 } 13447 } 13448 13449 // dllimport/dllexport variables cannot be thread local, their TLS index 13450 // isn't exported with the variable. 13451 if (DLLAttr && VD->getTLSKind()) { 13452 auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); 13453 if (F && getDLLAttr(F)) { 13454 assert(VD->isStaticLocal()); 13455 // But if this is a static local in a dlimport/dllexport function, the 13456 // function will never be inlined, which means the var would never be 13457 // imported, so having it marked import/export is safe. 13458 } else { 13459 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD 13460 << DLLAttr; 13461 VD->setInvalidDecl(); 13462 } 13463 } 13464 13465 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) { 13466 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { 13467 Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition) 13468 << Attr; 13469 VD->dropAttr<UsedAttr>(); 13470 } 13471 } 13472 if (RetainAttr *Attr = VD->getAttr<RetainAttr>()) { 13473 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { 13474 Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition) 13475 << Attr; 13476 VD->dropAttr<RetainAttr>(); 13477 } 13478 } 13479 13480 const DeclContext *DC = VD->getDeclContext(); 13481 // If there's a #pragma GCC visibility in scope, and this isn't a class 13482 // member, set the visibility of this variable. 13483 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible()) 13484 AddPushedVisibilityAttribute(VD); 13485 13486 // FIXME: Warn on unused var template partial specializations. 13487 if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD)) 13488 MarkUnusedFileScopedDecl(VD); 13489 13490 // Now we have parsed the initializer and can update the table of magic 13491 // tag values. 13492 if (!VD->hasAttr<TypeTagForDatatypeAttr>() || 13493 !VD->getType()->isIntegralOrEnumerationType()) 13494 return; 13495 13496 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) { 13497 const Expr *MagicValueExpr = VD->getInit(); 13498 if (!MagicValueExpr) { 13499 continue; 13500 } 13501 Optional<llvm::APSInt> MagicValueInt; 13502 if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) { 13503 Diag(I->getRange().getBegin(), 13504 diag::err_type_tag_for_datatype_not_ice) 13505 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); 13506 continue; 13507 } 13508 if (MagicValueInt->getActiveBits() > 64) { 13509 Diag(I->getRange().getBegin(), 13510 diag::err_type_tag_for_datatype_too_large) 13511 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); 13512 continue; 13513 } 13514 uint64_t MagicValue = MagicValueInt->getZExtValue(); 13515 RegisterTypeTagForDatatype(I->getArgumentKind(), 13516 MagicValue, 13517 I->getMatchingCType(), 13518 I->getLayoutCompatible(), 13519 I->getMustBeNull()); 13520 } 13521 } 13522 13523 static bool hasDeducedAuto(DeclaratorDecl *DD) { 13524 auto *VD = dyn_cast<VarDecl>(DD); 13525 return VD && !VD->getType()->hasAutoForTrailingReturnType(); 13526 } 13527 13528 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, 13529 ArrayRef<Decl *> Group) { 13530 SmallVector<Decl*, 8> Decls; 13531 13532 if (DS.isTypeSpecOwned()) 13533 Decls.push_back(DS.getRepAsDecl()); 13534 13535 DeclaratorDecl *FirstDeclaratorInGroup = nullptr; 13536 DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr; 13537 bool DiagnosedMultipleDecomps = false; 13538 DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr; 13539 bool DiagnosedNonDeducedAuto = false; 13540 13541 for (unsigned i = 0, e = Group.size(); i != e; ++i) { 13542 if (Decl *D = Group[i]) { 13543 // For declarators, there are some additional syntactic-ish checks we need 13544 // to perform. 13545 if (auto *DD = dyn_cast<DeclaratorDecl>(D)) { 13546 if (!FirstDeclaratorInGroup) 13547 FirstDeclaratorInGroup = DD; 13548 if (!FirstDecompDeclaratorInGroup) 13549 FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D); 13550 if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() && 13551 !hasDeducedAuto(DD)) 13552 FirstNonDeducedAutoInGroup = DD; 13553 13554 if (FirstDeclaratorInGroup != DD) { 13555 // A decomposition declaration cannot be combined with any other 13556 // declaration in the same group. 13557 if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) { 13558 Diag(FirstDecompDeclaratorInGroup->getLocation(), 13559 diag::err_decomp_decl_not_alone) 13560 << FirstDeclaratorInGroup->getSourceRange() 13561 << DD->getSourceRange(); 13562 DiagnosedMultipleDecomps = true; 13563 } 13564 13565 // A declarator that uses 'auto' in any way other than to declare a 13566 // variable with a deduced type cannot be combined with any other 13567 // declarator in the same group. 13568 if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) { 13569 Diag(FirstNonDeducedAutoInGroup->getLocation(), 13570 diag::err_auto_non_deduced_not_alone) 13571 << FirstNonDeducedAutoInGroup->getType() 13572 ->hasAutoForTrailingReturnType() 13573 << FirstDeclaratorInGroup->getSourceRange() 13574 << DD->getSourceRange(); 13575 DiagnosedNonDeducedAuto = true; 13576 } 13577 } 13578 } 13579 13580 Decls.push_back(D); 13581 } 13582 } 13583 13584 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) { 13585 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) { 13586 handleTagNumbering(Tag, S); 13587 if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() && 13588 getLangOpts().CPlusPlus) 13589 Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup); 13590 } 13591 } 13592 13593 return BuildDeclaratorGroup(Decls); 13594 } 13595 13596 /// BuildDeclaratorGroup - convert a list of declarations into a declaration 13597 /// group, performing any necessary semantic checking. 13598 Sema::DeclGroupPtrTy 13599 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) { 13600 // C++14 [dcl.spec.auto]p7: (DR1347) 13601 // If the type that replaces the placeholder type is not the same in each 13602 // deduction, the program is ill-formed. 13603 if (Group.size() > 1) { 13604 QualType Deduced; 13605 VarDecl *DeducedDecl = nullptr; 13606 for (unsigned i = 0, e = Group.size(); i != e; ++i) { 13607 VarDecl *D = dyn_cast<VarDecl>(Group[i]); 13608 if (!D || D->isInvalidDecl()) 13609 break; 13610 DeducedType *DT = D->getType()->getContainedDeducedType(); 13611 if (!DT || DT->getDeducedType().isNull()) 13612 continue; 13613 if (Deduced.isNull()) { 13614 Deduced = DT->getDeducedType(); 13615 DeducedDecl = D; 13616 } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) { 13617 auto *AT = dyn_cast<AutoType>(DT); 13618 auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 13619 diag::err_auto_different_deductions) 13620 << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced 13621 << DeducedDecl->getDeclName() << DT->getDeducedType() 13622 << D->getDeclName(); 13623 if (DeducedDecl->hasInit()) 13624 Dia << DeducedDecl->getInit()->getSourceRange(); 13625 if (D->getInit()) 13626 Dia << D->getInit()->getSourceRange(); 13627 D->setInvalidDecl(); 13628 break; 13629 } 13630 } 13631 } 13632 13633 ActOnDocumentableDecls(Group); 13634 13635 return DeclGroupPtrTy::make( 13636 DeclGroupRef::Create(Context, Group.data(), Group.size())); 13637 } 13638 13639 void Sema::ActOnDocumentableDecl(Decl *D) { 13640 ActOnDocumentableDecls(D); 13641 } 13642 13643 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) { 13644 // Don't parse the comment if Doxygen diagnostics are ignored. 13645 if (Group.empty() || !Group[0]) 13646 return; 13647 13648 if (Diags.isIgnored(diag::warn_doc_param_not_found, 13649 Group[0]->getLocation()) && 13650 Diags.isIgnored(diag::warn_unknown_comment_command_name, 13651 Group[0]->getLocation())) 13652 return; 13653 13654 if (Group.size() >= 2) { 13655 // This is a decl group. Normally it will contain only declarations 13656 // produced from declarator list. But in case we have any definitions or 13657 // additional declaration references: 13658 // 'typedef struct S {} S;' 13659 // 'typedef struct S *S;' 13660 // 'struct S *pS;' 13661 // FinalizeDeclaratorGroup adds these as separate declarations. 13662 Decl *MaybeTagDecl = Group[0]; 13663 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) { 13664 Group = Group.slice(1); 13665 } 13666 } 13667 13668 // FIMXE: We assume every Decl in the group is in the same file. 13669 // This is false when preprocessor constructs the group from decls in 13670 // different files (e. g. macros or #include). 13671 Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor()); 13672 } 13673 13674 /// Common checks for a parameter-declaration that should apply to both function 13675 /// parameters and non-type template parameters. 13676 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) { 13677 // Check that there are no default arguments inside the type of this 13678 // parameter. 13679 if (getLangOpts().CPlusPlus) 13680 CheckExtraCXXDefaultArguments(D); 13681 13682 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 13683 if (D.getCXXScopeSpec().isSet()) { 13684 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) 13685 << D.getCXXScopeSpec().getRange(); 13686 } 13687 13688 // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a 13689 // simple identifier except [...irrelevant cases...]. 13690 switch (D.getName().getKind()) { 13691 case UnqualifiedIdKind::IK_Identifier: 13692 break; 13693 13694 case UnqualifiedIdKind::IK_OperatorFunctionId: 13695 case UnqualifiedIdKind::IK_ConversionFunctionId: 13696 case UnqualifiedIdKind::IK_LiteralOperatorId: 13697 case UnqualifiedIdKind::IK_ConstructorName: 13698 case UnqualifiedIdKind::IK_DestructorName: 13699 case UnqualifiedIdKind::IK_ImplicitSelfParam: 13700 case UnqualifiedIdKind::IK_DeductionGuideName: 13701 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name) 13702 << GetNameForDeclarator(D).getName(); 13703 break; 13704 13705 case UnqualifiedIdKind::IK_TemplateId: 13706 case UnqualifiedIdKind::IK_ConstructorTemplateId: 13707 // GetNameForDeclarator would not produce a useful name in this case. 13708 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id); 13709 break; 13710 } 13711 } 13712 13713 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() 13714 /// to introduce parameters into function prototype scope. 13715 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { 13716 const DeclSpec &DS = D.getDeclSpec(); 13717 13718 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. 13719 13720 // C++03 [dcl.stc]p2 also permits 'auto'. 13721 StorageClass SC = SC_None; 13722 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 13723 SC = SC_Register; 13724 // In C++11, the 'register' storage class specifier is deprecated. 13725 // In C++17, it is not allowed, but we tolerate it as an extension. 13726 if (getLangOpts().CPlusPlus11) { 13727 Diag(DS.getStorageClassSpecLoc(), 13728 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class 13729 : diag::warn_deprecated_register) 13730 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 13731 } 13732 } else if (getLangOpts().CPlusPlus && 13733 DS.getStorageClassSpec() == DeclSpec::SCS_auto) { 13734 SC = SC_Auto; 13735 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 13736 Diag(DS.getStorageClassSpecLoc(), 13737 diag::err_invalid_storage_class_in_func_decl); 13738 D.getMutableDeclSpec().ClearStorageClassSpecs(); 13739 } 13740 13741 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) 13742 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread) 13743 << DeclSpec::getSpecifierName(TSCS); 13744 if (DS.isInlineSpecified()) 13745 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) 13746 << getLangOpts().CPlusPlus17; 13747 if (DS.hasConstexprSpecifier()) 13748 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr) 13749 << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); 13750 13751 DiagnoseFunctionSpecifiers(DS); 13752 13753 CheckFunctionOrTemplateParamDeclarator(S, D); 13754 13755 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 13756 QualType parmDeclType = TInfo->getType(); 13757 13758 // Check for redeclaration of parameters, e.g. int foo(int x, int x); 13759 IdentifierInfo *II = D.getIdentifier(); 13760 if (II) { 13761 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, 13762 ForVisibleRedeclaration); 13763 LookupName(R, S); 13764 if (R.isSingleResult()) { 13765 NamedDecl *PrevDecl = R.getFoundDecl(); 13766 if (PrevDecl->isTemplateParameter()) { 13767 // Maybe we will complain about the shadowed template parameter. 13768 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 13769 // Just pretend that we didn't see the previous declaration. 13770 PrevDecl = nullptr; 13771 } else if (S->isDeclScope(PrevDecl)) { 13772 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; 13773 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 13774 13775 // Recover by removing the name 13776 II = nullptr; 13777 D.SetIdentifier(nullptr, D.getIdentifierLoc()); 13778 D.setInvalidType(true); 13779 } 13780 } 13781 } 13782 13783 // Temporarily put parameter variables in the translation unit, not 13784 // the enclosing context. This prevents them from accidentally 13785 // looking like class members in C++. 13786 ParmVarDecl *New = 13787 CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(), 13788 D.getIdentifierLoc(), II, parmDeclType, TInfo, SC); 13789 13790 if (D.isInvalidType()) 13791 New->setInvalidDecl(); 13792 13793 assert(S->isFunctionPrototypeScope()); 13794 assert(S->getFunctionPrototypeDepth() >= 1); 13795 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1, 13796 S->getNextFunctionPrototypeIndex()); 13797 13798 // Add the parameter declaration into this scope. 13799 S->AddDecl(New); 13800 if (II) 13801 IdResolver.AddDecl(New); 13802 13803 ProcessDeclAttributes(S, New, D); 13804 13805 if (D.getDeclSpec().isModulePrivateSpecified()) 13806 Diag(New->getLocation(), diag::err_module_private_local) 13807 << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 13808 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 13809 13810 if (New->hasAttr<BlocksAttr>()) { 13811 Diag(New->getLocation(), diag::err_block_on_nonlocal); 13812 } 13813 13814 if (getLangOpts().OpenCL) 13815 deduceOpenCLAddressSpace(New); 13816 13817 return New; 13818 } 13819 13820 /// Synthesizes a variable for a parameter arising from a 13821 /// typedef. 13822 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, 13823 SourceLocation Loc, 13824 QualType T) { 13825 /* FIXME: setting StartLoc == Loc. 13826 Would it be worth to modify callers so as to provide proper source 13827 location for the unnamed parameters, embedding the parameter's type? */ 13828 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr, 13829 T, Context.getTrivialTypeSourceInfo(T, Loc), 13830 SC_None, nullptr); 13831 Param->setImplicit(); 13832 return Param; 13833 } 13834 13835 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) { 13836 // Don't diagnose unused-parameter errors in template instantiations; we 13837 // will already have done so in the template itself. 13838 if (inTemplateInstantiation()) 13839 return; 13840 13841 for (const ParmVarDecl *Parameter : Parameters) { 13842 if (!Parameter->isReferenced() && Parameter->getDeclName() && 13843 !Parameter->hasAttr<UnusedAttr>()) { 13844 Diag(Parameter->getLocation(), diag::warn_unused_parameter) 13845 << Parameter->getDeclName(); 13846 } 13847 } 13848 } 13849 13850 void Sema::DiagnoseSizeOfParametersAndReturnValue( 13851 ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) { 13852 if (LangOpts.NumLargeByValueCopy == 0) // No check. 13853 return; 13854 13855 // Warn if the return value is pass-by-value and larger than the specified 13856 // threshold. 13857 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) { 13858 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity(); 13859 if (Size > LangOpts.NumLargeByValueCopy) 13860 Diag(D->getLocation(), diag::warn_return_value_size) << D << Size; 13861 } 13862 13863 // Warn if any parameter is pass-by-value and larger than the specified 13864 // threshold. 13865 for (const ParmVarDecl *Parameter : Parameters) { 13866 QualType T = Parameter->getType(); 13867 if (T->isDependentType() || !T.isPODType(Context)) 13868 continue; 13869 unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); 13870 if (Size > LangOpts.NumLargeByValueCopy) 13871 Diag(Parameter->getLocation(), diag::warn_parameter_size) 13872 << Parameter << Size; 13873 } 13874 } 13875 13876 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc, 13877 SourceLocation NameLoc, IdentifierInfo *Name, 13878 QualType T, TypeSourceInfo *TSInfo, 13879 StorageClass SC) { 13880 // In ARC, infer a lifetime qualifier for appropriate parameter types. 13881 if (getLangOpts().ObjCAutoRefCount && 13882 T.getObjCLifetime() == Qualifiers::OCL_None && 13883 T->isObjCLifetimeType()) { 13884 13885 Qualifiers::ObjCLifetime lifetime; 13886 13887 // Special cases for arrays: 13888 // - if it's const, use __unsafe_unretained 13889 // - otherwise, it's an error 13890 if (T->isArrayType()) { 13891 if (!T.isConstQualified()) { 13892 if (DelayedDiagnostics.shouldDelayDiagnostics()) 13893 DelayedDiagnostics.add( 13894 sema::DelayedDiagnostic::makeForbiddenType( 13895 NameLoc, diag::err_arc_array_param_no_ownership, T, false)); 13896 else 13897 Diag(NameLoc, diag::err_arc_array_param_no_ownership) 13898 << TSInfo->getTypeLoc().getSourceRange(); 13899 } 13900 lifetime = Qualifiers::OCL_ExplicitNone; 13901 } else { 13902 lifetime = T->getObjCARCImplicitLifetime(); 13903 } 13904 T = Context.getLifetimeQualifiedType(T, lifetime); 13905 } 13906 13907 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name, 13908 Context.getAdjustedParameterType(T), 13909 TSInfo, SC, nullptr); 13910 13911 // Make a note if we created a new pack in the scope of a lambda, so that 13912 // we know that references to that pack must also be expanded within the 13913 // lambda scope. 13914 if (New->isParameterPack()) 13915 if (auto *LSI = getEnclosingLambda()) 13916 LSI->LocalPacks.push_back(New); 13917 13918 if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() || 13919 New->getType().hasNonTrivialToPrimitiveCopyCUnion()) 13920 checkNonTrivialCUnion(New->getType(), New->getLocation(), 13921 NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy); 13922 13923 // Parameters can not be abstract class types. 13924 // For record types, this is done by the AbstractClassUsageDiagnoser once 13925 // the class has been completely parsed. 13926 if (!CurContext->isRecord() && 13927 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl, 13928 AbstractParamType)) 13929 New->setInvalidDecl(); 13930 13931 // Parameter declarators cannot be interface types. All ObjC objects are 13932 // passed by reference. 13933 if (T->isObjCObjectType()) { 13934 SourceLocation TypeEndLoc = 13935 getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc()); 13936 Diag(NameLoc, 13937 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T 13938 << FixItHint::CreateInsertion(TypeEndLoc, "*"); 13939 T = Context.getObjCObjectPointerType(T); 13940 New->setType(T); 13941 } 13942 13943 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 13944 // duration shall not be qualified by an address-space qualifier." 13945 // Since all parameters have automatic store duration, they can not have 13946 // an address space. 13947 if (T.getAddressSpace() != LangAS::Default && 13948 // OpenCL allows function arguments declared to be an array of a type 13949 // to be qualified with an address space. 13950 !(getLangOpts().OpenCL && 13951 (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) { 13952 Diag(NameLoc, diag::err_arg_with_address_space); 13953 New->setInvalidDecl(); 13954 } 13955 13956 // PPC MMA non-pointer types are not allowed as function argument types. 13957 if (Context.getTargetInfo().getTriple().isPPC64() && 13958 CheckPPCMMAType(New->getOriginalType(), New->getLocation())) { 13959 New->setInvalidDecl(); 13960 } 13961 13962 return New; 13963 } 13964 13965 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, 13966 SourceLocation LocAfterDecls) { 13967 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 13968 13969 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' 13970 // for a K&R function. 13971 if (!FTI.hasPrototype) { 13972 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) { 13973 --i; 13974 if (FTI.Params[i].Param == nullptr) { 13975 SmallString<256> Code; 13976 llvm::raw_svector_ostream(Code) 13977 << " int " << FTI.Params[i].Ident->getName() << ";\n"; 13978 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared) 13979 << FTI.Params[i].Ident 13980 << FixItHint::CreateInsertion(LocAfterDecls, Code); 13981 13982 // Implicitly declare the argument as type 'int' for lack of a better 13983 // type. 13984 AttributeFactory attrs; 13985 DeclSpec DS(attrs); 13986 const char* PrevSpec; // unused 13987 unsigned DiagID; // unused 13988 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec, 13989 DiagID, Context.getPrintingPolicy()); 13990 // Use the identifier location for the type source range. 13991 DS.SetRangeStart(FTI.Params[i].IdentLoc); 13992 DS.SetRangeEnd(FTI.Params[i].IdentLoc); 13993 Declarator ParamD(DS, DeclaratorContext::KNRTypeList); 13994 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc); 13995 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD); 13996 } 13997 } 13998 } 13999 } 14000 14001 Decl * 14002 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D, 14003 MultiTemplateParamsArg TemplateParameterLists, 14004 SkipBodyInfo *SkipBody) { 14005 assert(getCurFunctionDecl() == nullptr && "Function parsing confused"); 14006 assert(D.isFunctionDeclarator() && "Not a function declarator!"); 14007 Scope *ParentScope = FnBodyScope->getParent(); 14008 14009 // Check if we are in an `omp begin/end declare variant` scope. If we are, and 14010 // we define a non-templated function definition, we will create a declaration 14011 // instead (=BaseFD), and emit the definition with a mangled name afterwards. 14012 // The base function declaration will have the equivalent of an `omp declare 14013 // variant` annotation which specifies the mangled definition as a 14014 // specialization function under the OpenMP context defined as part of the 14015 // `omp begin declare variant`. 14016 SmallVector<FunctionDecl *, 4> Bases; 14017 if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope()) 14018 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope( 14019 ParentScope, D, TemplateParameterLists, Bases); 14020 14021 D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); 14022 Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists); 14023 Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody); 14024 14025 if (!Bases.empty()) 14026 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases); 14027 14028 return Dcl; 14029 } 14030 14031 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) { 14032 Consumer.HandleInlineFunctionDefinition(D); 14033 } 14034 14035 static bool 14036 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD, 14037 const FunctionDecl *&PossiblePrototype) { 14038 // Don't warn about invalid declarations. 14039 if (FD->isInvalidDecl()) 14040 return false; 14041 14042 // Or declarations that aren't global. 14043 if (!FD->isGlobal()) 14044 return false; 14045 14046 // Don't warn about C++ member functions. 14047 if (isa<CXXMethodDecl>(FD)) 14048 return false; 14049 14050 // Don't warn about 'main'. 14051 if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext())) 14052 if (IdentifierInfo *II = FD->getIdentifier()) 14053 if (II->isStr("main") || II->isStr("efi_main")) 14054 return false; 14055 14056 // Don't warn about inline functions. 14057 if (FD->isInlined()) 14058 return false; 14059 14060 // Don't warn about function templates. 14061 if (FD->getDescribedFunctionTemplate()) 14062 return false; 14063 14064 // Don't warn about function template specializations. 14065 if (FD->isFunctionTemplateSpecialization()) 14066 return false; 14067 14068 // Don't warn for OpenCL kernels. 14069 if (FD->hasAttr<OpenCLKernelAttr>()) 14070 return false; 14071 14072 // Don't warn on explicitly deleted functions. 14073 if (FD->isDeleted()) 14074 return false; 14075 14076 for (const FunctionDecl *Prev = FD->getPreviousDecl(); 14077 Prev; Prev = Prev->getPreviousDecl()) { 14078 // Ignore any declarations that occur in function or method 14079 // scope, because they aren't visible from the header. 14080 if (Prev->getLexicalDeclContext()->isFunctionOrMethod()) 14081 continue; 14082 14083 PossiblePrototype = Prev; 14084 return Prev->getType()->isFunctionNoProtoType(); 14085 } 14086 14087 return true; 14088 } 14089 14090 void 14091 Sema::CheckForFunctionRedefinition(FunctionDecl *FD, 14092 const FunctionDecl *EffectiveDefinition, 14093 SkipBodyInfo *SkipBody) { 14094 const FunctionDecl *Definition = EffectiveDefinition; 14095 if (!Definition && 14096 !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true)) 14097 return; 14098 14099 if (Definition->getFriendObjectKind() != Decl::FOK_None) { 14100 if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) { 14101 if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) { 14102 // A merged copy of the same function, instantiated as a member of 14103 // the same class, is OK. 14104 if (declaresSameEntity(OrigFD, OrigDef) && 14105 declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()), 14106 cast<Decl>(FD->getLexicalDeclContext()))) 14107 return; 14108 } 14109 } 14110 } 14111 14112 if (canRedefineFunction(Definition, getLangOpts())) 14113 return; 14114 14115 // Don't emit an error when this is redefinition of a typo-corrected 14116 // definition. 14117 if (TypoCorrectedFunctionDefinitions.count(Definition)) 14118 return; 14119 14120 // If we don't have a visible definition of the function, and it's inline or 14121 // a template, skip the new definition. 14122 if (SkipBody && !hasVisibleDefinition(Definition) && 14123 (Definition->getFormalLinkage() == InternalLinkage || 14124 Definition->isInlined() || 14125 Definition->getDescribedFunctionTemplate() || 14126 Definition->getNumTemplateParameterLists())) { 14127 SkipBody->ShouldSkip = true; 14128 SkipBody->Previous = const_cast<FunctionDecl*>(Definition); 14129 if (auto *TD = Definition->getDescribedFunctionTemplate()) 14130 makeMergedDefinitionVisible(TD); 14131 makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition)); 14132 return; 14133 } 14134 14135 if (getLangOpts().GNUMode && Definition->isInlineSpecified() && 14136 Definition->getStorageClass() == SC_Extern) 14137 Diag(FD->getLocation(), diag::err_redefinition_extern_inline) 14138 << FD << getLangOpts().CPlusPlus; 14139 else 14140 Diag(FD->getLocation(), diag::err_redefinition) << FD; 14141 14142 Diag(Definition->getLocation(), diag::note_previous_definition); 14143 FD->setInvalidDecl(); 14144 } 14145 14146 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator, 14147 Sema &S) { 14148 CXXRecordDecl *const LambdaClass = CallOperator->getParent(); 14149 14150 LambdaScopeInfo *LSI = S.PushLambdaScope(); 14151 LSI->CallOperator = CallOperator; 14152 LSI->Lambda = LambdaClass; 14153 LSI->ReturnType = CallOperator->getReturnType(); 14154 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault(); 14155 14156 if (LCD == LCD_None) 14157 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None; 14158 else if (LCD == LCD_ByCopy) 14159 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval; 14160 else if (LCD == LCD_ByRef) 14161 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref; 14162 DeclarationNameInfo DNI = CallOperator->getNameInfo(); 14163 14164 LSI->IntroducerRange = DNI.getCXXOperatorNameRange(); 14165 LSI->Mutable = !CallOperator->isConst(); 14166 14167 // Add the captures to the LSI so they can be noted as already 14168 // captured within tryCaptureVar. 14169 auto I = LambdaClass->field_begin(); 14170 for (const auto &C : LambdaClass->captures()) { 14171 if (C.capturesVariable()) { 14172 VarDecl *VD = C.getCapturedVar(); 14173 if (VD->isInitCapture()) 14174 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD); 14175 const bool ByRef = C.getCaptureKind() == LCK_ByRef; 14176 LSI->addCapture(VD, /*IsBlock*/false, ByRef, 14177 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(), 14178 /*EllipsisLoc*/C.isPackExpansion() 14179 ? C.getEllipsisLoc() : SourceLocation(), 14180 I->getType(), /*Invalid*/false); 14181 14182 } else if (C.capturesThis()) { 14183 LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(), 14184 C.getCaptureKind() == LCK_StarThis); 14185 } else { 14186 LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(), 14187 I->getType()); 14188 } 14189 ++I; 14190 } 14191 } 14192 14193 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D, 14194 SkipBodyInfo *SkipBody) { 14195 if (!D) { 14196 // Parsing the function declaration failed in some way. Push on a fake scope 14197 // anyway so we can try to parse the function body. 14198 PushFunctionScope(); 14199 PushExpressionEvaluationContext(ExprEvalContexts.back().Context); 14200 return D; 14201 } 14202 14203 FunctionDecl *FD = nullptr; 14204 14205 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) 14206 FD = FunTmpl->getTemplatedDecl(); 14207 else 14208 FD = cast<FunctionDecl>(D); 14209 14210 // Do not push if it is a lambda because one is already pushed when building 14211 // the lambda in ActOnStartOfLambdaDefinition(). 14212 if (!isLambdaCallOperator(FD)) 14213 PushExpressionEvaluationContext( 14214 FD->isConsteval() ? ExpressionEvaluationContext::ConstantEvaluated 14215 : ExprEvalContexts.back().Context); 14216 14217 // Check for defining attributes before the check for redefinition. 14218 if (const auto *Attr = FD->getAttr<AliasAttr>()) { 14219 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0; 14220 FD->dropAttr<AliasAttr>(); 14221 FD->setInvalidDecl(); 14222 } 14223 if (const auto *Attr = FD->getAttr<IFuncAttr>()) { 14224 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1; 14225 FD->dropAttr<IFuncAttr>(); 14226 FD->setInvalidDecl(); 14227 } 14228 14229 if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { 14230 if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 14231 Ctor->isDefaultConstructor() && 14232 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 14233 // If this is an MS ABI dllexport default constructor, instantiate any 14234 // default arguments. 14235 InstantiateDefaultCtorDefaultArgs(Ctor); 14236 } 14237 } 14238 14239 // See if this is a redefinition. If 'will have body' (or similar) is already 14240 // set, then these checks were already performed when it was set. 14241 if (!FD->willHaveBody() && !FD->isLateTemplateParsed() && 14242 !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) { 14243 CheckForFunctionRedefinition(FD, nullptr, SkipBody); 14244 14245 // If we're skipping the body, we're done. Don't enter the scope. 14246 if (SkipBody && SkipBody->ShouldSkip) 14247 return D; 14248 } 14249 14250 // Mark this function as "will have a body eventually". This lets users to 14251 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing 14252 // this function. 14253 FD->setWillHaveBody(); 14254 14255 // If we are instantiating a generic lambda call operator, push 14256 // a LambdaScopeInfo onto the function stack. But use the information 14257 // that's already been calculated (ActOnLambdaExpr) to prime the current 14258 // LambdaScopeInfo. 14259 // When the template operator is being specialized, the LambdaScopeInfo, 14260 // has to be properly restored so that tryCaptureVariable doesn't try 14261 // and capture any new variables. In addition when calculating potential 14262 // captures during transformation of nested lambdas, it is necessary to 14263 // have the LSI properly restored. 14264 if (isGenericLambdaCallOperatorSpecialization(FD)) { 14265 assert(inTemplateInstantiation() && 14266 "There should be an active template instantiation on the stack " 14267 "when instantiating a generic lambda!"); 14268 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this); 14269 } else { 14270 // Enter a new function scope 14271 PushFunctionScope(); 14272 } 14273 14274 // Builtin functions cannot be defined. 14275 if (unsigned BuiltinID = FD->getBuiltinID()) { 14276 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 14277 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) { 14278 Diag(FD->getLocation(), diag::err_builtin_definition) << FD; 14279 FD->setInvalidDecl(); 14280 } 14281 } 14282 14283 // The return type of a function definition must be complete 14284 // (C99 6.9.1p3, C++ [dcl.fct]p6). 14285 QualType ResultType = FD->getReturnType(); 14286 if (!ResultType->isDependentType() && !ResultType->isVoidType() && 14287 !FD->isInvalidDecl() && 14288 RequireCompleteType(FD->getLocation(), ResultType, 14289 diag::err_func_def_incomplete_result)) 14290 FD->setInvalidDecl(); 14291 14292 if (FnBodyScope) 14293 PushDeclContext(FnBodyScope, FD); 14294 14295 // Check the validity of our function parameters 14296 CheckParmsForFunctionDef(FD->parameters(), 14297 /*CheckParameterNames=*/true); 14298 14299 // Add non-parameter declarations already in the function to the current 14300 // scope. 14301 if (FnBodyScope) { 14302 for (Decl *NPD : FD->decls()) { 14303 auto *NonParmDecl = dyn_cast<NamedDecl>(NPD); 14304 if (!NonParmDecl) 14305 continue; 14306 assert(!isa<ParmVarDecl>(NonParmDecl) && 14307 "parameters should not be in newly created FD yet"); 14308 14309 // If the decl has a name, make it accessible in the current scope. 14310 if (NonParmDecl->getDeclName()) 14311 PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false); 14312 14313 // Similarly, dive into enums and fish their constants out, making them 14314 // accessible in this scope. 14315 if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) { 14316 for (auto *EI : ED->enumerators()) 14317 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false); 14318 } 14319 } 14320 } 14321 14322 // Introduce our parameters into the function scope 14323 for (auto Param : FD->parameters()) { 14324 Param->setOwningFunction(FD); 14325 14326 // If this has an identifier, add it to the scope stack. 14327 if (Param->getIdentifier() && FnBodyScope) { 14328 CheckShadow(FnBodyScope, Param); 14329 14330 PushOnScopeChains(Param, FnBodyScope); 14331 } 14332 } 14333 14334 // Ensure that the function's exception specification is instantiated. 14335 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>()) 14336 ResolveExceptionSpec(D->getLocation(), FPT); 14337 14338 // dllimport cannot be applied to non-inline function definitions. 14339 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() && 14340 !FD->isTemplateInstantiation()) { 14341 assert(!FD->hasAttr<DLLExportAttr>()); 14342 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition); 14343 FD->setInvalidDecl(); 14344 return D; 14345 } 14346 // We want to attach documentation to original Decl (which might be 14347 // a function template). 14348 ActOnDocumentableDecl(D); 14349 if (getCurLexicalContext()->isObjCContainer() && 14350 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl && 14351 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation) 14352 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container); 14353 14354 return D; 14355 } 14356 14357 /// Given the set of return statements within a function body, 14358 /// compute the variables that are subject to the named return value 14359 /// optimization. 14360 /// 14361 /// Each of the variables that is subject to the named return value 14362 /// optimization will be marked as NRVO variables in the AST, and any 14363 /// return statement that has a marked NRVO variable as its NRVO candidate can 14364 /// use the named return value optimization. 14365 /// 14366 /// This function applies a very simplistic algorithm for NRVO: if every return 14367 /// statement in the scope of a variable has the same NRVO candidate, that 14368 /// candidate is an NRVO variable. 14369 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { 14370 ReturnStmt **Returns = Scope->Returns.data(); 14371 14372 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { 14373 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) { 14374 if (!NRVOCandidate->isNRVOVariable()) 14375 Returns[I]->setNRVOCandidate(nullptr); 14376 } 14377 } 14378 } 14379 14380 bool Sema::canDelayFunctionBody(const Declarator &D) { 14381 // We can't delay parsing the body of a constexpr function template (yet). 14382 if (D.getDeclSpec().hasConstexprSpecifier()) 14383 return false; 14384 14385 // We can't delay parsing the body of a function template with a deduced 14386 // return type (yet). 14387 if (D.getDeclSpec().hasAutoTypeSpec()) { 14388 // If the placeholder introduces a non-deduced trailing return type, 14389 // we can still delay parsing it. 14390 if (D.getNumTypeObjects()) { 14391 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1); 14392 if (Outer.Kind == DeclaratorChunk::Function && 14393 Outer.Fun.hasTrailingReturnType()) { 14394 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType()); 14395 return Ty.isNull() || !Ty->isUndeducedType(); 14396 } 14397 } 14398 return false; 14399 } 14400 14401 return true; 14402 } 14403 14404 bool Sema::canSkipFunctionBody(Decl *D) { 14405 // We cannot skip the body of a function (or function template) which is 14406 // constexpr, since we may need to evaluate its body in order to parse the 14407 // rest of the file. 14408 // We cannot skip the body of a function with an undeduced return type, 14409 // because any callers of that function need to know the type. 14410 if (const FunctionDecl *FD = D->getAsFunction()) { 14411 if (FD->isConstexpr()) 14412 return false; 14413 // We can't simply call Type::isUndeducedType here, because inside template 14414 // auto can be deduced to a dependent type, which is not considered 14415 // "undeduced". 14416 if (FD->getReturnType()->getContainedDeducedType()) 14417 return false; 14418 } 14419 return Consumer.shouldSkipFunctionBody(D); 14420 } 14421 14422 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) { 14423 if (!Decl) 14424 return nullptr; 14425 if (FunctionDecl *FD = Decl->getAsFunction()) 14426 FD->setHasSkippedBody(); 14427 else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl)) 14428 MD->setHasSkippedBody(); 14429 return Decl; 14430 } 14431 14432 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { 14433 return ActOnFinishFunctionBody(D, BodyArg, false); 14434 } 14435 14436 /// RAII object that pops an ExpressionEvaluationContext when exiting a function 14437 /// body. 14438 class ExitFunctionBodyRAII { 14439 public: 14440 ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {} 14441 ~ExitFunctionBodyRAII() { 14442 if (!IsLambda) 14443 S.PopExpressionEvaluationContext(); 14444 } 14445 14446 private: 14447 Sema &S; 14448 bool IsLambda = false; 14449 }; 14450 14451 static void diagnoseImplicitlyRetainedSelf(Sema &S) { 14452 llvm::DenseMap<const BlockDecl *, bool> EscapeInfo; 14453 14454 auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) { 14455 if (EscapeInfo.count(BD)) 14456 return EscapeInfo[BD]; 14457 14458 bool R = false; 14459 const BlockDecl *CurBD = BD; 14460 14461 do { 14462 R = !CurBD->doesNotEscape(); 14463 if (R) 14464 break; 14465 CurBD = CurBD->getParent()->getInnermostBlockDecl(); 14466 } while (CurBD); 14467 14468 return EscapeInfo[BD] = R; 14469 }; 14470 14471 // If the location where 'self' is implicitly retained is inside a escaping 14472 // block, emit a diagnostic. 14473 for (const std::pair<SourceLocation, const BlockDecl *> &P : 14474 S.ImplicitlyRetainedSelfLocs) 14475 if (IsOrNestedInEscapingBlock(P.second)) 14476 S.Diag(P.first, diag::warn_implicitly_retains_self) 14477 << FixItHint::CreateInsertion(P.first, "self->"); 14478 } 14479 14480 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, 14481 bool IsInstantiation) { 14482 FunctionScopeInfo *FSI = getCurFunction(); 14483 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr; 14484 14485 if (FSI->UsesFPIntrin && !FD->hasAttr<StrictFPAttr>()) 14486 FD->addAttr(StrictFPAttr::CreateImplicit(Context)); 14487 14488 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); 14489 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr; 14490 14491 if (getLangOpts().Coroutines && FSI->isCoroutine()) 14492 CheckCompletedCoroutineBody(FD, Body); 14493 14494 // Do not call PopExpressionEvaluationContext() if it is a lambda because one 14495 // is already popped when finishing the lambda in BuildLambdaExpr(). This is 14496 // meant to pop the context added in ActOnStartOfFunctionDef(). 14497 ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD)); 14498 14499 if (FD) { 14500 FD->setBody(Body); 14501 FD->setWillHaveBody(false); 14502 14503 if (getLangOpts().CPlusPlus14) { 14504 if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() && 14505 FD->getReturnType()->isUndeducedType()) { 14506 // If the function has a deduced result type but contains no 'return' 14507 // statements, the result type as written must be exactly 'auto', and 14508 // the deduced result type is 'void'. 14509 if (!FD->getReturnType()->getAs<AutoType>()) { 14510 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto) 14511 << FD->getReturnType(); 14512 FD->setInvalidDecl(); 14513 } else { 14514 // Substitute 'void' for the 'auto' in the type. 14515 TypeLoc ResultType = getReturnTypeLoc(FD); 14516 Context.adjustDeducedFunctionResultType( 14517 FD, SubstAutoType(ResultType.getType(), Context.VoidTy)); 14518 } 14519 } 14520 } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) { 14521 // In C++11, we don't use 'auto' deduction rules for lambda call 14522 // operators because we don't support return type deduction. 14523 auto *LSI = getCurLambda(); 14524 if (LSI->HasImplicitReturnType) { 14525 deduceClosureReturnType(*LSI); 14526 14527 // C++11 [expr.prim.lambda]p4: 14528 // [...] if there are no return statements in the compound-statement 14529 // [the deduced type is] the type void 14530 QualType RetType = 14531 LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType; 14532 14533 // Update the return type to the deduced type. 14534 const auto *Proto = FD->getType()->castAs<FunctionProtoType>(); 14535 FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(), 14536 Proto->getExtProtoInfo())); 14537 } 14538 } 14539 14540 // If the function implicitly returns zero (like 'main') or is naked, 14541 // don't complain about missing return statements. 14542 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>()) 14543 WP.disableCheckFallThrough(); 14544 14545 // MSVC permits the use of pure specifier (=0) on function definition, 14546 // defined at class scope, warn about this non-standard construct. 14547 if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine()) 14548 Diag(FD->getLocation(), diag::ext_pure_function_definition); 14549 14550 if (!FD->isInvalidDecl()) { 14551 // Don't diagnose unused parameters of defaulted or deleted functions. 14552 if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody()) 14553 DiagnoseUnusedParameters(FD->parameters()); 14554 DiagnoseSizeOfParametersAndReturnValue(FD->parameters(), 14555 FD->getReturnType(), FD); 14556 14557 // If this is a structor, we need a vtable. 14558 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD)) 14559 MarkVTableUsed(FD->getLocation(), Constructor->getParent()); 14560 else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD)) 14561 MarkVTableUsed(FD->getLocation(), Destructor->getParent()); 14562 14563 // Try to apply the named return value optimization. We have to check 14564 // if we can do this here because lambdas keep return statements around 14565 // to deduce an implicit return type. 14566 if (FD->getReturnType()->isRecordType() && 14567 (!getLangOpts().CPlusPlus || !FD->isDependentContext())) 14568 computeNRVO(Body, FSI); 14569 } 14570 14571 // GNU warning -Wmissing-prototypes: 14572 // Warn if a global function is defined without a previous 14573 // prototype declaration. This warning is issued even if the 14574 // definition itself provides a prototype. The aim is to detect 14575 // global functions that fail to be declared in header files. 14576 const FunctionDecl *PossiblePrototype = nullptr; 14577 if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) { 14578 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; 14579 14580 if (PossiblePrototype) { 14581 // We found a declaration that is not a prototype, 14582 // but that could be a zero-parameter prototype 14583 if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) { 14584 TypeLoc TL = TI->getTypeLoc(); 14585 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>()) 14586 Diag(PossiblePrototype->getLocation(), 14587 diag::note_declaration_not_a_prototype) 14588 << (FD->getNumParams() != 0) 14589 << (FD->getNumParams() == 0 14590 ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void") 14591 : FixItHint{}); 14592 } 14593 } else { 14594 // Returns true if the token beginning at this Loc is `const`. 14595 auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM, 14596 const LangOptions &LangOpts) { 14597 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); 14598 if (LocInfo.first.isInvalid()) 14599 return false; 14600 14601 bool Invalid = false; 14602 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 14603 if (Invalid) 14604 return false; 14605 14606 if (LocInfo.second > Buffer.size()) 14607 return false; 14608 14609 const char *LexStart = Buffer.data() + LocInfo.second; 14610 StringRef StartTok(LexStart, Buffer.size() - LocInfo.second); 14611 14612 return StartTok.consume_front("const") && 14613 (StartTok.empty() || isWhitespace(StartTok[0]) || 14614 StartTok.startswith("/*") || StartTok.startswith("//")); 14615 }; 14616 14617 auto findBeginLoc = [&]() { 14618 // If the return type has `const` qualifier, we want to insert 14619 // `static` before `const` (and not before the typename). 14620 if ((FD->getReturnType()->isAnyPointerType() && 14621 FD->getReturnType()->getPointeeType().isConstQualified()) || 14622 FD->getReturnType().isConstQualified()) { 14623 // But only do this if we can determine where the `const` is. 14624 14625 if (isLocAtConst(FD->getBeginLoc(), getSourceManager(), 14626 getLangOpts())) 14627 14628 return FD->getBeginLoc(); 14629 } 14630 return FD->getTypeSpecStartLoc(); 14631 }; 14632 Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage) 14633 << /* function */ 1 14634 << (FD->getStorageClass() == SC_None 14635 ? FixItHint::CreateInsertion(findBeginLoc(), "static ") 14636 : FixItHint{}); 14637 } 14638 14639 // GNU warning -Wstrict-prototypes 14640 // Warn if K&R function is defined without a previous declaration. 14641 // This warning is issued only if the definition itself does not provide 14642 // a prototype. Only K&R definitions do not provide a prototype. 14643 if (!FD->hasWrittenPrototype()) { 14644 TypeSourceInfo *TI = FD->getTypeSourceInfo(); 14645 TypeLoc TL = TI->getTypeLoc(); 14646 FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>(); 14647 Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2; 14648 } 14649 } 14650 14651 // Warn on CPUDispatch with an actual body. 14652 if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body) 14653 if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body)) 14654 if (!CmpndBody->body_empty()) 14655 Diag(CmpndBody->body_front()->getBeginLoc(), 14656 diag::warn_dispatch_body_ignored); 14657 14658 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 14659 const CXXMethodDecl *KeyFunction; 14660 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) && 14661 MD->isVirtual() && 14662 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) && 14663 MD == KeyFunction->getCanonicalDecl()) { 14664 // Update the key-function state if necessary for this ABI. 14665 if (FD->isInlined() && 14666 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { 14667 Context.setNonKeyFunction(MD); 14668 14669 // If the newly-chosen key function is already defined, then we 14670 // need to mark the vtable as used retroactively. 14671 KeyFunction = Context.getCurrentKeyFunction(MD->getParent()); 14672 const FunctionDecl *Definition; 14673 if (KeyFunction && KeyFunction->isDefined(Definition)) 14674 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true); 14675 } else { 14676 // We just defined they key function; mark the vtable as used. 14677 MarkVTableUsed(FD->getLocation(), MD->getParent(), true); 14678 } 14679 } 14680 } 14681 14682 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && 14683 "Function parsing confused"); 14684 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { 14685 assert(MD == getCurMethodDecl() && "Method parsing confused"); 14686 MD->setBody(Body); 14687 if (!MD->isInvalidDecl()) { 14688 DiagnoseSizeOfParametersAndReturnValue(MD->parameters(), 14689 MD->getReturnType(), MD); 14690 14691 if (Body) 14692 computeNRVO(Body, FSI); 14693 } 14694 if (FSI->ObjCShouldCallSuper) { 14695 Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call) 14696 << MD->getSelector().getAsString(); 14697 FSI->ObjCShouldCallSuper = false; 14698 } 14699 if (FSI->ObjCWarnForNoDesignatedInitChain) { 14700 const ObjCMethodDecl *InitMethod = nullptr; 14701 bool isDesignated = 14702 MD->isDesignatedInitializerForTheInterface(&InitMethod); 14703 assert(isDesignated && InitMethod); 14704 (void)isDesignated; 14705 14706 auto superIsNSObject = [&](const ObjCMethodDecl *MD) { 14707 auto IFace = MD->getClassInterface(); 14708 if (!IFace) 14709 return false; 14710 auto SuperD = IFace->getSuperClass(); 14711 if (!SuperD) 14712 return false; 14713 return SuperD->getIdentifier() == 14714 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); 14715 }; 14716 // Don't issue this warning for unavailable inits or direct subclasses 14717 // of NSObject. 14718 if (!MD->isUnavailable() && !superIsNSObject(MD)) { 14719 Diag(MD->getLocation(), 14720 diag::warn_objc_designated_init_missing_super_call); 14721 Diag(InitMethod->getLocation(), 14722 diag::note_objc_designated_init_marked_here); 14723 } 14724 FSI->ObjCWarnForNoDesignatedInitChain = false; 14725 } 14726 if (FSI->ObjCWarnForNoInitDelegation) { 14727 // Don't issue this warning for unavaialable inits. 14728 if (!MD->isUnavailable()) 14729 Diag(MD->getLocation(), 14730 diag::warn_objc_secondary_init_missing_init_call); 14731 FSI->ObjCWarnForNoInitDelegation = false; 14732 } 14733 14734 diagnoseImplicitlyRetainedSelf(*this); 14735 } else { 14736 // Parsing the function declaration failed in some way. Pop the fake scope 14737 // we pushed on. 14738 PopFunctionScopeInfo(ActivePolicy, dcl); 14739 return nullptr; 14740 } 14741 14742 if (Body && FSI->HasPotentialAvailabilityViolations) 14743 DiagnoseUnguardedAvailabilityViolations(dcl); 14744 14745 assert(!FSI->ObjCShouldCallSuper && 14746 "This should only be set for ObjC methods, which should have been " 14747 "handled in the block above."); 14748 14749 // Verify and clean out per-function state. 14750 if (Body && (!FD || !FD->isDefaulted())) { 14751 // C++ constructors that have function-try-blocks can't have return 14752 // statements in the handlers of that block. (C++ [except.handle]p14) 14753 // Verify this. 14754 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body)) 14755 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body)); 14756 14757 // Verify that gotos and switch cases don't jump into scopes illegally. 14758 if (FSI->NeedsScopeChecking() && 14759 !PP.isCodeCompletionEnabled()) 14760 DiagnoseInvalidJumps(Body); 14761 14762 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) { 14763 if (!Destructor->getParent()->isDependentType()) 14764 CheckDestructor(Destructor); 14765 14766 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 14767 Destructor->getParent()); 14768 } 14769 14770 // If any errors have occurred, clear out any temporaries that may have 14771 // been leftover. This ensures that these temporaries won't be picked up for 14772 // deletion in some later function. 14773 if (hasUncompilableErrorOccurred() || 14774 getDiagnostics().getSuppressAllDiagnostics()) { 14775 DiscardCleanupsInEvaluationContext(); 14776 } 14777 if (!hasUncompilableErrorOccurred() && 14778 !isa<FunctionTemplateDecl>(dcl)) { 14779 // Since the body is valid, issue any analysis-based warnings that are 14780 // enabled. 14781 ActivePolicy = &WP; 14782 } 14783 14784 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() && 14785 !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose)) 14786 FD->setInvalidDecl(); 14787 14788 if (FD && FD->hasAttr<NakedAttr>()) { 14789 for (const Stmt *S : Body->children()) { 14790 // Allow local register variables without initializer as they don't 14791 // require prologue. 14792 bool RegisterVariables = false; 14793 if (auto *DS = dyn_cast<DeclStmt>(S)) { 14794 for (const auto *Decl : DS->decls()) { 14795 if (const auto *Var = dyn_cast<VarDecl>(Decl)) { 14796 RegisterVariables = 14797 Var->hasAttr<AsmLabelAttr>() && !Var->hasInit(); 14798 if (!RegisterVariables) 14799 break; 14800 } 14801 } 14802 } 14803 if (RegisterVariables) 14804 continue; 14805 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) { 14806 Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function); 14807 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 14808 FD->setInvalidDecl(); 14809 break; 14810 } 14811 } 14812 } 14813 14814 assert(ExprCleanupObjects.size() == 14815 ExprEvalContexts.back().NumCleanupObjects && 14816 "Leftover temporaries in function"); 14817 assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function"); 14818 assert(MaybeODRUseExprs.empty() && 14819 "Leftover expressions for odr-use checking"); 14820 } 14821 14822 if (!IsInstantiation) 14823 PopDeclContext(); 14824 14825 PopFunctionScopeInfo(ActivePolicy, dcl); 14826 // If any errors have occurred, clear out any temporaries that may have 14827 // been leftover. This ensures that these temporaries won't be picked up for 14828 // deletion in some later function. 14829 if (hasUncompilableErrorOccurred()) { 14830 DiscardCleanupsInEvaluationContext(); 14831 } 14832 14833 if (FD && (LangOpts.OpenMP || LangOpts.CUDA || LangOpts.SYCLIsDevice)) { 14834 auto ES = getEmissionStatus(FD); 14835 if (ES == Sema::FunctionEmissionStatus::Emitted || 14836 ES == Sema::FunctionEmissionStatus::Unknown) 14837 DeclsToCheckForDeferredDiags.insert(FD); 14838 } 14839 14840 return dcl; 14841 } 14842 14843 /// When we finish delayed parsing of an attribute, we must attach it to the 14844 /// relevant Decl. 14845 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D, 14846 ParsedAttributes &Attrs) { 14847 // Always attach attributes to the underlying decl. 14848 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) 14849 D = TD->getTemplatedDecl(); 14850 ProcessDeclAttributeList(S, D, Attrs); 14851 14852 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D)) 14853 if (Method->isStatic()) 14854 checkThisInStaticMemberFunctionAttributes(Method); 14855 } 14856 14857 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function 14858 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). 14859 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, 14860 IdentifierInfo &II, Scope *S) { 14861 // Find the scope in which the identifier is injected and the corresponding 14862 // DeclContext. 14863 // FIXME: C89 does not say what happens if there is no enclosing block scope. 14864 // In that case, we inject the declaration into the translation unit scope 14865 // instead. 14866 Scope *BlockScope = S; 14867 while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent()) 14868 BlockScope = BlockScope->getParent(); 14869 14870 Scope *ContextScope = BlockScope; 14871 while (!ContextScope->getEntity()) 14872 ContextScope = ContextScope->getParent(); 14873 ContextRAII SavedContext(*this, ContextScope->getEntity()); 14874 14875 // Before we produce a declaration for an implicitly defined 14876 // function, see whether there was a locally-scoped declaration of 14877 // this name as a function or variable. If so, use that 14878 // (non-visible) declaration, and complain about it. 14879 NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II); 14880 if (ExternCPrev) { 14881 // We still need to inject the function into the enclosing block scope so 14882 // that later (non-call) uses can see it. 14883 PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false); 14884 14885 // C89 footnote 38: 14886 // If in fact it is not defined as having type "function returning int", 14887 // the behavior is undefined. 14888 if (!isa<FunctionDecl>(ExternCPrev) || 14889 !Context.typesAreCompatible( 14890 cast<FunctionDecl>(ExternCPrev)->getType(), 14891 Context.getFunctionNoProtoType(Context.IntTy))) { 14892 Diag(Loc, diag::ext_use_out_of_scope_declaration) 14893 << ExternCPrev << !getLangOpts().C99; 14894 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration); 14895 return ExternCPrev; 14896 } 14897 } 14898 14899 // Extension in C99. Legal in C90, but warn about it. 14900 unsigned diag_id; 14901 if (II.getName().startswith("__builtin_")) 14902 diag_id = diag::warn_builtin_unknown; 14903 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported. 14904 else if (getLangOpts().OpenCL) 14905 diag_id = diag::err_opencl_implicit_function_decl; 14906 else if (getLangOpts().C99) 14907 diag_id = diag::ext_implicit_function_decl; 14908 else 14909 diag_id = diag::warn_implicit_function_decl; 14910 Diag(Loc, diag_id) << &II; 14911 14912 // If we found a prior declaration of this function, don't bother building 14913 // another one. We've already pushed that one into scope, so there's nothing 14914 // more to do. 14915 if (ExternCPrev) 14916 return ExternCPrev; 14917 14918 // Because typo correction is expensive, only do it if the implicit 14919 // function declaration is going to be treated as an error. 14920 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) { 14921 TypoCorrection Corrected; 14922 DeclFilterCCC<FunctionDecl> CCC{}; 14923 if (S && (Corrected = 14924 CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName, 14925 S, nullptr, CCC, CTK_NonError))) 14926 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion), 14927 /*ErrorRecovery*/false); 14928 } 14929 14930 // Set a Declarator for the implicit definition: int foo(); 14931 const char *Dummy; 14932 AttributeFactory attrFactory; 14933 DeclSpec DS(attrFactory); 14934 unsigned DiagID; 14935 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID, 14936 Context.getPrintingPolicy()); 14937 (void)Error; // Silence warning. 14938 assert(!Error && "Error setting up implicit decl!"); 14939 SourceLocation NoLoc; 14940 Declarator D(DS, DeclaratorContext::Block); 14941 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false, 14942 /*IsAmbiguous=*/false, 14943 /*LParenLoc=*/NoLoc, 14944 /*Params=*/nullptr, 14945 /*NumParams=*/0, 14946 /*EllipsisLoc=*/NoLoc, 14947 /*RParenLoc=*/NoLoc, 14948 /*RefQualifierIsLvalueRef=*/true, 14949 /*RefQualifierLoc=*/NoLoc, 14950 /*MutableLoc=*/NoLoc, EST_None, 14951 /*ESpecRange=*/SourceRange(), 14952 /*Exceptions=*/nullptr, 14953 /*ExceptionRanges=*/nullptr, 14954 /*NumExceptions=*/0, 14955 /*NoexceptExpr=*/nullptr, 14956 /*ExceptionSpecTokens=*/nullptr, 14957 /*DeclsInPrototype=*/None, Loc, 14958 Loc, D), 14959 std::move(DS.getAttributes()), SourceLocation()); 14960 D.SetIdentifier(&II, Loc); 14961 14962 // Insert this function into the enclosing block scope. 14963 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D)); 14964 FD->setImplicit(); 14965 14966 AddKnownFunctionAttributes(FD); 14967 14968 return FD; 14969 } 14970 14971 /// If this function is a C++ replaceable global allocation function 14972 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]), 14973 /// adds any function attributes that we know a priori based on the standard. 14974 /// 14975 /// We need to check for duplicate attributes both here and where user-written 14976 /// attributes are applied to declarations. 14977 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction( 14978 FunctionDecl *FD) { 14979 if (FD->isInvalidDecl()) 14980 return; 14981 14982 if (FD->getDeclName().getCXXOverloadedOperator() != OO_New && 14983 FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New) 14984 return; 14985 14986 Optional<unsigned> AlignmentParam; 14987 bool IsNothrow = false; 14988 if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow)) 14989 return; 14990 14991 // C++2a [basic.stc.dynamic.allocation]p4: 14992 // An allocation function that has a non-throwing exception specification 14993 // indicates failure by returning a null pointer value. Any other allocation 14994 // function never returns a null pointer value and indicates failure only by 14995 // throwing an exception [...] 14996 if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>()) 14997 FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation())); 14998 14999 // C++2a [basic.stc.dynamic.allocation]p2: 15000 // An allocation function attempts to allocate the requested amount of 15001 // storage. [...] If the request succeeds, the value returned by a 15002 // replaceable allocation function is a [...] pointer value p0 different 15003 // from any previously returned value p1 [...] 15004 // 15005 // However, this particular information is being added in codegen, 15006 // because there is an opt-out switch for it (-fno-assume-sane-operator-new) 15007 15008 // C++2a [basic.stc.dynamic.allocation]p2: 15009 // An allocation function attempts to allocate the requested amount of 15010 // storage. If it is successful, it returns the address of the start of a 15011 // block of storage whose length in bytes is at least as large as the 15012 // requested size. 15013 if (!FD->hasAttr<AllocSizeAttr>()) { 15014 FD->addAttr(AllocSizeAttr::CreateImplicit( 15015 Context, /*ElemSizeParam=*/ParamIdx(1, FD), 15016 /*NumElemsParam=*/ParamIdx(), FD->getLocation())); 15017 } 15018 15019 // C++2a [basic.stc.dynamic.allocation]p3: 15020 // For an allocation function [...], the pointer returned on a successful 15021 // call shall represent the address of storage that is aligned as follows: 15022 // (3.1) If the allocation function takes an argument of type 15023 // std::align_val_t, the storage will have the alignment 15024 // specified by the value of this argument. 15025 if (AlignmentParam.hasValue() && !FD->hasAttr<AllocAlignAttr>()) { 15026 FD->addAttr(AllocAlignAttr::CreateImplicit( 15027 Context, ParamIdx(AlignmentParam.getValue(), FD), FD->getLocation())); 15028 } 15029 15030 // FIXME: 15031 // C++2a [basic.stc.dynamic.allocation]p3: 15032 // For an allocation function [...], the pointer returned on a successful 15033 // call shall represent the address of storage that is aligned as follows: 15034 // (3.2) Otherwise, if the allocation function is named operator new[], 15035 // the storage is aligned for any object that does not have 15036 // new-extended alignment ([basic.align]) and is no larger than the 15037 // requested size. 15038 // (3.3) Otherwise, the storage is aligned for any object that does not 15039 // have new-extended alignment and is of the requested size. 15040 } 15041 15042 /// Adds any function attributes that we know a priori based on 15043 /// the declaration of this function. 15044 /// 15045 /// These attributes can apply both to implicitly-declared builtins 15046 /// (like __builtin___printf_chk) or to library-declared functions 15047 /// like NSLog or printf. 15048 /// 15049 /// We need to check for duplicate attributes both here and where user-written 15050 /// attributes are applied to declarations. 15051 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { 15052 if (FD->isInvalidDecl()) 15053 return; 15054 15055 // If this is a built-in function, map its builtin attributes to 15056 // actual attributes. 15057 if (unsigned BuiltinID = FD->getBuiltinID()) { 15058 // Handle printf-formatting attributes. 15059 unsigned FormatIdx; 15060 bool HasVAListArg; 15061 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { 15062 if (!FD->hasAttr<FormatAttr>()) { 15063 const char *fmt = "printf"; 15064 unsigned int NumParams = FD->getNumParams(); 15065 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf) 15066 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType()) 15067 fmt = "NSString"; 15068 FD->addAttr(FormatAttr::CreateImplicit(Context, 15069 &Context.Idents.get(fmt), 15070 FormatIdx+1, 15071 HasVAListArg ? 0 : FormatIdx+2, 15072 FD->getLocation())); 15073 } 15074 } 15075 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx, 15076 HasVAListArg)) { 15077 if (!FD->hasAttr<FormatAttr>()) 15078 FD->addAttr(FormatAttr::CreateImplicit(Context, 15079 &Context.Idents.get("scanf"), 15080 FormatIdx+1, 15081 HasVAListArg ? 0 : FormatIdx+2, 15082 FD->getLocation())); 15083 } 15084 15085 // Handle automatically recognized callbacks. 15086 SmallVector<int, 4> Encoding; 15087 if (!FD->hasAttr<CallbackAttr>() && 15088 Context.BuiltinInfo.performsCallback(BuiltinID, Encoding)) 15089 FD->addAttr(CallbackAttr::CreateImplicit( 15090 Context, Encoding.data(), Encoding.size(), FD->getLocation())); 15091 15092 // Mark const if we don't care about errno and that is the only thing 15093 // preventing the function from being const. This allows IRgen to use LLVM 15094 // intrinsics for such functions. 15095 if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() && 15096 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) 15097 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 15098 15099 // We make "fma" on some platforms const because we know it does not set 15100 // errno in those environments even though it could set errno based on the 15101 // C standard. 15102 const llvm::Triple &Trip = Context.getTargetInfo().getTriple(); 15103 if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) && 15104 !FD->hasAttr<ConstAttr>()) { 15105 switch (BuiltinID) { 15106 case Builtin::BI__builtin_fma: 15107 case Builtin::BI__builtin_fmaf: 15108 case Builtin::BI__builtin_fmal: 15109 case Builtin::BIfma: 15110 case Builtin::BIfmaf: 15111 case Builtin::BIfmal: 15112 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 15113 break; 15114 default: 15115 break; 15116 } 15117 } 15118 15119 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) && 15120 !FD->hasAttr<ReturnsTwiceAttr>()) 15121 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context, 15122 FD->getLocation())); 15123 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>()) 15124 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); 15125 if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>()) 15126 FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation())); 15127 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>()) 15128 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 15129 if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) && 15130 !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) { 15131 // Add the appropriate attribute, depending on the CUDA compilation mode 15132 // and which target the builtin belongs to. For example, during host 15133 // compilation, aux builtins are __device__, while the rest are __host__. 15134 if (getLangOpts().CUDAIsDevice != 15135 Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) 15136 FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation())); 15137 else 15138 FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation())); 15139 } 15140 } 15141 15142 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD); 15143 15144 // If C++ exceptions are enabled but we are told extern "C" functions cannot 15145 // throw, add an implicit nothrow attribute to any extern "C" function we come 15146 // across. 15147 if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind && 15148 FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) { 15149 const auto *FPT = FD->getType()->getAs<FunctionProtoType>(); 15150 if (!FPT || FPT->getExceptionSpecType() == EST_None) 15151 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); 15152 } 15153 15154 IdentifierInfo *Name = FD->getIdentifier(); 15155 if (!Name) 15156 return; 15157 if ((!getLangOpts().CPlusPlus && 15158 FD->getDeclContext()->isTranslationUnit()) || 15159 (isa<LinkageSpecDecl>(FD->getDeclContext()) && 15160 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == 15161 LinkageSpecDecl::lang_c)) { 15162 // Okay: this could be a libc/libm/Objective-C function we know 15163 // about. 15164 } else 15165 return; 15166 15167 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) { 15168 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be 15169 // target-specific builtins, perhaps? 15170 if (!FD->hasAttr<FormatAttr>()) 15171 FD->addAttr(FormatAttr::CreateImplicit(Context, 15172 &Context.Idents.get("printf"), 2, 15173 Name->isStr("vasprintf") ? 0 : 3, 15174 FD->getLocation())); 15175 } 15176 15177 if (Name->isStr("__CFStringMakeConstantString")) { 15178 // We already have a __builtin___CFStringMakeConstantString, 15179 // but builds that use -fno-constant-cfstrings don't go through that. 15180 if (!FD->hasAttr<FormatArgAttr>()) 15181 FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD), 15182 FD->getLocation())); 15183 } 15184 } 15185 15186 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, 15187 TypeSourceInfo *TInfo) { 15188 assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); 15189 assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); 15190 15191 if (!TInfo) { 15192 assert(D.isInvalidType() && "no declarator info for valid type"); 15193 TInfo = Context.getTrivialTypeSourceInfo(T); 15194 } 15195 15196 // Scope manipulation handled by caller. 15197 TypedefDecl *NewTD = 15198 TypedefDecl::Create(Context, CurContext, D.getBeginLoc(), 15199 D.getIdentifierLoc(), D.getIdentifier(), TInfo); 15200 15201 // Bail out immediately if we have an invalid declaration. 15202 if (D.isInvalidType()) { 15203 NewTD->setInvalidDecl(); 15204 return NewTD; 15205 } 15206 15207 if (D.getDeclSpec().isModulePrivateSpecified()) { 15208 if (CurContext->isFunctionOrMethod()) 15209 Diag(NewTD->getLocation(), diag::err_module_private_local) 15210 << 2 << NewTD 15211 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 15212 << FixItHint::CreateRemoval( 15213 D.getDeclSpec().getModulePrivateSpecLoc()); 15214 else 15215 NewTD->setModulePrivate(); 15216 } 15217 15218 // C++ [dcl.typedef]p8: 15219 // If the typedef declaration defines an unnamed class (or 15220 // enum), the first typedef-name declared by the declaration 15221 // to be that class type (or enum type) is used to denote the 15222 // class type (or enum type) for linkage purposes only. 15223 // We need to check whether the type was declared in the declaration. 15224 switch (D.getDeclSpec().getTypeSpecType()) { 15225 case TST_enum: 15226 case TST_struct: 15227 case TST_interface: 15228 case TST_union: 15229 case TST_class: { 15230 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); 15231 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD); 15232 break; 15233 } 15234 15235 default: 15236 break; 15237 } 15238 15239 return NewTD; 15240 } 15241 15242 /// Check that this is a valid underlying type for an enum declaration. 15243 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) { 15244 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 15245 QualType T = TI->getType(); 15246 15247 if (T->isDependentType()) 15248 return false; 15249 15250 // This doesn't use 'isIntegralType' despite the error message mentioning 15251 // integral type because isIntegralType would also allow enum types in C. 15252 if (const BuiltinType *BT = T->getAs<BuiltinType>()) 15253 if (BT->isInteger()) 15254 return false; 15255 15256 if (T->isExtIntType()) 15257 return false; 15258 15259 return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T; 15260 } 15261 15262 /// Check whether this is a valid redeclaration of a previous enumeration. 15263 /// \return true if the redeclaration was invalid. 15264 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, 15265 QualType EnumUnderlyingTy, bool IsFixed, 15266 const EnumDecl *Prev) { 15267 if (IsScoped != Prev->isScoped()) { 15268 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch) 15269 << Prev->isScoped(); 15270 Diag(Prev->getLocation(), diag::note_previous_declaration); 15271 return true; 15272 } 15273 15274 if (IsFixed && Prev->isFixed()) { 15275 if (!EnumUnderlyingTy->isDependentType() && 15276 !Prev->getIntegerType()->isDependentType() && 15277 !Context.hasSameUnqualifiedType(EnumUnderlyingTy, 15278 Prev->getIntegerType())) { 15279 // TODO: Highlight the underlying type of the redeclaration. 15280 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch) 15281 << EnumUnderlyingTy << Prev->getIntegerType(); 15282 Diag(Prev->getLocation(), diag::note_previous_declaration) 15283 << Prev->getIntegerTypeRange(); 15284 return true; 15285 } 15286 } else if (IsFixed != Prev->isFixed()) { 15287 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch) 15288 << Prev->isFixed(); 15289 Diag(Prev->getLocation(), diag::note_previous_declaration); 15290 return true; 15291 } 15292 15293 return false; 15294 } 15295 15296 /// Get diagnostic %select index for tag kind for 15297 /// redeclaration diagnostic message. 15298 /// WARNING: Indexes apply to particular diagnostics only! 15299 /// 15300 /// \returns diagnostic %select index. 15301 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) { 15302 switch (Tag) { 15303 case TTK_Struct: return 0; 15304 case TTK_Interface: return 1; 15305 case TTK_Class: return 2; 15306 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!"); 15307 } 15308 } 15309 15310 /// Determine if tag kind is a class-key compatible with 15311 /// class for redeclaration (class, struct, or __interface). 15312 /// 15313 /// \returns true iff the tag kind is compatible. 15314 static bool isClassCompatTagKind(TagTypeKind Tag) 15315 { 15316 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface; 15317 } 15318 15319 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl, 15320 TagTypeKind TTK) { 15321 if (isa<TypedefDecl>(PrevDecl)) 15322 return NTK_Typedef; 15323 else if (isa<TypeAliasDecl>(PrevDecl)) 15324 return NTK_TypeAlias; 15325 else if (isa<ClassTemplateDecl>(PrevDecl)) 15326 return NTK_Template; 15327 else if (isa<TypeAliasTemplateDecl>(PrevDecl)) 15328 return NTK_TypeAliasTemplate; 15329 else if (isa<TemplateTemplateParmDecl>(PrevDecl)) 15330 return NTK_TemplateTemplateArgument; 15331 switch (TTK) { 15332 case TTK_Struct: 15333 case TTK_Interface: 15334 case TTK_Class: 15335 return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct; 15336 case TTK_Union: 15337 return NTK_NonUnion; 15338 case TTK_Enum: 15339 return NTK_NonEnum; 15340 } 15341 llvm_unreachable("invalid TTK"); 15342 } 15343 15344 /// Determine whether a tag with a given kind is acceptable 15345 /// as a redeclaration of the given tag declaration. 15346 /// 15347 /// \returns true if the new tag kind is acceptable, false otherwise. 15348 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, 15349 TagTypeKind NewTag, bool isDefinition, 15350 SourceLocation NewTagLoc, 15351 const IdentifierInfo *Name) { 15352 // C++ [dcl.type.elab]p3: 15353 // The class-key or enum keyword present in the 15354 // elaborated-type-specifier shall agree in kind with the 15355 // declaration to which the name in the elaborated-type-specifier 15356 // refers. This rule also applies to the form of 15357 // elaborated-type-specifier that declares a class-name or 15358 // friend class since it can be construed as referring to the 15359 // definition of the class. Thus, in any 15360 // elaborated-type-specifier, the enum keyword shall be used to 15361 // refer to an enumeration (7.2), the union class-key shall be 15362 // used to refer to a union (clause 9), and either the class or 15363 // struct class-key shall be used to refer to a class (clause 9) 15364 // declared using the class or struct class-key. 15365 TagTypeKind OldTag = Previous->getTagKind(); 15366 if (OldTag != NewTag && 15367 !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag))) 15368 return false; 15369 15370 // Tags are compatible, but we might still want to warn on mismatched tags. 15371 // Non-class tags can't be mismatched at this point. 15372 if (!isClassCompatTagKind(NewTag)) 15373 return true; 15374 15375 // Declarations for which -Wmismatched-tags is disabled are entirely ignored 15376 // by our warning analysis. We don't want to warn about mismatches with (eg) 15377 // declarations in system headers that are designed to be specialized, but if 15378 // a user asks us to warn, we should warn if their code contains mismatched 15379 // declarations. 15380 auto IsIgnoredLoc = [&](SourceLocation Loc) { 15381 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch, 15382 Loc); 15383 }; 15384 if (IsIgnoredLoc(NewTagLoc)) 15385 return true; 15386 15387 auto IsIgnored = [&](const TagDecl *Tag) { 15388 return IsIgnoredLoc(Tag->getLocation()); 15389 }; 15390 while (IsIgnored(Previous)) { 15391 Previous = Previous->getPreviousDecl(); 15392 if (!Previous) 15393 return true; 15394 OldTag = Previous->getTagKind(); 15395 } 15396 15397 bool isTemplate = false; 15398 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous)) 15399 isTemplate = Record->getDescribedClassTemplate(); 15400 15401 if (inTemplateInstantiation()) { 15402 if (OldTag != NewTag) { 15403 // In a template instantiation, do not offer fix-its for tag mismatches 15404 // since they usually mess up the template instead of fixing the problem. 15405 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) 15406 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name 15407 << getRedeclDiagFromTagKind(OldTag); 15408 // FIXME: Note previous location? 15409 } 15410 return true; 15411 } 15412 15413 if (isDefinition) { 15414 // On definitions, check all previous tags and issue a fix-it for each 15415 // one that doesn't match the current tag. 15416 if (Previous->getDefinition()) { 15417 // Don't suggest fix-its for redefinitions. 15418 return true; 15419 } 15420 15421 bool previousMismatch = false; 15422 for (const TagDecl *I : Previous->redecls()) { 15423 if (I->getTagKind() != NewTag) { 15424 // Ignore previous declarations for which the warning was disabled. 15425 if (IsIgnored(I)) 15426 continue; 15427 15428 if (!previousMismatch) { 15429 previousMismatch = true; 15430 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch) 15431 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name 15432 << getRedeclDiagFromTagKind(I->getTagKind()); 15433 } 15434 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion) 15435 << getRedeclDiagFromTagKind(NewTag) 15436 << FixItHint::CreateReplacement(I->getInnerLocStart(), 15437 TypeWithKeyword::getTagTypeKindName(NewTag)); 15438 } 15439 } 15440 return true; 15441 } 15442 15443 // Identify the prevailing tag kind: this is the kind of the definition (if 15444 // there is a non-ignored definition), or otherwise the kind of the prior 15445 // (non-ignored) declaration. 15446 const TagDecl *PrevDef = Previous->getDefinition(); 15447 if (PrevDef && IsIgnored(PrevDef)) 15448 PrevDef = nullptr; 15449 const TagDecl *Redecl = PrevDef ? PrevDef : Previous; 15450 if (Redecl->getTagKind() != NewTag) { 15451 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) 15452 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name 15453 << getRedeclDiagFromTagKind(OldTag); 15454 Diag(Redecl->getLocation(), diag::note_previous_use); 15455 15456 // If there is a previous definition, suggest a fix-it. 15457 if (PrevDef) { 15458 Diag(NewTagLoc, diag::note_struct_class_suggestion) 15459 << getRedeclDiagFromTagKind(Redecl->getTagKind()) 15460 << FixItHint::CreateReplacement(SourceRange(NewTagLoc), 15461 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind())); 15462 } 15463 } 15464 15465 return true; 15466 } 15467 15468 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name 15469 /// from an outer enclosing namespace or file scope inside a friend declaration. 15470 /// This should provide the commented out code in the following snippet: 15471 /// namespace N { 15472 /// struct X; 15473 /// namespace M { 15474 /// struct Y { friend struct /*N::*/ X; }; 15475 /// } 15476 /// } 15477 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S, 15478 SourceLocation NameLoc) { 15479 // While the decl is in a namespace, do repeated lookup of that name and see 15480 // if we get the same namespace back. If we do not, continue until 15481 // translation unit scope, at which point we have a fully qualified NNS. 15482 SmallVector<IdentifierInfo *, 4> Namespaces; 15483 DeclContext *DC = ND->getDeclContext()->getRedeclContext(); 15484 for (; !DC->isTranslationUnit(); DC = DC->getParent()) { 15485 // This tag should be declared in a namespace, which can only be enclosed by 15486 // other namespaces. Bail if there's an anonymous namespace in the chain. 15487 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC); 15488 if (!Namespace || Namespace->isAnonymousNamespace()) 15489 return FixItHint(); 15490 IdentifierInfo *II = Namespace->getIdentifier(); 15491 Namespaces.push_back(II); 15492 NamedDecl *Lookup = SemaRef.LookupSingleName( 15493 S, II, NameLoc, Sema::LookupNestedNameSpecifierName); 15494 if (Lookup == Namespace) 15495 break; 15496 } 15497 15498 // Once we have all the namespaces, reverse them to go outermost first, and 15499 // build an NNS. 15500 SmallString<64> Insertion; 15501 llvm::raw_svector_ostream OS(Insertion); 15502 if (DC->isTranslationUnit()) 15503 OS << "::"; 15504 std::reverse(Namespaces.begin(), Namespaces.end()); 15505 for (auto *II : Namespaces) 15506 OS << II->getName() << "::"; 15507 return FixItHint::CreateInsertion(NameLoc, Insertion); 15508 } 15509 15510 /// Determine whether a tag originally declared in context \p OldDC can 15511 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup 15512 /// found a declaration in \p OldDC as a previous decl, perhaps through a 15513 /// using-declaration). 15514 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC, 15515 DeclContext *NewDC) { 15516 OldDC = OldDC->getRedeclContext(); 15517 NewDC = NewDC->getRedeclContext(); 15518 15519 if (OldDC->Equals(NewDC)) 15520 return true; 15521 15522 // In MSVC mode, we allow a redeclaration if the contexts are related (either 15523 // encloses the other). 15524 if (S.getLangOpts().MSVCCompat && 15525 (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC))) 15526 return true; 15527 15528 return false; 15529 } 15530 15531 /// This is invoked when we see 'struct foo' or 'struct {'. In the 15532 /// former case, Name will be non-null. In the later case, Name will be null. 15533 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a 15534 /// reference/declaration/definition of a tag. 15535 /// 15536 /// \param IsTypeSpecifier \c true if this is a type-specifier (or 15537 /// trailing-type-specifier) other than one in an alias-declaration. 15538 /// 15539 /// \param SkipBody If non-null, will be set to indicate if the caller should 15540 /// skip the definition of this tag and treat it as if it were a declaration. 15541 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 15542 SourceLocation KWLoc, CXXScopeSpec &SS, 15543 IdentifierInfo *Name, SourceLocation NameLoc, 15544 const ParsedAttributesView &Attrs, AccessSpecifier AS, 15545 SourceLocation ModulePrivateLoc, 15546 MultiTemplateParamsArg TemplateParameterLists, 15547 bool &OwnedDecl, bool &IsDependent, 15548 SourceLocation ScopedEnumKWLoc, 15549 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, 15550 bool IsTypeSpecifier, bool IsTemplateParamOrArg, 15551 SkipBodyInfo *SkipBody) { 15552 // If this is not a definition, it must have a name. 15553 IdentifierInfo *OrigName = Name; 15554 assert((Name != nullptr || TUK == TUK_Definition) && 15555 "Nameless record must be a definition!"); 15556 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference); 15557 15558 OwnedDecl = false; 15559 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 15560 bool ScopedEnum = ScopedEnumKWLoc.isValid(); 15561 15562 // FIXME: Check member specializations more carefully. 15563 bool isMemberSpecialization = false; 15564 bool Invalid = false; 15565 15566 // We only need to do this matching if we have template parameters 15567 // or a scope specifier, which also conveniently avoids this work 15568 // for non-C++ cases. 15569 if (TemplateParameterLists.size() > 0 || 15570 (SS.isNotEmpty() && TUK != TUK_Reference)) { 15571 if (TemplateParameterList *TemplateParams = 15572 MatchTemplateParametersToScopeSpecifier( 15573 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists, 15574 TUK == TUK_Friend, isMemberSpecialization, Invalid)) { 15575 if (Kind == TTK_Enum) { 15576 Diag(KWLoc, diag::err_enum_template); 15577 return nullptr; 15578 } 15579 15580 if (TemplateParams->size() > 0) { 15581 // This is a declaration or definition of a class template (which may 15582 // be a member of another template). 15583 15584 if (Invalid) 15585 return nullptr; 15586 15587 OwnedDecl = false; 15588 DeclResult Result = CheckClassTemplate( 15589 S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams, 15590 AS, ModulePrivateLoc, 15591 /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1, 15592 TemplateParameterLists.data(), SkipBody); 15593 return Result.get(); 15594 } else { 15595 // The "template<>" header is extraneous. 15596 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 15597 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 15598 isMemberSpecialization = true; 15599 } 15600 } 15601 15602 if (!TemplateParameterLists.empty() && isMemberSpecialization && 15603 CheckTemplateDeclScope(S, TemplateParameterLists.back())) 15604 return nullptr; 15605 } 15606 15607 // Figure out the underlying type if this a enum declaration. We need to do 15608 // this early, because it's needed to detect if this is an incompatible 15609 // redeclaration. 15610 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; 15611 bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum; 15612 15613 if (Kind == TTK_Enum) { 15614 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) { 15615 // No underlying type explicitly specified, or we failed to parse the 15616 // type, default to int. 15617 EnumUnderlying = Context.IntTy.getTypePtr(); 15618 } else if (UnderlyingType.get()) { 15619 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an 15620 // integral type; any cv-qualification is ignored. 15621 TypeSourceInfo *TI = nullptr; 15622 GetTypeFromParser(UnderlyingType.get(), &TI); 15623 EnumUnderlying = TI; 15624 15625 if (CheckEnumUnderlyingType(TI)) 15626 // Recover by falling back to int. 15627 EnumUnderlying = Context.IntTy.getTypePtr(); 15628 15629 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI, 15630 UPPC_FixedUnderlyingType)) 15631 EnumUnderlying = Context.IntTy.getTypePtr(); 15632 15633 } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) { 15634 // For MSVC ABI compatibility, unfixed enums must use an underlying type 15635 // of 'int'. However, if this is an unfixed forward declaration, don't set 15636 // the underlying type unless the user enables -fms-compatibility. This 15637 // makes unfixed forward declared enums incomplete and is more conforming. 15638 if (TUK == TUK_Definition || getLangOpts().MSVCCompat) 15639 EnumUnderlying = Context.IntTy.getTypePtr(); 15640 } 15641 } 15642 15643 DeclContext *SearchDC = CurContext; 15644 DeclContext *DC = CurContext; 15645 bool isStdBadAlloc = false; 15646 bool isStdAlignValT = false; 15647 15648 RedeclarationKind Redecl = forRedeclarationInCurContext(); 15649 if (TUK == TUK_Friend || TUK == TUK_Reference) 15650 Redecl = NotForRedeclaration; 15651 15652 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C 15653 /// implemented asks for structural equivalence checking, the returned decl 15654 /// here is passed back to the parser, allowing the tag body to be parsed. 15655 auto createTagFromNewDecl = [&]() -> TagDecl * { 15656 assert(!getLangOpts().CPlusPlus && "not meant for C++ usage"); 15657 // If there is an identifier, use the location of the identifier as the 15658 // location of the decl, otherwise use the location of the struct/union 15659 // keyword. 15660 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; 15661 TagDecl *New = nullptr; 15662 15663 if (Kind == TTK_Enum) { 15664 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr, 15665 ScopedEnum, ScopedEnumUsesClassTag, IsFixed); 15666 // If this is an undefined enum, bail. 15667 if (TUK != TUK_Definition && !Invalid) 15668 return nullptr; 15669 if (EnumUnderlying) { 15670 EnumDecl *ED = cast<EnumDecl>(New); 15671 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>()) 15672 ED->setIntegerTypeSourceInfo(TI); 15673 else 15674 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0)); 15675 ED->setPromotionType(ED->getIntegerType()); 15676 } 15677 } else { // struct/union 15678 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 15679 nullptr); 15680 } 15681 15682 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { 15683 // Add alignment attributes if necessary; these attributes are checked 15684 // when the ASTContext lays out the structure. 15685 // 15686 // It is important for implementing the correct semantics that this 15687 // happen here (in ActOnTag). The #pragma pack stack is 15688 // maintained as a result of parser callbacks which can occur at 15689 // many points during the parsing of a struct declaration (because 15690 // the #pragma tokens are effectively skipped over during the 15691 // parsing of the struct). 15692 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 15693 AddAlignmentAttributesForRecord(RD); 15694 AddMsStructLayoutForRecord(RD); 15695 } 15696 } 15697 New->setLexicalDeclContext(CurContext); 15698 return New; 15699 }; 15700 15701 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); 15702 if (Name && SS.isNotEmpty()) { 15703 // We have a nested-name tag ('struct foo::bar'). 15704 15705 // Check for invalid 'foo::'. 15706 if (SS.isInvalid()) { 15707 Name = nullptr; 15708 goto CreateNewDecl; 15709 } 15710 15711 // If this is a friend or a reference to a class in a dependent 15712 // context, don't try to make a decl for it. 15713 if (TUK == TUK_Friend || TUK == TUK_Reference) { 15714 DC = computeDeclContext(SS, false); 15715 if (!DC) { 15716 IsDependent = true; 15717 return nullptr; 15718 } 15719 } else { 15720 DC = computeDeclContext(SS, true); 15721 if (!DC) { 15722 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) 15723 << SS.getRange(); 15724 return nullptr; 15725 } 15726 } 15727 15728 if (RequireCompleteDeclContext(SS, DC)) 15729 return nullptr; 15730 15731 SearchDC = DC; 15732 // Look-up name inside 'foo::'. 15733 LookupQualifiedName(Previous, DC); 15734 15735 if (Previous.isAmbiguous()) 15736 return nullptr; 15737 15738 if (Previous.empty()) { 15739 // Name lookup did not find anything. However, if the 15740 // nested-name-specifier refers to the current instantiation, 15741 // and that current instantiation has any dependent base 15742 // classes, we might find something at instantiation time: treat 15743 // this as a dependent elaborated-type-specifier. 15744 // But this only makes any sense for reference-like lookups. 15745 if (Previous.wasNotFoundInCurrentInstantiation() && 15746 (TUK == TUK_Reference || TUK == TUK_Friend)) { 15747 IsDependent = true; 15748 return nullptr; 15749 } 15750 15751 // A tag 'foo::bar' must already exist. 15752 Diag(NameLoc, diag::err_not_tag_in_scope) 15753 << Kind << Name << DC << SS.getRange(); 15754 Name = nullptr; 15755 Invalid = true; 15756 goto CreateNewDecl; 15757 } 15758 } else if (Name) { 15759 // C++14 [class.mem]p14: 15760 // If T is the name of a class, then each of the following shall have a 15761 // name different from T: 15762 // -- every member of class T that is itself a type 15763 if (TUK != TUK_Reference && TUK != TUK_Friend && 15764 DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc))) 15765 return nullptr; 15766 15767 // If this is a named struct, check to see if there was a previous forward 15768 // declaration or definition. 15769 // FIXME: We're looking into outer scopes here, even when we 15770 // shouldn't be. Doing so can result in ambiguities that we 15771 // shouldn't be diagnosing. 15772 LookupName(Previous, S); 15773 15774 // When declaring or defining a tag, ignore ambiguities introduced 15775 // by types using'ed into this scope. 15776 if (Previous.isAmbiguous() && 15777 (TUK == TUK_Definition || TUK == TUK_Declaration)) { 15778 LookupResult::Filter F = Previous.makeFilter(); 15779 while (F.hasNext()) { 15780 NamedDecl *ND = F.next(); 15781 if (!ND->getDeclContext()->getRedeclContext()->Equals( 15782 SearchDC->getRedeclContext())) 15783 F.erase(); 15784 } 15785 F.done(); 15786 } 15787 15788 // C++11 [namespace.memdef]p3: 15789 // If the name in a friend declaration is neither qualified nor 15790 // a template-id and the declaration is a function or an 15791 // elaborated-type-specifier, the lookup to determine whether 15792 // the entity has been previously declared shall not consider 15793 // any scopes outside the innermost enclosing namespace. 15794 // 15795 // MSVC doesn't implement the above rule for types, so a friend tag 15796 // declaration may be a redeclaration of a type declared in an enclosing 15797 // scope. They do implement this rule for friend functions. 15798 // 15799 // Does it matter that this should be by scope instead of by 15800 // semantic context? 15801 if (!Previous.empty() && TUK == TUK_Friend) { 15802 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext(); 15803 LookupResult::Filter F = Previous.makeFilter(); 15804 bool FriendSawTagOutsideEnclosingNamespace = false; 15805 while (F.hasNext()) { 15806 NamedDecl *ND = F.next(); 15807 DeclContext *DC = ND->getDeclContext()->getRedeclContext(); 15808 if (DC->isFileContext() && 15809 !EnclosingNS->Encloses(ND->getDeclContext())) { 15810 if (getLangOpts().MSVCCompat) 15811 FriendSawTagOutsideEnclosingNamespace = true; 15812 else 15813 F.erase(); 15814 } 15815 } 15816 F.done(); 15817 15818 // Diagnose this MSVC extension in the easy case where lookup would have 15819 // unambiguously found something outside the enclosing namespace. 15820 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) { 15821 NamedDecl *ND = Previous.getFoundDecl(); 15822 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace) 15823 << createFriendTagNNSFixIt(*this, ND, S, NameLoc); 15824 } 15825 } 15826 15827 // Note: there used to be some attempt at recovery here. 15828 if (Previous.isAmbiguous()) 15829 return nullptr; 15830 15831 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) { 15832 // FIXME: This makes sure that we ignore the contexts associated 15833 // with C structs, unions, and enums when looking for a matching 15834 // tag declaration or definition. See the similar lookup tweak 15835 // in Sema::LookupName; is there a better way to deal with this? 15836 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC)) 15837 SearchDC = SearchDC->getParent(); 15838 } 15839 } 15840 15841 if (Previous.isSingleResult() && 15842 Previous.getFoundDecl()->isTemplateParameter()) { 15843 // Maybe we will complain about the shadowed template parameter. 15844 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); 15845 // Just pretend that we didn't see the previous declaration. 15846 Previous.clear(); 15847 } 15848 15849 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace && 15850 DC->Equals(getStdNamespace())) { 15851 if (Name->isStr("bad_alloc")) { 15852 // This is a declaration of or a reference to "std::bad_alloc". 15853 isStdBadAlloc = true; 15854 15855 // If std::bad_alloc has been implicitly declared (but made invisible to 15856 // name lookup), fill in this implicit declaration as the previous 15857 // declaration, so that the declarations get chained appropriately. 15858 if (Previous.empty() && StdBadAlloc) 15859 Previous.addDecl(getStdBadAlloc()); 15860 } else if (Name->isStr("align_val_t")) { 15861 isStdAlignValT = true; 15862 if (Previous.empty() && StdAlignValT) 15863 Previous.addDecl(getStdAlignValT()); 15864 } 15865 } 15866 15867 // If we didn't find a previous declaration, and this is a reference 15868 // (or friend reference), move to the correct scope. In C++, we 15869 // also need to do a redeclaration lookup there, just in case 15870 // there's a shadow friend decl. 15871 if (Name && Previous.empty() && 15872 (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) { 15873 if (Invalid) goto CreateNewDecl; 15874 assert(SS.isEmpty()); 15875 15876 if (TUK == TUK_Reference || IsTemplateParamOrArg) { 15877 // C++ [basic.scope.pdecl]p5: 15878 // -- for an elaborated-type-specifier of the form 15879 // 15880 // class-key identifier 15881 // 15882 // if the elaborated-type-specifier is used in the 15883 // decl-specifier-seq or parameter-declaration-clause of a 15884 // function defined in namespace scope, the identifier is 15885 // declared as a class-name in the namespace that contains 15886 // the declaration; otherwise, except as a friend 15887 // declaration, the identifier is declared in the smallest 15888 // non-class, non-function-prototype scope that contains the 15889 // declaration. 15890 // 15891 // C99 6.7.2.3p8 has a similar (but not identical!) provision for 15892 // C structs and unions. 15893 // 15894 // It is an error in C++ to declare (rather than define) an enum 15895 // type, including via an elaborated type specifier. We'll 15896 // diagnose that later; for now, declare the enum in the same 15897 // scope as we would have picked for any other tag type. 15898 // 15899 // GNU C also supports this behavior as part of its incomplete 15900 // enum types extension, while GNU C++ does not. 15901 // 15902 // Find the context where we'll be declaring the tag. 15903 // FIXME: We would like to maintain the current DeclContext as the 15904 // lexical context, 15905 SearchDC = getTagInjectionContext(SearchDC); 15906 15907 // Find the scope where we'll be declaring the tag. 15908 S = getTagInjectionScope(S, getLangOpts()); 15909 } else { 15910 assert(TUK == TUK_Friend); 15911 // C++ [namespace.memdef]p3: 15912 // If a friend declaration in a non-local class first declares a 15913 // class or function, the friend class or function is a member of 15914 // the innermost enclosing namespace. 15915 SearchDC = SearchDC->getEnclosingNamespaceContext(); 15916 } 15917 15918 // In C++, we need to do a redeclaration lookup to properly 15919 // diagnose some problems. 15920 // FIXME: redeclaration lookup is also used (with and without C++) to find a 15921 // hidden declaration so that we don't get ambiguity errors when using a 15922 // type declared by an elaborated-type-specifier. In C that is not correct 15923 // and we should instead merge compatible types found by lookup. 15924 if (getLangOpts().CPlusPlus) { 15925 // FIXME: This can perform qualified lookups into function contexts, 15926 // which are meaningless. 15927 Previous.setRedeclarationKind(forRedeclarationInCurContext()); 15928 LookupQualifiedName(Previous, SearchDC); 15929 } else { 15930 Previous.setRedeclarationKind(forRedeclarationInCurContext()); 15931 LookupName(Previous, S); 15932 } 15933 } 15934 15935 // If we have a known previous declaration to use, then use it. 15936 if (Previous.empty() && SkipBody && SkipBody->Previous) 15937 Previous.addDecl(SkipBody->Previous); 15938 15939 if (!Previous.empty()) { 15940 NamedDecl *PrevDecl = Previous.getFoundDecl(); 15941 NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl(); 15942 15943 // It's okay to have a tag decl in the same scope as a typedef 15944 // which hides a tag decl in the same scope. Finding this 15945 // insanity with a redeclaration lookup can only actually happen 15946 // in C++. 15947 // 15948 // This is also okay for elaborated-type-specifiers, which is 15949 // technically forbidden by the current standard but which is 15950 // okay according to the likely resolution of an open issue; 15951 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 15952 if (getLangOpts().CPlusPlus) { 15953 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) { 15954 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { 15955 TagDecl *Tag = TT->getDecl(); 15956 if (Tag->getDeclName() == Name && 15957 Tag->getDeclContext()->getRedeclContext() 15958 ->Equals(TD->getDeclContext()->getRedeclContext())) { 15959 PrevDecl = Tag; 15960 Previous.clear(); 15961 Previous.addDecl(Tag); 15962 Previous.resolveKind(); 15963 } 15964 } 15965 } 15966 } 15967 15968 // If this is a redeclaration of a using shadow declaration, it must 15969 // declare a tag in the same context. In MSVC mode, we allow a 15970 // redefinition if either context is within the other. 15971 if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) { 15972 auto *OldTag = dyn_cast<TagDecl>(PrevDecl); 15973 if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend && 15974 isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) && 15975 !(OldTag && isAcceptableTagRedeclContext( 15976 *this, OldTag->getDeclContext(), SearchDC))) { 15977 Diag(KWLoc, diag::err_using_decl_conflict_reverse); 15978 Diag(Shadow->getTargetDecl()->getLocation(), 15979 diag::note_using_decl_target); 15980 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) 15981 << 0; 15982 // Recover by ignoring the old declaration. 15983 Previous.clear(); 15984 goto CreateNewDecl; 15985 } 15986 } 15987 15988 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { 15989 // If this is a use of a previous tag, or if the tag is already declared 15990 // in the same scope (so that the definition/declaration completes or 15991 // rementions the tag), reuse the decl. 15992 if (TUK == TUK_Reference || TUK == TUK_Friend || 15993 isDeclInScope(DirectPrevDecl, SearchDC, S, 15994 SS.isNotEmpty() || isMemberSpecialization)) { 15995 // Make sure that this wasn't declared as an enum and now used as a 15996 // struct or something similar. 15997 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, 15998 TUK == TUK_Definition, KWLoc, 15999 Name)) { 16000 bool SafeToContinue 16001 = (PrevTagDecl->getTagKind() != TTK_Enum && 16002 Kind != TTK_Enum); 16003 if (SafeToContinue) 16004 Diag(KWLoc, diag::err_use_with_wrong_tag) 16005 << Name 16006 << FixItHint::CreateReplacement(SourceRange(KWLoc), 16007 PrevTagDecl->getKindName()); 16008 else 16009 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; 16010 Diag(PrevTagDecl->getLocation(), diag::note_previous_use); 16011 16012 if (SafeToContinue) 16013 Kind = PrevTagDecl->getTagKind(); 16014 else { 16015 // Recover by making this an anonymous redefinition. 16016 Name = nullptr; 16017 Previous.clear(); 16018 Invalid = true; 16019 } 16020 } 16021 16022 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) { 16023 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); 16024 if (TUK == TUK_Reference || TUK == TUK_Friend) 16025 return PrevTagDecl; 16026 16027 QualType EnumUnderlyingTy; 16028 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) 16029 EnumUnderlyingTy = TI->getType().getUnqualifiedType(); 16030 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>()) 16031 EnumUnderlyingTy = QualType(T, 0); 16032 16033 // All conflicts with previous declarations are recovered by 16034 // returning the previous declaration, unless this is a definition, 16035 // in which case we want the caller to bail out. 16036 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc, 16037 ScopedEnum, EnumUnderlyingTy, 16038 IsFixed, PrevEnum)) 16039 return TUK == TUK_Declaration ? PrevTagDecl : nullptr; 16040 } 16041 16042 // C++11 [class.mem]p1: 16043 // A member shall not be declared twice in the member-specification, 16044 // except that a nested class or member class template can be declared 16045 // and then later defined. 16046 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() && 16047 S->isDeclScope(PrevDecl)) { 16048 Diag(NameLoc, diag::ext_member_redeclared); 16049 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration); 16050 } 16051 16052 if (!Invalid) { 16053 // If this is a use, just return the declaration we found, unless 16054 // we have attributes. 16055 if (TUK == TUK_Reference || TUK == TUK_Friend) { 16056 if (!Attrs.empty()) { 16057 // FIXME: Diagnose these attributes. For now, we create a new 16058 // declaration to hold them. 16059 } else if (TUK == TUK_Reference && 16060 (PrevTagDecl->getFriendObjectKind() == 16061 Decl::FOK_Undeclared || 16062 PrevDecl->getOwningModule() != getCurrentModule()) && 16063 SS.isEmpty()) { 16064 // This declaration is a reference to an existing entity, but 16065 // has different visibility from that entity: it either makes 16066 // a friend visible or it makes a type visible in a new module. 16067 // In either case, create a new declaration. We only do this if 16068 // the declaration would have meant the same thing if no prior 16069 // declaration were found, that is, if it was found in the same 16070 // scope where we would have injected a declaration. 16071 if (!getTagInjectionContext(CurContext)->getRedeclContext() 16072 ->Equals(PrevDecl->getDeclContext()->getRedeclContext())) 16073 return PrevTagDecl; 16074 // This is in the injected scope, create a new declaration in 16075 // that scope. 16076 S = getTagInjectionScope(S, getLangOpts()); 16077 } else { 16078 return PrevTagDecl; 16079 } 16080 } 16081 16082 // Diagnose attempts to redefine a tag. 16083 if (TUK == TUK_Definition) { 16084 if (NamedDecl *Def = PrevTagDecl->getDefinition()) { 16085 // If we're defining a specialization and the previous definition 16086 // is from an implicit instantiation, don't emit an error 16087 // here; we'll catch this in the general case below. 16088 bool IsExplicitSpecializationAfterInstantiation = false; 16089 if (isMemberSpecialization) { 16090 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def)) 16091 IsExplicitSpecializationAfterInstantiation = 16092 RD->getTemplateSpecializationKind() != 16093 TSK_ExplicitSpecialization; 16094 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def)) 16095 IsExplicitSpecializationAfterInstantiation = 16096 ED->getTemplateSpecializationKind() != 16097 TSK_ExplicitSpecialization; 16098 } 16099 16100 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do 16101 // not keep more that one definition around (merge them). However, 16102 // ensure the decl passes the structural compatibility check in 16103 // C11 6.2.7/1 (or 6.1.2.6/1 in C89). 16104 NamedDecl *Hidden = nullptr; 16105 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 16106 // There is a definition of this tag, but it is not visible. We 16107 // explicitly make use of C++'s one definition rule here, and 16108 // assume that this definition is identical to the hidden one 16109 // we already have. Make the existing definition visible and 16110 // use it in place of this one. 16111 if (!getLangOpts().CPlusPlus) { 16112 // Postpone making the old definition visible until after we 16113 // complete parsing the new one and do the structural 16114 // comparison. 16115 SkipBody->CheckSameAsPrevious = true; 16116 SkipBody->New = createTagFromNewDecl(); 16117 SkipBody->Previous = Def; 16118 return Def; 16119 } else { 16120 SkipBody->ShouldSkip = true; 16121 SkipBody->Previous = Def; 16122 makeMergedDefinitionVisible(Hidden); 16123 // Carry on and handle it like a normal definition. We'll 16124 // skip starting the definitiion later. 16125 } 16126 } else if (!IsExplicitSpecializationAfterInstantiation) { 16127 // A redeclaration in function prototype scope in C isn't 16128 // visible elsewhere, so merely issue a warning. 16129 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope()) 16130 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name; 16131 else 16132 Diag(NameLoc, diag::err_redefinition) << Name; 16133 notePreviousDefinition(Def, 16134 NameLoc.isValid() ? NameLoc : KWLoc); 16135 // If this is a redefinition, recover by making this 16136 // struct be anonymous, which will make any later 16137 // references get the previous definition. 16138 Name = nullptr; 16139 Previous.clear(); 16140 Invalid = true; 16141 } 16142 } else { 16143 // If the type is currently being defined, complain 16144 // about a nested redefinition. 16145 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl(); 16146 if (TD->isBeingDefined()) { 16147 Diag(NameLoc, diag::err_nested_redefinition) << Name; 16148 Diag(PrevTagDecl->getLocation(), 16149 diag::note_previous_definition); 16150 Name = nullptr; 16151 Previous.clear(); 16152 Invalid = true; 16153 } 16154 } 16155 16156 // Okay, this is definition of a previously declared or referenced 16157 // tag. We're going to create a new Decl for it. 16158 } 16159 16160 // Okay, we're going to make a redeclaration. If this is some kind 16161 // of reference, make sure we build the redeclaration in the same DC 16162 // as the original, and ignore the current access specifier. 16163 if (TUK == TUK_Friend || TUK == TUK_Reference) { 16164 SearchDC = PrevTagDecl->getDeclContext(); 16165 AS = AS_none; 16166 } 16167 } 16168 // If we get here we have (another) forward declaration or we 16169 // have a definition. Just create a new decl. 16170 16171 } else { 16172 // If we get here, this is a definition of a new tag type in a nested 16173 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a 16174 // new decl/type. We set PrevDecl to NULL so that the entities 16175 // have distinct types. 16176 Previous.clear(); 16177 } 16178 // If we get here, we're going to create a new Decl. If PrevDecl 16179 // is non-NULL, it's a definition of the tag declared by 16180 // PrevDecl. If it's NULL, we have a new definition. 16181 16182 // Otherwise, PrevDecl is not a tag, but was found with tag 16183 // lookup. This is only actually possible in C++, where a few 16184 // things like templates still live in the tag namespace. 16185 } else { 16186 // Use a better diagnostic if an elaborated-type-specifier 16187 // found the wrong kind of type on the first 16188 // (non-redeclaration) lookup. 16189 if ((TUK == TUK_Reference || TUK == TUK_Friend) && 16190 !Previous.isForRedeclaration()) { 16191 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); 16192 Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK 16193 << Kind; 16194 Diag(PrevDecl->getLocation(), diag::note_declared_at); 16195 Invalid = true; 16196 16197 // Otherwise, only diagnose if the declaration is in scope. 16198 } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S, 16199 SS.isNotEmpty() || isMemberSpecialization)) { 16200 // do nothing 16201 16202 // Diagnose implicit declarations introduced by elaborated types. 16203 } else if (TUK == TUK_Reference || TUK == TUK_Friend) { 16204 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); 16205 Diag(NameLoc, diag::err_tag_reference_conflict) << NTK; 16206 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; 16207 Invalid = true; 16208 16209 // Otherwise it's a declaration. Call out a particularly common 16210 // case here. 16211 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) { 16212 unsigned Kind = 0; 16213 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1; 16214 Diag(NameLoc, diag::err_tag_definition_of_typedef) 16215 << Name << Kind << TND->getUnderlyingType(); 16216 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; 16217 Invalid = true; 16218 16219 // Otherwise, diagnose. 16220 } else { 16221 // The tag name clashes with something else in the target scope, 16222 // issue an error and recover by making this tag be anonymous. 16223 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 16224 notePreviousDefinition(PrevDecl, NameLoc); 16225 Name = nullptr; 16226 Invalid = true; 16227 } 16228 16229 // The existing declaration isn't relevant to us; we're in a 16230 // new scope, so clear out the previous declaration. 16231 Previous.clear(); 16232 } 16233 } 16234 16235 CreateNewDecl: 16236 16237 TagDecl *PrevDecl = nullptr; 16238 if (Previous.isSingleResult()) 16239 PrevDecl = cast<TagDecl>(Previous.getFoundDecl()); 16240 16241 // If there is an identifier, use the location of the identifier as the 16242 // location of the decl, otherwise use the location of the struct/union 16243 // keyword. 16244 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; 16245 16246 // Otherwise, create a new declaration. If there is a previous 16247 // declaration of the same entity, the two will be linked via 16248 // PrevDecl. 16249 TagDecl *New; 16250 16251 if (Kind == TTK_Enum) { 16252 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: 16253 // enum X { A, B, C } D; D should chain to X. 16254 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, 16255 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum, 16256 ScopedEnumUsesClassTag, IsFixed); 16257 16258 if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit())) 16259 StdAlignValT = cast<EnumDecl>(New); 16260 16261 // If this is an undefined enum, warn. 16262 if (TUK != TUK_Definition && !Invalid) { 16263 TagDecl *Def; 16264 if (IsFixed && cast<EnumDecl>(New)->isFixed()) { 16265 // C++0x: 7.2p2: opaque-enum-declaration. 16266 // Conflicts are diagnosed above. Do nothing. 16267 } 16268 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) { 16269 Diag(Loc, diag::ext_forward_ref_enum_def) 16270 << New; 16271 Diag(Def->getLocation(), diag::note_previous_definition); 16272 } else { 16273 unsigned DiagID = diag::ext_forward_ref_enum; 16274 if (getLangOpts().MSVCCompat) 16275 DiagID = diag::ext_ms_forward_ref_enum; 16276 else if (getLangOpts().CPlusPlus) 16277 DiagID = diag::err_forward_ref_enum; 16278 Diag(Loc, DiagID); 16279 } 16280 } 16281 16282 if (EnumUnderlying) { 16283 EnumDecl *ED = cast<EnumDecl>(New); 16284 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) 16285 ED->setIntegerTypeSourceInfo(TI); 16286 else 16287 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0)); 16288 ED->setPromotionType(ED->getIntegerType()); 16289 assert(ED->isComplete() && "enum with type should be complete"); 16290 } 16291 } else { 16292 // struct/union/class 16293 16294 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: 16295 // struct X { int A; } D; D should chain to X. 16296 if (getLangOpts().CPlusPlus) { 16297 // FIXME: Look for a way to use RecordDecl for simple structs. 16298 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 16299 cast_or_null<CXXRecordDecl>(PrevDecl)); 16300 16301 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) 16302 StdBadAlloc = cast<CXXRecordDecl>(New); 16303 } else 16304 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 16305 cast_or_null<RecordDecl>(PrevDecl)); 16306 } 16307 16308 // C++11 [dcl.type]p3: 16309 // A type-specifier-seq shall not define a class or enumeration [...]. 16310 if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) && 16311 TUK == TUK_Definition) { 16312 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier) 16313 << Context.getTagDeclType(New); 16314 Invalid = true; 16315 } 16316 16317 if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition && 16318 DC->getDeclKind() == Decl::Enum) { 16319 Diag(New->getLocation(), diag::err_type_defined_in_enum) 16320 << Context.getTagDeclType(New); 16321 Invalid = true; 16322 } 16323 16324 // Maybe add qualifier info. 16325 if (SS.isNotEmpty()) { 16326 if (SS.isSet()) { 16327 // If this is either a declaration or a definition, check the 16328 // nested-name-specifier against the current context. 16329 if ((TUK == TUK_Definition || TUK == TUK_Declaration) && 16330 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc, 16331 isMemberSpecialization)) 16332 Invalid = true; 16333 16334 New->setQualifierInfo(SS.getWithLocInContext(Context)); 16335 if (TemplateParameterLists.size() > 0) { 16336 New->setTemplateParameterListsInfo(Context, TemplateParameterLists); 16337 } 16338 } 16339 else 16340 Invalid = true; 16341 } 16342 16343 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { 16344 // Add alignment attributes if necessary; these attributes are checked when 16345 // the ASTContext lays out the structure. 16346 // 16347 // It is important for implementing the correct semantics that this 16348 // happen here (in ActOnTag). The #pragma pack stack is 16349 // maintained as a result of parser callbacks which can occur at 16350 // many points during the parsing of a struct declaration (because 16351 // the #pragma tokens are effectively skipped over during the 16352 // parsing of the struct). 16353 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 16354 AddAlignmentAttributesForRecord(RD); 16355 AddMsStructLayoutForRecord(RD); 16356 } 16357 } 16358 16359 if (ModulePrivateLoc.isValid()) { 16360 if (isMemberSpecialization) 16361 Diag(New->getLocation(), diag::err_module_private_specialization) 16362 << 2 16363 << FixItHint::CreateRemoval(ModulePrivateLoc); 16364 // __module_private__ does not apply to local classes. However, we only 16365 // diagnose this as an error when the declaration specifiers are 16366 // freestanding. Here, we just ignore the __module_private__. 16367 else if (!SearchDC->isFunctionOrMethod()) 16368 New->setModulePrivate(); 16369 } 16370 16371 // If this is a specialization of a member class (of a class template), 16372 // check the specialization. 16373 if (isMemberSpecialization && CheckMemberSpecialization(New, Previous)) 16374 Invalid = true; 16375 16376 // If we're declaring or defining a tag in function prototype scope in C, 16377 // note that this type can only be used within the function and add it to 16378 // the list of decls to inject into the function definition scope. 16379 if ((Name || Kind == TTK_Enum) && 16380 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) { 16381 if (getLangOpts().CPlusPlus) { 16382 // C++ [dcl.fct]p6: 16383 // Types shall not be defined in return or parameter types. 16384 if (TUK == TUK_Definition && !IsTypeSpecifier) { 16385 Diag(Loc, diag::err_type_defined_in_param_type) 16386 << Name; 16387 Invalid = true; 16388 } 16389 } else if (!PrevDecl) { 16390 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); 16391 } 16392 } 16393 16394 if (Invalid) 16395 New->setInvalidDecl(); 16396 16397 // Set the lexical context. If the tag has a C++ scope specifier, the 16398 // lexical context will be different from the semantic context. 16399 New->setLexicalDeclContext(CurContext); 16400 16401 // Mark this as a friend decl if applicable. 16402 // In Microsoft mode, a friend declaration also acts as a forward 16403 // declaration so we always pass true to setObjectOfFriendDecl to make 16404 // the tag name visible. 16405 if (TUK == TUK_Friend) 16406 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat); 16407 16408 // Set the access specifier. 16409 if (!Invalid && SearchDC->isRecord()) 16410 SetMemberAccessSpecifier(New, PrevDecl, AS); 16411 16412 if (PrevDecl) 16413 CheckRedeclarationModuleOwnership(New, PrevDecl); 16414 16415 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 16416 New->startDefinition(); 16417 16418 ProcessDeclAttributeList(S, New, Attrs); 16419 AddPragmaAttributes(S, New); 16420 16421 // If this has an identifier, add it to the scope stack. 16422 if (TUK == TUK_Friend) { 16423 // We might be replacing an existing declaration in the lookup tables; 16424 // if so, borrow its access specifier. 16425 if (PrevDecl) 16426 New->setAccess(PrevDecl->getAccess()); 16427 16428 DeclContext *DC = New->getDeclContext()->getRedeclContext(); 16429 DC->makeDeclVisibleInContext(New); 16430 if (Name) // can be null along some error paths 16431 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 16432 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); 16433 } else if (Name) { 16434 S = getNonFieldDeclScope(S); 16435 PushOnScopeChains(New, S, true); 16436 } else { 16437 CurContext->addDecl(New); 16438 } 16439 16440 // If this is the C FILE type, notify the AST context. 16441 if (IdentifierInfo *II = New->getIdentifier()) 16442 if (!New->isInvalidDecl() && 16443 New->getDeclContext()->getRedeclContext()->isTranslationUnit() && 16444 II->isStr("FILE")) 16445 Context.setFILEDecl(New); 16446 16447 if (PrevDecl) 16448 mergeDeclAttributes(New, PrevDecl); 16449 16450 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New)) 16451 inferGslOwnerPointerAttribute(CXXRD); 16452 16453 // If there's a #pragma GCC visibility in scope, set the visibility of this 16454 // record. 16455 AddPushedVisibilityAttribute(New); 16456 16457 if (isMemberSpecialization && !New->isInvalidDecl()) 16458 CompleteMemberSpecialization(New, Previous); 16459 16460 OwnedDecl = true; 16461 // In C++, don't return an invalid declaration. We can't recover well from 16462 // the cases where we make the type anonymous. 16463 if (Invalid && getLangOpts().CPlusPlus) { 16464 if (New->isBeingDefined()) 16465 if (auto RD = dyn_cast<RecordDecl>(New)) 16466 RD->completeDefinition(); 16467 return nullptr; 16468 } else if (SkipBody && SkipBody->ShouldSkip) { 16469 return SkipBody->Previous; 16470 } else { 16471 return New; 16472 } 16473 } 16474 16475 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { 16476 AdjustDeclIfTemplate(TagD); 16477 TagDecl *Tag = cast<TagDecl>(TagD); 16478 16479 // Enter the tag context. 16480 PushDeclContext(S, Tag); 16481 16482 ActOnDocumentableDecl(TagD); 16483 16484 // If there's a #pragma GCC visibility in scope, set the visibility of this 16485 // record. 16486 AddPushedVisibilityAttribute(Tag); 16487 } 16488 16489 bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev, 16490 SkipBodyInfo &SkipBody) { 16491 if (!hasStructuralCompatLayout(Prev, SkipBody.New)) 16492 return false; 16493 16494 // Make the previous decl visible. 16495 makeMergedDefinitionVisible(SkipBody.Previous); 16496 return true; 16497 } 16498 16499 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) { 16500 assert(isa<ObjCContainerDecl>(IDecl) && 16501 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"); 16502 DeclContext *OCD = cast<DeclContext>(IDecl); 16503 assert(OCD->getLexicalParent() == CurContext && 16504 "The next DeclContext should be lexically contained in the current one."); 16505 CurContext = OCD; 16506 return IDecl; 16507 } 16508 16509 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD, 16510 SourceLocation FinalLoc, 16511 bool IsFinalSpelledSealed, 16512 bool IsAbstract, 16513 SourceLocation LBraceLoc) { 16514 AdjustDeclIfTemplate(TagD); 16515 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD); 16516 16517 FieldCollector->StartClass(); 16518 16519 if (!Record->getIdentifier()) 16520 return; 16521 16522 if (IsAbstract) 16523 Record->markAbstract(); 16524 16525 if (FinalLoc.isValid()) { 16526 Record->addAttr(FinalAttr::Create( 16527 Context, FinalLoc, AttributeCommonInfo::AS_Keyword, 16528 static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed))); 16529 } 16530 // C++ [class]p2: 16531 // [...] The class-name is also inserted into the scope of the 16532 // class itself; this is known as the injected-class-name. For 16533 // purposes of access checking, the injected-class-name is treated 16534 // as if it were a public member name. 16535 CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create( 16536 Context, Record->getTagKind(), CurContext, Record->getBeginLoc(), 16537 Record->getLocation(), Record->getIdentifier(), 16538 /*PrevDecl=*/nullptr, 16539 /*DelayTypeCreation=*/true); 16540 Context.getTypeDeclType(InjectedClassName, Record); 16541 InjectedClassName->setImplicit(); 16542 InjectedClassName->setAccess(AS_public); 16543 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) 16544 InjectedClassName->setDescribedClassTemplate(Template); 16545 PushOnScopeChains(InjectedClassName, S); 16546 assert(InjectedClassName->isInjectedClassName() && 16547 "Broken injected-class-name"); 16548 } 16549 16550 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, 16551 SourceRange BraceRange) { 16552 AdjustDeclIfTemplate(TagD); 16553 TagDecl *Tag = cast<TagDecl>(TagD); 16554 Tag->setBraceRange(BraceRange); 16555 16556 // Make sure we "complete" the definition even it is invalid. 16557 if (Tag->isBeingDefined()) { 16558 assert(Tag->isInvalidDecl() && "We should already have completed it"); 16559 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) 16560 RD->completeDefinition(); 16561 } 16562 16563 if (isa<CXXRecordDecl>(Tag)) { 16564 FieldCollector->FinishClass(); 16565 } 16566 16567 // Exit this scope of this tag's definition. 16568 PopDeclContext(); 16569 16570 if (getCurLexicalContext()->isObjCContainer() && 16571 Tag->getDeclContext()->isFileContext()) 16572 Tag->setTopLevelDeclInObjCContainer(); 16573 16574 // Notify the consumer that we've defined a tag. 16575 if (!Tag->isInvalidDecl()) 16576 Consumer.HandleTagDeclDefinition(Tag); 16577 } 16578 16579 void Sema::ActOnObjCContainerFinishDefinition() { 16580 // Exit this scope of this interface definition. 16581 PopDeclContext(); 16582 } 16583 16584 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) { 16585 assert(DC == CurContext && "Mismatch of container contexts"); 16586 OriginalLexicalContext = DC; 16587 ActOnObjCContainerFinishDefinition(); 16588 } 16589 16590 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) { 16591 ActOnObjCContainerStartDefinition(cast<Decl>(DC)); 16592 OriginalLexicalContext = nullptr; 16593 } 16594 16595 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { 16596 AdjustDeclIfTemplate(TagD); 16597 TagDecl *Tag = cast<TagDecl>(TagD); 16598 Tag->setInvalidDecl(); 16599 16600 // Make sure we "complete" the definition even it is invalid. 16601 if (Tag->isBeingDefined()) { 16602 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) 16603 RD->completeDefinition(); 16604 } 16605 16606 // We're undoing ActOnTagStartDefinition here, not 16607 // ActOnStartCXXMemberDeclarations, so we don't have to mess with 16608 // the FieldCollector. 16609 16610 PopDeclContext(); 16611 } 16612 16613 // Note that FieldName may be null for anonymous bitfields. 16614 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc, 16615 IdentifierInfo *FieldName, 16616 QualType FieldTy, bool IsMsStruct, 16617 Expr *BitWidth, bool *ZeroWidth) { 16618 assert(BitWidth); 16619 if (BitWidth->containsErrors()) 16620 return ExprError(); 16621 16622 // Default to true; that shouldn't confuse checks for emptiness 16623 if (ZeroWidth) 16624 *ZeroWidth = true; 16625 16626 // C99 6.7.2.1p4 - verify the field type. 16627 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 16628 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { 16629 // Handle incomplete and sizeless types with a specific error. 16630 if (RequireCompleteSizedType(FieldLoc, FieldTy, 16631 diag::err_field_incomplete_or_sizeless)) 16632 return ExprError(); 16633 if (FieldName) 16634 return Diag(FieldLoc, diag::err_not_integral_type_bitfield) 16635 << FieldName << FieldTy << BitWidth->getSourceRange(); 16636 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) 16637 << FieldTy << BitWidth->getSourceRange(); 16638 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth), 16639 UPPC_BitFieldWidth)) 16640 return ExprError(); 16641 16642 // If the bit-width is type- or value-dependent, don't try to check 16643 // it now. 16644 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) 16645 return BitWidth; 16646 16647 llvm::APSInt Value; 16648 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold); 16649 if (ICE.isInvalid()) 16650 return ICE; 16651 BitWidth = ICE.get(); 16652 16653 if (Value != 0 && ZeroWidth) 16654 *ZeroWidth = false; 16655 16656 // Zero-width bitfield is ok for anonymous field. 16657 if (Value == 0 && FieldName) 16658 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; 16659 16660 if (Value.isSigned() && Value.isNegative()) { 16661 if (FieldName) 16662 return Diag(FieldLoc, diag::err_bitfield_has_negative_width) 16663 << FieldName << toString(Value, 10); 16664 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) 16665 << toString(Value, 10); 16666 } 16667 16668 // The size of the bit-field must not exceed our maximum permitted object 16669 // size. 16670 if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) { 16671 return Diag(FieldLoc, diag::err_bitfield_too_wide) 16672 << !FieldName << FieldName << toString(Value, 10); 16673 } 16674 16675 if (!FieldTy->isDependentType()) { 16676 uint64_t TypeStorageSize = Context.getTypeSize(FieldTy); 16677 uint64_t TypeWidth = Context.getIntWidth(FieldTy); 16678 bool BitfieldIsOverwide = Value.ugt(TypeWidth); 16679 16680 // Over-wide bitfields are an error in C or when using the MSVC bitfield 16681 // ABI. 16682 bool CStdConstraintViolation = 16683 BitfieldIsOverwide && !getLangOpts().CPlusPlus; 16684 bool MSBitfieldViolation = 16685 Value.ugt(TypeStorageSize) && 16686 (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft()); 16687 if (CStdConstraintViolation || MSBitfieldViolation) { 16688 unsigned DiagWidth = 16689 CStdConstraintViolation ? TypeWidth : TypeStorageSize; 16690 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width) 16691 << (bool)FieldName << FieldName << toString(Value, 10) 16692 << !CStdConstraintViolation << DiagWidth; 16693 } 16694 16695 // Warn on types where the user might conceivably expect to get all 16696 // specified bits as value bits: that's all integral types other than 16697 // 'bool'. 16698 if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) { 16699 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width) 16700 << FieldName << toString(Value, 10) 16701 << (unsigned)TypeWidth; 16702 } 16703 } 16704 16705 return BitWidth; 16706 } 16707 16708 /// ActOnField - Each field of a C struct/union is passed into this in order 16709 /// to create a FieldDecl object for it. 16710 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, 16711 Declarator &D, Expr *BitfieldWidth) { 16712 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD), 16713 DeclStart, D, static_cast<Expr*>(BitfieldWidth), 16714 /*InitStyle=*/ICIS_NoInit, AS_public); 16715 return Res; 16716 } 16717 16718 /// HandleField - Analyze a field of a C struct or a C++ data member. 16719 /// 16720 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, 16721 SourceLocation DeclStart, 16722 Declarator &D, Expr *BitWidth, 16723 InClassInitStyle InitStyle, 16724 AccessSpecifier AS) { 16725 if (D.isDecompositionDeclarator()) { 16726 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); 16727 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) 16728 << Decomp.getSourceRange(); 16729 return nullptr; 16730 } 16731 16732 IdentifierInfo *II = D.getIdentifier(); 16733 SourceLocation Loc = DeclStart; 16734 if (II) Loc = D.getIdentifierLoc(); 16735 16736 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16737 QualType T = TInfo->getType(); 16738 if (getLangOpts().CPlusPlus) { 16739 CheckExtraCXXDefaultArguments(D); 16740 16741 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 16742 UPPC_DataMemberType)) { 16743 D.setInvalidType(); 16744 T = Context.IntTy; 16745 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 16746 } 16747 } 16748 16749 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 16750 16751 if (D.getDeclSpec().isInlineSpecified()) 16752 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 16753 << getLangOpts().CPlusPlus17; 16754 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 16755 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 16756 diag::err_invalid_thread) 16757 << DeclSpec::getSpecifierName(TSCS); 16758 16759 // Check to see if this name was declared as a member previously 16760 NamedDecl *PrevDecl = nullptr; 16761 LookupResult Previous(*this, II, Loc, LookupMemberName, 16762 ForVisibleRedeclaration); 16763 LookupName(Previous, S); 16764 switch (Previous.getResultKind()) { 16765 case LookupResult::Found: 16766 case LookupResult::FoundUnresolvedValue: 16767 PrevDecl = Previous.getAsSingle<NamedDecl>(); 16768 break; 16769 16770 case LookupResult::FoundOverloaded: 16771 PrevDecl = Previous.getRepresentativeDecl(); 16772 break; 16773 16774 case LookupResult::NotFound: 16775 case LookupResult::NotFoundInCurrentInstantiation: 16776 case LookupResult::Ambiguous: 16777 break; 16778 } 16779 Previous.suppressDiagnostics(); 16780 16781 if (PrevDecl && PrevDecl->isTemplateParameter()) { 16782 // Maybe we will complain about the shadowed template parameter. 16783 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 16784 // Just pretend that we didn't see the previous declaration. 16785 PrevDecl = nullptr; 16786 } 16787 16788 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 16789 PrevDecl = nullptr; 16790 16791 bool Mutable 16792 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); 16793 SourceLocation TSSL = D.getBeginLoc(); 16794 FieldDecl *NewFD 16795 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle, 16796 TSSL, AS, PrevDecl, &D); 16797 16798 if (NewFD->isInvalidDecl()) 16799 Record->setInvalidDecl(); 16800 16801 if (D.getDeclSpec().isModulePrivateSpecified()) 16802 NewFD->setModulePrivate(); 16803 16804 if (NewFD->isInvalidDecl() && PrevDecl) { 16805 // Don't introduce NewFD into scope; there's already something 16806 // with the same name in the same scope. 16807 } else if (II) { 16808 PushOnScopeChains(NewFD, S); 16809 } else 16810 Record->addDecl(NewFD); 16811 16812 return NewFD; 16813 } 16814 16815 /// Build a new FieldDecl and check its well-formedness. 16816 /// 16817 /// This routine builds a new FieldDecl given the fields name, type, 16818 /// record, etc. \p PrevDecl should refer to any previous declaration 16819 /// with the same name and in the same scope as the field to be 16820 /// created. 16821 /// 16822 /// \returns a new FieldDecl. 16823 /// 16824 /// \todo The Declarator argument is a hack. It will be removed once 16825 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, 16826 TypeSourceInfo *TInfo, 16827 RecordDecl *Record, SourceLocation Loc, 16828 bool Mutable, Expr *BitWidth, 16829 InClassInitStyle InitStyle, 16830 SourceLocation TSSL, 16831 AccessSpecifier AS, NamedDecl *PrevDecl, 16832 Declarator *D) { 16833 IdentifierInfo *II = Name.getAsIdentifierInfo(); 16834 bool InvalidDecl = false; 16835 if (D) InvalidDecl = D->isInvalidType(); 16836 16837 // If we receive a broken type, recover by assuming 'int' and 16838 // marking this declaration as invalid. 16839 if (T.isNull() || T->containsErrors()) { 16840 InvalidDecl = true; 16841 T = Context.IntTy; 16842 } 16843 16844 QualType EltTy = Context.getBaseElementType(T); 16845 if (!EltTy->isDependentType() && !EltTy->containsErrors()) { 16846 if (RequireCompleteSizedType(Loc, EltTy, 16847 diag::err_field_incomplete_or_sizeless)) { 16848 // Fields of incomplete type force their record to be invalid. 16849 Record->setInvalidDecl(); 16850 InvalidDecl = true; 16851 } else { 16852 NamedDecl *Def; 16853 EltTy->isIncompleteType(&Def); 16854 if (Def && Def->isInvalidDecl()) { 16855 Record->setInvalidDecl(); 16856 InvalidDecl = true; 16857 } 16858 } 16859 } 16860 16861 // TR 18037 does not allow fields to be declared with address space 16862 if (T.hasAddressSpace() || T->isDependentAddressSpaceType() || 16863 T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) { 16864 Diag(Loc, diag::err_field_with_address_space); 16865 Record->setInvalidDecl(); 16866 InvalidDecl = true; 16867 } 16868 16869 if (LangOpts.OpenCL) { 16870 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be 16871 // used as structure or union field: image, sampler, event or block types. 16872 if (T->isEventT() || T->isImageType() || T->isSamplerT() || 16873 T->isBlockPointerType()) { 16874 Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T; 16875 Record->setInvalidDecl(); 16876 InvalidDecl = true; 16877 } 16878 // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension 16879 // is enabled. 16880 if (BitWidth && !getOpenCLOptions().isAvailableOption( 16881 "__cl_clang_bitfields", LangOpts)) { 16882 Diag(Loc, diag::err_opencl_bitfields); 16883 InvalidDecl = true; 16884 } 16885 } 16886 16887 // Anonymous bit-fields cannot be cv-qualified (CWG 2229). 16888 if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth && 16889 T.hasQualifiers()) { 16890 InvalidDecl = true; 16891 Diag(Loc, diag::err_anon_bitfield_qualifiers); 16892 } 16893 16894 // C99 6.7.2.1p8: A member of a structure or union may have any type other 16895 // than a variably modified type. 16896 if (!InvalidDecl && T->isVariablyModifiedType()) { 16897 if (!tryToFixVariablyModifiedVarType( 16898 TInfo, T, Loc, diag::err_typecheck_field_variable_size)) 16899 InvalidDecl = true; 16900 } 16901 16902 // Fields can not have abstract class types 16903 if (!InvalidDecl && RequireNonAbstractType(Loc, T, 16904 diag::err_abstract_type_in_decl, 16905 AbstractFieldType)) 16906 InvalidDecl = true; 16907 16908 bool ZeroWidth = false; 16909 if (InvalidDecl) 16910 BitWidth = nullptr; 16911 // If this is declared as a bit-field, check the bit-field. 16912 if (BitWidth) { 16913 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth, 16914 &ZeroWidth).get(); 16915 if (!BitWidth) { 16916 InvalidDecl = true; 16917 BitWidth = nullptr; 16918 ZeroWidth = false; 16919 } 16920 } 16921 16922 // Check that 'mutable' is consistent with the type of the declaration. 16923 if (!InvalidDecl && Mutable) { 16924 unsigned DiagID = 0; 16925 if (T->isReferenceType()) 16926 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference 16927 : diag::err_mutable_reference; 16928 else if (T.isConstQualified()) 16929 DiagID = diag::err_mutable_const; 16930 16931 if (DiagID) { 16932 SourceLocation ErrLoc = Loc; 16933 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) 16934 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); 16935 Diag(ErrLoc, DiagID); 16936 if (DiagID != diag::ext_mutable_reference) { 16937 Mutable = false; 16938 InvalidDecl = true; 16939 } 16940 } 16941 } 16942 16943 // C++11 [class.union]p8 (DR1460): 16944 // At most one variant member of a union may have a 16945 // brace-or-equal-initializer. 16946 if (InitStyle != ICIS_NoInit) 16947 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc); 16948 16949 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo, 16950 BitWidth, Mutable, InitStyle); 16951 if (InvalidDecl) 16952 NewFD->setInvalidDecl(); 16953 16954 if (PrevDecl && !isa<TagDecl>(PrevDecl)) { 16955 Diag(Loc, diag::err_duplicate_member) << II; 16956 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 16957 NewFD->setInvalidDecl(); 16958 } 16959 16960 if (!InvalidDecl && getLangOpts().CPlusPlus) { 16961 if (Record->isUnion()) { 16962 if (const RecordType *RT = EltTy->getAs<RecordType>()) { 16963 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); 16964 if (RDecl->getDefinition()) { 16965 // C++ [class.union]p1: An object of a class with a non-trivial 16966 // constructor, a non-trivial copy constructor, a non-trivial 16967 // destructor, or a non-trivial copy assignment operator 16968 // cannot be a member of a union, nor can an array of such 16969 // objects. 16970 if (CheckNontrivialField(NewFD)) 16971 NewFD->setInvalidDecl(); 16972 } 16973 } 16974 16975 // C++ [class.union]p1: If a union contains a member of reference type, 16976 // the program is ill-formed, except when compiling with MSVC extensions 16977 // enabled. 16978 if (EltTy->isReferenceType()) { 16979 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? 16980 diag::ext_union_member_of_reference_type : 16981 diag::err_union_member_of_reference_type) 16982 << NewFD->getDeclName() << EltTy; 16983 if (!getLangOpts().MicrosoftExt) 16984 NewFD->setInvalidDecl(); 16985 } 16986 } 16987 } 16988 16989 // FIXME: We need to pass in the attributes given an AST 16990 // representation, not a parser representation. 16991 if (D) { 16992 // FIXME: The current scope is almost... but not entirely... correct here. 16993 ProcessDeclAttributes(getCurScope(), NewFD, *D); 16994 16995 if (NewFD->hasAttrs()) 16996 CheckAlignasUnderalignment(NewFD); 16997 } 16998 16999 // In auto-retain/release, infer strong retension for fields of 17000 // retainable type. 17001 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD)) 17002 NewFD->setInvalidDecl(); 17003 17004 if (T.isObjCGCWeak()) 17005 Diag(Loc, diag::warn_attribute_weak_on_field); 17006 17007 // PPC MMA non-pointer types are not allowed as field types. 17008 if (Context.getTargetInfo().getTriple().isPPC64() && 17009 CheckPPCMMAType(T, NewFD->getLocation())) 17010 NewFD->setInvalidDecl(); 17011 17012 NewFD->setAccess(AS); 17013 return NewFD; 17014 } 17015 17016 bool Sema::CheckNontrivialField(FieldDecl *FD) { 17017 assert(FD); 17018 assert(getLangOpts().CPlusPlus && "valid check only for C++"); 17019 17020 if (FD->isInvalidDecl() || FD->getType()->isDependentType()) 17021 return false; 17022 17023 QualType EltTy = Context.getBaseElementType(FD->getType()); 17024 if (const RecordType *RT = EltTy->getAs<RecordType>()) { 17025 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl()); 17026 if (RDecl->getDefinition()) { 17027 // We check for copy constructors before constructors 17028 // because otherwise we'll never get complaints about 17029 // copy constructors. 17030 17031 CXXSpecialMember member = CXXInvalid; 17032 // We're required to check for any non-trivial constructors. Since the 17033 // implicit default constructor is suppressed if there are any 17034 // user-declared constructors, we just need to check that there is a 17035 // trivial default constructor and a trivial copy constructor. (We don't 17036 // worry about move constructors here, since this is a C++98 check.) 17037 if (RDecl->hasNonTrivialCopyConstructor()) 17038 member = CXXCopyConstructor; 17039 else if (!RDecl->hasTrivialDefaultConstructor()) 17040 member = CXXDefaultConstructor; 17041 else if (RDecl->hasNonTrivialCopyAssignment()) 17042 member = CXXCopyAssignment; 17043 else if (RDecl->hasNonTrivialDestructor()) 17044 member = CXXDestructor; 17045 17046 if (member != CXXInvalid) { 17047 if (!getLangOpts().CPlusPlus11 && 17048 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) { 17049 // Objective-C++ ARC: it is an error to have a non-trivial field of 17050 // a union. However, system headers in Objective-C programs 17051 // occasionally have Objective-C lifetime objects within unions, 17052 // and rather than cause the program to fail, we make those 17053 // members unavailable. 17054 SourceLocation Loc = FD->getLocation(); 17055 if (getSourceManager().isInSystemHeader(Loc)) { 17056 if (!FD->hasAttr<UnavailableAttr>()) 17057 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "", 17058 UnavailableAttr::IR_ARCFieldWithOwnership, Loc)); 17059 return false; 17060 } 17061 } 17062 17063 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ? 17064 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member : 17065 diag::err_illegal_union_or_anon_struct_member) 17066 << FD->getParent()->isUnion() << FD->getDeclName() << member; 17067 DiagnoseNontrivial(RDecl, member); 17068 return !getLangOpts().CPlusPlus11; 17069 } 17070 } 17071 } 17072 17073 return false; 17074 } 17075 17076 /// TranslateIvarVisibility - Translate visibility from a token ID to an 17077 /// AST enum value. 17078 static ObjCIvarDecl::AccessControl 17079 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { 17080 switch (ivarVisibility) { 17081 default: llvm_unreachable("Unknown visitibility kind"); 17082 case tok::objc_private: return ObjCIvarDecl::Private; 17083 case tok::objc_public: return ObjCIvarDecl::Public; 17084 case tok::objc_protected: return ObjCIvarDecl::Protected; 17085 case tok::objc_package: return ObjCIvarDecl::Package; 17086 } 17087 } 17088 17089 /// ActOnIvar - Each ivar field of an objective-c class is passed into this 17090 /// in order to create an IvarDecl object for it. 17091 Decl *Sema::ActOnIvar(Scope *S, 17092 SourceLocation DeclStart, 17093 Declarator &D, Expr *BitfieldWidth, 17094 tok::ObjCKeywordKind Visibility) { 17095 17096 IdentifierInfo *II = D.getIdentifier(); 17097 Expr *BitWidth = (Expr*)BitfieldWidth; 17098 SourceLocation Loc = DeclStart; 17099 if (II) Loc = D.getIdentifierLoc(); 17100 17101 // FIXME: Unnamed fields can be handled in various different ways, for 17102 // example, unnamed unions inject all members into the struct namespace! 17103 17104 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 17105 QualType T = TInfo->getType(); 17106 17107 if (BitWidth) { 17108 // 6.7.2.1p3, 6.7.2.1p4 17109 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get(); 17110 if (!BitWidth) 17111 D.setInvalidType(); 17112 } else { 17113 // Not a bitfield. 17114 17115 // validate II. 17116 17117 } 17118 if (T->isReferenceType()) { 17119 Diag(Loc, diag::err_ivar_reference_type); 17120 D.setInvalidType(); 17121 } 17122 // C99 6.7.2.1p8: A member of a structure or union may have any type other 17123 // than a variably modified type. 17124 else if (T->isVariablyModifiedType()) { 17125 if (!tryToFixVariablyModifiedVarType( 17126 TInfo, T, Loc, diag::err_typecheck_ivar_variable_size)) 17127 D.setInvalidType(); 17128 } 17129 17130 // Get the visibility (access control) for this ivar. 17131 ObjCIvarDecl::AccessControl ac = 17132 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) 17133 : ObjCIvarDecl::None; 17134 // Must set ivar's DeclContext to its enclosing interface. 17135 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext); 17136 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl()) 17137 return nullptr; 17138 ObjCContainerDecl *EnclosingContext; 17139 if (ObjCImplementationDecl *IMPDecl = 17140 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { 17141 if (LangOpts.ObjCRuntime.isFragile()) { 17142 // Case of ivar declared in an implementation. Context is that of its class. 17143 EnclosingContext = IMPDecl->getClassInterface(); 17144 assert(EnclosingContext && "Implementation has no class interface!"); 17145 } 17146 else 17147 EnclosingContext = EnclosingDecl; 17148 } else { 17149 if (ObjCCategoryDecl *CDecl = 17150 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { 17151 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) { 17152 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); 17153 return nullptr; 17154 } 17155 } 17156 EnclosingContext = EnclosingDecl; 17157 } 17158 17159 // Construct the decl. 17160 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext, 17161 DeclStart, Loc, II, T, 17162 TInfo, ac, (Expr *)BitfieldWidth); 17163 17164 if (II) { 17165 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName, 17166 ForVisibleRedeclaration); 17167 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S) 17168 && !isa<TagDecl>(PrevDecl)) { 17169 Diag(Loc, diag::err_duplicate_member) << II; 17170 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 17171 NewID->setInvalidDecl(); 17172 } 17173 } 17174 17175 // Process attributes attached to the ivar. 17176 ProcessDeclAttributes(S, NewID, D); 17177 17178 if (D.isInvalidType()) 17179 NewID->setInvalidDecl(); 17180 17181 // In ARC, infer 'retaining' for ivars of retainable type. 17182 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID)) 17183 NewID->setInvalidDecl(); 17184 17185 if (D.getDeclSpec().isModulePrivateSpecified()) 17186 NewID->setModulePrivate(); 17187 17188 if (II) { 17189 // FIXME: When interfaces are DeclContexts, we'll need to add 17190 // these to the interface. 17191 S->AddDecl(NewID); 17192 IdResolver.AddDecl(NewID); 17193 } 17194 17195 if (LangOpts.ObjCRuntime.isNonFragile() && 17196 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl)) 17197 Diag(Loc, diag::warn_ivars_in_interface); 17198 17199 return NewID; 17200 } 17201 17202 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for 17203 /// class and class extensions. For every class \@interface and class 17204 /// extension \@interface, if the last ivar is a bitfield of any type, 17205 /// then add an implicit `char :0` ivar to the end of that interface. 17206 void Sema::ActOnLastBitfield(SourceLocation DeclLoc, 17207 SmallVectorImpl<Decl *> &AllIvarDecls) { 17208 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty()) 17209 return; 17210 17211 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; 17212 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl); 17213 17214 if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context)) 17215 return; 17216 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext); 17217 if (!ID) { 17218 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) { 17219 if (!CD->IsClassExtension()) 17220 return; 17221 } 17222 // No need to add this to end of @implementation. 17223 else 17224 return; 17225 } 17226 // All conditions are met. Add a new bitfield to the tail end of ivars. 17227 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0); 17228 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc); 17229 17230 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext), 17231 DeclLoc, DeclLoc, nullptr, 17232 Context.CharTy, 17233 Context.getTrivialTypeSourceInfo(Context.CharTy, 17234 DeclLoc), 17235 ObjCIvarDecl::Private, BW, 17236 true); 17237 AllIvarDecls.push_back(Ivar); 17238 } 17239 17240 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl, 17241 ArrayRef<Decl *> Fields, SourceLocation LBrac, 17242 SourceLocation RBrac, 17243 const ParsedAttributesView &Attrs) { 17244 assert(EnclosingDecl && "missing record or interface decl"); 17245 17246 // If this is an Objective-C @implementation or category and we have 17247 // new fields here we should reset the layout of the interface since 17248 // it will now change. 17249 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) { 17250 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl); 17251 switch (DC->getKind()) { 17252 default: break; 17253 case Decl::ObjCCategory: 17254 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface()); 17255 break; 17256 case Decl::ObjCImplementation: 17257 Context. 17258 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface()); 17259 break; 17260 } 17261 } 17262 17263 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); 17264 CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl); 17265 17266 // Start counting up the number of named members; make sure to include 17267 // members of anonymous structs and unions in the total. 17268 unsigned NumNamedMembers = 0; 17269 if (Record) { 17270 for (const auto *I : Record->decls()) { 17271 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) 17272 if (IFD->getDeclName()) 17273 ++NumNamedMembers; 17274 } 17275 } 17276 17277 // Verify that all the fields are okay. 17278 SmallVector<FieldDecl*, 32> RecFields; 17279 17280 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end(); 17281 i != end; ++i) { 17282 FieldDecl *FD = cast<FieldDecl>(*i); 17283 17284 // Get the type for the field. 17285 const Type *FDTy = FD->getType().getTypePtr(); 17286 17287 if (!FD->isAnonymousStructOrUnion()) { 17288 // Remember all fields written by the user. 17289 RecFields.push_back(FD); 17290 } 17291 17292 // If the field is already invalid for some reason, don't emit more 17293 // diagnostics about it. 17294 if (FD->isInvalidDecl()) { 17295 EnclosingDecl->setInvalidDecl(); 17296 continue; 17297 } 17298 17299 // C99 6.7.2.1p2: 17300 // A structure or union shall not contain a member with 17301 // incomplete or function type (hence, a structure shall not 17302 // contain an instance of itself, but may contain a pointer to 17303 // an instance of itself), except that the last member of a 17304 // structure with more than one named member may have incomplete 17305 // array type; such a structure (and any union containing, 17306 // possibly recursively, a member that is such a structure) 17307 // shall not be a member of a structure or an element of an 17308 // array. 17309 bool IsLastField = (i + 1 == Fields.end()); 17310 if (FDTy->isFunctionType()) { 17311 // Field declared as a function. 17312 Diag(FD->getLocation(), diag::err_field_declared_as_function) 17313 << FD->getDeclName(); 17314 FD->setInvalidDecl(); 17315 EnclosingDecl->setInvalidDecl(); 17316 continue; 17317 } else if (FDTy->isIncompleteArrayType() && 17318 (Record || isa<ObjCContainerDecl>(EnclosingDecl))) { 17319 if (Record) { 17320 // Flexible array member. 17321 // Microsoft and g++ is more permissive regarding flexible array. 17322 // It will accept flexible array in union and also 17323 // as the sole element of a struct/class. 17324 unsigned DiagID = 0; 17325 if (!Record->isUnion() && !IsLastField) { 17326 Diag(FD->getLocation(), diag::err_flexible_array_not_at_end) 17327 << FD->getDeclName() << FD->getType() << Record->getTagKind(); 17328 Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration); 17329 FD->setInvalidDecl(); 17330 EnclosingDecl->setInvalidDecl(); 17331 continue; 17332 } else if (Record->isUnion()) 17333 DiagID = getLangOpts().MicrosoftExt 17334 ? diag::ext_flexible_array_union_ms 17335 : getLangOpts().CPlusPlus 17336 ? diag::ext_flexible_array_union_gnu 17337 : diag::err_flexible_array_union; 17338 else if (NumNamedMembers < 1) 17339 DiagID = getLangOpts().MicrosoftExt 17340 ? diag::ext_flexible_array_empty_aggregate_ms 17341 : getLangOpts().CPlusPlus 17342 ? diag::ext_flexible_array_empty_aggregate_gnu 17343 : diag::err_flexible_array_empty_aggregate; 17344 17345 if (DiagID) 17346 Diag(FD->getLocation(), DiagID) << FD->getDeclName() 17347 << Record->getTagKind(); 17348 // While the layout of types that contain virtual bases is not specified 17349 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place 17350 // virtual bases after the derived members. This would make a flexible 17351 // array member declared at the end of an object not adjacent to the end 17352 // of the type. 17353 if (CXXRecord && CXXRecord->getNumVBases() != 0) 17354 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base) 17355 << FD->getDeclName() << Record->getTagKind(); 17356 if (!getLangOpts().C99) 17357 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member) 17358 << FD->getDeclName() << Record->getTagKind(); 17359 17360 // If the element type has a non-trivial destructor, we would not 17361 // implicitly destroy the elements, so disallow it for now. 17362 // 17363 // FIXME: GCC allows this. We should probably either implicitly delete 17364 // the destructor of the containing class, or just allow this. 17365 QualType BaseElem = Context.getBaseElementType(FD->getType()); 17366 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) { 17367 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor) 17368 << FD->getDeclName() << FD->getType(); 17369 FD->setInvalidDecl(); 17370 EnclosingDecl->setInvalidDecl(); 17371 continue; 17372 } 17373 // Okay, we have a legal flexible array member at the end of the struct. 17374 Record->setHasFlexibleArrayMember(true); 17375 } else { 17376 // In ObjCContainerDecl ivars with incomplete array type are accepted, 17377 // unless they are followed by another ivar. That check is done 17378 // elsewhere, after synthesized ivars are known. 17379 } 17380 } else if (!FDTy->isDependentType() && 17381 RequireCompleteSizedType( 17382 FD->getLocation(), FD->getType(), 17383 diag::err_field_incomplete_or_sizeless)) { 17384 // Incomplete type 17385 FD->setInvalidDecl(); 17386 EnclosingDecl->setInvalidDecl(); 17387 continue; 17388 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { 17389 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) { 17390 // A type which contains a flexible array member is considered to be a 17391 // flexible array member. 17392 Record->setHasFlexibleArrayMember(true); 17393 if (!Record->isUnion()) { 17394 // If this is a struct/class and this is not the last element, reject 17395 // it. Note that GCC supports variable sized arrays in the middle of 17396 // structures. 17397 if (!IsLastField) 17398 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) 17399 << FD->getDeclName() << FD->getType(); 17400 else { 17401 // We support flexible arrays at the end of structs in 17402 // other structs as an extension. 17403 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) 17404 << FD->getDeclName(); 17405 } 17406 } 17407 } 17408 if (isa<ObjCContainerDecl>(EnclosingDecl) && 17409 RequireNonAbstractType(FD->getLocation(), FD->getType(), 17410 diag::err_abstract_type_in_decl, 17411 AbstractIvarType)) { 17412 // Ivars can not have abstract class types 17413 FD->setInvalidDecl(); 17414 } 17415 if (Record && FDTTy->getDecl()->hasObjectMember()) 17416 Record->setHasObjectMember(true); 17417 if (Record && FDTTy->getDecl()->hasVolatileMember()) 17418 Record->setHasVolatileMember(true); 17419 } else if (FDTy->isObjCObjectType()) { 17420 /// A field cannot be an Objective-c object 17421 Diag(FD->getLocation(), diag::err_statically_allocated_object) 17422 << FixItHint::CreateInsertion(FD->getLocation(), "*"); 17423 QualType T = Context.getObjCObjectPointerType(FD->getType()); 17424 FD->setType(T); 17425 } else if (Record && Record->isUnion() && 17426 FD->getType().hasNonTrivialObjCLifetime() && 17427 getSourceManager().isInSystemHeader(FD->getLocation()) && 17428 !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() && 17429 (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong || 17430 !Context.hasDirectOwnershipQualifier(FD->getType()))) { 17431 // For backward compatibility, fields of C unions declared in system 17432 // headers that have non-trivial ObjC ownership qualifications are marked 17433 // as unavailable unless the qualifier is explicit and __strong. This can 17434 // break ABI compatibility between programs compiled with ARC and MRR, but 17435 // is a better option than rejecting programs using those unions under 17436 // ARC. 17437 FD->addAttr(UnavailableAttr::CreateImplicit( 17438 Context, "", UnavailableAttr::IR_ARCFieldWithOwnership, 17439 FD->getLocation())); 17440 } else if (getLangOpts().ObjC && 17441 getLangOpts().getGC() != LangOptions::NonGC && Record && 17442 !Record->hasObjectMember()) { 17443 if (FD->getType()->isObjCObjectPointerType() || 17444 FD->getType().isObjCGCStrong()) 17445 Record->setHasObjectMember(true); 17446 else if (Context.getAsArrayType(FD->getType())) { 17447 QualType BaseType = Context.getBaseElementType(FD->getType()); 17448 if (BaseType->isRecordType() && 17449 BaseType->castAs<RecordType>()->getDecl()->hasObjectMember()) 17450 Record->setHasObjectMember(true); 17451 else if (BaseType->isObjCObjectPointerType() || 17452 BaseType.isObjCGCStrong()) 17453 Record->setHasObjectMember(true); 17454 } 17455 } 17456 17457 if (Record && !getLangOpts().CPlusPlus && 17458 !shouldIgnoreForRecordTriviality(FD)) { 17459 QualType FT = FD->getType(); 17460 if (FT.isNonTrivialToPrimitiveDefaultInitialize()) { 17461 Record->setNonTrivialToPrimitiveDefaultInitialize(true); 17462 if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 17463 Record->isUnion()) 17464 Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true); 17465 } 17466 QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy(); 17467 if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) { 17468 Record->setNonTrivialToPrimitiveCopy(true); 17469 if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion()) 17470 Record->setHasNonTrivialToPrimitiveCopyCUnion(true); 17471 } 17472 if (FT.isDestructedType()) { 17473 Record->setNonTrivialToPrimitiveDestroy(true); 17474 Record->setParamDestroyedInCallee(true); 17475 if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion()) 17476 Record->setHasNonTrivialToPrimitiveDestructCUnion(true); 17477 } 17478 17479 if (const auto *RT = FT->getAs<RecordType>()) { 17480 if (RT->getDecl()->getArgPassingRestrictions() == 17481 RecordDecl::APK_CanNeverPassInRegs) 17482 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 17483 } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak) 17484 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 17485 } 17486 17487 if (Record && FD->getType().isVolatileQualified()) 17488 Record->setHasVolatileMember(true); 17489 // Keep track of the number of named members. 17490 if (FD->getIdentifier()) 17491 ++NumNamedMembers; 17492 } 17493 17494 // Okay, we successfully defined 'Record'. 17495 if (Record) { 17496 bool Completed = false; 17497 if (CXXRecord) { 17498 if (!CXXRecord->isInvalidDecl()) { 17499 // Set access bits correctly on the directly-declared conversions. 17500 for (CXXRecordDecl::conversion_iterator 17501 I = CXXRecord->conversion_begin(), 17502 E = CXXRecord->conversion_end(); I != E; ++I) 17503 I.setAccess((*I)->getAccess()); 17504 } 17505 17506 // Add any implicitly-declared members to this class. 17507 AddImplicitlyDeclaredMembersToClass(CXXRecord); 17508 17509 if (!CXXRecord->isDependentType()) { 17510 if (!CXXRecord->isInvalidDecl()) { 17511 // If we have virtual base classes, we may end up finding multiple 17512 // final overriders for a given virtual function. Check for this 17513 // problem now. 17514 if (CXXRecord->getNumVBases()) { 17515 CXXFinalOverriderMap FinalOverriders; 17516 CXXRecord->getFinalOverriders(FinalOverriders); 17517 17518 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 17519 MEnd = FinalOverriders.end(); 17520 M != MEnd; ++M) { 17521 for (OverridingMethods::iterator SO = M->second.begin(), 17522 SOEnd = M->second.end(); 17523 SO != SOEnd; ++SO) { 17524 assert(SO->second.size() > 0 && 17525 "Virtual function without overriding functions?"); 17526 if (SO->second.size() == 1) 17527 continue; 17528 17529 // C++ [class.virtual]p2: 17530 // In a derived class, if a virtual member function of a base 17531 // class subobject has more than one final overrider the 17532 // program is ill-formed. 17533 Diag(Record->getLocation(), diag::err_multiple_final_overriders) 17534 << (const NamedDecl *)M->first << Record; 17535 Diag(M->first->getLocation(), 17536 diag::note_overridden_virtual_function); 17537 for (OverridingMethods::overriding_iterator 17538 OM = SO->second.begin(), 17539 OMEnd = SO->second.end(); 17540 OM != OMEnd; ++OM) 17541 Diag(OM->Method->getLocation(), diag::note_final_overrider) 17542 << (const NamedDecl *)M->first << OM->Method->getParent(); 17543 17544 Record->setInvalidDecl(); 17545 } 17546 } 17547 CXXRecord->completeDefinition(&FinalOverriders); 17548 Completed = true; 17549 } 17550 } 17551 } 17552 } 17553 17554 if (!Completed) 17555 Record->completeDefinition(); 17556 17557 // Handle attributes before checking the layout. 17558 ProcessDeclAttributeList(S, Record, Attrs); 17559 17560 // We may have deferred checking for a deleted destructor. Check now. 17561 if (CXXRecord) { 17562 auto *Dtor = CXXRecord->getDestructor(); 17563 if (Dtor && Dtor->isImplicit() && 17564 ShouldDeleteSpecialMember(Dtor, CXXDestructor)) { 17565 CXXRecord->setImplicitDestructorIsDeleted(); 17566 SetDeclDeleted(Dtor, CXXRecord->getLocation()); 17567 } 17568 } 17569 17570 if (Record->hasAttrs()) { 17571 CheckAlignasUnderalignment(Record); 17572 17573 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>()) 17574 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record), 17575 IA->getRange(), IA->getBestCase(), 17576 IA->getInheritanceModel()); 17577 } 17578 17579 // Check if the structure/union declaration is a type that can have zero 17580 // size in C. For C this is a language extension, for C++ it may cause 17581 // compatibility problems. 17582 bool CheckForZeroSize; 17583 if (!getLangOpts().CPlusPlus) { 17584 CheckForZeroSize = true; 17585 } else { 17586 // For C++ filter out types that cannot be referenced in C code. 17587 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record); 17588 CheckForZeroSize = 17589 CXXRecord->getLexicalDeclContext()->isExternCContext() && 17590 !CXXRecord->isDependentType() && !inTemplateInstantiation() && 17591 CXXRecord->isCLike(); 17592 } 17593 if (CheckForZeroSize) { 17594 bool ZeroSize = true; 17595 bool IsEmpty = true; 17596 unsigned NonBitFields = 0; 17597 for (RecordDecl::field_iterator I = Record->field_begin(), 17598 E = Record->field_end(); 17599 (NonBitFields == 0 || ZeroSize) && I != E; ++I) { 17600 IsEmpty = false; 17601 if (I->isUnnamedBitfield()) { 17602 if (!I->isZeroLengthBitField(Context)) 17603 ZeroSize = false; 17604 } else { 17605 ++NonBitFields; 17606 QualType FieldType = I->getType(); 17607 if (FieldType->isIncompleteType() || 17608 !Context.getTypeSizeInChars(FieldType).isZero()) 17609 ZeroSize = false; 17610 } 17611 } 17612 17613 // Empty structs are an extension in C (C99 6.7.2.1p7). They are 17614 // allowed in C++, but warn if its declaration is inside 17615 // extern "C" block. 17616 if (ZeroSize) { 17617 Diag(RecLoc, getLangOpts().CPlusPlus ? 17618 diag::warn_zero_size_struct_union_in_extern_c : 17619 diag::warn_zero_size_struct_union_compat) 17620 << IsEmpty << Record->isUnion() << (NonBitFields > 1); 17621 } 17622 17623 // Structs without named members are extension in C (C99 6.7.2.1p7), 17624 // but are accepted by GCC. 17625 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) { 17626 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union : 17627 diag::ext_no_named_members_in_struct_union) 17628 << Record->isUnion(); 17629 } 17630 } 17631 } else { 17632 ObjCIvarDecl **ClsFields = 17633 reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); 17634 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { 17635 ID->setEndOfDefinitionLoc(RBrac); 17636 // Add ivar's to class's DeclContext. 17637 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 17638 ClsFields[i]->setLexicalDeclContext(ID); 17639 ID->addDecl(ClsFields[i]); 17640 } 17641 // Must enforce the rule that ivars in the base classes may not be 17642 // duplicates. 17643 if (ID->getSuperClass()) 17644 DiagnoseDuplicateIvars(ID, ID->getSuperClass()); 17645 } else if (ObjCImplementationDecl *IMPDecl = 17646 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { 17647 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); 17648 for (unsigned I = 0, N = RecFields.size(); I != N; ++I) 17649 // Ivar declared in @implementation never belongs to the implementation. 17650 // Only it is in implementation's lexical context. 17651 ClsFields[I]->setLexicalDeclContext(IMPDecl); 17652 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); 17653 IMPDecl->setIvarLBraceLoc(LBrac); 17654 IMPDecl->setIvarRBraceLoc(RBrac); 17655 } else if (ObjCCategoryDecl *CDecl = 17656 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { 17657 // case of ivars in class extension; all other cases have been 17658 // reported as errors elsewhere. 17659 // FIXME. Class extension does not have a LocEnd field. 17660 // CDecl->setLocEnd(RBrac); 17661 // Add ivar's to class extension's DeclContext. 17662 // Diagnose redeclaration of private ivars. 17663 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface(); 17664 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 17665 if (IDecl) { 17666 if (const ObjCIvarDecl *ClsIvar = 17667 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) { 17668 Diag(ClsFields[i]->getLocation(), 17669 diag::err_duplicate_ivar_declaration); 17670 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 17671 continue; 17672 } 17673 for (const auto *Ext : IDecl->known_extensions()) { 17674 if (const ObjCIvarDecl *ClsExtIvar 17675 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) { 17676 Diag(ClsFields[i]->getLocation(), 17677 diag::err_duplicate_ivar_declaration); 17678 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); 17679 continue; 17680 } 17681 } 17682 } 17683 ClsFields[i]->setLexicalDeclContext(CDecl); 17684 CDecl->addDecl(ClsFields[i]); 17685 } 17686 CDecl->setIvarLBraceLoc(LBrac); 17687 CDecl->setIvarRBraceLoc(RBrac); 17688 } 17689 } 17690 } 17691 17692 /// Determine whether the given integral value is representable within 17693 /// the given type T. 17694 static bool isRepresentableIntegerValue(ASTContext &Context, 17695 llvm::APSInt &Value, 17696 QualType T) { 17697 assert((T->isIntegralType(Context) || T->isEnumeralType()) && 17698 "Integral type required!"); 17699 unsigned BitWidth = Context.getIntWidth(T); 17700 17701 if (Value.isUnsigned() || Value.isNonNegative()) { 17702 if (T->isSignedIntegerOrEnumerationType()) 17703 --BitWidth; 17704 return Value.getActiveBits() <= BitWidth; 17705 } 17706 return Value.getMinSignedBits() <= BitWidth; 17707 } 17708 17709 // Given an integral type, return the next larger integral type 17710 // (or a NULL type of no such type exists). 17711 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { 17712 // FIXME: Int128/UInt128 support, which also needs to be introduced into 17713 // enum checking below. 17714 assert((T->isIntegralType(Context) || 17715 T->isEnumeralType()) && "Integral type required!"); 17716 const unsigned NumTypes = 4; 17717 QualType SignedIntegralTypes[NumTypes] = { 17718 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy 17719 }; 17720 QualType UnsignedIntegralTypes[NumTypes] = { 17721 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, 17722 Context.UnsignedLongLongTy 17723 }; 17724 17725 unsigned BitWidth = Context.getTypeSize(T); 17726 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes 17727 : UnsignedIntegralTypes; 17728 for (unsigned I = 0; I != NumTypes; ++I) 17729 if (Context.getTypeSize(Types[I]) > BitWidth) 17730 return Types[I]; 17731 17732 return QualType(); 17733 } 17734 17735 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, 17736 EnumConstantDecl *LastEnumConst, 17737 SourceLocation IdLoc, 17738 IdentifierInfo *Id, 17739 Expr *Val) { 17740 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 17741 llvm::APSInt EnumVal(IntWidth); 17742 QualType EltTy; 17743 17744 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue)) 17745 Val = nullptr; 17746 17747 if (Val) 17748 Val = DefaultLvalueConversion(Val).get(); 17749 17750 if (Val) { 17751 if (Enum->isDependentType() || Val->isTypeDependent()) 17752 EltTy = Context.DependentTy; 17753 else { 17754 // FIXME: We don't allow folding in C++11 mode for an enum with a fixed 17755 // underlying type, but do allow it in all other contexts. 17756 if (getLangOpts().CPlusPlus11 && Enum->isFixed()) { 17757 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the 17758 // constant-expression in the enumerator-definition shall be a converted 17759 // constant expression of the underlying type. 17760 EltTy = Enum->getIntegerType(); 17761 ExprResult Converted = 17762 CheckConvertedConstantExpression(Val, EltTy, EnumVal, 17763 CCEK_Enumerator); 17764 if (Converted.isInvalid()) 17765 Val = nullptr; 17766 else 17767 Val = Converted.get(); 17768 } else if (!Val->isValueDependent() && 17769 !(Val = 17770 VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold) 17771 .get())) { 17772 // C99 6.7.2.2p2: Make sure we have an integer constant expression. 17773 } else { 17774 if (Enum->isComplete()) { 17775 EltTy = Enum->getIntegerType(); 17776 17777 // In Obj-C and Microsoft mode, require the enumeration value to be 17778 // representable in the underlying type of the enumeration. In C++11, 17779 // we perform a non-narrowing conversion as part of converted constant 17780 // expression checking. 17781 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) { 17782 if (Context.getTargetInfo() 17783 .getTriple() 17784 .isWindowsMSVCEnvironment()) { 17785 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy; 17786 } else { 17787 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy; 17788 } 17789 } 17790 17791 // Cast to the underlying type. 17792 Val = ImpCastExprToType(Val, EltTy, 17793 EltTy->isBooleanType() ? CK_IntegralToBoolean 17794 : CK_IntegralCast) 17795 .get(); 17796 } else if (getLangOpts().CPlusPlus) { 17797 // C++11 [dcl.enum]p5: 17798 // If the underlying type is not fixed, the type of each enumerator 17799 // is the type of its initializing value: 17800 // - If an initializer is specified for an enumerator, the 17801 // initializing value has the same type as the expression. 17802 EltTy = Val->getType(); 17803 } else { 17804 // C99 6.7.2.2p2: 17805 // The expression that defines the value of an enumeration constant 17806 // shall be an integer constant expression that has a value 17807 // representable as an int. 17808 17809 // Complain if the value is not representable in an int. 17810 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) 17811 Diag(IdLoc, diag::ext_enum_value_not_int) 17812 << toString(EnumVal, 10) << Val->getSourceRange() 17813 << (EnumVal.isUnsigned() || EnumVal.isNonNegative()); 17814 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { 17815 // Force the type of the expression to 'int'. 17816 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get(); 17817 } 17818 EltTy = Val->getType(); 17819 } 17820 } 17821 } 17822 } 17823 17824 if (!Val) { 17825 if (Enum->isDependentType()) 17826 EltTy = Context.DependentTy; 17827 else if (!LastEnumConst) { 17828 // C++0x [dcl.enum]p5: 17829 // If the underlying type is not fixed, the type of each enumerator 17830 // is the type of its initializing value: 17831 // - If no initializer is specified for the first enumerator, the 17832 // initializing value has an unspecified integral type. 17833 // 17834 // GCC uses 'int' for its unspecified integral type, as does 17835 // C99 6.7.2.2p3. 17836 if (Enum->isFixed()) { 17837 EltTy = Enum->getIntegerType(); 17838 } 17839 else { 17840 EltTy = Context.IntTy; 17841 } 17842 } else { 17843 // Assign the last value + 1. 17844 EnumVal = LastEnumConst->getInitVal(); 17845 ++EnumVal; 17846 EltTy = LastEnumConst->getType(); 17847 17848 // Check for overflow on increment. 17849 if (EnumVal < LastEnumConst->getInitVal()) { 17850 // C++0x [dcl.enum]p5: 17851 // If the underlying type is not fixed, the type of each enumerator 17852 // is the type of its initializing value: 17853 // 17854 // - Otherwise the type of the initializing value is the same as 17855 // the type of the initializing value of the preceding enumerator 17856 // unless the incremented value is not representable in that type, 17857 // in which case the type is an unspecified integral type 17858 // sufficient to contain the incremented value. If no such type 17859 // exists, the program is ill-formed. 17860 QualType T = getNextLargerIntegralType(Context, EltTy); 17861 if (T.isNull() || Enum->isFixed()) { 17862 // There is no integral type larger enough to represent this 17863 // value. Complain, then allow the value to wrap around. 17864 EnumVal = LastEnumConst->getInitVal(); 17865 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2); 17866 ++EnumVal; 17867 if (Enum->isFixed()) 17868 // When the underlying type is fixed, this is ill-formed. 17869 Diag(IdLoc, diag::err_enumerator_wrapped) 17870 << toString(EnumVal, 10) 17871 << EltTy; 17872 else 17873 Diag(IdLoc, diag::ext_enumerator_increment_too_large) 17874 << toString(EnumVal, 10); 17875 } else { 17876 EltTy = T; 17877 } 17878 17879 // Retrieve the last enumerator's value, extent that type to the 17880 // type that is supposed to be large enough to represent the incremented 17881 // value, then increment. 17882 EnumVal = LastEnumConst->getInitVal(); 17883 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); 17884 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); 17885 ++EnumVal; 17886 17887 // If we're not in C++, diagnose the overflow of enumerator values, 17888 // which in C99 means that the enumerator value is not representable in 17889 // an int (C99 6.7.2.2p2). However, we support GCC's extension that 17890 // permits enumerator values that are representable in some larger 17891 // integral type. 17892 if (!getLangOpts().CPlusPlus && !T.isNull()) 17893 Diag(IdLoc, diag::warn_enum_value_overflow); 17894 } else if (!getLangOpts().CPlusPlus && 17895 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) { 17896 // Enforce C99 6.7.2.2p2 even when we compute the next value. 17897 Diag(IdLoc, diag::ext_enum_value_not_int) 17898 << toString(EnumVal, 10) << 1; 17899 } 17900 } 17901 } 17902 17903 if (!EltTy->isDependentType()) { 17904 // Make the enumerator value match the signedness and size of the 17905 // enumerator's type. 17906 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy)); 17907 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); 17908 } 17909 17910 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy, 17911 Val, EnumVal); 17912 } 17913 17914 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, 17915 SourceLocation IILoc) { 17916 if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) || 17917 !getLangOpts().CPlusPlus) 17918 return SkipBodyInfo(); 17919 17920 // We have an anonymous enum definition. Look up the first enumerator to 17921 // determine if we should merge the definition with an existing one and 17922 // skip the body. 17923 NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName, 17924 forRedeclarationInCurContext()); 17925 auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl); 17926 if (!PrevECD) 17927 return SkipBodyInfo(); 17928 17929 EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext()); 17930 NamedDecl *Hidden; 17931 if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) { 17932 SkipBodyInfo Skip; 17933 Skip.Previous = Hidden; 17934 return Skip; 17935 } 17936 17937 return SkipBodyInfo(); 17938 } 17939 17940 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst, 17941 SourceLocation IdLoc, IdentifierInfo *Id, 17942 const ParsedAttributesView &Attrs, 17943 SourceLocation EqualLoc, Expr *Val) { 17944 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl); 17945 EnumConstantDecl *LastEnumConst = 17946 cast_or_null<EnumConstantDecl>(lastEnumConst); 17947 17948 // The scope passed in may not be a decl scope. Zip up the scope tree until 17949 // we find one that is. 17950 S = getNonFieldDeclScope(S); 17951 17952 // Verify that there isn't already something declared with this name in this 17953 // scope. 17954 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration); 17955 LookupName(R, S); 17956 NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>(); 17957 17958 if (PrevDecl && PrevDecl->isTemplateParameter()) { 17959 // Maybe we will complain about the shadowed template parameter. 17960 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); 17961 // Just pretend that we didn't see the previous declaration. 17962 PrevDecl = nullptr; 17963 } 17964 17965 // C++ [class.mem]p15: 17966 // If T is the name of a class, then each of the following shall have a name 17967 // different from T: 17968 // - every enumerator of every member of class T that is an unscoped 17969 // enumerated type 17970 if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped()) 17971 DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(), 17972 DeclarationNameInfo(Id, IdLoc)); 17973 17974 EnumConstantDecl *New = 17975 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val); 17976 if (!New) 17977 return nullptr; 17978 17979 if (PrevDecl) { 17980 if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) { 17981 // Check for other kinds of shadowing not already handled. 17982 CheckShadow(New, PrevDecl, R); 17983 } 17984 17985 // When in C++, we may get a TagDecl with the same name; in this case the 17986 // enum constant will 'hide' the tag. 17987 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && 17988 "Received TagDecl when not in C++!"); 17989 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { 17990 if (isa<EnumConstantDecl>(PrevDecl)) 17991 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; 17992 else 17993 Diag(IdLoc, diag::err_redefinition) << Id; 17994 notePreviousDefinition(PrevDecl, IdLoc); 17995 return nullptr; 17996 } 17997 } 17998 17999 // Process attributes. 18000 ProcessDeclAttributeList(S, New, Attrs); 18001 AddPragmaAttributes(S, New); 18002 18003 // Register this decl in the current scope stack. 18004 New->setAccess(TheEnumDecl->getAccess()); 18005 PushOnScopeChains(New, S); 18006 18007 ActOnDocumentableDecl(New); 18008 18009 return New; 18010 } 18011 18012 // Returns true when the enum initial expression does not trigger the 18013 // duplicate enum warning. A few common cases are exempted as follows: 18014 // Element2 = Element1 18015 // Element2 = Element1 + 1 18016 // Element2 = Element1 - 1 18017 // Where Element2 and Element1 are from the same enum. 18018 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) { 18019 Expr *InitExpr = ECD->getInitExpr(); 18020 if (!InitExpr) 18021 return true; 18022 InitExpr = InitExpr->IgnoreImpCasts(); 18023 18024 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) { 18025 if (!BO->isAdditiveOp()) 18026 return true; 18027 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS()); 18028 if (!IL) 18029 return true; 18030 if (IL->getValue() != 1) 18031 return true; 18032 18033 InitExpr = BO->getLHS(); 18034 } 18035 18036 // This checks if the elements are from the same enum. 18037 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr); 18038 if (!DRE) 18039 return true; 18040 18041 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl()); 18042 if (!EnumConstant) 18043 return true; 18044 18045 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) != 18046 Enum) 18047 return true; 18048 18049 return false; 18050 } 18051 18052 // Emits a warning when an element is implicitly set a value that 18053 // a previous element has already been set to. 18054 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements, 18055 EnumDecl *Enum, QualType EnumType) { 18056 // Avoid anonymous enums 18057 if (!Enum->getIdentifier()) 18058 return; 18059 18060 // Only check for small enums. 18061 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64) 18062 return; 18063 18064 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation())) 18065 return; 18066 18067 typedef SmallVector<EnumConstantDecl *, 3> ECDVector; 18068 typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector; 18069 18070 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector; 18071 18072 // DenseMaps cannot contain the all ones int64_t value, so use unordered_map. 18073 typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap; 18074 18075 // Use int64_t as a key to avoid needing special handling for map keys. 18076 auto EnumConstantToKey = [](const EnumConstantDecl *D) { 18077 llvm::APSInt Val = D->getInitVal(); 18078 return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(); 18079 }; 18080 18081 DuplicatesVector DupVector; 18082 ValueToVectorMap EnumMap; 18083 18084 // Populate the EnumMap with all values represented by enum constants without 18085 // an initializer. 18086 for (auto *Element : Elements) { 18087 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element); 18088 18089 // Null EnumConstantDecl means a previous diagnostic has been emitted for 18090 // this constant. Skip this enum since it may be ill-formed. 18091 if (!ECD) { 18092 return; 18093 } 18094 18095 // Constants with initalizers are handled in the next loop. 18096 if (ECD->getInitExpr()) 18097 continue; 18098 18099 // Duplicate values are handled in the next loop. 18100 EnumMap.insert({EnumConstantToKey(ECD), ECD}); 18101 } 18102 18103 if (EnumMap.size() == 0) 18104 return; 18105 18106 // Create vectors for any values that has duplicates. 18107 for (auto *Element : Elements) { 18108 // The last loop returned if any constant was null. 18109 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element); 18110 if (!ValidDuplicateEnum(ECD, Enum)) 18111 continue; 18112 18113 auto Iter = EnumMap.find(EnumConstantToKey(ECD)); 18114 if (Iter == EnumMap.end()) 18115 continue; 18116 18117 DeclOrVector& Entry = Iter->second; 18118 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) { 18119 // Ensure constants are different. 18120 if (D == ECD) 18121 continue; 18122 18123 // Create new vector and push values onto it. 18124 auto Vec = std::make_unique<ECDVector>(); 18125 Vec->push_back(D); 18126 Vec->push_back(ECD); 18127 18128 // Update entry to point to the duplicates vector. 18129 Entry = Vec.get(); 18130 18131 // Store the vector somewhere we can consult later for quick emission of 18132 // diagnostics. 18133 DupVector.emplace_back(std::move(Vec)); 18134 continue; 18135 } 18136 18137 ECDVector *Vec = Entry.get<ECDVector*>(); 18138 // Make sure constants are not added more than once. 18139 if (*Vec->begin() == ECD) 18140 continue; 18141 18142 Vec->push_back(ECD); 18143 } 18144 18145 // Emit diagnostics. 18146 for (const auto &Vec : DupVector) { 18147 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements."); 18148 18149 // Emit warning for one enum constant. 18150 auto *FirstECD = Vec->front(); 18151 S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values) 18152 << FirstECD << toString(FirstECD->getInitVal(), 10) 18153 << FirstECD->getSourceRange(); 18154 18155 // Emit one note for each of the remaining enum constants with 18156 // the same value. 18157 for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end())) 18158 S.Diag(ECD->getLocation(), diag::note_duplicate_element) 18159 << ECD << toString(ECD->getInitVal(), 10) 18160 << ECD->getSourceRange(); 18161 } 18162 } 18163 18164 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, 18165 bool AllowMask) const { 18166 assert(ED->isClosedFlag() && "looking for value in non-flag or open enum"); 18167 assert(ED->isCompleteDefinition() && "expected enum definition"); 18168 18169 auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt())); 18170 llvm::APInt &FlagBits = R.first->second; 18171 18172 if (R.second) { 18173 for (auto *E : ED->enumerators()) { 18174 const auto &EVal = E->getInitVal(); 18175 // Only single-bit enumerators introduce new flag values. 18176 if (EVal.isPowerOf2()) 18177 FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal; 18178 } 18179 } 18180 18181 // A value is in a flag enum if either its bits are a subset of the enum's 18182 // flag bits (the first condition) or we are allowing masks and the same is 18183 // true of its complement (the second condition). When masks are allowed, we 18184 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value. 18185 // 18186 // While it's true that any value could be used as a mask, the assumption is 18187 // that a mask will have all of the insignificant bits set. Anything else is 18188 // likely a logic error. 18189 llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth()); 18190 return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val)); 18191 } 18192 18193 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, 18194 Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S, 18195 const ParsedAttributesView &Attrs) { 18196 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX); 18197 QualType EnumType = Context.getTypeDeclType(Enum); 18198 18199 ProcessDeclAttributeList(S, Enum, Attrs); 18200 18201 if (Enum->isDependentType()) { 18202 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 18203 EnumConstantDecl *ECD = 18204 cast_or_null<EnumConstantDecl>(Elements[i]); 18205 if (!ECD) continue; 18206 18207 ECD->setType(EnumType); 18208 } 18209 18210 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0); 18211 return; 18212 } 18213 18214 // TODO: If the result value doesn't fit in an int, it must be a long or long 18215 // long value. ISO C does not support this, but GCC does as an extension, 18216 // emit a warning. 18217 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 18218 unsigned CharWidth = Context.getTargetInfo().getCharWidth(); 18219 unsigned ShortWidth = Context.getTargetInfo().getShortWidth(); 18220 18221 // Verify that all the values are okay, compute the size of the values, and 18222 // reverse the list. 18223 unsigned NumNegativeBits = 0; 18224 unsigned NumPositiveBits = 0; 18225 18226 // Keep track of whether all elements have type int. 18227 bool AllElementsInt = true; 18228 18229 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 18230 EnumConstantDecl *ECD = 18231 cast_or_null<EnumConstantDecl>(Elements[i]); 18232 if (!ECD) continue; // Already issued a diagnostic. 18233 18234 const llvm::APSInt &InitVal = ECD->getInitVal(); 18235 18236 // Keep track of the size of positive and negative values. 18237 if (InitVal.isUnsigned() || InitVal.isNonNegative()) 18238 NumPositiveBits = std::max(NumPositiveBits, 18239 (unsigned)InitVal.getActiveBits()); 18240 else 18241 NumNegativeBits = std::max(NumNegativeBits, 18242 (unsigned)InitVal.getMinSignedBits()); 18243 18244 // Keep track of whether every enum element has type int (very common). 18245 if (AllElementsInt) 18246 AllElementsInt = ECD->getType() == Context.IntTy; 18247 } 18248 18249 // Figure out the type that should be used for this enum. 18250 QualType BestType; 18251 unsigned BestWidth; 18252 18253 // C++0x N3000 [conv.prom]p3: 18254 // An rvalue of an unscoped enumeration type whose underlying 18255 // type is not fixed can be converted to an rvalue of the first 18256 // of the following types that can represent all the values of 18257 // the enumeration: int, unsigned int, long int, unsigned long 18258 // int, long long int, or unsigned long long int. 18259 // C99 6.4.4.3p2: 18260 // An identifier declared as an enumeration constant has type int. 18261 // The C99 rule is modified by a gcc extension 18262 QualType BestPromotionType; 18263 18264 bool Packed = Enum->hasAttr<PackedAttr>(); 18265 // -fshort-enums is the equivalent to specifying the packed attribute on all 18266 // enum definitions. 18267 if (LangOpts.ShortEnums) 18268 Packed = true; 18269 18270 // If the enum already has a type because it is fixed or dictated by the 18271 // target, promote that type instead of analyzing the enumerators. 18272 if (Enum->isComplete()) { 18273 BestType = Enum->getIntegerType(); 18274 if (BestType->isPromotableIntegerType()) 18275 BestPromotionType = Context.getPromotedIntegerType(BestType); 18276 else 18277 BestPromotionType = BestType; 18278 18279 BestWidth = Context.getIntWidth(BestType); 18280 } 18281 else if (NumNegativeBits) { 18282 // If there is a negative value, figure out the smallest integer type (of 18283 // int/long/longlong) that fits. 18284 // If it's packed, check also if it fits a char or a short. 18285 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) { 18286 BestType = Context.SignedCharTy; 18287 BestWidth = CharWidth; 18288 } else if (Packed && NumNegativeBits <= ShortWidth && 18289 NumPositiveBits < ShortWidth) { 18290 BestType = Context.ShortTy; 18291 BestWidth = ShortWidth; 18292 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { 18293 BestType = Context.IntTy; 18294 BestWidth = IntWidth; 18295 } else { 18296 BestWidth = Context.getTargetInfo().getLongWidth(); 18297 18298 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { 18299 BestType = Context.LongTy; 18300 } else { 18301 BestWidth = Context.getTargetInfo().getLongLongWidth(); 18302 18303 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) 18304 Diag(Enum->getLocation(), diag::ext_enum_too_large); 18305 BestType = Context.LongLongTy; 18306 } 18307 } 18308 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType); 18309 } else { 18310 // If there is no negative value, figure out the smallest type that fits 18311 // all of the enumerator values. 18312 // If it's packed, check also if it fits a char or a short. 18313 if (Packed && NumPositiveBits <= CharWidth) { 18314 BestType = Context.UnsignedCharTy; 18315 BestPromotionType = Context.IntTy; 18316 BestWidth = CharWidth; 18317 } else if (Packed && NumPositiveBits <= ShortWidth) { 18318 BestType = Context.UnsignedShortTy; 18319 BestPromotionType = Context.IntTy; 18320 BestWidth = ShortWidth; 18321 } else if (NumPositiveBits <= IntWidth) { 18322 BestType = Context.UnsignedIntTy; 18323 BestWidth = IntWidth; 18324 BestPromotionType 18325 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 18326 ? Context.UnsignedIntTy : Context.IntTy; 18327 } else if (NumPositiveBits <= 18328 (BestWidth = Context.getTargetInfo().getLongWidth())) { 18329 BestType = Context.UnsignedLongTy; 18330 BestPromotionType 18331 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 18332 ? Context.UnsignedLongTy : Context.LongTy; 18333 } else { 18334 BestWidth = Context.getTargetInfo().getLongLongWidth(); 18335 assert(NumPositiveBits <= BestWidth && 18336 "How could an initializer get larger than ULL?"); 18337 BestType = Context.UnsignedLongLongTy; 18338 BestPromotionType 18339 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 18340 ? Context.UnsignedLongLongTy : Context.LongLongTy; 18341 } 18342 } 18343 18344 // Loop over all of the enumerator constants, changing their types to match 18345 // the type of the enum if needed. 18346 for (auto *D : Elements) { 18347 auto *ECD = cast_or_null<EnumConstantDecl>(D); 18348 if (!ECD) continue; // Already issued a diagnostic. 18349 18350 // Standard C says the enumerators have int type, but we allow, as an 18351 // extension, the enumerators to be larger than int size. If each 18352 // enumerator value fits in an int, type it as an int, otherwise type it the 18353 // same as the enumerator decl itself. This means that in "enum { X = 1U }" 18354 // that X has type 'int', not 'unsigned'. 18355 18356 // Determine whether the value fits into an int. 18357 llvm::APSInt InitVal = ECD->getInitVal(); 18358 18359 // If it fits into an integer type, force it. Otherwise force it to match 18360 // the enum decl type. 18361 QualType NewTy; 18362 unsigned NewWidth; 18363 bool NewSign; 18364 if (!getLangOpts().CPlusPlus && 18365 !Enum->isFixed() && 18366 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) { 18367 NewTy = Context.IntTy; 18368 NewWidth = IntWidth; 18369 NewSign = true; 18370 } else if (ECD->getType() == BestType) { 18371 // Already the right type! 18372 if (getLangOpts().CPlusPlus) 18373 // C++ [dcl.enum]p4: Following the closing brace of an 18374 // enum-specifier, each enumerator has the type of its 18375 // enumeration. 18376 ECD->setType(EnumType); 18377 continue; 18378 } else { 18379 NewTy = BestType; 18380 NewWidth = BestWidth; 18381 NewSign = BestType->isSignedIntegerOrEnumerationType(); 18382 } 18383 18384 // Adjust the APSInt value. 18385 InitVal = InitVal.extOrTrunc(NewWidth); 18386 InitVal.setIsSigned(NewSign); 18387 ECD->setInitVal(InitVal); 18388 18389 // Adjust the Expr initializer and type. 18390 if (ECD->getInitExpr() && 18391 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType())) 18392 ECD->setInitExpr(ImplicitCastExpr::Create( 18393 Context, NewTy, CK_IntegralCast, ECD->getInitExpr(), 18394 /*base paths*/ nullptr, VK_PRValue, FPOptionsOverride())); 18395 if (getLangOpts().CPlusPlus) 18396 // C++ [dcl.enum]p4: Following the closing brace of an 18397 // enum-specifier, each enumerator has the type of its 18398 // enumeration. 18399 ECD->setType(EnumType); 18400 else 18401 ECD->setType(NewTy); 18402 } 18403 18404 Enum->completeDefinition(BestType, BestPromotionType, 18405 NumPositiveBits, NumNegativeBits); 18406 18407 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType); 18408 18409 if (Enum->isClosedFlag()) { 18410 for (Decl *D : Elements) { 18411 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D); 18412 if (!ECD) continue; // Already issued a diagnostic. 18413 18414 llvm::APSInt InitVal = ECD->getInitVal(); 18415 if (InitVal != 0 && !InitVal.isPowerOf2() && 18416 !IsValueInFlagEnum(Enum, InitVal, true)) 18417 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range) 18418 << ECD << Enum; 18419 } 18420 } 18421 18422 // Now that the enum type is defined, ensure it's not been underaligned. 18423 if (Enum->hasAttrs()) 18424 CheckAlignasUnderalignment(Enum); 18425 } 18426 18427 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr, 18428 SourceLocation StartLoc, 18429 SourceLocation EndLoc) { 18430 StringLiteral *AsmString = cast<StringLiteral>(expr); 18431 18432 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext, 18433 AsmString, StartLoc, 18434 EndLoc); 18435 CurContext->addDecl(New); 18436 return New; 18437 } 18438 18439 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name, 18440 IdentifierInfo* AliasName, 18441 SourceLocation PragmaLoc, 18442 SourceLocation NameLoc, 18443 SourceLocation AliasNameLoc) { 18444 NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, 18445 LookupOrdinaryName); 18446 AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc), 18447 AttributeCommonInfo::AS_Pragma); 18448 AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit( 18449 Context, AliasName->getName(), /*LiteralLabel=*/true, Info); 18450 18451 // If a declaration that: 18452 // 1) declares a function or a variable 18453 // 2) has external linkage 18454 // already exists, add a label attribute to it. 18455 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { 18456 if (isDeclExternC(PrevDecl)) 18457 PrevDecl->addAttr(Attr); 18458 else 18459 Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied) 18460 << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl; 18461 // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers. 18462 } else 18463 (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr)); 18464 } 18465 18466 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, 18467 SourceLocation PragmaLoc, 18468 SourceLocation NameLoc) { 18469 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName); 18470 18471 if (PrevDecl) { 18472 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma)); 18473 } else { 18474 (void)WeakUndeclaredIdentifiers.insert( 18475 std::pair<IdentifierInfo*,WeakInfo> 18476 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc))); 18477 } 18478 } 18479 18480 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, 18481 IdentifierInfo* AliasName, 18482 SourceLocation PragmaLoc, 18483 SourceLocation NameLoc, 18484 SourceLocation AliasNameLoc) { 18485 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc, 18486 LookupOrdinaryName); 18487 WeakInfo W = WeakInfo(Name, NameLoc); 18488 18489 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { 18490 if (!PrevDecl->hasAttr<AliasAttr>()) 18491 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl)) 18492 DeclApplyPragmaWeak(TUScope, ND, W); 18493 } else { 18494 (void)WeakUndeclaredIdentifiers.insert( 18495 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W)); 18496 } 18497 } 18498 18499 Decl *Sema::getObjCDeclContext() const { 18500 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext)); 18501 } 18502 18503 Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD, 18504 bool Final) { 18505 assert(FD && "Expected non-null FunctionDecl"); 18506 18507 // SYCL functions can be template, so we check if they have appropriate 18508 // attribute prior to checking if it is a template. 18509 if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>()) 18510 return FunctionEmissionStatus::Emitted; 18511 18512 // Templates are emitted when they're instantiated. 18513 if (FD->isDependentContext()) 18514 return FunctionEmissionStatus::TemplateDiscarded; 18515 18516 // Check whether this function is an externally visible definition. 18517 auto IsEmittedForExternalSymbol = [this, FD]() { 18518 // We have to check the GVA linkage of the function's *definition* -- if we 18519 // only have a declaration, we don't know whether or not the function will 18520 // be emitted, because (say) the definition could include "inline". 18521 FunctionDecl *Def = FD->getDefinition(); 18522 18523 return Def && !isDiscardableGVALinkage( 18524 getASTContext().GetGVALinkageForFunction(Def)); 18525 }; 18526 18527 if (LangOpts.OpenMPIsDevice) { 18528 // In OpenMP device mode we will not emit host only functions, or functions 18529 // we don't need due to their linkage. 18530 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = 18531 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl()); 18532 // DevTy may be changed later by 18533 // #pragma omp declare target to(*) device_type(*). 18534 // Therefore DevTy having no value does not imply host. The emission status 18535 // will be checked again at the end of compilation unit with Final = true. 18536 if (DevTy.hasValue()) 18537 if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host) 18538 return FunctionEmissionStatus::OMPDiscarded; 18539 // If we have an explicit value for the device type, or we are in a target 18540 // declare context, we need to emit all extern and used symbols. 18541 if (isInOpenMPDeclareTargetContext() || DevTy.hasValue()) 18542 if (IsEmittedForExternalSymbol()) 18543 return FunctionEmissionStatus::Emitted; 18544 // Device mode only emits what it must, if it wasn't tagged yet and needed, 18545 // we'll omit it. 18546 if (Final) 18547 return FunctionEmissionStatus::OMPDiscarded; 18548 } else if (LangOpts.OpenMP > 45) { 18549 // In OpenMP host compilation prior to 5.0 everything was an emitted host 18550 // function. In 5.0, no_host was introduced which might cause a function to 18551 // be ommitted. 18552 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = 18553 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl()); 18554 if (DevTy.hasValue()) 18555 if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) 18556 return FunctionEmissionStatus::OMPDiscarded; 18557 } 18558 18559 if (Final && LangOpts.OpenMP && !LangOpts.CUDA) 18560 return FunctionEmissionStatus::Emitted; 18561 18562 if (LangOpts.CUDA) { 18563 // When compiling for device, host functions are never emitted. Similarly, 18564 // when compiling for host, device and global functions are never emitted. 18565 // (Technically, we do emit a host-side stub for global functions, but this 18566 // doesn't count for our purposes here.) 18567 Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD); 18568 if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host) 18569 return FunctionEmissionStatus::CUDADiscarded; 18570 if (!LangOpts.CUDAIsDevice && 18571 (T == Sema::CFT_Device || T == Sema::CFT_Global)) 18572 return FunctionEmissionStatus::CUDADiscarded; 18573 18574 if (IsEmittedForExternalSymbol()) 18575 return FunctionEmissionStatus::Emitted; 18576 } 18577 18578 // Otherwise, the function is known-emitted if it's in our set of 18579 // known-emitted functions. 18580 return FunctionEmissionStatus::Unknown; 18581 } 18582 18583 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) { 18584 // Host-side references to a __global__ function refer to the stub, so the 18585 // function itself is never emitted and therefore should not be marked. 18586 // If we have host fn calls kernel fn calls host+device, the HD function 18587 // does not get instantiated on the host. We model this by omitting at the 18588 // call to the kernel from the callgraph. This ensures that, when compiling 18589 // for host, only HD functions actually called from the host get marked as 18590 // known-emitted. 18591 return LangOpts.CUDA && !LangOpts.CUDAIsDevice && 18592 IdentifyCUDATarget(Callee) == CFT_Global; 18593 } 18594