1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/CommentDiagnostic.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
32 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
33 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
34 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
35 #include "clang/Sema/CXXFieldCollector.h"
36 #include "clang/Sema/DeclSpec.h"
37 #include "clang/Sema/DelayedDiagnostic.h"
38 #include "clang/Sema/Initialization.h"
39 #include "clang/Sema/Lookup.h"
40 #include "clang/Sema/ParsedTemplate.h"
41 #include "clang/Sema/Scope.h"
42 #include "clang/Sema/ScopeInfo.h"
43 #include "clang/Sema/SemaInternal.h"
44 #include "clang/Sema/Template.h"
45 #include "llvm/ADT/SmallString.h"
46 #include "llvm/ADT/Triple.h"
47 #include <algorithm>
48 #include <cstring>
49 #include <functional>
50 
51 using namespace clang;
52 using namespace sema;
53 
54 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
55   if (OwnedType) {
56     Decl *Group[2] = { OwnedType, Ptr };
57     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
58   }
59 
60   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
61 }
62 
63 namespace {
64 
65 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
66  public:
67    TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
68                         bool AllowTemplates = false,
69                         bool AllowNonTemplates = true)
70        : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
71          AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
72      WantExpressionKeywords = false;
73      WantCXXNamedCasts = false;
74      WantRemainingKeywords = false;
75   }
76 
77   bool ValidateCandidate(const TypoCorrection &candidate) override {
78     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
79       if (!AllowInvalidDecl && ND->isInvalidDecl())
80         return false;
81 
82       if (getAsTypeTemplateDecl(ND))
83         return AllowTemplates;
84 
85       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
86       if (!IsType)
87         return false;
88 
89       if (AllowNonTemplates)
90         return true;
91 
92       // An injected-class-name of a class template (specialization) is valid
93       // as a template or as a non-template.
94       if (AllowTemplates) {
95         auto *RD = dyn_cast<CXXRecordDecl>(ND);
96         if (!RD || !RD->isInjectedClassName())
97           return false;
98         RD = cast<CXXRecordDecl>(RD->getDeclContext());
99         return RD->getDescribedClassTemplate() ||
100                isa<ClassTemplateSpecializationDecl>(RD);
101       }
102 
103       return false;
104     }
105 
106     return !WantClassName && candidate.isKeyword();
107   }
108 
109  private:
110   bool AllowInvalidDecl;
111   bool WantClassName;
112   bool AllowTemplates;
113   bool AllowNonTemplates;
114 };
115 
116 } // end anonymous namespace
117 
118 /// Determine whether the token kind starts a simple-type-specifier.
119 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
120   switch (Kind) {
121   // FIXME: Take into account the current language when deciding whether a
122   // token kind is a valid type specifier
123   case tok::kw_short:
124   case tok::kw_long:
125   case tok::kw___int64:
126   case tok::kw___int128:
127   case tok::kw_signed:
128   case tok::kw_unsigned:
129   case tok::kw_void:
130   case tok::kw_char:
131   case tok::kw_int:
132   case tok::kw_half:
133   case tok::kw_float:
134   case tok::kw_double:
135   case tok::kw__Float16:
136   case tok::kw___float128:
137   case tok::kw_wchar_t:
138   case tok::kw_bool:
139   case tok::kw___underlying_type:
140   case tok::kw___auto_type:
141     return true;
142 
143   case tok::annot_typename:
144   case tok::kw_char16_t:
145   case tok::kw_char32_t:
146   case tok::kw_typeof:
147   case tok::annot_decltype:
148   case tok::kw_decltype:
149     return getLangOpts().CPlusPlus;
150 
151   case tok::kw_char8_t:
152     return getLangOpts().Char8;
153 
154   default:
155     break;
156   }
157 
158   return false;
159 }
160 
161 namespace {
162 enum class UnqualifiedTypeNameLookupResult {
163   NotFound,
164   FoundNonType,
165   FoundType
166 };
167 } // end anonymous namespace
168 
169 /// Tries to perform unqualified lookup of the type decls in bases for
170 /// dependent class.
171 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
172 /// type decl, \a FoundType if only type decls are found.
173 static UnqualifiedTypeNameLookupResult
174 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
175                                 SourceLocation NameLoc,
176                                 const CXXRecordDecl *RD) {
177   if (!RD->hasDefinition())
178     return UnqualifiedTypeNameLookupResult::NotFound;
179   // Look for type decls in base classes.
180   UnqualifiedTypeNameLookupResult FoundTypeDecl =
181       UnqualifiedTypeNameLookupResult::NotFound;
182   for (const auto &Base : RD->bases()) {
183     const CXXRecordDecl *BaseRD = nullptr;
184     if (auto *BaseTT = Base.getType()->getAs<TagType>())
185       BaseRD = BaseTT->getAsCXXRecordDecl();
186     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
187       // Look for type decls in dependent base classes that have known primary
188       // templates.
189       if (!TST || !TST->isDependentType())
190         continue;
191       auto *TD = TST->getTemplateName().getAsTemplateDecl();
192       if (!TD)
193         continue;
194       if (auto *BasePrimaryTemplate =
195           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
196         if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
197           BaseRD = BasePrimaryTemplate;
198         else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
199           if (const ClassTemplatePartialSpecializationDecl *PS =
200                   CTD->findPartialSpecialization(Base.getType()))
201             if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
202               BaseRD = PS;
203         }
204       }
205     }
206     if (BaseRD) {
207       for (NamedDecl *ND : BaseRD->lookup(&II)) {
208         if (!isa<TypeDecl>(ND))
209           return UnqualifiedTypeNameLookupResult::FoundNonType;
210         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
211       }
212       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
213         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
214         case UnqualifiedTypeNameLookupResult::FoundNonType:
215           return UnqualifiedTypeNameLookupResult::FoundNonType;
216         case UnqualifiedTypeNameLookupResult::FoundType:
217           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
218           break;
219         case UnqualifiedTypeNameLookupResult::NotFound:
220           break;
221         }
222       }
223     }
224   }
225 
226   return FoundTypeDecl;
227 }
228 
229 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
230                                                       const IdentifierInfo &II,
231                                                       SourceLocation NameLoc) {
232   // Lookup in the parent class template context, if any.
233   const CXXRecordDecl *RD = nullptr;
234   UnqualifiedTypeNameLookupResult FoundTypeDecl =
235       UnqualifiedTypeNameLookupResult::NotFound;
236   for (DeclContext *DC = S.CurContext;
237        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
238        DC = DC->getParent()) {
239     // Look for type decls in dependent base classes that have known primary
240     // templates.
241     RD = dyn_cast<CXXRecordDecl>(DC);
242     if (RD && RD->getDescribedClassTemplate())
243       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
244   }
245   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
246     return nullptr;
247 
248   // We found some types in dependent base classes.  Recover as if the user
249   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
250   // lookup during template instantiation.
251   S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
252 
253   ASTContext &Context = S.Context;
254   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
255                                           cast<Type>(Context.getRecordType(RD)));
256   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
257 
258   CXXScopeSpec SS;
259   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
260 
261   TypeLocBuilder Builder;
262   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
263   DepTL.setNameLoc(NameLoc);
264   DepTL.setElaboratedKeywordLoc(SourceLocation());
265   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
266   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
267 }
268 
269 /// If the identifier refers to a type name within this scope,
270 /// return the declaration of that type.
271 ///
272 /// This routine performs ordinary name lookup of the identifier II
273 /// within the given scope, with optional C++ scope specifier SS, to
274 /// determine whether the name refers to a type. If so, returns an
275 /// opaque pointer (actually a QualType) corresponding to that
276 /// type. Otherwise, returns NULL.
277 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
278                              Scope *S, CXXScopeSpec *SS,
279                              bool isClassName, bool HasTrailingDot,
280                              ParsedType ObjectTypePtr,
281                              bool IsCtorOrDtorName,
282                              bool WantNontrivialTypeSourceInfo,
283                              bool IsClassTemplateDeductionContext,
284                              IdentifierInfo **CorrectedII) {
285   // FIXME: Consider allowing this outside C++1z mode as an extension.
286   bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
287                               getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
288                               !isClassName && !HasTrailingDot;
289 
290   // Determine where we will perform name lookup.
291   DeclContext *LookupCtx = nullptr;
292   if (ObjectTypePtr) {
293     QualType ObjectType = ObjectTypePtr.get();
294     if (ObjectType->isRecordType())
295       LookupCtx = computeDeclContext(ObjectType);
296   } else if (SS && SS->isNotEmpty()) {
297     LookupCtx = computeDeclContext(*SS, false);
298 
299     if (!LookupCtx) {
300       if (isDependentScopeSpecifier(*SS)) {
301         // C++ [temp.res]p3:
302         //   A qualified-id that refers to a type and in which the
303         //   nested-name-specifier depends on a template-parameter (14.6.2)
304         //   shall be prefixed by the keyword typename to indicate that the
305         //   qualified-id denotes a type, forming an
306         //   elaborated-type-specifier (7.1.5.3).
307         //
308         // We therefore do not perform any name lookup if the result would
309         // refer to a member of an unknown specialization.
310         if (!isClassName && !IsCtorOrDtorName)
311           return nullptr;
312 
313         // We know from the grammar that this name refers to a type,
314         // so build a dependent node to describe the type.
315         if (WantNontrivialTypeSourceInfo)
316           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
317 
318         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
319         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
320                                        II, NameLoc);
321         return ParsedType::make(T);
322       }
323 
324       return nullptr;
325     }
326 
327     if (!LookupCtx->isDependentContext() &&
328         RequireCompleteDeclContext(*SS, LookupCtx))
329       return nullptr;
330   }
331 
332   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
333   // lookup for class-names.
334   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
335                                       LookupOrdinaryName;
336   LookupResult Result(*this, &II, NameLoc, Kind);
337   if (LookupCtx) {
338     // Perform "qualified" name lookup into the declaration context we
339     // computed, which is either the type of the base of a member access
340     // expression or the declaration context associated with a prior
341     // nested-name-specifier.
342     LookupQualifiedName(Result, LookupCtx);
343 
344     if (ObjectTypePtr && Result.empty()) {
345       // C++ [basic.lookup.classref]p3:
346       //   If the unqualified-id is ~type-name, the type-name is looked up
347       //   in the context of the entire postfix-expression. If the type T of
348       //   the object expression is of a class type C, the type-name is also
349       //   looked up in the scope of class C. At least one of the lookups shall
350       //   find a name that refers to (possibly cv-qualified) T.
351       LookupName(Result, S);
352     }
353   } else {
354     // Perform unqualified name lookup.
355     LookupName(Result, S);
356 
357     // For unqualified lookup in a class template in MSVC mode, look into
358     // dependent base classes where the primary class template is known.
359     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
360       if (ParsedType TypeInBase =
361               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
362         return TypeInBase;
363     }
364   }
365 
366   NamedDecl *IIDecl = nullptr;
367   switch (Result.getResultKind()) {
368   case LookupResult::NotFound:
369   case LookupResult::NotFoundInCurrentInstantiation:
370     if (CorrectedII) {
371       TypoCorrection Correction =
372           CorrectTypo(Result.getLookupNameInfo(), Kind, S, SS,
373                       llvm::make_unique<TypeNameValidatorCCC>(
374                           true, isClassName, AllowDeducedTemplate),
375                       CTK_ErrorRecovery);
376       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
377       TemplateTy Template;
378       bool MemberOfUnknownSpecialization;
379       UnqualifiedId TemplateName;
380       TemplateName.setIdentifier(NewII, NameLoc);
381       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
382       CXXScopeSpec NewSS, *NewSSPtr = SS;
383       if (SS && NNS) {
384         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
385         NewSSPtr = &NewSS;
386       }
387       if (Correction && (NNS || NewII != &II) &&
388           // Ignore a correction to a template type as the to-be-corrected
389           // identifier is not a template (typo correction for template names
390           // is handled elsewhere).
391           !(getLangOpts().CPlusPlus && NewSSPtr &&
392             isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
393                            Template, MemberOfUnknownSpecialization))) {
394         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
395                                     isClassName, HasTrailingDot, ObjectTypePtr,
396                                     IsCtorOrDtorName,
397                                     WantNontrivialTypeSourceInfo,
398                                     IsClassTemplateDeductionContext);
399         if (Ty) {
400           diagnoseTypo(Correction,
401                        PDiag(diag::err_unknown_type_or_class_name_suggest)
402                          << Result.getLookupName() << isClassName);
403           if (SS && NNS)
404             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
405           *CorrectedII = NewII;
406           return Ty;
407         }
408       }
409     }
410     // If typo correction failed or was not performed, fall through
411     LLVM_FALLTHROUGH;
412   case LookupResult::FoundOverloaded:
413   case LookupResult::FoundUnresolvedValue:
414     Result.suppressDiagnostics();
415     return nullptr;
416 
417   case LookupResult::Ambiguous:
418     // Recover from type-hiding ambiguities by hiding the type.  We'll
419     // do the lookup again when looking for an object, and we can
420     // diagnose the error then.  If we don't do this, then the error
421     // about hiding the type will be immediately followed by an error
422     // that only makes sense if the identifier was treated like a type.
423     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
424       Result.suppressDiagnostics();
425       return nullptr;
426     }
427 
428     // Look to see if we have a type anywhere in the list of results.
429     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
430          Res != ResEnd; ++Res) {
431       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
432           (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
433         if (!IIDecl ||
434             (*Res)->getLocation().getRawEncoding() <
435               IIDecl->getLocation().getRawEncoding())
436           IIDecl = *Res;
437       }
438     }
439 
440     if (!IIDecl) {
441       // None of the entities we found is a type, so there is no way
442       // to even assume that the result is a type. In this case, don't
443       // complain about the ambiguity. The parser will either try to
444       // perform this lookup again (e.g., as an object name), which
445       // will produce the ambiguity, or will complain that it expected
446       // a type name.
447       Result.suppressDiagnostics();
448       return nullptr;
449     }
450 
451     // We found a type within the ambiguous lookup; diagnose the
452     // ambiguity and then return that type. This might be the right
453     // answer, or it might not be, but it suppresses any attempt to
454     // perform the name lookup again.
455     break;
456 
457   case LookupResult::Found:
458     IIDecl = Result.getFoundDecl();
459     break;
460   }
461 
462   assert(IIDecl && "Didn't find decl");
463 
464   QualType T;
465   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
466     // C++ [class.qual]p2: A lookup that would find the injected-class-name
467     // instead names the constructors of the class, except when naming a class.
468     // This is ill-formed when we're not actually forming a ctor or dtor name.
469     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
470     auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
471     if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
472         FoundRD->isInjectedClassName() &&
473         declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
474       Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
475           << &II << /*Type*/1;
476 
477     DiagnoseUseOfDecl(IIDecl, NameLoc);
478 
479     T = Context.getTypeDeclType(TD);
480     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
481   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
482     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
483     if (!HasTrailingDot)
484       T = Context.getObjCInterfaceType(IDecl);
485   } else if (AllowDeducedTemplate) {
486     if (auto *TD = getAsTypeTemplateDecl(IIDecl))
487       T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
488                                                        QualType(), false);
489   }
490 
491   if (T.isNull()) {
492     // If it's not plausibly a type, suppress diagnostics.
493     Result.suppressDiagnostics();
494     return nullptr;
495   }
496 
497   // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
498   // constructor or destructor name (in such a case, the scope specifier
499   // will be attached to the enclosing Expr or Decl node).
500   if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
501       !isa<ObjCInterfaceDecl>(IIDecl)) {
502     if (WantNontrivialTypeSourceInfo) {
503       // Construct a type with type-source information.
504       TypeLocBuilder Builder;
505       Builder.pushTypeSpec(T).setNameLoc(NameLoc);
506 
507       T = getElaboratedType(ETK_None, *SS, T);
508       ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
509       ElabTL.setElaboratedKeywordLoc(SourceLocation());
510       ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
511       return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
512     } else {
513       T = getElaboratedType(ETK_None, *SS, T);
514     }
515   }
516 
517   return ParsedType::make(T);
518 }
519 
520 // Builds a fake NNS for the given decl context.
521 static NestedNameSpecifier *
522 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
523   for (;; DC = DC->getLookupParent()) {
524     DC = DC->getPrimaryContext();
525     auto *ND = dyn_cast<NamespaceDecl>(DC);
526     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
527       return NestedNameSpecifier::Create(Context, nullptr, ND);
528     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
529       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
530                                          RD->getTypeForDecl());
531     else if (isa<TranslationUnitDecl>(DC))
532       return NestedNameSpecifier::GlobalSpecifier(Context);
533   }
534   llvm_unreachable("something isn't in TU scope?");
535 }
536 
537 /// Find the parent class with dependent bases of the innermost enclosing method
538 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
539 /// up allowing unqualified dependent type names at class-level, which MSVC
540 /// correctly rejects.
541 static const CXXRecordDecl *
542 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
543   for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
544     DC = DC->getPrimaryContext();
545     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
546       if (MD->getParent()->hasAnyDependentBases())
547         return MD->getParent();
548   }
549   return nullptr;
550 }
551 
552 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
553                                           SourceLocation NameLoc,
554                                           bool IsTemplateTypeArg) {
555   assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
556 
557   NestedNameSpecifier *NNS = nullptr;
558   if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
559     // If we weren't able to parse a default template argument, delay lookup
560     // until instantiation time by making a non-dependent DependentTypeName. We
561     // pretend we saw a NestedNameSpecifier referring to the current scope, and
562     // lookup is retried.
563     // FIXME: This hurts our diagnostic quality, since we get errors like "no
564     // type named 'Foo' in 'current_namespace'" when the user didn't write any
565     // name specifiers.
566     NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
567     Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
568   } else if (const CXXRecordDecl *RD =
569                  findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
570     // Build a DependentNameType that will perform lookup into RD at
571     // instantiation time.
572     NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
573                                       RD->getTypeForDecl());
574 
575     // Diagnose that this identifier was undeclared, and retry the lookup during
576     // template instantiation.
577     Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
578                                                                       << RD;
579   } else {
580     // This is not a situation that we should recover from.
581     return ParsedType();
582   }
583 
584   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
585 
586   // Build type location information.  We synthesized the qualifier, so we have
587   // to build a fake NestedNameSpecifierLoc.
588   NestedNameSpecifierLocBuilder NNSLocBuilder;
589   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
590   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
591 
592   TypeLocBuilder Builder;
593   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
594   DepTL.setNameLoc(NameLoc);
595   DepTL.setElaboratedKeywordLoc(SourceLocation());
596   DepTL.setQualifierLoc(QualifierLoc);
597   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
598 }
599 
600 /// isTagName() - This method is called *for error recovery purposes only*
601 /// to determine if the specified name is a valid tag name ("struct foo").  If
602 /// so, this returns the TST for the tag corresponding to it (TST_enum,
603 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
604 /// cases in C where the user forgot to specify the tag.
605 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
606   // Do a tag name lookup in this scope.
607   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
608   LookupName(R, S, false);
609   R.suppressDiagnostics();
610   if (R.getResultKind() == LookupResult::Found)
611     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
612       switch (TD->getTagKind()) {
613       case TTK_Struct: return DeclSpec::TST_struct;
614       case TTK_Interface: return DeclSpec::TST_interface;
615       case TTK_Union:  return DeclSpec::TST_union;
616       case TTK_Class:  return DeclSpec::TST_class;
617       case TTK_Enum:   return DeclSpec::TST_enum;
618       }
619     }
620 
621   return DeclSpec::TST_unspecified;
622 }
623 
624 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
625 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
626 /// then downgrade the missing typename error to a warning.
627 /// This is needed for MSVC compatibility; Example:
628 /// @code
629 /// template<class T> class A {
630 /// public:
631 ///   typedef int TYPE;
632 /// };
633 /// template<class T> class B : public A<T> {
634 /// public:
635 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
636 /// };
637 /// @endcode
638 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
639   if (CurContext->isRecord()) {
640     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
641       return true;
642 
643     const Type *Ty = SS->getScopeRep()->getAsType();
644 
645     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
646     for (const auto &Base : RD->bases())
647       if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
648         return true;
649     return S->isFunctionPrototypeScope();
650   }
651   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
652 }
653 
654 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
655                                    SourceLocation IILoc,
656                                    Scope *S,
657                                    CXXScopeSpec *SS,
658                                    ParsedType &SuggestedType,
659                                    bool IsTemplateName) {
660   // Don't report typename errors for editor placeholders.
661   if (II->isEditorPlaceholder())
662     return;
663   // We don't have anything to suggest (yet).
664   SuggestedType = nullptr;
665 
666   // There may have been a typo in the name of the type. Look up typo
667   // results, in case we have something that we can suggest.
668   if (TypoCorrection Corrected =
669           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
670                       llvm::make_unique<TypeNameValidatorCCC>(
671                           false, false, IsTemplateName, !IsTemplateName),
672                       CTK_ErrorRecovery)) {
673     // FIXME: Support error recovery for the template-name case.
674     bool CanRecover = !IsTemplateName;
675     if (Corrected.isKeyword()) {
676       // We corrected to a keyword.
677       diagnoseTypo(Corrected,
678                    PDiag(IsTemplateName ? diag::err_no_template_suggest
679                                         : diag::err_unknown_typename_suggest)
680                        << II);
681       II = Corrected.getCorrectionAsIdentifierInfo();
682     } else {
683       // We found a similarly-named type or interface; suggest that.
684       if (!SS || !SS->isSet()) {
685         diagnoseTypo(Corrected,
686                      PDiag(IsTemplateName ? diag::err_no_template_suggest
687                                           : diag::err_unknown_typename_suggest)
688                          << II, CanRecover);
689       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
690         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
691         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
692                                 II->getName().equals(CorrectedStr);
693         diagnoseTypo(Corrected,
694                      PDiag(IsTemplateName
695                                ? diag::err_no_member_template_suggest
696                                : diag::err_unknown_nested_typename_suggest)
697                          << II << DC << DroppedSpecifier << SS->getRange(),
698                      CanRecover);
699       } else {
700         llvm_unreachable("could not have corrected a typo here");
701       }
702 
703       if (!CanRecover)
704         return;
705 
706       CXXScopeSpec tmpSS;
707       if (Corrected.getCorrectionSpecifier())
708         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
709                           SourceRange(IILoc));
710       // FIXME: Support class template argument deduction here.
711       SuggestedType =
712           getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
713                       tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
714                       /*IsCtorOrDtorName=*/false,
715                       /*NonTrivialTypeSourceInfo=*/true);
716     }
717     return;
718   }
719 
720   if (getLangOpts().CPlusPlus && !IsTemplateName) {
721     // See if II is a class template that the user forgot to pass arguments to.
722     UnqualifiedId Name;
723     Name.setIdentifier(II, IILoc);
724     CXXScopeSpec EmptySS;
725     TemplateTy TemplateResult;
726     bool MemberOfUnknownSpecialization;
727     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
728                        Name, nullptr, true, TemplateResult,
729                        MemberOfUnknownSpecialization) == TNK_Type_template) {
730       diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
731       return;
732     }
733   }
734 
735   // FIXME: Should we move the logic that tries to recover from a missing tag
736   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
737 
738   if (!SS || (!SS->isSet() && !SS->isInvalid()))
739     Diag(IILoc, IsTemplateName ? diag::err_no_template
740                                : diag::err_unknown_typename)
741         << II;
742   else if (DeclContext *DC = computeDeclContext(*SS, false))
743     Diag(IILoc, IsTemplateName ? diag::err_no_member_template
744                                : diag::err_typename_nested_not_found)
745         << II << DC << SS->getRange();
746   else if (isDependentScopeSpecifier(*SS)) {
747     unsigned DiagID = diag::err_typename_missing;
748     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
749       DiagID = diag::ext_typename_missing;
750 
751     Diag(SS->getRange().getBegin(), DiagID)
752       << SS->getScopeRep() << II->getName()
753       << SourceRange(SS->getRange().getBegin(), IILoc)
754       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
755     SuggestedType = ActOnTypenameType(S, SourceLocation(),
756                                       *SS, *II, IILoc).get();
757   } else {
758     assert(SS && SS->isInvalid() &&
759            "Invalid scope specifier has already been diagnosed");
760   }
761 }
762 
763 /// Determine whether the given result set contains either a type name
764 /// or
765 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
766   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
767                        NextToken.is(tok::less);
768 
769   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
770     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
771       return true;
772 
773     if (CheckTemplate && isa<TemplateDecl>(*I))
774       return true;
775   }
776 
777   return false;
778 }
779 
780 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
781                                     Scope *S, CXXScopeSpec &SS,
782                                     IdentifierInfo *&Name,
783                                     SourceLocation NameLoc) {
784   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
785   SemaRef.LookupParsedName(R, S, &SS);
786   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
787     StringRef FixItTagName;
788     switch (Tag->getTagKind()) {
789       case TTK_Class:
790         FixItTagName = "class ";
791         break;
792 
793       case TTK_Enum:
794         FixItTagName = "enum ";
795         break;
796 
797       case TTK_Struct:
798         FixItTagName = "struct ";
799         break;
800 
801       case TTK_Interface:
802         FixItTagName = "__interface ";
803         break;
804 
805       case TTK_Union:
806         FixItTagName = "union ";
807         break;
808     }
809 
810     StringRef TagName = FixItTagName.drop_back();
811     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
812       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
813       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
814 
815     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
816          I != IEnd; ++I)
817       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
818         << Name << TagName;
819 
820     // Replace lookup results with just the tag decl.
821     Result.clear(Sema::LookupTagName);
822     SemaRef.LookupParsedName(Result, S, &SS);
823     return true;
824   }
825 
826   return false;
827 }
828 
829 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
830 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
831                                   QualType T, SourceLocation NameLoc) {
832   ASTContext &Context = S.Context;
833 
834   TypeLocBuilder Builder;
835   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
836 
837   T = S.getElaboratedType(ETK_None, SS, T);
838   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
839   ElabTL.setElaboratedKeywordLoc(SourceLocation());
840   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
841   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
842 }
843 
844 Sema::NameClassification
845 Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
846                    SourceLocation NameLoc, const Token &NextToken,
847                    bool IsAddressOfOperand,
848                    std::unique_ptr<CorrectionCandidateCallback> CCC) {
849   DeclarationNameInfo NameInfo(Name, NameLoc);
850   ObjCMethodDecl *CurMethod = getCurMethodDecl();
851 
852   if (NextToken.is(tok::coloncolon)) {
853     NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation());
854     BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false);
855   } else if (getLangOpts().CPlusPlus && SS.isSet() &&
856              isCurrentClassName(*Name, S, &SS)) {
857     // Per [class.qual]p2, this names the constructors of SS, not the
858     // injected-class-name. We don't have a classification for that.
859     // There's not much point caching this result, since the parser
860     // will reject it later.
861     return NameClassification::Unknown();
862   }
863 
864   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
865   LookupParsedName(Result, S, &SS, !CurMethod);
866 
867   // For unqualified lookup in a class template in MSVC mode, look into
868   // dependent base classes where the primary class template is known.
869   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
870     if (ParsedType TypeInBase =
871             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
872       return TypeInBase;
873   }
874 
875   // Perform lookup for Objective-C instance variables (including automatically
876   // synthesized instance variables), if we're in an Objective-C method.
877   // FIXME: This lookup really, really needs to be folded in to the normal
878   // unqualified lookup mechanism.
879   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
880     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
881     if (E.get() || E.isInvalid())
882       return E;
883   }
884 
885   bool SecondTry = false;
886   bool IsFilteredTemplateName = false;
887 
888 Corrected:
889   switch (Result.getResultKind()) {
890   case LookupResult::NotFound:
891     // If an unqualified-id is followed by a '(', then we have a function
892     // call.
893     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
894       // In C++, this is an ADL-only call.
895       // FIXME: Reference?
896       if (getLangOpts().CPlusPlus)
897         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
898 
899       // C90 6.3.2.2:
900       //   If the expression that precedes the parenthesized argument list in a
901       //   function call consists solely of an identifier, and if no
902       //   declaration is visible for this identifier, the identifier is
903       //   implicitly declared exactly as if, in the innermost block containing
904       //   the function call, the declaration
905       //
906       //     extern int identifier ();
907       //
908       //   appeared.
909       //
910       // We also allow this in C99 as an extension.
911       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
912         Result.addDecl(D);
913         Result.resolveKind();
914         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
915       }
916     }
917 
918     // In C, we first see whether there is a tag type by the same name, in
919     // which case it's likely that the user just forgot to write "enum",
920     // "struct", or "union".
921     if (!getLangOpts().CPlusPlus && !SecondTry &&
922         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
923       break;
924     }
925 
926     // Perform typo correction to determine if there is another name that is
927     // close to this name.
928     if (!SecondTry && CCC) {
929       SecondTry = true;
930       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
931                                                  Result.getLookupKind(), S,
932                                                  &SS, std::move(CCC),
933                                                  CTK_ErrorRecovery)) {
934         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
935         unsigned QualifiedDiag = diag::err_no_member_suggest;
936 
937         NamedDecl *FirstDecl = Corrected.getFoundDecl();
938         NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
939         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
940             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
941           UnqualifiedDiag = diag::err_no_template_suggest;
942           QualifiedDiag = diag::err_no_member_template_suggest;
943         } else if (UnderlyingFirstDecl &&
944                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
945                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
946                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
947           UnqualifiedDiag = diag::err_unknown_typename_suggest;
948           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
949         }
950 
951         if (SS.isEmpty()) {
952           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
953         } else {// FIXME: is this even reachable? Test it.
954           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
955           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
956                                   Name->getName().equals(CorrectedStr);
957           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
958                                     << Name << computeDeclContext(SS, false)
959                                     << DroppedSpecifier << SS.getRange());
960         }
961 
962         // Update the name, so that the caller has the new name.
963         Name = Corrected.getCorrectionAsIdentifierInfo();
964 
965         // Typo correction corrected to a keyword.
966         if (Corrected.isKeyword())
967           return Name;
968 
969         // Also update the LookupResult...
970         // FIXME: This should probably go away at some point
971         Result.clear();
972         Result.setLookupName(Corrected.getCorrection());
973         if (FirstDecl)
974           Result.addDecl(FirstDecl);
975 
976         // If we found an Objective-C instance variable, let
977         // LookupInObjCMethod build the appropriate expression to
978         // reference the ivar.
979         // FIXME: This is a gross hack.
980         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
981           Result.clear();
982           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
983           return E;
984         }
985 
986         goto Corrected;
987       }
988     }
989 
990     // We failed to correct; just fall through and let the parser deal with it.
991     Result.suppressDiagnostics();
992     return NameClassification::Unknown();
993 
994   case LookupResult::NotFoundInCurrentInstantiation: {
995     // We performed name lookup into the current instantiation, and there were
996     // dependent bases, so we treat this result the same way as any other
997     // dependent nested-name-specifier.
998 
999     // C++ [temp.res]p2:
1000     //   A name used in a template declaration or definition and that is
1001     //   dependent on a template-parameter is assumed not to name a type
1002     //   unless the applicable name lookup finds a type name or the name is
1003     //   qualified by the keyword typename.
1004     //
1005     // FIXME: If the next token is '<', we might want to ask the parser to
1006     // perform some heroics to see if we actually have a
1007     // template-argument-list, which would indicate a missing 'template'
1008     // keyword here.
1009     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1010                                       NameInfo, IsAddressOfOperand,
1011                                       /*TemplateArgs=*/nullptr);
1012   }
1013 
1014   case LookupResult::Found:
1015   case LookupResult::FoundOverloaded:
1016   case LookupResult::FoundUnresolvedValue:
1017     break;
1018 
1019   case LookupResult::Ambiguous:
1020     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1021         hasAnyAcceptableTemplateNames(Result)) {
1022       // C++ [temp.local]p3:
1023       //   A lookup that finds an injected-class-name (10.2) can result in an
1024       //   ambiguity in certain cases (for example, if it is found in more than
1025       //   one base class). If all of the injected-class-names that are found
1026       //   refer to specializations of the same class template, and if the name
1027       //   is followed by a template-argument-list, the reference refers to the
1028       //   class template itself and not a specialization thereof, and is not
1029       //   ambiguous.
1030       //
1031       // This filtering can make an ambiguous result into an unambiguous one,
1032       // so try again after filtering out template names.
1033       FilterAcceptableTemplateNames(Result);
1034       if (!Result.isAmbiguous()) {
1035         IsFilteredTemplateName = true;
1036         break;
1037       }
1038     }
1039 
1040     // Diagnose the ambiguity and return an error.
1041     return NameClassification::Error();
1042   }
1043 
1044   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1045       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
1046     // C++ [temp.names]p3:
1047     //   After name lookup (3.4) finds that a name is a template-name or that
1048     //   an operator-function-id or a literal- operator-id refers to a set of
1049     //   overloaded functions any member of which is a function template if
1050     //   this is followed by a <, the < is always taken as the delimiter of a
1051     //   template-argument-list and never as the less-than operator.
1052     if (!IsFilteredTemplateName)
1053       FilterAcceptableTemplateNames(Result);
1054 
1055     if (!Result.empty()) {
1056       bool IsFunctionTemplate;
1057       bool IsVarTemplate;
1058       TemplateName Template;
1059       if (Result.end() - Result.begin() > 1) {
1060         IsFunctionTemplate = true;
1061         Template = Context.getOverloadedTemplateName(Result.begin(),
1062                                                      Result.end());
1063       } else {
1064         TemplateDecl *TD
1065           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
1066         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1067         IsVarTemplate = isa<VarTemplateDecl>(TD);
1068 
1069         if (SS.isSet() && !SS.isInvalid())
1070           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
1071                                                     /*TemplateKeyword=*/false,
1072                                                       TD);
1073         else
1074           Template = TemplateName(TD);
1075       }
1076 
1077       if (IsFunctionTemplate) {
1078         // Function templates always go through overload resolution, at which
1079         // point we'll perform the various checks (e.g., accessibility) we need
1080         // to based on which function we selected.
1081         Result.suppressDiagnostics();
1082 
1083         return NameClassification::FunctionTemplate(Template);
1084       }
1085 
1086       return IsVarTemplate ? NameClassification::VarTemplate(Template)
1087                            : NameClassification::TypeTemplate(Template);
1088     }
1089   }
1090 
1091   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1092   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1093     DiagnoseUseOfDecl(Type, NameLoc);
1094     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1095     QualType T = Context.getTypeDeclType(Type);
1096     if (SS.isNotEmpty())
1097       return buildNestedType(*this, SS, T, NameLoc);
1098     return ParsedType::make(T);
1099   }
1100 
1101   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1102   if (!Class) {
1103     // FIXME: It's unfortunate that we don't have a Type node for handling this.
1104     if (ObjCCompatibleAliasDecl *Alias =
1105             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1106       Class = Alias->getClassInterface();
1107   }
1108 
1109   if (Class) {
1110     DiagnoseUseOfDecl(Class, NameLoc);
1111 
1112     if (NextToken.is(tok::period)) {
1113       // Interface. <something> is parsed as a property reference expression.
1114       // Just return "unknown" as a fall-through for now.
1115       Result.suppressDiagnostics();
1116       return NameClassification::Unknown();
1117     }
1118 
1119     QualType T = Context.getObjCInterfaceType(Class);
1120     return ParsedType::make(T);
1121   }
1122 
1123   // We can have a type template here if we're classifying a template argument.
1124   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1125       !isa<VarTemplateDecl>(FirstDecl))
1126     return NameClassification::TypeTemplate(
1127         TemplateName(cast<TemplateDecl>(FirstDecl)));
1128 
1129   // Check for a tag type hidden by a non-type decl in a few cases where it
1130   // seems likely a type is wanted instead of the non-type that was found.
1131   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1132   if ((NextToken.is(tok::identifier) ||
1133        (NextIsOp &&
1134         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1135       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1136     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1137     DiagnoseUseOfDecl(Type, NameLoc);
1138     QualType T = Context.getTypeDeclType(Type);
1139     if (SS.isNotEmpty())
1140       return buildNestedType(*this, SS, T, NameLoc);
1141     return ParsedType::make(T);
1142   }
1143 
1144   if (FirstDecl->isCXXClassMember())
1145     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1146                                            nullptr, S);
1147 
1148   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1149   return BuildDeclarationNameExpr(SS, Result, ADL);
1150 }
1151 
1152 Sema::TemplateNameKindForDiagnostics
1153 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1154   auto *TD = Name.getAsTemplateDecl();
1155   if (!TD)
1156     return TemplateNameKindForDiagnostics::DependentTemplate;
1157   if (isa<ClassTemplateDecl>(TD))
1158     return TemplateNameKindForDiagnostics::ClassTemplate;
1159   if (isa<FunctionTemplateDecl>(TD))
1160     return TemplateNameKindForDiagnostics::FunctionTemplate;
1161   if (isa<VarTemplateDecl>(TD))
1162     return TemplateNameKindForDiagnostics::VarTemplate;
1163   if (isa<TypeAliasTemplateDecl>(TD))
1164     return TemplateNameKindForDiagnostics::AliasTemplate;
1165   if (isa<TemplateTemplateParmDecl>(TD))
1166     return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1167   return TemplateNameKindForDiagnostics::DependentTemplate;
1168 }
1169 
1170 // Determines the context to return to after temporarily entering a
1171 // context.  This depends in an unnecessarily complicated way on the
1172 // exact ordering of callbacks from the parser.
1173 DeclContext *Sema::getContainingDC(DeclContext *DC) {
1174 
1175   // Functions defined inline within classes aren't parsed until we've
1176   // finished parsing the top-level class, so the top-level class is
1177   // the context we'll need to return to.
1178   // A Lambda call operator whose parent is a class must not be treated
1179   // as an inline member function.  A Lambda can be used legally
1180   // either as an in-class member initializer or a default argument.  These
1181   // are parsed once the class has been marked complete and so the containing
1182   // context would be the nested class (when the lambda is defined in one);
1183   // If the class is not complete, then the lambda is being used in an
1184   // ill-formed fashion (such as to specify the width of a bit-field, or
1185   // in an array-bound) - in which case we still want to return the
1186   // lexically containing DC (which could be a nested class).
1187   if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1188     DC = DC->getLexicalParent();
1189 
1190     // A function not defined within a class will always return to its
1191     // lexical context.
1192     if (!isa<CXXRecordDecl>(DC))
1193       return DC;
1194 
1195     // A C++ inline method/friend is parsed *after* the topmost class
1196     // it was declared in is fully parsed ("complete");  the topmost
1197     // class is the context we need to return to.
1198     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1199       DC = RD;
1200 
1201     // Return the declaration context of the topmost class the inline method is
1202     // declared in.
1203     return DC;
1204   }
1205 
1206   return DC->getLexicalParent();
1207 }
1208 
1209 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1210   assert(getContainingDC(DC) == CurContext &&
1211       "The next DeclContext should be lexically contained in the current one.");
1212   CurContext = DC;
1213   S->setEntity(DC);
1214 }
1215 
1216 void Sema::PopDeclContext() {
1217   assert(CurContext && "DeclContext imbalance!");
1218 
1219   CurContext = getContainingDC(CurContext);
1220   assert(CurContext && "Popped translation unit!");
1221 }
1222 
1223 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1224                                                                     Decl *D) {
1225   // Unlike PushDeclContext, the context to which we return is not necessarily
1226   // the containing DC of TD, because the new context will be some pre-existing
1227   // TagDecl definition instead of a fresh one.
1228   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1229   CurContext = cast<TagDecl>(D)->getDefinition();
1230   assert(CurContext && "skipping definition of undefined tag");
1231   // Start lookups from the parent of the current context; we don't want to look
1232   // into the pre-existing complete definition.
1233   S->setEntity(CurContext->getLookupParent());
1234   return Result;
1235 }
1236 
1237 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1238   CurContext = static_cast<decltype(CurContext)>(Context);
1239 }
1240 
1241 /// EnterDeclaratorContext - Used when we must lookup names in the context
1242 /// of a declarator's nested name specifier.
1243 ///
1244 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1245   // C++0x [basic.lookup.unqual]p13:
1246   //   A name used in the definition of a static data member of class
1247   //   X (after the qualified-id of the static member) is looked up as
1248   //   if the name was used in a member function of X.
1249   // C++0x [basic.lookup.unqual]p14:
1250   //   If a variable member of a namespace is defined outside of the
1251   //   scope of its namespace then any name used in the definition of
1252   //   the variable member (after the declarator-id) is looked up as
1253   //   if the definition of the variable member occurred in its
1254   //   namespace.
1255   // Both of these imply that we should push a scope whose context
1256   // is the semantic context of the declaration.  We can't use
1257   // PushDeclContext here because that context is not necessarily
1258   // lexically contained in the current context.  Fortunately,
1259   // the containing scope should have the appropriate information.
1260 
1261   assert(!S->getEntity() && "scope already has entity");
1262 
1263 #ifndef NDEBUG
1264   Scope *Ancestor = S->getParent();
1265   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1266   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1267 #endif
1268 
1269   CurContext = DC;
1270   S->setEntity(DC);
1271 }
1272 
1273 void Sema::ExitDeclaratorContext(Scope *S) {
1274   assert(S->getEntity() == CurContext && "Context imbalance!");
1275 
1276   // Switch back to the lexical context.  The safety of this is
1277   // enforced by an assert in EnterDeclaratorContext.
1278   Scope *Ancestor = S->getParent();
1279   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1280   CurContext = Ancestor->getEntity();
1281 
1282   // We don't need to do anything with the scope, which is going to
1283   // disappear.
1284 }
1285 
1286 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1287   // We assume that the caller has already called
1288   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1289   FunctionDecl *FD = D->getAsFunction();
1290   if (!FD)
1291     return;
1292 
1293   // Same implementation as PushDeclContext, but enters the context
1294   // from the lexical parent, rather than the top-level class.
1295   assert(CurContext == FD->getLexicalParent() &&
1296     "The next DeclContext should be lexically contained in the current one.");
1297   CurContext = FD;
1298   S->setEntity(CurContext);
1299 
1300   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1301     ParmVarDecl *Param = FD->getParamDecl(P);
1302     // If the parameter has an identifier, then add it to the scope
1303     if (Param->getIdentifier()) {
1304       S->AddDecl(Param);
1305       IdResolver.AddDecl(Param);
1306     }
1307   }
1308 }
1309 
1310 void Sema::ActOnExitFunctionContext() {
1311   // Same implementation as PopDeclContext, but returns to the lexical parent,
1312   // rather than the top-level class.
1313   assert(CurContext && "DeclContext imbalance!");
1314   CurContext = CurContext->getLexicalParent();
1315   assert(CurContext && "Popped translation unit!");
1316 }
1317 
1318 /// Determine whether we allow overloading of the function
1319 /// PrevDecl with another declaration.
1320 ///
1321 /// This routine determines whether overloading is possible, not
1322 /// whether some new function is actually an overload. It will return
1323 /// true in C++ (where we can always provide overloads) or, as an
1324 /// extension, in C when the previous function is already an
1325 /// overloaded function declaration or has the "overloadable"
1326 /// attribute.
1327 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1328                                        ASTContext &Context,
1329                                        const FunctionDecl *New) {
1330   if (Context.getLangOpts().CPlusPlus)
1331     return true;
1332 
1333   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1334     return true;
1335 
1336   return Previous.getResultKind() == LookupResult::Found &&
1337          (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1338           New->hasAttr<OverloadableAttr>());
1339 }
1340 
1341 /// Add this decl to the scope shadowed decl chains.
1342 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1343   // Move up the scope chain until we find the nearest enclosing
1344   // non-transparent context. The declaration will be introduced into this
1345   // scope.
1346   while (S->getEntity() && S->getEntity()->isTransparentContext())
1347     S = S->getParent();
1348 
1349   // Add scoped declarations into their context, so that they can be
1350   // found later. Declarations without a context won't be inserted
1351   // into any context.
1352   if (AddToContext)
1353     CurContext->addDecl(D);
1354 
1355   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1356   // are function-local declarations.
1357   if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1358       !D->getDeclContext()->getRedeclContext()->Equals(
1359         D->getLexicalDeclContext()->getRedeclContext()) &&
1360       !D->getLexicalDeclContext()->isFunctionOrMethod())
1361     return;
1362 
1363   // Template instantiations should also not be pushed into scope.
1364   if (isa<FunctionDecl>(D) &&
1365       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1366     return;
1367 
1368   // If this replaces anything in the current scope,
1369   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1370                                IEnd = IdResolver.end();
1371   for (; I != IEnd; ++I) {
1372     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1373       S->RemoveDecl(*I);
1374       IdResolver.RemoveDecl(*I);
1375 
1376       // Should only need to replace one decl.
1377       break;
1378     }
1379   }
1380 
1381   S->AddDecl(D);
1382 
1383   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1384     // Implicitly-generated labels may end up getting generated in an order that
1385     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1386     // the label at the appropriate place in the identifier chain.
1387     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1388       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1389       if (IDC == CurContext) {
1390         if (!S->isDeclScope(*I))
1391           continue;
1392       } else if (IDC->Encloses(CurContext))
1393         break;
1394     }
1395 
1396     IdResolver.InsertDeclAfter(I, D);
1397   } else {
1398     IdResolver.AddDecl(D);
1399   }
1400 }
1401 
1402 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1403   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1404     TUScope->AddDecl(D);
1405 }
1406 
1407 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1408                          bool AllowInlineNamespace) {
1409   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1410 }
1411 
1412 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1413   DeclContext *TargetDC = DC->getPrimaryContext();
1414   do {
1415     if (DeclContext *ScopeDC = S->getEntity())
1416       if (ScopeDC->getPrimaryContext() == TargetDC)
1417         return S;
1418   } while ((S = S->getParent()));
1419 
1420   return nullptr;
1421 }
1422 
1423 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1424                                             DeclContext*,
1425                                             ASTContext&);
1426 
1427 /// Filters out lookup results that don't fall within the given scope
1428 /// as determined by isDeclInScope.
1429 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1430                                 bool ConsiderLinkage,
1431                                 bool AllowInlineNamespace) {
1432   LookupResult::Filter F = R.makeFilter();
1433   while (F.hasNext()) {
1434     NamedDecl *D = F.next();
1435 
1436     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1437       continue;
1438 
1439     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1440       continue;
1441 
1442     F.erase();
1443   }
1444 
1445   F.done();
1446 }
1447 
1448 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1449 /// have compatible owning modules.
1450 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1451   // FIXME: The Modules TS is not clear about how friend declarations are
1452   // to be treated. It's not meaningful to have different owning modules for
1453   // linkage in redeclarations of the same entity, so for now allow the
1454   // redeclaration and change the owning modules to match.
1455   if (New->getFriendObjectKind() &&
1456       Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1457     New->setLocalOwningModule(Old->getOwningModule());
1458     makeMergedDefinitionVisible(New);
1459     return false;
1460   }
1461 
1462   Module *NewM = New->getOwningModule();
1463   Module *OldM = Old->getOwningModule();
1464   if (NewM == OldM)
1465     return false;
1466 
1467   // FIXME: Check proclaimed-ownership-declarations here too.
1468   bool NewIsModuleInterface = NewM && NewM->Kind == Module::ModuleInterfaceUnit;
1469   bool OldIsModuleInterface = OldM && OldM->Kind == Module::ModuleInterfaceUnit;
1470   if (NewIsModuleInterface || OldIsModuleInterface) {
1471     // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1472     //   if a declaration of D [...] appears in the purview of a module, all
1473     //   other such declarations shall appear in the purview of the same module
1474     Diag(New->getLocation(), diag::err_mismatched_owning_module)
1475       << New
1476       << NewIsModuleInterface
1477       << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1478       << OldIsModuleInterface
1479       << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1480     Diag(Old->getLocation(), diag::note_previous_declaration);
1481     New->setInvalidDecl();
1482     return true;
1483   }
1484 
1485   return false;
1486 }
1487 
1488 static bool isUsingDecl(NamedDecl *D) {
1489   return isa<UsingShadowDecl>(D) ||
1490          isa<UnresolvedUsingTypenameDecl>(D) ||
1491          isa<UnresolvedUsingValueDecl>(D);
1492 }
1493 
1494 /// Removes using shadow declarations from the lookup results.
1495 static void RemoveUsingDecls(LookupResult &R) {
1496   LookupResult::Filter F = R.makeFilter();
1497   while (F.hasNext())
1498     if (isUsingDecl(F.next()))
1499       F.erase();
1500 
1501   F.done();
1502 }
1503 
1504 /// Check for this common pattern:
1505 /// @code
1506 /// class S {
1507 ///   S(const S&); // DO NOT IMPLEMENT
1508 ///   void operator=(const S&); // DO NOT IMPLEMENT
1509 /// };
1510 /// @endcode
1511 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1512   // FIXME: Should check for private access too but access is set after we get
1513   // the decl here.
1514   if (D->doesThisDeclarationHaveABody())
1515     return false;
1516 
1517   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1518     return CD->isCopyConstructor();
1519   return D->isCopyAssignmentOperator();
1520 }
1521 
1522 // We need this to handle
1523 //
1524 // typedef struct {
1525 //   void *foo() { return 0; }
1526 // } A;
1527 //
1528 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1529 // for example. If 'A', foo will have external linkage. If we have '*A',
1530 // foo will have no linkage. Since we can't know until we get to the end
1531 // of the typedef, this function finds out if D might have non-external linkage.
1532 // Callers should verify at the end of the TU if it D has external linkage or
1533 // not.
1534 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1535   const DeclContext *DC = D->getDeclContext();
1536   while (!DC->isTranslationUnit()) {
1537     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1538       if (!RD->hasNameForLinkage())
1539         return true;
1540     }
1541     DC = DC->getParent();
1542   }
1543 
1544   return !D->isExternallyVisible();
1545 }
1546 
1547 // FIXME: This needs to be refactored; some other isInMainFile users want
1548 // these semantics.
1549 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1550   if (S.TUKind != TU_Complete)
1551     return false;
1552   return S.SourceMgr.isInMainFile(Loc);
1553 }
1554 
1555 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1556   assert(D);
1557 
1558   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1559     return false;
1560 
1561   // Ignore all entities declared within templates, and out-of-line definitions
1562   // of members of class templates.
1563   if (D->getDeclContext()->isDependentContext() ||
1564       D->getLexicalDeclContext()->isDependentContext())
1565     return false;
1566 
1567   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1568     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1569       return false;
1570     // A non-out-of-line declaration of a member specialization was implicitly
1571     // instantiated; it's the out-of-line declaration that we're interested in.
1572     if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1573         FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1574       return false;
1575 
1576     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1577       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1578         return false;
1579     } else {
1580       // 'static inline' functions are defined in headers; don't warn.
1581       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1582         return false;
1583     }
1584 
1585     if (FD->doesThisDeclarationHaveABody() &&
1586         Context.DeclMustBeEmitted(FD))
1587       return false;
1588   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1589     // Constants and utility variables are defined in headers with internal
1590     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1591     // like "inline".)
1592     if (!isMainFileLoc(*this, VD->getLocation()))
1593       return false;
1594 
1595     if (Context.DeclMustBeEmitted(VD))
1596       return false;
1597 
1598     if (VD->isStaticDataMember() &&
1599         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1600       return false;
1601     if (VD->isStaticDataMember() &&
1602         VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1603         VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1604       return false;
1605 
1606     if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1607       return false;
1608   } else {
1609     return false;
1610   }
1611 
1612   // Only warn for unused decls internal to the translation unit.
1613   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1614   // for inline functions defined in the main source file, for instance.
1615   return mightHaveNonExternalLinkage(D);
1616 }
1617 
1618 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1619   if (!D)
1620     return;
1621 
1622   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1623     const FunctionDecl *First = FD->getFirstDecl();
1624     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1625       return; // First should already be in the vector.
1626   }
1627 
1628   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1629     const VarDecl *First = VD->getFirstDecl();
1630     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1631       return; // First should already be in the vector.
1632   }
1633 
1634   if (ShouldWarnIfUnusedFileScopedDecl(D))
1635     UnusedFileScopedDecls.push_back(D);
1636 }
1637 
1638 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1639   if (D->isInvalidDecl())
1640     return false;
1641 
1642   bool Referenced = false;
1643   if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1644     // For a decomposition declaration, warn if none of the bindings are
1645     // referenced, instead of if the variable itself is referenced (which
1646     // it is, by the bindings' expressions).
1647     for (auto *BD : DD->bindings()) {
1648       if (BD->isReferenced()) {
1649         Referenced = true;
1650         break;
1651       }
1652     }
1653   } else if (!D->getDeclName()) {
1654     return false;
1655   } else if (D->isReferenced() || D->isUsed()) {
1656     Referenced = true;
1657   }
1658 
1659   if (Referenced || D->hasAttr<UnusedAttr>() ||
1660       D->hasAttr<ObjCPreciseLifetimeAttr>())
1661     return false;
1662 
1663   if (isa<LabelDecl>(D))
1664     return true;
1665 
1666   // Except for labels, we only care about unused decls that are local to
1667   // functions.
1668   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1669   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1670     // For dependent types, the diagnostic is deferred.
1671     WithinFunction =
1672         WithinFunction || (R->isLocalClass() && !R->isDependentType());
1673   if (!WithinFunction)
1674     return false;
1675 
1676   if (isa<TypedefNameDecl>(D))
1677     return true;
1678 
1679   // White-list anything that isn't a local variable.
1680   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1681     return false;
1682 
1683   // Types of valid local variables should be complete, so this should succeed.
1684   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1685 
1686     // White-list anything with an __attribute__((unused)) type.
1687     const auto *Ty = VD->getType().getTypePtr();
1688 
1689     // Only look at the outermost level of typedef.
1690     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1691       if (TT->getDecl()->hasAttr<UnusedAttr>())
1692         return false;
1693     }
1694 
1695     // If we failed to complete the type for some reason, or if the type is
1696     // dependent, don't diagnose the variable.
1697     if (Ty->isIncompleteType() || Ty->isDependentType())
1698       return false;
1699 
1700     // Look at the element type to ensure that the warning behaviour is
1701     // consistent for both scalars and arrays.
1702     Ty = Ty->getBaseElementTypeUnsafe();
1703 
1704     if (const TagType *TT = Ty->getAs<TagType>()) {
1705       const TagDecl *Tag = TT->getDecl();
1706       if (Tag->hasAttr<UnusedAttr>())
1707         return false;
1708 
1709       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1710         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1711           return false;
1712 
1713         if (const Expr *Init = VD->getInit()) {
1714           if (const ExprWithCleanups *Cleanups =
1715                   dyn_cast<ExprWithCleanups>(Init))
1716             Init = Cleanups->getSubExpr();
1717           const CXXConstructExpr *Construct =
1718             dyn_cast<CXXConstructExpr>(Init);
1719           if (Construct && !Construct->isElidable()) {
1720             CXXConstructorDecl *CD = Construct->getConstructor();
1721             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1722                 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1723               return false;
1724           }
1725         }
1726       }
1727     }
1728 
1729     // TODO: __attribute__((unused)) templates?
1730   }
1731 
1732   return true;
1733 }
1734 
1735 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1736                                      FixItHint &Hint) {
1737   if (isa<LabelDecl>(D)) {
1738     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1739                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1740     if (AfterColon.isInvalid())
1741       return;
1742     Hint = FixItHint::CreateRemoval(CharSourceRange::
1743                                     getCharRange(D->getLocStart(), AfterColon));
1744   }
1745 }
1746 
1747 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1748   if (D->getTypeForDecl()->isDependentType())
1749     return;
1750 
1751   for (auto *TmpD : D->decls()) {
1752     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1753       DiagnoseUnusedDecl(T);
1754     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1755       DiagnoseUnusedNestedTypedefs(R);
1756   }
1757 }
1758 
1759 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1760 /// unless they are marked attr(unused).
1761 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1762   if (!ShouldDiagnoseUnusedDecl(D))
1763     return;
1764 
1765   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1766     // typedefs can be referenced later on, so the diagnostics are emitted
1767     // at end-of-translation-unit.
1768     UnusedLocalTypedefNameCandidates.insert(TD);
1769     return;
1770   }
1771 
1772   FixItHint Hint;
1773   GenerateFixForUnusedDecl(D, Context, Hint);
1774 
1775   unsigned DiagID;
1776   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1777     DiagID = diag::warn_unused_exception_param;
1778   else if (isa<LabelDecl>(D))
1779     DiagID = diag::warn_unused_label;
1780   else
1781     DiagID = diag::warn_unused_variable;
1782 
1783   Diag(D->getLocation(), DiagID) << D << Hint;
1784 }
1785 
1786 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1787   // Verify that we have no forward references left.  If so, there was a goto
1788   // or address of a label taken, but no definition of it.  Label fwd
1789   // definitions are indicated with a null substmt which is also not a resolved
1790   // MS inline assembly label name.
1791   bool Diagnose = false;
1792   if (L->isMSAsmLabel())
1793     Diagnose = !L->isResolvedMSAsmLabel();
1794   else
1795     Diagnose = L->getStmt() == nullptr;
1796   if (Diagnose)
1797     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1798 }
1799 
1800 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1801   S->mergeNRVOIntoParent();
1802 
1803   if (S->decl_empty()) return;
1804   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1805          "Scope shouldn't contain decls!");
1806 
1807   for (auto *TmpD : S->decls()) {
1808     assert(TmpD && "This decl didn't get pushed??");
1809 
1810     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1811     NamedDecl *D = cast<NamedDecl>(TmpD);
1812 
1813     // Diagnose unused variables in this scope.
1814     if (!S->hasUnrecoverableErrorOccurred()) {
1815       DiagnoseUnusedDecl(D);
1816       if (const auto *RD = dyn_cast<RecordDecl>(D))
1817         DiagnoseUnusedNestedTypedefs(RD);
1818     }
1819 
1820     if (!D->getDeclName()) continue;
1821 
1822     // If this was a forward reference to a label, verify it was defined.
1823     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1824       CheckPoppedLabel(LD, *this);
1825 
1826     // Remove this name from our lexical scope, and warn on it if we haven't
1827     // already.
1828     IdResolver.RemoveDecl(D);
1829     auto ShadowI = ShadowingDecls.find(D);
1830     if (ShadowI != ShadowingDecls.end()) {
1831       if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1832         Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1833             << D << FD << FD->getParent();
1834         Diag(FD->getLocation(), diag::note_previous_declaration);
1835       }
1836       ShadowingDecls.erase(ShadowI);
1837     }
1838   }
1839 }
1840 
1841 /// Look for an Objective-C class in the translation unit.
1842 ///
1843 /// \param Id The name of the Objective-C class we're looking for. If
1844 /// typo-correction fixes this name, the Id will be updated
1845 /// to the fixed name.
1846 ///
1847 /// \param IdLoc The location of the name in the translation unit.
1848 ///
1849 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1850 /// if there is no class with the given name.
1851 ///
1852 /// \returns The declaration of the named Objective-C class, or NULL if the
1853 /// class could not be found.
1854 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1855                                               SourceLocation IdLoc,
1856                                               bool DoTypoCorrection) {
1857   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1858   // creation from this context.
1859   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1860 
1861   if (!IDecl && DoTypoCorrection) {
1862     // Perform typo correction at the given location, but only if we
1863     // find an Objective-C class name.
1864     if (TypoCorrection C = CorrectTypo(
1865             DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
1866             llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
1867             CTK_ErrorRecovery)) {
1868       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1869       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1870       Id = IDecl->getIdentifier();
1871     }
1872   }
1873   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1874   // This routine must always return a class definition, if any.
1875   if (Def && Def->getDefinition())
1876       Def = Def->getDefinition();
1877   return Def;
1878 }
1879 
1880 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1881 /// from S, where a non-field would be declared. This routine copes
1882 /// with the difference between C and C++ scoping rules in structs and
1883 /// unions. For example, the following code is well-formed in C but
1884 /// ill-formed in C++:
1885 /// @code
1886 /// struct S6 {
1887 ///   enum { BAR } e;
1888 /// };
1889 ///
1890 /// void test_S6() {
1891 ///   struct S6 a;
1892 ///   a.e = BAR;
1893 /// }
1894 /// @endcode
1895 /// For the declaration of BAR, this routine will return a different
1896 /// scope. The scope S will be the scope of the unnamed enumeration
1897 /// within S6. In C++, this routine will return the scope associated
1898 /// with S6, because the enumeration's scope is a transparent
1899 /// context but structures can contain non-field names. In C, this
1900 /// routine will return the translation unit scope, since the
1901 /// enumeration's scope is a transparent context and structures cannot
1902 /// contain non-field names.
1903 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1904   while (((S->getFlags() & Scope::DeclScope) == 0) ||
1905          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1906          (S->isClassScope() && !getLangOpts().CPlusPlus))
1907     S = S->getParent();
1908   return S;
1909 }
1910 
1911 /// Looks up the declaration of "struct objc_super" and
1912 /// saves it for later use in building builtin declaration of
1913 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1914 /// pre-existing declaration exists no action takes place.
1915 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1916                                         IdentifierInfo *II) {
1917   if (!II->isStr("objc_msgSendSuper"))
1918     return;
1919   ASTContext &Context = ThisSema.Context;
1920 
1921   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1922                       SourceLocation(), Sema::LookupTagName);
1923   ThisSema.LookupName(Result, S);
1924   if (Result.getResultKind() == LookupResult::Found)
1925     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1926       Context.setObjCSuperType(Context.getTagDeclType(TD));
1927 }
1928 
1929 static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
1930   switch (Error) {
1931   case ASTContext::GE_None:
1932     return "";
1933   case ASTContext::GE_Missing_stdio:
1934     return "stdio.h";
1935   case ASTContext::GE_Missing_setjmp:
1936     return "setjmp.h";
1937   case ASTContext::GE_Missing_ucontext:
1938     return "ucontext.h";
1939   }
1940   llvm_unreachable("unhandled error kind");
1941 }
1942 
1943 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1944 /// file scope.  lazily create a decl for it. ForRedeclaration is true
1945 /// if we're creating this built-in in anticipation of redeclaring the
1946 /// built-in.
1947 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1948                                      Scope *S, bool ForRedeclaration,
1949                                      SourceLocation Loc) {
1950   LookupPredefedObjCSuperType(*this, S, II);
1951 
1952   ASTContext::GetBuiltinTypeError Error;
1953   QualType R = Context.GetBuiltinType(ID, Error);
1954   if (Error) {
1955     if (ForRedeclaration)
1956       Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1957           << getHeaderName(Error) << Context.BuiltinInfo.getName(ID);
1958     return nullptr;
1959   }
1960 
1961   if (!ForRedeclaration &&
1962       (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
1963        Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
1964     Diag(Loc, diag::ext_implicit_lib_function_decl)
1965         << Context.BuiltinInfo.getName(ID) << R;
1966     if (Context.BuiltinInfo.getHeaderName(ID) &&
1967         !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1968       Diag(Loc, diag::note_include_header_or_declare)
1969           << Context.BuiltinInfo.getHeaderName(ID)
1970           << Context.BuiltinInfo.getName(ID);
1971   }
1972 
1973   if (R.isNull())
1974     return nullptr;
1975 
1976   DeclContext *Parent = Context.getTranslationUnitDecl();
1977   if (getLangOpts().CPlusPlus) {
1978     LinkageSpecDecl *CLinkageDecl =
1979         LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1980                                 LinkageSpecDecl::lang_c, false);
1981     CLinkageDecl->setImplicit();
1982     Parent->addDecl(CLinkageDecl);
1983     Parent = CLinkageDecl;
1984   }
1985 
1986   FunctionDecl *New = FunctionDecl::Create(Context,
1987                                            Parent,
1988                                            Loc, Loc, II, R, /*TInfo=*/nullptr,
1989                                            SC_Extern,
1990                                            false,
1991                                            R->isFunctionProtoType());
1992   New->setImplicit();
1993 
1994   // Create Decl objects for each parameter, adding them to the
1995   // FunctionDecl.
1996   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1997     SmallVector<ParmVarDecl*, 16> Params;
1998     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1999       ParmVarDecl *parm =
2000           ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
2001                               nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
2002                               SC_None, nullptr);
2003       parm->setScopeInfo(0, i);
2004       Params.push_back(parm);
2005     }
2006     New->setParams(Params);
2007   }
2008 
2009   AddKnownFunctionAttributes(New);
2010   RegisterLocallyScopedExternCDecl(New, S);
2011 
2012   // TUScope is the translation-unit scope to insert this function into.
2013   // FIXME: This is hideous. We need to teach PushOnScopeChains to
2014   // relate Scopes to DeclContexts, and probably eliminate CurContext
2015   // entirely, but we're not there yet.
2016   DeclContext *SavedContext = CurContext;
2017   CurContext = Parent;
2018   PushOnScopeChains(New, TUScope);
2019   CurContext = SavedContext;
2020   return New;
2021 }
2022 
2023 /// Typedef declarations don't have linkage, but they still denote the same
2024 /// entity if their types are the same.
2025 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2026 /// isSameEntity.
2027 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2028                                                      TypedefNameDecl *Decl,
2029                                                      LookupResult &Previous) {
2030   // This is only interesting when modules are enabled.
2031   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2032     return;
2033 
2034   // Empty sets are uninteresting.
2035   if (Previous.empty())
2036     return;
2037 
2038   LookupResult::Filter Filter = Previous.makeFilter();
2039   while (Filter.hasNext()) {
2040     NamedDecl *Old = Filter.next();
2041 
2042     // Non-hidden declarations are never ignored.
2043     if (S.isVisible(Old))
2044       continue;
2045 
2046     // Declarations of the same entity are not ignored, even if they have
2047     // different linkages.
2048     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2049       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2050                                 Decl->getUnderlyingType()))
2051         continue;
2052 
2053       // If both declarations give a tag declaration a typedef name for linkage
2054       // purposes, then they declare the same entity.
2055       if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2056           Decl->getAnonDeclWithTypedefName())
2057         continue;
2058     }
2059 
2060     Filter.erase();
2061   }
2062 
2063   Filter.done();
2064 }
2065 
2066 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2067   QualType OldType;
2068   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2069     OldType = OldTypedef->getUnderlyingType();
2070   else
2071     OldType = Context.getTypeDeclType(Old);
2072   QualType NewType = New->getUnderlyingType();
2073 
2074   if (NewType->isVariablyModifiedType()) {
2075     // Must not redefine a typedef with a variably-modified type.
2076     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2077     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2078       << Kind << NewType;
2079     if (Old->getLocation().isValid())
2080       notePreviousDefinition(Old, New->getLocation());
2081     New->setInvalidDecl();
2082     return true;
2083   }
2084 
2085   if (OldType != NewType &&
2086       !OldType->isDependentType() &&
2087       !NewType->isDependentType() &&
2088       !Context.hasSameType(OldType, NewType)) {
2089     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2090     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2091       << Kind << NewType << OldType;
2092     if (Old->getLocation().isValid())
2093       notePreviousDefinition(Old, New->getLocation());
2094     New->setInvalidDecl();
2095     return true;
2096   }
2097   return false;
2098 }
2099 
2100 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2101 /// same name and scope as a previous declaration 'Old'.  Figure out
2102 /// how to resolve this situation, merging decls or emitting
2103 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2104 ///
2105 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2106                                 LookupResult &OldDecls) {
2107   // If the new decl is known invalid already, don't bother doing any
2108   // merging checks.
2109   if (New->isInvalidDecl()) return;
2110 
2111   // Allow multiple definitions for ObjC built-in typedefs.
2112   // FIXME: Verify the underlying types are equivalent!
2113   if (getLangOpts().ObjC1) {
2114     const IdentifierInfo *TypeID = New->getIdentifier();
2115     switch (TypeID->getLength()) {
2116     default: break;
2117     case 2:
2118       {
2119         if (!TypeID->isStr("id"))
2120           break;
2121         QualType T = New->getUnderlyingType();
2122         if (!T->isPointerType())
2123           break;
2124         if (!T->isVoidPointerType()) {
2125           QualType PT = T->getAs<PointerType>()->getPointeeType();
2126           if (!PT->isStructureType())
2127             break;
2128         }
2129         Context.setObjCIdRedefinitionType(T);
2130         // Install the built-in type for 'id', ignoring the current definition.
2131         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2132         return;
2133       }
2134     case 5:
2135       if (!TypeID->isStr("Class"))
2136         break;
2137       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2138       // Install the built-in type for 'Class', ignoring the current definition.
2139       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2140       return;
2141     case 3:
2142       if (!TypeID->isStr("SEL"))
2143         break;
2144       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2145       // Install the built-in type for 'SEL', ignoring the current definition.
2146       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2147       return;
2148     }
2149     // Fall through - the typedef name was not a builtin type.
2150   }
2151 
2152   // Verify the old decl was also a type.
2153   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2154   if (!Old) {
2155     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2156       << New->getDeclName();
2157 
2158     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2159     if (OldD->getLocation().isValid())
2160       notePreviousDefinition(OldD, New->getLocation());
2161 
2162     return New->setInvalidDecl();
2163   }
2164 
2165   // If the old declaration is invalid, just give up here.
2166   if (Old->isInvalidDecl())
2167     return New->setInvalidDecl();
2168 
2169   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2170     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2171     auto *NewTag = New->getAnonDeclWithTypedefName();
2172     NamedDecl *Hidden = nullptr;
2173     if (OldTag && NewTag &&
2174         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2175         !hasVisibleDefinition(OldTag, &Hidden)) {
2176       // There is a definition of this tag, but it is not visible. Use it
2177       // instead of our tag.
2178       New->setTypeForDecl(OldTD->getTypeForDecl());
2179       if (OldTD->isModed())
2180         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2181                                     OldTD->getUnderlyingType());
2182       else
2183         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2184 
2185       // Make the old tag definition visible.
2186       makeMergedDefinitionVisible(Hidden);
2187 
2188       // If this was an unscoped enumeration, yank all of its enumerators
2189       // out of the scope.
2190       if (isa<EnumDecl>(NewTag)) {
2191         Scope *EnumScope = getNonFieldDeclScope(S);
2192         for (auto *D : NewTag->decls()) {
2193           auto *ED = cast<EnumConstantDecl>(D);
2194           assert(EnumScope->isDeclScope(ED));
2195           EnumScope->RemoveDecl(ED);
2196           IdResolver.RemoveDecl(ED);
2197           ED->getLexicalDeclContext()->removeDecl(ED);
2198         }
2199       }
2200     }
2201   }
2202 
2203   // If the typedef types are not identical, reject them in all languages and
2204   // with any extensions enabled.
2205   if (isIncompatibleTypedef(Old, New))
2206     return;
2207 
2208   // The types match.  Link up the redeclaration chain and merge attributes if
2209   // the old declaration was a typedef.
2210   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2211     New->setPreviousDecl(Typedef);
2212     mergeDeclAttributes(New, Old);
2213   }
2214 
2215   if (getLangOpts().MicrosoftExt)
2216     return;
2217 
2218   if (getLangOpts().CPlusPlus) {
2219     // C++ [dcl.typedef]p2:
2220     //   In a given non-class scope, a typedef specifier can be used to
2221     //   redefine the name of any type declared in that scope to refer
2222     //   to the type to which it already refers.
2223     if (!isa<CXXRecordDecl>(CurContext))
2224       return;
2225 
2226     // C++0x [dcl.typedef]p4:
2227     //   In a given class scope, a typedef specifier can be used to redefine
2228     //   any class-name declared in that scope that is not also a typedef-name
2229     //   to refer to the type to which it already refers.
2230     //
2231     // This wording came in via DR424, which was a correction to the
2232     // wording in DR56, which accidentally banned code like:
2233     //
2234     //   struct S {
2235     //     typedef struct A { } A;
2236     //   };
2237     //
2238     // in the C++03 standard. We implement the C++0x semantics, which
2239     // allow the above but disallow
2240     //
2241     //   struct S {
2242     //     typedef int I;
2243     //     typedef int I;
2244     //   };
2245     //
2246     // since that was the intent of DR56.
2247     if (!isa<TypedefNameDecl>(Old))
2248       return;
2249 
2250     Diag(New->getLocation(), diag::err_redefinition)
2251       << New->getDeclName();
2252     notePreviousDefinition(Old, New->getLocation());
2253     return New->setInvalidDecl();
2254   }
2255 
2256   // Modules always permit redefinition of typedefs, as does C11.
2257   if (getLangOpts().Modules || getLangOpts().C11)
2258     return;
2259 
2260   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2261   // is normally mapped to an error, but can be controlled with
2262   // -Wtypedef-redefinition.  If either the original or the redefinition is
2263   // in a system header, don't emit this for compatibility with GCC.
2264   if (getDiagnostics().getSuppressSystemWarnings() &&
2265       // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2266       (Old->isImplicit() ||
2267        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2268        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2269     return;
2270 
2271   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2272     << New->getDeclName();
2273   notePreviousDefinition(Old, New->getLocation());
2274 }
2275 
2276 /// DeclhasAttr - returns true if decl Declaration already has the target
2277 /// attribute.
2278 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2279   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2280   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2281   for (const auto *i : D->attrs())
2282     if (i->getKind() == A->getKind()) {
2283       if (Ann) {
2284         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2285           return true;
2286         continue;
2287       }
2288       // FIXME: Don't hardcode this check
2289       if (OA && isa<OwnershipAttr>(i))
2290         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2291       return true;
2292     }
2293 
2294   return false;
2295 }
2296 
2297 static bool isAttributeTargetADefinition(Decl *D) {
2298   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2299     return VD->isThisDeclarationADefinition();
2300   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2301     return TD->isCompleteDefinition() || TD->isBeingDefined();
2302   return true;
2303 }
2304 
2305 /// Merge alignment attributes from \p Old to \p New, taking into account the
2306 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2307 ///
2308 /// \return \c true if any attributes were added to \p New.
2309 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2310   // Look for alignas attributes on Old, and pick out whichever attribute
2311   // specifies the strictest alignment requirement.
2312   AlignedAttr *OldAlignasAttr = nullptr;
2313   AlignedAttr *OldStrictestAlignAttr = nullptr;
2314   unsigned OldAlign = 0;
2315   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2316     // FIXME: We have no way of representing inherited dependent alignments
2317     // in a case like:
2318     //   template<int A, int B> struct alignas(A) X;
2319     //   template<int A, int B> struct alignas(B) X {};
2320     // For now, we just ignore any alignas attributes which are not on the
2321     // definition in such a case.
2322     if (I->isAlignmentDependent())
2323       return false;
2324 
2325     if (I->isAlignas())
2326       OldAlignasAttr = I;
2327 
2328     unsigned Align = I->getAlignment(S.Context);
2329     if (Align > OldAlign) {
2330       OldAlign = Align;
2331       OldStrictestAlignAttr = I;
2332     }
2333   }
2334 
2335   // Look for alignas attributes on New.
2336   AlignedAttr *NewAlignasAttr = nullptr;
2337   unsigned NewAlign = 0;
2338   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2339     if (I->isAlignmentDependent())
2340       return false;
2341 
2342     if (I->isAlignas())
2343       NewAlignasAttr = I;
2344 
2345     unsigned Align = I->getAlignment(S.Context);
2346     if (Align > NewAlign)
2347       NewAlign = Align;
2348   }
2349 
2350   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2351     // Both declarations have 'alignas' attributes. We require them to match.
2352     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2353     // fall short. (If two declarations both have alignas, they must both match
2354     // every definition, and so must match each other if there is a definition.)
2355 
2356     // If either declaration only contains 'alignas(0)' specifiers, then it
2357     // specifies the natural alignment for the type.
2358     if (OldAlign == 0 || NewAlign == 0) {
2359       QualType Ty;
2360       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2361         Ty = VD->getType();
2362       else
2363         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2364 
2365       if (OldAlign == 0)
2366         OldAlign = S.Context.getTypeAlign(Ty);
2367       if (NewAlign == 0)
2368         NewAlign = S.Context.getTypeAlign(Ty);
2369     }
2370 
2371     if (OldAlign != NewAlign) {
2372       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2373         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2374         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2375       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2376     }
2377   }
2378 
2379   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2380     // C++11 [dcl.align]p6:
2381     //   if any declaration of an entity has an alignment-specifier,
2382     //   every defining declaration of that entity shall specify an
2383     //   equivalent alignment.
2384     // C11 6.7.5/7:
2385     //   If the definition of an object does not have an alignment
2386     //   specifier, any other declaration of that object shall also
2387     //   have no alignment specifier.
2388     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2389       << OldAlignasAttr;
2390     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2391       << OldAlignasAttr;
2392   }
2393 
2394   bool AnyAdded = false;
2395 
2396   // Ensure we have an attribute representing the strictest alignment.
2397   if (OldAlign > NewAlign) {
2398     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2399     Clone->setInherited(true);
2400     New->addAttr(Clone);
2401     AnyAdded = true;
2402   }
2403 
2404   // Ensure we have an alignas attribute if the old declaration had one.
2405   if (OldAlignasAttr && !NewAlignasAttr &&
2406       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2407     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2408     Clone->setInherited(true);
2409     New->addAttr(Clone);
2410     AnyAdded = true;
2411   }
2412 
2413   return AnyAdded;
2414 }
2415 
2416 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2417                                const InheritableAttr *Attr,
2418                                Sema::AvailabilityMergeKind AMK) {
2419   // This function copies an attribute Attr from a previous declaration to the
2420   // new declaration D if the new declaration doesn't itself have that attribute
2421   // yet or if that attribute allows duplicates.
2422   // If you're adding a new attribute that requires logic different from
2423   // "use explicit attribute on decl if present, else use attribute from
2424   // previous decl", for example if the attribute needs to be consistent
2425   // between redeclarations, you need to call a custom merge function here.
2426   InheritableAttr *NewAttr = nullptr;
2427   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2428   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2429     NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2430                                       AA->isImplicit(), AA->getIntroduced(),
2431                                       AA->getDeprecated(),
2432                                       AA->getObsoleted(), AA->getUnavailable(),
2433                                       AA->getMessage(), AA->getStrict(),
2434                                       AA->getReplacement(), AMK,
2435                                       AttrSpellingListIndex);
2436   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2437     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2438                                     AttrSpellingListIndex);
2439   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2440     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2441                                         AttrSpellingListIndex);
2442   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2443     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2444                                    AttrSpellingListIndex);
2445   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2446     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2447                                    AttrSpellingListIndex);
2448   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2449     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2450                                 FA->getFormatIdx(), FA->getFirstArg(),
2451                                 AttrSpellingListIndex);
2452   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2453     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2454                                  AttrSpellingListIndex);
2455   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2456     NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2457                                        AttrSpellingListIndex,
2458                                        IA->getSemanticSpelling());
2459   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2460     NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2461                                       &S.Context.Idents.get(AA->getSpelling()),
2462                                       AttrSpellingListIndex);
2463   else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2464            (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2465             isa<CUDAGlobalAttr>(Attr))) {
2466     // CUDA target attributes are part of function signature for
2467     // overloading purposes and must not be merged.
2468     return false;
2469   } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2470     NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2471   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2472     NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2473   else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2474     NewAttr = S.mergeInternalLinkageAttr(
2475         D, InternalLinkageA->getRange(),
2476         &S.Context.Idents.get(InternalLinkageA->getSpelling()),
2477         AttrSpellingListIndex);
2478   else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2479     NewAttr = S.mergeCommonAttr(D, CommonA->getRange(),
2480                                 &S.Context.Idents.get(CommonA->getSpelling()),
2481                                 AttrSpellingListIndex);
2482   else if (isa<AlignedAttr>(Attr))
2483     // AlignedAttrs are handled separately, because we need to handle all
2484     // such attributes on a declaration at the same time.
2485     NewAttr = nullptr;
2486   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2487            (AMK == Sema::AMK_Override ||
2488             AMK == Sema::AMK_ProtocolImplementation))
2489     NewAttr = nullptr;
2490   else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2491     NewAttr = S.mergeUuidAttr(D, UA->getRange(), AttrSpellingListIndex,
2492                               UA->getGuid());
2493   else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2494     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2495 
2496   if (NewAttr) {
2497     NewAttr->setInherited(true);
2498     D->addAttr(NewAttr);
2499     if (isa<MSInheritanceAttr>(NewAttr))
2500       S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2501     return true;
2502   }
2503 
2504   return false;
2505 }
2506 
2507 static const NamedDecl *getDefinition(const Decl *D) {
2508   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2509     return TD->getDefinition();
2510   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2511     const VarDecl *Def = VD->getDefinition();
2512     if (Def)
2513       return Def;
2514     return VD->getActingDefinition();
2515   }
2516   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2517     return FD->getDefinition();
2518   return nullptr;
2519 }
2520 
2521 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2522   for (const auto *Attribute : D->attrs())
2523     if (Attribute->getKind() == Kind)
2524       return true;
2525   return false;
2526 }
2527 
2528 /// checkNewAttributesAfterDef - If we already have a definition, check that
2529 /// there are no new attributes in this declaration.
2530 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2531   if (!New->hasAttrs())
2532     return;
2533 
2534   const NamedDecl *Def = getDefinition(Old);
2535   if (!Def || Def == New)
2536     return;
2537 
2538   AttrVec &NewAttributes = New->getAttrs();
2539   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2540     const Attr *NewAttribute = NewAttributes[I];
2541 
2542     if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2543       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2544         Sema::SkipBodyInfo SkipBody;
2545         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2546 
2547         // If we're skipping this definition, drop the "alias" attribute.
2548         if (SkipBody.ShouldSkip) {
2549           NewAttributes.erase(NewAttributes.begin() + I);
2550           --E;
2551           continue;
2552         }
2553       } else {
2554         VarDecl *VD = cast<VarDecl>(New);
2555         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2556                                 VarDecl::TentativeDefinition
2557                             ? diag::err_alias_after_tentative
2558                             : diag::err_redefinition;
2559         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2560         if (Diag == diag::err_redefinition)
2561           S.notePreviousDefinition(Def, VD->getLocation());
2562         else
2563           S.Diag(Def->getLocation(), diag::note_previous_definition);
2564         VD->setInvalidDecl();
2565       }
2566       ++I;
2567       continue;
2568     }
2569 
2570     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2571       // Tentative definitions are only interesting for the alias check above.
2572       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2573         ++I;
2574         continue;
2575       }
2576     }
2577 
2578     if (hasAttribute(Def, NewAttribute->getKind())) {
2579       ++I;
2580       continue; // regular attr merging will take care of validating this.
2581     }
2582 
2583     if (isa<C11NoReturnAttr>(NewAttribute)) {
2584       // C's _Noreturn is allowed to be added to a function after it is defined.
2585       ++I;
2586       continue;
2587     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2588       if (AA->isAlignas()) {
2589         // C++11 [dcl.align]p6:
2590         //   if any declaration of an entity has an alignment-specifier,
2591         //   every defining declaration of that entity shall specify an
2592         //   equivalent alignment.
2593         // C11 6.7.5/7:
2594         //   If the definition of an object does not have an alignment
2595         //   specifier, any other declaration of that object shall also
2596         //   have no alignment specifier.
2597         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2598           << AA;
2599         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2600           << AA;
2601         NewAttributes.erase(NewAttributes.begin() + I);
2602         --E;
2603         continue;
2604       }
2605     }
2606 
2607     S.Diag(NewAttribute->getLocation(),
2608            diag::warn_attribute_precede_definition);
2609     S.Diag(Def->getLocation(), diag::note_previous_definition);
2610     NewAttributes.erase(NewAttributes.begin() + I);
2611     --E;
2612   }
2613 }
2614 
2615 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2616 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2617                                AvailabilityMergeKind AMK) {
2618   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2619     UsedAttr *NewAttr = OldAttr->clone(Context);
2620     NewAttr->setInherited(true);
2621     New->addAttr(NewAttr);
2622   }
2623 
2624   if (!Old->hasAttrs() && !New->hasAttrs())
2625     return;
2626 
2627   // Attributes declared post-definition are currently ignored.
2628   checkNewAttributesAfterDef(*this, New, Old);
2629 
2630   if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2631     if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2632       if (OldA->getLabel() != NewA->getLabel()) {
2633         // This redeclaration changes __asm__ label.
2634         Diag(New->getLocation(), diag::err_different_asm_label);
2635         Diag(OldA->getLocation(), diag::note_previous_declaration);
2636       }
2637     } else if (Old->isUsed()) {
2638       // This redeclaration adds an __asm__ label to a declaration that has
2639       // already been ODR-used.
2640       Diag(New->getLocation(), diag::err_late_asm_label_name)
2641         << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2642     }
2643   }
2644 
2645   // Re-declaration cannot add abi_tag's.
2646   if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2647     if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2648       for (const auto &NewTag : NewAbiTagAttr->tags()) {
2649         if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2650                       NewTag) == OldAbiTagAttr->tags_end()) {
2651           Diag(NewAbiTagAttr->getLocation(),
2652                diag::err_new_abi_tag_on_redeclaration)
2653               << NewTag;
2654           Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2655         }
2656       }
2657     } else {
2658       Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2659       Diag(Old->getLocation(), diag::note_previous_declaration);
2660     }
2661   }
2662 
2663   // This redeclaration adds a section attribute.
2664   if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2665     if (auto *VD = dyn_cast<VarDecl>(New)) {
2666       if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2667         Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2668         Diag(Old->getLocation(), diag::note_previous_declaration);
2669       }
2670     }
2671   }
2672 
2673   if (!Old->hasAttrs())
2674     return;
2675 
2676   bool foundAny = New->hasAttrs();
2677 
2678   // Ensure that any moving of objects within the allocated map is done before
2679   // we process them.
2680   if (!foundAny) New->setAttrs(AttrVec());
2681 
2682   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2683     // Ignore deprecated/unavailable/availability attributes if requested.
2684     AvailabilityMergeKind LocalAMK = AMK_None;
2685     if (isa<DeprecatedAttr>(I) ||
2686         isa<UnavailableAttr>(I) ||
2687         isa<AvailabilityAttr>(I)) {
2688       switch (AMK) {
2689       case AMK_None:
2690         continue;
2691 
2692       case AMK_Redeclaration:
2693       case AMK_Override:
2694       case AMK_ProtocolImplementation:
2695         LocalAMK = AMK;
2696         break;
2697       }
2698     }
2699 
2700     // Already handled.
2701     if (isa<UsedAttr>(I))
2702       continue;
2703 
2704     if (mergeDeclAttribute(*this, New, I, LocalAMK))
2705       foundAny = true;
2706   }
2707 
2708   if (mergeAlignedAttrs(*this, New, Old))
2709     foundAny = true;
2710 
2711   if (!foundAny) New->dropAttrs();
2712 }
2713 
2714 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2715 /// to the new one.
2716 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2717                                      const ParmVarDecl *oldDecl,
2718                                      Sema &S) {
2719   // C++11 [dcl.attr.depend]p2:
2720   //   The first declaration of a function shall specify the
2721   //   carries_dependency attribute for its declarator-id if any declaration
2722   //   of the function specifies the carries_dependency attribute.
2723   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2724   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2725     S.Diag(CDA->getLocation(),
2726            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2727     // Find the first declaration of the parameter.
2728     // FIXME: Should we build redeclaration chains for function parameters?
2729     const FunctionDecl *FirstFD =
2730       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2731     const ParmVarDecl *FirstVD =
2732       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2733     S.Diag(FirstVD->getLocation(),
2734            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2735   }
2736 
2737   if (!oldDecl->hasAttrs())
2738     return;
2739 
2740   bool foundAny = newDecl->hasAttrs();
2741 
2742   // Ensure that any moving of objects within the allocated map is
2743   // done before we process them.
2744   if (!foundAny) newDecl->setAttrs(AttrVec());
2745 
2746   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2747     if (!DeclHasAttr(newDecl, I)) {
2748       InheritableAttr *newAttr =
2749         cast<InheritableParamAttr>(I->clone(S.Context));
2750       newAttr->setInherited(true);
2751       newDecl->addAttr(newAttr);
2752       foundAny = true;
2753     }
2754   }
2755 
2756   if (!foundAny) newDecl->dropAttrs();
2757 }
2758 
2759 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2760                                 const ParmVarDecl *OldParam,
2761                                 Sema &S) {
2762   if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2763     if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2764       if (*Oldnullability != *Newnullability) {
2765         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2766           << DiagNullabilityKind(
2767                *Newnullability,
2768                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2769                 != 0))
2770           << DiagNullabilityKind(
2771                *Oldnullability,
2772                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2773                 != 0));
2774         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2775       }
2776     } else {
2777       QualType NewT = NewParam->getType();
2778       NewT = S.Context.getAttributedType(
2779                          AttributedType::getNullabilityAttrKind(*Oldnullability),
2780                          NewT, NewT);
2781       NewParam->setType(NewT);
2782     }
2783   }
2784 }
2785 
2786 namespace {
2787 
2788 /// Used in MergeFunctionDecl to keep track of function parameters in
2789 /// C.
2790 struct GNUCompatibleParamWarning {
2791   ParmVarDecl *OldParm;
2792   ParmVarDecl *NewParm;
2793   QualType PromotedType;
2794 };
2795 
2796 } // end anonymous namespace
2797 
2798 /// getSpecialMember - get the special member enum for a method.
2799 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2800   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2801     if (Ctor->isDefaultConstructor())
2802       return Sema::CXXDefaultConstructor;
2803 
2804     if (Ctor->isCopyConstructor())
2805       return Sema::CXXCopyConstructor;
2806 
2807     if (Ctor->isMoveConstructor())
2808       return Sema::CXXMoveConstructor;
2809   } else if (isa<CXXDestructorDecl>(MD)) {
2810     return Sema::CXXDestructor;
2811   } else if (MD->isCopyAssignmentOperator()) {
2812     return Sema::CXXCopyAssignment;
2813   } else if (MD->isMoveAssignmentOperator()) {
2814     return Sema::CXXMoveAssignment;
2815   }
2816 
2817   return Sema::CXXInvalid;
2818 }
2819 
2820 // Determine whether the previous declaration was a definition, implicit
2821 // declaration, or a declaration.
2822 template <typename T>
2823 static std::pair<diag::kind, SourceLocation>
2824 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2825   diag::kind PrevDiag;
2826   SourceLocation OldLocation = Old->getLocation();
2827   if (Old->isThisDeclarationADefinition())
2828     PrevDiag = diag::note_previous_definition;
2829   else if (Old->isImplicit()) {
2830     PrevDiag = diag::note_previous_implicit_declaration;
2831     if (OldLocation.isInvalid())
2832       OldLocation = New->getLocation();
2833   } else
2834     PrevDiag = diag::note_previous_declaration;
2835   return std::make_pair(PrevDiag, OldLocation);
2836 }
2837 
2838 /// canRedefineFunction - checks if a function can be redefined. Currently,
2839 /// only extern inline functions can be redefined, and even then only in
2840 /// GNU89 mode.
2841 static bool canRedefineFunction(const FunctionDecl *FD,
2842                                 const LangOptions& LangOpts) {
2843   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2844           !LangOpts.CPlusPlus &&
2845           FD->isInlineSpecified() &&
2846           FD->getStorageClass() == SC_Extern);
2847 }
2848 
2849 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2850   const AttributedType *AT = T->getAs<AttributedType>();
2851   while (AT && !AT->isCallingConv())
2852     AT = AT->getModifiedType()->getAs<AttributedType>();
2853   return AT;
2854 }
2855 
2856 template <typename T>
2857 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2858   const DeclContext *DC = Old->getDeclContext();
2859   if (DC->isRecord())
2860     return false;
2861 
2862   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2863   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2864     return true;
2865   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2866     return true;
2867   return false;
2868 }
2869 
2870 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
2871 static bool isExternC(VarTemplateDecl *) { return false; }
2872 
2873 /// Check whether a redeclaration of an entity introduced by a
2874 /// using-declaration is valid, given that we know it's not an overload
2875 /// (nor a hidden tag declaration).
2876 template<typename ExpectedDecl>
2877 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
2878                                    ExpectedDecl *New) {
2879   // C++11 [basic.scope.declarative]p4:
2880   //   Given a set of declarations in a single declarative region, each of
2881   //   which specifies the same unqualified name,
2882   //   -- they shall all refer to the same entity, or all refer to functions
2883   //      and function templates; or
2884   //   -- exactly one declaration shall declare a class name or enumeration
2885   //      name that is not a typedef name and the other declarations shall all
2886   //      refer to the same variable or enumerator, or all refer to functions
2887   //      and function templates; in this case the class name or enumeration
2888   //      name is hidden (3.3.10).
2889 
2890   // C++11 [namespace.udecl]p14:
2891   //   If a function declaration in namespace scope or block scope has the
2892   //   same name and the same parameter-type-list as a function introduced
2893   //   by a using-declaration, and the declarations do not declare the same
2894   //   function, the program is ill-formed.
2895 
2896   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
2897   if (Old &&
2898       !Old->getDeclContext()->getRedeclContext()->Equals(
2899           New->getDeclContext()->getRedeclContext()) &&
2900       !(isExternC(Old) && isExternC(New)))
2901     Old = nullptr;
2902 
2903   if (!Old) {
2904     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2905     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
2906     S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2907     return true;
2908   }
2909   return false;
2910 }
2911 
2912 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
2913                                             const FunctionDecl *B) {
2914   assert(A->getNumParams() == B->getNumParams());
2915 
2916   auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
2917     const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
2918     const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
2919     if (AttrA == AttrB)
2920       return true;
2921     return AttrA && AttrB && AttrA->getType() == AttrB->getType();
2922   };
2923 
2924   return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
2925 }
2926 
2927 /// If necessary, adjust the semantic declaration context for a qualified
2928 /// declaration to name the correct inline namespace within the qualifier.
2929 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
2930                                                DeclaratorDecl *OldD) {
2931   // The only case where we need to update the DeclContext is when
2932   // redeclaration lookup for a qualified name finds a declaration
2933   // in an inline namespace within the context named by the qualifier:
2934   //
2935   //   inline namespace N { int f(); }
2936   //   int ::f(); // Sema DC needs adjusting from :: to N::.
2937   //
2938   // For unqualified declarations, the semantic context *can* change
2939   // along the redeclaration chain (for local extern declarations,
2940   // extern "C" declarations, and friend declarations in particular).
2941   if (!NewD->getQualifier())
2942     return;
2943 
2944   // NewD is probably already in the right context.
2945   auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
2946   auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
2947   if (NamedDC->Equals(SemaDC))
2948     return;
2949 
2950   assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
2951           NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
2952          "unexpected context for redeclaration");
2953 
2954   auto *LexDC = NewD->getLexicalDeclContext();
2955   auto FixSemaDC = [=](NamedDecl *D) {
2956     if (!D)
2957       return;
2958     D->setDeclContext(SemaDC);
2959     D->setLexicalDeclContext(LexDC);
2960   };
2961 
2962   FixSemaDC(NewD);
2963   if (auto *FD = dyn_cast<FunctionDecl>(NewD))
2964     FixSemaDC(FD->getDescribedFunctionTemplate());
2965   else if (auto *VD = dyn_cast<VarDecl>(NewD))
2966     FixSemaDC(VD->getDescribedVarTemplate());
2967 }
2968 
2969 /// MergeFunctionDecl - We just parsed a function 'New' from
2970 /// declarator D which has the same name and scope as a previous
2971 /// declaration 'Old'.  Figure out how to resolve this situation,
2972 /// merging decls or emitting diagnostics as appropriate.
2973 ///
2974 /// In C++, New and Old must be declarations that are not
2975 /// overloaded. Use IsOverload to determine whether New and Old are
2976 /// overloaded, and to select the Old declaration that New should be
2977 /// merged with.
2978 ///
2979 /// Returns true if there was an error, false otherwise.
2980 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2981                              Scope *S, bool MergeTypeWithOld) {
2982   // Verify the old decl was also a function.
2983   FunctionDecl *Old = OldD->getAsFunction();
2984   if (!Old) {
2985     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2986       if (New->getFriendObjectKind()) {
2987         Diag(New->getLocation(), diag::err_using_decl_friend);
2988         Diag(Shadow->getTargetDecl()->getLocation(),
2989              diag::note_using_decl_target);
2990         Diag(Shadow->getUsingDecl()->getLocation(),
2991              diag::note_using_decl) << 0;
2992         return true;
2993       }
2994 
2995       // Check whether the two declarations might declare the same function.
2996       if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
2997         return true;
2998       OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
2999     } else {
3000       Diag(New->getLocation(), diag::err_redefinition_different_kind)
3001         << New->getDeclName();
3002       notePreviousDefinition(OldD, New->getLocation());
3003       return true;
3004     }
3005   }
3006 
3007   // If the old declaration is invalid, just give up here.
3008   if (Old->isInvalidDecl())
3009     return true;
3010 
3011   // Disallow redeclaration of some builtins.
3012   if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3013     Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3014     Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3015         << Old << Old->getType();
3016     return true;
3017   }
3018 
3019   diag::kind PrevDiag;
3020   SourceLocation OldLocation;
3021   std::tie(PrevDiag, OldLocation) =
3022       getNoteDiagForInvalidRedeclaration(Old, New);
3023 
3024   // Don't complain about this if we're in GNU89 mode and the old function
3025   // is an extern inline function.
3026   // Don't complain about specializations. They are not supposed to have
3027   // storage classes.
3028   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3029       New->getStorageClass() == SC_Static &&
3030       Old->hasExternalFormalLinkage() &&
3031       !New->getTemplateSpecializationInfo() &&
3032       !canRedefineFunction(Old, getLangOpts())) {
3033     if (getLangOpts().MicrosoftExt) {
3034       Diag(New->getLocation(), diag::ext_static_non_static) << New;
3035       Diag(OldLocation, PrevDiag);
3036     } else {
3037       Diag(New->getLocation(), diag::err_static_non_static) << New;
3038       Diag(OldLocation, PrevDiag);
3039       return true;
3040     }
3041   }
3042 
3043   if (New->hasAttr<InternalLinkageAttr>() &&
3044       !Old->hasAttr<InternalLinkageAttr>()) {
3045     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3046         << New->getDeclName();
3047     notePreviousDefinition(Old, New->getLocation());
3048     New->dropAttr<InternalLinkageAttr>();
3049   }
3050 
3051   if (CheckRedeclarationModuleOwnership(New, Old))
3052     return true;
3053 
3054   if (!getLangOpts().CPlusPlus) {
3055     bool OldOvl = Old->hasAttr<OverloadableAttr>();
3056     if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3057       Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3058         << New << OldOvl;
3059 
3060       // Try our best to find a decl that actually has the overloadable
3061       // attribute for the note. In most cases (e.g. programs with only one
3062       // broken declaration/definition), this won't matter.
3063       //
3064       // FIXME: We could do this if we juggled some extra state in
3065       // OverloadableAttr, rather than just removing it.
3066       const Decl *DiagOld = Old;
3067       if (OldOvl) {
3068         auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3069           const auto *A = D->getAttr<OverloadableAttr>();
3070           return A && !A->isImplicit();
3071         });
3072         // If we've implicitly added *all* of the overloadable attrs to this
3073         // chain, emitting a "previous redecl" note is pointless.
3074         DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3075       }
3076 
3077       if (DiagOld)
3078         Diag(DiagOld->getLocation(),
3079              diag::note_attribute_overloadable_prev_overload)
3080           << OldOvl;
3081 
3082       if (OldOvl)
3083         New->addAttr(OverloadableAttr::CreateImplicit(Context));
3084       else
3085         New->dropAttr<OverloadableAttr>();
3086     }
3087   }
3088 
3089   // If a function is first declared with a calling convention, but is later
3090   // declared or defined without one, all following decls assume the calling
3091   // convention of the first.
3092   //
3093   // It's OK if a function is first declared without a calling convention,
3094   // but is later declared or defined with the default calling convention.
3095   //
3096   // To test if either decl has an explicit calling convention, we look for
3097   // AttributedType sugar nodes on the type as written.  If they are missing or
3098   // were canonicalized away, we assume the calling convention was implicit.
3099   //
3100   // Note also that we DO NOT return at this point, because we still have
3101   // other tests to run.
3102   QualType OldQType = Context.getCanonicalType(Old->getType());
3103   QualType NewQType = Context.getCanonicalType(New->getType());
3104   const FunctionType *OldType = cast<FunctionType>(OldQType);
3105   const FunctionType *NewType = cast<FunctionType>(NewQType);
3106   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3107   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3108   bool RequiresAdjustment = false;
3109 
3110   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3111     FunctionDecl *First = Old->getFirstDecl();
3112     const FunctionType *FT =
3113         First->getType().getCanonicalType()->castAs<FunctionType>();
3114     FunctionType::ExtInfo FI = FT->getExtInfo();
3115     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3116     if (!NewCCExplicit) {
3117       // Inherit the CC from the previous declaration if it was specified
3118       // there but not here.
3119       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3120       RequiresAdjustment = true;
3121     } else {
3122       // Calling conventions aren't compatible, so complain.
3123       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3124       Diag(New->getLocation(), diag::err_cconv_change)
3125         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3126         << !FirstCCExplicit
3127         << (!FirstCCExplicit ? "" :
3128             FunctionType::getNameForCallConv(FI.getCC()));
3129 
3130       // Put the note on the first decl, since it is the one that matters.
3131       Diag(First->getLocation(), diag::note_previous_declaration);
3132       return true;
3133     }
3134   }
3135 
3136   // FIXME: diagnose the other way around?
3137   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3138     NewTypeInfo = NewTypeInfo.withNoReturn(true);
3139     RequiresAdjustment = true;
3140   }
3141 
3142   // Merge regparm attribute.
3143   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3144       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3145     if (NewTypeInfo.getHasRegParm()) {
3146       Diag(New->getLocation(), diag::err_regparm_mismatch)
3147         << NewType->getRegParmType()
3148         << OldType->getRegParmType();
3149       Diag(OldLocation, diag::note_previous_declaration);
3150       return true;
3151     }
3152 
3153     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3154     RequiresAdjustment = true;
3155   }
3156 
3157   // Merge ns_returns_retained attribute.
3158   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3159     if (NewTypeInfo.getProducesResult()) {
3160       Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3161           << "'ns_returns_retained'";
3162       Diag(OldLocation, diag::note_previous_declaration);
3163       return true;
3164     }
3165 
3166     NewTypeInfo = NewTypeInfo.withProducesResult(true);
3167     RequiresAdjustment = true;
3168   }
3169 
3170   if (OldTypeInfo.getNoCallerSavedRegs() !=
3171       NewTypeInfo.getNoCallerSavedRegs()) {
3172     if (NewTypeInfo.getNoCallerSavedRegs()) {
3173       AnyX86NoCallerSavedRegistersAttr *Attr =
3174         New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3175       Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3176       Diag(OldLocation, diag::note_previous_declaration);
3177       return true;
3178     }
3179 
3180     NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3181     RequiresAdjustment = true;
3182   }
3183 
3184   if (RequiresAdjustment) {
3185     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3186     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3187     New->setType(QualType(AdjustedType, 0));
3188     NewQType = Context.getCanonicalType(New->getType());
3189     NewType = cast<FunctionType>(NewQType);
3190   }
3191 
3192   // If this redeclaration makes the function inline, we may need to add it to
3193   // UndefinedButUsed.
3194   if (!Old->isInlined() && New->isInlined() &&
3195       !New->hasAttr<GNUInlineAttr>() &&
3196       !getLangOpts().GNUInline &&
3197       Old->isUsed(false) &&
3198       !Old->isDefined() && !New->isThisDeclarationADefinition())
3199     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3200                                            SourceLocation()));
3201 
3202   // If this redeclaration makes it newly gnu_inline, we don't want to warn
3203   // about it.
3204   if (New->hasAttr<GNUInlineAttr>() &&
3205       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3206     UndefinedButUsed.erase(Old->getCanonicalDecl());
3207   }
3208 
3209   // If pass_object_size params don't match up perfectly, this isn't a valid
3210   // redeclaration.
3211   if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3212       !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3213     Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3214         << New->getDeclName();
3215     Diag(OldLocation, PrevDiag) << Old << Old->getType();
3216     return true;
3217   }
3218 
3219   if (getLangOpts().CPlusPlus) {
3220     // C++1z [over.load]p2
3221     //   Certain function declarations cannot be overloaded:
3222     //     -- Function declarations that differ only in the return type,
3223     //        the exception specification, or both cannot be overloaded.
3224 
3225     // Check the exception specifications match. This may recompute the type of
3226     // both Old and New if it resolved exception specifications, so grab the
3227     // types again after this. Because this updates the type, we do this before
3228     // any of the other checks below, which may update the "de facto" NewQType
3229     // but do not necessarily update the type of New.
3230     if (CheckEquivalentExceptionSpec(Old, New))
3231       return true;
3232     OldQType = Context.getCanonicalType(Old->getType());
3233     NewQType = Context.getCanonicalType(New->getType());
3234 
3235     // Go back to the type source info to compare the declared return types,
3236     // per C++1y [dcl.type.auto]p13:
3237     //   Redeclarations or specializations of a function or function template
3238     //   with a declared return type that uses a placeholder type shall also
3239     //   use that placeholder, not a deduced type.
3240     QualType OldDeclaredReturnType =
3241         (Old->getTypeSourceInfo()
3242              ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
3243              : OldType)->getReturnType();
3244     QualType NewDeclaredReturnType =
3245         (New->getTypeSourceInfo()
3246              ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
3247              : NewType)->getReturnType();
3248     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3249         !((NewQType->isDependentType() || OldQType->isDependentType()) &&
3250           New->isLocalExternDecl())) {
3251       QualType ResQT;
3252       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3253           OldDeclaredReturnType->isObjCObjectPointerType())
3254         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3255       if (ResQT.isNull()) {
3256         if (New->isCXXClassMember() && New->isOutOfLine())
3257           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3258               << New << New->getReturnTypeSourceRange();
3259         else
3260           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3261               << New->getReturnTypeSourceRange();
3262         Diag(OldLocation, PrevDiag) << Old << Old->getType()
3263                                     << Old->getReturnTypeSourceRange();
3264         return true;
3265       }
3266       else
3267         NewQType = ResQT;
3268     }
3269 
3270     QualType OldReturnType = OldType->getReturnType();
3271     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3272     if (OldReturnType != NewReturnType) {
3273       // If this function has a deduced return type and has already been
3274       // defined, copy the deduced value from the old declaration.
3275       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3276       if (OldAT && OldAT->isDeduced()) {
3277         New->setType(
3278             SubstAutoType(New->getType(),
3279                           OldAT->isDependentType() ? Context.DependentTy
3280                                                    : OldAT->getDeducedType()));
3281         NewQType = Context.getCanonicalType(
3282             SubstAutoType(NewQType,
3283                           OldAT->isDependentType() ? Context.DependentTy
3284                                                    : OldAT->getDeducedType()));
3285       }
3286     }
3287 
3288     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3289     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3290     if (OldMethod && NewMethod) {
3291       // Preserve triviality.
3292       NewMethod->setTrivial(OldMethod->isTrivial());
3293 
3294       // MSVC allows explicit template specialization at class scope:
3295       // 2 CXXMethodDecls referring to the same function will be injected.
3296       // We don't want a redeclaration error.
3297       bool IsClassScopeExplicitSpecialization =
3298                               OldMethod->isFunctionTemplateSpecialization() &&
3299                               NewMethod->isFunctionTemplateSpecialization();
3300       bool isFriend = NewMethod->getFriendObjectKind();
3301 
3302       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3303           !IsClassScopeExplicitSpecialization) {
3304         //    -- Member function declarations with the same name and the
3305         //       same parameter types cannot be overloaded if any of them
3306         //       is a static member function declaration.
3307         if (OldMethod->isStatic() != NewMethod->isStatic()) {
3308           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3309           Diag(OldLocation, PrevDiag) << Old << Old->getType();
3310           return true;
3311         }
3312 
3313         // C++ [class.mem]p1:
3314         //   [...] A member shall not be declared twice in the
3315         //   member-specification, except that a nested class or member
3316         //   class template can be declared and then later defined.
3317         if (!inTemplateInstantiation()) {
3318           unsigned NewDiag;
3319           if (isa<CXXConstructorDecl>(OldMethod))
3320             NewDiag = diag::err_constructor_redeclared;
3321           else if (isa<CXXDestructorDecl>(NewMethod))
3322             NewDiag = diag::err_destructor_redeclared;
3323           else if (isa<CXXConversionDecl>(NewMethod))
3324             NewDiag = diag::err_conv_function_redeclared;
3325           else
3326             NewDiag = diag::err_member_redeclared;
3327 
3328           Diag(New->getLocation(), NewDiag);
3329         } else {
3330           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3331             << New << New->getType();
3332         }
3333         Diag(OldLocation, PrevDiag) << Old << Old->getType();
3334         return true;
3335 
3336       // Complain if this is an explicit declaration of a special
3337       // member that was initially declared implicitly.
3338       //
3339       // As an exception, it's okay to befriend such methods in order
3340       // to permit the implicit constructor/destructor/operator calls.
3341       } else if (OldMethod->isImplicit()) {
3342         if (isFriend) {
3343           NewMethod->setImplicit();
3344         } else {
3345           Diag(NewMethod->getLocation(),
3346                diag::err_definition_of_implicitly_declared_member)
3347             << New << getSpecialMember(OldMethod);
3348           return true;
3349         }
3350       } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3351         Diag(NewMethod->getLocation(),
3352              diag::err_definition_of_explicitly_defaulted_member)
3353           << getSpecialMember(OldMethod);
3354         return true;
3355       }
3356     }
3357 
3358     // C++11 [dcl.attr.noreturn]p1:
3359     //   The first declaration of a function shall specify the noreturn
3360     //   attribute if any declaration of that function specifies the noreturn
3361     //   attribute.
3362     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3363     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3364       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3365       Diag(Old->getFirstDecl()->getLocation(),
3366            diag::note_noreturn_missing_first_decl);
3367     }
3368 
3369     // C++11 [dcl.attr.depend]p2:
3370     //   The first declaration of a function shall specify the
3371     //   carries_dependency attribute for its declarator-id if any declaration
3372     //   of the function specifies the carries_dependency attribute.
3373     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3374     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3375       Diag(CDA->getLocation(),
3376            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3377       Diag(Old->getFirstDecl()->getLocation(),
3378            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3379     }
3380 
3381     // (C++98 8.3.5p3):
3382     //   All declarations for a function shall agree exactly in both the
3383     //   return type and the parameter-type-list.
3384     // We also want to respect all the extended bits except noreturn.
3385 
3386     // noreturn should now match unless the old type info didn't have it.
3387     QualType OldQTypeForComparison = OldQType;
3388     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3389       auto *OldType = OldQType->castAs<FunctionProtoType>();
3390       const FunctionType *OldTypeForComparison
3391         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3392       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3393       assert(OldQTypeForComparison.isCanonical());
3394     }
3395 
3396     if (haveIncompatibleLanguageLinkages(Old, New)) {
3397       // As a special case, retain the language linkage from previous
3398       // declarations of a friend function as an extension.
3399       //
3400       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3401       // and is useful because there's otherwise no way to specify language
3402       // linkage within class scope.
3403       //
3404       // Check cautiously as the friend object kind isn't yet complete.
3405       if (New->getFriendObjectKind() != Decl::FOK_None) {
3406         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3407         Diag(OldLocation, PrevDiag);
3408       } else {
3409         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3410         Diag(OldLocation, PrevDiag);
3411         return true;
3412       }
3413     }
3414 
3415     if (OldQTypeForComparison == NewQType)
3416       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3417 
3418     if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
3419         New->isLocalExternDecl()) {
3420       // It's OK if we couldn't merge types for a local function declaraton
3421       // if either the old or new type is dependent. We'll merge the types
3422       // when we instantiate the function.
3423       return false;
3424     }
3425 
3426     // Fall through for conflicting redeclarations and redefinitions.
3427   }
3428 
3429   // C: Function types need to be compatible, not identical. This handles
3430   // duplicate function decls like "void f(int); void f(enum X);" properly.
3431   if (!getLangOpts().CPlusPlus &&
3432       Context.typesAreCompatible(OldQType, NewQType)) {
3433     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3434     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3435     const FunctionProtoType *OldProto = nullptr;
3436     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3437         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3438       // The old declaration provided a function prototype, but the
3439       // new declaration does not. Merge in the prototype.
3440       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
3441       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3442       NewQType =
3443           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3444                                   OldProto->getExtProtoInfo());
3445       New->setType(NewQType);
3446       New->setHasInheritedPrototype();
3447 
3448       // Synthesize parameters with the same types.
3449       SmallVector<ParmVarDecl*, 16> Params;
3450       for (const auto &ParamType : OldProto->param_types()) {
3451         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3452                                                  SourceLocation(), nullptr,
3453                                                  ParamType, /*TInfo=*/nullptr,
3454                                                  SC_None, nullptr);
3455         Param->setScopeInfo(0, Params.size());
3456         Param->setImplicit();
3457         Params.push_back(Param);
3458       }
3459 
3460       New->setParams(Params);
3461     }
3462 
3463     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3464   }
3465 
3466   // GNU C permits a K&R definition to follow a prototype declaration
3467   // if the declared types of the parameters in the K&R definition
3468   // match the types in the prototype declaration, even when the
3469   // promoted types of the parameters from the K&R definition differ
3470   // from the types in the prototype. GCC then keeps the types from
3471   // the prototype.
3472   //
3473   // If a variadic prototype is followed by a non-variadic K&R definition,
3474   // the K&R definition becomes variadic.  This is sort of an edge case, but
3475   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3476   // C99 6.9.1p8.
3477   if (!getLangOpts().CPlusPlus &&
3478       Old->hasPrototype() && !New->hasPrototype() &&
3479       New->getType()->getAs<FunctionProtoType>() &&
3480       Old->getNumParams() == New->getNumParams()) {
3481     SmallVector<QualType, 16> ArgTypes;
3482     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3483     const FunctionProtoType *OldProto
3484       = Old->getType()->getAs<FunctionProtoType>();
3485     const FunctionProtoType *NewProto
3486       = New->getType()->getAs<FunctionProtoType>();
3487 
3488     // Determine whether this is the GNU C extension.
3489     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3490                                                NewProto->getReturnType());
3491     bool LooseCompatible = !MergedReturn.isNull();
3492     for (unsigned Idx = 0, End = Old->getNumParams();
3493          LooseCompatible && Idx != End; ++Idx) {
3494       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3495       ParmVarDecl *NewParm = New->getParamDecl(Idx);
3496       if (Context.typesAreCompatible(OldParm->getType(),
3497                                      NewProto->getParamType(Idx))) {
3498         ArgTypes.push_back(NewParm->getType());
3499       } else if (Context.typesAreCompatible(OldParm->getType(),
3500                                             NewParm->getType(),
3501                                             /*CompareUnqualified=*/true)) {
3502         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3503                                            NewProto->getParamType(Idx) };
3504         Warnings.push_back(Warn);
3505         ArgTypes.push_back(NewParm->getType());
3506       } else
3507         LooseCompatible = false;
3508     }
3509 
3510     if (LooseCompatible) {
3511       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3512         Diag(Warnings[Warn].NewParm->getLocation(),
3513              diag::ext_param_promoted_not_compatible_with_prototype)
3514           << Warnings[Warn].PromotedType
3515           << Warnings[Warn].OldParm->getType();
3516         if (Warnings[Warn].OldParm->getLocation().isValid())
3517           Diag(Warnings[Warn].OldParm->getLocation(),
3518                diag::note_previous_declaration);
3519       }
3520 
3521       if (MergeTypeWithOld)
3522         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3523                                              OldProto->getExtProtoInfo()));
3524       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3525     }
3526 
3527     // Fall through to diagnose conflicting types.
3528   }
3529 
3530   // A function that has already been declared has been redeclared or
3531   // defined with a different type; show an appropriate diagnostic.
3532 
3533   // If the previous declaration was an implicitly-generated builtin
3534   // declaration, then at the very least we should use a specialized note.
3535   unsigned BuiltinID;
3536   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3537     // If it's actually a library-defined builtin function like 'malloc'
3538     // or 'printf', just warn about the incompatible redeclaration.
3539     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3540       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3541       Diag(OldLocation, diag::note_previous_builtin_declaration)
3542         << Old << Old->getType();
3543 
3544       // If this is a global redeclaration, just forget hereafter
3545       // about the "builtin-ness" of the function.
3546       //
3547       // Doing this for local extern declarations is problematic.  If
3548       // the builtin declaration remains visible, a second invalid
3549       // local declaration will produce a hard error; if it doesn't
3550       // remain visible, a single bogus local redeclaration (which is
3551       // actually only a warning) could break all the downstream code.
3552       if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3553         New->getIdentifier()->revertBuiltin();
3554 
3555       return false;
3556     }
3557 
3558     PrevDiag = diag::note_previous_builtin_declaration;
3559   }
3560 
3561   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3562   Diag(OldLocation, PrevDiag) << Old << Old->getType();
3563   return true;
3564 }
3565 
3566 /// Completes the merge of two function declarations that are
3567 /// known to be compatible.
3568 ///
3569 /// This routine handles the merging of attributes and other
3570 /// properties of function declarations from the old declaration to
3571 /// the new declaration, once we know that New is in fact a
3572 /// redeclaration of Old.
3573 ///
3574 /// \returns false
3575 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3576                                         Scope *S, bool MergeTypeWithOld) {
3577   // Merge the attributes
3578   mergeDeclAttributes(New, Old);
3579 
3580   // Merge "pure" flag.
3581   if (Old->isPure())
3582     New->setPure();
3583 
3584   // Merge "used" flag.
3585   if (Old->getMostRecentDecl()->isUsed(false))
3586     New->setIsUsed();
3587 
3588   // Merge attributes from the parameters.  These can mismatch with K&R
3589   // declarations.
3590   if (New->getNumParams() == Old->getNumParams())
3591       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3592         ParmVarDecl *NewParam = New->getParamDecl(i);
3593         ParmVarDecl *OldParam = Old->getParamDecl(i);
3594         mergeParamDeclAttributes(NewParam, OldParam, *this);
3595         mergeParamDeclTypes(NewParam, OldParam, *this);
3596       }
3597 
3598   if (getLangOpts().CPlusPlus)
3599     return MergeCXXFunctionDecl(New, Old, S);
3600 
3601   // Merge the function types so the we get the composite types for the return
3602   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3603   // was visible.
3604   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3605   if (!Merged.isNull() && MergeTypeWithOld)
3606     New->setType(Merged);
3607 
3608   return false;
3609 }
3610 
3611 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3612                                 ObjCMethodDecl *oldMethod) {
3613   // Merge the attributes, including deprecated/unavailable
3614   AvailabilityMergeKind MergeKind =
3615     isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3616       ? AMK_ProtocolImplementation
3617       : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3618                                                        : AMK_Override;
3619 
3620   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3621 
3622   // Merge attributes from the parameters.
3623   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3624                                        oe = oldMethod->param_end();
3625   for (ObjCMethodDecl::param_iterator
3626          ni = newMethod->param_begin(), ne = newMethod->param_end();
3627        ni != ne && oi != oe; ++ni, ++oi)
3628     mergeParamDeclAttributes(*ni, *oi, *this);
3629 
3630   CheckObjCMethodOverride(newMethod, oldMethod);
3631 }
3632 
3633 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3634   assert(!S.Context.hasSameType(New->getType(), Old->getType()));
3635 
3636   S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3637          ? diag::err_redefinition_different_type
3638          : diag::err_redeclaration_different_type)
3639     << New->getDeclName() << New->getType() << Old->getType();
3640 
3641   diag::kind PrevDiag;
3642   SourceLocation OldLocation;
3643   std::tie(PrevDiag, OldLocation)
3644     = getNoteDiagForInvalidRedeclaration(Old, New);
3645   S.Diag(OldLocation, PrevDiag);
3646   New->setInvalidDecl();
3647 }
3648 
3649 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3650 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3651 /// emitting diagnostics as appropriate.
3652 ///
3653 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3654 /// to here in AddInitializerToDecl. We can't check them before the initializer
3655 /// is attached.
3656 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3657                              bool MergeTypeWithOld) {
3658   if (New->isInvalidDecl() || Old->isInvalidDecl())
3659     return;
3660 
3661   QualType MergedT;
3662   if (getLangOpts().CPlusPlus) {
3663     if (New->getType()->isUndeducedType()) {
3664       // We don't know what the new type is until the initializer is attached.
3665       return;
3666     } else if (Context.hasSameType(New->getType(), Old->getType())) {
3667       // These could still be something that needs exception specs checked.
3668       return MergeVarDeclExceptionSpecs(New, Old);
3669     }
3670     // C++ [basic.link]p10:
3671     //   [...] the types specified by all declarations referring to a given
3672     //   object or function shall be identical, except that declarations for an
3673     //   array object can specify array types that differ by the presence or
3674     //   absence of a major array bound (8.3.4).
3675     else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3676       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3677       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3678 
3679       // We are merging a variable declaration New into Old. If it has an array
3680       // bound, and that bound differs from Old's bound, we should diagnose the
3681       // mismatch.
3682       if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3683         for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3684              PrevVD = PrevVD->getPreviousDecl()) {
3685           const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
3686           if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3687             continue;
3688 
3689           if (!Context.hasSameType(NewArray, PrevVDTy))
3690             return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3691         }
3692       }
3693 
3694       if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3695         if (Context.hasSameType(OldArray->getElementType(),
3696                                 NewArray->getElementType()))
3697           MergedT = New->getType();
3698       }
3699       // FIXME: Check visibility. New is hidden but has a complete type. If New
3700       // has no array bound, it should not inherit one from Old, if Old is not
3701       // visible.
3702       else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3703         if (Context.hasSameType(OldArray->getElementType(),
3704                                 NewArray->getElementType()))
3705           MergedT = Old->getType();
3706       }
3707     }
3708     else if (New->getType()->isObjCObjectPointerType() &&
3709                Old->getType()->isObjCObjectPointerType()) {
3710       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3711                                               Old->getType());
3712     }
3713   } else {
3714     // C 6.2.7p2:
3715     //   All declarations that refer to the same object or function shall have
3716     //   compatible type.
3717     MergedT = Context.mergeTypes(New->getType(), Old->getType());
3718   }
3719   if (MergedT.isNull()) {
3720     // It's OK if we couldn't merge types if either type is dependent, for a
3721     // block-scope variable. In other cases (static data members of class
3722     // templates, variable templates, ...), we require the types to be
3723     // equivalent.
3724     // FIXME: The C++ standard doesn't say anything about this.
3725     if ((New->getType()->isDependentType() ||
3726          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3727       // If the old type was dependent, we can't merge with it, so the new type
3728       // becomes dependent for now. We'll reproduce the original type when we
3729       // instantiate the TypeSourceInfo for the variable.
3730       if (!New->getType()->isDependentType() && MergeTypeWithOld)
3731         New->setType(Context.DependentTy);
3732       return;
3733     }
3734     return diagnoseVarDeclTypeMismatch(*this, New, Old);
3735   }
3736 
3737   // Don't actually update the type on the new declaration if the old
3738   // declaration was an extern declaration in a different scope.
3739   if (MergeTypeWithOld)
3740     New->setType(MergedT);
3741 }
3742 
3743 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3744                                   LookupResult &Previous) {
3745   // C11 6.2.7p4:
3746   //   For an identifier with internal or external linkage declared
3747   //   in a scope in which a prior declaration of that identifier is
3748   //   visible, if the prior declaration specifies internal or
3749   //   external linkage, the type of the identifier at the later
3750   //   declaration becomes the composite type.
3751   //
3752   // If the variable isn't visible, we do not merge with its type.
3753   if (Previous.isShadowed())
3754     return false;
3755 
3756   if (S.getLangOpts().CPlusPlus) {
3757     // C++11 [dcl.array]p3:
3758     //   If there is a preceding declaration of the entity in the same
3759     //   scope in which the bound was specified, an omitted array bound
3760     //   is taken to be the same as in that earlier declaration.
3761     return NewVD->isPreviousDeclInSameBlockScope() ||
3762            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3763             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3764   } else {
3765     // If the old declaration was function-local, don't merge with its
3766     // type unless we're in the same function.
3767     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3768            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3769   }
3770 }
3771 
3772 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
3773 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
3774 /// situation, merging decls or emitting diagnostics as appropriate.
3775 ///
3776 /// Tentative definition rules (C99 6.9.2p2) are checked by
3777 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3778 /// definitions here, since the initializer hasn't been attached.
3779 ///
3780 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3781   // If the new decl is already invalid, don't do any other checking.
3782   if (New->isInvalidDecl())
3783     return;
3784 
3785   if (!shouldLinkPossiblyHiddenDecl(Previous, New))
3786     return;
3787 
3788   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3789 
3790   // Verify the old decl was also a variable or variable template.
3791   VarDecl *Old = nullptr;
3792   VarTemplateDecl *OldTemplate = nullptr;
3793   if (Previous.isSingleResult()) {
3794     if (NewTemplate) {
3795       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3796       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3797 
3798       if (auto *Shadow =
3799               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3800         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
3801           return New->setInvalidDecl();
3802     } else {
3803       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3804 
3805       if (auto *Shadow =
3806               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3807         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
3808           return New->setInvalidDecl();
3809     }
3810   }
3811   if (!Old) {
3812     Diag(New->getLocation(), diag::err_redefinition_different_kind)
3813         << New->getDeclName();
3814     notePreviousDefinition(Previous.getRepresentativeDecl(),
3815                            New->getLocation());
3816     return New->setInvalidDecl();
3817   }
3818 
3819   // Ensure the template parameters are compatible.
3820   if (NewTemplate &&
3821       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3822                                       OldTemplate->getTemplateParameters(),
3823                                       /*Complain=*/true, TPL_TemplateMatch))
3824     return New->setInvalidDecl();
3825 
3826   // C++ [class.mem]p1:
3827   //   A member shall not be declared twice in the member-specification [...]
3828   //
3829   // Here, we need only consider static data members.
3830   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3831     Diag(New->getLocation(), diag::err_duplicate_member)
3832       << New->getIdentifier();
3833     Diag(Old->getLocation(), diag::note_previous_declaration);
3834     New->setInvalidDecl();
3835   }
3836 
3837   mergeDeclAttributes(New, Old);
3838   // Warn if an already-declared variable is made a weak_import in a subsequent
3839   // declaration
3840   if (New->hasAttr<WeakImportAttr>() &&
3841       Old->getStorageClass() == SC_None &&
3842       !Old->hasAttr<WeakImportAttr>()) {
3843     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3844     notePreviousDefinition(Old, New->getLocation());
3845     // Remove weak_import attribute on new declaration.
3846     New->dropAttr<WeakImportAttr>();
3847   }
3848 
3849   if (New->hasAttr<InternalLinkageAttr>() &&
3850       !Old->hasAttr<InternalLinkageAttr>()) {
3851     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3852         << New->getDeclName();
3853     notePreviousDefinition(Old, New->getLocation());
3854     New->dropAttr<InternalLinkageAttr>();
3855   }
3856 
3857   // Merge the types.
3858   VarDecl *MostRecent = Old->getMostRecentDecl();
3859   if (MostRecent != Old) {
3860     MergeVarDeclTypes(New, MostRecent,
3861                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3862     if (New->isInvalidDecl())
3863       return;
3864   }
3865 
3866   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3867   if (New->isInvalidDecl())
3868     return;
3869 
3870   diag::kind PrevDiag;
3871   SourceLocation OldLocation;
3872   std::tie(PrevDiag, OldLocation) =
3873       getNoteDiagForInvalidRedeclaration(Old, New);
3874 
3875   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3876   if (New->getStorageClass() == SC_Static &&
3877       !New->isStaticDataMember() &&
3878       Old->hasExternalFormalLinkage()) {
3879     if (getLangOpts().MicrosoftExt) {
3880       Diag(New->getLocation(), diag::ext_static_non_static)
3881           << New->getDeclName();
3882       Diag(OldLocation, PrevDiag);
3883     } else {
3884       Diag(New->getLocation(), diag::err_static_non_static)
3885           << New->getDeclName();
3886       Diag(OldLocation, PrevDiag);
3887       return New->setInvalidDecl();
3888     }
3889   }
3890   // C99 6.2.2p4:
3891   //   For an identifier declared with the storage-class specifier
3892   //   extern in a scope in which a prior declaration of that
3893   //   identifier is visible,23) if the prior declaration specifies
3894   //   internal or external linkage, the linkage of the identifier at
3895   //   the later declaration is the same as the linkage specified at
3896   //   the prior declaration. If no prior declaration is visible, or
3897   //   if the prior declaration specifies no linkage, then the
3898   //   identifier has external linkage.
3899   if (New->hasExternalStorage() && Old->hasLinkage())
3900     /* Okay */;
3901   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3902            !New->isStaticDataMember() &&
3903            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3904     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3905     Diag(OldLocation, PrevDiag);
3906     return New->setInvalidDecl();
3907   }
3908 
3909   // Check if extern is followed by non-extern and vice-versa.
3910   if (New->hasExternalStorage() &&
3911       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3912     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3913     Diag(OldLocation, PrevDiag);
3914     return New->setInvalidDecl();
3915   }
3916   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3917       !New->hasExternalStorage()) {
3918     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3919     Diag(OldLocation, PrevDiag);
3920     return New->setInvalidDecl();
3921   }
3922 
3923   if (CheckRedeclarationModuleOwnership(New, Old))
3924     return;
3925 
3926   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3927 
3928   // FIXME: The test for external storage here seems wrong? We still
3929   // need to check for mismatches.
3930   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3931       // Don't complain about out-of-line definitions of static members.
3932       !(Old->getLexicalDeclContext()->isRecord() &&
3933         !New->getLexicalDeclContext()->isRecord())) {
3934     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3935     Diag(OldLocation, PrevDiag);
3936     return New->setInvalidDecl();
3937   }
3938 
3939   if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
3940     if (VarDecl *Def = Old->getDefinition()) {
3941       // C++1z [dcl.fcn.spec]p4:
3942       //   If the definition of a variable appears in a translation unit before
3943       //   its first declaration as inline, the program is ill-formed.
3944       Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
3945       Diag(Def->getLocation(), diag::note_previous_definition);
3946     }
3947   }
3948 
3949   // If this redeclaration makes the variable inline, we may need to add it to
3950   // UndefinedButUsed.
3951   if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
3952       !Old->getDefinition() && !New->isThisDeclarationADefinition())
3953     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3954                                            SourceLocation()));
3955 
3956   if (New->getTLSKind() != Old->getTLSKind()) {
3957     if (!Old->getTLSKind()) {
3958       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3959       Diag(OldLocation, PrevDiag);
3960     } else if (!New->getTLSKind()) {
3961       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3962       Diag(OldLocation, PrevDiag);
3963     } else {
3964       // Do not allow redeclaration to change the variable between requiring
3965       // static and dynamic initialization.
3966       // FIXME: GCC allows this, but uses the TLS keyword on the first
3967       // declaration to determine the kind. Do we need to be compatible here?
3968       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3969         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3970       Diag(OldLocation, PrevDiag);
3971     }
3972   }
3973 
3974   // C++ doesn't have tentative definitions, so go right ahead and check here.
3975   if (getLangOpts().CPlusPlus &&
3976       New->isThisDeclarationADefinition() == VarDecl::Definition) {
3977     if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
3978         Old->getCanonicalDecl()->isConstexpr()) {
3979       // This definition won't be a definition any more once it's been merged.
3980       Diag(New->getLocation(),
3981            diag::warn_deprecated_redundant_constexpr_static_def);
3982     } else if (VarDecl *Def = Old->getDefinition()) {
3983       if (checkVarDeclRedefinition(Def, New))
3984         return;
3985     }
3986   }
3987 
3988   if (haveIncompatibleLanguageLinkages(Old, New)) {
3989     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3990     Diag(OldLocation, PrevDiag);
3991     New->setInvalidDecl();
3992     return;
3993   }
3994 
3995   // Merge "used" flag.
3996   if (Old->getMostRecentDecl()->isUsed(false))
3997     New->setIsUsed();
3998 
3999   // Keep a chain of previous declarations.
4000   New->setPreviousDecl(Old);
4001   if (NewTemplate)
4002     NewTemplate->setPreviousDecl(OldTemplate);
4003   adjustDeclContextForDeclaratorDecl(New, Old);
4004 
4005   // Inherit access appropriately.
4006   New->setAccess(Old->getAccess());
4007   if (NewTemplate)
4008     NewTemplate->setAccess(New->getAccess());
4009 
4010   if (Old->isInline())
4011     New->setImplicitlyInline();
4012 }
4013 
4014 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4015   SourceManager &SrcMgr = getSourceManager();
4016   auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4017   auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4018   auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4019   auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4020   auto &HSI = PP.getHeaderSearchInfo();
4021   StringRef HdrFilename =
4022       SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4023 
4024   auto noteFromModuleOrInclude = [&](Module *Mod,
4025                                      SourceLocation IncLoc) -> bool {
4026     // Redefinition errors with modules are common with non modular mapped
4027     // headers, example: a non-modular header H in module A that also gets
4028     // included directly in a TU. Pointing twice to the same header/definition
4029     // is confusing, try to get better diagnostics when modules is on.
4030     if (IncLoc.isValid()) {
4031       if (Mod) {
4032         Diag(IncLoc, diag::note_redefinition_modules_same_file)
4033             << HdrFilename.str() << Mod->getFullModuleName();
4034         if (!Mod->DefinitionLoc.isInvalid())
4035           Diag(Mod->DefinitionLoc, diag::note_defined_here)
4036               << Mod->getFullModuleName();
4037       } else {
4038         Diag(IncLoc, diag::note_redefinition_include_same_file)
4039             << HdrFilename.str();
4040       }
4041       return true;
4042     }
4043 
4044     return false;
4045   };
4046 
4047   // Is it the same file and same offset? Provide more information on why
4048   // this leads to a redefinition error.
4049   bool EmittedDiag = false;
4050   if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4051     SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4052     SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4053     EmittedDiag = noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4054     EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4055 
4056     // If the header has no guards, emit a note suggesting one.
4057     if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4058       Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4059 
4060     if (EmittedDiag)
4061       return;
4062   }
4063 
4064   // Redefinition coming from different files or couldn't do better above.
4065   if (Old->getLocation().isValid())
4066     Diag(Old->getLocation(), diag::note_previous_definition);
4067 }
4068 
4069 /// We've just determined that \p Old and \p New both appear to be definitions
4070 /// of the same variable. Either diagnose or fix the problem.
4071 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4072   if (!hasVisibleDefinition(Old) &&
4073       (New->getFormalLinkage() == InternalLinkage ||
4074        New->isInline() ||
4075        New->getDescribedVarTemplate() ||
4076        New->getNumTemplateParameterLists() ||
4077        New->getDeclContext()->isDependentContext())) {
4078     // The previous definition is hidden, and multiple definitions are
4079     // permitted (in separate TUs). Demote this to a declaration.
4080     New->demoteThisDefinitionToDeclaration();
4081 
4082     // Make the canonical definition visible.
4083     if (auto *OldTD = Old->getDescribedVarTemplate())
4084       makeMergedDefinitionVisible(OldTD);
4085     makeMergedDefinitionVisible(Old);
4086     return false;
4087   } else {
4088     Diag(New->getLocation(), diag::err_redefinition) << New;
4089     notePreviousDefinition(Old, New->getLocation());
4090     New->setInvalidDecl();
4091     return true;
4092   }
4093 }
4094 
4095 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4096 /// no declarator (e.g. "struct foo;") is parsed.
4097 Decl *
4098 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4099                                  RecordDecl *&AnonRecord) {
4100   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4101                                     AnonRecord);
4102 }
4103 
4104 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4105 // disambiguate entities defined in different scopes.
4106 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4107 // compatibility.
4108 // We will pick our mangling number depending on which version of MSVC is being
4109 // targeted.
4110 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4111   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4112              ? S->getMSCurManglingNumber()
4113              : S->getMSLastManglingNumber();
4114 }
4115 
4116 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4117   if (!Context.getLangOpts().CPlusPlus)
4118     return;
4119 
4120   if (isa<CXXRecordDecl>(Tag->getParent())) {
4121     // If this tag is the direct child of a class, number it if
4122     // it is anonymous.
4123     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4124       return;
4125     MangleNumberingContext &MCtx =
4126         Context.getManglingNumberContext(Tag->getParent());
4127     Context.setManglingNumber(
4128         Tag, MCtx.getManglingNumber(
4129                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4130     return;
4131   }
4132 
4133   // If this tag isn't a direct child of a class, number it if it is local.
4134   Decl *ManglingContextDecl;
4135   if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4136           Tag->getDeclContext(), ManglingContextDecl)) {
4137     Context.setManglingNumber(
4138         Tag, MCtx->getManglingNumber(
4139                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4140   }
4141 }
4142 
4143 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4144                                         TypedefNameDecl *NewTD) {
4145   if (TagFromDeclSpec->isInvalidDecl())
4146     return;
4147 
4148   // Do nothing if the tag already has a name for linkage purposes.
4149   if (TagFromDeclSpec->hasNameForLinkage())
4150     return;
4151 
4152   // A well-formed anonymous tag must always be a TUK_Definition.
4153   assert(TagFromDeclSpec->isThisDeclarationADefinition());
4154 
4155   // The type must match the tag exactly;  no qualifiers allowed.
4156   if (!Context.hasSameType(NewTD->getUnderlyingType(),
4157                            Context.getTagDeclType(TagFromDeclSpec))) {
4158     if (getLangOpts().CPlusPlus)
4159       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4160     return;
4161   }
4162 
4163   // If we've already computed linkage for the anonymous tag, then
4164   // adding a typedef name for the anonymous decl can change that
4165   // linkage, which might be a serious problem.  Diagnose this as
4166   // unsupported and ignore the typedef name.  TODO: we should
4167   // pursue this as a language defect and establish a formal rule
4168   // for how to handle it.
4169   if (TagFromDeclSpec->hasLinkageBeenComputed()) {
4170     Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
4171 
4172     SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
4173     tagLoc = getLocForEndOfToken(tagLoc);
4174 
4175     llvm::SmallString<40> textToInsert;
4176     textToInsert += ' ';
4177     textToInsert += NewTD->getIdentifier()->getName();
4178     Diag(tagLoc, diag::note_typedef_changes_linkage)
4179         << FixItHint::CreateInsertion(tagLoc, textToInsert);
4180     return;
4181   }
4182 
4183   // Otherwise, set this is the anon-decl typedef for the tag.
4184   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4185 }
4186 
4187 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4188   switch (T) {
4189   case DeclSpec::TST_class:
4190     return 0;
4191   case DeclSpec::TST_struct:
4192     return 1;
4193   case DeclSpec::TST_interface:
4194     return 2;
4195   case DeclSpec::TST_union:
4196     return 3;
4197   case DeclSpec::TST_enum:
4198     return 4;
4199   default:
4200     llvm_unreachable("unexpected type specifier");
4201   }
4202 }
4203 
4204 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4205 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4206 /// parameters to cope with template friend declarations.
4207 Decl *
4208 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4209                                  MultiTemplateParamsArg TemplateParams,
4210                                  bool IsExplicitInstantiation,
4211                                  RecordDecl *&AnonRecord) {
4212   Decl *TagD = nullptr;
4213   TagDecl *Tag = nullptr;
4214   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4215       DS.getTypeSpecType() == DeclSpec::TST_struct ||
4216       DS.getTypeSpecType() == DeclSpec::TST_interface ||
4217       DS.getTypeSpecType() == DeclSpec::TST_union ||
4218       DS.getTypeSpecType() == DeclSpec::TST_enum) {
4219     TagD = DS.getRepAsDecl();
4220 
4221     if (!TagD) // We probably had an error
4222       return nullptr;
4223 
4224     // Note that the above type specs guarantee that the
4225     // type rep is a Decl, whereas in many of the others
4226     // it's a Type.
4227     if (isa<TagDecl>(TagD))
4228       Tag = cast<TagDecl>(TagD);
4229     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4230       Tag = CTD->getTemplatedDecl();
4231   }
4232 
4233   if (Tag) {
4234     handleTagNumbering(Tag, S);
4235     Tag->setFreeStanding();
4236     if (Tag->isInvalidDecl())
4237       return Tag;
4238   }
4239 
4240   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4241     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4242     // or incomplete types shall not be restrict-qualified."
4243     if (TypeQuals & DeclSpec::TQ_restrict)
4244       Diag(DS.getRestrictSpecLoc(),
4245            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4246            << DS.getSourceRange();
4247   }
4248 
4249   if (DS.isInlineSpecified())
4250     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4251         << getLangOpts().CPlusPlus17;
4252 
4253   if (DS.isConstexprSpecified()) {
4254     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4255     // and definitions of functions and variables.
4256     if (Tag)
4257       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4258           << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType());
4259     else
4260       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
4261     // Don't emit warnings after this error.
4262     return TagD;
4263   }
4264 
4265   DiagnoseFunctionSpecifiers(DS);
4266 
4267   if (DS.isFriendSpecified()) {
4268     // If we're dealing with a decl but not a TagDecl, assume that
4269     // whatever routines created it handled the friendship aspect.
4270     if (TagD && !Tag)
4271       return nullptr;
4272     return ActOnFriendTypeDecl(S, DS, TemplateParams);
4273   }
4274 
4275   const CXXScopeSpec &SS = DS.getTypeSpecScope();
4276   bool IsExplicitSpecialization =
4277     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4278   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4279       !IsExplicitInstantiation && !IsExplicitSpecialization &&
4280       !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4281     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4282     // nested-name-specifier unless it is an explicit instantiation
4283     // or an explicit specialization.
4284     //
4285     // FIXME: We allow class template partial specializations here too, per the
4286     // obvious intent of DR1819.
4287     //
4288     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4289     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4290         << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4291     return nullptr;
4292   }
4293 
4294   // Track whether this decl-specifier declares anything.
4295   bool DeclaresAnything = true;
4296 
4297   // Handle anonymous struct definitions.
4298   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4299     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4300         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4301       if (getLangOpts().CPlusPlus ||
4302           Record->getDeclContext()->isRecord()) {
4303         // If CurContext is a DeclContext that can contain statements,
4304         // RecursiveASTVisitor won't visit the decls that
4305         // BuildAnonymousStructOrUnion() will put into CurContext.
4306         // Also store them here so that they can be part of the
4307         // DeclStmt that gets created in this case.
4308         // FIXME: Also return the IndirectFieldDecls created by
4309         // BuildAnonymousStructOr union, for the same reason?
4310         if (CurContext->isFunctionOrMethod())
4311           AnonRecord = Record;
4312         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4313                                            Context.getPrintingPolicy());
4314       }
4315 
4316       DeclaresAnything = false;
4317     }
4318   }
4319 
4320   // C11 6.7.2.1p2:
4321   //   A struct-declaration that does not declare an anonymous structure or
4322   //   anonymous union shall contain a struct-declarator-list.
4323   //
4324   // This rule also existed in C89 and C99; the grammar for struct-declaration
4325   // did not permit a struct-declaration without a struct-declarator-list.
4326   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4327       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4328     // Check for Microsoft C extension: anonymous struct/union member.
4329     // Handle 2 kinds of anonymous struct/union:
4330     //   struct STRUCT;
4331     //   union UNION;
4332     // and
4333     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
4334     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
4335     if ((Tag && Tag->getDeclName()) ||
4336         DS.getTypeSpecType() == DeclSpec::TST_typename) {
4337       RecordDecl *Record = nullptr;
4338       if (Tag)
4339         Record = dyn_cast<RecordDecl>(Tag);
4340       else if (const RecordType *RT =
4341                    DS.getRepAsType().get()->getAsStructureType())
4342         Record = RT->getDecl();
4343       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4344         Record = UT->getDecl();
4345 
4346       if (Record && getLangOpts().MicrosoftExt) {
4347         Diag(DS.getLocStart(), diag::ext_ms_anonymous_record)
4348           << Record->isUnion() << DS.getSourceRange();
4349         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4350       }
4351 
4352       DeclaresAnything = false;
4353     }
4354   }
4355 
4356   // Skip all the checks below if we have a type error.
4357   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4358       (TagD && TagD->isInvalidDecl()))
4359     return TagD;
4360 
4361   if (getLangOpts().CPlusPlus &&
4362       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4363     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4364       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4365           !Enum->getIdentifier() && !Enum->isInvalidDecl())
4366         DeclaresAnything = false;
4367 
4368   if (!DS.isMissingDeclaratorOk()) {
4369     // Customize diagnostic for a typedef missing a name.
4370     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4371       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
4372         << DS.getSourceRange();
4373     else
4374       DeclaresAnything = false;
4375   }
4376 
4377   if (DS.isModulePrivateSpecified() &&
4378       Tag && Tag->getDeclContext()->isFunctionOrMethod())
4379     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4380       << Tag->getTagKind()
4381       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4382 
4383   ActOnDocumentableDecl(TagD);
4384 
4385   // C 6.7/2:
4386   //   A declaration [...] shall declare at least a declarator [...], a tag,
4387   //   or the members of an enumeration.
4388   // C++ [dcl.dcl]p3:
4389   //   [If there are no declarators], and except for the declaration of an
4390   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
4391   //   names into the program, or shall redeclare a name introduced by a
4392   //   previous declaration.
4393   if (!DeclaresAnything) {
4394     // In C, we allow this as a (popular) extension / bug. Don't bother
4395     // producing further diagnostics for redundant qualifiers after this.
4396     Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
4397     return TagD;
4398   }
4399 
4400   // C++ [dcl.stc]p1:
4401   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4402   //   init-declarator-list of the declaration shall not be empty.
4403   // C++ [dcl.fct.spec]p1:
4404   //   If a cv-qualifier appears in a decl-specifier-seq, the
4405   //   init-declarator-list of the declaration shall not be empty.
4406   //
4407   // Spurious qualifiers here appear to be valid in C.
4408   unsigned DiagID = diag::warn_standalone_specifier;
4409   if (getLangOpts().CPlusPlus)
4410     DiagID = diag::ext_standalone_specifier;
4411 
4412   // Note that a linkage-specification sets a storage class, but
4413   // 'extern "C" struct foo;' is actually valid and not theoretically
4414   // useless.
4415   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4416     if (SCS == DeclSpec::SCS_mutable)
4417       // Since mutable is not a viable storage class specifier in C, there is
4418       // no reason to treat it as an extension. Instead, diagnose as an error.
4419       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4420     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4421       Diag(DS.getStorageClassSpecLoc(), DiagID)
4422         << DeclSpec::getSpecifierName(SCS);
4423   }
4424 
4425   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4426     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4427       << DeclSpec::getSpecifierName(TSCS);
4428   if (DS.getTypeQualifiers()) {
4429     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4430       Diag(DS.getConstSpecLoc(), DiagID) << "const";
4431     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4432       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4433     // Restrict is covered above.
4434     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4435       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4436     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4437       Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4438   }
4439 
4440   // Warn about ignored type attributes, for example:
4441   // __attribute__((aligned)) struct A;
4442   // Attributes should be placed after tag to apply to type declaration.
4443   if (!DS.getAttributes().empty()) {
4444     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4445     if (TypeSpecType == DeclSpec::TST_class ||
4446         TypeSpecType == DeclSpec::TST_struct ||
4447         TypeSpecType == DeclSpec::TST_interface ||
4448         TypeSpecType == DeclSpec::TST_union ||
4449         TypeSpecType == DeclSpec::TST_enum) {
4450       for (AttributeList* attrs = DS.getAttributes().getList(); attrs;
4451            attrs = attrs->getNext())
4452         Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
4453             << attrs->getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
4454     }
4455   }
4456 
4457   return TagD;
4458 }
4459 
4460 /// We are trying to inject an anonymous member into the given scope;
4461 /// check if there's an existing declaration that can't be overloaded.
4462 ///
4463 /// \return true if this is a forbidden redeclaration
4464 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4465                                          Scope *S,
4466                                          DeclContext *Owner,
4467                                          DeclarationName Name,
4468                                          SourceLocation NameLoc,
4469                                          bool IsUnion) {
4470   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4471                  Sema::ForVisibleRedeclaration);
4472   if (!SemaRef.LookupName(R, S)) return false;
4473 
4474   // Pick a representative declaration.
4475   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4476   assert(PrevDecl && "Expected a non-null Decl");
4477 
4478   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4479     return false;
4480 
4481   SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4482     << IsUnion << Name;
4483   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4484 
4485   return true;
4486 }
4487 
4488 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
4489 /// anonymous struct or union AnonRecord into the owning context Owner
4490 /// and scope S. This routine will be invoked just after we realize
4491 /// that an unnamed union or struct is actually an anonymous union or
4492 /// struct, e.g.,
4493 ///
4494 /// @code
4495 /// union {
4496 ///   int i;
4497 ///   float f;
4498 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4499 ///    // f into the surrounding scope.x
4500 /// @endcode
4501 ///
4502 /// This routine is recursive, injecting the names of nested anonymous
4503 /// structs/unions into the owning context and scope as well.
4504 static bool
4505 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4506                                     RecordDecl *AnonRecord, AccessSpecifier AS,
4507                                     SmallVectorImpl<NamedDecl *> &Chaining) {
4508   bool Invalid = false;
4509 
4510   // Look every FieldDecl and IndirectFieldDecl with a name.
4511   for (auto *D : AnonRecord->decls()) {
4512     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4513         cast<NamedDecl>(D)->getDeclName()) {
4514       ValueDecl *VD = cast<ValueDecl>(D);
4515       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4516                                        VD->getLocation(),
4517                                        AnonRecord->isUnion())) {
4518         // C++ [class.union]p2:
4519         //   The names of the members of an anonymous union shall be
4520         //   distinct from the names of any other entity in the
4521         //   scope in which the anonymous union is declared.
4522         Invalid = true;
4523       } else {
4524         // C++ [class.union]p2:
4525         //   For the purpose of name lookup, after the anonymous union
4526         //   definition, the members of the anonymous union are
4527         //   considered to have been defined in the scope in which the
4528         //   anonymous union is declared.
4529         unsigned OldChainingSize = Chaining.size();
4530         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4531           Chaining.append(IF->chain_begin(), IF->chain_end());
4532         else
4533           Chaining.push_back(VD);
4534 
4535         assert(Chaining.size() >= 2);
4536         NamedDecl **NamedChain =
4537           new (SemaRef.Context)NamedDecl*[Chaining.size()];
4538         for (unsigned i = 0; i < Chaining.size(); i++)
4539           NamedChain[i] = Chaining[i];
4540 
4541         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4542             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4543             VD->getType(), {NamedChain, Chaining.size()});
4544 
4545         for (const auto *Attr : VD->attrs())
4546           IndirectField->addAttr(Attr->clone(SemaRef.Context));
4547 
4548         IndirectField->setAccess(AS);
4549         IndirectField->setImplicit();
4550         SemaRef.PushOnScopeChains(IndirectField, S);
4551 
4552         // That includes picking up the appropriate access specifier.
4553         if (AS != AS_none) IndirectField->setAccess(AS);
4554 
4555         Chaining.resize(OldChainingSize);
4556       }
4557     }
4558   }
4559 
4560   return Invalid;
4561 }
4562 
4563 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4564 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
4565 /// illegal input values are mapped to SC_None.
4566 static StorageClass
4567 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4568   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4569   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
4570          "Parser allowed 'typedef' as storage class VarDecl.");
4571   switch (StorageClassSpec) {
4572   case DeclSpec::SCS_unspecified:    return SC_None;
4573   case DeclSpec::SCS_extern:
4574     if (DS.isExternInLinkageSpec())
4575       return SC_None;
4576     return SC_Extern;
4577   case DeclSpec::SCS_static:         return SC_Static;
4578   case DeclSpec::SCS_auto:           return SC_Auto;
4579   case DeclSpec::SCS_register:       return SC_Register;
4580   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4581     // Illegal SCSs map to None: error reporting is up to the caller.
4582   case DeclSpec::SCS_mutable:        // Fall through.
4583   case DeclSpec::SCS_typedef:        return SC_None;
4584   }
4585   llvm_unreachable("unknown storage class specifier");
4586 }
4587 
4588 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4589   assert(Record->hasInClassInitializer());
4590 
4591   for (const auto *I : Record->decls()) {
4592     const auto *FD = dyn_cast<FieldDecl>(I);
4593     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4594       FD = IFD->getAnonField();
4595     if (FD && FD->hasInClassInitializer())
4596       return FD->getLocation();
4597   }
4598 
4599   llvm_unreachable("couldn't find in-class initializer");
4600 }
4601 
4602 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4603                                       SourceLocation DefaultInitLoc) {
4604   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4605     return;
4606 
4607   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4608   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4609 }
4610 
4611 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4612                                       CXXRecordDecl *AnonUnion) {
4613   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4614     return;
4615 
4616   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4617 }
4618 
4619 /// BuildAnonymousStructOrUnion - Handle the declaration of an
4620 /// anonymous structure or union. Anonymous unions are a C++ feature
4621 /// (C++ [class.union]) and a C11 feature; anonymous structures
4622 /// are a C11 feature and GNU C++ extension.
4623 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4624                                         AccessSpecifier AS,
4625                                         RecordDecl *Record,
4626                                         const PrintingPolicy &Policy) {
4627   DeclContext *Owner = Record->getDeclContext();
4628 
4629   // Diagnose whether this anonymous struct/union is an extension.
4630   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4631     Diag(Record->getLocation(), diag::ext_anonymous_union);
4632   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4633     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4634   else if (!Record->isUnion() && !getLangOpts().C11)
4635     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4636 
4637   // C and C++ require different kinds of checks for anonymous
4638   // structs/unions.
4639   bool Invalid = false;
4640   if (getLangOpts().CPlusPlus) {
4641     const char *PrevSpec = nullptr;
4642     unsigned DiagID;
4643     if (Record->isUnion()) {
4644       // C++ [class.union]p6:
4645       //   Anonymous unions declared in a named namespace or in the
4646       //   global namespace shall be declared static.
4647       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4648           (isa<TranslationUnitDecl>(Owner) ||
4649            (isa<NamespaceDecl>(Owner) &&
4650             cast<NamespaceDecl>(Owner)->getDeclName()))) {
4651         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4652           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4653 
4654         // Recover by adding 'static'.
4655         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4656                                PrevSpec, DiagID, Policy);
4657       }
4658       // C++ [class.union]p6:
4659       //   A storage class is not allowed in a declaration of an
4660       //   anonymous union in a class scope.
4661       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4662                isa<RecordDecl>(Owner)) {
4663         Diag(DS.getStorageClassSpecLoc(),
4664              diag::err_anonymous_union_with_storage_spec)
4665           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4666 
4667         // Recover by removing the storage specifier.
4668         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
4669                                SourceLocation(),
4670                                PrevSpec, DiagID, Context.getPrintingPolicy());
4671       }
4672     }
4673 
4674     // Ignore const/volatile/restrict qualifiers.
4675     if (DS.getTypeQualifiers()) {
4676       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4677         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4678           << Record->isUnion() << "const"
4679           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4680       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4681         Diag(DS.getVolatileSpecLoc(),
4682              diag::ext_anonymous_struct_union_qualified)
4683           << Record->isUnion() << "volatile"
4684           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4685       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4686         Diag(DS.getRestrictSpecLoc(),
4687              diag::ext_anonymous_struct_union_qualified)
4688           << Record->isUnion() << "restrict"
4689           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4690       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4691         Diag(DS.getAtomicSpecLoc(),
4692              diag::ext_anonymous_struct_union_qualified)
4693           << Record->isUnion() << "_Atomic"
4694           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4695       if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4696         Diag(DS.getUnalignedSpecLoc(),
4697              diag::ext_anonymous_struct_union_qualified)
4698           << Record->isUnion() << "__unaligned"
4699           << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
4700 
4701       DS.ClearTypeQualifiers();
4702     }
4703 
4704     // C++ [class.union]p2:
4705     //   The member-specification of an anonymous union shall only
4706     //   define non-static data members. [Note: nested types and
4707     //   functions cannot be declared within an anonymous union. ]
4708     for (auto *Mem : Record->decls()) {
4709       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4710         // C++ [class.union]p3:
4711         //   An anonymous union shall not have private or protected
4712         //   members (clause 11).
4713         assert(FD->getAccess() != AS_none);
4714         if (FD->getAccess() != AS_public) {
4715           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4716             << Record->isUnion() << (FD->getAccess() == AS_protected);
4717           Invalid = true;
4718         }
4719 
4720         // C++ [class.union]p1
4721         //   An object of a class with a non-trivial constructor, a non-trivial
4722         //   copy constructor, a non-trivial destructor, or a non-trivial copy
4723         //   assignment operator cannot be a member of a union, nor can an
4724         //   array of such objects.
4725         if (CheckNontrivialField(FD))
4726           Invalid = true;
4727       } else if (Mem->isImplicit()) {
4728         // Any implicit members are fine.
4729       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4730         // This is a type that showed up in an
4731         // elaborated-type-specifier inside the anonymous struct or
4732         // union, but which actually declares a type outside of the
4733         // anonymous struct or union. It's okay.
4734       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4735         if (!MemRecord->isAnonymousStructOrUnion() &&
4736             MemRecord->getDeclName()) {
4737           // Visual C++ allows type definition in anonymous struct or union.
4738           if (getLangOpts().MicrosoftExt)
4739             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4740               << Record->isUnion();
4741           else {
4742             // This is a nested type declaration.
4743             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4744               << Record->isUnion();
4745             Invalid = true;
4746           }
4747         } else {
4748           // This is an anonymous type definition within another anonymous type.
4749           // This is a popular extension, provided by Plan9, MSVC and GCC, but
4750           // not part of standard C++.
4751           Diag(MemRecord->getLocation(),
4752                diag::ext_anonymous_record_with_anonymous_type)
4753             << Record->isUnion();
4754         }
4755       } else if (isa<AccessSpecDecl>(Mem)) {
4756         // Any access specifier is fine.
4757       } else if (isa<StaticAssertDecl>(Mem)) {
4758         // In C++1z, static_assert declarations are also fine.
4759       } else {
4760         // We have something that isn't a non-static data
4761         // member. Complain about it.
4762         unsigned DK = diag::err_anonymous_record_bad_member;
4763         if (isa<TypeDecl>(Mem))
4764           DK = diag::err_anonymous_record_with_type;
4765         else if (isa<FunctionDecl>(Mem))
4766           DK = diag::err_anonymous_record_with_function;
4767         else if (isa<VarDecl>(Mem))
4768           DK = diag::err_anonymous_record_with_static;
4769 
4770         // Visual C++ allows type definition in anonymous struct or union.
4771         if (getLangOpts().MicrosoftExt &&
4772             DK == diag::err_anonymous_record_with_type)
4773           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4774             << Record->isUnion();
4775         else {
4776           Diag(Mem->getLocation(), DK) << Record->isUnion();
4777           Invalid = true;
4778         }
4779       }
4780     }
4781 
4782     // C++11 [class.union]p8 (DR1460):
4783     //   At most one variant member of a union may have a
4784     //   brace-or-equal-initializer.
4785     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4786         Owner->isRecord())
4787       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4788                                 cast<CXXRecordDecl>(Record));
4789   }
4790 
4791   if (!Record->isUnion() && !Owner->isRecord()) {
4792     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4793       << getLangOpts().CPlusPlus;
4794     Invalid = true;
4795   }
4796 
4797   // Mock up a declarator.
4798   Declarator Dc(DS, DeclaratorContext::MemberContext);
4799   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4800   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
4801 
4802   // Create a declaration for this anonymous struct/union.
4803   NamedDecl *Anon = nullptr;
4804   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4805     Anon = FieldDecl::Create(Context, OwningClass,
4806                              DS.getLocStart(),
4807                              Record->getLocation(),
4808                              /*IdentifierInfo=*/nullptr,
4809                              Context.getTypeDeclType(Record),
4810                              TInfo,
4811                              /*BitWidth=*/nullptr, /*Mutable=*/false,
4812                              /*InitStyle=*/ICIS_NoInit);
4813     Anon->setAccess(AS);
4814     if (getLangOpts().CPlusPlus)
4815       FieldCollector->Add(cast<FieldDecl>(Anon));
4816   } else {
4817     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4818     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4819     if (SCSpec == DeclSpec::SCS_mutable) {
4820       // mutable can only appear on non-static class members, so it's always
4821       // an error here
4822       Diag(Record->getLocation(), diag::err_mutable_nonmember);
4823       Invalid = true;
4824       SC = SC_None;
4825     }
4826 
4827     Anon = VarDecl::Create(Context, Owner,
4828                            DS.getLocStart(),
4829                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
4830                            Context.getTypeDeclType(Record),
4831                            TInfo, SC);
4832 
4833     // Default-initialize the implicit variable. This initialization will be
4834     // trivial in almost all cases, except if a union member has an in-class
4835     // initializer:
4836     //   union { int n = 0; };
4837     ActOnUninitializedDecl(Anon);
4838   }
4839   Anon->setImplicit();
4840 
4841   // Mark this as an anonymous struct/union type.
4842   Record->setAnonymousStructOrUnion(true);
4843 
4844   // Add the anonymous struct/union object to the current
4845   // context. We'll be referencing this object when we refer to one of
4846   // its members.
4847   Owner->addDecl(Anon);
4848 
4849   // Inject the members of the anonymous struct/union into the owning
4850   // context and into the identifier resolver chain for name lookup
4851   // purposes.
4852   SmallVector<NamedDecl*, 2> Chain;
4853   Chain.push_back(Anon);
4854 
4855   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
4856     Invalid = true;
4857 
4858   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4859     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4860       Decl *ManglingContextDecl;
4861       if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4862               NewVD->getDeclContext(), ManglingContextDecl)) {
4863         Context.setManglingNumber(
4864             NewVD, MCtx->getManglingNumber(
4865                        NewVD, getMSManglingNumber(getLangOpts(), S)));
4866         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4867       }
4868     }
4869   }
4870 
4871   if (Invalid)
4872     Anon->setInvalidDecl();
4873 
4874   return Anon;
4875 }
4876 
4877 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4878 /// Microsoft C anonymous structure.
4879 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4880 /// Example:
4881 ///
4882 /// struct A { int a; };
4883 /// struct B { struct A; int b; };
4884 ///
4885 /// void foo() {
4886 ///   B var;
4887 ///   var.a = 3;
4888 /// }
4889 ///
4890 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4891                                            RecordDecl *Record) {
4892   assert(Record && "expected a record!");
4893 
4894   // Mock up a declarator.
4895   Declarator Dc(DS, DeclaratorContext::TypeNameContext);
4896   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4897   assert(TInfo && "couldn't build declarator info for anonymous struct");
4898 
4899   auto *ParentDecl = cast<RecordDecl>(CurContext);
4900   QualType RecTy = Context.getTypeDeclType(Record);
4901 
4902   // Create a declaration for this anonymous struct.
4903   NamedDecl *Anon = FieldDecl::Create(Context,
4904                              ParentDecl,
4905                              DS.getLocStart(),
4906                              DS.getLocStart(),
4907                              /*IdentifierInfo=*/nullptr,
4908                              RecTy,
4909                              TInfo,
4910                              /*BitWidth=*/nullptr, /*Mutable=*/false,
4911                              /*InitStyle=*/ICIS_NoInit);
4912   Anon->setImplicit();
4913 
4914   // Add the anonymous struct object to the current context.
4915   CurContext->addDecl(Anon);
4916 
4917   // Inject the members of the anonymous struct into the current
4918   // context and into the identifier resolver chain for name lookup
4919   // purposes.
4920   SmallVector<NamedDecl*, 2> Chain;
4921   Chain.push_back(Anon);
4922 
4923   RecordDecl *RecordDef = Record->getDefinition();
4924   if (RequireCompleteType(Anon->getLocation(), RecTy,
4925                           diag::err_field_incomplete) ||
4926       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4927                                           AS_none, Chain)) {
4928     Anon->setInvalidDecl();
4929     ParentDecl->setInvalidDecl();
4930   }
4931 
4932   return Anon;
4933 }
4934 
4935 /// GetNameForDeclarator - Determine the full declaration name for the
4936 /// given Declarator.
4937 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4938   return GetNameFromUnqualifiedId(D.getName());
4939 }
4940 
4941 /// Retrieves the declaration name from a parsed unqualified-id.
4942 DeclarationNameInfo
4943 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4944   DeclarationNameInfo NameInfo;
4945   NameInfo.setLoc(Name.StartLocation);
4946 
4947   switch (Name.getKind()) {
4948 
4949   case UnqualifiedIdKind::IK_ImplicitSelfParam:
4950   case UnqualifiedIdKind::IK_Identifier:
4951     NameInfo.setName(Name.Identifier);
4952     NameInfo.setLoc(Name.StartLocation);
4953     return NameInfo;
4954 
4955   case UnqualifiedIdKind::IK_DeductionGuideName: {
4956     // C++ [temp.deduct.guide]p3:
4957     //   The simple-template-id shall name a class template specialization.
4958     //   The template-name shall be the same identifier as the template-name
4959     //   of the simple-template-id.
4960     // These together intend to imply that the template-name shall name a
4961     // class template.
4962     // FIXME: template<typename T> struct X {};
4963     //        template<typename T> using Y = X<T>;
4964     //        Y(int) -> Y<int>;
4965     //   satisfies these rules but does not name a class template.
4966     TemplateName TN = Name.TemplateName.get().get();
4967     auto *Template = TN.getAsTemplateDecl();
4968     if (!Template || !isa<ClassTemplateDecl>(Template)) {
4969       Diag(Name.StartLocation,
4970            diag::err_deduction_guide_name_not_class_template)
4971         << (int)getTemplateNameKindForDiagnostics(TN) << TN;
4972       if (Template)
4973         Diag(Template->getLocation(), diag::note_template_decl_here);
4974       return DeclarationNameInfo();
4975     }
4976 
4977     NameInfo.setName(
4978         Context.DeclarationNames.getCXXDeductionGuideName(Template));
4979     NameInfo.setLoc(Name.StartLocation);
4980     return NameInfo;
4981   }
4982 
4983   case UnqualifiedIdKind::IK_OperatorFunctionId:
4984     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4985                                            Name.OperatorFunctionId.Operator));
4986     NameInfo.setLoc(Name.StartLocation);
4987     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4988       = Name.OperatorFunctionId.SymbolLocations[0];
4989     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4990       = Name.EndLocation.getRawEncoding();
4991     return NameInfo;
4992 
4993   case UnqualifiedIdKind::IK_LiteralOperatorId:
4994     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4995                                                            Name.Identifier));
4996     NameInfo.setLoc(Name.StartLocation);
4997     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4998     return NameInfo;
4999 
5000   case UnqualifiedIdKind::IK_ConversionFunctionId: {
5001     TypeSourceInfo *TInfo;
5002     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5003     if (Ty.isNull())
5004       return DeclarationNameInfo();
5005     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5006                                                Context.getCanonicalType(Ty)));
5007     NameInfo.setLoc(Name.StartLocation);
5008     NameInfo.setNamedTypeInfo(TInfo);
5009     return NameInfo;
5010   }
5011 
5012   case UnqualifiedIdKind::IK_ConstructorName: {
5013     TypeSourceInfo *TInfo;
5014     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5015     if (Ty.isNull())
5016       return DeclarationNameInfo();
5017     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5018                                               Context.getCanonicalType(Ty)));
5019     NameInfo.setLoc(Name.StartLocation);
5020     NameInfo.setNamedTypeInfo(TInfo);
5021     return NameInfo;
5022   }
5023 
5024   case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5025     // In well-formed code, we can only have a constructor
5026     // template-id that refers to the current context, so go there
5027     // to find the actual type being constructed.
5028     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5029     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5030       return DeclarationNameInfo();
5031 
5032     // Determine the type of the class being constructed.
5033     QualType CurClassType = Context.getTypeDeclType(CurClass);
5034 
5035     // FIXME: Check two things: that the template-id names the same type as
5036     // CurClassType, and that the template-id does not occur when the name
5037     // was qualified.
5038 
5039     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5040                                     Context.getCanonicalType(CurClassType)));
5041     NameInfo.setLoc(Name.StartLocation);
5042     // FIXME: should we retrieve TypeSourceInfo?
5043     NameInfo.setNamedTypeInfo(nullptr);
5044     return NameInfo;
5045   }
5046 
5047   case UnqualifiedIdKind::IK_DestructorName: {
5048     TypeSourceInfo *TInfo;
5049     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5050     if (Ty.isNull())
5051       return DeclarationNameInfo();
5052     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5053                                               Context.getCanonicalType(Ty)));
5054     NameInfo.setLoc(Name.StartLocation);
5055     NameInfo.setNamedTypeInfo(TInfo);
5056     return NameInfo;
5057   }
5058 
5059   case UnqualifiedIdKind::IK_TemplateId: {
5060     TemplateName TName = Name.TemplateId->Template.get();
5061     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5062     return Context.getNameForTemplate(TName, TNameLoc);
5063   }
5064 
5065   } // switch (Name.getKind())
5066 
5067   llvm_unreachable("Unknown name kind");
5068 }
5069 
5070 static QualType getCoreType(QualType Ty) {
5071   do {
5072     if (Ty->isPointerType() || Ty->isReferenceType())
5073       Ty = Ty->getPointeeType();
5074     else if (Ty->isArrayType())
5075       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5076     else
5077       return Ty.withoutLocalFastQualifiers();
5078   } while (true);
5079 }
5080 
5081 /// hasSimilarParameters - Determine whether the C++ functions Declaration
5082 /// and Definition have "nearly" matching parameters. This heuristic is
5083 /// used to improve diagnostics in the case where an out-of-line function
5084 /// definition doesn't match any declaration within the class or namespace.
5085 /// Also sets Params to the list of indices to the parameters that differ
5086 /// between the declaration and the definition. If hasSimilarParameters
5087 /// returns true and Params is empty, then all of the parameters match.
5088 static bool hasSimilarParameters(ASTContext &Context,
5089                                      FunctionDecl *Declaration,
5090                                      FunctionDecl *Definition,
5091                                      SmallVectorImpl<unsigned> &Params) {
5092   Params.clear();
5093   if (Declaration->param_size() != Definition->param_size())
5094     return false;
5095   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5096     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5097     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5098 
5099     // The parameter types are identical
5100     if (Context.hasSameType(DefParamTy, DeclParamTy))
5101       continue;
5102 
5103     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5104     QualType DefParamBaseTy = getCoreType(DefParamTy);
5105     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5106     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5107 
5108     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5109         (DeclTyName && DeclTyName == DefTyName))
5110       Params.push_back(Idx);
5111     else  // The two parameters aren't even close
5112       return false;
5113   }
5114 
5115   return true;
5116 }
5117 
5118 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5119 /// declarator needs to be rebuilt in the current instantiation.
5120 /// Any bits of declarator which appear before the name are valid for
5121 /// consideration here.  That's specifically the type in the decl spec
5122 /// and the base type in any member-pointer chunks.
5123 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5124                                                     DeclarationName Name) {
5125   // The types we specifically need to rebuild are:
5126   //   - typenames, typeofs, and decltypes
5127   //   - types which will become injected class names
5128   // Of course, we also need to rebuild any type referencing such a
5129   // type.  It's safest to just say "dependent", but we call out a
5130   // few cases here.
5131 
5132   DeclSpec &DS = D.getMutableDeclSpec();
5133   switch (DS.getTypeSpecType()) {
5134   case DeclSpec::TST_typename:
5135   case DeclSpec::TST_typeofType:
5136   case DeclSpec::TST_underlyingType:
5137   case DeclSpec::TST_atomic: {
5138     // Grab the type from the parser.
5139     TypeSourceInfo *TSI = nullptr;
5140     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5141     if (T.isNull() || !T->isDependentType()) break;
5142 
5143     // Make sure there's a type source info.  This isn't really much
5144     // of a waste; most dependent types should have type source info
5145     // attached already.
5146     if (!TSI)
5147       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5148 
5149     // Rebuild the type in the current instantiation.
5150     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5151     if (!TSI) return true;
5152 
5153     // Store the new type back in the decl spec.
5154     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5155     DS.UpdateTypeRep(LocType);
5156     break;
5157   }
5158 
5159   case DeclSpec::TST_decltype:
5160   case DeclSpec::TST_typeofExpr: {
5161     Expr *E = DS.getRepAsExpr();
5162     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5163     if (Result.isInvalid()) return true;
5164     DS.UpdateExprRep(Result.get());
5165     break;
5166   }
5167 
5168   default:
5169     // Nothing to do for these decl specs.
5170     break;
5171   }
5172 
5173   // It doesn't matter what order we do this in.
5174   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5175     DeclaratorChunk &Chunk = D.getTypeObject(I);
5176 
5177     // The only type information in the declarator which can come
5178     // before the declaration name is the base type of a member
5179     // pointer.
5180     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5181       continue;
5182 
5183     // Rebuild the scope specifier in-place.
5184     CXXScopeSpec &SS = Chunk.Mem.Scope();
5185     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5186       return true;
5187   }
5188 
5189   return false;
5190 }
5191 
5192 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5193   D.setFunctionDefinitionKind(FDK_Declaration);
5194   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5195 
5196   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5197       Dcl && Dcl->getDeclContext()->isFileContext())
5198     Dcl->setTopLevelDeclInObjCContainer();
5199 
5200   if (getLangOpts().OpenCL)
5201     setCurrentOpenCLExtensionForDecl(Dcl);
5202 
5203   return Dcl;
5204 }
5205 
5206 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5207 ///   If T is the name of a class, then each of the following shall have a
5208 ///   name different from T:
5209 ///     - every static data member of class T;
5210 ///     - every member function of class T
5211 ///     - every member of class T that is itself a type;
5212 /// \returns true if the declaration name violates these rules.
5213 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5214                                    DeclarationNameInfo NameInfo) {
5215   DeclarationName Name = NameInfo.getName();
5216 
5217   CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5218   while (Record && Record->isAnonymousStructOrUnion())
5219     Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5220   if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5221     Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5222     return true;
5223   }
5224 
5225   return false;
5226 }
5227 
5228 /// Diagnose a declaration whose declarator-id has the given
5229 /// nested-name-specifier.
5230 ///
5231 /// \param SS The nested-name-specifier of the declarator-id.
5232 ///
5233 /// \param DC The declaration context to which the nested-name-specifier
5234 /// resolves.
5235 ///
5236 /// \param Name The name of the entity being declared.
5237 ///
5238 /// \param Loc The location of the name of the entity being declared.
5239 ///
5240 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5241 /// we're declaring an explicit / partial specialization / instantiation.
5242 ///
5243 /// \returns true if we cannot safely recover from this error, false otherwise.
5244 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5245                                         DeclarationName Name,
5246                                         SourceLocation Loc, bool IsTemplateId) {
5247   DeclContext *Cur = CurContext;
5248   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5249     Cur = Cur->getParent();
5250 
5251   // If the user provided a superfluous scope specifier that refers back to the
5252   // class in which the entity is already declared, diagnose and ignore it.
5253   //
5254   // class X {
5255   //   void X::f();
5256   // };
5257   //
5258   // Note, it was once ill-formed to give redundant qualification in all
5259   // contexts, but that rule was removed by DR482.
5260   if (Cur->Equals(DC)) {
5261     if (Cur->isRecord()) {
5262       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5263                                       : diag::err_member_extra_qualification)
5264         << Name << FixItHint::CreateRemoval(SS.getRange());
5265       SS.clear();
5266     } else {
5267       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5268     }
5269     return false;
5270   }
5271 
5272   // Check whether the qualifying scope encloses the scope of the original
5273   // declaration. For a template-id, we perform the checks in
5274   // CheckTemplateSpecializationScope.
5275   if (!Cur->Encloses(DC) && !IsTemplateId) {
5276     if (Cur->isRecord())
5277       Diag(Loc, diag::err_member_qualification)
5278         << Name << SS.getRange();
5279     else if (isa<TranslationUnitDecl>(DC))
5280       Diag(Loc, diag::err_invalid_declarator_global_scope)
5281         << Name << SS.getRange();
5282     else if (isa<FunctionDecl>(Cur))
5283       Diag(Loc, diag::err_invalid_declarator_in_function)
5284         << Name << SS.getRange();
5285     else if (isa<BlockDecl>(Cur))
5286       Diag(Loc, diag::err_invalid_declarator_in_block)
5287         << Name << SS.getRange();
5288     else
5289       Diag(Loc, diag::err_invalid_declarator_scope)
5290       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5291 
5292     return true;
5293   }
5294 
5295   if (Cur->isRecord()) {
5296     // Cannot qualify members within a class.
5297     Diag(Loc, diag::err_member_qualification)
5298       << Name << SS.getRange();
5299     SS.clear();
5300 
5301     // C++ constructors and destructors with incorrect scopes can break
5302     // our AST invariants by having the wrong underlying types. If
5303     // that's the case, then drop this declaration entirely.
5304     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5305          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5306         !Context.hasSameType(Name.getCXXNameType(),
5307                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5308       return true;
5309 
5310     return false;
5311   }
5312 
5313   // C++11 [dcl.meaning]p1:
5314   //   [...] "The nested-name-specifier of the qualified declarator-id shall
5315   //   not begin with a decltype-specifer"
5316   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5317   while (SpecLoc.getPrefix())
5318     SpecLoc = SpecLoc.getPrefix();
5319   if (dyn_cast_or_null<DecltypeType>(
5320         SpecLoc.getNestedNameSpecifier()->getAsType()))
5321     Diag(Loc, diag::err_decltype_in_declarator)
5322       << SpecLoc.getTypeLoc().getSourceRange();
5323 
5324   return false;
5325 }
5326 
5327 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5328                                   MultiTemplateParamsArg TemplateParamLists) {
5329   // TODO: consider using NameInfo for diagnostic.
5330   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5331   DeclarationName Name = NameInfo.getName();
5332 
5333   // All of these full declarators require an identifier.  If it doesn't have
5334   // one, the ParsedFreeStandingDeclSpec action should be used.
5335   if (D.isDecompositionDeclarator()) {
5336     return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5337   } else if (!Name) {
5338     if (!D.isInvalidType())  // Reject this if we think it is valid.
5339       Diag(D.getDeclSpec().getLocStart(),
5340            diag::err_declarator_need_ident)
5341         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5342     return nullptr;
5343   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5344     return nullptr;
5345 
5346   // The scope passed in may not be a decl scope.  Zip up the scope tree until
5347   // we find one that is.
5348   while ((S->getFlags() & Scope::DeclScope) == 0 ||
5349          (S->getFlags() & Scope::TemplateParamScope) != 0)
5350     S = S->getParent();
5351 
5352   DeclContext *DC = CurContext;
5353   if (D.getCXXScopeSpec().isInvalid())
5354     D.setInvalidType();
5355   else if (D.getCXXScopeSpec().isSet()) {
5356     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5357                                         UPPC_DeclarationQualifier))
5358       return nullptr;
5359 
5360     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5361     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5362     if (!DC || isa<EnumDecl>(DC)) {
5363       // If we could not compute the declaration context, it's because the
5364       // declaration context is dependent but does not refer to a class,
5365       // class template, or class template partial specialization. Complain
5366       // and return early, to avoid the coming semantic disaster.
5367       Diag(D.getIdentifierLoc(),
5368            diag::err_template_qualified_declarator_no_match)
5369         << D.getCXXScopeSpec().getScopeRep()
5370         << D.getCXXScopeSpec().getRange();
5371       return nullptr;
5372     }
5373     bool IsDependentContext = DC->isDependentContext();
5374 
5375     if (!IsDependentContext &&
5376         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5377       return nullptr;
5378 
5379     // If a class is incomplete, do not parse entities inside it.
5380     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5381       Diag(D.getIdentifierLoc(),
5382            diag::err_member_def_undefined_record)
5383         << Name << DC << D.getCXXScopeSpec().getRange();
5384       return nullptr;
5385     }
5386     if (!D.getDeclSpec().isFriendSpecified()) {
5387       if (diagnoseQualifiedDeclaration(
5388               D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5389               D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5390         if (DC->isRecord())
5391           return nullptr;
5392 
5393         D.setInvalidType();
5394       }
5395     }
5396 
5397     // Check whether we need to rebuild the type of the given
5398     // declaration in the current instantiation.
5399     if (EnteringContext && IsDependentContext &&
5400         TemplateParamLists.size() != 0) {
5401       ContextRAII SavedContext(*this, DC);
5402       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5403         D.setInvalidType();
5404     }
5405   }
5406 
5407   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5408   QualType R = TInfo->getType();
5409 
5410   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5411                                       UPPC_DeclarationType))
5412     D.setInvalidType();
5413 
5414   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5415                         forRedeclarationInCurContext());
5416 
5417   // See if this is a redefinition of a variable in the same scope.
5418   if (!D.getCXXScopeSpec().isSet()) {
5419     bool IsLinkageLookup = false;
5420     bool CreateBuiltins = false;
5421 
5422     // If the declaration we're planning to build will be a function
5423     // or object with linkage, then look for another declaration with
5424     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5425     //
5426     // If the declaration we're planning to build will be declared with
5427     // external linkage in the translation unit, create any builtin with
5428     // the same name.
5429     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5430       /* Do nothing*/;
5431     else if (CurContext->isFunctionOrMethod() &&
5432              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5433               R->isFunctionType())) {
5434       IsLinkageLookup = true;
5435       CreateBuiltins =
5436           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5437     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5438                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5439       CreateBuiltins = true;
5440 
5441     if (IsLinkageLookup) {
5442       Previous.clear(LookupRedeclarationWithLinkage);
5443       Previous.setRedeclarationKind(ForExternalRedeclaration);
5444     }
5445 
5446     LookupName(Previous, S, CreateBuiltins);
5447   } else { // Something like "int foo::x;"
5448     LookupQualifiedName(Previous, DC);
5449 
5450     // C++ [dcl.meaning]p1:
5451     //   When the declarator-id is qualified, the declaration shall refer to a
5452     //  previously declared member of the class or namespace to which the
5453     //  qualifier refers (or, in the case of a namespace, of an element of the
5454     //  inline namespace set of that namespace (7.3.1)) or to a specialization
5455     //  thereof; [...]
5456     //
5457     // Note that we already checked the context above, and that we do not have
5458     // enough information to make sure that Previous contains the declaration
5459     // we want to match. For example, given:
5460     //
5461     //   class X {
5462     //     void f();
5463     //     void f(float);
5464     //   };
5465     //
5466     //   void X::f(int) { } // ill-formed
5467     //
5468     // In this case, Previous will point to the overload set
5469     // containing the two f's declared in X, but neither of them
5470     // matches.
5471 
5472     // C++ [dcl.meaning]p1:
5473     //   [...] the member shall not merely have been introduced by a
5474     //   using-declaration in the scope of the class or namespace nominated by
5475     //   the nested-name-specifier of the declarator-id.
5476     RemoveUsingDecls(Previous);
5477   }
5478 
5479   if (Previous.isSingleResult() &&
5480       Previous.getFoundDecl()->isTemplateParameter()) {
5481     // Maybe we will complain about the shadowed template parameter.
5482     if (!D.isInvalidType())
5483       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5484                                       Previous.getFoundDecl());
5485 
5486     // Just pretend that we didn't see the previous declaration.
5487     Previous.clear();
5488   }
5489 
5490   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5491     // Forget that the previous declaration is the injected-class-name.
5492     Previous.clear();
5493 
5494   // In C++, the previous declaration we find might be a tag type
5495   // (class or enum). In this case, the new declaration will hide the
5496   // tag type. Note that this applies to functions, function templates, and
5497   // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5498   if (Previous.isSingleTagDecl() &&
5499       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5500       (TemplateParamLists.size() == 0 || R->isFunctionType()))
5501     Previous.clear();
5502 
5503   // Check that there are no default arguments other than in the parameters
5504   // of a function declaration (C++ only).
5505   if (getLangOpts().CPlusPlus)
5506     CheckExtraCXXDefaultArguments(D);
5507 
5508   NamedDecl *New;
5509 
5510   bool AddToScope = true;
5511   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5512     if (TemplateParamLists.size()) {
5513       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5514       return nullptr;
5515     }
5516 
5517     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5518   } else if (R->isFunctionType()) {
5519     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5520                                   TemplateParamLists,
5521                                   AddToScope);
5522   } else {
5523     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5524                                   AddToScope);
5525   }
5526 
5527   if (!New)
5528     return nullptr;
5529 
5530   // If this has an identifier and is not a function template specialization,
5531   // add it to the scope stack.
5532   if (New->getDeclName() && AddToScope) {
5533     // Only make a locally-scoped extern declaration visible if it is the first
5534     // declaration of this entity. Qualified lookup for such an entity should
5535     // only find this declaration if there is no visible declaration of it.
5536     bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
5537     PushOnScopeChains(New, S, AddToContext);
5538     if (!AddToContext)
5539       CurContext->addHiddenDecl(New);
5540   }
5541 
5542   if (isInOpenMPDeclareTargetContext())
5543     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5544 
5545   return New;
5546 }
5547 
5548 /// Helper method to turn variable array types into constant array
5549 /// types in certain situations which would otherwise be errors (for
5550 /// GCC compatibility).
5551 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5552                                                     ASTContext &Context,
5553                                                     bool &SizeIsNegative,
5554                                                     llvm::APSInt &Oversized) {
5555   // This method tries to turn a variable array into a constant
5556   // array even when the size isn't an ICE.  This is necessary
5557   // for compatibility with code that depends on gcc's buggy
5558   // constant expression folding, like struct {char x[(int)(char*)2];}
5559   SizeIsNegative = false;
5560   Oversized = 0;
5561 
5562   if (T->isDependentType())
5563     return QualType();
5564 
5565   QualifierCollector Qs;
5566   const Type *Ty = Qs.strip(T);
5567 
5568   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5569     QualType Pointee = PTy->getPointeeType();
5570     QualType FixedType =
5571         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5572                                             Oversized);
5573     if (FixedType.isNull()) return FixedType;
5574     FixedType = Context.getPointerType(FixedType);
5575     return Qs.apply(Context, FixedType);
5576   }
5577   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5578     QualType Inner = PTy->getInnerType();
5579     QualType FixedType =
5580         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5581                                             Oversized);
5582     if (FixedType.isNull()) return FixedType;
5583     FixedType = Context.getParenType(FixedType);
5584     return Qs.apply(Context, FixedType);
5585   }
5586 
5587   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5588   if (!VLATy)
5589     return QualType();
5590   // FIXME: We should probably handle this case
5591   if (VLATy->getElementType()->isVariablyModifiedType())
5592     return QualType();
5593 
5594   llvm::APSInt Res;
5595   if (!VLATy->getSizeExpr() ||
5596       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
5597     return QualType();
5598 
5599   // Check whether the array size is negative.
5600   if (Res.isSigned() && Res.isNegative()) {
5601     SizeIsNegative = true;
5602     return QualType();
5603   }
5604 
5605   // Check whether the array is too large to be addressed.
5606   unsigned ActiveSizeBits
5607     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5608                                               Res);
5609   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5610     Oversized = Res;
5611     return QualType();
5612   }
5613 
5614   return Context.getConstantArrayType(VLATy->getElementType(),
5615                                       Res, ArrayType::Normal, 0);
5616 }
5617 
5618 static void
5619 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5620   SrcTL = SrcTL.getUnqualifiedLoc();
5621   DstTL = DstTL.getUnqualifiedLoc();
5622   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5623     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5624     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5625                                       DstPTL.getPointeeLoc());
5626     DstPTL.setStarLoc(SrcPTL.getStarLoc());
5627     return;
5628   }
5629   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5630     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5631     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5632                                       DstPTL.getInnerLoc());
5633     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5634     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5635     return;
5636   }
5637   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5638   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5639   TypeLoc SrcElemTL = SrcATL.getElementLoc();
5640   TypeLoc DstElemTL = DstATL.getElementLoc();
5641   DstElemTL.initializeFullCopy(SrcElemTL);
5642   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5643   DstATL.setSizeExpr(SrcATL.getSizeExpr());
5644   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5645 }
5646 
5647 /// Helper method to turn variable array types into constant array
5648 /// types in certain situations which would otherwise be errors (for
5649 /// GCC compatibility).
5650 static TypeSourceInfo*
5651 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5652                                               ASTContext &Context,
5653                                               bool &SizeIsNegative,
5654                                               llvm::APSInt &Oversized) {
5655   QualType FixedTy
5656     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5657                                           SizeIsNegative, Oversized);
5658   if (FixedTy.isNull())
5659     return nullptr;
5660   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5661   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5662                                     FixedTInfo->getTypeLoc());
5663   return FixedTInfo;
5664 }
5665 
5666 /// Register the given locally-scoped extern "C" declaration so
5667 /// that it can be found later for redeclarations. We include any extern "C"
5668 /// declaration that is not visible in the translation unit here, not just
5669 /// function-scope declarations.
5670 void
5671 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
5672   if (!getLangOpts().CPlusPlus &&
5673       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
5674     // Don't need to track declarations in the TU in C.
5675     return;
5676 
5677   // Note that we have a locally-scoped external with this name.
5678   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
5679 }
5680 
5681 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
5682   // FIXME: We can have multiple results via __attribute__((overloadable)).
5683   auto Result = Context.getExternCContextDecl()->lookup(Name);
5684   return Result.empty() ? nullptr : *Result.begin();
5685 }
5686 
5687 /// Diagnose function specifiers on a declaration of an identifier that
5688 /// does not identify a function.
5689 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
5690   // FIXME: We should probably indicate the identifier in question to avoid
5691   // confusion for constructs like "virtual int a(), b;"
5692   if (DS.isVirtualSpecified())
5693     Diag(DS.getVirtualSpecLoc(),
5694          diag::err_virtual_non_function);
5695 
5696   if (DS.isExplicitSpecified())
5697     Diag(DS.getExplicitSpecLoc(),
5698          diag::err_explicit_non_function);
5699 
5700   if (DS.isNoreturnSpecified())
5701     Diag(DS.getNoreturnSpecLoc(),
5702          diag::err_noreturn_non_function);
5703 }
5704 
5705 NamedDecl*
5706 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
5707                              TypeSourceInfo *TInfo, LookupResult &Previous) {
5708   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5709   if (D.getCXXScopeSpec().isSet()) {
5710     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5711       << D.getCXXScopeSpec().getRange();
5712     D.setInvalidType();
5713     // Pretend we didn't see the scope specifier.
5714     DC = CurContext;
5715     Previous.clear();
5716   }
5717 
5718   DiagnoseFunctionSpecifiers(D.getDeclSpec());
5719 
5720   if (D.getDeclSpec().isInlineSpecified())
5721     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
5722         << getLangOpts().CPlusPlus17;
5723   if (D.getDeclSpec().isConstexprSpecified())
5724     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5725       << 1;
5726 
5727   if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
5728     if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
5729       Diag(D.getName().StartLocation,
5730            diag::err_deduction_guide_invalid_specifier)
5731           << "typedef";
5732     else
5733       Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5734           << D.getName().getSourceRange();
5735     return nullptr;
5736   }
5737 
5738   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5739   if (!NewTD) return nullptr;
5740 
5741   // Handle attributes prior to checking for duplicates in MergeVarDecl
5742   ProcessDeclAttributes(S, NewTD, D);
5743 
5744   CheckTypedefForVariablyModifiedType(S, NewTD);
5745 
5746   bool Redeclaration = D.isRedeclaration();
5747   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5748   D.setRedeclaration(Redeclaration);
5749   return ND;
5750 }
5751 
5752 void
5753 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5754   // C99 6.7.7p2: If a typedef name specifies a variably modified type
5755   // then it shall have block scope.
5756   // Note that variably modified types must be fixed before merging the decl so
5757   // that redeclarations will match.
5758   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5759   QualType T = TInfo->getType();
5760   if (T->isVariablyModifiedType()) {
5761     setFunctionHasBranchProtectedScope();
5762 
5763     if (S->getFnParent() == nullptr) {
5764       bool SizeIsNegative;
5765       llvm::APSInt Oversized;
5766       TypeSourceInfo *FixedTInfo =
5767         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5768                                                       SizeIsNegative,
5769                                                       Oversized);
5770       if (FixedTInfo) {
5771         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5772         NewTD->setTypeSourceInfo(FixedTInfo);
5773       } else {
5774         if (SizeIsNegative)
5775           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5776         else if (T->isVariableArrayType())
5777           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5778         else if (Oversized.getBoolValue())
5779           Diag(NewTD->getLocation(), diag::err_array_too_large)
5780             << Oversized.toString(10);
5781         else
5782           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5783         NewTD->setInvalidDecl();
5784       }
5785     }
5786   }
5787 }
5788 
5789 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5790 /// declares a typedef-name, either using the 'typedef' type specifier or via
5791 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5792 NamedDecl*
5793 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5794                            LookupResult &Previous, bool &Redeclaration) {
5795 
5796   // Find the shadowed declaration before filtering for scope.
5797   NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
5798 
5799   // Merge the decl with the existing one if appropriate. If the decl is
5800   // in an outer scope, it isn't the same thing.
5801   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5802                        /*AllowInlineNamespace*/false);
5803   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
5804   if (!Previous.empty()) {
5805     Redeclaration = true;
5806     MergeTypedefNameDecl(S, NewTD, Previous);
5807   }
5808 
5809   if (ShadowedDecl && !Redeclaration)
5810     CheckShadow(NewTD, ShadowedDecl, Previous);
5811 
5812   // If this is the C FILE type, notify the AST context.
5813   if (IdentifierInfo *II = NewTD->getIdentifier())
5814     if (!NewTD->isInvalidDecl() &&
5815         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5816       if (II->isStr("FILE"))
5817         Context.setFILEDecl(NewTD);
5818       else if (II->isStr("jmp_buf"))
5819         Context.setjmp_bufDecl(NewTD);
5820       else if (II->isStr("sigjmp_buf"))
5821         Context.setsigjmp_bufDecl(NewTD);
5822       else if (II->isStr("ucontext_t"))
5823         Context.setucontext_tDecl(NewTD);
5824     }
5825 
5826   return NewTD;
5827 }
5828 
5829 /// Determines whether the given declaration is an out-of-scope
5830 /// previous declaration.
5831 ///
5832 /// This routine should be invoked when name lookup has found a
5833 /// previous declaration (PrevDecl) that is not in the scope where a
5834 /// new declaration by the same name is being introduced. If the new
5835 /// declaration occurs in a local scope, previous declarations with
5836 /// linkage may still be considered previous declarations (C99
5837 /// 6.2.2p4-5, C++ [basic.link]p6).
5838 ///
5839 /// \param PrevDecl the previous declaration found by name
5840 /// lookup
5841 ///
5842 /// \param DC the context in which the new declaration is being
5843 /// declared.
5844 ///
5845 /// \returns true if PrevDecl is an out-of-scope previous declaration
5846 /// for a new delcaration with the same name.
5847 static bool
5848 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5849                                 ASTContext &Context) {
5850   if (!PrevDecl)
5851     return false;
5852 
5853   if (!PrevDecl->hasLinkage())
5854     return false;
5855 
5856   if (Context.getLangOpts().CPlusPlus) {
5857     // C++ [basic.link]p6:
5858     //   If there is a visible declaration of an entity with linkage
5859     //   having the same name and type, ignoring entities declared
5860     //   outside the innermost enclosing namespace scope, the block
5861     //   scope declaration declares that same entity and receives the
5862     //   linkage of the previous declaration.
5863     DeclContext *OuterContext = DC->getRedeclContext();
5864     if (!OuterContext->isFunctionOrMethod())
5865       // This rule only applies to block-scope declarations.
5866       return false;
5867 
5868     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5869     if (PrevOuterContext->isRecord())
5870       // We found a member function: ignore it.
5871       return false;
5872 
5873     // Find the innermost enclosing namespace for the new and
5874     // previous declarations.
5875     OuterContext = OuterContext->getEnclosingNamespaceContext();
5876     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5877 
5878     // The previous declaration is in a different namespace, so it
5879     // isn't the same function.
5880     if (!OuterContext->Equals(PrevOuterContext))
5881       return false;
5882   }
5883 
5884   return true;
5885 }
5886 
5887 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
5888   CXXScopeSpec &SS = D.getCXXScopeSpec();
5889   if (!SS.isSet()) return;
5890   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
5891 }
5892 
5893 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5894   QualType type = decl->getType();
5895   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5896   if (lifetime == Qualifiers::OCL_Autoreleasing) {
5897     // Various kinds of declaration aren't allowed to be __autoreleasing.
5898     unsigned kind = -1U;
5899     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5900       if (var->hasAttr<BlocksAttr>())
5901         kind = 0; // __block
5902       else if (!var->hasLocalStorage())
5903         kind = 1; // global
5904     } else if (isa<ObjCIvarDecl>(decl)) {
5905       kind = 3; // ivar
5906     } else if (isa<FieldDecl>(decl)) {
5907       kind = 2; // field
5908     }
5909 
5910     if (kind != -1U) {
5911       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5912         << kind;
5913     }
5914   } else if (lifetime == Qualifiers::OCL_None) {
5915     // Try to infer lifetime.
5916     if (!type->isObjCLifetimeType())
5917       return false;
5918 
5919     lifetime = type->getObjCARCImplicitLifetime();
5920     type = Context.getLifetimeQualifiedType(type, lifetime);
5921     decl->setType(type);
5922   }
5923 
5924   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5925     // Thread-local variables cannot have lifetime.
5926     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5927         var->getTLSKind()) {
5928       Diag(var->getLocation(), diag::err_arc_thread_ownership)
5929         << var->getType();
5930       return true;
5931     }
5932   }
5933 
5934   return false;
5935 }
5936 
5937 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5938   // Ensure that an auto decl is deduced otherwise the checks below might cache
5939   // the wrong linkage.
5940   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
5941 
5942   // 'weak' only applies to declarations with external linkage.
5943   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5944     if (!ND.isExternallyVisible()) {
5945       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5946       ND.dropAttr<WeakAttr>();
5947     }
5948   }
5949   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5950     if (ND.isExternallyVisible()) {
5951       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5952       ND.dropAttr<WeakRefAttr>();
5953       ND.dropAttr<AliasAttr>();
5954     }
5955   }
5956 
5957   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
5958     if (VD->hasInit()) {
5959       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
5960         assert(VD->isThisDeclarationADefinition() &&
5961                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
5962         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
5963         VD->dropAttr<AliasAttr>();
5964       }
5965     }
5966   }
5967 
5968   // 'selectany' only applies to externally visible variable declarations.
5969   // It does not apply to functions.
5970   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
5971     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
5972       S.Diag(Attr->getLocation(),
5973              diag::err_attribute_selectany_non_extern_data);
5974       ND.dropAttr<SelectAnyAttr>();
5975     }
5976   }
5977 
5978   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
5979     // dll attributes require external linkage. Static locals may have external
5980     // linkage but still cannot be explicitly imported or exported.
5981     auto *VD = dyn_cast<VarDecl>(&ND);
5982     if (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())) {
5983       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5984         << &ND << Attr;
5985       ND.setInvalidDecl();
5986     }
5987   }
5988 
5989   // Virtual functions cannot be marked as 'notail'.
5990   if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
5991     if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
5992       if (MD->isVirtual()) {
5993         S.Diag(ND.getLocation(),
5994                diag::err_invalid_attribute_on_virtual_function)
5995             << Attr;
5996         ND.dropAttr<NotTailCalledAttr>();
5997       }
5998 }
5999 
6000 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6001                                            NamedDecl *NewDecl,
6002                                            bool IsSpecialization,
6003                                            bool IsDefinition) {
6004   if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6005     return;
6006 
6007   bool IsTemplate = false;
6008   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6009     OldDecl = OldTD->getTemplatedDecl();
6010     IsTemplate = true;
6011     if (!IsSpecialization)
6012       IsDefinition = false;
6013   }
6014   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6015     NewDecl = NewTD->getTemplatedDecl();
6016     IsTemplate = true;
6017   }
6018 
6019   if (!OldDecl || !NewDecl)
6020     return;
6021 
6022   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6023   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6024   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6025   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6026 
6027   // dllimport and dllexport are inheritable attributes so we have to exclude
6028   // inherited attribute instances.
6029   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6030                     (NewExportAttr && !NewExportAttr->isInherited());
6031 
6032   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6033   // the only exception being explicit specializations.
6034   // Implicitly generated declarations are also excluded for now because there
6035   // is no other way to switch these to use dllimport or dllexport.
6036   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6037 
6038   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6039     // Allow with a warning for free functions and global variables.
6040     bool JustWarn = false;
6041     if (!OldDecl->isCXXClassMember()) {
6042       auto *VD = dyn_cast<VarDecl>(OldDecl);
6043       if (VD && !VD->getDescribedVarTemplate())
6044         JustWarn = true;
6045       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6046       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6047         JustWarn = true;
6048     }
6049 
6050     // We cannot change a declaration that's been used because IR has already
6051     // been emitted. Dllimported functions will still work though (modulo
6052     // address equality) as they can use the thunk.
6053     if (OldDecl->isUsed())
6054       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6055         JustWarn = false;
6056 
6057     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6058                                : diag::err_attribute_dll_redeclaration;
6059     S.Diag(NewDecl->getLocation(), DiagID)
6060         << NewDecl
6061         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6062     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6063     if (!JustWarn) {
6064       NewDecl->setInvalidDecl();
6065       return;
6066     }
6067   }
6068 
6069   // A redeclaration is not allowed to drop a dllimport attribute, the only
6070   // exceptions being inline function definitions (except for function
6071   // templates), local extern declarations, qualified friend declarations or
6072   // special MSVC extension: in the last case, the declaration is treated as if
6073   // it were marked dllexport.
6074   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6075   bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6076   if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6077     // Ignore static data because out-of-line definitions are diagnosed
6078     // separately.
6079     IsStaticDataMember = VD->isStaticDataMember();
6080     IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6081                    VarDecl::DeclarationOnly;
6082   } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6083     IsInline = FD->isInlined();
6084     IsQualifiedFriend = FD->getQualifier() &&
6085                         FD->getFriendObjectKind() == Decl::FOK_Declared;
6086   }
6087 
6088   if (OldImportAttr && !HasNewAttr &&
6089       (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember &&
6090       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6091     if (IsMicrosoft && IsDefinition) {
6092       S.Diag(NewDecl->getLocation(),
6093              diag::warn_redeclaration_without_import_attribute)
6094           << NewDecl;
6095       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6096       NewDecl->dropAttr<DLLImportAttr>();
6097       NewDecl->addAttr(::new (S.Context) DLLExportAttr(
6098           NewImportAttr->getRange(), S.Context,
6099           NewImportAttr->getSpellingListIndex()));
6100     } else {
6101       S.Diag(NewDecl->getLocation(),
6102              diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6103           << NewDecl << OldImportAttr;
6104       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6105       S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6106       OldDecl->dropAttr<DLLImportAttr>();
6107       NewDecl->dropAttr<DLLImportAttr>();
6108     }
6109   } else if (IsInline && OldImportAttr && !IsMicrosoft) {
6110     // In MinGW, seeing a function declared inline drops the dllimport
6111     // attribute.
6112     OldDecl->dropAttr<DLLImportAttr>();
6113     NewDecl->dropAttr<DLLImportAttr>();
6114     S.Diag(NewDecl->getLocation(),
6115            diag::warn_dllimport_dropped_from_inline_function)
6116         << NewDecl << OldImportAttr;
6117   }
6118 
6119   // A specialization of a class template member function is processed here
6120   // since it's a redeclaration. If the parent class is dllexport, the
6121   // specialization inherits that attribute. This doesn't happen automatically
6122   // since the parent class isn't instantiated until later.
6123   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6124     if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6125         !NewImportAttr && !NewExportAttr) {
6126       if (const DLLExportAttr *ParentExportAttr =
6127               MD->getParent()->getAttr<DLLExportAttr>()) {
6128         DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6129         NewAttr->setInherited(true);
6130         NewDecl->addAttr(NewAttr);
6131       }
6132     }
6133   }
6134 }
6135 
6136 /// Given that we are within the definition of the given function,
6137 /// will that definition behave like C99's 'inline', where the
6138 /// definition is discarded except for optimization purposes?
6139 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6140   // Try to avoid calling GetGVALinkageForFunction.
6141 
6142   // All cases of this require the 'inline' keyword.
6143   if (!FD->isInlined()) return false;
6144 
6145   // This is only possible in C++ with the gnu_inline attribute.
6146   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6147     return false;
6148 
6149   // Okay, go ahead and call the relatively-more-expensive function.
6150   return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6151 }
6152 
6153 /// Determine whether a variable is extern "C" prior to attaching
6154 /// an initializer. We can't just call isExternC() here, because that
6155 /// will also compute and cache whether the declaration is externally
6156 /// visible, which might change when we attach the initializer.
6157 ///
6158 /// This can only be used if the declaration is known to not be a
6159 /// redeclaration of an internal linkage declaration.
6160 ///
6161 /// For instance:
6162 ///
6163 ///   auto x = []{};
6164 ///
6165 /// Attaching the initializer here makes this declaration not externally
6166 /// visible, because its type has internal linkage.
6167 ///
6168 /// FIXME: This is a hack.
6169 template<typename T>
6170 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6171   if (S.getLangOpts().CPlusPlus) {
6172     // In C++, the overloadable attribute negates the effects of extern "C".
6173     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6174       return false;
6175 
6176     // So do CUDA's host/device attributes.
6177     if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6178                                  D->template hasAttr<CUDAHostAttr>()))
6179       return false;
6180   }
6181   return D->isExternC();
6182 }
6183 
6184 static bool shouldConsiderLinkage(const VarDecl *VD) {
6185   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6186   if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC))
6187     return VD->hasExternalStorage();
6188   if (DC->isFileContext())
6189     return true;
6190   if (DC->isRecord())
6191     return false;
6192   llvm_unreachable("Unexpected context");
6193 }
6194 
6195 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6196   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6197   if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6198       isa<OMPDeclareReductionDecl>(DC))
6199     return true;
6200   if (DC->isRecord())
6201     return false;
6202   llvm_unreachable("Unexpected context");
6203 }
6204 
6205 static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
6206                           AttributeList::Kind Kind) {
6207   for (const AttributeList *L = AttrList; L; L = L->getNext())
6208     if (L->getKind() == Kind)
6209       return true;
6210   return false;
6211 }
6212 
6213 static bool hasParsedAttr(Scope *S, const Declarator &PD,
6214                           AttributeList::Kind Kind) {
6215   // Check decl attributes on the DeclSpec.
6216   if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
6217     return true;
6218 
6219   // Walk the declarator structure, checking decl attributes that were in a type
6220   // position to the decl itself.
6221   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6222     if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
6223       return true;
6224   }
6225 
6226   // Finally, check attributes on the decl itself.
6227   return hasParsedAttr(S, PD.getAttributes(), Kind);
6228 }
6229 
6230 /// Adjust the \c DeclContext for a function or variable that might be a
6231 /// function-local external declaration.
6232 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6233   if (!DC->isFunctionOrMethod())
6234     return false;
6235 
6236   // If this is a local extern function or variable declared within a function
6237   // template, don't add it into the enclosing namespace scope until it is
6238   // instantiated; it might have a dependent type right now.
6239   if (DC->isDependentContext())
6240     return true;
6241 
6242   // C++11 [basic.link]p7:
6243   //   When a block scope declaration of an entity with linkage is not found to
6244   //   refer to some other declaration, then that entity is a member of the
6245   //   innermost enclosing namespace.
6246   //
6247   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6248   // semantically-enclosing namespace, not a lexically-enclosing one.
6249   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6250     DC = DC->getParent();
6251   return true;
6252 }
6253 
6254 /// Returns true if given declaration has external C language linkage.
6255 static bool isDeclExternC(const Decl *D) {
6256   if (const auto *FD = dyn_cast<FunctionDecl>(D))
6257     return FD->isExternC();
6258   if (const auto *VD = dyn_cast<VarDecl>(D))
6259     return VD->isExternC();
6260 
6261   llvm_unreachable("Unknown type of decl!");
6262 }
6263 
6264 NamedDecl *Sema::ActOnVariableDeclarator(
6265     Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6266     LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6267     bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6268   QualType R = TInfo->getType();
6269   DeclarationName Name = GetNameForDeclarator(D).getName();
6270 
6271   IdentifierInfo *II = Name.getAsIdentifierInfo();
6272 
6273   if (D.isDecompositionDeclarator()) {
6274     // Take the name of the first declarator as our name for diagnostic
6275     // purposes.
6276     auto &Decomp = D.getDecompositionDeclarator();
6277     if (!Decomp.bindings().empty()) {
6278       II = Decomp.bindings()[0].Name;
6279       Name = II;
6280     }
6281   } else if (!II) {
6282     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6283     return nullptr;
6284   }
6285 
6286   if (getLangOpts().OpenCL) {
6287     // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6288     // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6289     // argument.
6290     if (R->isImageType() || R->isPipeType()) {
6291       Diag(D.getIdentifierLoc(),
6292            diag::err_opencl_type_can_only_be_used_as_function_parameter)
6293           << R;
6294       D.setInvalidType();
6295       return nullptr;
6296     }
6297 
6298     // OpenCL v1.2 s6.9.r:
6299     // The event type cannot be used to declare a program scope variable.
6300     // OpenCL v2.0 s6.9.q:
6301     // The clk_event_t and reserve_id_t types cannot be declared in program scope.
6302     if (NULL == S->getParent()) {
6303       if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6304         Diag(D.getIdentifierLoc(),
6305              diag::err_invalid_type_for_program_scope_var) << R;
6306         D.setInvalidType();
6307         return nullptr;
6308       }
6309     }
6310 
6311     // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6312     QualType NR = R;
6313     while (NR->isPointerType()) {
6314       if (NR->isFunctionPointerType()) {
6315         Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
6316         D.setInvalidType();
6317         break;
6318       }
6319       NR = NR->getPointeeType();
6320     }
6321 
6322     if (!getOpenCLOptions().isEnabled("cl_khr_fp16")) {
6323       // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6324       // half array type (unless the cl_khr_fp16 extension is enabled).
6325       if (Context.getBaseElementType(R)->isHalfType()) {
6326         Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
6327         D.setInvalidType();
6328       }
6329     }
6330 
6331     if (R->isSamplerT()) {
6332       // OpenCL v1.2 s6.9.b p4:
6333       // The sampler type cannot be used with the __local and __global address
6334       // space qualifiers.
6335       if (R.getAddressSpace() == LangAS::opencl_local ||
6336           R.getAddressSpace() == LangAS::opencl_global) {
6337         Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
6338       }
6339 
6340       // OpenCL v1.2 s6.12.14.1:
6341       // A global sampler must be declared with either the constant address
6342       // space qualifier or with the const qualifier.
6343       if (DC->isTranslationUnit() &&
6344           !(R.getAddressSpace() == LangAS::opencl_constant ||
6345           R.isConstQualified())) {
6346         Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
6347         D.setInvalidType();
6348       }
6349     }
6350 
6351     // OpenCL v1.2 s6.9.r:
6352     // The event type cannot be used with the __local, __constant and __global
6353     // address space qualifiers.
6354     if (R->isEventT()) {
6355       if (R.getAddressSpace() != LangAS::opencl_private) {
6356         Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
6357         D.setInvalidType();
6358       }
6359     }
6360 
6361     // OpenCL C++ 1.0 s2.9: the thread_local storage qualifier is not
6362     // supported.  OpenCL C does not support thread_local either, and
6363     // also reject all other thread storage class specifiers.
6364     DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
6365     if (TSC != TSCS_unspecified) {
6366       bool IsCXX = getLangOpts().OpenCLCPlusPlus;
6367       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6368            diag::err_opencl_unknown_type_specifier)
6369           << IsCXX << getLangOpts().getOpenCLVersionTuple().getAsString()
6370           << DeclSpec::getSpecifierName(TSC) << 1;
6371       D.setInvalidType();
6372       return nullptr;
6373     }
6374   }
6375 
6376   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6377   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6378 
6379   // dllimport globals without explicit storage class are treated as extern. We
6380   // have to change the storage class this early to get the right DeclContext.
6381   if (SC == SC_None && !DC->isRecord() &&
6382       hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
6383       !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
6384     SC = SC_Extern;
6385 
6386   DeclContext *OriginalDC = DC;
6387   bool IsLocalExternDecl = SC == SC_Extern &&
6388                            adjustContextForLocalExternDecl(DC);
6389 
6390   if (SCSpec == DeclSpec::SCS_mutable) {
6391     // mutable can only appear on non-static class members, so it's always
6392     // an error here
6393     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6394     D.setInvalidType();
6395     SC = SC_None;
6396   }
6397 
6398   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6399       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6400                               D.getDeclSpec().getStorageClassSpecLoc())) {
6401     // In C++11, the 'register' storage class specifier is deprecated.
6402     // Suppress the warning in system macros, it's used in macros in some
6403     // popular C system headers, such as in glibc's htonl() macro.
6404     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6405          getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6406                                    : diag::warn_deprecated_register)
6407       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6408   }
6409 
6410   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6411 
6412   if (!DC->isRecord() && S->getFnParent() == nullptr) {
6413     // C99 6.9p2: The storage-class specifiers auto and register shall not
6414     // appear in the declaration specifiers in an external declaration.
6415     // Global Register+Asm is a GNU extension we support.
6416     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6417       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6418       D.setInvalidType();
6419     }
6420   }
6421 
6422   bool IsMemberSpecialization = false;
6423   bool IsVariableTemplateSpecialization = false;
6424   bool IsPartialSpecialization = false;
6425   bool IsVariableTemplate = false;
6426   VarDecl *NewVD = nullptr;
6427   VarTemplateDecl *NewTemplate = nullptr;
6428   TemplateParameterList *TemplateParams = nullptr;
6429   if (!getLangOpts().CPlusPlus) {
6430     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
6431                             D.getIdentifierLoc(), II,
6432                             R, TInfo, SC);
6433 
6434     if (R->getContainedDeducedType())
6435       ParsingInitForAutoVars.insert(NewVD);
6436 
6437     if (D.isInvalidType())
6438       NewVD->setInvalidDecl();
6439   } else {
6440     bool Invalid = false;
6441 
6442     if (DC->isRecord() && !CurContext->isRecord()) {
6443       // This is an out-of-line definition of a static data member.
6444       switch (SC) {
6445       case SC_None:
6446         break;
6447       case SC_Static:
6448         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6449              diag::err_static_out_of_line)
6450           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6451         break;
6452       case SC_Auto:
6453       case SC_Register:
6454       case SC_Extern:
6455         // [dcl.stc] p2: The auto or register specifiers shall be applied only
6456         // to names of variables declared in a block or to function parameters.
6457         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
6458         // of class members
6459 
6460         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6461              diag::err_storage_class_for_static_member)
6462           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6463         break;
6464       case SC_PrivateExtern:
6465         llvm_unreachable("C storage class in c++!");
6466       }
6467     }
6468 
6469     if (SC == SC_Static && CurContext->isRecord()) {
6470       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
6471         if (RD->isLocalClass())
6472           Diag(D.getIdentifierLoc(),
6473                diag::err_static_data_member_not_allowed_in_local_class)
6474             << Name << RD->getDeclName();
6475 
6476         // C++98 [class.union]p1: If a union contains a static data member,
6477         // the program is ill-formed. C++11 drops this restriction.
6478         if (RD->isUnion())
6479           Diag(D.getIdentifierLoc(),
6480                getLangOpts().CPlusPlus11
6481                  ? diag::warn_cxx98_compat_static_data_member_in_union
6482                  : diag::ext_static_data_member_in_union) << Name;
6483         // We conservatively disallow static data members in anonymous structs.
6484         else if (!RD->getDeclName())
6485           Diag(D.getIdentifierLoc(),
6486                diag::err_static_data_member_not_allowed_in_anon_struct)
6487             << Name << RD->isUnion();
6488       }
6489     }
6490 
6491     // Match up the template parameter lists with the scope specifier, then
6492     // determine whether we have a template or a template specialization.
6493     TemplateParams = MatchTemplateParametersToScopeSpecifier(
6494         D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
6495         D.getCXXScopeSpec(),
6496         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
6497             ? D.getName().TemplateId
6498             : nullptr,
6499         TemplateParamLists,
6500         /*never a friend*/ false, IsMemberSpecialization, Invalid);
6501 
6502     if (TemplateParams) {
6503       if (!TemplateParams->size() &&
6504           D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
6505         // There is an extraneous 'template<>' for this variable. Complain
6506         // about it, but allow the declaration of the variable.
6507         Diag(TemplateParams->getTemplateLoc(),
6508              diag::err_template_variable_noparams)
6509           << II
6510           << SourceRange(TemplateParams->getTemplateLoc(),
6511                          TemplateParams->getRAngleLoc());
6512         TemplateParams = nullptr;
6513       } else {
6514         if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
6515           // This is an explicit specialization or a partial specialization.
6516           // FIXME: Check that we can declare a specialization here.
6517           IsVariableTemplateSpecialization = true;
6518           IsPartialSpecialization = TemplateParams->size() > 0;
6519         } else { // if (TemplateParams->size() > 0)
6520           // This is a template declaration.
6521           IsVariableTemplate = true;
6522 
6523           // Check that we can declare a template here.
6524           if (CheckTemplateDeclScope(S, TemplateParams))
6525             return nullptr;
6526 
6527           // Only C++1y supports variable templates (N3651).
6528           Diag(D.getIdentifierLoc(),
6529                getLangOpts().CPlusPlus14
6530                    ? diag::warn_cxx11_compat_variable_template
6531                    : diag::ext_variable_template);
6532         }
6533       }
6534     } else {
6535       assert((Invalid ||
6536               D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
6537              "should have a 'template<>' for this decl");
6538     }
6539 
6540     if (IsVariableTemplateSpecialization) {
6541       SourceLocation TemplateKWLoc =
6542           TemplateParamLists.size() > 0
6543               ? TemplateParamLists[0]->getTemplateLoc()
6544               : SourceLocation();
6545       DeclResult Res = ActOnVarTemplateSpecialization(
6546           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
6547           IsPartialSpecialization);
6548       if (Res.isInvalid())
6549         return nullptr;
6550       NewVD = cast<VarDecl>(Res.get());
6551       AddToScope = false;
6552     } else if (D.isDecompositionDeclarator()) {
6553       NewVD = DecompositionDecl::Create(Context, DC, D.getLocStart(),
6554                                         D.getIdentifierLoc(), R, TInfo, SC,
6555                                         Bindings);
6556     } else
6557       NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
6558                               D.getIdentifierLoc(), II, R, TInfo, SC);
6559 
6560     // If this is supposed to be a variable template, create it as such.
6561     if (IsVariableTemplate) {
6562       NewTemplate =
6563           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
6564                                   TemplateParams, NewVD);
6565       NewVD->setDescribedVarTemplate(NewTemplate);
6566     }
6567 
6568     // If this decl has an auto type in need of deduction, make a note of the
6569     // Decl so we can diagnose uses of it in its own initializer.
6570     if (R->getContainedDeducedType())
6571       ParsingInitForAutoVars.insert(NewVD);
6572 
6573     if (D.isInvalidType() || Invalid) {
6574       NewVD->setInvalidDecl();
6575       if (NewTemplate)
6576         NewTemplate->setInvalidDecl();
6577     }
6578 
6579     SetNestedNameSpecifier(NewVD, D);
6580 
6581     // If we have any template parameter lists that don't directly belong to
6582     // the variable (matching the scope specifier), store them.
6583     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
6584     if (TemplateParamLists.size() > VDTemplateParamLists)
6585       NewVD->setTemplateParameterListsInfo(
6586           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
6587 
6588     if (D.getDeclSpec().isConstexprSpecified()) {
6589       NewVD->setConstexpr(true);
6590       // C++1z [dcl.spec.constexpr]p1:
6591       //   A static data member declared with the constexpr specifier is
6592       //   implicitly an inline variable.
6593       if (NewVD->isStaticDataMember() && getLangOpts().CPlusPlus17)
6594         NewVD->setImplicitlyInline();
6595     }
6596   }
6597 
6598   if (D.getDeclSpec().isInlineSpecified()) {
6599     if (!getLangOpts().CPlusPlus) {
6600       Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6601           << 0;
6602     } else if (CurContext->isFunctionOrMethod()) {
6603       // 'inline' is not allowed on block scope variable declaration.
6604       Diag(D.getDeclSpec().getInlineSpecLoc(),
6605            diag::err_inline_declaration_block_scope) << Name
6606         << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6607     } else {
6608       Diag(D.getDeclSpec().getInlineSpecLoc(),
6609            getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
6610                                      : diag::ext_inline_variable);
6611       NewVD->setInlineSpecified();
6612     }
6613   }
6614 
6615   // Set the lexical context. If the declarator has a C++ scope specifier, the
6616   // lexical context will be different from the semantic context.
6617   NewVD->setLexicalDeclContext(CurContext);
6618   if (NewTemplate)
6619     NewTemplate->setLexicalDeclContext(CurContext);
6620 
6621   if (IsLocalExternDecl) {
6622     if (D.isDecompositionDeclarator())
6623       for (auto *B : Bindings)
6624         B->setLocalExternDecl();
6625     else
6626       NewVD->setLocalExternDecl();
6627   }
6628 
6629   bool EmitTLSUnsupportedError = false;
6630   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
6631     // C++11 [dcl.stc]p4:
6632     //   When thread_local is applied to a variable of block scope the
6633     //   storage-class-specifier static is implied if it does not appear
6634     //   explicitly.
6635     // Core issue: 'static' is not implied if the variable is declared
6636     //   'extern'.
6637     if (NewVD->hasLocalStorage() &&
6638         (SCSpec != DeclSpec::SCS_unspecified ||
6639          TSCS != DeclSpec::TSCS_thread_local ||
6640          !DC->isFunctionOrMethod()))
6641       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6642            diag::err_thread_non_global)
6643         << DeclSpec::getSpecifierName(TSCS);
6644     else if (!Context.getTargetInfo().isTLSSupported()) {
6645       if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6646         // Postpone error emission until we've collected attributes required to
6647         // figure out whether it's a host or device variable and whether the
6648         // error should be ignored.
6649         EmitTLSUnsupportedError = true;
6650         // We still need to mark the variable as TLS so it shows up in AST with
6651         // proper storage class for other tools to use even if we're not going
6652         // to emit any code for it.
6653         NewVD->setTSCSpec(TSCS);
6654       } else
6655         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6656              diag::err_thread_unsupported);
6657     } else
6658       NewVD->setTSCSpec(TSCS);
6659   }
6660 
6661   // C99 6.7.4p3
6662   //   An inline definition of a function with external linkage shall
6663   //   not contain a definition of a modifiable object with static or
6664   //   thread storage duration...
6665   // We only apply this when the function is required to be defined
6666   // elsewhere, i.e. when the function is not 'extern inline'.  Note
6667   // that a local variable with thread storage duration still has to
6668   // be marked 'static'.  Also note that it's possible to get these
6669   // semantics in C++ using __attribute__((gnu_inline)).
6670   if (SC == SC_Static && S->getFnParent() != nullptr &&
6671       !NewVD->getType().isConstQualified()) {
6672     FunctionDecl *CurFD = getCurFunctionDecl();
6673     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
6674       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6675            diag::warn_static_local_in_extern_inline);
6676       MaybeSuggestAddingStaticToDecl(CurFD);
6677     }
6678   }
6679 
6680   if (D.getDeclSpec().isModulePrivateSpecified()) {
6681     if (IsVariableTemplateSpecialization)
6682       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6683           << (IsPartialSpecialization ? 1 : 0)
6684           << FixItHint::CreateRemoval(
6685                  D.getDeclSpec().getModulePrivateSpecLoc());
6686     else if (IsMemberSpecialization)
6687       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6688         << 2
6689         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6690     else if (NewVD->hasLocalStorage())
6691       Diag(NewVD->getLocation(), diag::err_module_private_local)
6692         << 0 << NewVD->getDeclName()
6693         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6694         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6695     else {
6696       NewVD->setModulePrivate();
6697       if (NewTemplate)
6698         NewTemplate->setModulePrivate();
6699       for (auto *B : Bindings)
6700         B->setModulePrivate();
6701     }
6702   }
6703 
6704   // Handle attributes prior to checking for duplicates in MergeVarDecl
6705   ProcessDeclAttributes(S, NewVD, D);
6706 
6707   if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6708     if (EmitTLSUnsupportedError &&
6709         ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
6710          (getLangOpts().OpenMPIsDevice &&
6711           NewVD->hasAttr<OMPDeclareTargetDeclAttr>())))
6712       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6713            diag::err_thread_unsupported);
6714     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
6715     // storage [duration]."
6716     if (SC == SC_None && S->getFnParent() != nullptr &&
6717         (NewVD->hasAttr<CUDASharedAttr>() ||
6718          NewVD->hasAttr<CUDAConstantAttr>())) {
6719       NewVD->setStorageClass(SC_Static);
6720     }
6721   }
6722 
6723   // Ensure that dllimport globals without explicit storage class are treated as
6724   // extern. The storage class is set above using parsed attributes. Now we can
6725   // check the VarDecl itself.
6726   assert(!NewVD->hasAttr<DLLImportAttr>() ||
6727          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
6728          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
6729 
6730   // In auto-retain/release, infer strong retension for variables of
6731   // retainable type.
6732   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
6733     NewVD->setInvalidDecl();
6734 
6735   // Handle GNU asm-label extension (encoded as an attribute).
6736   if (Expr *E = (Expr*)D.getAsmLabel()) {
6737     // The parser guarantees this is a string.
6738     StringLiteral *SE = cast<StringLiteral>(E);
6739     StringRef Label = SE->getString();
6740     if (S->getFnParent() != nullptr) {
6741       switch (SC) {
6742       case SC_None:
6743       case SC_Auto:
6744         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
6745         break;
6746       case SC_Register:
6747         // Local Named register
6748         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
6749             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
6750           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6751         break;
6752       case SC_Static:
6753       case SC_Extern:
6754       case SC_PrivateExtern:
6755         break;
6756       }
6757     } else if (SC == SC_Register) {
6758       // Global Named register
6759       if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
6760         const auto &TI = Context.getTargetInfo();
6761         bool HasSizeMismatch;
6762 
6763         if (!TI.isValidGCCRegisterName(Label))
6764           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6765         else if (!TI.validateGlobalRegisterVariable(Label,
6766                                                     Context.getTypeSize(R),
6767                                                     HasSizeMismatch))
6768           Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
6769         else if (HasSizeMismatch)
6770           Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
6771       }
6772 
6773       if (!R->isIntegralType(Context) && !R->isPointerType()) {
6774         Diag(D.getLocStart(), diag::err_asm_bad_register_type);
6775         NewVD->setInvalidDecl(true);
6776       }
6777     }
6778 
6779     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
6780                                                 Context, Label, 0));
6781   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6782     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6783       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
6784     if (I != ExtnameUndeclaredIdentifiers.end()) {
6785       if (isDeclExternC(NewVD)) {
6786         NewVD->addAttr(I->second);
6787         ExtnameUndeclaredIdentifiers.erase(I);
6788       } else
6789         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
6790             << /*Variable*/1 << NewVD;
6791     }
6792   }
6793 
6794   // Find the shadowed declaration before filtering for scope.
6795   NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
6796                                 ? getShadowedDeclaration(NewVD, Previous)
6797                                 : nullptr;
6798 
6799   // Don't consider existing declarations that are in a different
6800   // scope and are out-of-semantic-context declarations (if the new
6801   // declaration has linkage).
6802   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
6803                        D.getCXXScopeSpec().isNotEmpty() ||
6804                        IsMemberSpecialization ||
6805                        IsVariableTemplateSpecialization);
6806 
6807   // Check whether the previous declaration is in the same block scope. This
6808   // affects whether we merge types with it, per C++11 [dcl.array]p3.
6809   if (getLangOpts().CPlusPlus &&
6810       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
6811     NewVD->setPreviousDeclInSameBlockScope(
6812         Previous.isSingleResult() && !Previous.isShadowed() &&
6813         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
6814 
6815   if (!getLangOpts().CPlusPlus) {
6816     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6817   } else {
6818     // If this is an explicit specialization of a static data member, check it.
6819     if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
6820         CheckMemberSpecialization(NewVD, Previous))
6821       NewVD->setInvalidDecl();
6822 
6823     // Merge the decl with the existing one if appropriate.
6824     if (!Previous.empty()) {
6825       if (Previous.isSingleResult() &&
6826           isa<FieldDecl>(Previous.getFoundDecl()) &&
6827           D.getCXXScopeSpec().isSet()) {
6828         // The user tried to define a non-static data member
6829         // out-of-line (C++ [dcl.meaning]p1).
6830         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
6831           << D.getCXXScopeSpec().getRange();
6832         Previous.clear();
6833         NewVD->setInvalidDecl();
6834       }
6835     } else if (D.getCXXScopeSpec().isSet()) {
6836       // No previous declaration in the qualifying scope.
6837       Diag(D.getIdentifierLoc(), diag::err_no_member)
6838         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
6839         << D.getCXXScopeSpec().getRange();
6840       NewVD->setInvalidDecl();
6841     }
6842 
6843     if (!IsVariableTemplateSpecialization)
6844       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6845 
6846     if (NewTemplate) {
6847       VarTemplateDecl *PrevVarTemplate =
6848           NewVD->getPreviousDecl()
6849               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
6850               : nullptr;
6851 
6852       // Check the template parameter list of this declaration, possibly
6853       // merging in the template parameter list from the previous variable
6854       // template declaration.
6855       if (CheckTemplateParameterList(
6856               TemplateParams,
6857               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
6858                               : nullptr,
6859               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
6860                DC->isDependentContext())
6861                   ? TPC_ClassTemplateMember
6862                   : TPC_VarTemplate))
6863         NewVD->setInvalidDecl();
6864 
6865       // If we are providing an explicit specialization of a static variable
6866       // template, make a note of that.
6867       if (PrevVarTemplate &&
6868           PrevVarTemplate->getInstantiatedFromMemberTemplate())
6869         PrevVarTemplate->setMemberSpecialization();
6870     }
6871   }
6872 
6873   // Diagnose shadowed variables iff this isn't a redeclaration.
6874   if (ShadowedDecl && !D.isRedeclaration())
6875     CheckShadow(NewVD, ShadowedDecl, Previous);
6876 
6877   ProcessPragmaWeak(S, NewVD);
6878 
6879   // If this is the first declaration of an extern C variable, update
6880   // the map of such variables.
6881   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
6882       isIncompleteDeclExternC(*this, NewVD))
6883     RegisterLocallyScopedExternCDecl(NewVD, S);
6884 
6885   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
6886     Decl *ManglingContextDecl;
6887     if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
6888             NewVD->getDeclContext(), ManglingContextDecl)) {
6889       Context.setManglingNumber(
6890           NewVD, MCtx->getManglingNumber(
6891                      NewVD, getMSManglingNumber(getLangOpts(), S)));
6892       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
6893     }
6894   }
6895 
6896   // Special handling of variable named 'main'.
6897   if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
6898       NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6899       !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
6900 
6901     // C++ [basic.start.main]p3
6902     // A program that declares a variable main at global scope is ill-formed.
6903     if (getLangOpts().CPlusPlus)
6904       Diag(D.getLocStart(), diag::err_main_global_variable);
6905 
6906     // In C, and external-linkage variable named main results in undefined
6907     // behavior.
6908     else if (NewVD->hasExternalFormalLinkage())
6909       Diag(D.getLocStart(), diag::warn_main_redefined);
6910   }
6911 
6912   if (D.isRedeclaration() && !Previous.empty()) {
6913     NamedDecl *Prev = Previous.getRepresentativeDecl();
6914     checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
6915                                    D.isFunctionDefinition());
6916   }
6917 
6918   if (NewTemplate) {
6919     if (NewVD->isInvalidDecl())
6920       NewTemplate->setInvalidDecl();
6921     ActOnDocumentableDecl(NewTemplate);
6922     return NewTemplate;
6923   }
6924 
6925   if (IsMemberSpecialization && !NewVD->isInvalidDecl())
6926     CompleteMemberSpecialization(NewVD, Previous);
6927 
6928   return NewVD;
6929 }
6930 
6931 /// Enum describing the %select options in diag::warn_decl_shadow.
6932 enum ShadowedDeclKind {
6933   SDK_Local,
6934   SDK_Global,
6935   SDK_StaticMember,
6936   SDK_Field,
6937   SDK_Typedef,
6938   SDK_Using
6939 };
6940 
6941 /// Determine what kind of declaration we're shadowing.
6942 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
6943                                                 const DeclContext *OldDC) {
6944   if (isa<TypeAliasDecl>(ShadowedDecl))
6945     return SDK_Using;
6946   else if (isa<TypedefDecl>(ShadowedDecl))
6947     return SDK_Typedef;
6948   else if (isa<RecordDecl>(OldDC))
6949     return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
6950 
6951   return OldDC->isFileContext() ? SDK_Global : SDK_Local;
6952 }
6953 
6954 /// Return the location of the capture if the given lambda captures the given
6955 /// variable \p VD, or an invalid source location otherwise.
6956 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
6957                                          const VarDecl *VD) {
6958   for (const Capture &Capture : LSI->Captures) {
6959     if (Capture.isVariableCapture() && Capture.getVariable() == VD)
6960       return Capture.getLocation();
6961   }
6962   return SourceLocation();
6963 }
6964 
6965 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
6966                                      const LookupResult &R) {
6967   // Only diagnose if we're shadowing an unambiguous field or variable.
6968   if (R.getResultKind() != LookupResult::Found)
6969     return false;
6970 
6971   // Return false if warning is ignored.
6972   return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
6973 }
6974 
6975 /// Return the declaration shadowed by the given variable \p D, or null
6976 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
6977 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
6978                                         const LookupResult &R) {
6979   if (!shouldWarnIfShadowedDecl(Diags, R))
6980     return nullptr;
6981 
6982   // Don't diagnose declarations at file scope.
6983   if (D->hasGlobalStorage())
6984     return nullptr;
6985 
6986   NamedDecl *ShadowedDecl = R.getFoundDecl();
6987   return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
6988              ? ShadowedDecl
6989              : nullptr;
6990 }
6991 
6992 /// Return the declaration shadowed by the given typedef \p D, or null
6993 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
6994 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
6995                                         const LookupResult &R) {
6996   // Don't warn if typedef declaration is part of a class
6997   if (D->getDeclContext()->isRecord())
6998     return nullptr;
6999 
7000   if (!shouldWarnIfShadowedDecl(Diags, R))
7001     return nullptr;
7002 
7003   NamedDecl *ShadowedDecl = R.getFoundDecl();
7004   return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7005 }
7006 
7007 /// Diagnose variable or built-in function shadowing.  Implements
7008 /// -Wshadow.
7009 ///
7010 /// This method is called whenever a VarDecl is added to a "useful"
7011 /// scope.
7012 ///
7013 /// \param ShadowedDecl the declaration that is shadowed by the given variable
7014 /// \param R the lookup of the name
7015 ///
7016 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7017                        const LookupResult &R) {
7018   DeclContext *NewDC = D->getDeclContext();
7019 
7020   if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7021     // Fields are not shadowed by variables in C++ static methods.
7022     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7023       if (MD->isStatic())
7024         return;
7025 
7026     // Fields shadowed by constructor parameters are a special case. Usually
7027     // the constructor initializes the field with the parameter.
7028     if (isa<CXXConstructorDecl>(NewDC))
7029       if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7030         // Remember that this was shadowed so we can either warn about its
7031         // modification or its existence depending on warning settings.
7032         ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7033         return;
7034       }
7035   }
7036 
7037   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7038     if (shadowedVar->isExternC()) {
7039       // For shadowing external vars, make sure that we point to the global
7040       // declaration, not a locally scoped extern declaration.
7041       for (auto I : shadowedVar->redecls())
7042         if (I->isFileVarDecl()) {
7043           ShadowedDecl = I;
7044           break;
7045         }
7046     }
7047 
7048   DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7049 
7050   unsigned WarningDiag = diag::warn_decl_shadow;
7051   SourceLocation CaptureLoc;
7052   if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7053       isa<CXXMethodDecl>(NewDC)) {
7054     if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7055       if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7056         if (RD->getLambdaCaptureDefault() == LCD_None) {
7057           // Try to avoid warnings for lambdas with an explicit capture list.
7058           const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7059           // Warn only when the lambda captures the shadowed decl explicitly.
7060           CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7061           if (CaptureLoc.isInvalid())
7062             WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7063         } else {
7064           // Remember that this was shadowed so we can avoid the warning if the
7065           // shadowed decl isn't captured and the warning settings allow it.
7066           cast<LambdaScopeInfo>(getCurFunction())
7067               ->ShadowingDecls.push_back(
7068                   {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7069           return;
7070         }
7071       }
7072 
7073       if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7074         // A variable can't shadow a local variable in an enclosing scope, if
7075         // they are separated by a non-capturing declaration context.
7076         for (DeclContext *ParentDC = NewDC;
7077              ParentDC && !ParentDC->Equals(OldDC);
7078              ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7079           // Only block literals, captured statements, and lambda expressions
7080           // can capture; other scopes don't.
7081           if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7082               !isLambdaCallOperator(ParentDC)) {
7083             return;
7084           }
7085         }
7086       }
7087     }
7088   }
7089 
7090   // Only warn about certain kinds of shadowing for class members.
7091   if (NewDC && NewDC->isRecord()) {
7092     // In particular, don't warn about shadowing non-class members.
7093     if (!OldDC->isRecord())
7094       return;
7095 
7096     // TODO: should we warn about static data members shadowing
7097     // static data members from base classes?
7098 
7099     // TODO: don't diagnose for inaccessible shadowed members.
7100     // This is hard to do perfectly because we might friend the
7101     // shadowing context, but that's just a false negative.
7102   }
7103 
7104 
7105   DeclarationName Name = R.getLookupName();
7106 
7107   // Emit warning and note.
7108   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7109     return;
7110   ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7111   Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7112   if (!CaptureLoc.isInvalid())
7113     Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7114         << Name << /*explicitly*/ 1;
7115   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7116 }
7117 
7118 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7119 /// when these variables are captured by the lambda.
7120 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7121   for (const auto &Shadow : LSI->ShadowingDecls) {
7122     const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7123     // Try to avoid the warning when the shadowed decl isn't captured.
7124     SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7125     const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7126     Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7127                                        ? diag::warn_decl_shadow_uncaptured_local
7128                                        : diag::warn_decl_shadow)
7129         << Shadow.VD->getDeclName()
7130         << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7131     if (!CaptureLoc.isInvalid())
7132       Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7133           << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7134     Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7135   }
7136 }
7137 
7138 /// Check -Wshadow without the advantage of a previous lookup.
7139 void Sema::CheckShadow(Scope *S, VarDecl *D) {
7140   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7141     return;
7142 
7143   LookupResult R(*this, D->getDeclName(), D->getLocation(),
7144                  Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7145   LookupName(R, S);
7146   if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7147     CheckShadow(D, ShadowedDecl, R);
7148 }
7149 
7150 /// Check if 'E', which is an expression that is about to be modified, refers
7151 /// to a constructor parameter that shadows a field.
7152 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7153   // Quickly ignore expressions that can't be shadowing ctor parameters.
7154   if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7155     return;
7156   E = E->IgnoreParenImpCasts();
7157   auto *DRE = dyn_cast<DeclRefExpr>(E);
7158   if (!DRE)
7159     return;
7160   const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7161   auto I = ShadowingDecls.find(D);
7162   if (I == ShadowingDecls.end())
7163     return;
7164   const NamedDecl *ShadowedDecl = I->second;
7165   const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7166   Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7167   Diag(D->getLocation(), diag::note_var_declared_here) << D;
7168   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7169 
7170   // Avoid issuing multiple warnings about the same decl.
7171   ShadowingDecls.erase(I);
7172 }
7173 
7174 /// Check for conflict between this global or extern "C" declaration and
7175 /// previous global or extern "C" declarations. This is only used in C++.
7176 template<typename T>
7177 static bool checkGlobalOrExternCConflict(
7178     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7179   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
7180   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7181 
7182   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7183     // The common case: this global doesn't conflict with any extern "C"
7184     // declaration.
7185     return false;
7186   }
7187 
7188   if (Prev) {
7189     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7190       // Both the old and new declarations have C language linkage. This is a
7191       // redeclaration.
7192       Previous.clear();
7193       Previous.addDecl(Prev);
7194       return true;
7195     }
7196 
7197     // This is a global, non-extern "C" declaration, and there is a previous
7198     // non-global extern "C" declaration. Diagnose if this is a variable
7199     // declaration.
7200     if (!isa<VarDecl>(ND))
7201       return false;
7202   } else {
7203     // The declaration is extern "C". Check for any declaration in the
7204     // translation unit which might conflict.
7205     if (IsGlobal) {
7206       // We have already performed the lookup into the translation unit.
7207       IsGlobal = false;
7208       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7209            I != E; ++I) {
7210         if (isa<VarDecl>(*I)) {
7211           Prev = *I;
7212           break;
7213         }
7214       }
7215     } else {
7216       DeclContext::lookup_result R =
7217           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7218       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7219            I != E; ++I) {
7220         if (isa<VarDecl>(*I)) {
7221           Prev = *I;
7222           break;
7223         }
7224         // FIXME: If we have any other entity with this name in global scope,
7225         // the declaration is ill-formed, but that is a defect: it breaks the
7226         // 'stat' hack, for instance. Only variables can have mangled name
7227         // clashes with extern "C" declarations, so only they deserve a
7228         // diagnostic.
7229       }
7230     }
7231 
7232     if (!Prev)
7233       return false;
7234   }
7235 
7236   // Use the first declaration's location to ensure we point at something which
7237   // is lexically inside an extern "C" linkage-spec.
7238   assert(Prev && "should have found a previous declaration to diagnose");
7239   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7240     Prev = FD->getFirstDecl();
7241   else
7242     Prev = cast<VarDecl>(Prev)->getFirstDecl();
7243 
7244   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7245     << IsGlobal << ND;
7246   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7247     << IsGlobal;
7248   return false;
7249 }
7250 
7251 /// Apply special rules for handling extern "C" declarations. Returns \c true
7252 /// if we have found that this is a redeclaration of some prior entity.
7253 ///
7254 /// Per C++ [dcl.link]p6:
7255 ///   Two declarations [for a function or variable] with C language linkage
7256 ///   with the same name that appear in different scopes refer to the same
7257 ///   [entity]. An entity with C language linkage shall not be declared with
7258 ///   the same name as an entity in global scope.
7259 template<typename T>
7260 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7261                                                   LookupResult &Previous) {
7262   if (!S.getLangOpts().CPlusPlus) {
7263     // In C, when declaring a global variable, look for a corresponding 'extern'
7264     // variable declared in function scope. We don't need this in C++, because
7265     // we find local extern decls in the surrounding file-scope DeclContext.
7266     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7267       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7268         Previous.clear();
7269         Previous.addDecl(Prev);
7270         return true;
7271       }
7272     }
7273     return false;
7274   }
7275 
7276   // A declaration in the translation unit can conflict with an extern "C"
7277   // declaration.
7278   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7279     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7280 
7281   // An extern "C" declaration can conflict with a declaration in the
7282   // translation unit or can be a redeclaration of an extern "C" declaration
7283   // in another scope.
7284   if (isIncompleteDeclExternC(S,ND))
7285     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7286 
7287   // Neither global nor extern "C": nothing to do.
7288   return false;
7289 }
7290 
7291 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7292   // If the decl is already known invalid, don't check it.
7293   if (NewVD->isInvalidDecl())
7294     return;
7295 
7296   TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
7297   QualType T = TInfo->getType();
7298 
7299   // Defer checking an 'auto' type until its initializer is attached.
7300   if (T->isUndeducedType())
7301     return;
7302 
7303   if (NewVD->hasAttrs())
7304     CheckAlignasUnderalignment(NewVD);
7305 
7306   if (T->isObjCObjectType()) {
7307     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7308       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7309     T = Context.getObjCObjectPointerType(T);
7310     NewVD->setType(T);
7311   }
7312 
7313   // Emit an error if an address space was applied to decl with local storage.
7314   // This includes arrays of objects with address space qualifiers, but not
7315   // automatic variables that point to other address spaces.
7316   // ISO/IEC TR 18037 S5.1.2
7317   if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7318       T.getAddressSpace() != LangAS::Default) {
7319     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7320     NewVD->setInvalidDecl();
7321     return;
7322   }
7323 
7324   // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7325   // scope.
7326   if (getLangOpts().OpenCLVersion == 120 &&
7327       !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
7328       NewVD->isStaticLocal()) {
7329     Diag(NewVD->getLocation(), diag::err_static_function_scope);
7330     NewVD->setInvalidDecl();
7331     return;
7332   }
7333 
7334   if (getLangOpts().OpenCL) {
7335     // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
7336     if (NewVD->hasAttr<BlocksAttr>()) {
7337       Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
7338       return;
7339     }
7340 
7341     if (T->isBlockPointerType()) {
7342       // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
7343       // can't use 'extern' storage class.
7344       if (!T.isConstQualified()) {
7345         Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
7346             << 0 /*const*/;
7347         NewVD->setInvalidDecl();
7348         return;
7349       }
7350       if (NewVD->hasExternalStorage()) {
7351         Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
7352         NewVD->setInvalidDecl();
7353         return;
7354       }
7355     }
7356     // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
7357     // __constant address space.
7358     // OpenCL v2.0 s6.5.1 - Variables defined at program scope and static
7359     // variables inside a function can also be declared in the global
7360     // address space.
7361     if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
7362         NewVD->hasExternalStorage()) {
7363       if (!T->isSamplerT() &&
7364           !(T.getAddressSpace() == LangAS::opencl_constant ||
7365             (T.getAddressSpace() == LangAS::opencl_global &&
7366              getLangOpts().OpenCLVersion == 200))) {
7367         int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
7368         if (getLangOpts().OpenCLVersion == 200)
7369           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7370               << Scope << "global or constant";
7371         else
7372           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7373               << Scope << "constant";
7374         NewVD->setInvalidDecl();
7375         return;
7376       }
7377     } else {
7378       if (T.getAddressSpace() == LangAS::opencl_global) {
7379         Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7380             << 1 /*is any function*/ << "global";
7381         NewVD->setInvalidDecl();
7382         return;
7383       }
7384       if (T.getAddressSpace() == LangAS::opencl_constant ||
7385           T.getAddressSpace() == LangAS::opencl_local) {
7386         FunctionDecl *FD = getCurFunctionDecl();
7387         // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
7388         // in functions.
7389         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
7390           if (T.getAddressSpace() == LangAS::opencl_constant)
7391             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7392                 << 0 /*non-kernel only*/ << "constant";
7393           else
7394             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7395                 << 0 /*non-kernel only*/ << "local";
7396           NewVD->setInvalidDecl();
7397           return;
7398         }
7399         // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
7400         // in the outermost scope of a kernel function.
7401         if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
7402           if (!getCurScope()->isFunctionScope()) {
7403             if (T.getAddressSpace() == LangAS::opencl_constant)
7404               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7405                   << "constant";
7406             else
7407               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7408                   << "local";
7409             NewVD->setInvalidDecl();
7410             return;
7411           }
7412         }
7413       } else if (T.getAddressSpace() != LangAS::opencl_private) {
7414         // Do not allow other address spaces on automatic variable.
7415         Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
7416         NewVD->setInvalidDecl();
7417         return;
7418       }
7419     }
7420   }
7421 
7422   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
7423       && !NewVD->hasAttr<BlocksAttr>()) {
7424     if (getLangOpts().getGC() != LangOptions::NonGC)
7425       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
7426     else {
7427       assert(!getLangOpts().ObjCAutoRefCount);
7428       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
7429     }
7430   }
7431 
7432   bool isVM = T->isVariablyModifiedType();
7433   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
7434       NewVD->hasAttr<BlocksAttr>())
7435     setFunctionHasBranchProtectedScope();
7436 
7437   if ((isVM && NewVD->hasLinkage()) ||
7438       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
7439     bool SizeIsNegative;
7440     llvm::APSInt Oversized;
7441     TypeSourceInfo *FixedTInfo =
7442       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
7443                                                     SizeIsNegative, Oversized);
7444     if (!FixedTInfo && T->isVariableArrayType()) {
7445       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
7446       // FIXME: This won't give the correct result for
7447       // int a[10][n];
7448       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
7449 
7450       if (NewVD->isFileVarDecl())
7451         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
7452         << SizeRange;
7453       else if (NewVD->isStaticLocal())
7454         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
7455         << SizeRange;
7456       else
7457         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
7458         << SizeRange;
7459       NewVD->setInvalidDecl();
7460       return;
7461     }
7462 
7463     if (!FixedTInfo) {
7464       if (NewVD->isFileVarDecl())
7465         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
7466       else
7467         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
7468       NewVD->setInvalidDecl();
7469       return;
7470     }
7471 
7472     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
7473     NewVD->setType(FixedTInfo->getType());
7474     NewVD->setTypeSourceInfo(FixedTInfo);
7475   }
7476 
7477   if (T->isVoidType()) {
7478     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
7479     //                    of objects and functions.
7480     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
7481       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
7482         << T;
7483       NewVD->setInvalidDecl();
7484       return;
7485     }
7486   }
7487 
7488   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
7489     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
7490     NewVD->setInvalidDecl();
7491     return;
7492   }
7493 
7494   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
7495     Diag(NewVD->getLocation(), diag::err_block_on_vm);
7496     NewVD->setInvalidDecl();
7497     return;
7498   }
7499 
7500   if (NewVD->isConstexpr() && !T->isDependentType() &&
7501       RequireLiteralType(NewVD->getLocation(), T,
7502                          diag::err_constexpr_var_non_literal)) {
7503     NewVD->setInvalidDecl();
7504     return;
7505   }
7506 }
7507 
7508 /// Perform semantic checking on a newly-created variable
7509 /// declaration.
7510 ///
7511 /// This routine performs all of the type-checking required for a
7512 /// variable declaration once it has been built. It is used both to
7513 /// check variables after they have been parsed and their declarators
7514 /// have been translated into a declaration, and to check variables
7515 /// that have been instantiated from a template.
7516 ///
7517 /// Sets NewVD->isInvalidDecl() if an error was encountered.
7518 ///
7519 /// Returns true if the variable declaration is a redeclaration.
7520 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
7521   CheckVariableDeclarationType(NewVD);
7522 
7523   // If the decl is already known invalid, don't check it.
7524   if (NewVD->isInvalidDecl())
7525     return false;
7526 
7527   // If we did not find anything by this name, look for a non-visible
7528   // extern "C" declaration with the same name.
7529   if (Previous.empty() &&
7530       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
7531     Previous.setShadowed();
7532 
7533   if (!Previous.empty()) {
7534     MergeVarDecl(NewVD, Previous);
7535     return true;
7536   }
7537   return false;
7538 }
7539 
7540 namespace {
7541 struct FindOverriddenMethod {
7542   Sema *S;
7543   CXXMethodDecl *Method;
7544 
7545   /// Member lookup function that determines whether a given C++
7546   /// method overrides a method in a base class, to be used with
7547   /// CXXRecordDecl::lookupInBases().
7548   bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7549     RecordDecl *BaseRecord =
7550         Specifier->getType()->getAs<RecordType>()->getDecl();
7551 
7552     DeclarationName Name = Method->getDeclName();
7553 
7554     // FIXME: Do we care about other names here too?
7555     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7556       // We really want to find the base class destructor here.
7557       QualType T = S->Context.getTypeDeclType(BaseRecord);
7558       CanQualType CT = S->Context.getCanonicalType(T);
7559 
7560       Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
7561     }
7562 
7563     for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7564          Path.Decls = Path.Decls.slice(1)) {
7565       NamedDecl *D = Path.Decls.front();
7566       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7567         if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
7568           return true;
7569       }
7570     }
7571 
7572     return false;
7573   }
7574 };
7575 
7576 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
7577 } // end anonymous namespace
7578 
7579 /// Report an error regarding overriding, along with any relevant
7580 /// overridden methods.
7581 ///
7582 /// \param DiagID the primary error to report.
7583 /// \param MD the overriding method.
7584 /// \param OEK which overrides to include as notes.
7585 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
7586                             OverrideErrorKind OEK = OEK_All) {
7587   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
7588   for (const CXXMethodDecl *O : MD->overridden_methods()) {
7589     // This check (& the OEK parameter) could be replaced by a predicate, but
7590     // without lambdas that would be overkill. This is still nicer than writing
7591     // out the diag loop 3 times.
7592     if ((OEK == OEK_All) ||
7593         (OEK == OEK_NonDeleted && !O->isDeleted()) ||
7594         (OEK == OEK_Deleted && O->isDeleted()))
7595       S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
7596   }
7597 }
7598 
7599 /// AddOverriddenMethods - See if a method overrides any in the base classes,
7600 /// and if so, check that it's a valid override and remember it.
7601 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
7602   // Look for methods in base classes that this method might override.
7603   CXXBasePaths Paths;
7604   FindOverriddenMethod FOM;
7605   FOM.Method = MD;
7606   FOM.S = this;
7607   bool hasDeletedOverridenMethods = false;
7608   bool hasNonDeletedOverridenMethods = false;
7609   bool AddedAny = false;
7610   if (DC->lookupInBases(FOM, Paths)) {
7611     for (auto *I : Paths.found_decls()) {
7612       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
7613         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
7614         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
7615             !CheckOverridingFunctionAttributes(MD, OldMD) &&
7616             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
7617             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
7618           hasDeletedOverridenMethods |= OldMD->isDeleted();
7619           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
7620           AddedAny = true;
7621         }
7622       }
7623     }
7624   }
7625 
7626   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
7627     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
7628   }
7629   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
7630     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
7631   }
7632 
7633   return AddedAny;
7634 }
7635 
7636 namespace {
7637   // Struct for holding all of the extra arguments needed by
7638   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
7639   struct ActOnFDArgs {
7640     Scope *S;
7641     Declarator &D;
7642     MultiTemplateParamsArg TemplateParamLists;
7643     bool AddToScope;
7644   };
7645 } // end anonymous namespace
7646 
7647 namespace {
7648 
7649 // Callback to only accept typo corrections that have a non-zero edit distance.
7650 // Also only accept corrections that have the same parent decl.
7651 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
7652  public:
7653   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
7654                             CXXRecordDecl *Parent)
7655       : Context(Context), OriginalFD(TypoFD),
7656         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
7657 
7658   bool ValidateCandidate(const TypoCorrection &candidate) override {
7659     if (candidate.getEditDistance() == 0)
7660       return false;
7661 
7662     SmallVector<unsigned, 1> MismatchedParams;
7663     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
7664                                           CDeclEnd = candidate.end();
7665          CDecl != CDeclEnd; ++CDecl) {
7666       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7667 
7668       if (FD && !FD->hasBody() &&
7669           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
7670         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7671           CXXRecordDecl *Parent = MD->getParent();
7672           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
7673             return true;
7674         } else if (!ExpectedParent) {
7675           return true;
7676         }
7677       }
7678     }
7679 
7680     return false;
7681   }
7682 
7683  private:
7684   ASTContext &Context;
7685   FunctionDecl *OriginalFD;
7686   CXXRecordDecl *ExpectedParent;
7687 };
7688 
7689 } // end anonymous namespace
7690 
7691 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
7692   TypoCorrectedFunctionDefinitions.insert(F);
7693 }
7694 
7695 /// Generate diagnostics for an invalid function redeclaration.
7696 ///
7697 /// This routine handles generating the diagnostic messages for an invalid
7698 /// function redeclaration, including finding possible similar declarations
7699 /// or performing typo correction if there are no previous declarations with
7700 /// the same name.
7701 ///
7702 /// Returns a NamedDecl iff typo correction was performed and substituting in
7703 /// the new declaration name does not cause new errors.
7704 static NamedDecl *DiagnoseInvalidRedeclaration(
7705     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
7706     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
7707   DeclarationName Name = NewFD->getDeclName();
7708   DeclContext *NewDC = NewFD->getDeclContext();
7709   SmallVector<unsigned, 1> MismatchedParams;
7710   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
7711   TypoCorrection Correction;
7712   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
7713   unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
7714                                    : diag::err_member_decl_does_not_match;
7715   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
7716                     IsLocalFriend ? Sema::LookupLocalFriendName
7717                                   : Sema::LookupOrdinaryName,
7718                     Sema::ForVisibleRedeclaration);
7719 
7720   NewFD->setInvalidDecl();
7721   if (IsLocalFriend)
7722     SemaRef.LookupName(Prev, S);
7723   else
7724     SemaRef.LookupQualifiedName(Prev, NewDC);
7725   assert(!Prev.isAmbiguous() &&
7726          "Cannot have an ambiguity in previous-declaration lookup");
7727   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7728   if (!Prev.empty()) {
7729     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
7730          Func != FuncEnd; ++Func) {
7731       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
7732       if (FD &&
7733           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7734         // Add 1 to the index so that 0 can mean the mismatch didn't
7735         // involve a parameter
7736         unsigned ParamNum =
7737             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
7738         NearMatches.push_back(std::make_pair(FD, ParamNum));
7739       }
7740     }
7741   // If the qualified name lookup yielded nothing, try typo correction
7742   } else if ((Correction = SemaRef.CorrectTypo(
7743                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
7744                   &ExtraArgs.D.getCXXScopeSpec(),
7745                   llvm::make_unique<DifferentNameValidatorCCC>(
7746                       SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr),
7747                   Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
7748     // Set up everything for the call to ActOnFunctionDeclarator
7749     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
7750                               ExtraArgs.D.getIdentifierLoc());
7751     Previous.clear();
7752     Previous.setLookupName(Correction.getCorrection());
7753     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
7754                                     CDeclEnd = Correction.end();
7755          CDecl != CDeclEnd; ++CDecl) {
7756       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7757       if (FD && !FD->hasBody() &&
7758           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7759         Previous.addDecl(FD);
7760       }
7761     }
7762     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
7763 
7764     NamedDecl *Result;
7765     // Retry building the function declaration with the new previous
7766     // declarations, and with errors suppressed.
7767     {
7768       // Trap errors.
7769       Sema::SFINAETrap Trap(SemaRef);
7770 
7771       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
7772       // pieces need to verify the typo-corrected C++ declaration and hopefully
7773       // eliminate the need for the parameter pack ExtraArgs.
7774       Result = SemaRef.ActOnFunctionDeclarator(
7775           ExtraArgs.S, ExtraArgs.D,
7776           Correction.getCorrectionDecl()->getDeclContext(),
7777           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
7778           ExtraArgs.AddToScope);
7779 
7780       if (Trap.hasErrorOccurred())
7781         Result = nullptr;
7782     }
7783 
7784     if (Result) {
7785       // Determine which correction we picked.
7786       Decl *Canonical = Result->getCanonicalDecl();
7787       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7788            I != E; ++I)
7789         if ((*I)->getCanonicalDecl() == Canonical)
7790           Correction.setCorrectionDecl(*I);
7791 
7792       // Let Sema know about the correction.
7793       SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
7794       SemaRef.diagnoseTypo(
7795           Correction,
7796           SemaRef.PDiag(IsLocalFriend
7797                           ? diag::err_no_matching_local_friend_suggest
7798                           : diag::err_member_decl_does_not_match_suggest)
7799             << Name << NewDC << IsDefinition);
7800       return Result;
7801     }
7802 
7803     // Pretend the typo correction never occurred
7804     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
7805                               ExtraArgs.D.getIdentifierLoc());
7806     ExtraArgs.D.setRedeclaration(wasRedeclaration);
7807     Previous.clear();
7808     Previous.setLookupName(Name);
7809   }
7810 
7811   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
7812       << Name << NewDC << IsDefinition << NewFD->getLocation();
7813 
7814   bool NewFDisConst = false;
7815   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
7816     NewFDisConst = NewMD->isConst();
7817 
7818   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
7819        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
7820        NearMatch != NearMatchEnd; ++NearMatch) {
7821     FunctionDecl *FD = NearMatch->first;
7822     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7823     bool FDisConst = MD && MD->isConst();
7824     bool IsMember = MD || !IsLocalFriend;
7825 
7826     // FIXME: These notes are poorly worded for the local friend case.
7827     if (unsigned Idx = NearMatch->second) {
7828       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
7829       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
7830       if (Loc.isInvalid()) Loc = FD->getLocation();
7831       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
7832                                  : diag::note_local_decl_close_param_match)
7833         << Idx << FDParam->getType()
7834         << NewFD->getParamDecl(Idx - 1)->getType();
7835     } else if (FDisConst != NewFDisConst) {
7836       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
7837           << NewFDisConst << FD->getSourceRange().getEnd();
7838     } else
7839       SemaRef.Diag(FD->getLocation(),
7840                    IsMember ? diag::note_member_def_close_match
7841                             : diag::note_local_decl_close_match);
7842   }
7843   return nullptr;
7844 }
7845 
7846 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
7847   switch (D.getDeclSpec().getStorageClassSpec()) {
7848   default: llvm_unreachable("Unknown storage class!");
7849   case DeclSpec::SCS_auto:
7850   case DeclSpec::SCS_register:
7851   case DeclSpec::SCS_mutable:
7852     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7853                  diag::err_typecheck_sclass_func);
7854     D.getMutableDeclSpec().ClearStorageClassSpecs();
7855     D.setInvalidType();
7856     break;
7857   case DeclSpec::SCS_unspecified: break;
7858   case DeclSpec::SCS_extern:
7859     if (D.getDeclSpec().isExternInLinkageSpec())
7860       return SC_None;
7861     return SC_Extern;
7862   case DeclSpec::SCS_static: {
7863     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7864       // C99 6.7.1p5:
7865       //   The declaration of an identifier for a function that has
7866       //   block scope shall have no explicit storage-class specifier
7867       //   other than extern
7868       // See also (C++ [dcl.stc]p4).
7869       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7870                    diag::err_static_block_func);
7871       break;
7872     } else
7873       return SC_Static;
7874   }
7875   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
7876   }
7877 
7878   // No explicit storage class has already been returned
7879   return SC_None;
7880 }
7881 
7882 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
7883                                            DeclContext *DC, QualType &R,
7884                                            TypeSourceInfo *TInfo,
7885                                            StorageClass SC,
7886                                            bool &IsVirtualOkay) {
7887   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
7888   DeclarationName Name = NameInfo.getName();
7889 
7890   FunctionDecl *NewFD = nullptr;
7891   bool isInline = D.getDeclSpec().isInlineSpecified();
7892 
7893   if (!SemaRef.getLangOpts().CPlusPlus) {
7894     // Determine whether the function was written with a
7895     // prototype. This true when:
7896     //   - there is a prototype in the declarator, or
7897     //   - the type R of the function is some kind of typedef or other non-
7898     //     attributed reference to a type name (which eventually refers to a
7899     //     function type).
7900     bool HasPrototype =
7901       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
7902       (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
7903 
7904     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
7905                                  D.getLocStart(), NameInfo, R,
7906                                  TInfo, SC, isInline,
7907                                  HasPrototype, false);
7908     if (D.isInvalidType())
7909       NewFD->setInvalidDecl();
7910 
7911     return NewFD;
7912   }
7913 
7914   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
7915   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
7916 
7917   // Check that the return type is not an abstract class type.
7918   // For record types, this is done by the AbstractClassUsageDiagnoser once
7919   // the class has been completely parsed.
7920   if (!DC->isRecord() &&
7921       SemaRef.RequireNonAbstractType(
7922           D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
7923           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
7924     D.setInvalidType();
7925 
7926   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
7927     // This is a C++ constructor declaration.
7928     assert(DC->isRecord() &&
7929            "Constructors can only be declared in a member context");
7930 
7931     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
7932     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
7933                                       D.getLocStart(), NameInfo,
7934                                       R, TInfo, isExplicit, isInline,
7935                                       /*isImplicitlyDeclared=*/false,
7936                                       isConstexpr);
7937 
7938   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7939     // This is a C++ destructor declaration.
7940     if (DC->isRecord()) {
7941       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
7942       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
7943       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
7944                                         SemaRef.Context, Record,
7945                                         D.getLocStart(),
7946                                         NameInfo, R, TInfo, isInline,
7947                                         /*isImplicitlyDeclared=*/false);
7948 
7949       // If the class is complete, then we now create the implicit exception
7950       // specification. If the class is incomplete or dependent, we can't do
7951       // it yet.
7952       if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
7953           Record->getDefinition() && !Record->isBeingDefined() &&
7954           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
7955         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
7956       }
7957 
7958       IsVirtualOkay = true;
7959       return NewDD;
7960 
7961     } else {
7962       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
7963       D.setInvalidType();
7964 
7965       // Create a FunctionDecl to satisfy the function definition parsing
7966       // code path.
7967       return FunctionDecl::Create(SemaRef.Context, DC,
7968                                   D.getLocStart(),
7969                                   D.getIdentifierLoc(), Name, R, TInfo,
7970                                   SC, isInline,
7971                                   /*hasPrototype=*/true, isConstexpr);
7972     }
7973 
7974   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
7975     if (!DC->isRecord()) {
7976       SemaRef.Diag(D.getIdentifierLoc(),
7977            diag::err_conv_function_not_member);
7978       return nullptr;
7979     }
7980 
7981     SemaRef.CheckConversionDeclarator(D, R, SC);
7982     IsVirtualOkay = true;
7983     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
7984                                      D.getLocStart(), NameInfo,
7985                                      R, TInfo, isInline, isExplicit,
7986                                      isConstexpr, SourceLocation());
7987 
7988   } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
7989     SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
7990 
7991     return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getLocStart(),
7992                                          isExplicit, NameInfo, R, TInfo,
7993                                          D.getLocEnd());
7994   } else if (DC->isRecord()) {
7995     // If the name of the function is the same as the name of the record,
7996     // then this must be an invalid constructor that has a return type.
7997     // (The parser checks for a return type and makes the declarator a
7998     // constructor if it has no return type).
7999     if (Name.getAsIdentifierInfo() &&
8000         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8001       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8002         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8003         << SourceRange(D.getIdentifierLoc());
8004       return nullptr;
8005     }
8006 
8007     // This is a C++ method declaration.
8008     CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
8009                                                cast<CXXRecordDecl>(DC),
8010                                                D.getLocStart(), NameInfo, R,
8011                                                TInfo, SC, isInline,
8012                                                isConstexpr, SourceLocation());
8013     IsVirtualOkay = !Ret->isStatic();
8014     return Ret;
8015   } else {
8016     bool isFriend =
8017         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8018     if (!isFriend && SemaRef.CurContext->isRecord())
8019       return nullptr;
8020 
8021     // Determine whether the function was written with a
8022     // prototype. This true when:
8023     //   - we're in C++ (where every function has a prototype),
8024     return FunctionDecl::Create(SemaRef.Context, DC,
8025                                 D.getLocStart(),
8026                                 NameInfo, R, TInfo, SC, isInline,
8027                                 true/*HasPrototype*/, isConstexpr);
8028   }
8029 }
8030 
8031 enum OpenCLParamType {
8032   ValidKernelParam,
8033   PtrPtrKernelParam,
8034   PtrKernelParam,
8035   InvalidAddrSpacePtrKernelParam,
8036   InvalidKernelParam,
8037   RecordKernelParam
8038 };
8039 
8040 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8041   if (PT->isPointerType()) {
8042     QualType PointeeType = PT->getPointeeType();
8043     if (PointeeType->isPointerType())
8044       return PtrPtrKernelParam;
8045     if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8046         PointeeType.getAddressSpace() == LangAS::opencl_private ||
8047         PointeeType.getAddressSpace() == LangAS::Default)
8048       return InvalidAddrSpacePtrKernelParam;
8049     return PtrKernelParam;
8050   }
8051 
8052   // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
8053   // be used as builtin types.
8054 
8055   if (PT->isImageType())
8056     return PtrKernelParam;
8057 
8058   if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8059     return InvalidKernelParam;
8060 
8061   // OpenCL extension spec v1.2 s9.5:
8062   // This extension adds support for half scalar and vector types as built-in
8063   // types that can be used for arithmetic operations, conversions etc.
8064   if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
8065     return InvalidKernelParam;
8066 
8067   if (PT->isRecordType())
8068     return RecordKernelParam;
8069 
8070   return ValidKernelParam;
8071 }
8072 
8073 static void checkIsValidOpenCLKernelParameter(
8074   Sema &S,
8075   Declarator &D,
8076   ParmVarDecl *Param,
8077   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8078   QualType PT = Param->getType();
8079 
8080   // Cache the valid types we encounter to avoid rechecking structs that are
8081   // used again
8082   if (ValidTypes.count(PT.getTypePtr()))
8083     return;
8084 
8085   switch (getOpenCLKernelParameterType(S, PT)) {
8086   case PtrPtrKernelParam:
8087     // OpenCL v1.2 s6.9.a:
8088     // A kernel function argument cannot be declared as a
8089     // pointer to a pointer type.
8090     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8091     D.setInvalidType();
8092     return;
8093 
8094   case InvalidAddrSpacePtrKernelParam:
8095     // OpenCL v1.0 s6.5:
8096     // __kernel function arguments declared to be a pointer of a type can point
8097     // to one of the following address spaces only : __global, __local or
8098     // __constant.
8099     S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8100     D.setInvalidType();
8101     return;
8102 
8103     // OpenCL v1.2 s6.9.k:
8104     // Arguments to kernel functions in a program cannot be declared with the
8105     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8106     // uintptr_t or a struct and/or union that contain fields declared to be
8107     // one of these built-in scalar types.
8108 
8109   case InvalidKernelParam:
8110     // OpenCL v1.2 s6.8 n:
8111     // A kernel function argument cannot be declared
8112     // of event_t type.
8113     // Do not diagnose half type since it is diagnosed as invalid argument
8114     // type for any function elsewhere.
8115     if (!PT->isHalfType())
8116       S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8117     D.setInvalidType();
8118     return;
8119 
8120   case PtrKernelParam:
8121   case ValidKernelParam:
8122     ValidTypes.insert(PT.getTypePtr());
8123     return;
8124 
8125   case RecordKernelParam:
8126     break;
8127   }
8128 
8129   // Track nested structs we will inspect
8130   SmallVector<const Decl *, 4> VisitStack;
8131 
8132   // Track where we are in the nested structs. Items will migrate from
8133   // VisitStack to HistoryStack as we do the DFS for bad field.
8134   SmallVector<const FieldDecl *, 4> HistoryStack;
8135   HistoryStack.push_back(nullptr);
8136 
8137   const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
8138   VisitStack.push_back(PD);
8139 
8140   assert(VisitStack.back() && "First decl null?");
8141 
8142   do {
8143     const Decl *Next = VisitStack.pop_back_val();
8144     if (!Next) {
8145       assert(!HistoryStack.empty());
8146       // Found a marker, we have gone up a level
8147       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8148         ValidTypes.insert(Hist->getType().getTypePtr());
8149 
8150       continue;
8151     }
8152 
8153     // Adds everything except the original parameter declaration (which is not a
8154     // field itself) to the history stack.
8155     const RecordDecl *RD;
8156     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8157       HistoryStack.push_back(Field);
8158       RD = Field->getType()->castAs<RecordType>()->getDecl();
8159     } else {
8160       RD = cast<RecordDecl>(Next);
8161     }
8162 
8163     // Add a null marker so we know when we've gone back up a level
8164     VisitStack.push_back(nullptr);
8165 
8166     for (const auto *FD : RD->fields()) {
8167       QualType QT = FD->getType();
8168 
8169       if (ValidTypes.count(QT.getTypePtr()))
8170         continue;
8171 
8172       OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8173       if (ParamType == ValidKernelParam)
8174         continue;
8175 
8176       if (ParamType == RecordKernelParam) {
8177         VisitStack.push_back(FD);
8178         continue;
8179       }
8180 
8181       // OpenCL v1.2 s6.9.p:
8182       // Arguments to kernel functions that are declared to be a struct or union
8183       // do not allow OpenCL objects to be passed as elements of the struct or
8184       // union.
8185       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8186           ParamType == InvalidAddrSpacePtrKernelParam) {
8187         S.Diag(Param->getLocation(),
8188                diag::err_record_with_pointers_kernel_param)
8189           << PT->isUnionType()
8190           << PT;
8191       } else {
8192         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8193       }
8194 
8195       S.Diag(PD->getLocation(), diag::note_within_field_of_type)
8196         << PD->getDeclName();
8197 
8198       // We have an error, now let's go back up through history and show where
8199       // the offending field came from
8200       for (ArrayRef<const FieldDecl *>::const_iterator
8201                I = HistoryStack.begin() + 1,
8202                E = HistoryStack.end();
8203            I != E; ++I) {
8204         const FieldDecl *OuterField = *I;
8205         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8206           << OuterField->getType();
8207       }
8208 
8209       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8210         << QT->isPointerType()
8211         << QT;
8212       D.setInvalidType();
8213       return;
8214     }
8215   } while (!VisitStack.empty());
8216 }
8217 
8218 /// Find the DeclContext in which a tag is implicitly declared if we see an
8219 /// elaborated type specifier in the specified context, and lookup finds
8220 /// nothing.
8221 static DeclContext *getTagInjectionContext(DeclContext *DC) {
8222   while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8223     DC = DC->getParent();
8224   return DC;
8225 }
8226 
8227 /// Find the Scope in which a tag is implicitly declared if we see an
8228 /// elaborated type specifier in the specified context, and lookup finds
8229 /// nothing.
8230 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8231   while (S->isClassScope() ||
8232          (LangOpts.CPlusPlus &&
8233           S->isFunctionPrototypeScope()) ||
8234          ((S->getFlags() & Scope::DeclScope) == 0) ||
8235          (S->getEntity() && S->getEntity()->isTransparentContext()))
8236     S = S->getParent();
8237   return S;
8238 }
8239 
8240 NamedDecl*
8241 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
8242                               TypeSourceInfo *TInfo, LookupResult &Previous,
8243                               MultiTemplateParamsArg TemplateParamLists,
8244                               bool &AddToScope) {
8245   QualType R = TInfo->getType();
8246 
8247   assert(R.getTypePtr()->isFunctionType());
8248 
8249   // TODO: consider using NameInfo for diagnostic.
8250   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8251   DeclarationName Name = NameInfo.getName();
8252   StorageClass SC = getFunctionStorageClass(*this, D);
8253 
8254   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
8255     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8256          diag::err_invalid_thread)
8257       << DeclSpec::getSpecifierName(TSCS);
8258 
8259   if (D.isFirstDeclarationOfMember())
8260     adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
8261                            D.getIdentifierLoc());
8262 
8263   bool isFriend = false;
8264   FunctionTemplateDecl *FunctionTemplate = nullptr;
8265   bool isMemberSpecialization = false;
8266   bool isFunctionTemplateSpecialization = false;
8267 
8268   bool isDependentClassScopeExplicitSpecialization = false;
8269   bool HasExplicitTemplateArgs = false;
8270   TemplateArgumentListInfo TemplateArgs;
8271 
8272   bool isVirtualOkay = false;
8273 
8274   DeclContext *OriginalDC = DC;
8275   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
8276 
8277   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
8278                                               isVirtualOkay);
8279   if (!NewFD) return nullptr;
8280 
8281   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
8282     NewFD->setTopLevelDeclInObjCContainer();
8283 
8284   // Set the lexical context. If this is a function-scope declaration, or has a
8285   // C++ scope specifier, or is the object of a friend declaration, the lexical
8286   // context will be different from the semantic context.
8287   NewFD->setLexicalDeclContext(CurContext);
8288 
8289   if (IsLocalExternDecl)
8290     NewFD->setLocalExternDecl();
8291 
8292   if (getLangOpts().CPlusPlus) {
8293     bool isInline = D.getDeclSpec().isInlineSpecified();
8294     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8295     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
8296     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
8297     isFriend = D.getDeclSpec().isFriendSpecified();
8298     if (isFriend && !isInline && D.isFunctionDefinition()) {
8299       // C++ [class.friend]p5
8300       //   A function can be defined in a friend declaration of a
8301       //   class . . . . Such a function is implicitly inline.
8302       NewFD->setImplicitlyInline();
8303     }
8304 
8305     // If this is a method defined in an __interface, and is not a constructor
8306     // or an overloaded operator, then set the pure flag (isVirtual will already
8307     // return true).
8308     if (const CXXRecordDecl *Parent =
8309           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
8310       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
8311         NewFD->setPure(true);
8312 
8313       // C++ [class.union]p2
8314       //   A union can have member functions, but not virtual functions.
8315       if (isVirtual && Parent->isUnion())
8316         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
8317     }
8318 
8319     SetNestedNameSpecifier(NewFD, D);
8320     isMemberSpecialization = false;
8321     isFunctionTemplateSpecialization = false;
8322     if (D.isInvalidType())
8323       NewFD->setInvalidDecl();
8324 
8325     // Match up the template parameter lists with the scope specifier, then
8326     // determine whether we have a template or a template specialization.
8327     bool Invalid = false;
8328     if (TemplateParameterList *TemplateParams =
8329             MatchTemplateParametersToScopeSpecifier(
8330                 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
8331                 D.getCXXScopeSpec(),
8332                 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
8333                     ? D.getName().TemplateId
8334                     : nullptr,
8335                 TemplateParamLists, isFriend, isMemberSpecialization,
8336                 Invalid)) {
8337       if (TemplateParams->size() > 0) {
8338         // This is a function template
8339 
8340         // Check that we can declare a template here.
8341         if (CheckTemplateDeclScope(S, TemplateParams))
8342           NewFD->setInvalidDecl();
8343 
8344         // A destructor cannot be a template.
8345         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8346           Diag(NewFD->getLocation(), diag::err_destructor_template);
8347           NewFD->setInvalidDecl();
8348         }
8349 
8350         // If we're adding a template to a dependent context, we may need to
8351         // rebuilding some of the types used within the template parameter list,
8352         // now that we know what the current instantiation is.
8353         if (DC->isDependentContext()) {
8354           ContextRAII SavedContext(*this, DC);
8355           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
8356             Invalid = true;
8357         }
8358 
8359         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
8360                                                         NewFD->getLocation(),
8361                                                         Name, TemplateParams,
8362                                                         NewFD);
8363         FunctionTemplate->setLexicalDeclContext(CurContext);
8364         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
8365 
8366         // For source fidelity, store the other template param lists.
8367         if (TemplateParamLists.size() > 1) {
8368           NewFD->setTemplateParameterListsInfo(Context,
8369                                                TemplateParamLists.drop_back(1));
8370         }
8371       } else {
8372         // This is a function template specialization.
8373         isFunctionTemplateSpecialization = true;
8374         // For source fidelity, store all the template param lists.
8375         if (TemplateParamLists.size() > 0)
8376           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8377 
8378         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
8379         if (isFriend) {
8380           // We want to remove the "template<>", found here.
8381           SourceRange RemoveRange = TemplateParams->getSourceRange();
8382 
8383           // If we remove the template<> and the name is not a
8384           // template-id, we're actually silently creating a problem:
8385           // the friend declaration will refer to an untemplated decl,
8386           // and clearly the user wants a template specialization.  So
8387           // we need to insert '<>' after the name.
8388           SourceLocation InsertLoc;
8389           if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
8390             InsertLoc = D.getName().getSourceRange().getEnd();
8391             InsertLoc = getLocForEndOfToken(InsertLoc);
8392           }
8393 
8394           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
8395             << Name << RemoveRange
8396             << FixItHint::CreateRemoval(RemoveRange)
8397             << FixItHint::CreateInsertion(InsertLoc, "<>");
8398         }
8399       }
8400     }
8401     else {
8402       // All template param lists were matched against the scope specifier:
8403       // this is NOT (an explicit specialization of) a template.
8404       if (TemplateParamLists.size() > 0)
8405         // For source fidelity, store all the template param lists.
8406         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8407     }
8408 
8409     if (Invalid) {
8410       NewFD->setInvalidDecl();
8411       if (FunctionTemplate)
8412         FunctionTemplate->setInvalidDecl();
8413     }
8414 
8415     // C++ [dcl.fct.spec]p5:
8416     //   The virtual specifier shall only be used in declarations of
8417     //   nonstatic class member functions that appear within a
8418     //   member-specification of a class declaration; see 10.3.
8419     //
8420     if (isVirtual && !NewFD->isInvalidDecl()) {
8421       if (!isVirtualOkay) {
8422         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8423              diag::err_virtual_non_function);
8424       } else if (!CurContext->isRecord()) {
8425         // 'virtual' was specified outside of the class.
8426         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8427              diag::err_virtual_out_of_class)
8428           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8429       } else if (NewFD->getDescribedFunctionTemplate()) {
8430         // C++ [temp.mem]p3:
8431         //  A member function template shall not be virtual.
8432         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8433              diag::err_virtual_member_function_template)
8434           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8435       } else {
8436         // Okay: Add virtual to the method.
8437         NewFD->setVirtualAsWritten(true);
8438       }
8439 
8440       if (getLangOpts().CPlusPlus14 &&
8441           NewFD->getReturnType()->isUndeducedType())
8442         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
8443     }
8444 
8445     if (getLangOpts().CPlusPlus14 &&
8446         (NewFD->isDependentContext() ||
8447          (isFriend && CurContext->isDependentContext())) &&
8448         NewFD->getReturnType()->isUndeducedType()) {
8449       // If the function template is referenced directly (for instance, as a
8450       // member of the current instantiation), pretend it has a dependent type.
8451       // This is not really justified by the standard, but is the only sane
8452       // thing to do.
8453       // FIXME: For a friend function, we have not marked the function as being
8454       // a friend yet, so 'isDependentContext' on the FD doesn't work.
8455       const FunctionProtoType *FPT =
8456           NewFD->getType()->castAs<FunctionProtoType>();
8457       QualType Result =
8458           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
8459       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
8460                                              FPT->getExtProtoInfo()));
8461     }
8462 
8463     // C++ [dcl.fct.spec]p3:
8464     //  The inline specifier shall not appear on a block scope function
8465     //  declaration.
8466     if (isInline && !NewFD->isInvalidDecl()) {
8467       if (CurContext->isFunctionOrMethod()) {
8468         // 'inline' is not allowed on block scope function declaration.
8469         Diag(D.getDeclSpec().getInlineSpecLoc(),
8470              diag::err_inline_declaration_block_scope) << Name
8471           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
8472       }
8473     }
8474 
8475     // C++ [dcl.fct.spec]p6:
8476     //  The explicit specifier shall be used only in the declaration of a
8477     //  constructor or conversion function within its class definition;
8478     //  see 12.3.1 and 12.3.2.
8479     if (isExplicit && !NewFD->isInvalidDecl() &&
8480         !isa<CXXDeductionGuideDecl>(NewFD)) {
8481       if (!CurContext->isRecord()) {
8482         // 'explicit' was specified outside of the class.
8483         Diag(D.getDeclSpec().getExplicitSpecLoc(),
8484              diag::err_explicit_out_of_class)
8485           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
8486       } else if (!isa<CXXConstructorDecl>(NewFD) &&
8487                  !isa<CXXConversionDecl>(NewFD)) {
8488         // 'explicit' was specified on a function that wasn't a constructor
8489         // or conversion function.
8490         Diag(D.getDeclSpec().getExplicitSpecLoc(),
8491              diag::err_explicit_non_ctor_or_conv_function)
8492           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
8493       }
8494     }
8495 
8496     if (isConstexpr) {
8497       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
8498       // are implicitly inline.
8499       NewFD->setImplicitlyInline();
8500 
8501       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
8502       // be either constructors or to return a literal type. Therefore,
8503       // destructors cannot be declared constexpr.
8504       if (isa<CXXDestructorDecl>(NewFD))
8505         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
8506     }
8507 
8508     // If __module_private__ was specified, mark the function accordingly.
8509     if (D.getDeclSpec().isModulePrivateSpecified()) {
8510       if (isFunctionTemplateSpecialization) {
8511         SourceLocation ModulePrivateLoc
8512           = D.getDeclSpec().getModulePrivateSpecLoc();
8513         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
8514           << 0
8515           << FixItHint::CreateRemoval(ModulePrivateLoc);
8516       } else {
8517         NewFD->setModulePrivate();
8518         if (FunctionTemplate)
8519           FunctionTemplate->setModulePrivate();
8520       }
8521     }
8522 
8523     if (isFriend) {
8524       if (FunctionTemplate) {
8525         FunctionTemplate->setObjectOfFriendDecl();
8526         FunctionTemplate->setAccess(AS_public);
8527       }
8528       NewFD->setObjectOfFriendDecl();
8529       NewFD->setAccess(AS_public);
8530     }
8531 
8532     // If a function is defined as defaulted or deleted, mark it as such now.
8533     // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
8534     // definition kind to FDK_Definition.
8535     switch (D.getFunctionDefinitionKind()) {
8536       case FDK_Declaration:
8537       case FDK_Definition:
8538         break;
8539 
8540       case FDK_Defaulted:
8541         NewFD->setDefaulted();
8542         break;
8543 
8544       case FDK_Deleted:
8545         NewFD->setDeletedAsWritten();
8546         break;
8547     }
8548 
8549     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
8550         D.isFunctionDefinition()) {
8551       // C++ [class.mfct]p2:
8552       //   A member function may be defined (8.4) in its class definition, in
8553       //   which case it is an inline member function (7.1.2)
8554       NewFD->setImplicitlyInline();
8555     }
8556 
8557     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
8558         !CurContext->isRecord()) {
8559       // C++ [class.static]p1:
8560       //   A data or function member of a class may be declared static
8561       //   in a class definition, in which case it is a static member of
8562       //   the class.
8563 
8564       // Complain about the 'static' specifier if it's on an out-of-line
8565       // member function definition.
8566       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8567            diag::err_static_out_of_line)
8568         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
8569     }
8570 
8571     // C++11 [except.spec]p15:
8572     //   A deallocation function with no exception-specification is treated
8573     //   as if it were specified with noexcept(true).
8574     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
8575     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
8576          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
8577         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
8578       NewFD->setType(Context.getFunctionType(
8579           FPT->getReturnType(), FPT->getParamTypes(),
8580           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
8581   }
8582 
8583   // Filter out previous declarations that don't match the scope.
8584   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
8585                        D.getCXXScopeSpec().isNotEmpty() ||
8586                        isMemberSpecialization ||
8587                        isFunctionTemplateSpecialization);
8588 
8589   // Handle GNU asm-label extension (encoded as an attribute).
8590   if (Expr *E = (Expr*) D.getAsmLabel()) {
8591     // The parser guarantees this is a string.
8592     StringLiteral *SE = cast<StringLiteral>(E);
8593     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
8594                                                 SE->getString(), 0));
8595   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
8596     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
8597       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
8598     if (I != ExtnameUndeclaredIdentifiers.end()) {
8599       if (isDeclExternC(NewFD)) {
8600         NewFD->addAttr(I->second);
8601         ExtnameUndeclaredIdentifiers.erase(I);
8602       } else
8603         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
8604             << /*Variable*/0 << NewFD;
8605     }
8606   }
8607 
8608   // Copy the parameter declarations from the declarator D to the function
8609   // declaration NewFD, if they are available.  First scavenge them into Params.
8610   SmallVector<ParmVarDecl*, 16> Params;
8611   unsigned FTIIdx;
8612   if (D.isFunctionDeclarator(FTIIdx)) {
8613     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
8614 
8615     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
8616     // function that takes no arguments, not a function that takes a
8617     // single void argument.
8618     // We let through "const void" here because Sema::GetTypeForDeclarator
8619     // already checks for that case.
8620     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
8621       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
8622         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
8623         assert(Param->getDeclContext() != NewFD && "Was set before ?");
8624         Param->setDeclContext(NewFD);
8625         Params.push_back(Param);
8626 
8627         if (Param->isInvalidDecl())
8628           NewFD->setInvalidDecl();
8629       }
8630     }
8631 
8632     if (!getLangOpts().CPlusPlus) {
8633       // In C, find all the tag declarations from the prototype and move them
8634       // into the function DeclContext. Remove them from the surrounding tag
8635       // injection context of the function, which is typically but not always
8636       // the TU.
8637       DeclContext *PrototypeTagContext =
8638           getTagInjectionContext(NewFD->getLexicalDeclContext());
8639       for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
8640         auto *TD = dyn_cast<TagDecl>(NonParmDecl);
8641 
8642         // We don't want to reparent enumerators. Look at their parent enum
8643         // instead.
8644         if (!TD) {
8645           if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
8646             TD = cast<EnumDecl>(ECD->getDeclContext());
8647         }
8648         if (!TD)
8649           continue;
8650         DeclContext *TagDC = TD->getLexicalDeclContext();
8651         if (!TagDC->containsDecl(TD))
8652           continue;
8653         TagDC->removeDecl(TD);
8654         TD->setDeclContext(NewFD);
8655         NewFD->addDecl(TD);
8656 
8657         // Preserve the lexical DeclContext if it is not the surrounding tag
8658         // injection context of the FD. In this example, the semantic context of
8659         // E will be f and the lexical context will be S, while both the
8660         // semantic and lexical contexts of S will be f:
8661         //   void f(struct S { enum E { a } f; } s);
8662         if (TagDC != PrototypeTagContext)
8663           TD->setLexicalDeclContext(TagDC);
8664       }
8665     }
8666   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
8667     // When we're declaring a function with a typedef, typeof, etc as in the
8668     // following example, we'll need to synthesize (unnamed)
8669     // parameters for use in the declaration.
8670     //
8671     // @code
8672     // typedef void fn(int);
8673     // fn f;
8674     // @endcode
8675 
8676     // Synthesize a parameter for each argument type.
8677     for (const auto &AI : FT->param_types()) {
8678       ParmVarDecl *Param =
8679           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
8680       Param->setScopeInfo(0, Params.size());
8681       Params.push_back(Param);
8682     }
8683   } else {
8684     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
8685            "Should not need args for typedef of non-prototype fn");
8686   }
8687 
8688   // Finally, we know we have the right number of parameters, install them.
8689   NewFD->setParams(Params);
8690 
8691   if (D.getDeclSpec().isNoreturnSpecified())
8692     NewFD->addAttr(
8693         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
8694                                        Context, 0));
8695 
8696   // Functions returning a variably modified type violate C99 6.7.5.2p2
8697   // because all functions have linkage.
8698   if (!NewFD->isInvalidDecl() &&
8699       NewFD->getReturnType()->isVariablyModifiedType()) {
8700     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
8701     NewFD->setInvalidDecl();
8702   }
8703 
8704   // Apply an implicit SectionAttr if '#pragma clang section text' is active
8705   if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
8706       !NewFD->hasAttr<SectionAttr>()) {
8707     NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(Context,
8708                                                  PragmaClangTextSection.SectionName,
8709                                                  PragmaClangTextSection.PragmaLocation));
8710   }
8711 
8712   // Apply an implicit SectionAttr if #pragma code_seg is active.
8713   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
8714       !NewFD->hasAttr<SectionAttr>()) {
8715     NewFD->addAttr(
8716         SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
8717                                     CodeSegStack.CurrentValue->getString(),
8718                                     CodeSegStack.CurrentPragmaLocation));
8719     if (UnifySection(CodeSegStack.CurrentValue->getString(),
8720                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
8721                          ASTContext::PSF_Read,
8722                      NewFD))
8723       NewFD->dropAttr<SectionAttr>();
8724   }
8725 
8726   // Handle attributes.
8727   ProcessDeclAttributes(S, NewFD, D);
8728 
8729   if (getLangOpts().OpenCL) {
8730     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
8731     // type declaration will generate a compilation error.
8732     LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
8733     if (AddressSpace != LangAS::Default) {
8734       Diag(NewFD->getLocation(),
8735            diag::err_opencl_return_value_with_address_space);
8736       NewFD->setInvalidDecl();
8737     }
8738   }
8739 
8740   if (!getLangOpts().CPlusPlus) {
8741     // Perform semantic checking on the function declaration.
8742     if (!NewFD->isInvalidDecl() && NewFD->isMain())
8743       CheckMain(NewFD, D.getDeclSpec());
8744 
8745     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8746       CheckMSVCRTEntryPoint(NewFD);
8747 
8748     if (!NewFD->isInvalidDecl())
8749       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8750                                                   isMemberSpecialization));
8751     else if (!Previous.empty())
8752       // Recover gracefully from an invalid redeclaration.
8753       D.setRedeclaration(true);
8754     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
8755             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
8756            "previous declaration set still overloaded");
8757 
8758     // Diagnose no-prototype function declarations with calling conventions that
8759     // don't support variadic calls. Only do this in C and do it after merging
8760     // possibly prototyped redeclarations.
8761     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
8762     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
8763       CallingConv CC = FT->getExtInfo().getCC();
8764       if (!supportsVariadicCall(CC)) {
8765         // Windows system headers sometimes accidentally use stdcall without
8766         // (void) parameters, so we relax this to a warning.
8767         int DiagID =
8768             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
8769         Diag(NewFD->getLocation(), DiagID)
8770             << FunctionType::getNameForCallConv(CC);
8771       }
8772     }
8773   } else {
8774     // C++11 [replacement.functions]p3:
8775     //  The program's definitions shall not be specified as inline.
8776     //
8777     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
8778     //
8779     // Suppress the diagnostic if the function is __attribute__((used)), since
8780     // that forces an external definition to be emitted.
8781     if (D.getDeclSpec().isInlineSpecified() &&
8782         NewFD->isReplaceableGlobalAllocationFunction() &&
8783         !NewFD->hasAttr<UsedAttr>())
8784       Diag(D.getDeclSpec().getInlineSpecLoc(),
8785            diag::ext_operator_new_delete_declared_inline)
8786         << NewFD->getDeclName();
8787 
8788     // If the declarator is a template-id, translate the parser's template
8789     // argument list into our AST format.
8790     if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
8791       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
8792       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
8793       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
8794       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8795                                          TemplateId->NumArgs);
8796       translateTemplateArguments(TemplateArgsPtr,
8797                                  TemplateArgs);
8798 
8799       HasExplicitTemplateArgs = true;
8800 
8801       if (NewFD->isInvalidDecl()) {
8802         HasExplicitTemplateArgs = false;
8803       } else if (FunctionTemplate) {
8804         // Function template with explicit template arguments.
8805         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
8806           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
8807 
8808         HasExplicitTemplateArgs = false;
8809       } else {
8810         assert((isFunctionTemplateSpecialization ||
8811                 D.getDeclSpec().isFriendSpecified()) &&
8812                "should have a 'template<>' for this decl");
8813         // "friend void foo<>(int);" is an implicit specialization decl.
8814         isFunctionTemplateSpecialization = true;
8815       }
8816     } else if (isFriend && isFunctionTemplateSpecialization) {
8817       // This combination is only possible in a recovery case;  the user
8818       // wrote something like:
8819       //   template <> friend void foo(int);
8820       // which we're recovering from as if the user had written:
8821       //   friend void foo<>(int);
8822       // Go ahead and fake up a template id.
8823       HasExplicitTemplateArgs = true;
8824       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
8825       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
8826     }
8827 
8828     // We do not add HD attributes to specializations here because
8829     // they may have different constexpr-ness compared to their
8830     // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
8831     // may end up with different effective targets. Instead, a
8832     // specialization inherits its target attributes from its template
8833     // in the CheckFunctionTemplateSpecialization() call below.
8834     if (getLangOpts().CUDA & !isFunctionTemplateSpecialization)
8835       maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
8836 
8837     // If it's a friend (and only if it's a friend), it's possible
8838     // that either the specialized function type or the specialized
8839     // template is dependent, and therefore matching will fail.  In
8840     // this case, don't check the specialization yet.
8841     bool InstantiationDependent = false;
8842     if (isFunctionTemplateSpecialization && isFriend &&
8843         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
8844          TemplateSpecializationType::anyDependentTemplateArguments(
8845             TemplateArgs,
8846             InstantiationDependent))) {
8847       assert(HasExplicitTemplateArgs &&
8848              "friend function specialization without template args");
8849       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
8850                                                        Previous))
8851         NewFD->setInvalidDecl();
8852     } else if (isFunctionTemplateSpecialization) {
8853       if (CurContext->isDependentContext() && CurContext->isRecord()
8854           && !isFriend) {
8855         isDependentClassScopeExplicitSpecialization = true;
8856       } else if (!NewFD->isInvalidDecl() &&
8857                  CheckFunctionTemplateSpecialization(
8858                      NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
8859                      Previous))
8860         NewFD->setInvalidDecl();
8861 
8862       // C++ [dcl.stc]p1:
8863       //   A storage-class-specifier shall not be specified in an explicit
8864       //   specialization (14.7.3)
8865       FunctionTemplateSpecializationInfo *Info =
8866           NewFD->getTemplateSpecializationInfo();
8867       if (Info && SC != SC_None) {
8868         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
8869           Diag(NewFD->getLocation(),
8870                diag::err_explicit_specialization_inconsistent_storage_class)
8871             << SC
8872             << FixItHint::CreateRemoval(
8873                                       D.getDeclSpec().getStorageClassSpecLoc());
8874 
8875         else
8876           Diag(NewFD->getLocation(),
8877                diag::ext_explicit_specialization_storage_class)
8878             << FixItHint::CreateRemoval(
8879                                       D.getDeclSpec().getStorageClassSpecLoc());
8880       }
8881     } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
8882       if (CheckMemberSpecialization(NewFD, Previous))
8883           NewFD->setInvalidDecl();
8884     }
8885 
8886     // Perform semantic checking on the function declaration.
8887     if (!isDependentClassScopeExplicitSpecialization) {
8888       if (!NewFD->isInvalidDecl() && NewFD->isMain())
8889         CheckMain(NewFD, D.getDeclSpec());
8890 
8891       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8892         CheckMSVCRTEntryPoint(NewFD);
8893 
8894       if (!NewFD->isInvalidDecl())
8895         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8896                                                     isMemberSpecialization));
8897       else if (!Previous.empty())
8898         // Recover gracefully from an invalid redeclaration.
8899         D.setRedeclaration(true);
8900     }
8901 
8902     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
8903             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
8904            "previous declaration set still overloaded");
8905 
8906     NamedDecl *PrincipalDecl = (FunctionTemplate
8907                                 ? cast<NamedDecl>(FunctionTemplate)
8908                                 : NewFD);
8909 
8910     if (isFriend && NewFD->getPreviousDecl()) {
8911       AccessSpecifier Access = AS_public;
8912       if (!NewFD->isInvalidDecl())
8913         Access = NewFD->getPreviousDecl()->getAccess();
8914 
8915       NewFD->setAccess(Access);
8916       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
8917     }
8918 
8919     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
8920         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
8921       PrincipalDecl->setNonMemberOperator();
8922 
8923     // If we have a function template, check the template parameter
8924     // list. This will check and merge default template arguments.
8925     if (FunctionTemplate) {
8926       FunctionTemplateDecl *PrevTemplate =
8927                                      FunctionTemplate->getPreviousDecl();
8928       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
8929                        PrevTemplate ? PrevTemplate->getTemplateParameters()
8930                                     : nullptr,
8931                             D.getDeclSpec().isFriendSpecified()
8932                               ? (D.isFunctionDefinition()
8933                                    ? TPC_FriendFunctionTemplateDefinition
8934                                    : TPC_FriendFunctionTemplate)
8935                               : (D.getCXXScopeSpec().isSet() &&
8936                                  DC && DC->isRecord() &&
8937                                  DC->isDependentContext())
8938                                   ? TPC_ClassTemplateMember
8939                                   : TPC_FunctionTemplate);
8940     }
8941 
8942     if (NewFD->isInvalidDecl()) {
8943       // Ignore all the rest of this.
8944     } else if (!D.isRedeclaration()) {
8945       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
8946                                        AddToScope };
8947       // Fake up an access specifier if it's supposed to be a class member.
8948       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
8949         NewFD->setAccess(AS_public);
8950 
8951       // Qualified decls generally require a previous declaration.
8952       if (D.getCXXScopeSpec().isSet()) {
8953         // ...with the major exception of templated-scope or
8954         // dependent-scope friend declarations.
8955 
8956         // TODO: we currently also suppress this check in dependent
8957         // contexts because (1) the parameter depth will be off when
8958         // matching friend templates and (2) we might actually be
8959         // selecting a friend based on a dependent factor.  But there
8960         // are situations where these conditions don't apply and we
8961         // can actually do this check immediately.
8962         if (isFriend &&
8963             (TemplateParamLists.size() ||
8964              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
8965              CurContext->isDependentContext())) {
8966           // ignore these
8967         } else {
8968           // The user tried to provide an out-of-line definition for a
8969           // function that is a member of a class or namespace, but there
8970           // was no such member function declared (C++ [class.mfct]p2,
8971           // C++ [namespace.memdef]p2). For example:
8972           //
8973           // class X {
8974           //   void f() const;
8975           // };
8976           //
8977           // void X::f() { } // ill-formed
8978           //
8979           // Complain about this problem, and attempt to suggest close
8980           // matches (e.g., those that differ only in cv-qualifiers and
8981           // whether the parameter types are references).
8982 
8983           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
8984                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
8985             AddToScope = ExtraArgs.AddToScope;
8986             return Result;
8987           }
8988         }
8989 
8990         // Unqualified local friend declarations are required to resolve
8991         // to something.
8992       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
8993         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
8994                 *this, Previous, NewFD, ExtraArgs, true, S)) {
8995           AddToScope = ExtraArgs.AddToScope;
8996           return Result;
8997         }
8998       }
8999     } else if (!D.isFunctionDefinition() &&
9000                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9001                !isFriend && !isFunctionTemplateSpecialization &&
9002                !isMemberSpecialization) {
9003       // An out-of-line member function declaration must also be a
9004       // definition (C++ [class.mfct]p2).
9005       // Note that this is not the case for explicit specializations of
9006       // function templates or member functions of class templates, per
9007       // C++ [temp.expl.spec]p2. We also allow these declarations as an
9008       // extension for compatibility with old SWIG code which likes to
9009       // generate them.
9010       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9011         << D.getCXXScopeSpec().getRange();
9012     }
9013   }
9014 
9015   ProcessPragmaWeak(S, NewFD);
9016   checkAttributesAfterMerging(*this, *NewFD);
9017 
9018   AddKnownFunctionAttributes(NewFD);
9019 
9020   if (NewFD->hasAttr<OverloadableAttr>() &&
9021       !NewFD->getType()->getAs<FunctionProtoType>()) {
9022     Diag(NewFD->getLocation(),
9023          diag::err_attribute_overloadable_no_prototype)
9024       << NewFD;
9025 
9026     // Turn this into a variadic function with no parameters.
9027     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9028     FunctionProtoType::ExtProtoInfo EPI(
9029         Context.getDefaultCallingConvention(true, false));
9030     EPI.Variadic = true;
9031     EPI.ExtInfo = FT->getExtInfo();
9032 
9033     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9034     NewFD->setType(R);
9035   }
9036 
9037   // If there's a #pragma GCC visibility in scope, and this isn't a class
9038   // member, set the visibility of this function.
9039   if (!DC->isRecord() && NewFD->isExternallyVisible())
9040     AddPushedVisibilityAttribute(NewFD);
9041 
9042   // If there's a #pragma clang arc_cf_code_audited in scope, consider
9043   // marking the function.
9044   AddCFAuditedAttribute(NewFD);
9045 
9046   // If this is a function definition, check if we have to apply optnone due to
9047   // a pragma.
9048   if(D.isFunctionDefinition())
9049     AddRangeBasedOptnone(NewFD);
9050 
9051   // If this is the first declaration of an extern C variable, update
9052   // the map of such variables.
9053   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9054       isIncompleteDeclExternC(*this, NewFD))
9055     RegisterLocallyScopedExternCDecl(NewFD, S);
9056 
9057   // Set this FunctionDecl's range up to the right paren.
9058   NewFD->setRangeEnd(D.getSourceRange().getEnd());
9059 
9060   if (D.isRedeclaration() && !Previous.empty()) {
9061     NamedDecl *Prev = Previous.getRepresentativeDecl();
9062     checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9063                                    isMemberSpecialization ||
9064                                        isFunctionTemplateSpecialization,
9065                                    D.isFunctionDefinition());
9066   }
9067 
9068   if (getLangOpts().CUDA) {
9069     IdentifierInfo *II = NewFD->getIdentifier();
9070     if (II &&
9071         II->isStr(getLangOpts().HIP ? "hipConfigureCall"
9072                                     : "cudaConfigureCall") &&
9073         !NewFD->isInvalidDecl() &&
9074         NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9075       if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
9076         Diag(NewFD->getLocation(), diag::err_config_scalar_return);
9077       Context.setcudaConfigureCallDecl(NewFD);
9078     }
9079 
9080     // Variadic functions, other than a *declaration* of printf, are not allowed
9081     // in device-side CUDA code, unless someone passed
9082     // -fcuda-allow-variadic-functions.
9083     if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9084         (NewFD->hasAttr<CUDADeviceAttr>() ||
9085          NewFD->hasAttr<CUDAGlobalAttr>()) &&
9086         !(II && II->isStr("printf") && NewFD->isExternC() &&
9087           !D.isFunctionDefinition())) {
9088       Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9089     }
9090   }
9091 
9092   MarkUnusedFileScopedDecl(NewFD);
9093 
9094   if (getLangOpts().CPlusPlus) {
9095     if (FunctionTemplate) {
9096       if (NewFD->isInvalidDecl())
9097         FunctionTemplate->setInvalidDecl();
9098       return FunctionTemplate;
9099     }
9100 
9101     if (isMemberSpecialization && !NewFD->isInvalidDecl())
9102       CompleteMemberSpecialization(NewFD, Previous);
9103   }
9104 
9105   if (NewFD->hasAttr<OpenCLKernelAttr>()) {
9106     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9107     if ((getLangOpts().OpenCLVersion >= 120)
9108         && (SC == SC_Static)) {
9109       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9110       D.setInvalidType();
9111     }
9112 
9113     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9114     if (!NewFD->getReturnType()->isVoidType()) {
9115       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9116       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9117           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9118                                 : FixItHint());
9119       D.setInvalidType();
9120     }
9121 
9122     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9123     for (auto Param : NewFD->parameters())
9124       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9125   }
9126   for (const ParmVarDecl *Param : NewFD->parameters()) {
9127     QualType PT = Param->getType();
9128 
9129     // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
9130     // types.
9131     if (getLangOpts().OpenCLVersion >= 200) {
9132       if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
9133         QualType ElemTy = PipeTy->getElementType();
9134           if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
9135             Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
9136             D.setInvalidType();
9137           }
9138       }
9139     }
9140   }
9141 
9142   // Here we have an function template explicit specialization at class scope.
9143   // The actual specialization will be postponed to template instatiation
9144   // time via the ClassScopeFunctionSpecializationDecl node.
9145   if (isDependentClassScopeExplicitSpecialization) {
9146     ClassScopeFunctionSpecializationDecl *NewSpec =
9147                          ClassScopeFunctionSpecializationDecl::Create(
9148                                 Context, CurContext, NewFD->getLocation(),
9149                                 cast<CXXMethodDecl>(NewFD),
9150                                 HasExplicitTemplateArgs, TemplateArgs);
9151     CurContext->addDecl(NewSpec);
9152     AddToScope = false;
9153   }
9154 
9155   // Diagnose availability attributes. Availability cannot be used on functions
9156   // that are run during load/unload.
9157   if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
9158     if (NewFD->hasAttr<ConstructorAttr>()) {
9159       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9160           << 1;
9161       NewFD->dropAttr<AvailabilityAttr>();
9162     }
9163     if (NewFD->hasAttr<DestructorAttr>()) {
9164       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9165           << 2;
9166       NewFD->dropAttr<AvailabilityAttr>();
9167     }
9168   }
9169 
9170   return NewFD;
9171 }
9172 
9173 /// Checks if the new declaration declared in dependent context must be
9174 /// put in the same redeclaration chain as the specified declaration.
9175 ///
9176 /// \param D Declaration that is checked.
9177 /// \param PrevDecl Previous declaration found with proper lookup method for the
9178 ///                 same declaration name.
9179 /// \returns True if D must be added to the redeclaration chain which PrevDecl
9180 ///          belongs to.
9181 ///
9182 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
9183   // Any declarations should be put into redeclaration chains except for
9184   // friend declaration in a dependent context that names a function in
9185   // namespace scope.
9186   //
9187   // This allows to compile code like:
9188   //
9189   //       void func();
9190   //       template<typename T> class C1 { friend void func() { } };
9191   //       template<typename T> class C2 { friend void func() { } };
9192   //
9193   // This code snippet is a valid code unless both templates are instantiated.
9194   return !(D->getLexicalDeclContext()->isDependentContext() &&
9195            D->getDeclContext()->isFileContext() &&
9196            D->getFriendObjectKind() != Decl::FOK_None);
9197 }
9198 
9199 /// Check the target attribute of the function for MultiVersion
9200 /// validity.
9201 ///
9202 /// Returns true if there was an error, false otherwise.
9203 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
9204   const auto *TA = FD->getAttr<TargetAttr>();
9205   assert(TA && "MultiVersion Candidate requires a target attribute");
9206   TargetAttr::ParsedTargetAttr ParseInfo = TA->parse();
9207   const TargetInfo &TargetInfo = S.Context.getTargetInfo();
9208   enum ErrType { Feature = 0, Architecture = 1 };
9209 
9210   if (!ParseInfo.Architecture.empty() &&
9211       !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
9212     S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9213         << Architecture << ParseInfo.Architecture;
9214     return true;
9215   }
9216 
9217   for (const auto &Feat : ParseInfo.Features) {
9218     auto BareFeat = StringRef{Feat}.substr(1);
9219     if (Feat[0] == '-') {
9220       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9221           << Feature << ("no-" + BareFeat).str();
9222       return true;
9223     }
9224 
9225     if (!TargetInfo.validateCpuSupports(BareFeat) ||
9226         !TargetInfo.isValidFeatureName(BareFeat)) {
9227       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9228           << Feature << BareFeat;
9229       return true;
9230     }
9231   }
9232   return false;
9233 }
9234 
9235 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
9236                                              const FunctionDecl *NewFD,
9237                                              bool CausesMV) {
9238   enum DoesntSupport {
9239     FuncTemplates = 0,
9240     VirtFuncs = 1,
9241     DeducedReturn = 2,
9242     Constructors = 3,
9243     Destructors = 4,
9244     DeletedFuncs = 5,
9245     DefaultedFuncs = 6
9246   };
9247   enum Different {
9248     CallingConv = 0,
9249     ReturnType = 1,
9250     ConstexprSpec = 2,
9251     InlineSpec = 3,
9252     StorageClass = 4,
9253     Linkage = 5
9254   };
9255 
9256   // For now, disallow all other attributes.  These should be opt-in, but
9257   // an analysis of all of them is a future FIXME.
9258   if (CausesMV && OldFD &&
9259       std::distance(OldFD->attr_begin(), OldFD->attr_end()) != 1) {
9260     S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs);
9261     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9262     return true;
9263   }
9264 
9265   if (std::distance(NewFD->attr_begin(), NewFD->attr_end()) != 1)
9266     return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs);
9267 
9268   if (NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
9269     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9270            << FuncTemplates;
9271 
9272   if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
9273     if (NewCXXFD->isVirtual())
9274       return S.Diag(NewCXXFD->getLocation(),
9275                     diag::err_multiversion_doesnt_support)
9276              << VirtFuncs;
9277 
9278     if (const auto *NewCXXCtor = dyn_cast<CXXConstructorDecl>(NewFD))
9279       return S.Diag(NewCXXCtor->getLocation(),
9280                     diag::err_multiversion_doesnt_support)
9281              << Constructors;
9282 
9283     if (const auto *NewCXXDtor = dyn_cast<CXXDestructorDecl>(NewFD))
9284       return S.Diag(NewCXXDtor->getLocation(),
9285                     diag::err_multiversion_doesnt_support)
9286              << Destructors;
9287   }
9288 
9289   if (NewFD->isDeleted())
9290     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9291            << DeletedFuncs;
9292 
9293   if (NewFD->isDefaulted())
9294     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9295            << DefaultedFuncs;
9296 
9297   QualType NewQType = S.getASTContext().getCanonicalType(NewFD->getType());
9298   const auto *NewType = cast<FunctionType>(NewQType);
9299   QualType NewReturnType = NewType->getReturnType();
9300 
9301   if (NewReturnType->isUndeducedType())
9302     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9303            << DeducedReturn;
9304 
9305   // Only allow transition to MultiVersion if it hasn't been used.
9306   if (OldFD && CausesMV && OldFD->isUsed(false))
9307     return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
9308 
9309   // Ensure the return type is identical.
9310   if (OldFD) {
9311     QualType OldQType = S.getASTContext().getCanonicalType(OldFD->getType());
9312     const auto *OldType = cast<FunctionType>(OldQType);
9313     FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
9314     FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
9315 
9316     if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
9317       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9318              << CallingConv;
9319 
9320     QualType OldReturnType = OldType->getReturnType();
9321 
9322     if (OldReturnType != NewReturnType)
9323       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9324              << ReturnType;
9325 
9326     if (OldFD->isConstexpr() != NewFD->isConstexpr())
9327       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9328              << ConstexprSpec;
9329 
9330     if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
9331       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9332              << InlineSpec;
9333 
9334     if (OldFD->getStorageClass() != NewFD->getStorageClass())
9335       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9336              << StorageClass;
9337 
9338     if (OldFD->isExternC() != NewFD->isExternC())
9339       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9340              << Linkage;
9341 
9342     if (S.CheckEquivalentExceptionSpec(
9343             OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
9344             NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
9345       return true;
9346   }
9347   return false;
9348 }
9349 
9350 /// Check the validity of a mulitversion function declaration.
9351 /// Also sets the multiversion'ness' of the function itself.
9352 ///
9353 /// This sets NewFD->isInvalidDecl() to true if there was an error.
9354 ///
9355 /// Returns true if there was an error, false otherwise.
9356 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
9357                                       bool &Redeclaration, NamedDecl *&OldDecl,
9358                                       bool &MergeTypeWithPrevious,
9359                                       LookupResult &Previous) {
9360   const auto *NewTA = NewFD->getAttr<TargetAttr>();
9361   if (NewFD->isMain()) {
9362     if (NewTA && NewTA->isDefaultVersion()) {
9363       S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
9364       NewFD->setInvalidDecl();
9365       return true;
9366     }
9367     return false;
9368   }
9369 
9370   // If there is no matching previous decl, only 'default' can
9371   // cause MultiVersioning.
9372   if (!OldDecl) {
9373     if (NewTA && NewTA->isDefaultVersion()) {
9374       if (!NewFD->getType()->getAs<FunctionProtoType>()) {
9375         S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto);
9376         NewFD->setInvalidDecl();
9377         return true;
9378       }
9379       if (CheckMultiVersionAdditionalRules(S, nullptr, NewFD, true)) {
9380         NewFD->setInvalidDecl();
9381         return true;
9382       }
9383       if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9384         S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9385         NewFD->setInvalidDecl();
9386         return true;
9387       }
9388 
9389       NewFD->setIsMultiVersion();
9390     }
9391     return false;
9392   }
9393 
9394   if (OldDecl->getDeclContext()->getRedeclContext() !=
9395       NewFD->getDeclContext()->getRedeclContext())
9396     return false;
9397 
9398   FunctionDecl *OldFD = OldDecl->getAsFunction();
9399   // Unresolved 'using' statements (the other way OldDecl can be not a function)
9400   // likely cannot cause a problem here.
9401   if (!OldFD)
9402     return false;
9403 
9404   if (!OldFD->isMultiVersion() && !NewTA)
9405     return false;
9406 
9407   if (OldFD->isMultiVersion() && !NewTA) {
9408     S.Diag(NewFD->getLocation(), diag::err_target_required_in_redecl);
9409     NewFD->setInvalidDecl();
9410     return true;
9411   }
9412 
9413   TargetAttr::ParsedTargetAttr NewParsed = NewTA->parse();
9414   // Sort order doesn't matter, it just needs to be consistent.
9415   llvm::sort(NewParsed.Features.begin(), NewParsed.Features.end());
9416 
9417   const auto *OldTA = OldFD->getAttr<TargetAttr>();
9418   if (!OldFD->isMultiVersion()) {
9419     // If the old decl is NOT MultiVersioned yet, and we don't cause that
9420     // to change, this is a simple redeclaration.
9421     if (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())
9422       return false;
9423 
9424     // Otherwise, this decl causes MultiVersioning.
9425     if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9426       S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9427       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9428       NewFD->setInvalidDecl();
9429       return true;
9430     }
9431 
9432     if (!OldFD->getType()->getAs<FunctionProtoType>()) {
9433       S.Diag(OldFD->getLocation(), diag::err_multiversion_noproto);
9434       S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9435       NewFD->setInvalidDecl();
9436       return true;
9437     }
9438 
9439     if (CheckMultiVersionValue(S, NewFD)) {
9440       NewFD->setInvalidDecl();
9441       return true;
9442     }
9443 
9444     if (CheckMultiVersionValue(S, OldFD)) {
9445       S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9446       NewFD->setInvalidDecl();
9447       return true;
9448     }
9449 
9450     TargetAttr::ParsedTargetAttr OldParsed =
9451         OldTA->parse(std::less<std::string>());
9452 
9453     if (OldParsed == NewParsed) {
9454       S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9455       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9456       NewFD->setInvalidDecl();
9457       return true;
9458     }
9459 
9460     for (const auto *FD : OldFD->redecls()) {
9461       const auto *CurTA = FD->getAttr<TargetAttr>();
9462       if (!CurTA || CurTA->isInherited()) {
9463         S.Diag(FD->getLocation(), diag::err_target_required_in_redecl);
9464         S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9465         NewFD->setInvalidDecl();
9466         return true;
9467       }
9468     }
9469 
9470     if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true)) {
9471       NewFD->setInvalidDecl();
9472       return true;
9473     }
9474 
9475     OldFD->setIsMultiVersion();
9476     NewFD->setIsMultiVersion();
9477     Redeclaration = false;
9478     MergeTypeWithPrevious = false;
9479     OldDecl = nullptr;
9480     Previous.clear();
9481     return false;
9482   }
9483 
9484   bool UseMemberUsingDeclRules =
9485       S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
9486 
9487   // Next, check ALL non-overloads to see if this is a redeclaration of a
9488   // previous member of the MultiVersion set.
9489   for (NamedDecl *ND : Previous) {
9490     FunctionDecl *CurFD = ND->getAsFunction();
9491     if (!CurFD)
9492       continue;
9493     if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
9494       continue;
9495 
9496     const auto *CurTA = CurFD->getAttr<TargetAttr>();
9497     if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
9498       NewFD->setIsMultiVersion();
9499       Redeclaration = true;
9500       OldDecl = ND;
9501       return false;
9502     }
9503 
9504     TargetAttr::ParsedTargetAttr CurParsed =
9505         CurTA->parse(std::less<std::string>());
9506 
9507     if (CurParsed == NewParsed) {
9508       S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9509       S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9510       NewFD->setInvalidDecl();
9511       return true;
9512     }
9513   }
9514 
9515   // Else, this is simply a non-redecl case.
9516   if (CheckMultiVersionValue(S, NewFD)) {
9517     NewFD->setInvalidDecl();
9518     return true;
9519   }
9520 
9521   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, false)) {
9522     NewFD->setInvalidDecl();
9523     return true;
9524   }
9525 
9526   NewFD->setIsMultiVersion();
9527   Redeclaration = false;
9528   MergeTypeWithPrevious = false;
9529   OldDecl = nullptr;
9530   Previous.clear();
9531   return false;
9532 }
9533 
9534 /// Perform semantic checking of a new function declaration.
9535 ///
9536 /// Performs semantic analysis of the new function declaration
9537 /// NewFD. This routine performs all semantic checking that does not
9538 /// require the actual declarator involved in the declaration, and is
9539 /// used both for the declaration of functions as they are parsed
9540 /// (called via ActOnDeclarator) and for the declaration of functions
9541 /// that have been instantiated via C++ template instantiation (called
9542 /// via InstantiateDecl).
9543 ///
9544 /// \param IsMemberSpecialization whether this new function declaration is
9545 /// a member specialization (that replaces any definition provided by the
9546 /// previous declaration).
9547 ///
9548 /// This sets NewFD->isInvalidDecl() to true if there was an error.
9549 ///
9550 /// \returns true if the function declaration is a redeclaration.
9551 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
9552                                     LookupResult &Previous,
9553                                     bool IsMemberSpecialization) {
9554   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
9555          "Variably modified return types are not handled here");
9556 
9557   // Determine whether the type of this function should be merged with
9558   // a previous visible declaration. This never happens for functions in C++,
9559   // and always happens in C if the previous declaration was visible.
9560   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
9561                                !Previous.isShadowed();
9562 
9563   bool Redeclaration = false;
9564   NamedDecl *OldDecl = nullptr;
9565   bool MayNeedOverloadableChecks = false;
9566 
9567   // Merge or overload the declaration with an existing declaration of
9568   // the same name, if appropriate.
9569   if (!Previous.empty()) {
9570     // Determine whether NewFD is an overload of PrevDecl or
9571     // a declaration that requires merging. If it's an overload,
9572     // there's no more work to do here; we'll just add the new
9573     // function to the scope.
9574     if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
9575       NamedDecl *Candidate = Previous.getRepresentativeDecl();
9576       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
9577         Redeclaration = true;
9578         OldDecl = Candidate;
9579       }
9580     } else {
9581       MayNeedOverloadableChecks = true;
9582       switch (CheckOverload(S, NewFD, Previous, OldDecl,
9583                             /*NewIsUsingDecl*/ false)) {
9584       case Ovl_Match:
9585         Redeclaration = true;
9586         break;
9587 
9588       case Ovl_NonFunction:
9589         Redeclaration = true;
9590         break;
9591 
9592       case Ovl_Overload:
9593         Redeclaration = false;
9594         break;
9595       }
9596     }
9597   }
9598 
9599   // Check for a previous extern "C" declaration with this name.
9600   if (!Redeclaration &&
9601       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
9602     if (!Previous.empty()) {
9603       // This is an extern "C" declaration with the same name as a previous
9604       // declaration, and thus redeclares that entity...
9605       Redeclaration = true;
9606       OldDecl = Previous.getFoundDecl();
9607       MergeTypeWithPrevious = false;
9608 
9609       // ... except in the presence of __attribute__((overloadable)).
9610       if (OldDecl->hasAttr<OverloadableAttr>() ||
9611           NewFD->hasAttr<OverloadableAttr>()) {
9612         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
9613           MayNeedOverloadableChecks = true;
9614           Redeclaration = false;
9615           OldDecl = nullptr;
9616         }
9617       }
9618     }
9619   }
9620 
9621   if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
9622                                 MergeTypeWithPrevious, Previous))
9623     return Redeclaration;
9624 
9625   // C++11 [dcl.constexpr]p8:
9626   //   A constexpr specifier for a non-static member function that is not
9627   //   a constructor declares that member function to be const.
9628   //
9629   // This needs to be delayed until we know whether this is an out-of-line
9630   // definition of a static member function.
9631   //
9632   // This rule is not present in C++1y, so we produce a backwards
9633   // compatibility warning whenever it happens in C++11.
9634   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
9635   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
9636       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
9637       (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
9638     CXXMethodDecl *OldMD = nullptr;
9639     if (OldDecl)
9640       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
9641     if (!OldMD || !OldMD->isStatic()) {
9642       const FunctionProtoType *FPT =
9643         MD->getType()->castAs<FunctionProtoType>();
9644       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9645       EPI.TypeQuals |= Qualifiers::Const;
9646       MD->setType(Context.getFunctionType(FPT->getReturnType(),
9647                                           FPT->getParamTypes(), EPI));
9648 
9649       // Warn that we did this, if we're not performing template instantiation.
9650       // In that case, we'll have warned already when the template was defined.
9651       if (!inTemplateInstantiation()) {
9652         SourceLocation AddConstLoc;
9653         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
9654                 .IgnoreParens().getAs<FunctionTypeLoc>())
9655           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
9656 
9657         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
9658           << FixItHint::CreateInsertion(AddConstLoc, " const");
9659       }
9660     }
9661   }
9662 
9663   if (Redeclaration) {
9664     // NewFD and OldDecl represent declarations that need to be
9665     // merged.
9666     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
9667       NewFD->setInvalidDecl();
9668       return Redeclaration;
9669     }
9670 
9671     Previous.clear();
9672     Previous.addDecl(OldDecl);
9673 
9674     if (FunctionTemplateDecl *OldTemplateDecl =
9675             dyn_cast<FunctionTemplateDecl>(OldDecl)) {
9676       auto *OldFD = OldTemplateDecl->getTemplatedDecl();
9677       NewFD->setPreviousDeclaration(OldFD);
9678       adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
9679       FunctionTemplateDecl *NewTemplateDecl
9680         = NewFD->getDescribedFunctionTemplate();
9681       assert(NewTemplateDecl && "Template/non-template mismatch");
9682       if (NewFD->isCXXClassMember()) {
9683         NewFD->setAccess(OldTemplateDecl->getAccess());
9684         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
9685       }
9686 
9687       // If this is an explicit specialization of a member that is a function
9688       // template, mark it as a member specialization.
9689       if (IsMemberSpecialization &&
9690           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
9691         NewTemplateDecl->setMemberSpecialization();
9692         assert(OldTemplateDecl->isMemberSpecialization());
9693         // Explicit specializations of a member template do not inherit deleted
9694         // status from the parent member template that they are specializing.
9695         if (OldFD->isDeleted()) {
9696           // FIXME: This assert will not hold in the presence of modules.
9697           assert(OldFD->getCanonicalDecl() == OldFD);
9698           // FIXME: We need an update record for this AST mutation.
9699           OldFD->setDeletedAsWritten(false);
9700         }
9701       }
9702 
9703     } else {
9704       if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
9705         auto *OldFD = cast<FunctionDecl>(OldDecl);
9706         // This needs to happen first so that 'inline' propagates.
9707         NewFD->setPreviousDeclaration(OldFD);
9708         adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
9709         if (NewFD->isCXXClassMember())
9710           NewFD->setAccess(OldFD->getAccess());
9711       }
9712     }
9713   } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
9714              !NewFD->getAttr<OverloadableAttr>()) {
9715     assert((Previous.empty() ||
9716             llvm::any_of(Previous,
9717                          [](const NamedDecl *ND) {
9718                            return ND->hasAttr<OverloadableAttr>();
9719                          })) &&
9720            "Non-redecls shouldn't happen without overloadable present");
9721 
9722     auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
9723       const auto *FD = dyn_cast<FunctionDecl>(ND);
9724       return FD && !FD->hasAttr<OverloadableAttr>();
9725     });
9726 
9727     if (OtherUnmarkedIter != Previous.end()) {
9728       Diag(NewFD->getLocation(),
9729            diag::err_attribute_overloadable_multiple_unmarked_overloads);
9730       Diag((*OtherUnmarkedIter)->getLocation(),
9731            diag::note_attribute_overloadable_prev_overload)
9732           << false;
9733 
9734       NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
9735     }
9736   }
9737 
9738   // Semantic checking for this function declaration (in isolation).
9739 
9740   if (getLangOpts().CPlusPlus) {
9741     // C++-specific checks.
9742     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
9743       CheckConstructor(Constructor);
9744     } else if (CXXDestructorDecl *Destructor =
9745                 dyn_cast<CXXDestructorDecl>(NewFD)) {
9746       CXXRecordDecl *Record = Destructor->getParent();
9747       QualType ClassType = Context.getTypeDeclType(Record);
9748 
9749       // FIXME: Shouldn't we be able to perform this check even when the class
9750       // type is dependent? Both gcc and edg can handle that.
9751       if (!ClassType->isDependentType()) {
9752         DeclarationName Name
9753           = Context.DeclarationNames.getCXXDestructorName(
9754                                         Context.getCanonicalType(ClassType));
9755         if (NewFD->getDeclName() != Name) {
9756           Diag(NewFD->getLocation(), diag::err_destructor_name);
9757           NewFD->setInvalidDecl();
9758           return Redeclaration;
9759         }
9760       }
9761     } else if (CXXConversionDecl *Conversion
9762                = dyn_cast<CXXConversionDecl>(NewFD)) {
9763       ActOnConversionDeclarator(Conversion);
9764     } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
9765       if (auto *TD = Guide->getDescribedFunctionTemplate())
9766         CheckDeductionGuideTemplate(TD);
9767 
9768       // A deduction guide is not on the list of entities that can be
9769       // explicitly specialized.
9770       if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
9771         Diag(Guide->getLocStart(), diag::err_deduction_guide_specialized)
9772             << /*explicit specialization*/ 1;
9773     }
9774 
9775     // Find any virtual functions that this function overrides.
9776     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
9777       if (!Method->isFunctionTemplateSpecialization() &&
9778           !Method->getDescribedFunctionTemplate() &&
9779           Method->isCanonicalDecl()) {
9780         if (AddOverriddenMethods(Method->getParent(), Method)) {
9781           // If the function was marked as "static", we have a problem.
9782           if (NewFD->getStorageClass() == SC_Static) {
9783             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
9784           }
9785         }
9786       }
9787 
9788       if (Method->isStatic())
9789         checkThisInStaticMemberFunctionType(Method);
9790     }
9791 
9792     // Extra checking for C++ overloaded operators (C++ [over.oper]).
9793     if (NewFD->isOverloadedOperator() &&
9794         CheckOverloadedOperatorDeclaration(NewFD)) {
9795       NewFD->setInvalidDecl();
9796       return Redeclaration;
9797     }
9798 
9799     // Extra checking for C++0x literal operators (C++0x [over.literal]).
9800     if (NewFD->getLiteralIdentifier() &&
9801         CheckLiteralOperatorDeclaration(NewFD)) {
9802       NewFD->setInvalidDecl();
9803       return Redeclaration;
9804     }
9805 
9806     // In C++, check default arguments now that we have merged decls. Unless
9807     // the lexical context is the class, because in this case this is done
9808     // during delayed parsing anyway.
9809     if (!CurContext->isRecord())
9810       CheckCXXDefaultArguments(NewFD);
9811 
9812     // If this function declares a builtin function, check the type of this
9813     // declaration against the expected type for the builtin.
9814     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
9815       ASTContext::GetBuiltinTypeError Error;
9816       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
9817       QualType T = Context.GetBuiltinType(BuiltinID, Error);
9818       // If the type of the builtin differs only in its exception
9819       // specification, that's OK.
9820       // FIXME: If the types do differ in this way, it would be better to
9821       // retain the 'noexcept' form of the type.
9822       if (!T.isNull() &&
9823           !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
9824                                                             NewFD->getType()))
9825         // The type of this function differs from the type of the builtin,
9826         // so forget about the builtin entirely.
9827         Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
9828     }
9829 
9830     // If this function is declared as being extern "C", then check to see if
9831     // the function returns a UDT (class, struct, or union type) that is not C
9832     // compatible, and if it does, warn the user.
9833     // But, issue any diagnostic on the first declaration only.
9834     if (Previous.empty() && NewFD->isExternC()) {
9835       QualType R = NewFD->getReturnType();
9836       if (R->isIncompleteType() && !R->isVoidType())
9837         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
9838             << NewFD << R;
9839       else if (!R.isPODType(Context) && !R->isVoidType() &&
9840                !R->isObjCObjectPointerType())
9841         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
9842     }
9843 
9844     // C++1z [dcl.fct]p6:
9845     //   [...] whether the function has a non-throwing exception-specification
9846     //   [is] part of the function type
9847     //
9848     // This results in an ABI break between C++14 and C++17 for functions whose
9849     // declared type includes an exception-specification in a parameter or
9850     // return type. (Exception specifications on the function itself are OK in
9851     // most cases, and exception specifications are not permitted in most other
9852     // contexts where they could make it into a mangling.)
9853     if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
9854       auto HasNoexcept = [&](QualType T) -> bool {
9855         // Strip off declarator chunks that could be between us and a function
9856         // type. We don't need to look far, exception specifications are very
9857         // restricted prior to C++17.
9858         if (auto *RT = T->getAs<ReferenceType>())
9859           T = RT->getPointeeType();
9860         else if (T->isAnyPointerType())
9861           T = T->getPointeeType();
9862         else if (auto *MPT = T->getAs<MemberPointerType>())
9863           T = MPT->getPointeeType();
9864         if (auto *FPT = T->getAs<FunctionProtoType>())
9865           if (FPT->isNothrow())
9866             return true;
9867         return false;
9868       };
9869 
9870       auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
9871       bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
9872       for (QualType T : FPT->param_types())
9873         AnyNoexcept |= HasNoexcept(T);
9874       if (AnyNoexcept)
9875         Diag(NewFD->getLocation(),
9876              diag::warn_cxx17_compat_exception_spec_in_signature)
9877             << NewFD;
9878     }
9879 
9880     if (!Redeclaration && LangOpts.CUDA)
9881       checkCUDATargetOverload(NewFD, Previous);
9882   }
9883   return Redeclaration;
9884 }
9885 
9886 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
9887   // C++11 [basic.start.main]p3:
9888   //   A program that [...] declares main to be inline, static or
9889   //   constexpr is ill-formed.
9890   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
9891   //   appear in a declaration of main.
9892   // static main is not an error under C99, but we should warn about it.
9893   // We accept _Noreturn main as an extension.
9894   if (FD->getStorageClass() == SC_Static)
9895     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
9896          ? diag::err_static_main : diag::warn_static_main)
9897       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
9898   if (FD->isInlineSpecified())
9899     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
9900       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
9901   if (DS.isNoreturnSpecified()) {
9902     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
9903     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
9904     Diag(NoreturnLoc, diag::ext_noreturn_main);
9905     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
9906       << FixItHint::CreateRemoval(NoreturnRange);
9907   }
9908   if (FD->isConstexpr()) {
9909     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
9910       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
9911     FD->setConstexpr(false);
9912   }
9913 
9914   if (getLangOpts().OpenCL) {
9915     Diag(FD->getLocation(), diag::err_opencl_no_main)
9916         << FD->hasAttr<OpenCLKernelAttr>();
9917     FD->setInvalidDecl();
9918     return;
9919   }
9920 
9921   QualType T = FD->getType();
9922   assert(T->isFunctionType() && "function decl is not of function type");
9923   const FunctionType* FT = T->castAs<FunctionType>();
9924 
9925   // Set default calling convention for main()
9926   if (FT->getCallConv() != CC_C) {
9927     FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
9928     FD->setType(QualType(FT, 0));
9929     T = Context.getCanonicalType(FD->getType());
9930   }
9931 
9932   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
9933     // In C with GNU extensions we allow main() to have non-integer return
9934     // type, but we should warn about the extension, and we disable the
9935     // implicit-return-zero rule.
9936 
9937     // GCC in C mode accepts qualified 'int'.
9938     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
9939       FD->setHasImplicitReturnZero(true);
9940     else {
9941       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
9942       SourceRange RTRange = FD->getReturnTypeSourceRange();
9943       if (RTRange.isValid())
9944         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
9945             << FixItHint::CreateReplacement(RTRange, "int");
9946     }
9947   } else {
9948     // In C and C++, main magically returns 0 if you fall off the end;
9949     // set the flag which tells us that.
9950     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
9951 
9952     // All the standards say that main() should return 'int'.
9953     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
9954       FD->setHasImplicitReturnZero(true);
9955     else {
9956       // Otherwise, this is just a flat-out error.
9957       SourceRange RTRange = FD->getReturnTypeSourceRange();
9958       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
9959           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
9960                                 : FixItHint());
9961       FD->setInvalidDecl(true);
9962     }
9963   }
9964 
9965   // Treat protoless main() as nullary.
9966   if (isa<FunctionNoProtoType>(FT)) return;
9967 
9968   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
9969   unsigned nparams = FTP->getNumParams();
9970   assert(FD->getNumParams() == nparams);
9971 
9972   bool HasExtraParameters = (nparams > 3);
9973 
9974   if (FTP->isVariadic()) {
9975     Diag(FD->getLocation(), diag::ext_variadic_main);
9976     // FIXME: if we had information about the location of the ellipsis, we
9977     // could add a FixIt hint to remove it as a parameter.
9978   }
9979 
9980   // Darwin passes an undocumented fourth argument of type char**.  If
9981   // other platforms start sprouting these, the logic below will start
9982   // getting shifty.
9983   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
9984     HasExtraParameters = false;
9985 
9986   if (HasExtraParameters) {
9987     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
9988     FD->setInvalidDecl(true);
9989     nparams = 3;
9990   }
9991 
9992   // FIXME: a lot of the following diagnostics would be improved
9993   // if we had some location information about types.
9994 
9995   QualType CharPP =
9996     Context.getPointerType(Context.getPointerType(Context.CharTy));
9997   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
9998 
9999   for (unsigned i = 0; i < nparams; ++i) {
10000     QualType AT = FTP->getParamType(i);
10001 
10002     bool mismatch = true;
10003 
10004     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
10005       mismatch = false;
10006     else if (Expected[i] == CharPP) {
10007       // As an extension, the following forms are okay:
10008       //   char const **
10009       //   char const * const *
10010       //   char * const *
10011 
10012       QualifierCollector qs;
10013       const PointerType* PT;
10014       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
10015           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
10016           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
10017                               Context.CharTy)) {
10018         qs.removeConst();
10019         mismatch = !qs.empty();
10020       }
10021     }
10022 
10023     if (mismatch) {
10024       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
10025       // TODO: suggest replacing given type with expected type
10026       FD->setInvalidDecl(true);
10027     }
10028   }
10029 
10030   if (nparams == 1 && !FD->isInvalidDecl()) {
10031     Diag(FD->getLocation(), diag::warn_main_one_arg);
10032   }
10033 
10034   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10035     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10036     FD->setInvalidDecl();
10037   }
10038 }
10039 
10040 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
10041   QualType T = FD->getType();
10042   assert(T->isFunctionType() && "function decl is not of function type");
10043   const FunctionType *FT = T->castAs<FunctionType>();
10044 
10045   // Set an implicit return of 'zero' if the function can return some integral,
10046   // enumeration, pointer or nullptr type.
10047   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
10048       FT->getReturnType()->isAnyPointerType() ||
10049       FT->getReturnType()->isNullPtrType())
10050     // DllMain is exempt because a return value of zero means it failed.
10051     if (FD->getName() != "DllMain")
10052       FD->setHasImplicitReturnZero(true);
10053 
10054   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10055     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10056     FD->setInvalidDecl();
10057   }
10058 }
10059 
10060 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
10061   // FIXME: Need strict checking.  In C89, we need to check for
10062   // any assignment, increment, decrement, function-calls, or
10063   // commas outside of a sizeof.  In C99, it's the same list,
10064   // except that the aforementioned are allowed in unevaluated
10065   // expressions.  Everything else falls under the
10066   // "may accept other forms of constant expressions" exception.
10067   // (We never end up here for C++, so the constant expression
10068   // rules there don't matter.)
10069   const Expr *Culprit;
10070   if (Init->isConstantInitializer(Context, false, &Culprit))
10071     return false;
10072   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
10073     << Culprit->getSourceRange();
10074   return true;
10075 }
10076 
10077 namespace {
10078   // Visits an initialization expression to see if OrigDecl is evaluated in
10079   // its own initialization and throws a warning if it does.
10080   class SelfReferenceChecker
10081       : public EvaluatedExprVisitor<SelfReferenceChecker> {
10082     Sema &S;
10083     Decl *OrigDecl;
10084     bool isRecordType;
10085     bool isPODType;
10086     bool isReferenceType;
10087 
10088     bool isInitList;
10089     llvm::SmallVector<unsigned, 4> InitFieldIndex;
10090 
10091   public:
10092     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
10093 
10094     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
10095                                                     S(S), OrigDecl(OrigDecl) {
10096       isPODType = false;
10097       isRecordType = false;
10098       isReferenceType = false;
10099       isInitList = false;
10100       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
10101         isPODType = VD->getType().isPODType(S.Context);
10102         isRecordType = VD->getType()->isRecordType();
10103         isReferenceType = VD->getType()->isReferenceType();
10104       }
10105     }
10106 
10107     // For most expressions, just call the visitor.  For initializer lists,
10108     // track the index of the field being initialized since fields are
10109     // initialized in order allowing use of previously initialized fields.
10110     void CheckExpr(Expr *E) {
10111       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
10112       if (!InitList) {
10113         Visit(E);
10114         return;
10115       }
10116 
10117       // Track and increment the index here.
10118       isInitList = true;
10119       InitFieldIndex.push_back(0);
10120       for (auto Child : InitList->children()) {
10121         CheckExpr(cast<Expr>(Child));
10122         ++InitFieldIndex.back();
10123       }
10124       InitFieldIndex.pop_back();
10125     }
10126 
10127     // Returns true if MemberExpr is checked and no further checking is needed.
10128     // Returns false if additional checking is required.
10129     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
10130       llvm::SmallVector<FieldDecl*, 4> Fields;
10131       Expr *Base = E;
10132       bool ReferenceField = false;
10133 
10134       // Get the field memebers used.
10135       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10136         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
10137         if (!FD)
10138           return false;
10139         Fields.push_back(FD);
10140         if (FD->getType()->isReferenceType())
10141           ReferenceField = true;
10142         Base = ME->getBase()->IgnoreParenImpCasts();
10143       }
10144 
10145       // Keep checking only if the base Decl is the same.
10146       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
10147       if (!DRE || DRE->getDecl() != OrigDecl)
10148         return false;
10149 
10150       // A reference field can be bound to an unininitialized field.
10151       if (CheckReference && !ReferenceField)
10152         return true;
10153 
10154       // Convert FieldDecls to their index number.
10155       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
10156       for (const FieldDecl *I : llvm::reverse(Fields))
10157         UsedFieldIndex.push_back(I->getFieldIndex());
10158 
10159       // See if a warning is needed by checking the first difference in index
10160       // numbers.  If field being used has index less than the field being
10161       // initialized, then the use is safe.
10162       for (auto UsedIter = UsedFieldIndex.begin(),
10163                 UsedEnd = UsedFieldIndex.end(),
10164                 OrigIter = InitFieldIndex.begin(),
10165                 OrigEnd = InitFieldIndex.end();
10166            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
10167         if (*UsedIter < *OrigIter)
10168           return true;
10169         if (*UsedIter > *OrigIter)
10170           break;
10171       }
10172 
10173       // TODO: Add a different warning which will print the field names.
10174       HandleDeclRefExpr(DRE);
10175       return true;
10176     }
10177 
10178     // For most expressions, the cast is directly above the DeclRefExpr.
10179     // For conditional operators, the cast can be outside the conditional
10180     // operator if both expressions are DeclRefExpr's.
10181     void HandleValue(Expr *E) {
10182       E = E->IgnoreParens();
10183       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
10184         HandleDeclRefExpr(DRE);
10185         return;
10186       }
10187 
10188       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
10189         Visit(CO->getCond());
10190         HandleValue(CO->getTrueExpr());
10191         HandleValue(CO->getFalseExpr());
10192         return;
10193       }
10194 
10195       if (BinaryConditionalOperator *BCO =
10196               dyn_cast<BinaryConditionalOperator>(E)) {
10197         Visit(BCO->getCond());
10198         HandleValue(BCO->getFalseExpr());
10199         return;
10200       }
10201 
10202       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
10203         HandleValue(OVE->getSourceExpr());
10204         return;
10205       }
10206 
10207       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
10208         if (BO->getOpcode() == BO_Comma) {
10209           Visit(BO->getLHS());
10210           HandleValue(BO->getRHS());
10211           return;
10212         }
10213       }
10214 
10215       if (isa<MemberExpr>(E)) {
10216         if (isInitList) {
10217           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
10218                                       false /*CheckReference*/))
10219             return;
10220         }
10221 
10222         Expr *Base = E->IgnoreParenImpCasts();
10223         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10224           // Check for static member variables and don't warn on them.
10225           if (!isa<FieldDecl>(ME->getMemberDecl()))
10226             return;
10227           Base = ME->getBase()->IgnoreParenImpCasts();
10228         }
10229         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
10230           HandleDeclRefExpr(DRE);
10231         return;
10232       }
10233 
10234       Visit(E);
10235     }
10236 
10237     // Reference types not handled in HandleValue are handled here since all
10238     // uses of references are bad, not just r-value uses.
10239     void VisitDeclRefExpr(DeclRefExpr *E) {
10240       if (isReferenceType)
10241         HandleDeclRefExpr(E);
10242     }
10243 
10244     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
10245       if (E->getCastKind() == CK_LValueToRValue) {
10246         HandleValue(E->getSubExpr());
10247         return;
10248       }
10249 
10250       Inherited::VisitImplicitCastExpr(E);
10251     }
10252 
10253     void VisitMemberExpr(MemberExpr *E) {
10254       if (isInitList) {
10255         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
10256           return;
10257       }
10258 
10259       // Don't warn on arrays since they can be treated as pointers.
10260       if (E->getType()->canDecayToPointerType()) return;
10261 
10262       // Warn when a non-static method call is followed by non-static member
10263       // field accesses, which is followed by a DeclRefExpr.
10264       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
10265       bool Warn = (MD && !MD->isStatic());
10266       Expr *Base = E->getBase()->IgnoreParenImpCasts();
10267       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10268         if (!isa<FieldDecl>(ME->getMemberDecl()))
10269           Warn = false;
10270         Base = ME->getBase()->IgnoreParenImpCasts();
10271       }
10272 
10273       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
10274         if (Warn)
10275           HandleDeclRefExpr(DRE);
10276         return;
10277       }
10278 
10279       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
10280       // Visit that expression.
10281       Visit(Base);
10282     }
10283 
10284     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
10285       Expr *Callee = E->getCallee();
10286 
10287       if (isa<UnresolvedLookupExpr>(Callee))
10288         return Inherited::VisitCXXOperatorCallExpr(E);
10289 
10290       Visit(Callee);
10291       for (auto Arg: E->arguments())
10292         HandleValue(Arg->IgnoreParenImpCasts());
10293     }
10294 
10295     void VisitUnaryOperator(UnaryOperator *E) {
10296       // For POD record types, addresses of its own members are well-defined.
10297       if (E->getOpcode() == UO_AddrOf && isRecordType &&
10298           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
10299         if (!isPODType)
10300           HandleValue(E->getSubExpr());
10301         return;
10302       }
10303 
10304       if (E->isIncrementDecrementOp()) {
10305         HandleValue(E->getSubExpr());
10306         return;
10307       }
10308 
10309       Inherited::VisitUnaryOperator(E);
10310     }
10311 
10312     void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
10313 
10314     void VisitCXXConstructExpr(CXXConstructExpr *E) {
10315       if (E->getConstructor()->isCopyConstructor()) {
10316         Expr *ArgExpr = E->getArg(0);
10317         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
10318           if (ILE->getNumInits() == 1)
10319             ArgExpr = ILE->getInit(0);
10320         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
10321           if (ICE->getCastKind() == CK_NoOp)
10322             ArgExpr = ICE->getSubExpr();
10323         HandleValue(ArgExpr);
10324         return;
10325       }
10326       Inherited::VisitCXXConstructExpr(E);
10327     }
10328 
10329     void VisitCallExpr(CallExpr *E) {
10330       // Treat std::move as a use.
10331       if (E->isCallToStdMove()) {
10332         HandleValue(E->getArg(0));
10333         return;
10334       }
10335 
10336       Inherited::VisitCallExpr(E);
10337     }
10338 
10339     void VisitBinaryOperator(BinaryOperator *E) {
10340       if (E->isCompoundAssignmentOp()) {
10341         HandleValue(E->getLHS());
10342         Visit(E->getRHS());
10343         return;
10344       }
10345 
10346       Inherited::VisitBinaryOperator(E);
10347     }
10348 
10349     // A custom visitor for BinaryConditionalOperator is needed because the
10350     // regular visitor would check the condition and true expression separately
10351     // but both point to the same place giving duplicate diagnostics.
10352     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
10353       Visit(E->getCond());
10354       Visit(E->getFalseExpr());
10355     }
10356 
10357     void HandleDeclRefExpr(DeclRefExpr *DRE) {
10358       Decl* ReferenceDecl = DRE->getDecl();
10359       if (OrigDecl != ReferenceDecl) return;
10360       unsigned diag;
10361       if (isReferenceType) {
10362         diag = diag::warn_uninit_self_reference_in_reference_init;
10363       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
10364         diag = diag::warn_static_self_reference_in_init;
10365       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
10366                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
10367                  DRE->getDecl()->getType()->isRecordType()) {
10368         diag = diag::warn_uninit_self_reference_in_init;
10369       } else {
10370         // Local variables will be handled by the CFG analysis.
10371         return;
10372       }
10373 
10374       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
10375                             S.PDiag(diag)
10376                               << DRE->getDecl()
10377                               << OrigDecl->getLocation()
10378                               << DRE->getSourceRange());
10379     }
10380   };
10381 
10382   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
10383   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
10384                                  bool DirectInit) {
10385     // Parameters arguments are occassionially constructed with itself,
10386     // for instance, in recursive functions.  Skip them.
10387     if (isa<ParmVarDecl>(OrigDecl))
10388       return;
10389 
10390     E = E->IgnoreParens();
10391 
10392     // Skip checking T a = a where T is not a record or reference type.
10393     // Doing so is a way to silence uninitialized warnings.
10394     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
10395       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
10396         if (ICE->getCastKind() == CK_LValueToRValue)
10397           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
10398             if (DRE->getDecl() == OrigDecl)
10399               return;
10400 
10401     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
10402   }
10403 } // end anonymous namespace
10404 
10405 namespace {
10406   // Simple wrapper to add the name of a variable or (if no variable is
10407   // available) a DeclarationName into a diagnostic.
10408   struct VarDeclOrName {
10409     VarDecl *VDecl;
10410     DeclarationName Name;
10411 
10412     friend const Sema::SemaDiagnosticBuilder &
10413     operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
10414       return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
10415     }
10416   };
10417 } // end anonymous namespace
10418 
10419 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
10420                                             DeclarationName Name, QualType Type,
10421                                             TypeSourceInfo *TSI,
10422                                             SourceRange Range, bool DirectInit,
10423                                             Expr *Init) {
10424   bool IsInitCapture = !VDecl;
10425   assert((!VDecl || !VDecl->isInitCapture()) &&
10426          "init captures are expected to be deduced prior to initialization");
10427 
10428   VarDeclOrName VN{VDecl, Name};
10429 
10430   DeducedType *Deduced = Type->getContainedDeducedType();
10431   assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
10432 
10433   // C++11 [dcl.spec.auto]p3
10434   if (!Init) {
10435     assert(VDecl && "no init for init capture deduction?");
10436 
10437     // Except for class argument deduction, and then for an initializing
10438     // declaration only, i.e. no static at class scope or extern.
10439     if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
10440         VDecl->hasExternalStorage() ||
10441         VDecl->isStaticDataMember()) {
10442       Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
10443         << VDecl->getDeclName() << Type;
10444       return QualType();
10445     }
10446   }
10447 
10448   ArrayRef<Expr*> DeduceInits;
10449   if (Init)
10450     DeduceInits = Init;
10451 
10452   if (DirectInit) {
10453     if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
10454       DeduceInits = PL->exprs();
10455   }
10456 
10457   if (isa<DeducedTemplateSpecializationType>(Deduced)) {
10458     assert(VDecl && "non-auto type for init capture deduction?");
10459     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
10460     InitializationKind Kind = InitializationKind::CreateForInit(
10461         VDecl->getLocation(), DirectInit, Init);
10462     // FIXME: Initialization should not be taking a mutable list of inits.
10463     SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
10464     return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
10465                                                        InitsCopy);
10466   }
10467 
10468   if (DirectInit) {
10469     if (auto *IL = dyn_cast<InitListExpr>(Init))
10470       DeduceInits = IL->inits();
10471   }
10472 
10473   // Deduction only works if we have exactly one source expression.
10474   if (DeduceInits.empty()) {
10475     // It isn't possible to write this directly, but it is possible to
10476     // end up in this situation with "auto x(some_pack...);"
10477     Diag(Init->getLocStart(), IsInitCapture
10478                                   ? diag::err_init_capture_no_expression
10479                                   : diag::err_auto_var_init_no_expression)
10480         << VN << Type << Range;
10481     return QualType();
10482   }
10483 
10484   if (DeduceInits.size() > 1) {
10485     Diag(DeduceInits[1]->getLocStart(),
10486          IsInitCapture ? diag::err_init_capture_multiple_expressions
10487                        : diag::err_auto_var_init_multiple_expressions)
10488         << VN << Type << Range;
10489     return QualType();
10490   }
10491 
10492   Expr *DeduceInit = DeduceInits[0];
10493   if (DirectInit && isa<InitListExpr>(DeduceInit)) {
10494     Diag(Init->getLocStart(), IsInitCapture
10495                                   ? diag::err_init_capture_paren_braces
10496                                   : diag::err_auto_var_init_paren_braces)
10497         << isa<InitListExpr>(Init) << VN << Type << Range;
10498     return QualType();
10499   }
10500 
10501   // Expressions default to 'id' when we're in a debugger.
10502   bool DefaultedAnyToId = false;
10503   if (getLangOpts().DebuggerCastResultToId &&
10504       Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
10505     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
10506     if (Result.isInvalid()) {
10507       return QualType();
10508     }
10509     Init = Result.get();
10510     DefaultedAnyToId = true;
10511   }
10512 
10513   // C++ [dcl.decomp]p1:
10514   //   If the assignment-expression [...] has array type A and no ref-qualifier
10515   //   is present, e has type cv A
10516   if (VDecl && isa<DecompositionDecl>(VDecl) &&
10517       Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
10518       DeduceInit->getType()->isConstantArrayType())
10519     return Context.getQualifiedType(DeduceInit->getType(),
10520                                     Type.getQualifiers());
10521 
10522   QualType DeducedType;
10523   if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
10524     if (!IsInitCapture)
10525       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
10526     else if (isa<InitListExpr>(Init))
10527       Diag(Range.getBegin(),
10528            diag::err_init_capture_deduction_failure_from_init_list)
10529           << VN
10530           << (DeduceInit->getType().isNull() ? TSI->getType()
10531                                              : DeduceInit->getType())
10532           << DeduceInit->getSourceRange();
10533     else
10534       Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
10535           << VN << TSI->getType()
10536           << (DeduceInit->getType().isNull() ? TSI->getType()
10537                                              : DeduceInit->getType())
10538           << DeduceInit->getSourceRange();
10539   }
10540 
10541   // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
10542   // 'id' instead of a specific object type prevents most of our usual
10543   // checks.
10544   // We only want to warn outside of template instantiations, though:
10545   // inside a template, the 'id' could have come from a parameter.
10546   if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
10547       !DeducedType.isNull() && DeducedType->isObjCIdType()) {
10548     SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
10549     Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
10550   }
10551 
10552   return DeducedType;
10553 }
10554 
10555 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
10556                                          Expr *Init) {
10557   QualType DeducedType = deduceVarTypeFromInitializer(
10558       VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
10559       VDecl->getSourceRange(), DirectInit, Init);
10560   if (DeducedType.isNull()) {
10561     VDecl->setInvalidDecl();
10562     return true;
10563   }
10564 
10565   VDecl->setType(DeducedType);
10566   assert(VDecl->isLinkageValid());
10567 
10568   // In ARC, infer lifetime.
10569   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
10570     VDecl->setInvalidDecl();
10571 
10572   // If this is a redeclaration, check that the type we just deduced matches
10573   // the previously declared type.
10574   if (VarDecl *Old = VDecl->getPreviousDecl()) {
10575     // We never need to merge the type, because we cannot form an incomplete
10576     // array of auto, nor deduce such a type.
10577     MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
10578   }
10579 
10580   // Check the deduced type is valid for a variable declaration.
10581   CheckVariableDeclarationType(VDecl);
10582   return VDecl->isInvalidDecl();
10583 }
10584 
10585 /// AddInitializerToDecl - Adds the initializer Init to the
10586 /// declaration dcl. If DirectInit is true, this is C++ direct
10587 /// initialization rather than copy initialization.
10588 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
10589   // If there is no declaration, there was an error parsing it.  Just ignore
10590   // the initializer.
10591   if (!RealDecl || RealDecl->isInvalidDecl()) {
10592     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
10593     return;
10594   }
10595 
10596   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
10597     // Pure-specifiers are handled in ActOnPureSpecifier.
10598     Diag(Method->getLocation(), diag::err_member_function_initialization)
10599       << Method->getDeclName() << Init->getSourceRange();
10600     Method->setInvalidDecl();
10601     return;
10602   }
10603 
10604   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
10605   if (!VDecl) {
10606     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
10607     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
10608     RealDecl->setInvalidDecl();
10609     return;
10610   }
10611 
10612   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
10613   if (VDecl->getType()->isUndeducedType()) {
10614     // Attempt typo correction early so that the type of the init expression can
10615     // be deduced based on the chosen correction if the original init contains a
10616     // TypoExpr.
10617     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
10618     if (!Res.isUsable()) {
10619       RealDecl->setInvalidDecl();
10620       return;
10621     }
10622     Init = Res.get();
10623 
10624     if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
10625       return;
10626   }
10627 
10628   // dllimport cannot be used on variable definitions.
10629   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
10630     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
10631     VDecl->setInvalidDecl();
10632     return;
10633   }
10634 
10635   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
10636     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
10637     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
10638     VDecl->setInvalidDecl();
10639     return;
10640   }
10641 
10642   if (!VDecl->getType()->isDependentType()) {
10643     // A definition must end up with a complete type, which means it must be
10644     // complete with the restriction that an array type might be completed by
10645     // the initializer; note that later code assumes this restriction.
10646     QualType BaseDeclType = VDecl->getType();
10647     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
10648       BaseDeclType = Array->getElementType();
10649     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
10650                             diag::err_typecheck_decl_incomplete_type)) {
10651       RealDecl->setInvalidDecl();
10652       return;
10653     }
10654 
10655     // The variable can not have an abstract class type.
10656     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
10657                                diag::err_abstract_type_in_decl,
10658                                AbstractVariableType))
10659       VDecl->setInvalidDecl();
10660   }
10661 
10662   // If adding the initializer will turn this declaration into a definition,
10663   // and we already have a definition for this variable, diagnose or otherwise
10664   // handle the situation.
10665   VarDecl *Def;
10666   if ((Def = VDecl->getDefinition()) && Def != VDecl &&
10667       (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
10668       !VDecl->isThisDeclarationADemotedDefinition() &&
10669       checkVarDeclRedefinition(Def, VDecl))
10670     return;
10671 
10672   if (getLangOpts().CPlusPlus) {
10673     // C++ [class.static.data]p4
10674     //   If a static data member is of const integral or const
10675     //   enumeration type, its declaration in the class definition can
10676     //   specify a constant-initializer which shall be an integral
10677     //   constant expression (5.19). In that case, the member can appear
10678     //   in integral constant expressions. The member shall still be
10679     //   defined in a namespace scope if it is used in the program and the
10680     //   namespace scope definition shall not contain an initializer.
10681     //
10682     // We already performed a redefinition check above, but for static
10683     // data members we also need to check whether there was an in-class
10684     // declaration with an initializer.
10685     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
10686       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
10687           << VDecl->getDeclName();
10688       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
10689            diag::note_previous_initializer)
10690           << 0;
10691       return;
10692     }
10693 
10694     if (VDecl->hasLocalStorage())
10695       setFunctionHasBranchProtectedScope();
10696 
10697     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
10698       VDecl->setInvalidDecl();
10699       return;
10700     }
10701   }
10702 
10703   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
10704   // a kernel function cannot be initialized."
10705   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
10706     Diag(VDecl->getLocation(), diag::err_local_cant_init);
10707     VDecl->setInvalidDecl();
10708     return;
10709   }
10710 
10711   // Get the decls type and save a reference for later, since
10712   // CheckInitializerTypes may change it.
10713   QualType DclT = VDecl->getType(), SavT = DclT;
10714 
10715   // Expressions default to 'id' when we're in a debugger
10716   // and we are assigning it to a variable of Objective-C pointer type.
10717   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
10718       Init->getType() == Context.UnknownAnyTy) {
10719     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
10720     if (Result.isInvalid()) {
10721       VDecl->setInvalidDecl();
10722       return;
10723     }
10724     Init = Result.get();
10725   }
10726 
10727   // Perform the initialization.
10728   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
10729   if (!VDecl->isInvalidDecl()) {
10730     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
10731     InitializationKind Kind = InitializationKind::CreateForInit(
10732         VDecl->getLocation(), DirectInit, Init);
10733 
10734     MultiExprArg Args = Init;
10735     if (CXXDirectInit)
10736       Args = MultiExprArg(CXXDirectInit->getExprs(),
10737                           CXXDirectInit->getNumExprs());
10738 
10739     // Try to correct any TypoExprs in the initialization arguments.
10740     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
10741       ExprResult Res = CorrectDelayedTyposInExpr(
10742           Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
10743             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
10744             return Init.Failed() ? ExprError() : E;
10745           });
10746       if (Res.isInvalid()) {
10747         VDecl->setInvalidDecl();
10748       } else if (Res.get() != Args[Idx]) {
10749         Args[Idx] = Res.get();
10750       }
10751     }
10752     if (VDecl->isInvalidDecl())
10753       return;
10754 
10755     InitializationSequence InitSeq(*this, Entity, Kind, Args,
10756                                    /*TopLevelOfInitList=*/false,
10757                                    /*TreatUnavailableAsInvalid=*/false);
10758     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
10759     if (Result.isInvalid()) {
10760       VDecl->setInvalidDecl();
10761       return;
10762     }
10763 
10764     Init = Result.getAs<Expr>();
10765   }
10766 
10767   // Check for self-references within variable initializers.
10768   // Variables declared within a function/method body (except for references)
10769   // are handled by a dataflow analysis.
10770   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
10771       VDecl->getType()->isReferenceType()) {
10772     CheckSelfReference(*this, RealDecl, Init, DirectInit);
10773   }
10774 
10775   // If the type changed, it means we had an incomplete type that was
10776   // completed by the initializer. For example:
10777   //   int ary[] = { 1, 3, 5 };
10778   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
10779   if (!VDecl->isInvalidDecl() && (DclT != SavT))
10780     VDecl->setType(DclT);
10781 
10782   if (!VDecl->isInvalidDecl()) {
10783     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
10784 
10785     if (VDecl->hasAttr<BlocksAttr>())
10786       checkRetainCycles(VDecl, Init);
10787 
10788     // It is safe to assign a weak reference into a strong variable.
10789     // Although this code can still have problems:
10790     //   id x = self.weakProp;
10791     //   id y = self.weakProp;
10792     // we do not warn to warn spuriously when 'x' and 'y' are on separate
10793     // paths through the function. This should be revisited if
10794     // -Wrepeated-use-of-weak is made flow-sensitive.
10795     if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
10796          VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
10797         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
10798                          Init->getLocStart()))
10799       getCurFunction()->markSafeWeakUse(Init);
10800   }
10801 
10802   // The initialization is usually a full-expression.
10803   //
10804   // FIXME: If this is a braced initialization of an aggregate, it is not
10805   // an expression, and each individual field initializer is a separate
10806   // full-expression. For instance, in:
10807   //
10808   //   struct Temp { ~Temp(); };
10809   //   struct S { S(Temp); };
10810   //   struct T { S a, b; } t = { Temp(), Temp() }
10811   //
10812   // we should destroy the first Temp before constructing the second.
10813   ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
10814                                           false,
10815                                           VDecl->isConstexpr());
10816   if (Result.isInvalid()) {
10817     VDecl->setInvalidDecl();
10818     return;
10819   }
10820   Init = Result.get();
10821 
10822   // Attach the initializer to the decl.
10823   VDecl->setInit(Init);
10824 
10825   if (VDecl->isLocalVarDecl()) {
10826     // Don't check the initializer if the declaration is malformed.
10827     if (VDecl->isInvalidDecl()) {
10828       // do nothing
10829 
10830     // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
10831     // This is true even in OpenCL C++.
10832     } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
10833       CheckForConstantInitializer(Init, DclT);
10834 
10835     // Otherwise, C++ does not restrict the initializer.
10836     } else if (getLangOpts().CPlusPlus) {
10837       // do nothing
10838 
10839     // C99 6.7.8p4: All the expressions in an initializer for an object that has
10840     // static storage duration shall be constant expressions or string literals.
10841     } else if (VDecl->getStorageClass() == SC_Static) {
10842       CheckForConstantInitializer(Init, DclT);
10843 
10844     // C89 is stricter than C99 for aggregate initializers.
10845     // C89 6.5.7p3: All the expressions [...] in an initializer list
10846     // for an object that has aggregate or union type shall be
10847     // constant expressions.
10848     } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
10849                isa<InitListExpr>(Init)) {
10850       const Expr *Culprit;
10851       if (!Init->isConstantInitializer(Context, false, &Culprit)) {
10852         Diag(Culprit->getExprLoc(),
10853              diag::ext_aggregate_init_not_constant)
10854           << Culprit->getSourceRange();
10855       }
10856     }
10857   } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
10858              VDecl->getLexicalDeclContext()->isRecord()) {
10859     // This is an in-class initialization for a static data member, e.g.,
10860     //
10861     // struct S {
10862     //   static const int value = 17;
10863     // };
10864 
10865     // C++ [class.mem]p4:
10866     //   A member-declarator can contain a constant-initializer only
10867     //   if it declares a static member (9.4) of const integral or
10868     //   const enumeration type, see 9.4.2.
10869     //
10870     // C++11 [class.static.data]p3:
10871     //   If a non-volatile non-inline const static data member is of integral
10872     //   or enumeration type, its declaration in the class definition can
10873     //   specify a brace-or-equal-initializer in which every initializer-clause
10874     //   that is an assignment-expression is a constant expression. A static
10875     //   data member of literal type can be declared in the class definition
10876     //   with the constexpr specifier; if so, its declaration shall specify a
10877     //   brace-or-equal-initializer in which every initializer-clause that is
10878     //   an assignment-expression is a constant expression.
10879 
10880     // Do nothing on dependent types.
10881     if (DclT->isDependentType()) {
10882 
10883     // Allow any 'static constexpr' members, whether or not they are of literal
10884     // type. We separately check that every constexpr variable is of literal
10885     // type.
10886     } else if (VDecl->isConstexpr()) {
10887 
10888     // Require constness.
10889     } else if (!DclT.isConstQualified()) {
10890       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
10891         << Init->getSourceRange();
10892       VDecl->setInvalidDecl();
10893 
10894     // We allow integer constant expressions in all cases.
10895     } else if (DclT->isIntegralOrEnumerationType()) {
10896       // Check whether the expression is a constant expression.
10897       SourceLocation Loc;
10898       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
10899         // In C++11, a non-constexpr const static data member with an
10900         // in-class initializer cannot be volatile.
10901         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
10902       else if (Init->isValueDependent())
10903         ; // Nothing to check.
10904       else if (Init->isIntegerConstantExpr(Context, &Loc))
10905         ; // Ok, it's an ICE!
10906       else if (Init->isEvaluatable(Context)) {
10907         // If we can constant fold the initializer through heroics, accept it,
10908         // but report this as a use of an extension for -pedantic.
10909         Diag(Loc, diag::ext_in_class_initializer_non_constant)
10910           << Init->getSourceRange();
10911       } else {
10912         // Otherwise, this is some crazy unknown case.  Report the issue at the
10913         // location provided by the isIntegerConstantExpr failed check.
10914         Diag(Loc, diag::err_in_class_initializer_non_constant)
10915           << Init->getSourceRange();
10916         VDecl->setInvalidDecl();
10917       }
10918 
10919     // We allow foldable floating-point constants as an extension.
10920     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
10921       // In C++98, this is a GNU extension. In C++11, it is not, but we support
10922       // it anyway and provide a fixit to add the 'constexpr'.
10923       if (getLangOpts().CPlusPlus11) {
10924         Diag(VDecl->getLocation(),
10925              diag::ext_in_class_initializer_float_type_cxx11)
10926             << DclT << Init->getSourceRange();
10927         Diag(VDecl->getLocStart(),
10928              diag::note_in_class_initializer_float_type_cxx11)
10929             << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
10930       } else {
10931         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
10932           << DclT << Init->getSourceRange();
10933 
10934         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
10935           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
10936             << Init->getSourceRange();
10937           VDecl->setInvalidDecl();
10938         }
10939       }
10940 
10941     // Suggest adding 'constexpr' in C++11 for literal types.
10942     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
10943       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
10944         << DclT << Init->getSourceRange()
10945         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
10946       VDecl->setConstexpr(true);
10947 
10948     } else {
10949       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
10950         << DclT << Init->getSourceRange();
10951       VDecl->setInvalidDecl();
10952     }
10953   } else if (VDecl->isFileVarDecl()) {
10954     // In C, extern is typically used to avoid tentative definitions when
10955     // declaring variables in headers, but adding an intializer makes it a
10956     // definition. This is somewhat confusing, so GCC and Clang both warn on it.
10957     // In C++, extern is often used to give implictly static const variables
10958     // external linkage, so don't warn in that case. If selectany is present,
10959     // this might be header code intended for C and C++ inclusion, so apply the
10960     // C++ rules.
10961     if (VDecl->getStorageClass() == SC_Extern &&
10962         ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
10963          !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
10964         !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
10965         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
10966       Diag(VDecl->getLocation(), diag::warn_extern_init);
10967 
10968     // C99 6.7.8p4. All file scoped initializers need to be constant.
10969     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
10970       CheckForConstantInitializer(Init, DclT);
10971   }
10972 
10973   // We will represent direct-initialization similarly to copy-initialization:
10974   //    int x(1);  -as-> int x = 1;
10975   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
10976   //
10977   // Clients that want to distinguish between the two forms, can check for
10978   // direct initializer using VarDecl::getInitStyle().
10979   // A major benefit is that clients that don't particularly care about which
10980   // exactly form was it (like the CodeGen) can handle both cases without
10981   // special case code.
10982 
10983   // C++ 8.5p11:
10984   // The form of initialization (using parentheses or '=') is generally
10985   // insignificant, but does matter when the entity being initialized has a
10986   // class type.
10987   if (CXXDirectInit) {
10988     assert(DirectInit && "Call-style initializer must be direct init.");
10989     VDecl->setInitStyle(VarDecl::CallInit);
10990   } else if (DirectInit) {
10991     // This must be list-initialization. No other way is direct-initialization.
10992     VDecl->setInitStyle(VarDecl::ListInit);
10993   }
10994 
10995   CheckCompleteVariableDeclaration(VDecl);
10996 }
10997 
10998 /// ActOnInitializerError - Given that there was an error parsing an
10999 /// initializer for the given declaration, try to return to some form
11000 /// of sanity.
11001 void Sema::ActOnInitializerError(Decl *D) {
11002   // Our main concern here is re-establishing invariants like "a
11003   // variable's type is either dependent or complete".
11004   if (!D || D->isInvalidDecl()) return;
11005 
11006   VarDecl *VD = dyn_cast<VarDecl>(D);
11007   if (!VD) return;
11008 
11009   // Bindings are not usable if we can't make sense of the initializer.
11010   if (auto *DD = dyn_cast<DecompositionDecl>(D))
11011     for (auto *BD : DD->bindings())
11012       BD->setInvalidDecl();
11013 
11014   // Auto types are meaningless if we can't make sense of the initializer.
11015   if (ParsingInitForAutoVars.count(D)) {
11016     D->setInvalidDecl();
11017     return;
11018   }
11019 
11020   QualType Ty = VD->getType();
11021   if (Ty->isDependentType()) return;
11022 
11023   // Require a complete type.
11024   if (RequireCompleteType(VD->getLocation(),
11025                           Context.getBaseElementType(Ty),
11026                           diag::err_typecheck_decl_incomplete_type)) {
11027     VD->setInvalidDecl();
11028     return;
11029   }
11030 
11031   // Require a non-abstract type.
11032   if (RequireNonAbstractType(VD->getLocation(), Ty,
11033                              diag::err_abstract_type_in_decl,
11034                              AbstractVariableType)) {
11035     VD->setInvalidDecl();
11036     return;
11037   }
11038 
11039   // Don't bother complaining about constructors or destructors,
11040   // though.
11041 }
11042 
11043 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
11044   // If there is no declaration, there was an error parsing it. Just ignore it.
11045   if (!RealDecl)
11046     return;
11047 
11048   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
11049     QualType Type = Var->getType();
11050 
11051     // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
11052     if (isa<DecompositionDecl>(RealDecl)) {
11053       Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
11054       Var->setInvalidDecl();
11055       return;
11056     }
11057 
11058     if (Type->isUndeducedType() &&
11059         DeduceVariableDeclarationType(Var, false, nullptr))
11060       return;
11061 
11062     // C++11 [class.static.data]p3: A static data member can be declared with
11063     // the constexpr specifier; if so, its declaration shall specify
11064     // a brace-or-equal-initializer.
11065     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
11066     // the definition of a variable [...] or the declaration of a static data
11067     // member.
11068     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
11069         !Var->isThisDeclarationADemotedDefinition()) {
11070       if (Var->isStaticDataMember()) {
11071         // C++1z removes the relevant rule; the in-class declaration is always
11072         // a definition there.
11073         if (!getLangOpts().CPlusPlus17) {
11074           Diag(Var->getLocation(),
11075                diag::err_constexpr_static_mem_var_requires_init)
11076             << Var->getDeclName();
11077           Var->setInvalidDecl();
11078           return;
11079         }
11080       } else {
11081         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
11082         Var->setInvalidDecl();
11083         return;
11084       }
11085     }
11086 
11087     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
11088     // be initialized.
11089     if (!Var->isInvalidDecl() &&
11090         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
11091         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
11092       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
11093       Var->setInvalidDecl();
11094       return;
11095     }
11096 
11097     switch (Var->isThisDeclarationADefinition()) {
11098     case VarDecl::Definition:
11099       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
11100         break;
11101 
11102       // We have an out-of-line definition of a static data member
11103       // that has an in-class initializer, so we type-check this like
11104       // a declaration.
11105       //
11106       LLVM_FALLTHROUGH;
11107 
11108     case VarDecl::DeclarationOnly:
11109       // It's only a declaration.
11110 
11111       // Block scope. C99 6.7p7: If an identifier for an object is
11112       // declared with no linkage (C99 6.2.2p6), the type for the
11113       // object shall be complete.
11114       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
11115           !Var->hasLinkage() && !Var->isInvalidDecl() &&
11116           RequireCompleteType(Var->getLocation(), Type,
11117                               diag::err_typecheck_decl_incomplete_type))
11118         Var->setInvalidDecl();
11119 
11120       // Make sure that the type is not abstract.
11121       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11122           RequireNonAbstractType(Var->getLocation(), Type,
11123                                  diag::err_abstract_type_in_decl,
11124                                  AbstractVariableType))
11125         Var->setInvalidDecl();
11126       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11127           Var->getStorageClass() == SC_PrivateExtern) {
11128         Diag(Var->getLocation(), diag::warn_private_extern);
11129         Diag(Var->getLocation(), diag::note_private_extern);
11130       }
11131 
11132       return;
11133 
11134     case VarDecl::TentativeDefinition:
11135       // File scope. C99 6.9.2p2: A declaration of an identifier for an
11136       // object that has file scope without an initializer, and without a
11137       // storage-class specifier or with the storage-class specifier "static",
11138       // constitutes a tentative definition. Note: A tentative definition with
11139       // external linkage is valid (C99 6.2.2p5).
11140       if (!Var->isInvalidDecl()) {
11141         if (const IncompleteArrayType *ArrayT
11142                                     = Context.getAsIncompleteArrayType(Type)) {
11143           if (RequireCompleteType(Var->getLocation(),
11144                                   ArrayT->getElementType(),
11145                                   diag::err_illegal_decl_array_incomplete_type))
11146             Var->setInvalidDecl();
11147         } else if (Var->getStorageClass() == SC_Static) {
11148           // C99 6.9.2p3: If the declaration of an identifier for an object is
11149           // a tentative definition and has internal linkage (C99 6.2.2p3), the
11150           // declared type shall not be an incomplete type.
11151           // NOTE: code such as the following
11152           //     static struct s;
11153           //     struct s { int a; };
11154           // is accepted by gcc. Hence here we issue a warning instead of
11155           // an error and we do not invalidate the static declaration.
11156           // NOTE: to avoid multiple warnings, only check the first declaration.
11157           if (Var->isFirstDecl())
11158             RequireCompleteType(Var->getLocation(), Type,
11159                                 diag::ext_typecheck_decl_incomplete_type);
11160         }
11161       }
11162 
11163       // Record the tentative definition; we're done.
11164       if (!Var->isInvalidDecl())
11165         TentativeDefinitions.push_back(Var);
11166       return;
11167     }
11168 
11169     // Provide a specific diagnostic for uninitialized variable
11170     // definitions with incomplete array type.
11171     if (Type->isIncompleteArrayType()) {
11172       Diag(Var->getLocation(),
11173            diag::err_typecheck_incomplete_array_needs_initializer);
11174       Var->setInvalidDecl();
11175       return;
11176     }
11177 
11178     // Provide a specific diagnostic for uninitialized variable
11179     // definitions with reference type.
11180     if (Type->isReferenceType()) {
11181       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
11182         << Var->getDeclName()
11183         << SourceRange(Var->getLocation(), Var->getLocation());
11184       Var->setInvalidDecl();
11185       return;
11186     }
11187 
11188     // Do not attempt to type-check the default initializer for a
11189     // variable with dependent type.
11190     if (Type->isDependentType())
11191       return;
11192 
11193     if (Var->isInvalidDecl())
11194       return;
11195 
11196     if (!Var->hasAttr<AliasAttr>()) {
11197       if (RequireCompleteType(Var->getLocation(),
11198                               Context.getBaseElementType(Type),
11199                               diag::err_typecheck_decl_incomplete_type)) {
11200         Var->setInvalidDecl();
11201         return;
11202       }
11203     } else {
11204       return;
11205     }
11206 
11207     // The variable can not have an abstract class type.
11208     if (RequireNonAbstractType(Var->getLocation(), Type,
11209                                diag::err_abstract_type_in_decl,
11210                                AbstractVariableType)) {
11211       Var->setInvalidDecl();
11212       return;
11213     }
11214 
11215     // Check for jumps past the implicit initializer.  C++0x
11216     // clarifies that this applies to a "variable with automatic
11217     // storage duration", not a "local variable".
11218     // C++11 [stmt.dcl]p3
11219     //   A program that jumps from a point where a variable with automatic
11220     //   storage duration is not in scope to a point where it is in scope is
11221     //   ill-formed unless the variable has scalar type, class type with a
11222     //   trivial default constructor and a trivial destructor, a cv-qualified
11223     //   version of one of these types, or an array of one of the preceding
11224     //   types and is declared without an initializer.
11225     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
11226       if (const RecordType *Record
11227             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
11228         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
11229         // Mark the function (if we're in one) for further checking even if the
11230         // looser rules of C++11 do not require such checks, so that we can
11231         // diagnose incompatibilities with C++98.
11232         if (!CXXRecord->isPOD())
11233           setFunctionHasBranchProtectedScope();
11234       }
11235     }
11236 
11237     // C++03 [dcl.init]p9:
11238     //   If no initializer is specified for an object, and the
11239     //   object is of (possibly cv-qualified) non-POD class type (or
11240     //   array thereof), the object shall be default-initialized; if
11241     //   the object is of const-qualified type, the underlying class
11242     //   type shall have a user-declared default
11243     //   constructor. Otherwise, if no initializer is specified for
11244     //   a non- static object, the object and its subobjects, if
11245     //   any, have an indeterminate initial value); if the object
11246     //   or any of its subobjects are of const-qualified type, the
11247     //   program is ill-formed.
11248     // C++0x [dcl.init]p11:
11249     //   If no initializer is specified for an object, the object is
11250     //   default-initialized; [...].
11251     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
11252     InitializationKind Kind
11253       = InitializationKind::CreateDefault(Var->getLocation());
11254 
11255     InitializationSequence InitSeq(*this, Entity, Kind, None);
11256     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
11257     if (Init.isInvalid())
11258       Var->setInvalidDecl();
11259     else if (Init.get()) {
11260       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
11261       // This is important for template substitution.
11262       Var->setInitStyle(VarDecl::CallInit);
11263     }
11264 
11265     CheckCompleteVariableDeclaration(Var);
11266   }
11267 }
11268 
11269 void Sema::ActOnCXXForRangeDecl(Decl *D) {
11270   // If there is no declaration, there was an error parsing it. Ignore it.
11271   if (!D)
11272     return;
11273 
11274   VarDecl *VD = dyn_cast<VarDecl>(D);
11275   if (!VD) {
11276     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
11277     D->setInvalidDecl();
11278     return;
11279   }
11280 
11281   VD->setCXXForRangeDecl(true);
11282 
11283   // for-range-declaration cannot be given a storage class specifier.
11284   int Error = -1;
11285   switch (VD->getStorageClass()) {
11286   case SC_None:
11287     break;
11288   case SC_Extern:
11289     Error = 0;
11290     break;
11291   case SC_Static:
11292     Error = 1;
11293     break;
11294   case SC_PrivateExtern:
11295     Error = 2;
11296     break;
11297   case SC_Auto:
11298     Error = 3;
11299     break;
11300   case SC_Register:
11301     Error = 4;
11302     break;
11303   }
11304   if (Error != -1) {
11305     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
11306       << VD->getDeclName() << Error;
11307     D->setInvalidDecl();
11308   }
11309 }
11310 
11311 StmtResult
11312 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
11313                                  IdentifierInfo *Ident,
11314                                  ParsedAttributes &Attrs,
11315                                  SourceLocation AttrEnd) {
11316   // C++1y [stmt.iter]p1:
11317   //   A range-based for statement of the form
11318   //      for ( for-range-identifier : for-range-initializer ) statement
11319   //   is equivalent to
11320   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
11321   DeclSpec DS(Attrs.getPool().getFactory());
11322 
11323   const char *PrevSpec;
11324   unsigned DiagID;
11325   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
11326                      getPrintingPolicy());
11327 
11328   Declarator D(DS, DeclaratorContext::ForContext);
11329   D.SetIdentifier(Ident, IdentLoc);
11330   D.takeAttributes(Attrs, AttrEnd);
11331 
11332   ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
11333   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
11334                 EmptyAttrs, IdentLoc);
11335   Decl *Var = ActOnDeclarator(S, D);
11336   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
11337   FinalizeDeclaration(Var);
11338   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
11339                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
11340 }
11341 
11342 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
11343   if (var->isInvalidDecl()) return;
11344 
11345   if (getLangOpts().OpenCL) {
11346     // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
11347     // initialiser
11348     if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
11349         !var->hasInit()) {
11350       Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
11351           << 1 /*Init*/;
11352       var->setInvalidDecl();
11353       return;
11354     }
11355   }
11356 
11357   // In Objective-C, don't allow jumps past the implicit initialization of a
11358   // local retaining variable.
11359   if (getLangOpts().ObjC1 &&
11360       var->hasLocalStorage()) {
11361     switch (var->getType().getObjCLifetime()) {
11362     case Qualifiers::OCL_None:
11363     case Qualifiers::OCL_ExplicitNone:
11364     case Qualifiers::OCL_Autoreleasing:
11365       break;
11366 
11367     case Qualifiers::OCL_Weak:
11368     case Qualifiers::OCL_Strong:
11369       setFunctionHasBranchProtectedScope();
11370       break;
11371     }
11372   }
11373 
11374   if (var->hasLocalStorage() &&
11375       var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
11376     setFunctionHasBranchProtectedScope();
11377 
11378   // Warn about externally-visible variables being defined without a
11379   // prior declaration.  We only want to do this for global
11380   // declarations, but we also specifically need to avoid doing it for
11381   // class members because the linkage of an anonymous class can
11382   // change if it's later given a typedef name.
11383   if (var->isThisDeclarationADefinition() &&
11384       var->getDeclContext()->getRedeclContext()->isFileContext() &&
11385       var->isExternallyVisible() && var->hasLinkage() &&
11386       !var->isInline() && !var->getDescribedVarTemplate() &&
11387       !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
11388       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
11389                                   var->getLocation())) {
11390     // Find a previous declaration that's not a definition.
11391     VarDecl *prev = var->getPreviousDecl();
11392     while (prev && prev->isThisDeclarationADefinition())
11393       prev = prev->getPreviousDecl();
11394 
11395     if (!prev)
11396       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
11397   }
11398 
11399   // Cache the result of checking for constant initialization.
11400   Optional<bool> CacheHasConstInit;
11401   const Expr *CacheCulprit;
11402   auto checkConstInit = [&]() mutable {
11403     if (!CacheHasConstInit)
11404       CacheHasConstInit = var->getInit()->isConstantInitializer(
11405             Context, var->getType()->isReferenceType(), &CacheCulprit);
11406     return *CacheHasConstInit;
11407   };
11408 
11409   if (var->getTLSKind() == VarDecl::TLS_Static) {
11410     if (var->getType().isDestructedType()) {
11411       // GNU C++98 edits for __thread, [basic.start.term]p3:
11412       //   The type of an object with thread storage duration shall not
11413       //   have a non-trivial destructor.
11414       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
11415       if (getLangOpts().CPlusPlus11)
11416         Diag(var->getLocation(), diag::note_use_thread_local);
11417     } else if (getLangOpts().CPlusPlus && var->hasInit()) {
11418       if (!checkConstInit()) {
11419         // GNU C++98 edits for __thread, [basic.start.init]p4:
11420         //   An object of thread storage duration shall not require dynamic
11421         //   initialization.
11422         // FIXME: Need strict checking here.
11423         Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
11424           << CacheCulprit->getSourceRange();
11425         if (getLangOpts().CPlusPlus11)
11426           Diag(var->getLocation(), diag::note_use_thread_local);
11427       }
11428     }
11429   }
11430 
11431   // Apply section attributes and pragmas to global variables.
11432   bool GlobalStorage = var->hasGlobalStorage();
11433   if (GlobalStorage && var->isThisDeclarationADefinition() &&
11434       !inTemplateInstantiation()) {
11435     PragmaStack<StringLiteral *> *Stack = nullptr;
11436     int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
11437     if (var->getType().isConstQualified())
11438       Stack = &ConstSegStack;
11439     else if (!var->getInit()) {
11440       Stack = &BSSSegStack;
11441       SectionFlags |= ASTContext::PSF_Write;
11442     } else {
11443       Stack = &DataSegStack;
11444       SectionFlags |= ASTContext::PSF_Write;
11445     }
11446     if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
11447       var->addAttr(SectionAttr::CreateImplicit(
11448           Context, SectionAttr::Declspec_allocate,
11449           Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
11450     }
11451     if (const SectionAttr *SA = var->getAttr<SectionAttr>())
11452       if (UnifySection(SA->getName(), SectionFlags, var))
11453         var->dropAttr<SectionAttr>();
11454 
11455     // Apply the init_seg attribute if this has an initializer.  If the
11456     // initializer turns out to not be dynamic, we'll end up ignoring this
11457     // attribute.
11458     if (CurInitSeg && var->getInit())
11459       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
11460                                                CurInitSegLoc));
11461   }
11462 
11463   // All the following checks are C++ only.
11464   if (!getLangOpts().CPlusPlus) {
11465       // If this variable must be emitted, add it as an initializer for the
11466       // current module.
11467      if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
11468        Context.addModuleInitializer(ModuleScopes.back().Module, var);
11469      return;
11470   }
11471 
11472   if (auto *DD = dyn_cast<DecompositionDecl>(var))
11473     CheckCompleteDecompositionDeclaration(DD);
11474 
11475   QualType type = var->getType();
11476   if (type->isDependentType()) return;
11477 
11478   // __block variables might require us to capture a copy-initializer.
11479   if (var->hasAttr<BlocksAttr>()) {
11480     // It's currently invalid to ever have a __block variable with an
11481     // array type; should we diagnose that here?
11482 
11483     // Regardless, we don't want to ignore array nesting when
11484     // constructing this copy.
11485     if (type->isStructureOrClassType()) {
11486       EnterExpressionEvaluationContext scope(
11487           *this, ExpressionEvaluationContext::PotentiallyEvaluated);
11488       SourceLocation poi = var->getLocation();
11489       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
11490       ExprResult result
11491         = PerformMoveOrCopyInitialization(
11492             InitializedEntity::InitializeBlock(poi, type, false),
11493             var, var->getType(), varRef, /*AllowNRVO=*/true);
11494       if (!result.isInvalid()) {
11495         result = MaybeCreateExprWithCleanups(result);
11496         Expr *init = result.getAs<Expr>();
11497         Context.setBlockVarCopyInits(var, init);
11498       }
11499     }
11500   }
11501 
11502   Expr *Init = var->getInit();
11503   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
11504   QualType baseType = Context.getBaseElementType(type);
11505 
11506   if (Init && !Init->isValueDependent()) {
11507     if (var->isConstexpr()) {
11508       SmallVector<PartialDiagnosticAt, 8> Notes;
11509       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
11510         SourceLocation DiagLoc = var->getLocation();
11511         // If the note doesn't add any useful information other than a source
11512         // location, fold it into the primary diagnostic.
11513         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
11514               diag::note_invalid_subexpr_in_const_expr) {
11515           DiagLoc = Notes[0].first;
11516           Notes.clear();
11517         }
11518         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
11519           << var << Init->getSourceRange();
11520         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
11521           Diag(Notes[I].first, Notes[I].second);
11522       }
11523     } else if (var->isUsableInConstantExpressions(Context)) {
11524       // Check whether the initializer of a const variable of integral or
11525       // enumeration type is an ICE now, since we can't tell whether it was
11526       // initialized by a constant expression if we check later.
11527       var->checkInitIsICE();
11528     }
11529 
11530     // Don't emit further diagnostics about constexpr globals since they
11531     // were just diagnosed.
11532     if (!var->isConstexpr() && GlobalStorage &&
11533             var->hasAttr<RequireConstantInitAttr>()) {
11534       // FIXME: Need strict checking in C++03 here.
11535       bool DiagErr = getLangOpts().CPlusPlus11
11536           ? !var->checkInitIsICE() : !checkConstInit();
11537       if (DiagErr) {
11538         auto attr = var->getAttr<RequireConstantInitAttr>();
11539         Diag(var->getLocation(), diag::err_require_constant_init_failed)
11540           << Init->getSourceRange();
11541         Diag(attr->getLocation(), diag::note_declared_required_constant_init_here)
11542           << attr->getRange();
11543         if (getLangOpts().CPlusPlus11) {
11544           APValue Value;
11545           SmallVector<PartialDiagnosticAt, 8> Notes;
11546           Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes);
11547           for (auto &it : Notes)
11548             Diag(it.first, it.second);
11549         } else {
11550           Diag(CacheCulprit->getExprLoc(),
11551                diag::note_invalid_subexpr_in_const_expr)
11552               << CacheCulprit->getSourceRange();
11553         }
11554       }
11555     }
11556     else if (!var->isConstexpr() && IsGlobal &&
11557              !getDiagnostics().isIgnored(diag::warn_global_constructor,
11558                                     var->getLocation())) {
11559       // Warn about globals which don't have a constant initializer.  Don't
11560       // warn about globals with a non-trivial destructor because we already
11561       // warned about them.
11562       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
11563       if (!(RD && !RD->hasTrivialDestructor())) {
11564         if (!checkConstInit())
11565           Diag(var->getLocation(), diag::warn_global_constructor)
11566             << Init->getSourceRange();
11567       }
11568     }
11569   }
11570 
11571   // Require the destructor.
11572   if (const RecordType *recordType = baseType->getAs<RecordType>())
11573     FinalizeVarWithDestructor(var, recordType);
11574 
11575   // If this variable must be emitted, add it as an initializer for the current
11576   // module.
11577   if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
11578     Context.addModuleInitializer(ModuleScopes.back().Module, var);
11579 }
11580 
11581 /// Determines if a variable's alignment is dependent.
11582 static bool hasDependentAlignment(VarDecl *VD) {
11583   if (VD->getType()->isDependentType())
11584     return true;
11585   for (auto *I : VD->specific_attrs<AlignedAttr>())
11586     if (I->isAlignmentDependent())
11587       return true;
11588   return false;
11589 }
11590 
11591 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
11592 /// any semantic actions necessary after any initializer has been attached.
11593 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
11594   // Note that we are no longer parsing the initializer for this declaration.
11595   ParsingInitForAutoVars.erase(ThisDecl);
11596 
11597   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
11598   if (!VD)
11599     return;
11600 
11601   // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
11602   if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
11603       !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
11604     if (PragmaClangBSSSection.Valid)
11605       VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(Context,
11606                                                             PragmaClangBSSSection.SectionName,
11607                                                             PragmaClangBSSSection.PragmaLocation));
11608     if (PragmaClangDataSection.Valid)
11609       VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(Context,
11610                                                              PragmaClangDataSection.SectionName,
11611                                                              PragmaClangDataSection.PragmaLocation));
11612     if (PragmaClangRodataSection.Valid)
11613       VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(Context,
11614                                                                PragmaClangRodataSection.SectionName,
11615                                                                PragmaClangRodataSection.PragmaLocation));
11616   }
11617 
11618   if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
11619     for (auto *BD : DD->bindings()) {
11620       FinalizeDeclaration(BD);
11621     }
11622   }
11623 
11624   checkAttributesAfterMerging(*this, *VD);
11625 
11626   // Perform TLS alignment check here after attributes attached to the variable
11627   // which may affect the alignment have been processed. Only perform the check
11628   // if the target has a maximum TLS alignment (zero means no constraints).
11629   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
11630     // Protect the check so that it's not performed on dependent types and
11631     // dependent alignments (we can't determine the alignment in that case).
11632     if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
11633         !VD->isInvalidDecl()) {
11634       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
11635       if (Context.getDeclAlign(VD) > MaxAlignChars) {
11636         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
11637           << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
11638           << (unsigned)MaxAlignChars.getQuantity();
11639       }
11640     }
11641   }
11642 
11643   if (VD->isStaticLocal()) {
11644     if (FunctionDecl *FD =
11645             dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
11646       // Static locals inherit dll attributes from their function.
11647       if (Attr *A = getDLLAttr(FD)) {
11648         auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
11649         NewAttr->setInherited(true);
11650         VD->addAttr(NewAttr);
11651       }
11652       // CUDA E.2.9.4: Within the body of a __device__ or __global__
11653       // function, only __shared__ variables may be declared with
11654       // static storage class.
11655       if (getLangOpts().CUDA && !VD->hasAttr<CUDASharedAttr>() &&
11656           CUDADiagIfDeviceCode(VD->getLocation(),
11657                                diag::err_device_static_local_var)
11658               << CurrentCUDATarget())
11659         VD->setInvalidDecl();
11660     }
11661   }
11662 
11663   // Perform check for initializers of device-side global variables.
11664   // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
11665   // 7.5). We must also apply the same checks to all __shared__
11666   // variables whether they are local or not. CUDA also allows
11667   // constant initializers for __constant__ and __device__ variables.
11668   if (getLangOpts().CUDA) {
11669     const Expr *Init = VD->getInit();
11670     if (Init && VD->hasGlobalStorage()) {
11671       if (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>() ||
11672           VD->hasAttr<CUDASharedAttr>()) {
11673         assert(!VD->isStaticLocal() || VD->hasAttr<CUDASharedAttr>());
11674         bool AllowedInit = false;
11675         if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init))
11676           AllowedInit =
11677               isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
11678         // We'll allow constant initializers even if it's a non-empty
11679         // constructor according to CUDA rules. This deviates from NVCC,
11680         // but allows us to handle things like constexpr constructors.
11681         if (!AllowedInit &&
11682             (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
11683           AllowedInit = VD->getInit()->isConstantInitializer(
11684               Context, VD->getType()->isReferenceType());
11685 
11686         // Also make sure that destructor, if there is one, is empty.
11687         if (AllowedInit)
11688           if (CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl())
11689             AllowedInit =
11690                 isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());
11691 
11692         if (!AllowedInit) {
11693           Diag(VD->getLocation(), VD->hasAttr<CUDASharedAttr>()
11694                                       ? diag::err_shared_var_init
11695                                       : diag::err_dynamic_var_init)
11696               << Init->getSourceRange();
11697           VD->setInvalidDecl();
11698         }
11699       } else {
11700         // This is a host-side global variable.  Check that the initializer is
11701         // callable from the host side.
11702         const FunctionDecl *InitFn = nullptr;
11703         if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
11704           InitFn = CE->getConstructor();
11705         } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
11706           InitFn = CE->getDirectCallee();
11707         }
11708         if (InitFn) {
11709           CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn);
11710           if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) {
11711             Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
11712                 << InitFnTarget << InitFn;
11713             Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
11714             VD->setInvalidDecl();
11715           }
11716         }
11717       }
11718     }
11719   }
11720 
11721   // Grab the dllimport or dllexport attribute off of the VarDecl.
11722   const InheritableAttr *DLLAttr = getDLLAttr(VD);
11723 
11724   // Imported static data members cannot be defined out-of-line.
11725   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
11726     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
11727         VD->isThisDeclarationADefinition()) {
11728       // We allow definitions of dllimport class template static data members
11729       // with a warning.
11730       CXXRecordDecl *Context =
11731         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
11732       bool IsClassTemplateMember =
11733           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
11734           Context->getDescribedClassTemplate();
11735 
11736       Diag(VD->getLocation(),
11737            IsClassTemplateMember
11738                ? diag::warn_attribute_dllimport_static_field_definition
11739                : diag::err_attribute_dllimport_static_field_definition);
11740       Diag(IA->getLocation(), diag::note_attribute);
11741       if (!IsClassTemplateMember)
11742         VD->setInvalidDecl();
11743     }
11744   }
11745 
11746   // dllimport/dllexport variables cannot be thread local, their TLS index
11747   // isn't exported with the variable.
11748   if (DLLAttr && VD->getTLSKind()) {
11749     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
11750     if (F && getDLLAttr(F)) {
11751       assert(VD->isStaticLocal());
11752       // But if this is a static local in a dlimport/dllexport function, the
11753       // function will never be inlined, which means the var would never be
11754       // imported, so having it marked import/export is safe.
11755     } else {
11756       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
11757                                                                     << DLLAttr;
11758       VD->setInvalidDecl();
11759     }
11760   }
11761 
11762   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
11763     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
11764       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
11765       VD->dropAttr<UsedAttr>();
11766     }
11767   }
11768 
11769   const DeclContext *DC = VD->getDeclContext();
11770   // If there's a #pragma GCC visibility in scope, and this isn't a class
11771   // member, set the visibility of this variable.
11772   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
11773     AddPushedVisibilityAttribute(VD);
11774 
11775   // FIXME: Warn on unused var template partial specializations.
11776   if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
11777     MarkUnusedFileScopedDecl(VD);
11778 
11779   // Now we have parsed the initializer and can update the table of magic
11780   // tag values.
11781   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
11782       !VD->getType()->isIntegralOrEnumerationType())
11783     return;
11784 
11785   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
11786     const Expr *MagicValueExpr = VD->getInit();
11787     if (!MagicValueExpr) {
11788       continue;
11789     }
11790     llvm::APSInt MagicValueInt;
11791     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
11792       Diag(I->getRange().getBegin(),
11793            diag::err_type_tag_for_datatype_not_ice)
11794         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
11795       continue;
11796     }
11797     if (MagicValueInt.getActiveBits() > 64) {
11798       Diag(I->getRange().getBegin(),
11799            diag::err_type_tag_for_datatype_too_large)
11800         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
11801       continue;
11802     }
11803     uint64_t MagicValue = MagicValueInt.getZExtValue();
11804     RegisterTypeTagForDatatype(I->getArgumentKind(),
11805                                MagicValue,
11806                                I->getMatchingCType(),
11807                                I->getLayoutCompatible(),
11808                                I->getMustBeNull());
11809   }
11810 }
11811 
11812 static bool hasDeducedAuto(DeclaratorDecl *DD) {
11813   auto *VD = dyn_cast<VarDecl>(DD);
11814   return VD && !VD->getType()->hasAutoForTrailingReturnType();
11815 }
11816 
11817 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
11818                                                    ArrayRef<Decl *> Group) {
11819   SmallVector<Decl*, 8> Decls;
11820 
11821   if (DS.isTypeSpecOwned())
11822     Decls.push_back(DS.getRepAsDecl());
11823 
11824   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
11825   DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
11826   bool DiagnosedMultipleDecomps = false;
11827   DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
11828   bool DiagnosedNonDeducedAuto = false;
11829 
11830   for (unsigned i = 0, e = Group.size(); i != e; ++i) {
11831     if (Decl *D = Group[i]) {
11832       // For declarators, there are some additional syntactic-ish checks we need
11833       // to perform.
11834       if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
11835         if (!FirstDeclaratorInGroup)
11836           FirstDeclaratorInGroup = DD;
11837         if (!FirstDecompDeclaratorInGroup)
11838           FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
11839         if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
11840             !hasDeducedAuto(DD))
11841           FirstNonDeducedAutoInGroup = DD;
11842 
11843         if (FirstDeclaratorInGroup != DD) {
11844           // A decomposition declaration cannot be combined with any other
11845           // declaration in the same group.
11846           if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
11847             Diag(FirstDecompDeclaratorInGroup->getLocation(),
11848                  diag::err_decomp_decl_not_alone)
11849                 << FirstDeclaratorInGroup->getSourceRange()
11850                 << DD->getSourceRange();
11851             DiagnosedMultipleDecomps = true;
11852           }
11853 
11854           // A declarator that uses 'auto' in any way other than to declare a
11855           // variable with a deduced type cannot be combined with any other
11856           // declarator in the same group.
11857           if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
11858             Diag(FirstNonDeducedAutoInGroup->getLocation(),
11859                  diag::err_auto_non_deduced_not_alone)
11860                 << FirstNonDeducedAutoInGroup->getType()
11861                        ->hasAutoForTrailingReturnType()
11862                 << FirstDeclaratorInGroup->getSourceRange()
11863                 << DD->getSourceRange();
11864             DiagnosedNonDeducedAuto = true;
11865           }
11866         }
11867       }
11868 
11869       Decls.push_back(D);
11870     }
11871   }
11872 
11873   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
11874     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
11875       handleTagNumbering(Tag, S);
11876       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
11877           getLangOpts().CPlusPlus)
11878         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
11879     }
11880   }
11881 
11882   return BuildDeclaratorGroup(Decls);
11883 }
11884 
11885 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
11886 /// group, performing any necessary semantic checking.
11887 Sema::DeclGroupPtrTy
11888 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
11889   // C++14 [dcl.spec.auto]p7: (DR1347)
11890   //   If the type that replaces the placeholder type is not the same in each
11891   //   deduction, the program is ill-formed.
11892   if (Group.size() > 1) {
11893     QualType Deduced;
11894     VarDecl *DeducedDecl = nullptr;
11895     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
11896       VarDecl *D = dyn_cast<VarDecl>(Group[i]);
11897       if (!D || D->isInvalidDecl())
11898         break;
11899       DeducedType *DT = D->getType()->getContainedDeducedType();
11900       if (!DT || DT->getDeducedType().isNull())
11901         continue;
11902       if (Deduced.isNull()) {
11903         Deduced = DT->getDeducedType();
11904         DeducedDecl = D;
11905       } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
11906         auto *AT = dyn_cast<AutoType>(DT);
11907         Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
11908              diag::err_auto_different_deductions)
11909           << (AT ? (unsigned)AT->getKeyword() : 3)
11910           << Deduced << DeducedDecl->getDeclName()
11911           << DT->getDeducedType() << D->getDeclName()
11912           << DeducedDecl->getInit()->getSourceRange()
11913           << D->getInit()->getSourceRange();
11914         D->setInvalidDecl();
11915         break;
11916       }
11917     }
11918   }
11919 
11920   ActOnDocumentableDecls(Group);
11921 
11922   return DeclGroupPtrTy::make(
11923       DeclGroupRef::Create(Context, Group.data(), Group.size()));
11924 }
11925 
11926 void Sema::ActOnDocumentableDecl(Decl *D) {
11927   ActOnDocumentableDecls(D);
11928 }
11929 
11930 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
11931   // Don't parse the comment if Doxygen diagnostics are ignored.
11932   if (Group.empty() || !Group[0])
11933     return;
11934 
11935   if (Diags.isIgnored(diag::warn_doc_param_not_found,
11936                       Group[0]->getLocation()) &&
11937       Diags.isIgnored(diag::warn_unknown_comment_command_name,
11938                       Group[0]->getLocation()))
11939     return;
11940 
11941   if (Group.size() >= 2) {
11942     // This is a decl group.  Normally it will contain only declarations
11943     // produced from declarator list.  But in case we have any definitions or
11944     // additional declaration references:
11945     //   'typedef struct S {} S;'
11946     //   'typedef struct S *S;'
11947     //   'struct S *pS;'
11948     // FinalizeDeclaratorGroup adds these as separate declarations.
11949     Decl *MaybeTagDecl = Group[0];
11950     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
11951       Group = Group.slice(1);
11952     }
11953   }
11954 
11955   // See if there are any new comments that are not attached to a decl.
11956   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
11957   if (!Comments.empty() &&
11958       !Comments.back()->isAttached()) {
11959     // There is at least one comment that not attached to a decl.
11960     // Maybe it should be attached to one of these decls?
11961     //
11962     // Note that this way we pick up not only comments that precede the
11963     // declaration, but also comments that *follow* the declaration -- thanks to
11964     // the lookahead in the lexer: we've consumed the semicolon and looked
11965     // ahead through comments.
11966     for (unsigned i = 0, e = Group.size(); i != e; ++i)
11967       Context.getCommentForDecl(Group[i], &PP);
11968   }
11969 }
11970 
11971 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
11972 /// to introduce parameters into function prototype scope.
11973 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
11974   const DeclSpec &DS = D.getDeclSpec();
11975 
11976   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
11977 
11978   // C++03 [dcl.stc]p2 also permits 'auto'.
11979   StorageClass SC = SC_None;
11980   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
11981     SC = SC_Register;
11982     // In C++11, the 'register' storage class specifier is deprecated.
11983     // In C++17, it is not allowed, but we tolerate it as an extension.
11984     if (getLangOpts().CPlusPlus11) {
11985       Diag(DS.getStorageClassSpecLoc(),
11986            getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
11987                                      : diag::warn_deprecated_register)
11988         << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
11989     }
11990   } else if (getLangOpts().CPlusPlus &&
11991              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
11992     SC = SC_Auto;
11993   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
11994     Diag(DS.getStorageClassSpecLoc(),
11995          diag::err_invalid_storage_class_in_func_decl);
11996     D.getMutableDeclSpec().ClearStorageClassSpecs();
11997   }
11998 
11999   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
12000     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
12001       << DeclSpec::getSpecifierName(TSCS);
12002   if (DS.isInlineSpecified())
12003     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
12004         << getLangOpts().CPlusPlus17;
12005   if (DS.isConstexprSpecified())
12006     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
12007       << 0;
12008 
12009   DiagnoseFunctionSpecifiers(DS);
12010 
12011   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12012   QualType parmDeclType = TInfo->getType();
12013 
12014   if (getLangOpts().CPlusPlus) {
12015     // Check that there are no default arguments inside the type of this
12016     // parameter.
12017     CheckExtraCXXDefaultArguments(D);
12018 
12019     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
12020     if (D.getCXXScopeSpec().isSet()) {
12021       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
12022         << D.getCXXScopeSpec().getRange();
12023       D.getCXXScopeSpec().clear();
12024     }
12025   }
12026 
12027   // Ensure we have a valid name
12028   IdentifierInfo *II = nullptr;
12029   if (D.hasName()) {
12030     II = D.getIdentifier();
12031     if (!II) {
12032       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
12033         << GetNameForDeclarator(D).getName();
12034       D.setInvalidType(true);
12035     }
12036   }
12037 
12038   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
12039   if (II) {
12040     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
12041                    ForVisibleRedeclaration);
12042     LookupName(R, S);
12043     if (R.isSingleResult()) {
12044       NamedDecl *PrevDecl = R.getFoundDecl();
12045       if (PrevDecl->isTemplateParameter()) {
12046         // Maybe we will complain about the shadowed template parameter.
12047         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12048         // Just pretend that we didn't see the previous declaration.
12049         PrevDecl = nullptr;
12050       } else if (S->isDeclScope(PrevDecl)) {
12051         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
12052         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12053 
12054         // Recover by removing the name
12055         II = nullptr;
12056         D.SetIdentifier(nullptr, D.getIdentifierLoc());
12057         D.setInvalidType(true);
12058       }
12059     }
12060   }
12061 
12062   // Temporarily put parameter variables in the translation unit, not
12063   // the enclosing context.  This prevents them from accidentally
12064   // looking like class members in C++.
12065   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
12066                                     D.getLocStart(),
12067                                     D.getIdentifierLoc(), II,
12068                                     parmDeclType, TInfo,
12069                                     SC);
12070 
12071   if (D.isInvalidType())
12072     New->setInvalidDecl();
12073 
12074   assert(S->isFunctionPrototypeScope());
12075   assert(S->getFunctionPrototypeDepth() >= 1);
12076   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
12077                     S->getNextFunctionPrototypeIndex());
12078 
12079   // Add the parameter declaration into this scope.
12080   S->AddDecl(New);
12081   if (II)
12082     IdResolver.AddDecl(New);
12083 
12084   ProcessDeclAttributes(S, New, D);
12085 
12086   if (D.getDeclSpec().isModulePrivateSpecified())
12087     Diag(New->getLocation(), diag::err_module_private_local)
12088       << 1 << New->getDeclName()
12089       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
12090       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
12091 
12092   if (New->hasAttr<BlocksAttr>()) {
12093     Diag(New->getLocation(), diag::err_block_on_nonlocal);
12094   }
12095   return New;
12096 }
12097 
12098 /// Synthesizes a variable for a parameter arising from a
12099 /// typedef.
12100 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
12101                                               SourceLocation Loc,
12102                                               QualType T) {
12103   /* FIXME: setting StartLoc == Loc.
12104      Would it be worth to modify callers so as to provide proper source
12105      location for the unnamed parameters, embedding the parameter's type? */
12106   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
12107                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
12108                                            SC_None, nullptr);
12109   Param->setImplicit();
12110   return Param;
12111 }
12112 
12113 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
12114   // Don't diagnose unused-parameter errors in template instantiations; we
12115   // will already have done so in the template itself.
12116   if (inTemplateInstantiation())
12117     return;
12118 
12119   for (const ParmVarDecl *Parameter : Parameters) {
12120     if (!Parameter->isReferenced() && Parameter->getDeclName() &&
12121         !Parameter->hasAttr<UnusedAttr>()) {
12122       Diag(Parameter->getLocation(), diag::warn_unused_parameter)
12123         << Parameter->getDeclName();
12124     }
12125   }
12126 }
12127 
12128 void Sema::DiagnoseSizeOfParametersAndReturnValue(
12129     ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
12130   if (LangOpts.NumLargeByValueCopy == 0) // No check.
12131     return;
12132 
12133   // Warn if the return value is pass-by-value and larger than the specified
12134   // threshold.
12135   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
12136     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
12137     if (Size > LangOpts.NumLargeByValueCopy)
12138       Diag(D->getLocation(), diag::warn_return_value_size)
12139           << D->getDeclName() << Size;
12140   }
12141 
12142   // Warn if any parameter is pass-by-value and larger than the specified
12143   // threshold.
12144   for (const ParmVarDecl *Parameter : Parameters) {
12145     QualType T = Parameter->getType();
12146     if (T->isDependentType() || !T.isPODType(Context))
12147       continue;
12148     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
12149     if (Size > LangOpts.NumLargeByValueCopy)
12150       Diag(Parameter->getLocation(), diag::warn_parameter_size)
12151           << Parameter->getDeclName() << Size;
12152   }
12153 }
12154 
12155 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
12156                                   SourceLocation NameLoc, IdentifierInfo *Name,
12157                                   QualType T, TypeSourceInfo *TSInfo,
12158                                   StorageClass SC) {
12159   // In ARC, infer a lifetime qualifier for appropriate parameter types.
12160   if (getLangOpts().ObjCAutoRefCount &&
12161       T.getObjCLifetime() == Qualifiers::OCL_None &&
12162       T->isObjCLifetimeType()) {
12163 
12164     Qualifiers::ObjCLifetime lifetime;
12165 
12166     // Special cases for arrays:
12167     //   - if it's const, use __unsafe_unretained
12168     //   - otherwise, it's an error
12169     if (T->isArrayType()) {
12170       if (!T.isConstQualified()) {
12171         DelayedDiagnostics.add(
12172             sema::DelayedDiagnostic::makeForbiddenType(
12173             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
12174       }
12175       lifetime = Qualifiers::OCL_ExplicitNone;
12176     } else {
12177       lifetime = T->getObjCARCImplicitLifetime();
12178     }
12179     T = Context.getLifetimeQualifiedType(T, lifetime);
12180   }
12181 
12182   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
12183                                          Context.getAdjustedParameterType(T),
12184                                          TSInfo, SC, nullptr);
12185 
12186   // Parameters can not be abstract class types.
12187   // For record types, this is done by the AbstractClassUsageDiagnoser once
12188   // the class has been completely parsed.
12189   if (!CurContext->isRecord() &&
12190       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
12191                              AbstractParamType))
12192     New->setInvalidDecl();
12193 
12194   // Parameter declarators cannot be interface types. All ObjC objects are
12195   // passed by reference.
12196   if (T->isObjCObjectType()) {
12197     SourceLocation TypeEndLoc =
12198         getLocForEndOfToken(TSInfo->getTypeLoc().getLocEnd());
12199     Diag(NameLoc,
12200          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
12201       << FixItHint::CreateInsertion(TypeEndLoc, "*");
12202     T = Context.getObjCObjectPointerType(T);
12203     New->setType(T);
12204   }
12205 
12206   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
12207   // duration shall not be qualified by an address-space qualifier."
12208   // Since all parameters have automatic store duration, they can not have
12209   // an address space.
12210   if (T.getAddressSpace() != LangAS::Default &&
12211       // OpenCL allows function arguments declared to be an array of a type
12212       // to be qualified with an address space.
12213       !(getLangOpts().OpenCL &&
12214         (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
12215     Diag(NameLoc, diag::err_arg_with_address_space);
12216     New->setInvalidDecl();
12217   }
12218 
12219   return New;
12220 }
12221 
12222 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
12223                                            SourceLocation LocAfterDecls) {
12224   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
12225 
12226   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
12227   // for a K&R function.
12228   if (!FTI.hasPrototype) {
12229     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
12230       --i;
12231       if (FTI.Params[i].Param == nullptr) {
12232         SmallString<256> Code;
12233         llvm::raw_svector_ostream(Code)
12234             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
12235         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
12236             << FTI.Params[i].Ident
12237             << FixItHint::CreateInsertion(LocAfterDecls, Code);
12238 
12239         // Implicitly declare the argument as type 'int' for lack of a better
12240         // type.
12241         AttributeFactory attrs;
12242         DeclSpec DS(attrs);
12243         const char* PrevSpec; // unused
12244         unsigned DiagID; // unused
12245         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
12246                            DiagID, Context.getPrintingPolicy());
12247         // Use the identifier location for the type source range.
12248         DS.SetRangeStart(FTI.Params[i].IdentLoc);
12249         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
12250         Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext);
12251         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
12252         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
12253       }
12254     }
12255   }
12256 }
12257 
12258 Decl *
12259 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
12260                               MultiTemplateParamsArg TemplateParameterLists,
12261                               SkipBodyInfo *SkipBody) {
12262   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
12263   assert(D.isFunctionDeclarator() && "Not a function declarator!");
12264   Scope *ParentScope = FnBodyScope->getParent();
12265 
12266   D.setFunctionDefinitionKind(FDK_Definition);
12267   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
12268   return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
12269 }
12270 
12271 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
12272   Consumer.HandleInlineFunctionDefinition(D);
12273 }
12274 
12275 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
12276                              const FunctionDecl*& PossibleZeroParamPrototype) {
12277   // Don't warn about invalid declarations.
12278   if (FD->isInvalidDecl())
12279     return false;
12280 
12281   // Or declarations that aren't global.
12282   if (!FD->isGlobal())
12283     return false;
12284 
12285   // Don't warn about C++ member functions.
12286   if (isa<CXXMethodDecl>(FD))
12287     return false;
12288 
12289   // Don't warn about 'main'.
12290   if (FD->isMain())
12291     return false;
12292 
12293   // Don't warn about inline functions.
12294   if (FD->isInlined())
12295     return false;
12296 
12297   // Don't warn about function templates.
12298   if (FD->getDescribedFunctionTemplate())
12299     return false;
12300 
12301   // Don't warn about function template specializations.
12302   if (FD->isFunctionTemplateSpecialization())
12303     return false;
12304 
12305   // Don't warn for OpenCL kernels.
12306   if (FD->hasAttr<OpenCLKernelAttr>())
12307     return false;
12308 
12309   // Don't warn on explicitly deleted functions.
12310   if (FD->isDeleted())
12311     return false;
12312 
12313   bool MissingPrototype = true;
12314   for (const FunctionDecl *Prev = FD->getPreviousDecl();
12315        Prev; Prev = Prev->getPreviousDecl()) {
12316     // Ignore any declarations that occur in function or method
12317     // scope, because they aren't visible from the header.
12318     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
12319       continue;
12320 
12321     MissingPrototype = !Prev->getType()->isFunctionProtoType();
12322     if (FD->getNumParams() == 0)
12323       PossibleZeroParamPrototype = Prev;
12324     break;
12325   }
12326 
12327   return MissingPrototype;
12328 }
12329 
12330 void
12331 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
12332                                    const FunctionDecl *EffectiveDefinition,
12333                                    SkipBodyInfo *SkipBody) {
12334   const FunctionDecl *Definition = EffectiveDefinition;
12335   if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) {
12336     // If this is a friend function defined in a class template, it does not
12337     // have a body until it is used, nevertheless it is a definition, see
12338     // [temp.inst]p2:
12339     //
12340     // ... for the purpose of determining whether an instantiated redeclaration
12341     // is valid according to [basic.def.odr] and [class.mem], a declaration that
12342     // corresponds to a definition in the template is considered to be a
12343     // definition.
12344     //
12345     // The following code must produce redefinition error:
12346     //
12347     //     template<typename T> struct C20 { friend void func_20() {} };
12348     //     C20<int> c20i;
12349     //     void func_20() {}
12350     //
12351     for (auto I : FD->redecls()) {
12352       if (I != FD && !I->isInvalidDecl() &&
12353           I->getFriendObjectKind() != Decl::FOK_None) {
12354         if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) {
12355           if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
12356             // A merged copy of the same function, instantiated as a member of
12357             // the same class, is OK.
12358             if (declaresSameEntity(OrigFD, Original) &&
12359                 declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()),
12360                                    cast<Decl>(FD->getLexicalDeclContext())))
12361               continue;
12362           }
12363 
12364           if (Original->isThisDeclarationADefinition()) {
12365             Definition = I;
12366             break;
12367           }
12368         }
12369       }
12370     }
12371   }
12372   if (!Definition)
12373     return;
12374 
12375   if (canRedefineFunction(Definition, getLangOpts()))
12376     return;
12377 
12378   // Don't emit an error when this is redefinition of a typo-corrected
12379   // definition.
12380   if (TypoCorrectedFunctionDefinitions.count(Definition))
12381     return;
12382 
12383   // If we don't have a visible definition of the function, and it's inline or
12384   // a template, skip the new definition.
12385   if (SkipBody && !hasVisibleDefinition(Definition) &&
12386       (Definition->getFormalLinkage() == InternalLinkage ||
12387        Definition->isInlined() ||
12388        Definition->getDescribedFunctionTemplate() ||
12389        Definition->getNumTemplateParameterLists())) {
12390     SkipBody->ShouldSkip = true;
12391     if (auto *TD = Definition->getDescribedFunctionTemplate())
12392       makeMergedDefinitionVisible(TD);
12393     makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
12394     return;
12395   }
12396 
12397   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
12398       Definition->getStorageClass() == SC_Extern)
12399     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
12400         << FD->getDeclName() << getLangOpts().CPlusPlus;
12401   else
12402     Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
12403 
12404   Diag(Definition->getLocation(), diag::note_previous_definition);
12405   FD->setInvalidDecl();
12406 }
12407 
12408 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
12409                                    Sema &S) {
12410   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
12411 
12412   LambdaScopeInfo *LSI = S.PushLambdaScope();
12413   LSI->CallOperator = CallOperator;
12414   LSI->Lambda = LambdaClass;
12415   LSI->ReturnType = CallOperator->getReturnType();
12416   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
12417 
12418   if (LCD == LCD_None)
12419     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
12420   else if (LCD == LCD_ByCopy)
12421     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
12422   else if (LCD == LCD_ByRef)
12423     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
12424   DeclarationNameInfo DNI = CallOperator->getNameInfo();
12425 
12426   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
12427   LSI->Mutable = !CallOperator->isConst();
12428 
12429   // Add the captures to the LSI so they can be noted as already
12430   // captured within tryCaptureVar.
12431   auto I = LambdaClass->field_begin();
12432   for (const auto &C : LambdaClass->captures()) {
12433     if (C.capturesVariable()) {
12434       VarDecl *VD = C.getCapturedVar();
12435       if (VD->isInitCapture())
12436         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
12437       QualType CaptureType = VD->getType();
12438       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
12439       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
12440           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
12441           /*EllipsisLoc*/C.isPackExpansion()
12442                          ? C.getEllipsisLoc() : SourceLocation(),
12443           CaptureType, /*Expr*/ nullptr);
12444 
12445     } else if (C.capturesThis()) {
12446       LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
12447                               /*Expr*/ nullptr,
12448                               C.getCaptureKind() == LCK_StarThis);
12449     } else {
12450       LSI->addVLATypeCapture(C.getLocation(), I->getType());
12451     }
12452     ++I;
12453   }
12454 }
12455 
12456 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
12457                                     SkipBodyInfo *SkipBody) {
12458   if (!D) {
12459     // Parsing the function declaration failed in some way. Push on a fake scope
12460     // anyway so we can try to parse the function body.
12461     PushFunctionScope();
12462     return D;
12463   }
12464 
12465   FunctionDecl *FD = nullptr;
12466 
12467   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
12468     FD = FunTmpl->getTemplatedDecl();
12469   else
12470     FD = cast<FunctionDecl>(D);
12471 
12472   // Check for defining attributes before the check for redefinition.
12473   if (const auto *Attr = FD->getAttr<AliasAttr>()) {
12474     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
12475     FD->dropAttr<AliasAttr>();
12476     FD->setInvalidDecl();
12477   }
12478   if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
12479     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
12480     FD->dropAttr<IFuncAttr>();
12481     FD->setInvalidDecl();
12482   }
12483 
12484   // See if this is a redefinition. If 'will have body' is already set, then
12485   // these checks were already performed when it was set.
12486   if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) {
12487     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
12488 
12489     // If we're skipping the body, we're done. Don't enter the scope.
12490     if (SkipBody && SkipBody->ShouldSkip)
12491       return D;
12492   }
12493 
12494   // Mark this function as "will have a body eventually".  This lets users to
12495   // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
12496   // this function.
12497   FD->setWillHaveBody();
12498 
12499   // If we are instantiating a generic lambda call operator, push
12500   // a LambdaScopeInfo onto the function stack.  But use the information
12501   // that's already been calculated (ActOnLambdaExpr) to prime the current
12502   // LambdaScopeInfo.
12503   // When the template operator is being specialized, the LambdaScopeInfo,
12504   // has to be properly restored so that tryCaptureVariable doesn't try
12505   // and capture any new variables. In addition when calculating potential
12506   // captures during transformation of nested lambdas, it is necessary to
12507   // have the LSI properly restored.
12508   if (isGenericLambdaCallOperatorSpecialization(FD)) {
12509     assert(inTemplateInstantiation() &&
12510            "There should be an active template instantiation on the stack "
12511            "when instantiating a generic lambda!");
12512     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
12513   } else {
12514     // Enter a new function scope
12515     PushFunctionScope();
12516   }
12517 
12518   // Builtin functions cannot be defined.
12519   if (unsigned BuiltinID = FD->getBuiltinID()) {
12520     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
12521         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
12522       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
12523       FD->setInvalidDecl();
12524     }
12525   }
12526 
12527   // The return type of a function definition must be complete
12528   // (C99 6.9.1p3, C++ [dcl.fct]p6).
12529   QualType ResultType = FD->getReturnType();
12530   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
12531       !FD->isInvalidDecl() &&
12532       RequireCompleteType(FD->getLocation(), ResultType,
12533                           diag::err_func_def_incomplete_result))
12534     FD->setInvalidDecl();
12535 
12536   if (FnBodyScope)
12537     PushDeclContext(FnBodyScope, FD);
12538 
12539   // Check the validity of our function parameters
12540   CheckParmsForFunctionDef(FD->parameters(),
12541                            /*CheckParameterNames=*/true);
12542 
12543   // Add non-parameter declarations already in the function to the current
12544   // scope.
12545   if (FnBodyScope) {
12546     for (Decl *NPD : FD->decls()) {
12547       auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
12548       if (!NonParmDecl)
12549         continue;
12550       assert(!isa<ParmVarDecl>(NonParmDecl) &&
12551              "parameters should not be in newly created FD yet");
12552 
12553       // If the decl has a name, make it accessible in the current scope.
12554       if (NonParmDecl->getDeclName())
12555         PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
12556 
12557       // Similarly, dive into enums and fish their constants out, making them
12558       // accessible in this scope.
12559       if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
12560         for (auto *EI : ED->enumerators())
12561           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
12562       }
12563     }
12564   }
12565 
12566   // Introduce our parameters into the function scope
12567   for (auto Param : FD->parameters()) {
12568     Param->setOwningFunction(FD);
12569 
12570     // If this has an identifier, add it to the scope stack.
12571     if (Param->getIdentifier() && FnBodyScope) {
12572       CheckShadow(FnBodyScope, Param);
12573 
12574       PushOnScopeChains(Param, FnBodyScope);
12575     }
12576   }
12577 
12578   // Ensure that the function's exception specification is instantiated.
12579   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
12580     ResolveExceptionSpec(D->getLocation(), FPT);
12581 
12582   // dllimport cannot be applied to non-inline function definitions.
12583   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
12584       !FD->isTemplateInstantiation()) {
12585     assert(!FD->hasAttr<DLLExportAttr>());
12586     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
12587     FD->setInvalidDecl();
12588     return D;
12589   }
12590   // We want to attach documentation to original Decl (which might be
12591   // a function template).
12592   ActOnDocumentableDecl(D);
12593   if (getCurLexicalContext()->isObjCContainer() &&
12594       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
12595       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
12596     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
12597 
12598   return D;
12599 }
12600 
12601 /// Given the set of return statements within a function body,
12602 /// compute the variables that are subject to the named return value
12603 /// optimization.
12604 ///
12605 /// Each of the variables that is subject to the named return value
12606 /// optimization will be marked as NRVO variables in the AST, and any
12607 /// return statement that has a marked NRVO variable as its NRVO candidate can
12608 /// use the named return value optimization.
12609 ///
12610 /// This function applies a very simplistic algorithm for NRVO: if every return
12611 /// statement in the scope of a variable has the same NRVO candidate, that
12612 /// candidate is an NRVO variable.
12613 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
12614   ReturnStmt **Returns = Scope->Returns.data();
12615 
12616   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
12617     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
12618       if (!NRVOCandidate->isNRVOVariable())
12619         Returns[I]->setNRVOCandidate(nullptr);
12620     }
12621   }
12622 }
12623 
12624 bool Sema::canDelayFunctionBody(const Declarator &D) {
12625   // We can't delay parsing the body of a constexpr function template (yet).
12626   if (D.getDeclSpec().isConstexprSpecified())
12627     return false;
12628 
12629   // We can't delay parsing the body of a function template with a deduced
12630   // return type (yet).
12631   if (D.getDeclSpec().hasAutoTypeSpec()) {
12632     // If the placeholder introduces a non-deduced trailing return type,
12633     // we can still delay parsing it.
12634     if (D.getNumTypeObjects()) {
12635       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
12636       if (Outer.Kind == DeclaratorChunk::Function &&
12637           Outer.Fun.hasTrailingReturnType()) {
12638         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
12639         return Ty.isNull() || !Ty->isUndeducedType();
12640       }
12641     }
12642     return false;
12643   }
12644 
12645   return true;
12646 }
12647 
12648 bool Sema::canSkipFunctionBody(Decl *D) {
12649   // We cannot skip the body of a function (or function template) which is
12650   // constexpr, since we may need to evaluate its body in order to parse the
12651   // rest of the file.
12652   // We cannot skip the body of a function with an undeduced return type,
12653   // because any callers of that function need to know the type.
12654   if (const FunctionDecl *FD = D->getAsFunction())
12655     if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
12656       return false;
12657   return Consumer.shouldSkipFunctionBody(D);
12658 }
12659 
12660 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
12661   if (!Decl)
12662     return nullptr;
12663   if (FunctionDecl *FD = Decl->getAsFunction())
12664     FD->setHasSkippedBody();
12665   else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
12666     MD->setHasSkippedBody();
12667   return Decl;
12668 }
12669 
12670 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
12671   return ActOnFinishFunctionBody(D, BodyArg, false);
12672 }
12673 
12674 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
12675                                     bool IsInstantiation) {
12676   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
12677 
12678   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
12679   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
12680 
12681   if (getLangOpts().CoroutinesTS && getCurFunction()->isCoroutine())
12682     CheckCompletedCoroutineBody(FD, Body);
12683 
12684   if (FD) {
12685     FD->setBody(Body);
12686     FD->setWillHaveBody(false);
12687 
12688     if (getLangOpts().CPlusPlus14) {
12689       if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
12690           FD->getReturnType()->isUndeducedType()) {
12691         // If the function has a deduced result type but contains no 'return'
12692         // statements, the result type as written must be exactly 'auto', and
12693         // the deduced result type is 'void'.
12694         if (!FD->getReturnType()->getAs<AutoType>()) {
12695           Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
12696               << FD->getReturnType();
12697           FD->setInvalidDecl();
12698         } else {
12699           // Substitute 'void' for the 'auto' in the type.
12700           TypeLoc ResultType = getReturnTypeLoc(FD);
12701           Context.adjustDeducedFunctionResultType(
12702               FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
12703         }
12704       }
12705     } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
12706       // In C++11, we don't use 'auto' deduction rules for lambda call
12707       // operators because we don't support return type deduction.
12708       auto *LSI = getCurLambda();
12709       if (LSI->HasImplicitReturnType) {
12710         deduceClosureReturnType(*LSI);
12711 
12712         // C++11 [expr.prim.lambda]p4:
12713         //   [...] if there are no return statements in the compound-statement
12714         //   [the deduced type is] the type void
12715         QualType RetType =
12716             LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
12717 
12718         // Update the return type to the deduced type.
12719         const FunctionProtoType *Proto =
12720             FD->getType()->getAs<FunctionProtoType>();
12721         FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
12722                                             Proto->getExtProtoInfo()));
12723       }
12724     }
12725 
12726     // If the function implicitly returns zero (like 'main') or is naked,
12727     // don't complain about missing return statements.
12728     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
12729       WP.disableCheckFallThrough();
12730 
12731     // MSVC permits the use of pure specifier (=0) on function definition,
12732     // defined at class scope, warn about this non-standard construct.
12733     if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
12734       Diag(FD->getLocation(), diag::ext_pure_function_definition);
12735 
12736     if (!FD->isInvalidDecl()) {
12737       // Don't diagnose unused parameters of defaulted or deleted functions.
12738       if (!FD->isDeleted() && !FD->isDefaulted())
12739         DiagnoseUnusedParameters(FD->parameters());
12740       DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
12741                                              FD->getReturnType(), FD);
12742 
12743       // If this is a structor, we need a vtable.
12744       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
12745         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
12746       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
12747         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
12748 
12749       // Try to apply the named return value optimization. We have to check
12750       // if we can do this here because lambdas keep return statements around
12751       // to deduce an implicit return type.
12752       if (FD->getReturnType()->isRecordType() &&
12753           (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
12754         computeNRVO(Body, getCurFunction());
12755     }
12756 
12757     // GNU warning -Wmissing-prototypes:
12758     //   Warn if a global function is defined without a previous
12759     //   prototype declaration. This warning is issued even if the
12760     //   definition itself provides a prototype. The aim is to detect
12761     //   global functions that fail to be declared in header files.
12762     const FunctionDecl *PossibleZeroParamPrototype = nullptr;
12763     if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
12764       Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
12765 
12766       if (PossibleZeroParamPrototype) {
12767         // We found a declaration that is not a prototype,
12768         // but that could be a zero-parameter prototype
12769         if (TypeSourceInfo *TI =
12770                 PossibleZeroParamPrototype->getTypeSourceInfo()) {
12771           TypeLoc TL = TI->getTypeLoc();
12772           if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
12773             Diag(PossibleZeroParamPrototype->getLocation(),
12774                  diag::note_declaration_not_a_prototype)
12775                 << PossibleZeroParamPrototype
12776                 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
12777         }
12778       }
12779 
12780       // GNU warning -Wstrict-prototypes
12781       //   Warn if K&R function is defined without a previous declaration.
12782       //   This warning is issued only if the definition itself does not provide
12783       //   a prototype. Only K&R definitions do not provide a prototype.
12784       //   An empty list in a function declarator that is part of a definition
12785       //   of that function specifies that the function has no parameters
12786       //   (C99 6.7.5.3p14)
12787       if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 &&
12788           !LangOpts.CPlusPlus) {
12789         TypeSourceInfo *TI = FD->getTypeSourceInfo();
12790         TypeLoc TL = TI->getTypeLoc();
12791         FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
12792         Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
12793       }
12794     }
12795 
12796     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
12797       const CXXMethodDecl *KeyFunction;
12798       if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
12799           MD->isVirtual() &&
12800           (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
12801           MD == KeyFunction->getCanonicalDecl()) {
12802         // Update the key-function state if necessary for this ABI.
12803         if (FD->isInlined() &&
12804             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
12805           Context.setNonKeyFunction(MD);
12806 
12807           // If the newly-chosen key function is already defined, then we
12808           // need to mark the vtable as used retroactively.
12809           KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
12810           const FunctionDecl *Definition;
12811           if (KeyFunction && KeyFunction->isDefined(Definition))
12812             MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
12813         } else {
12814           // We just defined they key function; mark the vtable as used.
12815           MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
12816         }
12817       }
12818     }
12819 
12820     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
12821            "Function parsing confused");
12822   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
12823     assert(MD == getCurMethodDecl() && "Method parsing confused");
12824     MD->setBody(Body);
12825     if (!MD->isInvalidDecl()) {
12826       DiagnoseUnusedParameters(MD->parameters());
12827       DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
12828                                              MD->getReturnType(), MD);
12829 
12830       if (Body)
12831         computeNRVO(Body, getCurFunction());
12832     }
12833     if (getCurFunction()->ObjCShouldCallSuper) {
12834       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
12835         << MD->getSelector().getAsString();
12836       getCurFunction()->ObjCShouldCallSuper = false;
12837     }
12838     if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
12839       const ObjCMethodDecl *InitMethod = nullptr;
12840       bool isDesignated =
12841           MD->isDesignatedInitializerForTheInterface(&InitMethod);
12842       assert(isDesignated && InitMethod);
12843       (void)isDesignated;
12844 
12845       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
12846         auto IFace = MD->getClassInterface();
12847         if (!IFace)
12848           return false;
12849         auto SuperD = IFace->getSuperClass();
12850         if (!SuperD)
12851           return false;
12852         return SuperD->getIdentifier() ==
12853             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
12854       };
12855       // Don't issue this warning for unavailable inits or direct subclasses
12856       // of NSObject.
12857       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
12858         Diag(MD->getLocation(),
12859              diag::warn_objc_designated_init_missing_super_call);
12860         Diag(InitMethod->getLocation(),
12861              diag::note_objc_designated_init_marked_here);
12862       }
12863       getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
12864     }
12865     if (getCurFunction()->ObjCWarnForNoInitDelegation) {
12866       // Don't issue this warning for unavaialable inits.
12867       if (!MD->isUnavailable())
12868         Diag(MD->getLocation(),
12869              diag::warn_objc_secondary_init_missing_init_call);
12870       getCurFunction()->ObjCWarnForNoInitDelegation = false;
12871     }
12872   } else {
12873     // Parsing the function declaration failed in some way. Pop the fake scope
12874     // we pushed on.
12875     PopFunctionScopeInfo(ActivePolicy, dcl);
12876     return nullptr;
12877   }
12878 
12879   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
12880     DiagnoseUnguardedAvailabilityViolations(dcl);
12881 
12882   assert(!getCurFunction()->ObjCShouldCallSuper &&
12883          "This should only be set for ObjC methods, which should have been "
12884          "handled in the block above.");
12885 
12886   // Verify and clean out per-function state.
12887   if (Body && (!FD || !FD->isDefaulted())) {
12888     // C++ constructors that have function-try-blocks can't have return
12889     // statements in the handlers of that block. (C++ [except.handle]p14)
12890     // Verify this.
12891     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
12892       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
12893 
12894     // Verify that gotos and switch cases don't jump into scopes illegally.
12895     if (getCurFunction()->NeedsScopeChecking() &&
12896         !PP.isCodeCompletionEnabled())
12897       DiagnoseInvalidJumps(Body);
12898 
12899     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
12900       if (!Destructor->getParent()->isDependentType())
12901         CheckDestructor(Destructor);
12902 
12903       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
12904                                              Destructor->getParent());
12905     }
12906 
12907     // If any errors have occurred, clear out any temporaries that may have
12908     // been leftover. This ensures that these temporaries won't be picked up for
12909     // deletion in some later function.
12910     if (getDiagnostics().hasErrorOccurred() ||
12911         getDiagnostics().getSuppressAllDiagnostics()) {
12912       DiscardCleanupsInEvaluationContext();
12913     }
12914     if (!getDiagnostics().hasUncompilableErrorOccurred() &&
12915         !isa<FunctionTemplateDecl>(dcl)) {
12916       // Since the body is valid, issue any analysis-based warnings that are
12917       // enabled.
12918       ActivePolicy = &WP;
12919     }
12920 
12921     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
12922         (!CheckConstexprFunctionDecl(FD) ||
12923          !CheckConstexprFunctionBody(FD, Body)))
12924       FD->setInvalidDecl();
12925 
12926     if (FD && FD->hasAttr<NakedAttr>()) {
12927       for (const Stmt *S : Body->children()) {
12928         // Allow local register variables without initializer as they don't
12929         // require prologue.
12930         bool RegisterVariables = false;
12931         if (auto *DS = dyn_cast<DeclStmt>(S)) {
12932           for (const auto *Decl : DS->decls()) {
12933             if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
12934               RegisterVariables =
12935                   Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
12936               if (!RegisterVariables)
12937                 break;
12938             }
12939           }
12940         }
12941         if (RegisterVariables)
12942           continue;
12943         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
12944           Diag(S->getLocStart(), diag::err_non_asm_stmt_in_naked_function);
12945           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
12946           FD->setInvalidDecl();
12947           break;
12948         }
12949       }
12950     }
12951 
12952     assert(ExprCleanupObjects.size() ==
12953                ExprEvalContexts.back().NumCleanupObjects &&
12954            "Leftover temporaries in function");
12955     assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
12956     assert(MaybeODRUseExprs.empty() &&
12957            "Leftover expressions for odr-use checking");
12958   }
12959 
12960   if (!IsInstantiation)
12961     PopDeclContext();
12962 
12963   PopFunctionScopeInfo(ActivePolicy, dcl);
12964   // If any errors have occurred, clear out any temporaries that may have
12965   // been leftover. This ensures that these temporaries won't be picked up for
12966   // deletion in some later function.
12967   if (getDiagnostics().hasErrorOccurred()) {
12968     DiscardCleanupsInEvaluationContext();
12969   }
12970 
12971   return dcl;
12972 }
12973 
12974 /// When we finish delayed parsing of an attribute, we must attach it to the
12975 /// relevant Decl.
12976 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
12977                                        ParsedAttributes &Attrs) {
12978   // Always attach attributes to the underlying decl.
12979   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
12980     D = TD->getTemplatedDecl();
12981   ProcessDeclAttributeList(S, D, Attrs.getList());
12982 
12983   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
12984     if (Method->isStatic())
12985       checkThisInStaticMemberFunctionAttributes(Method);
12986 }
12987 
12988 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
12989 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
12990 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
12991                                           IdentifierInfo &II, Scope *S) {
12992   // Find the scope in which the identifier is injected and the corresponding
12993   // DeclContext.
12994   // FIXME: C89 does not say what happens if there is no enclosing block scope.
12995   // In that case, we inject the declaration into the translation unit scope
12996   // instead.
12997   Scope *BlockScope = S;
12998   while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
12999     BlockScope = BlockScope->getParent();
13000 
13001   Scope *ContextScope = BlockScope;
13002   while (!ContextScope->getEntity())
13003     ContextScope = ContextScope->getParent();
13004   ContextRAII SavedContext(*this, ContextScope->getEntity());
13005 
13006   // Before we produce a declaration for an implicitly defined
13007   // function, see whether there was a locally-scoped declaration of
13008   // this name as a function or variable. If so, use that
13009   // (non-visible) declaration, and complain about it.
13010   NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
13011   if (ExternCPrev) {
13012     // We still need to inject the function into the enclosing block scope so
13013     // that later (non-call) uses can see it.
13014     PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
13015 
13016     // C89 footnote 38:
13017     //   If in fact it is not defined as having type "function returning int",
13018     //   the behavior is undefined.
13019     if (!isa<FunctionDecl>(ExternCPrev) ||
13020         !Context.typesAreCompatible(
13021             cast<FunctionDecl>(ExternCPrev)->getType(),
13022             Context.getFunctionNoProtoType(Context.IntTy))) {
13023       Diag(Loc, diag::ext_use_out_of_scope_declaration)
13024           << ExternCPrev << !getLangOpts().C99;
13025       Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
13026       return ExternCPrev;
13027     }
13028   }
13029 
13030   // Extension in C99.  Legal in C90, but warn about it.
13031   // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
13032   unsigned diag_id;
13033   if (II.getName().startswith("__builtin_"))
13034     diag_id = diag::warn_builtin_unknown;
13035   else if (getLangOpts().C99 || getLangOpts().OpenCL)
13036     diag_id = diag::ext_implicit_function_decl;
13037   else
13038     diag_id = diag::warn_implicit_function_decl;
13039   Diag(Loc, diag_id) << &II << getLangOpts().OpenCL;
13040 
13041   // If we found a prior declaration of this function, don't bother building
13042   // another one. We've already pushed that one into scope, so there's nothing
13043   // more to do.
13044   if (ExternCPrev)
13045     return ExternCPrev;
13046 
13047   // Because typo correction is expensive, only do it if the implicit
13048   // function declaration is going to be treated as an error.
13049   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
13050     TypoCorrection Corrected;
13051     if (S &&
13052         (Corrected = CorrectTypo(
13053              DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr,
13054              llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError)))
13055       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
13056                    /*ErrorRecovery*/false);
13057   }
13058 
13059   // Set a Declarator for the implicit definition: int foo();
13060   const char *Dummy;
13061   AttributeFactory attrFactory;
13062   DeclSpec DS(attrFactory);
13063   unsigned DiagID;
13064   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
13065                                   Context.getPrintingPolicy());
13066   (void)Error; // Silence warning.
13067   assert(!Error && "Error setting up implicit decl!");
13068   SourceLocation NoLoc;
13069   Declarator D(DS, DeclaratorContext::BlockContext);
13070   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
13071                                              /*IsAmbiguous=*/false,
13072                                              /*LParenLoc=*/NoLoc,
13073                                              /*Params=*/nullptr,
13074                                              /*NumParams=*/0,
13075                                              /*EllipsisLoc=*/NoLoc,
13076                                              /*RParenLoc=*/NoLoc,
13077                                              /*TypeQuals=*/0,
13078                                              /*RefQualifierIsLvalueRef=*/true,
13079                                              /*RefQualifierLoc=*/NoLoc,
13080                                              /*ConstQualifierLoc=*/NoLoc,
13081                                              /*VolatileQualifierLoc=*/NoLoc,
13082                                              /*RestrictQualifierLoc=*/NoLoc,
13083                                              /*MutableLoc=*/NoLoc,
13084                                              EST_None,
13085                                              /*ESpecRange=*/SourceRange(),
13086                                              /*Exceptions=*/nullptr,
13087                                              /*ExceptionRanges=*/nullptr,
13088                                              /*NumExceptions=*/0,
13089                                              /*NoexceptExpr=*/nullptr,
13090                                              /*ExceptionSpecTokens=*/nullptr,
13091                                              /*DeclsInPrototype=*/None,
13092                                              Loc, Loc, D),
13093                 DS.getAttributes(),
13094                 SourceLocation());
13095   D.SetIdentifier(&II, Loc);
13096 
13097   // Insert this function into the enclosing block scope.
13098   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
13099   FD->setImplicit();
13100 
13101   AddKnownFunctionAttributes(FD);
13102 
13103   return FD;
13104 }
13105 
13106 /// Adds any function attributes that we know a priori based on
13107 /// the declaration of this function.
13108 ///
13109 /// These attributes can apply both to implicitly-declared builtins
13110 /// (like __builtin___printf_chk) or to library-declared functions
13111 /// like NSLog or printf.
13112 ///
13113 /// We need to check for duplicate attributes both here and where user-written
13114 /// attributes are applied to declarations.
13115 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
13116   if (FD->isInvalidDecl())
13117     return;
13118 
13119   // If this is a built-in function, map its builtin attributes to
13120   // actual attributes.
13121   if (unsigned BuiltinID = FD->getBuiltinID()) {
13122     // Handle printf-formatting attributes.
13123     unsigned FormatIdx;
13124     bool HasVAListArg;
13125     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
13126       if (!FD->hasAttr<FormatAttr>()) {
13127         const char *fmt = "printf";
13128         unsigned int NumParams = FD->getNumParams();
13129         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
13130             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
13131           fmt = "NSString";
13132         FD->addAttr(FormatAttr::CreateImplicit(Context,
13133                                                &Context.Idents.get(fmt),
13134                                                FormatIdx+1,
13135                                                HasVAListArg ? 0 : FormatIdx+2,
13136                                                FD->getLocation()));
13137       }
13138     }
13139     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
13140                                              HasVAListArg)) {
13141      if (!FD->hasAttr<FormatAttr>())
13142        FD->addAttr(FormatAttr::CreateImplicit(Context,
13143                                               &Context.Idents.get("scanf"),
13144                                               FormatIdx+1,
13145                                               HasVAListArg ? 0 : FormatIdx+2,
13146                                               FD->getLocation()));
13147     }
13148 
13149     // Mark const if we don't care about errno and that is the only thing
13150     // preventing the function from being const. This allows IRgen to use LLVM
13151     // intrinsics for such functions.
13152     if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
13153         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
13154       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13155 
13156     // We make "fma" on some platforms const because we know it does not set
13157     // errno in those environments even though it could set errno based on the
13158     // C standard.
13159     const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
13160     if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
13161         !FD->hasAttr<ConstAttr>()) {
13162       switch (BuiltinID) {
13163       case Builtin::BI__builtin_fma:
13164       case Builtin::BI__builtin_fmaf:
13165       case Builtin::BI__builtin_fmal:
13166       case Builtin::BIfma:
13167       case Builtin::BIfmaf:
13168       case Builtin::BIfmal:
13169         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13170         break;
13171       default:
13172         break;
13173       }
13174     }
13175 
13176     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
13177         !FD->hasAttr<ReturnsTwiceAttr>())
13178       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
13179                                          FD->getLocation()));
13180     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
13181       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
13182     if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
13183       FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
13184     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
13185       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13186     if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
13187         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
13188       // Add the appropriate attribute, depending on the CUDA compilation mode
13189       // and which target the builtin belongs to. For example, during host
13190       // compilation, aux builtins are __device__, while the rest are __host__.
13191       if (getLangOpts().CUDAIsDevice !=
13192           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
13193         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
13194       else
13195         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
13196     }
13197   }
13198 
13199   // If C++ exceptions are enabled but we are told extern "C" functions cannot
13200   // throw, add an implicit nothrow attribute to any extern "C" function we come
13201   // across.
13202   if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
13203       FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
13204     const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
13205     if (!FPT || FPT->getExceptionSpecType() == EST_None)
13206       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
13207   }
13208 
13209   IdentifierInfo *Name = FD->getIdentifier();
13210   if (!Name)
13211     return;
13212   if ((!getLangOpts().CPlusPlus &&
13213        FD->getDeclContext()->isTranslationUnit()) ||
13214       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
13215        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
13216        LinkageSpecDecl::lang_c)) {
13217     // Okay: this could be a libc/libm/Objective-C function we know
13218     // about.
13219   } else
13220     return;
13221 
13222   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
13223     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
13224     // target-specific builtins, perhaps?
13225     if (!FD->hasAttr<FormatAttr>())
13226       FD->addAttr(FormatAttr::CreateImplicit(Context,
13227                                              &Context.Idents.get("printf"), 2,
13228                                              Name->isStr("vasprintf") ? 0 : 3,
13229                                              FD->getLocation()));
13230   }
13231 
13232   if (Name->isStr("__CFStringMakeConstantString")) {
13233     // We already have a __builtin___CFStringMakeConstantString,
13234     // but builds that use -fno-constant-cfstrings don't go through that.
13235     if (!FD->hasAttr<FormatArgAttr>())
13236       FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
13237                                                 FD->getLocation()));
13238   }
13239 }
13240 
13241 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
13242                                     TypeSourceInfo *TInfo) {
13243   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
13244   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
13245 
13246   if (!TInfo) {
13247     assert(D.isInvalidType() && "no declarator info for valid type");
13248     TInfo = Context.getTrivialTypeSourceInfo(T);
13249   }
13250 
13251   // Scope manipulation handled by caller.
13252   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
13253                                            D.getLocStart(),
13254                                            D.getIdentifierLoc(),
13255                                            D.getIdentifier(),
13256                                            TInfo);
13257 
13258   // Bail out immediately if we have an invalid declaration.
13259   if (D.isInvalidType()) {
13260     NewTD->setInvalidDecl();
13261     return NewTD;
13262   }
13263 
13264   if (D.getDeclSpec().isModulePrivateSpecified()) {
13265     if (CurContext->isFunctionOrMethod())
13266       Diag(NewTD->getLocation(), diag::err_module_private_local)
13267         << 2 << NewTD->getDeclName()
13268         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13269         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13270     else
13271       NewTD->setModulePrivate();
13272   }
13273 
13274   // C++ [dcl.typedef]p8:
13275   //   If the typedef declaration defines an unnamed class (or
13276   //   enum), the first typedef-name declared by the declaration
13277   //   to be that class type (or enum type) is used to denote the
13278   //   class type (or enum type) for linkage purposes only.
13279   // We need to check whether the type was declared in the declaration.
13280   switch (D.getDeclSpec().getTypeSpecType()) {
13281   case TST_enum:
13282   case TST_struct:
13283   case TST_interface:
13284   case TST_union:
13285   case TST_class: {
13286     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
13287     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
13288     break;
13289   }
13290 
13291   default:
13292     break;
13293   }
13294 
13295   return NewTD;
13296 }
13297 
13298 /// Check that this is a valid underlying type for an enum declaration.
13299 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
13300   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
13301   QualType T = TI->getType();
13302 
13303   if (T->isDependentType())
13304     return false;
13305 
13306   if (const BuiltinType *BT = T->getAs<BuiltinType>())
13307     if (BT->isInteger())
13308       return false;
13309 
13310   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
13311   return true;
13312 }
13313 
13314 /// Check whether this is a valid redeclaration of a previous enumeration.
13315 /// \return true if the redeclaration was invalid.
13316 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
13317                                   QualType EnumUnderlyingTy, bool IsFixed,
13318                                   const EnumDecl *Prev) {
13319   if (IsScoped != Prev->isScoped()) {
13320     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
13321       << Prev->isScoped();
13322     Diag(Prev->getLocation(), diag::note_previous_declaration);
13323     return true;
13324   }
13325 
13326   if (IsFixed && Prev->isFixed()) {
13327     if (!EnumUnderlyingTy->isDependentType() &&
13328         !Prev->getIntegerType()->isDependentType() &&
13329         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
13330                                         Prev->getIntegerType())) {
13331       // TODO: Highlight the underlying type of the redeclaration.
13332       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
13333         << EnumUnderlyingTy << Prev->getIntegerType();
13334       Diag(Prev->getLocation(), diag::note_previous_declaration)
13335           << Prev->getIntegerTypeRange();
13336       return true;
13337     }
13338   } else if (IsFixed != Prev->isFixed()) {
13339     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
13340       << Prev->isFixed();
13341     Diag(Prev->getLocation(), diag::note_previous_declaration);
13342     return true;
13343   }
13344 
13345   return false;
13346 }
13347 
13348 /// Get diagnostic %select index for tag kind for
13349 /// redeclaration diagnostic message.
13350 /// WARNING: Indexes apply to particular diagnostics only!
13351 ///
13352 /// \returns diagnostic %select index.
13353 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
13354   switch (Tag) {
13355   case TTK_Struct: return 0;
13356   case TTK_Interface: return 1;
13357   case TTK_Class:  return 2;
13358   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
13359   }
13360 }
13361 
13362 /// Determine if tag kind is a class-key compatible with
13363 /// class for redeclaration (class, struct, or __interface).
13364 ///
13365 /// \returns true iff the tag kind is compatible.
13366 static bool isClassCompatTagKind(TagTypeKind Tag)
13367 {
13368   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
13369 }
13370 
13371 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
13372                                              TagTypeKind TTK) {
13373   if (isa<TypedefDecl>(PrevDecl))
13374     return NTK_Typedef;
13375   else if (isa<TypeAliasDecl>(PrevDecl))
13376     return NTK_TypeAlias;
13377   else if (isa<ClassTemplateDecl>(PrevDecl))
13378     return NTK_Template;
13379   else if (isa<TypeAliasTemplateDecl>(PrevDecl))
13380     return NTK_TypeAliasTemplate;
13381   else if (isa<TemplateTemplateParmDecl>(PrevDecl))
13382     return NTK_TemplateTemplateArgument;
13383   switch (TTK) {
13384   case TTK_Struct:
13385   case TTK_Interface:
13386   case TTK_Class:
13387     return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
13388   case TTK_Union:
13389     return NTK_NonUnion;
13390   case TTK_Enum:
13391     return NTK_NonEnum;
13392   }
13393   llvm_unreachable("invalid TTK");
13394 }
13395 
13396 /// Determine whether a tag with a given kind is acceptable
13397 /// as a redeclaration of the given tag declaration.
13398 ///
13399 /// \returns true if the new tag kind is acceptable, false otherwise.
13400 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
13401                                         TagTypeKind NewTag, bool isDefinition,
13402                                         SourceLocation NewTagLoc,
13403                                         const IdentifierInfo *Name) {
13404   // C++ [dcl.type.elab]p3:
13405   //   The class-key or enum keyword present in the
13406   //   elaborated-type-specifier shall agree in kind with the
13407   //   declaration to which the name in the elaborated-type-specifier
13408   //   refers. This rule also applies to the form of
13409   //   elaborated-type-specifier that declares a class-name or
13410   //   friend class since it can be construed as referring to the
13411   //   definition of the class. Thus, in any
13412   //   elaborated-type-specifier, the enum keyword shall be used to
13413   //   refer to an enumeration (7.2), the union class-key shall be
13414   //   used to refer to a union (clause 9), and either the class or
13415   //   struct class-key shall be used to refer to a class (clause 9)
13416   //   declared using the class or struct class-key.
13417   TagTypeKind OldTag = Previous->getTagKind();
13418   if (!isDefinition || !isClassCompatTagKind(NewTag))
13419     if (OldTag == NewTag)
13420       return true;
13421 
13422   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
13423     // Warn about the struct/class tag mismatch.
13424     bool isTemplate = false;
13425     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
13426       isTemplate = Record->getDescribedClassTemplate();
13427 
13428     if (inTemplateInstantiation()) {
13429       // In a template instantiation, do not offer fix-its for tag mismatches
13430       // since they usually mess up the template instead of fixing the problem.
13431       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
13432         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
13433         << getRedeclDiagFromTagKind(OldTag);
13434       return true;
13435     }
13436 
13437     if (isDefinition) {
13438       // On definitions, check previous tags and issue a fix-it for each
13439       // one that doesn't match the current tag.
13440       if (Previous->getDefinition()) {
13441         // Don't suggest fix-its for redefinitions.
13442         return true;
13443       }
13444 
13445       bool previousMismatch = false;
13446       for (auto I : Previous->redecls()) {
13447         if (I->getTagKind() != NewTag) {
13448           if (!previousMismatch) {
13449             previousMismatch = true;
13450             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
13451               << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
13452               << getRedeclDiagFromTagKind(I->getTagKind());
13453           }
13454           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
13455             << getRedeclDiagFromTagKind(NewTag)
13456             << FixItHint::CreateReplacement(I->getInnerLocStart(),
13457                  TypeWithKeyword::getTagTypeKindName(NewTag));
13458         }
13459       }
13460       return true;
13461     }
13462 
13463     // Check for a previous definition.  If current tag and definition
13464     // are same type, do nothing.  If no definition, but disagree with
13465     // with previous tag type, give a warning, but no fix-it.
13466     const TagDecl *Redecl = Previous->getDefinition() ?
13467                             Previous->getDefinition() : Previous;
13468     if (Redecl->getTagKind() == NewTag) {
13469       return true;
13470     }
13471 
13472     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
13473       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
13474       << getRedeclDiagFromTagKind(OldTag);
13475     Diag(Redecl->getLocation(), diag::note_previous_use);
13476 
13477     // If there is a previous definition, suggest a fix-it.
13478     if (Previous->getDefinition()) {
13479         Diag(NewTagLoc, diag::note_struct_class_suggestion)
13480           << getRedeclDiagFromTagKind(Redecl->getTagKind())
13481           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
13482                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
13483     }
13484 
13485     return true;
13486   }
13487   return false;
13488 }
13489 
13490 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
13491 /// from an outer enclosing namespace or file scope inside a friend declaration.
13492 /// This should provide the commented out code in the following snippet:
13493 ///   namespace N {
13494 ///     struct X;
13495 ///     namespace M {
13496 ///       struct Y { friend struct /*N::*/ X; };
13497 ///     }
13498 ///   }
13499 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
13500                                          SourceLocation NameLoc) {
13501   // While the decl is in a namespace, do repeated lookup of that name and see
13502   // if we get the same namespace back.  If we do not, continue until
13503   // translation unit scope, at which point we have a fully qualified NNS.
13504   SmallVector<IdentifierInfo *, 4> Namespaces;
13505   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
13506   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
13507     // This tag should be declared in a namespace, which can only be enclosed by
13508     // other namespaces.  Bail if there's an anonymous namespace in the chain.
13509     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
13510     if (!Namespace || Namespace->isAnonymousNamespace())
13511       return FixItHint();
13512     IdentifierInfo *II = Namespace->getIdentifier();
13513     Namespaces.push_back(II);
13514     NamedDecl *Lookup = SemaRef.LookupSingleName(
13515         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
13516     if (Lookup == Namespace)
13517       break;
13518   }
13519 
13520   // Once we have all the namespaces, reverse them to go outermost first, and
13521   // build an NNS.
13522   SmallString<64> Insertion;
13523   llvm::raw_svector_ostream OS(Insertion);
13524   if (DC->isTranslationUnit())
13525     OS << "::";
13526   std::reverse(Namespaces.begin(), Namespaces.end());
13527   for (auto *II : Namespaces)
13528     OS << II->getName() << "::";
13529   return FixItHint::CreateInsertion(NameLoc, Insertion);
13530 }
13531 
13532 /// Determine whether a tag originally declared in context \p OldDC can
13533 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
13534 /// found a declaration in \p OldDC as a previous decl, perhaps through a
13535 /// using-declaration).
13536 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
13537                                          DeclContext *NewDC) {
13538   OldDC = OldDC->getRedeclContext();
13539   NewDC = NewDC->getRedeclContext();
13540 
13541   if (OldDC->Equals(NewDC))
13542     return true;
13543 
13544   // In MSVC mode, we allow a redeclaration if the contexts are related (either
13545   // encloses the other).
13546   if (S.getLangOpts().MSVCCompat &&
13547       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
13548     return true;
13549 
13550   return false;
13551 }
13552 
13553 /// This is invoked when we see 'struct foo' or 'struct {'.  In the
13554 /// former case, Name will be non-null.  In the later case, Name will be null.
13555 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
13556 /// reference/declaration/definition of a tag.
13557 ///
13558 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
13559 /// trailing-type-specifier) other than one in an alias-declaration.
13560 ///
13561 /// \param SkipBody If non-null, will be set to indicate if the caller should
13562 /// skip the definition of this tag and treat it as if it were a declaration.
13563 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
13564                      SourceLocation KWLoc, CXXScopeSpec &SS,
13565                      IdentifierInfo *Name, SourceLocation NameLoc,
13566                      AttributeList *Attr, AccessSpecifier AS,
13567                      SourceLocation ModulePrivateLoc,
13568                      MultiTemplateParamsArg TemplateParameterLists,
13569                      bool &OwnedDecl, bool &IsDependent,
13570                      SourceLocation ScopedEnumKWLoc,
13571                      bool ScopedEnumUsesClassTag,
13572                      TypeResult UnderlyingType,
13573                      bool IsTypeSpecifier, bool IsTemplateParamOrArg,
13574                      SkipBodyInfo *SkipBody) {
13575   // If this is not a definition, it must have a name.
13576   IdentifierInfo *OrigName = Name;
13577   assert((Name != nullptr || TUK == TUK_Definition) &&
13578          "Nameless record must be a definition!");
13579   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
13580 
13581   OwnedDecl = false;
13582   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
13583   bool ScopedEnum = ScopedEnumKWLoc.isValid();
13584 
13585   // FIXME: Check member specializations more carefully.
13586   bool isMemberSpecialization = false;
13587   bool Invalid = false;
13588 
13589   // We only need to do this matching if we have template parameters
13590   // or a scope specifier, which also conveniently avoids this work
13591   // for non-C++ cases.
13592   if (TemplateParameterLists.size() > 0 ||
13593       (SS.isNotEmpty() && TUK != TUK_Reference)) {
13594     if (TemplateParameterList *TemplateParams =
13595             MatchTemplateParametersToScopeSpecifier(
13596                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
13597                 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
13598       if (Kind == TTK_Enum) {
13599         Diag(KWLoc, diag::err_enum_template);
13600         return nullptr;
13601       }
13602 
13603       if (TemplateParams->size() > 0) {
13604         // This is a declaration or definition of a class template (which may
13605         // be a member of another template).
13606 
13607         if (Invalid)
13608           return nullptr;
13609 
13610         OwnedDecl = false;
13611         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
13612                                                SS, Name, NameLoc, Attr,
13613                                                TemplateParams, AS,
13614                                                ModulePrivateLoc,
13615                                                /*FriendLoc*/SourceLocation(),
13616                                                TemplateParameterLists.size()-1,
13617                                                TemplateParameterLists.data(),
13618                                                SkipBody);
13619         return Result.get();
13620       } else {
13621         // The "template<>" header is extraneous.
13622         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
13623           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
13624         isMemberSpecialization = true;
13625       }
13626     }
13627   }
13628 
13629   // Figure out the underlying type if this a enum declaration. We need to do
13630   // this early, because it's needed to detect if this is an incompatible
13631   // redeclaration.
13632   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
13633   bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
13634 
13635   if (Kind == TTK_Enum) {
13636     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
13637       // No underlying type explicitly specified, or we failed to parse the
13638       // type, default to int.
13639       EnumUnderlying = Context.IntTy.getTypePtr();
13640     } else if (UnderlyingType.get()) {
13641       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
13642       // integral type; any cv-qualification is ignored.
13643       TypeSourceInfo *TI = nullptr;
13644       GetTypeFromParser(UnderlyingType.get(), &TI);
13645       EnumUnderlying = TI;
13646 
13647       if (CheckEnumUnderlyingType(TI))
13648         // Recover by falling back to int.
13649         EnumUnderlying = Context.IntTy.getTypePtr();
13650 
13651       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
13652                                           UPPC_FixedUnderlyingType))
13653         EnumUnderlying = Context.IntTy.getTypePtr();
13654 
13655     } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
13656       // For MSVC ABI compatibility, unfixed enums must use an underlying type
13657       // of 'int'. However, if this is an unfixed forward declaration, don't set
13658       // the underlying type unless the user enables -fms-compatibility. This
13659       // makes unfixed forward declared enums incomplete and is more conforming.
13660       if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
13661         EnumUnderlying = Context.IntTy.getTypePtr();
13662     }
13663   }
13664 
13665   DeclContext *SearchDC = CurContext;
13666   DeclContext *DC = CurContext;
13667   bool isStdBadAlloc = false;
13668   bool isStdAlignValT = false;
13669 
13670   RedeclarationKind Redecl = forRedeclarationInCurContext();
13671   if (TUK == TUK_Friend || TUK == TUK_Reference)
13672     Redecl = NotForRedeclaration;
13673 
13674   /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
13675   /// implemented asks for structural equivalence checking, the returned decl
13676   /// here is passed back to the parser, allowing the tag body to be parsed.
13677   auto createTagFromNewDecl = [&]() -> TagDecl * {
13678     assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
13679     // If there is an identifier, use the location of the identifier as the
13680     // location of the decl, otherwise use the location of the struct/union
13681     // keyword.
13682     SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
13683     TagDecl *New = nullptr;
13684 
13685     if (Kind == TTK_Enum) {
13686       New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
13687                              ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
13688       // If this is an undefined enum, bail.
13689       if (TUK != TUK_Definition && !Invalid)
13690         return nullptr;
13691       if (EnumUnderlying) {
13692         EnumDecl *ED = cast<EnumDecl>(New);
13693         if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
13694           ED->setIntegerTypeSourceInfo(TI);
13695         else
13696           ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
13697         ED->setPromotionType(ED->getIntegerType());
13698       }
13699     } else { // struct/union
13700       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
13701                                nullptr);
13702     }
13703 
13704     if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
13705       // Add alignment attributes if necessary; these attributes are checked
13706       // when the ASTContext lays out the structure.
13707       //
13708       // It is important for implementing the correct semantics that this
13709       // happen here (in ActOnTag). The #pragma pack stack is
13710       // maintained as a result of parser callbacks which can occur at
13711       // many points during the parsing of a struct declaration (because
13712       // the #pragma tokens are effectively skipped over during the
13713       // parsing of the struct).
13714       if (TUK == TUK_Definition) {
13715         AddAlignmentAttributesForRecord(RD);
13716         AddMsStructLayoutForRecord(RD);
13717       }
13718     }
13719     New->setLexicalDeclContext(CurContext);
13720     return New;
13721   };
13722 
13723   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
13724   if (Name && SS.isNotEmpty()) {
13725     // We have a nested-name tag ('struct foo::bar').
13726 
13727     // Check for invalid 'foo::'.
13728     if (SS.isInvalid()) {
13729       Name = nullptr;
13730       goto CreateNewDecl;
13731     }
13732 
13733     // If this is a friend or a reference to a class in a dependent
13734     // context, don't try to make a decl for it.
13735     if (TUK == TUK_Friend || TUK == TUK_Reference) {
13736       DC = computeDeclContext(SS, false);
13737       if (!DC) {
13738         IsDependent = true;
13739         return nullptr;
13740       }
13741     } else {
13742       DC = computeDeclContext(SS, true);
13743       if (!DC) {
13744         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
13745           << SS.getRange();
13746         return nullptr;
13747       }
13748     }
13749 
13750     if (RequireCompleteDeclContext(SS, DC))
13751       return nullptr;
13752 
13753     SearchDC = DC;
13754     // Look-up name inside 'foo::'.
13755     LookupQualifiedName(Previous, DC);
13756 
13757     if (Previous.isAmbiguous())
13758       return nullptr;
13759 
13760     if (Previous.empty()) {
13761       // Name lookup did not find anything. However, if the
13762       // nested-name-specifier refers to the current instantiation,
13763       // and that current instantiation has any dependent base
13764       // classes, we might find something at instantiation time: treat
13765       // this as a dependent elaborated-type-specifier.
13766       // But this only makes any sense for reference-like lookups.
13767       if (Previous.wasNotFoundInCurrentInstantiation() &&
13768           (TUK == TUK_Reference || TUK == TUK_Friend)) {
13769         IsDependent = true;
13770         return nullptr;
13771       }
13772 
13773       // A tag 'foo::bar' must already exist.
13774       Diag(NameLoc, diag::err_not_tag_in_scope)
13775         << Kind << Name << DC << SS.getRange();
13776       Name = nullptr;
13777       Invalid = true;
13778       goto CreateNewDecl;
13779     }
13780   } else if (Name) {
13781     // C++14 [class.mem]p14:
13782     //   If T is the name of a class, then each of the following shall have a
13783     //   name different from T:
13784     //    -- every member of class T that is itself a type
13785     if (TUK != TUK_Reference && TUK != TUK_Friend &&
13786         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
13787       return nullptr;
13788 
13789     // If this is a named struct, check to see if there was a previous forward
13790     // declaration or definition.
13791     // FIXME: We're looking into outer scopes here, even when we
13792     // shouldn't be. Doing so can result in ambiguities that we
13793     // shouldn't be diagnosing.
13794     LookupName(Previous, S);
13795 
13796     // When declaring or defining a tag, ignore ambiguities introduced
13797     // by types using'ed into this scope.
13798     if (Previous.isAmbiguous() &&
13799         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
13800       LookupResult::Filter F = Previous.makeFilter();
13801       while (F.hasNext()) {
13802         NamedDecl *ND = F.next();
13803         if (!ND->getDeclContext()->getRedeclContext()->Equals(
13804                 SearchDC->getRedeclContext()))
13805           F.erase();
13806       }
13807       F.done();
13808     }
13809 
13810     // C++11 [namespace.memdef]p3:
13811     //   If the name in a friend declaration is neither qualified nor
13812     //   a template-id and the declaration is a function or an
13813     //   elaborated-type-specifier, the lookup to determine whether
13814     //   the entity has been previously declared shall not consider
13815     //   any scopes outside the innermost enclosing namespace.
13816     //
13817     // MSVC doesn't implement the above rule for types, so a friend tag
13818     // declaration may be a redeclaration of a type declared in an enclosing
13819     // scope.  They do implement this rule for friend functions.
13820     //
13821     // Does it matter that this should be by scope instead of by
13822     // semantic context?
13823     if (!Previous.empty() && TUK == TUK_Friend) {
13824       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
13825       LookupResult::Filter F = Previous.makeFilter();
13826       bool FriendSawTagOutsideEnclosingNamespace = false;
13827       while (F.hasNext()) {
13828         NamedDecl *ND = F.next();
13829         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
13830         if (DC->isFileContext() &&
13831             !EnclosingNS->Encloses(ND->getDeclContext())) {
13832           if (getLangOpts().MSVCCompat)
13833             FriendSawTagOutsideEnclosingNamespace = true;
13834           else
13835             F.erase();
13836         }
13837       }
13838       F.done();
13839 
13840       // Diagnose this MSVC extension in the easy case where lookup would have
13841       // unambiguously found something outside the enclosing namespace.
13842       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
13843         NamedDecl *ND = Previous.getFoundDecl();
13844         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
13845             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
13846       }
13847     }
13848 
13849     // Note:  there used to be some attempt at recovery here.
13850     if (Previous.isAmbiguous())
13851       return nullptr;
13852 
13853     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
13854       // FIXME: This makes sure that we ignore the contexts associated
13855       // with C structs, unions, and enums when looking for a matching
13856       // tag declaration or definition. See the similar lookup tweak
13857       // in Sema::LookupName; is there a better way to deal with this?
13858       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
13859         SearchDC = SearchDC->getParent();
13860     }
13861   }
13862 
13863   if (Previous.isSingleResult() &&
13864       Previous.getFoundDecl()->isTemplateParameter()) {
13865     // Maybe we will complain about the shadowed template parameter.
13866     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
13867     // Just pretend that we didn't see the previous declaration.
13868     Previous.clear();
13869   }
13870 
13871   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
13872       DC->Equals(getStdNamespace())) {
13873     if (Name->isStr("bad_alloc")) {
13874       // This is a declaration of or a reference to "std::bad_alloc".
13875       isStdBadAlloc = true;
13876 
13877       // If std::bad_alloc has been implicitly declared (but made invisible to
13878       // name lookup), fill in this implicit declaration as the previous
13879       // declaration, so that the declarations get chained appropriately.
13880       if (Previous.empty() && StdBadAlloc)
13881         Previous.addDecl(getStdBadAlloc());
13882     } else if (Name->isStr("align_val_t")) {
13883       isStdAlignValT = true;
13884       if (Previous.empty() && StdAlignValT)
13885         Previous.addDecl(getStdAlignValT());
13886     }
13887   }
13888 
13889   // If we didn't find a previous declaration, and this is a reference
13890   // (or friend reference), move to the correct scope.  In C++, we
13891   // also need to do a redeclaration lookup there, just in case
13892   // there's a shadow friend decl.
13893   if (Name && Previous.empty() &&
13894       (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
13895     if (Invalid) goto CreateNewDecl;
13896     assert(SS.isEmpty());
13897 
13898     if (TUK == TUK_Reference || IsTemplateParamOrArg) {
13899       // C++ [basic.scope.pdecl]p5:
13900       //   -- for an elaborated-type-specifier of the form
13901       //
13902       //          class-key identifier
13903       //
13904       //      if the elaborated-type-specifier is used in the
13905       //      decl-specifier-seq or parameter-declaration-clause of a
13906       //      function defined in namespace scope, the identifier is
13907       //      declared as a class-name in the namespace that contains
13908       //      the declaration; otherwise, except as a friend
13909       //      declaration, the identifier is declared in the smallest
13910       //      non-class, non-function-prototype scope that contains the
13911       //      declaration.
13912       //
13913       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
13914       // C structs and unions.
13915       //
13916       // It is an error in C++ to declare (rather than define) an enum
13917       // type, including via an elaborated type specifier.  We'll
13918       // diagnose that later; for now, declare the enum in the same
13919       // scope as we would have picked for any other tag type.
13920       //
13921       // GNU C also supports this behavior as part of its incomplete
13922       // enum types extension, while GNU C++ does not.
13923       //
13924       // Find the context where we'll be declaring the tag.
13925       // FIXME: We would like to maintain the current DeclContext as the
13926       // lexical context,
13927       SearchDC = getTagInjectionContext(SearchDC);
13928 
13929       // Find the scope where we'll be declaring the tag.
13930       S = getTagInjectionScope(S, getLangOpts());
13931     } else {
13932       assert(TUK == TUK_Friend);
13933       // C++ [namespace.memdef]p3:
13934       //   If a friend declaration in a non-local class first declares a
13935       //   class or function, the friend class or function is a member of
13936       //   the innermost enclosing namespace.
13937       SearchDC = SearchDC->getEnclosingNamespaceContext();
13938     }
13939 
13940     // In C++, we need to do a redeclaration lookup to properly
13941     // diagnose some problems.
13942     // FIXME: redeclaration lookup is also used (with and without C++) to find a
13943     // hidden declaration so that we don't get ambiguity errors when using a
13944     // type declared by an elaborated-type-specifier.  In C that is not correct
13945     // and we should instead merge compatible types found by lookup.
13946     if (getLangOpts().CPlusPlus) {
13947       Previous.setRedeclarationKind(forRedeclarationInCurContext());
13948       LookupQualifiedName(Previous, SearchDC);
13949     } else {
13950       Previous.setRedeclarationKind(forRedeclarationInCurContext());
13951       LookupName(Previous, S);
13952     }
13953   }
13954 
13955   // If we have a known previous declaration to use, then use it.
13956   if (Previous.empty() && SkipBody && SkipBody->Previous)
13957     Previous.addDecl(SkipBody->Previous);
13958 
13959   if (!Previous.empty()) {
13960     NamedDecl *PrevDecl = Previous.getFoundDecl();
13961     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
13962 
13963     // It's okay to have a tag decl in the same scope as a typedef
13964     // which hides a tag decl in the same scope.  Finding this
13965     // insanity with a redeclaration lookup can only actually happen
13966     // in C++.
13967     //
13968     // This is also okay for elaborated-type-specifiers, which is
13969     // technically forbidden by the current standard but which is
13970     // okay according to the likely resolution of an open issue;
13971     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
13972     if (getLangOpts().CPlusPlus) {
13973       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
13974         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
13975           TagDecl *Tag = TT->getDecl();
13976           if (Tag->getDeclName() == Name &&
13977               Tag->getDeclContext()->getRedeclContext()
13978                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
13979             PrevDecl = Tag;
13980             Previous.clear();
13981             Previous.addDecl(Tag);
13982             Previous.resolveKind();
13983           }
13984         }
13985       }
13986     }
13987 
13988     // If this is a redeclaration of a using shadow declaration, it must
13989     // declare a tag in the same context. In MSVC mode, we allow a
13990     // redefinition if either context is within the other.
13991     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
13992       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
13993       if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
13994           isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
13995           !(OldTag && isAcceptableTagRedeclContext(
13996                           *this, OldTag->getDeclContext(), SearchDC))) {
13997         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
13998         Diag(Shadow->getTargetDecl()->getLocation(),
13999              diag::note_using_decl_target);
14000         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
14001             << 0;
14002         // Recover by ignoring the old declaration.
14003         Previous.clear();
14004         goto CreateNewDecl;
14005       }
14006     }
14007 
14008     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
14009       // If this is a use of a previous tag, or if the tag is already declared
14010       // in the same scope (so that the definition/declaration completes or
14011       // rementions the tag), reuse the decl.
14012       if (TUK == TUK_Reference || TUK == TUK_Friend ||
14013           isDeclInScope(DirectPrevDecl, SearchDC, S,
14014                         SS.isNotEmpty() || isMemberSpecialization)) {
14015         // Make sure that this wasn't declared as an enum and now used as a
14016         // struct or something similar.
14017         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
14018                                           TUK == TUK_Definition, KWLoc,
14019                                           Name)) {
14020           bool SafeToContinue
14021             = (PrevTagDecl->getTagKind() != TTK_Enum &&
14022                Kind != TTK_Enum);
14023           if (SafeToContinue)
14024             Diag(KWLoc, diag::err_use_with_wrong_tag)
14025               << Name
14026               << FixItHint::CreateReplacement(SourceRange(KWLoc),
14027                                               PrevTagDecl->getKindName());
14028           else
14029             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
14030           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
14031 
14032           if (SafeToContinue)
14033             Kind = PrevTagDecl->getTagKind();
14034           else {
14035             // Recover by making this an anonymous redefinition.
14036             Name = nullptr;
14037             Previous.clear();
14038             Invalid = true;
14039           }
14040         }
14041 
14042         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
14043           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
14044 
14045           // If this is an elaborated-type-specifier for a scoped enumeration,
14046           // the 'class' keyword is not necessary and not permitted.
14047           if (TUK == TUK_Reference || TUK == TUK_Friend) {
14048             if (ScopedEnum)
14049               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
14050                 << PrevEnum->isScoped()
14051                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
14052             return PrevTagDecl;
14053           }
14054 
14055           QualType EnumUnderlyingTy;
14056           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
14057             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
14058           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
14059             EnumUnderlyingTy = QualType(T, 0);
14060 
14061           // All conflicts with previous declarations are recovered by
14062           // returning the previous declaration, unless this is a definition,
14063           // in which case we want the caller to bail out.
14064           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
14065                                      ScopedEnum, EnumUnderlyingTy,
14066                                      IsFixed, PrevEnum))
14067             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
14068         }
14069 
14070         // C++11 [class.mem]p1:
14071         //   A member shall not be declared twice in the member-specification,
14072         //   except that a nested class or member class template can be declared
14073         //   and then later defined.
14074         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
14075             S->isDeclScope(PrevDecl)) {
14076           Diag(NameLoc, diag::ext_member_redeclared);
14077           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
14078         }
14079 
14080         if (!Invalid) {
14081           // If this is a use, just return the declaration we found, unless
14082           // we have attributes.
14083           if (TUK == TUK_Reference || TUK == TUK_Friend) {
14084             if (Attr) {
14085               // FIXME: Diagnose these attributes. For now, we create a new
14086               // declaration to hold them.
14087             } else if (TUK == TUK_Reference &&
14088                        (PrevTagDecl->getFriendObjectKind() ==
14089                             Decl::FOK_Undeclared ||
14090                         PrevDecl->getOwningModule() != getCurrentModule()) &&
14091                        SS.isEmpty()) {
14092               // This declaration is a reference to an existing entity, but
14093               // has different visibility from that entity: it either makes
14094               // a friend visible or it makes a type visible in a new module.
14095               // In either case, create a new declaration. We only do this if
14096               // the declaration would have meant the same thing if no prior
14097               // declaration were found, that is, if it was found in the same
14098               // scope where we would have injected a declaration.
14099               if (!getTagInjectionContext(CurContext)->getRedeclContext()
14100                        ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
14101                 return PrevTagDecl;
14102               // This is in the injected scope, create a new declaration in
14103               // that scope.
14104               S = getTagInjectionScope(S, getLangOpts());
14105             } else {
14106               return PrevTagDecl;
14107             }
14108           }
14109 
14110           // Diagnose attempts to redefine a tag.
14111           if (TUK == TUK_Definition) {
14112             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
14113               // If we're defining a specialization and the previous definition
14114               // is from an implicit instantiation, don't emit an error
14115               // here; we'll catch this in the general case below.
14116               bool IsExplicitSpecializationAfterInstantiation = false;
14117               if (isMemberSpecialization) {
14118                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
14119                   IsExplicitSpecializationAfterInstantiation =
14120                     RD->getTemplateSpecializationKind() !=
14121                     TSK_ExplicitSpecialization;
14122                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
14123                   IsExplicitSpecializationAfterInstantiation =
14124                     ED->getTemplateSpecializationKind() !=
14125                     TSK_ExplicitSpecialization;
14126               }
14127 
14128               // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
14129               // not keep more that one definition around (merge them). However,
14130               // ensure the decl passes the structural compatibility check in
14131               // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
14132               NamedDecl *Hidden = nullptr;
14133               if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
14134                 // There is a definition of this tag, but it is not visible. We
14135                 // explicitly make use of C++'s one definition rule here, and
14136                 // assume that this definition is identical to the hidden one
14137                 // we already have. Make the existing definition visible and
14138                 // use it in place of this one.
14139                 if (!getLangOpts().CPlusPlus) {
14140                   // Postpone making the old definition visible until after we
14141                   // complete parsing the new one and do the structural
14142                   // comparison.
14143                   SkipBody->CheckSameAsPrevious = true;
14144                   SkipBody->New = createTagFromNewDecl();
14145                   SkipBody->Previous = Hidden;
14146                 } else {
14147                   SkipBody->ShouldSkip = true;
14148                   makeMergedDefinitionVisible(Hidden);
14149                 }
14150                 return Def;
14151               } else if (!IsExplicitSpecializationAfterInstantiation) {
14152                 // A redeclaration in function prototype scope in C isn't
14153                 // visible elsewhere, so merely issue a warning.
14154                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
14155                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
14156                 else
14157                   Diag(NameLoc, diag::err_redefinition) << Name;
14158                 notePreviousDefinition(Def,
14159                                        NameLoc.isValid() ? NameLoc : KWLoc);
14160                 // If this is a redefinition, recover by making this
14161                 // struct be anonymous, which will make any later
14162                 // references get the previous definition.
14163                 Name = nullptr;
14164                 Previous.clear();
14165                 Invalid = true;
14166               }
14167             } else {
14168               // If the type is currently being defined, complain
14169               // about a nested redefinition.
14170               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
14171               if (TD->isBeingDefined()) {
14172                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
14173                 Diag(PrevTagDecl->getLocation(),
14174                      diag::note_previous_definition);
14175                 Name = nullptr;
14176                 Previous.clear();
14177                 Invalid = true;
14178               }
14179             }
14180 
14181             // Okay, this is definition of a previously declared or referenced
14182             // tag. We're going to create a new Decl for it.
14183           }
14184 
14185           // Okay, we're going to make a redeclaration.  If this is some kind
14186           // of reference, make sure we build the redeclaration in the same DC
14187           // as the original, and ignore the current access specifier.
14188           if (TUK == TUK_Friend || TUK == TUK_Reference) {
14189             SearchDC = PrevTagDecl->getDeclContext();
14190             AS = AS_none;
14191           }
14192         }
14193         // If we get here we have (another) forward declaration or we
14194         // have a definition.  Just create a new decl.
14195 
14196       } else {
14197         // If we get here, this is a definition of a new tag type in a nested
14198         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
14199         // new decl/type.  We set PrevDecl to NULL so that the entities
14200         // have distinct types.
14201         Previous.clear();
14202       }
14203       // If we get here, we're going to create a new Decl. If PrevDecl
14204       // is non-NULL, it's a definition of the tag declared by
14205       // PrevDecl. If it's NULL, we have a new definition.
14206 
14207     // Otherwise, PrevDecl is not a tag, but was found with tag
14208     // lookup.  This is only actually possible in C++, where a few
14209     // things like templates still live in the tag namespace.
14210     } else {
14211       // Use a better diagnostic if an elaborated-type-specifier
14212       // found the wrong kind of type on the first
14213       // (non-redeclaration) lookup.
14214       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
14215           !Previous.isForRedeclaration()) {
14216         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
14217         Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
14218                                                        << Kind;
14219         Diag(PrevDecl->getLocation(), diag::note_declared_at);
14220         Invalid = true;
14221 
14222       // Otherwise, only diagnose if the declaration is in scope.
14223       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
14224                                 SS.isNotEmpty() || isMemberSpecialization)) {
14225         // do nothing
14226 
14227       // Diagnose implicit declarations introduced by elaborated types.
14228       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
14229         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
14230         Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
14231         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
14232         Invalid = true;
14233 
14234       // Otherwise it's a declaration.  Call out a particularly common
14235       // case here.
14236       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
14237         unsigned Kind = 0;
14238         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
14239         Diag(NameLoc, diag::err_tag_definition_of_typedef)
14240           << Name << Kind << TND->getUnderlyingType();
14241         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
14242         Invalid = true;
14243 
14244       // Otherwise, diagnose.
14245       } else {
14246         // The tag name clashes with something else in the target scope,
14247         // issue an error and recover by making this tag be anonymous.
14248         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
14249         notePreviousDefinition(PrevDecl, NameLoc);
14250         Name = nullptr;
14251         Invalid = true;
14252       }
14253 
14254       // The existing declaration isn't relevant to us; we're in a
14255       // new scope, so clear out the previous declaration.
14256       Previous.clear();
14257     }
14258   }
14259 
14260 CreateNewDecl:
14261 
14262   TagDecl *PrevDecl = nullptr;
14263   if (Previous.isSingleResult())
14264     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
14265 
14266   // If there is an identifier, use the location of the identifier as the
14267   // location of the decl, otherwise use the location of the struct/union
14268   // keyword.
14269   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14270 
14271   // Otherwise, create a new declaration. If there is a previous
14272   // declaration of the same entity, the two will be linked via
14273   // PrevDecl.
14274   TagDecl *New;
14275 
14276   bool IsForwardReference = false;
14277   if (Kind == TTK_Enum) {
14278     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
14279     // enum X { A, B, C } D;    D should chain to X.
14280     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
14281                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
14282                            ScopedEnumUsesClassTag, IsFixed);
14283 
14284     if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
14285       StdAlignValT = cast<EnumDecl>(New);
14286 
14287     // If this is an undefined enum, warn.
14288     if (TUK != TUK_Definition && !Invalid) {
14289       TagDecl *Def;
14290       if (IsFixed && (getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
14291           cast<EnumDecl>(New)->isFixed()) {
14292         // C++0x: 7.2p2: opaque-enum-declaration.
14293         // Conflicts are diagnosed above. Do nothing.
14294       }
14295       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
14296         Diag(Loc, diag::ext_forward_ref_enum_def)
14297           << New;
14298         Diag(Def->getLocation(), diag::note_previous_definition);
14299       } else {
14300         unsigned DiagID = diag::ext_forward_ref_enum;
14301         if (getLangOpts().MSVCCompat)
14302           DiagID = diag::ext_ms_forward_ref_enum;
14303         else if (getLangOpts().CPlusPlus)
14304           DiagID = diag::err_forward_ref_enum;
14305         Diag(Loc, DiagID);
14306 
14307         // If this is a forward-declared reference to an enumeration, make a
14308         // note of it; we won't actually be introducing the declaration into
14309         // the declaration context.
14310         if (TUK == TUK_Reference)
14311           IsForwardReference = true;
14312       }
14313     }
14314 
14315     if (EnumUnderlying) {
14316       EnumDecl *ED = cast<EnumDecl>(New);
14317       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
14318         ED->setIntegerTypeSourceInfo(TI);
14319       else
14320         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
14321       ED->setPromotionType(ED->getIntegerType());
14322       assert(ED->isComplete() && "enum with type should be complete");
14323     }
14324   } else {
14325     // struct/union/class
14326 
14327     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
14328     // struct X { int A; } D;    D should chain to X.
14329     if (getLangOpts().CPlusPlus) {
14330       // FIXME: Look for a way to use RecordDecl for simple structs.
14331       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14332                                   cast_or_null<CXXRecordDecl>(PrevDecl));
14333 
14334       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
14335         StdBadAlloc = cast<CXXRecordDecl>(New);
14336     } else
14337       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14338                                cast_or_null<RecordDecl>(PrevDecl));
14339   }
14340 
14341   // C++11 [dcl.type]p3:
14342   //   A type-specifier-seq shall not define a class or enumeration [...].
14343   if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
14344       TUK == TUK_Definition) {
14345     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
14346       << Context.getTagDeclType(New);
14347     Invalid = true;
14348   }
14349 
14350   if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
14351       DC->getDeclKind() == Decl::Enum) {
14352     Diag(New->getLocation(), diag::err_type_defined_in_enum)
14353       << Context.getTagDeclType(New);
14354     Invalid = true;
14355   }
14356 
14357   // Maybe add qualifier info.
14358   if (SS.isNotEmpty()) {
14359     if (SS.isSet()) {
14360       // If this is either a declaration or a definition, check the
14361       // nested-name-specifier against the current context.
14362       if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
14363           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
14364                                        isMemberSpecialization))
14365         Invalid = true;
14366 
14367       New->setQualifierInfo(SS.getWithLocInContext(Context));
14368       if (TemplateParameterLists.size() > 0) {
14369         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
14370       }
14371     }
14372     else
14373       Invalid = true;
14374   }
14375 
14376   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
14377     // Add alignment attributes if necessary; these attributes are checked when
14378     // the ASTContext lays out the structure.
14379     //
14380     // It is important for implementing the correct semantics that this
14381     // happen here (in ActOnTag). The #pragma pack stack is
14382     // maintained as a result of parser callbacks which can occur at
14383     // many points during the parsing of a struct declaration (because
14384     // the #pragma tokens are effectively skipped over during the
14385     // parsing of the struct).
14386     if (TUK == TUK_Definition) {
14387       AddAlignmentAttributesForRecord(RD);
14388       AddMsStructLayoutForRecord(RD);
14389     }
14390   }
14391 
14392   if (ModulePrivateLoc.isValid()) {
14393     if (isMemberSpecialization)
14394       Diag(New->getLocation(), diag::err_module_private_specialization)
14395         << 2
14396         << FixItHint::CreateRemoval(ModulePrivateLoc);
14397     // __module_private__ does not apply to local classes. However, we only
14398     // diagnose this as an error when the declaration specifiers are
14399     // freestanding. Here, we just ignore the __module_private__.
14400     else if (!SearchDC->isFunctionOrMethod())
14401       New->setModulePrivate();
14402   }
14403 
14404   // If this is a specialization of a member class (of a class template),
14405   // check the specialization.
14406   if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
14407     Invalid = true;
14408 
14409   // If we're declaring or defining a tag in function prototype scope in C,
14410   // note that this type can only be used within the function and add it to
14411   // the list of decls to inject into the function definition scope.
14412   if ((Name || Kind == TTK_Enum) &&
14413       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
14414     if (getLangOpts().CPlusPlus) {
14415       // C++ [dcl.fct]p6:
14416       //   Types shall not be defined in return or parameter types.
14417       if (TUK == TUK_Definition && !IsTypeSpecifier) {
14418         Diag(Loc, diag::err_type_defined_in_param_type)
14419             << Name;
14420         Invalid = true;
14421       }
14422     } else if (!PrevDecl) {
14423       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
14424     }
14425   }
14426 
14427   if (Invalid)
14428     New->setInvalidDecl();
14429 
14430   // Set the lexical context. If the tag has a C++ scope specifier, the
14431   // lexical context will be different from the semantic context.
14432   New->setLexicalDeclContext(CurContext);
14433 
14434   // Mark this as a friend decl if applicable.
14435   // In Microsoft mode, a friend declaration also acts as a forward
14436   // declaration so we always pass true to setObjectOfFriendDecl to make
14437   // the tag name visible.
14438   if (TUK == TUK_Friend)
14439     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
14440 
14441   // Set the access specifier.
14442   if (!Invalid && SearchDC->isRecord())
14443     SetMemberAccessSpecifier(New, PrevDecl, AS);
14444 
14445   if (PrevDecl)
14446     CheckRedeclarationModuleOwnership(New, PrevDecl);
14447 
14448   if (TUK == TUK_Definition)
14449     New->startDefinition();
14450 
14451   if (Attr)
14452     ProcessDeclAttributeList(S, New, Attr);
14453   AddPragmaAttributes(S, New);
14454 
14455   // If this has an identifier, add it to the scope stack.
14456   if (TUK == TUK_Friend) {
14457     // We might be replacing an existing declaration in the lookup tables;
14458     // if so, borrow its access specifier.
14459     if (PrevDecl)
14460       New->setAccess(PrevDecl->getAccess());
14461 
14462     DeclContext *DC = New->getDeclContext()->getRedeclContext();
14463     DC->makeDeclVisibleInContext(New);
14464     if (Name) // can be null along some error paths
14465       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
14466         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
14467   } else if (Name) {
14468     S = getNonFieldDeclScope(S);
14469     PushOnScopeChains(New, S, !IsForwardReference);
14470     if (IsForwardReference)
14471       SearchDC->makeDeclVisibleInContext(New);
14472   } else {
14473     CurContext->addDecl(New);
14474   }
14475 
14476   // If this is the C FILE type, notify the AST context.
14477   if (IdentifierInfo *II = New->getIdentifier())
14478     if (!New->isInvalidDecl() &&
14479         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
14480         II->isStr("FILE"))
14481       Context.setFILEDecl(New);
14482 
14483   if (PrevDecl)
14484     mergeDeclAttributes(New, PrevDecl);
14485 
14486   // If there's a #pragma GCC visibility in scope, set the visibility of this
14487   // record.
14488   AddPushedVisibilityAttribute(New);
14489 
14490   if (isMemberSpecialization && !New->isInvalidDecl())
14491     CompleteMemberSpecialization(New, Previous);
14492 
14493   OwnedDecl = true;
14494   // In C++, don't return an invalid declaration. We can't recover well from
14495   // the cases where we make the type anonymous.
14496   if (Invalid && getLangOpts().CPlusPlus) {
14497     if (New->isBeingDefined())
14498       if (auto RD = dyn_cast<RecordDecl>(New))
14499         RD->completeDefinition();
14500     return nullptr;
14501   } else {
14502     return New;
14503   }
14504 }
14505 
14506 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
14507   AdjustDeclIfTemplate(TagD);
14508   TagDecl *Tag = cast<TagDecl>(TagD);
14509 
14510   // Enter the tag context.
14511   PushDeclContext(S, Tag);
14512 
14513   ActOnDocumentableDecl(TagD);
14514 
14515   // If there's a #pragma GCC visibility in scope, set the visibility of this
14516   // record.
14517   AddPushedVisibilityAttribute(Tag);
14518 }
14519 
14520 bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
14521                                     SkipBodyInfo &SkipBody) {
14522   if (!hasStructuralCompatLayout(Prev, SkipBody.New))
14523     return false;
14524 
14525   // Make the previous decl visible.
14526   makeMergedDefinitionVisible(SkipBody.Previous);
14527   return true;
14528 }
14529 
14530 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
14531   assert(isa<ObjCContainerDecl>(IDecl) &&
14532          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
14533   DeclContext *OCD = cast<DeclContext>(IDecl);
14534   assert(getContainingDC(OCD) == CurContext &&
14535       "The next DeclContext should be lexically contained in the current one.");
14536   CurContext = OCD;
14537   return IDecl;
14538 }
14539 
14540 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
14541                                            SourceLocation FinalLoc,
14542                                            bool IsFinalSpelledSealed,
14543                                            SourceLocation LBraceLoc) {
14544   AdjustDeclIfTemplate(TagD);
14545   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
14546 
14547   FieldCollector->StartClass();
14548 
14549   if (!Record->getIdentifier())
14550     return;
14551 
14552   if (FinalLoc.isValid())
14553     Record->addAttr(new (Context)
14554                     FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
14555 
14556   // C++ [class]p2:
14557   //   [...] The class-name is also inserted into the scope of the
14558   //   class itself; this is known as the injected-class-name. For
14559   //   purposes of access checking, the injected-class-name is treated
14560   //   as if it were a public member name.
14561   CXXRecordDecl *InjectedClassName
14562     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
14563                             Record->getLocStart(), Record->getLocation(),
14564                             Record->getIdentifier(),
14565                             /*PrevDecl=*/nullptr,
14566                             /*DelayTypeCreation=*/true);
14567   Context.getTypeDeclType(InjectedClassName, Record);
14568   InjectedClassName->setImplicit();
14569   InjectedClassName->setAccess(AS_public);
14570   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
14571       InjectedClassName->setDescribedClassTemplate(Template);
14572   PushOnScopeChains(InjectedClassName, S);
14573   assert(InjectedClassName->isInjectedClassName() &&
14574          "Broken injected-class-name");
14575 }
14576 
14577 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
14578                                     SourceRange BraceRange) {
14579   AdjustDeclIfTemplate(TagD);
14580   TagDecl *Tag = cast<TagDecl>(TagD);
14581   Tag->setBraceRange(BraceRange);
14582 
14583   // Make sure we "complete" the definition even it is invalid.
14584   if (Tag->isBeingDefined()) {
14585     assert(Tag->isInvalidDecl() && "We should already have completed it");
14586     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
14587       RD->completeDefinition();
14588   }
14589 
14590   if (isa<CXXRecordDecl>(Tag)) {
14591     FieldCollector->FinishClass();
14592   }
14593 
14594   // Exit this scope of this tag's definition.
14595   PopDeclContext();
14596 
14597   if (getCurLexicalContext()->isObjCContainer() &&
14598       Tag->getDeclContext()->isFileContext())
14599     Tag->setTopLevelDeclInObjCContainer();
14600 
14601   // Notify the consumer that we've defined a tag.
14602   if (!Tag->isInvalidDecl())
14603     Consumer.HandleTagDeclDefinition(Tag);
14604 }
14605 
14606 void Sema::ActOnObjCContainerFinishDefinition() {
14607   // Exit this scope of this interface definition.
14608   PopDeclContext();
14609 }
14610 
14611 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
14612   assert(DC == CurContext && "Mismatch of container contexts");
14613   OriginalLexicalContext = DC;
14614   ActOnObjCContainerFinishDefinition();
14615 }
14616 
14617 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
14618   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
14619   OriginalLexicalContext = nullptr;
14620 }
14621 
14622 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
14623   AdjustDeclIfTemplate(TagD);
14624   TagDecl *Tag = cast<TagDecl>(TagD);
14625   Tag->setInvalidDecl();
14626 
14627   // Make sure we "complete" the definition even it is invalid.
14628   if (Tag->isBeingDefined()) {
14629     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
14630       RD->completeDefinition();
14631   }
14632 
14633   // We're undoing ActOnTagStartDefinition here, not
14634   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
14635   // the FieldCollector.
14636 
14637   PopDeclContext();
14638 }
14639 
14640 // Note that FieldName may be null for anonymous bitfields.
14641 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
14642                                 IdentifierInfo *FieldName,
14643                                 QualType FieldTy, bool IsMsStruct,
14644                                 Expr *BitWidth, bool *ZeroWidth) {
14645   // Default to true; that shouldn't confuse checks for emptiness
14646   if (ZeroWidth)
14647     *ZeroWidth = true;
14648 
14649   // C99 6.7.2.1p4 - verify the field type.
14650   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
14651   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
14652     // Handle incomplete types with specific error.
14653     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
14654       return ExprError();
14655     if (FieldName)
14656       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
14657         << FieldName << FieldTy << BitWidth->getSourceRange();
14658     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
14659       << FieldTy << BitWidth->getSourceRange();
14660   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
14661                                              UPPC_BitFieldWidth))
14662     return ExprError();
14663 
14664   // If the bit-width is type- or value-dependent, don't try to check
14665   // it now.
14666   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
14667     return BitWidth;
14668 
14669   llvm::APSInt Value;
14670   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
14671   if (ICE.isInvalid())
14672     return ICE;
14673   BitWidth = ICE.get();
14674 
14675   if (Value != 0 && ZeroWidth)
14676     *ZeroWidth = false;
14677 
14678   // Zero-width bitfield is ok for anonymous field.
14679   if (Value == 0 && FieldName)
14680     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
14681 
14682   if (Value.isSigned() && Value.isNegative()) {
14683     if (FieldName)
14684       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
14685                << FieldName << Value.toString(10);
14686     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
14687       << Value.toString(10);
14688   }
14689 
14690   if (!FieldTy->isDependentType()) {
14691     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
14692     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
14693     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
14694 
14695     // Over-wide bitfields are an error in C or when using the MSVC bitfield
14696     // ABI.
14697     bool CStdConstraintViolation =
14698         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
14699     bool MSBitfieldViolation =
14700         Value.ugt(TypeStorageSize) &&
14701         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
14702     if (CStdConstraintViolation || MSBitfieldViolation) {
14703       unsigned DiagWidth =
14704           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
14705       if (FieldName)
14706         return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
14707                << FieldName << (unsigned)Value.getZExtValue()
14708                << !CStdConstraintViolation << DiagWidth;
14709 
14710       return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
14711              << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
14712              << DiagWidth;
14713     }
14714 
14715     // Warn on types where the user might conceivably expect to get all
14716     // specified bits as value bits: that's all integral types other than
14717     // 'bool'.
14718     if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
14719       if (FieldName)
14720         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
14721             << FieldName << (unsigned)Value.getZExtValue()
14722             << (unsigned)TypeWidth;
14723       else
14724         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
14725             << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
14726     }
14727   }
14728 
14729   return BitWidth;
14730 }
14731 
14732 /// ActOnField - Each field of a C struct/union is passed into this in order
14733 /// to create a FieldDecl object for it.
14734 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
14735                        Declarator &D, Expr *BitfieldWidth) {
14736   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
14737                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
14738                                /*InitStyle=*/ICIS_NoInit, AS_public);
14739   return Res;
14740 }
14741 
14742 /// HandleField - Analyze a field of a C struct or a C++ data member.
14743 ///
14744 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
14745                              SourceLocation DeclStart,
14746                              Declarator &D, Expr *BitWidth,
14747                              InClassInitStyle InitStyle,
14748                              AccessSpecifier AS) {
14749   if (D.isDecompositionDeclarator()) {
14750     const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
14751     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
14752       << Decomp.getSourceRange();
14753     return nullptr;
14754   }
14755 
14756   IdentifierInfo *II = D.getIdentifier();
14757   SourceLocation Loc = DeclStart;
14758   if (II) Loc = D.getIdentifierLoc();
14759 
14760   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
14761   QualType T = TInfo->getType();
14762   if (getLangOpts().CPlusPlus) {
14763     CheckExtraCXXDefaultArguments(D);
14764 
14765     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
14766                                         UPPC_DataMemberType)) {
14767       D.setInvalidType();
14768       T = Context.IntTy;
14769       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
14770     }
14771   }
14772 
14773   // TR 18037 does not allow fields to be declared with address spaces.
14774   if (T.getQualifiers().hasAddressSpace() ||
14775       T->isDependentAddressSpaceType() ||
14776       T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
14777     Diag(Loc, diag::err_field_with_address_space);
14778     D.setInvalidType();
14779   }
14780 
14781   // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
14782   // used as structure or union field: image, sampler, event or block types.
14783   if (LangOpts.OpenCL && (T->isEventT() || T->isImageType() ||
14784                           T->isSamplerT() || T->isBlockPointerType())) {
14785     Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
14786     D.setInvalidType();
14787   }
14788 
14789   DiagnoseFunctionSpecifiers(D.getDeclSpec());
14790 
14791   if (D.getDeclSpec().isInlineSpecified())
14792     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
14793         << getLangOpts().CPlusPlus17;
14794   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
14795     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
14796          diag::err_invalid_thread)
14797       << DeclSpec::getSpecifierName(TSCS);
14798 
14799   // Check to see if this name was declared as a member previously
14800   NamedDecl *PrevDecl = nullptr;
14801   LookupResult Previous(*this, II, Loc, LookupMemberName,
14802                         ForVisibleRedeclaration);
14803   LookupName(Previous, S);
14804   switch (Previous.getResultKind()) {
14805     case LookupResult::Found:
14806     case LookupResult::FoundUnresolvedValue:
14807       PrevDecl = Previous.getAsSingle<NamedDecl>();
14808       break;
14809 
14810     case LookupResult::FoundOverloaded:
14811       PrevDecl = Previous.getRepresentativeDecl();
14812       break;
14813 
14814     case LookupResult::NotFound:
14815     case LookupResult::NotFoundInCurrentInstantiation:
14816     case LookupResult::Ambiguous:
14817       break;
14818   }
14819   Previous.suppressDiagnostics();
14820 
14821   if (PrevDecl && PrevDecl->isTemplateParameter()) {
14822     // Maybe we will complain about the shadowed template parameter.
14823     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
14824     // Just pretend that we didn't see the previous declaration.
14825     PrevDecl = nullptr;
14826   }
14827 
14828   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
14829     PrevDecl = nullptr;
14830 
14831   bool Mutable
14832     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
14833   SourceLocation TSSL = D.getLocStart();
14834   FieldDecl *NewFD
14835     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
14836                      TSSL, AS, PrevDecl, &D);
14837 
14838   if (NewFD->isInvalidDecl())
14839     Record->setInvalidDecl();
14840 
14841   if (D.getDeclSpec().isModulePrivateSpecified())
14842     NewFD->setModulePrivate();
14843 
14844   if (NewFD->isInvalidDecl() && PrevDecl) {
14845     // Don't introduce NewFD into scope; there's already something
14846     // with the same name in the same scope.
14847   } else if (II) {
14848     PushOnScopeChains(NewFD, S);
14849   } else
14850     Record->addDecl(NewFD);
14851 
14852   return NewFD;
14853 }
14854 
14855 /// Build a new FieldDecl and check its well-formedness.
14856 ///
14857 /// This routine builds a new FieldDecl given the fields name, type,
14858 /// record, etc. \p PrevDecl should refer to any previous declaration
14859 /// with the same name and in the same scope as the field to be
14860 /// created.
14861 ///
14862 /// \returns a new FieldDecl.
14863 ///
14864 /// \todo The Declarator argument is a hack. It will be removed once
14865 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
14866                                 TypeSourceInfo *TInfo,
14867                                 RecordDecl *Record, SourceLocation Loc,
14868                                 bool Mutable, Expr *BitWidth,
14869                                 InClassInitStyle InitStyle,
14870                                 SourceLocation TSSL,
14871                                 AccessSpecifier AS, NamedDecl *PrevDecl,
14872                                 Declarator *D) {
14873   IdentifierInfo *II = Name.getAsIdentifierInfo();
14874   bool InvalidDecl = false;
14875   if (D) InvalidDecl = D->isInvalidType();
14876 
14877   // If we receive a broken type, recover by assuming 'int' and
14878   // marking this declaration as invalid.
14879   if (T.isNull()) {
14880     InvalidDecl = true;
14881     T = Context.IntTy;
14882   }
14883 
14884   QualType EltTy = Context.getBaseElementType(T);
14885   if (!EltTy->isDependentType()) {
14886     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
14887       // Fields of incomplete type force their record to be invalid.
14888       Record->setInvalidDecl();
14889       InvalidDecl = true;
14890     } else {
14891       NamedDecl *Def;
14892       EltTy->isIncompleteType(&Def);
14893       if (Def && Def->isInvalidDecl()) {
14894         Record->setInvalidDecl();
14895         InvalidDecl = true;
14896       }
14897     }
14898   }
14899 
14900   // OpenCL v1.2 s6.9.c: bitfields are not supported.
14901   if (BitWidth && getLangOpts().OpenCL) {
14902     Diag(Loc, diag::err_opencl_bitfields);
14903     InvalidDecl = true;
14904   }
14905 
14906   // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
14907   if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
14908       T.hasQualifiers()) {
14909     InvalidDecl = true;
14910     Diag(Loc, diag::err_anon_bitfield_qualifiers);
14911   }
14912 
14913   // C99 6.7.2.1p8: A member of a structure or union may have any type other
14914   // than a variably modified type.
14915   if (!InvalidDecl && T->isVariablyModifiedType()) {
14916     bool SizeIsNegative;
14917     llvm::APSInt Oversized;
14918 
14919     TypeSourceInfo *FixedTInfo =
14920       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
14921                                                     SizeIsNegative,
14922                                                     Oversized);
14923     if (FixedTInfo) {
14924       Diag(Loc, diag::warn_illegal_constant_array_size);
14925       TInfo = FixedTInfo;
14926       T = FixedTInfo->getType();
14927     } else {
14928       if (SizeIsNegative)
14929         Diag(Loc, diag::err_typecheck_negative_array_size);
14930       else if (Oversized.getBoolValue())
14931         Diag(Loc, diag::err_array_too_large)
14932           << Oversized.toString(10);
14933       else
14934         Diag(Loc, diag::err_typecheck_field_variable_size);
14935       InvalidDecl = true;
14936     }
14937   }
14938 
14939   // Fields can not have abstract class types
14940   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
14941                                              diag::err_abstract_type_in_decl,
14942                                              AbstractFieldType))
14943     InvalidDecl = true;
14944 
14945   bool ZeroWidth = false;
14946   if (InvalidDecl)
14947     BitWidth = nullptr;
14948   // If this is declared as a bit-field, check the bit-field.
14949   if (BitWidth) {
14950     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
14951                               &ZeroWidth).get();
14952     if (!BitWidth) {
14953       InvalidDecl = true;
14954       BitWidth = nullptr;
14955       ZeroWidth = false;
14956     }
14957   }
14958 
14959   // Check that 'mutable' is consistent with the type of the declaration.
14960   if (!InvalidDecl && Mutable) {
14961     unsigned DiagID = 0;
14962     if (T->isReferenceType())
14963       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
14964                                         : diag::err_mutable_reference;
14965     else if (T.isConstQualified())
14966       DiagID = diag::err_mutable_const;
14967 
14968     if (DiagID) {
14969       SourceLocation ErrLoc = Loc;
14970       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
14971         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
14972       Diag(ErrLoc, DiagID);
14973       if (DiagID != diag::ext_mutable_reference) {
14974         Mutable = false;
14975         InvalidDecl = true;
14976       }
14977     }
14978   }
14979 
14980   // C++11 [class.union]p8 (DR1460):
14981   //   At most one variant member of a union may have a
14982   //   brace-or-equal-initializer.
14983   if (InitStyle != ICIS_NoInit)
14984     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
14985 
14986   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
14987                                        BitWidth, Mutable, InitStyle);
14988   if (InvalidDecl)
14989     NewFD->setInvalidDecl();
14990 
14991   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
14992     Diag(Loc, diag::err_duplicate_member) << II;
14993     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
14994     NewFD->setInvalidDecl();
14995   }
14996 
14997   if (!InvalidDecl && getLangOpts().CPlusPlus) {
14998     if (Record->isUnion()) {
14999       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15000         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
15001         if (RDecl->getDefinition()) {
15002           // C++ [class.union]p1: An object of a class with a non-trivial
15003           // constructor, a non-trivial copy constructor, a non-trivial
15004           // destructor, or a non-trivial copy assignment operator
15005           // cannot be a member of a union, nor can an array of such
15006           // objects.
15007           if (CheckNontrivialField(NewFD))
15008             NewFD->setInvalidDecl();
15009         }
15010       }
15011 
15012       // C++ [class.union]p1: If a union contains a member of reference type,
15013       // the program is ill-formed, except when compiling with MSVC extensions
15014       // enabled.
15015       if (EltTy->isReferenceType()) {
15016         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
15017                                     diag::ext_union_member_of_reference_type :
15018                                     diag::err_union_member_of_reference_type)
15019           << NewFD->getDeclName() << EltTy;
15020         if (!getLangOpts().MicrosoftExt)
15021           NewFD->setInvalidDecl();
15022       }
15023     }
15024   }
15025 
15026   // FIXME: We need to pass in the attributes given an AST
15027   // representation, not a parser representation.
15028   if (D) {
15029     // FIXME: The current scope is almost... but not entirely... correct here.
15030     ProcessDeclAttributes(getCurScope(), NewFD, *D);
15031 
15032     if (NewFD->hasAttrs())
15033       CheckAlignasUnderalignment(NewFD);
15034   }
15035 
15036   // In auto-retain/release, infer strong retension for fields of
15037   // retainable type.
15038   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
15039     NewFD->setInvalidDecl();
15040 
15041   if (T.isObjCGCWeak())
15042     Diag(Loc, diag::warn_attribute_weak_on_field);
15043 
15044   NewFD->setAccess(AS);
15045   return NewFD;
15046 }
15047 
15048 bool Sema::CheckNontrivialField(FieldDecl *FD) {
15049   assert(FD);
15050   assert(getLangOpts().CPlusPlus && "valid check only for C++");
15051 
15052   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
15053     return false;
15054 
15055   QualType EltTy = Context.getBaseElementType(FD->getType());
15056   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15057     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
15058     if (RDecl->getDefinition()) {
15059       // We check for copy constructors before constructors
15060       // because otherwise we'll never get complaints about
15061       // copy constructors.
15062 
15063       CXXSpecialMember member = CXXInvalid;
15064       // We're required to check for any non-trivial constructors. Since the
15065       // implicit default constructor is suppressed if there are any
15066       // user-declared constructors, we just need to check that there is a
15067       // trivial default constructor and a trivial copy constructor. (We don't
15068       // worry about move constructors here, since this is a C++98 check.)
15069       if (RDecl->hasNonTrivialCopyConstructor())
15070         member = CXXCopyConstructor;
15071       else if (!RDecl->hasTrivialDefaultConstructor())
15072         member = CXXDefaultConstructor;
15073       else if (RDecl->hasNonTrivialCopyAssignment())
15074         member = CXXCopyAssignment;
15075       else if (RDecl->hasNonTrivialDestructor())
15076         member = CXXDestructor;
15077 
15078       if (member != CXXInvalid) {
15079         if (!getLangOpts().CPlusPlus11 &&
15080             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
15081           // Objective-C++ ARC: it is an error to have a non-trivial field of
15082           // a union. However, system headers in Objective-C programs
15083           // occasionally have Objective-C lifetime objects within unions,
15084           // and rather than cause the program to fail, we make those
15085           // members unavailable.
15086           SourceLocation Loc = FD->getLocation();
15087           if (getSourceManager().isInSystemHeader(Loc)) {
15088             if (!FD->hasAttr<UnavailableAttr>())
15089               FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
15090                             UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
15091             return false;
15092           }
15093         }
15094 
15095         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
15096                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
15097                diag::err_illegal_union_or_anon_struct_member)
15098           << FD->getParent()->isUnion() << FD->getDeclName() << member;
15099         DiagnoseNontrivial(RDecl, member);
15100         return !getLangOpts().CPlusPlus11;
15101       }
15102     }
15103   }
15104 
15105   return false;
15106 }
15107 
15108 /// TranslateIvarVisibility - Translate visibility from a token ID to an
15109 ///  AST enum value.
15110 static ObjCIvarDecl::AccessControl
15111 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
15112   switch (ivarVisibility) {
15113   default: llvm_unreachable("Unknown visitibility kind");
15114   case tok::objc_private: return ObjCIvarDecl::Private;
15115   case tok::objc_public: return ObjCIvarDecl::Public;
15116   case tok::objc_protected: return ObjCIvarDecl::Protected;
15117   case tok::objc_package: return ObjCIvarDecl::Package;
15118   }
15119 }
15120 
15121 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
15122 /// in order to create an IvarDecl object for it.
15123 Decl *Sema::ActOnIvar(Scope *S,
15124                                 SourceLocation DeclStart,
15125                                 Declarator &D, Expr *BitfieldWidth,
15126                                 tok::ObjCKeywordKind Visibility) {
15127 
15128   IdentifierInfo *II = D.getIdentifier();
15129   Expr *BitWidth = (Expr*)BitfieldWidth;
15130   SourceLocation Loc = DeclStart;
15131   if (II) Loc = D.getIdentifierLoc();
15132 
15133   // FIXME: Unnamed fields can be handled in various different ways, for
15134   // example, unnamed unions inject all members into the struct namespace!
15135 
15136   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15137   QualType T = TInfo->getType();
15138 
15139   if (BitWidth) {
15140     // 6.7.2.1p3, 6.7.2.1p4
15141     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
15142     if (!BitWidth)
15143       D.setInvalidType();
15144   } else {
15145     // Not a bitfield.
15146 
15147     // validate II.
15148 
15149   }
15150   if (T->isReferenceType()) {
15151     Diag(Loc, diag::err_ivar_reference_type);
15152     D.setInvalidType();
15153   }
15154   // C99 6.7.2.1p8: A member of a structure or union may have any type other
15155   // than a variably modified type.
15156   else if (T->isVariablyModifiedType()) {
15157     Diag(Loc, diag::err_typecheck_ivar_variable_size);
15158     D.setInvalidType();
15159   }
15160 
15161   // Get the visibility (access control) for this ivar.
15162   ObjCIvarDecl::AccessControl ac =
15163     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
15164                                         : ObjCIvarDecl::None;
15165   // Must set ivar's DeclContext to its enclosing interface.
15166   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
15167   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
15168     return nullptr;
15169   ObjCContainerDecl *EnclosingContext;
15170   if (ObjCImplementationDecl *IMPDecl =
15171       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
15172     if (LangOpts.ObjCRuntime.isFragile()) {
15173     // Case of ivar declared in an implementation. Context is that of its class.
15174       EnclosingContext = IMPDecl->getClassInterface();
15175       assert(EnclosingContext && "Implementation has no class interface!");
15176     }
15177     else
15178       EnclosingContext = EnclosingDecl;
15179   } else {
15180     if (ObjCCategoryDecl *CDecl =
15181         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
15182       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
15183         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
15184         return nullptr;
15185       }
15186     }
15187     EnclosingContext = EnclosingDecl;
15188   }
15189 
15190   // Construct the decl.
15191   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
15192                                              DeclStart, Loc, II, T,
15193                                              TInfo, ac, (Expr *)BitfieldWidth);
15194 
15195   if (II) {
15196     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
15197                                            ForVisibleRedeclaration);
15198     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
15199         && !isa<TagDecl>(PrevDecl)) {
15200       Diag(Loc, diag::err_duplicate_member) << II;
15201       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15202       NewID->setInvalidDecl();
15203     }
15204   }
15205 
15206   // Process attributes attached to the ivar.
15207   ProcessDeclAttributes(S, NewID, D);
15208 
15209   if (D.isInvalidType())
15210     NewID->setInvalidDecl();
15211 
15212   // In ARC, infer 'retaining' for ivars of retainable type.
15213   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
15214     NewID->setInvalidDecl();
15215 
15216   if (D.getDeclSpec().isModulePrivateSpecified())
15217     NewID->setModulePrivate();
15218 
15219   if (II) {
15220     // FIXME: When interfaces are DeclContexts, we'll need to add
15221     // these to the interface.
15222     S->AddDecl(NewID);
15223     IdResolver.AddDecl(NewID);
15224   }
15225 
15226   if (LangOpts.ObjCRuntime.isNonFragile() &&
15227       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
15228     Diag(Loc, diag::warn_ivars_in_interface);
15229 
15230   return NewID;
15231 }
15232 
15233 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
15234 /// class and class extensions. For every class \@interface and class
15235 /// extension \@interface, if the last ivar is a bitfield of any type,
15236 /// then add an implicit `char :0` ivar to the end of that interface.
15237 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
15238                              SmallVectorImpl<Decl *> &AllIvarDecls) {
15239   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
15240     return;
15241 
15242   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
15243   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
15244 
15245   if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
15246     return;
15247   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
15248   if (!ID) {
15249     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
15250       if (!CD->IsClassExtension())
15251         return;
15252     }
15253     // No need to add this to end of @implementation.
15254     else
15255       return;
15256   }
15257   // All conditions are met. Add a new bitfield to the tail end of ivars.
15258   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
15259   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
15260 
15261   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
15262                               DeclLoc, DeclLoc, nullptr,
15263                               Context.CharTy,
15264                               Context.getTrivialTypeSourceInfo(Context.CharTy,
15265                                                                DeclLoc),
15266                               ObjCIvarDecl::Private, BW,
15267                               true);
15268   AllIvarDecls.push_back(Ivar);
15269 }
15270 
15271 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
15272                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
15273                        SourceLocation RBrac, AttributeList *Attr) {
15274   assert(EnclosingDecl && "missing record or interface decl");
15275 
15276   // If this is an Objective-C @implementation or category and we have
15277   // new fields here we should reset the layout of the interface since
15278   // it will now change.
15279   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
15280     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
15281     switch (DC->getKind()) {
15282     default: break;
15283     case Decl::ObjCCategory:
15284       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
15285       break;
15286     case Decl::ObjCImplementation:
15287       Context.
15288         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
15289       break;
15290     }
15291   }
15292 
15293   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
15294 
15295   // Start counting up the number of named members; make sure to include
15296   // members of anonymous structs and unions in the total.
15297   unsigned NumNamedMembers = 0;
15298   if (Record) {
15299     for (const auto *I : Record->decls()) {
15300       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
15301         if (IFD->getDeclName())
15302           ++NumNamedMembers;
15303     }
15304   }
15305 
15306   // Verify that all the fields are okay.
15307   SmallVector<FieldDecl*, 32> RecFields;
15308 
15309   bool ObjCFieldLifetimeErrReported = false;
15310   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
15311        i != end; ++i) {
15312     FieldDecl *FD = cast<FieldDecl>(*i);
15313 
15314     // Get the type for the field.
15315     const Type *FDTy = FD->getType().getTypePtr();
15316 
15317     if (!FD->isAnonymousStructOrUnion()) {
15318       // Remember all fields written by the user.
15319       RecFields.push_back(FD);
15320     }
15321 
15322     // If the field is already invalid for some reason, don't emit more
15323     // diagnostics about it.
15324     if (FD->isInvalidDecl()) {
15325       EnclosingDecl->setInvalidDecl();
15326       continue;
15327     }
15328 
15329     // C99 6.7.2.1p2:
15330     //   A structure or union shall not contain a member with
15331     //   incomplete or function type (hence, a structure shall not
15332     //   contain an instance of itself, but may contain a pointer to
15333     //   an instance of itself), except that the last member of a
15334     //   structure with more than one named member may have incomplete
15335     //   array type; such a structure (and any union containing,
15336     //   possibly recursively, a member that is such a structure)
15337     //   shall not be a member of a structure or an element of an
15338     //   array.
15339     bool IsLastField = (i + 1 == Fields.end());
15340     if (FDTy->isFunctionType()) {
15341       // Field declared as a function.
15342       Diag(FD->getLocation(), diag::err_field_declared_as_function)
15343         << FD->getDeclName();
15344       FD->setInvalidDecl();
15345       EnclosingDecl->setInvalidDecl();
15346       continue;
15347     } else if (FDTy->isIncompleteArrayType() &&
15348                (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
15349       if (Record) {
15350         // Flexible array member.
15351         // Microsoft and g++ is more permissive regarding flexible array.
15352         // It will accept flexible array in union and also
15353         // as the sole element of a struct/class.
15354         unsigned DiagID = 0;
15355         if (!Record->isUnion() && !IsLastField) {
15356           Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
15357             << FD->getDeclName() << FD->getType() << Record->getTagKind();
15358           Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
15359           FD->setInvalidDecl();
15360           EnclosingDecl->setInvalidDecl();
15361           continue;
15362         } else if (Record->isUnion())
15363           DiagID = getLangOpts().MicrosoftExt
15364                        ? diag::ext_flexible_array_union_ms
15365                        : getLangOpts().CPlusPlus
15366                              ? diag::ext_flexible_array_union_gnu
15367                              : diag::err_flexible_array_union;
15368         else if (NumNamedMembers < 1)
15369           DiagID = getLangOpts().MicrosoftExt
15370                        ? diag::ext_flexible_array_empty_aggregate_ms
15371                        : getLangOpts().CPlusPlus
15372                              ? diag::ext_flexible_array_empty_aggregate_gnu
15373                              : diag::err_flexible_array_empty_aggregate;
15374 
15375         if (DiagID)
15376           Diag(FD->getLocation(), DiagID) << FD->getDeclName()
15377                                           << Record->getTagKind();
15378         // While the layout of types that contain virtual bases is not specified
15379         // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
15380         // virtual bases after the derived members.  This would make a flexible
15381         // array member declared at the end of an object not adjacent to the end
15382         // of the type.
15383         if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
15384           if (RD->getNumVBases() != 0)
15385             Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
15386               << FD->getDeclName() << Record->getTagKind();
15387         if (!getLangOpts().C99)
15388           Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
15389             << FD->getDeclName() << Record->getTagKind();
15390 
15391         // If the element type has a non-trivial destructor, we would not
15392         // implicitly destroy the elements, so disallow it for now.
15393         //
15394         // FIXME: GCC allows this. We should probably either implicitly delete
15395         // the destructor of the containing class, or just allow this.
15396         QualType BaseElem = Context.getBaseElementType(FD->getType());
15397         if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
15398           Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
15399             << FD->getDeclName() << FD->getType();
15400           FD->setInvalidDecl();
15401           EnclosingDecl->setInvalidDecl();
15402           continue;
15403         }
15404         // Okay, we have a legal flexible array member at the end of the struct.
15405         Record->setHasFlexibleArrayMember(true);
15406       } else {
15407         // In ObjCContainerDecl ivars with incomplete array type are accepted,
15408         // unless they are followed by another ivar. That check is done
15409         // elsewhere, after synthesized ivars are known.
15410       }
15411     } else if (!FDTy->isDependentType() &&
15412                RequireCompleteType(FD->getLocation(), FD->getType(),
15413                                    diag::err_field_incomplete)) {
15414       // Incomplete type
15415       FD->setInvalidDecl();
15416       EnclosingDecl->setInvalidDecl();
15417       continue;
15418     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
15419       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
15420         // A type which contains a flexible array member is considered to be a
15421         // flexible array member.
15422         Record->setHasFlexibleArrayMember(true);
15423         if (!Record->isUnion()) {
15424           // If this is a struct/class and this is not the last element, reject
15425           // it.  Note that GCC supports variable sized arrays in the middle of
15426           // structures.
15427           if (!IsLastField)
15428             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
15429               << FD->getDeclName() << FD->getType();
15430           else {
15431             // We support flexible arrays at the end of structs in
15432             // other structs as an extension.
15433             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
15434               << FD->getDeclName();
15435           }
15436         }
15437       }
15438       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
15439           RequireNonAbstractType(FD->getLocation(), FD->getType(),
15440                                  diag::err_abstract_type_in_decl,
15441                                  AbstractIvarType)) {
15442         // Ivars can not have abstract class types
15443         FD->setInvalidDecl();
15444       }
15445       if (Record && FDTTy->getDecl()->hasObjectMember())
15446         Record->setHasObjectMember(true);
15447       if (Record && FDTTy->getDecl()->hasVolatileMember())
15448         Record->setHasVolatileMember(true);
15449     } else if (FDTy->isObjCObjectType()) {
15450       /// A field cannot be an Objective-c object
15451       Diag(FD->getLocation(), diag::err_statically_allocated_object)
15452         << FixItHint::CreateInsertion(FD->getLocation(), "*");
15453       QualType T = Context.getObjCObjectPointerType(FD->getType());
15454       FD->setType(T);
15455     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
15456                Record && !ObjCFieldLifetimeErrReported && Record->isUnion()) {
15457       // It's an error in ARC or Weak if a field has lifetime.
15458       // We don't want to report this in a system header, though,
15459       // so we just make the field unavailable.
15460       // FIXME: that's really not sufficient; we need to make the type
15461       // itself invalid to, say, initialize or copy.
15462       QualType T = FD->getType();
15463       if (T.hasNonTrivialObjCLifetime()) {
15464         SourceLocation loc = FD->getLocation();
15465         if (getSourceManager().isInSystemHeader(loc)) {
15466           if (!FD->hasAttr<UnavailableAttr>()) {
15467             FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
15468                           UnavailableAttr::IR_ARCFieldWithOwnership, loc));
15469           }
15470         } else {
15471           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
15472             << T->isBlockPointerType() << Record->getTagKind();
15473         }
15474         ObjCFieldLifetimeErrReported = true;
15475       }
15476     } else if (getLangOpts().ObjC1 &&
15477                getLangOpts().getGC() != LangOptions::NonGC &&
15478                Record && !Record->hasObjectMember()) {
15479       if (FD->getType()->isObjCObjectPointerType() ||
15480           FD->getType().isObjCGCStrong())
15481         Record->setHasObjectMember(true);
15482       else if (Context.getAsArrayType(FD->getType())) {
15483         QualType BaseType = Context.getBaseElementType(FD->getType());
15484         if (BaseType->isRecordType() &&
15485             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
15486           Record->setHasObjectMember(true);
15487         else if (BaseType->isObjCObjectPointerType() ||
15488                  BaseType.isObjCGCStrong())
15489                Record->setHasObjectMember(true);
15490       }
15491     }
15492 
15493     if (Record && !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>()) {
15494       QualType FT = FD->getType();
15495       if (FT.isNonTrivialToPrimitiveDefaultInitialize())
15496         Record->setNonTrivialToPrimitiveDefaultInitialize(true);
15497       QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
15498       if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial)
15499         Record->setNonTrivialToPrimitiveCopy(true);
15500       if (FT.isDestructedType()) {
15501         Record->setNonTrivialToPrimitiveDestroy(true);
15502         Record->setParamDestroyedInCallee(true);
15503       }
15504 
15505       if (const auto *RT = FT->getAs<RecordType>()) {
15506         if (RT->getDecl()->getArgPassingRestrictions() ==
15507             RecordDecl::APK_CanNeverPassInRegs)
15508           Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
15509       } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
15510         Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
15511     }
15512 
15513     if (Record && FD->getType().isVolatileQualified())
15514       Record->setHasVolatileMember(true);
15515     // Keep track of the number of named members.
15516     if (FD->getIdentifier())
15517       ++NumNamedMembers;
15518   }
15519 
15520   // Okay, we successfully defined 'Record'.
15521   if (Record) {
15522     bool Completed = false;
15523     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
15524       if (!CXXRecord->isInvalidDecl()) {
15525         // Set access bits correctly on the directly-declared conversions.
15526         for (CXXRecordDecl::conversion_iterator
15527                I = CXXRecord->conversion_begin(),
15528                E = CXXRecord->conversion_end(); I != E; ++I)
15529           I.setAccess((*I)->getAccess());
15530       }
15531 
15532       if (!CXXRecord->isDependentType()) {
15533         if (CXXRecord->hasUserDeclaredDestructor()) {
15534           // Adjust user-defined destructor exception spec.
15535           if (getLangOpts().CPlusPlus11)
15536             AdjustDestructorExceptionSpec(CXXRecord,
15537                                           CXXRecord->getDestructor());
15538         }
15539 
15540         // Add any implicitly-declared members to this class.
15541         AddImplicitlyDeclaredMembersToClass(CXXRecord);
15542 
15543         if (!CXXRecord->isInvalidDecl()) {
15544           // If we have virtual base classes, we may end up finding multiple
15545           // final overriders for a given virtual function. Check for this
15546           // problem now.
15547           if (CXXRecord->getNumVBases()) {
15548             CXXFinalOverriderMap FinalOverriders;
15549             CXXRecord->getFinalOverriders(FinalOverriders);
15550 
15551             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
15552                                              MEnd = FinalOverriders.end();
15553                  M != MEnd; ++M) {
15554               for (OverridingMethods::iterator SO = M->second.begin(),
15555                                             SOEnd = M->second.end();
15556                    SO != SOEnd; ++SO) {
15557                 assert(SO->second.size() > 0 &&
15558                        "Virtual function without overriding functions?");
15559                 if (SO->second.size() == 1)
15560                   continue;
15561 
15562                 // C++ [class.virtual]p2:
15563                 //   In a derived class, if a virtual member function of a base
15564                 //   class subobject has more than one final overrider the
15565                 //   program is ill-formed.
15566                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
15567                   << (const NamedDecl *)M->first << Record;
15568                 Diag(M->first->getLocation(),
15569                      diag::note_overridden_virtual_function);
15570                 for (OverridingMethods::overriding_iterator
15571                           OM = SO->second.begin(),
15572                        OMEnd = SO->second.end();
15573                      OM != OMEnd; ++OM)
15574                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
15575                     << (const NamedDecl *)M->first << OM->Method->getParent();
15576 
15577                 Record->setInvalidDecl();
15578               }
15579             }
15580             CXXRecord->completeDefinition(&FinalOverriders);
15581             Completed = true;
15582           }
15583         }
15584       }
15585     }
15586 
15587     if (!Completed)
15588       Record->completeDefinition();
15589 
15590     // We may have deferred checking for a deleted destructor. Check now.
15591     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
15592       auto *Dtor = CXXRecord->getDestructor();
15593       if (Dtor && Dtor->isImplicit() &&
15594           ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
15595         CXXRecord->setImplicitDestructorIsDeleted();
15596         SetDeclDeleted(Dtor, CXXRecord->getLocation());
15597       }
15598     }
15599 
15600     if (Record->hasAttrs()) {
15601       CheckAlignasUnderalignment(Record);
15602 
15603       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
15604         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
15605                                            IA->getRange(), IA->getBestCase(),
15606                                            IA->getSemanticSpelling());
15607     }
15608 
15609     // Check if the structure/union declaration is a type that can have zero
15610     // size in C. For C this is a language extension, for C++ it may cause
15611     // compatibility problems.
15612     bool CheckForZeroSize;
15613     if (!getLangOpts().CPlusPlus) {
15614       CheckForZeroSize = true;
15615     } else {
15616       // For C++ filter out types that cannot be referenced in C code.
15617       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
15618       CheckForZeroSize =
15619           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
15620           !CXXRecord->isDependentType() &&
15621           CXXRecord->isCLike();
15622     }
15623     if (CheckForZeroSize) {
15624       bool ZeroSize = true;
15625       bool IsEmpty = true;
15626       unsigned NonBitFields = 0;
15627       for (RecordDecl::field_iterator I = Record->field_begin(),
15628                                       E = Record->field_end();
15629            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
15630         IsEmpty = false;
15631         if (I->isUnnamedBitfield()) {
15632           if (!I->isZeroLengthBitField(Context))
15633             ZeroSize = false;
15634         } else {
15635           ++NonBitFields;
15636           QualType FieldType = I->getType();
15637           if (FieldType->isIncompleteType() ||
15638               !Context.getTypeSizeInChars(FieldType).isZero())
15639             ZeroSize = false;
15640         }
15641       }
15642 
15643       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
15644       // allowed in C++, but warn if its declaration is inside
15645       // extern "C" block.
15646       if (ZeroSize) {
15647         Diag(RecLoc, getLangOpts().CPlusPlus ?
15648                          diag::warn_zero_size_struct_union_in_extern_c :
15649                          diag::warn_zero_size_struct_union_compat)
15650           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
15651       }
15652 
15653       // Structs without named members are extension in C (C99 6.7.2.1p7),
15654       // but are accepted by GCC.
15655       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
15656         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
15657                                diag::ext_no_named_members_in_struct_union)
15658           << Record->isUnion();
15659       }
15660     }
15661   } else {
15662     ObjCIvarDecl **ClsFields =
15663       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
15664     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
15665       ID->setEndOfDefinitionLoc(RBrac);
15666       // Add ivar's to class's DeclContext.
15667       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
15668         ClsFields[i]->setLexicalDeclContext(ID);
15669         ID->addDecl(ClsFields[i]);
15670       }
15671       // Must enforce the rule that ivars in the base classes may not be
15672       // duplicates.
15673       if (ID->getSuperClass())
15674         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
15675     } else if (ObjCImplementationDecl *IMPDecl =
15676                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
15677       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
15678       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
15679         // Ivar declared in @implementation never belongs to the implementation.
15680         // Only it is in implementation's lexical context.
15681         ClsFields[I]->setLexicalDeclContext(IMPDecl);
15682       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
15683       IMPDecl->setIvarLBraceLoc(LBrac);
15684       IMPDecl->setIvarRBraceLoc(RBrac);
15685     } else if (ObjCCategoryDecl *CDecl =
15686                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
15687       // case of ivars in class extension; all other cases have been
15688       // reported as errors elsewhere.
15689       // FIXME. Class extension does not have a LocEnd field.
15690       // CDecl->setLocEnd(RBrac);
15691       // Add ivar's to class extension's DeclContext.
15692       // Diagnose redeclaration of private ivars.
15693       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
15694       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
15695         if (IDecl) {
15696           if (const ObjCIvarDecl *ClsIvar =
15697               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
15698             Diag(ClsFields[i]->getLocation(),
15699                  diag::err_duplicate_ivar_declaration);
15700             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
15701             continue;
15702           }
15703           for (const auto *Ext : IDecl->known_extensions()) {
15704             if (const ObjCIvarDecl *ClsExtIvar
15705                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
15706               Diag(ClsFields[i]->getLocation(),
15707                    diag::err_duplicate_ivar_declaration);
15708               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
15709               continue;
15710             }
15711           }
15712         }
15713         ClsFields[i]->setLexicalDeclContext(CDecl);
15714         CDecl->addDecl(ClsFields[i]);
15715       }
15716       CDecl->setIvarLBraceLoc(LBrac);
15717       CDecl->setIvarRBraceLoc(RBrac);
15718     }
15719   }
15720 
15721   if (Attr)
15722     ProcessDeclAttributeList(S, Record, Attr);
15723 }
15724 
15725 /// Determine whether the given integral value is representable within
15726 /// the given type T.
15727 static bool isRepresentableIntegerValue(ASTContext &Context,
15728                                         llvm::APSInt &Value,
15729                                         QualType T) {
15730   assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
15731          "Integral type required!");
15732   unsigned BitWidth = Context.getIntWidth(T);
15733 
15734   if (Value.isUnsigned() || Value.isNonNegative()) {
15735     if (T->isSignedIntegerOrEnumerationType())
15736       --BitWidth;
15737     return Value.getActiveBits() <= BitWidth;
15738   }
15739   return Value.getMinSignedBits() <= BitWidth;
15740 }
15741 
15742 // Given an integral type, return the next larger integral type
15743 // (or a NULL type of no such type exists).
15744 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
15745   // FIXME: Int128/UInt128 support, which also needs to be introduced into
15746   // enum checking below.
15747   assert((T->isIntegralType(Context) ||
15748          T->isEnumeralType()) && "Integral type required!");
15749   const unsigned NumTypes = 4;
15750   QualType SignedIntegralTypes[NumTypes] = {
15751     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
15752   };
15753   QualType UnsignedIntegralTypes[NumTypes] = {
15754     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
15755     Context.UnsignedLongLongTy
15756   };
15757 
15758   unsigned BitWidth = Context.getTypeSize(T);
15759   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
15760                                                         : UnsignedIntegralTypes;
15761   for (unsigned I = 0; I != NumTypes; ++I)
15762     if (Context.getTypeSize(Types[I]) > BitWidth)
15763       return Types[I];
15764 
15765   return QualType();
15766 }
15767 
15768 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
15769                                           EnumConstantDecl *LastEnumConst,
15770                                           SourceLocation IdLoc,
15771                                           IdentifierInfo *Id,
15772                                           Expr *Val) {
15773   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
15774   llvm::APSInt EnumVal(IntWidth);
15775   QualType EltTy;
15776 
15777   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
15778     Val = nullptr;
15779 
15780   if (Val)
15781     Val = DefaultLvalueConversion(Val).get();
15782 
15783   if (Val) {
15784     if (Enum->isDependentType() || Val->isTypeDependent())
15785       EltTy = Context.DependentTy;
15786     else {
15787       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
15788           !getLangOpts().MSVCCompat) {
15789         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
15790         // constant-expression in the enumerator-definition shall be a converted
15791         // constant expression of the underlying type.
15792         EltTy = Enum->getIntegerType();
15793         ExprResult Converted =
15794           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
15795                                            CCEK_Enumerator);
15796         if (Converted.isInvalid())
15797           Val = nullptr;
15798         else
15799           Val = Converted.get();
15800       } else if (!Val->isValueDependent() &&
15801                  !(Val = VerifyIntegerConstantExpression(Val,
15802                                                          &EnumVal).get())) {
15803         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
15804       } else {
15805         if (Enum->isComplete()) {
15806           EltTy = Enum->getIntegerType();
15807 
15808           // In Obj-C and Microsoft mode, require the enumeration value to be
15809           // representable in the underlying type of the enumeration. In C++11,
15810           // we perform a non-narrowing conversion as part of converted constant
15811           // expression checking.
15812           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
15813             if (getLangOpts().MSVCCompat) {
15814               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
15815               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
15816             } else
15817               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
15818           } else
15819             Val = ImpCastExprToType(Val, EltTy,
15820                                     EltTy->isBooleanType() ?
15821                                     CK_IntegralToBoolean : CK_IntegralCast)
15822                     .get();
15823         } else if (getLangOpts().CPlusPlus) {
15824           // C++11 [dcl.enum]p5:
15825           //   If the underlying type is not fixed, the type of each enumerator
15826           //   is the type of its initializing value:
15827           //     - If an initializer is specified for an enumerator, the
15828           //       initializing value has the same type as the expression.
15829           EltTy = Val->getType();
15830         } else {
15831           // C99 6.7.2.2p2:
15832           //   The expression that defines the value of an enumeration constant
15833           //   shall be an integer constant expression that has a value
15834           //   representable as an int.
15835 
15836           // Complain if the value is not representable in an int.
15837           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
15838             Diag(IdLoc, diag::ext_enum_value_not_int)
15839               << EnumVal.toString(10) << Val->getSourceRange()
15840               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
15841           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
15842             // Force the type of the expression to 'int'.
15843             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
15844           }
15845           EltTy = Val->getType();
15846         }
15847       }
15848     }
15849   }
15850 
15851   if (!Val) {
15852     if (Enum->isDependentType())
15853       EltTy = Context.DependentTy;
15854     else if (!LastEnumConst) {
15855       // C++0x [dcl.enum]p5:
15856       //   If the underlying type is not fixed, the type of each enumerator
15857       //   is the type of its initializing value:
15858       //     - If no initializer is specified for the first enumerator, the
15859       //       initializing value has an unspecified integral type.
15860       //
15861       // GCC uses 'int' for its unspecified integral type, as does
15862       // C99 6.7.2.2p3.
15863       if (Enum->isFixed()) {
15864         EltTy = Enum->getIntegerType();
15865       }
15866       else {
15867         EltTy = Context.IntTy;
15868       }
15869     } else {
15870       // Assign the last value + 1.
15871       EnumVal = LastEnumConst->getInitVal();
15872       ++EnumVal;
15873       EltTy = LastEnumConst->getType();
15874 
15875       // Check for overflow on increment.
15876       if (EnumVal < LastEnumConst->getInitVal()) {
15877         // C++0x [dcl.enum]p5:
15878         //   If the underlying type is not fixed, the type of each enumerator
15879         //   is the type of its initializing value:
15880         //
15881         //     - Otherwise the type of the initializing value is the same as
15882         //       the type of the initializing value of the preceding enumerator
15883         //       unless the incremented value is not representable in that type,
15884         //       in which case the type is an unspecified integral type
15885         //       sufficient to contain the incremented value. If no such type
15886         //       exists, the program is ill-formed.
15887         QualType T = getNextLargerIntegralType(Context, EltTy);
15888         if (T.isNull() || Enum->isFixed()) {
15889           // There is no integral type larger enough to represent this
15890           // value. Complain, then allow the value to wrap around.
15891           EnumVal = LastEnumConst->getInitVal();
15892           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
15893           ++EnumVal;
15894           if (Enum->isFixed())
15895             // When the underlying type is fixed, this is ill-formed.
15896             Diag(IdLoc, diag::err_enumerator_wrapped)
15897               << EnumVal.toString(10)
15898               << EltTy;
15899           else
15900             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
15901               << EnumVal.toString(10);
15902         } else {
15903           EltTy = T;
15904         }
15905 
15906         // Retrieve the last enumerator's value, extent that type to the
15907         // type that is supposed to be large enough to represent the incremented
15908         // value, then increment.
15909         EnumVal = LastEnumConst->getInitVal();
15910         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
15911         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
15912         ++EnumVal;
15913 
15914         // If we're not in C++, diagnose the overflow of enumerator values,
15915         // which in C99 means that the enumerator value is not representable in
15916         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
15917         // permits enumerator values that are representable in some larger
15918         // integral type.
15919         if (!getLangOpts().CPlusPlus && !T.isNull())
15920           Diag(IdLoc, diag::warn_enum_value_overflow);
15921       } else if (!getLangOpts().CPlusPlus &&
15922                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
15923         // Enforce C99 6.7.2.2p2 even when we compute the next value.
15924         Diag(IdLoc, diag::ext_enum_value_not_int)
15925           << EnumVal.toString(10) << 1;
15926       }
15927     }
15928   }
15929 
15930   if (!EltTy->isDependentType()) {
15931     // Make the enumerator value match the signedness and size of the
15932     // enumerator's type.
15933     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
15934     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
15935   }
15936 
15937   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
15938                                   Val, EnumVal);
15939 }
15940 
15941 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
15942                                                 SourceLocation IILoc) {
15943   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
15944       !getLangOpts().CPlusPlus)
15945     return SkipBodyInfo();
15946 
15947   // We have an anonymous enum definition. Look up the first enumerator to
15948   // determine if we should merge the definition with an existing one and
15949   // skip the body.
15950   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
15951                                          forRedeclarationInCurContext());
15952   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
15953   if (!PrevECD)
15954     return SkipBodyInfo();
15955 
15956   EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
15957   NamedDecl *Hidden;
15958   if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
15959     SkipBodyInfo Skip;
15960     Skip.Previous = Hidden;
15961     return Skip;
15962   }
15963 
15964   return SkipBodyInfo();
15965 }
15966 
15967 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
15968                               SourceLocation IdLoc, IdentifierInfo *Id,
15969                               AttributeList *Attr,
15970                               SourceLocation EqualLoc, Expr *Val) {
15971   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
15972   EnumConstantDecl *LastEnumConst =
15973     cast_or_null<EnumConstantDecl>(lastEnumConst);
15974 
15975   // The scope passed in may not be a decl scope.  Zip up the scope tree until
15976   // we find one that is.
15977   S = getNonFieldDeclScope(S);
15978 
15979   // Verify that there isn't already something declared with this name in this
15980   // scope.
15981   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
15982                                          ForVisibleRedeclaration);
15983   if (PrevDecl && PrevDecl->isTemplateParameter()) {
15984     // Maybe we will complain about the shadowed template parameter.
15985     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
15986     // Just pretend that we didn't see the previous declaration.
15987     PrevDecl = nullptr;
15988   }
15989 
15990   // C++ [class.mem]p15:
15991   // If T is the name of a class, then each of the following shall have a name
15992   // different from T:
15993   // - every enumerator of every member of class T that is an unscoped
15994   // enumerated type
15995   if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
15996     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
15997                             DeclarationNameInfo(Id, IdLoc));
15998 
15999   EnumConstantDecl *New =
16000     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
16001   if (!New)
16002     return nullptr;
16003 
16004   if (PrevDecl) {
16005     // When in C++, we may get a TagDecl with the same name; in this case the
16006     // enum constant will 'hide' the tag.
16007     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
16008            "Received TagDecl when not in C++!");
16009     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
16010       if (isa<EnumConstantDecl>(PrevDecl))
16011         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
16012       else
16013         Diag(IdLoc, diag::err_redefinition) << Id;
16014       notePreviousDefinition(PrevDecl, IdLoc);
16015       return nullptr;
16016     }
16017   }
16018 
16019   // Process attributes.
16020   if (Attr) ProcessDeclAttributeList(S, New, Attr);
16021   AddPragmaAttributes(S, New);
16022 
16023   // Register this decl in the current scope stack.
16024   New->setAccess(TheEnumDecl->getAccess());
16025   PushOnScopeChains(New, S);
16026 
16027   ActOnDocumentableDecl(New);
16028 
16029   return New;
16030 }
16031 
16032 // Returns true when the enum initial expression does not trigger the
16033 // duplicate enum warning.  A few common cases are exempted as follows:
16034 // Element2 = Element1
16035 // Element2 = Element1 + 1
16036 // Element2 = Element1 - 1
16037 // Where Element2 and Element1 are from the same enum.
16038 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
16039   Expr *InitExpr = ECD->getInitExpr();
16040   if (!InitExpr)
16041     return true;
16042   InitExpr = InitExpr->IgnoreImpCasts();
16043 
16044   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
16045     if (!BO->isAdditiveOp())
16046       return true;
16047     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
16048     if (!IL)
16049       return true;
16050     if (IL->getValue() != 1)
16051       return true;
16052 
16053     InitExpr = BO->getLHS();
16054   }
16055 
16056   // This checks if the elements are from the same enum.
16057   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
16058   if (!DRE)
16059     return true;
16060 
16061   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
16062   if (!EnumConstant)
16063     return true;
16064 
16065   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
16066       Enum)
16067     return true;
16068 
16069   return false;
16070 }
16071 
16072 // Emits a warning when an element is implicitly set a value that
16073 // a previous element has already been set to.
16074 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
16075                                         EnumDecl *Enum, QualType EnumType) {
16076   // Avoid anonymous enums
16077   if (!Enum->getIdentifier())
16078     return;
16079 
16080   // Only check for small enums.
16081   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
16082     return;
16083 
16084   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
16085     return;
16086 
16087   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
16088   typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
16089 
16090   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
16091   typedef llvm::DenseMap<int64_t, DeclOrVector> ValueToVectorMap;
16092 
16093   // Use int64_t as a key to avoid needing special handling for DenseMap keys.
16094   auto EnumConstantToKey = [](const EnumConstantDecl *D) {
16095     llvm::APSInt Val = D->getInitVal();
16096     return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
16097   };
16098 
16099   DuplicatesVector DupVector;
16100   ValueToVectorMap EnumMap;
16101 
16102   // Populate the EnumMap with all values represented by enum constants without
16103   // an initializer.
16104   for (auto *Element : Elements) {
16105     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
16106 
16107     // Null EnumConstantDecl means a previous diagnostic has been emitted for
16108     // this constant.  Skip this enum since it may be ill-formed.
16109     if (!ECD) {
16110       return;
16111     }
16112 
16113     // Constants with initalizers are handled in the next loop.
16114     if (ECD->getInitExpr())
16115       continue;
16116 
16117     // Duplicate values are handled in the next loop.
16118     EnumMap.insert({EnumConstantToKey(ECD), ECD});
16119   }
16120 
16121   if (EnumMap.size() == 0)
16122     return;
16123 
16124   // Create vectors for any values that has duplicates.
16125   for (auto *Element : Elements) {
16126     // The last loop returned if any constant was null.
16127     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
16128     if (!ValidDuplicateEnum(ECD, Enum))
16129       continue;
16130 
16131     auto Iter = EnumMap.find(EnumConstantToKey(ECD));
16132     if (Iter == EnumMap.end())
16133       continue;
16134 
16135     DeclOrVector& Entry = Iter->second;
16136     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
16137       // Ensure constants are different.
16138       if (D == ECD)
16139         continue;
16140 
16141       // Create new vector and push values onto it.
16142       auto Vec = llvm::make_unique<ECDVector>();
16143       Vec->push_back(D);
16144       Vec->push_back(ECD);
16145 
16146       // Update entry to point to the duplicates vector.
16147       Entry = Vec.get();
16148 
16149       // Store the vector somewhere we can consult later for quick emission of
16150       // diagnostics.
16151       DupVector.emplace_back(std::move(Vec));
16152       continue;
16153     }
16154 
16155     ECDVector *Vec = Entry.get<ECDVector*>();
16156     // Make sure constants are not added more than once.
16157     if (*Vec->begin() == ECD)
16158       continue;
16159 
16160     Vec->push_back(ECD);
16161   }
16162 
16163   // Emit diagnostics.
16164   for (const auto &Vec : DupVector) {
16165     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
16166 
16167     // Emit warning for one enum constant.
16168     auto *FirstECD = Vec->front();
16169     S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
16170       << FirstECD << FirstECD->getInitVal().toString(10)
16171       << FirstECD->getSourceRange();
16172 
16173     // Emit one note for each of the remaining enum constants with
16174     // the same value.
16175     for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
16176       S.Diag(ECD->getLocation(), diag::note_duplicate_element)
16177         << ECD << ECD->getInitVal().toString(10)
16178         << ECD->getSourceRange();
16179   }
16180 }
16181 
16182 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
16183                              bool AllowMask) const {
16184   assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
16185   assert(ED->isCompleteDefinition() && "expected enum definition");
16186 
16187   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
16188   llvm::APInt &FlagBits = R.first->second;
16189 
16190   if (R.second) {
16191     for (auto *E : ED->enumerators()) {
16192       const auto &EVal = E->getInitVal();
16193       // Only single-bit enumerators introduce new flag values.
16194       if (EVal.isPowerOf2())
16195         FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
16196     }
16197   }
16198 
16199   // A value is in a flag enum if either its bits are a subset of the enum's
16200   // flag bits (the first condition) or we are allowing masks and the same is
16201   // true of its complement (the second condition). When masks are allowed, we
16202   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
16203   //
16204   // While it's true that any value could be used as a mask, the assumption is
16205   // that a mask will have all of the insignificant bits set. Anything else is
16206   // likely a logic error.
16207   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
16208   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
16209 }
16210 
16211 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
16212                          Decl *EnumDeclX,
16213                          ArrayRef<Decl *> Elements,
16214                          Scope *S, AttributeList *Attr) {
16215   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
16216   QualType EnumType = Context.getTypeDeclType(Enum);
16217 
16218   if (Attr)
16219     ProcessDeclAttributeList(S, Enum, Attr);
16220 
16221   if (Enum->isDependentType()) {
16222     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
16223       EnumConstantDecl *ECD =
16224         cast_or_null<EnumConstantDecl>(Elements[i]);
16225       if (!ECD) continue;
16226 
16227       ECD->setType(EnumType);
16228     }
16229 
16230     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
16231     return;
16232   }
16233 
16234   // TODO: If the result value doesn't fit in an int, it must be a long or long
16235   // long value.  ISO C does not support this, but GCC does as an extension,
16236   // emit a warning.
16237   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
16238   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
16239   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
16240 
16241   // Verify that all the values are okay, compute the size of the values, and
16242   // reverse the list.
16243   unsigned NumNegativeBits = 0;
16244   unsigned NumPositiveBits = 0;
16245 
16246   // Keep track of whether all elements have type int.
16247   bool AllElementsInt = true;
16248 
16249   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
16250     EnumConstantDecl *ECD =
16251       cast_or_null<EnumConstantDecl>(Elements[i]);
16252     if (!ECD) continue;  // Already issued a diagnostic.
16253 
16254     const llvm::APSInt &InitVal = ECD->getInitVal();
16255 
16256     // Keep track of the size of positive and negative values.
16257     if (InitVal.isUnsigned() || InitVal.isNonNegative())
16258       NumPositiveBits = std::max(NumPositiveBits,
16259                                  (unsigned)InitVal.getActiveBits());
16260     else
16261       NumNegativeBits = std::max(NumNegativeBits,
16262                                  (unsigned)InitVal.getMinSignedBits());
16263 
16264     // Keep track of whether every enum element has type int (very commmon).
16265     if (AllElementsInt)
16266       AllElementsInt = ECD->getType() == Context.IntTy;
16267   }
16268 
16269   // Figure out the type that should be used for this enum.
16270   QualType BestType;
16271   unsigned BestWidth;
16272 
16273   // C++0x N3000 [conv.prom]p3:
16274   //   An rvalue of an unscoped enumeration type whose underlying
16275   //   type is not fixed can be converted to an rvalue of the first
16276   //   of the following types that can represent all the values of
16277   //   the enumeration: int, unsigned int, long int, unsigned long
16278   //   int, long long int, or unsigned long long int.
16279   // C99 6.4.4.3p2:
16280   //   An identifier declared as an enumeration constant has type int.
16281   // The C99 rule is modified by a gcc extension
16282   QualType BestPromotionType;
16283 
16284   bool Packed = Enum->hasAttr<PackedAttr>();
16285   // -fshort-enums is the equivalent to specifying the packed attribute on all
16286   // enum definitions.
16287   if (LangOpts.ShortEnums)
16288     Packed = true;
16289 
16290   // If the enum already has a type because it is fixed or dictated by the
16291   // target, promote that type instead of analyzing the enumerators.
16292   if (Enum->isComplete()) {
16293     BestType = Enum->getIntegerType();
16294     if (BestType->isPromotableIntegerType())
16295       BestPromotionType = Context.getPromotedIntegerType(BestType);
16296     else
16297       BestPromotionType = BestType;
16298 
16299     BestWidth = Context.getIntWidth(BestType);
16300   }
16301   else if (NumNegativeBits) {
16302     // If there is a negative value, figure out the smallest integer type (of
16303     // int/long/longlong) that fits.
16304     // If it's packed, check also if it fits a char or a short.
16305     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
16306       BestType = Context.SignedCharTy;
16307       BestWidth = CharWidth;
16308     } else if (Packed && NumNegativeBits <= ShortWidth &&
16309                NumPositiveBits < ShortWidth) {
16310       BestType = Context.ShortTy;
16311       BestWidth = ShortWidth;
16312     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
16313       BestType = Context.IntTy;
16314       BestWidth = IntWidth;
16315     } else {
16316       BestWidth = Context.getTargetInfo().getLongWidth();
16317 
16318       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
16319         BestType = Context.LongTy;
16320       } else {
16321         BestWidth = Context.getTargetInfo().getLongLongWidth();
16322 
16323         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
16324           Diag(Enum->getLocation(), diag::ext_enum_too_large);
16325         BestType = Context.LongLongTy;
16326       }
16327     }
16328     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
16329   } else {
16330     // If there is no negative value, figure out the smallest type that fits
16331     // all of the enumerator values.
16332     // If it's packed, check also if it fits a char or a short.
16333     if (Packed && NumPositiveBits <= CharWidth) {
16334       BestType = Context.UnsignedCharTy;
16335       BestPromotionType = Context.IntTy;
16336       BestWidth = CharWidth;
16337     } else if (Packed && NumPositiveBits <= ShortWidth) {
16338       BestType = Context.UnsignedShortTy;
16339       BestPromotionType = Context.IntTy;
16340       BestWidth = ShortWidth;
16341     } else if (NumPositiveBits <= IntWidth) {
16342       BestType = Context.UnsignedIntTy;
16343       BestWidth = IntWidth;
16344       BestPromotionType
16345         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16346                            ? Context.UnsignedIntTy : Context.IntTy;
16347     } else if (NumPositiveBits <=
16348                (BestWidth = Context.getTargetInfo().getLongWidth())) {
16349       BestType = Context.UnsignedLongTy;
16350       BestPromotionType
16351         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16352                            ? Context.UnsignedLongTy : Context.LongTy;
16353     } else {
16354       BestWidth = Context.getTargetInfo().getLongLongWidth();
16355       assert(NumPositiveBits <= BestWidth &&
16356              "How could an initializer get larger than ULL?");
16357       BestType = Context.UnsignedLongLongTy;
16358       BestPromotionType
16359         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16360                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
16361     }
16362   }
16363 
16364   // Loop over all of the enumerator constants, changing their types to match
16365   // the type of the enum if needed.
16366   for (auto *D : Elements) {
16367     auto *ECD = cast_or_null<EnumConstantDecl>(D);
16368     if (!ECD) continue;  // Already issued a diagnostic.
16369 
16370     // Standard C says the enumerators have int type, but we allow, as an
16371     // extension, the enumerators to be larger than int size.  If each
16372     // enumerator value fits in an int, type it as an int, otherwise type it the
16373     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
16374     // that X has type 'int', not 'unsigned'.
16375 
16376     // Determine whether the value fits into an int.
16377     llvm::APSInt InitVal = ECD->getInitVal();
16378 
16379     // If it fits into an integer type, force it.  Otherwise force it to match
16380     // the enum decl type.
16381     QualType NewTy;
16382     unsigned NewWidth;
16383     bool NewSign;
16384     if (!getLangOpts().CPlusPlus &&
16385         !Enum->isFixed() &&
16386         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
16387       NewTy = Context.IntTy;
16388       NewWidth = IntWidth;
16389       NewSign = true;
16390     } else if (ECD->getType() == BestType) {
16391       // Already the right type!
16392       if (getLangOpts().CPlusPlus)
16393         // C++ [dcl.enum]p4: Following the closing brace of an
16394         // enum-specifier, each enumerator has the type of its
16395         // enumeration.
16396         ECD->setType(EnumType);
16397       continue;
16398     } else {
16399       NewTy = BestType;
16400       NewWidth = BestWidth;
16401       NewSign = BestType->isSignedIntegerOrEnumerationType();
16402     }
16403 
16404     // Adjust the APSInt value.
16405     InitVal = InitVal.extOrTrunc(NewWidth);
16406     InitVal.setIsSigned(NewSign);
16407     ECD->setInitVal(InitVal);
16408 
16409     // Adjust the Expr initializer and type.
16410     if (ECD->getInitExpr() &&
16411         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
16412       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
16413                                                 CK_IntegralCast,
16414                                                 ECD->getInitExpr(),
16415                                                 /*base paths*/ nullptr,
16416                                                 VK_RValue));
16417     if (getLangOpts().CPlusPlus)
16418       // C++ [dcl.enum]p4: Following the closing brace of an
16419       // enum-specifier, each enumerator has the type of its
16420       // enumeration.
16421       ECD->setType(EnumType);
16422     else
16423       ECD->setType(NewTy);
16424   }
16425 
16426   Enum->completeDefinition(BestType, BestPromotionType,
16427                            NumPositiveBits, NumNegativeBits);
16428 
16429   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
16430 
16431   if (Enum->isClosedFlag()) {
16432     for (Decl *D : Elements) {
16433       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
16434       if (!ECD) continue;  // Already issued a diagnostic.
16435 
16436       llvm::APSInt InitVal = ECD->getInitVal();
16437       if (InitVal != 0 && !InitVal.isPowerOf2() &&
16438           !IsValueInFlagEnum(Enum, InitVal, true))
16439         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
16440           << ECD << Enum;
16441     }
16442   }
16443 
16444   // Now that the enum type is defined, ensure it's not been underaligned.
16445   if (Enum->hasAttrs())
16446     CheckAlignasUnderalignment(Enum);
16447 }
16448 
16449 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
16450                                   SourceLocation StartLoc,
16451                                   SourceLocation EndLoc) {
16452   StringLiteral *AsmString = cast<StringLiteral>(expr);
16453 
16454   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
16455                                                    AsmString, StartLoc,
16456                                                    EndLoc);
16457   CurContext->addDecl(New);
16458   return New;
16459 }
16460 
16461 static void checkModuleImportContext(Sema &S, Module *M,
16462                                      SourceLocation ImportLoc, DeclContext *DC,
16463                                      bool FromInclude = false) {
16464   SourceLocation ExternCLoc;
16465 
16466   if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
16467     switch (LSD->getLanguage()) {
16468     case LinkageSpecDecl::lang_c:
16469       if (ExternCLoc.isInvalid())
16470         ExternCLoc = LSD->getLocStart();
16471       break;
16472     case LinkageSpecDecl::lang_cxx:
16473       break;
16474     }
16475     DC = LSD->getParent();
16476   }
16477 
16478   while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC))
16479     DC = DC->getParent();
16480 
16481   if (!isa<TranslationUnitDecl>(DC)) {
16482     S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
16483                           ? diag::ext_module_import_not_at_top_level_noop
16484                           : diag::err_module_import_not_at_top_level_fatal)
16485         << M->getFullModuleName() << DC;
16486     S.Diag(cast<Decl>(DC)->getLocStart(),
16487            diag::note_module_import_not_at_top_level) << DC;
16488   } else if (!M->IsExternC && ExternCLoc.isValid()) {
16489     S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
16490       << M->getFullModuleName();
16491     S.Diag(ExternCLoc, diag::note_extern_c_begins_here);
16492   }
16493 }
16494 
16495 Sema::DeclGroupPtrTy Sema::ActOnModuleDecl(SourceLocation StartLoc,
16496                                            SourceLocation ModuleLoc,
16497                                            ModuleDeclKind MDK,
16498                                            ModuleIdPath Path) {
16499   assert(getLangOpts().ModulesTS &&
16500          "should only have module decl in modules TS");
16501 
16502   // A module implementation unit requires that we are not compiling a module
16503   // of any kind. A module interface unit requires that we are not compiling a
16504   // module map.
16505   switch (getLangOpts().getCompilingModule()) {
16506   case LangOptions::CMK_None:
16507     // It's OK to compile a module interface as a normal translation unit.
16508     break;
16509 
16510   case LangOptions::CMK_ModuleInterface:
16511     if (MDK != ModuleDeclKind::Implementation)
16512       break;
16513 
16514     // We were asked to compile a module interface unit but this is a module
16515     // implementation unit. That indicates the 'export' is missing.
16516     Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch)
16517       << FixItHint::CreateInsertion(ModuleLoc, "export ");
16518     MDK = ModuleDeclKind::Interface;
16519     break;
16520 
16521   case LangOptions::CMK_ModuleMap:
16522     Diag(ModuleLoc, diag::err_module_decl_in_module_map_module);
16523     return nullptr;
16524   }
16525 
16526   assert(ModuleScopes.size() == 1 && "expected to be at global module scope");
16527 
16528   // FIXME: Most of this work should be done by the preprocessor rather than
16529   // here, in order to support macro import.
16530 
16531   // Only one module-declaration is permitted per source file.
16532   if (ModuleScopes.back().Module->Kind == Module::ModuleInterfaceUnit) {
16533     Diag(ModuleLoc, diag::err_module_redeclaration);
16534     Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module),
16535          diag::note_prev_module_declaration);
16536     return nullptr;
16537   }
16538 
16539   // Flatten the dots in a module name. Unlike Clang's hierarchical module map
16540   // modules, the dots here are just another character that can appear in a
16541   // module name.
16542   std::string ModuleName;
16543   for (auto &Piece : Path) {
16544     if (!ModuleName.empty())
16545       ModuleName += ".";
16546     ModuleName += Piece.first->getName();
16547   }
16548 
16549   // If a module name was explicitly specified on the command line, it must be
16550   // correct.
16551   if (!getLangOpts().CurrentModule.empty() &&
16552       getLangOpts().CurrentModule != ModuleName) {
16553     Diag(Path.front().second, diag::err_current_module_name_mismatch)
16554         << SourceRange(Path.front().second, Path.back().second)
16555         << getLangOpts().CurrentModule;
16556     return nullptr;
16557   }
16558   const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
16559 
16560   auto &Map = PP.getHeaderSearchInfo().getModuleMap();
16561   Module *Mod;
16562 
16563   switch (MDK) {
16564   case ModuleDeclKind::Interface: {
16565     // We can't have parsed or imported a definition of this module or parsed a
16566     // module map defining it already.
16567     if (auto *M = Map.findModule(ModuleName)) {
16568       Diag(Path[0].second, diag::err_module_redefinition) << ModuleName;
16569       if (M->DefinitionLoc.isValid())
16570         Diag(M->DefinitionLoc, diag::note_prev_module_definition);
16571       else if (const auto *FE = M->getASTFile())
16572         Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file)
16573             << FE->getName();
16574       Mod = M;
16575       break;
16576     }
16577 
16578     // Create a Module for the module that we're defining.
16579     Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
16580                                            ModuleScopes.front().Module);
16581     assert(Mod && "module creation should not fail");
16582     break;
16583   }
16584 
16585   case ModuleDeclKind::Partition:
16586     // FIXME: Check we are in a submodule of the named module.
16587     return nullptr;
16588 
16589   case ModuleDeclKind::Implementation:
16590     std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc(
16591         PP.getIdentifierInfo(ModuleName), Path[0].second);
16592     Mod = getModuleLoader().loadModule(ModuleLoc, Path, Module::AllVisible,
16593                                        /*IsIncludeDirective=*/false);
16594     if (!Mod) {
16595       Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName;
16596       // Create an empty module interface unit for error recovery.
16597       Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
16598                                              ModuleScopes.front().Module);
16599     }
16600     break;
16601   }
16602 
16603   // Switch from the global module to the named module.
16604   ModuleScopes.back().Module = Mod;
16605   ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation;
16606   VisibleModules.setVisible(Mod, ModuleLoc);
16607 
16608   // From now on, we have an owning module for all declarations we see.
16609   // However, those declarations are module-private unless explicitly
16610   // exported.
16611   auto *TU = Context.getTranslationUnitDecl();
16612   TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate);
16613   TU->setLocalOwningModule(Mod);
16614 
16615   // FIXME: Create a ModuleDecl.
16616   return nullptr;
16617 }
16618 
16619 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
16620                                    SourceLocation ImportLoc,
16621                                    ModuleIdPath Path) {
16622   Module *Mod =
16623       getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
16624                                    /*IsIncludeDirective=*/false);
16625   if (!Mod)
16626     return true;
16627 
16628   VisibleModules.setVisible(Mod, ImportLoc);
16629 
16630   checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
16631 
16632   // FIXME: we should support importing a submodule within a different submodule
16633   // of the same top-level module. Until we do, make it an error rather than
16634   // silently ignoring the import.
16635   // Import-from-implementation is valid in the Modules TS. FIXME: Should we
16636   // warn on a redundant import of the current module?
16637   if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule &&
16638       (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS))
16639     Diag(ImportLoc, getLangOpts().isCompilingModule()
16640                         ? diag::err_module_self_import
16641                         : diag::err_module_import_in_implementation)
16642         << Mod->getFullModuleName() << getLangOpts().CurrentModule;
16643 
16644   SmallVector<SourceLocation, 2> IdentifierLocs;
16645   Module *ModCheck = Mod;
16646   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
16647     // If we've run out of module parents, just drop the remaining identifiers.
16648     // We need the length to be consistent.
16649     if (!ModCheck)
16650       break;
16651     ModCheck = ModCheck->Parent;
16652 
16653     IdentifierLocs.push_back(Path[I].second);
16654   }
16655 
16656   ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc,
16657                                           Mod, IdentifierLocs);
16658   if (!ModuleScopes.empty())
16659     Context.addModuleInitializer(ModuleScopes.back().Module, Import);
16660   CurContext->addDecl(Import);
16661 
16662   // Re-export the module if needed.
16663   if (Import->isExported() &&
16664       !ModuleScopes.empty() && ModuleScopes.back().ModuleInterface)
16665     getCurrentModule()->Exports.emplace_back(Mod, false);
16666 
16667   return Import;
16668 }
16669 
16670 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
16671   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
16672   BuildModuleInclude(DirectiveLoc, Mod);
16673 }
16674 
16675 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
16676   // Determine whether we're in the #include buffer for a module. The #includes
16677   // in that buffer do not qualify as module imports; they're just an
16678   // implementation detail of us building the module.
16679   //
16680   // FIXME: Should we even get ActOnModuleInclude calls for those?
16681   bool IsInModuleIncludes =
16682       TUKind == TU_Module &&
16683       getSourceManager().isWrittenInMainFile(DirectiveLoc);
16684 
16685   bool ShouldAddImport = !IsInModuleIncludes;
16686 
16687   // If this module import was due to an inclusion directive, create an
16688   // implicit import declaration to capture it in the AST.
16689   if (ShouldAddImport) {
16690     TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
16691     ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
16692                                                      DirectiveLoc, Mod,
16693                                                      DirectiveLoc);
16694     if (!ModuleScopes.empty())
16695       Context.addModuleInitializer(ModuleScopes.back().Module, ImportD);
16696     TU->addDecl(ImportD);
16697     Consumer.HandleImplicitImportDecl(ImportD);
16698   }
16699 
16700   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
16701   VisibleModules.setVisible(Mod, DirectiveLoc);
16702 }
16703 
16704 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
16705   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
16706 
16707   ModuleScopes.push_back({});
16708   ModuleScopes.back().Module = Mod;
16709   if (getLangOpts().ModulesLocalVisibility)
16710     ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
16711 
16712   VisibleModules.setVisible(Mod, DirectiveLoc);
16713 
16714   // The enclosing context is now part of this module.
16715   // FIXME: Consider creating a child DeclContext to hold the entities
16716   // lexically within the module.
16717   if (getLangOpts().trackLocalOwningModule()) {
16718     for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
16719       cast<Decl>(DC)->setModuleOwnershipKind(
16720           getLangOpts().ModulesLocalVisibility
16721               ? Decl::ModuleOwnershipKind::VisibleWhenImported
16722               : Decl::ModuleOwnershipKind::Visible);
16723       cast<Decl>(DC)->setLocalOwningModule(Mod);
16724     }
16725   }
16726 }
16727 
16728 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) {
16729   if (getLangOpts().ModulesLocalVisibility) {
16730     VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules);
16731     // Leaving a module hides namespace names, so our visible namespace cache
16732     // is now out of date.
16733     VisibleNamespaceCache.clear();
16734   }
16735 
16736   assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod &&
16737          "left the wrong module scope");
16738   ModuleScopes.pop_back();
16739 
16740   // We got to the end of processing a local module. Create an
16741   // ImportDecl as we would for an imported module.
16742   FileID File = getSourceManager().getFileID(EomLoc);
16743   SourceLocation DirectiveLoc;
16744   if (EomLoc == getSourceManager().getLocForEndOfFile(File)) {
16745     // We reached the end of a #included module header. Use the #include loc.
16746     assert(File != getSourceManager().getMainFileID() &&
16747            "end of submodule in main source file");
16748     DirectiveLoc = getSourceManager().getIncludeLoc(File);
16749   } else {
16750     // We reached an EOM pragma. Use the pragma location.
16751     DirectiveLoc = EomLoc;
16752   }
16753   BuildModuleInclude(DirectiveLoc, Mod);
16754 
16755   // Any further declarations are in whatever module we returned to.
16756   if (getLangOpts().trackLocalOwningModule()) {
16757     // The parser guarantees that this is the same context that we entered
16758     // the module within.
16759     for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
16760       cast<Decl>(DC)->setLocalOwningModule(getCurrentModule());
16761       if (!getCurrentModule())
16762         cast<Decl>(DC)->setModuleOwnershipKind(
16763             Decl::ModuleOwnershipKind::Unowned);
16764     }
16765   }
16766 }
16767 
16768 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
16769                                                       Module *Mod) {
16770   // Bail if we're not allowed to implicitly import a module here.
16771   if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery ||
16772       VisibleModules.isVisible(Mod))
16773     return;
16774 
16775   // Create the implicit import declaration.
16776   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
16777   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
16778                                                    Loc, Mod, Loc);
16779   TU->addDecl(ImportD);
16780   Consumer.HandleImplicitImportDecl(ImportD);
16781 
16782   // Make the module visible.
16783   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
16784   VisibleModules.setVisible(Mod, Loc);
16785 }
16786 
16787 /// We have parsed the start of an export declaration, including the '{'
16788 /// (if present).
16789 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
16790                                  SourceLocation LBraceLoc) {
16791   ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc);
16792 
16793   // C++ Modules TS draft:
16794   //   An export-declaration shall appear in the purview of a module other than
16795   //   the global module.
16796   if (ModuleScopes.empty() || !ModuleScopes.back().ModuleInterface)
16797     Diag(ExportLoc, diag::err_export_not_in_module_interface);
16798 
16799   //   An export-declaration [...] shall not contain more than one
16800   //   export keyword.
16801   //
16802   // The intent here is that an export-declaration cannot appear within another
16803   // export-declaration.
16804   if (D->isExported())
16805     Diag(ExportLoc, diag::err_export_within_export);
16806 
16807   CurContext->addDecl(D);
16808   PushDeclContext(S, D);
16809   D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
16810   return D;
16811 }
16812 
16813 /// Complete the definition of an export declaration.
16814 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) {
16815   auto *ED = cast<ExportDecl>(D);
16816   if (RBraceLoc.isValid())
16817     ED->setRBraceLoc(RBraceLoc);
16818 
16819   // FIXME: Diagnose export of internal-linkage declaration (including
16820   // anonymous namespace).
16821 
16822   PopDeclContext();
16823   return D;
16824 }
16825 
16826 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
16827                                       IdentifierInfo* AliasName,
16828                                       SourceLocation PragmaLoc,
16829                                       SourceLocation NameLoc,
16830                                       SourceLocation AliasNameLoc) {
16831   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
16832                                          LookupOrdinaryName);
16833   AsmLabelAttr *Attr =
16834       AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc);
16835 
16836   // If a declaration that:
16837   // 1) declares a function or a variable
16838   // 2) has external linkage
16839   // already exists, add a label attribute to it.
16840   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
16841     if (isDeclExternC(PrevDecl))
16842       PrevDecl->addAttr(Attr);
16843     else
16844       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
16845           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
16846   // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
16847   } else
16848     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
16849 }
16850 
16851 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
16852                              SourceLocation PragmaLoc,
16853                              SourceLocation NameLoc) {
16854   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
16855 
16856   if (PrevDecl) {
16857     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
16858   } else {
16859     (void)WeakUndeclaredIdentifiers.insert(
16860       std::pair<IdentifierInfo*,WeakInfo>
16861         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
16862   }
16863 }
16864 
16865 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
16866                                 IdentifierInfo* AliasName,
16867                                 SourceLocation PragmaLoc,
16868                                 SourceLocation NameLoc,
16869                                 SourceLocation AliasNameLoc) {
16870   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
16871                                     LookupOrdinaryName);
16872   WeakInfo W = WeakInfo(Name, NameLoc);
16873 
16874   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
16875     if (!PrevDecl->hasAttr<AliasAttr>())
16876       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
16877         DeclApplyPragmaWeak(TUScope, ND, W);
16878   } else {
16879     (void)WeakUndeclaredIdentifiers.insert(
16880       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
16881   }
16882 }
16883 
16884 Decl *Sema::getObjCDeclContext() const {
16885   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
16886 }
16887