1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CommentDiagnostic.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/NonTrivialTypeVisitor.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36 #include "clang/Sema/CXXFieldCollector.h"
37 #include "clang/Sema/DeclSpec.h"
38 #include "clang/Sema/DelayedDiagnostic.h"
39 #include "clang/Sema/Initialization.h"
40 #include "clang/Sema/Lookup.h"
41 #include "clang/Sema/ParsedTemplate.h"
42 #include "clang/Sema/Scope.h"
43 #include "clang/Sema/ScopeInfo.h"
44 #include "clang/Sema/SemaInternal.h"
45 #include "clang/Sema/Template.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/Triple.h"
48 #include <algorithm>
49 #include <cstring>
50 #include <functional>
51 #include <unordered_map>
52 
53 using namespace clang;
54 using namespace sema;
55 
56 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
57   if (OwnedType) {
58     Decl *Group[2] = { OwnedType, Ptr };
59     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
60   }
61 
62   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
63 }
64 
65 namespace {
66 
67 class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
68  public:
69    TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
70                         bool AllowTemplates = false,
71                         bool AllowNonTemplates = true)
72        : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
73          AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
74      WantExpressionKeywords = false;
75      WantCXXNamedCasts = false;
76      WantRemainingKeywords = false;
77   }
78 
79   bool ValidateCandidate(const TypoCorrection &candidate) override {
80     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
81       if (!AllowInvalidDecl && ND->isInvalidDecl())
82         return false;
83 
84       if (getAsTypeTemplateDecl(ND))
85         return AllowTemplates;
86 
87       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
88       if (!IsType)
89         return false;
90 
91       if (AllowNonTemplates)
92         return true;
93 
94       // An injected-class-name of a class template (specialization) is valid
95       // as a template or as a non-template.
96       if (AllowTemplates) {
97         auto *RD = dyn_cast<CXXRecordDecl>(ND);
98         if (!RD || !RD->isInjectedClassName())
99           return false;
100         RD = cast<CXXRecordDecl>(RD->getDeclContext());
101         return RD->getDescribedClassTemplate() ||
102                isa<ClassTemplateSpecializationDecl>(RD);
103       }
104 
105       return false;
106     }
107 
108     return !WantClassName && candidate.isKeyword();
109   }
110 
111   std::unique_ptr<CorrectionCandidateCallback> clone() override {
112     return std::make_unique<TypeNameValidatorCCC>(*this);
113   }
114 
115  private:
116   bool AllowInvalidDecl;
117   bool WantClassName;
118   bool AllowTemplates;
119   bool AllowNonTemplates;
120 };
121 
122 } // end anonymous namespace
123 
124 /// Determine whether the token kind starts a simple-type-specifier.
125 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
126   switch (Kind) {
127   // FIXME: Take into account the current language when deciding whether a
128   // token kind is a valid type specifier
129   case tok::kw_short:
130   case tok::kw_long:
131   case tok::kw___int64:
132   case tok::kw___int128:
133   case tok::kw_signed:
134   case tok::kw_unsigned:
135   case tok::kw_void:
136   case tok::kw_char:
137   case tok::kw_int:
138   case tok::kw_half:
139   case tok::kw_float:
140   case tok::kw_double:
141   case tok::kw___bf16:
142   case tok::kw__Float16:
143   case tok::kw___float128:
144   case tok::kw_wchar_t:
145   case tok::kw_bool:
146   case tok::kw___underlying_type:
147   case tok::kw___auto_type:
148     return true;
149 
150   case tok::annot_typename:
151   case tok::kw_char16_t:
152   case tok::kw_char32_t:
153   case tok::kw_typeof:
154   case tok::annot_decltype:
155   case tok::kw_decltype:
156     return getLangOpts().CPlusPlus;
157 
158   case tok::kw_char8_t:
159     return getLangOpts().Char8;
160 
161   default:
162     break;
163   }
164 
165   return false;
166 }
167 
168 namespace {
169 enum class UnqualifiedTypeNameLookupResult {
170   NotFound,
171   FoundNonType,
172   FoundType
173 };
174 } // end anonymous namespace
175 
176 /// Tries to perform unqualified lookup of the type decls in bases for
177 /// dependent class.
178 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
179 /// type decl, \a FoundType if only type decls are found.
180 static UnqualifiedTypeNameLookupResult
181 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
182                                 SourceLocation NameLoc,
183                                 const CXXRecordDecl *RD) {
184   if (!RD->hasDefinition())
185     return UnqualifiedTypeNameLookupResult::NotFound;
186   // Look for type decls in base classes.
187   UnqualifiedTypeNameLookupResult FoundTypeDecl =
188       UnqualifiedTypeNameLookupResult::NotFound;
189   for (const auto &Base : RD->bases()) {
190     const CXXRecordDecl *BaseRD = nullptr;
191     if (auto *BaseTT = Base.getType()->getAs<TagType>())
192       BaseRD = BaseTT->getAsCXXRecordDecl();
193     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
194       // Look for type decls in dependent base classes that have known primary
195       // templates.
196       if (!TST || !TST->isDependentType())
197         continue;
198       auto *TD = TST->getTemplateName().getAsTemplateDecl();
199       if (!TD)
200         continue;
201       if (auto *BasePrimaryTemplate =
202           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
203         if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
204           BaseRD = BasePrimaryTemplate;
205         else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
206           if (const ClassTemplatePartialSpecializationDecl *PS =
207                   CTD->findPartialSpecialization(Base.getType()))
208             if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
209               BaseRD = PS;
210         }
211       }
212     }
213     if (BaseRD) {
214       for (NamedDecl *ND : BaseRD->lookup(&II)) {
215         if (!isa<TypeDecl>(ND))
216           return UnqualifiedTypeNameLookupResult::FoundNonType;
217         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
218       }
219       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
220         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
221         case UnqualifiedTypeNameLookupResult::FoundNonType:
222           return UnqualifiedTypeNameLookupResult::FoundNonType;
223         case UnqualifiedTypeNameLookupResult::FoundType:
224           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
225           break;
226         case UnqualifiedTypeNameLookupResult::NotFound:
227           break;
228         }
229       }
230     }
231   }
232 
233   return FoundTypeDecl;
234 }
235 
236 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
237                                                       const IdentifierInfo &II,
238                                                       SourceLocation NameLoc) {
239   // Lookup in the parent class template context, if any.
240   const CXXRecordDecl *RD = nullptr;
241   UnqualifiedTypeNameLookupResult FoundTypeDecl =
242       UnqualifiedTypeNameLookupResult::NotFound;
243   for (DeclContext *DC = S.CurContext;
244        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
245        DC = DC->getParent()) {
246     // Look for type decls in dependent base classes that have known primary
247     // templates.
248     RD = dyn_cast<CXXRecordDecl>(DC);
249     if (RD && RD->getDescribedClassTemplate())
250       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
251   }
252   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
253     return nullptr;
254 
255   // We found some types in dependent base classes.  Recover as if the user
256   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
257   // lookup during template instantiation.
258   S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II;
259 
260   ASTContext &Context = S.Context;
261   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
262                                           cast<Type>(Context.getRecordType(RD)));
263   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
264 
265   CXXScopeSpec SS;
266   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
267 
268   TypeLocBuilder Builder;
269   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
270   DepTL.setNameLoc(NameLoc);
271   DepTL.setElaboratedKeywordLoc(SourceLocation());
272   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
273   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
274 }
275 
276 /// If the identifier refers to a type name within this scope,
277 /// return the declaration of that type.
278 ///
279 /// This routine performs ordinary name lookup of the identifier II
280 /// within the given scope, with optional C++ scope specifier SS, to
281 /// determine whether the name refers to a type. If so, returns an
282 /// opaque pointer (actually a QualType) corresponding to that
283 /// type. Otherwise, returns NULL.
284 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
285                              Scope *S, CXXScopeSpec *SS,
286                              bool isClassName, bool HasTrailingDot,
287                              ParsedType ObjectTypePtr,
288                              bool IsCtorOrDtorName,
289                              bool WantNontrivialTypeSourceInfo,
290                              bool IsClassTemplateDeductionContext,
291                              IdentifierInfo **CorrectedII) {
292   // FIXME: Consider allowing this outside C++1z mode as an extension.
293   bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
294                               getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
295                               !isClassName && !HasTrailingDot;
296 
297   // Determine where we will perform name lookup.
298   DeclContext *LookupCtx = nullptr;
299   if (ObjectTypePtr) {
300     QualType ObjectType = ObjectTypePtr.get();
301     if (ObjectType->isRecordType())
302       LookupCtx = computeDeclContext(ObjectType);
303   } else if (SS && SS->isNotEmpty()) {
304     LookupCtx = computeDeclContext(*SS, false);
305 
306     if (!LookupCtx) {
307       if (isDependentScopeSpecifier(*SS)) {
308         // C++ [temp.res]p3:
309         //   A qualified-id that refers to a type and in which the
310         //   nested-name-specifier depends on a template-parameter (14.6.2)
311         //   shall be prefixed by the keyword typename to indicate that the
312         //   qualified-id denotes a type, forming an
313         //   elaborated-type-specifier (7.1.5.3).
314         //
315         // We therefore do not perform any name lookup if the result would
316         // refer to a member of an unknown specialization.
317         if (!isClassName && !IsCtorOrDtorName)
318           return nullptr;
319 
320         // We know from the grammar that this name refers to a type,
321         // so build a dependent node to describe the type.
322         if (WantNontrivialTypeSourceInfo)
323           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
324 
325         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
326         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
327                                        II, NameLoc);
328         return ParsedType::make(T);
329       }
330 
331       return nullptr;
332     }
333 
334     if (!LookupCtx->isDependentContext() &&
335         RequireCompleteDeclContext(*SS, LookupCtx))
336       return nullptr;
337   }
338 
339   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
340   // lookup for class-names.
341   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
342                                       LookupOrdinaryName;
343   LookupResult Result(*this, &II, NameLoc, Kind);
344   if (LookupCtx) {
345     // Perform "qualified" name lookup into the declaration context we
346     // computed, which is either the type of the base of a member access
347     // expression or the declaration context associated with a prior
348     // nested-name-specifier.
349     LookupQualifiedName(Result, LookupCtx);
350 
351     if (ObjectTypePtr && Result.empty()) {
352       // C++ [basic.lookup.classref]p3:
353       //   If the unqualified-id is ~type-name, the type-name is looked up
354       //   in the context of the entire postfix-expression. If the type T of
355       //   the object expression is of a class type C, the type-name is also
356       //   looked up in the scope of class C. At least one of the lookups shall
357       //   find a name that refers to (possibly cv-qualified) T.
358       LookupName(Result, S);
359     }
360   } else {
361     // Perform unqualified name lookup.
362     LookupName(Result, S);
363 
364     // For unqualified lookup in a class template in MSVC mode, look into
365     // dependent base classes where the primary class template is known.
366     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
367       if (ParsedType TypeInBase =
368               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
369         return TypeInBase;
370     }
371   }
372 
373   NamedDecl *IIDecl = nullptr;
374   switch (Result.getResultKind()) {
375   case LookupResult::NotFound:
376   case LookupResult::NotFoundInCurrentInstantiation:
377     if (CorrectedII) {
378       TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
379                                AllowDeducedTemplate);
380       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
381                                               S, SS, CCC, CTK_ErrorRecovery);
382       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
383       TemplateTy Template;
384       bool MemberOfUnknownSpecialization;
385       UnqualifiedId TemplateName;
386       TemplateName.setIdentifier(NewII, NameLoc);
387       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
388       CXXScopeSpec NewSS, *NewSSPtr = SS;
389       if (SS && NNS) {
390         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
391         NewSSPtr = &NewSS;
392       }
393       if (Correction && (NNS || NewII != &II) &&
394           // Ignore a correction to a template type as the to-be-corrected
395           // identifier is not a template (typo correction for template names
396           // is handled elsewhere).
397           !(getLangOpts().CPlusPlus && NewSSPtr &&
398             isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
399                            Template, MemberOfUnknownSpecialization))) {
400         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
401                                     isClassName, HasTrailingDot, ObjectTypePtr,
402                                     IsCtorOrDtorName,
403                                     WantNontrivialTypeSourceInfo,
404                                     IsClassTemplateDeductionContext);
405         if (Ty) {
406           diagnoseTypo(Correction,
407                        PDiag(diag::err_unknown_type_or_class_name_suggest)
408                          << Result.getLookupName() << isClassName);
409           if (SS && NNS)
410             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
411           *CorrectedII = NewII;
412           return Ty;
413         }
414       }
415     }
416     // If typo correction failed or was not performed, fall through
417     LLVM_FALLTHROUGH;
418   case LookupResult::FoundOverloaded:
419   case LookupResult::FoundUnresolvedValue:
420     Result.suppressDiagnostics();
421     return nullptr;
422 
423   case LookupResult::Ambiguous:
424     // Recover from type-hiding ambiguities by hiding the type.  We'll
425     // do the lookup again when looking for an object, and we can
426     // diagnose the error then.  If we don't do this, then the error
427     // about hiding the type will be immediately followed by an error
428     // that only makes sense if the identifier was treated like a type.
429     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
430       Result.suppressDiagnostics();
431       return nullptr;
432     }
433 
434     // Look to see if we have a type anywhere in the list of results.
435     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
436          Res != ResEnd; ++Res) {
437       NamedDecl *RealRes = (*Res)->getUnderlyingDecl();
438       if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>(
439               RealRes) ||
440           (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) {
441         if (!IIDecl ||
442             // Make the selection of the recovery decl deterministic.
443             RealRes->getLocation() < IIDecl->getLocation())
444           IIDecl = RealRes;
445       }
446     }
447 
448     if (!IIDecl) {
449       // None of the entities we found is a type, so there is no way
450       // to even assume that the result is a type. In this case, don't
451       // complain about the ambiguity. The parser will either try to
452       // perform this lookup again (e.g., as an object name), which
453       // will produce the ambiguity, or will complain that it expected
454       // a type name.
455       Result.suppressDiagnostics();
456       return nullptr;
457     }
458 
459     // We found a type within the ambiguous lookup; diagnose the
460     // ambiguity and then return that type. This might be the right
461     // answer, or it might not be, but it suppresses any attempt to
462     // perform the name lookup again.
463     break;
464 
465   case LookupResult::Found:
466     IIDecl = Result.getFoundDecl();
467     break;
468   }
469 
470   assert(IIDecl && "Didn't find decl");
471 
472   QualType T;
473   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
474     // C++ [class.qual]p2: A lookup that would find the injected-class-name
475     // instead names the constructors of the class, except when naming a class.
476     // This is ill-formed when we're not actually forming a ctor or dtor name.
477     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
478     auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
479     if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
480         FoundRD->isInjectedClassName() &&
481         declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
482       Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
483           << &II << /*Type*/1;
484 
485     DiagnoseUseOfDecl(IIDecl, NameLoc);
486 
487     T = Context.getTypeDeclType(TD);
488     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
489   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
490     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
491     if (!HasTrailingDot)
492       T = Context.getObjCInterfaceType(IDecl);
493   } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(IIDecl)) {
494     (void)DiagnoseUseOfDecl(UD, NameLoc);
495     // Recover with 'int'
496     T = Context.IntTy;
497   } else if (AllowDeducedTemplate) {
498     if (auto *TD = getAsTypeTemplateDecl(IIDecl))
499       T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
500                                                        QualType(), false);
501   }
502 
503   if (T.isNull()) {
504     // If it's not plausibly a type, suppress diagnostics.
505     Result.suppressDiagnostics();
506     return nullptr;
507   }
508 
509   // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
510   // constructor or destructor name (in such a case, the scope specifier
511   // will be attached to the enclosing Expr or Decl node).
512   if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
513       !isa<ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>(IIDecl)) {
514     if (WantNontrivialTypeSourceInfo) {
515       // Construct a type with type-source information.
516       TypeLocBuilder Builder;
517       Builder.pushTypeSpec(T).setNameLoc(NameLoc);
518 
519       T = getElaboratedType(ETK_None, *SS, T);
520       ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
521       ElabTL.setElaboratedKeywordLoc(SourceLocation());
522       ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
523       return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
524     } else {
525       T = getElaboratedType(ETK_None, *SS, T);
526     }
527   }
528 
529   return ParsedType::make(T);
530 }
531 
532 // Builds a fake NNS for the given decl context.
533 static NestedNameSpecifier *
534 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
535   for (;; DC = DC->getLookupParent()) {
536     DC = DC->getPrimaryContext();
537     auto *ND = dyn_cast<NamespaceDecl>(DC);
538     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
539       return NestedNameSpecifier::Create(Context, nullptr, ND);
540     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
541       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
542                                          RD->getTypeForDecl());
543     else if (isa<TranslationUnitDecl>(DC))
544       return NestedNameSpecifier::GlobalSpecifier(Context);
545   }
546   llvm_unreachable("something isn't in TU scope?");
547 }
548 
549 /// Find the parent class with dependent bases of the innermost enclosing method
550 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
551 /// up allowing unqualified dependent type names at class-level, which MSVC
552 /// correctly rejects.
553 static const CXXRecordDecl *
554 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
555   for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
556     DC = DC->getPrimaryContext();
557     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
558       if (MD->getParent()->hasAnyDependentBases())
559         return MD->getParent();
560   }
561   return nullptr;
562 }
563 
564 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
565                                           SourceLocation NameLoc,
566                                           bool IsTemplateTypeArg) {
567   assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
568 
569   NestedNameSpecifier *NNS = nullptr;
570   if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
571     // If we weren't able to parse a default template argument, delay lookup
572     // until instantiation time by making a non-dependent DependentTypeName. We
573     // pretend we saw a NestedNameSpecifier referring to the current scope, and
574     // lookup is retried.
575     // FIXME: This hurts our diagnostic quality, since we get errors like "no
576     // type named 'Foo' in 'current_namespace'" when the user didn't write any
577     // name specifiers.
578     NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
579     Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
580   } else if (const CXXRecordDecl *RD =
581                  findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
582     // Build a DependentNameType that will perform lookup into RD at
583     // instantiation time.
584     NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
585                                       RD->getTypeForDecl());
586 
587     // Diagnose that this identifier was undeclared, and retry the lookup during
588     // template instantiation.
589     Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
590                                                                       << RD;
591   } else {
592     // This is not a situation that we should recover from.
593     return ParsedType();
594   }
595 
596   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
597 
598   // Build type location information.  We synthesized the qualifier, so we have
599   // to build a fake NestedNameSpecifierLoc.
600   NestedNameSpecifierLocBuilder NNSLocBuilder;
601   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
602   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
603 
604   TypeLocBuilder Builder;
605   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
606   DepTL.setNameLoc(NameLoc);
607   DepTL.setElaboratedKeywordLoc(SourceLocation());
608   DepTL.setQualifierLoc(QualifierLoc);
609   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
610 }
611 
612 /// isTagName() - This method is called *for error recovery purposes only*
613 /// to determine if the specified name is a valid tag name ("struct foo").  If
614 /// so, this returns the TST for the tag corresponding to it (TST_enum,
615 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
616 /// cases in C where the user forgot to specify the tag.
617 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
618   // Do a tag name lookup in this scope.
619   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
620   LookupName(R, S, false);
621   R.suppressDiagnostics();
622   if (R.getResultKind() == LookupResult::Found)
623     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
624       switch (TD->getTagKind()) {
625       case TTK_Struct: return DeclSpec::TST_struct;
626       case TTK_Interface: return DeclSpec::TST_interface;
627       case TTK_Union:  return DeclSpec::TST_union;
628       case TTK_Class:  return DeclSpec::TST_class;
629       case TTK_Enum:   return DeclSpec::TST_enum;
630       }
631     }
632 
633   return DeclSpec::TST_unspecified;
634 }
635 
636 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
637 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
638 /// then downgrade the missing typename error to a warning.
639 /// This is needed for MSVC compatibility; Example:
640 /// @code
641 /// template<class T> class A {
642 /// public:
643 ///   typedef int TYPE;
644 /// };
645 /// template<class T> class B : public A<T> {
646 /// public:
647 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
648 /// };
649 /// @endcode
650 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
651   if (CurContext->isRecord()) {
652     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
653       return true;
654 
655     const Type *Ty = SS->getScopeRep()->getAsType();
656 
657     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
658     for (const auto &Base : RD->bases())
659       if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
660         return true;
661     return S->isFunctionPrototypeScope();
662   }
663   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
664 }
665 
666 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
667                                    SourceLocation IILoc,
668                                    Scope *S,
669                                    CXXScopeSpec *SS,
670                                    ParsedType &SuggestedType,
671                                    bool IsTemplateName) {
672   // Don't report typename errors for editor placeholders.
673   if (II->isEditorPlaceholder())
674     return;
675   // We don't have anything to suggest (yet).
676   SuggestedType = nullptr;
677 
678   // There may have been a typo in the name of the type. Look up typo
679   // results, in case we have something that we can suggest.
680   TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
681                            /*AllowTemplates=*/IsTemplateName,
682                            /*AllowNonTemplates=*/!IsTemplateName);
683   if (TypoCorrection Corrected =
684           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
685                       CCC, CTK_ErrorRecovery)) {
686     // FIXME: Support error recovery for the template-name case.
687     bool CanRecover = !IsTemplateName;
688     if (Corrected.isKeyword()) {
689       // We corrected to a keyword.
690       diagnoseTypo(Corrected,
691                    PDiag(IsTemplateName ? diag::err_no_template_suggest
692                                         : diag::err_unknown_typename_suggest)
693                        << II);
694       II = Corrected.getCorrectionAsIdentifierInfo();
695     } else {
696       // We found a similarly-named type or interface; suggest that.
697       if (!SS || !SS->isSet()) {
698         diagnoseTypo(Corrected,
699                      PDiag(IsTemplateName ? diag::err_no_template_suggest
700                                           : diag::err_unknown_typename_suggest)
701                          << II, CanRecover);
702       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
703         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
704         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
705                                 II->getName().equals(CorrectedStr);
706         diagnoseTypo(Corrected,
707                      PDiag(IsTemplateName
708                                ? diag::err_no_member_template_suggest
709                                : diag::err_unknown_nested_typename_suggest)
710                          << II << DC << DroppedSpecifier << SS->getRange(),
711                      CanRecover);
712       } else {
713         llvm_unreachable("could not have corrected a typo here");
714       }
715 
716       if (!CanRecover)
717         return;
718 
719       CXXScopeSpec tmpSS;
720       if (Corrected.getCorrectionSpecifier())
721         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
722                           SourceRange(IILoc));
723       // FIXME: Support class template argument deduction here.
724       SuggestedType =
725           getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
726                       tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
727                       /*IsCtorOrDtorName=*/false,
728                       /*WantNontrivialTypeSourceInfo=*/true);
729     }
730     return;
731   }
732 
733   if (getLangOpts().CPlusPlus && !IsTemplateName) {
734     // See if II is a class template that the user forgot to pass arguments to.
735     UnqualifiedId Name;
736     Name.setIdentifier(II, IILoc);
737     CXXScopeSpec EmptySS;
738     TemplateTy TemplateResult;
739     bool MemberOfUnknownSpecialization;
740     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
741                        Name, nullptr, true, TemplateResult,
742                        MemberOfUnknownSpecialization) == TNK_Type_template) {
743       diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
744       return;
745     }
746   }
747 
748   // FIXME: Should we move the logic that tries to recover from a missing tag
749   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
750 
751   if (!SS || (!SS->isSet() && !SS->isInvalid()))
752     Diag(IILoc, IsTemplateName ? diag::err_no_template
753                                : diag::err_unknown_typename)
754         << II;
755   else if (DeclContext *DC = computeDeclContext(*SS, false))
756     Diag(IILoc, IsTemplateName ? diag::err_no_member_template
757                                : diag::err_typename_nested_not_found)
758         << II << DC << SS->getRange();
759   else if (SS->isValid() && SS->getScopeRep()->containsErrors()) {
760     SuggestedType =
761         ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get();
762   } else if (isDependentScopeSpecifier(*SS)) {
763     unsigned DiagID = diag::err_typename_missing;
764     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
765       DiagID = diag::ext_typename_missing;
766 
767     Diag(SS->getRange().getBegin(), DiagID)
768       << SS->getScopeRep() << II->getName()
769       << SourceRange(SS->getRange().getBegin(), IILoc)
770       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
771     SuggestedType = ActOnTypenameType(S, SourceLocation(),
772                                       *SS, *II, IILoc).get();
773   } else {
774     assert(SS && SS->isInvalid() &&
775            "Invalid scope specifier has already been diagnosed");
776   }
777 }
778 
779 /// Determine whether the given result set contains either a type name
780 /// or
781 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
782   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
783                        NextToken.is(tok::less);
784 
785   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
786     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
787       return true;
788 
789     if (CheckTemplate && isa<TemplateDecl>(*I))
790       return true;
791   }
792 
793   return false;
794 }
795 
796 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
797                                     Scope *S, CXXScopeSpec &SS,
798                                     IdentifierInfo *&Name,
799                                     SourceLocation NameLoc) {
800   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
801   SemaRef.LookupParsedName(R, S, &SS);
802   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
803     StringRef FixItTagName;
804     switch (Tag->getTagKind()) {
805       case TTK_Class:
806         FixItTagName = "class ";
807         break;
808 
809       case TTK_Enum:
810         FixItTagName = "enum ";
811         break;
812 
813       case TTK_Struct:
814         FixItTagName = "struct ";
815         break;
816 
817       case TTK_Interface:
818         FixItTagName = "__interface ";
819         break;
820 
821       case TTK_Union:
822         FixItTagName = "union ";
823         break;
824     }
825 
826     StringRef TagName = FixItTagName.drop_back();
827     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
828       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
829       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
830 
831     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
832          I != IEnd; ++I)
833       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
834         << Name << TagName;
835 
836     // Replace lookup results with just the tag decl.
837     Result.clear(Sema::LookupTagName);
838     SemaRef.LookupParsedName(Result, S, &SS);
839     return true;
840   }
841 
842   return false;
843 }
844 
845 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
846 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
847                                   QualType T, SourceLocation NameLoc) {
848   ASTContext &Context = S.Context;
849 
850   TypeLocBuilder Builder;
851   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
852 
853   T = S.getElaboratedType(ETK_None, SS, T);
854   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
855   ElabTL.setElaboratedKeywordLoc(SourceLocation());
856   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
857   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
858 }
859 
860 Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
861                                             IdentifierInfo *&Name,
862                                             SourceLocation NameLoc,
863                                             const Token &NextToken,
864                                             CorrectionCandidateCallback *CCC) {
865   DeclarationNameInfo NameInfo(Name, NameLoc);
866   ObjCMethodDecl *CurMethod = getCurMethodDecl();
867 
868   assert(NextToken.isNot(tok::coloncolon) &&
869          "parse nested name specifiers before calling ClassifyName");
870   if (getLangOpts().CPlusPlus && SS.isSet() &&
871       isCurrentClassName(*Name, S, &SS)) {
872     // Per [class.qual]p2, this names the constructors of SS, not the
873     // injected-class-name. We don't have a classification for that.
874     // There's not much point caching this result, since the parser
875     // will reject it later.
876     return NameClassification::Unknown();
877   }
878 
879   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
880   LookupParsedName(Result, S, &SS, !CurMethod);
881 
882   if (SS.isInvalid())
883     return NameClassification::Error();
884 
885   // For unqualified lookup in a class template in MSVC mode, look into
886   // dependent base classes where the primary class template is known.
887   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
888     if (ParsedType TypeInBase =
889             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
890       return TypeInBase;
891   }
892 
893   // Perform lookup for Objective-C instance variables (including automatically
894   // synthesized instance variables), if we're in an Objective-C method.
895   // FIXME: This lookup really, really needs to be folded in to the normal
896   // unqualified lookup mechanism.
897   if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
898     DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
899     if (Ivar.isInvalid())
900       return NameClassification::Error();
901     if (Ivar.isUsable())
902       return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
903 
904     // We defer builtin creation until after ivar lookup inside ObjC methods.
905     if (Result.empty())
906       LookupBuiltin(Result);
907   }
908 
909   bool SecondTry = false;
910   bool IsFilteredTemplateName = false;
911 
912 Corrected:
913   switch (Result.getResultKind()) {
914   case LookupResult::NotFound:
915     // If an unqualified-id is followed by a '(', then we have a function
916     // call.
917     if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
918       // In C++, this is an ADL-only call.
919       // FIXME: Reference?
920       if (getLangOpts().CPlusPlus)
921         return NameClassification::UndeclaredNonType();
922 
923       // C90 6.3.2.2:
924       //   If the expression that precedes the parenthesized argument list in a
925       //   function call consists solely of an identifier, and if no
926       //   declaration is visible for this identifier, the identifier is
927       //   implicitly declared exactly as if, in the innermost block containing
928       //   the function call, the declaration
929       //
930       //     extern int identifier ();
931       //
932       //   appeared.
933       //
934       // We also allow this in C99 as an extension.
935       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
936         return NameClassification::NonType(D);
937     }
938 
939     if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) {
940       // In C++20 onwards, this could be an ADL-only call to a function
941       // template, and we're required to assume that this is a template name.
942       //
943       // FIXME: Find a way to still do typo correction in this case.
944       TemplateName Template =
945           Context.getAssumedTemplateName(NameInfo.getName());
946       return NameClassification::UndeclaredTemplate(Template);
947     }
948 
949     // In C, we first see whether there is a tag type by the same name, in
950     // which case it's likely that the user just forgot to write "enum",
951     // "struct", or "union".
952     if (!getLangOpts().CPlusPlus && !SecondTry &&
953         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
954       break;
955     }
956 
957     // Perform typo correction to determine if there is another name that is
958     // close to this name.
959     if (!SecondTry && CCC) {
960       SecondTry = true;
961       if (TypoCorrection Corrected =
962               CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
963                           &SS, *CCC, CTK_ErrorRecovery)) {
964         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
965         unsigned QualifiedDiag = diag::err_no_member_suggest;
966 
967         NamedDecl *FirstDecl = Corrected.getFoundDecl();
968         NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
969         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
970             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
971           UnqualifiedDiag = diag::err_no_template_suggest;
972           QualifiedDiag = diag::err_no_member_template_suggest;
973         } else if (UnderlyingFirstDecl &&
974                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
975                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
976                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
977           UnqualifiedDiag = diag::err_unknown_typename_suggest;
978           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
979         }
980 
981         if (SS.isEmpty()) {
982           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
983         } else {// FIXME: is this even reachable? Test it.
984           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
985           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
986                                   Name->getName().equals(CorrectedStr);
987           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
988                                     << Name << computeDeclContext(SS, false)
989                                     << DroppedSpecifier << SS.getRange());
990         }
991 
992         // Update the name, so that the caller has the new name.
993         Name = Corrected.getCorrectionAsIdentifierInfo();
994 
995         // Typo correction corrected to a keyword.
996         if (Corrected.isKeyword())
997           return Name;
998 
999         // Also update the LookupResult...
1000         // FIXME: This should probably go away at some point
1001         Result.clear();
1002         Result.setLookupName(Corrected.getCorrection());
1003         if (FirstDecl)
1004           Result.addDecl(FirstDecl);
1005 
1006         // If we found an Objective-C instance variable, let
1007         // LookupInObjCMethod build the appropriate expression to
1008         // reference the ivar.
1009         // FIXME: This is a gross hack.
1010         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1011           DeclResult R =
1012               LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1013           if (R.isInvalid())
1014             return NameClassification::Error();
1015           if (R.isUsable())
1016             return NameClassification::NonType(Ivar);
1017         }
1018 
1019         goto Corrected;
1020       }
1021     }
1022 
1023     // We failed to correct; just fall through and let the parser deal with it.
1024     Result.suppressDiagnostics();
1025     return NameClassification::Unknown();
1026 
1027   case LookupResult::NotFoundInCurrentInstantiation: {
1028     // We performed name lookup into the current instantiation, and there were
1029     // dependent bases, so we treat this result the same way as any other
1030     // dependent nested-name-specifier.
1031 
1032     // C++ [temp.res]p2:
1033     //   A name used in a template declaration or definition and that is
1034     //   dependent on a template-parameter is assumed not to name a type
1035     //   unless the applicable name lookup finds a type name or the name is
1036     //   qualified by the keyword typename.
1037     //
1038     // FIXME: If the next token is '<', we might want to ask the parser to
1039     // perform some heroics to see if we actually have a
1040     // template-argument-list, which would indicate a missing 'template'
1041     // keyword here.
1042     return NameClassification::DependentNonType();
1043   }
1044 
1045   case LookupResult::Found:
1046   case LookupResult::FoundOverloaded:
1047   case LookupResult::FoundUnresolvedValue:
1048     break;
1049 
1050   case LookupResult::Ambiguous:
1051     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1052         hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1053                                       /*AllowDependent=*/false)) {
1054       // C++ [temp.local]p3:
1055       //   A lookup that finds an injected-class-name (10.2) can result in an
1056       //   ambiguity in certain cases (for example, if it is found in more than
1057       //   one base class). If all of the injected-class-names that are found
1058       //   refer to specializations of the same class template, and if the name
1059       //   is followed by a template-argument-list, the reference refers to the
1060       //   class template itself and not a specialization thereof, and is not
1061       //   ambiguous.
1062       //
1063       // This filtering can make an ambiguous result into an unambiguous one,
1064       // so try again after filtering out template names.
1065       FilterAcceptableTemplateNames(Result);
1066       if (!Result.isAmbiguous()) {
1067         IsFilteredTemplateName = true;
1068         break;
1069       }
1070     }
1071 
1072     // Diagnose the ambiguity and return an error.
1073     return NameClassification::Error();
1074   }
1075 
1076   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1077       (IsFilteredTemplateName ||
1078        hasAnyAcceptableTemplateNames(
1079            Result, /*AllowFunctionTemplates=*/true,
1080            /*AllowDependent=*/false,
1081            /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1082                getLangOpts().CPlusPlus20))) {
1083     // C++ [temp.names]p3:
1084     //   After name lookup (3.4) finds that a name is a template-name or that
1085     //   an operator-function-id or a literal- operator-id refers to a set of
1086     //   overloaded functions any member of which is a function template if
1087     //   this is followed by a <, the < is always taken as the delimiter of a
1088     //   template-argument-list and never as the less-than operator.
1089     // C++2a [temp.names]p2:
1090     //   A name is also considered to refer to a template if it is an
1091     //   unqualified-id followed by a < and name lookup finds either one
1092     //   or more functions or finds nothing.
1093     if (!IsFilteredTemplateName)
1094       FilterAcceptableTemplateNames(Result);
1095 
1096     bool IsFunctionTemplate;
1097     bool IsVarTemplate;
1098     TemplateName Template;
1099     if (Result.end() - Result.begin() > 1) {
1100       IsFunctionTemplate = true;
1101       Template = Context.getOverloadedTemplateName(Result.begin(),
1102                                                    Result.end());
1103     } else if (!Result.empty()) {
1104       auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1105           *Result.begin(), /*AllowFunctionTemplates=*/true,
1106           /*AllowDependent=*/false));
1107       IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1108       IsVarTemplate = isa<VarTemplateDecl>(TD);
1109 
1110       if (SS.isNotEmpty())
1111         Template =
1112             Context.getQualifiedTemplateName(SS.getScopeRep(),
1113                                              /*TemplateKeyword=*/false, TD);
1114       else
1115         Template = TemplateName(TD);
1116     } else {
1117       // All results were non-template functions. This is a function template
1118       // name.
1119       IsFunctionTemplate = true;
1120       Template = Context.getAssumedTemplateName(NameInfo.getName());
1121     }
1122 
1123     if (IsFunctionTemplate) {
1124       // Function templates always go through overload resolution, at which
1125       // point we'll perform the various checks (e.g., accessibility) we need
1126       // to based on which function we selected.
1127       Result.suppressDiagnostics();
1128 
1129       return NameClassification::FunctionTemplate(Template);
1130     }
1131 
1132     return IsVarTemplate ? NameClassification::VarTemplate(Template)
1133                          : NameClassification::TypeTemplate(Template);
1134   }
1135 
1136   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1137   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1138     DiagnoseUseOfDecl(Type, NameLoc);
1139     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1140     QualType T = Context.getTypeDeclType(Type);
1141     if (SS.isNotEmpty())
1142       return buildNestedType(*this, SS, T, NameLoc);
1143     return ParsedType::make(T);
1144   }
1145 
1146   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1147   if (!Class) {
1148     // FIXME: It's unfortunate that we don't have a Type node for handling this.
1149     if (ObjCCompatibleAliasDecl *Alias =
1150             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1151       Class = Alias->getClassInterface();
1152   }
1153 
1154   if (Class) {
1155     DiagnoseUseOfDecl(Class, NameLoc);
1156 
1157     if (NextToken.is(tok::period)) {
1158       // Interface. <something> is parsed as a property reference expression.
1159       // Just return "unknown" as a fall-through for now.
1160       Result.suppressDiagnostics();
1161       return NameClassification::Unknown();
1162     }
1163 
1164     QualType T = Context.getObjCInterfaceType(Class);
1165     return ParsedType::make(T);
1166   }
1167 
1168   if (isa<ConceptDecl>(FirstDecl))
1169     return NameClassification::Concept(
1170         TemplateName(cast<TemplateDecl>(FirstDecl)));
1171 
1172   if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(FirstDecl)) {
1173     (void)DiagnoseUseOfDecl(EmptyD, NameLoc);
1174     return NameClassification::Error();
1175   }
1176 
1177   // We can have a type template here if we're classifying a template argument.
1178   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1179       !isa<VarTemplateDecl>(FirstDecl))
1180     return NameClassification::TypeTemplate(
1181         TemplateName(cast<TemplateDecl>(FirstDecl)));
1182 
1183   // Check for a tag type hidden by a non-type decl in a few cases where it
1184   // seems likely a type is wanted instead of the non-type that was found.
1185   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1186   if ((NextToken.is(tok::identifier) ||
1187        (NextIsOp &&
1188         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1189       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1190     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1191     DiagnoseUseOfDecl(Type, NameLoc);
1192     QualType T = Context.getTypeDeclType(Type);
1193     if (SS.isNotEmpty())
1194       return buildNestedType(*this, SS, T, NameLoc);
1195     return ParsedType::make(T);
1196   }
1197 
1198   // If we already know which single declaration is referenced, just annotate
1199   // that declaration directly. Defer resolving even non-overloaded class
1200   // member accesses, as we need to defer certain access checks until we know
1201   // the context.
1202   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1203   if (Result.isSingleResult() && !ADL && !FirstDecl->isCXXClassMember())
1204     return NameClassification::NonType(Result.getRepresentativeDecl());
1205 
1206   // Otherwise, this is an overload set that we will need to resolve later.
1207   Result.suppressDiagnostics();
1208   return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1209       Context, Result.getNamingClass(), SS.getWithLocInContext(Context),
1210       Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(),
1211       Result.begin(), Result.end()));
1212 }
1213 
1214 ExprResult
1215 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1216                                              SourceLocation NameLoc) {
1217   assert(getLangOpts().CPlusPlus && "ADL-only call in C?");
1218   CXXScopeSpec SS;
1219   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1220   return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1221 }
1222 
1223 ExprResult
1224 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1225                                             IdentifierInfo *Name,
1226                                             SourceLocation NameLoc,
1227                                             bool IsAddressOfOperand) {
1228   DeclarationNameInfo NameInfo(Name, NameLoc);
1229   return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1230                                     NameInfo, IsAddressOfOperand,
1231                                     /*TemplateArgs=*/nullptr);
1232 }
1233 
1234 ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1235                                               NamedDecl *Found,
1236                                               SourceLocation NameLoc,
1237                                               const Token &NextToken) {
1238   if (getCurMethodDecl() && SS.isEmpty())
1239     if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1240       return BuildIvarRefExpr(S, NameLoc, Ivar);
1241 
1242   // Reconstruct the lookup result.
1243   LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1244   Result.addDecl(Found);
1245   Result.resolveKind();
1246 
1247   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1248   return BuildDeclarationNameExpr(SS, Result, ADL);
1249 }
1250 
1251 ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) {
1252   // For an implicit class member access, transform the result into a member
1253   // access expression if necessary.
1254   auto *ULE = cast<UnresolvedLookupExpr>(E);
1255   if ((*ULE->decls_begin())->isCXXClassMember()) {
1256     CXXScopeSpec SS;
1257     SS.Adopt(ULE->getQualifierLoc());
1258 
1259     // Reconstruct the lookup result.
1260     LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(),
1261                         LookupOrdinaryName);
1262     Result.setNamingClass(ULE->getNamingClass());
1263     for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I)
1264       Result.addDecl(*I, I.getAccess());
1265     Result.resolveKind();
1266     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1267                                            nullptr, S);
1268   }
1269 
1270   // Otherwise, this is already in the form we needed, and no further checks
1271   // are necessary.
1272   return ULE;
1273 }
1274 
1275 Sema::TemplateNameKindForDiagnostics
1276 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1277   auto *TD = Name.getAsTemplateDecl();
1278   if (!TD)
1279     return TemplateNameKindForDiagnostics::DependentTemplate;
1280   if (isa<ClassTemplateDecl>(TD))
1281     return TemplateNameKindForDiagnostics::ClassTemplate;
1282   if (isa<FunctionTemplateDecl>(TD))
1283     return TemplateNameKindForDiagnostics::FunctionTemplate;
1284   if (isa<VarTemplateDecl>(TD))
1285     return TemplateNameKindForDiagnostics::VarTemplate;
1286   if (isa<TypeAliasTemplateDecl>(TD))
1287     return TemplateNameKindForDiagnostics::AliasTemplate;
1288   if (isa<TemplateTemplateParmDecl>(TD))
1289     return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1290   if (isa<ConceptDecl>(TD))
1291     return TemplateNameKindForDiagnostics::Concept;
1292   return TemplateNameKindForDiagnostics::DependentTemplate;
1293 }
1294 
1295 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1296   assert(DC->getLexicalParent() == CurContext &&
1297       "The next DeclContext should be lexically contained in the current one.");
1298   CurContext = DC;
1299   S->setEntity(DC);
1300 }
1301 
1302 void Sema::PopDeclContext() {
1303   assert(CurContext && "DeclContext imbalance!");
1304 
1305   CurContext = CurContext->getLexicalParent();
1306   assert(CurContext && "Popped translation unit!");
1307 }
1308 
1309 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1310                                                                     Decl *D) {
1311   // Unlike PushDeclContext, the context to which we return is not necessarily
1312   // the containing DC of TD, because the new context will be some pre-existing
1313   // TagDecl definition instead of a fresh one.
1314   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1315   CurContext = cast<TagDecl>(D)->getDefinition();
1316   assert(CurContext && "skipping definition of undefined tag");
1317   // Start lookups from the parent of the current context; we don't want to look
1318   // into the pre-existing complete definition.
1319   S->setEntity(CurContext->getLookupParent());
1320   return Result;
1321 }
1322 
1323 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1324   CurContext = static_cast<decltype(CurContext)>(Context);
1325 }
1326 
1327 /// EnterDeclaratorContext - Used when we must lookup names in the context
1328 /// of a declarator's nested name specifier.
1329 ///
1330 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1331   // C++0x [basic.lookup.unqual]p13:
1332   //   A name used in the definition of a static data member of class
1333   //   X (after the qualified-id of the static member) is looked up as
1334   //   if the name was used in a member function of X.
1335   // C++0x [basic.lookup.unqual]p14:
1336   //   If a variable member of a namespace is defined outside of the
1337   //   scope of its namespace then any name used in the definition of
1338   //   the variable member (after the declarator-id) is looked up as
1339   //   if the definition of the variable member occurred in its
1340   //   namespace.
1341   // Both of these imply that we should push a scope whose context
1342   // is the semantic context of the declaration.  We can't use
1343   // PushDeclContext here because that context is not necessarily
1344   // lexically contained in the current context.  Fortunately,
1345   // the containing scope should have the appropriate information.
1346 
1347   assert(!S->getEntity() && "scope already has entity");
1348 
1349 #ifndef NDEBUG
1350   Scope *Ancestor = S->getParent();
1351   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1352   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1353 #endif
1354 
1355   CurContext = DC;
1356   S->setEntity(DC);
1357 
1358   if (S->getParent()->isTemplateParamScope()) {
1359     // Also set the corresponding entities for all immediately-enclosing
1360     // template parameter scopes.
1361     EnterTemplatedContext(S->getParent(), DC);
1362   }
1363 }
1364 
1365 void Sema::ExitDeclaratorContext(Scope *S) {
1366   assert(S->getEntity() == CurContext && "Context imbalance!");
1367 
1368   // Switch back to the lexical context.  The safety of this is
1369   // enforced by an assert in EnterDeclaratorContext.
1370   Scope *Ancestor = S->getParent();
1371   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1372   CurContext = Ancestor->getEntity();
1373 
1374   // We don't need to do anything with the scope, which is going to
1375   // disappear.
1376 }
1377 
1378 void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) {
1379   assert(S->isTemplateParamScope() &&
1380          "expected to be initializing a template parameter scope");
1381 
1382   // C++20 [temp.local]p7:
1383   //   In the definition of a member of a class template that appears outside
1384   //   of the class template definition, the name of a member of the class
1385   //   template hides the name of a template-parameter of any enclosing class
1386   //   templates (but not a template-parameter of the member if the member is a
1387   //   class or function template).
1388   // C++20 [temp.local]p9:
1389   //   In the definition of a class template or in the definition of a member
1390   //   of such a template that appears outside of the template definition, for
1391   //   each non-dependent base class (13.8.2.1), if the name of the base class
1392   //   or the name of a member of the base class is the same as the name of a
1393   //   template-parameter, the base class name or member name hides the
1394   //   template-parameter name (6.4.10).
1395   //
1396   // This means that a template parameter scope should be searched immediately
1397   // after searching the DeclContext for which it is a template parameter
1398   // scope. For example, for
1399   //   template<typename T> template<typename U> template<typename V>
1400   //     void N::A<T>::B<U>::f(...)
1401   // we search V then B<U> (and base classes) then U then A<T> (and base
1402   // classes) then T then N then ::.
1403   unsigned ScopeDepth = getTemplateDepth(S);
1404   for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) {
1405     DeclContext *SearchDCAfterScope = DC;
1406     for (; DC; DC = DC->getLookupParent()) {
1407       if (const TemplateParameterList *TPL =
1408               cast<Decl>(DC)->getDescribedTemplateParams()) {
1409         unsigned DCDepth = TPL->getDepth() + 1;
1410         if (DCDepth > ScopeDepth)
1411           continue;
1412         if (ScopeDepth == DCDepth)
1413           SearchDCAfterScope = DC = DC->getLookupParent();
1414         break;
1415       }
1416     }
1417     S->setLookupEntity(SearchDCAfterScope);
1418   }
1419 }
1420 
1421 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1422   // We assume that the caller has already called
1423   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1424   FunctionDecl *FD = D->getAsFunction();
1425   if (!FD)
1426     return;
1427 
1428   // Same implementation as PushDeclContext, but enters the context
1429   // from the lexical parent, rather than the top-level class.
1430   assert(CurContext == FD->getLexicalParent() &&
1431     "The next DeclContext should be lexically contained in the current one.");
1432   CurContext = FD;
1433   S->setEntity(CurContext);
1434 
1435   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1436     ParmVarDecl *Param = FD->getParamDecl(P);
1437     // If the parameter has an identifier, then add it to the scope
1438     if (Param->getIdentifier()) {
1439       S->AddDecl(Param);
1440       IdResolver.AddDecl(Param);
1441     }
1442   }
1443 }
1444 
1445 void Sema::ActOnExitFunctionContext() {
1446   // Same implementation as PopDeclContext, but returns to the lexical parent,
1447   // rather than the top-level class.
1448   assert(CurContext && "DeclContext imbalance!");
1449   CurContext = CurContext->getLexicalParent();
1450   assert(CurContext && "Popped translation unit!");
1451 }
1452 
1453 /// Determine whether we allow overloading of the function
1454 /// PrevDecl with another declaration.
1455 ///
1456 /// This routine determines whether overloading is possible, not
1457 /// whether some new function is actually an overload. It will return
1458 /// true in C++ (where we can always provide overloads) or, as an
1459 /// extension, in C when the previous function is already an
1460 /// overloaded function declaration or has the "overloadable"
1461 /// attribute.
1462 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1463                                        ASTContext &Context,
1464                                        const FunctionDecl *New) {
1465   if (Context.getLangOpts().CPlusPlus)
1466     return true;
1467 
1468   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1469     return true;
1470 
1471   return Previous.getResultKind() == LookupResult::Found &&
1472          (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1473           New->hasAttr<OverloadableAttr>());
1474 }
1475 
1476 /// Add this decl to the scope shadowed decl chains.
1477 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1478   // Move up the scope chain until we find the nearest enclosing
1479   // non-transparent context. The declaration will be introduced into this
1480   // scope.
1481   while (S->getEntity() && S->getEntity()->isTransparentContext())
1482     S = S->getParent();
1483 
1484   // Add scoped declarations into their context, so that they can be
1485   // found later. Declarations without a context won't be inserted
1486   // into any context.
1487   if (AddToContext)
1488     CurContext->addDecl(D);
1489 
1490   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1491   // are function-local declarations.
1492   if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent())
1493     return;
1494 
1495   // Template instantiations should also not be pushed into scope.
1496   if (isa<FunctionDecl>(D) &&
1497       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1498     return;
1499 
1500   // If this replaces anything in the current scope,
1501   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1502                                IEnd = IdResolver.end();
1503   for (; I != IEnd; ++I) {
1504     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1505       S->RemoveDecl(*I);
1506       IdResolver.RemoveDecl(*I);
1507 
1508       // Should only need to replace one decl.
1509       break;
1510     }
1511   }
1512 
1513   S->AddDecl(D);
1514 
1515   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1516     // Implicitly-generated labels may end up getting generated in an order that
1517     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1518     // the label at the appropriate place in the identifier chain.
1519     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1520       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1521       if (IDC == CurContext) {
1522         if (!S->isDeclScope(*I))
1523           continue;
1524       } else if (IDC->Encloses(CurContext))
1525         break;
1526     }
1527 
1528     IdResolver.InsertDeclAfter(I, D);
1529   } else {
1530     IdResolver.AddDecl(D);
1531   }
1532   warnOnReservedIdentifier(D);
1533 }
1534 
1535 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1536                          bool AllowInlineNamespace) {
1537   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1538 }
1539 
1540 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1541   DeclContext *TargetDC = DC->getPrimaryContext();
1542   do {
1543     if (DeclContext *ScopeDC = S->getEntity())
1544       if (ScopeDC->getPrimaryContext() == TargetDC)
1545         return S;
1546   } while ((S = S->getParent()));
1547 
1548   return nullptr;
1549 }
1550 
1551 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1552                                             DeclContext*,
1553                                             ASTContext&);
1554 
1555 /// Filters out lookup results that don't fall within the given scope
1556 /// as determined by isDeclInScope.
1557 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1558                                 bool ConsiderLinkage,
1559                                 bool AllowInlineNamespace) {
1560   LookupResult::Filter F = R.makeFilter();
1561   while (F.hasNext()) {
1562     NamedDecl *D = F.next();
1563 
1564     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1565       continue;
1566 
1567     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1568       continue;
1569 
1570     F.erase();
1571   }
1572 
1573   F.done();
1574 }
1575 
1576 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1577 /// have compatible owning modules.
1578 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1579   // FIXME: The Modules TS is not clear about how friend declarations are
1580   // to be treated. It's not meaningful to have different owning modules for
1581   // linkage in redeclarations of the same entity, so for now allow the
1582   // redeclaration and change the owning modules to match.
1583   if (New->getFriendObjectKind() &&
1584       Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1585     New->setLocalOwningModule(Old->getOwningModule());
1586     makeMergedDefinitionVisible(New);
1587     return false;
1588   }
1589 
1590   Module *NewM = New->getOwningModule();
1591   Module *OldM = Old->getOwningModule();
1592 
1593   if (NewM && NewM->Kind == Module::PrivateModuleFragment)
1594     NewM = NewM->Parent;
1595   if (OldM && OldM->Kind == Module::PrivateModuleFragment)
1596     OldM = OldM->Parent;
1597 
1598   if (NewM == OldM)
1599     return false;
1600 
1601   bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1602   bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1603   if (NewIsModuleInterface || OldIsModuleInterface) {
1604     // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1605     //   if a declaration of D [...] appears in the purview of a module, all
1606     //   other such declarations shall appear in the purview of the same module
1607     Diag(New->getLocation(), diag::err_mismatched_owning_module)
1608       << New
1609       << NewIsModuleInterface
1610       << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1611       << OldIsModuleInterface
1612       << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1613     Diag(Old->getLocation(), diag::note_previous_declaration);
1614     New->setInvalidDecl();
1615     return true;
1616   }
1617 
1618   return false;
1619 }
1620 
1621 static bool isUsingDecl(NamedDecl *D) {
1622   return isa<UsingShadowDecl>(D) ||
1623          isa<UnresolvedUsingTypenameDecl>(D) ||
1624          isa<UnresolvedUsingValueDecl>(D);
1625 }
1626 
1627 /// Removes using shadow declarations from the lookup results.
1628 static void RemoveUsingDecls(LookupResult &R) {
1629   LookupResult::Filter F = R.makeFilter();
1630   while (F.hasNext())
1631     if (isUsingDecl(F.next()))
1632       F.erase();
1633 
1634   F.done();
1635 }
1636 
1637 /// Check for this common pattern:
1638 /// @code
1639 /// class S {
1640 ///   S(const S&); // DO NOT IMPLEMENT
1641 ///   void operator=(const S&); // DO NOT IMPLEMENT
1642 /// };
1643 /// @endcode
1644 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1645   // FIXME: Should check for private access too but access is set after we get
1646   // the decl here.
1647   if (D->doesThisDeclarationHaveABody())
1648     return false;
1649 
1650   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1651     return CD->isCopyConstructor();
1652   return D->isCopyAssignmentOperator();
1653 }
1654 
1655 // We need this to handle
1656 //
1657 // typedef struct {
1658 //   void *foo() { return 0; }
1659 // } A;
1660 //
1661 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1662 // for example. If 'A', foo will have external linkage. If we have '*A',
1663 // foo will have no linkage. Since we can't know until we get to the end
1664 // of the typedef, this function finds out if D might have non-external linkage.
1665 // Callers should verify at the end of the TU if it D has external linkage or
1666 // not.
1667 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1668   const DeclContext *DC = D->getDeclContext();
1669   while (!DC->isTranslationUnit()) {
1670     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1671       if (!RD->hasNameForLinkage())
1672         return true;
1673     }
1674     DC = DC->getParent();
1675   }
1676 
1677   return !D->isExternallyVisible();
1678 }
1679 
1680 // FIXME: This needs to be refactored; some other isInMainFile users want
1681 // these semantics.
1682 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1683   if (S.TUKind != TU_Complete)
1684     return false;
1685   return S.SourceMgr.isInMainFile(Loc);
1686 }
1687 
1688 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1689   assert(D);
1690 
1691   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1692     return false;
1693 
1694   // Ignore all entities declared within templates, and out-of-line definitions
1695   // of members of class templates.
1696   if (D->getDeclContext()->isDependentContext() ||
1697       D->getLexicalDeclContext()->isDependentContext())
1698     return false;
1699 
1700   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1701     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1702       return false;
1703     // A non-out-of-line declaration of a member specialization was implicitly
1704     // instantiated; it's the out-of-line declaration that we're interested in.
1705     if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1706         FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1707       return false;
1708 
1709     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1710       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1711         return false;
1712     } else {
1713       // 'static inline' functions are defined in headers; don't warn.
1714       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1715         return false;
1716     }
1717 
1718     if (FD->doesThisDeclarationHaveABody() &&
1719         Context.DeclMustBeEmitted(FD))
1720       return false;
1721   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1722     // Constants and utility variables are defined in headers with internal
1723     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1724     // like "inline".)
1725     if (!isMainFileLoc(*this, VD->getLocation()))
1726       return false;
1727 
1728     if (Context.DeclMustBeEmitted(VD))
1729       return false;
1730 
1731     if (VD->isStaticDataMember() &&
1732         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1733       return false;
1734     if (VD->isStaticDataMember() &&
1735         VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1736         VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1737       return false;
1738 
1739     if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1740       return false;
1741   } else {
1742     return false;
1743   }
1744 
1745   // Only warn for unused decls internal to the translation unit.
1746   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1747   // for inline functions defined in the main source file, for instance.
1748   return mightHaveNonExternalLinkage(D);
1749 }
1750 
1751 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1752   if (!D)
1753     return;
1754 
1755   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1756     const FunctionDecl *First = FD->getFirstDecl();
1757     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1758       return; // First should already be in the vector.
1759   }
1760 
1761   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1762     const VarDecl *First = VD->getFirstDecl();
1763     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1764       return; // First should already be in the vector.
1765   }
1766 
1767   if (ShouldWarnIfUnusedFileScopedDecl(D))
1768     UnusedFileScopedDecls.push_back(D);
1769 }
1770 
1771 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1772   if (D->isInvalidDecl())
1773     return false;
1774 
1775   if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1776     // For a decomposition declaration, warn if none of the bindings are
1777     // referenced, instead of if the variable itself is referenced (which
1778     // it is, by the bindings' expressions).
1779     for (auto *BD : DD->bindings())
1780       if (BD->isReferenced())
1781         return false;
1782   } else if (!D->getDeclName()) {
1783     return false;
1784   } else if (D->isReferenced() || D->isUsed()) {
1785     return false;
1786   }
1787 
1788   if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>())
1789     return false;
1790 
1791   if (isa<LabelDecl>(D))
1792     return true;
1793 
1794   // Except for labels, we only care about unused decls that are local to
1795   // functions.
1796   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1797   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1798     // For dependent types, the diagnostic is deferred.
1799     WithinFunction =
1800         WithinFunction || (R->isLocalClass() && !R->isDependentType());
1801   if (!WithinFunction)
1802     return false;
1803 
1804   if (isa<TypedefNameDecl>(D))
1805     return true;
1806 
1807   // White-list anything that isn't a local variable.
1808   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1809     return false;
1810 
1811   // Types of valid local variables should be complete, so this should succeed.
1812   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1813 
1814     // White-list anything with an __attribute__((unused)) type.
1815     const auto *Ty = VD->getType().getTypePtr();
1816 
1817     // Only look at the outermost level of typedef.
1818     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1819       if (TT->getDecl()->hasAttr<UnusedAttr>())
1820         return false;
1821     }
1822 
1823     // If we failed to complete the type for some reason, or if the type is
1824     // dependent, don't diagnose the variable.
1825     if (Ty->isIncompleteType() || Ty->isDependentType())
1826       return false;
1827 
1828     // Look at the element type to ensure that the warning behaviour is
1829     // consistent for both scalars and arrays.
1830     Ty = Ty->getBaseElementTypeUnsafe();
1831 
1832     if (const TagType *TT = Ty->getAs<TagType>()) {
1833       const TagDecl *Tag = TT->getDecl();
1834       if (Tag->hasAttr<UnusedAttr>())
1835         return false;
1836 
1837       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1838         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1839           return false;
1840 
1841         if (const Expr *Init = VD->getInit()) {
1842           if (const ExprWithCleanups *Cleanups =
1843                   dyn_cast<ExprWithCleanups>(Init))
1844             Init = Cleanups->getSubExpr();
1845           const CXXConstructExpr *Construct =
1846             dyn_cast<CXXConstructExpr>(Init);
1847           if (Construct && !Construct->isElidable()) {
1848             CXXConstructorDecl *CD = Construct->getConstructor();
1849             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1850                 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1851               return false;
1852           }
1853 
1854           // Suppress the warning if we don't know how this is constructed, and
1855           // it could possibly be non-trivial constructor.
1856           if (Init->isTypeDependent())
1857             for (const CXXConstructorDecl *Ctor : RD->ctors())
1858               if (!Ctor->isTrivial())
1859                 return false;
1860         }
1861       }
1862     }
1863 
1864     // TODO: __attribute__((unused)) templates?
1865   }
1866 
1867   return true;
1868 }
1869 
1870 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1871                                      FixItHint &Hint) {
1872   if (isa<LabelDecl>(D)) {
1873     SourceLocation AfterColon = Lexer::findLocationAfterToken(
1874         D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1875         true);
1876     if (AfterColon.isInvalid())
1877       return;
1878     Hint = FixItHint::CreateRemoval(
1879         CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1880   }
1881 }
1882 
1883 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1884   if (D->getTypeForDecl()->isDependentType())
1885     return;
1886 
1887   for (auto *TmpD : D->decls()) {
1888     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1889       DiagnoseUnusedDecl(T);
1890     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1891       DiagnoseUnusedNestedTypedefs(R);
1892   }
1893 }
1894 
1895 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1896 /// unless they are marked attr(unused).
1897 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1898   if (!ShouldDiagnoseUnusedDecl(D))
1899     return;
1900 
1901   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1902     // typedefs can be referenced later on, so the diagnostics are emitted
1903     // at end-of-translation-unit.
1904     UnusedLocalTypedefNameCandidates.insert(TD);
1905     return;
1906   }
1907 
1908   FixItHint Hint;
1909   GenerateFixForUnusedDecl(D, Context, Hint);
1910 
1911   unsigned DiagID;
1912   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1913     DiagID = diag::warn_unused_exception_param;
1914   else if (isa<LabelDecl>(D))
1915     DiagID = diag::warn_unused_label;
1916   else
1917     DiagID = diag::warn_unused_variable;
1918 
1919   Diag(D->getLocation(), DiagID) << D << Hint;
1920 }
1921 
1922 void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD) {
1923   // If it's not referenced, it can't be set.
1924   if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<UnusedAttr>())
1925     return;
1926 
1927   const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe();
1928 
1929   if (Ty->isReferenceType() || Ty->isDependentType())
1930     return;
1931 
1932   if (const TagType *TT = Ty->getAs<TagType>()) {
1933     const TagDecl *Tag = TT->getDecl();
1934     if (Tag->hasAttr<UnusedAttr>())
1935       return;
1936     // In C++, don't warn for record types that don't have WarnUnusedAttr, to
1937     // mimic gcc's behavior.
1938     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1939       if (!RD->hasAttr<WarnUnusedAttr>())
1940         return;
1941     }
1942   }
1943 
1944   auto iter = RefsMinusAssignments.find(VD);
1945   if (iter == RefsMinusAssignments.end())
1946     return;
1947 
1948   assert(iter->getSecond() >= 0 &&
1949          "Found a negative number of references to a VarDecl");
1950   if (iter->getSecond() != 0)
1951     return;
1952   unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter
1953                                          : diag::warn_unused_but_set_variable;
1954   Diag(VD->getLocation(), DiagID) << VD;
1955 }
1956 
1957 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1958   // Verify that we have no forward references left.  If so, there was a goto
1959   // or address of a label taken, but no definition of it.  Label fwd
1960   // definitions are indicated with a null substmt which is also not a resolved
1961   // MS inline assembly label name.
1962   bool Diagnose = false;
1963   if (L->isMSAsmLabel())
1964     Diagnose = !L->isResolvedMSAsmLabel();
1965   else
1966     Diagnose = L->getStmt() == nullptr;
1967   if (Diagnose)
1968     S.Diag(L->getLocation(), diag::err_undeclared_label_use) << L;
1969 }
1970 
1971 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1972   S->mergeNRVOIntoParent();
1973 
1974   if (S->decl_empty()) return;
1975   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1976          "Scope shouldn't contain decls!");
1977 
1978   for (auto *TmpD : S->decls()) {
1979     assert(TmpD && "This decl didn't get pushed??");
1980 
1981     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1982     NamedDecl *D = cast<NamedDecl>(TmpD);
1983 
1984     // Diagnose unused variables in this scope.
1985     if (!S->hasUnrecoverableErrorOccurred()) {
1986       DiagnoseUnusedDecl(D);
1987       if (const auto *RD = dyn_cast<RecordDecl>(D))
1988         DiagnoseUnusedNestedTypedefs(RD);
1989       if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
1990         DiagnoseUnusedButSetDecl(VD);
1991         RefsMinusAssignments.erase(VD);
1992       }
1993     }
1994 
1995     if (!D->getDeclName()) continue;
1996 
1997     // If this was a forward reference to a label, verify it was defined.
1998     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1999       CheckPoppedLabel(LD, *this);
2000 
2001     // Remove this name from our lexical scope, and warn on it if we haven't
2002     // already.
2003     IdResolver.RemoveDecl(D);
2004     auto ShadowI = ShadowingDecls.find(D);
2005     if (ShadowI != ShadowingDecls.end()) {
2006       if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
2007         Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
2008             << D << FD << FD->getParent();
2009         Diag(FD->getLocation(), diag::note_previous_declaration);
2010       }
2011       ShadowingDecls.erase(ShadowI);
2012     }
2013   }
2014 }
2015 
2016 /// Look for an Objective-C class in the translation unit.
2017 ///
2018 /// \param Id The name of the Objective-C class we're looking for. If
2019 /// typo-correction fixes this name, the Id will be updated
2020 /// to the fixed name.
2021 ///
2022 /// \param IdLoc The location of the name in the translation unit.
2023 ///
2024 /// \param DoTypoCorrection If true, this routine will attempt typo correction
2025 /// if there is no class with the given name.
2026 ///
2027 /// \returns The declaration of the named Objective-C class, or NULL if the
2028 /// class could not be found.
2029 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
2030                                               SourceLocation IdLoc,
2031                                               bool DoTypoCorrection) {
2032   // The third "scope" argument is 0 since we aren't enabling lazy built-in
2033   // creation from this context.
2034   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
2035 
2036   if (!IDecl && DoTypoCorrection) {
2037     // Perform typo correction at the given location, but only if we
2038     // find an Objective-C class name.
2039     DeclFilterCCC<ObjCInterfaceDecl> CCC{};
2040     if (TypoCorrection C =
2041             CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
2042                         TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
2043       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
2044       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
2045       Id = IDecl->getIdentifier();
2046     }
2047   }
2048   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
2049   // This routine must always return a class definition, if any.
2050   if (Def && Def->getDefinition())
2051       Def = Def->getDefinition();
2052   return Def;
2053 }
2054 
2055 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
2056 /// from S, where a non-field would be declared. This routine copes
2057 /// with the difference between C and C++ scoping rules in structs and
2058 /// unions. For example, the following code is well-formed in C but
2059 /// ill-formed in C++:
2060 /// @code
2061 /// struct S6 {
2062 ///   enum { BAR } e;
2063 /// };
2064 ///
2065 /// void test_S6() {
2066 ///   struct S6 a;
2067 ///   a.e = BAR;
2068 /// }
2069 /// @endcode
2070 /// For the declaration of BAR, this routine will return a different
2071 /// scope. The scope S will be the scope of the unnamed enumeration
2072 /// within S6. In C++, this routine will return the scope associated
2073 /// with S6, because the enumeration's scope is a transparent
2074 /// context but structures can contain non-field names. In C, this
2075 /// routine will return the translation unit scope, since the
2076 /// enumeration's scope is a transparent context and structures cannot
2077 /// contain non-field names.
2078 Scope *Sema::getNonFieldDeclScope(Scope *S) {
2079   while (((S->getFlags() & Scope::DeclScope) == 0) ||
2080          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2081          (S->isClassScope() && !getLangOpts().CPlusPlus))
2082     S = S->getParent();
2083   return S;
2084 }
2085 
2086 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2087                                ASTContext::GetBuiltinTypeError Error) {
2088   switch (Error) {
2089   case ASTContext::GE_None:
2090     return "";
2091   case ASTContext::GE_Missing_type:
2092     return BuiltinInfo.getHeaderName(ID);
2093   case ASTContext::GE_Missing_stdio:
2094     return "stdio.h";
2095   case ASTContext::GE_Missing_setjmp:
2096     return "setjmp.h";
2097   case ASTContext::GE_Missing_ucontext:
2098     return "ucontext.h";
2099   }
2100   llvm_unreachable("unhandled error kind");
2101 }
2102 
2103 FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type,
2104                                   unsigned ID, SourceLocation Loc) {
2105   DeclContext *Parent = Context.getTranslationUnitDecl();
2106 
2107   if (getLangOpts().CPlusPlus) {
2108     LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create(
2109         Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false);
2110     CLinkageDecl->setImplicit();
2111     Parent->addDecl(CLinkageDecl);
2112     Parent = CLinkageDecl;
2113   }
2114 
2115   FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type,
2116                                            /*TInfo=*/nullptr, SC_Extern,
2117                                            getCurFPFeatures().isFPConstrained(),
2118                                            false, Type->isFunctionProtoType());
2119   New->setImplicit();
2120   New->addAttr(BuiltinAttr::CreateImplicit(Context, ID));
2121 
2122   // Create Decl objects for each parameter, adding them to the
2123   // FunctionDecl.
2124   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) {
2125     SmallVector<ParmVarDecl *, 16> Params;
2126     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2127       ParmVarDecl *parm = ParmVarDecl::Create(
2128           Context, New, SourceLocation(), SourceLocation(), nullptr,
2129           FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr);
2130       parm->setScopeInfo(0, i);
2131       Params.push_back(parm);
2132     }
2133     New->setParams(Params);
2134   }
2135 
2136   AddKnownFunctionAttributes(New);
2137   return New;
2138 }
2139 
2140 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2141 /// file scope.  lazily create a decl for it. ForRedeclaration is true
2142 /// if we're creating this built-in in anticipation of redeclaring the
2143 /// built-in.
2144 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2145                                      Scope *S, bool ForRedeclaration,
2146                                      SourceLocation Loc) {
2147   LookupNecessaryTypesForBuiltin(S, ID);
2148 
2149   ASTContext::GetBuiltinTypeError Error;
2150   QualType R = Context.GetBuiltinType(ID, Error);
2151   if (Error) {
2152     if (!ForRedeclaration)
2153       return nullptr;
2154 
2155     // If we have a builtin without an associated type we should not emit a
2156     // warning when we were not able to find a type for it.
2157     if (Error == ASTContext::GE_Missing_type ||
2158         Context.BuiltinInfo.allowTypeMismatch(ID))
2159       return nullptr;
2160 
2161     // If we could not find a type for setjmp it is because the jmp_buf type was
2162     // not defined prior to the setjmp declaration.
2163     if (Error == ASTContext::GE_Missing_setjmp) {
2164       Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2165           << Context.BuiltinInfo.getName(ID);
2166       return nullptr;
2167     }
2168 
2169     // Generally, we emit a warning that the declaration requires the
2170     // appropriate header.
2171     Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2172         << getHeaderName(Context.BuiltinInfo, ID, Error)
2173         << Context.BuiltinInfo.getName(ID);
2174     return nullptr;
2175   }
2176 
2177   if (!ForRedeclaration &&
2178       (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2179        Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2180     Diag(Loc, diag::ext_implicit_lib_function_decl)
2181         << Context.BuiltinInfo.getName(ID) << R;
2182     if (const char *Header = Context.BuiltinInfo.getHeaderName(ID))
2183       Diag(Loc, diag::note_include_header_or_declare)
2184           << Header << Context.BuiltinInfo.getName(ID);
2185   }
2186 
2187   if (R.isNull())
2188     return nullptr;
2189 
2190   FunctionDecl *New = CreateBuiltin(II, R, ID, Loc);
2191   RegisterLocallyScopedExternCDecl(New, S);
2192 
2193   // TUScope is the translation-unit scope to insert this function into.
2194   // FIXME: This is hideous. We need to teach PushOnScopeChains to
2195   // relate Scopes to DeclContexts, and probably eliminate CurContext
2196   // entirely, but we're not there yet.
2197   DeclContext *SavedContext = CurContext;
2198   CurContext = New->getDeclContext();
2199   PushOnScopeChains(New, TUScope);
2200   CurContext = SavedContext;
2201   return New;
2202 }
2203 
2204 /// Typedef declarations don't have linkage, but they still denote the same
2205 /// entity if their types are the same.
2206 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2207 /// isSameEntity.
2208 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2209                                                      TypedefNameDecl *Decl,
2210                                                      LookupResult &Previous) {
2211   // This is only interesting when modules are enabled.
2212   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2213     return;
2214 
2215   // Empty sets are uninteresting.
2216   if (Previous.empty())
2217     return;
2218 
2219   LookupResult::Filter Filter = Previous.makeFilter();
2220   while (Filter.hasNext()) {
2221     NamedDecl *Old = Filter.next();
2222 
2223     // Non-hidden declarations are never ignored.
2224     if (S.isVisible(Old))
2225       continue;
2226 
2227     // Declarations of the same entity are not ignored, even if they have
2228     // different linkages.
2229     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2230       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2231                                 Decl->getUnderlyingType()))
2232         continue;
2233 
2234       // If both declarations give a tag declaration a typedef name for linkage
2235       // purposes, then they declare the same entity.
2236       if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2237           Decl->getAnonDeclWithTypedefName())
2238         continue;
2239     }
2240 
2241     Filter.erase();
2242   }
2243 
2244   Filter.done();
2245 }
2246 
2247 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2248   QualType OldType;
2249   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2250     OldType = OldTypedef->getUnderlyingType();
2251   else
2252     OldType = Context.getTypeDeclType(Old);
2253   QualType NewType = New->getUnderlyingType();
2254 
2255   if (NewType->isVariablyModifiedType()) {
2256     // Must not redefine a typedef with a variably-modified type.
2257     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2258     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2259       << Kind << NewType;
2260     if (Old->getLocation().isValid())
2261       notePreviousDefinition(Old, New->getLocation());
2262     New->setInvalidDecl();
2263     return true;
2264   }
2265 
2266   if (OldType != NewType &&
2267       !OldType->isDependentType() &&
2268       !NewType->isDependentType() &&
2269       !Context.hasSameType(OldType, NewType)) {
2270     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2271     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2272       << Kind << NewType << OldType;
2273     if (Old->getLocation().isValid())
2274       notePreviousDefinition(Old, New->getLocation());
2275     New->setInvalidDecl();
2276     return true;
2277   }
2278   return false;
2279 }
2280 
2281 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2282 /// same name and scope as a previous declaration 'Old'.  Figure out
2283 /// how to resolve this situation, merging decls or emitting
2284 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2285 ///
2286 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2287                                 LookupResult &OldDecls) {
2288   // If the new decl is known invalid already, don't bother doing any
2289   // merging checks.
2290   if (New->isInvalidDecl()) return;
2291 
2292   // Allow multiple definitions for ObjC built-in typedefs.
2293   // FIXME: Verify the underlying types are equivalent!
2294   if (getLangOpts().ObjC) {
2295     const IdentifierInfo *TypeID = New->getIdentifier();
2296     switch (TypeID->getLength()) {
2297     default: break;
2298     case 2:
2299       {
2300         if (!TypeID->isStr("id"))
2301           break;
2302         QualType T = New->getUnderlyingType();
2303         if (!T->isPointerType())
2304           break;
2305         if (!T->isVoidPointerType()) {
2306           QualType PT = T->castAs<PointerType>()->getPointeeType();
2307           if (!PT->isStructureType())
2308             break;
2309         }
2310         Context.setObjCIdRedefinitionType(T);
2311         // Install the built-in type for 'id', ignoring the current definition.
2312         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2313         return;
2314       }
2315     case 5:
2316       if (!TypeID->isStr("Class"))
2317         break;
2318       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2319       // Install the built-in type for 'Class', ignoring the current definition.
2320       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2321       return;
2322     case 3:
2323       if (!TypeID->isStr("SEL"))
2324         break;
2325       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2326       // Install the built-in type for 'SEL', ignoring the current definition.
2327       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2328       return;
2329     }
2330     // Fall through - the typedef name was not a builtin type.
2331   }
2332 
2333   // Verify the old decl was also a type.
2334   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2335   if (!Old) {
2336     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2337       << New->getDeclName();
2338 
2339     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2340     if (OldD->getLocation().isValid())
2341       notePreviousDefinition(OldD, New->getLocation());
2342 
2343     return New->setInvalidDecl();
2344   }
2345 
2346   // If the old declaration is invalid, just give up here.
2347   if (Old->isInvalidDecl())
2348     return New->setInvalidDecl();
2349 
2350   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2351     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2352     auto *NewTag = New->getAnonDeclWithTypedefName();
2353     NamedDecl *Hidden = nullptr;
2354     if (OldTag && NewTag &&
2355         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2356         !hasVisibleDefinition(OldTag, &Hidden)) {
2357       // There is a definition of this tag, but it is not visible. Use it
2358       // instead of our tag.
2359       New->setTypeForDecl(OldTD->getTypeForDecl());
2360       if (OldTD->isModed())
2361         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2362                                     OldTD->getUnderlyingType());
2363       else
2364         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2365 
2366       // Make the old tag definition visible.
2367       makeMergedDefinitionVisible(Hidden);
2368 
2369       // If this was an unscoped enumeration, yank all of its enumerators
2370       // out of the scope.
2371       if (isa<EnumDecl>(NewTag)) {
2372         Scope *EnumScope = getNonFieldDeclScope(S);
2373         for (auto *D : NewTag->decls()) {
2374           auto *ED = cast<EnumConstantDecl>(D);
2375           assert(EnumScope->isDeclScope(ED));
2376           EnumScope->RemoveDecl(ED);
2377           IdResolver.RemoveDecl(ED);
2378           ED->getLexicalDeclContext()->removeDecl(ED);
2379         }
2380       }
2381     }
2382   }
2383 
2384   // If the typedef types are not identical, reject them in all languages and
2385   // with any extensions enabled.
2386   if (isIncompatibleTypedef(Old, New))
2387     return;
2388 
2389   // The types match.  Link up the redeclaration chain and merge attributes if
2390   // the old declaration was a typedef.
2391   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2392     New->setPreviousDecl(Typedef);
2393     mergeDeclAttributes(New, Old);
2394   }
2395 
2396   if (getLangOpts().MicrosoftExt)
2397     return;
2398 
2399   if (getLangOpts().CPlusPlus) {
2400     // C++ [dcl.typedef]p2:
2401     //   In a given non-class scope, a typedef specifier can be used to
2402     //   redefine the name of any type declared in that scope to refer
2403     //   to the type to which it already refers.
2404     if (!isa<CXXRecordDecl>(CurContext))
2405       return;
2406 
2407     // C++0x [dcl.typedef]p4:
2408     //   In a given class scope, a typedef specifier can be used to redefine
2409     //   any class-name declared in that scope that is not also a typedef-name
2410     //   to refer to the type to which it already refers.
2411     //
2412     // This wording came in via DR424, which was a correction to the
2413     // wording in DR56, which accidentally banned code like:
2414     //
2415     //   struct S {
2416     //     typedef struct A { } A;
2417     //   };
2418     //
2419     // in the C++03 standard. We implement the C++0x semantics, which
2420     // allow the above but disallow
2421     //
2422     //   struct S {
2423     //     typedef int I;
2424     //     typedef int I;
2425     //   };
2426     //
2427     // since that was the intent of DR56.
2428     if (!isa<TypedefNameDecl>(Old))
2429       return;
2430 
2431     Diag(New->getLocation(), diag::err_redefinition)
2432       << New->getDeclName();
2433     notePreviousDefinition(Old, New->getLocation());
2434     return New->setInvalidDecl();
2435   }
2436 
2437   // Modules always permit redefinition of typedefs, as does C11.
2438   if (getLangOpts().Modules || getLangOpts().C11)
2439     return;
2440 
2441   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2442   // is normally mapped to an error, but can be controlled with
2443   // -Wtypedef-redefinition.  If either the original or the redefinition is
2444   // in a system header, don't emit this for compatibility with GCC.
2445   if (getDiagnostics().getSuppressSystemWarnings() &&
2446       // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2447       (Old->isImplicit() ||
2448        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2449        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2450     return;
2451 
2452   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2453     << New->getDeclName();
2454   notePreviousDefinition(Old, New->getLocation());
2455 }
2456 
2457 /// DeclhasAttr - returns true if decl Declaration already has the target
2458 /// attribute.
2459 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2460   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2461   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2462   for (const auto *i : D->attrs())
2463     if (i->getKind() == A->getKind()) {
2464       if (Ann) {
2465         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2466           return true;
2467         continue;
2468       }
2469       // FIXME: Don't hardcode this check
2470       if (OA && isa<OwnershipAttr>(i))
2471         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2472       return true;
2473     }
2474 
2475   return false;
2476 }
2477 
2478 static bool isAttributeTargetADefinition(Decl *D) {
2479   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2480     return VD->isThisDeclarationADefinition();
2481   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2482     return TD->isCompleteDefinition() || TD->isBeingDefined();
2483   return true;
2484 }
2485 
2486 /// Merge alignment attributes from \p Old to \p New, taking into account the
2487 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2488 ///
2489 /// \return \c true if any attributes were added to \p New.
2490 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2491   // Look for alignas attributes on Old, and pick out whichever attribute
2492   // specifies the strictest alignment requirement.
2493   AlignedAttr *OldAlignasAttr = nullptr;
2494   AlignedAttr *OldStrictestAlignAttr = nullptr;
2495   unsigned OldAlign = 0;
2496   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2497     // FIXME: We have no way of representing inherited dependent alignments
2498     // in a case like:
2499     //   template<int A, int B> struct alignas(A) X;
2500     //   template<int A, int B> struct alignas(B) X {};
2501     // For now, we just ignore any alignas attributes which are not on the
2502     // definition in such a case.
2503     if (I->isAlignmentDependent())
2504       return false;
2505 
2506     if (I->isAlignas())
2507       OldAlignasAttr = I;
2508 
2509     unsigned Align = I->getAlignment(S.Context);
2510     if (Align > OldAlign) {
2511       OldAlign = Align;
2512       OldStrictestAlignAttr = I;
2513     }
2514   }
2515 
2516   // Look for alignas attributes on New.
2517   AlignedAttr *NewAlignasAttr = nullptr;
2518   unsigned NewAlign = 0;
2519   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2520     if (I->isAlignmentDependent())
2521       return false;
2522 
2523     if (I->isAlignas())
2524       NewAlignasAttr = I;
2525 
2526     unsigned Align = I->getAlignment(S.Context);
2527     if (Align > NewAlign)
2528       NewAlign = Align;
2529   }
2530 
2531   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2532     // Both declarations have 'alignas' attributes. We require them to match.
2533     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2534     // fall short. (If two declarations both have alignas, they must both match
2535     // every definition, and so must match each other if there is a definition.)
2536 
2537     // If either declaration only contains 'alignas(0)' specifiers, then it
2538     // specifies the natural alignment for the type.
2539     if (OldAlign == 0 || NewAlign == 0) {
2540       QualType Ty;
2541       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2542         Ty = VD->getType();
2543       else
2544         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2545 
2546       if (OldAlign == 0)
2547         OldAlign = S.Context.getTypeAlign(Ty);
2548       if (NewAlign == 0)
2549         NewAlign = S.Context.getTypeAlign(Ty);
2550     }
2551 
2552     if (OldAlign != NewAlign) {
2553       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2554         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2555         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2556       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2557     }
2558   }
2559 
2560   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2561     // C++11 [dcl.align]p6:
2562     //   if any declaration of an entity has an alignment-specifier,
2563     //   every defining declaration of that entity shall specify an
2564     //   equivalent alignment.
2565     // C11 6.7.5/7:
2566     //   If the definition of an object does not have an alignment
2567     //   specifier, any other declaration of that object shall also
2568     //   have no alignment specifier.
2569     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2570       << OldAlignasAttr;
2571     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2572       << OldAlignasAttr;
2573   }
2574 
2575   bool AnyAdded = false;
2576 
2577   // Ensure we have an attribute representing the strictest alignment.
2578   if (OldAlign > NewAlign) {
2579     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2580     Clone->setInherited(true);
2581     New->addAttr(Clone);
2582     AnyAdded = true;
2583   }
2584 
2585   // Ensure we have an alignas attribute if the old declaration had one.
2586   if (OldAlignasAttr && !NewAlignasAttr &&
2587       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2588     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2589     Clone->setInherited(true);
2590     New->addAttr(Clone);
2591     AnyAdded = true;
2592   }
2593 
2594   return AnyAdded;
2595 }
2596 
2597 #define WANT_DECL_MERGE_LOGIC
2598 #include "clang/Sema/AttrParsedAttrImpl.inc"
2599 #undef WANT_DECL_MERGE_LOGIC
2600 
2601 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2602                                const InheritableAttr *Attr,
2603                                Sema::AvailabilityMergeKind AMK) {
2604   // Diagnose any mutual exclusions between the attribute that we want to add
2605   // and attributes that already exist on the declaration.
2606   if (!DiagnoseMutualExclusions(S, D, Attr))
2607     return false;
2608 
2609   // This function copies an attribute Attr from a previous declaration to the
2610   // new declaration D if the new declaration doesn't itself have that attribute
2611   // yet or if that attribute allows duplicates.
2612   // If you're adding a new attribute that requires logic different from
2613   // "use explicit attribute on decl if present, else use attribute from
2614   // previous decl", for example if the attribute needs to be consistent
2615   // between redeclarations, you need to call a custom merge function here.
2616   InheritableAttr *NewAttr = nullptr;
2617   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2618     NewAttr = S.mergeAvailabilityAttr(
2619         D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2620         AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2621         AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2622         AA->getPriority());
2623   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2624     NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2625   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2626     NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2627   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2628     NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2629   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2630     NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2631   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2632     NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2633                                 FA->getFirstArg());
2634   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2635     NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2636   else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2637     NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2638   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2639     NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2640                                        IA->getInheritanceModel());
2641   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2642     NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2643                                       &S.Context.Idents.get(AA->getSpelling()));
2644   else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2645            (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2646             isa<CUDAGlobalAttr>(Attr))) {
2647     // CUDA target attributes are part of function signature for
2648     // overloading purposes and must not be merged.
2649     return false;
2650   } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2651     NewAttr = S.mergeMinSizeAttr(D, *MA);
2652   else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr))
2653     NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName());
2654   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2655     NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2656   else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2657     NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2658   else if (isa<AlignedAttr>(Attr))
2659     // AlignedAttrs are handled separately, because we need to handle all
2660     // such attributes on a declaration at the same time.
2661     NewAttr = nullptr;
2662   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2663            (AMK == Sema::AMK_Override ||
2664             AMK == Sema::AMK_ProtocolImplementation ||
2665             AMK == Sema::AMK_OptionalProtocolImplementation))
2666     NewAttr = nullptr;
2667   else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2668     NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl());
2669   else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr))
2670     NewAttr = S.mergeImportModuleAttr(D, *IMA);
2671   else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr))
2672     NewAttr = S.mergeImportNameAttr(D, *INA);
2673   else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr))
2674     NewAttr = S.mergeEnforceTCBAttr(D, *TCBA);
2675   else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr))
2676     NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA);
2677   else if (const auto *BTFA = dyn_cast<BTFTagAttr>(Attr))
2678     NewAttr = S.mergeBTFTagAttr(D, *BTFA);
2679   else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2680     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2681 
2682   if (NewAttr) {
2683     NewAttr->setInherited(true);
2684     D->addAttr(NewAttr);
2685     if (isa<MSInheritanceAttr>(NewAttr))
2686       S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2687     return true;
2688   }
2689 
2690   return false;
2691 }
2692 
2693 static const NamedDecl *getDefinition(const Decl *D) {
2694   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2695     return TD->getDefinition();
2696   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2697     const VarDecl *Def = VD->getDefinition();
2698     if (Def)
2699       return Def;
2700     return VD->getActingDefinition();
2701   }
2702   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2703     const FunctionDecl *Def = nullptr;
2704     if (FD->isDefined(Def, true))
2705       return Def;
2706   }
2707   return nullptr;
2708 }
2709 
2710 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2711   for (const auto *Attribute : D->attrs())
2712     if (Attribute->getKind() == Kind)
2713       return true;
2714   return false;
2715 }
2716 
2717 /// checkNewAttributesAfterDef - If we already have a definition, check that
2718 /// there are no new attributes in this declaration.
2719 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2720   if (!New->hasAttrs())
2721     return;
2722 
2723   const NamedDecl *Def = getDefinition(Old);
2724   if (!Def || Def == New)
2725     return;
2726 
2727   AttrVec &NewAttributes = New->getAttrs();
2728   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2729     const Attr *NewAttribute = NewAttributes[I];
2730 
2731     if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2732       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2733         Sema::SkipBodyInfo SkipBody;
2734         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2735 
2736         // If we're skipping this definition, drop the "alias" attribute.
2737         if (SkipBody.ShouldSkip) {
2738           NewAttributes.erase(NewAttributes.begin() + I);
2739           --E;
2740           continue;
2741         }
2742       } else {
2743         VarDecl *VD = cast<VarDecl>(New);
2744         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2745                                 VarDecl::TentativeDefinition
2746                             ? diag::err_alias_after_tentative
2747                             : diag::err_redefinition;
2748         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2749         if (Diag == diag::err_redefinition)
2750           S.notePreviousDefinition(Def, VD->getLocation());
2751         else
2752           S.Diag(Def->getLocation(), diag::note_previous_definition);
2753         VD->setInvalidDecl();
2754       }
2755       ++I;
2756       continue;
2757     }
2758 
2759     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2760       // Tentative definitions are only interesting for the alias check above.
2761       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2762         ++I;
2763         continue;
2764       }
2765     }
2766 
2767     if (hasAttribute(Def, NewAttribute->getKind())) {
2768       ++I;
2769       continue; // regular attr merging will take care of validating this.
2770     }
2771 
2772     if (isa<C11NoReturnAttr>(NewAttribute)) {
2773       // C's _Noreturn is allowed to be added to a function after it is defined.
2774       ++I;
2775       continue;
2776     } else if (isa<UuidAttr>(NewAttribute)) {
2777       // msvc will allow a subsequent definition to add an uuid to a class
2778       ++I;
2779       continue;
2780     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2781       if (AA->isAlignas()) {
2782         // C++11 [dcl.align]p6:
2783         //   if any declaration of an entity has an alignment-specifier,
2784         //   every defining declaration of that entity shall specify an
2785         //   equivalent alignment.
2786         // C11 6.7.5/7:
2787         //   If the definition of an object does not have an alignment
2788         //   specifier, any other declaration of that object shall also
2789         //   have no alignment specifier.
2790         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2791           << AA;
2792         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2793           << AA;
2794         NewAttributes.erase(NewAttributes.begin() + I);
2795         --E;
2796         continue;
2797       }
2798     } else if (isa<LoaderUninitializedAttr>(NewAttribute)) {
2799       // If there is a C definition followed by a redeclaration with this
2800       // attribute then there are two different definitions. In C++, prefer the
2801       // standard diagnostics.
2802       if (!S.getLangOpts().CPlusPlus) {
2803         S.Diag(NewAttribute->getLocation(),
2804                diag::err_loader_uninitialized_redeclaration);
2805         S.Diag(Def->getLocation(), diag::note_previous_definition);
2806         NewAttributes.erase(NewAttributes.begin() + I);
2807         --E;
2808         continue;
2809       }
2810     } else if (isa<SelectAnyAttr>(NewAttribute) &&
2811                cast<VarDecl>(New)->isInline() &&
2812                !cast<VarDecl>(New)->isInlineSpecified()) {
2813       // Don't warn about applying selectany to implicitly inline variables.
2814       // Older compilers and language modes would require the use of selectany
2815       // to make such variables inline, and it would have no effect if we
2816       // honored it.
2817       ++I;
2818       continue;
2819     } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) {
2820       // We allow to add OMP[Begin]DeclareVariantAttr to be added to
2821       // declarations after defintions.
2822       ++I;
2823       continue;
2824     }
2825 
2826     S.Diag(NewAttribute->getLocation(),
2827            diag::warn_attribute_precede_definition);
2828     S.Diag(Def->getLocation(), diag::note_previous_definition);
2829     NewAttributes.erase(NewAttributes.begin() + I);
2830     --E;
2831   }
2832 }
2833 
2834 static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
2835                                      const ConstInitAttr *CIAttr,
2836                                      bool AttrBeforeInit) {
2837   SourceLocation InsertLoc = InitDecl->getInnerLocStart();
2838 
2839   // Figure out a good way to write this specifier on the old declaration.
2840   // FIXME: We should just use the spelling of CIAttr, but we don't preserve
2841   // enough of the attribute list spelling information to extract that without
2842   // heroics.
2843   std::string SuitableSpelling;
2844   if (S.getLangOpts().CPlusPlus20)
2845     SuitableSpelling = std::string(
2846         S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit}));
2847   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2848     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2849         InsertLoc, {tok::l_square, tok::l_square,
2850                     S.PP.getIdentifierInfo("clang"), tok::coloncolon,
2851                     S.PP.getIdentifierInfo("require_constant_initialization"),
2852                     tok::r_square, tok::r_square}));
2853   if (SuitableSpelling.empty())
2854     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2855         InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren,
2856                     S.PP.getIdentifierInfo("require_constant_initialization"),
2857                     tok::r_paren, tok::r_paren}));
2858   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20)
2859     SuitableSpelling = "constinit";
2860   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2861     SuitableSpelling = "[[clang::require_constant_initialization]]";
2862   if (SuitableSpelling.empty())
2863     SuitableSpelling = "__attribute__((require_constant_initialization))";
2864   SuitableSpelling += " ";
2865 
2866   if (AttrBeforeInit) {
2867     // extern constinit int a;
2868     // int a = 0; // error (missing 'constinit'), accepted as extension
2869     assert(CIAttr->isConstinit() && "should not diagnose this for attribute");
2870     S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
2871         << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2872     S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
2873   } else {
2874     // int a = 0;
2875     // constinit extern int a; // error (missing 'constinit')
2876     S.Diag(CIAttr->getLocation(),
2877            CIAttr->isConstinit() ? diag::err_constinit_added_too_late
2878                                  : diag::warn_require_const_init_added_too_late)
2879         << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
2880     S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
2881         << CIAttr->isConstinit()
2882         << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2883   }
2884 }
2885 
2886 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2887 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2888                                AvailabilityMergeKind AMK) {
2889   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2890     UsedAttr *NewAttr = OldAttr->clone(Context);
2891     NewAttr->setInherited(true);
2892     New->addAttr(NewAttr);
2893   }
2894   if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) {
2895     RetainAttr *NewAttr = OldAttr->clone(Context);
2896     NewAttr->setInherited(true);
2897     New->addAttr(NewAttr);
2898   }
2899 
2900   if (!Old->hasAttrs() && !New->hasAttrs())
2901     return;
2902 
2903   // [dcl.constinit]p1:
2904   //   If the [constinit] specifier is applied to any declaration of a
2905   //   variable, it shall be applied to the initializing declaration.
2906   const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
2907   const auto *NewConstInit = New->getAttr<ConstInitAttr>();
2908   if (bool(OldConstInit) != bool(NewConstInit)) {
2909     const auto *OldVD = cast<VarDecl>(Old);
2910     auto *NewVD = cast<VarDecl>(New);
2911 
2912     // Find the initializing declaration. Note that we might not have linked
2913     // the new declaration into the redeclaration chain yet.
2914     const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
2915     if (!InitDecl &&
2916         (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
2917       InitDecl = NewVD;
2918 
2919     if (InitDecl == NewVD) {
2920       // This is the initializing declaration. If it would inherit 'constinit',
2921       // that's ill-formed. (Note that we do not apply this to the attribute
2922       // form).
2923       if (OldConstInit && OldConstInit->isConstinit())
2924         diagnoseMissingConstinit(*this, NewVD, OldConstInit,
2925                                  /*AttrBeforeInit=*/true);
2926     } else if (NewConstInit) {
2927       // This is the first time we've been told that this declaration should
2928       // have a constant initializer. If we already saw the initializing
2929       // declaration, this is too late.
2930       if (InitDecl && InitDecl != NewVD) {
2931         diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
2932                                  /*AttrBeforeInit=*/false);
2933         NewVD->dropAttr<ConstInitAttr>();
2934       }
2935     }
2936   }
2937 
2938   // Attributes declared post-definition are currently ignored.
2939   checkNewAttributesAfterDef(*this, New, Old);
2940 
2941   if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2942     if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2943       if (!OldA->isEquivalent(NewA)) {
2944         // This redeclaration changes __asm__ label.
2945         Diag(New->getLocation(), diag::err_different_asm_label);
2946         Diag(OldA->getLocation(), diag::note_previous_declaration);
2947       }
2948     } else if (Old->isUsed()) {
2949       // This redeclaration adds an __asm__ label to a declaration that has
2950       // already been ODR-used.
2951       Diag(New->getLocation(), diag::err_late_asm_label_name)
2952         << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2953     }
2954   }
2955 
2956   // Re-declaration cannot add abi_tag's.
2957   if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2958     if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2959       for (const auto &NewTag : NewAbiTagAttr->tags()) {
2960         if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2961                       NewTag) == OldAbiTagAttr->tags_end()) {
2962           Diag(NewAbiTagAttr->getLocation(),
2963                diag::err_new_abi_tag_on_redeclaration)
2964               << NewTag;
2965           Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2966         }
2967       }
2968     } else {
2969       Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2970       Diag(Old->getLocation(), diag::note_previous_declaration);
2971     }
2972   }
2973 
2974   // This redeclaration adds a section attribute.
2975   if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2976     if (auto *VD = dyn_cast<VarDecl>(New)) {
2977       if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2978         Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2979         Diag(Old->getLocation(), diag::note_previous_declaration);
2980       }
2981     }
2982   }
2983 
2984   // Redeclaration adds code-seg attribute.
2985   const auto *NewCSA = New->getAttr<CodeSegAttr>();
2986   if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2987       !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2988     Diag(New->getLocation(), diag::warn_mismatched_section)
2989          << 0 /*codeseg*/;
2990     Diag(Old->getLocation(), diag::note_previous_declaration);
2991   }
2992 
2993   if (!Old->hasAttrs())
2994     return;
2995 
2996   bool foundAny = New->hasAttrs();
2997 
2998   // Ensure that any moving of objects within the allocated map is done before
2999   // we process them.
3000   if (!foundAny) New->setAttrs(AttrVec());
3001 
3002   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
3003     // Ignore deprecated/unavailable/availability attributes if requested.
3004     AvailabilityMergeKind LocalAMK = AMK_None;
3005     if (isa<DeprecatedAttr>(I) ||
3006         isa<UnavailableAttr>(I) ||
3007         isa<AvailabilityAttr>(I)) {
3008       switch (AMK) {
3009       case AMK_None:
3010         continue;
3011 
3012       case AMK_Redeclaration:
3013       case AMK_Override:
3014       case AMK_ProtocolImplementation:
3015       case AMK_OptionalProtocolImplementation:
3016         LocalAMK = AMK;
3017         break;
3018       }
3019     }
3020 
3021     // Already handled.
3022     if (isa<UsedAttr>(I) || isa<RetainAttr>(I))
3023       continue;
3024 
3025     if (mergeDeclAttribute(*this, New, I, LocalAMK))
3026       foundAny = true;
3027   }
3028 
3029   if (mergeAlignedAttrs(*this, New, Old))
3030     foundAny = true;
3031 
3032   if (!foundAny) New->dropAttrs();
3033 }
3034 
3035 /// mergeParamDeclAttributes - Copy attributes from the old parameter
3036 /// to the new one.
3037 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
3038                                      const ParmVarDecl *oldDecl,
3039                                      Sema &S) {
3040   // C++11 [dcl.attr.depend]p2:
3041   //   The first declaration of a function shall specify the
3042   //   carries_dependency attribute for its declarator-id if any declaration
3043   //   of the function specifies the carries_dependency attribute.
3044   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
3045   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
3046     S.Diag(CDA->getLocation(),
3047            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
3048     // Find the first declaration of the parameter.
3049     // FIXME: Should we build redeclaration chains for function parameters?
3050     const FunctionDecl *FirstFD =
3051       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
3052     const ParmVarDecl *FirstVD =
3053       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
3054     S.Diag(FirstVD->getLocation(),
3055            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
3056   }
3057 
3058   if (!oldDecl->hasAttrs())
3059     return;
3060 
3061   bool foundAny = newDecl->hasAttrs();
3062 
3063   // Ensure that any moving of objects within the allocated map is
3064   // done before we process them.
3065   if (!foundAny) newDecl->setAttrs(AttrVec());
3066 
3067   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
3068     if (!DeclHasAttr(newDecl, I)) {
3069       InheritableAttr *newAttr =
3070         cast<InheritableParamAttr>(I->clone(S.Context));
3071       newAttr->setInherited(true);
3072       newDecl->addAttr(newAttr);
3073       foundAny = true;
3074     }
3075   }
3076 
3077   if (!foundAny) newDecl->dropAttrs();
3078 }
3079 
3080 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
3081                                 const ParmVarDecl *OldParam,
3082                                 Sema &S) {
3083   if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
3084     if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
3085       if (*Oldnullability != *Newnullability) {
3086         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
3087           << DiagNullabilityKind(
3088                *Newnullability,
3089                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3090                 != 0))
3091           << DiagNullabilityKind(
3092                *Oldnullability,
3093                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3094                 != 0));
3095         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
3096       }
3097     } else {
3098       QualType NewT = NewParam->getType();
3099       NewT = S.Context.getAttributedType(
3100                          AttributedType::getNullabilityAttrKind(*Oldnullability),
3101                          NewT, NewT);
3102       NewParam->setType(NewT);
3103     }
3104   }
3105 }
3106 
3107 namespace {
3108 
3109 /// Used in MergeFunctionDecl to keep track of function parameters in
3110 /// C.
3111 struct GNUCompatibleParamWarning {
3112   ParmVarDecl *OldParm;
3113   ParmVarDecl *NewParm;
3114   QualType PromotedType;
3115 };
3116 
3117 } // end anonymous namespace
3118 
3119 // Determine whether the previous declaration was a definition, implicit
3120 // declaration, or a declaration.
3121 template <typename T>
3122 static std::pair<diag::kind, SourceLocation>
3123 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3124   diag::kind PrevDiag;
3125   SourceLocation OldLocation = Old->getLocation();
3126   if (Old->isThisDeclarationADefinition())
3127     PrevDiag = diag::note_previous_definition;
3128   else if (Old->isImplicit()) {
3129     PrevDiag = diag::note_previous_implicit_declaration;
3130     if (OldLocation.isInvalid())
3131       OldLocation = New->getLocation();
3132   } else
3133     PrevDiag = diag::note_previous_declaration;
3134   return std::make_pair(PrevDiag, OldLocation);
3135 }
3136 
3137 /// canRedefineFunction - checks if a function can be redefined. Currently,
3138 /// only extern inline functions can be redefined, and even then only in
3139 /// GNU89 mode.
3140 static bool canRedefineFunction(const FunctionDecl *FD,
3141                                 const LangOptions& LangOpts) {
3142   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3143           !LangOpts.CPlusPlus &&
3144           FD->isInlineSpecified() &&
3145           FD->getStorageClass() == SC_Extern);
3146 }
3147 
3148 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3149   const AttributedType *AT = T->getAs<AttributedType>();
3150   while (AT && !AT->isCallingConv())
3151     AT = AT->getModifiedType()->getAs<AttributedType>();
3152   return AT;
3153 }
3154 
3155 template <typename T>
3156 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3157   const DeclContext *DC = Old->getDeclContext();
3158   if (DC->isRecord())
3159     return false;
3160 
3161   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3162   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3163     return true;
3164   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3165     return true;
3166   return false;
3167 }
3168 
3169 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
3170 static bool isExternC(VarTemplateDecl *) { return false; }
3171 static bool isExternC(FunctionTemplateDecl *) { return false; }
3172 
3173 /// Check whether a redeclaration of an entity introduced by a
3174 /// using-declaration is valid, given that we know it's not an overload
3175 /// (nor a hidden tag declaration).
3176 template<typename ExpectedDecl>
3177 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3178                                    ExpectedDecl *New) {
3179   // C++11 [basic.scope.declarative]p4:
3180   //   Given a set of declarations in a single declarative region, each of
3181   //   which specifies the same unqualified name,
3182   //   -- they shall all refer to the same entity, or all refer to functions
3183   //      and function templates; or
3184   //   -- exactly one declaration shall declare a class name or enumeration
3185   //      name that is not a typedef name and the other declarations shall all
3186   //      refer to the same variable or enumerator, or all refer to functions
3187   //      and function templates; in this case the class name or enumeration
3188   //      name is hidden (3.3.10).
3189 
3190   // C++11 [namespace.udecl]p14:
3191   //   If a function declaration in namespace scope or block scope has the
3192   //   same name and the same parameter-type-list as a function introduced
3193   //   by a using-declaration, and the declarations do not declare the same
3194   //   function, the program is ill-formed.
3195 
3196   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3197   if (Old &&
3198       !Old->getDeclContext()->getRedeclContext()->Equals(
3199           New->getDeclContext()->getRedeclContext()) &&
3200       !(isExternC(Old) && isExternC(New)))
3201     Old = nullptr;
3202 
3203   if (!Old) {
3204     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3205     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3206     S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
3207     return true;
3208   }
3209   return false;
3210 }
3211 
3212 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3213                                             const FunctionDecl *B) {
3214   assert(A->getNumParams() == B->getNumParams());
3215 
3216   auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3217     const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3218     const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3219     if (AttrA == AttrB)
3220       return true;
3221     return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3222            AttrA->isDynamic() == AttrB->isDynamic();
3223   };
3224 
3225   return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3226 }
3227 
3228 /// If necessary, adjust the semantic declaration context for a qualified
3229 /// declaration to name the correct inline namespace within the qualifier.
3230 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3231                                                DeclaratorDecl *OldD) {
3232   // The only case where we need to update the DeclContext is when
3233   // redeclaration lookup for a qualified name finds a declaration
3234   // in an inline namespace within the context named by the qualifier:
3235   //
3236   //   inline namespace N { int f(); }
3237   //   int ::f(); // Sema DC needs adjusting from :: to N::.
3238   //
3239   // For unqualified declarations, the semantic context *can* change
3240   // along the redeclaration chain (for local extern declarations,
3241   // extern "C" declarations, and friend declarations in particular).
3242   if (!NewD->getQualifier())
3243     return;
3244 
3245   // NewD is probably already in the right context.
3246   auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3247   auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3248   if (NamedDC->Equals(SemaDC))
3249     return;
3250 
3251   assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
3252           NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
3253          "unexpected context for redeclaration");
3254 
3255   auto *LexDC = NewD->getLexicalDeclContext();
3256   auto FixSemaDC = [=](NamedDecl *D) {
3257     if (!D)
3258       return;
3259     D->setDeclContext(SemaDC);
3260     D->setLexicalDeclContext(LexDC);
3261   };
3262 
3263   FixSemaDC(NewD);
3264   if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3265     FixSemaDC(FD->getDescribedFunctionTemplate());
3266   else if (auto *VD = dyn_cast<VarDecl>(NewD))
3267     FixSemaDC(VD->getDescribedVarTemplate());
3268 }
3269 
3270 /// MergeFunctionDecl - We just parsed a function 'New' from
3271 /// declarator D which has the same name and scope as a previous
3272 /// declaration 'Old'.  Figure out how to resolve this situation,
3273 /// merging decls or emitting diagnostics as appropriate.
3274 ///
3275 /// In C++, New and Old must be declarations that are not
3276 /// overloaded. Use IsOverload to determine whether New and Old are
3277 /// overloaded, and to select the Old declaration that New should be
3278 /// merged with.
3279 ///
3280 /// Returns true if there was an error, false otherwise.
3281 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
3282                              Scope *S, bool MergeTypeWithOld) {
3283   // Verify the old decl was also a function.
3284   FunctionDecl *Old = OldD->getAsFunction();
3285   if (!Old) {
3286     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3287       if (New->getFriendObjectKind()) {
3288         Diag(New->getLocation(), diag::err_using_decl_friend);
3289         Diag(Shadow->getTargetDecl()->getLocation(),
3290              diag::note_using_decl_target);
3291         Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
3292             << 0;
3293         return true;
3294       }
3295 
3296       // Check whether the two declarations might declare the same function or
3297       // function template.
3298       if (FunctionTemplateDecl *NewTemplate =
3299               New->getDescribedFunctionTemplate()) {
3300         if (checkUsingShadowRedecl<FunctionTemplateDecl>(*this, Shadow,
3301                                                          NewTemplate))
3302           return true;
3303         OldD = Old = cast<FunctionTemplateDecl>(Shadow->getTargetDecl())
3304                          ->getAsFunction();
3305       } else {
3306         if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3307           return true;
3308         OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3309       }
3310     } else {
3311       Diag(New->getLocation(), diag::err_redefinition_different_kind)
3312         << New->getDeclName();
3313       notePreviousDefinition(OldD, New->getLocation());
3314       return true;
3315     }
3316   }
3317 
3318   // If the old declaration was found in an inline namespace and the new
3319   // declaration was qualified, update the DeclContext to match.
3320   adjustDeclContextForDeclaratorDecl(New, Old);
3321 
3322   // If the old declaration is invalid, just give up here.
3323   if (Old->isInvalidDecl())
3324     return true;
3325 
3326   // Disallow redeclaration of some builtins.
3327   if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3328     Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3329     Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3330         << Old << Old->getType();
3331     return true;
3332   }
3333 
3334   diag::kind PrevDiag;
3335   SourceLocation OldLocation;
3336   std::tie(PrevDiag, OldLocation) =
3337       getNoteDiagForInvalidRedeclaration(Old, New);
3338 
3339   // Don't complain about this if we're in GNU89 mode and the old function
3340   // is an extern inline function.
3341   // Don't complain about specializations. They are not supposed to have
3342   // storage classes.
3343   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3344       New->getStorageClass() == SC_Static &&
3345       Old->hasExternalFormalLinkage() &&
3346       !New->getTemplateSpecializationInfo() &&
3347       !canRedefineFunction(Old, getLangOpts())) {
3348     if (getLangOpts().MicrosoftExt) {
3349       Diag(New->getLocation(), diag::ext_static_non_static) << New;
3350       Diag(OldLocation, PrevDiag);
3351     } else {
3352       Diag(New->getLocation(), diag::err_static_non_static) << New;
3353       Diag(OldLocation, PrevDiag);
3354       return true;
3355     }
3356   }
3357 
3358   if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
3359     if (!Old->hasAttr<InternalLinkageAttr>()) {
3360       Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
3361           << ILA;
3362       Diag(Old->getLocation(), diag::note_previous_declaration);
3363       New->dropAttr<InternalLinkageAttr>();
3364     }
3365 
3366   if (CheckRedeclarationModuleOwnership(New, Old))
3367     return true;
3368 
3369   if (!getLangOpts().CPlusPlus) {
3370     bool OldOvl = Old->hasAttr<OverloadableAttr>();
3371     if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3372       Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3373         << New << OldOvl;
3374 
3375       // Try our best to find a decl that actually has the overloadable
3376       // attribute for the note. In most cases (e.g. programs with only one
3377       // broken declaration/definition), this won't matter.
3378       //
3379       // FIXME: We could do this if we juggled some extra state in
3380       // OverloadableAttr, rather than just removing it.
3381       const Decl *DiagOld = Old;
3382       if (OldOvl) {
3383         auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3384           const auto *A = D->getAttr<OverloadableAttr>();
3385           return A && !A->isImplicit();
3386         });
3387         // If we've implicitly added *all* of the overloadable attrs to this
3388         // chain, emitting a "previous redecl" note is pointless.
3389         DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3390       }
3391 
3392       if (DiagOld)
3393         Diag(DiagOld->getLocation(),
3394              diag::note_attribute_overloadable_prev_overload)
3395           << OldOvl;
3396 
3397       if (OldOvl)
3398         New->addAttr(OverloadableAttr::CreateImplicit(Context));
3399       else
3400         New->dropAttr<OverloadableAttr>();
3401     }
3402   }
3403 
3404   // If a function is first declared with a calling convention, but is later
3405   // declared or defined without one, all following decls assume the calling
3406   // convention of the first.
3407   //
3408   // It's OK if a function is first declared without a calling convention,
3409   // but is later declared or defined with the default calling convention.
3410   //
3411   // To test if either decl has an explicit calling convention, we look for
3412   // AttributedType sugar nodes on the type as written.  If they are missing or
3413   // were canonicalized away, we assume the calling convention was implicit.
3414   //
3415   // Note also that we DO NOT return at this point, because we still have
3416   // other tests to run.
3417   QualType OldQType = Context.getCanonicalType(Old->getType());
3418   QualType NewQType = Context.getCanonicalType(New->getType());
3419   const FunctionType *OldType = cast<FunctionType>(OldQType);
3420   const FunctionType *NewType = cast<FunctionType>(NewQType);
3421   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3422   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3423   bool RequiresAdjustment = false;
3424 
3425   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3426     FunctionDecl *First = Old->getFirstDecl();
3427     const FunctionType *FT =
3428         First->getType().getCanonicalType()->castAs<FunctionType>();
3429     FunctionType::ExtInfo FI = FT->getExtInfo();
3430     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3431     if (!NewCCExplicit) {
3432       // Inherit the CC from the previous declaration if it was specified
3433       // there but not here.
3434       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3435       RequiresAdjustment = true;
3436     } else if (Old->getBuiltinID()) {
3437       // Builtin attribute isn't propagated to the new one yet at this point,
3438       // so we check if the old one is a builtin.
3439 
3440       // Calling Conventions on a Builtin aren't really useful and setting a
3441       // default calling convention and cdecl'ing some builtin redeclarations is
3442       // common, so warn and ignore the calling convention on the redeclaration.
3443       Diag(New->getLocation(), diag::warn_cconv_unsupported)
3444           << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3445           << (int)CallingConventionIgnoredReason::BuiltinFunction;
3446       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3447       RequiresAdjustment = true;
3448     } else {
3449       // Calling conventions aren't compatible, so complain.
3450       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3451       Diag(New->getLocation(), diag::err_cconv_change)
3452         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3453         << !FirstCCExplicit
3454         << (!FirstCCExplicit ? "" :
3455             FunctionType::getNameForCallConv(FI.getCC()));
3456 
3457       // Put the note on the first decl, since it is the one that matters.
3458       Diag(First->getLocation(), diag::note_previous_declaration);
3459       return true;
3460     }
3461   }
3462 
3463   // FIXME: diagnose the other way around?
3464   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3465     NewTypeInfo = NewTypeInfo.withNoReturn(true);
3466     RequiresAdjustment = true;
3467   }
3468 
3469   // Merge regparm attribute.
3470   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3471       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3472     if (NewTypeInfo.getHasRegParm()) {
3473       Diag(New->getLocation(), diag::err_regparm_mismatch)
3474         << NewType->getRegParmType()
3475         << OldType->getRegParmType();
3476       Diag(OldLocation, diag::note_previous_declaration);
3477       return true;
3478     }
3479 
3480     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3481     RequiresAdjustment = true;
3482   }
3483 
3484   // Merge ns_returns_retained attribute.
3485   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3486     if (NewTypeInfo.getProducesResult()) {
3487       Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3488           << "'ns_returns_retained'";
3489       Diag(OldLocation, diag::note_previous_declaration);
3490       return true;
3491     }
3492 
3493     NewTypeInfo = NewTypeInfo.withProducesResult(true);
3494     RequiresAdjustment = true;
3495   }
3496 
3497   if (OldTypeInfo.getNoCallerSavedRegs() !=
3498       NewTypeInfo.getNoCallerSavedRegs()) {
3499     if (NewTypeInfo.getNoCallerSavedRegs()) {
3500       AnyX86NoCallerSavedRegistersAttr *Attr =
3501         New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3502       Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3503       Diag(OldLocation, diag::note_previous_declaration);
3504       return true;
3505     }
3506 
3507     NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3508     RequiresAdjustment = true;
3509   }
3510 
3511   if (RequiresAdjustment) {
3512     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3513     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3514     New->setType(QualType(AdjustedType, 0));
3515     NewQType = Context.getCanonicalType(New->getType());
3516   }
3517 
3518   // If this redeclaration makes the function inline, we may need to add it to
3519   // UndefinedButUsed.
3520   if (!Old->isInlined() && New->isInlined() &&
3521       !New->hasAttr<GNUInlineAttr>() &&
3522       !getLangOpts().GNUInline &&
3523       Old->isUsed(false) &&
3524       !Old->isDefined() && !New->isThisDeclarationADefinition())
3525     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3526                                            SourceLocation()));
3527 
3528   // If this redeclaration makes it newly gnu_inline, we don't want to warn
3529   // about it.
3530   if (New->hasAttr<GNUInlineAttr>() &&
3531       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3532     UndefinedButUsed.erase(Old->getCanonicalDecl());
3533   }
3534 
3535   // If pass_object_size params don't match up perfectly, this isn't a valid
3536   // redeclaration.
3537   if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3538       !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3539     Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3540         << New->getDeclName();
3541     Diag(OldLocation, PrevDiag) << Old << Old->getType();
3542     return true;
3543   }
3544 
3545   if (getLangOpts().CPlusPlus) {
3546     // C++1z [over.load]p2
3547     //   Certain function declarations cannot be overloaded:
3548     //     -- Function declarations that differ only in the return type,
3549     //        the exception specification, or both cannot be overloaded.
3550 
3551     // Check the exception specifications match. This may recompute the type of
3552     // both Old and New if it resolved exception specifications, so grab the
3553     // types again after this. Because this updates the type, we do this before
3554     // any of the other checks below, which may update the "de facto" NewQType
3555     // but do not necessarily update the type of New.
3556     if (CheckEquivalentExceptionSpec(Old, New))
3557       return true;
3558     OldQType = Context.getCanonicalType(Old->getType());
3559     NewQType = Context.getCanonicalType(New->getType());
3560 
3561     // Go back to the type source info to compare the declared return types,
3562     // per C++1y [dcl.type.auto]p13:
3563     //   Redeclarations or specializations of a function or function template
3564     //   with a declared return type that uses a placeholder type shall also
3565     //   use that placeholder, not a deduced type.
3566     QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3567     QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3568     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3569         canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3570                                        OldDeclaredReturnType)) {
3571       QualType ResQT;
3572       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3573           OldDeclaredReturnType->isObjCObjectPointerType())
3574         // FIXME: This does the wrong thing for a deduced return type.
3575         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3576       if (ResQT.isNull()) {
3577         if (New->isCXXClassMember() && New->isOutOfLine())
3578           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3579               << New << New->getReturnTypeSourceRange();
3580         else
3581           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3582               << New->getReturnTypeSourceRange();
3583         Diag(OldLocation, PrevDiag) << Old << Old->getType()
3584                                     << Old->getReturnTypeSourceRange();
3585         return true;
3586       }
3587       else
3588         NewQType = ResQT;
3589     }
3590 
3591     QualType OldReturnType = OldType->getReturnType();
3592     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3593     if (OldReturnType != NewReturnType) {
3594       // If this function has a deduced return type and has already been
3595       // defined, copy the deduced value from the old declaration.
3596       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3597       if (OldAT && OldAT->isDeduced()) {
3598         New->setType(
3599             SubstAutoType(New->getType(),
3600                           OldAT->isDependentType() ? Context.DependentTy
3601                                                    : OldAT->getDeducedType()));
3602         NewQType = Context.getCanonicalType(
3603             SubstAutoType(NewQType,
3604                           OldAT->isDependentType() ? Context.DependentTy
3605                                                    : OldAT->getDeducedType()));
3606       }
3607     }
3608 
3609     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3610     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3611     if (OldMethod && NewMethod) {
3612       // Preserve triviality.
3613       NewMethod->setTrivial(OldMethod->isTrivial());
3614 
3615       // MSVC allows explicit template specialization at class scope:
3616       // 2 CXXMethodDecls referring to the same function will be injected.
3617       // We don't want a redeclaration error.
3618       bool IsClassScopeExplicitSpecialization =
3619                               OldMethod->isFunctionTemplateSpecialization() &&
3620                               NewMethod->isFunctionTemplateSpecialization();
3621       bool isFriend = NewMethod->getFriendObjectKind();
3622 
3623       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3624           !IsClassScopeExplicitSpecialization) {
3625         //    -- Member function declarations with the same name and the
3626         //       same parameter types cannot be overloaded if any of them
3627         //       is a static member function declaration.
3628         if (OldMethod->isStatic() != NewMethod->isStatic()) {
3629           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3630           Diag(OldLocation, PrevDiag) << Old << Old->getType();
3631           return true;
3632         }
3633 
3634         // C++ [class.mem]p1:
3635         //   [...] A member shall not be declared twice in the
3636         //   member-specification, except that a nested class or member
3637         //   class template can be declared and then later defined.
3638         if (!inTemplateInstantiation()) {
3639           unsigned NewDiag;
3640           if (isa<CXXConstructorDecl>(OldMethod))
3641             NewDiag = diag::err_constructor_redeclared;
3642           else if (isa<CXXDestructorDecl>(NewMethod))
3643             NewDiag = diag::err_destructor_redeclared;
3644           else if (isa<CXXConversionDecl>(NewMethod))
3645             NewDiag = diag::err_conv_function_redeclared;
3646           else
3647             NewDiag = diag::err_member_redeclared;
3648 
3649           Diag(New->getLocation(), NewDiag);
3650         } else {
3651           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3652             << New << New->getType();
3653         }
3654         Diag(OldLocation, PrevDiag) << Old << Old->getType();
3655         return true;
3656 
3657       // Complain if this is an explicit declaration of a special
3658       // member that was initially declared implicitly.
3659       //
3660       // As an exception, it's okay to befriend such methods in order
3661       // to permit the implicit constructor/destructor/operator calls.
3662       } else if (OldMethod->isImplicit()) {
3663         if (isFriend) {
3664           NewMethod->setImplicit();
3665         } else {
3666           Diag(NewMethod->getLocation(),
3667                diag::err_definition_of_implicitly_declared_member)
3668             << New << getSpecialMember(OldMethod);
3669           return true;
3670         }
3671       } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3672         Diag(NewMethod->getLocation(),
3673              diag::err_definition_of_explicitly_defaulted_member)
3674           << getSpecialMember(OldMethod);
3675         return true;
3676       }
3677     }
3678 
3679     // C++11 [dcl.attr.noreturn]p1:
3680     //   The first declaration of a function shall specify the noreturn
3681     //   attribute if any declaration of that function specifies the noreturn
3682     //   attribute.
3683     if (const auto *NRA = New->getAttr<CXX11NoReturnAttr>())
3684       if (!Old->hasAttr<CXX11NoReturnAttr>()) {
3685         Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl)
3686             << NRA;
3687         Diag(Old->getLocation(), diag::note_previous_declaration);
3688       }
3689 
3690     // C++11 [dcl.attr.depend]p2:
3691     //   The first declaration of a function shall specify the
3692     //   carries_dependency attribute for its declarator-id if any declaration
3693     //   of the function specifies the carries_dependency attribute.
3694     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3695     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3696       Diag(CDA->getLocation(),
3697            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3698       Diag(Old->getFirstDecl()->getLocation(),
3699            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3700     }
3701 
3702     // (C++98 8.3.5p3):
3703     //   All declarations for a function shall agree exactly in both the
3704     //   return type and the parameter-type-list.
3705     // We also want to respect all the extended bits except noreturn.
3706 
3707     // noreturn should now match unless the old type info didn't have it.
3708     QualType OldQTypeForComparison = OldQType;
3709     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3710       auto *OldType = OldQType->castAs<FunctionProtoType>();
3711       const FunctionType *OldTypeForComparison
3712         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3713       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3714       assert(OldQTypeForComparison.isCanonical());
3715     }
3716 
3717     if (haveIncompatibleLanguageLinkages(Old, New)) {
3718       // As a special case, retain the language linkage from previous
3719       // declarations of a friend function as an extension.
3720       //
3721       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3722       // and is useful because there's otherwise no way to specify language
3723       // linkage within class scope.
3724       //
3725       // Check cautiously as the friend object kind isn't yet complete.
3726       if (New->getFriendObjectKind() != Decl::FOK_None) {
3727         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3728         Diag(OldLocation, PrevDiag);
3729       } else {
3730         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3731         Diag(OldLocation, PrevDiag);
3732         return true;
3733       }
3734     }
3735 
3736     // If the function types are compatible, merge the declarations. Ignore the
3737     // exception specifier because it was already checked above in
3738     // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
3739     // about incompatible types under -fms-compatibility.
3740     if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
3741                                                          NewQType))
3742       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3743 
3744     // If the types are imprecise (due to dependent constructs in friends or
3745     // local extern declarations), it's OK if they differ. We'll check again
3746     // during instantiation.
3747     if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3748       return false;
3749 
3750     // Fall through for conflicting redeclarations and redefinitions.
3751   }
3752 
3753   // C: Function types need to be compatible, not identical. This handles
3754   // duplicate function decls like "void f(int); void f(enum X);" properly.
3755   if (!getLangOpts().CPlusPlus &&
3756       Context.typesAreCompatible(OldQType, NewQType)) {
3757     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3758     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3759     const FunctionProtoType *OldProto = nullptr;
3760     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3761         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3762       // The old declaration provided a function prototype, but the
3763       // new declaration does not. Merge in the prototype.
3764       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
3765       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3766       NewQType =
3767           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3768                                   OldProto->getExtProtoInfo());
3769       New->setType(NewQType);
3770       New->setHasInheritedPrototype();
3771 
3772       // Synthesize parameters with the same types.
3773       SmallVector<ParmVarDecl*, 16> Params;
3774       for (const auto &ParamType : OldProto->param_types()) {
3775         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3776                                                  SourceLocation(), nullptr,
3777                                                  ParamType, /*TInfo=*/nullptr,
3778                                                  SC_None, nullptr);
3779         Param->setScopeInfo(0, Params.size());
3780         Param->setImplicit();
3781         Params.push_back(Param);
3782       }
3783 
3784       New->setParams(Params);
3785     }
3786 
3787     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3788   }
3789 
3790   // Check if the function types are compatible when pointer size address
3791   // spaces are ignored.
3792   if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
3793     return false;
3794 
3795   // GNU C permits a K&R definition to follow a prototype declaration
3796   // if the declared types of the parameters in the K&R definition
3797   // match the types in the prototype declaration, even when the
3798   // promoted types of the parameters from the K&R definition differ
3799   // from the types in the prototype. GCC then keeps the types from
3800   // the prototype.
3801   //
3802   // If a variadic prototype is followed by a non-variadic K&R definition,
3803   // the K&R definition becomes variadic.  This is sort of an edge case, but
3804   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3805   // C99 6.9.1p8.
3806   if (!getLangOpts().CPlusPlus &&
3807       Old->hasPrototype() && !New->hasPrototype() &&
3808       New->getType()->getAs<FunctionProtoType>() &&
3809       Old->getNumParams() == New->getNumParams()) {
3810     SmallVector<QualType, 16> ArgTypes;
3811     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3812     const FunctionProtoType *OldProto
3813       = Old->getType()->getAs<FunctionProtoType>();
3814     const FunctionProtoType *NewProto
3815       = New->getType()->getAs<FunctionProtoType>();
3816 
3817     // Determine whether this is the GNU C extension.
3818     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3819                                                NewProto->getReturnType());
3820     bool LooseCompatible = !MergedReturn.isNull();
3821     for (unsigned Idx = 0, End = Old->getNumParams();
3822          LooseCompatible && Idx != End; ++Idx) {
3823       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3824       ParmVarDecl *NewParm = New->getParamDecl(Idx);
3825       if (Context.typesAreCompatible(OldParm->getType(),
3826                                      NewProto->getParamType(Idx))) {
3827         ArgTypes.push_back(NewParm->getType());
3828       } else if (Context.typesAreCompatible(OldParm->getType(),
3829                                             NewParm->getType(),
3830                                             /*CompareUnqualified=*/true)) {
3831         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3832                                            NewProto->getParamType(Idx) };
3833         Warnings.push_back(Warn);
3834         ArgTypes.push_back(NewParm->getType());
3835       } else
3836         LooseCompatible = false;
3837     }
3838 
3839     if (LooseCompatible) {
3840       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3841         Diag(Warnings[Warn].NewParm->getLocation(),
3842              diag::ext_param_promoted_not_compatible_with_prototype)
3843           << Warnings[Warn].PromotedType
3844           << Warnings[Warn].OldParm->getType();
3845         if (Warnings[Warn].OldParm->getLocation().isValid())
3846           Diag(Warnings[Warn].OldParm->getLocation(),
3847                diag::note_previous_declaration);
3848       }
3849 
3850       if (MergeTypeWithOld)
3851         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3852                                              OldProto->getExtProtoInfo()));
3853       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3854     }
3855 
3856     // Fall through to diagnose conflicting types.
3857   }
3858 
3859   // A function that has already been declared has been redeclared or
3860   // defined with a different type; show an appropriate diagnostic.
3861 
3862   // If the previous declaration was an implicitly-generated builtin
3863   // declaration, then at the very least we should use a specialized note.
3864   unsigned BuiltinID;
3865   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3866     // If it's actually a library-defined builtin function like 'malloc'
3867     // or 'printf', just warn about the incompatible redeclaration.
3868     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3869       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3870       Diag(OldLocation, diag::note_previous_builtin_declaration)
3871         << Old << Old->getType();
3872       return false;
3873     }
3874 
3875     PrevDiag = diag::note_previous_builtin_declaration;
3876   }
3877 
3878   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3879   Diag(OldLocation, PrevDiag) << Old << Old->getType();
3880   return true;
3881 }
3882 
3883 /// Completes the merge of two function declarations that are
3884 /// known to be compatible.
3885 ///
3886 /// This routine handles the merging of attributes and other
3887 /// properties of function declarations from the old declaration to
3888 /// the new declaration, once we know that New is in fact a
3889 /// redeclaration of Old.
3890 ///
3891 /// \returns false
3892 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3893                                         Scope *S, bool MergeTypeWithOld) {
3894   // Merge the attributes
3895   mergeDeclAttributes(New, Old);
3896 
3897   // Merge "pure" flag.
3898   if (Old->isPure())
3899     New->setPure();
3900 
3901   // Merge "used" flag.
3902   if (Old->getMostRecentDecl()->isUsed(false))
3903     New->setIsUsed();
3904 
3905   // Merge attributes from the parameters.  These can mismatch with K&R
3906   // declarations.
3907   if (New->getNumParams() == Old->getNumParams())
3908       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3909         ParmVarDecl *NewParam = New->getParamDecl(i);
3910         ParmVarDecl *OldParam = Old->getParamDecl(i);
3911         mergeParamDeclAttributes(NewParam, OldParam, *this);
3912         mergeParamDeclTypes(NewParam, OldParam, *this);
3913       }
3914 
3915   if (getLangOpts().CPlusPlus)
3916     return MergeCXXFunctionDecl(New, Old, S);
3917 
3918   // Merge the function types so the we get the composite types for the return
3919   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3920   // was visible.
3921   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3922   if (!Merged.isNull() && MergeTypeWithOld)
3923     New->setType(Merged);
3924 
3925   return false;
3926 }
3927 
3928 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3929                                 ObjCMethodDecl *oldMethod) {
3930   // Merge the attributes, including deprecated/unavailable
3931   AvailabilityMergeKind MergeKind =
3932       isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3933           ? (oldMethod->isOptional() ? AMK_OptionalProtocolImplementation
3934                                      : AMK_ProtocolImplementation)
3935           : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3936                                                            : AMK_Override;
3937 
3938   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3939 
3940   // Merge attributes from the parameters.
3941   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3942                                        oe = oldMethod->param_end();
3943   for (ObjCMethodDecl::param_iterator
3944          ni = newMethod->param_begin(), ne = newMethod->param_end();
3945        ni != ne && oi != oe; ++ni, ++oi)
3946     mergeParamDeclAttributes(*ni, *oi, *this);
3947 
3948   CheckObjCMethodOverride(newMethod, oldMethod);
3949 }
3950 
3951 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3952   assert(!S.Context.hasSameType(New->getType(), Old->getType()));
3953 
3954   S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3955          ? diag::err_redefinition_different_type
3956          : diag::err_redeclaration_different_type)
3957     << New->getDeclName() << New->getType() << Old->getType();
3958 
3959   diag::kind PrevDiag;
3960   SourceLocation OldLocation;
3961   std::tie(PrevDiag, OldLocation)
3962     = getNoteDiagForInvalidRedeclaration(Old, New);
3963   S.Diag(OldLocation, PrevDiag);
3964   New->setInvalidDecl();
3965 }
3966 
3967 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3968 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3969 /// emitting diagnostics as appropriate.
3970 ///
3971 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3972 /// to here in AddInitializerToDecl. We can't check them before the initializer
3973 /// is attached.
3974 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3975                              bool MergeTypeWithOld) {
3976   if (New->isInvalidDecl() || Old->isInvalidDecl())
3977     return;
3978 
3979   QualType MergedT;
3980   if (getLangOpts().CPlusPlus) {
3981     if (New->getType()->isUndeducedType()) {
3982       // We don't know what the new type is until the initializer is attached.
3983       return;
3984     } else if (Context.hasSameType(New->getType(), Old->getType())) {
3985       // These could still be something that needs exception specs checked.
3986       return MergeVarDeclExceptionSpecs(New, Old);
3987     }
3988     // C++ [basic.link]p10:
3989     //   [...] the types specified by all declarations referring to a given
3990     //   object or function shall be identical, except that declarations for an
3991     //   array object can specify array types that differ by the presence or
3992     //   absence of a major array bound (8.3.4).
3993     else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3994       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3995       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3996 
3997       // We are merging a variable declaration New into Old. If it has an array
3998       // bound, and that bound differs from Old's bound, we should diagnose the
3999       // mismatch.
4000       if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
4001         for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
4002              PrevVD = PrevVD->getPreviousDecl()) {
4003           QualType PrevVDTy = PrevVD->getType();
4004           if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
4005             continue;
4006 
4007           if (!Context.hasSameType(New->getType(), PrevVDTy))
4008             return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
4009         }
4010       }
4011 
4012       if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
4013         if (Context.hasSameType(OldArray->getElementType(),
4014                                 NewArray->getElementType()))
4015           MergedT = New->getType();
4016       }
4017       // FIXME: Check visibility. New is hidden but has a complete type. If New
4018       // has no array bound, it should not inherit one from Old, if Old is not
4019       // visible.
4020       else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
4021         if (Context.hasSameType(OldArray->getElementType(),
4022                                 NewArray->getElementType()))
4023           MergedT = Old->getType();
4024       }
4025     }
4026     else if (New->getType()->isObjCObjectPointerType() &&
4027                Old->getType()->isObjCObjectPointerType()) {
4028       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
4029                                               Old->getType());
4030     }
4031   } else {
4032     // C 6.2.7p2:
4033     //   All declarations that refer to the same object or function shall have
4034     //   compatible type.
4035     MergedT = Context.mergeTypes(New->getType(), Old->getType());
4036   }
4037   if (MergedT.isNull()) {
4038     // It's OK if we couldn't merge types if either type is dependent, for a
4039     // block-scope variable. In other cases (static data members of class
4040     // templates, variable templates, ...), we require the types to be
4041     // equivalent.
4042     // FIXME: The C++ standard doesn't say anything about this.
4043     if ((New->getType()->isDependentType() ||
4044          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
4045       // If the old type was dependent, we can't merge with it, so the new type
4046       // becomes dependent for now. We'll reproduce the original type when we
4047       // instantiate the TypeSourceInfo for the variable.
4048       if (!New->getType()->isDependentType() && MergeTypeWithOld)
4049         New->setType(Context.DependentTy);
4050       return;
4051     }
4052     return diagnoseVarDeclTypeMismatch(*this, New, Old);
4053   }
4054 
4055   // Don't actually update the type on the new declaration if the old
4056   // declaration was an extern declaration in a different scope.
4057   if (MergeTypeWithOld)
4058     New->setType(MergedT);
4059 }
4060 
4061 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
4062                                   LookupResult &Previous) {
4063   // C11 6.2.7p4:
4064   //   For an identifier with internal or external linkage declared
4065   //   in a scope in which a prior declaration of that identifier is
4066   //   visible, if the prior declaration specifies internal or
4067   //   external linkage, the type of the identifier at the later
4068   //   declaration becomes the composite type.
4069   //
4070   // If the variable isn't visible, we do not merge with its type.
4071   if (Previous.isShadowed())
4072     return false;
4073 
4074   if (S.getLangOpts().CPlusPlus) {
4075     // C++11 [dcl.array]p3:
4076     //   If there is a preceding declaration of the entity in the same
4077     //   scope in which the bound was specified, an omitted array bound
4078     //   is taken to be the same as in that earlier declaration.
4079     return NewVD->isPreviousDeclInSameBlockScope() ||
4080            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
4081             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
4082   } else {
4083     // If the old declaration was function-local, don't merge with its
4084     // type unless we're in the same function.
4085     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
4086            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
4087   }
4088 }
4089 
4090 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
4091 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
4092 /// situation, merging decls or emitting diagnostics as appropriate.
4093 ///
4094 /// Tentative definition rules (C99 6.9.2p2) are checked by
4095 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4096 /// definitions here, since the initializer hasn't been attached.
4097 ///
4098 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
4099   // If the new decl is already invalid, don't do any other checking.
4100   if (New->isInvalidDecl())
4101     return;
4102 
4103   if (!shouldLinkPossiblyHiddenDecl(Previous, New))
4104     return;
4105 
4106   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
4107 
4108   // Verify the old decl was also a variable or variable template.
4109   VarDecl *Old = nullptr;
4110   VarTemplateDecl *OldTemplate = nullptr;
4111   if (Previous.isSingleResult()) {
4112     if (NewTemplate) {
4113       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4114       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4115 
4116       if (auto *Shadow =
4117               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4118         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4119           return New->setInvalidDecl();
4120     } else {
4121       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4122 
4123       if (auto *Shadow =
4124               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4125         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4126           return New->setInvalidDecl();
4127     }
4128   }
4129   if (!Old) {
4130     Diag(New->getLocation(), diag::err_redefinition_different_kind)
4131         << New->getDeclName();
4132     notePreviousDefinition(Previous.getRepresentativeDecl(),
4133                            New->getLocation());
4134     return New->setInvalidDecl();
4135   }
4136 
4137   // If the old declaration was found in an inline namespace and the new
4138   // declaration was qualified, update the DeclContext to match.
4139   adjustDeclContextForDeclaratorDecl(New, Old);
4140 
4141   // Ensure the template parameters are compatible.
4142   if (NewTemplate &&
4143       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4144                                       OldTemplate->getTemplateParameters(),
4145                                       /*Complain=*/true, TPL_TemplateMatch))
4146     return New->setInvalidDecl();
4147 
4148   // C++ [class.mem]p1:
4149   //   A member shall not be declared twice in the member-specification [...]
4150   //
4151   // Here, we need only consider static data members.
4152   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4153     Diag(New->getLocation(), diag::err_duplicate_member)
4154       << New->getIdentifier();
4155     Diag(Old->getLocation(), diag::note_previous_declaration);
4156     New->setInvalidDecl();
4157   }
4158 
4159   mergeDeclAttributes(New, Old);
4160   // Warn if an already-declared variable is made a weak_import in a subsequent
4161   // declaration
4162   if (New->hasAttr<WeakImportAttr>() &&
4163       Old->getStorageClass() == SC_None &&
4164       !Old->hasAttr<WeakImportAttr>()) {
4165     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4166     Diag(Old->getLocation(), diag::note_previous_declaration);
4167     // Remove weak_import attribute on new declaration.
4168     New->dropAttr<WeakImportAttr>();
4169   }
4170 
4171   if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
4172     if (!Old->hasAttr<InternalLinkageAttr>()) {
4173       Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
4174           << ILA;
4175       Diag(Old->getLocation(), diag::note_previous_declaration);
4176       New->dropAttr<InternalLinkageAttr>();
4177     }
4178 
4179   // Merge the types.
4180   VarDecl *MostRecent = Old->getMostRecentDecl();
4181   if (MostRecent != Old) {
4182     MergeVarDeclTypes(New, MostRecent,
4183                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4184     if (New->isInvalidDecl())
4185       return;
4186   }
4187 
4188   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4189   if (New->isInvalidDecl())
4190     return;
4191 
4192   diag::kind PrevDiag;
4193   SourceLocation OldLocation;
4194   std::tie(PrevDiag, OldLocation) =
4195       getNoteDiagForInvalidRedeclaration(Old, New);
4196 
4197   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4198   if (New->getStorageClass() == SC_Static &&
4199       !New->isStaticDataMember() &&
4200       Old->hasExternalFormalLinkage()) {
4201     if (getLangOpts().MicrosoftExt) {
4202       Diag(New->getLocation(), diag::ext_static_non_static)
4203           << New->getDeclName();
4204       Diag(OldLocation, PrevDiag);
4205     } else {
4206       Diag(New->getLocation(), diag::err_static_non_static)
4207           << New->getDeclName();
4208       Diag(OldLocation, PrevDiag);
4209       return New->setInvalidDecl();
4210     }
4211   }
4212   // C99 6.2.2p4:
4213   //   For an identifier declared with the storage-class specifier
4214   //   extern in a scope in which a prior declaration of that
4215   //   identifier is visible,23) if the prior declaration specifies
4216   //   internal or external linkage, the linkage of the identifier at
4217   //   the later declaration is the same as the linkage specified at
4218   //   the prior declaration. If no prior declaration is visible, or
4219   //   if the prior declaration specifies no linkage, then the
4220   //   identifier has external linkage.
4221   if (New->hasExternalStorage() && Old->hasLinkage())
4222     /* Okay */;
4223   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4224            !New->isStaticDataMember() &&
4225            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4226     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4227     Diag(OldLocation, PrevDiag);
4228     return New->setInvalidDecl();
4229   }
4230 
4231   // Check if extern is followed by non-extern and vice-versa.
4232   if (New->hasExternalStorage() &&
4233       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4234     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4235     Diag(OldLocation, PrevDiag);
4236     return New->setInvalidDecl();
4237   }
4238   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4239       !New->hasExternalStorage()) {
4240     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4241     Diag(OldLocation, PrevDiag);
4242     return New->setInvalidDecl();
4243   }
4244 
4245   if (CheckRedeclarationModuleOwnership(New, Old))
4246     return;
4247 
4248   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4249 
4250   // FIXME: The test for external storage here seems wrong? We still
4251   // need to check for mismatches.
4252   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4253       // Don't complain about out-of-line definitions of static members.
4254       !(Old->getLexicalDeclContext()->isRecord() &&
4255         !New->getLexicalDeclContext()->isRecord())) {
4256     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4257     Diag(OldLocation, PrevDiag);
4258     return New->setInvalidDecl();
4259   }
4260 
4261   if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4262     if (VarDecl *Def = Old->getDefinition()) {
4263       // C++1z [dcl.fcn.spec]p4:
4264       //   If the definition of a variable appears in a translation unit before
4265       //   its first declaration as inline, the program is ill-formed.
4266       Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4267       Diag(Def->getLocation(), diag::note_previous_definition);
4268     }
4269   }
4270 
4271   // If this redeclaration makes the variable inline, we may need to add it to
4272   // UndefinedButUsed.
4273   if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4274       !Old->getDefinition() && !New->isThisDeclarationADefinition())
4275     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4276                                            SourceLocation()));
4277 
4278   if (New->getTLSKind() != Old->getTLSKind()) {
4279     if (!Old->getTLSKind()) {
4280       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4281       Diag(OldLocation, PrevDiag);
4282     } else if (!New->getTLSKind()) {
4283       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4284       Diag(OldLocation, PrevDiag);
4285     } else {
4286       // Do not allow redeclaration to change the variable between requiring
4287       // static and dynamic initialization.
4288       // FIXME: GCC allows this, but uses the TLS keyword on the first
4289       // declaration to determine the kind. Do we need to be compatible here?
4290       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4291         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4292       Diag(OldLocation, PrevDiag);
4293     }
4294   }
4295 
4296   // C++ doesn't have tentative definitions, so go right ahead and check here.
4297   if (getLangOpts().CPlusPlus &&
4298       New->isThisDeclarationADefinition() == VarDecl::Definition) {
4299     if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4300         Old->getCanonicalDecl()->isConstexpr()) {
4301       // This definition won't be a definition any more once it's been merged.
4302       Diag(New->getLocation(),
4303            diag::warn_deprecated_redundant_constexpr_static_def);
4304     } else if (VarDecl *Def = Old->getDefinition()) {
4305       if (checkVarDeclRedefinition(Def, New))
4306         return;
4307     }
4308   }
4309 
4310   if (haveIncompatibleLanguageLinkages(Old, New)) {
4311     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4312     Diag(OldLocation, PrevDiag);
4313     New->setInvalidDecl();
4314     return;
4315   }
4316 
4317   // Merge "used" flag.
4318   if (Old->getMostRecentDecl()->isUsed(false))
4319     New->setIsUsed();
4320 
4321   // Keep a chain of previous declarations.
4322   New->setPreviousDecl(Old);
4323   if (NewTemplate)
4324     NewTemplate->setPreviousDecl(OldTemplate);
4325 
4326   // Inherit access appropriately.
4327   New->setAccess(Old->getAccess());
4328   if (NewTemplate)
4329     NewTemplate->setAccess(New->getAccess());
4330 
4331   if (Old->isInline())
4332     New->setImplicitlyInline();
4333 }
4334 
4335 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4336   SourceManager &SrcMgr = getSourceManager();
4337   auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4338   auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4339   auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4340   auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4341   auto &HSI = PP.getHeaderSearchInfo();
4342   StringRef HdrFilename =
4343       SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4344 
4345   auto noteFromModuleOrInclude = [&](Module *Mod,
4346                                      SourceLocation IncLoc) -> bool {
4347     // Redefinition errors with modules are common with non modular mapped
4348     // headers, example: a non-modular header H in module A that also gets
4349     // included directly in a TU. Pointing twice to the same header/definition
4350     // is confusing, try to get better diagnostics when modules is on.
4351     if (IncLoc.isValid()) {
4352       if (Mod) {
4353         Diag(IncLoc, diag::note_redefinition_modules_same_file)
4354             << HdrFilename.str() << Mod->getFullModuleName();
4355         if (!Mod->DefinitionLoc.isInvalid())
4356           Diag(Mod->DefinitionLoc, diag::note_defined_here)
4357               << Mod->getFullModuleName();
4358       } else {
4359         Diag(IncLoc, diag::note_redefinition_include_same_file)
4360             << HdrFilename.str();
4361       }
4362       return true;
4363     }
4364 
4365     return false;
4366   };
4367 
4368   // Is it the same file and same offset? Provide more information on why
4369   // this leads to a redefinition error.
4370   if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4371     SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4372     SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4373     bool EmittedDiag =
4374         noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4375     EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4376 
4377     // If the header has no guards, emit a note suggesting one.
4378     if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4379       Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4380 
4381     if (EmittedDiag)
4382       return;
4383   }
4384 
4385   // Redefinition coming from different files or couldn't do better above.
4386   if (Old->getLocation().isValid())
4387     Diag(Old->getLocation(), diag::note_previous_definition);
4388 }
4389 
4390 /// We've just determined that \p Old and \p New both appear to be definitions
4391 /// of the same variable. Either diagnose or fix the problem.
4392 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4393   if (!hasVisibleDefinition(Old) &&
4394       (New->getFormalLinkage() == InternalLinkage ||
4395        New->isInline() ||
4396        New->getDescribedVarTemplate() ||
4397        New->getNumTemplateParameterLists() ||
4398        New->getDeclContext()->isDependentContext())) {
4399     // The previous definition is hidden, and multiple definitions are
4400     // permitted (in separate TUs). Demote this to a declaration.
4401     New->demoteThisDefinitionToDeclaration();
4402 
4403     // Make the canonical definition visible.
4404     if (auto *OldTD = Old->getDescribedVarTemplate())
4405       makeMergedDefinitionVisible(OldTD);
4406     makeMergedDefinitionVisible(Old);
4407     return false;
4408   } else {
4409     Diag(New->getLocation(), diag::err_redefinition) << New;
4410     notePreviousDefinition(Old, New->getLocation());
4411     New->setInvalidDecl();
4412     return true;
4413   }
4414 }
4415 
4416 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4417 /// no declarator (e.g. "struct foo;") is parsed.
4418 Decl *
4419 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4420                                  RecordDecl *&AnonRecord) {
4421   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4422                                     AnonRecord);
4423 }
4424 
4425 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4426 // disambiguate entities defined in different scopes.
4427 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4428 // compatibility.
4429 // We will pick our mangling number depending on which version of MSVC is being
4430 // targeted.
4431 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4432   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4433              ? S->getMSCurManglingNumber()
4434              : S->getMSLastManglingNumber();
4435 }
4436 
4437 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4438   if (!Context.getLangOpts().CPlusPlus)
4439     return;
4440 
4441   if (isa<CXXRecordDecl>(Tag->getParent())) {
4442     // If this tag is the direct child of a class, number it if
4443     // it is anonymous.
4444     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4445       return;
4446     MangleNumberingContext &MCtx =
4447         Context.getManglingNumberContext(Tag->getParent());
4448     Context.setManglingNumber(
4449         Tag, MCtx.getManglingNumber(
4450                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4451     return;
4452   }
4453 
4454   // If this tag isn't a direct child of a class, number it if it is local.
4455   MangleNumberingContext *MCtx;
4456   Decl *ManglingContextDecl;
4457   std::tie(MCtx, ManglingContextDecl) =
4458       getCurrentMangleNumberContext(Tag->getDeclContext());
4459   if (MCtx) {
4460     Context.setManglingNumber(
4461         Tag, MCtx->getManglingNumber(
4462                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4463   }
4464 }
4465 
4466 namespace {
4467 struct NonCLikeKind {
4468   enum {
4469     None,
4470     BaseClass,
4471     DefaultMemberInit,
4472     Lambda,
4473     Friend,
4474     OtherMember,
4475     Invalid,
4476   } Kind = None;
4477   SourceRange Range;
4478 
4479   explicit operator bool() { return Kind != None; }
4480 };
4481 }
4482 
4483 /// Determine whether a class is C-like, according to the rules of C++
4484 /// [dcl.typedef] for anonymous classes with typedef names for linkage.
4485 static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) {
4486   if (RD->isInvalidDecl())
4487     return {NonCLikeKind::Invalid, {}};
4488 
4489   // C++ [dcl.typedef]p9: [P1766R1]
4490   //   An unnamed class with a typedef name for linkage purposes shall not
4491   //
4492   //    -- have any base classes
4493   if (RD->getNumBases())
4494     return {NonCLikeKind::BaseClass,
4495             SourceRange(RD->bases_begin()->getBeginLoc(),
4496                         RD->bases_end()[-1].getEndLoc())};
4497   bool Invalid = false;
4498   for (Decl *D : RD->decls()) {
4499     // Don't complain about things we already diagnosed.
4500     if (D->isInvalidDecl()) {
4501       Invalid = true;
4502       continue;
4503     }
4504 
4505     //  -- have any [...] default member initializers
4506     if (auto *FD = dyn_cast<FieldDecl>(D)) {
4507       if (FD->hasInClassInitializer()) {
4508         auto *Init = FD->getInClassInitializer();
4509         return {NonCLikeKind::DefaultMemberInit,
4510                 Init ? Init->getSourceRange() : D->getSourceRange()};
4511       }
4512       continue;
4513     }
4514 
4515     // FIXME: We don't allow friend declarations. This violates the wording of
4516     // P1766, but not the intent.
4517     if (isa<FriendDecl>(D))
4518       return {NonCLikeKind::Friend, D->getSourceRange()};
4519 
4520     //  -- declare any members other than non-static data members, member
4521     //     enumerations, or member classes,
4522     if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) ||
4523         isa<EnumDecl>(D))
4524       continue;
4525     auto *MemberRD = dyn_cast<CXXRecordDecl>(D);
4526     if (!MemberRD) {
4527       if (D->isImplicit())
4528         continue;
4529       return {NonCLikeKind::OtherMember, D->getSourceRange()};
4530     }
4531 
4532     //  -- contain a lambda-expression,
4533     if (MemberRD->isLambda())
4534       return {NonCLikeKind::Lambda, MemberRD->getSourceRange()};
4535 
4536     //  and all member classes shall also satisfy these requirements
4537     //  (recursively).
4538     if (MemberRD->isThisDeclarationADefinition()) {
4539       if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD))
4540         return Kind;
4541     }
4542   }
4543 
4544   return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}};
4545 }
4546 
4547 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4548                                         TypedefNameDecl *NewTD) {
4549   if (TagFromDeclSpec->isInvalidDecl())
4550     return;
4551 
4552   // Do nothing if the tag already has a name for linkage purposes.
4553   if (TagFromDeclSpec->hasNameForLinkage())
4554     return;
4555 
4556   // A well-formed anonymous tag must always be a TUK_Definition.
4557   assert(TagFromDeclSpec->isThisDeclarationADefinition());
4558 
4559   // The type must match the tag exactly;  no qualifiers allowed.
4560   if (!Context.hasSameType(NewTD->getUnderlyingType(),
4561                            Context.getTagDeclType(TagFromDeclSpec))) {
4562     if (getLangOpts().CPlusPlus)
4563       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4564     return;
4565   }
4566 
4567   // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
4568   //   An unnamed class with a typedef name for linkage purposes shall [be
4569   //   C-like].
4570   //
4571   // FIXME: Also diagnose if we've already computed the linkage. That ideally
4572   // shouldn't happen, but there are constructs that the language rule doesn't
4573   // disallow for which we can't reasonably avoid computing linkage early.
4574   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec);
4575   NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD)
4576                              : NonCLikeKind();
4577   bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed();
4578   if (NonCLike || ChangesLinkage) {
4579     if (NonCLike.Kind == NonCLikeKind::Invalid)
4580       return;
4581 
4582     unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef;
4583     if (ChangesLinkage) {
4584       // If the linkage changes, we can't accept this as an extension.
4585       if (NonCLike.Kind == NonCLikeKind::None)
4586         DiagID = diag::err_typedef_changes_linkage;
4587       else
4588         DiagID = diag::err_non_c_like_anon_struct_in_typedef;
4589     }
4590 
4591     SourceLocation FixitLoc =
4592         getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart());
4593     llvm::SmallString<40> TextToInsert;
4594     TextToInsert += ' ';
4595     TextToInsert += NewTD->getIdentifier()->getName();
4596 
4597     Diag(FixitLoc, DiagID)
4598       << isa<TypeAliasDecl>(NewTD)
4599       << FixItHint::CreateInsertion(FixitLoc, TextToInsert);
4600     if (NonCLike.Kind != NonCLikeKind::None) {
4601       Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct)
4602         << NonCLike.Kind - 1 << NonCLike.Range;
4603     }
4604     Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here)
4605       << NewTD << isa<TypeAliasDecl>(NewTD);
4606 
4607     if (ChangesLinkage)
4608       return;
4609   }
4610 
4611   // Otherwise, set this as the anon-decl typedef for the tag.
4612   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4613 }
4614 
4615 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4616   switch (T) {
4617   case DeclSpec::TST_class:
4618     return 0;
4619   case DeclSpec::TST_struct:
4620     return 1;
4621   case DeclSpec::TST_interface:
4622     return 2;
4623   case DeclSpec::TST_union:
4624     return 3;
4625   case DeclSpec::TST_enum:
4626     return 4;
4627   default:
4628     llvm_unreachable("unexpected type specifier");
4629   }
4630 }
4631 
4632 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4633 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4634 /// parameters to cope with template friend declarations.
4635 Decl *
4636 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4637                                  MultiTemplateParamsArg TemplateParams,
4638                                  bool IsExplicitInstantiation,
4639                                  RecordDecl *&AnonRecord) {
4640   Decl *TagD = nullptr;
4641   TagDecl *Tag = nullptr;
4642   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4643       DS.getTypeSpecType() == DeclSpec::TST_struct ||
4644       DS.getTypeSpecType() == DeclSpec::TST_interface ||
4645       DS.getTypeSpecType() == DeclSpec::TST_union ||
4646       DS.getTypeSpecType() == DeclSpec::TST_enum) {
4647     TagD = DS.getRepAsDecl();
4648 
4649     if (!TagD) // We probably had an error
4650       return nullptr;
4651 
4652     // Note that the above type specs guarantee that the
4653     // type rep is a Decl, whereas in many of the others
4654     // it's a Type.
4655     if (isa<TagDecl>(TagD))
4656       Tag = cast<TagDecl>(TagD);
4657     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4658       Tag = CTD->getTemplatedDecl();
4659   }
4660 
4661   if (Tag) {
4662     handleTagNumbering(Tag, S);
4663     Tag->setFreeStanding();
4664     if (Tag->isInvalidDecl())
4665       return Tag;
4666   }
4667 
4668   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4669     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4670     // or incomplete types shall not be restrict-qualified."
4671     if (TypeQuals & DeclSpec::TQ_restrict)
4672       Diag(DS.getRestrictSpecLoc(),
4673            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4674            << DS.getSourceRange();
4675   }
4676 
4677   if (DS.isInlineSpecified())
4678     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4679         << getLangOpts().CPlusPlus17;
4680 
4681   if (DS.hasConstexprSpecifier()) {
4682     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4683     // and definitions of functions and variables.
4684     // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
4685     // the declaration of a function or function template
4686     if (Tag)
4687       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4688           << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType())
4689           << static_cast<int>(DS.getConstexprSpecifier());
4690     else
4691       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
4692           << static_cast<int>(DS.getConstexprSpecifier());
4693     // Don't emit warnings after this error.
4694     return TagD;
4695   }
4696 
4697   DiagnoseFunctionSpecifiers(DS);
4698 
4699   if (DS.isFriendSpecified()) {
4700     // If we're dealing with a decl but not a TagDecl, assume that
4701     // whatever routines created it handled the friendship aspect.
4702     if (TagD && !Tag)
4703       return nullptr;
4704     return ActOnFriendTypeDecl(S, DS, TemplateParams);
4705   }
4706 
4707   const CXXScopeSpec &SS = DS.getTypeSpecScope();
4708   bool IsExplicitSpecialization =
4709     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4710   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4711       !IsExplicitInstantiation && !IsExplicitSpecialization &&
4712       !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4713     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4714     // nested-name-specifier unless it is an explicit instantiation
4715     // or an explicit specialization.
4716     //
4717     // FIXME: We allow class template partial specializations here too, per the
4718     // obvious intent of DR1819.
4719     //
4720     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4721     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4722         << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4723     return nullptr;
4724   }
4725 
4726   // Track whether this decl-specifier declares anything.
4727   bool DeclaresAnything = true;
4728 
4729   // Handle anonymous struct definitions.
4730   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4731     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4732         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4733       if (getLangOpts().CPlusPlus ||
4734           Record->getDeclContext()->isRecord()) {
4735         // If CurContext is a DeclContext that can contain statements,
4736         // RecursiveASTVisitor won't visit the decls that
4737         // BuildAnonymousStructOrUnion() will put into CurContext.
4738         // Also store them here so that they can be part of the
4739         // DeclStmt that gets created in this case.
4740         // FIXME: Also return the IndirectFieldDecls created by
4741         // BuildAnonymousStructOr union, for the same reason?
4742         if (CurContext->isFunctionOrMethod())
4743           AnonRecord = Record;
4744         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4745                                            Context.getPrintingPolicy());
4746       }
4747 
4748       DeclaresAnything = false;
4749     }
4750   }
4751 
4752   // C11 6.7.2.1p2:
4753   //   A struct-declaration that does not declare an anonymous structure or
4754   //   anonymous union shall contain a struct-declarator-list.
4755   //
4756   // This rule also existed in C89 and C99; the grammar for struct-declaration
4757   // did not permit a struct-declaration without a struct-declarator-list.
4758   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4759       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4760     // Check for Microsoft C extension: anonymous struct/union member.
4761     // Handle 2 kinds of anonymous struct/union:
4762     //   struct STRUCT;
4763     //   union UNION;
4764     // and
4765     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
4766     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
4767     if ((Tag && Tag->getDeclName()) ||
4768         DS.getTypeSpecType() == DeclSpec::TST_typename) {
4769       RecordDecl *Record = nullptr;
4770       if (Tag)
4771         Record = dyn_cast<RecordDecl>(Tag);
4772       else if (const RecordType *RT =
4773                    DS.getRepAsType().get()->getAsStructureType())
4774         Record = RT->getDecl();
4775       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4776         Record = UT->getDecl();
4777 
4778       if (Record && getLangOpts().MicrosoftExt) {
4779         Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4780             << Record->isUnion() << DS.getSourceRange();
4781         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4782       }
4783 
4784       DeclaresAnything = false;
4785     }
4786   }
4787 
4788   // Skip all the checks below if we have a type error.
4789   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4790       (TagD && TagD->isInvalidDecl()))
4791     return TagD;
4792 
4793   if (getLangOpts().CPlusPlus &&
4794       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4795     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4796       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4797           !Enum->getIdentifier() && !Enum->isInvalidDecl())
4798         DeclaresAnything = false;
4799 
4800   if (!DS.isMissingDeclaratorOk()) {
4801     // Customize diagnostic for a typedef missing a name.
4802     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4803       Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4804           << DS.getSourceRange();
4805     else
4806       DeclaresAnything = false;
4807   }
4808 
4809   if (DS.isModulePrivateSpecified() &&
4810       Tag && Tag->getDeclContext()->isFunctionOrMethod())
4811     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4812       << Tag->getTagKind()
4813       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4814 
4815   ActOnDocumentableDecl(TagD);
4816 
4817   // C 6.7/2:
4818   //   A declaration [...] shall declare at least a declarator [...], a tag,
4819   //   or the members of an enumeration.
4820   // C++ [dcl.dcl]p3:
4821   //   [If there are no declarators], and except for the declaration of an
4822   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
4823   //   names into the program, or shall redeclare a name introduced by a
4824   //   previous declaration.
4825   if (!DeclaresAnything) {
4826     // In C, we allow this as a (popular) extension / bug. Don't bother
4827     // producing further diagnostics for redundant qualifiers after this.
4828     Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty())
4829                                ? diag::err_no_declarators
4830                                : diag::ext_no_declarators)
4831         << DS.getSourceRange();
4832     return TagD;
4833   }
4834 
4835   // C++ [dcl.stc]p1:
4836   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4837   //   init-declarator-list of the declaration shall not be empty.
4838   // C++ [dcl.fct.spec]p1:
4839   //   If a cv-qualifier appears in a decl-specifier-seq, the
4840   //   init-declarator-list of the declaration shall not be empty.
4841   //
4842   // Spurious qualifiers here appear to be valid in C.
4843   unsigned DiagID = diag::warn_standalone_specifier;
4844   if (getLangOpts().CPlusPlus)
4845     DiagID = diag::ext_standalone_specifier;
4846 
4847   // Note that a linkage-specification sets a storage class, but
4848   // 'extern "C" struct foo;' is actually valid and not theoretically
4849   // useless.
4850   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4851     if (SCS == DeclSpec::SCS_mutable)
4852       // Since mutable is not a viable storage class specifier in C, there is
4853       // no reason to treat it as an extension. Instead, diagnose as an error.
4854       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4855     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4856       Diag(DS.getStorageClassSpecLoc(), DiagID)
4857         << DeclSpec::getSpecifierName(SCS);
4858   }
4859 
4860   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4861     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4862       << DeclSpec::getSpecifierName(TSCS);
4863   if (DS.getTypeQualifiers()) {
4864     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4865       Diag(DS.getConstSpecLoc(), DiagID) << "const";
4866     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4867       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4868     // Restrict is covered above.
4869     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4870       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4871     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4872       Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4873   }
4874 
4875   // Warn about ignored type attributes, for example:
4876   // __attribute__((aligned)) struct A;
4877   // Attributes should be placed after tag to apply to type declaration.
4878   if (!DS.getAttributes().empty()) {
4879     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4880     if (TypeSpecType == DeclSpec::TST_class ||
4881         TypeSpecType == DeclSpec::TST_struct ||
4882         TypeSpecType == DeclSpec::TST_interface ||
4883         TypeSpecType == DeclSpec::TST_union ||
4884         TypeSpecType == DeclSpec::TST_enum) {
4885       for (const ParsedAttr &AL : DS.getAttributes())
4886         Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4887             << AL << GetDiagnosticTypeSpecifierID(TypeSpecType);
4888     }
4889   }
4890 
4891   return TagD;
4892 }
4893 
4894 /// We are trying to inject an anonymous member into the given scope;
4895 /// check if there's an existing declaration that can't be overloaded.
4896 ///
4897 /// \return true if this is a forbidden redeclaration
4898 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4899                                          Scope *S,
4900                                          DeclContext *Owner,
4901                                          DeclarationName Name,
4902                                          SourceLocation NameLoc,
4903                                          bool IsUnion) {
4904   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4905                  Sema::ForVisibleRedeclaration);
4906   if (!SemaRef.LookupName(R, S)) return false;
4907 
4908   // Pick a representative declaration.
4909   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4910   assert(PrevDecl && "Expected a non-null Decl");
4911 
4912   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4913     return false;
4914 
4915   SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4916     << IsUnion << Name;
4917   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4918 
4919   return true;
4920 }
4921 
4922 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
4923 /// anonymous struct or union AnonRecord into the owning context Owner
4924 /// and scope S. This routine will be invoked just after we realize
4925 /// that an unnamed union or struct is actually an anonymous union or
4926 /// struct, e.g.,
4927 ///
4928 /// @code
4929 /// union {
4930 ///   int i;
4931 ///   float f;
4932 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4933 ///    // f into the surrounding scope.x
4934 /// @endcode
4935 ///
4936 /// This routine is recursive, injecting the names of nested anonymous
4937 /// structs/unions into the owning context and scope as well.
4938 static bool
4939 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4940                                     RecordDecl *AnonRecord, AccessSpecifier AS,
4941                                     SmallVectorImpl<NamedDecl *> &Chaining) {
4942   bool Invalid = false;
4943 
4944   // Look every FieldDecl and IndirectFieldDecl with a name.
4945   for (auto *D : AnonRecord->decls()) {
4946     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4947         cast<NamedDecl>(D)->getDeclName()) {
4948       ValueDecl *VD = cast<ValueDecl>(D);
4949       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4950                                        VD->getLocation(),
4951                                        AnonRecord->isUnion())) {
4952         // C++ [class.union]p2:
4953         //   The names of the members of an anonymous union shall be
4954         //   distinct from the names of any other entity in the
4955         //   scope in which the anonymous union is declared.
4956         Invalid = true;
4957       } else {
4958         // C++ [class.union]p2:
4959         //   For the purpose of name lookup, after the anonymous union
4960         //   definition, the members of the anonymous union are
4961         //   considered to have been defined in the scope in which the
4962         //   anonymous union is declared.
4963         unsigned OldChainingSize = Chaining.size();
4964         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4965           Chaining.append(IF->chain_begin(), IF->chain_end());
4966         else
4967           Chaining.push_back(VD);
4968 
4969         assert(Chaining.size() >= 2);
4970         NamedDecl **NamedChain =
4971           new (SemaRef.Context)NamedDecl*[Chaining.size()];
4972         for (unsigned i = 0; i < Chaining.size(); i++)
4973           NamedChain[i] = Chaining[i];
4974 
4975         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4976             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4977             VD->getType(), {NamedChain, Chaining.size()});
4978 
4979         for (const auto *Attr : VD->attrs())
4980           IndirectField->addAttr(Attr->clone(SemaRef.Context));
4981 
4982         IndirectField->setAccess(AS);
4983         IndirectField->setImplicit();
4984         SemaRef.PushOnScopeChains(IndirectField, S);
4985 
4986         // That includes picking up the appropriate access specifier.
4987         if (AS != AS_none) IndirectField->setAccess(AS);
4988 
4989         Chaining.resize(OldChainingSize);
4990       }
4991     }
4992   }
4993 
4994   return Invalid;
4995 }
4996 
4997 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4998 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
4999 /// illegal input values are mapped to SC_None.
5000 static StorageClass
5001 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
5002   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
5003   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
5004          "Parser allowed 'typedef' as storage class VarDecl.");
5005   switch (StorageClassSpec) {
5006   case DeclSpec::SCS_unspecified:    return SC_None;
5007   case DeclSpec::SCS_extern:
5008     if (DS.isExternInLinkageSpec())
5009       return SC_None;
5010     return SC_Extern;
5011   case DeclSpec::SCS_static:         return SC_Static;
5012   case DeclSpec::SCS_auto:           return SC_Auto;
5013   case DeclSpec::SCS_register:       return SC_Register;
5014   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5015     // Illegal SCSs map to None: error reporting is up to the caller.
5016   case DeclSpec::SCS_mutable:        // Fall through.
5017   case DeclSpec::SCS_typedef:        return SC_None;
5018   }
5019   llvm_unreachable("unknown storage class specifier");
5020 }
5021 
5022 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
5023   assert(Record->hasInClassInitializer());
5024 
5025   for (const auto *I : Record->decls()) {
5026     const auto *FD = dyn_cast<FieldDecl>(I);
5027     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
5028       FD = IFD->getAnonField();
5029     if (FD && FD->hasInClassInitializer())
5030       return FD->getLocation();
5031   }
5032 
5033   llvm_unreachable("couldn't find in-class initializer");
5034 }
5035 
5036 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5037                                       SourceLocation DefaultInitLoc) {
5038   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5039     return;
5040 
5041   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
5042   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
5043 }
5044 
5045 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5046                                       CXXRecordDecl *AnonUnion) {
5047   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5048     return;
5049 
5050   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
5051 }
5052 
5053 /// BuildAnonymousStructOrUnion - Handle the declaration of an
5054 /// anonymous structure or union. Anonymous unions are a C++ feature
5055 /// (C++ [class.union]) and a C11 feature; anonymous structures
5056 /// are a C11 feature and GNU C++ extension.
5057 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
5058                                         AccessSpecifier AS,
5059                                         RecordDecl *Record,
5060                                         const PrintingPolicy &Policy) {
5061   DeclContext *Owner = Record->getDeclContext();
5062 
5063   // Diagnose whether this anonymous struct/union is an extension.
5064   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
5065     Diag(Record->getLocation(), diag::ext_anonymous_union);
5066   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
5067     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
5068   else if (!Record->isUnion() && !getLangOpts().C11)
5069     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
5070 
5071   // C and C++ require different kinds of checks for anonymous
5072   // structs/unions.
5073   bool Invalid = false;
5074   if (getLangOpts().CPlusPlus) {
5075     const char *PrevSpec = nullptr;
5076     if (Record->isUnion()) {
5077       // C++ [class.union]p6:
5078       // C++17 [class.union.anon]p2:
5079       //   Anonymous unions declared in a named namespace or in the
5080       //   global namespace shall be declared static.
5081       unsigned DiagID;
5082       DeclContext *OwnerScope = Owner->getRedeclContext();
5083       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
5084           (OwnerScope->isTranslationUnit() ||
5085            (OwnerScope->isNamespace() &&
5086             !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
5087         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
5088           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
5089 
5090         // Recover by adding 'static'.
5091         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
5092                                PrevSpec, DiagID, Policy);
5093       }
5094       // C++ [class.union]p6:
5095       //   A storage class is not allowed in a declaration of an
5096       //   anonymous union in a class scope.
5097       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
5098                isa<RecordDecl>(Owner)) {
5099         Diag(DS.getStorageClassSpecLoc(),
5100              diag::err_anonymous_union_with_storage_spec)
5101           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5102 
5103         // Recover by removing the storage specifier.
5104         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
5105                                SourceLocation(),
5106                                PrevSpec, DiagID, Context.getPrintingPolicy());
5107       }
5108     }
5109 
5110     // Ignore const/volatile/restrict qualifiers.
5111     if (DS.getTypeQualifiers()) {
5112       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5113         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
5114           << Record->isUnion() << "const"
5115           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
5116       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5117         Diag(DS.getVolatileSpecLoc(),
5118              diag::ext_anonymous_struct_union_qualified)
5119           << Record->isUnion() << "volatile"
5120           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
5121       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
5122         Diag(DS.getRestrictSpecLoc(),
5123              diag::ext_anonymous_struct_union_qualified)
5124           << Record->isUnion() << "restrict"
5125           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
5126       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5127         Diag(DS.getAtomicSpecLoc(),
5128              diag::ext_anonymous_struct_union_qualified)
5129           << Record->isUnion() << "_Atomic"
5130           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
5131       if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5132         Diag(DS.getUnalignedSpecLoc(),
5133              diag::ext_anonymous_struct_union_qualified)
5134           << Record->isUnion() << "__unaligned"
5135           << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
5136 
5137       DS.ClearTypeQualifiers();
5138     }
5139 
5140     // C++ [class.union]p2:
5141     //   The member-specification of an anonymous union shall only
5142     //   define non-static data members. [Note: nested types and
5143     //   functions cannot be declared within an anonymous union. ]
5144     for (auto *Mem : Record->decls()) {
5145       // Ignore invalid declarations; we already diagnosed them.
5146       if (Mem->isInvalidDecl())
5147         continue;
5148 
5149       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
5150         // C++ [class.union]p3:
5151         //   An anonymous union shall not have private or protected
5152         //   members (clause 11).
5153         assert(FD->getAccess() != AS_none);
5154         if (FD->getAccess() != AS_public) {
5155           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
5156             << Record->isUnion() << (FD->getAccess() == AS_protected);
5157           Invalid = true;
5158         }
5159 
5160         // C++ [class.union]p1
5161         //   An object of a class with a non-trivial constructor, a non-trivial
5162         //   copy constructor, a non-trivial destructor, or a non-trivial copy
5163         //   assignment operator cannot be a member of a union, nor can an
5164         //   array of such objects.
5165         if (CheckNontrivialField(FD))
5166           Invalid = true;
5167       } else if (Mem->isImplicit()) {
5168         // Any implicit members are fine.
5169       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
5170         // This is a type that showed up in an
5171         // elaborated-type-specifier inside the anonymous struct or
5172         // union, but which actually declares a type outside of the
5173         // anonymous struct or union. It's okay.
5174       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
5175         if (!MemRecord->isAnonymousStructOrUnion() &&
5176             MemRecord->getDeclName()) {
5177           // Visual C++ allows type definition in anonymous struct or union.
5178           if (getLangOpts().MicrosoftExt)
5179             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
5180               << Record->isUnion();
5181           else {
5182             // This is a nested type declaration.
5183             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
5184               << Record->isUnion();
5185             Invalid = true;
5186           }
5187         } else {
5188           // This is an anonymous type definition within another anonymous type.
5189           // This is a popular extension, provided by Plan9, MSVC and GCC, but
5190           // not part of standard C++.
5191           Diag(MemRecord->getLocation(),
5192                diag::ext_anonymous_record_with_anonymous_type)
5193             << Record->isUnion();
5194         }
5195       } else if (isa<AccessSpecDecl>(Mem)) {
5196         // Any access specifier is fine.
5197       } else if (isa<StaticAssertDecl>(Mem)) {
5198         // In C++1z, static_assert declarations are also fine.
5199       } else {
5200         // We have something that isn't a non-static data
5201         // member. Complain about it.
5202         unsigned DK = diag::err_anonymous_record_bad_member;
5203         if (isa<TypeDecl>(Mem))
5204           DK = diag::err_anonymous_record_with_type;
5205         else if (isa<FunctionDecl>(Mem))
5206           DK = diag::err_anonymous_record_with_function;
5207         else if (isa<VarDecl>(Mem))
5208           DK = diag::err_anonymous_record_with_static;
5209 
5210         // Visual C++ allows type definition in anonymous struct or union.
5211         if (getLangOpts().MicrosoftExt &&
5212             DK == diag::err_anonymous_record_with_type)
5213           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
5214             << Record->isUnion();
5215         else {
5216           Diag(Mem->getLocation(), DK) << Record->isUnion();
5217           Invalid = true;
5218         }
5219       }
5220     }
5221 
5222     // C++11 [class.union]p8 (DR1460):
5223     //   At most one variant member of a union may have a
5224     //   brace-or-equal-initializer.
5225     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5226         Owner->isRecord())
5227       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5228                                 cast<CXXRecordDecl>(Record));
5229   }
5230 
5231   if (!Record->isUnion() && !Owner->isRecord()) {
5232     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5233       << getLangOpts().CPlusPlus;
5234     Invalid = true;
5235   }
5236 
5237   // C++ [dcl.dcl]p3:
5238   //   [If there are no declarators], and except for the declaration of an
5239   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
5240   //   names into the program
5241   // C++ [class.mem]p2:
5242   //   each such member-declaration shall either declare at least one member
5243   //   name of the class or declare at least one unnamed bit-field
5244   //
5245   // For C this is an error even for a named struct, and is diagnosed elsewhere.
5246   if (getLangOpts().CPlusPlus && Record->field_empty())
5247     Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5248 
5249   // Mock up a declarator.
5250   Declarator Dc(DS, DeclaratorContext::Member);
5251   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5252   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
5253 
5254   // Create a declaration for this anonymous struct/union.
5255   NamedDecl *Anon = nullptr;
5256   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5257     Anon = FieldDecl::Create(
5258         Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5259         /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5260         /*BitWidth=*/nullptr, /*Mutable=*/false,
5261         /*InitStyle=*/ICIS_NoInit);
5262     Anon->setAccess(AS);
5263     ProcessDeclAttributes(S, Anon, Dc);
5264 
5265     if (getLangOpts().CPlusPlus)
5266       FieldCollector->Add(cast<FieldDecl>(Anon));
5267   } else {
5268     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5269     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5270     if (SCSpec == DeclSpec::SCS_mutable) {
5271       // mutable can only appear on non-static class members, so it's always
5272       // an error here
5273       Diag(Record->getLocation(), diag::err_mutable_nonmember);
5274       Invalid = true;
5275       SC = SC_None;
5276     }
5277 
5278     assert(DS.getAttributes().empty() && "No attribute expected");
5279     Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5280                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
5281                            Context.getTypeDeclType(Record), TInfo, SC);
5282 
5283     // Default-initialize the implicit variable. This initialization will be
5284     // trivial in almost all cases, except if a union member has an in-class
5285     // initializer:
5286     //   union { int n = 0; };
5287     if (!Invalid)
5288       ActOnUninitializedDecl(Anon);
5289   }
5290   Anon->setImplicit();
5291 
5292   // Mark this as an anonymous struct/union type.
5293   Record->setAnonymousStructOrUnion(true);
5294 
5295   // Add the anonymous struct/union object to the current
5296   // context. We'll be referencing this object when we refer to one of
5297   // its members.
5298   Owner->addDecl(Anon);
5299 
5300   // Inject the members of the anonymous struct/union into the owning
5301   // context and into the identifier resolver chain for name lookup
5302   // purposes.
5303   SmallVector<NamedDecl*, 2> Chain;
5304   Chain.push_back(Anon);
5305 
5306   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
5307     Invalid = true;
5308 
5309   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5310     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5311       MangleNumberingContext *MCtx;
5312       Decl *ManglingContextDecl;
5313       std::tie(MCtx, ManglingContextDecl) =
5314           getCurrentMangleNumberContext(NewVD->getDeclContext());
5315       if (MCtx) {
5316         Context.setManglingNumber(
5317             NewVD, MCtx->getManglingNumber(
5318                        NewVD, getMSManglingNumber(getLangOpts(), S)));
5319         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5320       }
5321     }
5322   }
5323 
5324   if (Invalid)
5325     Anon->setInvalidDecl();
5326 
5327   return Anon;
5328 }
5329 
5330 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5331 /// Microsoft C anonymous structure.
5332 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5333 /// Example:
5334 ///
5335 /// struct A { int a; };
5336 /// struct B { struct A; int b; };
5337 ///
5338 /// void foo() {
5339 ///   B var;
5340 ///   var.a = 3;
5341 /// }
5342 ///
5343 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5344                                            RecordDecl *Record) {
5345   assert(Record && "expected a record!");
5346 
5347   // Mock up a declarator.
5348   Declarator Dc(DS, DeclaratorContext::TypeName);
5349   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5350   assert(TInfo && "couldn't build declarator info for anonymous struct");
5351 
5352   auto *ParentDecl = cast<RecordDecl>(CurContext);
5353   QualType RecTy = Context.getTypeDeclType(Record);
5354 
5355   // Create a declaration for this anonymous struct.
5356   NamedDecl *Anon =
5357       FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5358                         /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5359                         /*BitWidth=*/nullptr, /*Mutable=*/false,
5360                         /*InitStyle=*/ICIS_NoInit);
5361   Anon->setImplicit();
5362 
5363   // Add the anonymous struct object to the current context.
5364   CurContext->addDecl(Anon);
5365 
5366   // Inject the members of the anonymous struct into the current
5367   // context and into the identifier resolver chain for name lookup
5368   // purposes.
5369   SmallVector<NamedDecl*, 2> Chain;
5370   Chain.push_back(Anon);
5371 
5372   RecordDecl *RecordDef = Record->getDefinition();
5373   if (RequireCompleteSizedType(Anon->getLocation(), RecTy,
5374                                diag::err_field_incomplete_or_sizeless) ||
5375       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
5376                                           AS_none, Chain)) {
5377     Anon->setInvalidDecl();
5378     ParentDecl->setInvalidDecl();
5379   }
5380 
5381   return Anon;
5382 }
5383 
5384 /// GetNameForDeclarator - Determine the full declaration name for the
5385 /// given Declarator.
5386 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5387   return GetNameFromUnqualifiedId(D.getName());
5388 }
5389 
5390 /// Retrieves the declaration name from a parsed unqualified-id.
5391 DeclarationNameInfo
5392 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5393   DeclarationNameInfo NameInfo;
5394   NameInfo.setLoc(Name.StartLocation);
5395 
5396   switch (Name.getKind()) {
5397 
5398   case UnqualifiedIdKind::IK_ImplicitSelfParam:
5399   case UnqualifiedIdKind::IK_Identifier:
5400     NameInfo.setName(Name.Identifier);
5401     return NameInfo;
5402 
5403   case UnqualifiedIdKind::IK_DeductionGuideName: {
5404     // C++ [temp.deduct.guide]p3:
5405     //   The simple-template-id shall name a class template specialization.
5406     //   The template-name shall be the same identifier as the template-name
5407     //   of the simple-template-id.
5408     // These together intend to imply that the template-name shall name a
5409     // class template.
5410     // FIXME: template<typename T> struct X {};
5411     //        template<typename T> using Y = X<T>;
5412     //        Y(int) -> Y<int>;
5413     //   satisfies these rules but does not name a class template.
5414     TemplateName TN = Name.TemplateName.get().get();
5415     auto *Template = TN.getAsTemplateDecl();
5416     if (!Template || !isa<ClassTemplateDecl>(Template)) {
5417       Diag(Name.StartLocation,
5418            diag::err_deduction_guide_name_not_class_template)
5419         << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5420       if (Template)
5421         Diag(Template->getLocation(), diag::note_template_decl_here);
5422       return DeclarationNameInfo();
5423     }
5424 
5425     NameInfo.setName(
5426         Context.DeclarationNames.getCXXDeductionGuideName(Template));
5427     return NameInfo;
5428   }
5429 
5430   case UnqualifiedIdKind::IK_OperatorFunctionId:
5431     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5432                                            Name.OperatorFunctionId.Operator));
5433     NameInfo.setCXXOperatorNameRange(SourceRange(
5434         Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation));
5435     return NameInfo;
5436 
5437   case UnqualifiedIdKind::IK_LiteralOperatorId:
5438     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5439                                                            Name.Identifier));
5440     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5441     return NameInfo;
5442 
5443   case UnqualifiedIdKind::IK_ConversionFunctionId: {
5444     TypeSourceInfo *TInfo;
5445     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5446     if (Ty.isNull())
5447       return DeclarationNameInfo();
5448     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5449                                                Context.getCanonicalType(Ty)));
5450     NameInfo.setNamedTypeInfo(TInfo);
5451     return NameInfo;
5452   }
5453 
5454   case UnqualifiedIdKind::IK_ConstructorName: {
5455     TypeSourceInfo *TInfo;
5456     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5457     if (Ty.isNull())
5458       return DeclarationNameInfo();
5459     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5460                                               Context.getCanonicalType(Ty)));
5461     NameInfo.setNamedTypeInfo(TInfo);
5462     return NameInfo;
5463   }
5464 
5465   case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5466     // In well-formed code, we can only have a constructor
5467     // template-id that refers to the current context, so go there
5468     // to find the actual type being constructed.
5469     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5470     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5471       return DeclarationNameInfo();
5472 
5473     // Determine the type of the class being constructed.
5474     QualType CurClassType = Context.getTypeDeclType(CurClass);
5475 
5476     // FIXME: Check two things: that the template-id names the same type as
5477     // CurClassType, and that the template-id does not occur when the name
5478     // was qualified.
5479 
5480     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5481                                     Context.getCanonicalType(CurClassType)));
5482     // FIXME: should we retrieve TypeSourceInfo?
5483     NameInfo.setNamedTypeInfo(nullptr);
5484     return NameInfo;
5485   }
5486 
5487   case UnqualifiedIdKind::IK_DestructorName: {
5488     TypeSourceInfo *TInfo;
5489     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5490     if (Ty.isNull())
5491       return DeclarationNameInfo();
5492     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5493                                               Context.getCanonicalType(Ty)));
5494     NameInfo.setNamedTypeInfo(TInfo);
5495     return NameInfo;
5496   }
5497 
5498   case UnqualifiedIdKind::IK_TemplateId: {
5499     TemplateName TName = Name.TemplateId->Template.get();
5500     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5501     return Context.getNameForTemplate(TName, TNameLoc);
5502   }
5503 
5504   } // switch (Name.getKind())
5505 
5506   llvm_unreachable("Unknown name kind");
5507 }
5508 
5509 static QualType getCoreType(QualType Ty) {
5510   do {
5511     if (Ty->isPointerType() || Ty->isReferenceType())
5512       Ty = Ty->getPointeeType();
5513     else if (Ty->isArrayType())
5514       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5515     else
5516       return Ty.withoutLocalFastQualifiers();
5517   } while (true);
5518 }
5519 
5520 /// hasSimilarParameters - Determine whether the C++ functions Declaration
5521 /// and Definition have "nearly" matching parameters. This heuristic is
5522 /// used to improve diagnostics in the case where an out-of-line function
5523 /// definition doesn't match any declaration within the class or namespace.
5524 /// Also sets Params to the list of indices to the parameters that differ
5525 /// between the declaration and the definition. If hasSimilarParameters
5526 /// returns true and Params is empty, then all of the parameters match.
5527 static bool hasSimilarParameters(ASTContext &Context,
5528                                      FunctionDecl *Declaration,
5529                                      FunctionDecl *Definition,
5530                                      SmallVectorImpl<unsigned> &Params) {
5531   Params.clear();
5532   if (Declaration->param_size() != Definition->param_size())
5533     return false;
5534   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5535     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5536     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5537 
5538     // The parameter types are identical
5539     if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5540       continue;
5541 
5542     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5543     QualType DefParamBaseTy = getCoreType(DefParamTy);
5544     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5545     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5546 
5547     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5548         (DeclTyName && DeclTyName == DefTyName))
5549       Params.push_back(Idx);
5550     else  // The two parameters aren't even close
5551       return false;
5552   }
5553 
5554   return true;
5555 }
5556 
5557 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5558 /// declarator needs to be rebuilt in the current instantiation.
5559 /// Any bits of declarator which appear before the name are valid for
5560 /// consideration here.  That's specifically the type in the decl spec
5561 /// and the base type in any member-pointer chunks.
5562 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5563                                                     DeclarationName Name) {
5564   // The types we specifically need to rebuild are:
5565   //   - typenames, typeofs, and decltypes
5566   //   - types which will become injected class names
5567   // Of course, we also need to rebuild any type referencing such a
5568   // type.  It's safest to just say "dependent", but we call out a
5569   // few cases here.
5570 
5571   DeclSpec &DS = D.getMutableDeclSpec();
5572   switch (DS.getTypeSpecType()) {
5573   case DeclSpec::TST_typename:
5574   case DeclSpec::TST_typeofType:
5575   case DeclSpec::TST_underlyingType:
5576   case DeclSpec::TST_atomic: {
5577     // Grab the type from the parser.
5578     TypeSourceInfo *TSI = nullptr;
5579     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5580     if (T.isNull() || !T->isInstantiationDependentType()) break;
5581 
5582     // Make sure there's a type source info.  This isn't really much
5583     // of a waste; most dependent types should have type source info
5584     // attached already.
5585     if (!TSI)
5586       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5587 
5588     // Rebuild the type in the current instantiation.
5589     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5590     if (!TSI) return true;
5591 
5592     // Store the new type back in the decl spec.
5593     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5594     DS.UpdateTypeRep(LocType);
5595     break;
5596   }
5597 
5598   case DeclSpec::TST_decltype:
5599   case DeclSpec::TST_typeofExpr: {
5600     Expr *E = DS.getRepAsExpr();
5601     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5602     if (Result.isInvalid()) return true;
5603     DS.UpdateExprRep(Result.get());
5604     break;
5605   }
5606 
5607   default:
5608     // Nothing to do for these decl specs.
5609     break;
5610   }
5611 
5612   // It doesn't matter what order we do this in.
5613   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5614     DeclaratorChunk &Chunk = D.getTypeObject(I);
5615 
5616     // The only type information in the declarator which can come
5617     // before the declaration name is the base type of a member
5618     // pointer.
5619     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5620       continue;
5621 
5622     // Rebuild the scope specifier in-place.
5623     CXXScopeSpec &SS = Chunk.Mem.Scope();
5624     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5625       return true;
5626   }
5627 
5628   return false;
5629 }
5630 
5631 void Sema::warnOnReservedIdentifier(const NamedDecl *D) {
5632   // Avoid warning twice on the same identifier, and don't warn on redeclaration
5633   // of system decl.
5634   if (D->getPreviousDecl() || D->isImplicit())
5635     return;
5636   ReservedIdentifierStatus Status = D->isReserved(getLangOpts());
5637   if (Status != ReservedIdentifierStatus::NotReserved &&
5638       !Context.getSourceManager().isInSystemHeader(D->getLocation()))
5639     Diag(D->getLocation(), diag::warn_reserved_extern_symbol)
5640         << D << static_cast<int>(Status);
5641 }
5642 
5643 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5644   D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
5645   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5646 
5647   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5648       Dcl && Dcl->getDeclContext()->isFileContext())
5649     Dcl->setTopLevelDeclInObjCContainer();
5650 
5651   return Dcl;
5652 }
5653 
5654 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5655 ///   If T is the name of a class, then each of the following shall have a
5656 ///   name different from T:
5657 ///     - every static data member of class T;
5658 ///     - every member function of class T
5659 ///     - every member of class T that is itself a type;
5660 /// \returns true if the declaration name violates these rules.
5661 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5662                                    DeclarationNameInfo NameInfo) {
5663   DeclarationName Name = NameInfo.getName();
5664 
5665   CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5666   while (Record && Record->isAnonymousStructOrUnion())
5667     Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5668   if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5669     Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5670     return true;
5671   }
5672 
5673   return false;
5674 }
5675 
5676 /// Diagnose a declaration whose declarator-id has the given
5677 /// nested-name-specifier.
5678 ///
5679 /// \param SS The nested-name-specifier of the declarator-id.
5680 ///
5681 /// \param DC The declaration context to which the nested-name-specifier
5682 /// resolves.
5683 ///
5684 /// \param Name The name of the entity being declared.
5685 ///
5686 /// \param Loc The location of the name of the entity being declared.
5687 ///
5688 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5689 /// we're declaring an explicit / partial specialization / instantiation.
5690 ///
5691 /// \returns true if we cannot safely recover from this error, false otherwise.
5692 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5693                                         DeclarationName Name,
5694                                         SourceLocation Loc, bool IsTemplateId) {
5695   DeclContext *Cur = CurContext;
5696   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5697     Cur = Cur->getParent();
5698 
5699   // If the user provided a superfluous scope specifier that refers back to the
5700   // class in which the entity is already declared, diagnose and ignore it.
5701   //
5702   // class X {
5703   //   void X::f();
5704   // };
5705   //
5706   // Note, it was once ill-formed to give redundant qualification in all
5707   // contexts, but that rule was removed by DR482.
5708   if (Cur->Equals(DC)) {
5709     if (Cur->isRecord()) {
5710       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5711                                       : diag::err_member_extra_qualification)
5712         << Name << FixItHint::CreateRemoval(SS.getRange());
5713       SS.clear();
5714     } else {
5715       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5716     }
5717     return false;
5718   }
5719 
5720   // Check whether the qualifying scope encloses the scope of the original
5721   // declaration. For a template-id, we perform the checks in
5722   // CheckTemplateSpecializationScope.
5723   if (!Cur->Encloses(DC) && !IsTemplateId) {
5724     if (Cur->isRecord())
5725       Diag(Loc, diag::err_member_qualification)
5726         << Name << SS.getRange();
5727     else if (isa<TranslationUnitDecl>(DC))
5728       Diag(Loc, diag::err_invalid_declarator_global_scope)
5729         << Name << SS.getRange();
5730     else if (isa<FunctionDecl>(Cur))
5731       Diag(Loc, diag::err_invalid_declarator_in_function)
5732         << Name << SS.getRange();
5733     else if (isa<BlockDecl>(Cur))
5734       Diag(Loc, diag::err_invalid_declarator_in_block)
5735         << Name << SS.getRange();
5736     else
5737       Diag(Loc, diag::err_invalid_declarator_scope)
5738       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5739 
5740     return true;
5741   }
5742 
5743   if (Cur->isRecord()) {
5744     // Cannot qualify members within a class.
5745     Diag(Loc, diag::err_member_qualification)
5746       << Name << SS.getRange();
5747     SS.clear();
5748 
5749     // C++ constructors and destructors with incorrect scopes can break
5750     // our AST invariants by having the wrong underlying types. If
5751     // that's the case, then drop this declaration entirely.
5752     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5753          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5754         !Context.hasSameType(Name.getCXXNameType(),
5755                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5756       return true;
5757 
5758     return false;
5759   }
5760 
5761   // C++11 [dcl.meaning]p1:
5762   //   [...] "The nested-name-specifier of the qualified declarator-id shall
5763   //   not begin with a decltype-specifer"
5764   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5765   while (SpecLoc.getPrefix())
5766     SpecLoc = SpecLoc.getPrefix();
5767   if (dyn_cast_or_null<DecltypeType>(
5768         SpecLoc.getNestedNameSpecifier()->getAsType()))
5769     Diag(Loc, diag::err_decltype_in_declarator)
5770       << SpecLoc.getTypeLoc().getSourceRange();
5771 
5772   return false;
5773 }
5774 
5775 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5776                                   MultiTemplateParamsArg TemplateParamLists) {
5777   // TODO: consider using NameInfo for diagnostic.
5778   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5779   DeclarationName Name = NameInfo.getName();
5780 
5781   // All of these full declarators require an identifier.  If it doesn't have
5782   // one, the ParsedFreeStandingDeclSpec action should be used.
5783   if (D.isDecompositionDeclarator()) {
5784     return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5785   } else if (!Name) {
5786     if (!D.isInvalidType())  // Reject this if we think it is valid.
5787       Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5788           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5789     return nullptr;
5790   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5791     return nullptr;
5792 
5793   // The scope passed in may not be a decl scope.  Zip up the scope tree until
5794   // we find one that is.
5795   while ((S->getFlags() & Scope::DeclScope) == 0 ||
5796          (S->getFlags() & Scope::TemplateParamScope) != 0)
5797     S = S->getParent();
5798 
5799   DeclContext *DC = CurContext;
5800   if (D.getCXXScopeSpec().isInvalid())
5801     D.setInvalidType();
5802   else if (D.getCXXScopeSpec().isSet()) {
5803     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5804                                         UPPC_DeclarationQualifier))
5805       return nullptr;
5806 
5807     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5808     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5809     if (!DC || isa<EnumDecl>(DC)) {
5810       // If we could not compute the declaration context, it's because the
5811       // declaration context is dependent but does not refer to a class,
5812       // class template, or class template partial specialization. Complain
5813       // and return early, to avoid the coming semantic disaster.
5814       Diag(D.getIdentifierLoc(),
5815            diag::err_template_qualified_declarator_no_match)
5816         << D.getCXXScopeSpec().getScopeRep()
5817         << D.getCXXScopeSpec().getRange();
5818       return nullptr;
5819     }
5820     bool IsDependentContext = DC->isDependentContext();
5821 
5822     if (!IsDependentContext &&
5823         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5824       return nullptr;
5825 
5826     // If a class is incomplete, do not parse entities inside it.
5827     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5828       Diag(D.getIdentifierLoc(),
5829            diag::err_member_def_undefined_record)
5830         << Name << DC << D.getCXXScopeSpec().getRange();
5831       return nullptr;
5832     }
5833     if (!D.getDeclSpec().isFriendSpecified()) {
5834       if (diagnoseQualifiedDeclaration(
5835               D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5836               D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5837         if (DC->isRecord())
5838           return nullptr;
5839 
5840         D.setInvalidType();
5841       }
5842     }
5843 
5844     // Check whether we need to rebuild the type of the given
5845     // declaration in the current instantiation.
5846     if (EnteringContext && IsDependentContext &&
5847         TemplateParamLists.size() != 0) {
5848       ContextRAII SavedContext(*this, DC);
5849       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5850         D.setInvalidType();
5851     }
5852   }
5853 
5854   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5855   QualType R = TInfo->getType();
5856 
5857   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5858                                       UPPC_DeclarationType))
5859     D.setInvalidType();
5860 
5861   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5862                         forRedeclarationInCurContext());
5863 
5864   // See if this is a redefinition of a variable in the same scope.
5865   if (!D.getCXXScopeSpec().isSet()) {
5866     bool IsLinkageLookup = false;
5867     bool CreateBuiltins = false;
5868 
5869     // If the declaration we're planning to build will be a function
5870     // or object with linkage, then look for another declaration with
5871     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5872     //
5873     // If the declaration we're planning to build will be declared with
5874     // external linkage in the translation unit, create any builtin with
5875     // the same name.
5876     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5877       /* Do nothing*/;
5878     else if (CurContext->isFunctionOrMethod() &&
5879              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5880               R->isFunctionType())) {
5881       IsLinkageLookup = true;
5882       CreateBuiltins =
5883           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5884     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5885                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5886       CreateBuiltins = true;
5887 
5888     if (IsLinkageLookup) {
5889       Previous.clear(LookupRedeclarationWithLinkage);
5890       Previous.setRedeclarationKind(ForExternalRedeclaration);
5891     }
5892 
5893     LookupName(Previous, S, CreateBuiltins);
5894   } else { // Something like "int foo::x;"
5895     LookupQualifiedName(Previous, DC);
5896 
5897     // C++ [dcl.meaning]p1:
5898     //   When the declarator-id is qualified, the declaration shall refer to a
5899     //  previously declared member of the class or namespace to which the
5900     //  qualifier refers (or, in the case of a namespace, of an element of the
5901     //  inline namespace set of that namespace (7.3.1)) or to a specialization
5902     //  thereof; [...]
5903     //
5904     // Note that we already checked the context above, and that we do not have
5905     // enough information to make sure that Previous contains the declaration
5906     // we want to match. For example, given:
5907     //
5908     //   class X {
5909     //     void f();
5910     //     void f(float);
5911     //   };
5912     //
5913     //   void X::f(int) { } // ill-formed
5914     //
5915     // In this case, Previous will point to the overload set
5916     // containing the two f's declared in X, but neither of them
5917     // matches.
5918 
5919     // C++ [dcl.meaning]p1:
5920     //   [...] the member shall not merely have been introduced by a
5921     //   using-declaration in the scope of the class or namespace nominated by
5922     //   the nested-name-specifier of the declarator-id.
5923     RemoveUsingDecls(Previous);
5924   }
5925 
5926   if (Previous.isSingleResult() &&
5927       Previous.getFoundDecl()->isTemplateParameter()) {
5928     // Maybe we will complain about the shadowed template parameter.
5929     if (!D.isInvalidType())
5930       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5931                                       Previous.getFoundDecl());
5932 
5933     // Just pretend that we didn't see the previous declaration.
5934     Previous.clear();
5935   }
5936 
5937   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5938     // Forget that the previous declaration is the injected-class-name.
5939     Previous.clear();
5940 
5941   // In C++, the previous declaration we find might be a tag type
5942   // (class or enum). In this case, the new declaration will hide the
5943   // tag type. Note that this applies to functions, function templates, and
5944   // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5945   if (Previous.isSingleTagDecl() &&
5946       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5947       (TemplateParamLists.size() == 0 || R->isFunctionType()))
5948     Previous.clear();
5949 
5950   // Check that there are no default arguments other than in the parameters
5951   // of a function declaration (C++ only).
5952   if (getLangOpts().CPlusPlus)
5953     CheckExtraCXXDefaultArguments(D);
5954 
5955   NamedDecl *New;
5956 
5957   bool AddToScope = true;
5958   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5959     if (TemplateParamLists.size()) {
5960       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5961       return nullptr;
5962     }
5963 
5964     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5965   } else if (R->isFunctionType()) {
5966     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5967                                   TemplateParamLists,
5968                                   AddToScope);
5969   } else {
5970     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5971                                   AddToScope);
5972   }
5973 
5974   if (!New)
5975     return nullptr;
5976 
5977   // If this has an identifier and is not a function template specialization,
5978   // add it to the scope stack.
5979   if (New->getDeclName() && AddToScope)
5980     PushOnScopeChains(New, S);
5981 
5982   if (isInOpenMPDeclareTargetContext())
5983     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5984 
5985   return New;
5986 }
5987 
5988 /// Helper method to turn variable array types into constant array
5989 /// types in certain situations which would otherwise be errors (for
5990 /// GCC compatibility).
5991 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5992                                                     ASTContext &Context,
5993                                                     bool &SizeIsNegative,
5994                                                     llvm::APSInt &Oversized) {
5995   // This method tries to turn a variable array into a constant
5996   // array even when the size isn't an ICE.  This is necessary
5997   // for compatibility with code that depends on gcc's buggy
5998   // constant expression folding, like struct {char x[(int)(char*)2];}
5999   SizeIsNegative = false;
6000   Oversized = 0;
6001 
6002   if (T->isDependentType())
6003     return QualType();
6004 
6005   QualifierCollector Qs;
6006   const Type *Ty = Qs.strip(T);
6007 
6008   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
6009     QualType Pointee = PTy->getPointeeType();
6010     QualType FixedType =
6011         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
6012                                             Oversized);
6013     if (FixedType.isNull()) return FixedType;
6014     FixedType = Context.getPointerType(FixedType);
6015     return Qs.apply(Context, FixedType);
6016   }
6017   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
6018     QualType Inner = PTy->getInnerType();
6019     QualType FixedType =
6020         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
6021                                             Oversized);
6022     if (FixedType.isNull()) return FixedType;
6023     FixedType = Context.getParenType(FixedType);
6024     return Qs.apply(Context, FixedType);
6025   }
6026 
6027   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
6028   if (!VLATy)
6029     return QualType();
6030 
6031   QualType ElemTy = VLATy->getElementType();
6032   if (ElemTy->isVariablyModifiedType()) {
6033     ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context,
6034                                                  SizeIsNegative, Oversized);
6035     if (ElemTy.isNull())
6036       return QualType();
6037   }
6038 
6039   Expr::EvalResult Result;
6040   if (!VLATy->getSizeExpr() ||
6041       !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
6042     return QualType();
6043 
6044   llvm::APSInt Res = Result.Val.getInt();
6045 
6046   // Check whether the array size is negative.
6047   if (Res.isSigned() && Res.isNegative()) {
6048     SizeIsNegative = true;
6049     return QualType();
6050   }
6051 
6052   // Check whether the array is too large to be addressed.
6053   unsigned ActiveSizeBits =
6054       (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() &&
6055        !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType())
6056           ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res)
6057           : Res.getActiveBits();
6058   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
6059     Oversized = Res;
6060     return QualType();
6061   }
6062 
6063   QualType FoldedArrayType = Context.getConstantArrayType(
6064       ElemTy, Res, VLATy->getSizeExpr(), ArrayType::Normal, 0);
6065   return Qs.apply(Context, FoldedArrayType);
6066 }
6067 
6068 static void
6069 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
6070   SrcTL = SrcTL.getUnqualifiedLoc();
6071   DstTL = DstTL.getUnqualifiedLoc();
6072   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
6073     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
6074     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
6075                                       DstPTL.getPointeeLoc());
6076     DstPTL.setStarLoc(SrcPTL.getStarLoc());
6077     return;
6078   }
6079   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
6080     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
6081     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
6082                                       DstPTL.getInnerLoc());
6083     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
6084     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
6085     return;
6086   }
6087   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
6088   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
6089   TypeLoc SrcElemTL = SrcATL.getElementLoc();
6090   TypeLoc DstElemTL = DstATL.getElementLoc();
6091   if (VariableArrayTypeLoc SrcElemATL =
6092           SrcElemTL.getAs<VariableArrayTypeLoc>()) {
6093     ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>();
6094     FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL);
6095   } else {
6096     DstElemTL.initializeFullCopy(SrcElemTL);
6097   }
6098   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
6099   DstATL.setSizeExpr(SrcATL.getSizeExpr());
6100   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
6101 }
6102 
6103 /// Helper method to turn variable array types into constant array
6104 /// types in certain situations which would otherwise be errors (for
6105 /// GCC compatibility).
6106 static TypeSourceInfo*
6107 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
6108                                               ASTContext &Context,
6109                                               bool &SizeIsNegative,
6110                                               llvm::APSInt &Oversized) {
6111   QualType FixedTy
6112     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
6113                                           SizeIsNegative, Oversized);
6114   if (FixedTy.isNull())
6115     return nullptr;
6116   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
6117   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
6118                                     FixedTInfo->getTypeLoc());
6119   return FixedTInfo;
6120 }
6121 
6122 /// Attempt to fold a variable-sized type to a constant-sized type, returning
6123 /// true if we were successful.
6124 bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
6125                                            QualType &T, SourceLocation Loc,
6126                                            unsigned FailedFoldDiagID) {
6127   bool SizeIsNegative;
6128   llvm::APSInt Oversized;
6129   TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
6130       TInfo, Context, SizeIsNegative, Oversized);
6131   if (FixedTInfo) {
6132     Diag(Loc, diag::ext_vla_folded_to_constant);
6133     TInfo = FixedTInfo;
6134     T = FixedTInfo->getType();
6135     return true;
6136   }
6137 
6138   if (SizeIsNegative)
6139     Diag(Loc, diag::err_typecheck_negative_array_size);
6140   else if (Oversized.getBoolValue())
6141     Diag(Loc, diag::err_array_too_large) << toString(Oversized, 10);
6142   else if (FailedFoldDiagID)
6143     Diag(Loc, FailedFoldDiagID);
6144   return false;
6145 }
6146 
6147 /// Register the given locally-scoped extern "C" declaration so
6148 /// that it can be found later for redeclarations. We include any extern "C"
6149 /// declaration that is not visible in the translation unit here, not just
6150 /// function-scope declarations.
6151 void
6152 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
6153   if (!getLangOpts().CPlusPlus &&
6154       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6155     // Don't need to track declarations in the TU in C.
6156     return;
6157 
6158   // Note that we have a locally-scoped external with this name.
6159   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
6160 }
6161 
6162 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
6163   // FIXME: We can have multiple results via __attribute__((overloadable)).
6164   auto Result = Context.getExternCContextDecl()->lookup(Name);
6165   return Result.empty() ? nullptr : *Result.begin();
6166 }
6167 
6168 /// Diagnose function specifiers on a declaration of an identifier that
6169 /// does not identify a function.
6170 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
6171   // FIXME: We should probably indicate the identifier in question to avoid
6172   // confusion for constructs like "virtual int a(), b;"
6173   if (DS.isVirtualSpecified())
6174     Diag(DS.getVirtualSpecLoc(),
6175          diag::err_virtual_non_function);
6176 
6177   if (DS.hasExplicitSpecifier())
6178     Diag(DS.getExplicitSpecLoc(),
6179          diag::err_explicit_non_function);
6180 
6181   if (DS.isNoreturnSpecified())
6182     Diag(DS.getNoreturnSpecLoc(),
6183          diag::err_noreturn_non_function);
6184 }
6185 
6186 NamedDecl*
6187 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
6188                              TypeSourceInfo *TInfo, LookupResult &Previous) {
6189   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6190   if (D.getCXXScopeSpec().isSet()) {
6191     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
6192       << D.getCXXScopeSpec().getRange();
6193     D.setInvalidType();
6194     // Pretend we didn't see the scope specifier.
6195     DC = CurContext;
6196     Previous.clear();
6197   }
6198 
6199   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6200 
6201   if (D.getDeclSpec().isInlineSpecified())
6202     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6203         << getLangOpts().CPlusPlus17;
6204   if (D.getDeclSpec().hasConstexprSpecifier())
6205     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6206         << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
6207 
6208   if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
6209     if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
6210       Diag(D.getName().StartLocation,
6211            diag::err_deduction_guide_invalid_specifier)
6212           << "typedef";
6213     else
6214       Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
6215           << D.getName().getSourceRange();
6216     return nullptr;
6217   }
6218 
6219   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
6220   if (!NewTD) return nullptr;
6221 
6222   // Handle attributes prior to checking for duplicates in MergeVarDecl
6223   ProcessDeclAttributes(S, NewTD, D);
6224 
6225   CheckTypedefForVariablyModifiedType(S, NewTD);
6226 
6227   bool Redeclaration = D.isRedeclaration();
6228   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
6229   D.setRedeclaration(Redeclaration);
6230   return ND;
6231 }
6232 
6233 void
6234 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
6235   // C99 6.7.7p2: If a typedef name specifies a variably modified type
6236   // then it shall have block scope.
6237   // Note that variably modified types must be fixed before merging the decl so
6238   // that redeclarations will match.
6239   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
6240   QualType T = TInfo->getType();
6241   if (T->isVariablyModifiedType()) {
6242     setFunctionHasBranchProtectedScope();
6243 
6244     if (S->getFnParent() == nullptr) {
6245       bool SizeIsNegative;
6246       llvm::APSInt Oversized;
6247       TypeSourceInfo *FixedTInfo =
6248         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6249                                                       SizeIsNegative,
6250                                                       Oversized);
6251       if (FixedTInfo) {
6252         Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant);
6253         NewTD->setTypeSourceInfo(FixedTInfo);
6254       } else {
6255         if (SizeIsNegative)
6256           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
6257         else if (T->isVariableArrayType())
6258           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
6259         else if (Oversized.getBoolValue())
6260           Diag(NewTD->getLocation(), diag::err_array_too_large)
6261             << toString(Oversized, 10);
6262         else
6263           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
6264         NewTD->setInvalidDecl();
6265       }
6266     }
6267   }
6268 }
6269 
6270 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6271 /// declares a typedef-name, either using the 'typedef' type specifier or via
6272 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6273 NamedDecl*
6274 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
6275                            LookupResult &Previous, bool &Redeclaration) {
6276 
6277   // Find the shadowed declaration before filtering for scope.
6278   NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
6279 
6280   // Merge the decl with the existing one if appropriate. If the decl is
6281   // in an outer scope, it isn't the same thing.
6282   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
6283                        /*AllowInlineNamespace*/false);
6284   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
6285   if (!Previous.empty()) {
6286     Redeclaration = true;
6287     MergeTypedefNameDecl(S, NewTD, Previous);
6288   } else {
6289     inferGslPointerAttribute(NewTD);
6290   }
6291 
6292   if (ShadowedDecl && !Redeclaration)
6293     CheckShadow(NewTD, ShadowedDecl, Previous);
6294 
6295   // If this is the C FILE type, notify the AST context.
6296   if (IdentifierInfo *II = NewTD->getIdentifier())
6297     if (!NewTD->isInvalidDecl() &&
6298         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6299       if (II->isStr("FILE"))
6300         Context.setFILEDecl(NewTD);
6301       else if (II->isStr("jmp_buf"))
6302         Context.setjmp_bufDecl(NewTD);
6303       else if (II->isStr("sigjmp_buf"))
6304         Context.setsigjmp_bufDecl(NewTD);
6305       else if (II->isStr("ucontext_t"))
6306         Context.setucontext_tDecl(NewTD);
6307     }
6308 
6309   return NewTD;
6310 }
6311 
6312 /// Determines whether the given declaration is an out-of-scope
6313 /// previous declaration.
6314 ///
6315 /// This routine should be invoked when name lookup has found a
6316 /// previous declaration (PrevDecl) that is not in the scope where a
6317 /// new declaration by the same name is being introduced. If the new
6318 /// declaration occurs in a local scope, previous declarations with
6319 /// linkage may still be considered previous declarations (C99
6320 /// 6.2.2p4-5, C++ [basic.link]p6).
6321 ///
6322 /// \param PrevDecl the previous declaration found by name
6323 /// lookup
6324 ///
6325 /// \param DC the context in which the new declaration is being
6326 /// declared.
6327 ///
6328 /// \returns true if PrevDecl is an out-of-scope previous declaration
6329 /// for a new delcaration with the same name.
6330 static bool
6331 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
6332                                 ASTContext &Context) {
6333   if (!PrevDecl)
6334     return false;
6335 
6336   if (!PrevDecl->hasLinkage())
6337     return false;
6338 
6339   if (Context.getLangOpts().CPlusPlus) {
6340     // C++ [basic.link]p6:
6341     //   If there is a visible declaration of an entity with linkage
6342     //   having the same name and type, ignoring entities declared
6343     //   outside the innermost enclosing namespace scope, the block
6344     //   scope declaration declares that same entity and receives the
6345     //   linkage of the previous declaration.
6346     DeclContext *OuterContext = DC->getRedeclContext();
6347     if (!OuterContext->isFunctionOrMethod())
6348       // This rule only applies to block-scope declarations.
6349       return false;
6350 
6351     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6352     if (PrevOuterContext->isRecord())
6353       // We found a member function: ignore it.
6354       return false;
6355 
6356     // Find the innermost enclosing namespace for the new and
6357     // previous declarations.
6358     OuterContext = OuterContext->getEnclosingNamespaceContext();
6359     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6360 
6361     // The previous declaration is in a different namespace, so it
6362     // isn't the same function.
6363     if (!OuterContext->Equals(PrevOuterContext))
6364       return false;
6365   }
6366 
6367   return true;
6368 }
6369 
6370 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6371   CXXScopeSpec &SS = D.getCXXScopeSpec();
6372   if (!SS.isSet()) return;
6373   DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6374 }
6375 
6376 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
6377   QualType type = decl->getType();
6378   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
6379   if (lifetime == Qualifiers::OCL_Autoreleasing) {
6380     // Various kinds of declaration aren't allowed to be __autoreleasing.
6381     unsigned kind = -1U;
6382     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6383       if (var->hasAttr<BlocksAttr>())
6384         kind = 0; // __block
6385       else if (!var->hasLocalStorage())
6386         kind = 1; // global
6387     } else if (isa<ObjCIvarDecl>(decl)) {
6388       kind = 3; // ivar
6389     } else if (isa<FieldDecl>(decl)) {
6390       kind = 2; // field
6391     }
6392 
6393     if (kind != -1U) {
6394       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
6395         << kind;
6396     }
6397   } else if (lifetime == Qualifiers::OCL_None) {
6398     // Try to infer lifetime.
6399     if (!type->isObjCLifetimeType())
6400       return false;
6401 
6402     lifetime = type->getObjCARCImplicitLifetime();
6403     type = Context.getLifetimeQualifiedType(type, lifetime);
6404     decl->setType(type);
6405   }
6406 
6407   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6408     // Thread-local variables cannot have lifetime.
6409     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
6410         var->getTLSKind()) {
6411       Diag(var->getLocation(), diag::err_arc_thread_ownership)
6412         << var->getType();
6413       return true;
6414     }
6415   }
6416 
6417   return false;
6418 }
6419 
6420 void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
6421   if (Decl->getType().hasAddressSpace())
6422     return;
6423   if (Decl->getType()->isDependentType())
6424     return;
6425   if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
6426     QualType Type = Var->getType();
6427     if (Type->isSamplerT() || Type->isVoidType())
6428       return;
6429     LangAS ImplAS = LangAS::opencl_private;
6430     // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the
6431     // __opencl_c_program_scope_global_variables feature, the address space
6432     // for a variable at program scope or a static or extern variable inside
6433     // a function are inferred to be __global.
6434     if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) &&
6435         Var->hasGlobalStorage())
6436       ImplAS = LangAS::opencl_global;
6437     // If the original type from a decayed type is an array type and that array
6438     // type has no address space yet, deduce it now.
6439     if (auto DT = dyn_cast<DecayedType>(Type)) {
6440       auto OrigTy = DT->getOriginalType();
6441       if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
6442         // Add the address space to the original array type and then propagate
6443         // that to the element type through `getAsArrayType`.
6444         OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
6445         OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
6446         // Re-generate the decayed type.
6447         Type = Context.getDecayedType(OrigTy);
6448       }
6449     }
6450     Type = Context.getAddrSpaceQualType(Type, ImplAS);
6451     // Apply any qualifiers (including address space) from the array type to
6452     // the element type. This implements C99 6.7.3p8: "If the specification of
6453     // an array type includes any type qualifiers, the element type is so
6454     // qualified, not the array type."
6455     if (Type->isArrayType())
6456       Type = QualType(Context.getAsArrayType(Type), 0);
6457     Decl->setType(Type);
6458   }
6459 }
6460 
6461 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
6462   // Ensure that an auto decl is deduced otherwise the checks below might cache
6463   // the wrong linkage.
6464   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
6465 
6466   // 'weak' only applies to declarations with external linkage.
6467   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
6468     if (!ND.isExternallyVisible()) {
6469       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
6470       ND.dropAttr<WeakAttr>();
6471     }
6472   }
6473   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
6474     if (ND.isExternallyVisible()) {
6475       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
6476       ND.dropAttr<WeakRefAttr>();
6477       ND.dropAttr<AliasAttr>();
6478     }
6479   }
6480 
6481   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
6482     if (VD->hasInit()) {
6483       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
6484         assert(VD->isThisDeclarationADefinition() &&
6485                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
6486         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
6487         VD->dropAttr<AliasAttr>();
6488       }
6489     }
6490   }
6491 
6492   // 'selectany' only applies to externally visible variable declarations.
6493   // It does not apply to functions.
6494   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6495     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6496       S.Diag(Attr->getLocation(),
6497              diag::err_attribute_selectany_non_extern_data);
6498       ND.dropAttr<SelectAnyAttr>();
6499     }
6500   }
6501 
6502   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6503     auto *VD = dyn_cast<VarDecl>(&ND);
6504     bool IsAnonymousNS = false;
6505     bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6506     if (VD) {
6507       const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6508       while (NS && !IsAnonymousNS) {
6509         IsAnonymousNS = NS->isAnonymousNamespace();
6510         NS = dyn_cast<NamespaceDecl>(NS->getParent());
6511       }
6512     }
6513     // dll attributes require external linkage. Static locals may have external
6514     // linkage but still cannot be explicitly imported or exported.
6515     // In Microsoft mode, a variable defined in anonymous namespace must have
6516     // external linkage in order to be exported.
6517     bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6518     if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6519         (!AnonNSInMicrosoftMode &&
6520          (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6521       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6522         << &ND << Attr;
6523       ND.setInvalidDecl();
6524     }
6525   }
6526 
6527   // Check the attributes on the function type, if any.
6528   if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6529     // Don't declare this variable in the second operand of the for-statement;
6530     // GCC miscompiles that by ending its lifetime before evaluating the
6531     // third operand. See gcc.gnu.org/PR86769.
6532     AttributedTypeLoc ATL;
6533     for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6534          (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6535          TL = ATL.getModifiedLoc()) {
6536       // The [[lifetimebound]] attribute can be applied to the implicit object
6537       // parameter of a non-static member function (other than a ctor or dtor)
6538       // by applying it to the function type.
6539       if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6540         const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6541         if (!MD || MD->isStatic()) {
6542           S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6543               << !MD << A->getRange();
6544         } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6545           S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6546               << isa<CXXDestructorDecl>(MD) << A->getRange();
6547         }
6548       }
6549     }
6550   }
6551 }
6552 
6553 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6554                                            NamedDecl *NewDecl,
6555                                            bool IsSpecialization,
6556                                            bool IsDefinition) {
6557   if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6558     return;
6559 
6560   bool IsTemplate = false;
6561   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6562     OldDecl = OldTD->getTemplatedDecl();
6563     IsTemplate = true;
6564     if (!IsSpecialization)
6565       IsDefinition = false;
6566   }
6567   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6568     NewDecl = NewTD->getTemplatedDecl();
6569     IsTemplate = true;
6570   }
6571 
6572   if (!OldDecl || !NewDecl)
6573     return;
6574 
6575   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6576   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6577   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6578   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6579 
6580   // dllimport and dllexport are inheritable attributes so we have to exclude
6581   // inherited attribute instances.
6582   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6583                     (NewExportAttr && !NewExportAttr->isInherited());
6584 
6585   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6586   // the only exception being explicit specializations.
6587   // Implicitly generated declarations are also excluded for now because there
6588   // is no other way to switch these to use dllimport or dllexport.
6589   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6590 
6591   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6592     // Allow with a warning for free functions and global variables.
6593     bool JustWarn = false;
6594     if (!OldDecl->isCXXClassMember()) {
6595       auto *VD = dyn_cast<VarDecl>(OldDecl);
6596       if (VD && !VD->getDescribedVarTemplate())
6597         JustWarn = true;
6598       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6599       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6600         JustWarn = true;
6601     }
6602 
6603     // We cannot change a declaration that's been used because IR has already
6604     // been emitted. Dllimported functions will still work though (modulo
6605     // address equality) as they can use the thunk.
6606     if (OldDecl->isUsed())
6607       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6608         JustWarn = false;
6609 
6610     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6611                                : diag::err_attribute_dll_redeclaration;
6612     S.Diag(NewDecl->getLocation(), DiagID)
6613         << NewDecl
6614         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6615     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6616     if (!JustWarn) {
6617       NewDecl->setInvalidDecl();
6618       return;
6619     }
6620   }
6621 
6622   // A redeclaration is not allowed to drop a dllimport attribute, the only
6623   // exceptions being inline function definitions (except for function
6624   // templates), local extern declarations, qualified friend declarations or
6625   // special MSVC extension: in the last case, the declaration is treated as if
6626   // it were marked dllexport.
6627   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6628   bool IsMicrosoftABI  = S.Context.getTargetInfo().shouldDLLImportComdatSymbols();
6629   if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6630     // Ignore static data because out-of-line definitions are diagnosed
6631     // separately.
6632     IsStaticDataMember = VD->isStaticDataMember();
6633     IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6634                    VarDecl::DeclarationOnly;
6635   } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6636     IsInline = FD->isInlined();
6637     IsQualifiedFriend = FD->getQualifier() &&
6638                         FD->getFriendObjectKind() == Decl::FOK_Declared;
6639   }
6640 
6641   if (OldImportAttr && !HasNewAttr &&
6642       (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember &&
6643       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6644     if (IsMicrosoftABI && IsDefinition) {
6645       S.Diag(NewDecl->getLocation(),
6646              diag::warn_redeclaration_without_import_attribute)
6647           << NewDecl;
6648       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6649       NewDecl->dropAttr<DLLImportAttr>();
6650       NewDecl->addAttr(
6651           DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange()));
6652     } else {
6653       S.Diag(NewDecl->getLocation(),
6654              diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6655           << NewDecl << OldImportAttr;
6656       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6657       S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6658       OldDecl->dropAttr<DLLImportAttr>();
6659       NewDecl->dropAttr<DLLImportAttr>();
6660     }
6661   } else if (IsInline && OldImportAttr && !IsMicrosoftABI) {
6662     // In MinGW, seeing a function declared inline drops the dllimport
6663     // attribute.
6664     OldDecl->dropAttr<DLLImportAttr>();
6665     NewDecl->dropAttr<DLLImportAttr>();
6666     S.Diag(NewDecl->getLocation(),
6667            diag::warn_dllimport_dropped_from_inline_function)
6668         << NewDecl << OldImportAttr;
6669   }
6670 
6671   // A specialization of a class template member function is processed here
6672   // since it's a redeclaration. If the parent class is dllexport, the
6673   // specialization inherits that attribute. This doesn't happen automatically
6674   // since the parent class isn't instantiated until later.
6675   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6676     if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6677         !NewImportAttr && !NewExportAttr) {
6678       if (const DLLExportAttr *ParentExportAttr =
6679               MD->getParent()->getAttr<DLLExportAttr>()) {
6680         DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6681         NewAttr->setInherited(true);
6682         NewDecl->addAttr(NewAttr);
6683       }
6684     }
6685   }
6686 }
6687 
6688 /// Given that we are within the definition of the given function,
6689 /// will that definition behave like C99's 'inline', where the
6690 /// definition is discarded except for optimization purposes?
6691 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6692   // Try to avoid calling GetGVALinkageForFunction.
6693 
6694   // All cases of this require the 'inline' keyword.
6695   if (!FD->isInlined()) return false;
6696 
6697   // This is only possible in C++ with the gnu_inline attribute.
6698   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6699     return false;
6700 
6701   // Okay, go ahead and call the relatively-more-expensive function.
6702   return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6703 }
6704 
6705 /// Determine whether a variable is extern "C" prior to attaching
6706 /// an initializer. We can't just call isExternC() here, because that
6707 /// will also compute and cache whether the declaration is externally
6708 /// visible, which might change when we attach the initializer.
6709 ///
6710 /// This can only be used if the declaration is known to not be a
6711 /// redeclaration of an internal linkage declaration.
6712 ///
6713 /// For instance:
6714 ///
6715 ///   auto x = []{};
6716 ///
6717 /// Attaching the initializer here makes this declaration not externally
6718 /// visible, because its type has internal linkage.
6719 ///
6720 /// FIXME: This is a hack.
6721 template<typename T>
6722 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6723   if (S.getLangOpts().CPlusPlus) {
6724     // In C++, the overloadable attribute negates the effects of extern "C".
6725     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6726       return false;
6727 
6728     // So do CUDA's host/device attributes.
6729     if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6730                                  D->template hasAttr<CUDAHostAttr>()))
6731       return false;
6732   }
6733   return D->isExternC();
6734 }
6735 
6736 static bool shouldConsiderLinkage(const VarDecl *VD) {
6737   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6738   if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
6739       isa<OMPDeclareMapperDecl>(DC))
6740     return VD->hasExternalStorage();
6741   if (DC->isFileContext())
6742     return true;
6743   if (DC->isRecord())
6744     return false;
6745   if (isa<RequiresExprBodyDecl>(DC))
6746     return false;
6747   llvm_unreachable("Unexpected context");
6748 }
6749 
6750 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6751   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6752   if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6753       isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
6754     return true;
6755   if (DC->isRecord())
6756     return false;
6757   llvm_unreachable("Unexpected context");
6758 }
6759 
6760 static bool hasParsedAttr(Scope *S, const Declarator &PD,
6761                           ParsedAttr::Kind Kind) {
6762   // Check decl attributes on the DeclSpec.
6763   if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6764     return true;
6765 
6766   // Walk the declarator structure, checking decl attributes that were in a type
6767   // position to the decl itself.
6768   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6769     if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6770       return true;
6771   }
6772 
6773   // Finally, check attributes on the decl itself.
6774   return PD.getAttributes().hasAttribute(Kind);
6775 }
6776 
6777 /// Adjust the \c DeclContext for a function or variable that might be a
6778 /// function-local external declaration.
6779 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6780   if (!DC->isFunctionOrMethod())
6781     return false;
6782 
6783   // If this is a local extern function or variable declared within a function
6784   // template, don't add it into the enclosing namespace scope until it is
6785   // instantiated; it might have a dependent type right now.
6786   if (DC->isDependentContext())
6787     return true;
6788 
6789   // C++11 [basic.link]p7:
6790   //   When a block scope declaration of an entity with linkage is not found to
6791   //   refer to some other declaration, then that entity is a member of the
6792   //   innermost enclosing namespace.
6793   //
6794   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6795   // semantically-enclosing namespace, not a lexically-enclosing one.
6796   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6797     DC = DC->getParent();
6798   return true;
6799 }
6800 
6801 /// Returns true if given declaration has external C language linkage.
6802 static bool isDeclExternC(const Decl *D) {
6803   if (const auto *FD = dyn_cast<FunctionDecl>(D))
6804     return FD->isExternC();
6805   if (const auto *VD = dyn_cast<VarDecl>(D))
6806     return VD->isExternC();
6807 
6808   llvm_unreachable("Unknown type of decl!");
6809 }
6810 
6811 /// Returns true if there hasn't been any invalid type diagnosed.
6812 static bool diagnoseOpenCLTypes(Sema &Se, VarDecl *NewVD) {
6813   DeclContext *DC = NewVD->getDeclContext();
6814   QualType R = NewVD->getType();
6815 
6816   // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6817   // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6818   // argument.
6819   if (R->isImageType() || R->isPipeType()) {
6820     Se.Diag(NewVD->getLocation(),
6821             diag::err_opencl_type_can_only_be_used_as_function_parameter)
6822         << R;
6823     NewVD->setInvalidDecl();
6824     return false;
6825   }
6826 
6827   // OpenCL v1.2 s6.9.r:
6828   // The event type cannot be used to declare a program scope variable.
6829   // OpenCL v2.0 s6.9.q:
6830   // The clk_event_t and reserve_id_t types cannot be declared in program
6831   // scope.
6832   if (NewVD->hasGlobalStorage() && !NewVD->isStaticLocal()) {
6833     if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6834       Se.Diag(NewVD->getLocation(),
6835               diag::err_invalid_type_for_program_scope_var)
6836           << R;
6837       NewVD->setInvalidDecl();
6838       return false;
6839     }
6840   }
6841 
6842   // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6843   if (!Se.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
6844                                                Se.getLangOpts())) {
6845     QualType NR = R.getCanonicalType();
6846     while (NR->isPointerType() || NR->isMemberFunctionPointerType() ||
6847            NR->isReferenceType()) {
6848       if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType() ||
6849           NR->isFunctionReferenceType()) {
6850         Se.Diag(NewVD->getLocation(), diag::err_opencl_function_pointer)
6851             << NR->isReferenceType();
6852         NewVD->setInvalidDecl();
6853         return false;
6854       }
6855       NR = NR->getPointeeType();
6856     }
6857   }
6858 
6859   if (!Se.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
6860                                                Se.getLangOpts())) {
6861     // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6862     // half array type (unless the cl_khr_fp16 extension is enabled).
6863     if (Se.Context.getBaseElementType(R)->isHalfType()) {
6864       Se.Diag(NewVD->getLocation(), diag::err_opencl_half_declaration) << R;
6865       NewVD->setInvalidDecl();
6866       return false;
6867     }
6868   }
6869 
6870   // OpenCL v1.2 s6.9.r:
6871   // The event type cannot be used with the __local, __constant and __global
6872   // address space qualifiers.
6873   if (R->isEventT()) {
6874     if (R.getAddressSpace() != LangAS::opencl_private) {
6875       Se.Diag(NewVD->getBeginLoc(), diag::err_event_t_addr_space_qual);
6876       NewVD->setInvalidDecl();
6877       return false;
6878     }
6879   }
6880 
6881   if (R->isSamplerT()) {
6882     // OpenCL v1.2 s6.9.b p4:
6883     // The sampler type cannot be used with the __local and __global address
6884     // space qualifiers.
6885     if (R.getAddressSpace() == LangAS::opencl_local ||
6886         R.getAddressSpace() == LangAS::opencl_global) {
6887       Se.Diag(NewVD->getLocation(), diag::err_wrong_sampler_addressspace);
6888       NewVD->setInvalidDecl();
6889     }
6890 
6891     // OpenCL v1.2 s6.12.14.1:
6892     // A global sampler must be declared with either the constant address
6893     // space qualifier or with the const qualifier.
6894     if (DC->isTranslationUnit() &&
6895         !(R.getAddressSpace() == LangAS::opencl_constant ||
6896           R.isConstQualified())) {
6897       Se.Diag(NewVD->getLocation(), diag::err_opencl_nonconst_global_sampler);
6898       NewVD->setInvalidDecl();
6899     }
6900     if (NewVD->isInvalidDecl())
6901       return false;
6902   }
6903 
6904   return true;
6905 }
6906 
6907 template <typename AttrTy>
6908 static void copyAttrFromTypedefToDecl(Sema &S, Decl *D, const TypedefType *TT) {
6909   const TypedefNameDecl *TND = TT->getDecl();
6910   if (const auto *Attribute = TND->getAttr<AttrTy>()) {
6911     AttrTy *Clone = Attribute->clone(S.Context);
6912     Clone->setInherited(true);
6913     D->addAttr(Clone);
6914   }
6915 }
6916 
6917 NamedDecl *Sema::ActOnVariableDeclarator(
6918     Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6919     LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6920     bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6921   QualType R = TInfo->getType();
6922   DeclarationName Name = GetNameForDeclarator(D).getName();
6923 
6924   IdentifierInfo *II = Name.getAsIdentifierInfo();
6925 
6926   if (D.isDecompositionDeclarator()) {
6927     // Take the name of the first declarator as our name for diagnostic
6928     // purposes.
6929     auto &Decomp = D.getDecompositionDeclarator();
6930     if (!Decomp.bindings().empty()) {
6931       II = Decomp.bindings()[0].Name;
6932       Name = II;
6933     }
6934   } else if (!II) {
6935     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6936     return nullptr;
6937   }
6938 
6939 
6940   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6941   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6942 
6943   // dllimport globals without explicit storage class are treated as extern. We
6944   // have to change the storage class this early to get the right DeclContext.
6945   if (SC == SC_None && !DC->isRecord() &&
6946       hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6947       !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6948     SC = SC_Extern;
6949 
6950   DeclContext *OriginalDC = DC;
6951   bool IsLocalExternDecl = SC == SC_Extern &&
6952                            adjustContextForLocalExternDecl(DC);
6953 
6954   if (SCSpec == DeclSpec::SCS_mutable) {
6955     // mutable can only appear on non-static class members, so it's always
6956     // an error here
6957     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6958     D.setInvalidType();
6959     SC = SC_None;
6960   }
6961 
6962   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6963       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6964                               D.getDeclSpec().getStorageClassSpecLoc())) {
6965     // In C++11, the 'register' storage class specifier is deprecated.
6966     // Suppress the warning in system macros, it's used in macros in some
6967     // popular C system headers, such as in glibc's htonl() macro.
6968     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6969          getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6970                                    : diag::warn_deprecated_register)
6971       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6972   }
6973 
6974   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6975 
6976   if (!DC->isRecord() && S->getFnParent() == nullptr) {
6977     // C99 6.9p2: The storage-class specifiers auto and register shall not
6978     // appear in the declaration specifiers in an external declaration.
6979     // Global Register+Asm is a GNU extension we support.
6980     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6981       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6982       D.setInvalidType();
6983     }
6984   }
6985 
6986   // If this variable has a VLA type and an initializer, try to
6987   // fold to a constant-sized type. This is otherwise invalid.
6988   if (D.hasInitializer() && R->isVariableArrayType())
6989     tryToFixVariablyModifiedVarType(TInfo, R, D.getIdentifierLoc(),
6990                                     /*DiagID=*/0);
6991 
6992   bool IsMemberSpecialization = false;
6993   bool IsVariableTemplateSpecialization = false;
6994   bool IsPartialSpecialization = false;
6995   bool IsVariableTemplate = false;
6996   VarDecl *NewVD = nullptr;
6997   VarTemplateDecl *NewTemplate = nullptr;
6998   TemplateParameterList *TemplateParams = nullptr;
6999   if (!getLangOpts().CPlusPlus) {
7000     NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
7001                             II, R, TInfo, SC);
7002 
7003     if (R->getContainedDeducedType())
7004       ParsingInitForAutoVars.insert(NewVD);
7005 
7006     if (D.isInvalidType())
7007       NewVD->setInvalidDecl();
7008 
7009     if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
7010         NewVD->hasLocalStorage())
7011       checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
7012                             NTCUC_AutoVar, NTCUK_Destruct);
7013   } else {
7014     bool Invalid = false;
7015 
7016     if (DC->isRecord() && !CurContext->isRecord()) {
7017       // This is an out-of-line definition of a static data member.
7018       switch (SC) {
7019       case SC_None:
7020         break;
7021       case SC_Static:
7022         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7023              diag::err_static_out_of_line)
7024           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7025         break;
7026       case SC_Auto:
7027       case SC_Register:
7028       case SC_Extern:
7029         // [dcl.stc] p2: The auto or register specifiers shall be applied only
7030         // to names of variables declared in a block or to function parameters.
7031         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
7032         // of class members
7033 
7034         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7035              diag::err_storage_class_for_static_member)
7036           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7037         break;
7038       case SC_PrivateExtern:
7039         llvm_unreachable("C storage class in c++!");
7040       }
7041     }
7042 
7043     if (SC == SC_Static && CurContext->isRecord()) {
7044       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
7045         // Walk up the enclosing DeclContexts to check for any that are
7046         // incompatible with static data members.
7047         const DeclContext *FunctionOrMethod = nullptr;
7048         const CXXRecordDecl *AnonStruct = nullptr;
7049         for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) {
7050           if (Ctxt->isFunctionOrMethod()) {
7051             FunctionOrMethod = Ctxt;
7052             break;
7053           }
7054           const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt);
7055           if (ParentDecl && !ParentDecl->getDeclName()) {
7056             AnonStruct = ParentDecl;
7057             break;
7058           }
7059         }
7060         if (FunctionOrMethod) {
7061           // C++ [class.static.data]p5: A local class shall not have static data
7062           // members.
7063           Diag(D.getIdentifierLoc(),
7064                diag::err_static_data_member_not_allowed_in_local_class)
7065             << Name << RD->getDeclName() << RD->getTagKind();
7066         } else if (AnonStruct) {
7067           // C++ [class.static.data]p4: Unnamed classes and classes contained
7068           // directly or indirectly within unnamed classes shall not contain
7069           // static data members.
7070           Diag(D.getIdentifierLoc(),
7071                diag::err_static_data_member_not_allowed_in_anon_struct)
7072             << Name << AnonStruct->getTagKind();
7073           Invalid = true;
7074         } else if (RD->isUnion()) {
7075           // C++98 [class.union]p1: If a union contains a static data member,
7076           // the program is ill-formed. C++11 drops this restriction.
7077           Diag(D.getIdentifierLoc(),
7078                getLangOpts().CPlusPlus11
7079                  ? diag::warn_cxx98_compat_static_data_member_in_union
7080                  : diag::ext_static_data_member_in_union) << Name;
7081         }
7082       }
7083     }
7084 
7085     // Match up the template parameter lists with the scope specifier, then
7086     // determine whether we have a template or a template specialization.
7087     bool InvalidScope = false;
7088     TemplateParams = MatchTemplateParametersToScopeSpecifier(
7089         D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
7090         D.getCXXScopeSpec(),
7091         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
7092             ? D.getName().TemplateId
7093             : nullptr,
7094         TemplateParamLists,
7095         /*never a friend*/ false, IsMemberSpecialization, InvalidScope);
7096     Invalid |= InvalidScope;
7097 
7098     if (TemplateParams) {
7099       if (!TemplateParams->size() &&
7100           D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
7101         // There is an extraneous 'template<>' for this variable. Complain
7102         // about it, but allow the declaration of the variable.
7103         Diag(TemplateParams->getTemplateLoc(),
7104              diag::err_template_variable_noparams)
7105           << II
7106           << SourceRange(TemplateParams->getTemplateLoc(),
7107                          TemplateParams->getRAngleLoc());
7108         TemplateParams = nullptr;
7109       } else {
7110         // Check that we can declare a template here.
7111         if (CheckTemplateDeclScope(S, TemplateParams))
7112           return nullptr;
7113 
7114         if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
7115           // This is an explicit specialization or a partial specialization.
7116           IsVariableTemplateSpecialization = true;
7117           IsPartialSpecialization = TemplateParams->size() > 0;
7118         } else { // if (TemplateParams->size() > 0)
7119           // This is a template declaration.
7120           IsVariableTemplate = true;
7121 
7122           // Only C++1y supports variable templates (N3651).
7123           Diag(D.getIdentifierLoc(),
7124                getLangOpts().CPlusPlus14
7125                    ? diag::warn_cxx11_compat_variable_template
7126                    : diag::ext_variable_template);
7127         }
7128       }
7129     } else {
7130       // Check that we can declare a member specialization here.
7131       if (!TemplateParamLists.empty() && IsMemberSpecialization &&
7132           CheckTemplateDeclScope(S, TemplateParamLists.back()))
7133         return nullptr;
7134       assert((Invalid ||
7135               D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
7136              "should have a 'template<>' for this decl");
7137     }
7138 
7139     if (IsVariableTemplateSpecialization) {
7140       SourceLocation TemplateKWLoc =
7141           TemplateParamLists.size() > 0
7142               ? TemplateParamLists[0]->getTemplateLoc()
7143               : SourceLocation();
7144       DeclResult Res = ActOnVarTemplateSpecialization(
7145           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
7146           IsPartialSpecialization);
7147       if (Res.isInvalid())
7148         return nullptr;
7149       NewVD = cast<VarDecl>(Res.get());
7150       AddToScope = false;
7151     } else if (D.isDecompositionDeclarator()) {
7152       NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
7153                                         D.getIdentifierLoc(), R, TInfo, SC,
7154                                         Bindings);
7155     } else
7156       NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
7157                               D.getIdentifierLoc(), II, R, TInfo, SC);
7158 
7159     // If this is supposed to be a variable template, create it as such.
7160     if (IsVariableTemplate) {
7161       NewTemplate =
7162           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
7163                                   TemplateParams, NewVD);
7164       NewVD->setDescribedVarTemplate(NewTemplate);
7165     }
7166 
7167     // If this decl has an auto type in need of deduction, make a note of the
7168     // Decl so we can diagnose uses of it in its own initializer.
7169     if (R->getContainedDeducedType())
7170       ParsingInitForAutoVars.insert(NewVD);
7171 
7172     if (D.isInvalidType() || Invalid) {
7173       NewVD->setInvalidDecl();
7174       if (NewTemplate)
7175         NewTemplate->setInvalidDecl();
7176     }
7177 
7178     SetNestedNameSpecifier(*this, NewVD, D);
7179 
7180     // If we have any template parameter lists that don't directly belong to
7181     // the variable (matching the scope specifier), store them.
7182     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
7183     if (TemplateParamLists.size() > VDTemplateParamLists)
7184       NewVD->setTemplateParameterListsInfo(
7185           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
7186   }
7187 
7188   if (D.getDeclSpec().isInlineSpecified()) {
7189     if (!getLangOpts().CPlusPlus) {
7190       Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
7191           << 0;
7192     } else if (CurContext->isFunctionOrMethod()) {
7193       // 'inline' is not allowed on block scope variable declaration.
7194       Diag(D.getDeclSpec().getInlineSpecLoc(),
7195            diag::err_inline_declaration_block_scope) << Name
7196         << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7197     } else {
7198       Diag(D.getDeclSpec().getInlineSpecLoc(),
7199            getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
7200                                      : diag::ext_inline_variable);
7201       NewVD->setInlineSpecified();
7202     }
7203   }
7204 
7205   // Set the lexical context. If the declarator has a C++ scope specifier, the
7206   // lexical context will be different from the semantic context.
7207   NewVD->setLexicalDeclContext(CurContext);
7208   if (NewTemplate)
7209     NewTemplate->setLexicalDeclContext(CurContext);
7210 
7211   if (IsLocalExternDecl) {
7212     if (D.isDecompositionDeclarator())
7213       for (auto *B : Bindings)
7214         B->setLocalExternDecl();
7215     else
7216       NewVD->setLocalExternDecl();
7217   }
7218 
7219   bool EmitTLSUnsupportedError = false;
7220   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
7221     // C++11 [dcl.stc]p4:
7222     //   When thread_local is applied to a variable of block scope the
7223     //   storage-class-specifier static is implied if it does not appear
7224     //   explicitly.
7225     // Core issue: 'static' is not implied if the variable is declared
7226     //   'extern'.
7227     if (NewVD->hasLocalStorage() &&
7228         (SCSpec != DeclSpec::SCS_unspecified ||
7229          TSCS != DeclSpec::TSCS_thread_local ||
7230          !DC->isFunctionOrMethod()))
7231       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7232            diag::err_thread_non_global)
7233         << DeclSpec::getSpecifierName(TSCS);
7234     else if (!Context.getTargetInfo().isTLSSupported()) {
7235       if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7236           getLangOpts().SYCLIsDevice) {
7237         // Postpone error emission until we've collected attributes required to
7238         // figure out whether it's a host or device variable and whether the
7239         // error should be ignored.
7240         EmitTLSUnsupportedError = true;
7241         // We still need to mark the variable as TLS so it shows up in AST with
7242         // proper storage class for other tools to use even if we're not going
7243         // to emit any code for it.
7244         NewVD->setTSCSpec(TSCS);
7245       } else
7246         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7247              diag::err_thread_unsupported);
7248     } else
7249       NewVD->setTSCSpec(TSCS);
7250   }
7251 
7252   switch (D.getDeclSpec().getConstexprSpecifier()) {
7253   case ConstexprSpecKind::Unspecified:
7254     break;
7255 
7256   case ConstexprSpecKind::Consteval:
7257     Diag(D.getDeclSpec().getConstexprSpecLoc(),
7258          diag::err_constexpr_wrong_decl_kind)
7259         << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
7260     LLVM_FALLTHROUGH;
7261 
7262   case ConstexprSpecKind::Constexpr:
7263     NewVD->setConstexpr(true);
7264     // C++1z [dcl.spec.constexpr]p1:
7265     //   A static data member declared with the constexpr specifier is
7266     //   implicitly an inline variable.
7267     if (NewVD->isStaticDataMember() &&
7268         (getLangOpts().CPlusPlus17 ||
7269          Context.getTargetInfo().getCXXABI().isMicrosoft()))
7270       NewVD->setImplicitlyInline();
7271     break;
7272 
7273   case ConstexprSpecKind::Constinit:
7274     if (!NewVD->hasGlobalStorage())
7275       Diag(D.getDeclSpec().getConstexprSpecLoc(),
7276            diag::err_constinit_local_variable);
7277     else
7278       NewVD->addAttr(ConstInitAttr::Create(
7279           Context, D.getDeclSpec().getConstexprSpecLoc(),
7280           AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit));
7281     break;
7282   }
7283 
7284   // C99 6.7.4p3
7285   //   An inline definition of a function with external linkage shall
7286   //   not contain a definition of a modifiable object with static or
7287   //   thread storage duration...
7288   // We only apply this when the function is required to be defined
7289   // elsewhere, i.e. when the function is not 'extern inline'.  Note
7290   // that a local variable with thread storage duration still has to
7291   // be marked 'static'.  Also note that it's possible to get these
7292   // semantics in C++ using __attribute__((gnu_inline)).
7293   if (SC == SC_Static && S->getFnParent() != nullptr &&
7294       !NewVD->getType().isConstQualified()) {
7295     FunctionDecl *CurFD = getCurFunctionDecl();
7296     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
7297       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7298            diag::warn_static_local_in_extern_inline);
7299       MaybeSuggestAddingStaticToDecl(CurFD);
7300     }
7301   }
7302 
7303   if (D.getDeclSpec().isModulePrivateSpecified()) {
7304     if (IsVariableTemplateSpecialization)
7305       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7306           << (IsPartialSpecialization ? 1 : 0)
7307           << FixItHint::CreateRemoval(
7308                  D.getDeclSpec().getModulePrivateSpecLoc());
7309     else if (IsMemberSpecialization)
7310       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7311         << 2
7312         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7313     else if (NewVD->hasLocalStorage())
7314       Diag(NewVD->getLocation(), diag::err_module_private_local)
7315           << 0 << NewVD
7316           << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7317           << FixItHint::CreateRemoval(
7318                  D.getDeclSpec().getModulePrivateSpecLoc());
7319     else {
7320       NewVD->setModulePrivate();
7321       if (NewTemplate)
7322         NewTemplate->setModulePrivate();
7323       for (auto *B : Bindings)
7324         B->setModulePrivate();
7325     }
7326   }
7327 
7328   if (getLangOpts().OpenCL) {
7329     deduceOpenCLAddressSpace(NewVD);
7330 
7331     DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
7332     if (TSC != TSCS_unspecified) {
7333       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7334            diag::err_opencl_unknown_type_specifier)
7335           << getLangOpts().getOpenCLVersionString()
7336           << DeclSpec::getSpecifierName(TSC) << 1;
7337       NewVD->setInvalidDecl();
7338     }
7339   }
7340 
7341   // Handle attributes prior to checking for duplicates in MergeVarDecl
7342   ProcessDeclAttributes(S, NewVD, D);
7343 
7344   // FIXME: This is probably the wrong location to be doing this and we should
7345   // probably be doing this for more attributes (especially for function
7346   // pointer attributes such as format, warn_unused_result, etc.). Ideally
7347   // the code to copy attributes would be generated by TableGen.
7348   if (R->isFunctionPointerType())
7349     if (const auto *TT = R->getAs<TypedefType>())
7350       copyAttrFromTypedefToDecl<AllocSizeAttr>(*this, NewVD, TT);
7351 
7352   if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7353       getLangOpts().SYCLIsDevice) {
7354     if (EmitTLSUnsupportedError &&
7355         ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
7356          (getLangOpts().OpenMPIsDevice &&
7357           OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
7358       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7359            diag::err_thread_unsupported);
7360 
7361     if (EmitTLSUnsupportedError &&
7362         (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)))
7363       targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported);
7364     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
7365     // storage [duration]."
7366     if (SC == SC_None && S->getFnParent() != nullptr &&
7367         (NewVD->hasAttr<CUDASharedAttr>() ||
7368          NewVD->hasAttr<CUDAConstantAttr>())) {
7369       NewVD->setStorageClass(SC_Static);
7370     }
7371   }
7372 
7373   // Ensure that dllimport globals without explicit storage class are treated as
7374   // extern. The storage class is set above using parsed attributes. Now we can
7375   // check the VarDecl itself.
7376   assert(!NewVD->hasAttr<DLLImportAttr>() ||
7377          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
7378          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
7379 
7380   // In auto-retain/release, infer strong retension for variables of
7381   // retainable type.
7382   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
7383     NewVD->setInvalidDecl();
7384 
7385   // Handle GNU asm-label extension (encoded as an attribute).
7386   if (Expr *E = (Expr*)D.getAsmLabel()) {
7387     // The parser guarantees this is a string.
7388     StringLiteral *SE = cast<StringLiteral>(E);
7389     StringRef Label = SE->getString();
7390     if (S->getFnParent() != nullptr) {
7391       switch (SC) {
7392       case SC_None:
7393       case SC_Auto:
7394         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
7395         break;
7396       case SC_Register:
7397         // Local Named register
7398         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
7399             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
7400           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7401         break;
7402       case SC_Static:
7403       case SC_Extern:
7404       case SC_PrivateExtern:
7405         break;
7406       }
7407     } else if (SC == SC_Register) {
7408       // Global Named register
7409       if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
7410         const auto &TI = Context.getTargetInfo();
7411         bool HasSizeMismatch;
7412 
7413         if (!TI.isValidGCCRegisterName(Label))
7414           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7415         else if (!TI.validateGlobalRegisterVariable(Label,
7416                                                     Context.getTypeSize(R),
7417                                                     HasSizeMismatch))
7418           Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
7419         else if (HasSizeMismatch)
7420           Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
7421       }
7422 
7423       if (!R->isIntegralType(Context) && !R->isPointerType()) {
7424         Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
7425         NewVD->setInvalidDecl(true);
7426       }
7427     }
7428 
7429     NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
7430                                         /*IsLiteralLabel=*/true,
7431                                         SE->getStrTokenLoc(0)));
7432   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7433     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7434       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
7435     if (I != ExtnameUndeclaredIdentifiers.end()) {
7436       if (isDeclExternC(NewVD)) {
7437         NewVD->addAttr(I->second);
7438         ExtnameUndeclaredIdentifiers.erase(I);
7439       } else
7440         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
7441             << /*Variable*/1 << NewVD;
7442     }
7443   }
7444 
7445   // Find the shadowed declaration before filtering for scope.
7446   NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
7447                                 ? getShadowedDeclaration(NewVD, Previous)
7448                                 : nullptr;
7449 
7450   // Don't consider existing declarations that are in a different
7451   // scope and are out-of-semantic-context declarations (if the new
7452   // declaration has linkage).
7453   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
7454                        D.getCXXScopeSpec().isNotEmpty() ||
7455                        IsMemberSpecialization ||
7456                        IsVariableTemplateSpecialization);
7457 
7458   // Check whether the previous declaration is in the same block scope. This
7459   // affects whether we merge types with it, per C++11 [dcl.array]p3.
7460   if (getLangOpts().CPlusPlus &&
7461       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
7462     NewVD->setPreviousDeclInSameBlockScope(
7463         Previous.isSingleResult() && !Previous.isShadowed() &&
7464         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
7465 
7466   if (!getLangOpts().CPlusPlus) {
7467     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7468   } else {
7469     // If this is an explicit specialization of a static data member, check it.
7470     if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
7471         CheckMemberSpecialization(NewVD, Previous))
7472       NewVD->setInvalidDecl();
7473 
7474     // Merge the decl with the existing one if appropriate.
7475     if (!Previous.empty()) {
7476       if (Previous.isSingleResult() &&
7477           isa<FieldDecl>(Previous.getFoundDecl()) &&
7478           D.getCXXScopeSpec().isSet()) {
7479         // The user tried to define a non-static data member
7480         // out-of-line (C++ [dcl.meaning]p1).
7481         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
7482           << D.getCXXScopeSpec().getRange();
7483         Previous.clear();
7484         NewVD->setInvalidDecl();
7485       }
7486     } else if (D.getCXXScopeSpec().isSet()) {
7487       // No previous declaration in the qualifying scope.
7488       Diag(D.getIdentifierLoc(), diag::err_no_member)
7489         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
7490         << D.getCXXScopeSpec().getRange();
7491       NewVD->setInvalidDecl();
7492     }
7493 
7494     if (!IsVariableTemplateSpecialization)
7495       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7496 
7497     if (NewTemplate) {
7498       VarTemplateDecl *PrevVarTemplate =
7499           NewVD->getPreviousDecl()
7500               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
7501               : nullptr;
7502 
7503       // Check the template parameter list of this declaration, possibly
7504       // merging in the template parameter list from the previous variable
7505       // template declaration.
7506       if (CheckTemplateParameterList(
7507               TemplateParams,
7508               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
7509                               : nullptr,
7510               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
7511                DC->isDependentContext())
7512                   ? TPC_ClassTemplateMember
7513                   : TPC_VarTemplate))
7514         NewVD->setInvalidDecl();
7515 
7516       // If we are providing an explicit specialization of a static variable
7517       // template, make a note of that.
7518       if (PrevVarTemplate &&
7519           PrevVarTemplate->getInstantiatedFromMemberTemplate())
7520         PrevVarTemplate->setMemberSpecialization();
7521     }
7522   }
7523 
7524   // Diagnose shadowed variables iff this isn't a redeclaration.
7525   if (ShadowedDecl && !D.isRedeclaration())
7526     CheckShadow(NewVD, ShadowedDecl, Previous);
7527 
7528   ProcessPragmaWeak(S, NewVD);
7529 
7530   // If this is the first declaration of an extern C variable, update
7531   // the map of such variables.
7532   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
7533       isIncompleteDeclExternC(*this, NewVD))
7534     RegisterLocallyScopedExternCDecl(NewVD, S);
7535 
7536   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
7537     MangleNumberingContext *MCtx;
7538     Decl *ManglingContextDecl;
7539     std::tie(MCtx, ManglingContextDecl) =
7540         getCurrentMangleNumberContext(NewVD->getDeclContext());
7541     if (MCtx) {
7542       Context.setManglingNumber(
7543           NewVD, MCtx->getManglingNumber(
7544                      NewVD, getMSManglingNumber(getLangOpts(), S)));
7545       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
7546     }
7547   }
7548 
7549   // Special handling of variable named 'main'.
7550   if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
7551       NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7552       !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
7553 
7554     // C++ [basic.start.main]p3
7555     // A program that declares a variable main at global scope is ill-formed.
7556     if (getLangOpts().CPlusPlus)
7557       Diag(D.getBeginLoc(), diag::err_main_global_variable);
7558 
7559     // In C, and external-linkage variable named main results in undefined
7560     // behavior.
7561     else if (NewVD->hasExternalFormalLinkage())
7562       Diag(D.getBeginLoc(), diag::warn_main_redefined);
7563   }
7564 
7565   if (D.isRedeclaration() && !Previous.empty()) {
7566     NamedDecl *Prev = Previous.getRepresentativeDecl();
7567     checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
7568                                    D.isFunctionDefinition());
7569   }
7570 
7571   if (NewTemplate) {
7572     if (NewVD->isInvalidDecl())
7573       NewTemplate->setInvalidDecl();
7574     ActOnDocumentableDecl(NewTemplate);
7575     return NewTemplate;
7576   }
7577 
7578   if (IsMemberSpecialization && !NewVD->isInvalidDecl())
7579     CompleteMemberSpecialization(NewVD, Previous);
7580 
7581   return NewVD;
7582 }
7583 
7584 /// Enum describing the %select options in diag::warn_decl_shadow.
7585 enum ShadowedDeclKind {
7586   SDK_Local,
7587   SDK_Global,
7588   SDK_StaticMember,
7589   SDK_Field,
7590   SDK_Typedef,
7591   SDK_Using,
7592   SDK_StructuredBinding
7593 };
7594 
7595 /// Determine what kind of declaration we're shadowing.
7596 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
7597                                                 const DeclContext *OldDC) {
7598   if (isa<TypeAliasDecl>(ShadowedDecl))
7599     return SDK_Using;
7600   else if (isa<TypedefDecl>(ShadowedDecl))
7601     return SDK_Typedef;
7602   else if (isa<BindingDecl>(ShadowedDecl))
7603     return SDK_StructuredBinding;
7604   else if (isa<RecordDecl>(OldDC))
7605     return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
7606 
7607   return OldDC->isFileContext() ? SDK_Global : SDK_Local;
7608 }
7609 
7610 /// Return the location of the capture if the given lambda captures the given
7611 /// variable \p VD, or an invalid source location otherwise.
7612 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
7613                                          const VarDecl *VD) {
7614   for (const Capture &Capture : LSI->Captures) {
7615     if (Capture.isVariableCapture() && Capture.getVariable() == VD)
7616       return Capture.getLocation();
7617   }
7618   return SourceLocation();
7619 }
7620 
7621 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
7622                                      const LookupResult &R) {
7623   // Only diagnose if we're shadowing an unambiguous field or variable.
7624   if (R.getResultKind() != LookupResult::Found)
7625     return false;
7626 
7627   // Return false if warning is ignored.
7628   return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
7629 }
7630 
7631 /// Return the declaration shadowed by the given variable \p D, or null
7632 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7633 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
7634                                         const LookupResult &R) {
7635   if (!shouldWarnIfShadowedDecl(Diags, R))
7636     return nullptr;
7637 
7638   // Don't diagnose declarations at file scope.
7639   if (D->hasGlobalStorage())
7640     return nullptr;
7641 
7642   NamedDecl *ShadowedDecl = R.getFoundDecl();
7643   return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
7644                                                             : nullptr;
7645 }
7646 
7647 /// Return the declaration shadowed by the given typedef \p D, or null
7648 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7649 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
7650                                         const LookupResult &R) {
7651   // Don't warn if typedef declaration is part of a class
7652   if (D->getDeclContext()->isRecord())
7653     return nullptr;
7654 
7655   if (!shouldWarnIfShadowedDecl(Diags, R))
7656     return nullptr;
7657 
7658   NamedDecl *ShadowedDecl = R.getFoundDecl();
7659   return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7660 }
7661 
7662 /// Return the declaration shadowed by the given variable \p D, or null
7663 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7664 NamedDecl *Sema::getShadowedDeclaration(const BindingDecl *D,
7665                                         const LookupResult &R) {
7666   if (!shouldWarnIfShadowedDecl(Diags, R))
7667     return nullptr;
7668 
7669   NamedDecl *ShadowedDecl = R.getFoundDecl();
7670   return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
7671                                                             : nullptr;
7672 }
7673 
7674 /// Diagnose variable or built-in function shadowing.  Implements
7675 /// -Wshadow.
7676 ///
7677 /// This method is called whenever a VarDecl is added to a "useful"
7678 /// scope.
7679 ///
7680 /// \param ShadowedDecl the declaration that is shadowed by the given variable
7681 /// \param R the lookup of the name
7682 ///
7683 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7684                        const LookupResult &R) {
7685   DeclContext *NewDC = D->getDeclContext();
7686 
7687   if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7688     // Fields are not shadowed by variables in C++ static methods.
7689     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7690       if (MD->isStatic())
7691         return;
7692 
7693     // Fields shadowed by constructor parameters are a special case. Usually
7694     // the constructor initializes the field with the parameter.
7695     if (isa<CXXConstructorDecl>(NewDC))
7696       if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7697         // Remember that this was shadowed so we can either warn about its
7698         // modification or its existence depending on warning settings.
7699         ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7700         return;
7701       }
7702   }
7703 
7704   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7705     if (shadowedVar->isExternC()) {
7706       // For shadowing external vars, make sure that we point to the global
7707       // declaration, not a locally scoped extern declaration.
7708       for (auto I : shadowedVar->redecls())
7709         if (I->isFileVarDecl()) {
7710           ShadowedDecl = I;
7711           break;
7712         }
7713     }
7714 
7715   DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7716 
7717   unsigned WarningDiag = diag::warn_decl_shadow;
7718   SourceLocation CaptureLoc;
7719   if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7720       isa<CXXMethodDecl>(NewDC)) {
7721     if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7722       if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7723         if (RD->getLambdaCaptureDefault() == LCD_None) {
7724           // Try to avoid warnings for lambdas with an explicit capture list.
7725           const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7726           // Warn only when the lambda captures the shadowed decl explicitly.
7727           CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7728           if (CaptureLoc.isInvalid())
7729             WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7730         } else {
7731           // Remember that this was shadowed so we can avoid the warning if the
7732           // shadowed decl isn't captured and the warning settings allow it.
7733           cast<LambdaScopeInfo>(getCurFunction())
7734               ->ShadowingDecls.push_back(
7735                   {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7736           return;
7737         }
7738       }
7739 
7740       if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7741         // A variable can't shadow a local variable in an enclosing scope, if
7742         // they are separated by a non-capturing declaration context.
7743         for (DeclContext *ParentDC = NewDC;
7744              ParentDC && !ParentDC->Equals(OldDC);
7745              ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7746           // Only block literals, captured statements, and lambda expressions
7747           // can capture; other scopes don't.
7748           if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7749               !isLambdaCallOperator(ParentDC)) {
7750             return;
7751           }
7752         }
7753       }
7754     }
7755   }
7756 
7757   // Only warn about certain kinds of shadowing for class members.
7758   if (NewDC && NewDC->isRecord()) {
7759     // In particular, don't warn about shadowing non-class members.
7760     if (!OldDC->isRecord())
7761       return;
7762 
7763     // TODO: should we warn about static data members shadowing
7764     // static data members from base classes?
7765 
7766     // TODO: don't diagnose for inaccessible shadowed members.
7767     // This is hard to do perfectly because we might friend the
7768     // shadowing context, but that's just a false negative.
7769   }
7770 
7771 
7772   DeclarationName Name = R.getLookupName();
7773 
7774   // Emit warning and note.
7775   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7776     return;
7777   ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7778   Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7779   if (!CaptureLoc.isInvalid())
7780     Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7781         << Name << /*explicitly*/ 1;
7782   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7783 }
7784 
7785 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7786 /// when these variables are captured by the lambda.
7787 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7788   for (const auto &Shadow : LSI->ShadowingDecls) {
7789     const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7790     // Try to avoid the warning when the shadowed decl isn't captured.
7791     SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7792     const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7793     Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7794                                        ? diag::warn_decl_shadow_uncaptured_local
7795                                        : diag::warn_decl_shadow)
7796         << Shadow.VD->getDeclName()
7797         << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7798     if (!CaptureLoc.isInvalid())
7799       Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7800           << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7801     Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7802   }
7803 }
7804 
7805 /// Check -Wshadow without the advantage of a previous lookup.
7806 void Sema::CheckShadow(Scope *S, VarDecl *D) {
7807   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7808     return;
7809 
7810   LookupResult R(*this, D->getDeclName(), D->getLocation(),
7811                  Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7812   LookupName(R, S);
7813   if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7814     CheckShadow(D, ShadowedDecl, R);
7815 }
7816 
7817 /// Check if 'E', which is an expression that is about to be modified, refers
7818 /// to a constructor parameter that shadows a field.
7819 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7820   // Quickly ignore expressions that can't be shadowing ctor parameters.
7821   if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7822     return;
7823   E = E->IgnoreParenImpCasts();
7824   auto *DRE = dyn_cast<DeclRefExpr>(E);
7825   if (!DRE)
7826     return;
7827   const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7828   auto I = ShadowingDecls.find(D);
7829   if (I == ShadowingDecls.end())
7830     return;
7831   const NamedDecl *ShadowedDecl = I->second;
7832   const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7833   Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7834   Diag(D->getLocation(), diag::note_var_declared_here) << D;
7835   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7836 
7837   // Avoid issuing multiple warnings about the same decl.
7838   ShadowingDecls.erase(I);
7839 }
7840 
7841 /// Check for conflict between this global or extern "C" declaration and
7842 /// previous global or extern "C" declarations. This is only used in C++.
7843 template<typename T>
7844 static bool checkGlobalOrExternCConflict(
7845     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7846   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
7847   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7848 
7849   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7850     // The common case: this global doesn't conflict with any extern "C"
7851     // declaration.
7852     return false;
7853   }
7854 
7855   if (Prev) {
7856     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7857       // Both the old and new declarations have C language linkage. This is a
7858       // redeclaration.
7859       Previous.clear();
7860       Previous.addDecl(Prev);
7861       return true;
7862     }
7863 
7864     // This is a global, non-extern "C" declaration, and there is a previous
7865     // non-global extern "C" declaration. Diagnose if this is a variable
7866     // declaration.
7867     if (!isa<VarDecl>(ND))
7868       return false;
7869   } else {
7870     // The declaration is extern "C". Check for any declaration in the
7871     // translation unit which might conflict.
7872     if (IsGlobal) {
7873       // We have already performed the lookup into the translation unit.
7874       IsGlobal = false;
7875       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7876            I != E; ++I) {
7877         if (isa<VarDecl>(*I)) {
7878           Prev = *I;
7879           break;
7880         }
7881       }
7882     } else {
7883       DeclContext::lookup_result R =
7884           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7885       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7886            I != E; ++I) {
7887         if (isa<VarDecl>(*I)) {
7888           Prev = *I;
7889           break;
7890         }
7891         // FIXME: If we have any other entity with this name in global scope,
7892         // the declaration is ill-formed, but that is a defect: it breaks the
7893         // 'stat' hack, for instance. Only variables can have mangled name
7894         // clashes with extern "C" declarations, so only they deserve a
7895         // diagnostic.
7896       }
7897     }
7898 
7899     if (!Prev)
7900       return false;
7901   }
7902 
7903   // Use the first declaration's location to ensure we point at something which
7904   // is lexically inside an extern "C" linkage-spec.
7905   assert(Prev && "should have found a previous declaration to diagnose");
7906   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7907     Prev = FD->getFirstDecl();
7908   else
7909     Prev = cast<VarDecl>(Prev)->getFirstDecl();
7910 
7911   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7912     << IsGlobal << ND;
7913   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7914     << IsGlobal;
7915   return false;
7916 }
7917 
7918 /// Apply special rules for handling extern "C" declarations. Returns \c true
7919 /// if we have found that this is a redeclaration of some prior entity.
7920 ///
7921 /// Per C++ [dcl.link]p6:
7922 ///   Two declarations [for a function or variable] with C language linkage
7923 ///   with the same name that appear in different scopes refer to the same
7924 ///   [entity]. An entity with C language linkage shall not be declared with
7925 ///   the same name as an entity in global scope.
7926 template<typename T>
7927 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7928                                                   LookupResult &Previous) {
7929   if (!S.getLangOpts().CPlusPlus) {
7930     // In C, when declaring a global variable, look for a corresponding 'extern'
7931     // variable declared in function scope. We don't need this in C++, because
7932     // we find local extern decls in the surrounding file-scope DeclContext.
7933     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7934       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7935         Previous.clear();
7936         Previous.addDecl(Prev);
7937         return true;
7938       }
7939     }
7940     return false;
7941   }
7942 
7943   // A declaration in the translation unit can conflict with an extern "C"
7944   // declaration.
7945   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7946     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7947 
7948   // An extern "C" declaration can conflict with a declaration in the
7949   // translation unit or can be a redeclaration of an extern "C" declaration
7950   // in another scope.
7951   if (isIncompleteDeclExternC(S,ND))
7952     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7953 
7954   // Neither global nor extern "C": nothing to do.
7955   return false;
7956 }
7957 
7958 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7959   // If the decl is already known invalid, don't check it.
7960   if (NewVD->isInvalidDecl())
7961     return;
7962 
7963   QualType T = NewVD->getType();
7964 
7965   // Defer checking an 'auto' type until its initializer is attached.
7966   if (T->isUndeducedType())
7967     return;
7968 
7969   if (NewVD->hasAttrs())
7970     CheckAlignasUnderalignment(NewVD);
7971 
7972   if (T->isObjCObjectType()) {
7973     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7974       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7975     T = Context.getObjCObjectPointerType(T);
7976     NewVD->setType(T);
7977   }
7978 
7979   // Emit an error if an address space was applied to decl with local storage.
7980   // This includes arrays of objects with address space qualifiers, but not
7981   // automatic variables that point to other address spaces.
7982   // ISO/IEC TR 18037 S5.1.2
7983   if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7984       T.getAddressSpace() != LangAS::Default) {
7985     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7986     NewVD->setInvalidDecl();
7987     return;
7988   }
7989 
7990   // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7991   // scope.
7992   if (getLangOpts().OpenCLVersion == 120 &&
7993       !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers",
7994                                             getLangOpts()) &&
7995       NewVD->isStaticLocal()) {
7996     Diag(NewVD->getLocation(), diag::err_static_function_scope);
7997     NewVD->setInvalidDecl();
7998     return;
7999   }
8000 
8001   if (getLangOpts().OpenCL) {
8002     if (!diagnoseOpenCLTypes(*this, NewVD))
8003       return;
8004 
8005     // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
8006     if (NewVD->hasAttr<BlocksAttr>()) {
8007       Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
8008       return;
8009     }
8010 
8011     if (T->isBlockPointerType()) {
8012       // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
8013       // can't use 'extern' storage class.
8014       if (!T.isConstQualified()) {
8015         Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
8016             << 0 /*const*/;
8017         NewVD->setInvalidDecl();
8018         return;
8019       }
8020       if (NewVD->hasExternalStorage()) {
8021         Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
8022         NewVD->setInvalidDecl();
8023         return;
8024       }
8025     }
8026 
8027     // FIXME: Adding local AS in C++ for OpenCL might make sense.
8028     if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
8029         NewVD->hasExternalStorage()) {
8030       if (!T->isSamplerT() && !T->isDependentType() &&
8031           !(T.getAddressSpace() == LangAS::opencl_constant ||
8032             (T.getAddressSpace() == LangAS::opencl_global &&
8033              getOpenCLOptions().areProgramScopeVariablesSupported(
8034                  getLangOpts())))) {
8035         int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
8036         if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()))
8037           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8038               << Scope << "global or constant";
8039         else
8040           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8041               << Scope << "constant";
8042         NewVD->setInvalidDecl();
8043         return;
8044       }
8045     } else {
8046       if (T.getAddressSpace() == LangAS::opencl_global) {
8047         Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8048             << 1 /*is any function*/ << "global";
8049         NewVD->setInvalidDecl();
8050         return;
8051       }
8052       if (T.getAddressSpace() == LangAS::opencl_constant ||
8053           T.getAddressSpace() == LangAS::opencl_local) {
8054         FunctionDecl *FD = getCurFunctionDecl();
8055         // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
8056         // in functions.
8057         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
8058           if (T.getAddressSpace() == LangAS::opencl_constant)
8059             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8060                 << 0 /*non-kernel only*/ << "constant";
8061           else
8062             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8063                 << 0 /*non-kernel only*/ << "local";
8064           NewVD->setInvalidDecl();
8065           return;
8066         }
8067         // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
8068         // in the outermost scope of a kernel function.
8069         if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
8070           if (!getCurScope()->isFunctionScope()) {
8071             if (T.getAddressSpace() == LangAS::opencl_constant)
8072               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8073                   << "constant";
8074             else
8075               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8076                   << "local";
8077             NewVD->setInvalidDecl();
8078             return;
8079           }
8080         }
8081       } else if (T.getAddressSpace() != LangAS::opencl_private &&
8082                  // If we are parsing a template we didn't deduce an addr
8083                  // space yet.
8084                  T.getAddressSpace() != LangAS::Default) {
8085         // Do not allow other address spaces on automatic variable.
8086         Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
8087         NewVD->setInvalidDecl();
8088         return;
8089       }
8090     }
8091   }
8092 
8093   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
8094       && !NewVD->hasAttr<BlocksAttr>()) {
8095     if (getLangOpts().getGC() != LangOptions::NonGC)
8096       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
8097     else {
8098       assert(!getLangOpts().ObjCAutoRefCount);
8099       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
8100     }
8101   }
8102 
8103   bool isVM = T->isVariablyModifiedType();
8104   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
8105       NewVD->hasAttr<BlocksAttr>())
8106     setFunctionHasBranchProtectedScope();
8107 
8108   if ((isVM && NewVD->hasLinkage()) ||
8109       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
8110     bool SizeIsNegative;
8111     llvm::APSInt Oversized;
8112     TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
8113         NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
8114     QualType FixedT;
8115     if (FixedTInfo &&  T == NewVD->getTypeSourceInfo()->getType())
8116       FixedT = FixedTInfo->getType();
8117     else if (FixedTInfo) {
8118       // Type and type-as-written are canonically different. We need to fix up
8119       // both types separately.
8120       FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
8121                                                    Oversized);
8122     }
8123     if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
8124       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
8125       // FIXME: This won't give the correct result for
8126       // int a[10][n];
8127       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
8128 
8129       if (NewVD->isFileVarDecl())
8130         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
8131         << SizeRange;
8132       else if (NewVD->isStaticLocal())
8133         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
8134         << SizeRange;
8135       else
8136         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
8137         << SizeRange;
8138       NewVD->setInvalidDecl();
8139       return;
8140     }
8141 
8142     if (!FixedTInfo) {
8143       if (NewVD->isFileVarDecl())
8144         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
8145       else
8146         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
8147       NewVD->setInvalidDecl();
8148       return;
8149     }
8150 
8151     Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant);
8152     NewVD->setType(FixedT);
8153     NewVD->setTypeSourceInfo(FixedTInfo);
8154   }
8155 
8156   if (T->isVoidType()) {
8157     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8158     //                    of objects and functions.
8159     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
8160       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
8161         << T;
8162       NewVD->setInvalidDecl();
8163       return;
8164     }
8165   }
8166 
8167   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
8168     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
8169     NewVD->setInvalidDecl();
8170     return;
8171   }
8172 
8173   if (!NewVD->hasLocalStorage() && T->isSizelessType()) {
8174     Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T;
8175     NewVD->setInvalidDecl();
8176     return;
8177   }
8178 
8179   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
8180     Diag(NewVD->getLocation(), diag::err_block_on_vm);
8181     NewVD->setInvalidDecl();
8182     return;
8183   }
8184 
8185   if (NewVD->isConstexpr() && !T->isDependentType() &&
8186       RequireLiteralType(NewVD->getLocation(), T,
8187                          diag::err_constexpr_var_non_literal)) {
8188     NewVD->setInvalidDecl();
8189     return;
8190   }
8191 
8192   // PPC MMA non-pointer types are not allowed as non-local variable types.
8193   if (Context.getTargetInfo().getTriple().isPPC64() &&
8194       !NewVD->isLocalVarDecl() &&
8195       CheckPPCMMAType(T, NewVD->getLocation())) {
8196     NewVD->setInvalidDecl();
8197     return;
8198   }
8199 }
8200 
8201 /// Perform semantic checking on a newly-created variable
8202 /// declaration.
8203 ///
8204 /// This routine performs all of the type-checking required for a
8205 /// variable declaration once it has been built. It is used both to
8206 /// check variables after they have been parsed and their declarators
8207 /// have been translated into a declaration, and to check variables
8208 /// that have been instantiated from a template.
8209 ///
8210 /// Sets NewVD->isInvalidDecl() if an error was encountered.
8211 ///
8212 /// Returns true if the variable declaration is a redeclaration.
8213 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
8214   CheckVariableDeclarationType(NewVD);
8215 
8216   // If the decl is already known invalid, don't check it.
8217   if (NewVD->isInvalidDecl())
8218     return false;
8219 
8220   // If we did not find anything by this name, look for a non-visible
8221   // extern "C" declaration with the same name.
8222   if (Previous.empty() &&
8223       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
8224     Previous.setShadowed();
8225 
8226   if (!Previous.empty()) {
8227     MergeVarDecl(NewVD, Previous);
8228     return true;
8229   }
8230   return false;
8231 }
8232 
8233 /// AddOverriddenMethods - See if a method overrides any in the base classes,
8234 /// and if so, check that it's a valid override and remember it.
8235 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
8236   llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden;
8237 
8238   // Look for methods in base classes that this method might override.
8239   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8240                      /*DetectVirtual=*/false);
8241   auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
8242     CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
8243     DeclarationName Name = MD->getDeclName();
8244 
8245     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8246       // We really want to find the base class destructor here.
8247       QualType T = Context.getTypeDeclType(BaseRecord);
8248       CanQualType CT = Context.getCanonicalType(T);
8249       Name = Context.DeclarationNames.getCXXDestructorName(CT);
8250     }
8251 
8252     for (NamedDecl *BaseND : BaseRecord->lookup(Name)) {
8253       CXXMethodDecl *BaseMD =
8254           dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl());
8255       if (!BaseMD || !BaseMD->isVirtual() ||
8256           IsOverload(MD, BaseMD, /*UseMemberUsingDeclRules=*/false,
8257                      /*ConsiderCudaAttrs=*/true,
8258                      // C++2a [class.virtual]p2 does not consider requires
8259                      // clauses when overriding.
8260                      /*ConsiderRequiresClauses=*/false))
8261         continue;
8262 
8263       if (Overridden.insert(BaseMD).second) {
8264         MD->addOverriddenMethod(BaseMD);
8265         CheckOverridingFunctionReturnType(MD, BaseMD);
8266         CheckOverridingFunctionAttributes(MD, BaseMD);
8267         CheckOverridingFunctionExceptionSpec(MD, BaseMD);
8268         CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD);
8269       }
8270 
8271       // A method can only override one function from each base class. We
8272       // don't track indirectly overridden methods from bases of bases.
8273       return true;
8274     }
8275 
8276     return false;
8277   };
8278 
8279   DC->lookupInBases(VisitBase, Paths);
8280   return !Overridden.empty();
8281 }
8282 
8283 namespace {
8284   // Struct for holding all of the extra arguments needed by
8285   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
8286   struct ActOnFDArgs {
8287     Scope *S;
8288     Declarator &D;
8289     MultiTemplateParamsArg TemplateParamLists;
8290     bool AddToScope;
8291   };
8292 } // end anonymous namespace
8293 
8294 namespace {
8295 
8296 // Callback to only accept typo corrections that have a non-zero edit distance.
8297 // Also only accept corrections that have the same parent decl.
8298 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
8299  public:
8300   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
8301                             CXXRecordDecl *Parent)
8302       : Context(Context), OriginalFD(TypoFD),
8303         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
8304 
8305   bool ValidateCandidate(const TypoCorrection &candidate) override {
8306     if (candidate.getEditDistance() == 0)
8307       return false;
8308 
8309     SmallVector<unsigned, 1> MismatchedParams;
8310     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
8311                                           CDeclEnd = candidate.end();
8312          CDecl != CDeclEnd; ++CDecl) {
8313       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8314 
8315       if (FD && !FD->hasBody() &&
8316           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
8317         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8318           CXXRecordDecl *Parent = MD->getParent();
8319           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
8320             return true;
8321         } else if (!ExpectedParent) {
8322           return true;
8323         }
8324       }
8325     }
8326 
8327     return false;
8328   }
8329 
8330   std::unique_ptr<CorrectionCandidateCallback> clone() override {
8331     return std::make_unique<DifferentNameValidatorCCC>(*this);
8332   }
8333 
8334  private:
8335   ASTContext &Context;
8336   FunctionDecl *OriginalFD;
8337   CXXRecordDecl *ExpectedParent;
8338 };
8339 
8340 } // end anonymous namespace
8341 
8342 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
8343   TypoCorrectedFunctionDefinitions.insert(F);
8344 }
8345 
8346 /// Generate diagnostics for an invalid function redeclaration.
8347 ///
8348 /// This routine handles generating the diagnostic messages for an invalid
8349 /// function redeclaration, including finding possible similar declarations
8350 /// or performing typo correction if there are no previous declarations with
8351 /// the same name.
8352 ///
8353 /// Returns a NamedDecl iff typo correction was performed and substituting in
8354 /// the new declaration name does not cause new errors.
8355 static NamedDecl *DiagnoseInvalidRedeclaration(
8356     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
8357     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
8358   DeclarationName Name = NewFD->getDeclName();
8359   DeclContext *NewDC = NewFD->getDeclContext();
8360   SmallVector<unsigned, 1> MismatchedParams;
8361   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
8362   TypoCorrection Correction;
8363   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
8364   unsigned DiagMsg =
8365     IsLocalFriend ? diag::err_no_matching_local_friend :
8366     NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
8367     diag::err_member_decl_does_not_match;
8368   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
8369                     IsLocalFriend ? Sema::LookupLocalFriendName
8370                                   : Sema::LookupOrdinaryName,
8371                     Sema::ForVisibleRedeclaration);
8372 
8373   NewFD->setInvalidDecl();
8374   if (IsLocalFriend)
8375     SemaRef.LookupName(Prev, S);
8376   else
8377     SemaRef.LookupQualifiedName(Prev, NewDC);
8378   assert(!Prev.isAmbiguous() &&
8379          "Cannot have an ambiguity in previous-declaration lookup");
8380   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8381   DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
8382                                 MD ? MD->getParent() : nullptr);
8383   if (!Prev.empty()) {
8384     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
8385          Func != FuncEnd; ++Func) {
8386       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
8387       if (FD &&
8388           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8389         // Add 1 to the index so that 0 can mean the mismatch didn't
8390         // involve a parameter
8391         unsigned ParamNum =
8392             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
8393         NearMatches.push_back(std::make_pair(FD, ParamNum));
8394       }
8395     }
8396   // If the qualified name lookup yielded nothing, try typo correction
8397   } else if ((Correction = SemaRef.CorrectTypo(
8398                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
8399                   &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
8400                   IsLocalFriend ? nullptr : NewDC))) {
8401     // Set up everything for the call to ActOnFunctionDeclarator
8402     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
8403                               ExtraArgs.D.getIdentifierLoc());
8404     Previous.clear();
8405     Previous.setLookupName(Correction.getCorrection());
8406     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
8407                                     CDeclEnd = Correction.end();
8408          CDecl != CDeclEnd; ++CDecl) {
8409       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8410       if (FD && !FD->hasBody() &&
8411           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8412         Previous.addDecl(FD);
8413       }
8414     }
8415     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
8416 
8417     NamedDecl *Result;
8418     // Retry building the function declaration with the new previous
8419     // declarations, and with errors suppressed.
8420     {
8421       // Trap errors.
8422       Sema::SFINAETrap Trap(SemaRef);
8423 
8424       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
8425       // pieces need to verify the typo-corrected C++ declaration and hopefully
8426       // eliminate the need for the parameter pack ExtraArgs.
8427       Result = SemaRef.ActOnFunctionDeclarator(
8428           ExtraArgs.S, ExtraArgs.D,
8429           Correction.getCorrectionDecl()->getDeclContext(),
8430           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
8431           ExtraArgs.AddToScope);
8432 
8433       if (Trap.hasErrorOccurred())
8434         Result = nullptr;
8435     }
8436 
8437     if (Result) {
8438       // Determine which correction we picked.
8439       Decl *Canonical = Result->getCanonicalDecl();
8440       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8441            I != E; ++I)
8442         if ((*I)->getCanonicalDecl() == Canonical)
8443           Correction.setCorrectionDecl(*I);
8444 
8445       // Let Sema know about the correction.
8446       SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
8447       SemaRef.diagnoseTypo(
8448           Correction,
8449           SemaRef.PDiag(IsLocalFriend
8450                           ? diag::err_no_matching_local_friend_suggest
8451                           : diag::err_member_decl_does_not_match_suggest)
8452             << Name << NewDC << IsDefinition);
8453       return Result;
8454     }
8455 
8456     // Pretend the typo correction never occurred
8457     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
8458                               ExtraArgs.D.getIdentifierLoc());
8459     ExtraArgs.D.setRedeclaration(wasRedeclaration);
8460     Previous.clear();
8461     Previous.setLookupName(Name);
8462   }
8463 
8464   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
8465       << Name << NewDC << IsDefinition << NewFD->getLocation();
8466 
8467   bool NewFDisConst = false;
8468   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
8469     NewFDisConst = NewMD->isConst();
8470 
8471   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
8472        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
8473        NearMatch != NearMatchEnd; ++NearMatch) {
8474     FunctionDecl *FD = NearMatch->first;
8475     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8476     bool FDisConst = MD && MD->isConst();
8477     bool IsMember = MD || !IsLocalFriend;
8478 
8479     // FIXME: These notes are poorly worded for the local friend case.
8480     if (unsigned Idx = NearMatch->second) {
8481       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
8482       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
8483       if (Loc.isInvalid()) Loc = FD->getLocation();
8484       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
8485                                  : diag::note_local_decl_close_param_match)
8486         << Idx << FDParam->getType()
8487         << NewFD->getParamDecl(Idx - 1)->getType();
8488     } else if (FDisConst != NewFDisConst) {
8489       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
8490           << NewFDisConst << FD->getSourceRange().getEnd();
8491     } else
8492       SemaRef.Diag(FD->getLocation(),
8493                    IsMember ? diag::note_member_def_close_match
8494                             : diag::note_local_decl_close_match);
8495   }
8496   return nullptr;
8497 }
8498 
8499 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
8500   switch (D.getDeclSpec().getStorageClassSpec()) {
8501   default: llvm_unreachable("Unknown storage class!");
8502   case DeclSpec::SCS_auto:
8503   case DeclSpec::SCS_register:
8504   case DeclSpec::SCS_mutable:
8505     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8506                  diag::err_typecheck_sclass_func);
8507     D.getMutableDeclSpec().ClearStorageClassSpecs();
8508     D.setInvalidType();
8509     break;
8510   case DeclSpec::SCS_unspecified: break;
8511   case DeclSpec::SCS_extern:
8512     if (D.getDeclSpec().isExternInLinkageSpec())
8513       return SC_None;
8514     return SC_Extern;
8515   case DeclSpec::SCS_static: {
8516     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8517       // C99 6.7.1p5:
8518       //   The declaration of an identifier for a function that has
8519       //   block scope shall have no explicit storage-class specifier
8520       //   other than extern
8521       // See also (C++ [dcl.stc]p4).
8522       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8523                    diag::err_static_block_func);
8524       break;
8525     } else
8526       return SC_Static;
8527   }
8528   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
8529   }
8530 
8531   // No explicit storage class has already been returned
8532   return SC_None;
8533 }
8534 
8535 static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
8536                                            DeclContext *DC, QualType &R,
8537                                            TypeSourceInfo *TInfo,
8538                                            StorageClass SC,
8539                                            bool &IsVirtualOkay) {
8540   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
8541   DeclarationName Name = NameInfo.getName();
8542 
8543   FunctionDecl *NewFD = nullptr;
8544   bool isInline = D.getDeclSpec().isInlineSpecified();
8545 
8546   if (!SemaRef.getLangOpts().CPlusPlus) {
8547     // Determine whether the function was written with a
8548     // prototype. This true when:
8549     //   - there is a prototype in the declarator, or
8550     //   - the type R of the function is some kind of typedef or other non-
8551     //     attributed reference to a type name (which eventually refers to a
8552     //     function type).
8553     bool HasPrototype =
8554       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
8555       (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
8556 
8557     NewFD = FunctionDecl::Create(
8558         SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
8559         SemaRef.getCurFPFeatures().isFPConstrained(), isInline, HasPrototype,
8560         ConstexprSpecKind::Unspecified,
8561         /*TrailingRequiresClause=*/nullptr);
8562     if (D.isInvalidType())
8563       NewFD->setInvalidDecl();
8564 
8565     return NewFD;
8566   }
8567 
8568   ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
8569 
8570   ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
8571   if (ConstexprKind == ConstexprSpecKind::Constinit) {
8572     SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
8573                  diag::err_constexpr_wrong_decl_kind)
8574         << static_cast<int>(ConstexprKind);
8575     ConstexprKind = ConstexprSpecKind::Unspecified;
8576     D.getMutableDeclSpec().ClearConstexprSpec();
8577   }
8578   Expr *TrailingRequiresClause = D.getTrailingRequiresClause();
8579 
8580   // Check that the return type is not an abstract class type.
8581   // For record types, this is done by the AbstractClassUsageDiagnoser once
8582   // the class has been completely parsed.
8583   if (!DC->isRecord() &&
8584       SemaRef.RequireNonAbstractType(
8585           D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(),
8586           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
8587     D.setInvalidType();
8588 
8589   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
8590     // This is a C++ constructor declaration.
8591     assert(DC->isRecord() &&
8592            "Constructors can only be declared in a member context");
8593 
8594     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
8595     return CXXConstructorDecl::Create(
8596         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8597         TInfo, ExplicitSpecifier, SemaRef.getCurFPFeatures().isFPConstrained(),
8598         isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
8599         InheritedConstructor(), TrailingRequiresClause);
8600 
8601   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8602     // This is a C++ destructor declaration.
8603     if (DC->isRecord()) {
8604       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
8605       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
8606       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
8607           SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
8608           SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8609           /*isImplicitlyDeclared=*/false, ConstexprKind,
8610           TrailingRequiresClause);
8611 
8612       // If the destructor needs an implicit exception specification, set it
8613       // now. FIXME: It'd be nice to be able to create the right type to start
8614       // with, but the type needs to reference the destructor declaration.
8615       if (SemaRef.getLangOpts().CPlusPlus11)
8616         SemaRef.AdjustDestructorExceptionSpec(NewDD);
8617 
8618       IsVirtualOkay = true;
8619       return NewDD;
8620 
8621     } else {
8622       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
8623       D.setInvalidType();
8624 
8625       // Create a FunctionDecl to satisfy the function definition parsing
8626       // code path.
8627       return FunctionDecl::Create(
8628           SemaRef.Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), Name, R,
8629           TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8630           /*hasPrototype=*/true, ConstexprKind, TrailingRequiresClause);
8631     }
8632 
8633   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
8634     if (!DC->isRecord()) {
8635       SemaRef.Diag(D.getIdentifierLoc(),
8636            diag::err_conv_function_not_member);
8637       return nullptr;
8638     }
8639 
8640     SemaRef.CheckConversionDeclarator(D, R, SC);
8641     if (D.isInvalidType())
8642       return nullptr;
8643 
8644     IsVirtualOkay = true;
8645     return CXXConversionDecl::Create(
8646         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8647         TInfo, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8648         ExplicitSpecifier, ConstexprKind, SourceLocation(),
8649         TrailingRequiresClause);
8650 
8651   } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
8652     if (TrailingRequiresClause)
8653       SemaRef.Diag(TrailingRequiresClause->getBeginLoc(),
8654                    diag::err_trailing_requires_clause_on_deduction_guide)
8655           << TrailingRequiresClause->getSourceRange();
8656     SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
8657 
8658     return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8659                                          ExplicitSpecifier, NameInfo, R, TInfo,
8660                                          D.getEndLoc());
8661   } else if (DC->isRecord()) {
8662     // If the name of the function is the same as the name of the record,
8663     // then this must be an invalid constructor that has a return type.
8664     // (The parser checks for a return type and makes the declarator a
8665     // constructor if it has no return type).
8666     if (Name.getAsIdentifierInfo() &&
8667         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8668       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8669         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8670         << SourceRange(D.getIdentifierLoc());
8671       return nullptr;
8672     }
8673 
8674     // This is a C++ method declaration.
8675     CXXMethodDecl *Ret = CXXMethodDecl::Create(
8676         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8677         TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8678         ConstexprKind, SourceLocation(), TrailingRequiresClause);
8679     IsVirtualOkay = !Ret->isStatic();
8680     return Ret;
8681   } else {
8682     bool isFriend =
8683         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8684     if (!isFriend && SemaRef.CurContext->isRecord())
8685       return nullptr;
8686 
8687     // Determine whether the function was written with a
8688     // prototype. This true when:
8689     //   - we're in C++ (where every function has a prototype),
8690     return FunctionDecl::Create(
8691         SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
8692         SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8693         true /*HasPrototype*/, ConstexprKind, TrailingRequiresClause);
8694   }
8695 }
8696 
8697 enum OpenCLParamType {
8698   ValidKernelParam,
8699   PtrPtrKernelParam,
8700   PtrKernelParam,
8701   InvalidAddrSpacePtrKernelParam,
8702   InvalidKernelParam,
8703   RecordKernelParam
8704 };
8705 
8706 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8707   // Size dependent types are just typedefs to normal integer types
8708   // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8709   // integers other than by their names.
8710   StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8711 
8712   // Remove typedefs one by one until we reach a typedef
8713   // for a size dependent type.
8714   QualType DesugaredTy = Ty;
8715   do {
8716     ArrayRef<StringRef> Names(SizeTypeNames);
8717     auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
8718     if (Names.end() != Match)
8719       return true;
8720 
8721     Ty = DesugaredTy;
8722     DesugaredTy = Ty.getSingleStepDesugaredType(C);
8723   } while (DesugaredTy != Ty);
8724 
8725   return false;
8726 }
8727 
8728 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8729   if (PT->isDependentType())
8730     return InvalidKernelParam;
8731 
8732   if (PT->isPointerType() || PT->isReferenceType()) {
8733     QualType PointeeType = PT->getPointeeType();
8734     if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8735         PointeeType.getAddressSpace() == LangAS::opencl_private ||
8736         PointeeType.getAddressSpace() == LangAS::Default)
8737       return InvalidAddrSpacePtrKernelParam;
8738 
8739     if (PointeeType->isPointerType()) {
8740       // This is a pointer to pointer parameter.
8741       // Recursively check inner type.
8742       OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType);
8743       if (ParamKind == InvalidAddrSpacePtrKernelParam ||
8744           ParamKind == InvalidKernelParam)
8745         return ParamKind;
8746 
8747       return PtrPtrKernelParam;
8748     }
8749 
8750     // C++ for OpenCL v1.0 s2.4:
8751     // Moreover the types used in parameters of the kernel functions must be:
8752     // Standard layout types for pointer parameters. The same applies to
8753     // reference if an implementation supports them in kernel parameters.
8754     if (S.getLangOpts().OpenCLCPlusPlus &&
8755         !S.getOpenCLOptions().isAvailableOption(
8756             "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) &&
8757         !PointeeType->isAtomicType() && !PointeeType->isVoidType() &&
8758         !PointeeType->isStandardLayoutType())
8759       return InvalidKernelParam;
8760 
8761     return PtrKernelParam;
8762   }
8763 
8764   // OpenCL v1.2 s6.9.k:
8765   // Arguments to kernel functions in a program cannot be declared with the
8766   // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8767   // uintptr_t or a struct and/or union that contain fields declared to be one
8768   // of these built-in scalar types.
8769   if (isOpenCLSizeDependentType(S.getASTContext(), PT))
8770     return InvalidKernelParam;
8771 
8772   if (PT->isImageType())
8773     return PtrKernelParam;
8774 
8775   if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8776     return InvalidKernelParam;
8777 
8778   // OpenCL extension spec v1.2 s9.5:
8779   // This extension adds support for half scalar and vector types as built-in
8780   // types that can be used for arithmetic operations, conversions etc.
8781   if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S.getLangOpts()) &&
8782       PT->isHalfType())
8783     return InvalidKernelParam;
8784 
8785   // Look into an array argument to check if it has a forbidden type.
8786   if (PT->isArrayType()) {
8787     const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8788     // Call ourself to check an underlying type of an array. Since the
8789     // getPointeeOrArrayElementType returns an innermost type which is not an
8790     // array, this recursive call only happens once.
8791     return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8792   }
8793 
8794   // C++ for OpenCL v1.0 s2.4:
8795   // Moreover the types used in parameters of the kernel functions must be:
8796   // Trivial and standard-layout types C++17 [basic.types] (plain old data
8797   // types) for parameters passed by value;
8798   if (S.getLangOpts().OpenCLCPlusPlus &&
8799       !S.getOpenCLOptions().isAvailableOption(
8800           "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) &&
8801       !PT->isOpenCLSpecificType() && !PT.isPODType(S.Context))
8802     return InvalidKernelParam;
8803 
8804   if (PT->isRecordType())
8805     return RecordKernelParam;
8806 
8807   return ValidKernelParam;
8808 }
8809 
8810 static void checkIsValidOpenCLKernelParameter(
8811   Sema &S,
8812   Declarator &D,
8813   ParmVarDecl *Param,
8814   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8815   QualType PT = Param->getType();
8816 
8817   // Cache the valid types we encounter to avoid rechecking structs that are
8818   // used again
8819   if (ValidTypes.count(PT.getTypePtr()))
8820     return;
8821 
8822   switch (getOpenCLKernelParameterType(S, PT)) {
8823   case PtrPtrKernelParam:
8824     // OpenCL v3.0 s6.11.a:
8825     // A kernel function argument cannot be declared as a pointer to a pointer
8826     // type. [...] This restriction only applies to OpenCL C 1.2 or below.
8827     if (S.getLangOpts().OpenCLVersion <= 120 &&
8828         !S.getLangOpts().OpenCLCPlusPlus) {
8829       S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8830       D.setInvalidType();
8831       return;
8832     }
8833 
8834     ValidTypes.insert(PT.getTypePtr());
8835     return;
8836 
8837   case InvalidAddrSpacePtrKernelParam:
8838     // OpenCL v1.0 s6.5:
8839     // __kernel function arguments declared to be a pointer of a type can point
8840     // to one of the following address spaces only : __global, __local or
8841     // __constant.
8842     S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8843     D.setInvalidType();
8844     return;
8845 
8846     // OpenCL v1.2 s6.9.k:
8847     // Arguments to kernel functions in a program cannot be declared with the
8848     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8849     // uintptr_t or a struct and/or union that contain fields declared to be
8850     // one of these built-in scalar types.
8851 
8852   case InvalidKernelParam:
8853     // OpenCL v1.2 s6.8 n:
8854     // A kernel function argument cannot be declared
8855     // of event_t type.
8856     // Do not diagnose half type since it is diagnosed as invalid argument
8857     // type for any function elsewhere.
8858     if (!PT->isHalfType()) {
8859       S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8860 
8861       // Explain what typedefs are involved.
8862       const TypedefType *Typedef = nullptr;
8863       while ((Typedef = PT->getAs<TypedefType>())) {
8864         SourceLocation Loc = Typedef->getDecl()->getLocation();
8865         // SourceLocation may be invalid for a built-in type.
8866         if (Loc.isValid())
8867           S.Diag(Loc, diag::note_entity_declared_at) << PT;
8868         PT = Typedef->desugar();
8869       }
8870     }
8871 
8872     D.setInvalidType();
8873     return;
8874 
8875   case PtrKernelParam:
8876   case ValidKernelParam:
8877     ValidTypes.insert(PT.getTypePtr());
8878     return;
8879 
8880   case RecordKernelParam:
8881     break;
8882   }
8883 
8884   // Track nested structs we will inspect
8885   SmallVector<const Decl *, 4> VisitStack;
8886 
8887   // Track where we are in the nested structs. Items will migrate from
8888   // VisitStack to HistoryStack as we do the DFS for bad field.
8889   SmallVector<const FieldDecl *, 4> HistoryStack;
8890   HistoryStack.push_back(nullptr);
8891 
8892   // At this point we already handled everything except of a RecordType or
8893   // an ArrayType of a RecordType.
8894   assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
8895   const RecordType *RecTy =
8896       PT->getPointeeOrArrayElementType()->getAs<RecordType>();
8897   const RecordDecl *OrigRecDecl = RecTy->getDecl();
8898 
8899   VisitStack.push_back(RecTy->getDecl());
8900   assert(VisitStack.back() && "First decl null?");
8901 
8902   do {
8903     const Decl *Next = VisitStack.pop_back_val();
8904     if (!Next) {
8905       assert(!HistoryStack.empty());
8906       // Found a marker, we have gone up a level
8907       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8908         ValidTypes.insert(Hist->getType().getTypePtr());
8909 
8910       continue;
8911     }
8912 
8913     // Adds everything except the original parameter declaration (which is not a
8914     // field itself) to the history stack.
8915     const RecordDecl *RD;
8916     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8917       HistoryStack.push_back(Field);
8918 
8919       QualType FieldTy = Field->getType();
8920       // Other field types (known to be valid or invalid) are handled while we
8921       // walk around RecordDecl::fields().
8922       assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
8923              "Unexpected type.");
8924       const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8925 
8926       RD = FieldRecTy->castAs<RecordType>()->getDecl();
8927     } else {
8928       RD = cast<RecordDecl>(Next);
8929     }
8930 
8931     // Add a null marker so we know when we've gone back up a level
8932     VisitStack.push_back(nullptr);
8933 
8934     for (const auto *FD : RD->fields()) {
8935       QualType QT = FD->getType();
8936 
8937       if (ValidTypes.count(QT.getTypePtr()))
8938         continue;
8939 
8940       OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8941       if (ParamType == ValidKernelParam)
8942         continue;
8943 
8944       if (ParamType == RecordKernelParam) {
8945         VisitStack.push_back(FD);
8946         continue;
8947       }
8948 
8949       // OpenCL v1.2 s6.9.p:
8950       // Arguments to kernel functions that are declared to be a struct or union
8951       // do not allow OpenCL objects to be passed as elements of the struct or
8952       // union.
8953       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8954           ParamType == InvalidAddrSpacePtrKernelParam) {
8955         S.Diag(Param->getLocation(),
8956                diag::err_record_with_pointers_kernel_param)
8957           << PT->isUnionType()
8958           << PT;
8959       } else {
8960         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8961       }
8962 
8963       S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8964           << OrigRecDecl->getDeclName();
8965 
8966       // We have an error, now let's go back up through history and show where
8967       // the offending field came from
8968       for (ArrayRef<const FieldDecl *>::const_iterator
8969                I = HistoryStack.begin() + 1,
8970                E = HistoryStack.end();
8971            I != E; ++I) {
8972         const FieldDecl *OuterField = *I;
8973         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8974           << OuterField->getType();
8975       }
8976 
8977       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8978         << QT->isPointerType()
8979         << QT;
8980       D.setInvalidType();
8981       return;
8982     }
8983   } while (!VisitStack.empty());
8984 }
8985 
8986 /// Find the DeclContext in which a tag is implicitly declared if we see an
8987 /// elaborated type specifier in the specified context, and lookup finds
8988 /// nothing.
8989 static DeclContext *getTagInjectionContext(DeclContext *DC) {
8990   while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8991     DC = DC->getParent();
8992   return DC;
8993 }
8994 
8995 /// Find the Scope in which a tag is implicitly declared if we see an
8996 /// elaborated type specifier in the specified context, and lookup finds
8997 /// nothing.
8998 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8999   while (S->isClassScope() ||
9000          (LangOpts.CPlusPlus &&
9001           S->isFunctionPrototypeScope()) ||
9002          ((S->getFlags() & Scope::DeclScope) == 0) ||
9003          (S->getEntity() && S->getEntity()->isTransparentContext()))
9004     S = S->getParent();
9005   return S;
9006 }
9007 
9008 NamedDecl*
9009 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
9010                               TypeSourceInfo *TInfo, LookupResult &Previous,
9011                               MultiTemplateParamsArg TemplateParamListsRef,
9012                               bool &AddToScope) {
9013   QualType R = TInfo->getType();
9014 
9015   assert(R->isFunctionType());
9016   if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr())
9017     Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call);
9018 
9019   SmallVector<TemplateParameterList *, 4> TemplateParamLists;
9020   for (TemplateParameterList *TPL : TemplateParamListsRef)
9021     TemplateParamLists.push_back(TPL);
9022   if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
9023     if (!TemplateParamLists.empty() &&
9024         Invented->getDepth() == TemplateParamLists.back()->getDepth())
9025       TemplateParamLists.back() = Invented;
9026     else
9027       TemplateParamLists.push_back(Invented);
9028   }
9029 
9030   // TODO: consider using NameInfo for diagnostic.
9031   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9032   DeclarationName Name = NameInfo.getName();
9033   StorageClass SC = getFunctionStorageClass(*this, D);
9034 
9035   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
9036     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
9037          diag::err_invalid_thread)
9038       << DeclSpec::getSpecifierName(TSCS);
9039 
9040   if (D.isFirstDeclarationOfMember())
9041     adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
9042                            D.getIdentifierLoc());
9043 
9044   bool isFriend = false;
9045   FunctionTemplateDecl *FunctionTemplate = nullptr;
9046   bool isMemberSpecialization = false;
9047   bool isFunctionTemplateSpecialization = false;
9048 
9049   bool isDependentClassScopeExplicitSpecialization = false;
9050   bool HasExplicitTemplateArgs = false;
9051   TemplateArgumentListInfo TemplateArgs;
9052 
9053   bool isVirtualOkay = false;
9054 
9055   DeclContext *OriginalDC = DC;
9056   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
9057 
9058   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
9059                                               isVirtualOkay);
9060   if (!NewFD) return nullptr;
9061 
9062   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
9063     NewFD->setTopLevelDeclInObjCContainer();
9064 
9065   // Set the lexical context. If this is a function-scope declaration, or has a
9066   // C++ scope specifier, or is the object of a friend declaration, the lexical
9067   // context will be different from the semantic context.
9068   NewFD->setLexicalDeclContext(CurContext);
9069 
9070   if (IsLocalExternDecl)
9071     NewFD->setLocalExternDecl();
9072 
9073   if (getLangOpts().CPlusPlus) {
9074     bool isInline = D.getDeclSpec().isInlineSpecified();
9075     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
9076     bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
9077     isFriend = D.getDeclSpec().isFriendSpecified();
9078     if (isFriend && !isInline && D.isFunctionDefinition()) {
9079       // C++ [class.friend]p5
9080       //   A function can be defined in a friend declaration of a
9081       //   class . . . . Such a function is implicitly inline.
9082       NewFD->setImplicitlyInline();
9083     }
9084 
9085     // If this is a method defined in an __interface, and is not a constructor
9086     // or an overloaded operator, then set the pure flag (isVirtual will already
9087     // return true).
9088     if (const CXXRecordDecl *Parent =
9089           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
9090       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
9091         NewFD->setPure(true);
9092 
9093       // C++ [class.union]p2
9094       //   A union can have member functions, but not virtual functions.
9095       if (isVirtual && Parent->isUnion())
9096         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
9097     }
9098 
9099     SetNestedNameSpecifier(*this, NewFD, D);
9100     isMemberSpecialization = false;
9101     isFunctionTemplateSpecialization = false;
9102     if (D.isInvalidType())
9103       NewFD->setInvalidDecl();
9104 
9105     // Match up the template parameter lists with the scope specifier, then
9106     // determine whether we have a template or a template specialization.
9107     bool Invalid = false;
9108     TemplateParameterList *TemplateParams =
9109         MatchTemplateParametersToScopeSpecifier(
9110             D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
9111             D.getCXXScopeSpec(),
9112             D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
9113                 ? D.getName().TemplateId
9114                 : nullptr,
9115             TemplateParamLists, isFriend, isMemberSpecialization,
9116             Invalid);
9117     if (TemplateParams) {
9118       // Check that we can declare a template here.
9119       if (CheckTemplateDeclScope(S, TemplateParams))
9120         NewFD->setInvalidDecl();
9121 
9122       if (TemplateParams->size() > 0) {
9123         // This is a function template
9124 
9125         // A destructor cannot be a template.
9126         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
9127           Diag(NewFD->getLocation(), diag::err_destructor_template);
9128           NewFD->setInvalidDecl();
9129         }
9130 
9131         // If we're adding a template to a dependent context, we may need to
9132         // rebuilding some of the types used within the template parameter list,
9133         // now that we know what the current instantiation is.
9134         if (DC->isDependentContext()) {
9135           ContextRAII SavedContext(*this, DC);
9136           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
9137             Invalid = true;
9138         }
9139 
9140         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
9141                                                         NewFD->getLocation(),
9142                                                         Name, TemplateParams,
9143                                                         NewFD);
9144         FunctionTemplate->setLexicalDeclContext(CurContext);
9145         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
9146 
9147         // For source fidelity, store the other template param lists.
9148         if (TemplateParamLists.size() > 1) {
9149           NewFD->setTemplateParameterListsInfo(Context,
9150               ArrayRef<TemplateParameterList *>(TemplateParamLists)
9151                   .drop_back(1));
9152         }
9153       } else {
9154         // This is a function template specialization.
9155         isFunctionTemplateSpecialization = true;
9156         // For source fidelity, store all the template param lists.
9157         if (TemplateParamLists.size() > 0)
9158           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9159 
9160         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9161         if (isFriend) {
9162           // We want to remove the "template<>", found here.
9163           SourceRange RemoveRange = TemplateParams->getSourceRange();
9164 
9165           // If we remove the template<> and the name is not a
9166           // template-id, we're actually silently creating a problem:
9167           // the friend declaration will refer to an untemplated decl,
9168           // and clearly the user wants a template specialization.  So
9169           // we need to insert '<>' after the name.
9170           SourceLocation InsertLoc;
9171           if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9172             InsertLoc = D.getName().getSourceRange().getEnd();
9173             InsertLoc = getLocForEndOfToken(InsertLoc);
9174           }
9175 
9176           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
9177             << Name << RemoveRange
9178             << FixItHint::CreateRemoval(RemoveRange)
9179             << FixItHint::CreateInsertion(InsertLoc, "<>");
9180         }
9181       }
9182     } else {
9183       // Check that we can declare a template here.
9184       if (!TemplateParamLists.empty() && isMemberSpecialization &&
9185           CheckTemplateDeclScope(S, TemplateParamLists.back()))
9186         NewFD->setInvalidDecl();
9187 
9188       // All template param lists were matched against the scope specifier:
9189       // this is NOT (an explicit specialization of) a template.
9190       if (TemplateParamLists.size() > 0)
9191         // For source fidelity, store all the template param lists.
9192         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9193     }
9194 
9195     if (Invalid) {
9196       NewFD->setInvalidDecl();
9197       if (FunctionTemplate)
9198         FunctionTemplate->setInvalidDecl();
9199     }
9200 
9201     // C++ [dcl.fct.spec]p5:
9202     //   The virtual specifier shall only be used in declarations of
9203     //   nonstatic class member functions that appear within a
9204     //   member-specification of a class declaration; see 10.3.
9205     //
9206     if (isVirtual && !NewFD->isInvalidDecl()) {
9207       if (!isVirtualOkay) {
9208         Diag(D.getDeclSpec().getVirtualSpecLoc(),
9209              diag::err_virtual_non_function);
9210       } else if (!CurContext->isRecord()) {
9211         // 'virtual' was specified outside of the class.
9212         Diag(D.getDeclSpec().getVirtualSpecLoc(),
9213              diag::err_virtual_out_of_class)
9214           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9215       } else if (NewFD->getDescribedFunctionTemplate()) {
9216         // C++ [temp.mem]p3:
9217         //  A member function template shall not be virtual.
9218         Diag(D.getDeclSpec().getVirtualSpecLoc(),
9219              diag::err_virtual_member_function_template)
9220           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9221       } else {
9222         // Okay: Add virtual to the method.
9223         NewFD->setVirtualAsWritten(true);
9224       }
9225 
9226       if (getLangOpts().CPlusPlus14 &&
9227           NewFD->getReturnType()->isUndeducedType())
9228         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
9229     }
9230 
9231     if (getLangOpts().CPlusPlus14 &&
9232         (NewFD->isDependentContext() ||
9233          (isFriend && CurContext->isDependentContext())) &&
9234         NewFD->getReturnType()->isUndeducedType()) {
9235       // If the function template is referenced directly (for instance, as a
9236       // member of the current instantiation), pretend it has a dependent type.
9237       // This is not really justified by the standard, but is the only sane
9238       // thing to do.
9239       // FIXME: For a friend function, we have not marked the function as being
9240       // a friend yet, so 'isDependentContext' on the FD doesn't work.
9241       const FunctionProtoType *FPT =
9242           NewFD->getType()->castAs<FunctionProtoType>();
9243       QualType Result =
9244           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
9245       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
9246                                              FPT->getExtProtoInfo()));
9247     }
9248 
9249     // C++ [dcl.fct.spec]p3:
9250     //  The inline specifier shall not appear on a block scope function
9251     //  declaration.
9252     if (isInline && !NewFD->isInvalidDecl()) {
9253       if (CurContext->isFunctionOrMethod()) {
9254         // 'inline' is not allowed on block scope function declaration.
9255         Diag(D.getDeclSpec().getInlineSpecLoc(),
9256              diag::err_inline_declaration_block_scope) << Name
9257           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9258       }
9259     }
9260 
9261     // C++ [dcl.fct.spec]p6:
9262     //  The explicit specifier shall be used only in the declaration of a
9263     //  constructor or conversion function within its class definition;
9264     //  see 12.3.1 and 12.3.2.
9265     if (hasExplicit && !NewFD->isInvalidDecl() &&
9266         !isa<CXXDeductionGuideDecl>(NewFD)) {
9267       if (!CurContext->isRecord()) {
9268         // 'explicit' was specified outside of the class.
9269         Diag(D.getDeclSpec().getExplicitSpecLoc(),
9270              diag::err_explicit_out_of_class)
9271             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9272       } else if (!isa<CXXConstructorDecl>(NewFD) &&
9273                  !isa<CXXConversionDecl>(NewFD)) {
9274         // 'explicit' was specified on a function that wasn't a constructor
9275         // or conversion function.
9276         Diag(D.getDeclSpec().getExplicitSpecLoc(),
9277              diag::err_explicit_non_ctor_or_conv_function)
9278             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9279       }
9280     }
9281 
9282     ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
9283     if (ConstexprKind != ConstexprSpecKind::Unspecified) {
9284       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
9285       // are implicitly inline.
9286       NewFD->setImplicitlyInline();
9287 
9288       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
9289       // be either constructors or to return a literal type. Therefore,
9290       // destructors cannot be declared constexpr.
9291       if (isa<CXXDestructorDecl>(NewFD) &&
9292           (!getLangOpts().CPlusPlus20 ||
9293            ConstexprKind == ConstexprSpecKind::Consteval)) {
9294         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
9295             << static_cast<int>(ConstexprKind);
9296         NewFD->setConstexprKind(getLangOpts().CPlusPlus20
9297                                     ? ConstexprSpecKind::Unspecified
9298                                     : ConstexprSpecKind::Constexpr);
9299       }
9300       // C++20 [dcl.constexpr]p2: An allocation function, or a
9301       // deallocation function shall not be declared with the consteval
9302       // specifier.
9303       if (ConstexprKind == ConstexprSpecKind::Consteval &&
9304           (NewFD->getOverloadedOperator() == OO_New ||
9305            NewFD->getOverloadedOperator() == OO_Array_New ||
9306            NewFD->getOverloadedOperator() == OO_Delete ||
9307            NewFD->getOverloadedOperator() == OO_Array_Delete)) {
9308         Diag(D.getDeclSpec().getConstexprSpecLoc(),
9309              diag::err_invalid_consteval_decl_kind)
9310             << NewFD;
9311         NewFD->setConstexprKind(ConstexprSpecKind::Constexpr);
9312       }
9313     }
9314 
9315     // If __module_private__ was specified, mark the function accordingly.
9316     if (D.getDeclSpec().isModulePrivateSpecified()) {
9317       if (isFunctionTemplateSpecialization) {
9318         SourceLocation ModulePrivateLoc
9319           = D.getDeclSpec().getModulePrivateSpecLoc();
9320         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
9321           << 0
9322           << FixItHint::CreateRemoval(ModulePrivateLoc);
9323       } else {
9324         NewFD->setModulePrivate();
9325         if (FunctionTemplate)
9326           FunctionTemplate->setModulePrivate();
9327       }
9328     }
9329 
9330     if (isFriend) {
9331       if (FunctionTemplate) {
9332         FunctionTemplate->setObjectOfFriendDecl();
9333         FunctionTemplate->setAccess(AS_public);
9334       }
9335       NewFD->setObjectOfFriendDecl();
9336       NewFD->setAccess(AS_public);
9337     }
9338 
9339     // If a function is defined as defaulted or deleted, mark it as such now.
9340     // We'll do the relevant checks on defaulted / deleted functions later.
9341     switch (D.getFunctionDefinitionKind()) {
9342     case FunctionDefinitionKind::Declaration:
9343     case FunctionDefinitionKind::Definition:
9344       break;
9345 
9346     case FunctionDefinitionKind::Defaulted:
9347       NewFD->setDefaulted();
9348       break;
9349 
9350     case FunctionDefinitionKind::Deleted:
9351       NewFD->setDeletedAsWritten();
9352       break;
9353     }
9354 
9355     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
9356         D.isFunctionDefinition()) {
9357       // C++ [class.mfct]p2:
9358       //   A member function may be defined (8.4) in its class definition, in
9359       //   which case it is an inline member function (7.1.2)
9360       NewFD->setImplicitlyInline();
9361     }
9362 
9363     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
9364         !CurContext->isRecord()) {
9365       // C++ [class.static]p1:
9366       //   A data or function member of a class may be declared static
9367       //   in a class definition, in which case it is a static member of
9368       //   the class.
9369 
9370       // Complain about the 'static' specifier if it's on an out-of-line
9371       // member function definition.
9372 
9373       // MSVC permits the use of a 'static' storage specifier on an out-of-line
9374       // member function template declaration and class member template
9375       // declaration (MSVC versions before 2015), warn about this.
9376       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9377            ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
9378              cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
9379            (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
9380            ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
9381         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9382     }
9383 
9384     // C++11 [except.spec]p15:
9385     //   A deallocation function with no exception-specification is treated
9386     //   as if it were specified with noexcept(true).
9387     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
9388     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
9389          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
9390         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
9391       NewFD->setType(Context.getFunctionType(
9392           FPT->getReturnType(), FPT->getParamTypes(),
9393           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
9394   }
9395 
9396   // Filter out previous declarations that don't match the scope.
9397   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
9398                        D.getCXXScopeSpec().isNotEmpty() ||
9399                        isMemberSpecialization ||
9400                        isFunctionTemplateSpecialization);
9401 
9402   // Handle GNU asm-label extension (encoded as an attribute).
9403   if (Expr *E = (Expr*) D.getAsmLabel()) {
9404     // The parser guarantees this is a string.
9405     StringLiteral *SE = cast<StringLiteral>(E);
9406     NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
9407                                         /*IsLiteralLabel=*/true,
9408                                         SE->getStrTokenLoc(0)));
9409   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
9410     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
9411       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
9412     if (I != ExtnameUndeclaredIdentifiers.end()) {
9413       if (isDeclExternC(NewFD)) {
9414         NewFD->addAttr(I->second);
9415         ExtnameUndeclaredIdentifiers.erase(I);
9416       } else
9417         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
9418             << /*Variable*/0 << NewFD;
9419     }
9420   }
9421 
9422   // Copy the parameter declarations from the declarator D to the function
9423   // declaration NewFD, if they are available.  First scavenge them into Params.
9424   SmallVector<ParmVarDecl*, 16> Params;
9425   unsigned FTIIdx;
9426   if (D.isFunctionDeclarator(FTIIdx)) {
9427     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
9428 
9429     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
9430     // function that takes no arguments, not a function that takes a
9431     // single void argument.
9432     // We let through "const void" here because Sema::GetTypeForDeclarator
9433     // already checks for that case.
9434     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
9435       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
9436         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
9437         assert(Param->getDeclContext() != NewFD && "Was set before ?");
9438         Param->setDeclContext(NewFD);
9439         Params.push_back(Param);
9440 
9441         if (Param->isInvalidDecl())
9442           NewFD->setInvalidDecl();
9443       }
9444     }
9445 
9446     if (!getLangOpts().CPlusPlus) {
9447       // In C, find all the tag declarations from the prototype and move them
9448       // into the function DeclContext. Remove them from the surrounding tag
9449       // injection context of the function, which is typically but not always
9450       // the TU.
9451       DeclContext *PrototypeTagContext =
9452           getTagInjectionContext(NewFD->getLexicalDeclContext());
9453       for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
9454         auto *TD = dyn_cast<TagDecl>(NonParmDecl);
9455 
9456         // We don't want to reparent enumerators. Look at their parent enum
9457         // instead.
9458         if (!TD) {
9459           if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
9460             TD = cast<EnumDecl>(ECD->getDeclContext());
9461         }
9462         if (!TD)
9463           continue;
9464         DeclContext *TagDC = TD->getLexicalDeclContext();
9465         if (!TagDC->containsDecl(TD))
9466           continue;
9467         TagDC->removeDecl(TD);
9468         TD->setDeclContext(NewFD);
9469         NewFD->addDecl(TD);
9470 
9471         // Preserve the lexical DeclContext if it is not the surrounding tag
9472         // injection context of the FD. In this example, the semantic context of
9473         // E will be f and the lexical context will be S, while both the
9474         // semantic and lexical contexts of S will be f:
9475         //   void f(struct S { enum E { a } f; } s);
9476         if (TagDC != PrototypeTagContext)
9477           TD->setLexicalDeclContext(TagDC);
9478       }
9479     }
9480   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
9481     // When we're declaring a function with a typedef, typeof, etc as in the
9482     // following example, we'll need to synthesize (unnamed)
9483     // parameters for use in the declaration.
9484     //
9485     // @code
9486     // typedef void fn(int);
9487     // fn f;
9488     // @endcode
9489 
9490     // Synthesize a parameter for each argument type.
9491     for (const auto &AI : FT->param_types()) {
9492       ParmVarDecl *Param =
9493           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
9494       Param->setScopeInfo(0, Params.size());
9495       Params.push_back(Param);
9496     }
9497   } else {
9498     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
9499            "Should not need args for typedef of non-prototype fn");
9500   }
9501 
9502   // Finally, we know we have the right number of parameters, install them.
9503   NewFD->setParams(Params);
9504 
9505   if (D.getDeclSpec().isNoreturnSpecified())
9506     NewFD->addAttr(C11NoReturnAttr::Create(Context,
9507                                            D.getDeclSpec().getNoreturnSpecLoc(),
9508                                            AttributeCommonInfo::AS_Keyword));
9509 
9510   // Functions returning a variably modified type violate C99 6.7.5.2p2
9511   // because all functions have linkage.
9512   if (!NewFD->isInvalidDecl() &&
9513       NewFD->getReturnType()->isVariablyModifiedType()) {
9514     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
9515     NewFD->setInvalidDecl();
9516   }
9517 
9518   // Apply an implicit SectionAttr if '#pragma clang section text' is active
9519   if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
9520       !NewFD->hasAttr<SectionAttr>())
9521     NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
9522         Context, PragmaClangTextSection.SectionName,
9523         PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma));
9524 
9525   // Apply an implicit SectionAttr if #pragma code_seg is active.
9526   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
9527       !NewFD->hasAttr<SectionAttr>()) {
9528     NewFD->addAttr(SectionAttr::CreateImplicit(
9529         Context, CodeSegStack.CurrentValue->getString(),
9530         CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9531         SectionAttr::Declspec_allocate));
9532     if (UnifySection(CodeSegStack.CurrentValue->getString(),
9533                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
9534                          ASTContext::PSF_Read,
9535                      NewFD))
9536       NewFD->dropAttr<SectionAttr>();
9537   }
9538 
9539   // Apply an implicit CodeSegAttr from class declspec or
9540   // apply an implicit SectionAttr from #pragma code_seg if active.
9541   if (!NewFD->hasAttr<CodeSegAttr>()) {
9542     if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
9543                                                                  D.isFunctionDefinition())) {
9544       NewFD->addAttr(SAttr);
9545     }
9546   }
9547 
9548   // Handle attributes.
9549   ProcessDeclAttributes(S, NewFD, D);
9550 
9551   if (getLangOpts().OpenCL) {
9552     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
9553     // type declaration will generate a compilation error.
9554     LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
9555     if (AddressSpace != LangAS::Default) {
9556       Diag(NewFD->getLocation(),
9557            diag::err_opencl_return_value_with_address_space);
9558       NewFD->setInvalidDecl();
9559     }
9560   }
9561 
9562   if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice))
9563     checkDeviceDecl(NewFD, D.getBeginLoc());
9564 
9565   if (!getLangOpts().CPlusPlus) {
9566     // Perform semantic checking on the function declaration.
9567     if (!NewFD->isInvalidDecl() && NewFD->isMain())
9568       CheckMain(NewFD, D.getDeclSpec());
9569 
9570     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9571       CheckMSVCRTEntryPoint(NewFD);
9572 
9573     if (!NewFD->isInvalidDecl())
9574       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9575                                                   isMemberSpecialization));
9576     else if (!Previous.empty())
9577       // Recover gracefully from an invalid redeclaration.
9578       D.setRedeclaration(true);
9579     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9580             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
9581            "previous declaration set still overloaded");
9582 
9583     // Diagnose no-prototype function declarations with calling conventions that
9584     // don't support variadic calls. Only do this in C and do it after merging
9585     // possibly prototyped redeclarations.
9586     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
9587     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
9588       CallingConv CC = FT->getExtInfo().getCC();
9589       if (!supportsVariadicCall(CC)) {
9590         // Windows system headers sometimes accidentally use stdcall without
9591         // (void) parameters, so we relax this to a warning.
9592         int DiagID =
9593             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
9594         Diag(NewFD->getLocation(), DiagID)
9595             << FunctionType::getNameForCallConv(CC);
9596       }
9597     }
9598 
9599    if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
9600        NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
9601      checkNonTrivialCUnion(NewFD->getReturnType(),
9602                            NewFD->getReturnTypeSourceRange().getBegin(),
9603                            NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
9604   } else {
9605     // C++11 [replacement.functions]p3:
9606     //  The program's definitions shall not be specified as inline.
9607     //
9608     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
9609     //
9610     // Suppress the diagnostic if the function is __attribute__((used)), since
9611     // that forces an external definition to be emitted.
9612     if (D.getDeclSpec().isInlineSpecified() &&
9613         NewFD->isReplaceableGlobalAllocationFunction() &&
9614         !NewFD->hasAttr<UsedAttr>())
9615       Diag(D.getDeclSpec().getInlineSpecLoc(),
9616            diag::ext_operator_new_delete_declared_inline)
9617         << NewFD->getDeclName();
9618 
9619     // If the declarator is a template-id, translate the parser's template
9620     // argument list into our AST format.
9621     if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
9622       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
9623       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
9624       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
9625       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
9626                                          TemplateId->NumArgs);
9627       translateTemplateArguments(TemplateArgsPtr,
9628                                  TemplateArgs);
9629 
9630       HasExplicitTemplateArgs = true;
9631 
9632       if (NewFD->isInvalidDecl()) {
9633         HasExplicitTemplateArgs = false;
9634       } else if (FunctionTemplate) {
9635         // Function template with explicit template arguments.
9636         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
9637           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
9638 
9639         HasExplicitTemplateArgs = false;
9640       } else {
9641         assert((isFunctionTemplateSpecialization ||
9642                 D.getDeclSpec().isFriendSpecified()) &&
9643                "should have a 'template<>' for this decl");
9644         // "friend void foo<>(int);" is an implicit specialization decl.
9645         isFunctionTemplateSpecialization = true;
9646       }
9647     } else if (isFriend && isFunctionTemplateSpecialization) {
9648       // This combination is only possible in a recovery case;  the user
9649       // wrote something like:
9650       //   template <> friend void foo(int);
9651       // which we're recovering from as if the user had written:
9652       //   friend void foo<>(int);
9653       // Go ahead and fake up a template id.
9654       HasExplicitTemplateArgs = true;
9655       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
9656       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
9657     }
9658 
9659     // We do not add HD attributes to specializations here because
9660     // they may have different constexpr-ness compared to their
9661     // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
9662     // may end up with different effective targets. Instead, a
9663     // specialization inherits its target attributes from its template
9664     // in the CheckFunctionTemplateSpecialization() call below.
9665     if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
9666       maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
9667 
9668     // If it's a friend (and only if it's a friend), it's possible
9669     // that either the specialized function type or the specialized
9670     // template is dependent, and therefore matching will fail.  In
9671     // this case, don't check the specialization yet.
9672     if (isFunctionTemplateSpecialization && isFriend &&
9673         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
9674          TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
9675              TemplateArgs.arguments()))) {
9676       assert(HasExplicitTemplateArgs &&
9677              "friend function specialization without template args");
9678       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
9679                                                        Previous))
9680         NewFD->setInvalidDecl();
9681     } else if (isFunctionTemplateSpecialization) {
9682       if (CurContext->isDependentContext() && CurContext->isRecord()
9683           && !isFriend) {
9684         isDependentClassScopeExplicitSpecialization = true;
9685       } else if (!NewFD->isInvalidDecl() &&
9686                  CheckFunctionTemplateSpecialization(
9687                      NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
9688                      Previous))
9689         NewFD->setInvalidDecl();
9690 
9691       // C++ [dcl.stc]p1:
9692       //   A storage-class-specifier shall not be specified in an explicit
9693       //   specialization (14.7.3)
9694       FunctionTemplateSpecializationInfo *Info =
9695           NewFD->getTemplateSpecializationInfo();
9696       if (Info && SC != SC_None) {
9697         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
9698           Diag(NewFD->getLocation(),
9699                diag::err_explicit_specialization_inconsistent_storage_class)
9700             << SC
9701             << FixItHint::CreateRemoval(
9702                                       D.getDeclSpec().getStorageClassSpecLoc());
9703 
9704         else
9705           Diag(NewFD->getLocation(),
9706                diag::ext_explicit_specialization_storage_class)
9707             << FixItHint::CreateRemoval(
9708                                       D.getDeclSpec().getStorageClassSpecLoc());
9709       }
9710     } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
9711       if (CheckMemberSpecialization(NewFD, Previous))
9712           NewFD->setInvalidDecl();
9713     }
9714 
9715     // Perform semantic checking on the function declaration.
9716     if (!isDependentClassScopeExplicitSpecialization) {
9717       if (!NewFD->isInvalidDecl() && NewFD->isMain())
9718         CheckMain(NewFD, D.getDeclSpec());
9719 
9720       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9721         CheckMSVCRTEntryPoint(NewFD);
9722 
9723       if (!NewFD->isInvalidDecl())
9724         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9725                                                     isMemberSpecialization));
9726       else if (!Previous.empty())
9727         // Recover gracefully from an invalid redeclaration.
9728         D.setRedeclaration(true);
9729     }
9730 
9731     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9732             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
9733            "previous declaration set still overloaded");
9734 
9735     NamedDecl *PrincipalDecl = (FunctionTemplate
9736                                 ? cast<NamedDecl>(FunctionTemplate)
9737                                 : NewFD);
9738 
9739     if (isFriend && NewFD->getPreviousDecl()) {
9740       AccessSpecifier Access = AS_public;
9741       if (!NewFD->isInvalidDecl())
9742         Access = NewFD->getPreviousDecl()->getAccess();
9743 
9744       NewFD->setAccess(Access);
9745       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
9746     }
9747 
9748     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
9749         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
9750       PrincipalDecl->setNonMemberOperator();
9751 
9752     // If we have a function template, check the template parameter
9753     // list. This will check and merge default template arguments.
9754     if (FunctionTemplate) {
9755       FunctionTemplateDecl *PrevTemplate =
9756                                      FunctionTemplate->getPreviousDecl();
9757       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
9758                        PrevTemplate ? PrevTemplate->getTemplateParameters()
9759                                     : nullptr,
9760                             D.getDeclSpec().isFriendSpecified()
9761                               ? (D.isFunctionDefinition()
9762                                    ? TPC_FriendFunctionTemplateDefinition
9763                                    : TPC_FriendFunctionTemplate)
9764                               : (D.getCXXScopeSpec().isSet() &&
9765                                  DC && DC->isRecord() &&
9766                                  DC->isDependentContext())
9767                                   ? TPC_ClassTemplateMember
9768                                   : TPC_FunctionTemplate);
9769     }
9770 
9771     if (NewFD->isInvalidDecl()) {
9772       // Ignore all the rest of this.
9773     } else if (!D.isRedeclaration()) {
9774       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9775                                        AddToScope };
9776       // Fake up an access specifier if it's supposed to be a class member.
9777       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9778         NewFD->setAccess(AS_public);
9779 
9780       // Qualified decls generally require a previous declaration.
9781       if (D.getCXXScopeSpec().isSet()) {
9782         // ...with the major exception of templated-scope or
9783         // dependent-scope friend declarations.
9784 
9785         // TODO: we currently also suppress this check in dependent
9786         // contexts because (1) the parameter depth will be off when
9787         // matching friend templates and (2) we might actually be
9788         // selecting a friend based on a dependent factor.  But there
9789         // are situations where these conditions don't apply and we
9790         // can actually do this check immediately.
9791         //
9792         // Unless the scope is dependent, it's always an error if qualified
9793         // redeclaration lookup found nothing at all. Diagnose that now;
9794         // nothing will diagnose that error later.
9795         if (isFriend &&
9796             (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
9797              (!Previous.empty() && CurContext->isDependentContext()))) {
9798           // ignore these
9799         } else if (NewFD->isCPUDispatchMultiVersion() ||
9800                    NewFD->isCPUSpecificMultiVersion()) {
9801           // ignore this, we allow the redeclaration behavior here to create new
9802           // versions of the function.
9803         } else {
9804           // The user tried to provide an out-of-line definition for a
9805           // function that is a member of a class or namespace, but there
9806           // was no such member function declared (C++ [class.mfct]p2,
9807           // C++ [namespace.memdef]p2). For example:
9808           //
9809           // class X {
9810           //   void f() const;
9811           // };
9812           //
9813           // void X::f() { } // ill-formed
9814           //
9815           // Complain about this problem, and attempt to suggest close
9816           // matches (e.g., those that differ only in cv-qualifiers and
9817           // whether the parameter types are references).
9818 
9819           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9820                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9821             AddToScope = ExtraArgs.AddToScope;
9822             return Result;
9823           }
9824         }
9825 
9826         // Unqualified local friend declarations are required to resolve
9827         // to something.
9828       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9829         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9830                 *this, Previous, NewFD, ExtraArgs, true, S)) {
9831           AddToScope = ExtraArgs.AddToScope;
9832           return Result;
9833         }
9834       }
9835     } else if (!D.isFunctionDefinition() &&
9836                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9837                !isFriend && !isFunctionTemplateSpecialization &&
9838                !isMemberSpecialization) {
9839       // An out-of-line member function declaration must also be a
9840       // definition (C++ [class.mfct]p2).
9841       // Note that this is not the case for explicit specializations of
9842       // function templates or member functions of class templates, per
9843       // C++ [temp.expl.spec]p2. We also allow these declarations as an
9844       // extension for compatibility with old SWIG code which likes to
9845       // generate them.
9846       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9847         << D.getCXXScopeSpec().getRange();
9848     }
9849   }
9850 
9851   // If this is the first declaration of a library builtin function, add
9852   // attributes as appropriate.
9853   if (!D.isRedeclaration() &&
9854       NewFD->getDeclContext()->getRedeclContext()->isFileContext()) {
9855     if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) {
9856       if (unsigned BuiltinID = II->getBuiltinID()) {
9857         if (NewFD->getLanguageLinkage() == CLanguageLinkage) {
9858           // Validate the type matches unless this builtin is specified as
9859           // matching regardless of its declared type.
9860           if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) {
9861             NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9862           } else {
9863             ASTContext::GetBuiltinTypeError Error;
9864             LookupNecessaryTypesForBuiltin(S, BuiltinID);
9865             QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error);
9866 
9867             if (!Error && !BuiltinType.isNull() &&
9868                 Context.hasSameFunctionTypeIgnoringExceptionSpec(
9869                     NewFD->getType(), BuiltinType))
9870               NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9871           }
9872         } else if (BuiltinID == Builtin::BI__GetExceptionInfo &&
9873                    Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9874           // FIXME: We should consider this a builtin only in the std namespace.
9875           NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9876         }
9877       }
9878     }
9879   }
9880 
9881   ProcessPragmaWeak(S, NewFD);
9882   checkAttributesAfterMerging(*this, *NewFD);
9883 
9884   AddKnownFunctionAttributes(NewFD);
9885 
9886   if (NewFD->hasAttr<OverloadableAttr>() &&
9887       !NewFD->getType()->getAs<FunctionProtoType>()) {
9888     Diag(NewFD->getLocation(),
9889          diag::err_attribute_overloadable_no_prototype)
9890       << NewFD;
9891 
9892     // Turn this into a variadic function with no parameters.
9893     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9894     FunctionProtoType::ExtProtoInfo EPI(
9895         Context.getDefaultCallingConvention(true, false));
9896     EPI.Variadic = true;
9897     EPI.ExtInfo = FT->getExtInfo();
9898 
9899     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9900     NewFD->setType(R);
9901   }
9902 
9903   // If there's a #pragma GCC visibility in scope, and this isn't a class
9904   // member, set the visibility of this function.
9905   if (!DC->isRecord() && NewFD->isExternallyVisible())
9906     AddPushedVisibilityAttribute(NewFD);
9907 
9908   // If there's a #pragma clang arc_cf_code_audited in scope, consider
9909   // marking the function.
9910   AddCFAuditedAttribute(NewFD);
9911 
9912   // If this is a function definition, check if we have to apply optnone due to
9913   // a pragma.
9914   if(D.isFunctionDefinition())
9915     AddRangeBasedOptnone(NewFD);
9916 
9917   // If this is the first declaration of an extern C variable, update
9918   // the map of such variables.
9919   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9920       isIncompleteDeclExternC(*this, NewFD))
9921     RegisterLocallyScopedExternCDecl(NewFD, S);
9922 
9923   // Set this FunctionDecl's range up to the right paren.
9924   NewFD->setRangeEnd(D.getSourceRange().getEnd());
9925 
9926   if (D.isRedeclaration() && !Previous.empty()) {
9927     NamedDecl *Prev = Previous.getRepresentativeDecl();
9928     checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9929                                    isMemberSpecialization ||
9930                                        isFunctionTemplateSpecialization,
9931                                    D.isFunctionDefinition());
9932   }
9933 
9934   if (getLangOpts().CUDA) {
9935     IdentifierInfo *II = NewFD->getIdentifier();
9936     if (II && II->isStr(getCudaConfigureFuncName()) &&
9937         !NewFD->isInvalidDecl() &&
9938         NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9939       if (!R->castAs<FunctionType>()->getReturnType()->isScalarType())
9940         Diag(NewFD->getLocation(), diag::err_config_scalar_return)
9941             << getCudaConfigureFuncName();
9942       Context.setcudaConfigureCallDecl(NewFD);
9943     }
9944 
9945     // Variadic functions, other than a *declaration* of printf, are not allowed
9946     // in device-side CUDA code, unless someone passed
9947     // -fcuda-allow-variadic-functions.
9948     if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9949         (NewFD->hasAttr<CUDADeviceAttr>() ||
9950          NewFD->hasAttr<CUDAGlobalAttr>()) &&
9951         !(II && II->isStr("printf") && NewFD->isExternC() &&
9952           !D.isFunctionDefinition())) {
9953       Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9954     }
9955   }
9956 
9957   MarkUnusedFileScopedDecl(NewFD);
9958 
9959 
9960 
9961   if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
9962     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9963     if ((getLangOpts().OpenCLVersion >= 120)
9964         && (SC == SC_Static)) {
9965       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9966       D.setInvalidType();
9967     }
9968 
9969     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9970     if (!NewFD->getReturnType()->isVoidType()) {
9971       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9972       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9973           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9974                                 : FixItHint());
9975       D.setInvalidType();
9976     }
9977 
9978     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9979     for (auto Param : NewFD->parameters())
9980       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9981 
9982     if (getLangOpts().OpenCLCPlusPlus) {
9983       if (DC->isRecord()) {
9984         Diag(D.getIdentifierLoc(), diag::err_method_kernel);
9985         D.setInvalidType();
9986       }
9987       if (FunctionTemplate) {
9988         Diag(D.getIdentifierLoc(), diag::err_template_kernel);
9989         D.setInvalidType();
9990       }
9991     }
9992   }
9993 
9994   if (getLangOpts().CPlusPlus) {
9995     if (FunctionTemplate) {
9996       if (NewFD->isInvalidDecl())
9997         FunctionTemplate->setInvalidDecl();
9998       return FunctionTemplate;
9999     }
10000 
10001     if (isMemberSpecialization && !NewFD->isInvalidDecl())
10002       CompleteMemberSpecialization(NewFD, Previous);
10003   }
10004 
10005   for (const ParmVarDecl *Param : NewFD->parameters()) {
10006     QualType PT = Param->getType();
10007 
10008     // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
10009     // types.
10010     if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
10011       if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
10012         QualType ElemTy = PipeTy->getElementType();
10013           if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
10014             Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
10015             D.setInvalidType();
10016           }
10017       }
10018     }
10019   }
10020 
10021   // Here we have an function template explicit specialization at class scope.
10022   // The actual specialization will be postponed to template instatiation
10023   // time via the ClassScopeFunctionSpecializationDecl node.
10024   if (isDependentClassScopeExplicitSpecialization) {
10025     ClassScopeFunctionSpecializationDecl *NewSpec =
10026                          ClassScopeFunctionSpecializationDecl::Create(
10027                                 Context, CurContext, NewFD->getLocation(),
10028                                 cast<CXXMethodDecl>(NewFD),
10029                                 HasExplicitTemplateArgs, TemplateArgs);
10030     CurContext->addDecl(NewSpec);
10031     AddToScope = false;
10032   }
10033 
10034   // Diagnose availability attributes. Availability cannot be used on functions
10035   // that are run during load/unload.
10036   if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
10037     if (NewFD->hasAttr<ConstructorAttr>()) {
10038       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10039           << 1;
10040       NewFD->dropAttr<AvailabilityAttr>();
10041     }
10042     if (NewFD->hasAttr<DestructorAttr>()) {
10043       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10044           << 2;
10045       NewFD->dropAttr<AvailabilityAttr>();
10046     }
10047   }
10048 
10049   // Diagnose no_builtin attribute on function declaration that are not a
10050   // definition.
10051   // FIXME: We should really be doing this in
10052   // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
10053   // the FunctionDecl and at this point of the code
10054   // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
10055   // because Sema::ActOnStartOfFunctionDef has not been called yet.
10056   if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
10057     switch (D.getFunctionDefinitionKind()) {
10058     case FunctionDefinitionKind::Defaulted:
10059     case FunctionDefinitionKind::Deleted:
10060       Diag(NBA->getLocation(),
10061            diag::err_attribute_no_builtin_on_defaulted_deleted_function)
10062           << NBA->getSpelling();
10063       break;
10064     case FunctionDefinitionKind::Declaration:
10065       Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
10066           << NBA->getSpelling();
10067       break;
10068     case FunctionDefinitionKind::Definition:
10069       break;
10070     }
10071 
10072   return NewFD;
10073 }
10074 
10075 /// Return a CodeSegAttr from a containing class.  The Microsoft docs say
10076 /// when __declspec(code_seg) "is applied to a class, all member functions of
10077 /// the class and nested classes -- this includes compiler-generated special
10078 /// member functions -- are put in the specified segment."
10079 /// The actual behavior is a little more complicated. The Microsoft compiler
10080 /// won't check outer classes if there is an active value from #pragma code_seg.
10081 /// The CodeSeg is always applied from the direct parent but only from outer
10082 /// classes when the #pragma code_seg stack is empty. See:
10083 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
10084 /// available since MS has removed the page.
10085 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
10086   const auto *Method = dyn_cast<CXXMethodDecl>(FD);
10087   if (!Method)
10088     return nullptr;
10089   const CXXRecordDecl *Parent = Method->getParent();
10090   if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10091     Attr *NewAttr = SAttr->clone(S.getASTContext());
10092     NewAttr->setImplicit(true);
10093     return NewAttr;
10094   }
10095 
10096   // The Microsoft compiler won't check outer classes for the CodeSeg
10097   // when the #pragma code_seg stack is active.
10098   if (S.CodeSegStack.CurrentValue)
10099    return nullptr;
10100 
10101   while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
10102     if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10103       Attr *NewAttr = SAttr->clone(S.getASTContext());
10104       NewAttr->setImplicit(true);
10105       return NewAttr;
10106     }
10107   }
10108   return nullptr;
10109 }
10110 
10111 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
10112 /// containing class. Otherwise it will return implicit SectionAttr if the
10113 /// function is a definition and there is an active value on CodeSegStack
10114 /// (from the current #pragma code-seg value).
10115 ///
10116 /// \param FD Function being declared.
10117 /// \param IsDefinition Whether it is a definition or just a declarartion.
10118 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
10119 ///          nullptr if no attribute should be added.
10120 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
10121                                                        bool IsDefinition) {
10122   if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
10123     return A;
10124   if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
10125       CodeSegStack.CurrentValue)
10126     return SectionAttr::CreateImplicit(
10127         getASTContext(), CodeSegStack.CurrentValue->getString(),
10128         CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
10129         SectionAttr::Declspec_allocate);
10130   return nullptr;
10131 }
10132 
10133 /// Determines if we can perform a correct type check for \p D as a
10134 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
10135 /// best-effort check.
10136 ///
10137 /// \param NewD The new declaration.
10138 /// \param OldD The old declaration.
10139 /// \param NewT The portion of the type of the new declaration to check.
10140 /// \param OldT The portion of the type of the old declaration to check.
10141 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
10142                                           QualType NewT, QualType OldT) {
10143   if (!NewD->getLexicalDeclContext()->isDependentContext())
10144     return true;
10145 
10146   // For dependently-typed local extern declarations and friends, we can't
10147   // perform a correct type check in general until instantiation:
10148   //
10149   //   int f();
10150   //   template<typename T> void g() { T f(); }
10151   //
10152   // (valid if g() is only instantiated with T = int).
10153   if (NewT->isDependentType() &&
10154       (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
10155     return false;
10156 
10157   // Similarly, if the previous declaration was a dependent local extern
10158   // declaration, we don't really know its type yet.
10159   if (OldT->isDependentType() && OldD->isLocalExternDecl())
10160     return false;
10161 
10162   return true;
10163 }
10164 
10165 /// Checks if the new declaration declared in dependent context must be
10166 /// put in the same redeclaration chain as the specified declaration.
10167 ///
10168 /// \param D Declaration that is checked.
10169 /// \param PrevDecl Previous declaration found with proper lookup method for the
10170 ///                 same declaration name.
10171 /// \returns True if D must be added to the redeclaration chain which PrevDecl
10172 ///          belongs to.
10173 ///
10174 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
10175   if (!D->getLexicalDeclContext()->isDependentContext())
10176     return true;
10177 
10178   // Don't chain dependent friend function definitions until instantiation, to
10179   // permit cases like
10180   //
10181   //   void func();
10182   //   template<typename T> class C1 { friend void func() {} };
10183   //   template<typename T> class C2 { friend void func() {} };
10184   //
10185   // ... which is valid if only one of C1 and C2 is ever instantiated.
10186   //
10187   // FIXME: This need only apply to function definitions. For now, we proxy
10188   // this by checking for a file-scope function. We do not want this to apply
10189   // to friend declarations nominating member functions, because that gets in
10190   // the way of access checks.
10191   if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
10192     return false;
10193 
10194   auto *VD = dyn_cast<ValueDecl>(D);
10195   auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
10196   return !VD || !PrevVD ||
10197          canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
10198                                         PrevVD->getType());
10199 }
10200 
10201 /// Check the target attribute of the function for MultiVersion
10202 /// validity.
10203 ///
10204 /// Returns true if there was an error, false otherwise.
10205 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
10206   const auto *TA = FD->getAttr<TargetAttr>();
10207   assert(TA && "MultiVersion Candidate requires a target attribute");
10208   ParsedTargetAttr ParseInfo = TA->parse();
10209   const TargetInfo &TargetInfo = S.Context.getTargetInfo();
10210   enum ErrType { Feature = 0, Architecture = 1 };
10211 
10212   if (!ParseInfo.Architecture.empty() &&
10213       !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
10214     S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10215         << Architecture << ParseInfo.Architecture;
10216     return true;
10217   }
10218 
10219   for (const auto &Feat : ParseInfo.Features) {
10220     auto BareFeat = StringRef{Feat}.substr(1);
10221     if (Feat[0] == '-') {
10222       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10223           << Feature << ("no-" + BareFeat).str();
10224       return true;
10225     }
10226 
10227     if (!TargetInfo.validateCpuSupports(BareFeat) ||
10228         !TargetInfo.isValidFeatureName(BareFeat)) {
10229       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10230           << Feature << BareFeat;
10231       return true;
10232     }
10233   }
10234   return false;
10235 }
10236 
10237 // Provide a white-list of attributes that are allowed to be combined with
10238 // multiversion functions.
10239 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind,
10240                                            MultiVersionKind MVType) {
10241   // Note: this list/diagnosis must match the list in
10242   // checkMultiversionAttributesAllSame.
10243   switch (Kind) {
10244   default:
10245     return false;
10246   case attr::Used:
10247     return MVType == MultiVersionKind::Target;
10248   case attr::NonNull:
10249   case attr::NoThrow:
10250     return true;
10251   }
10252 }
10253 
10254 static bool checkNonMultiVersionCompatAttributes(Sema &S,
10255                                                  const FunctionDecl *FD,
10256                                                  const FunctionDecl *CausedFD,
10257                                                  MultiVersionKind MVType) {
10258   bool IsCPUSpecificCPUDispatchMVType =
10259       MVType == MultiVersionKind::CPUDispatch ||
10260       MVType == MultiVersionKind::CPUSpecific;
10261   const auto Diagnose = [FD, CausedFD, IsCPUSpecificCPUDispatchMVType](
10262                             Sema &S, const Attr *A) {
10263     S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr)
10264         << IsCPUSpecificCPUDispatchMVType << A;
10265     if (CausedFD)
10266       S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here);
10267     return true;
10268   };
10269 
10270   for (const Attr *A : FD->attrs()) {
10271     switch (A->getKind()) {
10272     case attr::CPUDispatch:
10273     case attr::CPUSpecific:
10274       if (MVType != MultiVersionKind::CPUDispatch &&
10275           MVType != MultiVersionKind::CPUSpecific)
10276         return Diagnose(S, A);
10277       break;
10278     case attr::Target:
10279       if (MVType != MultiVersionKind::Target)
10280         return Diagnose(S, A);
10281       break;
10282     default:
10283       if (!AttrCompatibleWithMultiVersion(A->getKind(), MVType))
10284         return Diagnose(S, A);
10285       break;
10286     }
10287   }
10288   return false;
10289 }
10290 
10291 bool Sema::areMultiversionVariantFunctionsCompatible(
10292     const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10293     const PartialDiagnostic &NoProtoDiagID,
10294     const PartialDiagnosticAt &NoteCausedDiagIDAt,
10295     const PartialDiagnosticAt &NoSupportDiagIDAt,
10296     const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10297     bool ConstexprSupported, bool CLinkageMayDiffer) {
10298   enum DoesntSupport {
10299     FuncTemplates = 0,
10300     VirtFuncs = 1,
10301     DeducedReturn = 2,
10302     Constructors = 3,
10303     Destructors = 4,
10304     DeletedFuncs = 5,
10305     DefaultedFuncs = 6,
10306     ConstexprFuncs = 7,
10307     ConstevalFuncs = 8,
10308   };
10309   enum Different {
10310     CallingConv = 0,
10311     ReturnType = 1,
10312     ConstexprSpec = 2,
10313     InlineSpec = 3,
10314     StorageClass = 4,
10315     Linkage = 5,
10316   };
10317 
10318   if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
10319       !OldFD->getType()->getAs<FunctionProtoType>()) {
10320     Diag(OldFD->getLocation(), NoProtoDiagID);
10321     Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
10322     return true;
10323   }
10324 
10325   if (NoProtoDiagID.getDiagID() != 0 &&
10326       !NewFD->getType()->getAs<FunctionProtoType>())
10327     return Diag(NewFD->getLocation(), NoProtoDiagID);
10328 
10329   if (!TemplatesSupported &&
10330       NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10331     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10332            << FuncTemplates;
10333 
10334   if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
10335     if (NewCXXFD->isVirtual())
10336       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10337              << VirtFuncs;
10338 
10339     if (isa<CXXConstructorDecl>(NewCXXFD))
10340       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10341              << Constructors;
10342 
10343     if (isa<CXXDestructorDecl>(NewCXXFD))
10344       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10345              << Destructors;
10346   }
10347 
10348   if (NewFD->isDeleted())
10349     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10350            << DeletedFuncs;
10351 
10352   if (NewFD->isDefaulted())
10353     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10354            << DefaultedFuncs;
10355 
10356   if (!ConstexprSupported && NewFD->isConstexpr())
10357     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10358            << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
10359 
10360   QualType NewQType = Context.getCanonicalType(NewFD->getType());
10361   const auto *NewType = cast<FunctionType>(NewQType);
10362   QualType NewReturnType = NewType->getReturnType();
10363 
10364   if (NewReturnType->isUndeducedType())
10365     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10366            << DeducedReturn;
10367 
10368   // Ensure the return type is identical.
10369   if (OldFD) {
10370     QualType OldQType = Context.getCanonicalType(OldFD->getType());
10371     const auto *OldType = cast<FunctionType>(OldQType);
10372     FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
10373     FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
10374 
10375     if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
10376       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
10377 
10378     QualType OldReturnType = OldType->getReturnType();
10379 
10380     if (OldReturnType != NewReturnType)
10381       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
10382 
10383     if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
10384       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
10385 
10386     if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
10387       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
10388 
10389     if (OldFD->getStorageClass() != NewFD->getStorageClass())
10390       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << StorageClass;
10391 
10392     if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
10393       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
10394 
10395     if (CheckEquivalentExceptionSpec(
10396             OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
10397             NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
10398       return true;
10399   }
10400   return false;
10401 }
10402 
10403 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
10404                                              const FunctionDecl *NewFD,
10405                                              bool CausesMV,
10406                                              MultiVersionKind MVType) {
10407   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10408     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10409     if (OldFD)
10410       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10411     return true;
10412   }
10413 
10414   bool IsCPUSpecificCPUDispatchMVType =
10415       MVType == MultiVersionKind::CPUDispatch ||
10416       MVType == MultiVersionKind::CPUSpecific;
10417 
10418   if (CausesMV && OldFD &&
10419       checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVType))
10420     return true;
10421 
10422   if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVType))
10423     return true;
10424 
10425   // Only allow transition to MultiVersion if it hasn't been used.
10426   if (OldFD && CausesMV && OldFD->isUsed(false))
10427     return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
10428 
10429   return S.areMultiversionVariantFunctionsCompatible(
10430       OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
10431       PartialDiagnosticAt(NewFD->getLocation(),
10432                           S.PDiag(diag::note_multiversioning_caused_here)),
10433       PartialDiagnosticAt(NewFD->getLocation(),
10434                           S.PDiag(diag::err_multiversion_doesnt_support)
10435                               << IsCPUSpecificCPUDispatchMVType),
10436       PartialDiagnosticAt(NewFD->getLocation(),
10437                           S.PDiag(diag::err_multiversion_diff)),
10438       /*TemplatesSupported=*/false,
10439       /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVType,
10440       /*CLinkageMayDiffer=*/false);
10441 }
10442 
10443 /// Check the validity of a multiversion function declaration that is the
10444 /// first of its kind. Also sets the multiversion'ness' of the function itself.
10445 ///
10446 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10447 ///
10448 /// Returns true if there was an error, false otherwise.
10449 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
10450                                            MultiVersionKind MVType,
10451                                            const TargetAttr *TA) {
10452   assert(MVType != MultiVersionKind::None &&
10453          "Function lacks multiversion attribute");
10454 
10455   // Target only causes MV if it is default, otherwise this is a normal
10456   // function.
10457   if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
10458     return false;
10459 
10460   if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
10461     FD->setInvalidDecl();
10462     return true;
10463   }
10464 
10465   if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
10466     FD->setInvalidDecl();
10467     return true;
10468   }
10469 
10470   FD->setIsMultiVersion();
10471   return false;
10472 }
10473 
10474 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
10475   for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
10476     if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
10477       return true;
10478   }
10479 
10480   return false;
10481 }
10482 
10483 static bool CheckTargetCausesMultiVersioning(
10484     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
10485     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10486     LookupResult &Previous) {
10487   const auto *OldTA = OldFD->getAttr<TargetAttr>();
10488   ParsedTargetAttr NewParsed = NewTA->parse();
10489   // Sort order doesn't matter, it just needs to be consistent.
10490   llvm::sort(NewParsed.Features);
10491 
10492   // If the old decl is NOT MultiVersioned yet, and we don't cause that
10493   // to change, this is a simple redeclaration.
10494   if (!NewTA->isDefaultVersion() &&
10495       (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
10496     return false;
10497 
10498   // Otherwise, this decl causes MultiVersioning.
10499   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10500     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10501     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10502     NewFD->setInvalidDecl();
10503     return true;
10504   }
10505 
10506   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
10507                                        MultiVersionKind::Target)) {
10508     NewFD->setInvalidDecl();
10509     return true;
10510   }
10511 
10512   if (CheckMultiVersionValue(S, NewFD)) {
10513     NewFD->setInvalidDecl();
10514     return true;
10515   }
10516 
10517   // If this is 'default', permit the forward declaration.
10518   if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
10519     Redeclaration = true;
10520     OldDecl = OldFD;
10521     OldFD->setIsMultiVersion();
10522     NewFD->setIsMultiVersion();
10523     return false;
10524   }
10525 
10526   if (CheckMultiVersionValue(S, OldFD)) {
10527     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10528     NewFD->setInvalidDecl();
10529     return true;
10530   }
10531 
10532   ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>());
10533 
10534   if (OldParsed == NewParsed) {
10535     S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10536     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10537     NewFD->setInvalidDecl();
10538     return true;
10539   }
10540 
10541   for (const auto *FD : OldFD->redecls()) {
10542     const auto *CurTA = FD->getAttr<TargetAttr>();
10543     // We allow forward declarations before ANY multiversioning attributes, but
10544     // nothing after the fact.
10545     if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
10546         (!CurTA || CurTA->isInherited())) {
10547       S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
10548           << 0;
10549       S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10550       NewFD->setInvalidDecl();
10551       return true;
10552     }
10553   }
10554 
10555   OldFD->setIsMultiVersion();
10556   NewFD->setIsMultiVersion();
10557   Redeclaration = false;
10558   MergeTypeWithPrevious = false;
10559   OldDecl = nullptr;
10560   Previous.clear();
10561   return false;
10562 }
10563 
10564 /// Check the validity of a new function declaration being added to an existing
10565 /// multiversioned declaration collection.
10566 static bool CheckMultiVersionAdditionalDecl(
10567     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
10568     MultiVersionKind NewMVType, const TargetAttr *NewTA,
10569     const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
10570     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10571     LookupResult &Previous) {
10572 
10573   MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
10574   // Disallow mixing of multiversioning types.
10575   if ((OldMVType == MultiVersionKind::Target &&
10576        NewMVType != MultiVersionKind::Target) ||
10577       (NewMVType == MultiVersionKind::Target &&
10578        OldMVType != MultiVersionKind::Target)) {
10579     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10580     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10581     NewFD->setInvalidDecl();
10582     return true;
10583   }
10584 
10585   ParsedTargetAttr NewParsed;
10586   if (NewTA) {
10587     NewParsed = NewTA->parse();
10588     llvm::sort(NewParsed.Features);
10589   }
10590 
10591   bool UseMemberUsingDeclRules =
10592       S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
10593 
10594   // Next, check ALL non-overloads to see if this is a redeclaration of a
10595   // previous member of the MultiVersion set.
10596   for (NamedDecl *ND : Previous) {
10597     FunctionDecl *CurFD = ND->getAsFunction();
10598     if (!CurFD)
10599       continue;
10600     if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
10601       continue;
10602 
10603     if (NewMVType == MultiVersionKind::Target) {
10604       const auto *CurTA = CurFD->getAttr<TargetAttr>();
10605       if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
10606         NewFD->setIsMultiVersion();
10607         Redeclaration = true;
10608         OldDecl = ND;
10609         return false;
10610       }
10611 
10612       ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>());
10613       if (CurParsed == NewParsed) {
10614         S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10615         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10616         NewFD->setInvalidDecl();
10617         return true;
10618       }
10619     } else {
10620       const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
10621       const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
10622       // Handle CPUDispatch/CPUSpecific versions.
10623       // Only 1 CPUDispatch function is allowed, this will make it go through
10624       // the redeclaration errors.
10625       if (NewMVType == MultiVersionKind::CPUDispatch &&
10626           CurFD->hasAttr<CPUDispatchAttr>()) {
10627         if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
10628             std::equal(
10629                 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
10630                 NewCPUDisp->cpus_begin(),
10631                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10632                   return Cur->getName() == New->getName();
10633                 })) {
10634           NewFD->setIsMultiVersion();
10635           Redeclaration = true;
10636           OldDecl = ND;
10637           return false;
10638         }
10639 
10640         // If the declarations don't match, this is an error condition.
10641         S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
10642         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10643         NewFD->setInvalidDecl();
10644         return true;
10645       }
10646       if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
10647 
10648         if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
10649             std::equal(
10650                 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
10651                 NewCPUSpec->cpus_begin(),
10652                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10653                   return Cur->getName() == New->getName();
10654                 })) {
10655           NewFD->setIsMultiVersion();
10656           Redeclaration = true;
10657           OldDecl = ND;
10658           return false;
10659         }
10660 
10661         // Only 1 version of CPUSpecific is allowed for each CPU.
10662         for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
10663           for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
10664             if (CurII == NewII) {
10665               S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
10666                   << NewII;
10667               S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10668               NewFD->setInvalidDecl();
10669               return true;
10670             }
10671           }
10672         }
10673       }
10674       // If the two decls aren't the same MVType, there is no possible error
10675       // condition.
10676     }
10677   }
10678 
10679   // Else, this is simply a non-redecl case.  Checking the 'value' is only
10680   // necessary in the Target case, since The CPUSpecific/Dispatch cases are
10681   // handled in the attribute adding step.
10682   if (NewMVType == MultiVersionKind::Target &&
10683       CheckMultiVersionValue(S, NewFD)) {
10684     NewFD->setInvalidDecl();
10685     return true;
10686   }
10687 
10688   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
10689                                        !OldFD->isMultiVersion(), NewMVType)) {
10690     NewFD->setInvalidDecl();
10691     return true;
10692   }
10693 
10694   // Permit forward declarations in the case where these two are compatible.
10695   if (!OldFD->isMultiVersion()) {
10696     OldFD->setIsMultiVersion();
10697     NewFD->setIsMultiVersion();
10698     Redeclaration = true;
10699     OldDecl = OldFD;
10700     return false;
10701   }
10702 
10703   NewFD->setIsMultiVersion();
10704   Redeclaration = false;
10705   MergeTypeWithPrevious = false;
10706   OldDecl = nullptr;
10707   Previous.clear();
10708   return false;
10709 }
10710 
10711 
10712 /// Check the validity of a mulitversion function declaration.
10713 /// Also sets the multiversion'ness' of the function itself.
10714 ///
10715 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10716 ///
10717 /// Returns true if there was an error, false otherwise.
10718 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
10719                                       bool &Redeclaration, NamedDecl *&OldDecl,
10720                                       bool &MergeTypeWithPrevious,
10721                                       LookupResult &Previous) {
10722   const auto *NewTA = NewFD->getAttr<TargetAttr>();
10723   const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
10724   const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
10725 
10726   // Mixing Multiversioning types is prohibited.
10727   if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
10728       (NewCPUDisp && NewCPUSpec)) {
10729     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10730     NewFD->setInvalidDecl();
10731     return true;
10732   }
10733 
10734   MultiVersionKind  MVType = NewFD->getMultiVersionKind();
10735 
10736   // Main isn't allowed to become a multiversion function, however it IS
10737   // permitted to have 'main' be marked with the 'target' optimization hint.
10738   if (NewFD->isMain()) {
10739     if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
10740         MVType == MultiVersionKind::CPUDispatch ||
10741         MVType == MultiVersionKind::CPUSpecific) {
10742       S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
10743       NewFD->setInvalidDecl();
10744       return true;
10745     }
10746     return false;
10747   }
10748 
10749   if (!OldDecl || !OldDecl->getAsFunction() ||
10750       OldDecl->getDeclContext()->getRedeclContext() !=
10751           NewFD->getDeclContext()->getRedeclContext()) {
10752     // If there's no previous declaration, AND this isn't attempting to cause
10753     // multiversioning, this isn't an error condition.
10754     if (MVType == MultiVersionKind::None)
10755       return false;
10756     return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA);
10757   }
10758 
10759   FunctionDecl *OldFD = OldDecl->getAsFunction();
10760 
10761   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
10762     return false;
10763 
10764   if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
10765     S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
10766         << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
10767     NewFD->setInvalidDecl();
10768     return true;
10769   }
10770 
10771   // Handle the target potentially causes multiversioning case.
10772   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
10773     return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
10774                                             Redeclaration, OldDecl,
10775                                             MergeTypeWithPrevious, Previous);
10776 
10777   // At this point, we have a multiversion function decl (in OldFD) AND an
10778   // appropriate attribute in the current function decl.  Resolve that these are
10779   // still compatible with previous declarations.
10780   return CheckMultiVersionAdditionalDecl(
10781       S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
10782       OldDecl, MergeTypeWithPrevious, Previous);
10783 }
10784 
10785 /// Perform semantic checking of a new function declaration.
10786 ///
10787 /// Performs semantic analysis of the new function declaration
10788 /// NewFD. This routine performs all semantic checking that does not
10789 /// require the actual declarator involved in the declaration, and is
10790 /// used both for the declaration of functions as they are parsed
10791 /// (called via ActOnDeclarator) and for the declaration of functions
10792 /// that have been instantiated via C++ template instantiation (called
10793 /// via InstantiateDecl).
10794 ///
10795 /// \param IsMemberSpecialization whether this new function declaration is
10796 /// a member specialization (that replaces any definition provided by the
10797 /// previous declaration).
10798 ///
10799 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10800 ///
10801 /// \returns true if the function declaration is a redeclaration.
10802 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
10803                                     LookupResult &Previous,
10804                                     bool IsMemberSpecialization) {
10805   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
10806          "Variably modified return types are not handled here");
10807 
10808   // Determine whether the type of this function should be merged with
10809   // a previous visible declaration. This never happens for functions in C++,
10810   // and always happens in C if the previous declaration was visible.
10811   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
10812                                !Previous.isShadowed();
10813 
10814   bool Redeclaration = false;
10815   NamedDecl *OldDecl = nullptr;
10816   bool MayNeedOverloadableChecks = false;
10817 
10818   // Merge or overload the declaration with an existing declaration of
10819   // the same name, if appropriate.
10820   if (!Previous.empty()) {
10821     // Determine whether NewFD is an overload of PrevDecl or
10822     // a declaration that requires merging. If it's an overload,
10823     // there's no more work to do here; we'll just add the new
10824     // function to the scope.
10825     if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
10826       NamedDecl *Candidate = Previous.getRepresentativeDecl();
10827       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
10828         Redeclaration = true;
10829         OldDecl = Candidate;
10830       }
10831     } else {
10832       MayNeedOverloadableChecks = true;
10833       switch (CheckOverload(S, NewFD, Previous, OldDecl,
10834                             /*NewIsUsingDecl*/ false)) {
10835       case Ovl_Match:
10836         Redeclaration = true;
10837         break;
10838 
10839       case Ovl_NonFunction:
10840         Redeclaration = true;
10841         break;
10842 
10843       case Ovl_Overload:
10844         Redeclaration = false;
10845         break;
10846       }
10847     }
10848   }
10849 
10850   // Check for a previous extern "C" declaration with this name.
10851   if (!Redeclaration &&
10852       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
10853     if (!Previous.empty()) {
10854       // This is an extern "C" declaration with the same name as a previous
10855       // declaration, and thus redeclares that entity...
10856       Redeclaration = true;
10857       OldDecl = Previous.getFoundDecl();
10858       MergeTypeWithPrevious = false;
10859 
10860       // ... except in the presence of __attribute__((overloadable)).
10861       if (OldDecl->hasAttr<OverloadableAttr>() ||
10862           NewFD->hasAttr<OverloadableAttr>()) {
10863         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
10864           MayNeedOverloadableChecks = true;
10865           Redeclaration = false;
10866           OldDecl = nullptr;
10867         }
10868       }
10869     }
10870   }
10871 
10872   if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10873                                 MergeTypeWithPrevious, Previous))
10874     return Redeclaration;
10875 
10876   // PPC MMA non-pointer types are not allowed as function return types.
10877   if (Context.getTargetInfo().getTriple().isPPC64() &&
10878       CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) {
10879     NewFD->setInvalidDecl();
10880   }
10881 
10882   // C++11 [dcl.constexpr]p8:
10883   //   A constexpr specifier for a non-static member function that is not
10884   //   a constructor declares that member function to be const.
10885   //
10886   // This needs to be delayed until we know whether this is an out-of-line
10887   // definition of a static member function.
10888   //
10889   // This rule is not present in C++1y, so we produce a backwards
10890   // compatibility warning whenever it happens in C++11.
10891   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10892   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10893       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10894       !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
10895     CXXMethodDecl *OldMD = nullptr;
10896     if (OldDecl)
10897       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10898     if (!OldMD || !OldMD->isStatic()) {
10899       const FunctionProtoType *FPT =
10900         MD->getType()->castAs<FunctionProtoType>();
10901       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10902       EPI.TypeQuals.addConst();
10903       MD->setType(Context.getFunctionType(FPT->getReturnType(),
10904                                           FPT->getParamTypes(), EPI));
10905 
10906       // Warn that we did this, if we're not performing template instantiation.
10907       // In that case, we'll have warned already when the template was defined.
10908       if (!inTemplateInstantiation()) {
10909         SourceLocation AddConstLoc;
10910         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10911                 .IgnoreParens().getAs<FunctionTypeLoc>())
10912           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10913 
10914         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10915           << FixItHint::CreateInsertion(AddConstLoc, " const");
10916       }
10917     }
10918   }
10919 
10920   if (Redeclaration) {
10921     // NewFD and OldDecl represent declarations that need to be
10922     // merged.
10923     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10924       NewFD->setInvalidDecl();
10925       return Redeclaration;
10926     }
10927 
10928     Previous.clear();
10929     Previous.addDecl(OldDecl);
10930 
10931     if (FunctionTemplateDecl *OldTemplateDecl =
10932             dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10933       auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10934       FunctionTemplateDecl *NewTemplateDecl
10935         = NewFD->getDescribedFunctionTemplate();
10936       assert(NewTemplateDecl && "Template/non-template mismatch");
10937 
10938       // The call to MergeFunctionDecl above may have created some state in
10939       // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10940       // can add it as a redeclaration.
10941       NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10942 
10943       NewFD->setPreviousDeclaration(OldFD);
10944       if (NewFD->isCXXClassMember()) {
10945         NewFD->setAccess(OldTemplateDecl->getAccess());
10946         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10947       }
10948 
10949       // If this is an explicit specialization of a member that is a function
10950       // template, mark it as a member specialization.
10951       if (IsMemberSpecialization &&
10952           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10953         NewTemplateDecl->setMemberSpecialization();
10954         assert(OldTemplateDecl->isMemberSpecialization());
10955         // Explicit specializations of a member template do not inherit deleted
10956         // status from the parent member template that they are specializing.
10957         if (OldFD->isDeleted()) {
10958           // FIXME: This assert will not hold in the presence of modules.
10959           assert(OldFD->getCanonicalDecl() == OldFD);
10960           // FIXME: We need an update record for this AST mutation.
10961           OldFD->setDeletedAsWritten(false);
10962         }
10963       }
10964 
10965     } else {
10966       if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10967         auto *OldFD = cast<FunctionDecl>(OldDecl);
10968         // This needs to happen first so that 'inline' propagates.
10969         NewFD->setPreviousDeclaration(OldFD);
10970         if (NewFD->isCXXClassMember())
10971           NewFD->setAccess(OldFD->getAccess());
10972       }
10973     }
10974   } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10975              !NewFD->getAttr<OverloadableAttr>()) {
10976     assert((Previous.empty() ||
10977             llvm::any_of(Previous,
10978                          [](const NamedDecl *ND) {
10979                            return ND->hasAttr<OverloadableAttr>();
10980                          })) &&
10981            "Non-redecls shouldn't happen without overloadable present");
10982 
10983     auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10984       const auto *FD = dyn_cast<FunctionDecl>(ND);
10985       return FD && !FD->hasAttr<OverloadableAttr>();
10986     });
10987 
10988     if (OtherUnmarkedIter != Previous.end()) {
10989       Diag(NewFD->getLocation(),
10990            diag::err_attribute_overloadable_multiple_unmarked_overloads);
10991       Diag((*OtherUnmarkedIter)->getLocation(),
10992            diag::note_attribute_overloadable_prev_overload)
10993           << false;
10994 
10995       NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
10996     }
10997   }
10998 
10999   if (LangOpts.OpenMP)
11000     ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD);
11001 
11002   // Semantic checking for this function declaration (in isolation).
11003 
11004   if (getLangOpts().CPlusPlus) {
11005     // C++-specific checks.
11006     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
11007       CheckConstructor(Constructor);
11008     } else if (CXXDestructorDecl *Destructor =
11009                 dyn_cast<CXXDestructorDecl>(NewFD)) {
11010       CXXRecordDecl *Record = Destructor->getParent();
11011       QualType ClassType = Context.getTypeDeclType(Record);
11012 
11013       // FIXME: Shouldn't we be able to perform this check even when the class
11014       // type is dependent? Both gcc and edg can handle that.
11015       if (!ClassType->isDependentType()) {
11016         DeclarationName Name
11017           = Context.DeclarationNames.getCXXDestructorName(
11018                                         Context.getCanonicalType(ClassType));
11019         if (NewFD->getDeclName() != Name) {
11020           Diag(NewFD->getLocation(), diag::err_destructor_name);
11021           NewFD->setInvalidDecl();
11022           return Redeclaration;
11023         }
11024       }
11025     } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
11026       if (auto *TD = Guide->getDescribedFunctionTemplate())
11027         CheckDeductionGuideTemplate(TD);
11028 
11029       // A deduction guide is not on the list of entities that can be
11030       // explicitly specialized.
11031       if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
11032         Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
11033             << /*explicit specialization*/ 1;
11034     }
11035 
11036     // Find any virtual functions that this function overrides.
11037     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
11038       if (!Method->isFunctionTemplateSpecialization() &&
11039           !Method->getDescribedFunctionTemplate() &&
11040           Method->isCanonicalDecl()) {
11041         AddOverriddenMethods(Method->getParent(), Method);
11042       }
11043       if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
11044         // C++2a [class.virtual]p6
11045         // A virtual method shall not have a requires-clause.
11046         Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
11047              diag::err_constrained_virtual_method);
11048 
11049       if (Method->isStatic())
11050         checkThisInStaticMemberFunctionType(Method);
11051     }
11052 
11053     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
11054       ActOnConversionDeclarator(Conversion);
11055 
11056     // Extra checking for C++ overloaded operators (C++ [over.oper]).
11057     if (NewFD->isOverloadedOperator() &&
11058         CheckOverloadedOperatorDeclaration(NewFD)) {
11059       NewFD->setInvalidDecl();
11060       return Redeclaration;
11061     }
11062 
11063     // Extra checking for C++0x literal operators (C++0x [over.literal]).
11064     if (NewFD->getLiteralIdentifier() &&
11065         CheckLiteralOperatorDeclaration(NewFD)) {
11066       NewFD->setInvalidDecl();
11067       return Redeclaration;
11068     }
11069 
11070     // In C++, check default arguments now that we have merged decls. Unless
11071     // the lexical context is the class, because in this case this is done
11072     // during delayed parsing anyway.
11073     if (!CurContext->isRecord())
11074       CheckCXXDefaultArguments(NewFD);
11075 
11076     // If this function is declared as being extern "C", then check to see if
11077     // the function returns a UDT (class, struct, or union type) that is not C
11078     // compatible, and if it does, warn the user.
11079     // But, issue any diagnostic on the first declaration only.
11080     if (Previous.empty() && NewFD->isExternC()) {
11081       QualType R = NewFD->getReturnType();
11082       if (R->isIncompleteType() && !R->isVoidType())
11083         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
11084             << NewFD << R;
11085       else if (!R.isPODType(Context) && !R->isVoidType() &&
11086                !R->isObjCObjectPointerType())
11087         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
11088     }
11089 
11090     // C++1z [dcl.fct]p6:
11091     //   [...] whether the function has a non-throwing exception-specification
11092     //   [is] part of the function type
11093     //
11094     // This results in an ABI break between C++14 and C++17 for functions whose
11095     // declared type includes an exception-specification in a parameter or
11096     // return type. (Exception specifications on the function itself are OK in
11097     // most cases, and exception specifications are not permitted in most other
11098     // contexts where they could make it into a mangling.)
11099     if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
11100       auto HasNoexcept = [&](QualType T) -> bool {
11101         // Strip off declarator chunks that could be between us and a function
11102         // type. We don't need to look far, exception specifications are very
11103         // restricted prior to C++17.
11104         if (auto *RT = T->getAs<ReferenceType>())
11105           T = RT->getPointeeType();
11106         else if (T->isAnyPointerType())
11107           T = T->getPointeeType();
11108         else if (auto *MPT = T->getAs<MemberPointerType>())
11109           T = MPT->getPointeeType();
11110         if (auto *FPT = T->getAs<FunctionProtoType>())
11111           if (FPT->isNothrow())
11112             return true;
11113         return false;
11114       };
11115 
11116       auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
11117       bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
11118       for (QualType T : FPT->param_types())
11119         AnyNoexcept |= HasNoexcept(T);
11120       if (AnyNoexcept)
11121         Diag(NewFD->getLocation(),
11122              diag::warn_cxx17_compat_exception_spec_in_signature)
11123             << NewFD;
11124     }
11125 
11126     if (!Redeclaration && LangOpts.CUDA)
11127       checkCUDATargetOverload(NewFD, Previous);
11128   }
11129   return Redeclaration;
11130 }
11131 
11132 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
11133   // C++11 [basic.start.main]p3:
11134   //   A program that [...] declares main to be inline, static or
11135   //   constexpr is ill-formed.
11136   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
11137   //   appear in a declaration of main.
11138   // static main is not an error under C99, but we should warn about it.
11139   // We accept _Noreturn main as an extension.
11140   if (FD->getStorageClass() == SC_Static)
11141     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
11142          ? diag::err_static_main : diag::warn_static_main)
11143       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
11144   if (FD->isInlineSpecified())
11145     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
11146       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
11147   if (DS.isNoreturnSpecified()) {
11148     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
11149     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
11150     Diag(NoreturnLoc, diag::ext_noreturn_main);
11151     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
11152       << FixItHint::CreateRemoval(NoreturnRange);
11153   }
11154   if (FD->isConstexpr()) {
11155     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
11156         << FD->isConsteval()
11157         << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
11158     FD->setConstexprKind(ConstexprSpecKind::Unspecified);
11159   }
11160 
11161   if (getLangOpts().OpenCL) {
11162     Diag(FD->getLocation(), diag::err_opencl_no_main)
11163         << FD->hasAttr<OpenCLKernelAttr>();
11164     FD->setInvalidDecl();
11165     return;
11166   }
11167 
11168   QualType T = FD->getType();
11169   assert(T->isFunctionType() && "function decl is not of function type");
11170   const FunctionType* FT = T->castAs<FunctionType>();
11171 
11172   // Set default calling convention for main()
11173   if (FT->getCallConv() != CC_C) {
11174     FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
11175     FD->setType(QualType(FT, 0));
11176     T = Context.getCanonicalType(FD->getType());
11177   }
11178 
11179   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
11180     // In C with GNU extensions we allow main() to have non-integer return
11181     // type, but we should warn about the extension, and we disable the
11182     // implicit-return-zero rule.
11183 
11184     // GCC in C mode accepts qualified 'int'.
11185     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
11186       FD->setHasImplicitReturnZero(true);
11187     else {
11188       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
11189       SourceRange RTRange = FD->getReturnTypeSourceRange();
11190       if (RTRange.isValid())
11191         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
11192             << FixItHint::CreateReplacement(RTRange, "int");
11193     }
11194   } else {
11195     // In C and C++, main magically returns 0 if you fall off the end;
11196     // set the flag which tells us that.
11197     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
11198 
11199     // All the standards say that main() should return 'int'.
11200     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
11201       FD->setHasImplicitReturnZero(true);
11202     else {
11203       // Otherwise, this is just a flat-out error.
11204       SourceRange RTRange = FD->getReturnTypeSourceRange();
11205       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
11206           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
11207                                 : FixItHint());
11208       FD->setInvalidDecl(true);
11209     }
11210   }
11211 
11212   // Treat protoless main() as nullary.
11213   if (isa<FunctionNoProtoType>(FT)) return;
11214 
11215   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
11216   unsigned nparams = FTP->getNumParams();
11217   assert(FD->getNumParams() == nparams);
11218 
11219   bool HasExtraParameters = (nparams > 3);
11220 
11221   if (FTP->isVariadic()) {
11222     Diag(FD->getLocation(), diag::ext_variadic_main);
11223     // FIXME: if we had information about the location of the ellipsis, we
11224     // could add a FixIt hint to remove it as a parameter.
11225   }
11226 
11227   // Darwin passes an undocumented fourth argument of type char**.  If
11228   // other platforms start sprouting these, the logic below will start
11229   // getting shifty.
11230   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
11231     HasExtraParameters = false;
11232 
11233   if (HasExtraParameters) {
11234     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
11235     FD->setInvalidDecl(true);
11236     nparams = 3;
11237   }
11238 
11239   // FIXME: a lot of the following diagnostics would be improved
11240   // if we had some location information about types.
11241 
11242   QualType CharPP =
11243     Context.getPointerType(Context.getPointerType(Context.CharTy));
11244   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
11245 
11246   for (unsigned i = 0; i < nparams; ++i) {
11247     QualType AT = FTP->getParamType(i);
11248 
11249     bool mismatch = true;
11250 
11251     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
11252       mismatch = false;
11253     else if (Expected[i] == CharPP) {
11254       // As an extension, the following forms are okay:
11255       //   char const **
11256       //   char const * const *
11257       //   char * const *
11258 
11259       QualifierCollector qs;
11260       const PointerType* PT;
11261       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
11262           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
11263           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
11264                               Context.CharTy)) {
11265         qs.removeConst();
11266         mismatch = !qs.empty();
11267       }
11268     }
11269 
11270     if (mismatch) {
11271       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
11272       // TODO: suggest replacing given type with expected type
11273       FD->setInvalidDecl(true);
11274     }
11275   }
11276 
11277   if (nparams == 1 && !FD->isInvalidDecl()) {
11278     Diag(FD->getLocation(), diag::warn_main_one_arg);
11279   }
11280 
11281   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11282     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11283     FD->setInvalidDecl();
11284   }
11285 }
11286 
11287 static bool isDefaultStdCall(FunctionDecl *FD, Sema &S) {
11288 
11289   // Default calling convention for main and wmain is __cdecl
11290   if (FD->getName() == "main" || FD->getName() == "wmain")
11291     return false;
11292 
11293   // Default calling convention for MinGW is __cdecl
11294   const llvm::Triple &T = S.Context.getTargetInfo().getTriple();
11295   if (T.isWindowsGNUEnvironment())
11296     return false;
11297 
11298   // Default calling convention for WinMain, wWinMain and DllMain
11299   // is __stdcall on 32 bit Windows
11300   if (T.isOSWindows() && T.getArch() == llvm::Triple::x86)
11301     return true;
11302 
11303   return false;
11304 }
11305 
11306 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
11307   QualType T = FD->getType();
11308   assert(T->isFunctionType() && "function decl is not of function type");
11309   const FunctionType *FT = T->castAs<FunctionType>();
11310 
11311   // Set an implicit return of 'zero' if the function can return some integral,
11312   // enumeration, pointer or nullptr type.
11313   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
11314       FT->getReturnType()->isAnyPointerType() ||
11315       FT->getReturnType()->isNullPtrType())
11316     // DllMain is exempt because a return value of zero means it failed.
11317     if (FD->getName() != "DllMain")
11318       FD->setHasImplicitReturnZero(true);
11319 
11320   // Explicity specified calling conventions are applied to MSVC entry points
11321   if (!hasExplicitCallingConv(T)) {
11322     if (isDefaultStdCall(FD, *this)) {
11323       if (FT->getCallConv() != CC_X86StdCall) {
11324         FT = Context.adjustFunctionType(
11325             FT, FT->getExtInfo().withCallingConv(CC_X86StdCall));
11326         FD->setType(QualType(FT, 0));
11327       }
11328     } else if (FT->getCallConv() != CC_C) {
11329       FT = Context.adjustFunctionType(FT,
11330                                       FT->getExtInfo().withCallingConv(CC_C));
11331       FD->setType(QualType(FT, 0));
11332     }
11333   }
11334 
11335   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11336     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11337     FD->setInvalidDecl();
11338   }
11339 }
11340 
11341 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
11342   // FIXME: Need strict checking.  In C89, we need to check for
11343   // any assignment, increment, decrement, function-calls, or
11344   // commas outside of a sizeof.  In C99, it's the same list,
11345   // except that the aforementioned are allowed in unevaluated
11346   // expressions.  Everything else falls under the
11347   // "may accept other forms of constant expressions" exception.
11348   //
11349   // Regular C++ code will not end up here (exceptions: language extensions,
11350   // OpenCL C++ etc), so the constant expression rules there don't matter.
11351   if (Init->isValueDependent()) {
11352     assert(Init->containsErrors() &&
11353            "Dependent code should only occur in error-recovery path.");
11354     return true;
11355   }
11356   const Expr *Culprit;
11357   if (Init->isConstantInitializer(Context, false, &Culprit))
11358     return false;
11359   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
11360     << Culprit->getSourceRange();
11361   return true;
11362 }
11363 
11364 namespace {
11365   // Visits an initialization expression to see if OrigDecl is evaluated in
11366   // its own initialization and throws a warning if it does.
11367   class SelfReferenceChecker
11368       : public EvaluatedExprVisitor<SelfReferenceChecker> {
11369     Sema &S;
11370     Decl *OrigDecl;
11371     bool isRecordType;
11372     bool isPODType;
11373     bool isReferenceType;
11374 
11375     bool isInitList;
11376     llvm::SmallVector<unsigned, 4> InitFieldIndex;
11377 
11378   public:
11379     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
11380 
11381     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
11382                                                     S(S), OrigDecl(OrigDecl) {
11383       isPODType = false;
11384       isRecordType = false;
11385       isReferenceType = false;
11386       isInitList = false;
11387       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
11388         isPODType = VD->getType().isPODType(S.Context);
11389         isRecordType = VD->getType()->isRecordType();
11390         isReferenceType = VD->getType()->isReferenceType();
11391       }
11392     }
11393 
11394     // For most expressions, just call the visitor.  For initializer lists,
11395     // track the index of the field being initialized since fields are
11396     // initialized in order allowing use of previously initialized fields.
11397     void CheckExpr(Expr *E) {
11398       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
11399       if (!InitList) {
11400         Visit(E);
11401         return;
11402       }
11403 
11404       // Track and increment the index here.
11405       isInitList = true;
11406       InitFieldIndex.push_back(0);
11407       for (auto Child : InitList->children()) {
11408         CheckExpr(cast<Expr>(Child));
11409         ++InitFieldIndex.back();
11410       }
11411       InitFieldIndex.pop_back();
11412     }
11413 
11414     // Returns true if MemberExpr is checked and no further checking is needed.
11415     // Returns false if additional checking is required.
11416     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
11417       llvm::SmallVector<FieldDecl*, 4> Fields;
11418       Expr *Base = E;
11419       bool ReferenceField = false;
11420 
11421       // Get the field members used.
11422       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11423         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
11424         if (!FD)
11425           return false;
11426         Fields.push_back(FD);
11427         if (FD->getType()->isReferenceType())
11428           ReferenceField = true;
11429         Base = ME->getBase()->IgnoreParenImpCasts();
11430       }
11431 
11432       // Keep checking only if the base Decl is the same.
11433       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
11434       if (!DRE || DRE->getDecl() != OrigDecl)
11435         return false;
11436 
11437       // A reference field can be bound to an unininitialized field.
11438       if (CheckReference && !ReferenceField)
11439         return true;
11440 
11441       // Convert FieldDecls to their index number.
11442       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
11443       for (const FieldDecl *I : llvm::reverse(Fields))
11444         UsedFieldIndex.push_back(I->getFieldIndex());
11445 
11446       // See if a warning is needed by checking the first difference in index
11447       // numbers.  If field being used has index less than the field being
11448       // initialized, then the use is safe.
11449       for (auto UsedIter = UsedFieldIndex.begin(),
11450                 UsedEnd = UsedFieldIndex.end(),
11451                 OrigIter = InitFieldIndex.begin(),
11452                 OrigEnd = InitFieldIndex.end();
11453            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
11454         if (*UsedIter < *OrigIter)
11455           return true;
11456         if (*UsedIter > *OrigIter)
11457           break;
11458       }
11459 
11460       // TODO: Add a different warning which will print the field names.
11461       HandleDeclRefExpr(DRE);
11462       return true;
11463     }
11464 
11465     // For most expressions, the cast is directly above the DeclRefExpr.
11466     // For conditional operators, the cast can be outside the conditional
11467     // operator if both expressions are DeclRefExpr's.
11468     void HandleValue(Expr *E) {
11469       E = E->IgnoreParens();
11470       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
11471         HandleDeclRefExpr(DRE);
11472         return;
11473       }
11474 
11475       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
11476         Visit(CO->getCond());
11477         HandleValue(CO->getTrueExpr());
11478         HandleValue(CO->getFalseExpr());
11479         return;
11480       }
11481 
11482       if (BinaryConditionalOperator *BCO =
11483               dyn_cast<BinaryConditionalOperator>(E)) {
11484         Visit(BCO->getCond());
11485         HandleValue(BCO->getFalseExpr());
11486         return;
11487       }
11488 
11489       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
11490         HandleValue(OVE->getSourceExpr());
11491         return;
11492       }
11493 
11494       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11495         if (BO->getOpcode() == BO_Comma) {
11496           Visit(BO->getLHS());
11497           HandleValue(BO->getRHS());
11498           return;
11499         }
11500       }
11501 
11502       if (isa<MemberExpr>(E)) {
11503         if (isInitList) {
11504           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
11505                                       false /*CheckReference*/))
11506             return;
11507         }
11508 
11509         Expr *Base = E->IgnoreParenImpCasts();
11510         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11511           // Check for static member variables and don't warn on them.
11512           if (!isa<FieldDecl>(ME->getMemberDecl()))
11513             return;
11514           Base = ME->getBase()->IgnoreParenImpCasts();
11515         }
11516         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
11517           HandleDeclRefExpr(DRE);
11518         return;
11519       }
11520 
11521       Visit(E);
11522     }
11523 
11524     // Reference types not handled in HandleValue are handled here since all
11525     // uses of references are bad, not just r-value uses.
11526     void VisitDeclRefExpr(DeclRefExpr *E) {
11527       if (isReferenceType)
11528         HandleDeclRefExpr(E);
11529     }
11530 
11531     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11532       if (E->getCastKind() == CK_LValueToRValue) {
11533         HandleValue(E->getSubExpr());
11534         return;
11535       }
11536 
11537       Inherited::VisitImplicitCastExpr(E);
11538     }
11539 
11540     void VisitMemberExpr(MemberExpr *E) {
11541       if (isInitList) {
11542         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
11543           return;
11544       }
11545 
11546       // Don't warn on arrays since they can be treated as pointers.
11547       if (E->getType()->canDecayToPointerType()) return;
11548 
11549       // Warn when a non-static method call is followed by non-static member
11550       // field accesses, which is followed by a DeclRefExpr.
11551       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
11552       bool Warn = (MD && !MD->isStatic());
11553       Expr *Base = E->getBase()->IgnoreParenImpCasts();
11554       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11555         if (!isa<FieldDecl>(ME->getMemberDecl()))
11556           Warn = false;
11557         Base = ME->getBase()->IgnoreParenImpCasts();
11558       }
11559 
11560       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
11561         if (Warn)
11562           HandleDeclRefExpr(DRE);
11563         return;
11564       }
11565 
11566       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
11567       // Visit that expression.
11568       Visit(Base);
11569     }
11570 
11571     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
11572       Expr *Callee = E->getCallee();
11573 
11574       if (isa<UnresolvedLookupExpr>(Callee))
11575         return Inherited::VisitCXXOperatorCallExpr(E);
11576 
11577       Visit(Callee);
11578       for (auto Arg: E->arguments())
11579         HandleValue(Arg->IgnoreParenImpCasts());
11580     }
11581 
11582     void VisitUnaryOperator(UnaryOperator *E) {
11583       // For POD record types, addresses of its own members are well-defined.
11584       if (E->getOpcode() == UO_AddrOf && isRecordType &&
11585           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
11586         if (!isPODType)
11587           HandleValue(E->getSubExpr());
11588         return;
11589       }
11590 
11591       if (E->isIncrementDecrementOp()) {
11592         HandleValue(E->getSubExpr());
11593         return;
11594       }
11595 
11596       Inherited::VisitUnaryOperator(E);
11597     }
11598 
11599     void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
11600 
11601     void VisitCXXConstructExpr(CXXConstructExpr *E) {
11602       if (E->getConstructor()->isCopyConstructor()) {
11603         Expr *ArgExpr = E->getArg(0);
11604         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
11605           if (ILE->getNumInits() == 1)
11606             ArgExpr = ILE->getInit(0);
11607         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
11608           if (ICE->getCastKind() == CK_NoOp)
11609             ArgExpr = ICE->getSubExpr();
11610         HandleValue(ArgExpr);
11611         return;
11612       }
11613       Inherited::VisitCXXConstructExpr(E);
11614     }
11615 
11616     void VisitCallExpr(CallExpr *E) {
11617       // Treat std::move as a use.
11618       if (E->isCallToStdMove()) {
11619         HandleValue(E->getArg(0));
11620         return;
11621       }
11622 
11623       Inherited::VisitCallExpr(E);
11624     }
11625 
11626     void VisitBinaryOperator(BinaryOperator *E) {
11627       if (E->isCompoundAssignmentOp()) {
11628         HandleValue(E->getLHS());
11629         Visit(E->getRHS());
11630         return;
11631       }
11632 
11633       Inherited::VisitBinaryOperator(E);
11634     }
11635 
11636     // A custom visitor for BinaryConditionalOperator is needed because the
11637     // regular visitor would check the condition and true expression separately
11638     // but both point to the same place giving duplicate diagnostics.
11639     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
11640       Visit(E->getCond());
11641       Visit(E->getFalseExpr());
11642     }
11643 
11644     void HandleDeclRefExpr(DeclRefExpr *DRE) {
11645       Decl* ReferenceDecl = DRE->getDecl();
11646       if (OrigDecl != ReferenceDecl) return;
11647       unsigned diag;
11648       if (isReferenceType) {
11649         diag = diag::warn_uninit_self_reference_in_reference_init;
11650       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
11651         diag = diag::warn_static_self_reference_in_init;
11652       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
11653                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
11654                  DRE->getDecl()->getType()->isRecordType()) {
11655         diag = diag::warn_uninit_self_reference_in_init;
11656       } else {
11657         // Local variables will be handled by the CFG analysis.
11658         return;
11659       }
11660 
11661       S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
11662                             S.PDiag(diag)
11663                                 << DRE->getDecl() << OrigDecl->getLocation()
11664                                 << DRE->getSourceRange());
11665     }
11666   };
11667 
11668   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
11669   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
11670                                  bool DirectInit) {
11671     // Parameters arguments are occassionially constructed with itself,
11672     // for instance, in recursive functions.  Skip them.
11673     if (isa<ParmVarDecl>(OrigDecl))
11674       return;
11675 
11676     E = E->IgnoreParens();
11677 
11678     // Skip checking T a = a where T is not a record or reference type.
11679     // Doing so is a way to silence uninitialized warnings.
11680     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
11681       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
11682         if (ICE->getCastKind() == CK_LValueToRValue)
11683           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
11684             if (DRE->getDecl() == OrigDecl)
11685               return;
11686 
11687     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
11688   }
11689 } // end anonymous namespace
11690 
11691 namespace {
11692   // Simple wrapper to add the name of a variable or (if no variable is
11693   // available) a DeclarationName into a diagnostic.
11694   struct VarDeclOrName {
11695     VarDecl *VDecl;
11696     DeclarationName Name;
11697 
11698     friend const Sema::SemaDiagnosticBuilder &
11699     operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
11700       return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
11701     }
11702   };
11703 } // end anonymous namespace
11704 
11705 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
11706                                             DeclarationName Name, QualType Type,
11707                                             TypeSourceInfo *TSI,
11708                                             SourceRange Range, bool DirectInit,
11709                                             Expr *Init) {
11710   bool IsInitCapture = !VDecl;
11711   assert((!VDecl || !VDecl->isInitCapture()) &&
11712          "init captures are expected to be deduced prior to initialization");
11713 
11714   VarDeclOrName VN{VDecl, Name};
11715 
11716   DeducedType *Deduced = Type->getContainedDeducedType();
11717   assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
11718 
11719   // C++11 [dcl.spec.auto]p3
11720   if (!Init) {
11721     assert(VDecl && "no init for init capture deduction?");
11722 
11723     // Except for class argument deduction, and then for an initializing
11724     // declaration only, i.e. no static at class scope or extern.
11725     if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
11726         VDecl->hasExternalStorage() ||
11727         VDecl->isStaticDataMember()) {
11728       Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
11729         << VDecl->getDeclName() << Type;
11730       return QualType();
11731     }
11732   }
11733 
11734   ArrayRef<Expr*> DeduceInits;
11735   if (Init)
11736     DeduceInits = Init;
11737 
11738   if (DirectInit) {
11739     if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
11740       DeduceInits = PL->exprs();
11741   }
11742 
11743   if (isa<DeducedTemplateSpecializationType>(Deduced)) {
11744     assert(VDecl && "non-auto type for init capture deduction?");
11745     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11746     InitializationKind Kind = InitializationKind::CreateForInit(
11747         VDecl->getLocation(), DirectInit, Init);
11748     // FIXME: Initialization should not be taking a mutable list of inits.
11749     SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
11750     return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
11751                                                        InitsCopy);
11752   }
11753 
11754   if (DirectInit) {
11755     if (auto *IL = dyn_cast<InitListExpr>(Init))
11756       DeduceInits = IL->inits();
11757   }
11758 
11759   // Deduction only works if we have exactly one source expression.
11760   if (DeduceInits.empty()) {
11761     // It isn't possible to write this directly, but it is possible to
11762     // end up in this situation with "auto x(some_pack...);"
11763     Diag(Init->getBeginLoc(), IsInitCapture
11764                                   ? diag::err_init_capture_no_expression
11765                                   : diag::err_auto_var_init_no_expression)
11766         << VN << Type << Range;
11767     return QualType();
11768   }
11769 
11770   if (DeduceInits.size() > 1) {
11771     Diag(DeduceInits[1]->getBeginLoc(),
11772          IsInitCapture ? diag::err_init_capture_multiple_expressions
11773                        : diag::err_auto_var_init_multiple_expressions)
11774         << VN << Type << Range;
11775     return QualType();
11776   }
11777 
11778   Expr *DeduceInit = DeduceInits[0];
11779   if (DirectInit && isa<InitListExpr>(DeduceInit)) {
11780     Diag(Init->getBeginLoc(), IsInitCapture
11781                                   ? diag::err_init_capture_paren_braces
11782                                   : diag::err_auto_var_init_paren_braces)
11783         << isa<InitListExpr>(Init) << VN << Type << Range;
11784     return QualType();
11785   }
11786 
11787   // Expressions default to 'id' when we're in a debugger.
11788   bool DefaultedAnyToId = false;
11789   if (getLangOpts().DebuggerCastResultToId &&
11790       Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
11791     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11792     if (Result.isInvalid()) {
11793       return QualType();
11794     }
11795     Init = Result.get();
11796     DefaultedAnyToId = true;
11797   }
11798 
11799   // C++ [dcl.decomp]p1:
11800   //   If the assignment-expression [...] has array type A and no ref-qualifier
11801   //   is present, e has type cv A
11802   if (VDecl && isa<DecompositionDecl>(VDecl) &&
11803       Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
11804       DeduceInit->getType()->isConstantArrayType())
11805     return Context.getQualifiedType(DeduceInit->getType(),
11806                                     Type.getQualifiers());
11807 
11808   QualType DeducedType;
11809   if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
11810     if (!IsInitCapture)
11811       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
11812     else if (isa<InitListExpr>(Init))
11813       Diag(Range.getBegin(),
11814            diag::err_init_capture_deduction_failure_from_init_list)
11815           << VN
11816           << (DeduceInit->getType().isNull() ? TSI->getType()
11817                                              : DeduceInit->getType())
11818           << DeduceInit->getSourceRange();
11819     else
11820       Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
11821           << VN << TSI->getType()
11822           << (DeduceInit->getType().isNull() ? TSI->getType()
11823                                              : DeduceInit->getType())
11824           << DeduceInit->getSourceRange();
11825   }
11826 
11827   // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
11828   // 'id' instead of a specific object type prevents most of our usual
11829   // checks.
11830   // We only want to warn outside of template instantiations, though:
11831   // inside a template, the 'id' could have come from a parameter.
11832   if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
11833       !DeducedType.isNull() && DeducedType->isObjCIdType()) {
11834     SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
11835     Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
11836   }
11837 
11838   return DeducedType;
11839 }
11840 
11841 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
11842                                          Expr *Init) {
11843   assert(!Init || !Init->containsErrors());
11844   QualType DeducedType = deduceVarTypeFromInitializer(
11845       VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
11846       VDecl->getSourceRange(), DirectInit, Init);
11847   if (DeducedType.isNull()) {
11848     VDecl->setInvalidDecl();
11849     return true;
11850   }
11851 
11852   VDecl->setType(DeducedType);
11853   assert(VDecl->isLinkageValid());
11854 
11855   // In ARC, infer lifetime.
11856   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
11857     VDecl->setInvalidDecl();
11858 
11859   if (getLangOpts().OpenCL)
11860     deduceOpenCLAddressSpace(VDecl);
11861 
11862   // If this is a redeclaration, check that the type we just deduced matches
11863   // the previously declared type.
11864   if (VarDecl *Old = VDecl->getPreviousDecl()) {
11865     // We never need to merge the type, because we cannot form an incomplete
11866     // array of auto, nor deduce such a type.
11867     MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
11868   }
11869 
11870   // Check the deduced type is valid for a variable declaration.
11871   CheckVariableDeclarationType(VDecl);
11872   return VDecl->isInvalidDecl();
11873 }
11874 
11875 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
11876                                               SourceLocation Loc) {
11877   if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
11878     Init = EWC->getSubExpr();
11879 
11880   if (auto *CE = dyn_cast<ConstantExpr>(Init))
11881     Init = CE->getSubExpr();
11882 
11883   QualType InitType = Init->getType();
11884   assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
11885           InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
11886          "shouldn't be called if type doesn't have a non-trivial C struct");
11887   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
11888     for (auto I : ILE->inits()) {
11889       if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
11890           !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
11891         continue;
11892       SourceLocation SL = I->getExprLoc();
11893       checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
11894     }
11895     return;
11896   }
11897 
11898   if (isa<ImplicitValueInitExpr>(Init)) {
11899     if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11900       checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
11901                             NTCUK_Init);
11902   } else {
11903     // Assume all other explicit initializers involving copying some existing
11904     // object.
11905     // TODO: ignore any explicit initializers where we can guarantee
11906     // copy-elision.
11907     if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
11908       checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
11909   }
11910 }
11911 
11912 namespace {
11913 
11914 bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
11915   // Ignore unavailable fields. A field can be marked as unavailable explicitly
11916   // in the source code or implicitly by the compiler if it is in a union
11917   // defined in a system header and has non-trivial ObjC ownership
11918   // qualifications. We don't want those fields to participate in determining
11919   // whether the containing union is non-trivial.
11920   return FD->hasAttr<UnavailableAttr>();
11921 }
11922 
11923 struct DiagNonTrivalCUnionDefaultInitializeVisitor
11924     : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11925                                     void> {
11926   using Super =
11927       DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11928                                     void>;
11929 
11930   DiagNonTrivalCUnionDefaultInitializeVisitor(
11931       QualType OrigTy, SourceLocation OrigLoc,
11932       Sema::NonTrivialCUnionContext UseContext, Sema &S)
11933       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11934 
11935   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
11936                      const FieldDecl *FD, bool InNonTrivialUnion) {
11937     if (const auto *AT = S.Context.getAsArrayType(QT))
11938       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11939                                      InNonTrivialUnion);
11940     return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
11941   }
11942 
11943   void visitARCStrong(QualType QT, const FieldDecl *FD,
11944                       bool InNonTrivialUnion) {
11945     if (InNonTrivialUnion)
11946       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11947           << 1 << 0 << QT << FD->getName();
11948   }
11949 
11950   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11951     if (InNonTrivialUnion)
11952       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11953           << 1 << 0 << QT << FD->getName();
11954   }
11955 
11956   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11957     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11958     if (RD->isUnion()) {
11959       if (OrigLoc.isValid()) {
11960         bool IsUnion = false;
11961         if (auto *OrigRD = OrigTy->getAsRecordDecl())
11962           IsUnion = OrigRD->isUnion();
11963         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11964             << 0 << OrigTy << IsUnion << UseContext;
11965         // Reset OrigLoc so that this diagnostic is emitted only once.
11966         OrigLoc = SourceLocation();
11967       }
11968       InNonTrivialUnion = true;
11969     }
11970 
11971     if (InNonTrivialUnion)
11972       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11973           << 0 << 0 << QT.getUnqualifiedType() << "";
11974 
11975     for (const FieldDecl *FD : RD->fields())
11976       if (!shouldIgnoreForRecordTriviality(FD))
11977         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11978   }
11979 
11980   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11981 
11982   // The non-trivial C union type or the struct/union type that contains a
11983   // non-trivial C union.
11984   QualType OrigTy;
11985   SourceLocation OrigLoc;
11986   Sema::NonTrivialCUnionContext UseContext;
11987   Sema &S;
11988 };
11989 
11990 struct DiagNonTrivalCUnionDestructedTypeVisitor
11991     : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
11992   using Super =
11993       DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
11994 
11995   DiagNonTrivalCUnionDestructedTypeVisitor(
11996       QualType OrigTy, SourceLocation OrigLoc,
11997       Sema::NonTrivialCUnionContext UseContext, Sema &S)
11998       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11999 
12000   void visitWithKind(QualType::DestructionKind DK, QualType QT,
12001                      const FieldDecl *FD, bool InNonTrivialUnion) {
12002     if (const auto *AT = S.Context.getAsArrayType(QT))
12003       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
12004                                      InNonTrivialUnion);
12005     return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
12006   }
12007 
12008   void visitARCStrong(QualType QT, const FieldDecl *FD,
12009                       bool InNonTrivialUnion) {
12010     if (InNonTrivialUnion)
12011       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12012           << 1 << 1 << QT << FD->getName();
12013   }
12014 
12015   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12016     if (InNonTrivialUnion)
12017       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12018           << 1 << 1 << QT << FD->getName();
12019   }
12020 
12021   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12022     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
12023     if (RD->isUnion()) {
12024       if (OrigLoc.isValid()) {
12025         bool IsUnion = false;
12026         if (auto *OrigRD = OrigTy->getAsRecordDecl())
12027           IsUnion = OrigRD->isUnion();
12028         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
12029             << 1 << OrigTy << IsUnion << UseContext;
12030         // Reset OrigLoc so that this diagnostic is emitted only once.
12031         OrigLoc = SourceLocation();
12032       }
12033       InNonTrivialUnion = true;
12034     }
12035 
12036     if (InNonTrivialUnion)
12037       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
12038           << 0 << 1 << QT.getUnqualifiedType() << "";
12039 
12040     for (const FieldDecl *FD : RD->fields())
12041       if (!shouldIgnoreForRecordTriviality(FD))
12042         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
12043   }
12044 
12045   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
12046   void visitCXXDestructor(QualType QT, const FieldDecl *FD,
12047                           bool InNonTrivialUnion) {}
12048 
12049   // The non-trivial C union type or the struct/union type that contains a
12050   // non-trivial C union.
12051   QualType OrigTy;
12052   SourceLocation OrigLoc;
12053   Sema::NonTrivialCUnionContext UseContext;
12054   Sema &S;
12055 };
12056 
12057 struct DiagNonTrivalCUnionCopyVisitor
12058     : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
12059   using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
12060 
12061   DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
12062                                  Sema::NonTrivialCUnionContext UseContext,
12063                                  Sema &S)
12064       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
12065 
12066   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
12067                      const FieldDecl *FD, bool InNonTrivialUnion) {
12068     if (const auto *AT = S.Context.getAsArrayType(QT))
12069       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
12070                                      InNonTrivialUnion);
12071     return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
12072   }
12073 
12074   void visitARCStrong(QualType QT, const FieldDecl *FD,
12075                       bool InNonTrivialUnion) {
12076     if (InNonTrivialUnion)
12077       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12078           << 1 << 2 << QT << FD->getName();
12079   }
12080 
12081   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12082     if (InNonTrivialUnion)
12083       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12084           << 1 << 2 << QT << FD->getName();
12085   }
12086 
12087   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12088     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
12089     if (RD->isUnion()) {
12090       if (OrigLoc.isValid()) {
12091         bool IsUnion = false;
12092         if (auto *OrigRD = OrigTy->getAsRecordDecl())
12093           IsUnion = OrigRD->isUnion();
12094         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
12095             << 2 << OrigTy << IsUnion << UseContext;
12096         // Reset OrigLoc so that this diagnostic is emitted only once.
12097         OrigLoc = SourceLocation();
12098       }
12099       InNonTrivialUnion = true;
12100     }
12101 
12102     if (InNonTrivialUnion)
12103       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
12104           << 0 << 2 << QT.getUnqualifiedType() << "";
12105 
12106     for (const FieldDecl *FD : RD->fields())
12107       if (!shouldIgnoreForRecordTriviality(FD))
12108         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
12109   }
12110 
12111   void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
12112                 const FieldDecl *FD, bool InNonTrivialUnion) {}
12113   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
12114   void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
12115                             bool InNonTrivialUnion) {}
12116 
12117   // The non-trivial C union type or the struct/union type that contains a
12118   // non-trivial C union.
12119   QualType OrigTy;
12120   SourceLocation OrigLoc;
12121   Sema::NonTrivialCUnionContext UseContext;
12122   Sema &S;
12123 };
12124 
12125 } // namespace
12126 
12127 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
12128                                  NonTrivialCUnionContext UseContext,
12129                                  unsigned NonTrivialKind) {
12130   assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
12131           QT.hasNonTrivialToPrimitiveDestructCUnion() ||
12132           QT.hasNonTrivialToPrimitiveCopyCUnion()) &&
12133          "shouldn't be called if type doesn't have a non-trivial C union");
12134 
12135   if ((NonTrivialKind & NTCUK_Init) &&
12136       QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12137     DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
12138         .visit(QT, nullptr, false);
12139   if ((NonTrivialKind & NTCUK_Destruct) &&
12140       QT.hasNonTrivialToPrimitiveDestructCUnion())
12141     DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
12142         .visit(QT, nullptr, false);
12143   if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
12144     DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
12145         .visit(QT, nullptr, false);
12146 }
12147 
12148 /// AddInitializerToDecl - Adds the initializer Init to the
12149 /// declaration dcl. If DirectInit is true, this is C++ direct
12150 /// initialization rather than copy initialization.
12151 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
12152   // If there is no declaration, there was an error parsing it.  Just ignore
12153   // the initializer.
12154   if (!RealDecl || RealDecl->isInvalidDecl()) {
12155     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
12156     return;
12157   }
12158 
12159   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
12160     // Pure-specifiers are handled in ActOnPureSpecifier.
12161     Diag(Method->getLocation(), diag::err_member_function_initialization)
12162       << Method->getDeclName() << Init->getSourceRange();
12163     Method->setInvalidDecl();
12164     return;
12165   }
12166 
12167   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
12168   if (!VDecl) {
12169     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
12170     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
12171     RealDecl->setInvalidDecl();
12172     return;
12173   }
12174 
12175   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
12176   if (VDecl->getType()->isUndeducedType()) {
12177     // Attempt typo correction early so that the type of the init expression can
12178     // be deduced based on the chosen correction if the original init contains a
12179     // TypoExpr.
12180     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
12181     if (!Res.isUsable()) {
12182       // There are unresolved typos in Init, just drop them.
12183       // FIXME: improve the recovery strategy to preserve the Init.
12184       RealDecl->setInvalidDecl();
12185       return;
12186     }
12187     if (Res.get()->containsErrors()) {
12188       // Invalidate the decl as we don't know the type for recovery-expr yet.
12189       RealDecl->setInvalidDecl();
12190       VDecl->setInit(Res.get());
12191       return;
12192     }
12193     Init = Res.get();
12194 
12195     if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
12196       return;
12197   }
12198 
12199   // dllimport cannot be used on variable definitions.
12200   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
12201     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
12202     VDecl->setInvalidDecl();
12203     return;
12204   }
12205 
12206   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
12207     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
12208     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
12209     VDecl->setInvalidDecl();
12210     return;
12211   }
12212 
12213   if (!VDecl->getType()->isDependentType()) {
12214     // A definition must end up with a complete type, which means it must be
12215     // complete with the restriction that an array type might be completed by
12216     // the initializer; note that later code assumes this restriction.
12217     QualType BaseDeclType = VDecl->getType();
12218     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
12219       BaseDeclType = Array->getElementType();
12220     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
12221                             diag::err_typecheck_decl_incomplete_type)) {
12222       RealDecl->setInvalidDecl();
12223       return;
12224     }
12225 
12226     // The variable can not have an abstract class type.
12227     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
12228                                diag::err_abstract_type_in_decl,
12229                                AbstractVariableType))
12230       VDecl->setInvalidDecl();
12231   }
12232 
12233   // If adding the initializer will turn this declaration into a definition,
12234   // and we already have a definition for this variable, diagnose or otherwise
12235   // handle the situation.
12236   if (VarDecl *Def = VDecl->getDefinition())
12237     if (Def != VDecl &&
12238         (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
12239         !VDecl->isThisDeclarationADemotedDefinition() &&
12240         checkVarDeclRedefinition(Def, VDecl))
12241       return;
12242 
12243   if (getLangOpts().CPlusPlus) {
12244     // C++ [class.static.data]p4
12245     //   If a static data member is of const integral or const
12246     //   enumeration type, its declaration in the class definition can
12247     //   specify a constant-initializer which shall be an integral
12248     //   constant expression (5.19). In that case, the member can appear
12249     //   in integral constant expressions. The member shall still be
12250     //   defined in a namespace scope if it is used in the program and the
12251     //   namespace scope definition shall not contain an initializer.
12252     //
12253     // We already performed a redefinition check above, but for static
12254     // data members we also need to check whether there was an in-class
12255     // declaration with an initializer.
12256     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
12257       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
12258           << VDecl->getDeclName();
12259       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
12260            diag::note_previous_initializer)
12261           << 0;
12262       return;
12263     }
12264 
12265     if (VDecl->hasLocalStorage())
12266       setFunctionHasBranchProtectedScope();
12267 
12268     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
12269       VDecl->setInvalidDecl();
12270       return;
12271     }
12272   }
12273 
12274   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
12275   // a kernel function cannot be initialized."
12276   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
12277     Diag(VDecl->getLocation(), diag::err_local_cant_init);
12278     VDecl->setInvalidDecl();
12279     return;
12280   }
12281 
12282   // The LoaderUninitialized attribute acts as a definition (of undef).
12283   if (VDecl->hasAttr<LoaderUninitializedAttr>()) {
12284     Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init);
12285     VDecl->setInvalidDecl();
12286     return;
12287   }
12288 
12289   // Get the decls type and save a reference for later, since
12290   // CheckInitializerTypes may change it.
12291   QualType DclT = VDecl->getType(), SavT = DclT;
12292 
12293   // Expressions default to 'id' when we're in a debugger
12294   // and we are assigning it to a variable of Objective-C pointer type.
12295   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
12296       Init->getType() == Context.UnknownAnyTy) {
12297     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
12298     if (Result.isInvalid()) {
12299       VDecl->setInvalidDecl();
12300       return;
12301     }
12302     Init = Result.get();
12303   }
12304 
12305   // Perform the initialization.
12306   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
12307   if (!VDecl->isInvalidDecl()) {
12308     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
12309     InitializationKind Kind = InitializationKind::CreateForInit(
12310         VDecl->getLocation(), DirectInit, Init);
12311 
12312     MultiExprArg Args = Init;
12313     if (CXXDirectInit)
12314       Args = MultiExprArg(CXXDirectInit->getExprs(),
12315                           CXXDirectInit->getNumExprs());
12316 
12317     // Try to correct any TypoExprs in the initialization arguments.
12318     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
12319       ExprResult Res = CorrectDelayedTyposInExpr(
12320           Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true,
12321           [this, Entity, Kind](Expr *E) {
12322             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
12323             return Init.Failed() ? ExprError() : E;
12324           });
12325       if (Res.isInvalid()) {
12326         VDecl->setInvalidDecl();
12327       } else if (Res.get() != Args[Idx]) {
12328         Args[Idx] = Res.get();
12329       }
12330     }
12331     if (VDecl->isInvalidDecl())
12332       return;
12333 
12334     InitializationSequence InitSeq(*this, Entity, Kind, Args,
12335                                    /*TopLevelOfInitList=*/false,
12336                                    /*TreatUnavailableAsInvalid=*/false);
12337     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
12338     if (Result.isInvalid()) {
12339       // If the provied initializer fails to initialize the var decl,
12340       // we attach a recovery expr for better recovery.
12341       auto RecoveryExpr =
12342           CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args);
12343       if (RecoveryExpr.get())
12344         VDecl->setInit(RecoveryExpr.get());
12345       return;
12346     }
12347 
12348     Init = Result.getAs<Expr>();
12349   }
12350 
12351   // Check for self-references within variable initializers.
12352   // Variables declared within a function/method body (except for references)
12353   // are handled by a dataflow analysis.
12354   // This is undefined behavior in C++, but valid in C.
12355   if (getLangOpts().CPlusPlus)
12356     if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
12357         VDecl->getType()->isReferenceType())
12358       CheckSelfReference(*this, RealDecl, Init, DirectInit);
12359 
12360   // If the type changed, it means we had an incomplete type that was
12361   // completed by the initializer. For example:
12362   //   int ary[] = { 1, 3, 5 };
12363   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
12364   if (!VDecl->isInvalidDecl() && (DclT != SavT))
12365     VDecl->setType(DclT);
12366 
12367   if (!VDecl->isInvalidDecl()) {
12368     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
12369 
12370     if (VDecl->hasAttr<BlocksAttr>())
12371       checkRetainCycles(VDecl, Init);
12372 
12373     // It is safe to assign a weak reference into a strong variable.
12374     // Although this code can still have problems:
12375     //   id x = self.weakProp;
12376     //   id y = self.weakProp;
12377     // we do not warn to warn spuriously when 'x' and 'y' are on separate
12378     // paths through the function. This should be revisited if
12379     // -Wrepeated-use-of-weak is made flow-sensitive.
12380     if (FunctionScopeInfo *FSI = getCurFunction())
12381       if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
12382            VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
12383           !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
12384                            Init->getBeginLoc()))
12385         FSI->markSafeWeakUse(Init);
12386   }
12387 
12388   // The initialization is usually a full-expression.
12389   //
12390   // FIXME: If this is a braced initialization of an aggregate, it is not
12391   // an expression, and each individual field initializer is a separate
12392   // full-expression. For instance, in:
12393   //
12394   //   struct Temp { ~Temp(); };
12395   //   struct S { S(Temp); };
12396   //   struct T { S a, b; } t = { Temp(), Temp() }
12397   //
12398   // we should destroy the first Temp before constructing the second.
12399   ExprResult Result =
12400       ActOnFinishFullExpr(Init, VDecl->getLocation(),
12401                           /*DiscardedValue*/ false, VDecl->isConstexpr());
12402   if (Result.isInvalid()) {
12403     VDecl->setInvalidDecl();
12404     return;
12405   }
12406   Init = Result.get();
12407 
12408   // Attach the initializer to the decl.
12409   VDecl->setInit(Init);
12410 
12411   if (VDecl->isLocalVarDecl()) {
12412     // Don't check the initializer if the declaration is malformed.
12413     if (VDecl->isInvalidDecl()) {
12414       // do nothing
12415 
12416     // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
12417     // This is true even in C++ for OpenCL.
12418     } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
12419       CheckForConstantInitializer(Init, DclT);
12420 
12421     // Otherwise, C++ does not restrict the initializer.
12422     } else if (getLangOpts().CPlusPlus) {
12423       // do nothing
12424 
12425     // C99 6.7.8p4: All the expressions in an initializer for an object that has
12426     // static storage duration shall be constant expressions or string literals.
12427     } else if (VDecl->getStorageClass() == SC_Static) {
12428       CheckForConstantInitializer(Init, DclT);
12429 
12430     // C89 is stricter than C99 for aggregate initializers.
12431     // C89 6.5.7p3: All the expressions [...] in an initializer list
12432     // for an object that has aggregate or union type shall be
12433     // constant expressions.
12434     } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
12435                isa<InitListExpr>(Init)) {
12436       const Expr *Culprit;
12437       if (!Init->isConstantInitializer(Context, false, &Culprit)) {
12438         Diag(Culprit->getExprLoc(),
12439              diag::ext_aggregate_init_not_constant)
12440           << Culprit->getSourceRange();
12441       }
12442     }
12443 
12444     if (auto *E = dyn_cast<ExprWithCleanups>(Init))
12445       if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
12446         if (VDecl->hasLocalStorage())
12447           BE->getBlockDecl()->setCanAvoidCopyToHeap();
12448   } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
12449              VDecl->getLexicalDeclContext()->isRecord()) {
12450     // This is an in-class initialization for a static data member, e.g.,
12451     //
12452     // struct S {
12453     //   static const int value = 17;
12454     // };
12455 
12456     // C++ [class.mem]p4:
12457     //   A member-declarator can contain a constant-initializer only
12458     //   if it declares a static member (9.4) of const integral or
12459     //   const enumeration type, see 9.4.2.
12460     //
12461     // C++11 [class.static.data]p3:
12462     //   If a non-volatile non-inline const static data member is of integral
12463     //   or enumeration type, its declaration in the class definition can
12464     //   specify a brace-or-equal-initializer in which every initializer-clause
12465     //   that is an assignment-expression is a constant expression. A static
12466     //   data member of literal type can be declared in the class definition
12467     //   with the constexpr specifier; if so, its declaration shall specify a
12468     //   brace-or-equal-initializer in which every initializer-clause that is
12469     //   an assignment-expression is a constant expression.
12470 
12471     // Do nothing on dependent types.
12472     if (DclT->isDependentType()) {
12473 
12474     // Allow any 'static constexpr' members, whether or not they are of literal
12475     // type. We separately check that every constexpr variable is of literal
12476     // type.
12477     } else if (VDecl->isConstexpr()) {
12478 
12479     // Require constness.
12480     } else if (!DclT.isConstQualified()) {
12481       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
12482         << Init->getSourceRange();
12483       VDecl->setInvalidDecl();
12484 
12485     // We allow integer constant expressions in all cases.
12486     } else if (DclT->isIntegralOrEnumerationType()) {
12487       // Check whether the expression is a constant expression.
12488       SourceLocation Loc;
12489       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
12490         // In C++11, a non-constexpr const static data member with an
12491         // in-class initializer cannot be volatile.
12492         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
12493       else if (Init->isValueDependent())
12494         ; // Nothing to check.
12495       else if (Init->isIntegerConstantExpr(Context, &Loc))
12496         ; // Ok, it's an ICE!
12497       else if (Init->getType()->isScopedEnumeralType() &&
12498                Init->isCXX11ConstantExpr(Context))
12499         ; // Ok, it is a scoped-enum constant expression.
12500       else if (Init->isEvaluatable(Context)) {
12501         // If we can constant fold the initializer through heroics, accept it,
12502         // but report this as a use of an extension for -pedantic.
12503         Diag(Loc, diag::ext_in_class_initializer_non_constant)
12504           << Init->getSourceRange();
12505       } else {
12506         // Otherwise, this is some crazy unknown case.  Report the issue at the
12507         // location provided by the isIntegerConstantExpr failed check.
12508         Diag(Loc, diag::err_in_class_initializer_non_constant)
12509           << Init->getSourceRange();
12510         VDecl->setInvalidDecl();
12511       }
12512 
12513     // We allow foldable floating-point constants as an extension.
12514     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
12515       // In C++98, this is a GNU extension. In C++11, it is not, but we support
12516       // it anyway and provide a fixit to add the 'constexpr'.
12517       if (getLangOpts().CPlusPlus11) {
12518         Diag(VDecl->getLocation(),
12519              diag::ext_in_class_initializer_float_type_cxx11)
12520             << DclT << Init->getSourceRange();
12521         Diag(VDecl->getBeginLoc(),
12522              diag::note_in_class_initializer_float_type_cxx11)
12523             << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12524       } else {
12525         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
12526           << DclT << Init->getSourceRange();
12527 
12528         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
12529           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
12530             << Init->getSourceRange();
12531           VDecl->setInvalidDecl();
12532         }
12533       }
12534 
12535     // Suggest adding 'constexpr' in C++11 for literal types.
12536     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
12537       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
12538           << DclT << Init->getSourceRange()
12539           << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12540       VDecl->setConstexpr(true);
12541 
12542     } else {
12543       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
12544         << DclT << Init->getSourceRange();
12545       VDecl->setInvalidDecl();
12546     }
12547   } else if (VDecl->isFileVarDecl()) {
12548     // In C, extern is typically used to avoid tentative definitions when
12549     // declaring variables in headers, but adding an intializer makes it a
12550     // definition. This is somewhat confusing, so GCC and Clang both warn on it.
12551     // In C++, extern is often used to give implictly static const variables
12552     // external linkage, so don't warn in that case. If selectany is present,
12553     // this might be header code intended for C and C++ inclusion, so apply the
12554     // C++ rules.
12555     if (VDecl->getStorageClass() == SC_Extern &&
12556         ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
12557          !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
12558         !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
12559         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
12560       Diag(VDecl->getLocation(), diag::warn_extern_init);
12561 
12562     // In Microsoft C++ mode, a const variable defined in namespace scope has
12563     // external linkage by default if the variable is declared with
12564     // __declspec(dllexport).
12565     if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
12566         getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
12567         VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
12568       VDecl->setStorageClass(SC_Extern);
12569 
12570     // C99 6.7.8p4. All file scoped initializers need to be constant.
12571     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
12572       CheckForConstantInitializer(Init, DclT);
12573   }
12574 
12575   QualType InitType = Init->getType();
12576   if (!InitType.isNull() &&
12577       (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
12578        InitType.hasNonTrivialToPrimitiveCopyCUnion()))
12579     checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
12580 
12581   // We will represent direct-initialization similarly to copy-initialization:
12582   //    int x(1);  -as-> int x = 1;
12583   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
12584   //
12585   // Clients that want to distinguish between the two forms, can check for
12586   // direct initializer using VarDecl::getInitStyle().
12587   // A major benefit is that clients that don't particularly care about which
12588   // exactly form was it (like the CodeGen) can handle both cases without
12589   // special case code.
12590 
12591   // C++ 8.5p11:
12592   // The form of initialization (using parentheses or '=') is generally
12593   // insignificant, but does matter when the entity being initialized has a
12594   // class type.
12595   if (CXXDirectInit) {
12596     assert(DirectInit && "Call-style initializer must be direct init.");
12597     VDecl->setInitStyle(VarDecl::CallInit);
12598   } else if (DirectInit) {
12599     // This must be list-initialization. No other way is direct-initialization.
12600     VDecl->setInitStyle(VarDecl::ListInit);
12601   }
12602 
12603   if (LangOpts.OpenMP && VDecl->isFileVarDecl())
12604     DeclsToCheckForDeferredDiags.insert(VDecl);
12605   CheckCompleteVariableDeclaration(VDecl);
12606 }
12607 
12608 /// ActOnInitializerError - Given that there was an error parsing an
12609 /// initializer for the given declaration, try to return to some form
12610 /// of sanity.
12611 void Sema::ActOnInitializerError(Decl *D) {
12612   // Our main concern here is re-establishing invariants like "a
12613   // variable's type is either dependent or complete".
12614   if (!D || D->isInvalidDecl()) return;
12615 
12616   VarDecl *VD = dyn_cast<VarDecl>(D);
12617   if (!VD) return;
12618 
12619   // Bindings are not usable if we can't make sense of the initializer.
12620   if (auto *DD = dyn_cast<DecompositionDecl>(D))
12621     for (auto *BD : DD->bindings())
12622       BD->setInvalidDecl();
12623 
12624   // Auto types are meaningless if we can't make sense of the initializer.
12625   if (VD->getType()->isUndeducedType()) {
12626     D->setInvalidDecl();
12627     return;
12628   }
12629 
12630   QualType Ty = VD->getType();
12631   if (Ty->isDependentType()) return;
12632 
12633   // Require a complete type.
12634   if (RequireCompleteType(VD->getLocation(),
12635                           Context.getBaseElementType(Ty),
12636                           diag::err_typecheck_decl_incomplete_type)) {
12637     VD->setInvalidDecl();
12638     return;
12639   }
12640 
12641   // Require a non-abstract type.
12642   if (RequireNonAbstractType(VD->getLocation(), Ty,
12643                              diag::err_abstract_type_in_decl,
12644                              AbstractVariableType)) {
12645     VD->setInvalidDecl();
12646     return;
12647   }
12648 
12649   // Don't bother complaining about constructors or destructors,
12650   // though.
12651 }
12652 
12653 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
12654   // If there is no declaration, there was an error parsing it. Just ignore it.
12655   if (!RealDecl)
12656     return;
12657 
12658   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
12659     QualType Type = Var->getType();
12660 
12661     // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
12662     if (isa<DecompositionDecl>(RealDecl)) {
12663       Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
12664       Var->setInvalidDecl();
12665       return;
12666     }
12667 
12668     if (Type->isUndeducedType() &&
12669         DeduceVariableDeclarationType(Var, false, nullptr))
12670       return;
12671 
12672     // C++11 [class.static.data]p3: A static data member can be declared with
12673     // the constexpr specifier; if so, its declaration shall specify
12674     // a brace-or-equal-initializer.
12675     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
12676     // the definition of a variable [...] or the declaration of a static data
12677     // member.
12678     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
12679         !Var->isThisDeclarationADemotedDefinition()) {
12680       if (Var->isStaticDataMember()) {
12681         // C++1z removes the relevant rule; the in-class declaration is always
12682         // a definition there.
12683         if (!getLangOpts().CPlusPlus17 &&
12684             !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
12685           Diag(Var->getLocation(),
12686                diag::err_constexpr_static_mem_var_requires_init)
12687               << Var;
12688           Var->setInvalidDecl();
12689           return;
12690         }
12691       } else {
12692         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
12693         Var->setInvalidDecl();
12694         return;
12695       }
12696     }
12697 
12698     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
12699     // be initialized.
12700     if (!Var->isInvalidDecl() &&
12701         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
12702         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
12703       bool HasConstExprDefaultConstructor = false;
12704       if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
12705         for (auto *Ctor : RD->ctors()) {
12706           if (Ctor->isConstexpr() && Ctor->getNumParams() == 0 &&
12707               Ctor->getMethodQualifiers().getAddressSpace() ==
12708                   LangAS::opencl_constant) {
12709             HasConstExprDefaultConstructor = true;
12710           }
12711         }
12712       }
12713       if (!HasConstExprDefaultConstructor) {
12714         Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
12715         Var->setInvalidDecl();
12716         return;
12717       }
12718     }
12719 
12720     if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) {
12721       if (Var->getStorageClass() == SC_Extern) {
12722         Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl)
12723             << Var;
12724         Var->setInvalidDecl();
12725         return;
12726       }
12727       if (RequireCompleteType(Var->getLocation(), Var->getType(),
12728                               diag::err_typecheck_decl_incomplete_type)) {
12729         Var->setInvalidDecl();
12730         return;
12731       }
12732       if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
12733         if (!RD->hasTrivialDefaultConstructor()) {
12734           Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor);
12735           Var->setInvalidDecl();
12736           return;
12737         }
12738       }
12739       // The declaration is unitialized, no need for further checks.
12740       return;
12741     }
12742 
12743     VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
12744     if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
12745         Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12746       checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
12747                             NTCUC_DefaultInitializedObject, NTCUK_Init);
12748 
12749 
12750     switch (DefKind) {
12751     case VarDecl::Definition:
12752       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
12753         break;
12754 
12755       // We have an out-of-line definition of a static data member
12756       // that has an in-class initializer, so we type-check this like
12757       // a declaration.
12758       //
12759       LLVM_FALLTHROUGH;
12760 
12761     case VarDecl::DeclarationOnly:
12762       // It's only a declaration.
12763 
12764       // Block scope. C99 6.7p7: If an identifier for an object is
12765       // declared with no linkage (C99 6.2.2p6), the type for the
12766       // object shall be complete.
12767       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
12768           !Var->hasLinkage() && !Var->isInvalidDecl() &&
12769           RequireCompleteType(Var->getLocation(), Type,
12770                               diag::err_typecheck_decl_incomplete_type))
12771         Var->setInvalidDecl();
12772 
12773       // Make sure that the type is not abstract.
12774       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12775           RequireNonAbstractType(Var->getLocation(), Type,
12776                                  diag::err_abstract_type_in_decl,
12777                                  AbstractVariableType))
12778         Var->setInvalidDecl();
12779       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12780           Var->getStorageClass() == SC_PrivateExtern) {
12781         Diag(Var->getLocation(), diag::warn_private_extern);
12782         Diag(Var->getLocation(), diag::note_private_extern);
12783       }
12784 
12785       if (Context.getTargetInfo().allowDebugInfoForExternalRef() &&
12786           !Var->isInvalidDecl() && !getLangOpts().CPlusPlus)
12787         ExternalDeclarations.push_back(Var);
12788 
12789       return;
12790 
12791     case VarDecl::TentativeDefinition:
12792       // File scope. C99 6.9.2p2: A declaration of an identifier for an
12793       // object that has file scope without an initializer, and without a
12794       // storage-class specifier or with the storage-class specifier "static",
12795       // constitutes a tentative definition. Note: A tentative definition with
12796       // external linkage is valid (C99 6.2.2p5).
12797       if (!Var->isInvalidDecl()) {
12798         if (const IncompleteArrayType *ArrayT
12799                                     = Context.getAsIncompleteArrayType(Type)) {
12800           if (RequireCompleteSizedType(
12801                   Var->getLocation(), ArrayT->getElementType(),
12802                   diag::err_array_incomplete_or_sizeless_type))
12803             Var->setInvalidDecl();
12804         } else if (Var->getStorageClass() == SC_Static) {
12805           // C99 6.9.2p3: If the declaration of an identifier for an object is
12806           // a tentative definition and has internal linkage (C99 6.2.2p3), the
12807           // declared type shall not be an incomplete type.
12808           // NOTE: code such as the following
12809           //     static struct s;
12810           //     struct s { int a; };
12811           // is accepted by gcc. Hence here we issue a warning instead of
12812           // an error and we do not invalidate the static declaration.
12813           // NOTE: to avoid multiple warnings, only check the first declaration.
12814           if (Var->isFirstDecl())
12815             RequireCompleteType(Var->getLocation(), Type,
12816                                 diag::ext_typecheck_decl_incomplete_type);
12817         }
12818       }
12819 
12820       // Record the tentative definition; we're done.
12821       if (!Var->isInvalidDecl())
12822         TentativeDefinitions.push_back(Var);
12823       return;
12824     }
12825 
12826     // Provide a specific diagnostic for uninitialized variable
12827     // definitions with incomplete array type.
12828     if (Type->isIncompleteArrayType()) {
12829       Diag(Var->getLocation(),
12830            diag::err_typecheck_incomplete_array_needs_initializer);
12831       Var->setInvalidDecl();
12832       return;
12833     }
12834 
12835     // Provide a specific diagnostic for uninitialized variable
12836     // definitions with reference type.
12837     if (Type->isReferenceType()) {
12838       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
12839           << Var << SourceRange(Var->getLocation(), Var->getLocation());
12840       Var->setInvalidDecl();
12841       return;
12842     }
12843 
12844     // Do not attempt to type-check the default initializer for a
12845     // variable with dependent type.
12846     if (Type->isDependentType())
12847       return;
12848 
12849     if (Var->isInvalidDecl())
12850       return;
12851 
12852     if (!Var->hasAttr<AliasAttr>()) {
12853       if (RequireCompleteType(Var->getLocation(),
12854                               Context.getBaseElementType(Type),
12855                               diag::err_typecheck_decl_incomplete_type)) {
12856         Var->setInvalidDecl();
12857         return;
12858       }
12859     } else {
12860       return;
12861     }
12862 
12863     // The variable can not have an abstract class type.
12864     if (RequireNonAbstractType(Var->getLocation(), Type,
12865                                diag::err_abstract_type_in_decl,
12866                                AbstractVariableType)) {
12867       Var->setInvalidDecl();
12868       return;
12869     }
12870 
12871     // Check for jumps past the implicit initializer.  C++0x
12872     // clarifies that this applies to a "variable with automatic
12873     // storage duration", not a "local variable".
12874     // C++11 [stmt.dcl]p3
12875     //   A program that jumps from a point where a variable with automatic
12876     //   storage duration is not in scope to a point where it is in scope is
12877     //   ill-formed unless the variable has scalar type, class type with a
12878     //   trivial default constructor and a trivial destructor, a cv-qualified
12879     //   version of one of these types, or an array of one of the preceding
12880     //   types and is declared without an initializer.
12881     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
12882       if (const RecordType *Record
12883             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
12884         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
12885         // Mark the function (if we're in one) for further checking even if the
12886         // looser rules of C++11 do not require such checks, so that we can
12887         // diagnose incompatibilities with C++98.
12888         if (!CXXRecord->isPOD())
12889           setFunctionHasBranchProtectedScope();
12890       }
12891     }
12892     // In OpenCL, we can't initialize objects in the __local address space,
12893     // even implicitly, so don't synthesize an implicit initializer.
12894     if (getLangOpts().OpenCL &&
12895         Var->getType().getAddressSpace() == LangAS::opencl_local)
12896       return;
12897     // C++03 [dcl.init]p9:
12898     //   If no initializer is specified for an object, and the
12899     //   object is of (possibly cv-qualified) non-POD class type (or
12900     //   array thereof), the object shall be default-initialized; if
12901     //   the object is of const-qualified type, the underlying class
12902     //   type shall have a user-declared default
12903     //   constructor. Otherwise, if no initializer is specified for
12904     //   a non- static object, the object and its subobjects, if
12905     //   any, have an indeterminate initial value); if the object
12906     //   or any of its subobjects are of const-qualified type, the
12907     //   program is ill-formed.
12908     // C++0x [dcl.init]p11:
12909     //   If no initializer is specified for an object, the object is
12910     //   default-initialized; [...].
12911     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
12912     InitializationKind Kind
12913       = InitializationKind::CreateDefault(Var->getLocation());
12914 
12915     InitializationSequence InitSeq(*this, Entity, Kind, None);
12916     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
12917 
12918     if (Init.get()) {
12919       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
12920       // This is important for template substitution.
12921       Var->setInitStyle(VarDecl::CallInit);
12922     } else if (Init.isInvalid()) {
12923       // If default-init fails, attach a recovery-expr initializer to track
12924       // that initialization was attempted and failed.
12925       auto RecoveryExpr =
12926           CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {});
12927       if (RecoveryExpr.get())
12928         Var->setInit(RecoveryExpr.get());
12929     }
12930 
12931     CheckCompleteVariableDeclaration(Var);
12932   }
12933 }
12934 
12935 void Sema::ActOnCXXForRangeDecl(Decl *D) {
12936   // If there is no declaration, there was an error parsing it. Ignore it.
12937   if (!D)
12938     return;
12939 
12940   VarDecl *VD = dyn_cast<VarDecl>(D);
12941   if (!VD) {
12942     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
12943     D->setInvalidDecl();
12944     return;
12945   }
12946 
12947   VD->setCXXForRangeDecl(true);
12948 
12949   // for-range-declaration cannot be given a storage class specifier.
12950   int Error = -1;
12951   switch (VD->getStorageClass()) {
12952   case SC_None:
12953     break;
12954   case SC_Extern:
12955     Error = 0;
12956     break;
12957   case SC_Static:
12958     Error = 1;
12959     break;
12960   case SC_PrivateExtern:
12961     Error = 2;
12962     break;
12963   case SC_Auto:
12964     Error = 3;
12965     break;
12966   case SC_Register:
12967     Error = 4;
12968     break;
12969   }
12970 
12971   // for-range-declaration cannot be given a storage class specifier con't.
12972   switch (VD->getTSCSpec()) {
12973   case TSCS_thread_local:
12974     Error = 6;
12975     break;
12976   case TSCS___thread:
12977   case TSCS__Thread_local:
12978   case TSCS_unspecified:
12979     break;
12980   }
12981 
12982   if (Error != -1) {
12983     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
12984         << VD << Error;
12985     D->setInvalidDecl();
12986   }
12987 }
12988 
12989 StmtResult
12990 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
12991                                  IdentifierInfo *Ident,
12992                                  ParsedAttributes &Attrs,
12993                                  SourceLocation AttrEnd) {
12994   // C++1y [stmt.iter]p1:
12995   //   A range-based for statement of the form
12996   //      for ( for-range-identifier : for-range-initializer ) statement
12997   //   is equivalent to
12998   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
12999   DeclSpec DS(Attrs.getPool().getFactory());
13000 
13001   const char *PrevSpec;
13002   unsigned DiagID;
13003   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
13004                      getPrintingPolicy());
13005 
13006   Declarator D(DS, DeclaratorContext::ForInit);
13007   D.SetIdentifier(Ident, IdentLoc);
13008   D.takeAttributes(Attrs, AttrEnd);
13009 
13010   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
13011                 IdentLoc);
13012   Decl *Var = ActOnDeclarator(S, D);
13013   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
13014   FinalizeDeclaration(Var);
13015   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
13016                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
13017 }
13018 
13019 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
13020   if (var->isInvalidDecl()) return;
13021 
13022   MaybeAddCUDAConstantAttr(var);
13023 
13024   if (getLangOpts().OpenCL) {
13025     // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
13026     // initialiser
13027     if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
13028         !var->hasInit()) {
13029       Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
13030           << 1 /*Init*/;
13031       var->setInvalidDecl();
13032       return;
13033     }
13034   }
13035 
13036   // In Objective-C, don't allow jumps past the implicit initialization of a
13037   // local retaining variable.
13038   if (getLangOpts().ObjC &&
13039       var->hasLocalStorage()) {
13040     switch (var->getType().getObjCLifetime()) {
13041     case Qualifiers::OCL_None:
13042     case Qualifiers::OCL_ExplicitNone:
13043     case Qualifiers::OCL_Autoreleasing:
13044       break;
13045 
13046     case Qualifiers::OCL_Weak:
13047     case Qualifiers::OCL_Strong:
13048       setFunctionHasBranchProtectedScope();
13049       break;
13050     }
13051   }
13052 
13053   if (var->hasLocalStorage() &&
13054       var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
13055     setFunctionHasBranchProtectedScope();
13056 
13057   // Warn about externally-visible variables being defined without a
13058   // prior declaration.  We only want to do this for global
13059   // declarations, but we also specifically need to avoid doing it for
13060   // class members because the linkage of an anonymous class can
13061   // change if it's later given a typedef name.
13062   if (var->isThisDeclarationADefinition() &&
13063       var->getDeclContext()->getRedeclContext()->isFileContext() &&
13064       var->isExternallyVisible() && var->hasLinkage() &&
13065       !var->isInline() && !var->getDescribedVarTemplate() &&
13066       !isa<VarTemplatePartialSpecializationDecl>(var) &&
13067       !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
13068       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
13069                                   var->getLocation())) {
13070     // Find a previous declaration that's not a definition.
13071     VarDecl *prev = var->getPreviousDecl();
13072     while (prev && prev->isThisDeclarationADefinition())
13073       prev = prev->getPreviousDecl();
13074 
13075     if (!prev) {
13076       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
13077       Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
13078           << /* variable */ 0;
13079     }
13080   }
13081 
13082   // Cache the result of checking for constant initialization.
13083   Optional<bool> CacheHasConstInit;
13084   const Expr *CacheCulprit = nullptr;
13085   auto checkConstInit = [&]() mutable {
13086     if (!CacheHasConstInit)
13087       CacheHasConstInit = var->getInit()->isConstantInitializer(
13088             Context, var->getType()->isReferenceType(), &CacheCulprit);
13089     return *CacheHasConstInit;
13090   };
13091 
13092   if (var->getTLSKind() == VarDecl::TLS_Static) {
13093     if (var->getType().isDestructedType()) {
13094       // GNU C++98 edits for __thread, [basic.start.term]p3:
13095       //   The type of an object with thread storage duration shall not
13096       //   have a non-trivial destructor.
13097       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
13098       if (getLangOpts().CPlusPlus11)
13099         Diag(var->getLocation(), diag::note_use_thread_local);
13100     } else if (getLangOpts().CPlusPlus && var->hasInit()) {
13101       if (!checkConstInit()) {
13102         // GNU C++98 edits for __thread, [basic.start.init]p4:
13103         //   An object of thread storage duration shall not require dynamic
13104         //   initialization.
13105         // FIXME: Need strict checking here.
13106         Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
13107           << CacheCulprit->getSourceRange();
13108         if (getLangOpts().CPlusPlus11)
13109           Diag(var->getLocation(), diag::note_use_thread_local);
13110       }
13111     }
13112   }
13113 
13114 
13115   if (!var->getType()->isStructureType() && var->hasInit() &&
13116       isa<InitListExpr>(var->getInit())) {
13117     const auto *ILE = cast<InitListExpr>(var->getInit());
13118     unsigned NumInits = ILE->getNumInits();
13119     if (NumInits > 2)
13120       for (unsigned I = 0; I < NumInits; ++I) {
13121         const auto *Init = ILE->getInit(I);
13122         if (!Init)
13123           break;
13124         const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
13125         if (!SL)
13126           break;
13127 
13128         unsigned NumConcat = SL->getNumConcatenated();
13129         // Diagnose missing comma in string array initialization.
13130         // Do not warn when all the elements in the initializer are concatenated
13131         // together. Do not warn for macros too.
13132         if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) {
13133           bool OnlyOneMissingComma = true;
13134           for (unsigned J = I + 1; J < NumInits; ++J) {
13135             const auto *Init = ILE->getInit(J);
13136             if (!Init)
13137               break;
13138             const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
13139             if (!SLJ || SLJ->getNumConcatenated() > 1) {
13140               OnlyOneMissingComma = false;
13141               break;
13142             }
13143           }
13144 
13145           if (OnlyOneMissingComma) {
13146             SmallVector<FixItHint, 1> Hints;
13147             for (unsigned i = 0; i < NumConcat - 1; ++i)
13148               Hints.push_back(FixItHint::CreateInsertion(
13149                   PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ","));
13150 
13151             Diag(SL->getStrTokenLoc(1),
13152                  diag::warn_concatenated_literal_array_init)
13153                 << Hints;
13154             Diag(SL->getBeginLoc(),
13155                  diag::note_concatenated_string_literal_silence);
13156           }
13157           // In any case, stop now.
13158           break;
13159         }
13160       }
13161   }
13162 
13163 
13164   QualType type = var->getType();
13165 
13166   if (var->hasAttr<BlocksAttr>())
13167     getCurFunction()->addByrefBlockVar(var);
13168 
13169   Expr *Init = var->getInit();
13170   bool GlobalStorage = var->hasGlobalStorage();
13171   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
13172   QualType baseType = Context.getBaseElementType(type);
13173   bool HasConstInit = true;
13174 
13175   // Check whether the initializer is sufficiently constant.
13176   if (getLangOpts().CPlusPlus && !type->isDependentType() && Init &&
13177       !Init->isValueDependent() &&
13178       (GlobalStorage || var->isConstexpr() ||
13179        var->mightBeUsableInConstantExpressions(Context))) {
13180     // If this variable might have a constant initializer or might be usable in
13181     // constant expressions, check whether or not it actually is now.  We can't
13182     // do this lazily, because the result might depend on things that change
13183     // later, such as which constexpr functions happen to be defined.
13184     SmallVector<PartialDiagnosticAt, 8> Notes;
13185     if (!getLangOpts().CPlusPlus11) {
13186       // Prior to C++11, in contexts where a constant initializer is required,
13187       // the set of valid constant initializers is described by syntactic rules
13188       // in [expr.const]p2-6.
13189       // FIXME: Stricter checking for these rules would be useful for constinit /
13190       // -Wglobal-constructors.
13191       HasConstInit = checkConstInit();
13192 
13193       // Compute and cache the constant value, and remember that we have a
13194       // constant initializer.
13195       if (HasConstInit) {
13196         (void)var->checkForConstantInitialization(Notes);
13197         Notes.clear();
13198       } else if (CacheCulprit) {
13199         Notes.emplace_back(CacheCulprit->getExprLoc(),
13200                            PDiag(diag::note_invalid_subexpr_in_const_expr));
13201         Notes.back().second << CacheCulprit->getSourceRange();
13202       }
13203     } else {
13204       // Evaluate the initializer to see if it's a constant initializer.
13205       HasConstInit = var->checkForConstantInitialization(Notes);
13206     }
13207 
13208     if (HasConstInit) {
13209       // FIXME: Consider replacing the initializer with a ConstantExpr.
13210     } else if (var->isConstexpr()) {
13211       SourceLocation DiagLoc = var->getLocation();
13212       // If the note doesn't add any useful information other than a source
13213       // location, fold it into the primary diagnostic.
13214       if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
13215                                    diag::note_invalid_subexpr_in_const_expr) {
13216         DiagLoc = Notes[0].first;
13217         Notes.clear();
13218       }
13219       Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
13220           << var << Init->getSourceRange();
13221       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
13222         Diag(Notes[I].first, Notes[I].second);
13223     } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) {
13224       auto *Attr = var->getAttr<ConstInitAttr>();
13225       Diag(var->getLocation(), diag::err_require_constant_init_failed)
13226           << Init->getSourceRange();
13227       Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here)
13228           << Attr->getRange() << Attr->isConstinit();
13229       for (auto &it : Notes)
13230         Diag(it.first, it.second);
13231     } else if (IsGlobal &&
13232                !getDiagnostics().isIgnored(diag::warn_global_constructor,
13233                                            var->getLocation())) {
13234       // Warn about globals which don't have a constant initializer.  Don't
13235       // warn about globals with a non-trivial destructor because we already
13236       // warned about them.
13237       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
13238       if (!(RD && !RD->hasTrivialDestructor())) {
13239         // checkConstInit() here permits trivial default initialization even in
13240         // C++11 onwards, where such an initializer is not a constant initializer
13241         // but nonetheless doesn't require a global constructor.
13242         if (!checkConstInit())
13243           Diag(var->getLocation(), diag::warn_global_constructor)
13244               << Init->getSourceRange();
13245       }
13246     }
13247   }
13248 
13249   // Apply section attributes and pragmas to global variables.
13250   if (GlobalStorage && var->isThisDeclarationADefinition() &&
13251       !inTemplateInstantiation()) {
13252     PragmaStack<StringLiteral *> *Stack = nullptr;
13253     int SectionFlags = ASTContext::PSF_Read;
13254     if (var->getType().isConstQualified()) {
13255       if (HasConstInit)
13256         Stack = &ConstSegStack;
13257       else {
13258         Stack = &BSSSegStack;
13259         SectionFlags |= ASTContext::PSF_Write;
13260       }
13261     } else if (var->hasInit() && HasConstInit) {
13262       Stack = &DataSegStack;
13263       SectionFlags |= ASTContext::PSF_Write;
13264     } else {
13265       Stack = &BSSSegStack;
13266       SectionFlags |= ASTContext::PSF_Write;
13267     }
13268     if (const SectionAttr *SA = var->getAttr<SectionAttr>()) {
13269       if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec)
13270         SectionFlags |= ASTContext::PSF_Implicit;
13271       UnifySection(SA->getName(), SectionFlags, var);
13272     } else if (Stack->CurrentValue) {
13273       SectionFlags |= ASTContext::PSF_Implicit;
13274       auto SectionName = Stack->CurrentValue->getString();
13275       var->addAttr(SectionAttr::CreateImplicit(
13276           Context, SectionName, Stack->CurrentPragmaLocation,
13277           AttributeCommonInfo::AS_Pragma, SectionAttr::Declspec_allocate));
13278       if (UnifySection(SectionName, SectionFlags, var))
13279         var->dropAttr<SectionAttr>();
13280     }
13281 
13282     // Apply the init_seg attribute if this has an initializer.  If the
13283     // initializer turns out to not be dynamic, we'll end up ignoring this
13284     // attribute.
13285     if (CurInitSeg && var->getInit())
13286       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
13287                                                CurInitSegLoc,
13288                                                AttributeCommonInfo::AS_Pragma));
13289   }
13290 
13291   // All the following checks are C++ only.
13292   if (!getLangOpts().CPlusPlus) {
13293     // If this variable must be emitted, add it as an initializer for the
13294     // current module.
13295     if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13296       Context.addModuleInitializer(ModuleScopes.back().Module, var);
13297     return;
13298   }
13299 
13300   // Require the destructor.
13301   if (!type->isDependentType())
13302     if (const RecordType *recordType = baseType->getAs<RecordType>())
13303       FinalizeVarWithDestructor(var, recordType);
13304 
13305   // If this variable must be emitted, add it as an initializer for the current
13306   // module.
13307   if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13308     Context.addModuleInitializer(ModuleScopes.back().Module, var);
13309 
13310   // Build the bindings if this is a structured binding declaration.
13311   if (auto *DD = dyn_cast<DecompositionDecl>(var))
13312     CheckCompleteDecompositionDeclaration(DD);
13313 }
13314 
13315 /// Check if VD needs to be dllexport/dllimport due to being in a
13316 /// dllexport/import function.
13317 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
13318   assert(VD->isStaticLocal());
13319 
13320   auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13321 
13322   // Find outermost function when VD is in lambda function.
13323   while (FD && !getDLLAttr(FD) &&
13324          !FD->hasAttr<DLLExportStaticLocalAttr>() &&
13325          !FD->hasAttr<DLLImportStaticLocalAttr>()) {
13326     FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
13327   }
13328 
13329   if (!FD)
13330     return;
13331 
13332   // Static locals inherit dll attributes from their function.
13333   if (Attr *A = getDLLAttr(FD)) {
13334     auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
13335     NewAttr->setInherited(true);
13336     VD->addAttr(NewAttr);
13337   } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
13338     auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
13339     NewAttr->setInherited(true);
13340     VD->addAttr(NewAttr);
13341 
13342     // Export this function to enforce exporting this static variable even
13343     // if it is not used in this compilation unit.
13344     if (!FD->hasAttr<DLLExportAttr>())
13345       FD->addAttr(NewAttr);
13346 
13347   } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
13348     auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
13349     NewAttr->setInherited(true);
13350     VD->addAttr(NewAttr);
13351   }
13352 }
13353 
13354 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
13355 /// any semantic actions necessary after any initializer has been attached.
13356 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
13357   // Note that we are no longer parsing the initializer for this declaration.
13358   ParsingInitForAutoVars.erase(ThisDecl);
13359 
13360   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
13361   if (!VD)
13362     return;
13363 
13364   // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
13365   if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
13366       !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
13367     if (PragmaClangBSSSection.Valid)
13368       VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
13369           Context, PragmaClangBSSSection.SectionName,
13370           PragmaClangBSSSection.PragmaLocation,
13371           AttributeCommonInfo::AS_Pragma));
13372     if (PragmaClangDataSection.Valid)
13373       VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
13374           Context, PragmaClangDataSection.SectionName,
13375           PragmaClangDataSection.PragmaLocation,
13376           AttributeCommonInfo::AS_Pragma));
13377     if (PragmaClangRodataSection.Valid)
13378       VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
13379           Context, PragmaClangRodataSection.SectionName,
13380           PragmaClangRodataSection.PragmaLocation,
13381           AttributeCommonInfo::AS_Pragma));
13382     if (PragmaClangRelroSection.Valid)
13383       VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
13384           Context, PragmaClangRelroSection.SectionName,
13385           PragmaClangRelroSection.PragmaLocation,
13386           AttributeCommonInfo::AS_Pragma));
13387   }
13388 
13389   if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
13390     for (auto *BD : DD->bindings()) {
13391       FinalizeDeclaration(BD);
13392     }
13393   }
13394 
13395   checkAttributesAfterMerging(*this, *VD);
13396 
13397   // Perform TLS alignment check here after attributes attached to the variable
13398   // which may affect the alignment have been processed. Only perform the check
13399   // if the target has a maximum TLS alignment (zero means no constraints).
13400   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
13401     // Protect the check so that it's not performed on dependent types and
13402     // dependent alignments (we can't determine the alignment in that case).
13403     if (VD->getTLSKind() && !VD->hasDependentAlignment()) {
13404       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
13405       if (Context.getDeclAlign(VD) > MaxAlignChars) {
13406         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
13407           << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
13408           << (unsigned)MaxAlignChars.getQuantity();
13409       }
13410     }
13411   }
13412 
13413   if (VD->isStaticLocal())
13414     CheckStaticLocalForDllExport(VD);
13415 
13416   // Perform check for initializers of device-side global variables.
13417   // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
13418   // 7.5). We must also apply the same checks to all __shared__
13419   // variables whether they are local or not. CUDA also allows
13420   // constant initializers for __constant__ and __device__ variables.
13421   if (getLangOpts().CUDA)
13422     checkAllowedCUDAInitializer(VD);
13423 
13424   // Grab the dllimport or dllexport attribute off of the VarDecl.
13425   const InheritableAttr *DLLAttr = getDLLAttr(VD);
13426 
13427   // Imported static data members cannot be defined out-of-line.
13428   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
13429     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
13430         VD->isThisDeclarationADefinition()) {
13431       // We allow definitions of dllimport class template static data members
13432       // with a warning.
13433       CXXRecordDecl *Context =
13434         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
13435       bool IsClassTemplateMember =
13436           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
13437           Context->getDescribedClassTemplate();
13438 
13439       Diag(VD->getLocation(),
13440            IsClassTemplateMember
13441                ? diag::warn_attribute_dllimport_static_field_definition
13442                : diag::err_attribute_dllimport_static_field_definition);
13443       Diag(IA->getLocation(), diag::note_attribute);
13444       if (!IsClassTemplateMember)
13445         VD->setInvalidDecl();
13446     }
13447   }
13448 
13449   // dllimport/dllexport variables cannot be thread local, their TLS index
13450   // isn't exported with the variable.
13451   if (DLLAttr && VD->getTLSKind()) {
13452     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13453     if (F && getDLLAttr(F)) {
13454       assert(VD->isStaticLocal());
13455       // But if this is a static local in a dlimport/dllexport function, the
13456       // function will never be inlined, which means the var would never be
13457       // imported, so having it marked import/export is safe.
13458     } else {
13459       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
13460                                                                     << DLLAttr;
13461       VD->setInvalidDecl();
13462     }
13463   }
13464 
13465   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
13466     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
13467       Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
13468           << Attr;
13469       VD->dropAttr<UsedAttr>();
13470     }
13471   }
13472   if (RetainAttr *Attr = VD->getAttr<RetainAttr>()) {
13473     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
13474       Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
13475           << Attr;
13476       VD->dropAttr<RetainAttr>();
13477     }
13478   }
13479 
13480   const DeclContext *DC = VD->getDeclContext();
13481   // If there's a #pragma GCC visibility in scope, and this isn't a class
13482   // member, set the visibility of this variable.
13483   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
13484     AddPushedVisibilityAttribute(VD);
13485 
13486   // FIXME: Warn on unused var template partial specializations.
13487   if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
13488     MarkUnusedFileScopedDecl(VD);
13489 
13490   // Now we have parsed the initializer and can update the table of magic
13491   // tag values.
13492   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
13493       !VD->getType()->isIntegralOrEnumerationType())
13494     return;
13495 
13496   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
13497     const Expr *MagicValueExpr = VD->getInit();
13498     if (!MagicValueExpr) {
13499       continue;
13500     }
13501     Optional<llvm::APSInt> MagicValueInt;
13502     if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) {
13503       Diag(I->getRange().getBegin(),
13504            diag::err_type_tag_for_datatype_not_ice)
13505         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13506       continue;
13507     }
13508     if (MagicValueInt->getActiveBits() > 64) {
13509       Diag(I->getRange().getBegin(),
13510            diag::err_type_tag_for_datatype_too_large)
13511         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13512       continue;
13513     }
13514     uint64_t MagicValue = MagicValueInt->getZExtValue();
13515     RegisterTypeTagForDatatype(I->getArgumentKind(),
13516                                MagicValue,
13517                                I->getMatchingCType(),
13518                                I->getLayoutCompatible(),
13519                                I->getMustBeNull());
13520   }
13521 }
13522 
13523 static bool hasDeducedAuto(DeclaratorDecl *DD) {
13524   auto *VD = dyn_cast<VarDecl>(DD);
13525   return VD && !VD->getType()->hasAutoForTrailingReturnType();
13526 }
13527 
13528 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
13529                                                    ArrayRef<Decl *> Group) {
13530   SmallVector<Decl*, 8> Decls;
13531 
13532   if (DS.isTypeSpecOwned())
13533     Decls.push_back(DS.getRepAsDecl());
13534 
13535   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
13536   DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
13537   bool DiagnosedMultipleDecomps = false;
13538   DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
13539   bool DiagnosedNonDeducedAuto = false;
13540 
13541   for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13542     if (Decl *D = Group[i]) {
13543       // For declarators, there are some additional syntactic-ish checks we need
13544       // to perform.
13545       if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
13546         if (!FirstDeclaratorInGroup)
13547           FirstDeclaratorInGroup = DD;
13548         if (!FirstDecompDeclaratorInGroup)
13549           FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
13550         if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
13551             !hasDeducedAuto(DD))
13552           FirstNonDeducedAutoInGroup = DD;
13553 
13554         if (FirstDeclaratorInGroup != DD) {
13555           // A decomposition declaration cannot be combined with any other
13556           // declaration in the same group.
13557           if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
13558             Diag(FirstDecompDeclaratorInGroup->getLocation(),
13559                  diag::err_decomp_decl_not_alone)
13560                 << FirstDeclaratorInGroup->getSourceRange()
13561                 << DD->getSourceRange();
13562             DiagnosedMultipleDecomps = true;
13563           }
13564 
13565           // A declarator that uses 'auto' in any way other than to declare a
13566           // variable with a deduced type cannot be combined with any other
13567           // declarator in the same group.
13568           if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
13569             Diag(FirstNonDeducedAutoInGroup->getLocation(),
13570                  diag::err_auto_non_deduced_not_alone)
13571                 << FirstNonDeducedAutoInGroup->getType()
13572                        ->hasAutoForTrailingReturnType()
13573                 << FirstDeclaratorInGroup->getSourceRange()
13574                 << DD->getSourceRange();
13575             DiagnosedNonDeducedAuto = true;
13576           }
13577         }
13578       }
13579 
13580       Decls.push_back(D);
13581     }
13582   }
13583 
13584   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
13585     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
13586       handleTagNumbering(Tag, S);
13587       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
13588           getLangOpts().CPlusPlus)
13589         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
13590     }
13591   }
13592 
13593   return BuildDeclaratorGroup(Decls);
13594 }
13595 
13596 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
13597 /// group, performing any necessary semantic checking.
13598 Sema::DeclGroupPtrTy
13599 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
13600   // C++14 [dcl.spec.auto]p7: (DR1347)
13601   //   If the type that replaces the placeholder type is not the same in each
13602   //   deduction, the program is ill-formed.
13603   if (Group.size() > 1) {
13604     QualType Deduced;
13605     VarDecl *DeducedDecl = nullptr;
13606     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13607       VarDecl *D = dyn_cast<VarDecl>(Group[i]);
13608       if (!D || D->isInvalidDecl())
13609         break;
13610       DeducedType *DT = D->getType()->getContainedDeducedType();
13611       if (!DT || DT->getDeducedType().isNull())
13612         continue;
13613       if (Deduced.isNull()) {
13614         Deduced = DT->getDeducedType();
13615         DeducedDecl = D;
13616       } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
13617         auto *AT = dyn_cast<AutoType>(DT);
13618         auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
13619                         diag::err_auto_different_deductions)
13620                    << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced
13621                    << DeducedDecl->getDeclName() << DT->getDeducedType()
13622                    << D->getDeclName();
13623         if (DeducedDecl->hasInit())
13624           Dia << DeducedDecl->getInit()->getSourceRange();
13625         if (D->getInit())
13626           Dia << D->getInit()->getSourceRange();
13627         D->setInvalidDecl();
13628         break;
13629       }
13630     }
13631   }
13632 
13633   ActOnDocumentableDecls(Group);
13634 
13635   return DeclGroupPtrTy::make(
13636       DeclGroupRef::Create(Context, Group.data(), Group.size()));
13637 }
13638 
13639 void Sema::ActOnDocumentableDecl(Decl *D) {
13640   ActOnDocumentableDecls(D);
13641 }
13642 
13643 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
13644   // Don't parse the comment if Doxygen diagnostics are ignored.
13645   if (Group.empty() || !Group[0])
13646     return;
13647 
13648   if (Diags.isIgnored(diag::warn_doc_param_not_found,
13649                       Group[0]->getLocation()) &&
13650       Diags.isIgnored(diag::warn_unknown_comment_command_name,
13651                       Group[0]->getLocation()))
13652     return;
13653 
13654   if (Group.size() >= 2) {
13655     // This is a decl group.  Normally it will contain only declarations
13656     // produced from declarator list.  But in case we have any definitions or
13657     // additional declaration references:
13658     //   'typedef struct S {} S;'
13659     //   'typedef struct S *S;'
13660     //   'struct S *pS;'
13661     // FinalizeDeclaratorGroup adds these as separate declarations.
13662     Decl *MaybeTagDecl = Group[0];
13663     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
13664       Group = Group.slice(1);
13665     }
13666   }
13667 
13668   // FIMXE: We assume every Decl in the group is in the same file.
13669   // This is false when preprocessor constructs the group from decls in
13670   // different files (e. g. macros or #include).
13671   Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
13672 }
13673 
13674 /// Common checks for a parameter-declaration that should apply to both function
13675 /// parameters and non-type template parameters.
13676 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
13677   // Check that there are no default arguments inside the type of this
13678   // parameter.
13679   if (getLangOpts().CPlusPlus)
13680     CheckExtraCXXDefaultArguments(D);
13681 
13682   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
13683   if (D.getCXXScopeSpec().isSet()) {
13684     Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
13685       << D.getCXXScopeSpec().getRange();
13686   }
13687 
13688   // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
13689   // simple identifier except [...irrelevant cases...].
13690   switch (D.getName().getKind()) {
13691   case UnqualifiedIdKind::IK_Identifier:
13692     break;
13693 
13694   case UnqualifiedIdKind::IK_OperatorFunctionId:
13695   case UnqualifiedIdKind::IK_ConversionFunctionId:
13696   case UnqualifiedIdKind::IK_LiteralOperatorId:
13697   case UnqualifiedIdKind::IK_ConstructorName:
13698   case UnqualifiedIdKind::IK_DestructorName:
13699   case UnqualifiedIdKind::IK_ImplicitSelfParam:
13700   case UnqualifiedIdKind::IK_DeductionGuideName:
13701     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
13702       << GetNameForDeclarator(D).getName();
13703     break;
13704 
13705   case UnqualifiedIdKind::IK_TemplateId:
13706   case UnqualifiedIdKind::IK_ConstructorTemplateId:
13707     // GetNameForDeclarator would not produce a useful name in this case.
13708     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
13709     break;
13710   }
13711 }
13712 
13713 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
13714 /// to introduce parameters into function prototype scope.
13715 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
13716   const DeclSpec &DS = D.getDeclSpec();
13717 
13718   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
13719 
13720   // C++03 [dcl.stc]p2 also permits 'auto'.
13721   StorageClass SC = SC_None;
13722   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
13723     SC = SC_Register;
13724     // In C++11, the 'register' storage class specifier is deprecated.
13725     // In C++17, it is not allowed, but we tolerate it as an extension.
13726     if (getLangOpts().CPlusPlus11) {
13727       Diag(DS.getStorageClassSpecLoc(),
13728            getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
13729                                      : diag::warn_deprecated_register)
13730         << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
13731     }
13732   } else if (getLangOpts().CPlusPlus &&
13733              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
13734     SC = SC_Auto;
13735   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
13736     Diag(DS.getStorageClassSpecLoc(),
13737          diag::err_invalid_storage_class_in_func_decl);
13738     D.getMutableDeclSpec().ClearStorageClassSpecs();
13739   }
13740 
13741   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
13742     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
13743       << DeclSpec::getSpecifierName(TSCS);
13744   if (DS.isInlineSpecified())
13745     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
13746         << getLangOpts().CPlusPlus17;
13747   if (DS.hasConstexprSpecifier())
13748     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
13749         << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
13750 
13751   DiagnoseFunctionSpecifiers(DS);
13752 
13753   CheckFunctionOrTemplateParamDeclarator(S, D);
13754 
13755   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13756   QualType parmDeclType = TInfo->getType();
13757 
13758   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
13759   IdentifierInfo *II = D.getIdentifier();
13760   if (II) {
13761     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
13762                    ForVisibleRedeclaration);
13763     LookupName(R, S);
13764     if (R.isSingleResult()) {
13765       NamedDecl *PrevDecl = R.getFoundDecl();
13766       if (PrevDecl->isTemplateParameter()) {
13767         // Maybe we will complain about the shadowed template parameter.
13768         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
13769         // Just pretend that we didn't see the previous declaration.
13770         PrevDecl = nullptr;
13771       } else if (S->isDeclScope(PrevDecl)) {
13772         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
13773         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
13774 
13775         // Recover by removing the name
13776         II = nullptr;
13777         D.SetIdentifier(nullptr, D.getIdentifierLoc());
13778         D.setInvalidType(true);
13779       }
13780     }
13781   }
13782 
13783   // Temporarily put parameter variables in the translation unit, not
13784   // the enclosing context.  This prevents them from accidentally
13785   // looking like class members in C++.
13786   ParmVarDecl *New =
13787       CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
13788                      D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
13789 
13790   if (D.isInvalidType())
13791     New->setInvalidDecl();
13792 
13793   assert(S->isFunctionPrototypeScope());
13794   assert(S->getFunctionPrototypeDepth() >= 1);
13795   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
13796                     S->getNextFunctionPrototypeIndex());
13797 
13798   // Add the parameter declaration into this scope.
13799   S->AddDecl(New);
13800   if (II)
13801     IdResolver.AddDecl(New);
13802 
13803   ProcessDeclAttributes(S, New, D);
13804 
13805   if (D.getDeclSpec().isModulePrivateSpecified())
13806     Diag(New->getLocation(), diag::err_module_private_local)
13807         << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13808         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13809 
13810   if (New->hasAttr<BlocksAttr>()) {
13811     Diag(New->getLocation(), diag::err_block_on_nonlocal);
13812   }
13813 
13814   if (getLangOpts().OpenCL)
13815     deduceOpenCLAddressSpace(New);
13816 
13817   return New;
13818 }
13819 
13820 /// Synthesizes a variable for a parameter arising from a
13821 /// typedef.
13822 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
13823                                               SourceLocation Loc,
13824                                               QualType T) {
13825   /* FIXME: setting StartLoc == Loc.
13826      Would it be worth to modify callers so as to provide proper source
13827      location for the unnamed parameters, embedding the parameter's type? */
13828   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
13829                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
13830                                            SC_None, nullptr);
13831   Param->setImplicit();
13832   return Param;
13833 }
13834 
13835 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
13836   // Don't diagnose unused-parameter errors in template instantiations; we
13837   // will already have done so in the template itself.
13838   if (inTemplateInstantiation())
13839     return;
13840 
13841   for (const ParmVarDecl *Parameter : Parameters) {
13842     if (!Parameter->isReferenced() && Parameter->getDeclName() &&
13843         !Parameter->hasAttr<UnusedAttr>()) {
13844       Diag(Parameter->getLocation(), diag::warn_unused_parameter)
13845         << Parameter->getDeclName();
13846     }
13847   }
13848 }
13849 
13850 void Sema::DiagnoseSizeOfParametersAndReturnValue(
13851     ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
13852   if (LangOpts.NumLargeByValueCopy == 0) // No check.
13853     return;
13854 
13855   // Warn if the return value is pass-by-value and larger than the specified
13856   // threshold.
13857   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
13858     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
13859     if (Size > LangOpts.NumLargeByValueCopy)
13860       Diag(D->getLocation(), diag::warn_return_value_size) << D << Size;
13861   }
13862 
13863   // Warn if any parameter is pass-by-value and larger than the specified
13864   // threshold.
13865   for (const ParmVarDecl *Parameter : Parameters) {
13866     QualType T = Parameter->getType();
13867     if (T->isDependentType() || !T.isPODType(Context))
13868       continue;
13869     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
13870     if (Size > LangOpts.NumLargeByValueCopy)
13871       Diag(Parameter->getLocation(), diag::warn_parameter_size)
13872           << Parameter << Size;
13873   }
13874 }
13875 
13876 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
13877                                   SourceLocation NameLoc, IdentifierInfo *Name,
13878                                   QualType T, TypeSourceInfo *TSInfo,
13879                                   StorageClass SC) {
13880   // In ARC, infer a lifetime qualifier for appropriate parameter types.
13881   if (getLangOpts().ObjCAutoRefCount &&
13882       T.getObjCLifetime() == Qualifiers::OCL_None &&
13883       T->isObjCLifetimeType()) {
13884 
13885     Qualifiers::ObjCLifetime lifetime;
13886 
13887     // Special cases for arrays:
13888     //   - if it's const, use __unsafe_unretained
13889     //   - otherwise, it's an error
13890     if (T->isArrayType()) {
13891       if (!T.isConstQualified()) {
13892         if (DelayedDiagnostics.shouldDelayDiagnostics())
13893           DelayedDiagnostics.add(
13894               sema::DelayedDiagnostic::makeForbiddenType(
13895               NameLoc, diag::err_arc_array_param_no_ownership, T, false));
13896         else
13897           Diag(NameLoc, diag::err_arc_array_param_no_ownership)
13898               << TSInfo->getTypeLoc().getSourceRange();
13899       }
13900       lifetime = Qualifiers::OCL_ExplicitNone;
13901     } else {
13902       lifetime = T->getObjCARCImplicitLifetime();
13903     }
13904     T = Context.getLifetimeQualifiedType(T, lifetime);
13905   }
13906 
13907   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
13908                                          Context.getAdjustedParameterType(T),
13909                                          TSInfo, SC, nullptr);
13910 
13911   // Make a note if we created a new pack in the scope of a lambda, so that
13912   // we know that references to that pack must also be expanded within the
13913   // lambda scope.
13914   if (New->isParameterPack())
13915     if (auto *LSI = getEnclosingLambda())
13916       LSI->LocalPacks.push_back(New);
13917 
13918   if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
13919       New->getType().hasNonTrivialToPrimitiveCopyCUnion())
13920     checkNonTrivialCUnion(New->getType(), New->getLocation(),
13921                           NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
13922 
13923   // Parameters can not be abstract class types.
13924   // For record types, this is done by the AbstractClassUsageDiagnoser once
13925   // the class has been completely parsed.
13926   if (!CurContext->isRecord() &&
13927       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
13928                              AbstractParamType))
13929     New->setInvalidDecl();
13930 
13931   // Parameter declarators cannot be interface types. All ObjC objects are
13932   // passed by reference.
13933   if (T->isObjCObjectType()) {
13934     SourceLocation TypeEndLoc =
13935         getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
13936     Diag(NameLoc,
13937          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
13938       << FixItHint::CreateInsertion(TypeEndLoc, "*");
13939     T = Context.getObjCObjectPointerType(T);
13940     New->setType(T);
13941   }
13942 
13943   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
13944   // duration shall not be qualified by an address-space qualifier."
13945   // Since all parameters have automatic store duration, they can not have
13946   // an address space.
13947   if (T.getAddressSpace() != LangAS::Default &&
13948       // OpenCL allows function arguments declared to be an array of a type
13949       // to be qualified with an address space.
13950       !(getLangOpts().OpenCL &&
13951         (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
13952     Diag(NameLoc, diag::err_arg_with_address_space);
13953     New->setInvalidDecl();
13954   }
13955 
13956   // PPC MMA non-pointer types are not allowed as function argument types.
13957   if (Context.getTargetInfo().getTriple().isPPC64() &&
13958       CheckPPCMMAType(New->getOriginalType(), New->getLocation())) {
13959     New->setInvalidDecl();
13960   }
13961 
13962   return New;
13963 }
13964 
13965 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
13966                                            SourceLocation LocAfterDecls) {
13967   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
13968 
13969   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
13970   // for a K&R function.
13971   if (!FTI.hasPrototype) {
13972     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
13973       --i;
13974       if (FTI.Params[i].Param == nullptr) {
13975         SmallString<256> Code;
13976         llvm::raw_svector_ostream(Code)
13977             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
13978         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
13979             << FTI.Params[i].Ident
13980             << FixItHint::CreateInsertion(LocAfterDecls, Code);
13981 
13982         // Implicitly declare the argument as type 'int' for lack of a better
13983         // type.
13984         AttributeFactory attrs;
13985         DeclSpec DS(attrs);
13986         const char* PrevSpec; // unused
13987         unsigned DiagID; // unused
13988         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
13989                            DiagID, Context.getPrintingPolicy());
13990         // Use the identifier location for the type source range.
13991         DS.SetRangeStart(FTI.Params[i].IdentLoc);
13992         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
13993         Declarator ParamD(DS, DeclaratorContext::KNRTypeList);
13994         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
13995         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
13996       }
13997     }
13998   }
13999 }
14000 
14001 Decl *
14002 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
14003                               MultiTemplateParamsArg TemplateParameterLists,
14004                               SkipBodyInfo *SkipBody) {
14005   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
14006   assert(D.isFunctionDeclarator() && "Not a function declarator!");
14007   Scope *ParentScope = FnBodyScope->getParent();
14008 
14009   // Check if we are in an `omp begin/end declare variant` scope. If we are, and
14010   // we define a non-templated function definition, we will create a declaration
14011   // instead (=BaseFD), and emit the definition with a mangled name afterwards.
14012   // The base function declaration will have the equivalent of an `omp declare
14013   // variant` annotation which specifies the mangled definition as a
14014   // specialization function under the OpenMP context defined as part of the
14015   // `omp begin declare variant`.
14016   SmallVector<FunctionDecl *, 4> Bases;
14017   if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
14018     ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
14019         ParentScope, D, TemplateParameterLists, Bases);
14020 
14021   D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
14022   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
14023   Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
14024 
14025   if (!Bases.empty())
14026     ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
14027 
14028   return Dcl;
14029 }
14030 
14031 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
14032   Consumer.HandleInlineFunctionDefinition(D);
14033 }
14034 
14035 static bool
14036 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
14037                                 const FunctionDecl *&PossiblePrototype) {
14038   // Don't warn about invalid declarations.
14039   if (FD->isInvalidDecl())
14040     return false;
14041 
14042   // Or declarations that aren't global.
14043   if (!FD->isGlobal())
14044     return false;
14045 
14046   // Don't warn about C++ member functions.
14047   if (isa<CXXMethodDecl>(FD))
14048     return false;
14049 
14050   // Don't warn about 'main'.
14051   if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
14052     if (IdentifierInfo *II = FD->getIdentifier())
14053       if (II->isStr("main") || II->isStr("efi_main"))
14054         return false;
14055 
14056   // Don't warn about inline functions.
14057   if (FD->isInlined())
14058     return false;
14059 
14060   // Don't warn about function templates.
14061   if (FD->getDescribedFunctionTemplate())
14062     return false;
14063 
14064   // Don't warn about function template specializations.
14065   if (FD->isFunctionTemplateSpecialization())
14066     return false;
14067 
14068   // Don't warn for OpenCL kernels.
14069   if (FD->hasAttr<OpenCLKernelAttr>())
14070     return false;
14071 
14072   // Don't warn on explicitly deleted functions.
14073   if (FD->isDeleted())
14074     return false;
14075 
14076   for (const FunctionDecl *Prev = FD->getPreviousDecl();
14077        Prev; Prev = Prev->getPreviousDecl()) {
14078     // Ignore any declarations that occur in function or method
14079     // scope, because they aren't visible from the header.
14080     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
14081       continue;
14082 
14083     PossiblePrototype = Prev;
14084     return Prev->getType()->isFunctionNoProtoType();
14085   }
14086 
14087   return true;
14088 }
14089 
14090 void
14091 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
14092                                    const FunctionDecl *EffectiveDefinition,
14093                                    SkipBodyInfo *SkipBody) {
14094   const FunctionDecl *Definition = EffectiveDefinition;
14095   if (!Definition &&
14096       !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true))
14097     return;
14098 
14099   if (Definition->getFriendObjectKind() != Decl::FOK_None) {
14100     if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) {
14101       if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
14102         // A merged copy of the same function, instantiated as a member of
14103         // the same class, is OK.
14104         if (declaresSameEntity(OrigFD, OrigDef) &&
14105             declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()),
14106                                cast<Decl>(FD->getLexicalDeclContext())))
14107           return;
14108       }
14109     }
14110   }
14111 
14112   if (canRedefineFunction(Definition, getLangOpts()))
14113     return;
14114 
14115   // Don't emit an error when this is redefinition of a typo-corrected
14116   // definition.
14117   if (TypoCorrectedFunctionDefinitions.count(Definition))
14118     return;
14119 
14120   // If we don't have a visible definition of the function, and it's inline or
14121   // a template, skip the new definition.
14122   if (SkipBody && !hasVisibleDefinition(Definition) &&
14123       (Definition->getFormalLinkage() == InternalLinkage ||
14124        Definition->isInlined() ||
14125        Definition->getDescribedFunctionTemplate() ||
14126        Definition->getNumTemplateParameterLists())) {
14127     SkipBody->ShouldSkip = true;
14128     SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
14129     if (auto *TD = Definition->getDescribedFunctionTemplate())
14130       makeMergedDefinitionVisible(TD);
14131     makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
14132     return;
14133   }
14134 
14135   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
14136       Definition->getStorageClass() == SC_Extern)
14137     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
14138         << FD << getLangOpts().CPlusPlus;
14139   else
14140     Diag(FD->getLocation(), diag::err_redefinition) << FD;
14141 
14142   Diag(Definition->getLocation(), diag::note_previous_definition);
14143   FD->setInvalidDecl();
14144 }
14145 
14146 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
14147                                    Sema &S) {
14148   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
14149 
14150   LambdaScopeInfo *LSI = S.PushLambdaScope();
14151   LSI->CallOperator = CallOperator;
14152   LSI->Lambda = LambdaClass;
14153   LSI->ReturnType = CallOperator->getReturnType();
14154   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
14155 
14156   if (LCD == LCD_None)
14157     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
14158   else if (LCD == LCD_ByCopy)
14159     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
14160   else if (LCD == LCD_ByRef)
14161     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
14162   DeclarationNameInfo DNI = CallOperator->getNameInfo();
14163 
14164   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
14165   LSI->Mutable = !CallOperator->isConst();
14166 
14167   // Add the captures to the LSI so they can be noted as already
14168   // captured within tryCaptureVar.
14169   auto I = LambdaClass->field_begin();
14170   for (const auto &C : LambdaClass->captures()) {
14171     if (C.capturesVariable()) {
14172       VarDecl *VD = C.getCapturedVar();
14173       if (VD->isInitCapture())
14174         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
14175       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
14176       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
14177           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
14178           /*EllipsisLoc*/C.isPackExpansion()
14179                          ? C.getEllipsisLoc() : SourceLocation(),
14180           I->getType(), /*Invalid*/false);
14181 
14182     } else if (C.capturesThis()) {
14183       LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
14184                           C.getCaptureKind() == LCK_StarThis);
14185     } else {
14186       LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
14187                              I->getType());
14188     }
14189     ++I;
14190   }
14191 }
14192 
14193 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
14194                                     SkipBodyInfo *SkipBody) {
14195   if (!D) {
14196     // Parsing the function declaration failed in some way. Push on a fake scope
14197     // anyway so we can try to parse the function body.
14198     PushFunctionScope();
14199     PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
14200     return D;
14201   }
14202 
14203   FunctionDecl *FD = nullptr;
14204 
14205   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
14206     FD = FunTmpl->getTemplatedDecl();
14207   else
14208     FD = cast<FunctionDecl>(D);
14209 
14210   // Do not push if it is a lambda because one is already pushed when building
14211   // the lambda in ActOnStartOfLambdaDefinition().
14212   if (!isLambdaCallOperator(FD))
14213     PushExpressionEvaluationContext(
14214         FD->isConsteval() ? ExpressionEvaluationContext::ConstantEvaluated
14215                           : ExprEvalContexts.back().Context);
14216 
14217   // Check for defining attributes before the check for redefinition.
14218   if (const auto *Attr = FD->getAttr<AliasAttr>()) {
14219     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
14220     FD->dropAttr<AliasAttr>();
14221     FD->setInvalidDecl();
14222   }
14223   if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
14224     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
14225     FD->dropAttr<IFuncAttr>();
14226     FD->setInvalidDecl();
14227   }
14228 
14229   if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
14230     if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
14231         Ctor->isDefaultConstructor() &&
14232         Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14233       // If this is an MS ABI dllexport default constructor, instantiate any
14234       // default arguments.
14235       InstantiateDefaultCtorDefaultArgs(Ctor);
14236     }
14237   }
14238 
14239   // See if this is a redefinition. If 'will have body' (or similar) is already
14240   // set, then these checks were already performed when it was set.
14241   if (!FD->willHaveBody() && !FD->isLateTemplateParsed() &&
14242       !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
14243     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
14244 
14245     // If we're skipping the body, we're done. Don't enter the scope.
14246     if (SkipBody && SkipBody->ShouldSkip)
14247       return D;
14248   }
14249 
14250   // Mark this function as "will have a body eventually".  This lets users to
14251   // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
14252   // this function.
14253   FD->setWillHaveBody();
14254 
14255   // If we are instantiating a generic lambda call operator, push
14256   // a LambdaScopeInfo onto the function stack.  But use the information
14257   // that's already been calculated (ActOnLambdaExpr) to prime the current
14258   // LambdaScopeInfo.
14259   // When the template operator is being specialized, the LambdaScopeInfo,
14260   // has to be properly restored so that tryCaptureVariable doesn't try
14261   // and capture any new variables. In addition when calculating potential
14262   // captures during transformation of nested lambdas, it is necessary to
14263   // have the LSI properly restored.
14264   if (isGenericLambdaCallOperatorSpecialization(FD)) {
14265     assert(inTemplateInstantiation() &&
14266            "There should be an active template instantiation on the stack "
14267            "when instantiating a generic lambda!");
14268     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
14269   } else {
14270     // Enter a new function scope
14271     PushFunctionScope();
14272   }
14273 
14274   // Builtin functions cannot be defined.
14275   if (unsigned BuiltinID = FD->getBuiltinID()) {
14276     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
14277         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
14278       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
14279       FD->setInvalidDecl();
14280     }
14281   }
14282 
14283   // The return type of a function definition must be complete
14284   // (C99 6.9.1p3, C++ [dcl.fct]p6).
14285   QualType ResultType = FD->getReturnType();
14286   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
14287       !FD->isInvalidDecl() &&
14288       RequireCompleteType(FD->getLocation(), ResultType,
14289                           diag::err_func_def_incomplete_result))
14290     FD->setInvalidDecl();
14291 
14292   if (FnBodyScope)
14293     PushDeclContext(FnBodyScope, FD);
14294 
14295   // Check the validity of our function parameters
14296   CheckParmsForFunctionDef(FD->parameters(),
14297                            /*CheckParameterNames=*/true);
14298 
14299   // Add non-parameter declarations already in the function to the current
14300   // scope.
14301   if (FnBodyScope) {
14302     for (Decl *NPD : FD->decls()) {
14303       auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
14304       if (!NonParmDecl)
14305         continue;
14306       assert(!isa<ParmVarDecl>(NonParmDecl) &&
14307              "parameters should not be in newly created FD yet");
14308 
14309       // If the decl has a name, make it accessible in the current scope.
14310       if (NonParmDecl->getDeclName())
14311         PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
14312 
14313       // Similarly, dive into enums and fish their constants out, making them
14314       // accessible in this scope.
14315       if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
14316         for (auto *EI : ED->enumerators())
14317           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
14318       }
14319     }
14320   }
14321 
14322   // Introduce our parameters into the function scope
14323   for (auto Param : FD->parameters()) {
14324     Param->setOwningFunction(FD);
14325 
14326     // If this has an identifier, add it to the scope stack.
14327     if (Param->getIdentifier() && FnBodyScope) {
14328       CheckShadow(FnBodyScope, Param);
14329 
14330       PushOnScopeChains(Param, FnBodyScope);
14331     }
14332   }
14333 
14334   // Ensure that the function's exception specification is instantiated.
14335   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
14336     ResolveExceptionSpec(D->getLocation(), FPT);
14337 
14338   // dllimport cannot be applied to non-inline function definitions.
14339   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
14340       !FD->isTemplateInstantiation()) {
14341     assert(!FD->hasAttr<DLLExportAttr>());
14342     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
14343     FD->setInvalidDecl();
14344     return D;
14345   }
14346   // We want to attach documentation to original Decl (which might be
14347   // a function template).
14348   ActOnDocumentableDecl(D);
14349   if (getCurLexicalContext()->isObjCContainer() &&
14350       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
14351       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
14352     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
14353 
14354   return D;
14355 }
14356 
14357 /// Given the set of return statements within a function body,
14358 /// compute the variables that are subject to the named return value
14359 /// optimization.
14360 ///
14361 /// Each of the variables that is subject to the named return value
14362 /// optimization will be marked as NRVO variables in the AST, and any
14363 /// return statement that has a marked NRVO variable as its NRVO candidate can
14364 /// use the named return value optimization.
14365 ///
14366 /// This function applies a very simplistic algorithm for NRVO: if every return
14367 /// statement in the scope of a variable has the same NRVO candidate, that
14368 /// candidate is an NRVO variable.
14369 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
14370   ReturnStmt **Returns = Scope->Returns.data();
14371 
14372   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
14373     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
14374       if (!NRVOCandidate->isNRVOVariable())
14375         Returns[I]->setNRVOCandidate(nullptr);
14376     }
14377   }
14378 }
14379 
14380 bool Sema::canDelayFunctionBody(const Declarator &D) {
14381   // We can't delay parsing the body of a constexpr function template (yet).
14382   if (D.getDeclSpec().hasConstexprSpecifier())
14383     return false;
14384 
14385   // We can't delay parsing the body of a function template with a deduced
14386   // return type (yet).
14387   if (D.getDeclSpec().hasAutoTypeSpec()) {
14388     // If the placeholder introduces a non-deduced trailing return type,
14389     // we can still delay parsing it.
14390     if (D.getNumTypeObjects()) {
14391       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
14392       if (Outer.Kind == DeclaratorChunk::Function &&
14393           Outer.Fun.hasTrailingReturnType()) {
14394         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
14395         return Ty.isNull() || !Ty->isUndeducedType();
14396       }
14397     }
14398     return false;
14399   }
14400 
14401   return true;
14402 }
14403 
14404 bool Sema::canSkipFunctionBody(Decl *D) {
14405   // We cannot skip the body of a function (or function template) which is
14406   // constexpr, since we may need to evaluate its body in order to parse the
14407   // rest of the file.
14408   // We cannot skip the body of a function with an undeduced return type,
14409   // because any callers of that function need to know the type.
14410   if (const FunctionDecl *FD = D->getAsFunction()) {
14411     if (FD->isConstexpr())
14412       return false;
14413     // We can't simply call Type::isUndeducedType here, because inside template
14414     // auto can be deduced to a dependent type, which is not considered
14415     // "undeduced".
14416     if (FD->getReturnType()->getContainedDeducedType())
14417       return false;
14418   }
14419   return Consumer.shouldSkipFunctionBody(D);
14420 }
14421 
14422 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
14423   if (!Decl)
14424     return nullptr;
14425   if (FunctionDecl *FD = Decl->getAsFunction())
14426     FD->setHasSkippedBody();
14427   else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
14428     MD->setHasSkippedBody();
14429   return Decl;
14430 }
14431 
14432 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
14433   return ActOnFinishFunctionBody(D, BodyArg, false);
14434 }
14435 
14436 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
14437 /// body.
14438 class ExitFunctionBodyRAII {
14439 public:
14440   ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
14441   ~ExitFunctionBodyRAII() {
14442     if (!IsLambda)
14443       S.PopExpressionEvaluationContext();
14444   }
14445 
14446 private:
14447   Sema &S;
14448   bool IsLambda = false;
14449 };
14450 
14451 static void diagnoseImplicitlyRetainedSelf(Sema &S) {
14452   llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
14453 
14454   auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
14455     if (EscapeInfo.count(BD))
14456       return EscapeInfo[BD];
14457 
14458     bool R = false;
14459     const BlockDecl *CurBD = BD;
14460 
14461     do {
14462       R = !CurBD->doesNotEscape();
14463       if (R)
14464         break;
14465       CurBD = CurBD->getParent()->getInnermostBlockDecl();
14466     } while (CurBD);
14467 
14468     return EscapeInfo[BD] = R;
14469   };
14470 
14471   // If the location where 'self' is implicitly retained is inside a escaping
14472   // block, emit a diagnostic.
14473   for (const std::pair<SourceLocation, const BlockDecl *> &P :
14474        S.ImplicitlyRetainedSelfLocs)
14475     if (IsOrNestedInEscapingBlock(P.second))
14476       S.Diag(P.first, diag::warn_implicitly_retains_self)
14477           << FixItHint::CreateInsertion(P.first, "self->");
14478 }
14479 
14480 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
14481                                     bool IsInstantiation) {
14482   FunctionScopeInfo *FSI = getCurFunction();
14483   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
14484 
14485   if (FSI->UsesFPIntrin && !FD->hasAttr<StrictFPAttr>())
14486     FD->addAttr(StrictFPAttr::CreateImplicit(Context));
14487 
14488   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
14489   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
14490 
14491   if (getLangOpts().Coroutines && FSI->isCoroutine())
14492     CheckCompletedCoroutineBody(FD, Body);
14493 
14494   // Do not call PopExpressionEvaluationContext() if it is a lambda because one
14495   // is already popped when finishing the lambda in BuildLambdaExpr(). This is
14496   // meant to pop the context added in ActOnStartOfFunctionDef().
14497   ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
14498 
14499   if (FD) {
14500     FD->setBody(Body);
14501     FD->setWillHaveBody(false);
14502 
14503     if (getLangOpts().CPlusPlus14) {
14504       if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
14505           FD->getReturnType()->isUndeducedType()) {
14506         // If the function has a deduced result type but contains no 'return'
14507         // statements, the result type as written must be exactly 'auto', and
14508         // the deduced result type is 'void'.
14509         if (!FD->getReturnType()->getAs<AutoType>()) {
14510           Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
14511               << FD->getReturnType();
14512           FD->setInvalidDecl();
14513         } else {
14514           // Substitute 'void' for the 'auto' in the type.
14515           TypeLoc ResultType = getReturnTypeLoc(FD);
14516           Context.adjustDeducedFunctionResultType(
14517               FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
14518         }
14519       }
14520     } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
14521       // In C++11, we don't use 'auto' deduction rules for lambda call
14522       // operators because we don't support return type deduction.
14523       auto *LSI = getCurLambda();
14524       if (LSI->HasImplicitReturnType) {
14525         deduceClosureReturnType(*LSI);
14526 
14527         // C++11 [expr.prim.lambda]p4:
14528         //   [...] if there are no return statements in the compound-statement
14529         //   [the deduced type is] the type void
14530         QualType RetType =
14531             LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
14532 
14533         // Update the return type to the deduced type.
14534         const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
14535         FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
14536                                             Proto->getExtProtoInfo()));
14537       }
14538     }
14539 
14540     // If the function implicitly returns zero (like 'main') or is naked,
14541     // don't complain about missing return statements.
14542     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
14543       WP.disableCheckFallThrough();
14544 
14545     // MSVC permits the use of pure specifier (=0) on function definition,
14546     // defined at class scope, warn about this non-standard construct.
14547     if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
14548       Diag(FD->getLocation(), diag::ext_pure_function_definition);
14549 
14550     if (!FD->isInvalidDecl()) {
14551       // Don't diagnose unused parameters of defaulted or deleted functions.
14552       if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
14553         DiagnoseUnusedParameters(FD->parameters());
14554       DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
14555                                              FD->getReturnType(), FD);
14556 
14557       // If this is a structor, we need a vtable.
14558       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
14559         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
14560       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
14561         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
14562 
14563       // Try to apply the named return value optimization. We have to check
14564       // if we can do this here because lambdas keep return statements around
14565       // to deduce an implicit return type.
14566       if (FD->getReturnType()->isRecordType() &&
14567           (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
14568         computeNRVO(Body, FSI);
14569     }
14570 
14571     // GNU warning -Wmissing-prototypes:
14572     //   Warn if a global function is defined without a previous
14573     //   prototype declaration. This warning is issued even if the
14574     //   definition itself provides a prototype. The aim is to detect
14575     //   global functions that fail to be declared in header files.
14576     const FunctionDecl *PossiblePrototype = nullptr;
14577     if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
14578       Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
14579 
14580       if (PossiblePrototype) {
14581         // We found a declaration that is not a prototype,
14582         // but that could be a zero-parameter prototype
14583         if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
14584           TypeLoc TL = TI->getTypeLoc();
14585           if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
14586             Diag(PossiblePrototype->getLocation(),
14587                  diag::note_declaration_not_a_prototype)
14588                 << (FD->getNumParams() != 0)
14589                 << (FD->getNumParams() == 0
14590                         ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void")
14591                         : FixItHint{});
14592         }
14593       } else {
14594         // Returns true if the token beginning at this Loc is `const`.
14595         auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM,
14596                                 const LangOptions &LangOpts) {
14597           std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
14598           if (LocInfo.first.isInvalid())
14599             return false;
14600 
14601           bool Invalid = false;
14602           StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
14603           if (Invalid)
14604             return false;
14605 
14606           if (LocInfo.second > Buffer.size())
14607             return false;
14608 
14609           const char *LexStart = Buffer.data() + LocInfo.second;
14610           StringRef StartTok(LexStart, Buffer.size() - LocInfo.second);
14611 
14612           return StartTok.consume_front("const") &&
14613                  (StartTok.empty() || isWhitespace(StartTok[0]) ||
14614                   StartTok.startswith("/*") || StartTok.startswith("//"));
14615         };
14616 
14617         auto findBeginLoc = [&]() {
14618           // If the return type has `const` qualifier, we want to insert
14619           // `static` before `const` (and not before the typename).
14620           if ((FD->getReturnType()->isAnyPointerType() &&
14621                FD->getReturnType()->getPointeeType().isConstQualified()) ||
14622               FD->getReturnType().isConstQualified()) {
14623             // But only do this if we can determine where the `const` is.
14624 
14625             if (isLocAtConst(FD->getBeginLoc(), getSourceManager(),
14626                              getLangOpts()))
14627 
14628               return FD->getBeginLoc();
14629           }
14630           return FD->getTypeSpecStartLoc();
14631         };
14632         Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
14633             << /* function */ 1
14634             << (FD->getStorageClass() == SC_None
14635                     ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
14636                     : FixItHint{});
14637       }
14638 
14639       // GNU warning -Wstrict-prototypes
14640       //   Warn if K&R function is defined without a previous declaration.
14641       //   This warning is issued only if the definition itself does not provide
14642       //   a prototype. Only K&R definitions do not provide a prototype.
14643       if (!FD->hasWrittenPrototype()) {
14644         TypeSourceInfo *TI = FD->getTypeSourceInfo();
14645         TypeLoc TL = TI->getTypeLoc();
14646         FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
14647         Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
14648       }
14649     }
14650 
14651     // Warn on CPUDispatch with an actual body.
14652     if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
14653       if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
14654         if (!CmpndBody->body_empty())
14655           Diag(CmpndBody->body_front()->getBeginLoc(),
14656                diag::warn_dispatch_body_ignored);
14657 
14658     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
14659       const CXXMethodDecl *KeyFunction;
14660       if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
14661           MD->isVirtual() &&
14662           (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
14663           MD == KeyFunction->getCanonicalDecl()) {
14664         // Update the key-function state if necessary for this ABI.
14665         if (FD->isInlined() &&
14666             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
14667           Context.setNonKeyFunction(MD);
14668 
14669           // If the newly-chosen key function is already defined, then we
14670           // need to mark the vtable as used retroactively.
14671           KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
14672           const FunctionDecl *Definition;
14673           if (KeyFunction && KeyFunction->isDefined(Definition))
14674             MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
14675         } else {
14676           // We just defined they key function; mark the vtable as used.
14677           MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
14678         }
14679       }
14680     }
14681 
14682     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
14683            "Function parsing confused");
14684   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
14685     assert(MD == getCurMethodDecl() && "Method parsing confused");
14686     MD->setBody(Body);
14687     if (!MD->isInvalidDecl()) {
14688       DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
14689                                              MD->getReturnType(), MD);
14690 
14691       if (Body)
14692         computeNRVO(Body, FSI);
14693     }
14694     if (FSI->ObjCShouldCallSuper) {
14695       Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
14696           << MD->getSelector().getAsString();
14697       FSI->ObjCShouldCallSuper = false;
14698     }
14699     if (FSI->ObjCWarnForNoDesignatedInitChain) {
14700       const ObjCMethodDecl *InitMethod = nullptr;
14701       bool isDesignated =
14702           MD->isDesignatedInitializerForTheInterface(&InitMethod);
14703       assert(isDesignated && InitMethod);
14704       (void)isDesignated;
14705 
14706       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
14707         auto IFace = MD->getClassInterface();
14708         if (!IFace)
14709           return false;
14710         auto SuperD = IFace->getSuperClass();
14711         if (!SuperD)
14712           return false;
14713         return SuperD->getIdentifier() ==
14714             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
14715       };
14716       // Don't issue this warning for unavailable inits or direct subclasses
14717       // of NSObject.
14718       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
14719         Diag(MD->getLocation(),
14720              diag::warn_objc_designated_init_missing_super_call);
14721         Diag(InitMethod->getLocation(),
14722              diag::note_objc_designated_init_marked_here);
14723       }
14724       FSI->ObjCWarnForNoDesignatedInitChain = false;
14725     }
14726     if (FSI->ObjCWarnForNoInitDelegation) {
14727       // Don't issue this warning for unavaialable inits.
14728       if (!MD->isUnavailable())
14729         Diag(MD->getLocation(),
14730              diag::warn_objc_secondary_init_missing_init_call);
14731       FSI->ObjCWarnForNoInitDelegation = false;
14732     }
14733 
14734     diagnoseImplicitlyRetainedSelf(*this);
14735   } else {
14736     // Parsing the function declaration failed in some way. Pop the fake scope
14737     // we pushed on.
14738     PopFunctionScopeInfo(ActivePolicy, dcl);
14739     return nullptr;
14740   }
14741 
14742   if (Body && FSI->HasPotentialAvailabilityViolations)
14743     DiagnoseUnguardedAvailabilityViolations(dcl);
14744 
14745   assert(!FSI->ObjCShouldCallSuper &&
14746          "This should only be set for ObjC methods, which should have been "
14747          "handled in the block above.");
14748 
14749   // Verify and clean out per-function state.
14750   if (Body && (!FD || !FD->isDefaulted())) {
14751     // C++ constructors that have function-try-blocks can't have return
14752     // statements in the handlers of that block. (C++ [except.handle]p14)
14753     // Verify this.
14754     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
14755       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
14756 
14757     // Verify that gotos and switch cases don't jump into scopes illegally.
14758     if (FSI->NeedsScopeChecking() &&
14759         !PP.isCodeCompletionEnabled())
14760       DiagnoseInvalidJumps(Body);
14761 
14762     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
14763       if (!Destructor->getParent()->isDependentType())
14764         CheckDestructor(Destructor);
14765 
14766       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
14767                                              Destructor->getParent());
14768     }
14769 
14770     // If any errors have occurred, clear out any temporaries that may have
14771     // been leftover. This ensures that these temporaries won't be picked up for
14772     // deletion in some later function.
14773     if (hasUncompilableErrorOccurred() ||
14774         getDiagnostics().getSuppressAllDiagnostics()) {
14775       DiscardCleanupsInEvaluationContext();
14776     }
14777     if (!hasUncompilableErrorOccurred() &&
14778         !isa<FunctionTemplateDecl>(dcl)) {
14779       // Since the body is valid, issue any analysis-based warnings that are
14780       // enabled.
14781       ActivePolicy = &WP;
14782     }
14783 
14784     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
14785         !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
14786       FD->setInvalidDecl();
14787 
14788     if (FD && FD->hasAttr<NakedAttr>()) {
14789       for (const Stmt *S : Body->children()) {
14790         // Allow local register variables without initializer as they don't
14791         // require prologue.
14792         bool RegisterVariables = false;
14793         if (auto *DS = dyn_cast<DeclStmt>(S)) {
14794           for (const auto *Decl : DS->decls()) {
14795             if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
14796               RegisterVariables =
14797                   Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
14798               if (!RegisterVariables)
14799                 break;
14800             }
14801           }
14802         }
14803         if (RegisterVariables)
14804           continue;
14805         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
14806           Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
14807           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
14808           FD->setInvalidDecl();
14809           break;
14810         }
14811       }
14812     }
14813 
14814     assert(ExprCleanupObjects.size() ==
14815                ExprEvalContexts.back().NumCleanupObjects &&
14816            "Leftover temporaries in function");
14817     assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
14818     assert(MaybeODRUseExprs.empty() &&
14819            "Leftover expressions for odr-use checking");
14820   }
14821 
14822   if (!IsInstantiation)
14823     PopDeclContext();
14824 
14825   PopFunctionScopeInfo(ActivePolicy, dcl);
14826   // If any errors have occurred, clear out any temporaries that may have
14827   // been leftover. This ensures that these temporaries won't be picked up for
14828   // deletion in some later function.
14829   if (hasUncompilableErrorOccurred()) {
14830     DiscardCleanupsInEvaluationContext();
14831   }
14832 
14833   if (FD && (LangOpts.OpenMP || LangOpts.CUDA || LangOpts.SYCLIsDevice)) {
14834     auto ES = getEmissionStatus(FD);
14835     if (ES == Sema::FunctionEmissionStatus::Emitted ||
14836         ES == Sema::FunctionEmissionStatus::Unknown)
14837       DeclsToCheckForDeferredDiags.insert(FD);
14838   }
14839 
14840   return dcl;
14841 }
14842 
14843 /// When we finish delayed parsing of an attribute, we must attach it to the
14844 /// relevant Decl.
14845 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
14846                                        ParsedAttributes &Attrs) {
14847   // Always attach attributes to the underlying decl.
14848   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
14849     D = TD->getTemplatedDecl();
14850   ProcessDeclAttributeList(S, D, Attrs);
14851 
14852   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
14853     if (Method->isStatic())
14854       checkThisInStaticMemberFunctionAttributes(Method);
14855 }
14856 
14857 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
14858 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
14859 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
14860                                           IdentifierInfo &II, Scope *S) {
14861   // Find the scope in which the identifier is injected and the corresponding
14862   // DeclContext.
14863   // FIXME: C89 does not say what happens if there is no enclosing block scope.
14864   // In that case, we inject the declaration into the translation unit scope
14865   // instead.
14866   Scope *BlockScope = S;
14867   while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
14868     BlockScope = BlockScope->getParent();
14869 
14870   Scope *ContextScope = BlockScope;
14871   while (!ContextScope->getEntity())
14872     ContextScope = ContextScope->getParent();
14873   ContextRAII SavedContext(*this, ContextScope->getEntity());
14874 
14875   // Before we produce a declaration for an implicitly defined
14876   // function, see whether there was a locally-scoped declaration of
14877   // this name as a function or variable. If so, use that
14878   // (non-visible) declaration, and complain about it.
14879   NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
14880   if (ExternCPrev) {
14881     // We still need to inject the function into the enclosing block scope so
14882     // that later (non-call) uses can see it.
14883     PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
14884 
14885     // C89 footnote 38:
14886     //   If in fact it is not defined as having type "function returning int",
14887     //   the behavior is undefined.
14888     if (!isa<FunctionDecl>(ExternCPrev) ||
14889         !Context.typesAreCompatible(
14890             cast<FunctionDecl>(ExternCPrev)->getType(),
14891             Context.getFunctionNoProtoType(Context.IntTy))) {
14892       Diag(Loc, diag::ext_use_out_of_scope_declaration)
14893           << ExternCPrev << !getLangOpts().C99;
14894       Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
14895       return ExternCPrev;
14896     }
14897   }
14898 
14899   // Extension in C99.  Legal in C90, but warn about it.
14900   unsigned diag_id;
14901   if (II.getName().startswith("__builtin_"))
14902     diag_id = diag::warn_builtin_unknown;
14903   // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
14904   else if (getLangOpts().OpenCL)
14905     diag_id = diag::err_opencl_implicit_function_decl;
14906   else if (getLangOpts().C99)
14907     diag_id = diag::ext_implicit_function_decl;
14908   else
14909     diag_id = diag::warn_implicit_function_decl;
14910   Diag(Loc, diag_id) << &II;
14911 
14912   // If we found a prior declaration of this function, don't bother building
14913   // another one. We've already pushed that one into scope, so there's nothing
14914   // more to do.
14915   if (ExternCPrev)
14916     return ExternCPrev;
14917 
14918   // Because typo correction is expensive, only do it if the implicit
14919   // function declaration is going to be treated as an error.
14920   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
14921     TypoCorrection Corrected;
14922     DeclFilterCCC<FunctionDecl> CCC{};
14923     if (S && (Corrected =
14924                   CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
14925                               S, nullptr, CCC, CTK_NonError)))
14926       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
14927                    /*ErrorRecovery*/false);
14928   }
14929 
14930   // Set a Declarator for the implicit definition: int foo();
14931   const char *Dummy;
14932   AttributeFactory attrFactory;
14933   DeclSpec DS(attrFactory);
14934   unsigned DiagID;
14935   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
14936                                   Context.getPrintingPolicy());
14937   (void)Error; // Silence warning.
14938   assert(!Error && "Error setting up implicit decl!");
14939   SourceLocation NoLoc;
14940   Declarator D(DS, DeclaratorContext::Block);
14941   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
14942                                              /*IsAmbiguous=*/false,
14943                                              /*LParenLoc=*/NoLoc,
14944                                              /*Params=*/nullptr,
14945                                              /*NumParams=*/0,
14946                                              /*EllipsisLoc=*/NoLoc,
14947                                              /*RParenLoc=*/NoLoc,
14948                                              /*RefQualifierIsLvalueRef=*/true,
14949                                              /*RefQualifierLoc=*/NoLoc,
14950                                              /*MutableLoc=*/NoLoc, EST_None,
14951                                              /*ESpecRange=*/SourceRange(),
14952                                              /*Exceptions=*/nullptr,
14953                                              /*ExceptionRanges=*/nullptr,
14954                                              /*NumExceptions=*/0,
14955                                              /*NoexceptExpr=*/nullptr,
14956                                              /*ExceptionSpecTokens=*/nullptr,
14957                                              /*DeclsInPrototype=*/None, Loc,
14958                                              Loc, D),
14959                 std::move(DS.getAttributes()), SourceLocation());
14960   D.SetIdentifier(&II, Loc);
14961 
14962   // Insert this function into the enclosing block scope.
14963   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
14964   FD->setImplicit();
14965 
14966   AddKnownFunctionAttributes(FD);
14967 
14968   return FD;
14969 }
14970 
14971 /// If this function is a C++ replaceable global allocation function
14972 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
14973 /// adds any function attributes that we know a priori based on the standard.
14974 ///
14975 /// We need to check for duplicate attributes both here and where user-written
14976 /// attributes are applied to declarations.
14977 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
14978     FunctionDecl *FD) {
14979   if (FD->isInvalidDecl())
14980     return;
14981 
14982   if (FD->getDeclName().getCXXOverloadedOperator() != OO_New &&
14983       FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New)
14984     return;
14985 
14986   Optional<unsigned> AlignmentParam;
14987   bool IsNothrow = false;
14988   if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow))
14989     return;
14990 
14991   // C++2a [basic.stc.dynamic.allocation]p4:
14992   //   An allocation function that has a non-throwing exception specification
14993   //   indicates failure by returning a null pointer value. Any other allocation
14994   //   function never returns a null pointer value and indicates failure only by
14995   //   throwing an exception [...]
14996   if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>())
14997     FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation()));
14998 
14999   // C++2a [basic.stc.dynamic.allocation]p2:
15000   //   An allocation function attempts to allocate the requested amount of
15001   //   storage. [...] If the request succeeds, the value returned by a
15002   //   replaceable allocation function is a [...] pointer value p0 different
15003   //   from any previously returned value p1 [...]
15004   //
15005   // However, this particular information is being added in codegen,
15006   // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
15007 
15008   // C++2a [basic.stc.dynamic.allocation]p2:
15009   //   An allocation function attempts to allocate the requested amount of
15010   //   storage. If it is successful, it returns the address of the start of a
15011   //   block of storage whose length in bytes is at least as large as the
15012   //   requested size.
15013   if (!FD->hasAttr<AllocSizeAttr>()) {
15014     FD->addAttr(AllocSizeAttr::CreateImplicit(
15015         Context, /*ElemSizeParam=*/ParamIdx(1, FD),
15016         /*NumElemsParam=*/ParamIdx(), FD->getLocation()));
15017   }
15018 
15019   // C++2a [basic.stc.dynamic.allocation]p3:
15020   //   For an allocation function [...], the pointer returned on a successful
15021   //   call shall represent the address of storage that is aligned as follows:
15022   //   (3.1) If the allocation function takes an argument of type
15023   //         std​::​align_­val_­t, the storage will have the alignment
15024   //         specified by the value of this argument.
15025   if (AlignmentParam.hasValue() && !FD->hasAttr<AllocAlignAttr>()) {
15026     FD->addAttr(AllocAlignAttr::CreateImplicit(
15027         Context, ParamIdx(AlignmentParam.getValue(), FD), FD->getLocation()));
15028   }
15029 
15030   // FIXME:
15031   // C++2a [basic.stc.dynamic.allocation]p3:
15032   //   For an allocation function [...], the pointer returned on a successful
15033   //   call shall represent the address of storage that is aligned as follows:
15034   //   (3.2) Otherwise, if the allocation function is named operator new[],
15035   //         the storage is aligned for any object that does not have
15036   //         new-extended alignment ([basic.align]) and is no larger than the
15037   //         requested size.
15038   //   (3.3) Otherwise, the storage is aligned for any object that does not
15039   //         have new-extended alignment and is of the requested size.
15040 }
15041 
15042 /// Adds any function attributes that we know a priori based on
15043 /// the declaration of this function.
15044 ///
15045 /// These attributes can apply both to implicitly-declared builtins
15046 /// (like __builtin___printf_chk) or to library-declared functions
15047 /// like NSLog or printf.
15048 ///
15049 /// We need to check for duplicate attributes both here and where user-written
15050 /// attributes are applied to declarations.
15051 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
15052   if (FD->isInvalidDecl())
15053     return;
15054 
15055   // If this is a built-in function, map its builtin attributes to
15056   // actual attributes.
15057   if (unsigned BuiltinID = FD->getBuiltinID()) {
15058     // Handle printf-formatting attributes.
15059     unsigned FormatIdx;
15060     bool HasVAListArg;
15061     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
15062       if (!FD->hasAttr<FormatAttr>()) {
15063         const char *fmt = "printf";
15064         unsigned int NumParams = FD->getNumParams();
15065         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
15066             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
15067           fmt = "NSString";
15068         FD->addAttr(FormatAttr::CreateImplicit(Context,
15069                                                &Context.Idents.get(fmt),
15070                                                FormatIdx+1,
15071                                                HasVAListArg ? 0 : FormatIdx+2,
15072                                                FD->getLocation()));
15073       }
15074     }
15075     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
15076                                              HasVAListArg)) {
15077      if (!FD->hasAttr<FormatAttr>())
15078        FD->addAttr(FormatAttr::CreateImplicit(Context,
15079                                               &Context.Idents.get("scanf"),
15080                                               FormatIdx+1,
15081                                               HasVAListArg ? 0 : FormatIdx+2,
15082                                               FD->getLocation()));
15083     }
15084 
15085     // Handle automatically recognized callbacks.
15086     SmallVector<int, 4> Encoding;
15087     if (!FD->hasAttr<CallbackAttr>() &&
15088         Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
15089       FD->addAttr(CallbackAttr::CreateImplicit(
15090           Context, Encoding.data(), Encoding.size(), FD->getLocation()));
15091 
15092     // Mark const if we don't care about errno and that is the only thing
15093     // preventing the function from being const. This allows IRgen to use LLVM
15094     // intrinsics for such functions.
15095     if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
15096         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
15097       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
15098 
15099     // We make "fma" on some platforms const because we know it does not set
15100     // errno in those environments even though it could set errno based on the
15101     // C standard.
15102     const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
15103     if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
15104         !FD->hasAttr<ConstAttr>()) {
15105       switch (BuiltinID) {
15106       case Builtin::BI__builtin_fma:
15107       case Builtin::BI__builtin_fmaf:
15108       case Builtin::BI__builtin_fmal:
15109       case Builtin::BIfma:
15110       case Builtin::BIfmaf:
15111       case Builtin::BIfmal:
15112         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
15113         break;
15114       default:
15115         break;
15116       }
15117     }
15118 
15119     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
15120         !FD->hasAttr<ReturnsTwiceAttr>())
15121       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
15122                                          FD->getLocation()));
15123     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
15124       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
15125     if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
15126       FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
15127     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
15128       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
15129     if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
15130         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
15131       // Add the appropriate attribute, depending on the CUDA compilation mode
15132       // and which target the builtin belongs to. For example, during host
15133       // compilation, aux builtins are __device__, while the rest are __host__.
15134       if (getLangOpts().CUDAIsDevice !=
15135           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
15136         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
15137       else
15138         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
15139     }
15140   }
15141 
15142   AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD);
15143 
15144   // If C++ exceptions are enabled but we are told extern "C" functions cannot
15145   // throw, add an implicit nothrow attribute to any extern "C" function we come
15146   // across.
15147   if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
15148       FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
15149     const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
15150     if (!FPT || FPT->getExceptionSpecType() == EST_None)
15151       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
15152   }
15153 
15154   IdentifierInfo *Name = FD->getIdentifier();
15155   if (!Name)
15156     return;
15157   if ((!getLangOpts().CPlusPlus &&
15158        FD->getDeclContext()->isTranslationUnit()) ||
15159       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
15160        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
15161        LinkageSpecDecl::lang_c)) {
15162     // Okay: this could be a libc/libm/Objective-C function we know
15163     // about.
15164   } else
15165     return;
15166 
15167   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
15168     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
15169     // target-specific builtins, perhaps?
15170     if (!FD->hasAttr<FormatAttr>())
15171       FD->addAttr(FormatAttr::CreateImplicit(Context,
15172                                              &Context.Idents.get("printf"), 2,
15173                                              Name->isStr("vasprintf") ? 0 : 3,
15174                                              FD->getLocation()));
15175   }
15176 
15177   if (Name->isStr("__CFStringMakeConstantString")) {
15178     // We already have a __builtin___CFStringMakeConstantString,
15179     // but builds that use -fno-constant-cfstrings don't go through that.
15180     if (!FD->hasAttr<FormatArgAttr>())
15181       FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
15182                                                 FD->getLocation()));
15183   }
15184 }
15185 
15186 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
15187                                     TypeSourceInfo *TInfo) {
15188   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
15189   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
15190 
15191   if (!TInfo) {
15192     assert(D.isInvalidType() && "no declarator info for valid type");
15193     TInfo = Context.getTrivialTypeSourceInfo(T);
15194   }
15195 
15196   // Scope manipulation handled by caller.
15197   TypedefDecl *NewTD =
15198       TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
15199                           D.getIdentifierLoc(), D.getIdentifier(), TInfo);
15200 
15201   // Bail out immediately if we have an invalid declaration.
15202   if (D.isInvalidType()) {
15203     NewTD->setInvalidDecl();
15204     return NewTD;
15205   }
15206 
15207   if (D.getDeclSpec().isModulePrivateSpecified()) {
15208     if (CurContext->isFunctionOrMethod())
15209       Diag(NewTD->getLocation(), diag::err_module_private_local)
15210           << 2 << NewTD
15211           << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
15212           << FixItHint::CreateRemoval(
15213                  D.getDeclSpec().getModulePrivateSpecLoc());
15214     else
15215       NewTD->setModulePrivate();
15216   }
15217 
15218   // C++ [dcl.typedef]p8:
15219   //   If the typedef declaration defines an unnamed class (or
15220   //   enum), the first typedef-name declared by the declaration
15221   //   to be that class type (or enum type) is used to denote the
15222   //   class type (or enum type) for linkage purposes only.
15223   // We need to check whether the type was declared in the declaration.
15224   switch (D.getDeclSpec().getTypeSpecType()) {
15225   case TST_enum:
15226   case TST_struct:
15227   case TST_interface:
15228   case TST_union:
15229   case TST_class: {
15230     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
15231     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
15232     break;
15233   }
15234 
15235   default:
15236     break;
15237   }
15238 
15239   return NewTD;
15240 }
15241 
15242 /// Check that this is a valid underlying type for an enum declaration.
15243 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
15244   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
15245   QualType T = TI->getType();
15246 
15247   if (T->isDependentType())
15248     return false;
15249 
15250   // This doesn't use 'isIntegralType' despite the error message mentioning
15251   // integral type because isIntegralType would also allow enum types in C.
15252   if (const BuiltinType *BT = T->getAs<BuiltinType>())
15253     if (BT->isInteger())
15254       return false;
15255 
15256   if (T->isExtIntType())
15257     return false;
15258 
15259   return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
15260 }
15261 
15262 /// Check whether this is a valid redeclaration of a previous enumeration.
15263 /// \return true if the redeclaration was invalid.
15264 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
15265                                   QualType EnumUnderlyingTy, bool IsFixed,
15266                                   const EnumDecl *Prev) {
15267   if (IsScoped != Prev->isScoped()) {
15268     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
15269       << Prev->isScoped();
15270     Diag(Prev->getLocation(), diag::note_previous_declaration);
15271     return true;
15272   }
15273 
15274   if (IsFixed && Prev->isFixed()) {
15275     if (!EnumUnderlyingTy->isDependentType() &&
15276         !Prev->getIntegerType()->isDependentType() &&
15277         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
15278                                         Prev->getIntegerType())) {
15279       // TODO: Highlight the underlying type of the redeclaration.
15280       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
15281         << EnumUnderlyingTy << Prev->getIntegerType();
15282       Diag(Prev->getLocation(), diag::note_previous_declaration)
15283           << Prev->getIntegerTypeRange();
15284       return true;
15285     }
15286   } else if (IsFixed != Prev->isFixed()) {
15287     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
15288       << Prev->isFixed();
15289     Diag(Prev->getLocation(), diag::note_previous_declaration);
15290     return true;
15291   }
15292 
15293   return false;
15294 }
15295 
15296 /// Get diagnostic %select index for tag kind for
15297 /// redeclaration diagnostic message.
15298 /// WARNING: Indexes apply to particular diagnostics only!
15299 ///
15300 /// \returns diagnostic %select index.
15301 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
15302   switch (Tag) {
15303   case TTK_Struct: return 0;
15304   case TTK_Interface: return 1;
15305   case TTK_Class:  return 2;
15306   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
15307   }
15308 }
15309 
15310 /// Determine if tag kind is a class-key compatible with
15311 /// class for redeclaration (class, struct, or __interface).
15312 ///
15313 /// \returns true iff the tag kind is compatible.
15314 static bool isClassCompatTagKind(TagTypeKind Tag)
15315 {
15316   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
15317 }
15318 
15319 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
15320                                              TagTypeKind TTK) {
15321   if (isa<TypedefDecl>(PrevDecl))
15322     return NTK_Typedef;
15323   else if (isa<TypeAliasDecl>(PrevDecl))
15324     return NTK_TypeAlias;
15325   else if (isa<ClassTemplateDecl>(PrevDecl))
15326     return NTK_Template;
15327   else if (isa<TypeAliasTemplateDecl>(PrevDecl))
15328     return NTK_TypeAliasTemplate;
15329   else if (isa<TemplateTemplateParmDecl>(PrevDecl))
15330     return NTK_TemplateTemplateArgument;
15331   switch (TTK) {
15332   case TTK_Struct:
15333   case TTK_Interface:
15334   case TTK_Class:
15335     return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
15336   case TTK_Union:
15337     return NTK_NonUnion;
15338   case TTK_Enum:
15339     return NTK_NonEnum;
15340   }
15341   llvm_unreachable("invalid TTK");
15342 }
15343 
15344 /// Determine whether a tag with a given kind is acceptable
15345 /// as a redeclaration of the given tag declaration.
15346 ///
15347 /// \returns true if the new tag kind is acceptable, false otherwise.
15348 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
15349                                         TagTypeKind NewTag, bool isDefinition,
15350                                         SourceLocation NewTagLoc,
15351                                         const IdentifierInfo *Name) {
15352   // C++ [dcl.type.elab]p3:
15353   //   The class-key or enum keyword present in the
15354   //   elaborated-type-specifier shall agree in kind with the
15355   //   declaration to which the name in the elaborated-type-specifier
15356   //   refers. This rule also applies to the form of
15357   //   elaborated-type-specifier that declares a class-name or
15358   //   friend class since it can be construed as referring to the
15359   //   definition of the class. Thus, in any
15360   //   elaborated-type-specifier, the enum keyword shall be used to
15361   //   refer to an enumeration (7.2), the union class-key shall be
15362   //   used to refer to a union (clause 9), and either the class or
15363   //   struct class-key shall be used to refer to a class (clause 9)
15364   //   declared using the class or struct class-key.
15365   TagTypeKind OldTag = Previous->getTagKind();
15366   if (OldTag != NewTag &&
15367       !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
15368     return false;
15369 
15370   // Tags are compatible, but we might still want to warn on mismatched tags.
15371   // Non-class tags can't be mismatched at this point.
15372   if (!isClassCompatTagKind(NewTag))
15373     return true;
15374 
15375   // Declarations for which -Wmismatched-tags is disabled are entirely ignored
15376   // by our warning analysis. We don't want to warn about mismatches with (eg)
15377   // declarations in system headers that are designed to be specialized, but if
15378   // a user asks us to warn, we should warn if their code contains mismatched
15379   // declarations.
15380   auto IsIgnoredLoc = [&](SourceLocation Loc) {
15381     return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
15382                                       Loc);
15383   };
15384   if (IsIgnoredLoc(NewTagLoc))
15385     return true;
15386 
15387   auto IsIgnored = [&](const TagDecl *Tag) {
15388     return IsIgnoredLoc(Tag->getLocation());
15389   };
15390   while (IsIgnored(Previous)) {
15391     Previous = Previous->getPreviousDecl();
15392     if (!Previous)
15393       return true;
15394     OldTag = Previous->getTagKind();
15395   }
15396 
15397   bool isTemplate = false;
15398   if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
15399     isTemplate = Record->getDescribedClassTemplate();
15400 
15401   if (inTemplateInstantiation()) {
15402     if (OldTag != NewTag) {
15403       // In a template instantiation, do not offer fix-its for tag mismatches
15404       // since they usually mess up the template instead of fixing the problem.
15405       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15406         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15407         << getRedeclDiagFromTagKind(OldTag);
15408       // FIXME: Note previous location?
15409     }
15410     return true;
15411   }
15412 
15413   if (isDefinition) {
15414     // On definitions, check all previous tags and issue a fix-it for each
15415     // one that doesn't match the current tag.
15416     if (Previous->getDefinition()) {
15417       // Don't suggest fix-its for redefinitions.
15418       return true;
15419     }
15420 
15421     bool previousMismatch = false;
15422     for (const TagDecl *I : Previous->redecls()) {
15423       if (I->getTagKind() != NewTag) {
15424         // Ignore previous declarations for which the warning was disabled.
15425         if (IsIgnored(I))
15426           continue;
15427 
15428         if (!previousMismatch) {
15429           previousMismatch = true;
15430           Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
15431             << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15432             << getRedeclDiagFromTagKind(I->getTagKind());
15433         }
15434         Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
15435           << getRedeclDiagFromTagKind(NewTag)
15436           << FixItHint::CreateReplacement(I->getInnerLocStart(),
15437                TypeWithKeyword::getTagTypeKindName(NewTag));
15438       }
15439     }
15440     return true;
15441   }
15442 
15443   // Identify the prevailing tag kind: this is the kind of the definition (if
15444   // there is a non-ignored definition), or otherwise the kind of the prior
15445   // (non-ignored) declaration.
15446   const TagDecl *PrevDef = Previous->getDefinition();
15447   if (PrevDef && IsIgnored(PrevDef))
15448     PrevDef = nullptr;
15449   const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
15450   if (Redecl->getTagKind() != NewTag) {
15451     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15452       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15453       << getRedeclDiagFromTagKind(OldTag);
15454     Diag(Redecl->getLocation(), diag::note_previous_use);
15455 
15456     // If there is a previous definition, suggest a fix-it.
15457     if (PrevDef) {
15458       Diag(NewTagLoc, diag::note_struct_class_suggestion)
15459         << getRedeclDiagFromTagKind(Redecl->getTagKind())
15460         << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
15461              TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
15462     }
15463   }
15464 
15465   return true;
15466 }
15467 
15468 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
15469 /// from an outer enclosing namespace or file scope inside a friend declaration.
15470 /// This should provide the commented out code in the following snippet:
15471 ///   namespace N {
15472 ///     struct X;
15473 ///     namespace M {
15474 ///       struct Y { friend struct /*N::*/ X; };
15475 ///     }
15476 ///   }
15477 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
15478                                          SourceLocation NameLoc) {
15479   // While the decl is in a namespace, do repeated lookup of that name and see
15480   // if we get the same namespace back.  If we do not, continue until
15481   // translation unit scope, at which point we have a fully qualified NNS.
15482   SmallVector<IdentifierInfo *, 4> Namespaces;
15483   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15484   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
15485     // This tag should be declared in a namespace, which can only be enclosed by
15486     // other namespaces.  Bail if there's an anonymous namespace in the chain.
15487     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
15488     if (!Namespace || Namespace->isAnonymousNamespace())
15489       return FixItHint();
15490     IdentifierInfo *II = Namespace->getIdentifier();
15491     Namespaces.push_back(II);
15492     NamedDecl *Lookup = SemaRef.LookupSingleName(
15493         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
15494     if (Lookup == Namespace)
15495       break;
15496   }
15497 
15498   // Once we have all the namespaces, reverse them to go outermost first, and
15499   // build an NNS.
15500   SmallString<64> Insertion;
15501   llvm::raw_svector_ostream OS(Insertion);
15502   if (DC->isTranslationUnit())
15503     OS << "::";
15504   std::reverse(Namespaces.begin(), Namespaces.end());
15505   for (auto *II : Namespaces)
15506     OS << II->getName() << "::";
15507   return FixItHint::CreateInsertion(NameLoc, Insertion);
15508 }
15509 
15510 /// Determine whether a tag originally declared in context \p OldDC can
15511 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
15512 /// found a declaration in \p OldDC as a previous decl, perhaps through a
15513 /// using-declaration).
15514 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
15515                                          DeclContext *NewDC) {
15516   OldDC = OldDC->getRedeclContext();
15517   NewDC = NewDC->getRedeclContext();
15518 
15519   if (OldDC->Equals(NewDC))
15520     return true;
15521 
15522   // In MSVC mode, we allow a redeclaration if the contexts are related (either
15523   // encloses the other).
15524   if (S.getLangOpts().MSVCCompat &&
15525       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
15526     return true;
15527 
15528   return false;
15529 }
15530 
15531 /// This is invoked when we see 'struct foo' or 'struct {'.  In the
15532 /// former case, Name will be non-null.  In the later case, Name will be null.
15533 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
15534 /// reference/declaration/definition of a tag.
15535 ///
15536 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
15537 /// trailing-type-specifier) other than one in an alias-declaration.
15538 ///
15539 /// \param SkipBody If non-null, will be set to indicate if the caller should
15540 /// skip the definition of this tag and treat it as if it were a declaration.
15541 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
15542                      SourceLocation KWLoc, CXXScopeSpec &SS,
15543                      IdentifierInfo *Name, SourceLocation NameLoc,
15544                      const ParsedAttributesView &Attrs, AccessSpecifier AS,
15545                      SourceLocation ModulePrivateLoc,
15546                      MultiTemplateParamsArg TemplateParameterLists,
15547                      bool &OwnedDecl, bool &IsDependent,
15548                      SourceLocation ScopedEnumKWLoc,
15549                      bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
15550                      bool IsTypeSpecifier, bool IsTemplateParamOrArg,
15551                      SkipBodyInfo *SkipBody) {
15552   // If this is not a definition, it must have a name.
15553   IdentifierInfo *OrigName = Name;
15554   assert((Name != nullptr || TUK == TUK_Definition) &&
15555          "Nameless record must be a definition!");
15556   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
15557 
15558   OwnedDecl = false;
15559   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
15560   bool ScopedEnum = ScopedEnumKWLoc.isValid();
15561 
15562   // FIXME: Check member specializations more carefully.
15563   bool isMemberSpecialization = false;
15564   bool Invalid = false;
15565 
15566   // We only need to do this matching if we have template parameters
15567   // or a scope specifier, which also conveniently avoids this work
15568   // for non-C++ cases.
15569   if (TemplateParameterLists.size() > 0 ||
15570       (SS.isNotEmpty() && TUK != TUK_Reference)) {
15571     if (TemplateParameterList *TemplateParams =
15572             MatchTemplateParametersToScopeSpecifier(
15573                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
15574                 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
15575       if (Kind == TTK_Enum) {
15576         Diag(KWLoc, diag::err_enum_template);
15577         return nullptr;
15578       }
15579 
15580       if (TemplateParams->size() > 0) {
15581         // This is a declaration or definition of a class template (which may
15582         // be a member of another template).
15583 
15584         if (Invalid)
15585           return nullptr;
15586 
15587         OwnedDecl = false;
15588         DeclResult Result = CheckClassTemplate(
15589             S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
15590             AS, ModulePrivateLoc,
15591             /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
15592             TemplateParameterLists.data(), SkipBody);
15593         return Result.get();
15594       } else {
15595         // The "template<>" header is extraneous.
15596         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
15597           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
15598         isMemberSpecialization = true;
15599       }
15600     }
15601 
15602     if (!TemplateParameterLists.empty() && isMemberSpecialization &&
15603         CheckTemplateDeclScope(S, TemplateParameterLists.back()))
15604       return nullptr;
15605   }
15606 
15607   // Figure out the underlying type if this a enum declaration. We need to do
15608   // this early, because it's needed to detect if this is an incompatible
15609   // redeclaration.
15610   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
15611   bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
15612 
15613   if (Kind == TTK_Enum) {
15614     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
15615       // No underlying type explicitly specified, or we failed to parse the
15616       // type, default to int.
15617       EnumUnderlying = Context.IntTy.getTypePtr();
15618     } else if (UnderlyingType.get()) {
15619       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
15620       // integral type; any cv-qualification is ignored.
15621       TypeSourceInfo *TI = nullptr;
15622       GetTypeFromParser(UnderlyingType.get(), &TI);
15623       EnumUnderlying = TI;
15624 
15625       if (CheckEnumUnderlyingType(TI))
15626         // Recover by falling back to int.
15627         EnumUnderlying = Context.IntTy.getTypePtr();
15628 
15629       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
15630                                           UPPC_FixedUnderlyingType))
15631         EnumUnderlying = Context.IntTy.getTypePtr();
15632 
15633     } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
15634       // For MSVC ABI compatibility, unfixed enums must use an underlying type
15635       // of 'int'. However, if this is an unfixed forward declaration, don't set
15636       // the underlying type unless the user enables -fms-compatibility. This
15637       // makes unfixed forward declared enums incomplete and is more conforming.
15638       if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
15639         EnumUnderlying = Context.IntTy.getTypePtr();
15640     }
15641   }
15642 
15643   DeclContext *SearchDC = CurContext;
15644   DeclContext *DC = CurContext;
15645   bool isStdBadAlloc = false;
15646   bool isStdAlignValT = false;
15647 
15648   RedeclarationKind Redecl = forRedeclarationInCurContext();
15649   if (TUK == TUK_Friend || TUK == TUK_Reference)
15650     Redecl = NotForRedeclaration;
15651 
15652   /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
15653   /// implemented asks for structural equivalence checking, the returned decl
15654   /// here is passed back to the parser, allowing the tag body to be parsed.
15655   auto createTagFromNewDecl = [&]() -> TagDecl * {
15656     assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
15657     // If there is an identifier, use the location of the identifier as the
15658     // location of the decl, otherwise use the location of the struct/union
15659     // keyword.
15660     SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
15661     TagDecl *New = nullptr;
15662 
15663     if (Kind == TTK_Enum) {
15664       New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
15665                              ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
15666       // If this is an undefined enum, bail.
15667       if (TUK != TUK_Definition && !Invalid)
15668         return nullptr;
15669       if (EnumUnderlying) {
15670         EnumDecl *ED = cast<EnumDecl>(New);
15671         if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
15672           ED->setIntegerTypeSourceInfo(TI);
15673         else
15674           ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
15675         ED->setPromotionType(ED->getIntegerType());
15676       }
15677     } else { // struct/union
15678       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
15679                                nullptr);
15680     }
15681 
15682     if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
15683       // Add alignment attributes if necessary; these attributes are checked
15684       // when the ASTContext lays out the structure.
15685       //
15686       // It is important for implementing the correct semantics that this
15687       // happen here (in ActOnTag). The #pragma pack stack is
15688       // maintained as a result of parser callbacks which can occur at
15689       // many points during the parsing of a struct declaration (because
15690       // the #pragma tokens are effectively skipped over during the
15691       // parsing of the struct).
15692       if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
15693         AddAlignmentAttributesForRecord(RD);
15694         AddMsStructLayoutForRecord(RD);
15695       }
15696     }
15697     New->setLexicalDeclContext(CurContext);
15698     return New;
15699   };
15700 
15701   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
15702   if (Name && SS.isNotEmpty()) {
15703     // We have a nested-name tag ('struct foo::bar').
15704 
15705     // Check for invalid 'foo::'.
15706     if (SS.isInvalid()) {
15707       Name = nullptr;
15708       goto CreateNewDecl;
15709     }
15710 
15711     // If this is a friend or a reference to a class in a dependent
15712     // context, don't try to make a decl for it.
15713     if (TUK == TUK_Friend || TUK == TUK_Reference) {
15714       DC = computeDeclContext(SS, false);
15715       if (!DC) {
15716         IsDependent = true;
15717         return nullptr;
15718       }
15719     } else {
15720       DC = computeDeclContext(SS, true);
15721       if (!DC) {
15722         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
15723           << SS.getRange();
15724         return nullptr;
15725       }
15726     }
15727 
15728     if (RequireCompleteDeclContext(SS, DC))
15729       return nullptr;
15730 
15731     SearchDC = DC;
15732     // Look-up name inside 'foo::'.
15733     LookupQualifiedName(Previous, DC);
15734 
15735     if (Previous.isAmbiguous())
15736       return nullptr;
15737 
15738     if (Previous.empty()) {
15739       // Name lookup did not find anything. However, if the
15740       // nested-name-specifier refers to the current instantiation,
15741       // and that current instantiation has any dependent base
15742       // classes, we might find something at instantiation time: treat
15743       // this as a dependent elaborated-type-specifier.
15744       // But this only makes any sense for reference-like lookups.
15745       if (Previous.wasNotFoundInCurrentInstantiation() &&
15746           (TUK == TUK_Reference || TUK == TUK_Friend)) {
15747         IsDependent = true;
15748         return nullptr;
15749       }
15750 
15751       // A tag 'foo::bar' must already exist.
15752       Diag(NameLoc, diag::err_not_tag_in_scope)
15753         << Kind << Name << DC << SS.getRange();
15754       Name = nullptr;
15755       Invalid = true;
15756       goto CreateNewDecl;
15757     }
15758   } else if (Name) {
15759     // C++14 [class.mem]p14:
15760     //   If T is the name of a class, then each of the following shall have a
15761     //   name different from T:
15762     //    -- every member of class T that is itself a type
15763     if (TUK != TUK_Reference && TUK != TUK_Friend &&
15764         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
15765       return nullptr;
15766 
15767     // If this is a named struct, check to see if there was a previous forward
15768     // declaration or definition.
15769     // FIXME: We're looking into outer scopes here, even when we
15770     // shouldn't be. Doing so can result in ambiguities that we
15771     // shouldn't be diagnosing.
15772     LookupName(Previous, S);
15773 
15774     // When declaring or defining a tag, ignore ambiguities introduced
15775     // by types using'ed into this scope.
15776     if (Previous.isAmbiguous() &&
15777         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
15778       LookupResult::Filter F = Previous.makeFilter();
15779       while (F.hasNext()) {
15780         NamedDecl *ND = F.next();
15781         if (!ND->getDeclContext()->getRedeclContext()->Equals(
15782                 SearchDC->getRedeclContext()))
15783           F.erase();
15784       }
15785       F.done();
15786     }
15787 
15788     // C++11 [namespace.memdef]p3:
15789     //   If the name in a friend declaration is neither qualified nor
15790     //   a template-id and the declaration is a function or an
15791     //   elaborated-type-specifier, the lookup to determine whether
15792     //   the entity has been previously declared shall not consider
15793     //   any scopes outside the innermost enclosing namespace.
15794     //
15795     // MSVC doesn't implement the above rule for types, so a friend tag
15796     // declaration may be a redeclaration of a type declared in an enclosing
15797     // scope.  They do implement this rule for friend functions.
15798     //
15799     // Does it matter that this should be by scope instead of by
15800     // semantic context?
15801     if (!Previous.empty() && TUK == TUK_Friend) {
15802       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
15803       LookupResult::Filter F = Previous.makeFilter();
15804       bool FriendSawTagOutsideEnclosingNamespace = false;
15805       while (F.hasNext()) {
15806         NamedDecl *ND = F.next();
15807         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15808         if (DC->isFileContext() &&
15809             !EnclosingNS->Encloses(ND->getDeclContext())) {
15810           if (getLangOpts().MSVCCompat)
15811             FriendSawTagOutsideEnclosingNamespace = true;
15812           else
15813             F.erase();
15814         }
15815       }
15816       F.done();
15817 
15818       // Diagnose this MSVC extension in the easy case where lookup would have
15819       // unambiguously found something outside the enclosing namespace.
15820       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
15821         NamedDecl *ND = Previous.getFoundDecl();
15822         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
15823             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
15824       }
15825     }
15826 
15827     // Note:  there used to be some attempt at recovery here.
15828     if (Previous.isAmbiguous())
15829       return nullptr;
15830 
15831     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
15832       // FIXME: This makes sure that we ignore the contexts associated
15833       // with C structs, unions, and enums when looking for a matching
15834       // tag declaration or definition. See the similar lookup tweak
15835       // in Sema::LookupName; is there a better way to deal with this?
15836       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
15837         SearchDC = SearchDC->getParent();
15838     }
15839   }
15840 
15841   if (Previous.isSingleResult() &&
15842       Previous.getFoundDecl()->isTemplateParameter()) {
15843     // Maybe we will complain about the shadowed template parameter.
15844     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
15845     // Just pretend that we didn't see the previous declaration.
15846     Previous.clear();
15847   }
15848 
15849   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
15850       DC->Equals(getStdNamespace())) {
15851     if (Name->isStr("bad_alloc")) {
15852       // This is a declaration of or a reference to "std::bad_alloc".
15853       isStdBadAlloc = true;
15854 
15855       // If std::bad_alloc has been implicitly declared (but made invisible to
15856       // name lookup), fill in this implicit declaration as the previous
15857       // declaration, so that the declarations get chained appropriately.
15858       if (Previous.empty() && StdBadAlloc)
15859         Previous.addDecl(getStdBadAlloc());
15860     } else if (Name->isStr("align_val_t")) {
15861       isStdAlignValT = true;
15862       if (Previous.empty() && StdAlignValT)
15863         Previous.addDecl(getStdAlignValT());
15864     }
15865   }
15866 
15867   // If we didn't find a previous declaration, and this is a reference
15868   // (or friend reference), move to the correct scope.  In C++, we
15869   // also need to do a redeclaration lookup there, just in case
15870   // there's a shadow friend decl.
15871   if (Name && Previous.empty() &&
15872       (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
15873     if (Invalid) goto CreateNewDecl;
15874     assert(SS.isEmpty());
15875 
15876     if (TUK == TUK_Reference || IsTemplateParamOrArg) {
15877       // C++ [basic.scope.pdecl]p5:
15878       //   -- for an elaborated-type-specifier of the form
15879       //
15880       //          class-key identifier
15881       //
15882       //      if the elaborated-type-specifier is used in the
15883       //      decl-specifier-seq or parameter-declaration-clause of a
15884       //      function defined in namespace scope, the identifier is
15885       //      declared as a class-name in the namespace that contains
15886       //      the declaration; otherwise, except as a friend
15887       //      declaration, the identifier is declared in the smallest
15888       //      non-class, non-function-prototype scope that contains the
15889       //      declaration.
15890       //
15891       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
15892       // C structs and unions.
15893       //
15894       // It is an error in C++ to declare (rather than define) an enum
15895       // type, including via an elaborated type specifier.  We'll
15896       // diagnose that later; for now, declare the enum in the same
15897       // scope as we would have picked for any other tag type.
15898       //
15899       // GNU C also supports this behavior as part of its incomplete
15900       // enum types extension, while GNU C++ does not.
15901       //
15902       // Find the context where we'll be declaring the tag.
15903       // FIXME: We would like to maintain the current DeclContext as the
15904       // lexical context,
15905       SearchDC = getTagInjectionContext(SearchDC);
15906 
15907       // Find the scope where we'll be declaring the tag.
15908       S = getTagInjectionScope(S, getLangOpts());
15909     } else {
15910       assert(TUK == TUK_Friend);
15911       // C++ [namespace.memdef]p3:
15912       //   If a friend declaration in a non-local class first declares a
15913       //   class or function, the friend class or function is a member of
15914       //   the innermost enclosing namespace.
15915       SearchDC = SearchDC->getEnclosingNamespaceContext();
15916     }
15917 
15918     // In C++, we need to do a redeclaration lookup to properly
15919     // diagnose some problems.
15920     // FIXME: redeclaration lookup is also used (with and without C++) to find a
15921     // hidden declaration so that we don't get ambiguity errors when using a
15922     // type declared by an elaborated-type-specifier.  In C that is not correct
15923     // and we should instead merge compatible types found by lookup.
15924     if (getLangOpts().CPlusPlus) {
15925       // FIXME: This can perform qualified lookups into function contexts,
15926       // which are meaningless.
15927       Previous.setRedeclarationKind(forRedeclarationInCurContext());
15928       LookupQualifiedName(Previous, SearchDC);
15929     } else {
15930       Previous.setRedeclarationKind(forRedeclarationInCurContext());
15931       LookupName(Previous, S);
15932     }
15933   }
15934 
15935   // If we have a known previous declaration to use, then use it.
15936   if (Previous.empty() && SkipBody && SkipBody->Previous)
15937     Previous.addDecl(SkipBody->Previous);
15938 
15939   if (!Previous.empty()) {
15940     NamedDecl *PrevDecl = Previous.getFoundDecl();
15941     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
15942 
15943     // It's okay to have a tag decl in the same scope as a typedef
15944     // which hides a tag decl in the same scope.  Finding this
15945     // insanity with a redeclaration lookup can only actually happen
15946     // in C++.
15947     //
15948     // This is also okay for elaborated-type-specifiers, which is
15949     // technically forbidden by the current standard but which is
15950     // okay according to the likely resolution of an open issue;
15951     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
15952     if (getLangOpts().CPlusPlus) {
15953       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
15954         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
15955           TagDecl *Tag = TT->getDecl();
15956           if (Tag->getDeclName() == Name &&
15957               Tag->getDeclContext()->getRedeclContext()
15958                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
15959             PrevDecl = Tag;
15960             Previous.clear();
15961             Previous.addDecl(Tag);
15962             Previous.resolveKind();
15963           }
15964         }
15965       }
15966     }
15967 
15968     // If this is a redeclaration of a using shadow declaration, it must
15969     // declare a tag in the same context. In MSVC mode, we allow a
15970     // redefinition if either context is within the other.
15971     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
15972       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
15973       if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
15974           isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
15975           !(OldTag && isAcceptableTagRedeclContext(
15976                           *this, OldTag->getDeclContext(), SearchDC))) {
15977         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
15978         Diag(Shadow->getTargetDecl()->getLocation(),
15979              diag::note_using_decl_target);
15980         Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
15981             << 0;
15982         // Recover by ignoring the old declaration.
15983         Previous.clear();
15984         goto CreateNewDecl;
15985       }
15986     }
15987 
15988     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
15989       // If this is a use of a previous tag, or if the tag is already declared
15990       // in the same scope (so that the definition/declaration completes or
15991       // rementions the tag), reuse the decl.
15992       if (TUK == TUK_Reference || TUK == TUK_Friend ||
15993           isDeclInScope(DirectPrevDecl, SearchDC, S,
15994                         SS.isNotEmpty() || isMemberSpecialization)) {
15995         // Make sure that this wasn't declared as an enum and now used as a
15996         // struct or something similar.
15997         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
15998                                           TUK == TUK_Definition, KWLoc,
15999                                           Name)) {
16000           bool SafeToContinue
16001             = (PrevTagDecl->getTagKind() != TTK_Enum &&
16002                Kind != TTK_Enum);
16003           if (SafeToContinue)
16004             Diag(KWLoc, diag::err_use_with_wrong_tag)
16005               << Name
16006               << FixItHint::CreateReplacement(SourceRange(KWLoc),
16007                                               PrevTagDecl->getKindName());
16008           else
16009             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
16010           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
16011 
16012           if (SafeToContinue)
16013             Kind = PrevTagDecl->getTagKind();
16014           else {
16015             // Recover by making this an anonymous redefinition.
16016             Name = nullptr;
16017             Previous.clear();
16018             Invalid = true;
16019           }
16020         }
16021 
16022         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
16023           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
16024           if (TUK == TUK_Reference || TUK == TUK_Friend)
16025             return PrevTagDecl;
16026 
16027           QualType EnumUnderlyingTy;
16028           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
16029             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
16030           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
16031             EnumUnderlyingTy = QualType(T, 0);
16032 
16033           // All conflicts with previous declarations are recovered by
16034           // returning the previous declaration, unless this is a definition,
16035           // in which case we want the caller to bail out.
16036           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
16037                                      ScopedEnum, EnumUnderlyingTy,
16038                                      IsFixed, PrevEnum))
16039             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
16040         }
16041 
16042         // C++11 [class.mem]p1:
16043         //   A member shall not be declared twice in the member-specification,
16044         //   except that a nested class or member class template can be declared
16045         //   and then later defined.
16046         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
16047             S->isDeclScope(PrevDecl)) {
16048           Diag(NameLoc, diag::ext_member_redeclared);
16049           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
16050         }
16051 
16052         if (!Invalid) {
16053           // If this is a use, just return the declaration we found, unless
16054           // we have attributes.
16055           if (TUK == TUK_Reference || TUK == TUK_Friend) {
16056             if (!Attrs.empty()) {
16057               // FIXME: Diagnose these attributes. For now, we create a new
16058               // declaration to hold them.
16059             } else if (TUK == TUK_Reference &&
16060                        (PrevTagDecl->getFriendObjectKind() ==
16061                             Decl::FOK_Undeclared ||
16062                         PrevDecl->getOwningModule() != getCurrentModule()) &&
16063                        SS.isEmpty()) {
16064               // This declaration is a reference to an existing entity, but
16065               // has different visibility from that entity: it either makes
16066               // a friend visible or it makes a type visible in a new module.
16067               // In either case, create a new declaration. We only do this if
16068               // the declaration would have meant the same thing if no prior
16069               // declaration were found, that is, if it was found in the same
16070               // scope where we would have injected a declaration.
16071               if (!getTagInjectionContext(CurContext)->getRedeclContext()
16072                        ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
16073                 return PrevTagDecl;
16074               // This is in the injected scope, create a new declaration in
16075               // that scope.
16076               S = getTagInjectionScope(S, getLangOpts());
16077             } else {
16078               return PrevTagDecl;
16079             }
16080           }
16081 
16082           // Diagnose attempts to redefine a tag.
16083           if (TUK == TUK_Definition) {
16084             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
16085               // If we're defining a specialization and the previous definition
16086               // is from an implicit instantiation, don't emit an error
16087               // here; we'll catch this in the general case below.
16088               bool IsExplicitSpecializationAfterInstantiation = false;
16089               if (isMemberSpecialization) {
16090                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
16091                   IsExplicitSpecializationAfterInstantiation =
16092                     RD->getTemplateSpecializationKind() !=
16093                     TSK_ExplicitSpecialization;
16094                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
16095                   IsExplicitSpecializationAfterInstantiation =
16096                     ED->getTemplateSpecializationKind() !=
16097                     TSK_ExplicitSpecialization;
16098               }
16099 
16100               // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
16101               // not keep more that one definition around (merge them). However,
16102               // ensure the decl passes the structural compatibility check in
16103               // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
16104               NamedDecl *Hidden = nullptr;
16105               if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
16106                 // There is a definition of this tag, but it is not visible. We
16107                 // explicitly make use of C++'s one definition rule here, and
16108                 // assume that this definition is identical to the hidden one
16109                 // we already have. Make the existing definition visible and
16110                 // use it in place of this one.
16111                 if (!getLangOpts().CPlusPlus) {
16112                   // Postpone making the old definition visible until after we
16113                   // complete parsing the new one and do the structural
16114                   // comparison.
16115                   SkipBody->CheckSameAsPrevious = true;
16116                   SkipBody->New = createTagFromNewDecl();
16117                   SkipBody->Previous = Def;
16118                   return Def;
16119                 } else {
16120                   SkipBody->ShouldSkip = true;
16121                   SkipBody->Previous = Def;
16122                   makeMergedDefinitionVisible(Hidden);
16123                   // Carry on and handle it like a normal definition. We'll
16124                   // skip starting the definitiion later.
16125                 }
16126               } else if (!IsExplicitSpecializationAfterInstantiation) {
16127                 // A redeclaration in function prototype scope in C isn't
16128                 // visible elsewhere, so merely issue a warning.
16129                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
16130                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
16131                 else
16132                   Diag(NameLoc, diag::err_redefinition) << Name;
16133                 notePreviousDefinition(Def,
16134                                        NameLoc.isValid() ? NameLoc : KWLoc);
16135                 // If this is a redefinition, recover by making this
16136                 // struct be anonymous, which will make any later
16137                 // references get the previous definition.
16138                 Name = nullptr;
16139                 Previous.clear();
16140                 Invalid = true;
16141               }
16142             } else {
16143               // If the type is currently being defined, complain
16144               // about a nested redefinition.
16145               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
16146               if (TD->isBeingDefined()) {
16147                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
16148                 Diag(PrevTagDecl->getLocation(),
16149                      diag::note_previous_definition);
16150                 Name = nullptr;
16151                 Previous.clear();
16152                 Invalid = true;
16153               }
16154             }
16155 
16156             // Okay, this is definition of a previously declared or referenced
16157             // tag. We're going to create a new Decl for it.
16158           }
16159 
16160           // Okay, we're going to make a redeclaration.  If this is some kind
16161           // of reference, make sure we build the redeclaration in the same DC
16162           // as the original, and ignore the current access specifier.
16163           if (TUK == TUK_Friend || TUK == TUK_Reference) {
16164             SearchDC = PrevTagDecl->getDeclContext();
16165             AS = AS_none;
16166           }
16167         }
16168         // If we get here we have (another) forward declaration or we
16169         // have a definition.  Just create a new decl.
16170 
16171       } else {
16172         // If we get here, this is a definition of a new tag type in a nested
16173         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
16174         // new decl/type.  We set PrevDecl to NULL so that the entities
16175         // have distinct types.
16176         Previous.clear();
16177       }
16178       // If we get here, we're going to create a new Decl. If PrevDecl
16179       // is non-NULL, it's a definition of the tag declared by
16180       // PrevDecl. If it's NULL, we have a new definition.
16181 
16182     // Otherwise, PrevDecl is not a tag, but was found with tag
16183     // lookup.  This is only actually possible in C++, where a few
16184     // things like templates still live in the tag namespace.
16185     } else {
16186       // Use a better diagnostic if an elaborated-type-specifier
16187       // found the wrong kind of type on the first
16188       // (non-redeclaration) lookup.
16189       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
16190           !Previous.isForRedeclaration()) {
16191         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16192         Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
16193                                                        << Kind;
16194         Diag(PrevDecl->getLocation(), diag::note_declared_at);
16195         Invalid = true;
16196 
16197       // Otherwise, only diagnose if the declaration is in scope.
16198       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
16199                                 SS.isNotEmpty() || isMemberSpecialization)) {
16200         // do nothing
16201 
16202       // Diagnose implicit declarations introduced by elaborated types.
16203       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
16204         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16205         Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
16206         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16207         Invalid = true;
16208 
16209       // Otherwise it's a declaration.  Call out a particularly common
16210       // case here.
16211       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
16212         unsigned Kind = 0;
16213         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
16214         Diag(NameLoc, diag::err_tag_definition_of_typedef)
16215           << Name << Kind << TND->getUnderlyingType();
16216         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16217         Invalid = true;
16218 
16219       // Otherwise, diagnose.
16220       } else {
16221         // The tag name clashes with something else in the target scope,
16222         // issue an error and recover by making this tag be anonymous.
16223         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
16224         notePreviousDefinition(PrevDecl, NameLoc);
16225         Name = nullptr;
16226         Invalid = true;
16227       }
16228 
16229       // The existing declaration isn't relevant to us; we're in a
16230       // new scope, so clear out the previous declaration.
16231       Previous.clear();
16232     }
16233   }
16234 
16235 CreateNewDecl:
16236 
16237   TagDecl *PrevDecl = nullptr;
16238   if (Previous.isSingleResult())
16239     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
16240 
16241   // If there is an identifier, use the location of the identifier as the
16242   // location of the decl, otherwise use the location of the struct/union
16243   // keyword.
16244   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
16245 
16246   // Otherwise, create a new declaration. If there is a previous
16247   // declaration of the same entity, the two will be linked via
16248   // PrevDecl.
16249   TagDecl *New;
16250 
16251   if (Kind == TTK_Enum) {
16252     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16253     // enum X { A, B, C } D;    D should chain to X.
16254     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
16255                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
16256                            ScopedEnumUsesClassTag, IsFixed);
16257 
16258     if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
16259       StdAlignValT = cast<EnumDecl>(New);
16260 
16261     // If this is an undefined enum, warn.
16262     if (TUK != TUK_Definition && !Invalid) {
16263       TagDecl *Def;
16264       if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
16265         // C++0x: 7.2p2: opaque-enum-declaration.
16266         // Conflicts are diagnosed above. Do nothing.
16267       }
16268       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
16269         Diag(Loc, diag::ext_forward_ref_enum_def)
16270           << New;
16271         Diag(Def->getLocation(), diag::note_previous_definition);
16272       } else {
16273         unsigned DiagID = diag::ext_forward_ref_enum;
16274         if (getLangOpts().MSVCCompat)
16275           DiagID = diag::ext_ms_forward_ref_enum;
16276         else if (getLangOpts().CPlusPlus)
16277           DiagID = diag::err_forward_ref_enum;
16278         Diag(Loc, DiagID);
16279       }
16280     }
16281 
16282     if (EnumUnderlying) {
16283       EnumDecl *ED = cast<EnumDecl>(New);
16284       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
16285         ED->setIntegerTypeSourceInfo(TI);
16286       else
16287         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
16288       ED->setPromotionType(ED->getIntegerType());
16289       assert(ED->isComplete() && "enum with type should be complete");
16290     }
16291   } else {
16292     // struct/union/class
16293 
16294     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16295     // struct X { int A; } D;    D should chain to X.
16296     if (getLangOpts().CPlusPlus) {
16297       // FIXME: Look for a way to use RecordDecl for simple structs.
16298       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16299                                   cast_or_null<CXXRecordDecl>(PrevDecl));
16300 
16301       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
16302         StdBadAlloc = cast<CXXRecordDecl>(New);
16303     } else
16304       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16305                                cast_or_null<RecordDecl>(PrevDecl));
16306   }
16307 
16308   // C++11 [dcl.type]p3:
16309   //   A type-specifier-seq shall not define a class or enumeration [...].
16310   if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
16311       TUK == TUK_Definition) {
16312     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
16313       << Context.getTagDeclType(New);
16314     Invalid = true;
16315   }
16316 
16317   if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
16318       DC->getDeclKind() == Decl::Enum) {
16319     Diag(New->getLocation(), diag::err_type_defined_in_enum)
16320       << Context.getTagDeclType(New);
16321     Invalid = true;
16322   }
16323 
16324   // Maybe add qualifier info.
16325   if (SS.isNotEmpty()) {
16326     if (SS.isSet()) {
16327       // If this is either a declaration or a definition, check the
16328       // nested-name-specifier against the current context.
16329       if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
16330           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
16331                                        isMemberSpecialization))
16332         Invalid = true;
16333 
16334       New->setQualifierInfo(SS.getWithLocInContext(Context));
16335       if (TemplateParameterLists.size() > 0) {
16336         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
16337       }
16338     }
16339     else
16340       Invalid = true;
16341   }
16342 
16343   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
16344     // Add alignment attributes if necessary; these attributes are checked when
16345     // the ASTContext lays out the structure.
16346     //
16347     // It is important for implementing the correct semantics that this
16348     // happen here (in ActOnTag). The #pragma pack stack is
16349     // maintained as a result of parser callbacks which can occur at
16350     // many points during the parsing of a struct declaration (because
16351     // the #pragma tokens are effectively skipped over during the
16352     // parsing of the struct).
16353     if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
16354       AddAlignmentAttributesForRecord(RD);
16355       AddMsStructLayoutForRecord(RD);
16356     }
16357   }
16358 
16359   if (ModulePrivateLoc.isValid()) {
16360     if (isMemberSpecialization)
16361       Diag(New->getLocation(), diag::err_module_private_specialization)
16362         << 2
16363         << FixItHint::CreateRemoval(ModulePrivateLoc);
16364     // __module_private__ does not apply to local classes. However, we only
16365     // diagnose this as an error when the declaration specifiers are
16366     // freestanding. Here, we just ignore the __module_private__.
16367     else if (!SearchDC->isFunctionOrMethod())
16368       New->setModulePrivate();
16369   }
16370 
16371   // If this is a specialization of a member class (of a class template),
16372   // check the specialization.
16373   if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
16374     Invalid = true;
16375 
16376   // If we're declaring or defining a tag in function prototype scope in C,
16377   // note that this type can only be used within the function and add it to
16378   // the list of decls to inject into the function definition scope.
16379   if ((Name || Kind == TTK_Enum) &&
16380       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
16381     if (getLangOpts().CPlusPlus) {
16382       // C++ [dcl.fct]p6:
16383       //   Types shall not be defined in return or parameter types.
16384       if (TUK == TUK_Definition && !IsTypeSpecifier) {
16385         Diag(Loc, diag::err_type_defined_in_param_type)
16386             << Name;
16387         Invalid = true;
16388       }
16389     } else if (!PrevDecl) {
16390       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
16391     }
16392   }
16393 
16394   if (Invalid)
16395     New->setInvalidDecl();
16396 
16397   // Set the lexical context. If the tag has a C++ scope specifier, the
16398   // lexical context will be different from the semantic context.
16399   New->setLexicalDeclContext(CurContext);
16400 
16401   // Mark this as a friend decl if applicable.
16402   // In Microsoft mode, a friend declaration also acts as a forward
16403   // declaration so we always pass true to setObjectOfFriendDecl to make
16404   // the tag name visible.
16405   if (TUK == TUK_Friend)
16406     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
16407 
16408   // Set the access specifier.
16409   if (!Invalid && SearchDC->isRecord())
16410     SetMemberAccessSpecifier(New, PrevDecl, AS);
16411 
16412   if (PrevDecl)
16413     CheckRedeclarationModuleOwnership(New, PrevDecl);
16414 
16415   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
16416     New->startDefinition();
16417 
16418   ProcessDeclAttributeList(S, New, Attrs);
16419   AddPragmaAttributes(S, New);
16420 
16421   // If this has an identifier, add it to the scope stack.
16422   if (TUK == TUK_Friend) {
16423     // We might be replacing an existing declaration in the lookup tables;
16424     // if so, borrow its access specifier.
16425     if (PrevDecl)
16426       New->setAccess(PrevDecl->getAccess());
16427 
16428     DeclContext *DC = New->getDeclContext()->getRedeclContext();
16429     DC->makeDeclVisibleInContext(New);
16430     if (Name) // can be null along some error paths
16431       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
16432         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
16433   } else if (Name) {
16434     S = getNonFieldDeclScope(S);
16435     PushOnScopeChains(New, S, true);
16436   } else {
16437     CurContext->addDecl(New);
16438   }
16439 
16440   // If this is the C FILE type, notify the AST context.
16441   if (IdentifierInfo *II = New->getIdentifier())
16442     if (!New->isInvalidDecl() &&
16443         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
16444         II->isStr("FILE"))
16445       Context.setFILEDecl(New);
16446 
16447   if (PrevDecl)
16448     mergeDeclAttributes(New, PrevDecl);
16449 
16450   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
16451     inferGslOwnerPointerAttribute(CXXRD);
16452 
16453   // If there's a #pragma GCC visibility in scope, set the visibility of this
16454   // record.
16455   AddPushedVisibilityAttribute(New);
16456 
16457   if (isMemberSpecialization && !New->isInvalidDecl())
16458     CompleteMemberSpecialization(New, Previous);
16459 
16460   OwnedDecl = true;
16461   // In C++, don't return an invalid declaration. We can't recover well from
16462   // the cases where we make the type anonymous.
16463   if (Invalid && getLangOpts().CPlusPlus) {
16464     if (New->isBeingDefined())
16465       if (auto RD = dyn_cast<RecordDecl>(New))
16466         RD->completeDefinition();
16467     return nullptr;
16468   } else if (SkipBody && SkipBody->ShouldSkip) {
16469     return SkipBody->Previous;
16470   } else {
16471     return New;
16472   }
16473 }
16474 
16475 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
16476   AdjustDeclIfTemplate(TagD);
16477   TagDecl *Tag = cast<TagDecl>(TagD);
16478 
16479   // Enter the tag context.
16480   PushDeclContext(S, Tag);
16481 
16482   ActOnDocumentableDecl(TagD);
16483 
16484   // If there's a #pragma GCC visibility in scope, set the visibility of this
16485   // record.
16486   AddPushedVisibilityAttribute(Tag);
16487 }
16488 
16489 bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
16490                                     SkipBodyInfo &SkipBody) {
16491   if (!hasStructuralCompatLayout(Prev, SkipBody.New))
16492     return false;
16493 
16494   // Make the previous decl visible.
16495   makeMergedDefinitionVisible(SkipBody.Previous);
16496   return true;
16497 }
16498 
16499 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
16500   assert(isa<ObjCContainerDecl>(IDecl) &&
16501          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
16502   DeclContext *OCD = cast<DeclContext>(IDecl);
16503   assert(OCD->getLexicalParent() == CurContext &&
16504       "The next DeclContext should be lexically contained in the current one.");
16505   CurContext = OCD;
16506   return IDecl;
16507 }
16508 
16509 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
16510                                            SourceLocation FinalLoc,
16511                                            bool IsFinalSpelledSealed,
16512                                            bool IsAbstract,
16513                                            SourceLocation LBraceLoc) {
16514   AdjustDeclIfTemplate(TagD);
16515   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
16516 
16517   FieldCollector->StartClass();
16518 
16519   if (!Record->getIdentifier())
16520     return;
16521 
16522   if (IsAbstract)
16523     Record->markAbstract();
16524 
16525   if (FinalLoc.isValid()) {
16526     Record->addAttr(FinalAttr::Create(
16527         Context, FinalLoc, AttributeCommonInfo::AS_Keyword,
16528         static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed)));
16529   }
16530   // C++ [class]p2:
16531   //   [...] The class-name is also inserted into the scope of the
16532   //   class itself; this is known as the injected-class-name. For
16533   //   purposes of access checking, the injected-class-name is treated
16534   //   as if it were a public member name.
16535   CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
16536       Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
16537       Record->getLocation(), Record->getIdentifier(),
16538       /*PrevDecl=*/nullptr,
16539       /*DelayTypeCreation=*/true);
16540   Context.getTypeDeclType(InjectedClassName, Record);
16541   InjectedClassName->setImplicit();
16542   InjectedClassName->setAccess(AS_public);
16543   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
16544       InjectedClassName->setDescribedClassTemplate(Template);
16545   PushOnScopeChains(InjectedClassName, S);
16546   assert(InjectedClassName->isInjectedClassName() &&
16547          "Broken injected-class-name");
16548 }
16549 
16550 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
16551                                     SourceRange BraceRange) {
16552   AdjustDeclIfTemplate(TagD);
16553   TagDecl *Tag = cast<TagDecl>(TagD);
16554   Tag->setBraceRange(BraceRange);
16555 
16556   // Make sure we "complete" the definition even it is invalid.
16557   if (Tag->isBeingDefined()) {
16558     assert(Tag->isInvalidDecl() && "We should already have completed it");
16559     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
16560       RD->completeDefinition();
16561   }
16562 
16563   if (isa<CXXRecordDecl>(Tag)) {
16564     FieldCollector->FinishClass();
16565   }
16566 
16567   // Exit this scope of this tag's definition.
16568   PopDeclContext();
16569 
16570   if (getCurLexicalContext()->isObjCContainer() &&
16571       Tag->getDeclContext()->isFileContext())
16572     Tag->setTopLevelDeclInObjCContainer();
16573 
16574   // Notify the consumer that we've defined a tag.
16575   if (!Tag->isInvalidDecl())
16576     Consumer.HandleTagDeclDefinition(Tag);
16577 }
16578 
16579 void Sema::ActOnObjCContainerFinishDefinition() {
16580   // Exit this scope of this interface definition.
16581   PopDeclContext();
16582 }
16583 
16584 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
16585   assert(DC == CurContext && "Mismatch of container contexts");
16586   OriginalLexicalContext = DC;
16587   ActOnObjCContainerFinishDefinition();
16588 }
16589 
16590 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
16591   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
16592   OriginalLexicalContext = nullptr;
16593 }
16594 
16595 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
16596   AdjustDeclIfTemplate(TagD);
16597   TagDecl *Tag = cast<TagDecl>(TagD);
16598   Tag->setInvalidDecl();
16599 
16600   // Make sure we "complete" the definition even it is invalid.
16601   if (Tag->isBeingDefined()) {
16602     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
16603       RD->completeDefinition();
16604   }
16605 
16606   // We're undoing ActOnTagStartDefinition here, not
16607   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
16608   // the FieldCollector.
16609 
16610   PopDeclContext();
16611 }
16612 
16613 // Note that FieldName may be null for anonymous bitfields.
16614 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
16615                                 IdentifierInfo *FieldName,
16616                                 QualType FieldTy, bool IsMsStruct,
16617                                 Expr *BitWidth, bool *ZeroWidth) {
16618   assert(BitWidth);
16619   if (BitWidth->containsErrors())
16620     return ExprError();
16621 
16622   // Default to true; that shouldn't confuse checks for emptiness
16623   if (ZeroWidth)
16624     *ZeroWidth = true;
16625 
16626   // C99 6.7.2.1p4 - verify the field type.
16627   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
16628   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
16629     // Handle incomplete and sizeless types with a specific error.
16630     if (RequireCompleteSizedType(FieldLoc, FieldTy,
16631                                  diag::err_field_incomplete_or_sizeless))
16632       return ExprError();
16633     if (FieldName)
16634       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
16635         << FieldName << FieldTy << BitWidth->getSourceRange();
16636     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
16637       << FieldTy << BitWidth->getSourceRange();
16638   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
16639                                              UPPC_BitFieldWidth))
16640     return ExprError();
16641 
16642   // If the bit-width is type- or value-dependent, don't try to check
16643   // it now.
16644   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
16645     return BitWidth;
16646 
16647   llvm::APSInt Value;
16648   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold);
16649   if (ICE.isInvalid())
16650     return ICE;
16651   BitWidth = ICE.get();
16652 
16653   if (Value != 0 && ZeroWidth)
16654     *ZeroWidth = false;
16655 
16656   // Zero-width bitfield is ok for anonymous field.
16657   if (Value == 0 && FieldName)
16658     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
16659 
16660   if (Value.isSigned() && Value.isNegative()) {
16661     if (FieldName)
16662       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
16663                << FieldName << toString(Value, 10);
16664     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
16665       << toString(Value, 10);
16666   }
16667 
16668   // The size of the bit-field must not exceed our maximum permitted object
16669   // size.
16670   if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) {
16671     return Diag(FieldLoc, diag::err_bitfield_too_wide)
16672            << !FieldName << FieldName << toString(Value, 10);
16673   }
16674 
16675   if (!FieldTy->isDependentType()) {
16676     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
16677     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
16678     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
16679 
16680     // Over-wide bitfields are an error in C or when using the MSVC bitfield
16681     // ABI.
16682     bool CStdConstraintViolation =
16683         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
16684     bool MSBitfieldViolation =
16685         Value.ugt(TypeStorageSize) &&
16686         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
16687     if (CStdConstraintViolation || MSBitfieldViolation) {
16688       unsigned DiagWidth =
16689           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
16690       return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
16691              << (bool)FieldName << FieldName << toString(Value, 10)
16692              << !CStdConstraintViolation << DiagWidth;
16693     }
16694 
16695     // Warn on types where the user might conceivably expect to get all
16696     // specified bits as value bits: that's all integral types other than
16697     // 'bool'.
16698     if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) {
16699       Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
16700           << FieldName << toString(Value, 10)
16701           << (unsigned)TypeWidth;
16702     }
16703   }
16704 
16705   return BitWidth;
16706 }
16707 
16708 /// ActOnField - Each field of a C struct/union is passed into this in order
16709 /// to create a FieldDecl object for it.
16710 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
16711                        Declarator &D, Expr *BitfieldWidth) {
16712   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
16713                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
16714                                /*InitStyle=*/ICIS_NoInit, AS_public);
16715   return Res;
16716 }
16717 
16718 /// HandleField - Analyze a field of a C struct or a C++ data member.
16719 ///
16720 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
16721                              SourceLocation DeclStart,
16722                              Declarator &D, Expr *BitWidth,
16723                              InClassInitStyle InitStyle,
16724                              AccessSpecifier AS) {
16725   if (D.isDecompositionDeclarator()) {
16726     const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
16727     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
16728       << Decomp.getSourceRange();
16729     return nullptr;
16730   }
16731 
16732   IdentifierInfo *II = D.getIdentifier();
16733   SourceLocation Loc = DeclStart;
16734   if (II) Loc = D.getIdentifierLoc();
16735 
16736   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16737   QualType T = TInfo->getType();
16738   if (getLangOpts().CPlusPlus) {
16739     CheckExtraCXXDefaultArguments(D);
16740 
16741     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
16742                                         UPPC_DataMemberType)) {
16743       D.setInvalidType();
16744       T = Context.IntTy;
16745       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
16746     }
16747   }
16748 
16749   DiagnoseFunctionSpecifiers(D.getDeclSpec());
16750 
16751   if (D.getDeclSpec().isInlineSpecified())
16752     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
16753         << getLangOpts().CPlusPlus17;
16754   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
16755     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
16756          diag::err_invalid_thread)
16757       << DeclSpec::getSpecifierName(TSCS);
16758 
16759   // Check to see if this name was declared as a member previously
16760   NamedDecl *PrevDecl = nullptr;
16761   LookupResult Previous(*this, II, Loc, LookupMemberName,
16762                         ForVisibleRedeclaration);
16763   LookupName(Previous, S);
16764   switch (Previous.getResultKind()) {
16765     case LookupResult::Found:
16766     case LookupResult::FoundUnresolvedValue:
16767       PrevDecl = Previous.getAsSingle<NamedDecl>();
16768       break;
16769 
16770     case LookupResult::FoundOverloaded:
16771       PrevDecl = Previous.getRepresentativeDecl();
16772       break;
16773 
16774     case LookupResult::NotFound:
16775     case LookupResult::NotFoundInCurrentInstantiation:
16776     case LookupResult::Ambiguous:
16777       break;
16778   }
16779   Previous.suppressDiagnostics();
16780 
16781   if (PrevDecl && PrevDecl->isTemplateParameter()) {
16782     // Maybe we will complain about the shadowed template parameter.
16783     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
16784     // Just pretend that we didn't see the previous declaration.
16785     PrevDecl = nullptr;
16786   }
16787 
16788   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
16789     PrevDecl = nullptr;
16790 
16791   bool Mutable
16792     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
16793   SourceLocation TSSL = D.getBeginLoc();
16794   FieldDecl *NewFD
16795     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
16796                      TSSL, AS, PrevDecl, &D);
16797 
16798   if (NewFD->isInvalidDecl())
16799     Record->setInvalidDecl();
16800 
16801   if (D.getDeclSpec().isModulePrivateSpecified())
16802     NewFD->setModulePrivate();
16803 
16804   if (NewFD->isInvalidDecl() && PrevDecl) {
16805     // Don't introduce NewFD into scope; there's already something
16806     // with the same name in the same scope.
16807   } else if (II) {
16808     PushOnScopeChains(NewFD, S);
16809   } else
16810     Record->addDecl(NewFD);
16811 
16812   return NewFD;
16813 }
16814 
16815 /// Build a new FieldDecl and check its well-formedness.
16816 ///
16817 /// This routine builds a new FieldDecl given the fields name, type,
16818 /// record, etc. \p PrevDecl should refer to any previous declaration
16819 /// with the same name and in the same scope as the field to be
16820 /// created.
16821 ///
16822 /// \returns a new FieldDecl.
16823 ///
16824 /// \todo The Declarator argument is a hack. It will be removed once
16825 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
16826                                 TypeSourceInfo *TInfo,
16827                                 RecordDecl *Record, SourceLocation Loc,
16828                                 bool Mutable, Expr *BitWidth,
16829                                 InClassInitStyle InitStyle,
16830                                 SourceLocation TSSL,
16831                                 AccessSpecifier AS, NamedDecl *PrevDecl,
16832                                 Declarator *D) {
16833   IdentifierInfo *II = Name.getAsIdentifierInfo();
16834   bool InvalidDecl = false;
16835   if (D) InvalidDecl = D->isInvalidType();
16836 
16837   // If we receive a broken type, recover by assuming 'int' and
16838   // marking this declaration as invalid.
16839   if (T.isNull() || T->containsErrors()) {
16840     InvalidDecl = true;
16841     T = Context.IntTy;
16842   }
16843 
16844   QualType EltTy = Context.getBaseElementType(T);
16845   if (!EltTy->isDependentType() && !EltTy->containsErrors()) {
16846     if (RequireCompleteSizedType(Loc, EltTy,
16847                                  diag::err_field_incomplete_or_sizeless)) {
16848       // Fields of incomplete type force their record to be invalid.
16849       Record->setInvalidDecl();
16850       InvalidDecl = true;
16851     } else {
16852       NamedDecl *Def;
16853       EltTy->isIncompleteType(&Def);
16854       if (Def && Def->isInvalidDecl()) {
16855         Record->setInvalidDecl();
16856         InvalidDecl = true;
16857       }
16858     }
16859   }
16860 
16861   // TR 18037 does not allow fields to be declared with address space
16862   if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
16863       T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
16864     Diag(Loc, diag::err_field_with_address_space);
16865     Record->setInvalidDecl();
16866     InvalidDecl = true;
16867   }
16868 
16869   if (LangOpts.OpenCL) {
16870     // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
16871     // used as structure or union field: image, sampler, event or block types.
16872     if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
16873         T->isBlockPointerType()) {
16874       Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
16875       Record->setInvalidDecl();
16876       InvalidDecl = true;
16877     }
16878     // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension
16879     // is enabled.
16880     if (BitWidth && !getOpenCLOptions().isAvailableOption(
16881                         "__cl_clang_bitfields", LangOpts)) {
16882       Diag(Loc, diag::err_opencl_bitfields);
16883       InvalidDecl = true;
16884     }
16885   }
16886 
16887   // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
16888   if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
16889       T.hasQualifiers()) {
16890     InvalidDecl = true;
16891     Diag(Loc, diag::err_anon_bitfield_qualifiers);
16892   }
16893 
16894   // C99 6.7.2.1p8: A member of a structure or union may have any type other
16895   // than a variably modified type.
16896   if (!InvalidDecl && T->isVariablyModifiedType()) {
16897     if (!tryToFixVariablyModifiedVarType(
16898             TInfo, T, Loc, diag::err_typecheck_field_variable_size))
16899       InvalidDecl = true;
16900   }
16901 
16902   // Fields can not have abstract class types
16903   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
16904                                              diag::err_abstract_type_in_decl,
16905                                              AbstractFieldType))
16906     InvalidDecl = true;
16907 
16908   bool ZeroWidth = false;
16909   if (InvalidDecl)
16910     BitWidth = nullptr;
16911   // If this is declared as a bit-field, check the bit-field.
16912   if (BitWidth) {
16913     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
16914                               &ZeroWidth).get();
16915     if (!BitWidth) {
16916       InvalidDecl = true;
16917       BitWidth = nullptr;
16918       ZeroWidth = false;
16919     }
16920   }
16921 
16922   // Check that 'mutable' is consistent with the type of the declaration.
16923   if (!InvalidDecl && Mutable) {
16924     unsigned DiagID = 0;
16925     if (T->isReferenceType())
16926       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
16927                                         : diag::err_mutable_reference;
16928     else if (T.isConstQualified())
16929       DiagID = diag::err_mutable_const;
16930 
16931     if (DiagID) {
16932       SourceLocation ErrLoc = Loc;
16933       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
16934         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
16935       Diag(ErrLoc, DiagID);
16936       if (DiagID != diag::ext_mutable_reference) {
16937         Mutable = false;
16938         InvalidDecl = true;
16939       }
16940     }
16941   }
16942 
16943   // C++11 [class.union]p8 (DR1460):
16944   //   At most one variant member of a union may have a
16945   //   brace-or-equal-initializer.
16946   if (InitStyle != ICIS_NoInit)
16947     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
16948 
16949   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
16950                                        BitWidth, Mutable, InitStyle);
16951   if (InvalidDecl)
16952     NewFD->setInvalidDecl();
16953 
16954   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
16955     Diag(Loc, diag::err_duplicate_member) << II;
16956     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16957     NewFD->setInvalidDecl();
16958   }
16959 
16960   if (!InvalidDecl && getLangOpts().CPlusPlus) {
16961     if (Record->isUnion()) {
16962       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
16963         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
16964         if (RDecl->getDefinition()) {
16965           // C++ [class.union]p1: An object of a class with a non-trivial
16966           // constructor, a non-trivial copy constructor, a non-trivial
16967           // destructor, or a non-trivial copy assignment operator
16968           // cannot be a member of a union, nor can an array of such
16969           // objects.
16970           if (CheckNontrivialField(NewFD))
16971             NewFD->setInvalidDecl();
16972         }
16973       }
16974 
16975       // C++ [class.union]p1: If a union contains a member of reference type,
16976       // the program is ill-formed, except when compiling with MSVC extensions
16977       // enabled.
16978       if (EltTy->isReferenceType()) {
16979         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
16980                                     diag::ext_union_member_of_reference_type :
16981                                     diag::err_union_member_of_reference_type)
16982           << NewFD->getDeclName() << EltTy;
16983         if (!getLangOpts().MicrosoftExt)
16984           NewFD->setInvalidDecl();
16985       }
16986     }
16987   }
16988 
16989   // FIXME: We need to pass in the attributes given an AST
16990   // representation, not a parser representation.
16991   if (D) {
16992     // FIXME: The current scope is almost... but not entirely... correct here.
16993     ProcessDeclAttributes(getCurScope(), NewFD, *D);
16994 
16995     if (NewFD->hasAttrs())
16996       CheckAlignasUnderalignment(NewFD);
16997   }
16998 
16999   // In auto-retain/release, infer strong retension for fields of
17000   // retainable type.
17001   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
17002     NewFD->setInvalidDecl();
17003 
17004   if (T.isObjCGCWeak())
17005     Diag(Loc, diag::warn_attribute_weak_on_field);
17006 
17007   // PPC MMA non-pointer types are not allowed as field types.
17008   if (Context.getTargetInfo().getTriple().isPPC64() &&
17009       CheckPPCMMAType(T, NewFD->getLocation()))
17010     NewFD->setInvalidDecl();
17011 
17012   NewFD->setAccess(AS);
17013   return NewFD;
17014 }
17015 
17016 bool Sema::CheckNontrivialField(FieldDecl *FD) {
17017   assert(FD);
17018   assert(getLangOpts().CPlusPlus && "valid check only for C++");
17019 
17020   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
17021     return false;
17022 
17023   QualType EltTy = Context.getBaseElementType(FD->getType());
17024   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
17025     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
17026     if (RDecl->getDefinition()) {
17027       // We check for copy constructors before constructors
17028       // because otherwise we'll never get complaints about
17029       // copy constructors.
17030 
17031       CXXSpecialMember member = CXXInvalid;
17032       // We're required to check for any non-trivial constructors. Since the
17033       // implicit default constructor is suppressed if there are any
17034       // user-declared constructors, we just need to check that there is a
17035       // trivial default constructor and a trivial copy constructor. (We don't
17036       // worry about move constructors here, since this is a C++98 check.)
17037       if (RDecl->hasNonTrivialCopyConstructor())
17038         member = CXXCopyConstructor;
17039       else if (!RDecl->hasTrivialDefaultConstructor())
17040         member = CXXDefaultConstructor;
17041       else if (RDecl->hasNonTrivialCopyAssignment())
17042         member = CXXCopyAssignment;
17043       else if (RDecl->hasNonTrivialDestructor())
17044         member = CXXDestructor;
17045 
17046       if (member != CXXInvalid) {
17047         if (!getLangOpts().CPlusPlus11 &&
17048             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
17049           // Objective-C++ ARC: it is an error to have a non-trivial field of
17050           // a union. However, system headers in Objective-C programs
17051           // occasionally have Objective-C lifetime objects within unions,
17052           // and rather than cause the program to fail, we make those
17053           // members unavailable.
17054           SourceLocation Loc = FD->getLocation();
17055           if (getSourceManager().isInSystemHeader(Loc)) {
17056             if (!FD->hasAttr<UnavailableAttr>())
17057               FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
17058                             UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
17059             return false;
17060           }
17061         }
17062 
17063         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
17064                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
17065                diag::err_illegal_union_or_anon_struct_member)
17066           << FD->getParent()->isUnion() << FD->getDeclName() << member;
17067         DiagnoseNontrivial(RDecl, member);
17068         return !getLangOpts().CPlusPlus11;
17069       }
17070     }
17071   }
17072 
17073   return false;
17074 }
17075 
17076 /// TranslateIvarVisibility - Translate visibility from a token ID to an
17077 ///  AST enum value.
17078 static ObjCIvarDecl::AccessControl
17079 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
17080   switch (ivarVisibility) {
17081   default: llvm_unreachable("Unknown visitibility kind");
17082   case tok::objc_private: return ObjCIvarDecl::Private;
17083   case tok::objc_public: return ObjCIvarDecl::Public;
17084   case tok::objc_protected: return ObjCIvarDecl::Protected;
17085   case tok::objc_package: return ObjCIvarDecl::Package;
17086   }
17087 }
17088 
17089 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
17090 /// in order to create an IvarDecl object for it.
17091 Decl *Sema::ActOnIvar(Scope *S,
17092                                 SourceLocation DeclStart,
17093                                 Declarator &D, Expr *BitfieldWidth,
17094                                 tok::ObjCKeywordKind Visibility) {
17095 
17096   IdentifierInfo *II = D.getIdentifier();
17097   Expr *BitWidth = (Expr*)BitfieldWidth;
17098   SourceLocation Loc = DeclStart;
17099   if (II) Loc = D.getIdentifierLoc();
17100 
17101   // FIXME: Unnamed fields can be handled in various different ways, for
17102   // example, unnamed unions inject all members into the struct namespace!
17103 
17104   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
17105   QualType T = TInfo->getType();
17106 
17107   if (BitWidth) {
17108     // 6.7.2.1p3, 6.7.2.1p4
17109     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
17110     if (!BitWidth)
17111       D.setInvalidType();
17112   } else {
17113     // Not a bitfield.
17114 
17115     // validate II.
17116 
17117   }
17118   if (T->isReferenceType()) {
17119     Diag(Loc, diag::err_ivar_reference_type);
17120     D.setInvalidType();
17121   }
17122   // C99 6.7.2.1p8: A member of a structure or union may have any type other
17123   // than a variably modified type.
17124   else if (T->isVariablyModifiedType()) {
17125     if (!tryToFixVariablyModifiedVarType(
17126             TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
17127       D.setInvalidType();
17128   }
17129 
17130   // Get the visibility (access control) for this ivar.
17131   ObjCIvarDecl::AccessControl ac =
17132     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
17133                                         : ObjCIvarDecl::None;
17134   // Must set ivar's DeclContext to its enclosing interface.
17135   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
17136   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
17137     return nullptr;
17138   ObjCContainerDecl *EnclosingContext;
17139   if (ObjCImplementationDecl *IMPDecl =
17140       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
17141     if (LangOpts.ObjCRuntime.isFragile()) {
17142     // Case of ivar declared in an implementation. Context is that of its class.
17143       EnclosingContext = IMPDecl->getClassInterface();
17144       assert(EnclosingContext && "Implementation has no class interface!");
17145     }
17146     else
17147       EnclosingContext = EnclosingDecl;
17148   } else {
17149     if (ObjCCategoryDecl *CDecl =
17150         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
17151       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
17152         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
17153         return nullptr;
17154       }
17155     }
17156     EnclosingContext = EnclosingDecl;
17157   }
17158 
17159   // Construct the decl.
17160   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
17161                                              DeclStart, Loc, II, T,
17162                                              TInfo, ac, (Expr *)BitfieldWidth);
17163 
17164   if (II) {
17165     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
17166                                            ForVisibleRedeclaration);
17167     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
17168         && !isa<TagDecl>(PrevDecl)) {
17169       Diag(Loc, diag::err_duplicate_member) << II;
17170       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
17171       NewID->setInvalidDecl();
17172     }
17173   }
17174 
17175   // Process attributes attached to the ivar.
17176   ProcessDeclAttributes(S, NewID, D);
17177 
17178   if (D.isInvalidType())
17179     NewID->setInvalidDecl();
17180 
17181   // In ARC, infer 'retaining' for ivars of retainable type.
17182   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
17183     NewID->setInvalidDecl();
17184 
17185   if (D.getDeclSpec().isModulePrivateSpecified())
17186     NewID->setModulePrivate();
17187 
17188   if (II) {
17189     // FIXME: When interfaces are DeclContexts, we'll need to add
17190     // these to the interface.
17191     S->AddDecl(NewID);
17192     IdResolver.AddDecl(NewID);
17193   }
17194 
17195   if (LangOpts.ObjCRuntime.isNonFragile() &&
17196       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
17197     Diag(Loc, diag::warn_ivars_in_interface);
17198 
17199   return NewID;
17200 }
17201 
17202 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
17203 /// class and class extensions. For every class \@interface and class
17204 /// extension \@interface, if the last ivar is a bitfield of any type,
17205 /// then add an implicit `char :0` ivar to the end of that interface.
17206 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
17207                              SmallVectorImpl<Decl *> &AllIvarDecls) {
17208   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
17209     return;
17210 
17211   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
17212   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
17213 
17214   if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
17215     return;
17216   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
17217   if (!ID) {
17218     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
17219       if (!CD->IsClassExtension())
17220         return;
17221     }
17222     // No need to add this to end of @implementation.
17223     else
17224       return;
17225   }
17226   // All conditions are met. Add a new bitfield to the tail end of ivars.
17227   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
17228   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
17229 
17230   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
17231                               DeclLoc, DeclLoc, nullptr,
17232                               Context.CharTy,
17233                               Context.getTrivialTypeSourceInfo(Context.CharTy,
17234                                                                DeclLoc),
17235                               ObjCIvarDecl::Private, BW,
17236                               true);
17237   AllIvarDecls.push_back(Ivar);
17238 }
17239 
17240 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
17241                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
17242                        SourceLocation RBrac,
17243                        const ParsedAttributesView &Attrs) {
17244   assert(EnclosingDecl && "missing record or interface decl");
17245 
17246   // If this is an Objective-C @implementation or category and we have
17247   // new fields here we should reset the layout of the interface since
17248   // it will now change.
17249   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
17250     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
17251     switch (DC->getKind()) {
17252     default: break;
17253     case Decl::ObjCCategory:
17254       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
17255       break;
17256     case Decl::ObjCImplementation:
17257       Context.
17258         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
17259       break;
17260     }
17261   }
17262 
17263   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
17264   CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
17265 
17266   // Start counting up the number of named members; make sure to include
17267   // members of anonymous structs and unions in the total.
17268   unsigned NumNamedMembers = 0;
17269   if (Record) {
17270     for (const auto *I : Record->decls()) {
17271       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
17272         if (IFD->getDeclName())
17273           ++NumNamedMembers;
17274     }
17275   }
17276 
17277   // Verify that all the fields are okay.
17278   SmallVector<FieldDecl*, 32> RecFields;
17279 
17280   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
17281        i != end; ++i) {
17282     FieldDecl *FD = cast<FieldDecl>(*i);
17283 
17284     // Get the type for the field.
17285     const Type *FDTy = FD->getType().getTypePtr();
17286 
17287     if (!FD->isAnonymousStructOrUnion()) {
17288       // Remember all fields written by the user.
17289       RecFields.push_back(FD);
17290     }
17291 
17292     // If the field is already invalid for some reason, don't emit more
17293     // diagnostics about it.
17294     if (FD->isInvalidDecl()) {
17295       EnclosingDecl->setInvalidDecl();
17296       continue;
17297     }
17298 
17299     // C99 6.7.2.1p2:
17300     //   A structure or union shall not contain a member with
17301     //   incomplete or function type (hence, a structure shall not
17302     //   contain an instance of itself, but may contain a pointer to
17303     //   an instance of itself), except that the last member of a
17304     //   structure with more than one named member may have incomplete
17305     //   array type; such a structure (and any union containing,
17306     //   possibly recursively, a member that is such a structure)
17307     //   shall not be a member of a structure or an element of an
17308     //   array.
17309     bool IsLastField = (i + 1 == Fields.end());
17310     if (FDTy->isFunctionType()) {
17311       // Field declared as a function.
17312       Diag(FD->getLocation(), diag::err_field_declared_as_function)
17313         << FD->getDeclName();
17314       FD->setInvalidDecl();
17315       EnclosingDecl->setInvalidDecl();
17316       continue;
17317     } else if (FDTy->isIncompleteArrayType() &&
17318                (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
17319       if (Record) {
17320         // Flexible array member.
17321         // Microsoft and g++ is more permissive regarding flexible array.
17322         // It will accept flexible array in union and also
17323         // as the sole element of a struct/class.
17324         unsigned DiagID = 0;
17325         if (!Record->isUnion() && !IsLastField) {
17326           Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
17327             << FD->getDeclName() << FD->getType() << Record->getTagKind();
17328           Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
17329           FD->setInvalidDecl();
17330           EnclosingDecl->setInvalidDecl();
17331           continue;
17332         } else if (Record->isUnion())
17333           DiagID = getLangOpts().MicrosoftExt
17334                        ? diag::ext_flexible_array_union_ms
17335                        : getLangOpts().CPlusPlus
17336                              ? diag::ext_flexible_array_union_gnu
17337                              : diag::err_flexible_array_union;
17338         else if (NumNamedMembers < 1)
17339           DiagID = getLangOpts().MicrosoftExt
17340                        ? diag::ext_flexible_array_empty_aggregate_ms
17341                        : getLangOpts().CPlusPlus
17342                              ? diag::ext_flexible_array_empty_aggregate_gnu
17343                              : diag::err_flexible_array_empty_aggregate;
17344 
17345         if (DiagID)
17346           Diag(FD->getLocation(), DiagID) << FD->getDeclName()
17347                                           << Record->getTagKind();
17348         // While the layout of types that contain virtual bases is not specified
17349         // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
17350         // virtual bases after the derived members.  This would make a flexible
17351         // array member declared at the end of an object not adjacent to the end
17352         // of the type.
17353         if (CXXRecord && CXXRecord->getNumVBases() != 0)
17354           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
17355               << FD->getDeclName() << Record->getTagKind();
17356         if (!getLangOpts().C99)
17357           Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
17358             << FD->getDeclName() << Record->getTagKind();
17359 
17360         // If the element type has a non-trivial destructor, we would not
17361         // implicitly destroy the elements, so disallow it for now.
17362         //
17363         // FIXME: GCC allows this. We should probably either implicitly delete
17364         // the destructor of the containing class, or just allow this.
17365         QualType BaseElem = Context.getBaseElementType(FD->getType());
17366         if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
17367           Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
17368             << FD->getDeclName() << FD->getType();
17369           FD->setInvalidDecl();
17370           EnclosingDecl->setInvalidDecl();
17371           continue;
17372         }
17373         // Okay, we have a legal flexible array member at the end of the struct.
17374         Record->setHasFlexibleArrayMember(true);
17375       } else {
17376         // In ObjCContainerDecl ivars with incomplete array type are accepted,
17377         // unless they are followed by another ivar. That check is done
17378         // elsewhere, after synthesized ivars are known.
17379       }
17380     } else if (!FDTy->isDependentType() &&
17381                RequireCompleteSizedType(
17382                    FD->getLocation(), FD->getType(),
17383                    diag::err_field_incomplete_or_sizeless)) {
17384       // Incomplete type
17385       FD->setInvalidDecl();
17386       EnclosingDecl->setInvalidDecl();
17387       continue;
17388     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
17389       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
17390         // A type which contains a flexible array member is considered to be a
17391         // flexible array member.
17392         Record->setHasFlexibleArrayMember(true);
17393         if (!Record->isUnion()) {
17394           // If this is a struct/class and this is not the last element, reject
17395           // it.  Note that GCC supports variable sized arrays in the middle of
17396           // structures.
17397           if (!IsLastField)
17398             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
17399               << FD->getDeclName() << FD->getType();
17400           else {
17401             // We support flexible arrays at the end of structs in
17402             // other structs as an extension.
17403             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
17404               << FD->getDeclName();
17405           }
17406         }
17407       }
17408       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
17409           RequireNonAbstractType(FD->getLocation(), FD->getType(),
17410                                  diag::err_abstract_type_in_decl,
17411                                  AbstractIvarType)) {
17412         // Ivars can not have abstract class types
17413         FD->setInvalidDecl();
17414       }
17415       if (Record && FDTTy->getDecl()->hasObjectMember())
17416         Record->setHasObjectMember(true);
17417       if (Record && FDTTy->getDecl()->hasVolatileMember())
17418         Record->setHasVolatileMember(true);
17419     } else if (FDTy->isObjCObjectType()) {
17420       /// A field cannot be an Objective-c object
17421       Diag(FD->getLocation(), diag::err_statically_allocated_object)
17422         << FixItHint::CreateInsertion(FD->getLocation(), "*");
17423       QualType T = Context.getObjCObjectPointerType(FD->getType());
17424       FD->setType(T);
17425     } else if (Record && Record->isUnion() &&
17426                FD->getType().hasNonTrivialObjCLifetime() &&
17427                getSourceManager().isInSystemHeader(FD->getLocation()) &&
17428                !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
17429                (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
17430                 !Context.hasDirectOwnershipQualifier(FD->getType()))) {
17431       // For backward compatibility, fields of C unions declared in system
17432       // headers that have non-trivial ObjC ownership qualifications are marked
17433       // as unavailable unless the qualifier is explicit and __strong. This can
17434       // break ABI compatibility between programs compiled with ARC and MRR, but
17435       // is a better option than rejecting programs using those unions under
17436       // ARC.
17437       FD->addAttr(UnavailableAttr::CreateImplicit(
17438           Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
17439           FD->getLocation()));
17440     } else if (getLangOpts().ObjC &&
17441                getLangOpts().getGC() != LangOptions::NonGC && Record &&
17442                !Record->hasObjectMember()) {
17443       if (FD->getType()->isObjCObjectPointerType() ||
17444           FD->getType().isObjCGCStrong())
17445         Record->setHasObjectMember(true);
17446       else if (Context.getAsArrayType(FD->getType())) {
17447         QualType BaseType = Context.getBaseElementType(FD->getType());
17448         if (BaseType->isRecordType() &&
17449             BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
17450           Record->setHasObjectMember(true);
17451         else if (BaseType->isObjCObjectPointerType() ||
17452                  BaseType.isObjCGCStrong())
17453                Record->setHasObjectMember(true);
17454       }
17455     }
17456 
17457     if (Record && !getLangOpts().CPlusPlus &&
17458         !shouldIgnoreForRecordTriviality(FD)) {
17459       QualType FT = FD->getType();
17460       if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
17461         Record->setNonTrivialToPrimitiveDefaultInitialize(true);
17462         if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
17463             Record->isUnion())
17464           Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
17465       }
17466       QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
17467       if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
17468         Record->setNonTrivialToPrimitiveCopy(true);
17469         if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
17470           Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
17471       }
17472       if (FT.isDestructedType()) {
17473         Record->setNonTrivialToPrimitiveDestroy(true);
17474         Record->setParamDestroyedInCallee(true);
17475         if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
17476           Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
17477       }
17478 
17479       if (const auto *RT = FT->getAs<RecordType>()) {
17480         if (RT->getDecl()->getArgPassingRestrictions() ==
17481             RecordDecl::APK_CanNeverPassInRegs)
17482           Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17483       } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
17484         Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17485     }
17486 
17487     if (Record && FD->getType().isVolatileQualified())
17488       Record->setHasVolatileMember(true);
17489     // Keep track of the number of named members.
17490     if (FD->getIdentifier())
17491       ++NumNamedMembers;
17492   }
17493 
17494   // Okay, we successfully defined 'Record'.
17495   if (Record) {
17496     bool Completed = false;
17497     if (CXXRecord) {
17498       if (!CXXRecord->isInvalidDecl()) {
17499         // Set access bits correctly on the directly-declared conversions.
17500         for (CXXRecordDecl::conversion_iterator
17501                I = CXXRecord->conversion_begin(),
17502                E = CXXRecord->conversion_end(); I != E; ++I)
17503           I.setAccess((*I)->getAccess());
17504       }
17505 
17506       // Add any implicitly-declared members to this class.
17507       AddImplicitlyDeclaredMembersToClass(CXXRecord);
17508 
17509       if (!CXXRecord->isDependentType()) {
17510         if (!CXXRecord->isInvalidDecl()) {
17511           // If we have virtual base classes, we may end up finding multiple
17512           // final overriders for a given virtual function. Check for this
17513           // problem now.
17514           if (CXXRecord->getNumVBases()) {
17515             CXXFinalOverriderMap FinalOverriders;
17516             CXXRecord->getFinalOverriders(FinalOverriders);
17517 
17518             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
17519                                              MEnd = FinalOverriders.end();
17520                  M != MEnd; ++M) {
17521               for (OverridingMethods::iterator SO = M->second.begin(),
17522                                             SOEnd = M->second.end();
17523                    SO != SOEnd; ++SO) {
17524                 assert(SO->second.size() > 0 &&
17525                        "Virtual function without overriding functions?");
17526                 if (SO->second.size() == 1)
17527                   continue;
17528 
17529                 // C++ [class.virtual]p2:
17530                 //   In a derived class, if a virtual member function of a base
17531                 //   class subobject has more than one final overrider the
17532                 //   program is ill-formed.
17533                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
17534                   << (const NamedDecl *)M->first << Record;
17535                 Diag(M->first->getLocation(),
17536                      diag::note_overridden_virtual_function);
17537                 for (OverridingMethods::overriding_iterator
17538                           OM = SO->second.begin(),
17539                        OMEnd = SO->second.end();
17540                      OM != OMEnd; ++OM)
17541                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
17542                     << (const NamedDecl *)M->first << OM->Method->getParent();
17543 
17544                 Record->setInvalidDecl();
17545               }
17546             }
17547             CXXRecord->completeDefinition(&FinalOverriders);
17548             Completed = true;
17549           }
17550         }
17551       }
17552     }
17553 
17554     if (!Completed)
17555       Record->completeDefinition();
17556 
17557     // Handle attributes before checking the layout.
17558     ProcessDeclAttributeList(S, Record, Attrs);
17559 
17560     // We may have deferred checking for a deleted destructor. Check now.
17561     if (CXXRecord) {
17562       auto *Dtor = CXXRecord->getDestructor();
17563       if (Dtor && Dtor->isImplicit() &&
17564           ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
17565         CXXRecord->setImplicitDestructorIsDeleted();
17566         SetDeclDeleted(Dtor, CXXRecord->getLocation());
17567       }
17568     }
17569 
17570     if (Record->hasAttrs()) {
17571       CheckAlignasUnderalignment(Record);
17572 
17573       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
17574         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
17575                                            IA->getRange(), IA->getBestCase(),
17576                                            IA->getInheritanceModel());
17577     }
17578 
17579     // Check if the structure/union declaration is a type that can have zero
17580     // size in C. For C this is a language extension, for C++ it may cause
17581     // compatibility problems.
17582     bool CheckForZeroSize;
17583     if (!getLangOpts().CPlusPlus) {
17584       CheckForZeroSize = true;
17585     } else {
17586       // For C++ filter out types that cannot be referenced in C code.
17587       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
17588       CheckForZeroSize =
17589           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
17590           !CXXRecord->isDependentType() && !inTemplateInstantiation() &&
17591           CXXRecord->isCLike();
17592     }
17593     if (CheckForZeroSize) {
17594       bool ZeroSize = true;
17595       bool IsEmpty = true;
17596       unsigned NonBitFields = 0;
17597       for (RecordDecl::field_iterator I = Record->field_begin(),
17598                                       E = Record->field_end();
17599            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
17600         IsEmpty = false;
17601         if (I->isUnnamedBitfield()) {
17602           if (!I->isZeroLengthBitField(Context))
17603             ZeroSize = false;
17604         } else {
17605           ++NonBitFields;
17606           QualType FieldType = I->getType();
17607           if (FieldType->isIncompleteType() ||
17608               !Context.getTypeSizeInChars(FieldType).isZero())
17609             ZeroSize = false;
17610         }
17611       }
17612 
17613       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
17614       // allowed in C++, but warn if its declaration is inside
17615       // extern "C" block.
17616       if (ZeroSize) {
17617         Diag(RecLoc, getLangOpts().CPlusPlus ?
17618                          diag::warn_zero_size_struct_union_in_extern_c :
17619                          diag::warn_zero_size_struct_union_compat)
17620           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
17621       }
17622 
17623       // Structs without named members are extension in C (C99 6.7.2.1p7),
17624       // but are accepted by GCC.
17625       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
17626         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
17627                                diag::ext_no_named_members_in_struct_union)
17628           << Record->isUnion();
17629       }
17630     }
17631   } else {
17632     ObjCIvarDecl **ClsFields =
17633       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
17634     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
17635       ID->setEndOfDefinitionLoc(RBrac);
17636       // Add ivar's to class's DeclContext.
17637       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
17638         ClsFields[i]->setLexicalDeclContext(ID);
17639         ID->addDecl(ClsFields[i]);
17640       }
17641       // Must enforce the rule that ivars in the base classes may not be
17642       // duplicates.
17643       if (ID->getSuperClass())
17644         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
17645     } else if (ObjCImplementationDecl *IMPDecl =
17646                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
17647       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
17648       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
17649         // Ivar declared in @implementation never belongs to the implementation.
17650         // Only it is in implementation's lexical context.
17651         ClsFields[I]->setLexicalDeclContext(IMPDecl);
17652       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
17653       IMPDecl->setIvarLBraceLoc(LBrac);
17654       IMPDecl->setIvarRBraceLoc(RBrac);
17655     } else if (ObjCCategoryDecl *CDecl =
17656                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
17657       // case of ivars in class extension; all other cases have been
17658       // reported as errors elsewhere.
17659       // FIXME. Class extension does not have a LocEnd field.
17660       // CDecl->setLocEnd(RBrac);
17661       // Add ivar's to class extension's DeclContext.
17662       // Diagnose redeclaration of private ivars.
17663       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
17664       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
17665         if (IDecl) {
17666           if (const ObjCIvarDecl *ClsIvar =
17667               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
17668             Diag(ClsFields[i]->getLocation(),
17669                  diag::err_duplicate_ivar_declaration);
17670             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
17671             continue;
17672           }
17673           for (const auto *Ext : IDecl->known_extensions()) {
17674             if (const ObjCIvarDecl *ClsExtIvar
17675                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
17676               Diag(ClsFields[i]->getLocation(),
17677                    diag::err_duplicate_ivar_declaration);
17678               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
17679               continue;
17680             }
17681           }
17682         }
17683         ClsFields[i]->setLexicalDeclContext(CDecl);
17684         CDecl->addDecl(ClsFields[i]);
17685       }
17686       CDecl->setIvarLBraceLoc(LBrac);
17687       CDecl->setIvarRBraceLoc(RBrac);
17688     }
17689   }
17690 }
17691 
17692 /// Determine whether the given integral value is representable within
17693 /// the given type T.
17694 static bool isRepresentableIntegerValue(ASTContext &Context,
17695                                         llvm::APSInt &Value,
17696                                         QualType T) {
17697   assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
17698          "Integral type required!");
17699   unsigned BitWidth = Context.getIntWidth(T);
17700 
17701   if (Value.isUnsigned() || Value.isNonNegative()) {
17702     if (T->isSignedIntegerOrEnumerationType())
17703       --BitWidth;
17704     return Value.getActiveBits() <= BitWidth;
17705   }
17706   return Value.getMinSignedBits() <= BitWidth;
17707 }
17708 
17709 // Given an integral type, return the next larger integral type
17710 // (or a NULL type of no such type exists).
17711 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
17712   // FIXME: Int128/UInt128 support, which also needs to be introduced into
17713   // enum checking below.
17714   assert((T->isIntegralType(Context) ||
17715          T->isEnumeralType()) && "Integral type required!");
17716   const unsigned NumTypes = 4;
17717   QualType SignedIntegralTypes[NumTypes] = {
17718     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
17719   };
17720   QualType UnsignedIntegralTypes[NumTypes] = {
17721     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
17722     Context.UnsignedLongLongTy
17723   };
17724 
17725   unsigned BitWidth = Context.getTypeSize(T);
17726   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
17727                                                         : UnsignedIntegralTypes;
17728   for (unsigned I = 0; I != NumTypes; ++I)
17729     if (Context.getTypeSize(Types[I]) > BitWidth)
17730       return Types[I];
17731 
17732   return QualType();
17733 }
17734 
17735 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
17736                                           EnumConstantDecl *LastEnumConst,
17737                                           SourceLocation IdLoc,
17738                                           IdentifierInfo *Id,
17739                                           Expr *Val) {
17740   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
17741   llvm::APSInt EnumVal(IntWidth);
17742   QualType EltTy;
17743 
17744   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
17745     Val = nullptr;
17746 
17747   if (Val)
17748     Val = DefaultLvalueConversion(Val).get();
17749 
17750   if (Val) {
17751     if (Enum->isDependentType() || Val->isTypeDependent())
17752       EltTy = Context.DependentTy;
17753     else {
17754       // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
17755       // underlying type, but do allow it in all other contexts.
17756       if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
17757         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
17758         // constant-expression in the enumerator-definition shall be a converted
17759         // constant expression of the underlying type.
17760         EltTy = Enum->getIntegerType();
17761         ExprResult Converted =
17762           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
17763                                            CCEK_Enumerator);
17764         if (Converted.isInvalid())
17765           Val = nullptr;
17766         else
17767           Val = Converted.get();
17768       } else if (!Val->isValueDependent() &&
17769                  !(Val =
17770                        VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold)
17771                            .get())) {
17772         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
17773       } else {
17774         if (Enum->isComplete()) {
17775           EltTy = Enum->getIntegerType();
17776 
17777           // In Obj-C and Microsoft mode, require the enumeration value to be
17778           // representable in the underlying type of the enumeration. In C++11,
17779           // we perform a non-narrowing conversion as part of converted constant
17780           // expression checking.
17781           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17782             if (Context.getTargetInfo()
17783                     .getTriple()
17784                     .isWindowsMSVCEnvironment()) {
17785               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
17786             } else {
17787               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
17788             }
17789           }
17790 
17791           // Cast to the underlying type.
17792           Val = ImpCastExprToType(Val, EltTy,
17793                                   EltTy->isBooleanType() ? CK_IntegralToBoolean
17794                                                          : CK_IntegralCast)
17795                     .get();
17796         } else if (getLangOpts().CPlusPlus) {
17797           // C++11 [dcl.enum]p5:
17798           //   If the underlying type is not fixed, the type of each enumerator
17799           //   is the type of its initializing value:
17800           //     - If an initializer is specified for an enumerator, the
17801           //       initializing value has the same type as the expression.
17802           EltTy = Val->getType();
17803         } else {
17804           // C99 6.7.2.2p2:
17805           //   The expression that defines the value of an enumeration constant
17806           //   shall be an integer constant expression that has a value
17807           //   representable as an int.
17808 
17809           // Complain if the value is not representable in an int.
17810           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
17811             Diag(IdLoc, diag::ext_enum_value_not_int)
17812               << toString(EnumVal, 10) << Val->getSourceRange()
17813               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
17814           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
17815             // Force the type of the expression to 'int'.
17816             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
17817           }
17818           EltTy = Val->getType();
17819         }
17820       }
17821     }
17822   }
17823 
17824   if (!Val) {
17825     if (Enum->isDependentType())
17826       EltTy = Context.DependentTy;
17827     else if (!LastEnumConst) {
17828       // C++0x [dcl.enum]p5:
17829       //   If the underlying type is not fixed, the type of each enumerator
17830       //   is the type of its initializing value:
17831       //     - If no initializer is specified for the first enumerator, the
17832       //       initializing value has an unspecified integral type.
17833       //
17834       // GCC uses 'int' for its unspecified integral type, as does
17835       // C99 6.7.2.2p3.
17836       if (Enum->isFixed()) {
17837         EltTy = Enum->getIntegerType();
17838       }
17839       else {
17840         EltTy = Context.IntTy;
17841       }
17842     } else {
17843       // Assign the last value + 1.
17844       EnumVal = LastEnumConst->getInitVal();
17845       ++EnumVal;
17846       EltTy = LastEnumConst->getType();
17847 
17848       // Check for overflow on increment.
17849       if (EnumVal < LastEnumConst->getInitVal()) {
17850         // C++0x [dcl.enum]p5:
17851         //   If the underlying type is not fixed, the type of each enumerator
17852         //   is the type of its initializing value:
17853         //
17854         //     - Otherwise the type of the initializing value is the same as
17855         //       the type of the initializing value of the preceding enumerator
17856         //       unless the incremented value is not representable in that type,
17857         //       in which case the type is an unspecified integral type
17858         //       sufficient to contain the incremented value. If no such type
17859         //       exists, the program is ill-formed.
17860         QualType T = getNextLargerIntegralType(Context, EltTy);
17861         if (T.isNull() || Enum->isFixed()) {
17862           // There is no integral type larger enough to represent this
17863           // value. Complain, then allow the value to wrap around.
17864           EnumVal = LastEnumConst->getInitVal();
17865           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
17866           ++EnumVal;
17867           if (Enum->isFixed())
17868             // When the underlying type is fixed, this is ill-formed.
17869             Diag(IdLoc, diag::err_enumerator_wrapped)
17870               << toString(EnumVal, 10)
17871               << EltTy;
17872           else
17873             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
17874               << toString(EnumVal, 10);
17875         } else {
17876           EltTy = T;
17877         }
17878 
17879         // Retrieve the last enumerator's value, extent that type to the
17880         // type that is supposed to be large enough to represent the incremented
17881         // value, then increment.
17882         EnumVal = LastEnumConst->getInitVal();
17883         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17884         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
17885         ++EnumVal;
17886 
17887         // If we're not in C++, diagnose the overflow of enumerator values,
17888         // which in C99 means that the enumerator value is not representable in
17889         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
17890         // permits enumerator values that are representable in some larger
17891         // integral type.
17892         if (!getLangOpts().CPlusPlus && !T.isNull())
17893           Diag(IdLoc, diag::warn_enum_value_overflow);
17894       } else if (!getLangOpts().CPlusPlus &&
17895                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17896         // Enforce C99 6.7.2.2p2 even when we compute the next value.
17897         Diag(IdLoc, diag::ext_enum_value_not_int)
17898           << toString(EnumVal, 10) << 1;
17899       }
17900     }
17901   }
17902 
17903   if (!EltTy->isDependentType()) {
17904     // Make the enumerator value match the signedness and size of the
17905     // enumerator's type.
17906     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
17907     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17908   }
17909 
17910   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
17911                                   Val, EnumVal);
17912 }
17913 
17914 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
17915                                                 SourceLocation IILoc) {
17916   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
17917       !getLangOpts().CPlusPlus)
17918     return SkipBodyInfo();
17919 
17920   // We have an anonymous enum definition. Look up the first enumerator to
17921   // determine if we should merge the definition with an existing one and
17922   // skip the body.
17923   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
17924                                          forRedeclarationInCurContext());
17925   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
17926   if (!PrevECD)
17927     return SkipBodyInfo();
17928 
17929   EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
17930   NamedDecl *Hidden;
17931   if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
17932     SkipBodyInfo Skip;
17933     Skip.Previous = Hidden;
17934     return Skip;
17935   }
17936 
17937   return SkipBodyInfo();
17938 }
17939 
17940 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
17941                               SourceLocation IdLoc, IdentifierInfo *Id,
17942                               const ParsedAttributesView &Attrs,
17943                               SourceLocation EqualLoc, Expr *Val) {
17944   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
17945   EnumConstantDecl *LastEnumConst =
17946     cast_or_null<EnumConstantDecl>(lastEnumConst);
17947 
17948   // The scope passed in may not be a decl scope.  Zip up the scope tree until
17949   // we find one that is.
17950   S = getNonFieldDeclScope(S);
17951 
17952   // Verify that there isn't already something declared with this name in this
17953   // scope.
17954   LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
17955   LookupName(R, S);
17956   NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
17957 
17958   if (PrevDecl && PrevDecl->isTemplateParameter()) {
17959     // Maybe we will complain about the shadowed template parameter.
17960     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
17961     // Just pretend that we didn't see the previous declaration.
17962     PrevDecl = nullptr;
17963   }
17964 
17965   // C++ [class.mem]p15:
17966   // If T is the name of a class, then each of the following shall have a name
17967   // different from T:
17968   // - every enumerator of every member of class T that is an unscoped
17969   // enumerated type
17970   if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
17971     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
17972                             DeclarationNameInfo(Id, IdLoc));
17973 
17974   EnumConstantDecl *New =
17975     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
17976   if (!New)
17977     return nullptr;
17978 
17979   if (PrevDecl) {
17980     if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
17981       // Check for other kinds of shadowing not already handled.
17982       CheckShadow(New, PrevDecl, R);
17983     }
17984 
17985     // When in C++, we may get a TagDecl with the same name; in this case the
17986     // enum constant will 'hide' the tag.
17987     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
17988            "Received TagDecl when not in C++!");
17989     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
17990       if (isa<EnumConstantDecl>(PrevDecl))
17991         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
17992       else
17993         Diag(IdLoc, diag::err_redefinition) << Id;
17994       notePreviousDefinition(PrevDecl, IdLoc);
17995       return nullptr;
17996     }
17997   }
17998 
17999   // Process attributes.
18000   ProcessDeclAttributeList(S, New, Attrs);
18001   AddPragmaAttributes(S, New);
18002 
18003   // Register this decl in the current scope stack.
18004   New->setAccess(TheEnumDecl->getAccess());
18005   PushOnScopeChains(New, S);
18006 
18007   ActOnDocumentableDecl(New);
18008 
18009   return New;
18010 }
18011 
18012 // Returns true when the enum initial expression does not trigger the
18013 // duplicate enum warning.  A few common cases are exempted as follows:
18014 // Element2 = Element1
18015 // Element2 = Element1 + 1
18016 // Element2 = Element1 - 1
18017 // Where Element2 and Element1 are from the same enum.
18018 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
18019   Expr *InitExpr = ECD->getInitExpr();
18020   if (!InitExpr)
18021     return true;
18022   InitExpr = InitExpr->IgnoreImpCasts();
18023 
18024   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
18025     if (!BO->isAdditiveOp())
18026       return true;
18027     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
18028     if (!IL)
18029       return true;
18030     if (IL->getValue() != 1)
18031       return true;
18032 
18033     InitExpr = BO->getLHS();
18034   }
18035 
18036   // This checks if the elements are from the same enum.
18037   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
18038   if (!DRE)
18039     return true;
18040 
18041   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
18042   if (!EnumConstant)
18043     return true;
18044 
18045   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
18046       Enum)
18047     return true;
18048 
18049   return false;
18050 }
18051 
18052 // Emits a warning when an element is implicitly set a value that
18053 // a previous element has already been set to.
18054 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
18055                                         EnumDecl *Enum, QualType EnumType) {
18056   // Avoid anonymous enums
18057   if (!Enum->getIdentifier())
18058     return;
18059 
18060   // Only check for small enums.
18061   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
18062     return;
18063 
18064   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
18065     return;
18066 
18067   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
18068   typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
18069 
18070   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
18071 
18072   // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
18073   typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
18074 
18075   // Use int64_t as a key to avoid needing special handling for map keys.
18076   auto EnumConstantToKey = [](const EnumConstantDecl *D) {
18077     llvm::APSInt Val = D->getInitVal();
18078     return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
18079   };
18080 
18081   DuplicatesVector DupVector;
18082   ValueToVectorMap EnumMap;
18083 
18084   // Populate the EnumMap with all values represented by enum constants without
18085   // an initializer.
18086   for (auto *Element : Elements) {
18087     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
18088 
18089     // Null EnumConstantDecl means a previous diagnostic has been emitted for
18090     // this constant.  Skip this enum since it may be ill-formed.
18091     if (!ECD) {
18092       return;
18093     }
18094 
18095     // Constants with initalizers are handled in the next loop.
18096     if (ECD->getInitExpr())
18097       continue;
18098 
18099     // Duplicate values are handled in the next loop.
18100     EnumMap.insert({EnumConstantToKey(ECD), ECD});
18101   }
18102 
18103   if (EnumMap.size() == 0)
18104     return;
18105 
18106   // Create vectors for any values that has duplicates.
18107   for (auto *Element : Elements) {
18108     // The last loop returned if any constant was null.
18109     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
18110     if (!ValidDuplicateEnum(ECD, Enum))
18111       continue;
18112 
18113     auto Iter = EnumMap.find(EnumConstantToKey(ECD));
18114     if (Iter == EnumMap.end())
18115       continue;
18116 
18117     DeclOrVector& Entry = Iter->second;
18118     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
18119       // Ensure constants are different.
18120       if (D == ECD)
18121         continue;
18122 
18123       // Create new vector and push values onto it.
18124       auto Vec = std::make_unique<ECDVector>();
18125       Vec->push_back(D);
18126       Vec->push_back(ECD);
18127 
18128       // Update entry to point to the duplicates vector.
18129       Entry = Vec.get();
18130 
18131       // Store the vector somewhere we can consult later for quick emission of
18132       // diagnostics.
18133       DupVector.emplace_back(std::move(Vec));
18134       continue;
18135     }
18136 
18137     ECDVector *Vec = Entry.get<ECDVector*>();
18138     // Make sure constants are not added more than once.
18139     if (*Vec->begin() == ECD)
18140       continue;
18141 
18142     Vec->push_back(ECD);
18143   }
18144 
18145   // Emit diagnostics.
18146   for (const auto &Vec : DupVector) {
18147     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
18148 
18149     // Emit warning for one enum constant.
18150     auto *FirstECD = Vec->front();
18151     S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
18152       << FirstECD << toString(FirstECD->getInitVal(), 10)
18153       << FirstECD->getSourceRange();
18154 
18155     // Emit one note for each of the remaining enum constants with
18156     // the same value.
18157     for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
18158       S.Diag(ECD->getLocation(), diag::note_duplicate_element)
18159         << ECD << toString(ECD->getInitVal(), 10)
18160         << ECD->getSourceRange();
18161   }
18162 }
18163 
18164 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
18165                              bool AllowMask) const {
18166   assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
18167   assert(ED->isCompleteDefinition() && "expected enum definition");
18168 
18169   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
18170   llvm::APInt &FlagBits = R.first->second;
18171 
18172   if (R.second) {
18173     for (auto *E : ED->enumerators()) {
18174       const auto &EVal = E->getInitVal();
18175       // Only single-bit enumerators introduce new flag values.
18176       if (EVal.isPowerOf2())
18177         FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
18178     }
18179   }
18180 
18181   // A value is in a flag enum if either its bits are a subset of the enum's
18182   // flag bits (the first condition) or we are allowing masks and the same is
18183   // true of its complement (the second condition). When masks are allowed, we
18184   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
18185   //
18186   // While it's true that any value could be used as a mask, the assumption is
18187   // that a mask will have all of the insignificant bits set. Anything else is
18188   // likely a logic error.
18189   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
18190   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
18191 }
18192 
18193 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
18194                          Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
18195                          const ParsedAttributesView &Attrs) {
18196   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
18197   QualType EnumType = Context.getTypeDeclType(Enum);
18198 
18199   ProcessDeclAttributeList(S, Enum, Attrs);
18200 
18201   if (Enum->isDependentType()) {
18202     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
18203       EnumConstantDecl *ECD =
18204         cast_or_null<EnumConstantDecl>(Elements[i]);
18205       if (!ECD) continue;
18206 
18207       ECD->setType(EnumType);
18208     }
18209 
18210     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
18211     return;
18212   }
18213 
18214   // TODO: If the result value doesn't fit in an int, it must be a long or long
18215   // long value.  ISO C does not support this, but GCC does as an extension,
18216   // emit a warning.
18217   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
18218   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
18219   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
18220 
18221   // Verify that all the values are okay, compute the size of the values, and
18222   // reverse the list.
18223   unsigned NumNegativeBits = 0;
18224   unsigned NumPositiveBits = 0;
18225 
18226   // Keep track of whether all elements have type int.
18227   bool AllElementsInt = true;
18228 
18229   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
18230     EnumConstantDecl *ECD =
18231       cast_or_null<EnumConstantDecl>(Elements[i]);
18232     if (!ECD) continue;  // Already issued a diagnostic.
18233 
18234     const llvm::APSInt &InitVal = ECD->getInitVal();
18235 
18236     // Keep track of the size of positive and negative values.
18237     if (InitVal.isUnsigned() || InitVal.isNonNegative())
18238       NumPositiveBits = std::max(NumPositiveBits,
18239                                  (unsigned)InitVal.getActiveBits());
18240     else
18241       NumNegativeBits = std::max(NumNegativeBits,
18242                                  (unsigned)InitVal.getMinSignedBits());
18243 
18244     // Keep track of whether every enum element has type int (very common).
18245     if (AllElementsInt)
18246       AllElementsInt = ECD->getType() == Context.IntTy;
18247   }
18248 
18249   // Figure out the type that should be used for this enum.
18250   QualType BestType;
18251   unsigned BestWidth;
18252 
18253   // C++0x N3000 [conv.prom]p3:
18254   //   An rvalue of an unscoped enumeration type whose underlying
18255   //   type is not fixed can be converted to an rvalue of the first
18256   //   of the following types that can represent all the values of
18257   //   the enumeration: int, unsigned int, long int, unsigned long
18258   //   int, long long int, or unsigned long long int.
18259   // C99 6.4.4.3p2:
18260   //   An identifier declared as an enumeration constant has type int.
18261   // The C99 rule is modified by a gcc extension
18262   QualType BestPromotionType;
18263 
18264   bool Packed = Enum->hasAttr<PackedAttr>();
18265   // -fshort-enums is the equivalent to specifying the packed attribute on all
18266   // enum definitions.
18267   if (LangOpts.ShortEnums)
18268     Packed = true;
18269 
18270   // If the enum already has a type because it is fixed or dictated by the
18271   // target, promote that type instead of analyzing the enumerators.
18272   if (Enum->isComplete()) {
18273     BestType = Enum->getIntegerType();
18274     if (BestType->isPromotableIntegerType())
18275       BestPromotionType = Context.getPromotedIntegerType(BestType);
18276     else
18277       BestPromotionType = BestType;
18278 
18279     BestWidth = Context.getIntWidth(BestType);
18280   }
18281   else if (NumNegativeBits) {
18282     // If there is a negative value, figure out the smallest integer type (of
18283     // int/long/longlong) that fits.
18284     // If it's packed, check also if it fits a char or a short.
18285     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
18286       BestType = Context.SignedCharTy;
18287       BestWidth = CharWidth;
18288     } else if (Packed && NumNegativeBits <= ShortWidth &&
18289                NumPositiveBits < ShortWidth) {
18290       BestType = Context.ShortTy;
18291       BestWidth = ShortWidth;
18292     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
18293       BestType = Context.IntTy;
18294       BestWidth = IntWidth;
18295     } else {
18296       BestWidth = Context.getTargetInfo().getLongWidth();
18297 
18298       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
18299         BestType = Context.LongTy;
18300       } else {
18301         BestWidth = Context.getTargetInfo().getLongLongWidth();
18302 
18303         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
18304           Diag(Enum->getLocation(), diag::ext_enum_too_large);
18305         BestType = Context.LongLongTy;
18306       }
18307     }
18308     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
18309   } else {
18310     // If there is no negative value, figure out the smallest type that fits
18311     // all of the enumerator values.
18312     // If it's packed, check also if it fits a char or a short.
18313     if (Packed && NumPositiveBits <= CharWidth) {
18314       BestType = Context.UnsignedCharTy;
18315       BestPromotionType = Context.IntTy;
18316       BestWidth = CharWidth;
18317     } else if (Packed && NumPositiveBits <= ShortWidth) {
18318       BestType = Context.UnsignedShortTy;
18319       BestPromotionType = Context.IntTy;
18320       BestWidth = ShortWidth;
18321     } else if (NumPositiveBits <= IntWidth) {
18322       BestType = Context.UnsignedIntTy;
18323       BestWidth = IntWidth;
18324       BestPromotionType
18325         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18326                            ? Context.UnsignedIntTy : Context.IntTy;
18327     } else if (NumPositiveBits <=
18328                (BestWidth = Context.getTargetInfo().getLongWidth())) {
18329       BestType = Context.UnsignedLongTy;
18330       BestPromotionType
18331         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18332                            ? Context.UnsignedLongTy : Context.LongTy;
18333     } else {
18334       BestWidth = Context.getTargetInfo().getLongLongWidth();
18335       assert(NumPositiveBits <= BestWidth &&
18336              "How could an initializer get larger than ULL?");
18337       BestType = Context.UnsignedLongLongTy;
18338       BestPromotionType
18339         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18340                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
18341     }
18342   }
18343 
18344   // Loop over all of the enumerator constants, changing their types to match
18345   // the type of the enum if needed.
18346   for (auto *D : Elements) {
18347     auto *ECD = cast_or_null<EnumConstantDecl>(D);
18348     if (!ECD) continue;  // Already issued a diagnostic.
18349 
18350     // Standard C says the enumerators have int type, but we allow, as an
18351     // extension, the enumerators to be larger than int size.  If each
18352     // enumerator value fits in an int, type it as an int, otherwise type it the
18353     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
18354     // that X has type 'int', not 'unsigned'.
18355 
18356     // Determine whether the value fits into an int.
18357     llvm::APSInt InitVal = ECD->getInitVal();
18358 
18359     // If it fits into an integer type, force it.  Otherwise force it to match
18360     // the enum decl type.
18361     QualType NewTy;
18362     unsigned NewWidth;
18363     bool NewSign;
18364     if (!getLangOpts().CPlusPlus &&
18365         !Enum->isFixed() &&
18366         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
18367       NewTy = Context.IntTy;
18368       NewWidth = IntWidth;
18369       NewSign = true;
18370     } else if (ECD->getType() == BestType) {
18371       // Already the right type!
18372       if (getLangOpts().CPlusPlus)
18373         // C++ [dcl.enum]p4: Following the closing brace of an
18374         // enum-specifier, each enumerator has the type of its
18375         // enumeration.
18376         ECD->setType(EnumType);
18377       continue;
18378     } else {
18379       NewTy = BestType;
18380       NewWidth = BestWidth;
18381       NewSign = BestType->isSignedIntegerOrEnumerationType();
18382     }
18383 
18384     // Adjust the APSInt value.
18385     InitVal = InitVal.extOrTrunc(NewWidth);
18386     InitVal.setIsSigned(NewSign);
18387     ECD->setInitVal(InitVal);
18388 
18389     // Adjust the Expr initializer and type.
18390     if (ECD->getInitExpr() &&
18391         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
18392       ECD->setInitExpr(ImplicitCastExpr::Create(
18393           Context, NewTy, CK_IntegralCast, ECD->getInitExpr(),
18394           /*base paths*/ nullptr, VK_PRValue, FPOptionsOverride()));
18395     if (getLangOpts().CPlusPlus)
18396       // C++ [dcl.enum]p4: Following the closing brace of an
18397       // enum-specifier, each enumerator has the type of its
18398       // enumeration.
18399       ECD->setType(EnumType);
18400     else
18401       ECD->setType(NewTy);
18402   }
18403 
18404   Enum->completeDefinition(BestType, BestPromotionType,
18405                            NumPositiveBits, NumNegativeBits);
18406 
18407   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
18408 
18409   if (Enum->isClosedFlag()) {
18410     for (Decl *D : Elements) {
18411       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
18412       if (!ECD) continue;  // Already issued a diagnostic.
18413 
18414       llvm::APSInt InitVal = ECD->getInitVal();
18415       if (InitVal != 0 && !InitVal.isPowerOf2() &&
18416           !IsValueInFlagEnum(Enum, InitVal, true))
18417         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
18418           << ECD << Enum;
18419     }
18420   }
18421 
18422   // Now that the enum type is defined, ensure it's not been underaligned.
18423   if (Enum->hasAttrs())
18424     CheckAlignasUnderalignment(Enum);
18425 }
18426 
18427 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
18428                                   SourceLocation StartLoc,
18429                                   SourceLocation EndLoc) {
18430   StringLiteral *AsmString = cast<StringLiteral>(expr);
18431 
18432   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
18433                                                    AsmString, StartLoc,
18434                                                    EndLoc);
18435   CurContext->addDecl(New);
18436   return New;
18437 }
18438 
18439 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
18440                                       IdentifierInfo* AliasName,
18441                                       SourceLocation PragmaLoc,
18442                                       SourceLocation NameLoc,
18443                                       SourceLocation AliasNameLoc) {
18444   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
18445                                          LookupOrdinaryName);
18446   AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
18447                            AttributeCommonInfo::AS_Pragma);
18448   AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
18449       Context, AliasName->getName(), /*LiteralLabel=*/true, Info);
18450 
18451   // If a declaration that:
18452   // 1) declares a function or a variable
18453   // 2) has external linkage
18454   // already exists, add a label attribute to it.
18455   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18456     if (isDeclExternC(PrevDecl))
18457       PrevDecl->addAttr(Attr);
18458     else
18459       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
18460           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
18461   // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
18462   } else
18463     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
18464 }
18465 
18466 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
18467                              SourceLocation PragmaLoc,
18468                              SourceLocation NameLoc) {
18469   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
18470 
18471   if (PrevDecl) {
18472     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma));
18473   } else {
18474     (void)WeakUndeclaredIdentifiers.insert(
18475       std::pair<IdentifierInfo*,WeakInfo>
18476         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
18477   }
18478 }
18479 
18480 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
18481                                 IdentifierInfo* AliasName,
18482                                 SourceLocation PragmaLoc,
18483                                 SourceLocation NameLoc,
18484                                 SourceLocation AliasNameLoc) {
18485   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
18486                                     LookupOrdinaryName);
18487   WeakInfo W = WeakInfo(Name, NameLoc);
18488 
18489   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18490     if (!PrevDecl->hasAttr<AliasAttr>())
18491       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
18492         DeclApplyPragmaWeak(TUScope, ND, W);
18493   } else {
18494     (void)WeakUndeclaredIdentifiers.insert(
18495       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
18496   }
18497 }
18498 
18499 Decl *Sema::getObjCDeclContext() const {
18500   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
18501 }
18502 
18503 Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD,
18504                                                      bool Final) {
18505   assert(FD && "Expected non-null FunctionDecl");
18506 
18507   // SYCL functions can be template, so we check if they have appropriate
18508   // attribute prior to checking if it is a template.
18509   if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>())
18510     return FunctionEmissionStatus::Emitted;
18511 
18512   // Templates are emitted when they're instantiated.
18513   if (FD->isDependentContext())
18514     return FunctionEmissionStatus::TemplateDiscarded;
18515 
18516   // Check whether this function is an externally visible definition.
18517   auto IsEmittedForExternalSymbol = [this, FD]() {
18518     // We have to check the GVA linkage of the function's *definition* -- if we
18519     // only have a declaration, we don't know whether or not the function will
18520     // be emitted, because (say) the definition could include "inline".
18521     FunctionDecl *Def = FD->getDefinition();
18522 
18523     return Def && !isDiscardableGVALinkage(
18524                       getASTContext().GetGVALinkageForFunction(Def));
18525   };
18526 
18527   if (LangOpts.OpenMPIsDevice) {
18528     // In OpenMP device mode we will not emit host only functions, or functions
18529     // we don't need due to their linkage.
18530     Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
18531         OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
18532     // DevTy may be changed later by
18533     //  #pragma omp declare target to(*) device_type(*).
18534     // Therefore DevTy having no value does not imply host. The emission status
18535     // will be checked again at the end of compilation unit with Final = true.
18536     if (DevTy.hasValue())
18537       if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
18538         return FunctionEmissionStatus::OMPDiscarded;
18539     // If we have an explicit value for the device type, or we are in a target
18540     // declare context, we need to emit all extern and used symbols.
18541     if (isInOpenMPDeclareTargetContext() || DevTy.hasValue())
18542       if (IsEmittedForExternalSymbol())
18543         return FunctionEmissionStatus::Emitted;
18544     // Device mode only emits what it must, if it wasn't tagged yet and needed,
18545     // we'll omit it.
18546     if (Final)
18547       return FunctionEmissionStatus::OMPDiscarded;
18548   } else if (LangOpts.OpenMP > 45) {
18549     // In OpenMP host compilation prior to 5.0 everything was an emitted host
18550     // function. In 5.0, no_host was introduced which might cause a function to
18551     // be ommitted.
18552     Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
18553         OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
18554     if (DevTy.hasValue())
18555       if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
18556         return FunctionEmissionStatus::OMPDiscarded;
18557   }
18558 
18559   if (Final && LangOpts.OpenMP && !LangOpts.CUDA)
18560     return FunctionEmissionStatus::Emitted;
18561 
18562   if (LangOpts.CUDA) {
18563     // When compiling for device, host functions are never emitted.  Similarly,
18564     // when compiling for host, device and global functions are never emitted.
18565     // (Technically, we do emit a host-side stub for global functions, but this
18566     // doesn't count for our purposes here.)
18567     Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD);
18568     if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host)
18569       return FunctionEmissionStatus::CUDADiscarded;
18570     if (!LangOpts.CUDAIsDevice &&
18571         (T == Sema::CFT_Device || T == Sema::CFT_Global))
18572       return FunctionEmissionStatus::CUDADiscarded;
18573 
18574     if (IsEmittedForExternalSymbol())
18575       return FunctionEmissionStatus::Emitted;
18576   }
18577 
18578   // Otherwise, the function is known-emitted if it's in our set of
18579   // known-emitted functions.
18580   return FunctionEmissionStatus::Unknown;
18581 }
18582 
18583 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
18584   // Host-side references to a __global__ function refer to the stub, so the
18585   // function itself is never emitted and therefore should not be marked.
18586   // If we have host fn calls kernel fn calls host+device, the HD function
18587   // does not get instantiated on the host. We model this by omitting at the
18588   // call to the kernel from the callgraph. This ensures that, when compiling
18589   // for host, only HD functions actually called from the host get marked as
18590   // known-emitted.
18591   return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
18592          IdentifyCUDATarget(Callee) == CFT_Global;
18593 }
18594