1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CommentDiagnostic.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/NonTrivialTypeVisitor.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36 #include "clang/Sema/CXXFieldCollector.h"
37 #include "clang/Sema/DeclSpec.h"
38 #include "clang/Sema/DelayedDiagnostic.h"
39 #include "clang/Sema/Initialization.h"
40 #include "clang/Sema/Lookup.h"
41 #include "clang/Sema/ParsedTemplate.h"
42 #include "clang/Sema/Scope.h"
43 #include "clang/Sema/ScopeInfo.h"
44 #include "clang/Sema/SemaInternal.h"
45 #include "clang/Sema/Template.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/Triple.h"
48 #include <algorithm>
49 #include <cstring>
50 #include <functional>
51 #include <unordered_map>
52 
53 using namespace clang;
54 using namespace sema;
55 
56 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
57   if (OwnedType) {
58     Decl *Group[2] = { OwnedType, Ptr };
59     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
60   }
61 
62   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
63 }
64 
65 namespace {
66 
67 class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
68  public:
69    TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
70                         bool AllowTemplates = false,
71                         bool AllowNonTemplates = true)
72        : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
73          AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
74      WantExpressionKeywords = false;
75      WantCXXNamedCasts = false;
76      WantRemainingKeywords = false;
77   }
78 
79   bool ValidateCandidate(const TypoCorrection &candidate) override {
80     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
81       if (!AllowInvalidDecl && ND->isInvalidDecl())
82         return false;
83 
84       if (getAsTypeTemplateDecl(ND))
85         return AllowTemplates;
86 
87       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
88       if (!IsType)
89         return false;
90 
91       if (AllowNonTemplates)
92         return true;
93 
94       // An injected-class-name of a class template (specialization) is valid
95       // as a template or as a non-template.
96       if (AllowTemplates) {
97         auto *RD = dyn_cast<CXXRecordDecl>(ND);
98         if (!RD || !RD->isInjectedClassName())
99           return false;
100         RD = cast<CXXRecordDecl>(RD->getDeclContext());
101         return RD->getDescribedClassTemplate() ||
102                isa<ClassTemplateSpecializationDecl>(RD);
103       }
104 
105       return false;
106     }
107 
108     return !WantClassName && candidate.isKeyword();
109   }
110 
111   std::unique_ptr<CorrectionCandidateCallback> clone() override {
112     return std::make_unique<TypeNameValidatorCCC>(*this);
113   }
114 
115  private:
116   bool AllowInvalidDecl;
117   bool WantClassName;
118   bool AllowTemplates;
119   bool AllowNonTemplates;
120 };
121 
122 } // end anonymous namespace
123 
124 /// Determine whether the token kind starts a simple-type-specifier.
125 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
126   switch (Kind) {
127   // FIXME: Take into account the current language when deciding whether a
128   // token kind is a valid type specifier
129   case tok::kw_short:
130   case tok::kw_long:
131   case tok::kw___int64:
132   case tok::kw___int128:
133   case tok::kw_signed:
134   case tok::kw_unsigned:
135   case tok::kw_void:
136   case tok::kw_char:
137   case tok::kw_int:
138   case tok::kw_half:
139   case tok::kw_float:
140   case tok::kw_double:
141   case tok::kw__Float16:
142   case tok::kw___float128:
143   case tok::kw_wchar_t:
144   case tok::kw_bool:
145   case tok::kw___underlying_type:
146   case tok::kw___auto_type:
147     return true;
148 
149   case tok::annot_typename:
150   case tok::kw_char16_t:
151   case tok::kw_char32_t:
152   case tok::kw_typeof:
153   case tok::annot_decltype:
154   case tok::kw_decltype:
155     return getLangOpts().CPlusPlus;
156 
157   case tok::kw_char8_t:
158     return getLangOpts().Char8;
159 
160   default:
161     break;
162   }
163 
164   return false;
165 }
166 
167 namespace {
168 enum class UnqualifiedTypeNameLookupResult {
169   NotFound,
170   FoundNonType,
171   FoundType
172 };
173 } // end anonymous namespace
174 
175 /// Tries to perform unqualified lookup of the type decls in bases for
176 /// dependent class.
177 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
178 /// type decl, \a FoundType if only type decls are found.
179 static UnqualifiedTypeNameLookupResult
180 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
181                                 SourceLocation NameLoc,
182                                 const CXXRecordDecl *RD) {
183   if (!RD->hasDefinition())
184     return UnqualifiedTypeNameLookupResult::NotFound;
185   // Look for type decls in base classes.
186   UnqualifiedTypeNameLookupResult FoundTypeDecl =
187       UnqualifiedTypeNameLookupResult::NotFound;
188   for (const auto &Base : RD->bases()) {
189     const CXXRecordDecl *BaseRD = nullptr;
190     if (auto *BaseTT = Base.getType()->getAs<TagType>())
191       BaseRD = BaseTT->getAsCXXRecordDecl();
192     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
193       // Look for type decls in dependent base classes that have known primary
194       // templates.
195       if (!TST || !TST->isDependentType())
196         continue;
197       auto *TD = TST->getTemplateName().getAsTemplateDecl();
198       if (!TD)
199         continue;
200       if (auto *BasePrimaryTemplate =
201           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
202         if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
203           BaseRD = BasePrimaryTemplate;
204         else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
205           if (const ClassTemplatePartialSpecializationDecl *PS =
206                   CTD->findPartialSpecialization(Base.getType()))
207             if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
208               BaseRD = PS;
209         }
210       }
211     }
212     if (BaseRD) {
213       for (NamedDecl *ND : BaseRD->lookup(&II)) {
214         if (!isa<TypeDecl>(ND))
215           return UnqualifiedTypeNameLookupResult::FoundNonType;
216         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
217       }
218       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
219         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
220         case UnqualifiedTypeNameLookupResult::FoundNonType:
221           return UnqualifiedTypeNameLookupResult::FoundNonType;
222         case UnqualifiedTypeNameLookupResult::FoundType:
223           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
224           break;
225         case UnqualifiedTypeNameLookupResult::NotFound:
226           break;
227         }
228       }
229     }
230   }
231 
232   return FoundTypeDecl;
233 }
234 
235 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
236                                                       const IdentifierInfo &II,
237                                                       SourceLocation NameLoc) {
238   // Lookup in the parent class template context, if any.
239   const CXXRecordDecl *RD = nullptr;
240   UnqualifiedTypeNameLookupResult FoundTypeDecl =
241       UnqualifiedTypeNameLookupResult::NotFound;
242   for (DeclContext *DC = S.CurContext;
243        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
244        DC = DC->getParent()) {
245     // Look for type decls in dependent base classes that have known primary
246     // templates.
247     RD = dyn_cast<CXXRecordDecl>(DC);
248     if (RD && RD->getDescribedClassTemplate())
249       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
250   }
251   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
252     return nullptr;
253 
254   // We found some types in dependent base classes.  Recover as if the user
255   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
256   // lookup during template instantiation.
257   S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
258 
259   ASTContext &Context = S.Context;
260   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
261                                           cast<Type>(Context.getRecordType(RD)));
262   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
263 
264   CXXScopeSpec SS;
265   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
266 
267   TypeLocBuilder Builder;
268   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
269   DepTL.setNameLoc(NameLoc);
270   DepTL.setElaboratedKeywordLoc(SourceLocation());
271   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
272   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
273 }
274 
275 /// If the identifier refers to a type name within this scope,
276 /// return the declaration of that type.
277 ///
278 /// This routine performs ordinary name lookup of the identifier II
279 /// within the given scope, with optional C++ scope specifier SS, to
280 /// determine whether the name refers to a type. If so, returns an
281 /// opaque pointer (actually a QualType) corresponding to that
282 /// type. Otherwise, returns NULL.
283 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
284                              Scope *S, CXXScopeSpec *SS,
285                              bool isClassName, bool HasTrailingDot,
286                              ParsedType ObjectTypePtr,
287                              bool IsCtorOrDtorName,
288                              bool WantNontrivialTypeSourceInfo,
289                              bool IsClassTemplateDeductionContext,
290                              IdentifierInfo **CorrectedII) {
291   // FIXME: Consider allowing this outside C++1z mode as an extension.
292   bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
293                               getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
294                               !isClassName && !HasTrailingDot;
295 
296   // Determine where we will perform name lookup.
297   DeclContext *LookupCtx = nullptr;
298   if (ObjectTypePtr) {
299     QualType ObjectType = ObjectTypePtr.get();
300     if (ObjectType->isRecordType())
301       LookupCtx = computeDeclContext(ObjectType);
302   } else if (SS && SS->isNotEmpty()) {
303     LookupCtx = computeDeclContext(*SS, false);
304 
305     if (!LookupCtx) {
306       if (isDependentScopeSpecifier(*SS)) {
307         // C++ [temp.res]p3:
308         //   A qualified-id that refers to a type and in which the
309         //   nested-name-specifier depends on a template-parameter (14.6.2)
310         //   shall be prefixed by the keyword typename to indicate that the
311         //   qualified-id denotes a type, forming an
312         //   elaborated-type-specifier (7.1.5.3).
313         //
314         // We therefore do not perform any name lookup if the result would
315         // refer to a member of an unknown specialization.
316         if (!isClassName && !IsCtorOrDtorName)
317           return nullptr;
318 
319         // We know from the grammar that this name refers to a type,
320         // so build a dependent node to describe the type.
321         if (WantNontrivialTypeSourceInfo)
322           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
323 
324         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
325         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
326                                        II, NameLoc);
327         return ParsedType::make(T);
328       }
329 
330       return nullptr;
331     }
332 
333     if (!LookupCtx->isDependentContext() &&
334         RequireCompleteDeclContext(*SS, LookupCtx))
335       return nullptr;
336   }
337 
338   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
339   // lookup for class-names.
340   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
341                                       LookupOrdinaryName;
342   LookupResult Result(*this, &II, NameLoc, Kind);
343   if (LookupCtx) {
344     // Perform "qualified" name lookup into the declaration context we
345     // computed, which is either the type of the base of a member access
346     // expression or the declaration context associated with a prior
347     // nested-name-specifier.
348     LookupQualifiedName(Result, LookupCtx);
349 
350     if (ObjectTypePtr && Result.empty()) {
351       // C++ [basic.lookup.classref]p3:
352       //   If the unqualified-id is ~type-name, the type-name is looked up
353       //   in the context of the entire postfix-expression. If the type T of
354       //   the object expression is of a class type C, the type-name is also
355       //   looked up in the scope of class C. At least one of the lookups shall
356       //   find a name that refers to (possibly cv-qualified) T.
357       LookupName(Result, S);
358     }
359   } else {
360     // Perform unqualified name lookup.
361     LookupName(Result, S);
362 
363     // For unqualified lookup in a class template in MSVC mode, look into
364     // dependent base classes where the primary class template is known.
365     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
366       if (ParsedType TypeInBase =
367               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
368         return TypeInBase;
369     }
370   }
371 
372   NamedDecl *IIDecl = nullptr;
373   switch (Result.getResultKind()) {
374   case LookupResult::NotFound:
375   case LookupResult::NotFoundInCurrentInstantiation:
376     if (CorrectedII) {
377       TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
378                                AllowDeducedTemplate);
379       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
380                                               S, SS, CCC, CTK_ErrorRecovery);
381       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
382       TemplateTy Template;
383       bool MemberOfUnknownSpecialization;
384       UnqualifiedId TemplateName;
385       TemplateName.setIdentifier(NewII, NameLoc);
386       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
387       CXXScopeSpec NewSS, *NewSSPtr = SS;
388       if (SS && NNS) {
389         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
390         NewSSPtr = &NewSS;
391       }
392       if (Correction && (NNS || NewII != &II) &&
393           // Ignore a correction to a template type as the to-be-corrected
394           // identifier is not a template (typo correction for template names
395           // is handled elsewhere).
396           !(getLangOpts().CPlusPlus && NewSSPtr &&
397             isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
398                            Template, MemberOfUnknownSpecialization))) {
399         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
400                                     isClassName, HasTrailingDot, ObjectTypePtr,
401                                     IsCtorOrDtorName,
402                                     WantNontrivialTypeSourceInfo,
403                                     IsClassTemplateDeductionContext);
404         if (Ty) {
405           diagnoseTypo(Correction,
406                        PDiag(diag::err_unknown_type_or_class_name_suggest)
407                          << Result.getLookupName() << isClassName);
408           if (SS && NNS)
409             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
410           *CorrectedII = NewII;
411           return Ty;
412         }
413       }
414     }
415     // If typo correction failed or was not performed, fall through
416     LLVM_FALLTHROUGH;
417   case LookupResult::FoundOverloaded:
418   case LookupResult::FoundUnresolvedValue:
419     Result.suppressDiagnostics();
420     return nullptr;
421 
422   case LookupResult::Ambiguous:
423     // Recover from type-hiding ambiguities by hiding the type.  We'll
424     // do the lookup again when looking for an object, and we can
425     // diagnose the error then.  If we don't do this, then the error
426     // about hiding the type will be immediately followed by an error
427     // that only makes sense if the identifier was treated like a type.
428     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
429       Result.suppressDiagnostics();
430       return nullptr;
431     }
432 
433     // Look to see if we have a type anywhere in the list of results.
434     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
435          Res != ResEnd; ++Res) {
436       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
437           (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
438         if (!IIDecl ||
439             (*Res)->getLocation().getRawEncoding() <
440               IIDecl->getLocation().getRawEncoding())
441           IIDecl = *Res;
442       }
443     }
444 
445     if (!IIDecl) {
446       // None of the entities we found is a type, so there is no way
447       // to even assume that the result is a type. In this case, don't
448       // complain about the ambiguity. The parser will either try to
449       // perform this lookup again (e.g., as an object name), which
450       // will produce the ambiguity, or will complain that it expected
451       // a type name.
452       Result.suppressDiagnostics();
453       return nullptr;
454     }
455 
456     // We found a type within the ambiguous lookup; diagnose the
457     // ambiguity and then return that type. This might be the right
458     // answer, or it might not be, but it suppresses any attempt to
459     // perform the name lookup again.
460     break;
461 
462   case LookupResult::Found:
463     IIDecl = Result.getFoundDecl();
464     break;
465   }
466 
467   assert(IIDecl && "Didn't find decl");
468 
469   QualType T;
470   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
471     // C++ [class.qual]p2: A lookup that would find the injected-class-name
472     // instead names the constructors of the class, except when naming a class.
473     // This is ill-formed when we're not actually forming a ctor or dtor name.
474     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
475     auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
476     if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
477         FoundRD->isInjectedClassName() &&
478         declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
479       Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
480           << &II << /*Type*/1;
481 
482     DiagnoseUseOfDecl(IIDecl, NameLoc);
483 
484     T = Context.getTypeDeclType(TD);
485     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
486   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
487     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
488     if (!HasTrailingDot)
489       T = Context.getObjCInterfaceType(IDecl);
490   } else if (AllowDeducedTemplate) {
491     if (auto *TD = getAsTypeTemplateDecl(IIDecl))
492       T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
493                                                        QualType(), false);
494   }
495 
496   if (T.isNull()) {
497     // If it's not plausibly a type, suppress diagnostics.
498     Result.suppressDiagnostics();
499     return nullptr;
500   }
501 
502   // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
503   // constructor or destructor name (in such a case, the scope specifier
504   // will be attached to the enclosing Expr or Decl node).
505   if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
506       !isa<ObjCInterfaceDecl>(IIDecl)) {
507     if (WantNontrivialTypeSourceInfo) {
508       // Construct a type with type-source information.
509       TypeLocBuilder Builder;
510       Builder.pushTypeSpec(T).setNameLoc(NameLoc);
511 
512       T = getElaboratedType(ETK_None, *SS, T);
513       ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
514       ElabTL.setElaboratedKeywordLoc(SourceLocation());
515       ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
516       return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
517     } else {
518       T = getElaboratedType(ETK_None, *SS, T);
519     }
520   }
521 
522   return ParsedType::make(T);
523 }
524 
525 // Builds a fake NNS for the given decl context.
526 static NestedNameSpecifier *
527 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
528   for (;; DC = DC->getLookupParent()) {
529     DC = DC->getPrimaryContext();
530     auto *ND = dyn_cast<NamespaceDecl>(DC);
531     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
532       return NestedNameSpecifier::Create(Context, nullptr, ND);
533     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
534       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
535                                          RD->getTypeForDecl());
536     else if (isa<TranslationUnitDecl>(DC))
537       return NestedNameSpecifier::GlobalSpecifier(Context);
538   }
539   llvm_unreachable("something isn't in TU scope?");
540 }
541 
542 /// Find the parent class with dependent bases of the innermost enclosing method
543 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
544 /// up allowing unqualified dependent type names at class-level, which MSVC
545 /// correctly rejects.
546 static const CXXRecordDecl *
547 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
548   for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
549     DC = DC->getPrimaryContext();
550     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
551       if (MD->getParent()->hasAnyDependentBases())
552         return MD->getParent();
553   }
554   return nullptr;
555 }
556 
557 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
558                                           SourceLocation NameLoc,
559                                           bool IsTemplateTypeArg) {
560   assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
561 
562   NestedNameSpecifier *NNS = nullptr;
563   if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
564     // If we weren't able to parse a default template argument, delay lookup
565     // until instantiation time by making a non-dependent DependentTypeName. We
566     // pretend we saw a NestedNameSpecifier referring to the current scope, and
567     // lookup is retried.
568     // FIXME: This hurts our diagnostic quality, since we get errors like "no
569     // type named 'Foo' in 'current_namespace'" when the user didn't write any
570     // name specifiers.
571     NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
572     Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
573   } else if (const CXXRecordDecl *RD =
574                  findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
575     // Build a DependentNameType that will perform lookup into RD at
576     // instantiation time.
577     NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
578                                       RD->getTypeForDecl());
579 
580     // Diagnose that this identifier was undeclared, and retry the lookup during
581     // template instantiation.
582     Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
583                                                                       << RD;
584   } else {
585     // This is not a situation that we should recover from.
586     return ParsedType();
587   }
588 
589   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
590 
591   // Build type location information.  We synthesized the qualifier, so we have
592   // to build a fake NestedNameSpecifierLoc.
593   NestedNameSpecifierLocBuilder NNSLocBuilder;
594   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
595   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
596 
597   TypeLocBuilder Builder;
598   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
599   DepTL.setNameLoc(NameLoc);
600   DepTL.setElaboratedKeywordLoc(SourceLocation());
601   DepTL.setQualifierLoc(QualifierLoc);
602   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
603 }
604 
605 /// isTagName() - This method is called *for error recovery purposes only*
606 /// to determine if the specified name is a valid tag name ("struct foo").  If
607 /// so, this returns the TST for the tag corresponding to it (TST_enum,
608 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
609 /// cases in C where the user forgot to specify the tag.
610 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
611   // Do a tag name lookup in this scope.
612   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
613   LookupName(R, S, false);
614   R.suppressDiagnostics();
615   if (R.getResultKind() == LookupResult::Found)
616     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
617       switch (TD->getTagKind()) {
618       case TTK_Struct: return DeclSpec::TST_struct;
619       case TTK_Interface: return DeclSpec::TST_interface;
620       case TTK_Union:  return DeclSpec::TST_union;
621       case TTK_Class:  return DeclSpec::TST_class;
622       case TTK_Enum:   return DeclSpec::TST_enum;
623       }
624     }
625 
626   return DeclSpec::TST_unspecified;
627 }
628 
629 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
630 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
631 /// then downgrade the missing typename error to a warning.
632 /// This is needed for MSVC compatibility; Example:
633 /// @code
634 /// template<class T> class A {
635 /// public:
636 ///   typedef int TYPE;
637 /// };
638 /// template<class T> class B : public A<T> {
639 /// public:
640 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
641 /// };
642 /// @endcode
643 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
644   if (CurContext->isRecord()) {
645     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
646       return true;
647 
648     const Type *Ty = SS->getScopeRep()->getAsType();
649 
650     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
651     for (const auto &Base : RD->bases())
652       if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
653         return true;
654     return S->isFunctionPrototypeScope();
655   }
656   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
657 }
658 
659 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
660                                    SourceLocation IILoc,
661                                    Scope *S,
662                                    CXXScopeSpec *SS,
663                                    ParsedType &SuggestedType,
664                                    bool IsTemplateName) {
665   // Don't report typename errors for editor placeholders.
666   if (II->isEditorPlaceholder())
667     return;
668   // We don't have anything to suggest (yet).
669   SuggestedType = nullptr;
670 
671   // There may have been a typo in the name of the type. Look up typo
672   // results, in case we have something that we can suggest.
673   TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
674                            /*AllowTemplates=*/IsTemplateName,
675                            /*AllowNonTemplates=*/!IsTemplateName);
676   if (TypoCorrection Corrected =
677           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
678                       CCC, CTK_ErrorRecovery)) {
679     // FIXME: Support error recovery for the template-name case.
680     bool CanRecover = !IsTemplateName;
681     if (Corrected.isKeyword()) {
682       // We corrected to a keyword.
683       diagnoseTypo(Corrected,
684                    PDiag(IsTemplateName ? diag::err_no_template_suggest
685                                         : diag::err_unknown_typename_suggest)
686                        << II);
687       II = Corrected.getCorrectionAsIdentifierInfo();
688     } else {
689       // We found a similarly-named type or interface; suggest that.
690       if (!SS || !SS->isSet()) {
691         diagnoseTypo(Corrected,
692                      PDiag(IsTemplateName ? diag::err_no_template_suggest
693                                           : diag::err_unknown_typename_suggest)
694                          << II, CanRecover);
695       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
696         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
697         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
698                                 II->getName().equals(CorrectedStr);
699         diagnoseTypo(Corrected,
700                      PDiag(IsTemplateName
701                                ? diag::err_no_member_template_suggest
702                                : diag::err_unknown_nested_typename_suggest)
703                          << II << DC << DroppedSpecifier << SS->getRange(),
704                      CanRecover);
705       } else {
706         llvm_unreachable("could not have corrected a typo here");
707       }
708 
709       if (!CanRecover)
710         return;
711 
712       CXXScopeSpec tmpSS;
713       if (Corrected.getCorrectionSpecifier())
714         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
715                           SourceRange(IILoc));
716       // FIXME: Support class template argument deduction here.
717       SuggestedType =
718           getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
719                       tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
720                       /*IsCtorOrDtorName=*/false,
721                       /*WantNontrivialTypeSourceInfo=*/true);
722     }
723     return;
724   }
725 
726   if (getLangOpts().CPlusPlus && !IsTemplateName) {
727     // See if II is a class template that the user forgot to pass arguments to.
728     UnqualifiedId Name;
729     Name.setIdentifier(II, IILoc);
730     CXXScopeSpec EmptySS;
731     TemplateTy TemplateResult;
732     bool MemberOfUnknownSpecialization;
733     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
734                        Name, nullptr, true, TemplateResult,
735                        MemberOfUnknownSpecialization) == TNK_Type_template) {
736       diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
737       return;
738     }
739   }
740 
741   // FIXME: Should we move the logic that tries to recover from a missing tag
742   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
743 
744   if (!SS || (!SS->isSet() && !SS->isInvalid()))
745     Diag(IILoc, IsTemplateName ? diag::err_no_template
746                                : diag::err_unknown_typename)
747         << II;
748   else if (DeclContext *DC = computeDeclContext(*SS, false))
749     Diag(IILoc, IsTemplateName ? diag::err_no_member_template
750                                : diag::err_typename_nested_not_found)
751         << II << DC << SS->getRange();
752   else if (isDependentScopeSpecifier(*SS)) {
753     unsigned DiagID = diag::err_typename_missing;
754     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
755       DiagID = diag::ext_typename_missing;
756 
757     Diag(SS->getRange().getBegin(), DiagID)
758       << SS->getScopeRep() << II->getName()
759       << SourceRange(SS->getRange().getBegin(), IILoc)
760       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
761     SuggestedType = ActOnTypenameType(S, SourceLocation(),
762                                       *SS, *II, IILoc).get();
763   } else {
764     assert(SS && SS->isInvalid() &&
765            "Invalid scope specifier has already been diagnosed");
766   }
767 }
768 
769 /// Determine whether the given result set contains either a type name
770 /// or
771 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
772   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
773                        NextToken.is(tok::less);
774 
775   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
776     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
777       return true;
778 
779     if (CheckTemplate && isa<TemplateDecl>(*I))
780       return true;
781   }
782 
783   return false;
784 }
785 
786 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
787                                     Scope *S, CXXScopeSpec &SS,
788                                     IdentifierInfo *&Name,
789                                     SourceLocation NameLoc) {
790   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
791   SemaRef.LookupParsedName(R, S, &SS);
792   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
793     StringRef FixItTagName;
794     switch (Tag->getTagKind()) {
795       case TTK_Class:
796         FixItTagName = "class ";
797         break;
798 
799       case TTK_Enum:
800         FixItTagName = "enum ";
801         break;
802 
803       case TTK_Struct:
804         FixItTagName = "struct ";
805         break;
806 
807       case TTK_Interface:
808         FixItTagName = "__interface ";
809         break;
810 
811       case TTK_Union:
812         FixItTagName = "union ";
813         break;
814     }
815 
816     StringRef TagName = FixItTagName.drop_back();
817     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
818       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
819       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
820 
821     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
822          I != IEnd; ++I)
823       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
824         << Name << TagName;
825 
826     // Replace lookup results with just the tag decl.
827     Result.clear(Sema::LookupTagName);
828     SemaRef.LookupParsedName(Result, S, &SS);
829     return true;
830   }
831 
832   return false;
833 }
834 
835 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
836 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
837                                   QualType T, SourceLocation NameLoc) {
838   ASTContext &Context = S.Context;
839 
840   TypeLocBuilder Builder;
841   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
842 
843   T = S.getElaboratedType(ETK_None, SS, T);
844   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
845   ElabTL.setElaboratedKeywordLoc(SourceLocation());
846   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
847   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
848 }
849 
850 Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
851                                             IdentifierInfo *&Name,
852                                             SourceLocation NameLoc,
853                                             const Token &NextToken,
854                                             CorrectionCandidateCallback *CCC) {
855   DeclarationNameInfo NameInfo(Name, NameLoc);
856   ObjCMethodDecl *CurMethod = getCurMethodDecl();
857 
858   assert(NextToken.isNot(tok::coloncolon) &&
859          "parse nested name specifiers before calling ClassifyName");
860   if (getLangOpts().CPlusPlus && SS.isSet() &&
861       isCurrentClassName(*Name, S, &SS)) {
862     // Per [class.qual]p2, this names the constructors of SS, not the
863     // injected-class-name. We don't have a classification for that.
864     // There's not much point caching this result, since the parser
865     // will reject it later.
866     return NameClassification::Unknown();
867   }
868 
869   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
870   LookupParsedName(Result, S, &SS, !CurMethod);
871 
872   if (SS.isInvalid())
873     return NameClassification::Error();
874 
875   // For unqualified lookup in a class template in MSVC mode, look into
876   // dependent base classes where the primary class template is known.
877   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
878     if (ParsedType TypeInBase =
879             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
880       return TypeInBase;
881   }
882 
883   // Perform lookup for Objective-C instance variables (including automatically
884   // synthesized instance variables), if we're in an Objective-C method.
885   // FIXME: This lookup really, really needs to be folded in to the normal
886   // unqualified lookup mechanism.
887   if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
888     DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
889     if (Ivar.isInvalid())
890       return NameClassification::Error();
891     if (Ivar.isUsable())
892       return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
893 
894     // We defer builtin creation until after ivar lookup inside ObjC methods.
895     if (Result.empty())
896       LookupBuiltin(Result);
897   }
898 
899   bool SecondTry = false;
900   bool IsFilteredTemplateName = false;
901 
902 Corrected:
903   switch (Result.getResultKind()) {
904   case LookupResult::NotFound:
905     // If an unqualified-id is followed by a '(', then we have a function
906     // call.
907     if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
908       // In C++, this is an ADL-only call.
909       // FIXME: Reference?
910       if (getLangOpts().CPlusPlus)
911         return NameClassification::UndeclaredNonType();
912 
913       // C90 6.3.2.2:
914       //   If the expression that precedes the parenthesized argument list in a
915       //   function call consists solely of an identifier, and if no
916       //   declaration is visible for this identifier, the identifier is
917       //   implicitly declared exactly as if, in the innermost block containing
918       //   the function call, the declaration
919       //
920       //     extern int identifier ();
921       //
922       //   appeared.
923       //
924       // We also allow this in C99 as an extension.
925       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
926         return NameClassification::NonType(D);
927     }
928 
929     if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) {
930       // In C++20 onwards, this could be an ADL-only call to a function
931       // template, and we're required to assume that this is a template name.
932       //
933       // FIXME: Find a way to still do typo correction in this case.
934       TemplateName Template =
935           Context.getAssumedTemplateName(NameInfo.getName());
936       return NameClassification::UndeclaredTemplate(Template);
937     }
938 
939     // In C, we first see whether there is a tag type by the same name, in
940     // which case it's likely that the user just forgot to write "enum",
941     // "struct", or "union".
942     if (!getLangOpts().CPlusPlus && !SecondTry &&
943         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
944       break;
945     }
946 
947     // Perform typo correction to determine if there is another name that is
948     // close to this name.
949     if (!SecondTry && CCC) {
950       SecondTry = true;
951       if (TypoCorrection Corrected =
952               CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
953                           &SS, *CCC, CTK_ErrorRecovery)) {
954         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
955         unsigned QualifiedDiag = diag::err_no_member_suggest;
956 
957         NamedDecl *FirstDecl = Corrected.getFoundDecl();
958         NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
959         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
960             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
961           UnqualifiedDiag = diag::err_no_template_suggest;
962           QualifiedDiag = diag::err_no_member_template_suggest;
963         } else if (UnderlyingFirstDecl &&
964                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
965                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
966                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
967           UnqualifiedDiag = diag::err_unknown_typename_suggest;
968           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
969         }
970 
971         if (SS.isEmpty()) {
972           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
973         } else {// FIXME: is this even reachable? Test it.
974           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
975           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
976                                   Name->getName().equals(CorrectedStr);
977           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
978                                     << Name << computeDeclContext(SS, false)
979                                     << DroppedSpecifier << SS.getRange());
980         }
981 
982         // Update the name, so that the caller has the new name.
983         Name = Corrected.getCorrectionAsIdentifierInfo();
984 
985         // Typo correction corrected to a keyword.
986         if (Corrected.isKeyword())
987           return Name;
988 
989         // Also update the LookupResult...
990         // FIXME: This should probably go away at some point
991         Result.clear();
992         Result.setLookupName(Corrected.getCorrection());
993         if (FirstDecl)
994           Result.addDecl(FirstDecl);
995 
996         // If we found an Objective-C instance variable, let
997         // LookupInObjCMethod build the appropriate expression to
998         // reference the ivar.
999         // FIXME: This is a gross hack.
1000         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1001           DeclResult R =
1002               LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1003           if (R.isInvalid())
1004             return NameClassification::Error();
1005           if (R.isUsable())
1006             return NameClassification::NonType(Ivar);
1007         }
1008 
1009         goto Corrected;
1010       }
1011     }
1012 
1013     // We failed to correct; just fall through and let the parser deal with it.
1014     Result.suppressDiagnostics();
1015     return NameClassification::Unknown();
1016 
1017   case LookupResult::NotFoundInCurrentInstantiation: {
1018     // We performed name lookup into the current instantiation, and there were
1019     // dependent bases, so we treat this result the same way as any other
1020     // dependent nested-name-specifier.
1021 
1022     // C++ [temp.res]p2:
1023     //   A name used in a template declaration or definition and that is
1024     //   dependent on a template-parameter is assumed not to name a type
1025     //   unless the applicable name lookup finds a type name or the name is
1026     //   qualified by the keyword typename.
1027     //
1028     // FIXME: If the next token is '<', we might want to ask the parser to
1029     // perform some heroics to see if we actually have a
1030     // template-argument-list, which would indicate a missing 'template'
1031     // keyword here.
1032     return NameClassification::DependentNonType();
1033   }
1034 
1035   case LookupResult::Found:
1036   case LookupResult::FoundOverloaded:
1037   case LookupResult::FoundUnresolvedValue:
1038     break;
1039 
1040   case LookupResult::Ambiguous:
1041     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1042         hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1043                                       /*AllowDependent=*/false)) {
1044       // C++ [temp.local]p3:
1045       //   A lookup that finds an injected-class-name (10.2) can result in an
1046       //   ambiguity in certain cases (for example, if it is found in more than
1047       //   one base class). If all of the injected-class-names that are found
1048       //   refer to specializations of the same class template, and if the name
1049       //   is followed by a template-argument-list, the reference refers to the
1050       //   class template itself and not a specialization thereof, and is not
1051       //   ambiguous.
1052       //
1053       // This filtering can make an ambiguous result into an unambiguous one,
1054       // so try again after filtering out template names.
1055       FilterAcceptableTemplateNames(Result);
1056       if (!Result.isAmbiguous()) {
1057         IsFilteredTemplateName = true;
1058         break;
1059       }
1060     }
1061 
1062     // Diagnose the ambiguity and return an error.
1063     return NameClassification::Error();
1064   }
1065 
1066   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1067       (IsFilteredTemplateName ||
1068        hasAnyAcceptableTemplateNames(
1069            Result, /*AllowFunctionTemplates=*/true,
1070            /*AllowDependent=*/false,
1071            /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1072                getLangOpts().CPlusPlus20))) {
1073     // C++ [temp.names]p3:
1074     //   After name lookup (3.4) finds that a name is a template-name or that
1075     //   an operator-function-id or a literal- operator-id refers to a set of
1076     //   overloaded functions any member of which is a function template if
1077     //   this is followed by a <, the < is always taken as the delimiter of a
1078     //   template-argument-list and never as the less-than operator.
1079     // C++2a [temp.names]p2:
1080     //   A name is also considered to refer to a template if it is an
1081     //   unqualified-id followed by a < and name lookup finds either one
1082     //   or more functions or finds nothing.
1083     if (!IsFilteredTemplateName)
1084       FilterAcceptableTemplateNames(Result);
1085 
1086     bool IsFunctionTemplate;
1087     bool IsVarTemplate;
1088     TemplateName Template;
1089     if (Result.end() - Result.begin() > 1) {
1090       IsFunctionTemplate = true;
1091       Template = Context.getOverloadedTemplateName(Result.begin(),
1092                                                    Result.end());
1093     } else if (!Result.empty()) {
1094       auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1095           *Result.begin(), /*AllowFunctionTemplates=*/true,
1096           /*AllowDependent=*/false));
1097       IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1098       IsVarTemplate = isa<VarTemplateDecl>(TD);
1099 
1100       if (SS.isNotEmpty())
1101         Template =
1102             Context.getQualifiedTemplateName(SS.getScopeRep(),
1103                                              /*TemplateKeyword=*/false, TD);
1104       else
1105         Template = TemplateName(TD);
1106     } else {
1107       // All results were non-template functions. This is a function template
1108       // name.
1109       IsFunctionTemplate = true;
1110       Template = Context.getAssumedTemplateName(NameInfo.getName());
1111     }
1112 
1113     if (IsFunctionTemplate) {
1114       // Function templates always go through overload resolution, at which
1115       // point we'll perform the various checks (e.g., accessibility) we need
1116       // to based on which function we selected.
1117       Result.suppressDiagnostics();
1118 
1119       return NameClassification::FunctionTemplate(Template);
1120     }
1121 
1122     return IsVarTemplate ? NameClassification::VarTemplate(Template)
1123                          : NameClassification::TypeTemplate(Template);
1124   }
1125 
1126   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1127   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1128     DiagnoseUseOfDecl(Type, NameLoc);
1129     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1130     QualType T = Context.getTypeDeclType(Type);
1131     if (SS.isNotEmpty())
1132       return buildNestedType(*this, SS, T, NameLoc);
1133     return ParsedType::make(T);
1134   }
1135 
1136   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1137   if (!Class) {
1138     // FIXME: It's unfortunate that we don't have a Type node for handling this.
1139     if (ObjCCompatibleAliasDecl *Alias =
1140             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1141       Class = Alias->getClassInterface();
1142   }
1143 
1144   if (Class) {
1145     DiagnoseUseOfDecl(Class, NameLoc);
1146 
1147     if (NextToken.is(tok::period)) {
1148       // Interface. <something> is parsed as a property reference expression.
1149       // Just return "unknown" as a fall-through for now.
1150       Result.suppressDiagnostics();
1151       return NameClassification::Unknown();
1152     }
1153 
1154     QualType T = Context.getObjCInterfaceType(Class);
1155     return ParsedType::make(T);
1156   }
1157 
1158   if (isa<ConceptDecl>(FirstDecl))
1159     return NameClassification::Concept(
1160         TemplateName(cast<TemplateDecl>(FirstDecl)));
1161 
1162   // We can have a type template here if we're classifying a template argument.
1163   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1164       !isa<VarTemplateDecl>(FirstDecl))
1165     return NameClassification::TypeTemplate(
1166         TemplateName(cast<TemplateDecl>(FirstDecl)));
1167 
1168   // Check for a tag type hidden by a non-type decl in a few cases where it
1169   // seems likely a type is wanted instead of the non-type that was found.
1170   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1171   if ((NextToken.is(tok::identifier) ||
1172        (NextIsOp &&
1173         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1174       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1175     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1176     DiagnoseUseOfDecl(Type, NameLoc);
1177     QualType T = Context.getTypeDeclType(Type);
1178     if (SS.isNotEmpty())
1179       return buildNestedType(*this, SS, T, NameLoc);
1180     return ParsedType::make(T);
1181   }
1182 
1183   // FIXME: This is context-dependent. We need to defer building the member
1184   // expression until the classification is consumed.
1185   if (FirstDecl->isCXXClassMember())
1186     return NameClassification::ContextIndependentExpr(
1187         BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, nullptr,
1188                                         S));
1189 
1190   // If we already know which single declaration is referenced, just annotate
1191   // that declaration directly.
1192   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1193   if (Result.isSingleResult() && !ADL)
1194     return NameClassification::NonType(Result.getRepresentativeDecl());
1195 
1196   // Build an UnresolvedLookupExpr. Note that this doesn't depend on the
1197   // context in which we performed classification, so it's safe to do now.
1198   return NameClassification::ContextIndependentExpr(
1199       BuildDeclarationNameExpr(SS, Result, ADL));
1200 }
1201 
1202 ExprResult
1203 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1204                                              SourceLocation NameLoc) {
1205   assert(getLangOpts().CPlusPlus && "ADL-only call in C?");
1206   CXXScopeSpec SS;
1207   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1208   return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1209 }
1210 
1211 ExprResult
1212 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1213                                             IdentifierInfo *Name,
1214                                             SourceLocation NameLoc,
1215                                             bool IsAddressOfOperand) {
1216   DeclarationNameInfo NameInfo(Name, NameLoc);
1217   return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1218                                     NameInfo, IsAddressOfOperand,
1219                                     /*TemplateArgs=*/nullptr);
1220 }
1221 
1222 ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1223                                               NamedDecl *Found,
1224                                               SourceLocation NameLoc,
1225                                               const Token &NextToken) {
1226   if (getCurMethodDecl() && SS.isEmpty())
1227     if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1228       return BuildIvarRefExpr(S, NameLoc, Ivar);
1229 
1230   // Reconstruct the lookup result.
1231   LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1232   Result.addDecl(Found);
1233   Result.resolveKind();
1234 
1235   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1236   return BuildDeclarationNameExpr(SS, Result, ADL);
1237 }
1238 
1239 Sema::TemplateNameKindForDiagnostics
1240 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1241   auto *TD = Name.getAsTemplateDecl();
1242   if (!TD)
1243     return TemplateNameKindForDiagnostics::DependentTemplate;
1244   if (isa<ClassTemplateDecl>(TD))
1245     return TemplateNameKindForDiagnostics::ClassTemplate;
1246   if (isa<FunctionTemplateDecl>(TD))
1247     return TemplateNameKindForDiagnostics::FunctionTemplate;
1248   if (isa<VarTemplateDecl>(TD))
1249     return TemplateNameKindForDiagnostics::VarTemplate;
1250   if (isa<TypeAliasTemplateDecl>(TD))
1251     return TemplateNameKindForDiagnostics::AliasTemplate;
1252   if (isa<TemplateTemplateParmDecl>(TD))
1253     return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1254   if (isa<ConceptDecl>(TD))
1255     return TemplateNameKindForDiagnostics::Concept;
1256   return TemplateNameKindForDiagnostics::DependentTemplate;
1257 }
1258 
1259 // Determines the context to return to after temporarily entering a
1260 // context.  This depends in an unnecessarily complicated way on the
1261 // exact ordering of callbacks from the parser.
1262 DeclContext *Sema::getContainingDC(DeclContext *DC) {
1263 
1264   // Functions defined inline within classes aren't parsed until we've
1265   // finished parsing the top-level class, so the top-level class is
1266   // the context we'll need to return to.
1267   // A Lambda call operator whose parent is a class must not be treated
1268   // as an inline member function.  A Lambda can be used legally
1269   // either as an in-class member initializer or a default argument.  These
1270   // are parsed once the class has been marked complete and so the containing
1271   // context would be the nested class (when the lambda is defined in one);
1272   // If the class is not complete, then the lambda is being used in an
1273   // ill-formed fashion (such as to specify the width of a bit-field, or
1274   // in an array-bound) - in which case we still want to return the
1275   // lexically containing DC (which could be a nested class).
1276   if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1277     DC = DC->getLexicalParent();
1278 
1279     // A function not defined within a class will always return to its
1280     // lexical context.
1281     if (!isa<CXXRecordDecl>(DC))
1282       return DC;
1283 
1284     // A C++ inline method/friend is parsed *after* the topmost class
1285     // it was declared in is fully parsed ("complete");  the topmost
1286     // class is the context we need to return to.
1287     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1288       DC = RD;
1289 
1290     // Return the declaration context of the topmost class the inline method is
1291     // declared in.
1292     return DC;
1293   }
1294 
1295   return DC->getLexicalParent();
1296 }
1297 
1298 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1299   assert(getContainingDC(DC) == CurContext &&
1300       "The next DeclContext should be lexically contained in the current one.");
1301   CurContext = DC;
1302   S->setEntity(DC);
1303 }
1304 
1305 void Sema::PopDeclContext() {
1306   assert(CurContext && "DeclContext imbalance!");
1307 
1308   CurContext = getContainingDC(CurContext);
1309   assert(CurContext && "Popped translation unit!");
1310 }
1311 
1312 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1313                                                                     Decl *D) {
1314   // Unlike PushDeclContext, the context to which we return is not necessarily
1315   // the containing DC of TD, because the new context will be some pre-existing
1316   // TagDecl definition instead of a fresh one.
1317   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1318   CurContext = cast<TagDecl>(D)->getDefinition();
1319   assert(CurContext && "skipping definition of undefined tag");
1320   // Start lookups from the parent of the current context; we don't want to look
1321   // into the pre-existing complete definition.
1322   S->setEntity(CurContext->getLookupParent());
1323   return Result;
1324 }
1325 
1326 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1327   CurContext = static_cast<decltype(CurContext)>(Context);
1328 }
1329 
1330 /// EnterDeclaratorContext - Used when we must lookup names in the context
1331 /// of a declarator's nested name specifier.
1332 ///
1333 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1334   // C++0x [basic.lookup.unqual]p13:
1335   //   A name used in the definition of a static data member of class
1336   //   X (after the qualified-id of the static member) is looked up as
1337   //   if the name was used in a member function of X.
1338   // C++0x [basic.lookup.unqual]p14:
1339   //   If a variable member of a namespace is defined outside of the
1340   //   scope of its namespace then any name used in the definition of
1341   //   the variable member (after the declarator-id) is looked up as
1342   //   if the definition of the variable member occurred in its
1343   //   namespace.
1344   // Both of these imply that we should push a scope whose context
1345   // is the semantic context of the declaration.  We can't use
1346   // PushDeclContext here because that context is not necessarily
1347   // lexically contained in the current context.  Fortunately,
1348   // the containing scope should have the appropriate information.
1349 
1350   assert(!S->getEntity() && "scope already has entity");
1351 
1352 #ifndef NDEBUG
1353   Scope *Ancestor = S->getParent();
1354   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1355   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1356 #endif
1357 
1358   CurContext = DC;
1359   S->setEntity(DC);
1360 }
1361 
1362 void Sema::ExitDeclaratorContext(Scope *S) {
1363   assert(S->getEntity() == CurContext && "Context imbalance!");
1364 
1365   // Switch back to the lexical context.  The safety of this is
1366   // enforced by an assert in EnterDeclaratorContext.
1367   Scope *Ancestor = S->getParent();
1368   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1369   CurContext = Ancestor->getEntity();
1370 
1371   // We don't need to do anything with the scope, which is going to
1372   // disappear.
1373 }
1374 
1375 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1376   // We assume that the caller has already called
1377   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1378   FunctionDecl *FD = D->getAsFunction();
1379   if (!FD)
1380     return;
1381 
1382   // Same implementation as PushDeclContext, but enters the context
1383   // from the lexical parent, rather than the top-level class.
1384   assert(CurContext == FD->getLexicalParent() &&
1385     "The next DeclContext should be lexically contained in the current one.");
1386   CurContext = FD;
1387   S->setEntity(CurContext);
1388 
1389   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1390     ParmVarDecl *Param = FD->getParamDecl(P);
1391     // If the parameter has an identifier, then add it to the scope
1392     if (Param->getIdentifier()) {
1393       S->AddDecl(Param);
1394       IdResolver.AddDecl(Param);
1395     }
1396   }
1397 }
1398 
1399 void Sema::ActOnExitFunctionContext() {
1400   // Same implementation as PopDeclContext, but returns to the lexical parent,
1401   // rather than the top-level class.
1402   assert(CurContext && "DeclContext imbalance!");
1403   CurContext = CurContext->getLexicalParent();
1404   assert(CurContext && "Popped translation unit!");
1405 }
1406 
1407 /// Determine whether we allow overloading of the function
1408 /// PrevDecl with another declaration.
1409 ///
1410 /// This routine determines whether overloading is possible, not
1411 /// whether some new function is actually an overload. It will return
1412 /// true in C++ (where we can always provide overloads) or, as an
1413 /// extension, in C when the previous function is already an
1414 /// overloaded function declaration or has the "overloadable"
1415 /// attribute.
1416 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1417                                        ASTContext &Context,
1418                                        const FunctionDecl *New) {
1419   if (Context.getLangOpts().CPlusPlus)
1420     return true;
1421 
1422   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1423     return true;
1424 
1425   return Previous.getResultKind() == LookupResult::Found &&
1426          (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1427           New->hasAttr<OverloadableAttr>());
1428 }
1429 
1430 /// Add this decl to the scope shadowed decl chains.
1431 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1432   // Move up the scope chain until we find the nearest enclosing
1433   // non-transparent context. The declaration will be introduced into this
1434   // scope.
1435   while (S->getEntity() && S->getEntity()->isTransparentContext())
1436     S = S->getParent();
1437 
1438   // Add scoped declarations into their context, so that they can be
1439   // found later. Declarations without a context won't be inserted
1440   // into any context.
1441   if (AddToContext)
1442     CurContext->addDecl(D);
1443 
1444   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1445   // are function-local declarations.
1446   if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1447       !D->getDeclContext()->getRedeclContext()->Equals(
1448         D->getLexicalDeclContext()->getRedeclContext()) &&
1449       !D->getLexicalDeclContext()->isFunctionOrMethod())
1450     return;
1451 
1452   // Template instantiations should also not be pushed into scope.
1453   if (isa<FunctionDecl>(D) &&
1454       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1455     return;
1456 
1457   // If this replaces anything in the current scope,
1458   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1459                                IEnd = IdResolver.end();
1460   for (; I != IEnd; ++I) {
1461     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1462       S->RemoveDecl(*I);
1463       IdResolver.RemoveDecl(*I);
1464 
1465       // Should only need to replace one decl.
1466       break;
1467     }
1468   }
1469 
1470   S->AddDecl(D);
1471 
1472   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1473     // Implicitly-generated labels may end up getting generated in an order that
1474     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1475     // the label at the appropriate place in the identifier chain.
1476     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1477       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1478       if (IDC == CurContext) {
1479         if (!S->isDeclScope(*I))
1480           continue;
1481       } else if (IDC->Encloses(CurContext))
1482         break;
1483     }
1484 
1485     IdResolver.InsertDeclAfter(I, D);
1486   } else {
1487     IdResolver.AddDecl(D);
1488   }
1489 }
1490 
1491 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1492                          bool AllowInlineNamespace) {
1493   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1494 }
1495 
1496 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1497   DeclContext *TargetDC = DC->getPrimaryContext();
1498   do {
1499     if (DeclContext *ScopeDC = S->getEntity())
1500       if (ScopeDC->getPrimaryContext() == TargetDC)
1501         return S;
1502   } while ((S = S->getParent()));
1503 
1504   return nullptr;
1505 }
1506 
1507 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1508                                             DeclContext*,
1509                                             ASTContext&);
1510 
1511 /// Filters out lookup results that don't fall within the given scope
1512 /// as determined by isDeclInScope.
1513 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1514                                 bool ConsiderLinkage,
1515                                 bool AllowInlineNamespace) {
1516   LookupResult::Filter F = R.makeFilter();
1517   while (F.hasNext()) {
1518     NamedDecl *D = F.next();
1519 
1520     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1521       continue;
1522 
1523     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1524       continue;
1525 
1526     F.erase();
1527   }
1528 
1529   F.done();
1530 }
1531 
1532 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1533 /// have compatible owning modules.
1534 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1535   // FIXME: The Modules TS is not clear about how friend declarations are
1536   // to be treated. It's not meaningful to have different owning modules for
1537   // linkage in redeclarations of the same entity, so for now allow the
1538   // redeclaration and change the owning modules to match.
1539   if (New->getFriendObjectKind() &&
1540       Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1541     New->setLocalOwningModule(Old->getOwningModule());
1542     makeMergedDefinitionVisible(New);
1543     return false;
1544   }
1545 
1546   Module *NewM = New->getOwningModule();
1547   Module *OldM = Old->getOwningModule();
1548 
1549   if (NewM && NewM->Kind == Module::PrivateModuleFragment)
1550     NewM = NewM->Parent;
1551   if (OldM && OldM->Kind == Module::PrivateModuleFragment)
1552     OldM = OldM->Parent;
1553 
1554   if (NewM == OldM)
1555     return false;
1556 
1557   bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1558   bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1559   if (NewIsModuleInterface || OldIsModuleInterface) {
1560     // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1561     //   if a declaration of D [...] appears in the purview of a module, all
1562     //   other such declarations shall appear in the purview of the same module
1563     Diag(New->getLocation(), diag::err_mismatched_owning_module)
1564       << New
1565       << NewIsModuleInterface
1566       << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1567       << OldIsModuleInterface
1568       << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1569     Diag(Old->getLocation(), diag::note_previous_declaration);
1570     New->setInvalidDecl();
1571     return true;
1572   }
1573 
1574   return false;
1575 }
1576 
1577 static bool isUsingDecl(NamedDecl *D) {
1578   return isa<UsingShadowDecl>(D) ||
1579          isa<UnresolvedUsingTypenameDecl>(D) ||
1580          isa<UnresolvedUsingValueDecl>(D);
1581 }
1582 
1583 /// Removes using shadow declarations from the lookup results.
1584 static void RemoveUsingDecls(LookupResult &R) {
1585   LookupResult::Filter F = R.makeFilter();
1586   while (F.hasNext())
1587     if (isUsingDecl(F.next()))
1588       F.erase();
1589 
1590   F.done();
1591 }
1592 
1593 /// Check for this common pattern:
1594 /// @code
1595 /// class S {
1596 ///   S(const S&); // DO NOT IMPLEMENT
1597 ///   void operator=(const S&); // DO NOT IMPLEMENT
1598 /// };
1599 /// @endcode
1600 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1601   // FIXME: Should check for private access too but access is set after we get
1602   // the decl here.
1603   if (D->doesThisDeclarationHaveABody())
1604     return false;
1605 
1606   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1607     return CD->isCopyConstructor();
1608   return D->isCopyAssignmentOperator();
1609 }
1610 
1611 // We need this to handle
1612 //
1613 // typedef struct {
1614 //   void *foo() { return 0; }
1615 // } A;
1616 //
1617 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1618 // for example. If 'A', foo will have external linkage. If we have '*A',
1619 // foo will have no linkage. Since we can't know until we get to the end
1620 // of the typedef, this function finds out if D might have non-external linkage.
1621 // Callers should verify at the end of the TU if it D has external linkage or
1622 // not.
1623 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1624   const DeclContext *DC = D->getDeclContext();
1625   while (!DC->isTranslationUnit()) {
1626     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1627       if (!RD->hasNameForLinkage())
1628         return true;
1629     }
1630     DC = DC->getParent();
1631   }
1632 
1633   return !D->isExternallyVisible();
1634 }
1635 
1636 // FIXME: This needs to be refactored; some other isInMainFile users want
1637 // these semantics.
1638 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1639   if (S.TUKind != TU_Complete)
1640     return false;
1641   return S.SourceMgr.isInMainFile(Loc);
1642 }
1643 
1644 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1645   assert(D);
1646 
1647   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1648     return false;
1649 
1650   // Ignore all entities declared within templates, and out-of-line definitions
1651   // of members of class templates.
1652   if (D->getDeclContext()->isDependentContext() ||
1653       D->getLexicalDeclContext()->isDependentContext())
1654     return false;
1655 
1656   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1657     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1658       return false;
1659     // A non-out-of-line declaration of a member specialization was implicitly
1660     // instantiated; it's the out-of-line declaration that we're interested in.
1661     if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1662         FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1663       return false;
1664 
1665     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1666       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1667         return false;
1668     } else {
1669       // 'static inline' functions are defined in headers; don't warn.
1670       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1671         return false;
1672     }
1673 
1674     if (FD->doesThisDeclarationHaveABody() &&
1675         Context.DeclMustBeEmitted(FD))
1676       return false;
1677   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1678     // Constants and utility variables are defined in headers with internal
1679     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1680     // like "inline".)
1681     if (!isMainFileLoc(*this, VD->getLocation()))
1682       return false;
1683 
1684     if (Context.DeclMustBeEmitted(VD))
1685       return false;
1686 
1687     if (VD->isStaticDataMember() &&
1688         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1689       return false;
1690     if (VD->isStaticDataMember() &&
1691         VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1692         VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1693       return false;
1694 
1695     if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1696       return false;
1697   } else {
1698     return false;
1699   }
1700 
1701   // Only warn for unused decls internal to the translation unit.
1702   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1703   // for inline functions defined in the main source file, for instance.
1704   return mightHaveNonExternalLinkage(D);
1705 }
1706 
1707 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1708   if (!D)
1709     return;
1710 
1711   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1712     const FunctionDecl *First = FD->getFirstDecl();
1713     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1714       return; // First should already be in the vector.
1715   }
1716 
1717   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1718     const VarDecl *First = VD->getFirstDecl();
1719     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1720       return; // First should already be in the vector.
1721   }
1722 
1723   if (ShouldWarnIfUnusedFileScopedDecl(D))
1724     UnusedFileScopedDecls.push_back(D);
1725 }
1726 
1727 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1728   if (D->isInvalidDecl())
1729     return false;
1730 
1731   bool Referenced = false;
1732   if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1733     // For a decomposition declaration, warn if none of the bindings are
1734     // referenced, instead of if the variable itself is referenced (which
1735     // it is, by the bindings' expressions).
1736     for (auto *BD : DD->bindings()) {
1737       if (BD->isReferenced()) {
1738         Referenced = true;
1739         break;
1740       }
1741     }
1742   } else if (!D->getDeclName()) {
1743     return false;
1744   } else if (D->isReferenced() || D->isUsed()) {
1745     Referenced = true;
1746   }
1747 
1748   if (Referenced || D->hasAttr<UnusedAttr>() ||
1749       D->hasAttr<ObjCPreciseLifetimeAttr>())
1750     return false;
1751 
1752   if (isa<LabelDecl>(D))
1753     return true;
1754 
1755   // Except for labels, we only care about unused decls that are local to
1756   // functions.
1757   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1758   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1759     // For dependent types, the diagnostic is deferred.
1760     WithinFunction =
1761         WithinFunction || (R->isLocalClass() && !R->isDependentType());
1762   if (!WithinFunction)
1763     return false;
1764 
1765   if (isa<TypedefNameDecl>(D))
1766     return true;
1767 
1768   // White-list anything that isn't a local variable.
1769   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1770     return false;
1771 
1772   // Types of valid local variables should be complete, so this should succeed.
1773   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1774 
1775     // White-list anything with an __attribute__((unused)) type.
1776     const auto *Ty = VD->getType().getTypePtr();
1777 
1778     // Only look at the outermost level of typedef.
1779     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1780       if (TT->getDecl()->hasAttr<UnusedAttr>())
1781         return false;
1782     }
1783 
1784     // If we failed to complete the type for some reason, or if the type is
1785     // dependent, don't diagnose the variable.
1786     if (Ty->isIncompleteType() || Ty->isDependentType())
1787       return false;
1788 
1789     // Look at the element type to ensure that the warning behaviour is
1790     // consistent for both scalars and arrays.
1791     Ty = Ty->getBaseElementTypeUnsafe();
1792 
1793     if (const TagType *TT = Ty->getAs<TagType>()) {
1794       const TagDecl *Tag = TT->getDecl();
1795       if (Tag->hasAttr<UnusedAttr>())
1796         return false;
1797 
1798       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1799         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1800           return false;
1801 
1802         if (const Expr *Init = VD->getInit()) {
1803           if (const ExprWithCleanups *Cleanups =
1804                   dyn_cast<ExprWithCleanups>(Init))
1805             Init = Cleanups->getSubExpr();
1806           const CXXConstructExpr *Construct =
1807             dyn_cast<CXXConstructExpr>(Init);
1808           if (Construct && !Construct->isElidable()) {
1809             CXXConstructorDecl *CD = Construct->getConstructor();
1810             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1811                 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1812               return false;
1813           }
1814 
1815           // Suppress the warning if we don't know how this is constructed, and
1816           // it could possibly be non-trivial constructor.
1817           if (Init->isTypeDependent())
1818             for (const CXXConstructorDecl *Ctor : RD->ctors())
1819               if (!Ctor->isTrivial())
1820                 return false;
1821         }
1822       }
1823     }
1824 
1825     // TODO: __attribute__((unused)) templates?
1826   }
1827 
1828   return true;
1829 }
1830 
1831 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1832                                      FixItHint &Hint) {
1833   if (isa<LabelDecl>(D)) {
1834     SourceLocation AfterColon = Lexer::findLocationAfterToken(
1835         D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1836         true);
1837     if (AfterColon.isInvalid())
1838       return;
1839     Hint = FixItHint::CreateRemoval(
1840         CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1841   }
1842 }
1843 
1844 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1845   if (D->getTypeForDecl()->isDependentType())
1846     return;
1847 
1848   for (auto *TmpD : D->decls()) {
1849     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1850       DiagnoseUnusedDecl(T);
1851     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1852       DiagnoseUnusedNestedTypedefs(R);
1853   }
1854 }
1855 
1856 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1857 /// unless they are marked attr(unused).
1858 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1859   if (!ShouldDiagnoseUnusedDecl(D))
1860     return;
1861 
1862   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1863     // typedefs can be referenced later on, so the diagnostics are emitted
1864     // at end-of-translation-unit.
1865     UnusedLocalTypedefNameCandidates.insert(TD);
1866     return;
1867   }
1868 
1869   FixItHint Hint;
1870   GenerateFixForUnusedDecl(D, Context, Hint);
1871 
1872   unsigned DiagID;
1873   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1874     DiagID = diag::warn_unused_exception_param;
1875   else if (isa<LabelDecl>(D))
1876     DiagID = diag::warn_unused_label;
1877   else
1878     DiagID = diag::warn_unused_variable;
1879 
1880   Diag(D->getLocation(), DiagID) << D << Hint;
1881 }
1882 
1883 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1884   // Verify that we have no forward references left.  If so, there was a goto
1885   // or address of a label taken, but no definition of it.  Label fwd
1886   // definitions are indicated with a null substmt which is also not a resolved
1887   // MS inline assembly label name.
1888   bool Diagnose = false;
1889   if (L->isMSAsmLabel())
1890     Diagnose = !L->isResolvedMSAsmLabel();
1891   else
1892     Diagnose = L->getStmt() == nullptr;
1893   if (Diagnose)
1894     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1895 }
1896 
1897 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1898   S->mergeNRVOIntoParent();
1899 
1900   if (S->decl_empty()) return;
1901   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1902          "Scope shouldn't contain decls!");
1903 
1904   for (auto *TmpD : S->decls()) {
1905     assert(TmpD && "This decl didn't get pushed??");
1906 
1907     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1908     NamedDecl *D = cast<NamedDecl>(TmpD);
1909 
1910     // Diagnose unused variables in this scope.
1911     if (!S->hasUnrecoverableErrorOccurred()) {
1912       DiagnoseUnusedDecl(D);
1913       if (const auto *RD = dyn_cast<RecordDecl>(D))
1914         DiagnoseUnusedNestedTypedefs(RD);
1915     }
1916 
1917     if (!D->getDeclName()) continue;
1918 
1919     // If this was a forward reference to a label, verify it was defined.
1920     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1921       CheckPoppedLabel(LD, *this);
1922 
1923     // Remove this name from our lexical scope, and warn on it if we haven't
1924     // already.
1925     IdResolver.RemoveDecl(D);
1926     auto ShadowI = ShadowingDecls.find(D);
1927     if (ShadowI != ShadowingDecls.end()) {
1928       if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1929         Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1930             << D << FD << FD->getParent();
1931         Diag(FD->getLocation(), diag::note_previous_declaration);
1932       }
1933       ShadowingDecls.erase(ShadowI);
1934     }
1935   }
1936 }
1937 
1938 /// Look for an Objective-C class in the translation unit.
1939 ///
1940 /// \param Id The name of the Objective-C class we're looking for. If
1941 /// typo-correction fixes this name, the Id will be updated
1942 /// to the fixed name.
1943 ///
1944 /// \param IdLoc The location of the name in the translation unit.
1945 ///
1946 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1947 /// if there is no class with the given name.
1948 ///
1949 /// \returns The declaration of the named Objective-C class, or NULL if the
1950 /// class could not be found.
1951 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1952                                               SourceLocation IdLoc,
1953                                               bool DoTypoCorrection) {
1954   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1955   // creation from this context.
1956   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1957 
1958   if (!IDecl && DoTypoCorrection) {
1959     // Perform typo correction at the given location, but only if we
1960     // find an Objective-C class name.
1961     DeclFilterCCC<ObjCInterfaceDecl> CCC{};
1962     if (TypoCorrection C =
1963             CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1964                         TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
1965       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1966       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1967       Id = IDecl->getIdentifier();
1968     }
1969   }
1970   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1971   // This routine must always return a class definition, if any.
1972   if (Def && Def->getDefinition())
1973       Def = Def->getDefinition();
1974   return Def;
1975 }
1976 
1977 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1978 /// from S, where a non-field would be declared. This routine copes
1979 /// with the difference between C and C++ scoping rules in structs and
1980 /// unions. For example, the following code is well-formed in C but
1981 /// ill-formed in C++:
1982 /// @code
1983 /// struct S6 {
1984 ///   enum { BAR } e;
1985 /// };
1986 ///
1987 /// void test_S6() {
1988 ///   struct S6 a;
1989 ///   a.e = BAR;
1990 /// }
1991 /// @endcode
1992 /// For the declaration of BAR, this routine will return a different
1993 /// scope. The scope S will be the scope of the unnamed enumeration
1994 /// within S6. In C++, this routine will return the scope associated
1995 /// with S6, because the enumeration's scope is a transparent
1996 /// context but structures can contain non-field names. In C, this
1997 /// routine will return the translation unit scope, since the
1998 /// enumeration's scope is a transparent context and structures cannot
1999 /// contain non-field names.
2000 Scope *Sema::getNonFieldDeclScope(Scope *S) {
2001   while (((S->getFlags() & Scope::DeclScope) == 0) ||
2002          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2003          (S->isClassScope() && !getLangOpts().CPlusPlus))
2004     S = S->getParent();
2005   return S;
2006 }
2007 
2008 /// Looks up the declaration of "struct objc_super" and
2009 /// saves it for later use in building builtin declaration of
2010 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
2011 /// pre-existing declaration exists no action takes place.
2012 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
2013                                         IdentifierInfo *II) {
2014   if (!II->isStr("objc_msgSendSuper"))
2015     return;
2016   ASTContext &Context = ThisSema.Context;
2017 
2018   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
2019                       SourceLocation(), Sema::LookupTagName);
2020   ThisSema.LookupName(Result, S);
2021   if (Result.getResultKind() == LookupResult::Found)
2022     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
2023       Context.setObjCSuperType(Context.getTagDeclType(TD));
2024 }
2025 
2026 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2027                                ASTContext::GetBuiltinTypeError Error) {
2028   switch (Error) {
2029   case ASTContext::GE_None:
2030     return "";
2031   case ASTContext::GE_Missing_type:
2032     return BuiltinInfo.getHeaderName(ID);
2033   case ASTContext::GE_Missing_stdio:
2034     return "stdio.h";
2035   case ASTContext::GE_Missing_setjmp:
2036     return "setjmp.h";
2037   case ASTContext::GE_Missing_ucontext:
2038     return "ucontext.h";
2039   }
2040   llvm_unreachable("unhandled error kind");
2041 }
2042 
2043 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2044 /// file scope.  lazily create a decl for it. ForRedeclaration is true
2045 /// if we're creating this built-in in anticipation of redeclaring the
2046 /// built-in.
2047 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2048                                      Scope *S, bool ForRedeclaration,
2049                                      SourceLocation Loc) {
2050   LookupPredefedObjCSuperType(*this, S, II);
2051 
2052   ASTContext::GetBuiltinTypeError Error;
2053   QualType R = Context.GetBuiltinType(ID, Error);
2054   if (Error) {
2055     if (!ForRedeclaration)
2056       return nullptr;
2057 
2058     // If we have a builtin without an associated type we should not emit a
2059     // warning when we were not able to find a type for it.
2060     if (Error == ASTContext::GE_Missing_type)
2061       return nullptr;
2062 
2063     // If we could not find a type for setjmp it is because the jmp_buf type was
2064     // not defined prior to the setjmp declaration.
2065     if (Error == ASTContext::GE_Missing_setjmp) {
2066       Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2067           << Context.BuiltinInfo.getName(ID);
2068       return nullptr;
2069     }
2070 
2071     // Generally, we emit a warning that the declaration requires the
2072     // appropriate header.
2073     Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2074         << getHeaderName(Context.BuiltinInfo, ID, Error)
2075         << Context.BuiltinInfo.getName(ID);
2076     return nullptr;
2077   }
2078 
2079   if (!ForRedeclaration &&
2080       (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2081        Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2082     Diag(Loc, diag::ext_implicit_lib_function_decl)
2083         << Context.BuiltinInfo.getName(ID) << R;
2084     if (Context.BuiltinInfo.getHeaderName(ID) &&
2085         !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
2086       Diag(Loc, diag::note_include_header_or_declare)
2087           << Context.BuiltinInfo.getHeaderName(ID)
2088           << Context.BuiltinInfo.getName(ID);
2089   }
2090 
2091   if (R.isNull())
2092     return nullptr;
2093 
2094   DeclContext *Parent = Context.getTranslationUnitDecl();
2095   if (getLangOpts().CPlusPlus) {
2096     LinkageSpecDecl *CLinkageDecl =
2097         LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
2098                                 LinkageSpecDecl::lang_c, false);
2099     CLinkageDecl->setImplicit();
2100     Parent->addDecl(CLinkageDecl);
2101     Parent = CLinkageDecl;
2102   }
2103 
2104   FunctionDecl *New = FunctionDecl::Create(Context,
2105                                            Parent,
2106                                            Loc, Loc, II, R, /*TInfo=*/nullptr,
2107                                            SC_Extern,
2108                                            false,
2109                                            R->isFunctionProtoType());
2110   New->setImplicit();
2111 
2112   // Create Decl objects for each parameter, adding them to the
2113   // FunctionDecl.
2114   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
2115     SmallVector<ParmVarDecl*, 16> Params;
2116     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2117       ParmVarDecl *parm =
2118           ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
2119                               nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
2120                               SC_None, nullptr);
2121       parm->setScopeInfo(0, i);
2122       Params.push_back(parm);
2123     }
2124     New->setParams(Params);
2125   }
2126 
2127   AddKnownFunctionAttributes(New);
2128   RegisterLocallyScopedExternCDecl(New, S);
2129 
2130   // TUScope is the translation-unit scope to insert this function into.
2131   // FIXME: This is hideous. We need to teach PushOnScopeChains to
2132   // relate Scopes to DeclContexts, and probably eliminate CurContext
2133   // entirely, but we're not there yet.
2134   DeclContext *SavedContext = CurContext;
2135   CurContext = Parent;
2136   PushOnScopeChains(New, TUScope);
2137   CurContext = SavedContext;
2138   return New;
2139 }
2140 
2141 /// Typedef declarations don't have linkage, but they still denote the same
2142 /// entity if their types are the same.
2143 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2144 /// isSameEntity.
2145 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2146                                                      TypedefNameDecl *Decl,
2147                                                      LookupResult &Previous) {
2148   // This is only interesting when modules are enabled.
2149   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2150     return;
2151 
2152   // Empty sets are uninteresting.
2153   if (Previous.empty())
2154     return;
2155 
2156   LookupResult::Filter Filter = Previous.makeFilter();
2157   while (Filter.hasNext()) {
2158     NamedDecl *Old = Filter.next();
2159 
2160     // Non-hidden declarations are never ignored.
2161     if (S.isVisible(Old))
2162       continue;
2163 
2164     // Declarations of the same entity are not ignored, even if they have
2165     // different linkages.
2166     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2167       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2168                                 Decl->getUnderlyingType()))
2169         continue;
2170 
2171       // If both declarations give a tag declaration a typedef name for linkage
2172       // purposes, then they declare the same entity.
2173       if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2174           Decl->getAnonDeclWithTypedefName())
2175         continue;
2176     }
2177 
2178     Filter.erase();
2179   }
2180 
2181   Filter.done();
2182 }
2183 
2184 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2185   QualType OldType;
2186   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2187     OldType = OldTypedef->getUnderlyingType();
2188   else
2189     OldType = Context.getTypeDeclType(Old);
2190   QualType NewType = New->getUnderlyingType();
2191 
2192   if (NewType->isVariablyModifiedType()) {
2193     // Must not redefine a typedef with a variably-modified type.
2194     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2195     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2196       << Kind << NewType;
2197     if (Old->getLocation().isValid())
2198       notePreviousDefinition(Old, New->getLocation());
2199     New->setInvalidDecl();
2200     return true;
2201   }
2202 
2203   if (OldType != NewType &&
2204       !OldType->isDependentType() &&
2205       !NewType->isDependentType() &&
2206       !Context.hasSameType(OldType, NewType)) {
2207     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2208     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2209       << Kind << NewType << OldType;
2210     if (Old->getLocation().isValid())
2211       notePreviousDefinition(Old, New->getLocation());
2212     New->setInvalidDecl();
2213     return true;
2214   }
2215   return false;
2216 }
2217 
2218 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2219 /// same name and scope as a previous declaration 'Old'.  Figure out
2220 /// how to resolve this situation, merging decls or emitting
2221 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2222 ///
2223 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2224                                 LookupResult &OldDecls) {
2225   // If the new decl is known invalid already, don't bother doing any
2226   // merging checks.
2227   if (New->isInvalidDecl()) return;
2228 
2229   // Allow multiple definitions for ObjC built-in typedefs.
2230   // FIXME: Verify the underlying types are equivalent!
2231   if (getLangOpts().ObjC) {
2232     const IdentifierInfo *TypeID = New->getIdentifier();
2233     switch (TypeID->getLength()) {
2234     default: break;
2235     case 2:
2236       {
2237         if (!TypeID->isStr("id"))
2238           break;
2239         QualType T = New->getUnderlyingType();
2240         if (!T->isPointerType())
2241           break;
2242         if (!T->isVoidPointerType()) {
2243           QualType PT = T->castAs<PointerType>()->getPointeeType();
2244           if (!PT->isStructureType())
2245             break;
2246         }
2247         Context.setObjCIdRedefinitionType(T);
2248         // Install the built-in type for 'id', ignoring the current definition.
2249         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2250         return;
2251       }
2252     case 5:
2253       if (!TypeID->isStr("Class"))
2254         break;
2255       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2256       // Install the built-in type for 'Class', ignoring the current definition.
2257       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2258       return;
2259     case 3:
2260       if (!TypeID->isStr("SEL"))
2261         break;
2262       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2263       // Install the built-in type for 'SEL', ignoring the current definition.
2264       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2265       return;
2266     }
2267     // Fall through - the typedef name was not a builtin type.
2268   }
2269 
2270   // Verify the old decl was also a type.
2271   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2272   if (!Old) {
2273     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2274       << New->getDeclName();
2275 
2276     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2277     if (OldD->getLocation().isValid())
2278       notePreviousDefinition(OldD, New->getLocation());
2279 
2280     return New->setInvalidDecl();
2281   }
2282 
2283   // If the old declaration is invalid, just give up here.
2284   if (Old->isInvalidDecl())
2285     return New->setInvalidDecl();
2286 
2287   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2288     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2289     auto *NewTag = New->getAnonDeclWithTypedefName();
2290     NamedDecl *Hidden = nullptr;
2291     if (OldTag && NewTag &&
2292         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2293         !hasVisibleDefinition(OldTag, &Hidden)) {
2294       // There is a definition of this tag, but it is not visible. Use it
2295       // instead of our tag.
2296       New->setTypeForDecl(OldTD->getTypeForDecl());
2297       if (OldTD->isModed())
2298         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2299                                     OldTD->getUnderlyingType());
2300       else
2301         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2302 
2303       // Make the old tag definition visible.
2304       makeMergedDefinitionVisible(Hidden);
2305 
2306       // If this was an unscoped enumeration, yank all of its enumerators
2307       // out of the scope.
2308       if (isa<EnumDecl>(NewTag)) {
2309         Scope *EnumScope = getNonFieldDeclScope(S);
2310         for (auto *D : NewTag->decls()) {
2311           auto *ED = cast<EnumConstantDecl>(D);
2312           assert(EnumScope->isDeclScope(ED));
2313           EnumScope->RemoveDecl(ED);
2314           IdResolver.RemoveDecl(ED);
2315           ED->getLexicalDeclContext()->removeDecl(ED);
2316         }
2317       }
2318     }
2319   }
2320 
2321   // If the typedef types are not identical, reject them in all languages and
2322   // with any extensions enabled.
2323   if (isIncompatibleTypedef(Old, New))
2324     return;
2325 
2326   // The types match.  Link up the redeclaration chain and merge attributes if
2327   // the old declaration was a typedef.
2328   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2329     New->setPreviousDecl(Typedef);
2330     mergeDeclAttributes(New, Old);
2331   }
2332 
2333   if (getLangOpts().MicrosoftExt)
2334     return;
2335 
2336   if (getLangOpts().CPlusPlus) {
2337     // C++ [dcl.typedef]p2:
2338     //   In a given non-class scope, a typedef specifier can be used to
2339     //   redefine the name of any type declared in that scope to refer
2340     //   to the type to which it already refers.
2341     if (!isa<CXXRecordDecl>(CurContext))
2342       return;
2343 
2344     // C++0x [dcl.typedef]p4:
2345     //   In a given class scope, a typedef specifier can be used to redefine
2346     //   any class-name declared in that scope that is not also a typedef-name
2347     //   to refer to the type to which it already refers.
2348     //
2349     // This wording came in via DR424, which was a correction to the
2350     // wording in DR56, which accidentally banned code like:
2351     //
2352     //   struct S {
2353     //     typedef struct A { } A;
2354     //   };
2355     //
2356     // in the C++03 standard. We implement the C++0x semantics, which
2357     // allow the above but disallow
2358     //
2359     //   struct S {
2360     //     typedef int I;
2361     //     typedef int I;
2362     //   };
2363     //
2364     // since that was the intent of DR56.
2365     if (!isa<TypedefNameDecl>(Old))
2366       return;
2367 
2368     Diag(New->getLocation(), diag::err_redefinition)
2369       << New->getDeclName();
2370     notePreviousDefinition(Old, New->getLocation());
2371     return New->setInvalidDecl();
2372   }
2373 
2374   // Modules always permit redefinition of typedefs, as does C11.
2375   if (getLangOpts().Modules || getLangOpts().C11)
2376     return;
2377 
2378   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2379   // is normally mapped to an error, but can be controlled with
2380   // -Wtypedef-redefinition.  If either the original or the redefinition is
2381   // in a system header, don't emit this for compatibility with GCC.
2382   if (getDiagnostics().getSuppressSystemWarnings() &&
2383       // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2384       (Old->isImplicit() ||
2385        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2386        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2387     return;
2388 
2389   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2390     << New->getDeclName();
2391   notePreviousDefinition(Old, New->getLocation());
2392 }
2393 
2394 /// DeclhasAttr - returns true if decl Declaration already has the target
2395 /// attribute.
2396 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2397   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2398   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2399   for (const auto *i : D->attrs())
2400     if (i->getKind() == A->getKind()) {
2401       if (Ann) {
2402         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2403           return true;
2404         continue;
2405       }
2406       // FIXME: Don't hardcode this check
2407       if (OA && isa<OwnershipAttr>(i))
2408         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2409       return true;
2410     }
2411 
2412   return false;
2413 }
2414 
2415 static bool isAttributeTargetADefinition(Decl *D) {
2416   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2417     return VD->isThisDeclarationADefinition();
2418   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2419     return TD->isCompleteDefinition() || TD->isBeingDefined();
2420   return true;
2421 }
2422 
2423 /// Merge alignment attributes from \p Old to \p New, taking into account the
2424 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2425 ///
2426 /// \return \c true if any attributes were added to \p New.
2427 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2428   // Look for alignas attributes on Old, and pick out whichever attribute
2429   // specifies the strictest alignment requirement.
2430   AlignedAttr *OldAlignasAttr = nullptr;
2431   AlignedAttr *OldStrictestAlignAttr = nullptr;
2432   unsigned OldAlign = 0;
2433   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2434     // FIXME: We have no way of representing inherited dependent alignments
2435     // in a case like:
2436     //   template<int A, int B> struct alignas(A) X;
2437     //   template<int A, int B> struct alignas(B) X {};
2438     // For now, we just ignore any alignas attributes which are not on the
2439     // definition in such a case.
2440     if (I->isAlignmentDependent())
2441       return false;
2442 
2443     if (I->isAlignas())
2444       OldAlignasAttr = I;
2445 
2446     unsigned Align = I->getAlignment(S.Context);
2447     if (Align > OldAlign) {
2448       OldAlign = Align;
2449       OldStrictestAlignAttr = I;
2450     }
2451   }
2452 
2453   // Look for alignas attributes on New.
2454   AlignedAttr *NewAlignasAttr = nullptr;
2455   unsigned NewAlign = 0;
2456   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2457     if (I->isAlignmentDependent())
2458       return false;
2459 
2460     if (I->isAlignas())
2461       NewAlignasAttr = I;
2462 
2463     unsigned Align = I->getAlignment(S.Context);
2464     if (Align > NewAlign)
2465       NewAlign = Align;
2466   }
2467 
2468   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2469     // Both declarations have 'alignas' attributes. We require them to match.
2470     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2471     // fall short. (If two declarations both have alignas, they must both match
2472     // every definition, and so must match each other if there is a definition.)
2473 
2474     // If either declaration only contains 'alignas(0)' specifiers, then it
2475     // specifies the natural alignment for the type.
2476     if (OldAlign == 0 || NewAlign == 0) {
2477       QualType Ty;
2478       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2479         Ty = VD->getType();
2480       else
2481         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2482 
2483       if (OldAlign == 0)
2484         OldAlign = S.Context.getTypeAlign(Ty);
2485       if (NewAlign == 0)
2486         NewAlign = S.Context.getTypeAlign(Ty);
2487     }
2488 
2489     if (OldAlign != NewAlign) {
2490       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2491         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2492         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2493       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2494     }
2495   }
2496 
2497   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2498     // C++11 [dcl.align]p6:
2499     //   if any declaration of an entity has an alignment-specifier,
2500     //   every defining declaration of that entity shall specify an
2501     //   equivalent alignment.
2502     // C11 6.7.5/7:
2503     //   If the definition of an object does not have an alignment
2504     //   specifier, any other declaration of that object shall also
2505     //   have no alignment specifier.
2506     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2507       << OldAlignasAttr;
2508     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2509       << OldAlignasAttr;
2510   }
2511 
2512   bool AnyAdded = false;
2513 
2514   // Ensure we have an attribute representing the strictest alignment.
2515   if (OldAlign > NewAlign) {
2516     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2517     Clone->setInherited(true);
2518     New->addAttr(Clone);
2519     AnyAdded = true;
2520   }
2521 
2522   // Ensure we have an alignas attribute if the old declaration had one.
2523   if (OldAlignasAttr && !NewAlignasAttr &&
2524       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2525     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2526     Clone->setInherited(true);
2527     New->addAttr(Clone);
2528     AnyAdded = true;
2529   }
2530 
2531   return AnyAdded;
2532 }
2533 
2534 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2535                                const InheritableAttr *Attr,
2536                                Sema::AvailabilityMergeKind AMK) {
2537   // This function copies an attribute Attr from a previous declaration to the
2538   // new declaration D if the new declaration doesn't itself have that attribute
2539   // yet or if that attribute allows duplicates.
2540   // If you're adding a new attribute that requires logic different from
2541   // "use explicit attribute on decl if present, else use attribute from
2542   // previous decl", for example if the attribute needs to be consistent
2543   // between redeclarations, you need to call a custom merge function here.
2544   InheritableAttr *NewAttr = nullptr;
2545   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2546     NewAttr = S.mergeAvailabilityAttr(
2547         D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2548         AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2549         AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2550         AA->getPriority());
2551   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2552     NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2553   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2554     NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2555   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2556     NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2557   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2558     NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2559   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2560     NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2561                                 FA->getFirstArg());
2562   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2563     NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2564   else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2565     NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2566   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2567     NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2568                                        IA->getInheritanceModel());
2569   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2570     NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2571                                       &S.Context.Idents.get(AA->getSpelling()));
2572   else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2573            (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2574             isa<CUDAGlobalAttr>(Attr))) {
2575     // CUDA target attributes are part of function signature for
2576     // overloading purposes and must not be merged.
2577     return false;
2578   } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2579     NewAttr = S.mergeMinSizeAttr(D, *MA);
2580   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2581     NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2582   else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2583     NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2584   else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2585     NewAttr = S.mergeCommonAttr(D, *CommonA);
2586   else if (isa<AlignedAttr>(Attr))
2587     // AlignedAttrs are handled separately, because we need to handle all
2588     // such attributes on a declaration at the same time.
2589     NewAttr = nullptr;
2590   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2591            (AMK == Sema::AMK_Override ||
2592             AMK == Sema::AMK_ProtocolImplementation))
2593     NewAttr = nullptr;
2594   else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2595     NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl());
2596   else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr))
2597     NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA);
2598   else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr))
2599     NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA);
2600   else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2601     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2602 
2603   if (NewAttr) {
2604     NewAttr->setInherited(true);
2605     D->addAttr(NewAttr);
2606     if (isa<MSInheritanceAttr>(NewAttr))
2607       S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2608     return true;
2609   }
2610 
2611   return false;
2612 }
2613 
2614 static const NamedDecl *getDefinition(const Decl *D) {
2615   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2616     return TD->getDefinition();
2617   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2618     const VarDecl *Def = VD->getDefinition();
2619     if (Def)
2620       return Def;
2621     return VD->getActingDefinition();
2622   }
2623   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2624     return FD->getDefinition();
2625   return nullptr;
2626 }
2627 
2628 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2629   for (const auto *Attribute : D->attrs())
2630     if (Attribute->getKind() == Kind)
2631       return true;
2632   return false;
2633 }
2634 
2635 /// checkNewAttributesAfterDef - If we already have a definition, check that
2636 /// there are no new attributes in this declaration.
2637 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2638   if (!New->hasAttrs())
2639     return;
2640 
2641   const NamedDecl *Def = getDefinition(Old);
2642   if (!Def || Def == New)
2643     return;
2644 
2645   AttrVec &NewAttributes = New->getAttrs();
2646   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2647     const Attr *NewAttribute = NewAttributes[I];
2648 
2649     if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2650       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2651         Sema::SkipBodyInfo SkipBody;
2652         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2653 
2654         // If we're skipping this definition, drop the "alias" attribute.
2655         if (SkipBody.ShouldSkip) {
2656           NewAttributes.erase(NewAttributes.begin() + I);
2657           --E;
2658           continue;
2659         }
2660       } else {
2661         VarDecl *VD = cast<VarDecl>(New);
2662         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2663                                 VarDecl::TentativeDefinition
2664                             ? diag::err_alias_after_tentative
2665                             : diag::err_redefinition;
2666         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2667         if (Diag == diag::err_redefinition)
2668           S.notePreviousDefinition(Def, VD->getLocation());
2669         else
2670           S.Diag(Def->getLocation(), diag::note_previous_definition);
2671         VD->setInvalidDecl();
2672       }
2673       ++I;
2674       continue;
2675     }
2676 
2677     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2678       // Tentative definitions are only interesting for the alias check above.
2679       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2680         ++I;
2681         continue;
2682       }
2683     }
2684 
2685     if (hasAttribute(Def, NewAttribute->getKind())) {
2686       ++I;
2687       continue; // regular attr merging will take care of validating this.
2688     }
2689 
2690     if (isa<C11NoReturnAttr>(NewAttribute)) {
2691       // C's _Noreturn is allowed to be added to a function after it is defined.
2692       ++I;
2693       continue;
2694     } else if (isa<UuidAttr>(NewAttribute)) {
2695       // msvc will allow a subsequent definition to add an uuid to a class
2696       ++I;
2697       continue;
2698     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2699       if (AA->isAlignas()) {
2700         // C++11 [dcl.align]p6:
2701         //   if any declaration of an entity has an alignment-specifier,
2702         //   every defining declaration of that entity shall specify an
2703         //   equivalent alignment.
2704         // C11 6.7.5/7:
2705         //   If the definition of an object does not have an alignment
2706         //   specifier, any other declaration of that object shall also
2707         //   have no alignment specifier.
2708         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2709           << AA;
2710         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2711           << AA;
2712         NewAttributes.erase(NewAttributes.begin() + I);
2713         --E;
2714         continue;
2715       }
2716     } else if (isa<LoaderUninitializedAttr>(NewAttribute)) {
2717       // If there is a C definition followed by a redeclaration with this
2718       // attribute then there are two different definitions. In C++, prefer the
2719       // standard diagnostics.
2720       if (!S.getLangOpts().CPlusPlus) {
2721         S.Diag(NewAttribute->getLocation(),
2722                diag::err_loader_uninitialized_redeclaration);
2723         S.Diag(Def->getLocation(), diag::note_previous_definition);
2724         NewAttributes.erase(NewAttributes.begin() + I);
2725         --E;
2726         continue;
2727       }
2728     } else if (isa<SelectAnyAttr>(NewAttribute) &&
2729                cast<VarDecl>(New)->isInline() &&
2730                !cast<VarDecl>(New)->isInlineSpecified()) {
2731       // Don't warn about applying selectany to implicitly inline variables.
2732       // Older compilers and language modes would require the use of selectany
2733       // to make such variables inline, and it would have no effect if we
2734       // honored it.
2735       ++I;
2736       continue;
2737     } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) {
2738       // We allow to add OMP[Begin]DeclareVariantAttr to be added to
2739       // declarations after defintions.
2740       ++I;
2741       continue;
2742     }
2743 
2744     S.Diag(NewAttribute->getLocation(),
2745            diag::warn_attribute_precede_definition);
2746     S.Diag(Def->getLocation(), diag::note_previous_definition);
2747     NewAttributes.erase(NewAttributes.begin() + I);
2748     --E;
2749   }
2750 }
2751 
2752 static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
2753                                      const ConstInitAttr *CIAttr,
2754                                      bool AttrBeforeInit) {
2755   SourceLocation InsertLoc = InitDecl->getInnerLocStart();
2756 
2757   // Figure out a good way to write this specifier on the old declaration.
2758   // FIXME: We should just use the spelling of CIAttr, but we don't preserve
2759   // enough of the attribute list spelling information to extract that without
2760   // heroics.
2761   std::string SuitableSpelling;
2762   if (S.getLangOpts().CPlusPlus20)
2763     SuitableSpelling = std::string(
2764         S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit}));
2765   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2766     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2767         InsertLoc, {tok::l_square, tok::l_square,
2768                     S.PP.getIdentifierInfo("clang"), tok::coloncolon,
2769                     S.PP.getIdentifierInfo("require_constant_initialization"),
2770                     tok::r_square, tok::r_square}));
2771   if (SuitableSpelling.empty())
2772     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2773         InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren,
2774                     S.PP.getIdentifierInfo("require_constant_initialization"),
2775                     tok::r_paren, tok::r_paren}));
2776   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20)
2777     SuitableSpelling = "constinit";
2778   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2779     SuitableSpelling = "[[clang::require_constant_initialization]]";
2780   if (SuitableSpelling.empty())
2781     SuitableSpelling = "__attribute__((require_constant_initialization))";
2782   SuitableSpelling += " ";
2783 
2784   if (AttrBeforeInit) {
2785     // extern constinit int a;
2786     // int a = 0; // error (missing 'constinit'), accepted as extension
2787     assert(CIAttr->isConstinit() && "should not diagnose this for attribute");
2788     S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
2789         << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2790     S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
2791   } else {
2792     // int a = 0;
2793     // constinit extern int a; // error (missing 'constinit')
2794     S.Diag(CIAttr->getLocation(),
2795            CIAttr->isConstinit() ? diag::err_constinit_added_too_late
2796                                  : diag::warn_require_const_init_added_too_late)
2797         << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
2798     S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
2799         << CIAttr->isConstinit()
2800         << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2801   }
2802 }
2803 
2804 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2805 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2806                                AvailabilityMergeKind AMK) {
2807   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2808     UsedAttr *NewAttr = OldAttr->clone(Context);
2809     NewAttr->setInherited(true);
2810     New->addAttr(NewAttr);
2811   }
2812 
2813   if (!Old->hasAttrs() && !New->hasAttrs())
2814     return;
2815 
2816   // [dcl.constinit]p1:
2817   //   If the [constinit] specifier is applied to any declaration of a
2818   //   variable, it shall be applied to the initializing declaration.
2819   const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
2820   const auto *NewConstInit = New->getAttr<ConstInitAttr>();
2821   if (bool(OldConstInit) != bool(NewConstInit)) {
2822     const auto *OldVD = cast<VarDecl>(Old);
2823     auto *NewVD = cast<VarDecl>(New);
2824 
2825     // Find the initializing declaration. Note that we might not have linked
2826     // the new declaration into the redeclaration chain yet.
2827     const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
2828     if (!InitDecl &&
2829         (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
2830       InitDecl = NewVD;
2831 
2832     if (InitDecl == NewVD) {
2833       // This is the initializing declaration. If it would inherit 'constinit',
2834       // that's ill-formed. (Note that we do not apply this to the attribute
2835       // form).
2836       if (OldConstInit && OldConstInit->isConstinit())
2837         diagnoseMissingConstinit(*this, NewVD, OldConstInit,
2838                                  /*AttrBeforeInit=*/true);
2839     } else if (NewConstInit) {
2840       // This is the first time we've been told that this declaration should
2841       // have a constant initializer. If we already saw the initializing
2842       // declaration, this is too late.
2843       if (InitDecl && InitDecl != NewVD) {
2844         diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
2845                                  /*AttrBeforeInit=*/false);
2846         NewVD->dropAttr<ConstInitAttr>();
2847       }
2848     }
2849   }
2850 
2851   // Attributes declared post-definition are currently ignored.
2852   checkNewAttributesAfterDef(*this, New, Old);
2853 
2854   if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2855     if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2856       if (!OldA->isEquivalent(NewA)) {
2857         // This redeclaration changes __asm__ label.
2858         Diag(New->getLocation(), diag::err_different_asm_label);
2859         Diag(OldA->getLocation(), diag::note_previous_declaration);
2860       }
2861     } else if (Old->isUsed()) {
2862       // This redeclaration adds an __asm__ label to a declaration that has
2863       // already been ODR-used.
2864       Diag(New->getLocation(), diag::err_late_asm_label_name)
2865         << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2866     }
2867   }
2868 
2869   // Re-declaration cannot add abi_tag's.
2870   if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2871     if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2872       for (const auto &NewTag : NewAbiTagAttr->tags()) {
2873         if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2874                       NewTag) == OldAbiTagAttr->tags_end()) {
2875           Diag(NewAbiTagAttr->getLocation(),
2876                diag::err_new_abi_tag_on_redeclaration)
2877               << NewTag;
2878           Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2879         }
2880       }
2881     } else {
2882       Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2883       Diag(Old->getLocation(), diag::note_previous_declaration);
2884     }
2885   }
2886 
2887   // This redeclaration adds a section attribute.
2888   if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2889     if (auto *VD = dyn_cast<VarDecl>(New)) {
2890       if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2891         Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2892         Diag(Old->getLocation(), diag::note_previous_declaration);
2893       }
2894     }
2895   }
2896 
2897   // Redeclaration adds code-seg attribute.
2898   const auto *NewCSA = New->getAttr<CodeSegAttr>();
2899   if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2900       !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2901     Diag(New->getLocation(), diag::warn_mismatched_section)
2902          << 0 /*codeseg*/;
2903     Diag(Old->getLocation(), diag::note_previous_declaration);
2904   }
2905 
2906   if (!Old->hasAttrs())
2907     return;
2908 
2909   bool foundAny = New->hasAttrs();
2910 
2911   // Ensure that any moving of objects within the allocated map is done before
2912   // we process them.
2913   if (!foundAny) New->setAttrs(AttrVec());
2914 
2915   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2916     // Ignore deprecated/unavailable/availability attributes if requested.
2917     AvailabilityMergeKind LocalAMK = AMK_None;
2918     if (isa<DeprecatedAttr>(I) ||
2919         isa<UnavailableAttr>(I) ||
2920         isa<AvailabilityAttr>(I)) {
2921       switch (AMK) {
2922       case AMK_None:
2923         continue;
2924 
2925       case AMK_Redeclaration:
2926       case AMK_Override:
2927       case AMK_ProtocolImplementation:
2928         LocalAMK = AMK;
2929         break;
2930       }
2931     }
2932 
2933     // Already handled.
2934     if (isa<UsedAttr>(I))
2935       continue;
2936 
2937     if (mergeDeclAttribute(*this, New, I, LocalAMK))
2938       foundAny = true;
2939   }
2940 
2941   if (mergeAlignedAttrs(*this, New, Old))
2942     foundAny = true;
2943 
2944   if (!foundAny) New->dropAttrs();
2945 }
2946 
2947 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2948 /// to the new one.
2949 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2950                                      const ParmVarDecl *oldDecl,
2951                                      Sema &S) {
2952   // C++11 [dcl.attr.depend]p2:
2953   //   The first declaration of a function shall specify the
2954   //   carries_dependency attribute for its declarator-id if any declaration
2955   //   of the function specifies the carries_dependency attribute.
2956   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2957   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2958     S.Diag(CDA->getLocation(),
2959            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2960     // Find the first declaration of the parameter.
2961     // FIXME: Should we build redeclaration chains for function parameters?
2962     const FunctionDecl *FirstFD =
2963       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2964     const ParmVarDecl *FirstVD =
2965       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2966     S.Diag(FirstVD->getLocation(),
2967            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2968   }
2969 
2970   if (!oldDecl->hasAttrs())
2971     return;
2972 
2973   bool foundAny = newDecl->hasAttrs();
2974 
2975   // Ensure that any moving of objects within the allocated map is
2976   // done before we process them.
2977   if (!foundAny) newDecl->setAttrs(AttrVec());
2978 
2979   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2980     if (!DeclHasAttr(newDecl, I)) {
2981       InheritableAttr *newAttr =
2982         cast<InheritableParamAttr>(I->clone(S.Context));
2983       newAttr->setInherited(true);
2984       newDecl->addAttr(newAttr);
2985       foundAny = true;
2986     }
2987   }
2988 
2989   if (!foundAny) newDecl->dropAttrs();
2990 }
2991 
2992 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2993                                 const ParmVarDecl *OldParam,
2994                                 Sema &S) {
2995   if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2996     if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2997       if (*Oldnullability != *Newnullability) {
2998         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2999           << DiagNullabilityKind(
3000                *Newnullability,
3001                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3002                 != 0))
3003           << DiagNullabilityKind(
3004                *Oldnullability,
3005                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3006                 != 0));
3007         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
3008       }
3009     } else {
3010       QualType NewT = NewParam->getType();
3011       NewT = S.Context.getAttributedType(
3012                          AttributedType::getNullabilityAttrKind(*Oldnullability),
3013                          NewT, NewT);
3014       NewParam->setType(NewT);
3015     }
3016   }
3017 }
3018 
3019 namespace {
3020 
3021 /// Used in MergeFunctionDecl to keep track of function parameters in
3022 /// C.
3023 struct GNUCompatibleParamWarning {
3024   ParmVarDecl *OldParm;
3025   ParmVarDecl *NewParm;
3026   QualType PromotedType;
3027 };
3028 
3029 } // end anonymous namespace
3030 
3031 // Determine whether the previous declaration was a definition, implicit
3032 // declaration, or a declaration.
3033 template <typename T>
3034 static std::pair<diag::kind, SourceLocation>
3035 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3036   diag::kind PrevDiag;
3037   SourceLocation OldLocation = Old->getLocation();
3038   if (Old->isThisDeclarationADefinition())
3039     PrevDiag = diag::note_previous_definition;
3040   else if (Old->isImplicit()) {
3041     PrevDiag = diag::note_previous_implicit_declaration;
3042     if (OldLocation.isInvalid())
3043       OldLocation = New->getLocation();
3044   } else
3045     PrevDiag = diag::note_previous_declaration;
3046   return std::make_pair(PrevDiag, OldLocation);
3047 }
3048 
3049 /// canRedefineFunction - checks if a function can be redefined. Currently,
3050 /// only extern inline functions can be redefined, and even then only in
3051 /// GNU89 mode.
3052 static bool canRedefineFunction(const FunctionDecl *FD,
3053                                 const LangOptions& LangOpts) {
3054   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3055           !LangOpts.CPlusPlus &&
3056           FD->isInlineSpecified() &&
3057           FD->getStorageClass() == SC_Extern);
3058 }
3059 
3060 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3061   const AttributedType *AT = T->getAs<AttributedType>();
3062   while (AT && !AT->isCallingConv())
3063     AT = AT->getModifiedType()->getAs<AttributedType>();
3064   return AT;
3065 }
3066 
3067 template <typename T>
3068 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3069   const DeclContext *DC = Old->getDeclContext();
3070   if (DC->isRecord())
3071     return false;
3072 
3073   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3074   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3075     return true;
3076   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3077     return true;
3078   return false;
3079 }
3080 
3081 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
3082 static bool isExternC(VarTemplateDecl *) { return false; }
3083 
3084 /// Check whether a redeclaration of an entity introduced by a
3085 /// using-declaration is valid, given that we know it's not an overload
3086 /// (nor a hidden tag declaration).
3087 template<typename ExpectedDecl>
3088 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3089                                    ExpectedDecl *New) {
3090   // C++11 [basic.scope.declarative]p4:
3091   //   Given a set of declarations in a single declarative region, each of
3092   //   which specifies the same unqualified name,
3093   //   -- they shall all refer to the same entity, or all refer to functions
3094   //      and function templates; or
3095   //   -- exactly one declaration shall declare a class name or enumeration
3096   //      name that is not a typedef name and the other declarations shall all
3097   //      refer to the same variable or enumerator, or all refer to functions
3098   //      and function templates; in this case the class name or enumeration
3099   //      name is hidden (3.3.10).
3100 
3101   // C++11 [namespace.udecl]p14:
3102   //   If a function declaration in namespace scope or block scope has the
3103   //   same name and the same parameter-type-list as a function introduced
3104   //   by a using-declaration, and the declarations do not declare the same
3105   //   function, the program is ill-formed.
3106 
3107   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3108   if (Old &&
3109       !Old->getDeclContext()->getRedeclContext()->Equals(
3110           New->getDeclContext()->getRedeclContext()) &&
3111       !(isExternC(Old) && isExternC(New)))
3112     Old = nullptr;
3113 
3114   if (!Old) {
3115     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3116     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3117     S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
3118     return true;
3119   }
3120   return false;
3121 }
3122 
3123 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3124                                             const FunctionDecl *B) {
3125   assert(A->getNumParams() == B->getNumParams());
3126 
3127   auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3128     const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3129     const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3130     if (AttrA == AttrB)
3131       return true;
3132     return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3133            AttrA->isDynamic() == AttrB->isDynamic();
3134   };
3135 
3136   return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3137 }
3138 
3139 /// If necessary, adjust the semantic declaration context for a qualified
3140 /// declaration to name the correct inline namespace within the qualifier.
3141 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3142                                                DeclaratorDecl *OldD) {
3143   // The only case where we need to update the DeclContext is when
3144   // redeclaration lookup for a qualified name finds a declaration
3145   // in an inline namespace within the context named by the qualifier:
3146   //
3147   //   inline namespace N { int f(); }
3148   //   int ::f(); // Sema DC needs adjusting from :: to N::.
3149   //
3150   // For unqualified declarations, the semantic context *can* change
3151   // along the redeclaration chain (for local extern declarations,
3152   // extern "C" declarations, and friend declarations in particular).
3153   if (!NewD->getQualifier())
3154     return;
3155 
3156   // NewD is probably already in the right context.
3157   auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3158   auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3159   if (NamedDC->Equals(SemaDC))
3160     return;
3161 
3162   assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
3163           NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
3164          "unexpected context for redeclaration");
3165 
3166   auto *LexDC = NewD->getLexicalDeclContext();
3167   auto FixSemaDC = [=](NamedDecl *D) {
3168     if (!D)
3169       return;
3170     D->setDeclContext(SemaDC);
3171     D->setLexicalDeclContext(LexDC);
3172   };
3173 
3174   FixSemaDC(NewD);
3175   if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3176     FixSemaDC(FD->getDescribedFunctionTemplate());
3177   else if (auto *VD = dyn_cast<VarDecl>(NewD))
3178     FixSemaDC(VD->getDescribedVarTemplate());
3179 }
3180 
3181 /// MergeFunctionDecl - We just parsed a function 'New' from
3182 /// declarator D which has the same name and scope as a previous
3183 /// declaration 'Old'.  Figure out how to resolve this situation,
3184 /// merging decls or emitting diagnostics as appropriate.
3185 ///
3186 /// In C++, New and Old must be declarations that are not
3187 /// overloaded. Use IsOverload to determine whether New and Old are
3188 /// overloaded, and to select the Old declaration that New should be
3189 /// merged with.
3190 ///
3191 /// Returns true if there was an error, false otherwise.
3192 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
3193                              Scope *S, bool MergeTypeWithOld) {
3194   // Verify the old decl was also a function.
3195   FunctionDecl *Old = OldD->getAsFunction();
3196   if (!Old) {
3197     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3198       if (New->getFriendObjectKind()) {
3199         Diag(New->getLocation(), diag::err_using_decl_friend);
3200         Diag(Shadow->getTargetDecl()->getLocation(),
3201              diag::note_using_decl_target);
3202         Diag(Shadow->getUsingDecl()->getLocation(),
3203              diag::note_using_decl) << 0;
3204         return true;
3205       }
3206 
3207       // Check whether the two declarations might declare the same function.
3208       if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3209         return true;
3210       OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3211     } else {
3212       Diag(New->getLocation(), diag::err_redefinition_different_kind)
3213         << New->getDeclName();
3214       notePreviousDefinition(OldD, New->getLocation());
3215       return true;
3216     }
3217   }
3218 
3219   // If the old declaration is invalid, just give up here.
3220   if (Old->isInvalidDecl())
3221     return true;
3222 
3223   // Disallow redeclaration of some builtins.
3224   if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3225     Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3226     Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3227         << Old << Old->getType();
3228     return true;
3229   }
3230 
3231   diag::kind PrevDiag;
3232   SourceLocation OldLocation;
3233   std::tie(PrevDiag, OldLocation) =
3234       getNoteDiagForInvalidRedeclaration(Old, New);
3235 
3236   // Don't complain about this if we're in GNU89 mode and the old function
3237   // is an extern inline function.
3238   // Don't complain about specializations. They are not supposed to have
3239   // storage classes.
3240   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3241       New->getStorageClass() == SC_Static &&
3242       Old->hasExternalFormalLinkage() &&
3243       !New->getTemplateSpecializationInfo() &&
3244       !canRedefineFunction(Old, getLangOpts())) {
3245     if (getLangOpts().MicrosoftExt) {
3246       Diag(New->getLocation(), diag::ext_static_non_static) << New;
3247       Diag(OldLocation, PrevDiag);
3248     } else {
3249       Diag(New->getLocation(), diag::err_static_non_static) << New;
3250       Diag(OldLocation, PrevDiag);
3251       return true;
3252     }
3253   }
3254 
3255   if (New->hasAttr<InternalLinkageAttr>() &&
3256       !Old->hasAttr<InternalLinkageAttr>()) {
3257     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3258         << New->getDeclName();
3259     notePreviousDefinition(Old, New->getLocation());
3260     New->dropAttr<InternalLinkageAttr>();
3261   }
3262 
3263   if (CheckRedeclarationModuleOwnership(New, Old))
3264     return true;
3265 
3266   if (!getLangOpts().CPlusPlus) {
3267     bool OldOvl = Old->hasAttr<OverloadableAttr>();
3268     if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3269       Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3270         << New << OldOvl;
3271 
3272       // Try our best to find a decl that actually has the overloadable
3273       // attribute for the note. In most cases (e.g. programs with only one
3274       // broken declaration/definition), this won't matter.
3275       //
3276       // FIXME: We could do this if we juggled some extra state in
3277       // OverloadableAttr, rather than just removing it.
3278       const Decl *DiagOld = Old;
3279       if (OldOvl) {
3280         auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3281           const auto *A = D->getAttr<OverloadableAttr>();
3282           return A && !A->isImplicit();
3283         });
3284         // If we've implicitly added *all* of the overloadable attrs to this
3285         // chain, emitting a "previous redecl" note is pointless.
3286         DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3287       }
3288 
3289       if (DiagOld)
3290         Diag(DiagOld->getLocation(),
3291              diag::note_attribute_overloadable_prev_overload)
3292           << OldOvl;
3293 
3294       if (OldOvl)
3295         New->addAttr(OverloadableAttr::CreateImplicit(Context));
3296       else
3297         New->dropAttr<OverloadableAttr>();
3298     }
3299   }
3300 
3301   // If a function is first declared with a calling convention, but is later
3302   // declared or defined without one, all following decls assume the calling
3303   // convention of the first.
3304   //
3305   // It's OK if a function is first declared without a calling convention,
3306   // but is later declared or defined with the default calling convention.
3307   //
3308   // To test if either decl has an explicit calling convention, we look for
3309   // AttributedType sugar nodes on the type as written.  If they are missing or
3310   // were canonicalized away, we assume the calling convention was implicit.
3311   //
3312   // Note also that we DO NOT return at this point, because we still have
3313   // other tests to run.
3314   QualType OldQType = Context.getCanonicalType(Old->getType());
3315   QualType NewQType = Context.getCanonicalType(New->getType());
3316   const FunctionType *OldType = cast<FunctionType>(OldQType);
3317   const FunctionType *NewType = cast<FunctionType>(NewQType);
3318   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3319   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3320   bool RequiresAdjustment = false;
3321 
3322   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3323     FunctionDecl *First = Old->getFirstDecl();
3324     const FunctionType *FT =
3325         First->getType().getCanonicalType()->castAs<FunctionType>();
3326     FunctionType::ExtInfo FI = FT->getExtInfo();
3327     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3328     if (!NewCCExplicit) {
3329       // Inherit the CC from the previous declaration if it was specified
3330       // there but not here.
3331       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3332       RequiresAdjustment = true;
3333     } else if (New->getBuiltinID()) {
3334       // Calling Conventions on a Builtin aren't really useful and setting a
3335       // default calling convention and cdecl'ing some builtin redeclarations is
3336       // common, so warn and ignore the calling convention on the redeclaration.
3337       Diag(New->getLocation(), diag::warn_cconv_unsupported)
3338           << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3339           << (int)CallingConventionIgnoredReason::BuiltinFunction;
3340       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3341       RequiresAdjustment = true;
3342     } else {
3343       // Calling conventions aren't compatible, so complain.
3344       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3345       Diag(New->getLocation(), diag::err_cconv_change)
3346         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3347         << !FirstCCExplicit
3348         << (!FirstCCExplicit ? "" :
3349             FunctionType::getNameForCallConv(FI.getCC()));
3350 
3351       // Put the note on the first decl, since it is the one that matters.
3352       Diag(First->getLocation(), diag::note_previous_declaration);
3353       return true;
3354     }
3355   }
3356 
3357   // FIXME: diagnose the other way around?
3358   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3359     NewTypeInfo = NewTypeInfo.withNoReturn(true);
3360     RequiresAdjustment = true;
3361   }
3362 
3363   // Merge regparm attribute.
3364   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3365       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3366     if (NewTypeInfo.getHasRegParm()) {
3367       Diag(New->getLocation(), diag::err_regparm_mismatch)
3368         << NewType->getRegParmType()
3369         << OldType->getRegParmType();
3370       Diag(OldLocation, diag::note_previous_declaration);
3371       return true;
3372     }
3373 
3374     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3375     RequiresAdjustment = true;
3376   }
3377 
3378   // Merge ns_returns_retained attribute.
3379   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3380     if (NewTypeInfo.getProducesResult()) {
3381       Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3382           << "'ns_returns_retained'";
3383       Diag(OldLocation, diag::note_previous_declaration);
3384       return true;
3385     }
3386 
3387     NewTypeInfo = NewTypeInfo.withProducesResult(true);
3388     RequiresAdjustment = true;
3389   }
3390 
3391   if (OldTypeInfo.getNoCallerSavedRegs() !=
3392       NewTypeInfo.getNoCallerSavedRegs()) {
3393     if (NewTypeInfo.getNoCallerSavedRegs()) {
3394       AnyX86NoCallerSavedRegistersAttr *Attr =
3395         New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3396       Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3397       Diag(OldLocation, diag::note_previous_declaration);
3398       return true;
3399     }
3400 
3401     NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3402     RequiresAdjustment = true;
3403   }
3404 
3405   if (RequiresAdjustment) {
3406     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3407     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3408     New->setType(QualType(AdjustedType, 0));
3409     NewQType = Context.getCanonicalType(New->getType());
3410   }
3411 
3412   // If this redeclaration makes the function inline, we may need to add it to
3413   // UndefinedButUsed.
3414   if (!Old->isInlined() && New->isInlined() &&
3415       !New->hasAttr<GNUInlineAttr>() &&
3416       !getLangOpts().GNUInline &&
3417       Old->isUsed(false) &&
3418       !Old->isDefined() && !New->isThisDeclarationADefinition())
3419     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3420                                            SourceLocation()));
3421 
3422   // If this redeclaration makes it newly gnu_inline, we don't want to warn
3423   // about it.
3424   if (New->hasAttr<GNUInlineAttr>() &&
3425       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3426     UndefinedButUsed.erase(Old->getCanonicalDecl());
3427   }
3428 
3429   // If pass_object_size params don't match up perfectly, this isn't a valid
3430   // redeclaration.
3431   if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3432       !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3433     Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3434         << New->getDeclName();
3435     Diag(OldLocation, PrevDiag) << Old << Old->getType();
3436     return true;
3437   }
3438 
3439   if (getLangOpts().CPlusPlus) {
3440     // C++1z [over.load]p2
3441     //   Certain function declarations cannot be overloaded:
3442     //     -- Function declarations that differ only in the return type,
3443     //        the exception specification, or both cannot be overloaded.
3444 
3445     // Check the exception specifications match. This may recompute the type of
3446     // both Old and New if it resolved exception specifications, so grab the
3447     // types again after this. Because this updates the type, we do this before
3448     // any of the other checks below, which may update the "de facto" NewQType
3449     // but do not necessarily update the type of New.
3450     if (CheckEquivalentExceptionSpec(Old, New))
3451       return true;
3452     OldQType = Context.getCanonicalType(Old->getType());
3453     NewQType = Context.getCanonicalType(New->getType());
3454 
3455     // Go back to the type source info to compare the declared return types,
3456     // per C++1y [dcl.type.auto]p13:
3457     //   Redeclarations or specializations of a function or function template
3458     //   with a declared return type that uses a placeholder type shall also
3459     //   use that placeholder, not a deduced type.
3460     QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3461     QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3462     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3463         canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3464                                        OldDeclaredReturnType)) {
3465       QualType ResQT;
3466       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3467           OldDeclaredReturnType->isObjCObjectPointerType())
3468         // FIXME: This does the wrong thing for a deduced return type.
3469         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3470       if (ResQT.isNull()) {
3471         if (New->isCXXClassMember() && New->isOutOfLine())
3472           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3473               << New << New->getReturnTypeSourceRange();
3474         else
3475           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3476               << New->getReturnTypeSourceRange();
3477         Diag(OldLocation, PrevDiag) << Old << Old->getType()
3478                                     << Old->getReturnTypeSourceRange();
3479         return true;
3480       }
3481       else
3482         NewQType = ResQT;
3483     }
3484 
3485     QualType OldReturnType = OldType->getReturnType();
3486     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3487     if (OldReturnType != NewReturnType) {
3488       // If this function has a deduced return type and has already been
3489       // defined, copy the deduced value from the old declaration.
3490       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3491       if (OldAT && OldAT->isDeduced()) {
3492         New->setType(
3493             SubstAutoType(New->getType(),
3494                           OldAT->isDependentType() ? Context.DependentTy
3495                                                    : OldAT->getDeducedType()));
3496         NewQType = Context.getCanonicalType(
3497             SubstAutoType(NewQType,
3498                           OldAT->isDependentType() ? Context.DependentTy
3499                                                    : OldAT->getDeducedType()));
3500       }
3501     }
3502 
3503     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3504     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3505     if (OldMethod && NewMethod) {
3506       // Preserve triviality.
3507       NewMethod->setTrivial(OldMethod->isTrivial());
3508 
3509       // MSVC allows explicit template specialization at class scope:
3510       // 2 CXXMethodDecls referring to the same function will be injected.
3511       // We don't want a redeclaration error.
3512       bool IsClassScopeExplicitSpecialization =
3513                               OldMethod->isFunctionTemplateSpecialization() &&
3514                               NewMethod->isFunctionTemplateSpecialization();
3515       bool isFriend = NewMethod->getFriendObjectKind();
3516 
3517       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3518           !IsClassScopeExplicitSpecialization) {
3519         //    -- Member function declarations with the same name and the
3520         //       same parameter types cannot be overloaded if any of them
3521         //       is a static member function declaration.
3522         if (OldMethod->isStatic() != NewMethod->isStatic()) {
3523           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3524           Diag(OldLocation, PrevDiag) << Old << Old->getType();
3525           return true;
3526         }
3527 
3528         // C++ [class.mem]p1:
3529         //   [...] A member shall not be declared twice in the
3530         //   member-specification, except that a nested class or member
3531         //   class template can be declared and then later defined.
3532         if (!inTemplateInstantiation()) {
3533           unsigned NewDiag;
3534           if (isa<CXXConstructorDecl>(OldMethod))
3535             NewDiag = diag::err_constructor_redeclared;
3536           else if (isa<CXXDestructorDecl>(NewMethod))
3537             NewDiag = diag::err_destructor_redeclared;
3538           else if (isa<CXXConversionDecl>(NewMethod))
3539             NewDiag = diag::err_conv_function_redeclared;
3540           else
3541             NewDiag = diag::err_member_redeclared;
3542 
3543           Diag(New->getLocation(), NewDiag);
3544         } else {
3545           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3546             << New << New->getType();
3547         }
3548         Diag(OldLocation, PrevDiag) << Old << Old->getType();
3549         return true;
3550 
3551       // Complain if this is an explicit declaration of a special
3552       // member that was initially declared implicitly.
3553       //
3554       // As an exception, it's okay to befriend such methods in order
3555       // to permit the implicit constructor/destructor/operator calls.
3556       } else if (OldMethod->isImplicit()) {
3557         if (isFriend) {
3558           NewMethod->setImplicit();
3559         } else {
3560           Diag(NewMethod->getLocation(),
3561                diag::err_definition_of_implicitly_declared_member)
3562             << New << getSpecialMember(OldMethod);
3563           return true;
3564         }
3565       } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3566         Diag(NewMethod->getLocation(),
3567              diag::err_definition_of_explicitly_defaulted_member)
3568           << getSpecialMember(OldMethod);
3569         return true;
3570       }
3571     }
3572 
3573     // C++11 [dcl.attr.noreturn]p1:
3574     //   The first declaration of a function shall specify the noreturn
3575     //   attribute if any declaration of that function specifies the noreturn
3576     //   attribute.
3577     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3578     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3579       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3580       Diag(Old->getFirstDecl()->getLocation(),
3581            diag::note_noreturn_missing_first_decl);
3582     }
3583 
3584     // C++11 [dcl.attr.depend]p2:
3585     //   The first declaration of a function shall specify the
3586     //   carries_dependency attribute for its declarator-id if any declaration
3587     //   of the function specifies the carries_dependency attribute.
3588     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3589     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3590       Diag(CDA->getLocation(),
3591            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3592       Diag(Old->getFirstDecl()->getLocation(),
3593            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3594     }
3595 
3596     // (C++98 8.3.5p3):
3597     //   All declarations for a function shall agree exactly in both the
3598     //   return type and the parameter-type-list.
3599     // We also want to respect all the extended bits except noreturn.
3600 
3601     // noreturn should now match unless the old type info didn't have it.
3602     QualType OldQTypeForComparison = OldQType;
3603     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3604       auto *OldType = OldQType->castAs<FunctionProtoType>();
3605       const FunctionType *OldTypeForComparison
3606         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3607       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3608       assert(OldQTypeForComparison.isCanonical());
3609     }
3610 
3611     if (haveIncompatibleLanguageLinkages(Old, New)) {
3612       // As a special case, retain the language linkage from previous
3613       // declarations of a friend function as an extension.
3614       //
3615       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3616       // and is useful because there's otherwise no way to specify language
3617       // linkage within class scope.
3618       //
3619       // Check cautiously as the friend object kind isn't yet complete.
3620       if (New->getFriendObjectKind() != Decl::FOK_None) {
3621         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3622         Diag(OldLocation, PrevDiag);
3623       } else {
3624         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3625         Diag(OldLocation, PrevDiag);
3626         return true;
3627       }
3628     }
3629 
3630     // If the function types are compatible, merge the declarations. Ignore the
3631     // exception specifier because it was already checked above in
3632     // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
3633     // about incompatible types under -fms-compatibility.
3634     if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
3635                                                          NewQType))
3636       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3637 
3638     // If the types are imprecise (due to dependent constructs in friends or
3639     // local extern declarations), it's OK if they differ. We'll check again
3640     // during instantiation.
3641     if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3642       return false;
3643 
3644     // Fall through for conflicting redeclarations and redefinitions.
3645   }
3646 
3647   // C: Function types need to be compatible, not identical. This handles
3648   // duplicate function decls like "void f(int); void f(enum X);" properly.
3649   if (!getLangOpts().CPlusPlus &&
3650       Context.typesAreCompatible(OldQType, NewQType)) {
3651     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3652     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3653     const FunctionProtoType *OldProto = nullptr;
3654     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3655         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3656       // The old declaration provided a function prototype, but the
3657       // new declaration does not. Merge in the prototype.
3658       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
3659       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3660       NewQType =
3661           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3662                                   OldProto->getExtProtoInfo());
3663       New->setType(NewQType);
3664       New->setHasInheritedPrototype();
3665 
3666       // Synthesize parameters with the same types.
3667       SmallVector<ParmVarDecl*, 16> Params;
3668       for (const auto &ParamType : OldProto->param_types()) {
3669         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3670                                                  SourceLocation(), nullptr,
3671                                                  ParamType, /*TInfo=*/nullptr,
3672                                                  SC_None, nullptr);
3673         Param->setScopeInfo(0, Params.size());
3674         Param->setImplicit();
3675         Params.push_back(Param);
3676       }
3677 
3678       New->setParams(Params);
3679     }
3680 
3681     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3682   }
3683 
3684   // Check if the function types are compatible when pointer size address
3685   // spaces are ignored.
3686   if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
3687     return false;
3688 
3689   // GNU C permits a K&R definition to follow a prototype declaration
3690   // if the declared types of the parameters in the K&R definition
3691   // match the types in the prototype declaration, even when the
3692   // promoted types of the parameters from the K&R definition differ
3693   // from the types in the prototype. GCC then keeps the types from
3694   // the prototype.
3695   //
3696   // If a variadic prototype is followed by a non-variadic K&R definition,
3697   // the K&R definition becomes variadic.  This is sort of an edge case, but
3698   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3699   // C99 6.9.1p8.
3700   if (!getLangOpts().CPlusPlus &&
3701       Old->hasPrototype() && !New->hasPrototype() &&
3702       New->getType()->getAs<FunctionProtoType>() &&
3703       Old->getNumParams() == New->getNumParams()) {
3704     SmallVector<QualType, 16> ArgTypes;
3705     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3706     const FunctionProtoType *OldProto
3707       = Old->getType()->getAs<FunctionProtoType>();
3708     const FunctionProtoType *NewProto
3709       = New->getType()->getAs<FunctionProtoType>();
3710 
3711     // Determine whether this is the GNU C extension.
3712     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3713                                                NewProto->getReturnType());
3714     bool LooseCompatible = !MergedReturn.isNull();
3715     for (unsigned Idx = 0, End = Old->getNumParams();
3716          LooseCompatible && Idx != End; ++Idx) {
3717       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3718       ParmVarDecl *NewParm = New->getParamDecl(Idx);
3719       if (Context.typesAreCompatible(OldParm->getType(),
3720                                      NewProto->getParamType(Idx))) {
3721         ArgTypes.push_back(NewParm->getType());
3722       } else if (Context.typesAreCompatible(OldParm->getType(),
3723                                             NewParm->getType(),
3724                                             /*CompareUnqualified=*/true)) {
3725         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3726                                            NewProto->getParamType(Idx) };
3727         Warnings.push_back(Warn);
3728         ArgTypes.push_back(NewParm->getType());
3729       } else
3730         LooseCompatible = false;
3731     }
3732 
3733     if (LooseCompatible) {
3734       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3735         Diag(Warnings[Warn].NewParm->getLocation(),
3736              diag::ext_param_promoted_not_compatible_with_prototype)
3737           << Warnings[Warn].PromotedType
3738           << Warnings[Warn].OldParm->getType();
3739         if (Warnings[Warn].OldParm->getLocation().isValid())
3740           Diag(Warnings[Warn].OldParm->getLocation(),
3741                diag::note_previous_declaration);
3742       }
3743 
3744       if (MergeTypeWithOld)
3745         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3746                                              OldProto->getExtProtoInfo()));
3747       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3748     }
3749 
3750     // Fall through to diagnose conflicting types.
3751   }
3752 
3753   // A function that has already been declared has been redeclared or
3754   // defined with a different type; show an appropriate diagnostic.
3755 
3756   // If the previous declaration was an implicitly-generated builtin
3757   // declaration, then at the very least we should use a specialized note.
3758   unsigned BuiltinID;
3759   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3760     // If it's actually a library-defined builtin function like 'malloc'
3761     // or 'printf', just warn about the incompatible redeclaration.
3762     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3763       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3764       Diag(OldLocation, diag::note_previous_builtin_declaration)
3765         << Old << Old->getType();
3766 
3767       // If this is a global redeclaration, just forget hereafter
3768       // about the "builtin-ness" of the function.
3769       //
3770       // Doing this for local extern declarations is problematic.  If
3771       // the builtin declaration remains visible, a second invalid
3772       // local declaration will produce a hard error; if it doesn't
3773       // remain visible, a single bogus local redeclaration (which is
3774       // actually only a warning) could break all the downstream code.
3775       if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3776         New->getIdentifier()->revertBuiltin();
3777 
3778       return false;
3779     }
3780 
3781     PrevDiag = diag::note_previous_builtin_declaration;
3782   }
3783 
3784   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3785   Diag(OldLocation, PrevDiag) << Old << Old->getType();
3786   return true;
3787 }
3788 
3789 /// Completes the merge of two function declarations that are
3790 /// known to be compatible.
3791 ///
3792 /// This routine handles the merging of attributes and other
3793 /// properties of function declarations from the old declaration to
3794 /// the new declaration, once we know that New is in fact a
3795 /// redeclaration of Old.
3796 ///
3797 /// \returns false
3798 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3799                                         Scope *S, bool MergeTypeWithOld) {
3800   // Merge the attributes
3801   mergeDeclAttributes(New, Old);
3802 
3803   // Merge "pure" flag.
3804   if (Old->isPure())
3805     New->setPure();
3806 
3807   // Merge "used" flag.
3808   if (Old->getMostRecentDecl()->isUsed(false))
3809     New->setIsUsed();
3810 
3811   // Merge attributes from the parameters.  These can mismatch with K&R
3812   // declarations.
3813   if (New->getNumParams() == Old->getNumParams())
3814       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3815         ParmVarDecl *NewParam = New->getParamDecl(i);
3816         ParmVarDecl *OldParam = Old->getParamDecl(i);
3817         mergeParamDeclAttributes(NewParam, OldParam, *this);
3818         mergeParamDeclTypes(NewParam, OldParam, *this);
3819       }
3820 
3821   if (getLangOpts().CPlusPlus)
3822     return MergeCXXFunctionDecl(New, Old, S);
3823 
3824   // Merge the function types so the we get the composite types for the return
3825   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3826   // was visible.
3827   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3828   if (!Merged.isNull() && MergeTypeWithOld)
3829     New->setType(Merged);
3830 
3831   return false;
3832 }
3833 
3834 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3835                                 ObjCMethodDecl *oldMethod) {
3836   // Merge the attributes, including deprecated/unavailable
3837   AvailabilityMergeKind MergeKind =
3838     isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3839       ? AMK_ProtocolImplementation
3840       : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3841                                                        : AMK_Override;
3842 
3843   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3844 
3845   // Merge attributes from the parameters.
3846   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3847                                        oe = oldMethod->param_end();
3848   for (ObjCMethodDecl::param_iterator
3849          ni = newMethod->param_begin(), ne = newMethod->param_end();
3850        ni != ne && oi != oe; ++ni, ++oi)
3851     mergeParamDeclAttributes(*ni, *oi, *this);
3852 
3853   CheckObjCMethodOverride(newMethod, oldMethod);
3854 }
3855 
3856 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3857   assert(!S.Context.hasSameType(New->getType(), Old->getType()));
3858 
3859   S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3860          ? diag::err_redefinition_different_type
3861          : diag::err_redeclaration_different_type)
3862     << New->getDeclName() << New->getType() << Old->getType();
3863 
3864   diag::kind PrevDiag;
3865   SourceLocation OldLocation;
3866   std::tie(PrevDiag, OldLocation)
3867     = getNoteDiagForInvalidRedeclaration(Old, New);
3868   S.Diag(OldLocation, PrevDiag);
3869   New->setInvalidDecl();
3870 }
3871 
3872 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3873 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3874 /// emitting diagnostics as appropriate.
3875 ///
3876 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3877 /// to here in AddInitializerToDecl. We can't check them before the initializer
3878 /// is attached.
3879 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3880                              bool MergeTypeWithOld) {
3881   if (New->isInvalidDecl() || Old->isInvalidDecl())
3882     return;
3883 
3884   QualType MergedT;
3885   if (getLangOpts().CPlusPlus) {
3886     if (New->getType()->isUndeducedType()) {
3887       // We don't know what the new type is until the initializer is attached.
3888       return;
3889     } else if (Context.hasSameType(New->getType(), Old->getType())) {
3890       // These could still be something that needs exception specs checked.
3891       return MergeVarDeclExceptionSpecs(New, Old);
3892     }
3893     // C++ [basic.link]p10:
3894     //   [...] the types specified by all declarations referring to a given
3895     //   object or function shall be identical, except that declarations for an
3896     //   array object can specify array types that differ by the presence or
3897     //   absence of a major array bound (8.3.4).
3898     else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3899       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3900       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3901 
3902       // We are merging a variable declaration New into Old. If it has an array
3903       // bound, and that bound differs from Old's bound, we should diagnose the
3904       // mismatch.
3905       if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3906         for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3907              PrevVD = PrevVD->getPreviousDecl()) {
3908           const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
3909           if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3910             continue;
3911 
3912           if (!Context.hasSameType(NewArray, PrevVDTy))
3913             return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3914         }
3915       }
3916 
3917       if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3918         if (Context.hasSameType(OldArray->getElementType(),
3919                                 NewArray->getElementType()))
3920           MergedT = New->getType();
3921       }
3922       // FIXME: Check visibility. New is hidden but has a complete type. If New
3923       // has no array bound, it should not inherit one from Old, if Old is not
3924       // visible.
3925       else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3926         if (Context.hasSameType(OldArray->getElementType(),
3927                                 NewArray->getElementType()))
3928           MergedT = Old->getType();
3929       }
3930     }
3931     else if (New->getType()->isObjCObjectPointerType() &&
3932                Old->getType()->isObjCObjectPointerType()) {
3933       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3934                                               Old->getType());
3935     }
3936   } else {
3937     // C 6.2.7p2:
3938     //   All declarations that refer to the same object or function shall have
3939     //   compatible type.
3940     MergedT = Context.mergeTypes(New->getType(), Old->getType());
3941   }
3942   if (MergedT.isNull()) {
3943     // It's OK if we couldn't merge types if either type is dependent, for a
3944     // block-scope variable. In other cases (static data members of class
3945     // templates, variable templates, ...), we require the types to be
3946     // equivalent.
3947     // FIXME: The C++ standard doesn't say anything about this.
3948     if ((New->getType()->isDependentType() ||
3949          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3950       // If the old type was dependent, we can't merge with it, so the new type
3951       // becomes dependent for now. We'll reproduce the original type when we
3952       // instantiate the TypeSourceInfo for the variable.
3953       if (!New->getType()->isDependentType() && MergeTypeWithOld)
3954         New->setType(Context.DependentTy);
3955       return;
3956     }
3957     return diagnoseVarDeclTypeMismatch(*this, New, Old);
3958   }
3959 
3960   // Don't actually update the type on the new declaration if the old
3961   // declaration was an extern declaration in a different scope.
3962   if (MergeTypeWithOld)
3963     New->setType(MergedT);
3964 }
3965 
3966 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3967                                   LookupResult &Previous) {
3968   // C11 6.2.7p4:
3969   //   For an identifier with internal or external linkage declared
3970   //   in a scope in which a prior declaration of that identifier is
3971   //   visible, if the prior declaration specifies internal or
3972   //   external linkage, the type of the identifier at the later
3973   //   declaration becomes the composite type.
3974   //
3975   // If the variable isn't visible, we do not merge with its type.
3976   if (Previous.isShadowed())
3977     return false;
3978 
3979   if (S.getLangOpts().CPlusPlus) {
3980     // C++11 [dcl.array]p3:
3981     //   If there is a preceding declaration of the entity in the same
3982     //   scope in which the bound was specified, an omitted array bound
3983     //   is taken to be the same as in that earlier declaration.
3984     return NewVD->isPreviousDeclInSameBlockScope() ||
3985            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3986             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3987   } else {
3988     // If the old declaration was function-local, don't merge with its
3989     // type unless we're in the same function.
3990     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3991            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3992   }
3993 }
3994 
3995 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
3996 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
3997 /// situation, merging decls or emitting diagnostics as appropriate.
3998 ///
3999 /// Tentative definition rules (C99 6.9.2p2) are checked by
4000 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4001 /// definitions here, since the initializer hasn't been attached.
4002 ///
4003 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
4004   // If the new decl is already invalid, don't do any other checking.
4005   if (New->isInvalidDecl())
4006     return;
4007 
4008   if (!shouldLinkPossiblyHiddenDecl(Previous, New))
4009     return;
4010 
4011   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
4012 
4013   // Verify the old decl was also a variable or variable template.
4014   VarDecl *Old = nullptr;
4015   VarTemplateDecl *OldTemplate = nullptr;
4016   if (Previous.isSingleResult()) {
4017     if (NewTemplate) {
4018       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4019       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4020 
4021       if (auto *Shadow =
4022               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4023         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4024           return New->setInvalidDecl();
4025     } else {
4026       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4027 
4028       if (auto *Shadow =
4029               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4030         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4031           return New->setInvalidDecl();
4032     }
4033   }
4034   if (!Old) {
4035     Diag(New->getLocation(), diag::err_redefinition_different_kind)
4036         << New->getDeclName();
4037     notePreviousDefinition(Previous.getRepresentativeDecl(),
4038                            New->getLocation());
4039     return New->setInvalidDecl();
4040   }
4041 
4042   // Ensure the template parameters are compatible.
4043   if (NewTemplate &&
4044       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4045                                       OldTemplate->getTemplateParameters(),
4046                                       /*Complain=*/true, TPL_TemplateMatch))
4047     return New->setInvalidDecl();
4048 
4049   // C++ [class.mem]p1:
4050   //   A member shall not be declared twice in the member-specification [...]
4051   //
4052   // Here, we need only consider static data members.
4053   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4054     Diag(New->getLocation(), diag::err_duplicate_member)
4055       << New->getIdentifier();
4056     Diag(Old->getLocation(), diag::note_previous_declaration);
4057     New->setInvalidDecl();
4058   }
4059 
4060   mergeDeclAttributes(New, Old);
4061   // Warn if an already-declared variable is made a weak_import in a subsequent
4062   // declaration
4063   if (New->hasAttr<WeakImportAttr>() &&
4064       Old->getStorageClass() == SC_None &&
4065       !Old->hasAttr<WeakImportAttr>()) {
4066     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4067     notePreviousDefinition(Old, New->getLocation());
4068     // Remove weak_import attribute on new declaration.
4069     New->dropAttr<WeakImportAttr>();
4070   }
4071 
4072   if (New->hasAttr<InternalLinkageAttr>() &&
4073       !Old->hasAttr<InternalLinkageAttr>()) {
4074     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
4075         << New->getDeclName();
4076     notePreviousDefinition(Old, New->getLocation());
4077     New->dropAttr<InternalLinkageAttr>();
4078   }
4079 
4080   // Merge the types.
4081   VarDecl *MostRecent = Old->getMostRecentDecl();
4082   if (MostRecent != Old) {
4083     MergeVarDeclTypes(New, MostRecent,
4084                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4085     if (New->isInvalidDecl())
4086       return;
4087   }
4088 
4089   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4090   if (New->isInvalidDecl())
4091     return;
4092 
4093   diag::kind PrevDiag;
4094   SourceLocation OldLocation;
4095   std::tie(PrevDiag, OldLocation) =
4096       getNoteDiagForInvalidRedeclaration(Old, New);
4097 
4098   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4099   if (New->getStorageClass() == SC_Static &&
4100       !New->isStaticDataMember() &&
4101       Old->hasExternalFormalLinkage()) {
4102     if (getLangOpts().MicrosoftExt) {
4103       Diag(New->getLocation(), diag::ext_static_non_static)
4104           << New->getDeclName();
4105       Diag(OldLocation, PrevDiag);
4106     } else {
4107       Diag(New->getLocation(), diag::err_static_non_static)
4108           << New->getDeclName();
4109       Diag(OldLocation, PrevDiag);
4110       return New->setInvalidDecl();
4111     }
4112   }
4113   // C99 6.2.2p4:
4114   //   For an identifier declared with the storage-class specifier
4115   //   extern in a scope in which a prior declaration of that
4116   //   identifier is visible,23) if the prior declaration specifies
4117   //   internal or external linkage, the linkage of the identifier at
4118   //   the later declaration is the same as the linkage specified at
4119   //   the prior declaration. If no prior declaration is visible, or
4120   //   if the prior declaration specifies no linkage, then the
4121   //   identifier has external linkage.
4122   if (New->hasExternalStorage() && Old->hasLinkage())
4123     /* Okay */;
4124   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4125            !New->isStaticDataMember() &&
4126            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4127     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4128     Diag(OldLocation, PrevDiag);
4129     return New->setInvalidDecl();
4130   }
4131 
4132   // Check if extern is followed by non-extern and vice-versa.
4133   if (New->hasExternalStorage() &&
4134       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4135     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4136     Diag(OldLocation, PrevDiag);
4137     return New->setInvalidDecl();
4138   }
4139   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4140       !New->hasExternalStorage()) {
4141     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4142     Diag(OldLocation, PrevDiag);
4143     return New->setInvalidDecl();
4144   }
4145 
4146   if (CheckRedeclarationModuleOwnership(New, Old))
4147     return;
4148 
4149   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4150 
4151   // FIXME: The test for external storage here seems wrong? We still
4152   // need to check for mismatches.
4153   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4154       // Don't complain about out-of-line definitions of static members.
4155       !(Old->getLexicalDeclContext()->isRecord() &&
4156         !New->getLexicalDeclContext()->isRecord())) {
4157     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4158     Diag(OldLocation, PrevDiag);
4159     return New->setInvalidDecl();
4160   }
4161 
4162   if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4163     if (VarDecl *Def = Old->getDefinition()) {
4164       // C++1z [dcl.fcn.spec]p4:
4165       //   If the definition of a variable appears in a translation unit before
4166       //   its first declaration as inline, the program is ill-formed.
4167       Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4168       Diag(Def->getLocation(), diag::note_previous_definition);
4169     }
4170   }
4171 
4172   // If this redeclaration makes the variable inline, we may need to add it to
4173   // UndefinedButUsed.
4174   if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4175       !Old->getDefinition() && !New->isThisDeclarationADefinition())
4176     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4177                                            SourceLocation()));
4178 
4179   if (New->getTLSKind() != Old->getTLSKind()) {
4180     if (!Old->getTLSKind()) {
4181       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4182       Diag(OldLocation, PrevDiag);
4183     } else if (!New->getTLSKind()) {
4184       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4185       Diag(OldLocation, PrevDiag);
4186     } else {
4187       // Do not allow redeclaration to change the variable between requiring
4188       // static and dynamic initialization.
4189       // FIXME: GCC allows this, but uses the TLS keyword on the first
4190       // declaration to determine the kind. Do we need to be compatible here?
4191       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4192         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4193       Diag(OldLocation, PrevDiag);
4194     }
4195   }
4196 
4197   // C++ doesn't have tentative definitions, so go right ahead and check here.
4198   if (getLangOpts().CPlusPlus &&
4199       New->isThisDeclarationADefinition() == VarDecl::Definition) {
4200     if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4201         Old->getCanonicalDecl()->isConstexpr()) {
4202       // This definition won't be a definition any more once it's been merged.
4203       Diag(New->getLocation(),
4204            diag::warn_deprecated_redundant_constexpr_static_def);
4205     } else if (VarDecl *Def = Old->getDefinition()) {
4206       if (checkVarDeclRedefinition(Def, New))
4207         return;
4208     }
4209   }
4210 
4211   if (haveIncompatibleLanguageLinkages(Old, New)) {
4212     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4213     Diag(OldLocation, PrevDiag);
4214     New->setInvalidDecl();
4215     return;
4216   }
4217 
4218   // Merge "used" flag.
4219   if (Old->getMostRecentDecl()->isUsed(false))
4220     New->setIsUsed();
4221 
4222   // Keep a chain of previous declarations.
4223   New->setPreviousDecl(Old);
4224   if (NewTemplate)
4225     NewTemplate->setPreviousDecl(OldTemplate);
4226   adjustDeclContextForDeclaratorDecl(New, Old);
4227 
4228   // Inherit access appropriately.
4229   New->setAccess(Old->getAccess());
4230   if (NewTemplate)
4231     NewTemplate->setAccess(New->getAccess());
4232 
4233   if (Old->isInline())
4234     New->setImplicitlyInline();
4235 }
4236 
4237 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4238   SourceManager &SrcMgr = getSourceManager();
4239   auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4240   auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4241   auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4242   auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4243   auto &HSI = PP.getHeaderSearchInfo();
4244   StringRef HdrFilename =
4245       SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4246 
4247   auto noteFromModuleOrInclude = [&](Module *Mod,
4248                                      SourceLocation IncLoc) -> bool {
4249     // Redefinition errors with modules are common with non modular mapped
4250     // headers, example: a non-modular header H in module A that also gets
4251     // included directly in a TU. Pointing twice to the same header/definition
4252     // is confusing, try to get better diagnostics when modules is on.
4253     if (IncLoc.isValid()) {
4254       if (Mod) {
4255         Diag(IncLoc, diag::note_redefinition_modules_same_file)
4256             << HdrFilename.str() << Mod->getFullModuleName();
4257         if (!Mod->DefinitionLoc.isInvalid())
4258           Diag(Mod->DefinitionLoc, diag::note_defined_here)
4259               << Mod->getFullModuleName();
4260       } else {
4261         Diag(IncLoc, diag::note_redefinition_include_same_file)
4262             << HdrFilename.str();
4263       }
4264       return true;
4265     }
4266 
4267     return false;
4268   };
4269 
4270   // Is it the same file and same offset? Provide more information on why
4271   // this leads to a redefinition error.
4272   if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4273     SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4274     SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4275     bool EmittedDiag =
4276         noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4277     EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4278 
4279     // If the header has no guards, emit a note suggesting one.
4280     if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4281       Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4282 
4283     if (EmittedDiag)
4284       return;
4285   }
4286 
4287   // Redefinition coming from different files or couldn't do better above.
4288   if (Old->getLocation().isValid())
4289     Diag(Old->getLocation(), diag::note_previous_definition);
4290 }
4291 
4292 /// We've just determined that \p Old and \p New both appear to be definitions
4293 /// of the same variable. Either diagnose or fix the problem.
4294 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4295   if (!hasVisibleDefinition(Old) &&
4296       (New->getFormalLinkage() == InternalLinkage ||
4297        New->isInline() ||
4298        New->getDescribedVarTemplate() ||
4299        New->getNumTemplateParameterLists() ||
4300        New->getDeclContext()->isDependentContext())) {
4301     // The previous definition is hidden, and multiple definitions are
4302     // permitted (in separate TUs). Demote this to a declaration.
4303     New->demoteThisDefinitionToDeclaration();
4304 
4305     // Make the canonical definition visible.
4306     if (auto *OldTD = Old->getDescribedVarTemplate())
4307       makeMergedDefinitionVisible(OldTD);
4308     makeMergedDefinitionVisible(Old);
4309     return false;
4310   } else {
4311     Diag(New->getLocation(), diag::err_redefinition) << New;
4312     notePreviousDefinition(Old, New->getLocation());
4313     New->setInvalidDecl();
4314     return true;
4315   }
4316 }
4317 
4318 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4319 /// no declarator (e.g. "struct foo;") is parsed.
4320 Decl *
4321 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4322                                  RecordDecl *&AnonRecord) {
4323   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4324                                     AnonRecord);
4325 }
4326 
4327 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4328 // disambiguate entities defined in different scopes.
4329 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4330 // compatibility.
4331 // We will pick our mangling number depending on which version of MSVC is being
4332 // targeted.
4333 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4334   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4335              ? S->getMSCurManglingNumber()
4336              : S->getMSLastManglingNumber();
4337 }
4338 
4339 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4340   if (!Context.getLangOpts().CPlusPlus)
4341     return;
4342 
4343   if (isa<CXXRecordDecl>(Tag->getParent())) {
4344     // If this tag is the direct child of a class, number it if
4345     // it is anonymous.
4346     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4347       return;
4348     MangleNumberingContext &MCtx =
4349         Context.getManglingNumberContext(Tag->getParent());
4350     Context.setManglingNumber(
4351         Tag, MCtx.getManglingNumber(
4352                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4353     return;
4354   }
4355 
4356   // If this tag isn't a direct child of a class, number it if it is local.
4357   MangleNumberingContext *MCtx;
4358   Decl *ManglingContextDecl;
4359   std::tie(MCtx, ManglingContextDecl) =
4360       getCurrentMangleNumberContext(Tag->getDeclContext());
4361   if (MCtx) {
4362     Context.setManglingNumber(
4363         Tag, MCtx->getManglingNumber(
4364                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4365   }
4366 }
4367 
4368 namespace {
4369 struct NonCLikeKind {
4370   enum {
4371     None,
4372     BaseClass,
4373     DefaultMemberInit,
4374     Lambda,
4375     Friend,
4376     OtherMember,
4377     Invalid,
4378   } Kind = None;
4379   SourceRange Range;
4380 
4381   explicit operator bool() { return Kind != None; }
4382 };
4383 }
4384 
4385 /// Determine whether a class is C-like, according to the rules of C++
4386 /// [dcl.typedef] for anonymous classes with typedef names for linkage.
4387 static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) {
4388   if (RD->isInvalidDecl())
4389     return {NonCLikeKind::Invalid, {}};
4390 
4391   // C++ [dcl.typedef]p9: [P1766R1]
4392   //   An unnamed class with a typedef name for linkage purposes shall not
4393   //
4394   //    -- have any base classes
4395   if (RD->getNumBases())
4396     return {NonCLikeKind::BaseClass,
4397             SourceRange(RD->bases_begin()->getBeginLoc(),
4398                         RD->bases_end()[-1].getEndLoc())};
4399   bool Invalid = false;
4400   for (Decl *D : RD->decls()) {
4401     // Don't complain about things we already diagnosed.
4402     if (D->isInvalidDecl()) {
4403       Invalid = true;
4404       continue;
4405     }
4406 
4407     //  -- have any [...] default member initializers
4408     if (auto *FD = dyn_cast<FieldDecl>(D)) {
4409       if (FD->hasInClassInitializer()) {
4410         auto *Init = FD->getInClassInitializer();
4411         return {NonCLikeKind::DefaultMemberInit,
4412                 Init ? Init->getSourceRange() : D->getSourceRange()};
4413       }
4414       continue;
4415     }
4416 
4417     // FIXME: We don't allow friend declarations. This violates the wording of
4418     // P1766, but not the intent.
4419     if (isa<FriendDecl>(D))
4420       return {NonCLikeKind::Friend, D->getSourceRange()};
4421 
4422     //  -- declare any members other than non-static data members, member
4423     //     enumerations, or member classes,
4424     if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) ||
4425         isa<EnumDecl>(D))
4426       continue;
4427     auto *MemberRD = dyn_cast<CXXRecordDecl>(D);
4428     if (!MemberRD) {
4429       if (D->isImplicit())
4430         continue;
4431       return {NonCLikeKind::OtherMember, D->getSourceRange()};
4432     }
4433 
4434     //  -- contain a lambda-expression,
4435     if (MemberRD->isLambda())
4436       return {NonCLikeKind::Lambda, MemberRD->getSourceRange()};
4437 
4438     //  and all member classes shall also satisfy these requirements
4439     //  (recursively).
4440     if (MemberRD->isThisDeclarationADefinition()) {
4441       if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD))
4442         return Kind;
4443     }
4444   }
4445 
4446   return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}};
4447 }
4448 
4449 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4450                                         TypedefNameDecl *NewTD) {
4451   if (TagFromDeclSpec->isInvalidDecl())
4452     return;
4453 
4454   // Do nothing if the tag already has a name for linkage purposes.
4455   if (TagFromDeclSpec->hasNameForLinkage())
4456     return;
4457 
4458   // A well-formed anonymous tag must always be a TUK_Definition.
4459   assert(TagFromDeclSpec->isThisDeclarationADefinition());
4460 
4461   // The type must match the tag exactly;  no qualifiers allowed.
4462   if (!Context.hasSameType(NewTD->getUnderlyingType(),
4463                            Context.getTagDeclType(TagFromDeclSpec))) {
4464     if (getLangOpts().CPlusPlus)
4465       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4466     return;
4467   }
4468 
4469   // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
4470   //   An unnamed class with a typedef name for linkage purposes shall [be
4471   //   C-like].
4472   //
4473   // FIXME: Also diagnose if we've already computed the linkage. That ideally
4474   // shouldn't happen, but there are constructs that the language rule doesn't
4475   // disallow for which we can't reasonably avoid computing linkage early.
4476   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec);
4477   NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD)
4478                              : NonCLikeKind();
4479   bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed();
4480   if (NonCLike || ChangesLinkage) {
4481     if (NonCLike.Kind == NonCLikeKind::Invalid)
4482       return;
4483 
4484     unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef;
4485     if (ChangesLinkage) {
4486       // If the linkage changes, we can't accept this as an extension.
4487       if (NonCLike.Kind == NonCLikeKind::None)
4488         DiagID = diag::err_typedef_changes_linkage;
4489       else
4490         DiagID = diag::err_non_c_like_anon_struct_in_typedef;
4491     }
4492 
4493     SourceLocation FixitLoc =
4494         getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart());
4495     llvm::SmallString<40> TextToInsert;
4496     TextToInsert += ' ';
4497     TextToInsert += NewTD->getIdentifier()->getName();
4498 
4499     Diag(FixitLoc, DiagID)
4500       << isa<TypeAliasDecl>(NewTD)
4501       << FixItHint::CreateInsertion(FixitLoc, TextToInsert);
4502     if (NonCLike.Kind != NonCLikeKind::None) {
4503       Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct)
4504         << NonCLike.Kind - 1 << NonCLike.Range;
4505     }
4506     Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here)
4507       << NewTD << isa<TypeAliasDecl>(NewTD);
4508 
4509     if (ChangesLinkage)
4510       return;
4511   }
4512 
4513   // Otherwise, set this as the anon-decl typedef for the tag.
4514   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4515 }
4516 
4517 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4518   switch (T) {
4519   case DeclSpec::TST_class:
4520     return 0;
4521   case DeclSpec::TST_struct:
4522     return 1;
4523   case DeclSpec::TST_interface:
4524     return 2;
4525   case DeclSpec::TST_union:
4526     return 3;
4527   case DeclSpec::TST_enum:
4528     return 4;
4529   default:
4530     llvm_unreachable("unexpected type specifier");
4531   }
4532 }
4533 
4534 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4535 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4536 /// parameters to cope with template friend declarations.
4537 Decl *
4538 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4539                                  MultiTemplateParamsArg TemplateParams,
4540                                  bool IsExplicitInstantiation,
4541                                  RecordDecl *&AnonRecord) {
4542   Decl *TagD = nullptr;
4543   TagDecl *Tag = nullptr;
4544   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4545       DS.getTypeSpecType() == DeclSpec::TST_struct ||
4546       DS.getTypeSpecType() == DeclSpec::TST_interface ||
4547       DS.getTypeSpecType() == DeclSpec::TST_union ||
4548       DS.getTypeSpecType() == DeclSpec::TST_enum) {
4549     TagD = DS.getRepAsDecl();
4550 
4551     if (!TagD) // We probably had an error
4552       return nullptr;
4553 
4554     // Note that the above type specs guarantee that the
4555     // type rep is a Decl, whereas in many of the others
4556     // it's a Type.
4557     if (isa<TagDecl>(TagD))
4558       Tag = cast<TagDecl>(TagD);
4559     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4560       Tag = CTD->getTemplatedDecl();
4561   }
4562 
4563   if (Tag) {
4564     handleTagNumbering(Tag, S);
4565     Tag->setFreeStanding();
4566     if (Tag->isInvalidDecl())
4567       return Tag;
4568   }
4569 
4570   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4571     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4572     // or incomplete types shall not be restrict-qualified."
4573     if (TypeQuals & DeclSpec::TQ_restrict)
4574       Diag(DS.getRestrictSpecLoc(),
4575            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4576            << DS.getSourceRange();
4577   }
4578 
4579   if (DS.isInlineSpecified())
4580     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4581         << getLangOpts().CPlusPlus17;
4582 
4583   if (DS.hasConstexprSpecifier()) {
4584     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4585     // and definitions of functions and variables.
4586     // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
4587     // the declaration of a function or function template
4588     if (Tag)
4589       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4590           << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType())
4591           << DS.getConstexprSpecifier();
4592     else
4593       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
4594           << DS.getConstexprSpecifier();
4595     // Don't emit warnings after this error.
4596     return TagD;
4597   }
4598 
4599   DiagnoseFunctionSpecifiers(DS);
4600 
4601   if (DS.isFriendSpecified()) {
4602     // If we're dealing with a decl but not a TagDecl, assume that
4603     // whatever routines created it handled the friendship aspect.
4604     if (TagD && !Tag)
4605       return nullptr;
4606     return ActOnFriendTypeDecl(S, DS, TemplateParams);
4607   }
4608 
4609   const CXXScopeSpec &SS = DS.getTypeSpecScope();
4610   bool IsExplicitSpecialization =
4611     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4612   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4613       !IsExplicitInstantiation && !IsExplicitSpecialization &&
4614       !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4615     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4616     // nested-name-specifier unless it is an explicit instantiation
4617     // or an explicit specialization.
4618     //
4619     // FIXME: We allow class template partial specializations here too, per the
4620     // obvious intent of DR1819.
4621     //
4622     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4623     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4624         << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4625     return nullptr;
4626   }
4627 
4628   // Track whether this decl-specifier declares anything.
4629   bool DeclaresAnything = true;
4630 
4631   // Handle anonymous struct definitions.
4632   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4633     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4634         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4635       if (getLangOpts().CPlusPlus ||
4636           Record->getDeclContext()->isRecord()) {
4637         // If CurContext is a DeclContext that can contain statements,
4638         // RecursiveASTVisitor won't visit the decls that
4639         // BuildAnonymousStructOrUnion() will put into CurContext.
4640         // Also store them here so that they can be part of the
4641         // DeclStmt that gets created in this case.
4642         // FIXME: Also return the IndirectFieldDecls created by
4643         // BuildAnonymousStructOr union, for the same reason?
4644         if (CurContext->isFunctionOrMethod())
4645           AnonRecord = Record;
4646         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4647                                            Context.getPrintingPolicy());
4648       }
4649 
4650       DeclaresAnything = false;
4651     }
4652   }
4653 
4654   // C11 6.7.2.1p2:
4655   //   A struct-declaration that does not declare an anonymous structure or
4656   //   anonymous union shall contain a struct-declarator-list.
4657   //
4658   // This rule also existed in C89 and C99; the grammar for struct-declaration
4659   // did not permit a struct-declaration without a struct-declarator-list.
4660   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4661       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4662     // Check for Microsoft C extension: anonymous struct/union member.
4663     // Handle 2 kinds of anonymous struct/union:
4664     //   struct STRUCT;
4665     //   union UNION;
4666     // and
4667     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
4668     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
4669     if ((Tag && Tag->getDeclName()) ||
4670         DS.getTypeSpecType() == DeclSpec::TST_typename) {
4671       RecordDecl *Record = nullptr;
4672       if (Tag)
4673         Record = dyn_cast<RecordDecl>(Tag);
4674       else if (const RecordType *RT =
4675                    DS.getRepAsType().get()->getAsStructureType())
4676         Record = RT->getDecl();
4677       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4678         Record = UT->getDecl();
4679 
4680       if (Record && getLangOpts().MicrosoftExt) {
4681         Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4682             << Record->isUnion() << DS.getSourceRange();
4683         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4684       }
4685 
4686       DeclaresAnything = false;
4687     }
4688   }
4689 
4690   // Skip all the checks below if we have a type error.
4691   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4692       (TagD && TagD->isInvalidDecl()))
4693     return TagD;
4694 
4695   if (getLangOpts().CPlusPlus &&
4696       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4697     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4698       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4699           !Enum->getIdentifier() && !Enum->isInvalidDecl())
4700         DeclaresAnything = false;
4701 
4702   if (!DS.isMissingDeclaratorOk()) {
4703     // Customize diagnostic for a typedef missing a name.
4704     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4705       Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4706           << DS.getSourceRange();
4707     else
4708       DeclaresAnything = false;
4709   }
4710 
4711   if (DS.isModulePrivateSpecified() &&
4712       Tag && Tag->getDeclContext()->isFunctionOrMethod())
4713     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4714       << Tag->getTagKind()
4715       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4716 
4717   ActOnDocumentableDecl(TagD);
4718 
4719   // C 6.7/2:
4720   //   A declaration [...] shall declare at least a declarator [...], a tag,
4721   //   or the members of an enumeration.
4722   // C++ [dcl.dcl]p3:
4723   //   [If there are no declarators], and except for the declaration of an
4724   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
4725   //   names into the program, or shall redeclare a name introduced by a
4726   //   previous declaration.
4727   if (!DeclaresAnything) {
4728     // In C, we allow this as a (popular) extension / bug. Don't bother
4729     // producing further diagnostics for redundant qualifiers after this.
4730     Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
4731     return TagD;
4732   }
4733 
4734   // C++ [dcl.stc]p1:
4735   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4736   //   init-declarator-list of the declaration shall not be empty.
4737   // C++ [dcl.fct.spec]p1:
4738   //   If a cv-qualifier appears in a decl-specifier-seq, the
4739   //   init-declarator-list of the declaration shall not be empty.
4740   //
4741   // Spurious qualifiers here appear to be valid in C.
4742   unsigned DiagID = diag::warn_standalone_specifier;
4743   if (getLangOpts().CPlusPlus)
4744     DiagID = diag::ext_standalone_specifier;
4745 
4746   // Note that a linkage-specification sets a storage class, but
4747   // 'extern "C" struct foo;' is actually valid and not theoretically
4748   // useless.
4749   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4750     if (SCS == DeclSpec::SCS_mutable)
4751       // Since mutable is not a viable storage class specifier in C, there is
4752       // no reason to treat it as an extension. Instead, diagnose as an error.
4753       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4754     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4755       Diag(DS.getStorageClassSpecLoc(), DiagID)
4756         << DeclSpec::getSpecifierName(SCS);
4757   }
4758 
4759   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4760     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4761       << DeclSpec::getSpecifierName(TSCS);
4762   if (DS.getTypeQualifiers()) {
4763     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4764       Diag(DS.getConstSpecLoc(), DiagID) << "const";
4765     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4766       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4767     // Restrict is covered above.
4768     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4769       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4770     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4771       Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4772   }
4773 
4774   // Warn about ignored type attributes, for example:
4775   // __attribute__((aligned)) struct A;
4776   // Attributes should be placed after tag to apply to type declaration.
4777   if (!DS.getAttributes().empty()) {
4778     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4779     if (TypeSpecType == DeclSpec::TST_class ||
4780         TypeSpecType == DeclSpec::TST_struct ||
4781         TypeSpecType == DeclSpec::TST_interface ||
4782         TypeSpecType == DeclSpec::TST_union ||
4783         TypeSpecType == DeclSpec::TST_enum) {
4784       for (const ParsedAttr &AL : DS.getAttributes())
4785         Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4786             << AL << GetDiagnosticTypeSpecifierID(TypeSpecType);
4787     }
4788   }
4789 
4790   return TagD;
4791 }
4792 
4793 /// We are trying to inject an anonymous member into the given scope;
4794 /// check if there's an existing declaration that can't be overloaded.
4795 ///
4796 /// \return true if this is a forbidden redeclaration
4797 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4798                                          Scope *S,
4799                                          DeclContext *Owner,
4800                                          DeclarationName Name,
4801                                          SourceLocation NameLoc,
4802                                          bool IsUnion) {
4803   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4804                  Sema::ForVisibleRedeclaration);
4805   if (!SemaRef.LookupName(R, S)) return false;
4806 
4807   // Pick a representative declaration.
4808   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4809   assert(PrevDecl && "Expected a non-null Decl");
4810 
4811   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4812     return false;
4813 
4814   SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4815     << IsUnion << Name;
4816   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4817 
4818   return true;
4819 }
4820 
4821 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
4822 /// anonymous struct or union AnonRecord into the owning context Owner
4823 /// and scope S. This routine will be invoked just after we realize
4824 /// that an unnamed union or struct is actually an anonymous union or
4825 /// struct, e.g.,
4826 ///
4827 /// @code
4828 /// union {
4829 ///   int i;
4830 ///   float f;
4831 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4832 ///    // f into the surrounding scope.x
4833 /// @endcode
4834 ///
4835 /// This routine is recursive, injecting the names of nested anonymous
4836 /// structs/unions into the owning context and scope as well.
4837 static bool
4838 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4839                                     RecordDecl *AnonRecord, AccessSpecifier AS,
4840                                     SmallVectorImpl<NamedDecl *> &Chaining) {
4841   bool Invalid = false;
4842 
4843   // Look every FieldDecl and IndirectFieldDecl with a name.
4844   for (auto *D : AnonRecord->decls()) {
4845     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4846         cast<NamedDecl>(D)->getDeclName()) {
4847       ValueDecl *VD = cast<ValueDecl>(D);
4848       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4849                                        VD->getLocation(),
4850                                        AnonRecord->isUnion())) {
4851         // C++ [class.union]p2:
4852         //   The names of the members of an anonymous union shall be
4853         //   distinct from the names of any other entity in the
4854         //   scope in which the anonymous union is declared.
4855         Invalid = true;
4856       } else {
4857         // C++ [class.union]p2:
4858         //   For the purpose of name lookup, after the anonymous union
4859         //   definition, the members of the anonymous union are
4860         //   considered to have been defined in the scope in which the
4861         //   anonymous union is declared.
4862         unsigned OldChainingSize = Chaining.size();
4863         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4864           Chaining.append(IF->chain_begin(), IF->chain_end());
4865         else
4866           Chaining.push_back(VD);
4867 
4868         assert(Chaining.size() >= 2);
4869         NamedDecl **NamedChain =
4870           new (SemaRef.Context)NamedDecl*[Chaining.size()];
4871         for (unsigned i = 0; i < Chaining.size(); i++)
4872           NamedChain[i] = Chaining[i];
4873 
4874         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4875             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4876             VD->getType(), {NamedChain, Chaining.size()});
4877 
4878         for (const auto *Attr : VD->attrs())
4879           IndirectField->addAttr(Attr->clone(SemaRef.Context));
4880 
4881         IndirectField->setAccess(AS);
4882         IndirectField->setImplicit();
4883         SemaRef.PushOnScopeChains(IndirectField, S);
4884 
4885         // That includes picking up the appropriate access specifier.
4886         if (AS != AS_none) IndirectField->setAccess(AS);
4887 
4888         Chaining.resize(OldChainingSize);
4889       }
4890     }
4891   }
4892 
4893   return Invalid;
4894 }
4895 
4896 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4897 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
4898 /// illegal input values are mapped to SC_None.
4899 static StorageClass
4900 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4901   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4902   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
4903          "Parser allowed 'typedef' as storage class VarDecl.");
4904   switch (StorageClassSpec) {
4905   case DeclSpec::SCS_unspecified:    return SC_None;
4906   case DeclSpec::SCS_extern:
4907     if (DS.isExternInLinkageSpec())
4908       return SC_None;
4909     return SC_Extern;
4910   case DeclSpec::SCS_static:         return SC_Static;
4911   case DeclSpec::SCS_auto:           return SC_Auto;
4912   case DeclSpec::SCS_register:       return SC_Register;
4913   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4914     // Illegal SCSs map to None: error reporting is up to the caller.
4915   case DeclSpec::SCS_mutable:        // Fall through.
4916   case DeclSpec::SCS_typedef:        return SC_None;
4917   }
4918   llvm_unreachable("unknown storage class specifier");
4919 }
4920 
4921 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4922   assert(Record->hasInClassInitializer());
4923 
4924   for (const auto *I : Record->decls()) {
4925     const auto *FD = dyn_cast<FieldDecl>(I);
4926     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4927       FD = IFD->getAnonField();
4928     if (FD && FD->hasInClassInitializer())
4929       return FD->getLocation();
4930   }
4931 
4932   llvm_unreachable("couldn't find in-class initializer");
4933 }
4934 
4935 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4936                                       SourceLocation DefaultInitLoc) {
4937   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4938     return;
4939 
4940   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4941   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4942 }
4943 
4944 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4945                                       CXXRecordDecl *AnonUnion) {
4946   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4947     return;
4948 
4949   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4950 }
4951 
4952 /// BuildAnonymousStructOrUnion - Handle the declaration of an
4953 /// anonymous structure or union. Anonymous unions are a C++ feature
4954 /// (C++ [class.union]) and a C11 feature; anonymous structures
4955 /// are a C11 feature and GNU C++ extension.
4956 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4957                                         AccessSpecifier AS,
4958                                         RecordDecl *Record,
4959                                         const PrintingPolicy &Policy) {
4960   DeclContext *Owner = Record->getDeclContext();
4961 
4962   // Diagnose whether this anonymous struct/union is an extension.
4963   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4964     Diag(Record->getLocation(), diag::ext_anonymous_union);
4965   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4966     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4967   else if (!Record->isUnion() && !getLangOpts().C11)
4968     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4969 
4970   // C and C++ require different kinds of checks for anonymous
4971   // structs/unions.
4972   bool Invalid = false;
4973   if (getLangOpts().CPlusPlus) {
4974     const char *PrevSpec = nullptr;
4975     if (Record->isUnion()) {
4976       // C++ [class.union]p6:
4977       // C++17 [class.union.anon]p2:
4978       //   Anonymous unions declared in a named namespace or in the
4979       //   global namespace shall be declared static.
4980       unsigned DiagID;
4981       DeclContext *OwnerScope = Owner->getRedeclContext();
4982       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4983           (OwnerScope->isTranslationUnit() ||
4984            (OwnerScope->isNamespace() &&
4985             !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
4986         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4987           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4988 
4989         // Recover by adding 'static'.
4990         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4991                                PrevSpec, DiagID, Policy);
4992       }
4993       // C++ [class.union]p6:
4994       //   A storage class is not allowed in a declaration of an
4995       //   anonymous union in a class scope.
4996       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4997                isa<RecordDecl>(Owner)) {
4998         Diag(DS.getStorageClassSpecLoc(),
4999              diag::err_anonymous_union_with_storage_spec)
5000           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5001 
5002         // Recover by removing the storage specifier.
5003         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
5004                                SourceLocation(),
5005                                PrevSpec, DiagID, Context.getPrintingPolicy());
5006       }
5007     }
5008 
5009     // Ignore const/volatile/restrict qualifiers.
5010     if (DS.getTypeQualifiers()) {
5011       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5012         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
5013           << Record->isUnion() << "const"
5014           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
5015       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5016         Diag(DS.getVolatileSpecLoc(),
5017              diag::ext_anonymous_struct_union_qualified)
5018           << Record->isUnion() << "volatile"
5019           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
5020       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
5021         Diag(DS.getRestrictSpecLoc(),
5022              diag::ext_anonymous_struct_union_qualified)
5023           << Record->isUnion() << "restrict"
5024           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
5025       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5026         Diag(DS.getAtomicSpecLoc(),
5027              diag::ext_anonymous_struct_union_qualified)
5028           << Record->isUnion() << "_Atomic"
5029           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
5030       if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5031         Diag(DS.getUnalignedSpecLoc(),
5032              diag::ext_anonymous_struct_union_qualified)
5033           << Record->isUnion() << "__unaligned"
5034           << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
5035 
5036       DS.ClearTypeQualifiers();
5037     }
5038 
5039     // C++ [class.union]p2:
5040     //   The member-specification of an anonymous union shall only
5041     //   define non-static data members. [Note: nested types and
5042     //   functions cannot be declared within an anonymous union. ]
5043     for (auto *Mem : Record->decls()) {
5044       // Ignore invalid declarations; we already diagnosed them.
5045       if (Mem->isInvalidDecl())
5046         continue;
5047 
5048       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
5049         // C++ [class.union]p3:
5050         //   An anonymous union shall not have private or protected
5051         //   members (clause 11).
5052         assert(FD->getAccess() != AS_none);
5053         if (FD->getAccess() != AS_public) {
5054           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
5055             << Record->isUnion() << (FD->getAccess() == AS_protected);
5056           Invalid = true;
5057         }
5058 
5059         // C++ [class.union]p1
5060         //   An object of a class with a non-trivial constructor, a non-trivial
5061         //   copy constructor, a non-trivial destructor, or a non-trivial copy
5062         //   assignment operator cannot be a member of a union, nor can an
5063         //   array of such objects.
5064         if (CheckNontrivialField(FD))
5065           Invalid = true;
5066       } else if (Mem->isImplicit()) {
5067         // Any implicit members are fine.
5068       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
5069         // This is a type that showed up in an
5070         // elaborated-type-specifier inside the anonymous struct or
5071         // union, but which actually declares a type outside of the
5072         // anonymous struct or union. It's okay.
5073       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
5074         if (!MemRecord->isAnonymousStructOrUnion() &&
5075             MemRecord->getDeclName()) {
5076           // Visual C++ allows type definition in anonymous struct or union.
5077           if (getLangOpts().MicrosoftExt)
5078             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
5079               << Record->isUnion();
5080           else {
5081             // This is a nested type declaration.
5082             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
5083               << Record->isUnion();
5084             Invalid = true;
5085           }
5086         } else {
5087           // This is an anonymous type definition within another anonymous type.
5088           // This is a popular extension, provided by Plan9, MSVC and GCC, but
5089           // not part of standard C++.
5090           Diag(MemRecord->getLocation(),
5091                diag::ext_anonymous_record_with_anonymous_type)
5092             << Record->isUnion();
5093         }
5094       } else if (isa<AccessSpecDecl>(Mem)) {
5095         // Any access specifier is fine.
5096       } else if (isa<StaticAssertDecl>(Mem)) {
5097         // In C++1z, static_assert declarations are also fine.
5098       } else {
5099         // We have something that isn't a non-static data
5100         // member. Complain about it.
5101         unsigned DK = diag::err_anonymous_record_bad_member;
5102         if (isa<TypeDecl>(Mem))
5103           DK = diag::err_anonymous_record_with_type;
5104         else if (isa<FunctionDecl>(Mem))
5105           DK = diag::err_anonymous_record_with_function;
5106         else if (isa<VarDecl>(Mem))
5107           DK = diag::err_anonymous_record_with_static;
5108 
5109         // Visual C++ allows type definition in anonymous struct or union.
5110         if (getLangOpts().MicrosoftExt &&
5111             DK == diag::err_anonymous_record_with_type)
5112           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
5113             << Record->isUnion();
5114         else {
5115           Diag(Mem->getLocation(), DK) << Record->isUnion();
5116           Invalid = true;
5117         }
5118       }
5119     }
5120 
5121     // C++11 [class.union]p8 (DR1460):
5122     //   At most one variant member of a union may have a
5123     //   brace-or-equal-initializer.
5124     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5125         Owner->isRecord())
5126       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5127                                 cast<CXXRecordDecl>(Record));
5128   }
5129 
5130   if (!Record->isUnion() && !Owner->isRecord()) {
5131     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5132       << getLangOpts().CPlusPlus;
5133     Invalid = true;
5134   }
5135 
5136   // C++ [dcl.dcl]p3:
5137   //   [If there are no declarators], and except for the declaration of an
5138   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
5139   //   names into the program
5140   // C++ [class.mem]p2:
5141   //   each such member-declaration shall either declare at least one member
5142   //   name of the class or declare at least one unnamed bit-field
5143   //
5144   // For C this is an error even for a named struct, and is diagnosed elsewhere.
5145   if (getLangOpts().CPlusPlus && Record->field_empty())
5146     Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5147 
5148   // Mock up a declarator.
5149   Declarator Dc(DS, DeclaratorContext::MemberContext);
5150   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5151   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
5152 
5153   // Create a declaration for this anonymous struct/union.
5154   NamedDecl *Anon = nullptr;
5155   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5156     Anon = FieldDecl::Create(
5157         Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5158         /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5159         /*BitWidth=*/nullptr, /*Mutable=*/false,
5160         /*InitStyle=*/ICIS_NoInit);
5161     Anon->setAccess(AS);
5162     ProcessDeclAttributes(S, Anon, Dc);
5163 
5164     if (getLangOpts().CPlusPlus)
5165       FieldCollector->Add(cast<FieldDecl>(Anon));
5166   } else {
5167     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5168     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5169     if (SCSpec == DeclSpec::SCS_mutable) {
5170       // mutable can only appear on non-static class members, so it's always
5171       // an error here
5172       Diag(Record->getLocation(), diag::err_mutable_nonmember);
5173       Invalid = true;
5174       SC = SC_None;
5175     }
5176 
5177     assert(DS.getAttributes().empty() && "No attribute expected");
5178     Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5179                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
5180                            Context.getTypeDeclType(Record), TInfo, SC);
5181 
5182     // Default-initialize the implicit variable. This initialization will be
5183     // trivial in almost all cases, except if a union member has an in-class
5184     // initializer:
5185     //   union { int n = 0; };
5186     ActOnUninitializedDecl(Anon);
5187   }
5188   Anon->setImplicit();
5189 
5190   // Mark this as an anonymous struct/union type.
5191   Record->setAnonymousStructOrUnion(true);
5192 
5193   // Add the anonymous struct/union object to the current
5194   // context. We'll be referencing this object when we refer to one of
5195   // its members.
5196   Owner->addDecl(Anon);
5197 
5198   // Inject the members of the anonymous struct/union into the owning
5199   // context and into the identifier resolver chain for name lookup
5200   // purposes.
5201   SmallVector<NamedDecl*, 2> Chain;
5202   Chain.push_back(Anon);
5203 
5204   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
5205     Invalid = true;
5206 
5207   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5208     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5209       MangleNumberingContext *MCtx;
5210       Decl *ManglingContextDecl;
5211       std::tie(MCtx, ManglingContextDecl) =
5212           getCurrentMangleNumberContext(NewVD->getDeclContext());
5213       if (MCtx) {
5214         Context.setManglingNumber(
5215             NewVD, MCtx->getManglingNumber(
5216                        NewVD, getMSManglingNumber(getLangOpts(), S)));
5217         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5218       }
5219     }
5220   }
5221 
5222   if (Invalid)
5223     Anon->setInvalidDecl();
5224 
5225   return Anon;
5226 }
5227 
5228 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5229 /// Microsoft C anonymous structure.
5230 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5231 /// Example:
5232 ///
5233 /// struct A { int a; };
5234 /// struct B { struct A; int b; };
5235 ///
5236 /// void foo() {
5237 ///   B var;
5238 ///   var.a = 3;
5239 /// }
5240 ///
5241 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5242                                            RecordDecl *Record) {
5243   assert(Record && "expected a record!");
5244 
5245   // Mock up a declarator.
5246   Declarator Dc(DS, DeclaratorContext::TypeNameContext);
5247   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5248   assert(TInfo && "couldn't build declarator info for anonymous struct");
5249 
5250   auto *ParentDecl = cast<RecordDecl>(CurContext);
5251   QualType RecTy = Context.getTypeDeclType(Record);
5252 
5253   // Create a declaration for this anonymous struct.
5254   NamedDecl *Anon =
5255       FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5256                         /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5257                         /*BitWidth=*/nullptr, /*Mutable=*/false,
5258                         /*InitStyle=*/ICIS_NoInit);
5259   Anon->setImplicit();
5260 
5261   // Add the anonymous struct object to the current context.
5262   CurContext->addDecl(Anon);
5263 
5264   // Inject the members of the anonymous struct into the current
5265   // context and into the identifier resolver chain for name lookup
5266   // purposes.
5267   SmallVector<NamedDecl*, 2> Chain;
5268   Chain.push_back(Anon);
5269 
5270   RecordDecl *RecordDef = Record->getDefinition();
5271   if (RequireCompleteSizedType(Anon->getLocation(), RecTy,
5272                                diag::err_field_incomplete_or_sizeless) ||
5273       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
5274                                           AS_none, Chain)) {
5275     Anon->setInvalidDecl();
5276     ParentDecl->setInvalidDecl();
5277   }
5278 
5279   return Anon;
5280 }
5281 
5282 /// GetNameForDeclarator - Determine the full declaration name for the
5283 /// given Declarator.
5284 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5285   return GetNameFromUnqualifiedId(D.getName());
5286 }
5287 
5288 /// Retrieves the declaration name from a parsed unqualified-id.
5289 DeclarationNameInfo
5290 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5291   DeclarationNameInfo NameInfo;
5292   NameInfo.setLoc(Name.StartLocation);
5293 
5294   switch (Name.getKind()) {
5295 
5296   case UnqualifiedIdKind::IK_ImplicitSelfParam:
5297   case UnqualifiedIdKind::IK_Identifier:
5298     NameInfo.setName(Name.Identifier);
5299     return NameInfo;
5300 
5301   case UnqualifiedIdKind::IK_DeductionGuideName: {
5302     // C++ [temp.deduct.guide]p3:
5303     //   The simple-template-id shall name a class template specialization.
5304     //   The template-name shall be the same identifier as the template-name
5305     //   of the simple-template-id.
5306     // These together intend to imply that the template-name shall name a
5307     // class template.
5308     // FIXME: template<typename T> struct X {};
5309     //        template<typename T> using Y = X<T>;
5310     //        Y(int) -> Y<int>;
5311     //   satisfies these rules but does not name a class template.
5312     TemplateName TN = Name.TemplateName.get().get();
5313     auto *Template = TN.getAsTemplateDecl();
5314     if (!Template || !isa<ClassTemplateDecl>(Template)) {
5315       Diag(Name.StartLocation,
5316            diag::err_deduction_guide_name_not_class_template)
5317         << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5318       if (Template)
5319         Diag(Template->getLocation(), diag::note_template_decl_here);
5320       return DeclarationNameInfo();
5321     }
5322 
5323     NameInfo.setName(
5324         Context.DeclarationNames.getCXXDeductionGuideName(Template));
5325     return NameInfo;
5326   }
5327 
5328   case UnqualifiedIdKind::IK_OperatorFunctionId:
5329     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5330                                            Name.OperatorFunctionId.Operator));
5331     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
5332       = Name.OperatorFunctionId.SymbolLocations[0];
5333     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
5334       = Name.EndLocation.getRawEncoding();
5335     return NameInfo;
5336 
5337   case UnqualifiedIdKind::IK_LiteralOperatorId:
5338     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5339                                                            Name.Identifier));
5340     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5341     return NameInfo;
5342 
5343   case UnqualifiedIdKind::IK_ConversionFunctionId: {
5344     TypeSourceInfo *TInfo;
5345     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5346     if (Ty.isNull())
5347       return DeclarationNameInfo();
5348     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5349                                                Context.getCanonicalType(Ty)));
5350     NameInfo.setNamedTypeInfo(TInfo);
5351     return NameInfo;
5352   }
5353 
5354   case UnqualifiedIdKind::IK_ConstructorName: {
5355     TypeSourceInfo *TInfo;
5356     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5357     if (Ty.isNull())
5358       return DeclarationNameInfo();
5359     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5360                                               Context.getCanonicalType(Ty)));
5361     NameInfo.setNamedTypeInfo(TInfo);
5362     return NameInfo;
5363   }
5364 
5365   case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5366     // In well-formed code, we can only have a constructor
5367     // template-id that refers to the current context, so go there
5368     // to find the actual type being constructed.
5369     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5370     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5371       return DeclarationNameInfo();
5372 
5373     // Determine the type of the class being constructed.
5374     QualType CurClassType = Context.getTypeDeclType(CurClass);
5375 
5376     // FIXME: Check two things: that the template-id names the same type as
5377     // CurClassType, and that the template-id does not occur when the name
5378     // was qualified.
5379 
5380     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5381                                     Context.getCanonicalType(CurClassType)));
5382     // FIXME: should we retrieve TypeSourceInfo?
5383     NameInfo.setNamedTypeInfo(nullptr);
5384     return NameInfo;
5385   }
5386 
5387   case UnqualifiedIdKind::IK_DestructorName: {
5388     TypeSourceInfo *TInfo;
5389     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5390     if (Ty.isNull())
5391       return DeclarationNameInfo();
5392     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5393                                               Context.getCanonicalType(Ty)));
5394     NameInfo.setNamedTypeInfo(TInfo);
5395     return NameInfo;
5396   }
5397 
5398   case UnqualifiedIdKind::IK_TemplateId: {
5399     TemplateName TName = Name.TemplateId->Template.get();
5400     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5401     return Context.getNameForTemplate(TName, TNameLoc);
5402   }
5403 
5404   } // switch (Name.getKind())
5405 
5406   llvm_unreachable("Unknown name kind");
5407 }
5408 
5409 static QualType getCoreType(QualType Ty) {
5410   do {
5411     if (Ty->isPointerType() || Ty->isReferenceType())
5412       Ty = Ty->getPointeeType();
5413     else if (Ty->isArrayType())
5414       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5415     else
5416       return Ty.withoutLocalFastQualifiers();
5417   } while (true);
5418 }
5419 
5420 /// hasSimilarParameters - Determine whether the C++ functions Declaration
5421 /// and Definition have "nearly" matching parameters. This heuristic is
5422 /// used to improve diagnostics in the case where an out-of-line function
5423 /// definition doesn't match any declaration within the class or namespace.
5424 /// Also sets Params to the list of indices to the parameters that differ
5425 /// between the declaration and the definition. If hasSimilarParameters
5426 /// returns true and Params is empty, then all of the parameters match.
5427 static bool hasSimilarParameters(ASTContext &Context,
5428                                      FunctionDecl *Declaration,
5429                                      FunctionDecl *Definition,
5430                                      SmallVectorImpl<unsigned> &Params) {
5431   Params.clear();
5432   if (Declaration->param_size() != Definition->param_size())
5433     return false;
5434   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5435     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5436     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5437 
5438     // The parameter types are identical
5439     if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5440       continue;
5441 
5442     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5443     QualType DefParamBaseTy = getCoreType(DefParamTy);
5444     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5445     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5446 
5447     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5448         (DeclTyName && DeclTyName == DefTyName))
5449       Params.push_back(Idx);
5450     else  // The two parameters aren't even close
5451       return false;
5452   }
5453 
5454   return true;
5455 }
5456 
5457 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5458 /// declarator needs to be rebuilt in the current instantiation.
5459 /// Any bits of declarator which appear before the name are valid for
5460 /// consideration here.  That's specifically the type in the decl spec
5461 /// and the base type in any member-pointer chunks.
5462 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5463                                                     DeclarationName Name) {
5464   // The types we specifically need to rebuild are:
5465   //   - typenames, typeofs, and decltypes
5466   //   - types which will become injected class names
5467   // Of course, we also need to rebuild any type referencing such a
5468   // type.  It's safest to just say "dependent", but we call out a
5469   // few cases here.
5470 
5471   DeclSpec &DS = D.getMutableDeclSpec();
5472   switch (DS.getTypeSpecType()) {
5473   case DeclSpec::TST_typename:
5474   case DeclSpec::TST_typeofType:
5475   case DeclSpec::TST_underlyingType:
5476   case DeclSpec::TST_atomic: {
5477     // Grab the type from the parser.
5478     TypeSourceInfo *TSI = nullptr;
5479     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5480     if (T.isNull() || !T->isDependentType()) break;
5481 
5482     // Make sure there's a type source info.  This isn't really much
5483     // of a waste; most dependent types should have type source info
5484     // attached already.
5485     if (!TSI)
5486       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5487 
5488     // Rebuild the type in the current instantiation.
5489     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5490     if (!TSI) return true;
5491 
5492     // Store the new type back in the decl spec.
5493     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5494     DS.UpdateTypeRep(LocType);
5495     break;
5496   }
5497 
5498   case DeclSpec::TST_decltype:
5499   case DeclSpec::TST_typeofExpr: {
5500     Expr *E = DS.getRepAsExpr();
5501     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5502     if (Result.isInvalid()) return true;
5503     DS.UpdateExprRep(Result.get());
5504     break;
5505   }
5506 
5507   default:
5508     // Nothing to do for these decl specs.
5509     break;
5510   }
5511 
5512   // It doesn't matter what order we do this in.
5513   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5514     DeclaratorChunk &Chunk = D.getTypeObject(I);
5515 
5516     // The only type information in the declarator which can come
5517     // before the declaration name is the base type of a member
5518     // pointer.
5519     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5520       continue;
5521 
5522     // Rebuild the scope specifier in-place.
5523     CXXScopeSpec &SS = Chunk.Mem.Scope();
5524     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5525       return true;
5526   }
5527 
5528   return false;
5529 }
5530 
5531 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5532   D.setFunctionDefinitionKind(FDK_Declaration);
5533   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5534 
5535   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5536       Dcl && Dcl->getDeclContext()->isFileContext())
5537     Dcl->setTopLevelDeclInObjCContainer();
5538 
5539   if (getLangOpts().OpenCL)
5540     setCurrentOpenCLExtensionForDecl(Dcl);
5541 
5542   return Dcl;
5543 }
5544 
5545 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5546 ///   If T is the name of a class, then each of the following shall have a
5547 ///   name different from T:
5548 ///     - every static data member of class T;
5549 ///     - every member function of class T
5550 ///     - every member of class T that is itself a type;
5551 /// \returns true if the declaration name violates these rules.
5552 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5553                                    DeclarationNameInfo NameInfo) {
5554   DeclarationName Name = NameInfo.getName();
5555 
5556   CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5557   while (Record && Record->isAnonymousStructOrUnion())
5558     Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5559   if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5560     Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5561     return true;
5562   }
5563 
5564   return false;
5565 }
5566 
5567 /// Diagnose a declaration whose declarator-id has the given
5568 /// nested-name-specifier.
5569 ///
5570 /// \param SS The nested-name-specifier of the declarator-id.
5571 ///
5572 /// \param DC The declaration context to which the nested-name-specifier
5573 /// resolves.
5574 ///
5575 /// \param Name The name of the entity being declared.
5576 ///
5577 /// \param Loc The location of the name of the entity being declared.
5578 ///
5579 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5580 /// we're declaring an explicit / partial specialization / instantiation.
5581 ///
5582 /// \returns true if we cannot safely recover from this error, false otherwise.
5583 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5584                                         DeclarationName Name,
5585                                         SourceLocation Loc, bool IsTemplateId) {
5586   DeclContext *Cur = CurContext;
5587   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5588     Cur = Cur->getParent();
5589 
5590   // If the user provided a superfluous scope specifier that refers back to the
5591   // class in which the entity is already declared, diagnose and ignore it.
5592   //
5593   // class X {
5594   //   void X::f();
5595   // };
5596   //
5597   // Note, it was once ill-formed to give redundant qualification in all
5598   // contexts, but that rule was removed by DR482.
5599   if (Cur->Equals(DC)) {
5600     if (Cur->isRecord()) {
5601       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5602                                       : diag::err_member_extra_qualification)
5603         << Name << FixItHint::CreateRemoval(SS.getRange());
5604       SS.clear();
5605     } else {
5606       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5607     }
5608     return false;
5609   }
5610 
5611   // Check whether the qualifying scope encloses the scope of the original
5612   // declaration. For a template-id, we perform the checks in
5613   // CheckTemplateSpecializationScope.
5614   if (!Cur->Encloses(DC) && !IsTemplateId) {
5615     if (Cur->isRecord())
5616       Diag(Loc, diag::err_member_qualification)
5617         << Name << SS.getRange();
5618     else if (isa<TranslationUnitDecl>(DC))
5619       Diag(Loc, diag::err_invalid_declarator_global_scope)
5620         << Name << SS.getRange();
5621     else if (isa<FunctionDecl>(Cur))
5622       Diag(Loc, diag::err_invalid_declarator_in_function)
5623         << Name << SS.getRange();
5624     else if (isa<BlockDecl>(Cur))
5625       Diag(Loc, diag::err_invalid_declarator_in_block)
5626         << Name << SS.getRange();
5627     else
5628       Diag(Loc, diag::err_invalid_declarator_scope)
5629       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5630 
5631     return true;
5632   }
5633 
5634   if (Cur->isRecord()) {
5635     // Cannot qualify members within a class.
5636     Diag(Loc, diag::err_member_qualification)
5637       << Name << SS.getRange();
5638     SS.clear();
5639 
5640     // C++ constructors and destructors with incorrect scopes can break
5641     // our AST invariants by having the wrong underlying types. If
5642     // that's the case, then drop this declaration entirely.
5643     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5644          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5645         !Context.hasSameType(Name.getCXXNameType(),
5646                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5647       return true;
5648 
5649     return false;
5650   }
5651 
5652   // C++11 [dcl.meaning]p1:
5653   //   [...] "The nested-name-specifier of the qualified declarator-id shall
5654   //   not begin with a decltype-specifer"
5655   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5656   while (SpecLoc.getPrefix())
5657     SpecLoc = SpecLoc.getPrefix();
5658   if (dyn_cast_or_null<DecltypeType>(
5659         SpecLoc.getNestedNameSpecifier()->getAsType()))
5660     Diag(Loc, diag::err_decltype_in_declarator)
5661       << SpecLoc.getTypeLoc().getSourceRange();
5662 
5663   return false;
5664 }
5665 
5666 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5667                                   MultiTemplateParamsArg TemplateParamLists) {
5668   // TODO: consider using NameInfo for diagnostic.
5669   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5670   DeclarationName Name = NameInfo.getName();
5671 
5672   // All of these full declarators require an identifier.  If it doesn't have
5673   // one, the ParsedFreeStandingDeclSpec action should be used.
5674   if (D.isDecompositionDeclarator()) {
5675     return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5676   } else if (!Name) {
5677     if (!D.isInvalidType())  // Reject this if we think it is valid.
5678       Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5679           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5680     return nullptr;
5681   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5682     return nullptr;
5683 
5684   // The scope passed in may not be a decl scope.  Zip up the scope tree until
5685   // we find one that is.
5686   while ((S->getFlags() & Scope::DeclScope) == 0 ||
5687          (S->getFlags() & Scope::TemplateParamScope) != 0)
5688     S = S->getParent();
5689 
5690   DeclContext *DC = CurContext;
5691   if (D.getCXXScopeSpec().isInvalid())
5692     D.setInvalidType();
5693   else if (D.getCXXScopeSpec().isSet()) {
5694     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5695                                         UPPC_DeclarationQualifier))
5696       return nullptr;
5697 
5698     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5699     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5700     if (!DC || isa<EnumDecl>(DC)) {
5701       // If we could not compute the declaration context, it's because the
5702       // declaration context is dependent but does not refer to a class,
5703       // class template, or class template partial specialization. Complain
5704       // and return early, to avoid the coming semantic disaster.
5705       Diag(D.getIdentifierLoc(),
5706            diag::err_template_qualified_declarator_no_match)
5707         << D.getCXXScopeSpec().getScopeRep()
5708         << D.getCXXScopeSpec().getRange();
5709       return nullptr;
5710     }
5711     bool IsDependentContext = DC->isDependentContext();
5712 
5713     if (!IsDependentContext &&
5714         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5715       return nullptr;
5716 
5717     // If a class is incomplete, do not parse entities inside it.
5718     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5719       Diag(D.getIdentifierLoc(),
5720            diag::err_member_def_undefined_record)
5721         << Name << DC << D.getCXXScopeSpec().getRange();
5722       return nullptr;
5723     }
5724     if (!D.getDeclSpec().isFriendSpecified()) {
5725       if (diagnoseQualifiedDeclaration(
5726               D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5727               D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5728         if (DC->isRecord())
5729           return nullptr;
5730 
5731         D.setInvalidType();
5732       }
5733     }
5734 
5735     // Check whether we need to rebuild the type of the given
5736     // declaration in the current instantiation.
5737     if (EnteringContext && IsDependentContext &&
5738         TemplateParamLists.size() != 0) {
5739       ContextRAII SavedContext(*this, DC);
5740       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5741         D.setInvalidType();
5742     }
5743   }
5744 
5745   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5746   QualType R = TInfo->getType();
5747 
5748   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5749                                       UPPC_DeclarationType))
5750     D.setInvalidType();
5751 
5752   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5753                         forRedeclarationInCurContext());
5754 
5755   // See if this is a redefinition of a variable in the same scope.
5756   if (!D.getCXXScopeSpec().isSet()) {
5757     bool IsLinkageLookup = false;
5758     bool CreateBuiltins = false;
5759 
5760     // If the declaration we're planning to build will be a function
5761     // or object with linkage, then look for another declaration with
5762     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5763     //
5764     // If the declaration we're planning to build will be declared with
5765     // external linkage in the translation unit, create any builtin with
5766     // the same name.
5767     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5768       /* Do nothing*/;
5769     else if (CurContext->isFunctionOrMethod() &&
5770              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5771               R->isFunctionType())) {
5772       IsLinkageLookup = true;
5773       CreateBuiltins =
5774           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5775     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5776                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5777       CreateBuiltins = true;
5778 
5779     if (IsLinkageLookup) {
5780       Previous.clear(LookupRedeclarationWithLinkage);
5781       Previous.setRedeclarationKind(ForExternalRedeclaration);
5782     }
5783 
5784     LookupName(Previous, S, CreateBuiltins);
5785   } else { // Something like "int foo::x;"
5786     LookupQualifiedName(Previous, DC);
5787 
5788     // C++ [dcl.meaning]p1:
5789     //   When the declarator-id is qualified, the declaration shall refer to a
5790     //  previously declared member of the class or namespace to which the
5791     //  qualifier refers (or, in the case of a namespace, of an element of the
5792     //  inline namespace set of that namespace (7.3.1)) or to a specialization
5793     //  thereof; [...]
5794     //
5795     // Note that we already checked the context above, and that we do not have
5796     // enough information to make sure that Previous contains the declaration
5797     // we want to match. For example, given:
5798     //
5799     //   class X {
5800     //     void f();
5801     //     void f(float);
5802     //   };
5803     //
5804     //   void X::f(int) { } // ill-formed
5805     //
5806     // In this case, Previous will point to the overload set
5807     // containing the two f's declared in X, but neither of them
5808     // matches.
5809 
5810     // C++ [dcl.meaning]p1:
5811     //   [...] the member shall not merely have been introduced by a
5812     //   using-declaration in the scope of the class or namespace nominated by
5813     //   the nested-name-specifier of the declarator-id.
5814     RemoveUsingDecls(Previous);
5815   }
5816 
5817   if (Previous.isSingleResult() &&
5818       Previous.getFoundDecl()->isTemplateParameter()) {
5819     // Maybe we will complain about the shadowed template parameter.
5820     if (!D.isInvalidType())
5821       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5822                                       Previous.getFoundDecl());
5823 
5824     // Just pretend that we didn't see the previous declaration.
5825     Previous.clear();
5826   }
5827 
5828   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5829     // Forget that the previous declaration is the injected-class-name.
5830     Previous.clear();
5831 
5832   // In C++, the previous declaration we find might be a tag type
5833   // (class or enum). In this case, the new declaration will hide the
5834   // tag type. Note that this applies to functions, function templates, and
5835   // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5836   if (Previous.isSingleTagDecl() &&
5837       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5838       (TemplateParamLists.size() == 0 || R->isFunctionType()))
5839     Previous.clear();
5840 
5841   // Check that there are no default arguments other than in the parameters
5842   // of a function declaration (C++ only).
5843   if (getLangOpts().CPlusPlus)
5844     CheckExtraCXXDefaultArguments(D);
5845 
5846   NamedDecl *New;
5847 
5848   bool AddToScope = true;
5849   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5850     if (TemplateParamLists.size()) {
5851       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5852       return nullptr;
5853     }
5854 
5855     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5856   } else if (R->isFunctionType()) {
5857     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5858                                   TemplateParamLists,
5859                                   AddToScope);
5860   } else {
5861     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5862                                   AddToScope);
5863   }
5864 
5865   if (!New)
5866     return nullptr;
5867 
5868   // If this has an identifier and is not a function template specialization,
5869   // add it to the scope stack.
5870   if (New->getDeclName() && AddToScope)
5871     PushOnScopeChains(New, S);
5872 
5873   if (isInOpenMPDeclareTargetContext())
5874     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5875 
5876   return New;
5877 }
5878 
5879 /// Helper method to turn variable array types into constant array
5880 /// types in certain situations which would otherwise be errors (for
5881 /// GCC compatibility).
5882 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5883                                                     ASTContext &Context,
5884                                                     bool &SizeIsNegative,
5885                                                     llvm::APSInt &Oversized) {
5886   // This method tries to turn a variable array into a constant
5887   // array even when the size isn't an ICE.  This is necessary
5888   // for compatibility with code that depends on gcc's buggy
5889   // constant expression folding, like struct {char x[(int)(char*)2];}
5890   SizeIsNegative = false;
5891   Oversized = 0;
5892 
5893   if (T->isDependentType())
5894     return QualType();
5895 
5896   QualifierCollector Qs;
5897   const Type *Ty = Qs.strip(T);
5898 
5899   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5900     QualType Pointee = PTy->getPointeeType();
5901     QualType FixedType =
5902         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5903                                             Oversized);
5904     if (FixedType.isNull()) return FixedType;
5905     FixedType = Context.getPointerType(FixedType);
5906     return Qs.apply(Context, FixedType);
5907   }
5908   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5909     QualType Inner = PTy->getInnerType();
5910     QualType FixedType =
5911         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5912                                             Oversized);
5913     if (FixedType.isNull()) return FixedType;
5914     FixedType = Context.getParenType(FixedType);
5915     return Qs.apply(Context, FixedType);
5916   }
5917 
5918   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5919   if (!VLATy)
5920     return QualType();
5921   // FIXME: We should probably handle this case
5922   if (VLATy->getElementType()->isVariablyModifiedType())
5923     return QualType();
5924 
5925   Expr::EvalResult Result;
5926   if (!VLATy->getSizeExpr() ||
5927       !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
5928     return QualType();
5929 
5930   llvm::APSInt Res = Result.Val.getInt();
5931 
5932   // Check whether the array size is negative.
5933   if (Res.isSigned() && Res.isNegative()) {
5934     SizeIsNegative = true;
5935     return QualType();
5936   }
5937 
5938   // Check whether the array is too large to be addressed.
5939   unsigned ActiveSizeBits
5940     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5941                                               Res);
5942   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5943     Oversized = Res;
5944     return QualType();
5945   }
5946 
5947   return Context.getConstantArrayType(
5948       VLATy->getElementType(), Res, VLATy->getSizeExpr(), ArrayType::Normal, 0);
5949 }
5950 
5951 static void
5952 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5953   SrcTL = SrcTL.getUnqualifiedLoc();
5954   DstTL = DstTL.getUnqualifiedLoc();
5955   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5956     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5957     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5958                                       DstPTL.getPointeeLoc());
5959     DstPTL.setStarLoc(SrcPTL.getStarLoc());
5960     return;
5961   }
5962   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5963     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5964     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5965                                       DstPTL.getInnerLoc());
5966     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5967     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5968     return;
5969   }
5970   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5971   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5972   TypeLoc SrcElemTL = SrcATL.getElementLoc();
5973   TypeLoc DstElemTL = DstATL.getElementLoc();
5974   DstElemTL.initializeFullCopy(SrcElemTL);
5975   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5976   DstATL.setSizeExpr(SrcATL.getSizeExpr());
5977   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5978 }
5979 
5980 /// Helper method to turn variable array types into constant array
5981 /// types in certain situations which would otherwise be errors (for
5982 /// GCC compatibility).
5983 static TypeSourceInfo*
5984 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5985                                               ASTContext &Context,
5986                                               bool &SizeIsNegative,
5987                                               llvm::APSInt &Oversized) {
5988   QualType FixedTy
5989     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5990                                           SizeIsNegative, Oversized);
5991   if (FixedTy.isNull())
5992     return nullptr;
5993   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5994   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5995                                     FixedTInfo->getTypeLoc());
5996   return FixedTInfo;
5997 }
5998 
5999 /// Register the given locally-scoped extern "C" declaration so
6000 /// that it can be found later for redeclarations. We include any extern "C"
6001 /// declaration that is not visible in the translation unit here, not just
6002 /// function-scope declarations.
6003 void
6004 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
6005   if (!getLangOpts().CPlusPlus &&
6006       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6007     // Don't need to track declarations in the TU in C.
6008     return;
6009 
6010   // Note that we have a locally-scoped external with this name.
6011   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
6012 }
6013 
6014 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
6015   // FIXME: We can have multiple results via __attribute__((overloadable)).
6016   auto Result = Context.getExternCContextDecl()->lookup(Name);
6017   return Result.empty() ? nullptr : *Result.begin();
6018 }
6019 
6020 /// Diagnose function specifiers on a declaration of an identifier that
6021 /// does not identify a function.
6022 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
6023   // FIXME: We should probably indicate the identifier in question to avoid
6024   // confusion for constructs like "virtual int a(), b;"
6025   if (DS.isVirtualSpecified())
6026     Diag(DS.getVirtualSpecLoc(),
6027          diag::err_virtual_non_function);
6028 
6029   if (DS.hasExplicitSpecifier())
6030     Diag(DS.getExplicitSpecLoc(),
6031          diag::err_explicit_non_function);
6032 
6033   if (DS.isNoreturnSpecified())
6034     Diag(DS.getNoreturnSpecLoc(),
6035          diag::err_noreturn_non_function);
6036 }
6037 
6038 NamedDecl*
6039 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
6040                              TypeSourceInfo *TInfo, LookupResult &Previous) {
6041   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6042   if (D.getCXXScopeSpec().isSet()) {
6043     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
6044       << D.getCXXScopeSpec().getRange();
6045     D.setInvalidType();
6046     // Pretend we didn't see the scope specifier.
6047     DC = CurContext;
6048     Previous.clear();
6049   }
6050 
6051   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6052 
6053   if (D.getDeclSpec().isInlineSpecified())
6054     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6055         << getLangOpts().CPlusPlus17;
6056   if (D.getDeclSpec().hasConstexprSpecifier())
6057     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6058         << 1 << D.getDeclSpec().getConstexprSpecifier();
6059 
6060   if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
6061     if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
6062       Diag(D.getName().StartLocation,
6063            diag::err_deduction_guide_invalid_specifier)
6064           << "typedef";
6065     else
6066       Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
6067           << D.getName().getSourceRange();
6068     return nullptr;
6069   }
6070 
6071   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
6072   if (!NewTD) return nullptr;
6073 
6074   // Handle attributes prior to checking for duplicates in MergeVarDecl
6075   ProcessDeclAttributes(S, NewTD, D);
6076 
6077   CheckTypedefForVariablyModifiedType(S, NewTD);
6078 
6079   bool Redeclaration = D.isRedeclaration();
6080   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
6081   D.setRedeclaration(Redeclaration);
6082   return ND;
6083 }
6084 
6085 void
6086 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
6087   // C99 6.7.7p2: If a typedef name specifies a variably modified type
6088   // then it shall have block scope.
6089   // Note that variably modified types must be fixed before merging the decl so
6090   // that redeclarations will match.
6091   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
6092   QualType T = TInfo->getType();
6093   if (T->isVariablyModifiedType()) {
6094     setFunctionHasBranchProtectedScope();
6095 
6096     if (S->getFnParent() == nullptr) {
6097       bool SizeIsNegative;
6098       llvm::APSInt Oversized;
6099       TypeSourceInfo *FixedTInfo =
6100         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6101                                                       SizeIsNegative,
6102                                                       Oversized);
6103       if (FixedTInfo) {
6104         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
6105         NewTD->setTypeSourceInfo(FixedTInfo);
6106       } else {
6107         if (SizeIsNegative)
6108           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
6109         else if (T->isVariableArrayType())
6110           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
6111         else if (Oversized.getBoolValue())
6112           Diag(NewTD->getLocation(), diag::err_array_too_large)
6113             << Oversized.toString(10);
6114         else
6115           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
6116         NewTD->setInvalidDecl();
6117       }
6118     }
6119   }
6120 }
6121 
6122 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6123 /// declares a typedef-name, either using the 'typedef' type specifier or via
6124 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6125 NamedDecl*
6126 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
6127                            LookupResult &Previous, bool &Redeclaration) {
6128 
6129   // Find the shadowed declaration before filtering for scope.
6130   NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
6131 
6132   // Merge the decl with the existing one if appropriate. If the decl is
6133   // in an outer scope, it isn't the same thing.
6134   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
6135                        /*AllowInlineNamespace*/false);
6136   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
6137   if (!Previous.empty()) {
6138     Redeclaration = true;
6139     MergeTypedefNameDecl(S, NewTD, Previous);
6140   } else {
6141     inferGslPointerAttribute(NewTD);
6142   }
6143 
6144   if (ShadowedDecl && !Redeclaration)
6145     CheckShadow(NewTD, ShadowedDecl, Previous);
6146 
6147   // If this is the C FILE type, notify the AST context.
6148   if (IdentifierInfo *II = NewTD->getIdentifier())
6149     if (!NewTD->isInvalidDecl() &&
6150         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6151       if (II->isStr("FILE"))
6152         Context.setFILEDecl(NewTD);
6153       else if (II->isStr("jmp_buf"))
6154         Context.setjmp_bufDecl(NewTD);
6155       else if (II->isStr("sigjmp_buf"))
6156         Context.setsigjmp_bufDecl(NewTD);
6157       else if (II->isStr("ucontext_t"))
6158         Context.setucontext_tDecl(NewTD);
6159     }
6160 
6161   return NewTD;
6162 }
6163 
6164 /// Determines whether the given declaration is an out-of-scope
6165 /// previous declaration.
6166 ///
6167 /// This routine should be invoked when name lookup has found a
6168 /// previous declaration (PrevDecl) that is not in the scope where a
6169 /// new declaration by the same name is being introduced. If the new
6170 /// declaration occurs in a local scope, previous declarations with
6171 /// linkage may still be considered previous declarations (C99
6172 /// 6.2.2p4-5, C++ [basic.link]p6).
6173 ///
6174 /// \param PrevDecl the previous declaration found by name
6175 /// lookup
6176 ///
6177 /// \param DC the context in which the new declaration is being
6178 /// declared.
6179 ///
6180 /// \returns true if PrevDecl is an out-of-scope previous declaration
6181 /// for a new delcaration with the same name.
6182 static bool
6183 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
6184                                 ASTContext &Context) {
6185   if (!PrevDecl)
6186     return false;
6187 
6188   if (!PrevDecl->hasLinkage())
6189     return false;
6190 
6191   if (Context.getLangOpts().CPlusPlus) {
6192     // C++ [basic.link]p6:
6193     //   If there is a visible declaration of an entity with linkage
6194     //   having the same name and type, ignoring entities declared
6195     //   outside the innermost enclosing namespace scope, the block
6196     //   scope declaration declares that same entity and receives the
6197     //   linkage of the previous declaration.
6198     DeclContext *OuterContext = DC->getRedeclContext();
6199     if (!OuterContext->isFunctionOrMethod())
6200       // This rule only applies to block-scope declarations.
6201       return false;
6202 
6203     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6204     if (PrevOuterContext->isRecord())
6205       // We found a member function: ignore it.
6206       return false;
6207 
6208     // Find the innermost enclosing namespace for the new and
6209     // previous declarations.
6210     OuterContext = OuterContext->getEnclosingNamespaceContext();
6211     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6212 
6213     // The previous declaration is in a different namespace, so it
6214     // isn't the same function.
6215     if (!OuterContext->Equals(PrevOuterContext))
6216       return false;
6217   }
6218 
6219   return true;
6220 }
6221 
6222 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6223   CXXScopeSpec &SS = D.getCXXScopeSpec();
6224   if (!SS.isSet()) return;
6225   DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6226 }
6227 
6228 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
6229   QualType type = decl->getType();
6230   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
6231   if (lifetime == Qualifiers::OCL_Autoreleasing) {
6232     // Various kinds of declaration aren't allowed to be __autoreleasing.
6233     unsigned kind = -1U;
6234     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6235       if (var->hasAttr<BlocksAttr>())
6236         kind = 0; // __block
6237       else if (!var->hasLocalStorage())
6238         kind = 1; // global
6239     } else if (isa<ObjCIvarDecl>(decl)) {
6240       kind = 3; // ivar
6241     } else if (isa<FieldDecl>(decl)) {
6242       kind = 2; // field
6243     }
6244 
6245     if (kind != -1U) {
6246       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
6247         << kind;
6248     }
6249   } else if (lifetime == Qualifiers::OCL_None) {
6250     // Try to infer lifetime.
6251     if (!type->isObjCLifetimeType())
6252       return false;
6253 
6254     lifetime = type->getObjCARCImplicitLifetime();
6255     type = Context.getLifetimeQualifiedType(type, lifetime);
6256     decl->setType(type);
6257   }
6258 
6259   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6260     // Thread-local variables cannot have lifetime.
6261     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
6262         var->getTLSKind()) {
6263       Diag(var->getLocation(), diag::err_arc_thread_ownership)
6264         << var->getType();
6265       return true;
6266     }
6267   }
6268 
6269   return false;
6270 }
6271 
6272 void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
6273   if (Decl->getType().hasAddressSpace())
6274     return;
6275   if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
6276     QualType Type = Var->getType();
6277     if (Type->isSamplerT() || Type->isVoidType())
6278       return;
6279     LangAS ImplAS = LangAS::opencl_private;
6280     if ((getLangOpts().OpenCLCPlusPlus || getLangOpts().OpenCLVersion >= 200) &&
6281         Var->hasGlobalStorage())
6282       ImplAS = LangAS::opencl_global;
6283     // If the original type from a decayed type is an array type and that array
6284     // type has no address space yet, deduce it now.
6285     if (auto DT = dyn_cast<DecayedType>(Type)) {
6286       auto OrigTy = DT->getOriginalType();
6287       if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
6288         // Add the address space to the original array type and then propagate
6289         // that to the element type through `getAsArrayType`.
6290         OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
6291         OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
6292         // Re-generate the decayed type.
6293         Type = Context.getDecayedType(OrigTy);
6294       }
6295     }
6296     Type = Context.getAddrSpaceQualType(Type, ImplAS);
6297     // Apply any qualifiers (including address space) from the array type to
6298     // the element type. This implements C99 6.7.3p8: "If the specification of
6299     // an array type includes any type qualifiers, the element type is so
6300     // qualified, not the array type."
6301     if (Type->isArrayType())
6302       Type = QualType(Context.getAsArrayType(Type), 0);
6303     Decl->setType(Type);
6304   }
6305 }
6306 
6307 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
6308   // Ensure that an auto decl is deduced otherwise the checks below might cache
6309   // the wrong linkage.
6310   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
6311 
6312   // 'weak' only applies to declarations with external linkage.
6313   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
6314     if (!ND.isExternallyVisible()) {
6315       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
6316       ND.dropAttr<WeakAttr>();
6317     }
6318   }
6319   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
6320     if (ND.isExternallyVisible()) {
6321       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
6322       ND.dropAttr<WeakRefAttr>();
6323       ND.dropAttr<AliasAttr>();
6324     }
6325   }
6326 
6327   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
6328     if (VD->hasInit()) {
6329       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
6330         assert(VD->isThisDeclarationADefinition() &&
6331                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
6332         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
6333         VD->dropAttr<AliasAttr>();
6334       }
6335     }
6336   }
6337 
6338   // 'selectany' only applies to externally visible variable declarations.
6339   // It does not apply to functions.
6340   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6341     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6342       S.Diag(Attr->getLocation(),
6343              diag::err_attribute_selectany_non_extern_data);
6344       ND.dropAttr<SelectAnyAttr>();
6345     }
6346   }
6347 
6348   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6349     auto *VD = dyn_cast<VarDecl>(&ND);
6350     bool IsAnonymousNS = false;
6351     bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6352     if (VD) {
6353       const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6354       while (NS && !IsAnonymousNS) {
6355         IsAnonymousNS = NS->isAnonymousNamespace();
6356         NS = dyn_cast<NamespaceDecl>(NS->getParent());
6357       }
6358     }
6359     // dll attributes require external linkage. Static locals may have external
6360     // linkage but still cannot be explicitly imported or exported.
6361     // In Microsoft mode, a variable defined in anonymous namespace must have
6362     // external linkage in order to be exported.
6363     bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6364     if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6365         (!AnonNSInMicrosoftMode &&
6366          (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6367       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6368         << &ND << Attr;
6369       ND.setInvalidDecl();
6370     }
6371   }
6372 
6373   // Virtual functions cannot be marked as 'notail'.
6374   if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
6375     if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
6376       if (MD->isVirtual()) {
6377         S.Diag(ND.getLocation(),
6378                diag::err_invalid_attribute_on_virtual_function)
6379             << Attr;
6380         ND.dropAttr<NotTailCalledAttr>();
6381       }
6382 
6383   // Check the attributes on the function type, if any.
6384   if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6385     // Don't declare this variable in the second operand of the for-statement;
6386     // GCC miscompiles that by ending its lifetime before evaluating the
6387     // third operand. See gcc.gnu.org/PR86769.
6388     AttributedTypeLoc ATL;
6389     for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6390          (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6391          TL = ATL.getModifiedLoc()) {
6392       // The [[lifetimebound]] attribute can be applied to the implicit object
6393       // parameter of a non-static member function (other than a ctor or dtor)
6394       // by applying it to the function type.
6395       if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6396         const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6397         if (!MD || MD->isStatic()) {
6398           S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6399               << !MD << A->getRange();
6400         } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6401           S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6402               << isa<CXXDestructorDecl>(MD) << A->getRange();
6403         }
6404       }
6405     }
6406   }
6407 }
6408 
6409 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6410                                            NamedDecl *NewDecl,
6411                                            bool IsSpecialization,
6412                                            bool IsDefinition) {
6413   if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6414     return;
6415 
6416   bool IsTemplate = false;
6417   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6418     OldDecl = OldTD->getTemplatedDecl();
6419     IsTemplate = true;
6420     if (!IsSpecialization)
6421       IsDefinition = false;
6422   }
6423   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6424     NewDecl = NewTD->getTemplatedDecl();
6425     IsTemplate = true;
6426   }
6427 
6428   if (!OldDecl || !NewDecl)
6429     return;
6430 
6431   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6432   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6433   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6434   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6435 
6436   // dllimport and dllexport are inheritable attributes so we have to exclude
6437   // inherited attribute instances.
6438   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6439                     (NewExportAttr && !NewExportAttr->isInherited());
6440 
6441   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6442   // the only exception being explicit specializations.
6443   // Implicitly generated declarations are also excluded for now because there
6444   // is no other way to switch these to use dllimport or dllexport.
6445   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6446 
6447   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6448     // Allow with a warning for free functions and global variables.
6449     bool JustWarn = false;
6450     if (!OldDecl->isCXXClassMember()) {
6451       auto *VD = dyn_cast<VarDecl>(OldDecl);
6452       if (VD && !VD->getDescribedVarTemplate())
6453         JustWarn = true;
6454       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6455       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6456         JustWarn = true;
6457     }
6458 
6459     // We cannot change a declaration that's been used because IR has already
6460     // been emitted. Dllimported functions will still work though (modulo
6461     // address equality) as they can use the thunk.
6462     if (OldDecl->isUsed())
6463       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6464         JustWarn = false;
6465 
6466     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6467                                : diag::err_attribute_dll_redeclaration;
6468     S.Diag(NewDecl->getLocation(), DiagID)
6469         << NewDecl
6470         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6471     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6472     if (!JustWarn) {
6473       NewDecl->setInvalidDecl();
6474       return;
6475     }
6476   }
6477 
6478   // A redeclaration is not allowed to drop a dllimport attribute, the only
6479   // exceptions being inline function definitions (except for function
6480   // templates), local extern declarations, qualified friend declarations or
6481   // special MSVC extension: in the last case, the declaration is treated as if
6482   // it were marked dllexport.
6483   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6484   bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6485   if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6486     // Ignore static data because out-of-line definitions are diagnosed
6487     // separately.
6488     IsStaticDataMember = VD->isStaticDataMember();
6489     IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6490                    VarDecl::DeclarationOnly;
6491   } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6492     IsInline = FD->isInlined();
6493     IsQualifiedFriend = FD->getQualifier() &&
6494                         FD->getFriendObjectKind() == Decl::FOK_Declared;
6495   }
6496 
6497   if (OldImportAttr && !HasNewAttr &&
6498       (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember &&
6499       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6500     if (IsMicrosoft && IsDefinition) {
6501       S.Diag(NewDecl->getLocation(),
6502              diag::warn_redeclaration_without_import_attribute)
6503           << NewDecl;
6504       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6505       NewDecl->dropAttr<DLLImportAttr>();
6506       NewDecl->addAttr(
6507           DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange()));
6508     } else {
6509       S.Diag(NewDecl->getLocation(),
6510              diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6511           << NewDecl << OldImportAttr;
6512       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6513       S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6514       OldDecl->dropAttr<DLLImportAttr>();
6515       NewDecl->dropAttr<DLLImportAttr>();
6516     }
6517   } else if (IsInline && OldImportAttr && !IsMicrosoft) {
6518     // In MinGW, seeing a function declared inline drops the dllimport
6519     // attribute.
6520     OldDecl->dropAttr<DLLImportAttr>();
6521     NewDecl->dropAttr<DLLImportAttr>();
6522     S.Diag(NewDecl->getLocation(),
6523            diag::warn_dllimport_dropped_from_inline_function)
6524         << NewDecl << OldImportAttr;
6525   }
6526 
6527   // A specialization of a class template member function is processed here
6528   // since it's a redeclaration. If the parent class is dllexport, the
6529   // specialization inherits that attribute. This doesn't happen automatically
6530   // since the parent class isn't instantiated until later.
6531   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6532     if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6533         !NewImportAttr && !NewExportAttr) {
6534       if (const DLLExportAttr *ParentExportAttr =
6535               MD->getParent()->getAttr<DLLExportAttr>()) {
6536         DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6537         NewAttr->setInherited(true);
6538         NewDecl->addAttr(NewAttr);
6539       }
6540     }
6541   }
6542 }
6543 
6544 /// Given that we are within the definition of the given function,
6545 /// will that definition behave like C99's 'inline', where the
6546 /// definition is discarded except for optimization purposes?
6547 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6548   // Try to avoid calling GetGVALinkageForFunction.
6549 
6550   // All cases of this require the 'inline' keyword.
6551   if (!FD->isInlined()) return false;
6552 
6553   // This is only possible in C++ with the gnu_inline attribute.
6554   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6555     return false;
6556 
6557   // Okay, go ahead and call the relatively-more-expensive function.
6558   return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6559 }
6560 
6561 /// Determine whether a variable is extern "C" prior to attaching
6562 /// an initializer. We can't just call isExternC() here, because that
6563 /// will also compute and cache whether the declaration is externally
6564 /// visible, which might change when we attach the initializer.
6565 ///
6566 /// This can only be used if the declaration is known to not be a
6567 /// redeclaration of an internal linkage declaration.
6568 ///
6569 /// For instance:
6570 ///
6571 ///   auto x = []{};
6572 ///
6573 /// Attaching the initializer here makes this declaration not externally
6574 /// visible, because its type has internal linkage.
6575 ///
6576 /// FIXME: This is a hack.
6577 template<typename T>
6578 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6579   if (S.getLangOpts().CPlusPlus) {
6580     // In C++, the overloadable attribute negates the effects of extern "C".
6581     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6582       return false;
6583 
6584     // So do CUDA's host/device attributes.
6585     if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6586                                  D->template hasAttr<CUDAHostAttr>()))
6587       return false;
6588   }
6589   return D->isExternC();
6590 }
6591 
6592 static bool shouldConsiderLinkage(const VarDecl *VD) {
6593   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6594   if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
6595       isa<OMPDeclareMapperDecl>(DC))
6596     return VD->hasExternalStorage();
6597   if (DC->isFileContext())
6598     return true;
6599   if (DC->isRecord())
6600     return false;
6601   if (isa<RequiresExprBodyDecl>(DC))
6602     return false;
6603   llvm_unreachable("Unexpected context");
6604 }
6605 
6606 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6607   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6608   if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6609       isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
6610     return true;
6611   if (DC->isRecord())
6612     return false;
6613   llvm_unreachable("Unexpected context");
6614 }
6615 
6616 static bool hasParsedAttr(Scope *S, const Declarator &PD,
6617                           ParsedAttr::Kind Kind) {
6618   // Check decl attributes on the DeclSpec.
6619   if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6620     return true;
6621 
6622   // Walk the declarator structure, checking decl attributes that were in a type
6623   // position to the decl itself.
6624   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6625     if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6626       return true;
6627   }
6628 
6629   // Finally, check attributes on the decl itself.
6630   return PD.getAttributes().hasAttribute(Kind);
6631 }
6632 
6633 /// Adjust the \c DeclContext for a function or variable that might be a
6634 /// function-local external declaration.
6635 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6636   if (!DC->isFunctionOrMethod())
6637     return false;
6638 
6639   // If this is a local extern function or variable declared within a function
6640   // template, don't add it into the enclosing namespace scope until it is
6641   // instantiated; it might have a dependent type right now.
6642   if (DC->isDependentContext())
6643     return true;
6644 
6645   // C++11 [basic.link]p7:
6646   //   When a block scope declaration of an entity with linkage is not found to
6647   //   refer to some other declaration, then that entity is a member of the
6648   //   innermost enclosing namespace.
6649   //
6650   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6651   // semantically-enclosing namespace, not a lexically-enclosing one.
6652   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6653     DC = DC->getParent();
6654   return true;
6655 }
6656 
6657 /// Returns true if given declaration has external C language linkage.
6658 static bool isDeclExternC(const Decl *D) {
6659   if (const auto *FD = dyn_cast<FunctionDecl>(D))
6660     return FD->isExternC();
6661   if (const auto *VD = dyn_cast<VarDecl>(D))
6662     return VD->isExternC();
6663 
6664   llvm_unreachable("Unknown type of decl!");
6665 }
6666 /// Returns true if there hasn't been any invalid type diagnosed.
6667 static bool diagnoseOpenCLTypes(Scope *S, Sema &Se, Declarator &D,
6668                                 DeclContext *DC, QualType R) {
6669   // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6670   // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6671   // argument.
6672   if (R->isImageType() || R->isPipeType()) {
6673     Se.Diag(D.getIdentifierLoc(),
6674             diag::err_opencl_type_can_only_be_used_as_function_parameter)
6675         << R;
6676     D.setInvalidType();
6677     return false;
6678   }
6679 
6680   // OpenCL v1.2 s6.9.r:
6681   // The event type cannot be used to declare a program scope variable.
6682   // OpenCL v2.0 s6.9.q:
6683   // The clk_event_t and reserve_id_t types cannot be declared in program
6684   // scope.
6685   if (NULL == S->getParent()) {
6686     if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6687       Se.Diag(D.getIdentifierLoc(),
6688               diag::err_invalid_type_for_program_scope_var)
6689           << R;
6690       D.setInvalidType();
6691       return false;
6692     }
6693   }
6694 
6695   // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6696   QualType NR = R;
6697   while (NR->isPointerType()) {
6698     if (NR->isFunctionPointerType()) {
6699       Se.Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
6700       D.setInvalidType();
6701       return false;
6702     }
6703     NR = NR->getPointeeType();
6704   }
6705 
6706   if (!Se.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
6707     // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6708     // half array type (unless the cl_khr_fp16 extension is enabled).
6709     if (Se.Context.getBaseElementType(R)->isHalfType()) {
6710       Se.Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
6711       D.setInvalidType();
6712       return false;
6713     }
6714   }
6715 
6716   // OpenCL v1.2 s6.9.r:
6717   // The event type cannot be used with the __local, __constant and __global
6718   // address space qualifiers.
6719   if (R->isEventT()) {
6720     if (R.getAddressSpace() != LangAS::opencl_private) {
6721       Se.Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual);
6722       D.setInvalidType();
6723       return false;
6724     }
6725   }
6726 
6727   // C++ for OpenCL does not allow the thread_local storage qualifier.
6728   // OpenCL C does not support thread_local either, and
6729   // also reject all other thread storage class specifiers.
6730   DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
6731   if (TSC != TSCS_unspecified) {
6732     bool IsCXX = Se.getLangOpts().OpenCLCPlusPlus;
6733     Se.Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6734             diag::err_opencl_unknown_type_specifier)
6735         << IsCXX << Se.getLangOpts().getOpenCLVersionTuple().getAsString()
6736         << DeclSpec::getSpecifierName(TSC) << 1;
6737     D.setInvalidType();
6738     return false;
6739   }
6740 
6741   if (R->isSamplerT()) {
6742     // OpenCL v1.2 s6.9.b p4:
6743     // The sampler type cannot be used with the __local and __global address
6744     // space qualifiers.
6745     if (R.getAddressSpace() == LangAS::opencl_local ||
6746         R.getAddressSpace() == LangAS::opencl_global) {
6747       Se.Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
6748       D.setInvalidType();
6749     }
6750 
6751     // OpenCL v1.2 s6.12.14.1:
6752     // A global sampler must be declared with either the constant address
6753     // space qualifier or with the const qualifier.
6754     if (DC->isTranslationUnit() &&
6755         !(R.getAddressSpace() == LangAS::opencl_constant ||
6756           R.isConstQualified())) {
6757       Se.Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
6758       D.setInvalidType();
6759     }
6760     if (D.isInvalidType())
6761       return false;
6762   }
6763   return true;
6764 }
6765 
6766 NamedDecl *Sema::ActOnVariableDeclarator(
6767     Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6768     LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6769     bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6770   QualType R = TInfo->getType();
6771   DeclarationName Name = GetNameForDeclarator(D).getName();
6772 
6773   IdentifierInfo *II = Name.getAsIdentifierInfo();
6774 
6775   if (D.isDecompositionDeclarator()) {
6776     // Take the name of the first declarator as our name for diagnostic
6777     // purposes.
6778     auto &Decomp = D.getDecompositionDeclarator();
6779     if (!Decomp.bindings().empty()) {
6780       II = Decomp.bindings()[0].Name;
6781       Name = II;
6782     }
6783   } else if (!II) {
6784     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6785     return nullptr;
6786   }
6787 
6788 
6789   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6790   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6791 
6792   // dllimport globals without explicit storage class are treated as extern. We
6793   // have to change the storage class this early to get the right DeclContext.
6794   if (SC == SC_None && !DC->isRecord() &&
6795       hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6796       !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6797     SC = SC_Extern;
6798 
6799   DeclContext *OriginalDC = DC;
6800   bool IsLocalExternDecl = SC == SC_Extern &&
6801                            adjustContextForLocalExternDecl(DC);
6802 
6803   if (SCSpec == DeclSpec::SCS_mutable) {
6804     // mutable can only appear on non-static class members, so it's always
6805     // an error here
6806     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6807     D.setInvalidType();
6808     SC = SC_None;
6809   }
6810 
6811   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6812       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6813                               D.getDeclSpec().getStorageClassSpecLoc())) {
6814     // In C++11, the 'register' storage class specifier is deprecated.
6815     // Suppress the warning in system macros, it's used in macros in some
6816     // popular C system headers, such as in glibc's htonl() macro.
6817     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6818          getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6819                                    : diag::warn_deprecated_register)
6820       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6821   }
6822 
6823   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6824 
6825   if (!DC->isRecord() && S->getFnParent() == nullptr) {
6826     // C99 6.9p2: The storage-class specifiers auto and register shall not
6827     // appear in the declaration specifiers in an external declaration.
6828     // Global Register+Asm is a GNU extension we support.
6829     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6830       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6831       D.setInvalidType();
6832     }
6833   }
6834 
6835   bool IsMemberSpecialization = false;
6836   bool IsVariableTemplateSpecialization = false;
6837   bool IsPartialSpecialization = false;
6838   bool IsVariableTemplate = false;
6839   VarDecl *NewVD = nullptr;
6840   VarTemplateDecl *NewTemplate = nullptr;
6841   TemplateParameterList *TemplateParams = nullptr;
6842   if (!getLangOpts().CPlusPlus) {
6843     NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
6844                             II, R, TInfo, SC);
6845 
6846     if (R->getContainedDeducedType())
6847       ParsingInitForAutoVars.insert(NewVD);
6848 
6849     if (D.isInvalidType())
6850       NewVD->setInvalidDecl();
6851 
6852     if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
6853         NewVD->hasLocalStorage())
6854       checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
6855                             NTCUC_AutoVar, NTCUK_Destruct);
6856   } else {
6857     bool Invalid = false;
6858 
6859     if (DC->isRecord() && !CurContext->isRecord()) {
6860       // This is an out-of-line definition of a static data member.
6861       switch (SC) {
6862       case SC_None:
6863         break;
6864       case SC_Static:
6865         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6866              diag::err_static_out_of_line)
6867           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6868         break;
6869       case SC_Auto:
6870       case SC_Register:
6871       case SC_Extern:
6872         // [dcl.stc] p2: The auto or register specifiers shall be applied only
6873         // to names of variables declared in a block or to function parameters.
6874         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
6875         // of class members
6876 
6877         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6878              diag::err_storage_class_for_static_member)
6879           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6880         break;
6881       case SC_PrivateExtern:
6882         llvm_unreachable("C storage class in c++!");
6883       }
6884     }
6885 
6886     if (SC == SC_Static && CurContext->isRecord()) {
6887       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
6888         // Walk up the enclosing DeclContexts to check for any that are
6889         // incompatible with static data members.
6890         const DeclContext *FunctionOrMethod = nullptr;
6891         const CXXRecordDecl *AnonStruct = nullptr;
6892         for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) {
6893           if (Ctxt->isFunctionOrMethod()) {
6894             FunctionOrMethod = Ctxt;
6895             break;
6896           }
6897           const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt);
6898           if (ParentDecl && !ParentDecl->getDeclName()) {
6899             AnonStruct = ParentDecl;
6900             break;
6901           }
6902         }
6903         if (FunctionOrMethod) {
6904           // C++ [class.static.data]p5: A local class shall not have static data
6905           // members.
6906           Diag(D.getIdentifierLoc(),
6907                diag::err_static_data_member_not_allowed_in_local_class)
6908             << Name << RD->getDeclName() << RD->getTagKind();
6909         } else if (AnonStruct) {
6910           // C++ [class.static.data]p4: Unnamed classes and classes contained
6911           // directly or indirectly within unnamed classes shall not contain
6912           // static data members.
6913           Diag(D.getIdentifierLoc(),
6914                diag::err_static_data_member_not_allowed_in_anon_struct)
6915             << Name << AnonStruct->getTagKind();
6916           Invalid = true;
6917         } else if (RD->isUnion()) {
6918           // C++98 [class.union]p1: If a union contains a static data member,
6919           // the program is ill-formed. C++11 drops this restriction.
6920           Diag(D.getIdentifierLoc(),
6921                getLangOpts().CPlusPlus11
6922                  ? diag::warn_cxx98_compat_static_data_member_in_union
6923                  : diag::ext_static_data_member_in_union) << Name;
6924         }
6925       }
6926     }
6927 
6928     // Match up the template parameter lists with the scope specifier, then
6929     // determine whether we have a template or a template specialization.
6930     bool InvalidScope = false;
6931     TemplateParams = MatchTemplateParametersToScopeSpecifier(
6932         D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
6933         D.getCXXScopeSpec(),
6934         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
6935             ? D.getName().TemplateId
6936             : nullptr,
6937         TemplateParamLists,
6938         /*never a friend*/ false, IsMemberSpecialization, InvalidScope);
6939     Invalid |= InvalidScope;
6940 
6941     if (TemplateParams) {
6942       if (!TemplateParams->size() &&
6943           D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
6944         // There is an extraneous 'template<>' for this variable. Complain
6945         // about it, but allow the declaration of the variable.
6946         Diag(TemplateParams->getTemplateLoc(),
6947              diag::err_template_variable_noparams)
6948           << II
6949           << SourceRange(TemplateParams->getTemplateLoc(),
6950                          TemplateParams->getRAngleLoc());
6951         TemplateParams = nullptr;
6952       } else {
6953         if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
6954           // This is an explicit specialization or a partial specialization.
6955           // FIXME: Check that we can declare a specialization here.
6956           IsVariableTemplateSpecialization = true;
6957           IsPartialSpecialization = TemplateParams->size() > 0;
6958         } else { // if (TemplateParams->size() > 0)
6959           // This is a template declaration.
6960           IsVariableTemplate = true;
6961 
6962           // Check that we can declare a template here.
6963           if (CheckTemplateDeclScope(S, TemplateParams))
6964             return nullptr;
6965 
6966           // Only C++1y supports variable templates (N3651).
6967           Diag(D.getIdentifierLoc(),
6968                getLangOpts().CPlusPlus14
6969                    ? diag::warn_cxx11_compat_variable_template
6970                    : diag::ext_variable_template);
6971         }
6972       }
6973     } else {
6974       assert((Invalid ||
6975               D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
6976              "should have a 'template<>' for this decl");
6977     }
6978 
6979     if (IsVariableTemplateSpecialization) {
6980       SourceLocation TemplateKWLoc =
6981           TemplateParamLists.size() > 0
6982               ? TemplateParamLists[0]->getTemplateLoc()
6983               : SourceLocation();
6984       DeclResult Res = ActOnVarTemplateSpecialization(
6985           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
6986           IsPartialSpecialization);
6987       if (Res.isInvalid())
6988         return nullptr;
6989       NewVD = cast<VarDecl>(Res.get());
6990       AddToScope = false;
6991     } else if (D.isDecompositionDeclarator()) {
6992       NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
6993                                         D.getIdentifierLoc(), R, TInfo, SC,
6994                                         Bindings);
6995     } else
6996       NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
6997                               D.getIdentifierLoc(), II, R, TInfo, SC);
6998 
6999     // If this is supposed to be a variable template, create it as such.
7000     if (IsVariableTemplate) {
7001       NewTemplate =
7002           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
7003                                   TemplateParams, NewVD);
7004       NewVD->setDescribedVarTemplate(NewTemplate);
7005     }
7006 
7007     // If this decl has an auto type in need of deduction, make a note of the
7008     // Decl so we can diagnose uses of it in its own initializer.
7009     if (R->getContainedDeducedType())
7010       ParsingInitForAutoVars.insert(NewVD);
7011 
7012     if (D.isInvalidType() || Invalid) {
7013       NewVD->setInvalidDecl();
7014       if (NewTemplate)
7015         NewTemplate->setInvalidDecl();
7016     }
7017 
7018     SetNestedNameSpecifier(*this, NewVD, D);
7019 
7020     // If we have any template parameter lists that don't directly belong to
7021     // the variable (matching the scope specifier), store them.
7022     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
7023     if (TemplateParamLists.size() > VDTemplateParamLists)
7024       NewVD->setTemplateParameterListsInfo(
7025           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
7026   }
7027 
7028   if (D.getDeclSpec().isInlineSpecified()) {
7029     if (!getLangOpts().CPlusPlus) {
7030       Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
7031           << 0;
7032     } else if (CurContext->isFunctionOrMethod()) {
7033       // 'inline' is not allowed on block scope variable declaration.
7034       Diag(D.getDeclSpec().getInlineSpecLoc(),
7035            diag::err_inline_declaration_block_scope) << Name
7036         << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7037     } else {
7038       Diag(D.getDeclSpec().getInlineSpecLoc(),
7039            getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
7040                                      : diag::ext_inline_variable);
7041       NewVD->setInlineSpecified();
7042     }
7043   }
7044 
7045   // Set the lexical context. If the declarator has a C++ scope specifier, the
7046   // lexical context will be different from the semantic context.
7047   NewVD->setLexicalDeclContext(CurContext);
7048   if (NewTemplate)
7049     NewTemplate->setLexicalDeclContext(CurContext);
7050 
7051   if (IsLocalExternDecl) {
7052     if (D.isDecompositionDeclarator())
7053       for (auto *B : Bindings)
7054         B->setLocalExternDecl();
7055     else
7056       NewVD->setLocalExternDecl();
7057   }
7058 
7059   bool EmitTLSUnsupportedError = false;
7060   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
7061     // C++11 [dcl.stc]p4:
7062     //   When thread_local is applied to a variable of block scope the
7063     //   storage-class-specifier static is implied if it does not appear
7064     //   explicitly.
7065     // Core issue: 'static' is not implied if the variable is declared
7066     //   'extern'.
7067     if (NewVD->hasLocalStorage() &&
7068         (SCSpec != DeclSpec::SCS_unspecified ||
7069          TSCS != DeclSpec::TSCS_thread_local ||
7070          !DC->isFunctionOrMethod()))
7071       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7072            diag::err_thread_non_global)
7073         << DeclSpec::getSpecifierName(TSCS);
7074     else if (!Context.getTargetInfo().isTLSSupported()) {
7075       if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
7076         // Postpone error emission until we've collected attributes required to
7077         // figure out whether it's a host or device variable and whether the
7078         // error should be ignored.
7079         EmitTLSUnsupportedError = true;
7080         // We still need to mark the variable as TLS so it shows up in AST with
7081         // proper storage class for other tools to use even if we're not going
7082         // to emit any code for it.
7083         NewVD->setTSCSpec(TSCS);
7084       } else
7085         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7086              diag::err_thread_unsupported);
7087     } else
7088       NewVD->setTSCSpec(TSCS);
7089   }
7090 
7091   switch (D.getDeclSpec().getConstexprSpecifier()) {
7092   case CSK_unspecified:
7093     break;
7094 
7095   case CSK_consteval:
7096     Diag(D.getDeclSpec().getConstexprSpecLoc(),
7097         diag::err_constexpr_wrong_decl_kind)
7098       << D.getDeclSpec().getConstexprSpecifier();
7099     LLVM_FALLTHROUGH;
7100 
7101   case CSK_constexpr:
7102     NewVD->setConstexpr(true);
7103     // C++1z [dcl.spec.constexpr]p1:
7104     //   A static data member declared with the constexpr specifier is
7105     //   implicitly an inline variable.
7106     if (NewVD->isStaticDataMember() &&
7107         (getLangOpts().CPlusPlus17 ||
7108          Context.getTargetInfo().getCXXABI().isMicrosoft()))
7109       NewVD->setImplicitlyInline();
7110     break;
7111 
7112   case CSK_constinit:
7113     if (!NewVD->hasGlobalStorage())
7114       Diag(D.getDeclSpec().getConstexprSpecLoc(),
7115            diag::err_constinit_local_variable);
7116     else
7117       NewVD->addAttr(ConstInitAttr::Create(
7118           Context, D.getDeclSpec().getConstexprSpecLoc(),
7119           AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit));
7120     break;
7121   }
7122 
7123   // C99 6.7.4p3
7124   //   An inline definition of a function with external linkage shall
7125   //   not contain a definition of a modifiable object with static or
7126   //   thread storage duration...
7127   // We only apply this when the function is required to be defined
7128   // elsewhere, i.e. when the function is not 'extern inline'.  Note
7129   // that a local variable with thread storage duration still has to
7130   // be marked 'static'.  Also note that it's possible to get these
7131   // semantics in C++ using __attribute__((gnu_inline)).
7132   if (SC == SC_Static && S->getFnParent() != nullptr &&
7133       !NewVD->getType().isConstQualified()) {
7134     FunctionDecl *CurFD = getCurFunctionDecl();
7135     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
7136       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7137            diag::warn_static_local_in_extern_inline);
7138       MaybeSuggestAddingStaticToDecl(CurFD);
7139     }
7140   }
7141 
7142   if (D.getDeclSpec().isModulePrivateSpecified()) {
7143     if (IsVariableTemplateSpecialization)
7144       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7145           << (IsPartialSpecialization ? 1 : 0)
7146           << FixItHint::CreateRemoval(
7147                  D.getDeclSpec().getModulePrivateSpecLoc());
7148     else if (IsMemberSpecialization)
7149       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7150         << 2
7151         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7152     else if (NewVD->hasLocalStorage())
7153       Diag(NewVD->getLocation(), diag::err_module_private_local)
7154         << 0 << NewVD->getDeclName()
7155         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7156         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7157     else {
7158       NewVD->setModulePrivate();
7159       if (NewTemplate)
7160         NewTemplate->setModulePrivate();
7161       for (auto *B : Bindings)
7162         B->setModulePrivate();
7163     }
7164   }
7165 
7166   if (getLangOpts().OpenCL) {
7167 
7168     deduceOpenCLAddressSpace(NewVD);
7169 
7170     diagnoseOpenCLTypes(S, *this, D, DC, NewVD->getType());
7171   }
7172 
7173   // Handle attributes prior to checking for duplicates in MergeVarDecl
7174   ProcessDeclAttributes(S, NewVD, D);
7175 
7176   if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
7177     if (EmitTLSUnsupportedError &&
7178         ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
7179          (getLangOpts().OpenMPIsDevice &&
7180           OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
7181       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7182            diag::err_thread_unsupported);
7183     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
7184     // storage [duration]."
7185     if (SC == SC_None && S->getFnParent() != nullptr &&
7186         (NewVD->hasAttr<CUDASharedAttr>() ||
7187          NewVD->hasAttr<CUDAConstantAttr>())) {
7188       NewVD->setStorageClass(SC_Static);
7189     }
7190   }
7191 
7192   // Ensure that dllimport globals without explicit storage class are treated as
7193   // extern. The storage class is set above using parsed attributes. Now we can
7194   // check the VarDecl itself.
7195   assert(!NewVD->hasAttr<DLLImportAttr>() ||
7196          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
7197          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
7198 
7199   // In auto-retain/release, infer strong retension for variables of
7200   // retainable type.
7201   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
7202     NewVD->setInvalidDecl();
7203 
7204   // Handle GNU asm-label extension (encoded as an attribute).
7205   if (Expr *E = (Expr*)D.getAsmLabel()) {
7206     // The parser guarantees this is a string.
7207     StringLiteral *SE = cast<StringLiteral>(E);
7208     StringRef Label = SE->getString();
7209     if (S->getFnParent() != nullptr) {
7210       switch (SC) {
7211       case SC_None:
7212       case SC_Auto:
7213         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
7214         break;
7215       case SC_Register:
7216         // Local Named register
7217         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
7218             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
7219           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7220         break;
7221       case SC_Static:
7222       case SC_Extern:
7223       case SC_PrivateExtern:
7224         break;
7225       }
7226     } else if (SC == SC_Register) {
7227       // Global Named register
7228       if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
7229         const auto &TI = Context.getTargetInfo();
7230         bool HasSizeMismatch;
7231 
7232         if (!TI.isValidGCCRegisterName(Label))
7233           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7234         else if (!TI.validateGlobalRegisterVariable(Label,
7235                                                     Context.getTypeSize(R),
7236                                                     HasSizeMismatch))
7237           Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
7238         else if (HasSizeMismatch)
7239           Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
7240       }
7241 
7242       if (!R->isIntegralType(Context) && !R->isPointerType()) {
7243         Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
7244         NewVD->setInvalidDecl(true);
7245       }
7246     }
7247 
7248     NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
7249                                         /*IsLiteralLabel=*/true,
7250                                         SE->getStrTokenLoc(0)));
7251   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7252     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7253       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
7254     if (I != ExtnameUndeclaredIdentifiers.end()) {
7255       if (isDeclExternC(NewVD)) {
7256         NewVD->addAttr(I->second);
7257         ExtnameUndeclaredIdentifiers.erase(I);
7258       } else
7259         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
7260             << /*Variable*/1 << NewVD;
7261     }
7262   }
7263 
7264   // Find the shadowed declaration before filtering for scope.
7265   NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
7266                                 ? getShadowedDeclaration(NewVD, Previous)
7267                                 : nullptr;
7268 
7269   // Don't consider existing declarations that are in a different
7270   // scope and are out-of-semantic-context declarations (if the new
7271   // declaration has linkage).
7272   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
7273                        D.getCXXScopeSpec().isNotEmpty() ||
7274                        IsMemberSpecialization ||
7275                        IsVariableTemplateSpecialization);
7276 
7277   // Check whether the previous declaration is in the same block scope. This
7278   // affects whether we merge types with it, per C++11 [dcl.array]p3.
7279   if (getLangOpts().CPlusPlus &&
7280       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
7281     NewVD->setPreviousDeclInSameBlockScope(
7282         Previous.isSingleResult() && !Previous.isShadowed() &&
7283         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
7284 
7285   if (!getLangOpts().CPlusPlus) {
7286     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7287   } else {
7288     // If this is an explicit specialization of a static data member, check it.
7289     if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
7290         CheckMemberSpecialization(NewVD, Previous))
7291       NewVD->setInvalidDecl();
7292 
7293     // Merge the decl with the existing one if appropriate.
7294     if (!Previous.empty()) {
7295       if (Previous.isSingleResult() &&
7296           isa<FieldDecl>(Previous.getFoundDecl()) &&
7297           D.getCXXScopeSpec().isSet()) {
7298         // The user tried to define a non-static data member
7299         // out-of-line (C++ [dcl.meaning]p1).
7300         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
7301           << D.getCXXScopeSpec().getRange();
7302         Previous.clear();
7303         NewVD->setInvalidDecl();
7304       }
7305     } else if (D.getCXXScopeSpec().isSet()) {
7306       // No previous declaration in the qualifying scope.
7307       Diag(D.getIdentifierLoc(), diag::err_no_member)
7308         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
7309         << D.getCXXScopeSpec().getRange();
7310       NewVD->setInvalidDecl();
7311     }
7312 
7313     if (!IsVariableTemplateSpecialization)
7314       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7315 
7316     if (NewTemplate) {
7317       VarTemplateDecl *PrevVarTemplate =
7318           NewVD->getPreviousDecl()
7319               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
7320               : nullptr;
7321 
7322       // Check the template parameter list of this declaration, possibly
7323       // merging in the template parameter list from the previous variable
7324       // template declaration.
7325       if (CheckTemplateParameterList(
7326               TemplateParams,
7327               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
7328                               : nullptr,
7329               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
7330                DC->isDependentContext())
7331                   ? TPC_ClassTemplateMember
7332                   : TPC_VarTemplate))
7333         NewVD->setInvalidDecl();
7334 
7335       // If we are providing an explicit specialization of a static variable
7336       // template, make a note of that.
7337       if (PrevVarTemplate &&
7338           PrevVarTemplate->getInstantiatedFromMemberTemplate())
7339         PrevVarTemplate->setMemberSpecialization();
7340     }
7341   }
7342 
7343   // Diagnose shadowed variables iff this isn't a redeclaration.
7344   if (ShadowedDecl && !D.isRedeclaration())
7345     CheckShadow(NewVD, ShadowedDecl, Previous);
7346 
7347   ProcessPragmaWeak(S, NewVD);
7348 
7349   // If this is the first declaration of an extern C variable, update
7350   // the map of such variables.
7351   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
7352       isIncompleteDeclExternC(*this, NewVD))
7353     RegisterLocallyScopedExternCDecl(NewVD, S);
7354 
7355   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
7356     MangleNumberingContext *MCtx;
7357     Decl *ManglingContextDecl;
7358     std::tie(MCtx, ManglingContextDecl) =
7359         getCurrentMangleNumberContext(NewVD->getDeclContext());
7360     if (MCtx) {
7361       Context.setManglingNumber(
7362           NewVD, MCtx->getManglingNumber(
7363                      NewVD, getMSManglingNumber(getLangOpts(), S)));
7364       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
7365     }
7366   }
7367 
7368   // Special handling of variable named 'main'.
7369   if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
7370       NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7371       !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
7372 
7373     // C++ [basic.start.main]p3
7374     // A program that declares a variable main at global scope is ill-formed.
7375     if (getLangOpts().CPlusPlus)
7376       Diag(D.getBeginLoc(), diag::err_main_global_variable);
7377 
7378     // In C, and external-linkage variable named main results in undefined
7379     // behavior.
7380     else if (NewVD->hasExternalFormalLinkage())
7381       Diag(D.getBeginLoc(), diag::warn_main_redefined);
7382   }
7383 
7384   if (D.isRedeclaration() && !Previous.empty()) {
7385     NamedDecl *Prev = Previous.getRepresentativeDecl();
7386     checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
7387                                    D.isFunctionDefinition());
7388   }
7389 
7390   if (NewTemplate) {
7391     if (NewVD->isInvalidDecl())
7392       NewTemplate->setInvalidDecl();
7393     ActOnDocumentableDecl(NewTemplate);
7394     return NewTemplate;
7395   }
7396 
7397   if (IsMemberSpecialization && !NewVD->isInvalidDecl())
7398     CompleteMemberSpecialization(NewVD, Previous);
7399 
7400   return NewVD;
7401 }
7402 
7403 /// Enum describing the %select options in diag::warn_decl_shadow.
7404 enum ShadowedDeclKind {
7405   SDK_Local,
7406   SDK_Global,
7407   SDK_StaticMember,
7408   SDK_Field,
7409   SDK_Typedef,
7410   SDK_Using
7411 };
7412 
7413 /// Determine what kind of declaration we're shadowing.
7414 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
7415                                                 const DeclContext *OldDC) {
7416   if (isa<TypeAliasDecl>(ShadowedDecl))
7417     return SDK_Using;
7418   else if (isa<TypedefDecl>(ShadowedDecl))
7419     return SDK_Typedef;
7420   else if (isa<RecordDecl>(OldDC))
7421     return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
7422 
7423   return OldDC->isFileContext() ? SDK_Global : SDK_Local;
7424 }
7425 
7426 /// Return the location of the capture if the given lambda captures the given
7427 /// variable \p VD, or an invalid source location otherwise.
7428 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
7429                                          const VarDecl *VD) {
7430   for (const Capture &Capture : LSI->Captures) {
7431     if (Capture.isVariableCapture() && Capture.getVariable() == VD)
7432       return Capture.getLocation();
7433   }
7434   return SourceLocation();
7435 }
7436 
7437 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
7438                                      const LookupResult &R) {
7439   // Only diagnose if we're shadowing an unambiguous field or variable.
7440   if (R.getResultKind() != LookupResult::Found)
7441     return false;
7442 
7443   // Return false if warning is ignored.
7444   return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
7445 }
7446 
7447 /// Return the declaration shadowed by the given variable \p D, or null
7448 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7449 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
7450                                         const LookupResult &R) {
7451   if (!shouldWarnIfShadowedDecl(Diags, R))
7452     return nullptr;
7453 
7454   // Don't diagnose declarations at file scope.
7455   if (D->hasGlobalStorage())
7456     return nullptr;
7457 
7458   NamedDecl *ShadowedDecl = R.getFoundDecl();
7459   return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
7460              ? ShadowedDecl
7461              : nullptr;
7462 }
7463 
7464 /// Return the declaration shadowed by the given typedef \p D, or null
7465 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7466 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
7467                                         const LookupResult &R) {
7468   // Don't warn if typedef declaration is part of a class
7469   if (D->getDeclContext()->isRecord())
7470     return nullptr;
7471 
7472   if (!shouldWarnIfShadowedDecl(Diags, R))
7473     return nullptr;
7474 
7475   NamedDecl *ShadowedDecl = R.getFoundDecl();
7476   return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7477 }
7478 
7479 /// Diagnose variable or built-in function shadowing.  Implements
7480 /// -Wshadow.
7481 ///
7482 /// This method is called whenever a VarDecl is added to a "useful"
7483 /// scope.
7484 ///
7485 /// \param ShadowedDecl the declaration that is shadowed by the given variable
7486 /// \param R the lookup of the name
7487 ///
7488 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7489                        const LookupResult &R) {
7490   DeclContext *NewDC = D->getDeclContext();
7491 
7492   if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7493     // Fields are not shadowed by variables in C++ static methods.
7494     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7495       if (MD->isStatic())
7496         return;
7497 
7498     // Fields shadowed by constructor parameters are a special case. Usually
7499     // the constructor initializes the field with the parameter.
7500     if (isa<CXXConstructorDecl>(NewDC))
7501       if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7502         // Remember that this was shadowed so we can either warn about its
7503         // modification or its existence depending on warning settings.
7504         ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7505         return;
7506       }
7507   }
7508 
7509   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7510     if (shadowedVar->isExternC()) {
7511       // For shadowing external vars, make sure that we point to the global
7512       // declaration, not a locally scoped extern declaration.
7513       for (auto I : shadowedVar->redecls())
7514         if (I->isFileVarDecl()) {
7515           ShadowedDecl = I;
7516           break;
7517         }
7518     }
7519 
7520   DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7521 
7522   unsigned WarningDiag = diag::warn_decl_shadow;
7523   SourceLocation CaptureLoc;
7524   if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7525       isa<CXXMethodDecl>(NewDC)) {
7526     if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7527       if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7528         if (RD->getLambdaCaptureDefault() == LCD_None) {
7529           // Try to avoid warnings for lambdas with an explicit capture list.
7530           const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7531           // Warn only when the lambda captures the shadowed decl explicitly.
7532           CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7533           if (CaptureLoc.isInvalid())
7534             WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7535         } else {
7536           // Remember that this was shadowed so we can avoid the warning if the
7537           // shadowed decl isn't captured and the warning settings allow it.
7538           cast<LambdaScopeInfo>(getCurFunction())
7539               ->ShadowingDecls.push_back(
7540                   {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7541           return;
7542         }
7543       }
7544 
7545       if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7546         // A variable can't shadow a local variable in an enclosing scope, if
7547         // they are separated by a non-capturing declaration context.
7548         for (DeclContext *ParentDC = NewDC;
7549              ParentDC && !ParentDC->Equals(OldDC);
7550              ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7551           // Only block literals, captured statements, and lambda expressions
7552           // can capture; other scopes don't.
7553           if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7554               !isLambdaCallOperator(ParentDC)) {
7555             return;
7556           }
7557         }
7558       }
7559     }
7560   }
7561 
7562   // Only warn about certain kinds of shadowing for class members.
7563   if (NewDC && NewDC->isRecord()) {
7564     // In particular, don't warn about shadowing non-class members.
7565     if (!OldDC->isRecord())
7566       return;
7567 
7568     // TODO: should we warn about static data members shadowing
7569     // static data members from base classes?
7570 
7571     // TODO: don't diagnose for inaccessible shadowed members.
7572     // This is hard to do perfectly because we might friend the
7573     // shadowing context, but that's just a false negative.
7574   }
7575 
7576 
7577   DeclarationName Name = R.getLookupName();
7578 
7579   // Emit warning and note.
7580   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7581     return;
7582   ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7583   Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7584   if (!CaptureLoc.isInvalid())
7585     Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7586         << Name << /*explicitly*/ 1;
7587   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7588 }
7589 
7590 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7591 /// when these variables are captured by the lambda.
7592 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7593   for (const auto &Shadow : LSI->ShadowingDecls) {
7594     const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7595     // Try to avoid the warning when the shadowed decl isn't captured.
7596     SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7597     const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7598     Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7599                                        ? diag::warn_decl_shadow_uncaptured_local
7600                                        : diag::warn_decl_shadow)
7601         << Shadow.VD->getDeclName()
7602         << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7603     if (!CaptureLoc.isInvalid())
7604       Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7605           << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7606     Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7607   }
7608 }
7609 
7610 /// Check -Wshadow without the advantage of a previous lookup.
7611 void Sema::CheckShadow(Scope *S, VarDecl *D) {
7612   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7613     return;
7614 
7615   LookupResult R(*this, D->getDeclName(), D->getLocation(),
7616                  Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7617   LookupName(R, S);
7618   if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7619     CheckShadow(D, ShadowedDecl, R);
7620 }
7621 
7622 /// Check if 'E', which is an expression that is about to be modified, refers
7623 /// to a constructor parameter that shadows a field.
7624 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7625   // Quickly ignore expressions that can't be shadowing ctor parameters.
7626   if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7627     return;
7628   E = E->IgnoreParenImpCasts();
7629   auto *DRE = dyn_cast<DeclRefExpr>(E);
7630   if (!DRE)
7631     return;
7632   const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7633   auto I = ShadowingDecls.find(D);
7634   if (I == ShadowingDecls.end())
7635     return;
7636   const NamedDecl *ShadowedDecl = I->second;
7637   const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7638   Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7639   Diag(D->getLocation(), diag::note_var_declared_here) << D;
7640   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7641 
7642   // Avoid issuing multiple warnings about the same decl.
7643   ShadowingDecls.erase(I);
7644 }
7645 
7646 /// Check for conflict between this global or extern "C" declaration and
7647 /// previous global or extern "C" declarations. This is only used in C++.
7648 template<typename T>
7649 static bool checkGlobalOrExternCConflict(
7650     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7651   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
7652   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7653 
7654   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7655     // The common case: this global doesn't conflict with any extern "C"
7656     // declaration.
7657     return false;
7658   }
7659 
7660   if (Prev) {
7661     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7662       // Both the old and new declarations have C language linkage. This is a
7663       // redeclaration.
7664       Previous.clear();
7665       Previous.addDecl(Prev);
7666       return true;
7667     }
7668 
7669     // This is a global, non-extern "C" declaration, and there is a previous
7670     // non-global extern "C" declaration. Diagnose if this is a variable
7671     // declaration.
7672     if (!isa<VarDecl>(ND))
7673       return false;
7674   } else {
7675     // The declaration is extern "C". Check for any declaration in the
7676     // translation unit which might conflict.
7677     if (IsGlobal) {
7678       // We have already performed the lookup into the translation unit.
7679       IsGlobal = false;
7680       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7681            I != E; ++I) {
7682         if (isa<VarDecl>(*I)) {
7683           Prev = *I;
7684           break;
7685         }
7686       }
7687     } else {
7688       DeclContext::lookup_result R =
7689           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7690       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7691            I != E; ++I) {
7692         if (isa<VarDecl>(*I)) {
7693           Prev = *I;
7694           break;
7695         }
7696         // FIXME: If we have any other entity with this name in global scope,
7697         // the declaration is ill-formed, but that is a defect: it breaks the
7698         // 'stat' hack, for instance. Only variables can have mangled name
7699         // clashes with extern "C" declarations, so only they deserve a
7700         // diagnostic.
7701       }
7702     }
7703 
7704     if (!Prev)
7705       return false;
7706   }
7707 
7708   // Use the first declaration's location to ensure we point at something which
7709   // is lexically inside an extern "C" linkage-spec.
7710   assert(Prev && "should have found a previous declaration to diagnose");
7711   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7712     Prev = FD->getFirstDecl();
7713   else
7714     Prev = cast<VarDecl>(Prev)->getFirstDecl();
7715 
7716   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7717     << IsGlobal << ND;
7718   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7719     << IsGlobal;
7720   return false;
7721 }
7722 
7723 /// Apply special rules for handling extern "C" declarations. Returns \c true
7724 /// if we have found that this is a redeclaration of some prior entity.
7725 ///
7726 /// Per C++ [dcl.link]p6:
7727 ///   Two declarations [for a function or variable] with C language linkage
7728 ///   with the same name that appear in different scopes refer to the same
7729 ///   [entity]. An entity with C language linkage shall not be declared with
7730 ///   the same name as an entity in global scope.
7731 template<typename T>
7732 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7733                                                   LookupResult &Previous) {
7734   if (!S.getLangOpts().CPlusPlus) {
7735     // In C, when declaring a global variable, look for a corresponding 'extern'
7736     // variable declared in function scope. We don't need this in C++, because
7737     // we find local extern decls in the surrounding file-scope DeclContext.
7738     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7739       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7740         Previous.clear();
7741         Previous.addDecl(Prev);
7742         return true;
7743       }
7744     }
7745     return false;
7746   }
7747 
7748   // A declaration in the translation unit can conflict with an extern "C"
7749   // declaration.
7750   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7751     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7752 
7753   // An extern "C" declaration can conflict with a declaration in the
7754   // translation unit or can be a redeclaration of an extern "C" declaration
7755   // in another scope.
7756   if (isIncompleteDeclExternC(S,ND))
7757     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7758 
7759   // Neither global nor extern "C": nothing to do.
7760   return false;
7761 }
7762 
7763 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7764   // If the decl is already known invalid, don't check it.
7765   if (NewVD->isInvalidDecl())
7766     return;
7767 
7768   QualType T = NewVD->getType();
7769 
7770   // Defer checking an 'auto' type until its initializer is attached.
7771   if (T->isUndeducedType())
7772     return;
7773 
7774   if (NewVD->hasAttrs())
7775     CheckAlignasUnderalignment(NewVD);
7776 
7777   if (T->isObjCObjectType()) {
7778     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7779       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7780     T = Context.getObjCObjectPointerType(T);
7781     NewVD->setType(T);
7782   }
7783 
7784   // Emit an error if an address space was applied to decl with local storage.
7785   // This includes arrays of objects with address space qualifiers, but not
7786   // automatic variables that point to other address spaces.
7787   // ISO/IEC TR 18037 S5.1.2
7788   if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7789       T.getAddressSpace() != LangAS::Default) {
7790     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7791     NewVD->setInvalidDecl();
7792     return;
7793   }
7794 
7795   // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7796   // scope.
7797   if (getLangOpts().OpenCLVersion == 120 &&
7798       !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
7799       NewVD->isStaticLocal()) {
7800     Diag(NewVD->getLocation(), diag::err_static_function_scope);
7801     NewVD->setInvalidDecl();
7802     return;
7803   }
7804 
7805   if (getLangOpts().OpenCL) {
7806     // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
7807     if (NewVD->hasAttr<BlocksAttr>()) {
7808       Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
7809       return;
7810     }
7811 
7812     if (T->isBlockPointerType()) {
7813       // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
7814       // can't use 'extern' storage class.
7815       if (!T.isConstQualified()) {
7816         Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
7817             << 0 /*const*/;
7818         NewVD->setInvalidDecl();
7819         return;
7820       }
7821       if (NewVD->hasExternalStorage()) {
7822         Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
7823         NewVD->setInvalidDecl();
7824         return;
7825       }
7826     }
7827     // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the
7828     // __constant address space.
7829     // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static
7830     // variables inside a function can also be declared in the global
7831     // address space.
7832     // C++ for OpenCL inherits rule from OpenCL C v2.0.
7833     // FIXME: Adding local AS in C++ for OpenCL might make sense.
7834     if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
7835         NewVD->hasExternalStorage()) {
7836       if (!T->isSamplerT() &&
7837           !(T.getAddressSpace() == LangAS::opencl_constant ||
7838             (T.getAddressSpace() == LangAS::opencl_global &&
7839              (getLangOpts().OpenCLVersion == 200 ||
7840               getLangOpts().OpenCLCPlusPlus)))) {
7841         int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
7842         if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus)
7843           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7844               << Scope << "global or constant";
7845         else
7846           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7847               << Scope << "constant";
7848         NewVD->setInvalidDecl();
7849         return;
7850       }
7851     } else {
7852       if (T.getAddressSpace() == LangAS::opencl_global) {
7853         Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7854             << 1 /*is any function*/ << "global";
7855         NewVD->setInvalidDecl();
7856         return;
7857       }
7858       if (T.getAddressSpace() == LangAS::opencl_constant ||
7859           T.getAddressSpace() == LangAS::opencl_local) {
7860         FunctionDecl *FD = getCurFunctionDecl();
7861         // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
7862         // in functions.
7863         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
7864           if (T.getAddressSpace() == LangAS::opencl_constant)
7865             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7866                 << 0 /*non-kernel only*/ << "constant";
7867           else
7868             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7869                 << 0 /*non-kernel only*/ << "local";
7870           NewVD->setInvalidDecl();
7871           return;
7872         }
7873         // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
7874         // in the outermost scope of a kernel function.
7875         if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
7876           if (!getCurScope()->isFunctionScope()) {
7877             if (T.getAddressSpace() == LangAS::opencl_constant)
7878               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7879                   << "constant";
7880             else
7881               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7882                   << "local";
7883             NewVD->setInvalidDecl();
7884             return;
7885           }
7886         }
7887       } else if (T.getAddressSpace() != LangAS::opencl_private &&
7888                  // If we are parsing a template we didn't deduce an addr
7889                  // space yet.
7890                  T.getAddressSpace() != LangAS::Default) {
7891         // Do not allow other address spaces on automatic variable.
7892         Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
7893         NewVD->setInvalidDecl();
7894         return;
7895       }
7896     }
7897   }
7898 
7899   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
7900       && !NewVD->hasAttr<BlocksAttr>()) {
7901     if (getLangOpts().getGC() != LangOptions::NonGC)
7902       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
7903     else {
7904       assert(!getLangOpts().ObjCAutoRefCount);
7905       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
7906     }
7907   }
7908 
7909   bool isVM = T->isVariablyModifiedType();
7910   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
7911       NewVD->hasAttr<BlocksAttr>())
7912     setFunctionHasBranchProtectedScope();
7913 
7914   if ((isVM && NewVD->hasLinkage()) ||
7915       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
7916     bool SizeIsNegative;
7917     llvm::APSInt Oversized;
7918     TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
7919         NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
7920     QualType FixedT;
7921     if (FixedTInfo &&  T == NewVD->getTypeSourceInfo()->getType())
7922       FixedT = FixedTInfo->getType();
7923     else if (FixedTInfo) {
7924       // Type and type-as-written are canonically different. We need to fix up
7925       // both types separately.
7926       FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
7927                                                    Oversized);
7928     }
7929     if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
7930       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
7931       // FIXME: This won't give the correct result for
7932       // int a[10][n];
7933       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
7934 
7935       if (NewVD->isFileVarDecl())
7936         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
7937         << SizeRange;
7938       else if (NewVD->isStaticLocal())
7939         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
7940         << SizeRange;
7941       else
7942         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
7943         << SizeRange;
7944       NewVD->setInvalidDecl();
7945       return;
7946     }
7947 
7948     if (!FixedTInfo) {
7949       if (NewVD->isFileVarDecl())
7950         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
7951       else
7952         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
7953       NewVD->setInvalidDecl();
7954       return;
7955     }
7956 
7957     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
7958     NewVD->setType(FixedT);
7959     NewVD->setTypeSourceInfo(FixedTInfo);
7960   }
7961 
7962   if (T->isVoidType()) {
7963     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
7964     //                    of objects and functions.
7965     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
7966       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
7967         << T;
7968       NewVD->setInvalidDecl();
7969       return;
7970     }
7971   }
7972 
7973   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
7974     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
7975     NewVD->setInvalidDecl();
7976     return;
7977   }
7978 
7979   if (!NewVD->hasLocalStorage() && T->isSizelessType()) {
7980     Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T;
7981     NewVD->setInvalidDecl();
7982     return;
7983   }
7984 
7985   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
7986     Diag(NewVD->getLocation(), diag::err_block_on_vm);
7987     NewVD->setInvalidDecl();
7988     return;
7989   }
7990 
7991   if (NewVD->isConstexpr() && !T->isDependentType() &&
7992       RequireLiteralType(NewVD->getLocation(), T,
7993                          diag::err_constexpr_var_non_literal)) {
7994     NewVD->setInvalidDecl();
7995     return;
7996   }
7997 }
7998 
7999 /// Perform semantic checking on a newly-created variable
8000 /// declaration.
8001 ///
8002 /// This routine performs all of the type-checking required for a
8003 /// variable declaration once it has been built. It is used both to
8004 /// check variables after they have been parsed and their declarators
8005 /// have been translated into a declaration, and to check variables
8006 /// that have been instantiated from a template.
8007 ///
8008 /// Sets NewVD->isInvalidDecl() if an error was encountered.
8009 ///
8010 /// Returns true if the variable declaration is a redeclaration.
8011 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
8012   CheckVariableDeclarationType(NewVD);
8013 
8014   // If the decl is already known invalid, don't check it.
8015   if (NewVD->isInvalidDecl())
8016     return false;
8017 
8018   // If we did not find anything by this name, look for a non-visible
8019   // extern "C" declaration with the same name.
8020   if (Previous.empty() &&
8021       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
8022     Previous.setShadowed();
8023 
8024   if (!Previous.empty()) {
8025     MergeVarDecl(NewVD, Previous);
8026     return true;
8027   }
8028   return false;
8029 }
8030 
8031 namespace {
8032 struct FindOverriddenMethod {
8033   Sema *S;
8034   CXXMethodDecl *Method;
8035 
8036   /// Member lookup function that determines whether a given C++
8037   /// method overrides a method in a base class, to be used with
8038   /// CXXRecordDecl::lookupInBases().
8039   bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
8040     RecordDecl *BaseRecord =
8041         Specifier->getType()->castAs<RecordType>()->getDecl();
8042 
8043     DeclarationName Name = Method->getDeclName();
8044 
8045     // FIXME: Do we care about other names here too?
8046     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8047       // We really want to find the base class destructor here.
8048       QualType T = S->Context.getTypeDeclType(BaseRecord);
8049       CanQualType CT = S->Context.getCanonicalType(T);
8050 
8051       Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
8052     }
8053 
8054     for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
8055          Path.Decls = Path.Decls.slice(1)) {
8056       NamedDecl *D = Path.Decls.front();
8057       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
8058         if (MD->isVirtual() &&
8059             !S->IsOverload(
8060                 Method, MD, /*UseMemberUsingDeclRules=*/false,
8061                 /*ConsiderCudaAttrs=*/true,
8062                 // C++2a [class.virtual]p2 does not consider requires clauses
8063                 // when overriding.
8064                 /*ConsiderRequiresClauses=*/false))
8065           return true;
8066       }
8067     }
8068 
8069     return false;
8070   }
8071 };
8072 } // end anonymous namespace
8073 
8074 /// AddOverriddenMethods - See if a method overrides any in the base classes,
8075 /// and if so, check that it's a valid override and remember it.
8076 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
8077   // Look for methods in base classes that this method might override.
8078   CXXBasePaths Paths;
8079   FindOverriddenMethod FOM;
8080   FOM.Method = MD;
8081   FOM.S = this;
8082   bool AddedAny = false;
8083   if (DC->lookupInBases(FOM, Paths)) {
8084     for (auto *I : Paths.found_decls()) {
8085       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
8086         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
8087         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
8088             !CheckOverridingFunctionAttributes(MD, OldMD) &&
8089             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
8090             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
8091           AddedAny = true;
8092         }
8093       }
8094     }
8095   }
8096 
8097   return AddedAny;
8098 }
8099 
8100 namespace {
8101   // Struct for holding all of the extra arguments needed by
8102   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
8103   struct ActOnFDArgs {
8104     Scope *S;
8105     Declarator &D;
8106     MultiTemplateParamsArg TemplateParamLists;
8107     bool AddToScope;
8108   };
8109 } // end anonymous namespace
8110 
8111 namespace {
8112 
8113 // Callback to only accept typo corrections that have a non-zero edit distance.
8114 // Also only accept corrections that have the same parent decl.
8115 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
8116  public:
8117   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
8118                             CXXRecordDecl *Parent)
8119       : Context(Context), OriginalFD(TypoFD),
8120         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
8121 
8122   bool ValidateCandidate(const TypoCorrection &candidate) override {
8123     if (candidate.getEditDistance() == 0)
8124       return false;
8125 
8126     SmallVector<unsigned, 1> MismatchedParams;
8127     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
8128                                           CDeclEnd = candidate.end();
8129          CDecl != CDeclEnd; ++CDecl) {
8130       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8131 
8132       if (FD && !FD->hasBody() &&
8133           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
8134         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8135           CXXRecordDecl *Parent = MD->getParent();
8136           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
8137             return true;
8138         } else if (!ExpectedParent) {
8139           return true;
8140         }
8141       }
8142     }
8143 
8144     return false;
8145   }
8146 
8147   std::unique_ptr<CorrectionCandidateCallback> clone() override {
8148     return std::make_unique<DifferentNameValidatorCCC>(*this);
8149   }
8150 
8151  private:
8152   ASTContext &Context;
8153   FunctionDecl *OriginalFD;
8154   CXXRecordDecl *ExpectedParent;
8155 };
8156 
8157 } // end anonymous namespace
8158 
8159 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
8160   TypoCorrectedFunctionDefinitions.insert(F);
8161 }
8162 
8163 /// Generate diagnostics for an invalid function redeclaration.
8164 ///
8165 /// This routine handles generating the diagnostic messages for an invalid
8166 /// function redeclaration, including finding possible similar declarations
8167 /// or performing typo correction if there are no previous declarations with
8168 /// the same name.
8169 ///
8170 /// Returns a NamedDecl iff typo correction was performed and substituting in
8171 /// the new declaration name does not cause new errors.
8172 static NamedDecl *DiagnoseInvalidRedeclaration(
8173     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
8174     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
8175   DeclarationName Name = NewFD->getDeclName();
8176   DeclContext *NewDC = NewFD->getDeclContext();
8177   SmallVector<unsigned, 1> MismatchedParams;
8178   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
8179   TypoCorrection Correction;
8180   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
8181   unsigned DiagMsg =
8182     IsLocalFriend ? diag::err_no_matching_local_friend :
8183     NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
8184     diag::err_member_decl_does_not_match;
8185   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
8186                     IsLocalFriend ? Sema::LookupLocalFriendName
8187                                   : Sema::LookupOrdinaryName,
8188                     Sema::ForVisibleRedeclaration);
8189 
8190   NewFD->setInvalidDecl();
8191   if (IsLocalFriend)
8192     SemaRef.LookupName(Prev, S);
8193   else
8194     SemaRef.LookupQualifiedName(Prev, NewDC);
8195   assert(!Prev.isAmbiguous() &&
8196          "Cannot have an ambiguity in previous-declaration lookup");
8197   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8198   DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
8199                                 MD ? MD->getParent() : nullptr);
8200   if (!Prev.empty()) {
8201     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
8202          Func != FuncEnd; ++Func) {
8203       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
8204       if (FD &&
8205           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8206         // Add 1 to the index so that 0 can mean the mismatch didn't
8207         // involve a parameter
8208         unsigned ParamNum =
8209             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
8210         NearMatches.push_back(std::make_pair(FD, ParamNum));
8211       }
8212     }
8213   // If the qualified name lookup yielded nothing, try typo correction
8214   } else if ((Correction = SemaRef.CorrectTypo(
8215                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
8216                   &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
8217                   IsLocalFriend ? nullptr : NewDC))) {
8218     // Set up everything for the call to ActOnFunctionDeclarator
8219     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
8220                               ExtraArgs.D.getIdentifierLoc());
8221     Previous.clear();
8222     Previous.setLookupName(Correction.getCorrection());
8223     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
8224                                     CDeclEnd = Correction.end();
8225          CDecl != CDeclEnd; ++CDecl) {
8226       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8227       if (FD && !FD->hasBody() &&
8228           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8229         Previous.addDecl(FD);
8230       }
8231     }
8232     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
8233 
8234     NamedDecl *Result;
8235     // Retry building the function declaration with the new previous
8236     // declarations, and with errors suppressed.
8237     {
8238       // Trap errors.
8239       Sema::SFINAETrap Trap(SemaRef);
8240 
8241       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
8242       // pieces need to verify the typo-corrected C++ declaration and hopefully
8243       // eliminate the need for the parameter pack ExtraArgs.
8244       Result = SemaRef.ActOnFunctionDeclarator(
8245           ExtraArgs.S, ExtraArgs.D,
8246           Correction.getCorrectionDecl()->getDeclContext(),
8247           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
8248           ExtraArgs.AddToScope);
8249 
8250       if (Trap.hasErrorOccurred())
8251         Result = nullptr;
8252     }
8253 
8254     if (Result) {
8255       // Determine which correction we picked.
8256       Decl *Canonical = Result->getCanonicalDecl();
8257       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8258            I != E; ++I)
8259         if ((*I)->getCanonicalDecl() == Canonical)
8260           Correction.setCorrectionDecl(*I);
8261 
8262       // Let Sema know about the correction.
8263       SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
8264       SemaRef.diagnoseTypo(
8265           Correction,
8266           SemaRef.PDiag(IsLocalFriend
8267                           ? diag::err_no_matching_local_friend_suggest
8268                           : diag::err_member_decl_does_not_match_suggest)
8269             << Name << NewDC << IsDefinition);
8270       return Result;
8271     }
8272 
8273     // Pretend the typo correction never occurred
8274     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
8275                               ExtraArgs.D.getIdentifierLoc());
8276     ExtraArgs.D.setRedeclaration(wasRedeclaration);
8277     Previous.clear();
8278     Previous.setLookupName(Name);
8279   }
8280 
8281   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
8282       << Name << NewDC << IsDefinition << NewFD->getLocation();
8283 
8284   bool NewFDisConst = false;
8285   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
8286     NewFDisConst = NewMD->isConst();
8287 
8288   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
8289        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
8290        NearMatch != NearMatchEnd; ++NearMatch) {
8291     FunctionDecl *FD = NearMatch->first;
8292     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8293     bool FDisConst = MD && MD->isConst();
8294     bool IsMember = MD || !IsLocalFriend;
8295 
8296     // FIXME: These notes are poorly worded for the local friend case.
8297     if (unsigned Idx = NearMatch->second) {
8298       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
8299       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
8300       if (Loc.isInvalid()) Loc = FD->getLocation();
8301       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
8302                                  : diag::note_local_decl_close_param_match)
8303         << Idx << FDParam->getType()
8304         << NewFD->getParamDecl(Idx - 1)->getType();
8305     } else if (FDisConst != NewFDisConst) {
8306       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
8307           << NewFDisConst << FD->getSourceRange().getEnd();
8308     } else
8309       SemaRef.Diag(FD->getLocation(),
8310                    IsMember ? diag::note_member_def_close_match
8311                             : diag::note_local_decl_close_match);
8312   }
8313   return nullptr;
8314 }
8315 
8316 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
8317   switch (D.getDeclSpec().getStorageClassSpec()) {
8318   default: llvm_unreachable("Unknown storage class!");
8319   case DeclSpec::SCS_auto:
8320   case DeclSpec::SCS_register:
8321   case DeclSpec::SCS_mutable:
8322     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8323                  diag::err_typecheck_sclass_func);
8324     D.getMutableDeclSpec().ClearStorageClassSpecs();
8325     D.setInvalidType();
8326     break;
8327   case DeclSpec::SCS_unspecified: break;
8328   case DeclSpec::SCS_extern:
8329     if (D.getDeclSpec().isExternInLinkageSpec())
8330       return SC_None;
8331     return SC_Extern;
8332   case DeclSpec::SCS_static: {
8333     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8334       // C99 6.7.1p5:
8335       //   The declaration of an identifier for a function that has
8336       //   block scope shall have no explicit storage-class specifier
8337       //   other than extern
8338       // See also (C++ [dcl.stc]p4).
8339       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8340                    diag::err_static_block_func);
8341       break;
8342     } else
8343       return SC_Static;
8344   }
8345   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
8346   }
8347 
8348   // No explicit storage class has already been returned
8349   return SC_None;
8350 }
8351 
8352 static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
8353                                            DeclContext *DC, QualType &R,
8354                                            TypeSourceInfo *TInfo,
8355                                            StorageClass SC,
8356                                            bool &IsVirtualOkay) {
8357   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
8358   DeclarationName Name = NameInfo.getName();
8359 
8360   FunctionDecl *NewFD = nullptr;
8361   bool isInline = D.getDeclSpec().isInlineSpecified();
8362 
8363   if (!SemaRef.getLangOpts().CPlusPlus) {
8364     // Determine whether the function was written with a
8365     // prototype. This true when:
8366     //   - there is a prototype in the declarator, or
8367     //   - the type R of the function is some kind of typedef or other non-
8368     //     attributed reference to a type name (which eventually refers to a
8369     //     function type).
8370     bool HasPrototype =
8371       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
8372       (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
8373 
8374     NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8375                                  R, TInfo, SC, isInline, HasPrototype,
8376                                  CSK_unspecified,
8377                                  /*TrailingRequiresClause=*/nullptr);
8378     if (D.isInvalidType())
8379       NewFD->setInvalidDecl();
8380 
8381     return NewFD;
8382   }
8383 
8384   ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
8385 
8386   ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
8387   if (ConstexprKind == CSK_constinit) {
8388     SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
8389                  diag::err_constexpr_wrong_decl_kind)
8390         << ConstexprKind;
8391     ConstexprKind = CSK_unspecified;
8392     D.getMutableDeclSpec().ClearConstexprSpec();
8393   }
8394   Expr *TrailingRequiresClause = D.getTrailingRequiresClause();
8395 
8396   // Check that the return type is not an abstract class type.
8397   // For record types, this is done by the AbstractClassUsageDiagnoser once
8398   // the class has been completely parsed.
8399   if (!DC->isRecord() &&
8400       SemaRef.RequireNonAbstractType(
8401           D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(),
8402           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
8403     D.setInvalidType();
8404 
8405   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
8406     // This is a C++ constructor declaration.
8407     assert(DC->isRecord() &&
8408            "Constructors can only be declared in a member context");
8409 
8410     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
8411     return CXXConstructorDecl::Create(
8412         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8413         TInfo, ExplicitSpecifier, isInline,
8414         /*isImplicitlyDeclared=*/false, ConstexprKind, InheritedConstructor(),
8415         TrailingRequiresClause);
8416 
8417   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8418     // This is a C++ destructor declaration.
8419     if (DC->isRecord()) {
8420       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
8421       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
8422       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
8423           SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
8424           isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
8425           TrailingRequiresClause);
8426 
8427       // If the destructor needs an implicit exception specification, set it
8428       // now. FIXME: It'd be nice to be able to create the right type to start
8429       // with, but the type needs to reference the destructor declaration.
8430       if (SemaRef.getLangOpts().CPlusPlus11)
8431         SemaRef.AdjustDestructorExceptionSpec(NewDD);
8432 
8433       IsVirtualOkay = true;
8434       return NewDD;
8435 
8436     } else {
8437       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
8438       D.setInvalidType();
8439 
8440       // Create a FunctionDecl to satisfy the function definition parsing
8441       // code path.
8442       return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8443                                   D.getIdentifierLoc(), Name, R, TInfo, SC,
8444                                   isInline,
8445                                   /*hasPrototype=*/true, ConstexprKind,
8446                                   TrailingRequiresClause);
8447     }
8448 
8449   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
8450     if (!DC->isRecord()) {
8451       SemaRef.Diag(D.getIdentifierLoc(),
8452            diag::err_conv_function_not_member);
8453       return nullptr;
8454     }
8455 
8456     SemaRef.CheckConversionDeclarator(D, R, SC);
8457     if (D.isInvalidType())
8458       return nullptr;
8459 
8460     IsVirtualOkay = true;
8461     return CXXConversionDecl::Create(
8462         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8463         TInfo, isInline, ExplicitSpecifier, ConstexprKind, SourceLocation(),
8464         TrailingRequiresClause);
8465 
8466   } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
8467     if (TrailingRequiresClause)
8468       SemaRef.Diag(TrailingRequiresClause->getBeginLoc(),
8469                    diag::err_trailing_requires_clause_on_deduction_guide)
8470           << TrailingRequiresClause->getSourceRange();
8471     SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
8472 
8473     return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8474                                          ExplicitSpecifier, NameInfo, R, TInfo,
8475                                          D.getEndLoc());
8476   } else if (DC->isRecord()) {
8477     // If the name of the function is the same as the name of the record,
8478     // then this must be an invalid constructor that has a return type.
8479     // (The parser checks for a return type and makes the declarator a
8480     // constructor if it has no return type).
8481     if (Name.getAsIdentifierInfo() &&
8482         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8483       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8484         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8485         << SourceRange(D.getIdentifierLoc());
8486       return nullptr;
8487     }
8488 
8489     // This is a C++ method declaration.
8490     CXXMethodDecl *Ret = CXXMethodDecl::Create(
8491         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8492         TInfo, SC, isInline, ConstexprKind, SourceLocation(),
8493         TrailingRequiresClause);
8494     IsVirtualOkay = !Ret->isStatic();
8495     return Ret;
8496   } else {
8497     bool isFriend =
8498         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8499     if (!isFriend && SemaRef.CurContext->isRecord())
8500       return nullptr;
8501 
8502     // Determine whether the function was written with a
8503     // prototype. This true when:
8504     //   - we're in C++ (where every function has a prototype),
8505     return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8506                                 R, TInfo, SC, isInline, true /*HasPrototype*/,
8507                                 ConstexprKind, TrailingRequiresClause);
8508   }
8509 }
8510 
8511 enum OpenCLParamType {
8512   ValidKernelParam,
8513   PtrPtrKernelParam,
8514   PtrKernelParam,
8515   InvalidAddrSpacePtrKernelParam,
8516   InvalidKernelParam,
8517   RecordKernelParam
8518 };
8519 
8520 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8521   // Size dependent types are just typedefs to normal integer types
8522   // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8523   // integers other than by their names.
8524   StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8525 
8526   // Remove typedefs one by one until we reach a typedef
8527   // for a size dependent type.
8528   QualType DesugaredTy = Ty;
8529   do {
8530     ArrayRef<StringRef> Names(SizeTypeNames);
8531     auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
8532     if (Names.end() != Match)
8533       return true;
8534 
8535     Ty = DesugaredTy;
8536     DesugaredTy = Ty.getSingleStepDesugaredType(C);
8537   } while (DesugaredTy != Ty);
8538 
8539   return false;
8540 }
8541 
8542 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8543   if (PT->isPointerType()) {
8544     QualType PointeeType = PT->getPointeeType();
8545     if (PointeeType->isPointerType())
8546       return PtrPtrKernelParam;
8547     if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8548         PointeeType.getAddressSpace() == LangAS::opencl_private ||
8549         PointeeType.getAddressSpace() == LangAS::Default)
8550       return InvalidAddrSpacePtrKernelParam;
8551     return PtrKernelParam;
8552   }
8553 
8554   // OpenCL v1.2 s6.9.k:
8555   // Arguments to kernel functions in a program cannot be declared with the
8556   // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8557   // uintptr_t or a struct and/or union that contain fields declared to be one
8558   // of these built-in scalar types.
8559   if (isOpenCLSizeDependentType(S.getASTContext(), PT))
8560     return InvalidKernelParam;
8561 
8562   if (PT->isImageType())
8563     return PtrKernelParam;
8564 
8565   if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8566     return InvalidKernelParam;
8567 
8568   // OpenCL extension spec v1.2 s9.5:
8569   // This extension adds support for half scalar and vector types as built-in
8570   // types that can be used for arithmetic operations, conversions etc.
8571   if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
8572     return InvalidKernelParam;
8573 
8574   if (PT->isRecordType())
8575     return RecordKernelParam;
8576 
8577   // Look into an array argument to check if it has a forbidden type.
8578   if (PT->isArrayType()) {
8579     const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8580     // Call ourself to check an underlying type of an array. Since the
8581     // getPointeeOrArrayElementType returns an innermost type which is not an
8582     // array, this recursive call only happens once.
8583     return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8584   }
8585 
8586   return ValidKernelParam;
8587 }
8588 
8589 static void checkIsValidOpenCLKernelParameter(
8590   Sema &S,
8591   Declarator &D,
8592   ParmVarDecl *Param,
8593   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8594   QualType PT = Param->getType();
8595 
8596   // Cache the valid types we encounter to avoid rechecking structs that are
8597   // used again
8598   if (ValidTypes.count(PT.getTypePtr()))
8599     return;
8600 
8601   switch (getOpenCLKernelParameterType(S, PT)) {
8602   case PtrPtrKernelParam:
8603     // OpenCL v1.2 s6.9.a:
8604     // A kernel function argument cannot be declared as a
8605     // pointer to a pointer type.
8606     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8607     D.setInvalidType();
8608     return;
8609 
8610   case InvalidAddrSpacePtrKernelParam:
8611     // OpenCL v1.0 s6.5:
8612     // __kernel function arguments declared to be a pointer of a type can point
8613     // to one of the following address spaces only : __global, __local or
8614     // __constant.
8615     S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8616     D.setInvalidType();
8617     return;
8618 
8619     // OpenCL v1.2 s6.9.k:
8620     // Arguments to kernel functions in a program cannot be declared with the
8621     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8622     // uintptr_t or a struct and/or union that contain fields declared to be
8623     // one of these built-in scalar types.
8624 
8625   case InvalidKernelParam:
8626     // OpenCL v1.2 s6.8 n:
8627     // A kernel function argument cannot be declared
8628     // of event_t type.
8629     // Do not diagnose half type since it is diagnosed as invalid argument
8630     // type for any function elsewhere.
8631     if (!PT->isHalfType()) {
8632       S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8633 
8634       // Explain what typedefs are involved.
8635       const TypedefType *Typedef = nullptr;
8636       while ((Typedef = PT->getAs<TypedefType>())) {
8637         SourceLocation Loc = Typedef->getDecl()->getLocation();
8638         // SourceLocation may be invalid for a built-in type.
8639         if (Loc.isValid())
8640           S.Diag(Loc, diag::note_entity_declared_at) << PT;
8641         PT = Typedef->desugar();
8642       }
8643     }
8644 
8645     D.setInvalidType();
8646     return;
8647 
8648   case PtrKernelParam:
8649   case ValidKernelParam:
8650     ValidTypes.insert(PT.getTypePtr());
8651     return;
8652 
8653   case RecordKernelParam:
8654     break;
8655   }
8656 
8657   // Track nested structs we will inspect
8658   SmallVector<const Decl *, 4> VisitStack;
8659 
8660   // Track where we are in the nested structs. Items will migrate from
8661   // VisitStack to HistoryStack as we do the DFS for bad field.
8662   SmallVector<const FieldDecl *, 4> HistoryStack;
8663   HistoryStack.push_back(nullptr);
8664 
8665   // At this point we already handled everything except of a RecordType or
8666   // an ArrayType of a RecordType.
8667   assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
8668   const RecordType *RecTy =
8669       PT->getPointeeOrArrayElementType()->getAs<RecordType>();
8670   const RecordDecl *OrigRecDecl = RecTy->getDecl();
8671 
8672   VisitStack.push_back(RecTy->getDecl());
8673   assert(VisitStack.back() && "First decl null?");
8674 
8675   do {
8676     const Decl *Next = VisitStack.pop_back_val();
8677     if (!Next) {
8678       assert(!HistoryStack.empty());
8679       // Found a marker, we have gone up a level
8680       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8681         ValidTypes.insert(Hist->getType().getTypePtr());
8682 
8683       continue;
8684     }
8685 
8686     // Adds everything except the original parameter declaration (which is not a
8687     // field itself) to the history stack.
8688     const RecordDecl *RD;
8689     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8690       HistoryStack.push_back(Field);
8691 
8692       QualType FieldTy = Field->getType();
8693       // Other field types (known to be valid or invalid) are handled while we
8694       // walk around RecordDecl::fields().
8695       assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
8696              "Unexpected type.");
8697       const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8698 
8699       RD = FieldRecTy->castAs<RecordType>()->getDecl();
8700     } else {
8701       RD = cast<RecordDecl>(Next);
8702     }
8703 
8704     // Add a null marker so we know when we've gone back up a level
8705     VisitStack.push_back(nullptr);
8706 
8707     for (const auto *FD : RD->fields()) {
8708       QualType QT = FD->getType();
8709 
8710       if (ValidTypes.count(QT.getTypePtr()))
8711         continue;
8712 
8713       OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8714       if (ParamType == ValidKernelParam)
8715         continue;
8716 
8717       if (ParamType == RecordKernelParam) {
8718         VisitStack.push_back(FD);
8719         continue;
8720       }
8721 
8722       // OpenCL v1.2 s6.9.p:
8723       // Arguments to kernel functions that are declared to be a struct or union
8724       // do not allow OpenCL objects to be passed as elements of the struct or
8725       // union.
8726       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8727           ParamType == InvalidAddrSpacePtrKernelParam) {
8728         S.Diag(Param->getLocation(),
8729                diag::err_record_with_pointers_kernel_param)
8730           << PT->isUnionType()
8731           << PT;
8732       } else {
8733         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8734       }
8735 
8736       S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8737           << OrigRecDecl->getDeclName();
8738 
8739       // We have an error, now let's go back up through history and show where
8740       // the offending field came from
8741       for (ArrayRef<const FieldDecl *>::const_iterator
8742                I = HistoryStack.begin() + 1,
8743                E = HistoryStack.end();
8744            I != E; ++I) {
8745         const FieldDecl *OuterField = *I;
8746         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8747           << OuterField->getType();
8748       }
8749 
8750       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8751         << QT->isPointerType()
8752         << QT;
8753       D.setInvalidType();
8754       return;
8755     }
8756   } while (!VisitStack.empty());
8757 }
8758 
8759 /// Find the DeclContext in which a tag is implicitly declared if we see an
8760 /// elaborated type specifier in the specified context, and lookup finds
8761 /// nothing.
8762 static DeclContext *getTagInjectionContext(DeclContext *DC) {
8763   while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8764     DC = DC->getParent();
8765   return DC;
8766 }
8767 
8768 /// Find the Scope in which a tag is implicitly declared if we see an
8769 /// elaborated type specifier in the specified context, and lookup finds
8770 /// nothing.
8771 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8772   while (S->isClassScope() ||
8773          (LangOpts.CPlusPlus &&
8774           S->isFunctionPrototypeScope()) ||
8775          ((S->getFlags() & Scope::DeclScope) == 0) ||
8776          (S->getEntity() && S->getEntity()->isTransparentContext()))
8777     S = S->getParent();
8778   return S;
8779 }
8780 
8781 NamedDecl*
8782 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
8783                               TypeSourceInfo *TInfo, LookupResult &Previous,
8784                               MultiTemplateParamsArg TemplateParamListsRef,
8785                               bool &AddToScope) {
8786   QualType R = TInfo->getType();
8787 
8788   assert(R->isFunctionType());
8789   if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr())
8790     Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call);
8791 
8792   SmallVector<TemplateParameterList *, 4> TemplateParamLists;
8793   for (TemplateParameterList *TPL : TemplateParamListsRef)
8794     TemplateParamLists.push_back(TPL);
8795   if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
8796     if (!TemplateParamLists.empty() &&
8797         Invented->getDepth() == TemplateParamLists.back()->getDepth())
8798       TemplateParamLists.back() = Invented;
8799     else
8800       TemplateParamLists.push_back(Invented);
8801   }
8802 
8803   // TODO: consider using NameInfo for diagnostic.
8804   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8805   DeclarationName Name = NameInfo.getName();
8806   StorageClass SC = getFunctionStorageClass(*this, D);
8807 
8808   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
8809     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8810          diag::err_invalid_thread)
8811       << DeclSpec::getSpecifierName(TSCS);
8812 
8813   if (D.isFirstDeclarationOfMember())
8814     adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
8815                            D.getIdentifierLoc());
8816 
8817   bool isFriend = false;
8818   FunctionTemplateDecl *FunctionTemplate = nullptr;
8819   bool isMemberSpecialization = false;
8820   bool isFunctionTemplateSpecialization = false;
8821 
8822   bool isDependentClassScopeExplicitSpecialization = false;
8823   bool HasExplicitTemplateArgs = false;
8824   TemplateArgumentListInfo TemplateArgs;
8825 
8826   bool isVirtualOkay = false;
8827 
8828   DeclContext *OriginalDC = DC;
8829   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
8830 
8831   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
8832                                               isVirtualOkay);
8833   if (!NewFD) return nullptr;
8834 
8835   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
8836     NewFD->setTopLevelDeclInObjCContainer();
8837 
8838   // Set the lexical context. If this is a function-scope declaration, or has a
8839   // C++ scope specifier, or is the object of a friend declaration, the lexical
8840   // context will be different from the semantic context.
8841   NewFD->setLexicalDeclContext(CurContext);
8842 
8843   if (IsLocalExternDecl)
8844     NewFD->setLocalExternDecl();
8845 
8846   if (getLangOpts().CPlusPlus) {
8847     bool isInline = D.getDeclSpec().isInlineSpecified();
8848     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8849     bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
8850     isFriend = D.getDeclSpec().isFriendSpecified();
8851     if (isFriend && !isInline && D.isFunctionDefinition()) {
8852       // C++ [class.friend]p5
8853       //   A function can be defined in a friend declaration of a
8854       //   class . . . . Such a function is implicitly inline.
8855       NewFD->setImplicitlyInline();
8856     }
8857 
8858     // If this is a method defined in an __interface, and is not a constructor
8859     // or an overloaded operator, then set the pure flag (isVirtual will already
8860     // return true).
8861     if (const CXXRecordDecl *Parent =
8862           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
8863       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
8864         NewFD->setPure(true);
8865 
8866       // C++ [class.union]p2
8867       //   A union can have member functions, but not virtual functions.
8868       if (isVirtual && Parent->isUnion())
8869         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
8870     }
8871 
8872     SetNestedNameSpecifier(*this, NewFD, D);
8873     isMemberSpecialization = false;
8874     isFunctionTemplateSpecialization = false;
8875     if (D.isInvalidType())
8876       NewFD->setInvalidDecl();
8877 
8878     // Match up the template parameter lists with the scope specifier, then
8879     // determine whether we have a template or a template specialization.
8880     bool Invalid = false;
8881     TemplateParameterList *TemplateParams =
8882         MatchTemplateParametersToScopeSpecifier(
8883             D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
8884             D.getCXXScopeSpec(),
8885             D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
8886                 ? D.getName().TemplateId
8887                 : nullptr,
8888             TemplateParamLists, isFriend, isMemberSpecialization,
8889             Invalid);
8890     if (TemplateParams) {
8891       if (TemplateParams->size() > 0) {
8892         // This is a function template
8893 
8894         // Check that we can declare a template here.
8895         if (CheckTemplateDeclScope(S, TemplateParams))
8896           NewFD->setInvalidDecl();
8897 
8898         // A destructor cannot be a template.
8899         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8900           Diag(NewFD->getLocation(), diag::err_destructor_template);
8901           NewFD->setInvalidDecl();
8902         }
8903 
8904         // If we're adding a template to a dependent context, we may need to
8905         // rebuilding some of the types used within the template parameter list,
8906         // now that we know what the current instantiation is.
8907         if (DC->isDependentContext()) {
8908           ContextRAII SavedContext(*this, DC);
8909           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
8910             Invalid = true;
8911         }
8912 
8913         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
8914                                                         NewFD->getLocation(),
8915                                                         Name, TemplateParams,
8916                                                         NewFD);
8917         FunctionTemplate->setLexicalDeclContext(CurContext);
8918         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
8919 
8920         // For source fidelity, store the other template param lists.
8921         if (TemplateParamLists.size() > 1) {
8922           NewFD->setTemplateParameterListsInfo(Context,
8923               ArrayRef<TemplateParameterList *>(TemplateParamLists)
8924                   .drop_back(1));
8925         }
8926       } else {
8927         // This is a function template specialization.
8928         isFunctionTemplateSpecialization = true;
8929         // For source fidelity, store all the template param lists.
8930         if (TemplateParamLists.size() > 0)
8931           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8932 
8933         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
8934         if (isFriend) {
8935           // We want to remove the "template<>", found here.
8936           SourceRange RemoveRange = TemplateParams->getSourceRange();
8937 
8938           // If we remove the template<> and the name is not a
8939           // template-id, we're actually silently creating a problem:
8940           // the friend declaration will refer to an untemplated decl,
8941           // and clearly the user wants a template specialization.  So
8942           // we need to insert '<>' after the name.
8943           SourceLocation InsertLoc;
8944           if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
8945             InsertLoc = D.getName().getSourceRange().getEnd();
8946             InsertLoc = getLocForEndOfToken(InsertLoc);
8947           }
8948 
8949           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
8950             << Name << RemoveRange
8951             << FixItHint::CreateRemoval(RemoveRange)
8952             << FixItHint::CreateInsertion(InsertLoc, "<>");
8953         }
8954       }
8955     } else {
8956       // All template param lists were matched against the scope specifier:
8957       // this is NOT (an explicit specialization of) a template.
8958       if (TemplateParamLists.size() > 0)
8959         // For source fidelity, store all the template param lists.
8960         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8961     }
8962 
8963     if (Invalid) {
8964       NewFD->setInvalidDecl();
8965       if (FunctionTemplate)
8966         FunctionTemplate->setInvalidDecl();
8967     }
8968 
8969     // C++ [dcl.fct.spec]p5:
8970     //   The virtual specifier shall only be used in declarations of
8971     //   nonstatic class member functions that appear within a
8972     //   member-specification of a class declaration; see 10.3.
8973     //
8974     if (isVirtual && !NewFD->isInvalidDecl()) {
8975       if (!isVirtualOkay) {
8976         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8977              diag::err_virtual_non_function);
8978       } else if (!CurContext->isRecord()) {
8979         // 'virtual' was specified outside of the class.
8980         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8981              diag::err_virtual_out_of_class)
8982           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8983       } else if (NewFD->getDescribedFunctionTemplate()) {
8984         // C++ [temp.mem]p3:
8985         //  A member function template shall not be virtual.
8986         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8987              diag::err_virtual_member_function_template)
8988           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8989       } else {
8990         // Okay: Add virtual to the method.
8991         NewFD->setVirtualAsWritten(true);
8992       }
8993 
8994       if (getLangOpts().CPlusPlus14 &&
8995           NewFD->getReturnType()->isUndeducedType())
8996         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
8997     }
8998 
8999     if (getLangOpts().CPlusPlus14 &&
9000         (NewFD->isDependentContext() ||
9001          (isFriend && CurContext->isDependentContext())) &&
9002         NewFD->getReturnType()->isUndeducedType()) {
9003       // If the function template is referenced directly (for instance, as a
9004       // member of the current instantiation), pretend it has a dependent type.
9005       // This is not really justified by the standard, but is the only sane
9006       // thing to do.
9007       // FIXME: For a friend function, we have not marked the function as being
9008       // a friend yet, so 'isDependentContext' on the FD doesn't work.
9009       const FunctionProtoType *FPT =
9010           NewFD->getType()->castAs<FunctionProtoType>();
9011       QualType Result =
9012           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
9013       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
9014                                              FPT->getExtProtoInfo()));
9015     }
9016 
9017     // C++ [dcl.fct.spec]p3:
9018     //  The inline specifier shall not appear on a block scope function
9019     //  declaration.
9020     if (isInline && !NewFD->isInvalidDecl()) {
9021       if (CurContext->isFunctionOrMethod()) {
9022         // 'inline' is not allowed on block scope function declaration.
9023         Diag(D.getDeclSpec().getInlineSpecLoc(),
9024              diag::err_inline_declaration_block_scope) << Name
9025           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9026       }
9027     }
9028 
9029     // C++ [dcl.fct.spec]p6:
9030     //  The explicit specifier shall be used only in the declaration of a
9031     //  constructor or conversion function within its class definition;
9032     //  see 12.3.1 and 12.3.2.
9033     if (hasExplicit && !NewFD->isInvalidDecl() &&
9034         !isa<CXXDeductionGuideDecl>(NewFD)) {
9035       if (!CurContext->isRecord()) {
9036         // 'explicit' was specified outside of the class.
9037         Diag(D.getDeclSpec().getExplicitSpecLoc(),
9038              diag::err_explicit_out_of_class)
9039             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9040       } else if (!isa<CXXConstructorDecl>(NewFD) &&
9041                  !isa<CXXConversionDecl>(NewFD)) {
9042         // 'explicit' was specified on a function that wasn't a constructor
9043         // or conversion function.
9044         Diag(D.getDeclSpec().getExplicitSpecLoc(),
9045              diag::err_explicit_non_ctor_or_conv_function)
9046             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9047       }
9048     }
9049 
9050     if (ConstexprSpecKind ConstexprKind =
9051             D.getDeclSpec().getConstexprSpecifier()) {
9052       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
9053       // are implicitly inline.
9054       NewFD->setImplicitlyInline();
9055 
9056       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
9057       // be either constructors or to return a literal type. Therefore,
9058       // destructors cannot be declared constexpr.
9059       if (isa<CXXDestructorDecl>(NewFD) &&
9060           (!getLangOpts().CPlusPlus20 || ConstexprKind == CSK_consteval)) {
9061         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
9062             << ConstexprKind;
9063         NewFD->setConstexprKind(getLangOpts().CPlusPlus20 ? CSK_unspecified : CSK_constexpr);
9064       }
9065       // C++20 [dcl.constexpr]p2: An allocation function, or a
9066       // deallocation function shall not be declared with the consteval
9067       // specifier.
9068       if (ConstexprKind == CSK_consteval &&
9069           (NewFD->getOverloadedOperator() == OO_New ||
9070            NewFD->getOverloadedOperator() == OO_Array_New ||
9071            NewFD->getOverloadedOperator() == OO_Delete ||
9072            NewFD->getOverloadedOperator() == OO_Array_Delete)) {
9073         Diag(D.getDeclSpec().getConstexprSpecLoc(),
9074              diag::err_invalid_consteval_decl_kind)
9075             << NewFD;
9076         NewFD->setConstexprKind(CSK_constexpr);
9077       }
9078     }
9079 
9080     // If __module_private__ was specified, mark the function accordingly.
9081     if (D.getDeclSpec().isModulePrivateSpecified()) {
9082       if (isFunctionTemplateSpecialization) {
9083         SourceLocation ModulePrivateLoc
9084           = D.getDeclSpec().getModulePrivateSpecLoc();
9085         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
9086           << 0
9087           << FixItHint::CreateRemoval(ModulePrivateLoc);
9088       } else {
9089         NewFD->setModulePrivate();
9090         if (FunctionTemplate)
9091           FunctionTemplate->setModulePrivate();
9092       }
9093     }
9094 
9095     if (isFriend) {
9096       if (FunctionTemplate) {
9097         FunctionTemplate->setObjectOfFriendDecl();
9098         FunctionTemplate->setAccess(AS_public);
9099       }
9100       NewFD->setObjectOfFriendDecl();
9101       NewFD->setAccess(AS_public);
9102     }
9103 
9104     // If a function is defined as defaulted or deleted, mark it as such now.
9105     // We'll do the relevant checks on defaulted / deleted functions later.
9106     switch (D.getFunctionDefinitionKind()) {
9107       case FDK_Declaration:
9108       case FDK_Definition:
9109         break;
9110 
9111       case FDK_Defaulted:
9112         NewFD->setDefaulted();
9113         break;
9114 
9115       case FDK_Deleted:
9116         NewFD->setDeletedAsWritten();
9117         break;
9118     }
9119 
9120     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
9121         D.isFunctionDefinition()) {
9122       // C++ [class.mfct]p2:
9123       //   A member function may be defined (8.4) in its class definition, in
9124       //   which case it is an inline member function (7.1.2)
9125       NewFD->setImplicitlyInline();
9126     }
9127 
9128     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
9129         !CurContext->isRecord()) {
9130       // C++ [class.static]p1:
9131       //   A data or function member of a class may be declared static
9132       //   in a class definition, in which case it is a static member of
9133       //   the class.
9134 
9135       // Complain about the 'static' specifier if it's on an out-of-line
9136       // member function definition.
9137 
9138       // MSVC permits the use of a 'static' storage specifier on an out-of-line
9139       // member function template declaration and class member template
9140       // declaration (MSVC versions before 2015), warn about this.
9141       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9142            ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
9143              cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
9144            (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
9145            ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
9146         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9147     }
9148 
9149     // C++11 [except.spec]p15:
9150     //   A deallocation function with no exception-specification is treated
9151     //   as if it were specified with noexcept(true).
9152     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
9153     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
9154          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
9155         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
9156       NewFD->setType(Context.getFunctionType(
9157           FPT->getReturnType(), FPT->getParamTypes(),
9158           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
9159   }
9160 
9161   // Filter out previous declarations that don't match the scope.
9162   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
9163                        D.getCXXScopeSpec().isNotEmpty() ||
9164                        isMemberSpecialization ||
9165                        isFunctionTemplateSpecialization);
9166 
9167   // Handle GNU asm-label extension (encoded as an attribute).
9168   if (Expr *E = (Expr*) D.getAsmLabel()) {
9169     // The parser guarantees this is a string.
9170     StringLiteral *SE = cast<StringLiteral>(E);
9171     NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
9172                                         /*IsLiteralLabel=*/true,
9173                                         SE->getStrTokenLoc(0)));
9174   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
9175     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
9176       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
9177     if (I != ExtnameUndeclaredIdentifiers.end()) {
9178       if (isDeclExternC(NewFD)) {
9179         NewFD->addAttr(I->second);
9180         ExtnameUndeclaredIdentifiers.erase(I);
9181       } else
9182         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
9183             << /*Variable*/0 << NewFD;
9184     }
9185   }
9186 
9187   // Copy the parameter declarations from the declarator D to the function
9188   // declaration NewFD, if they are available.  First scavenge them into Params.
9189   SmallVector<ParmVarDecl*, 16> Params;
9190   unsigned FTIIdx;
9191   if (D.isFunctionDeclarator(FTIIdx)) {
9192     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
9193 
9194     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
9195     // function that takes no arguments, not a function that takes a
9196     // single void argument.
9197     // We let through "const void" here because Sema::GetTypeForDeclarator
9198     // already checks for that case.
9199     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
9200       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
9201         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
9202         assert(Param->getDeclContext() != NewFD && "Was set before ?");
9203         Param->setDeclContext(NewFD);
9204         Params.push_back(Param);
9205 
9206         if (Param->isInvalidDecl())
9207           NewFD->setInvalidDecl();
9208       }
9209     }
9210 
9211     if (!getLangOpts().CPlusPlus) {
9212       // In C, find all the tag declarations from the prototype and move them
9213       // into the function DeclContext. Remove them from the surrounding tag
9214       // injection context of the function, which is typically but not always
9215       // the TU.
9216       DeclContext *PrototypeTagContext =
9217           getTagInjectionContext(NewFD->getLexicalDeclContext());
9218       for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
9219         auto *TD = dyn_cast<TagDecl>(NonParmDecl);
9220 
9221         // We don't want to reparent enumerators. Look at their parent enum
9222         // instead.
9223         if (!TD) {
9224           if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
9225             TD = cast<EnumDecl>(ECD->getDeclContext());
9226         }
9227         if (!TD)
9228           continue;
9229         DeclContext *TagDC = TD->getLexicalDeclContext();
9230         if (!TagDC->containsDecl(TD))
9231           continue;
9232         TagDC->removeDecl(TD);
9233         TD->setDeclContext(NewFD);
9234         NewFD->addDecl(TD);
9235 
9236         // Preserve the lexical DeclContext if it is not the surrounding tag
9237         // injection context of the FD. In this example, the semantic context of
9238         // E will be f and the lexical context will be S, while both the
9239         // semantic and lexical contexts of S will be f:
9240         //   void f(struct S { enum E { a } f; } s);
9241         if (TagDC != PrototypeTagContext)
9242           TD->setLexicalDeclContext(TagDC);
9243       }
9244     }
9245   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
9246     // When we're declaring a function with a typedef, typeof, etc as in the
9247     // following example, we'll need to synthesize (unnamed)
9248     // parameters for use in the declaration.
9249     //
9250     // @code
9251     // typedef void fn(int);
9252     // fn f;
9253     // @endcode
9254 
9255     // Synthesize a parameter for each argument type.
9256     for (const auto &AI : FT->param_types()) {
9257       ParmVarDecl *Param =
9258           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
9259       Param->setScopeInfo(0, Params.size());
9260       Params.push_back(Param);
9261     }
9262   } else {
9263     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
9264            "Should not need args for typedef of non-prototype fn");
9265   }
9266 
9267   // Finally, we know we have the right number of parameters, install them.
9268   NewFD->setParams(Params);
9269 
9270   if (D.getDeclSpec().isNoreturnSpecified())
9271     NewFD->addAttr(C11NoReturnAttr::Create(Context,
9272                                            D.getDeclSpec().getNoreturnSpecLoc(),
9273                                            AttributeCommonInfo::AS_Keyword));
9274 
9275   // Functions returning a variably modified type violate C99 6.7.5.2p2
9276   // because all functions have linkage.
9277   if (!NewFD->isInvalidDecl() &&
9278       NewFD->getReturnType()->isVariablyModifiedType()) {
9279     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
9280     NewFD->setInvalidDecl();
9281   }
9282 
9283   // Apply an implicit SectionAttr if '#pragma clang section text' is active
9284   if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
9285       !NewFD->hasAttr<SectionAttr>())
9286     NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
9287         Context, PragmaClangTextSection.SectionName,
9288         PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma));
9289 
9290   // Apply an implicit SectionAttr if #pragma code_seg is active.
9291   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
9292       !NewFD->hasAttr<SectionAttr>()) {
9293     NewFD->addAttr(SectionAttr::CreateImplicit(
9294         Context, CodeSegStack.CurrentValue->getString(),
9295         CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9296         SectionAttr::Declspec_allocate));
9297     if (UnifySection(CodeSegStack.CurrentValue->getString(),
9298                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
9299                          ASTContext::PSF_Read,
9300                      NewFD))
9301       NewFD->dropAttr<SectionAttr>();
9302   }
9303 
9304   // Apply an implicit CodeSegAttr from class declspec or
9305   // apply an implicit SectionAttr from #pragma code_seg if active.
9306   if (!NewFD->hasAttr<CodeSegAttr>()) {
9307     if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
9308                                                                  D.isFunctionDefinition())) {
9309       NewFD->addAttr(SAttr);
9310     }
9311   }
9312 
9313   // Handle attributes.
9314   ProcessDeclAttributes(S, NewFD, D);
9315 
9316   if (getLangOpts().OpenCL) {
9317     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
9318     // type declaration will generate a compilation error.
9319     LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
9320     if (AddressSpace != LangAS::Default) {
9321       Diag(NewFD->getLocation(),
9322            diag::err_opencl_return_value_with_address_space);
9323       NewFD->setInvalidDecl();
9324     }
9325   }
9326 
9327   if (!getLangOpts().CPlusPlus) {
9328     // Perform semantic checking on the function declaration.
9329     if (!NewFD->isInvalidDecl() && NewFD->isMain())
9330       CheckMain(NewFD, D.getDeclSpec());
9331 
9332     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9333       CheckMSVCRTEntryPoint(NewFD);
9334 
9335     if (!NewFD->isInvalidDecl())
9336       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9337                                                   isMemberSpecialization));
9338     else if (!Previous.empty())
9339       // Recover gracefully from an invalid redeclaration.
9340       D.setRedeclaration(true);
9341     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9342             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
9343            "previous declaration set still overloaded");
9344 
9345     // Diagnose no-prototype function declarations with calling conventions that
9346     // don't support variadic calls. Only do this in C and do it after merging
9347     // possibly prototyped redeclarations.
9348     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
9349     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
9350       CallingConv CC = FT->getExtInfo().getCC();
9351       if (!supportsVariadicCall(CC)) {
9352         // Windows system headers sometimes accidentally use stdcall without
9353         // (void) parameters, so we relax this to a warning.
9354         int DiagID =
9355             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
9356         Diag(NewFD->getLocation(), DiagID)
9357             << FunctionType::getNameForCallConv(CC);
9358       }
9359     }
9360 
9361    if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
9362        NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
9363      checkNonTrivialCUnion(NewFD->getReturnType(),
9364                            NewFD->getReturnTypeSourceRange().getBegin(),
9365                            NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
9366   } else {
9367     // C++11 [replacement.functions]p3:
9368     //  The program's definitions shall not be specified as inline.
9369     //
9370     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
9371     //
9372     // Suppress the diagnostic if the function is __attribute__((used)), since
9373     // that forces an external definition to be emitted.
9374     if (D.getDeclSpec().isInlineSpecified() &&
9375         NewFD->isReplaceableGlobalAllocationFunction() &&
9376         !NewFD->hasAttr<UsedAttr>())
9377       Diag(D.getDeclSpec().getInlineSpecLoc(),
9378            diag::ext_operator_new_delete_declared_inline)
9379         << NewFD->getDeclName();
9380 
9381     // If the declarator is a template-id, translate the parser's template
9382     // argument list into our AST format.
9383     if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
9384       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
9385       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
9386       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
9387       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
9388                                          TemplateId->NumArgs);
9389       translateTemplateArguments(TemplateArgsPtr,
9390                                  TemplateArgs);
9391 
9392       HasExplicitTemplateArgs = true;
9393 
9394       if (NewFD->isInvalidDecl()) {
9395         HasExplicitTemplateArgs = false;
9396       } else if (FunctionTemplate) {
9397         // Function template with explicit template arguments.
9398         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
9399           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
9400 
9401         HasExplicitTemplateArgs = false;
9402       } else {
9403         assert((isFunctionTemplateSpecialization ||
9404                 D.getDeclSpec().isFriendSpecified()) &&
9405                "should have a 'template<>' for this decl");
9406         // "friend void foo<>(int);" is an implicit specialization decl.
9407         isFunctionTemplateSpecialization = true;
9408       }
9409     } else if (isFriend && isFunctionTemplateSpecialization) {
9410       // This combination is only possible in a recovery case;  the user
9411       // wrote something like:
9412       //   template <> friend void foo(int);
9413       // which we're recovering from as if the user had written:
9414       //   friend void foo<>(int);
9415       // Go ahead and fake up a template id.
9416       HasExplicitTemplateArgs = true;
9417       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
9418       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
9419     }
9420 
9421     // We do not add HD attributes to specializations here because
9422     // they may have different constexpr-ness compared to their
9423     // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
9424     // may end up with different effective targets. Instead, a
9425     // specialization inherits its target attributes from its template
9426     // in the CheckFunctionTemplateSpecialization() call below.
9427     if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
9428       maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
9429 
9430     // If it's a friend (and only if it's a friend), it's possible
9431     // that either the specialized function type or the specialized
9432     // template is dependent, and therefore matching will fail.  In
9433     // this case, don't check the specialization yet.
9434     bool InstantiationDependent = false;
9435     if (isFunctionTemplateSpecialization && isFriend &&
9436         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
9437          TemplateSpecializationType::anyDependentTemplateArguments(
9438             TemplateArgs,
9439             InstantiationDependent))) {
9440       assert(HasExplicitTemplateArgs &&
9441              "friend function specialization without template args");
9442       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
9443                                                        Previous))
9444         NewFD->setInvalidDecl();
9445     } else if (isFunctionTemplateSpecialization) {
9446       if (CurContext->isDependentContext() && CurContext->isRecord()
9447           && !isFriend) {
9448         isDependentClassScopeExplicitSpecialization = true;
9449       } else if (!NewFD->isInvalidDecl() &&
9450                  CheckFunctionTemplateSpecialization(
9451                      NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
9452                      Previous))
9453         NewFD->setInvalidDecl();
9454 
9455       // C++ [dcl.stc]p1:
9456       //   A storage-class-specifier shall not be specified in an explicit
9457       //   specialization (14.7.3)
9458       FunctionTemplateSpecializationInfo *Info =
9459           NewFD->getTemplateSpecializationInfo();
9460       if (Info && SC != SC_None) {
9461         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
9462           Diag(NewFD->getLocation(),
9463                diag::err_explicit_specialization_inconsistent_storage_class)
9464             << SC
9465             << FixItHint::CreateRemoval(
9466                                       D.getDeclSpec().getStorageClassSpecLoc());
9467 
9468         else
9469           Diag(NewFD->getLocation(),
9470                diag::ext_explicit_specialization_storage_class)
9471             << FixItHint::CreateRemoval(
9472                                       D.getDeclSpec().getStorageClassSpecLoc());
9473       }
9474     } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
9475       if (CheckMemberSpecialization(NewFD, Previous))
9476           NewFD->setInvalidDecl();
9477     }
9478 
9479     // Perform semantic checking on the function declaration.
9480     if (!isDependentClassScopeExplicitSpecialization) {
9481       if (!NewFD->isInvalidDecl() && NewFD->isMain())
9482         CheckMain(NewFD, D.getDeclSpec());
9483 
9484       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9485         CheckMSVCRTEntryPoint(NewFD);
9486 
9487       if (!NewFD->isInvalidDecl())
9488         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9489                                                     isMemberSpecialization));
9490       else if (!Previous.empty())
9491         // Recover gracefully from an invalid redeclaration.
9492         D.setRedeclaration(true);
9493     }
9494 
9495     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9496             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
9497            "previous declaration set still overloaded");
9498 
9499     NamedDecl *PrincipalDecl = (FunctionTemplate
9500                                 ? cast<NamedDecl>(FunctionTemplate)
9501                                 : NewFD);
9502 
9503     if (isFriend && NewFD->getPreviousDecl()) {
9504       AccessSpecifier Access = AS_public;
9505       if (!NewFD->isInvalidDecl())
9506         Access = NewFD->getPreviousDecl()->getAccess();
9507 
9508       NewFD->setAccess(Access);
9509       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
9510     }
9511 
9512     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
9513         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
9514       PrincipalDecl->setNonMemberOperator();
9515 
9516     // If we have a function template, check the template parameter
9517     // list. This will check and merge default template arguments.
9518     if (FunctionTemplate) {
9519       FunctionTemplateDecl *PrevTemplate =
9520                                      FunctionTemplate->getPreviousDecl();
9521       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
9522                        PrevTemplate ? PrevTemplate->getTemplateParameters()
9523                                     : nullptr,
9524                             D.getDeclSpec().isFriendSpecified()
9525                               ? (D.isFunctionDefinition()
9526                                    ? TPC_FriendFunctionTemplateDefinition
9527                                    : TPC_FriendFunctionTemplate)
9528                               : (D.getCXXScopeSpec().isSet() &&
9529                                  DC && DC->isRecord() &&
9530                                  DC->isDependentContext())
9531                                   ? TPC_ClassTemplateMember
9532                                   : TPC_FunctionTemplate);
9533     }
9534 
9535     if (NewFD->isInvalidDecl()) {
9536       // Ignore all the rest of this.
9537     } else if (!D.isRedeclaration()) {
9538       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9539                                        AddToScope };
9540       // Fake up an access specifier if it's supposed to be a class member.
9541       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9542         NewFD->setAccess(AS_public);
9543 
9544       // Qualified decls generally require a previous declaration.
9545       if (D.getCXXScopeSpec().isSet()) {
9546         // ...with the major exception of templated-scope or
9547         // dependent-scope friend declarations.
9548 
9549         // TODO: we currently also suppress this check in dependent
9550         // contexts because (1) the parameter depth will be off when
9551         // matching friend templates and (2) we might actually be
9552         // selecting a friend based on a dependent factor.  But there
9553         // are situations where these conditions don't apply and we
9554         // can actually do this check immediately.
9555         //
9556         // Unless the scope is dependent, it's always an error if qualified
9557         // redeclaration lookup found nothing at all. Diagnose that now;
9558         // nothing will diagnose that error later.
9559         if (isFriend &&
9560             (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
9561              (!Previous.empty() && CurContext->isDependentContext()))) {
9562           // ignore these
9563         } else {
9564           // The user tried to provide an out-of-line definition for a
9565           // function that is a member of a class or namespace, but there
9566           // was no such member function declared (C++ [class.mfct]p2,
9567           // C++ [namespace.memdef]p2). For example:
9568           //
9569           // class X {
9570           //   void f() const;
9571           // };
9572           //
9573           // void X::f() { } // ill-formed
9574           //
9575           // Complain about this problem, and attempt to suggest close
9576           // matches (e.g., those that differ only in cv-qualifiers and
9577           // whether the parameter types are references).
9578 
9579           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9580                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9581             AddToScope = ExtraArgs.AddToScope;
9582             return Result;
9583           }
9584         }
9585 
9586         // Unqualified local friend declarations are required to resolve
9587         // to something.
9588       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9589         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9590                 *this, Previous, NewFD, ExtraArgs, true, S)) {
9591           AddToScope = ExtraArgs.AddToScope;
9592           return Result;
9593         }
9594       }
9595     } else if (!D.isFunctionDefinition() &&
9596                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9597                !isFriend && !isFunctionTemplateSpecialization &&
9598                !isMemberSpecialization) {
9599       // An out-of-line member function declaration must also be a
9600       // definition (C++ [class.mfct]p2).
9601       // Note that this is not the case for explicit specializations of
9602       // function templates or member functions of class templates, per
9603       // C++ [temp.expl.spec]p2. We also allow these declarations as an
9604       // extension for compatibility with old SWIG code which likes to
9605       // generate them.
9606       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9607         << D.getCXXScopeSpec().getRange();
9608     }
9609   }
9610 
9611   ProcessPragmaWeak(S, NewFD);
9612   checkAttributesAfterMerging(*this, *NewFD);
9613 
9614   AddKnownFunctionAttributes(NewFD);
9615 
9616   if (NewFD->hasAttr<OverloadableAttr>() &&
9617       !NewFD->getType()->getAs<FunctionProtoType>()) {
9618     Diag(NewFD->getLocation(),
9619          diag::err_attribute_overloadable_no_prototype)
9620       << NewFD;
9621 
9622     // Turn this into a variadic function with no parameters.
9623     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9624     FunctionProtoType::ExtProtoInfo EPI(
9625         Context.getDefaultCallingConvention(true, false));
9626     EPI.Variadic = true;
9627     EPI.ExtInfo = FT->getExtInfo();
9628 
9629     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9630     NewFD->setType(R);
9631   }
9632 
9633   // If there's a #pragma GCC visibility in scope, and this isn't a class
9634   // member, set the visibility of this function.
9635   if (!DC->isRecord() && NewFD->isExternallyVisible())
9636     AddPushedVisibilityAttribute(NewFD);
9637 
9638   // If there's a #pragma clang arc_cf_code_audited in scope, consider
9639   // marking the function.
9640   AddCFAuditedAttribute(NewFD);
9641 
9642   // If this is a function definition, check if we have to apply optnone due to
9643   // a pragma.
9644   if(D.isFunctionDefinition())
9645     AddRangeBasedOptnone(NewFD);
9646 
9647   // If this is the first declaration of an extern C variable, update
9648   // the map of such variables.
9649   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9650       isIncompleteDeclExternC(*this, NewFD))
9651     RegisterLocallyScopedExternCDecl(NewFD, S);
9652 
9653   // Set this FunctionDecl's range up to the right paren.
9654   NewFD->setRangeEnd(D.getSourceRange().getEnd());
9655 
9656   if (D.isRedeclaration() && !Previous.empty()) {
9657     NamedDecl *Prev = Previous.getRepresentativeDecl();
9658     checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9659                                    isMemberSpecialization ||
9660                                        isFunctionTemplateSpecialization,
9661                                    D.isFunctionDefinition());
9662   }
9663 
9664   if (getLangOpts().CUDA) {
9665     IdentifierInfo *II = NewFD->getIdentifier();
9666     if (II && II->isStr(getCudaConfigureFuncName()) &&
9667         !NewFD->isInvalidDecl() &&
9668         NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9669       if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
9670         Diag(NewFD->getLocation(), diag::err_config_scalar_return)
9671             << getCudaConfigureFuncName();
9672       Context.setcudaConfigureCallDecl(NewFD);
9673     }
9674 
9675     // Variadic functions, other than a *declaration* of printf, are not allowed
9676     // in device-side CUDA code, unless someone passed
9677     // -fcuda-allow-variadic-functions.
9678     if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9679         (NewFD->hasAttr<CUDADeviceAttr>() ||
9680          NewFD->hasAttr<CUDAGlobalAttr>()) &&
9681         !(II && II->isStr("printf") && NewFD->isExternC() &&
9682           !D.isFunctionDefinition())) {
9683       Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9684     }
9685   }
9686 
9687   MarkUnusedFileScopedDecl(NewFD);
9688 
9689 
9690 
9691   if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
9692     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9693     if ((getLangOpts().OpenCLVersion >= 120)
9694         && (SC == SC_Static)) {
9695       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9696       D.setInvalidType();
9697     }
9698 
9699     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9700     if (!NewFD->getReturnType()->isVoidType()) {
9701       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9702       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9703           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9704                                 : FixItHint());
9705       D.setInvalidType();
9706     }
9707 
9708     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9709     for (auto Param : NewFD->parameters())
9710       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9711 
9712     if (getLangOpts().OpenCLCPlusPlus) {
9713       if (DC->isRecord()) {
9714         Diag(D.getIdentifierLoc(), diag::err_method_kernel);
9715         D.setInvalidType();
9716       }
9717       if (FunctionTemplate) {
9718         Diag(D.getIdentifierLoc(), diag::err_template_kernel);
9719         D.setInvalidType();
9720       }
9721     }
9722   }
9723 
9724   if (getLangOpts().CPlusPlus) {
9725     if (FunctionTemplate) {
9726       if (NewFD->isInvalidDecl())
9727         FunctionTemplate->setInvalidDecl();
9728       return FunctionTemplate;
9729     }
9730 
9731     if (isMemberSpecialization && !NewFD->isInvalidDecl())
9732       CompleteMemberSpecialization(NewFD, Previous);
9733   }
9734 
9735   for (const ParmVarDecl *Param : NewFD->parameters()) {
9736     QualType PT = Param->getType();
9737 
9738     // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
9739     // types.
9740     if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
9741       if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
9742         QualType ElemTy = PipeTy->getElementType();
9743           if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
9744             Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
9745             D.setInvalidType();
9746           }
9747       }
9748     }
9749   }
9750 
9751   // Here we have an function template explicit specialization at class scope.
9752   // The actual specialization will be postponed to template instatiation
9753   // time via the ClassScopeFunctionSpecializationDecl node.
9754   if (isDependentClassScopeExplicitSpecialization) {
9755     ClassScopeFunctionSpecializationDecl *NewSpec =
9756                          ClassScopeFunctionSpecializationDecl::Create(
9757                                 Context, CurContext, NewFD->getLocation(),
9758                                 cast<CXXMethodDecl>(NewFD),
9759                                 HasExplicitTemplateArgs, TemplateArgs);
9760     CurContext->addDecl(NewSpec);
9761     AddToScope = false;
9762   }
9763 
9764   // Diagnose availability attributes. Availability cannot be used on functions
9765   // that are run during load/unload.
9766   if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
9767     if (NewFD->hasAttr<ConstructorAttr>()) {
9768       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9769           << 1;
9770       NewFD->dropAttr<AvailabilityAttr>();
9771     }
9772     if (NewFD->hasAttr<DestructorAttr>()) {
9773       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9774           << 2;
9775       NewFD->dropAttr<AvailabilityAttr>();
9776     }
9777   }
9778 
9779   // Diagnose no_builtin attribute on function declaration that are not a
9780   // definition.
9781   // FIXME: We should really be doing this in
9782   // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
9783   // the FunctionDecl and at this point of the code
9784   // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
9785   // because Sema::ActOnStartOfFunctionDef has not been called yet.
9786   if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
9787     switch (D.getFunctionDefinitionKind()) {
9788     case FDK_Defaulted:
9789     case FDK_Deleted:
9790       Diag(NBA->getLocation(),
9791            diag::err_attribute_no_builtin_on_defaulted_deleted_function)
9792           << NBA->getSpelling();
9793       break;
9794     case FDK_Declaration:
9795       Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
9796           << NBA->getSpelling();
9797       break;
9798     case FDK_Definition:
9799       break;
9800     }
9801 
9802   return NewFD;
9803 }
9804 
9805 /// Return a CodeSegAttr from a containing class.  The Microsoft docs say
9806 /// when __declspec(code_seg) "is applied to a class, all member functions of
9807 /// the class and nested classes -- this includes compiler-generated special
9808 /// member functions -- are put in the specified segment."
9809 /// The actual behavior is a little more complicated. The Microsoft compiler
9810 /// won't check outer classes if there is an active value from #pragma code_seg.
9811 /// The CodeSeg is always applied from the direct parent but only from outer
9812 /// classes when the #pragma code_seg stack is empty. See:
9813 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
9814 /// available since MS has removed the page.
9815 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
9816   const auto *Method = dyn_cast<CXXMethodDecl>(FD);
9817   if (!Method)
9818     return nullptr;
9819   const CXXRecordDecl *Parent = Method->getParent();
9820   if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9821     Attr *NewAttr = SAttr->clone(S.getASTContext());
9822     NewAttr->setImplicit(true);
9823     return NewAttr;
9824   }
9825 
9826   // The Microsoft compiler won't check outer classes for the CodeSeg
9827   // when the #pragma code_seg stack is active.
9828   if (S.CodeSegStack.CurrentValue)
9829    return nullptr;
9830 
9831   while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
9832     if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9833       Attr *NewAttr = SAttr->clone(S.getASTContext());
9834       NewAttr->setImplicit(true);
9835       return NewAttr;
9836     }
9837   }
9838   return nullptr;
9839 }
9840 
9841 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
9842 /// containing class. Otherwise it will return implicit SectionAttr if the
9843 /// function is a definition and there is an active value on CodeSegStack
9844 /// (from the current #pragma code-seg value).
9845 ///
9846 /// \param FD Function being declared.
9847 /// \param IsDefinition Whether it is a definition or just a declarartion.
9848 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
9849 ///          nullptr if no attribute should be added.
9850 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
9851                                                        bool IsDefinition) {
9852   if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
9853     return A;
9854   if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
9855       CodeSegStack.CurrentValue)
9856     return SectionAttr::CreateImplicit(
9857         getASTContext(), CodeSegStack.CurrentValue->getString(),
9858         CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9859         SectionAttr::Declspec_allocate);
9860   return nullptr;
9861 }
9862 
9863 /// Determines if we can perform a correct type check for \p D as a
9864 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
9865 /// best-effort check.
9866 ///
9867 /// \param NewD The new declaration.
9868 /// \param OldD The old declaration.
9869 /// \param NewT The portion of the type of the new declaration to check.
9870 /// \param OldT The portion of the type of the old declaration to check.
9871 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
9872                                           QualType NewT, QualType OldT) {
9873   if (!NewD->getLexicalDeclContext()->isDependentContext())
9874     return true;
9875 
9876   // For dependently-typed local extern declarations and friends, we can't
9877   // perform a correct type check in general until instantiation:
9878   //
9879   //   int f();
9880   //   template<typename T> void g() { T f(); }
9881   //
9882   // (valid if g() is only instantiated with T = int).
9883   if (NewT->isDependentType() &&
9884       (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
9885     return false;
9886 
9887   // Similarly, if the previous declaration was a dependent local extern
9888   // declaration, we don't really know its type yet.
9889   if (OldT->isDependentType() && OldD->isLocalExternDecl())
9890     return false;
9891 
9892   return true;
9893 }
9894 
9895 /// Checks if the new declaration declared in dependent context must be
9896 /// put in the same redeclaration chain as the specified declaration.
9897 ///
9898 /// \param D Declaration that is checked.
9899 /// \param PrevDecl Previous declaration found with proper lookup method for the
9900 ///                 same declaration name.
9901 /// \returns True if D must be added to the redeclaration chain which PrevDecl
9902 ///          belongs to.
9903 ///
9904 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
9905   if (!D->getLexicalDeclContext()->isDependentContext())
9906     return true;
9907 
9908   // Don't chain dependent friend function definitions until instantiation, to
9909   // permit cases like
9910   //
9911   //   void func();
9912   //   template<typename T> class C1 { friend void func() {} };
9913   //   template<typename T> class C2 { friend void func() {} };
9914   //
9915   // ... which is valid if only one of C1 and C2 is ever instantiated.
9916   //
9917   // FIXME: This need only apply to function definitions. For now, we proxy
9918   // this by checking for a file-scope function. We do not want this to apply
9919   // to friend declarations nominating member functions, because that gets in
9920   // the way of access checks.
9921   if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
9922     return false;
9923 
9924   auto *VD = dyn_cast<ValueDecl>(D);
9925   auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
9926   return !VD || !PrevVD ||
9927          canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
9928                                         PrevVD->getType());
9929 }
9930 
9931 /// Check the target attribute of the function for MultiVersion
9932 /// validity.
9933 ///
9934 /// Returns true if there was an error, false otherwise.
9935 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
9936   const auto *TA = FD->getAttr<TargetAttr>();
9937   assert(TA && "MultiVersion Candidate requires a target attribute");
9938   ParsedTargetAttr ParseInfo = TA->parse();
9939   const TargetInfo &TargetInfo = S.Context.getTargetInfo();
9940   enum ErrType { Feature = 0, Architecture = 1 };
9941 
9942   if (!ParseInfo.Architecture.empty() &&
9943       !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
9944     S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9945         << Architecture << ParseInfo.Architecture;
9946     return true;
9947   }
9948 
9949   for (const auto &Feat : ParseInfo.Features) {
9950     auto BareFeat = StringRef{Feat}.substr(1);
9951     if (Feat[0] == '-') {
9952       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9953           << Feature << ("no-" + BareFeat).str();
9954       return true;
9955     }
9956 
9957     if (!TargetInfo.validateCpuSupports(BareFeat) ||
9958         !TargetInfo.isValidFeatureName(BareFeat)) {
9959       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9960           << Feature << BareFeat;
9961       return true;
9962     }
9963   }
9964   return false;
9965 }
9966 
9967 // Provide a white-list of attributes that are allowed to be combined with
9968 // multiversion functions.
9969 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind,
9970                                            MultiVersionKind MVType) {
9971   switch (Kind) {
9972   default:
9973     return false;
9974   case attr::Used:
9975     return MVType == MultiVersionKind::Target;
9976   }
9977 }
9978 
9979 static bool HasNonMultiVersionAttributes(const FunctionDecl *FD,
9980                                          MultiVersionKind MVType) {
9981   for (const Attr *A : FD->attrs()) {
9982     switch (A->getKind()) {
9983     case attr::CPUDispatch:
9984     case attr::CPUSpecific:
9985       if (MVType != MultiVersionKind::CPUDispatch &&
9986           MVType != MultiVersionKind::CPUSpecific)
9987         return true;
9988       break;
9989     case attr::Target:
9990       if (MVType != MultiVersionKind::Target)
9991         return true;
9992       break;
9993     default:
9994       if (!AttrCompatibleWithMultiVersion(A->getKind(), MVType))
9995         return true;
9996       break;
9997     }
9998   }
9999   return false;
10000 }
10001 
10002 bool Sema::areMultiversionVariantFunctionsCompatible(
10003     const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10004     const PartialDiagnostic &NoProtoDiagID,
10005     const PartialDiagnosticAt &NoteCausedDiagIDAt,
10006     const PartialDiagnosticAt &NoSupportDiagIDAt,
10007     const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10008     bool ConstexprSupported, bool CLinkageMayDiffer) {
10009   enum DoesntSupport {
10010     FuncTemplates = 0,
10011     VirtFuncs = 1,
10012     DeducedReturn = 2,
10013     Constructors = 3,
10014     Destructors = 4,
10015     DeletedFuncs = 5,
10016     DefaultedFuncs = 6,
10017     ConstexprFuncs = 7,
10018     ConstevalFuncs = 8,
10019   };
10020   enum Different {
10021     CallingConv = 0,
10022     ReturnType = 1,
10023     ConstexprSpec = 2,
10024     InlineSpec = 3,
10025     StorageClass = 4,
10026     Linkage = 5,
10027   };
10028 
10029   if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
10030       !OldFD->getType()->getAs<FunctionProtoType>()) {
10031     Diag(OldFD->getLocation(), NoProtoDiagID);
10032     Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
10033     return true;
10034   }
10035 
10036   if (NoProtoDiagID.getDiagID() != 0 &&
10037       !NewFD->getType()->getAs<FunctionProtoType>())
10038     return Diag(NewFD->getLocation(), NoProtoDiagID);
10039 
10040   if (!TemplatesSupported &&
10041       NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10042     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10043            << FuncTemplates;
10044 
10045   if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
10046     if (NewCXXFD->isVirtual())
10047       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10048              << VirtFuncs;
10049 
10050     if (isa<CXXConstructorDecl>(NewCXXFD))
10051       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10052              << Constructors;
10053 
10054     if (isa<CXXDestructorDecl>(NewCXXFD))
10055       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10056              << Destructors;
10057   }
10058 
10059   if (NewFD->isDeleted())
10060     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10061            << DeletedFuncs;
10062 
10063   if (NewFD->isDefaulted())
10064     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10065            << DefaultedFuncs;
10066 
10067   if (!ConstexprSupported && NewFD->isConstexpr())
10068     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10069            << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
10070 
10071   QualType NewQType = Context.getCanonicalType(NewFD->getType());
10072   const auto *NewType = cast<FunctionType>(NewQType);
10073   QualType NewReturnType = NewType->getReturnType();
10074 
10075   if (NewReturnType->isUndeducedType())
10076     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10077            << DeducedReturn;
10078 
10079   // Ensure the return type is identical.
10080   if (OldFD) {
10081     QualType OldQType = Context.getCanonicalType(OldFD->getType());
10082     const auto *OldType = cast<FunctionType>(OldQType);
10083     FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
10084     FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
10085 
10086     if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
10087       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
10088 
10089     QualType OldReturnType = OldType->getReturnType();
10090 
10091     if (OldReturnType != NewReturnType)
10092       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
10093 
10094     if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
10095       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
10096 
10097     if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
10098       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
10099 
10100     if (OldFD->getStorageClass() != NewFD->getStorageClass())
10101       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << StorageClass;
10102 
10103     if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
10104       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
10105 
10106     if (CheckEquivalentExceptionSpec(
10107             OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
10108             NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
10109       return true;
10110   }
10111   return false;
10112 }
10113 
10114 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
10115                                              const FunctionDecl *NewFD,
10116                                              bool CausesMV,
10117                                              MultiVersionKind MVType) {
10118   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10119     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10120     if (OldFD)
10121       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10122     return true;
10123   }
10124 
10125   bool IsCPUSpecificCPUDispatchMVType =
10126       MVType == MultiVersionKind::CPUDispatch ||
10127       MVType == MultiVersionKind::CPUSpecific;
10128 
10129   // For now, disallow all other attributes.  These should be opt-in, but
10130   // an analysis of all of them is a future FIXME.
10131   if (CausesMV && OldFD && HasNonMultiVersionAttributes(OldFD, MVType)) {
10132     S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs)
10133         << IsCPUSpecificCPUDispatchMVType;
10134     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10135     return true;
10136   }
10137 
10138   if (HasNonMultiVersionAttributes(NewFD, MVType))
10139     return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs)
10140            << IsCPUSpecificCPUDispatchMVType;
10141 
10142   // Only allow transition to MultiVersion if it hasn't been used.
10143   if (OldFD && CausesMV && OldFD->isUsed(false))
10144     return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
10145 
10146   return S.areMultiversionVariantFunctionsCompatible(
10147       OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
10148       PartialDiagnosticAt(NewFD->getLocation(),
10149                           S.PDiag(diag::note_multiversioning_caused_here)),
10150       PartialDiagnosticAt(NewFD->getLocation(),
10151                           S.PDiag(diag::err_multiversion_doesnt_support)
10152                               << IsCPUSpecificCPUDispatchMVType),
10153       PartialDiagnosticAt(NewFD->getLocation(),
10154                           S.PDiag(diag::err_multiversion_diff)),
10155       /*TemplatesSupported=*/false,
10156       /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVType,
10157       /*CLinkageMayDiffer=*/false);
10158 }
10159 
10160 /// Check the validity of a multiversion function declaration that is the
10161 /// first of its kind. Also sets the multiversion'ness' of the function itself.
10162 ///
10163 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10164 ///
10165 /// Returns true if there was an error, false otherwise.
10166 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
10167                                            MultiVersionKind MVType,
10168                                            const TargetAttr *TA) {
10169   assert(MVType != MultiVersionKind::None &&
10170          "Function lacks multiversion attribute");
10171 
10172   // Target only causes MV if it is default, otherwise this is a normal
10173   // function.
10174   if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
10175     return false;
10176 
10177   if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
10178     FD->setInvalidDecl();
10179     return true;
10180   }
10181 
10182   if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
10183     FD->setInvalidDecl();
10184     return true;
10185   }
10186 
10187   FD->setIsMultiVersion();
10188   return false;
10189 }
10190 
10191 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
10192   for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
10193     if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
10194       return true;
10195   }
10196 
10197   return false;
10198 }
10199 
10200 static bool CheckTargetCausesMultiVersioning(
10201     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
10202     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10203     LookupResult &Previous) {
10204   const auto *OldTA = OldFD->getAttr<TargetAttr>();
10205   ParsedTargetAttr NewParsed = NewTA->parse();
10206   // Sort order doesn't matter, it just needs to be consistent.
10207   llvm::sort(NewParsed.Features);
10208 
10209   // If the old decl is NOT MultiVersioned yet, and we don't cause that
10210   // to change, this is a simple redeclaration.
10211   if (!NewTA->isDefaultVersion() &&
10212       (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
10213     return false;
10214 
10215   // Otherwise, this decl causes MultiVersioning.
10216   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10217     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10218     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10219     NewFD->setInvalidDecl();
10220     return true;
10221   }
10222 
10223   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
10224                                        MultiVersionKind::Target)) {
10225     NewFD->setInvalidDecl();
10226     return true;
10227   }
10228 
10229   if (CheckMultiVersionValue(S, NewFD)) {
10230     NewFD->setInvalidDecl();
10231     return true;
10232   }
10233 
10234   // If this is 'default', permit the forward declaration.
10235   if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
10236     Redeclaration = true;
10237     OldDecl = OldFD;
10238     OldFD->setIsMultiVersion();
10239     NewFD->setIsMultiVersion();
10240     return false;
10241   }
10242 
10243   if (CheckMultiVersionValue(S, OldFD)) {
10244     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10245     NewFD->setInvalidDecl();
10246     return true;
10247   }
10248 
10249   ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>());
10250 
10251   if (OldParsed == NewParsed) {
10252     S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10253     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10254     NewFD->setInvalidDecl();
10255     return true;
10256   }
10257 
10258   for (const auto *FD : OldFD->redecls()) {
10259     const auto *CurTA = FD->getAttr<TargetAttr>();
10260     // We allow forward declarations before ANY multiversioning attributes, but
10261     // nothing after the fact.
10262     if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
10263         (!CurTA || CurTA->isInherited())) {
10264       S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
10265           << 0;
10266       S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10267       NewFD->setInvalidDecl();
10268       return true;
10269     }
10270   }
10271 
10272   OldFD->setIsMultiVersion();
10273   NewFD->setIsMultiVersion();
10274   Redeclaration = false;
10275   MergeTypeWithPrevious = false;
10276   OldDecl = nullptr;
10277   Previous.clear();
10278   return false;
10279 }
10280 
10281 /// Check the validity of a new function declaration being added to an existing
10282 /// multiversioned declaration collection.
10283 static bool CheckMultiVersionAdditionalDecl(
10284     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
10285     MultiVersionKind NewMVType, const TargetAttr *NewTA,
10286     const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
10287     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10288     LookupResult &Previous) {
10289 
10290   MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
10291   // Disallow mixing of multiversioning types.
10292   if ((OldMVType == MultiVersionKind::Target &&
10293        NewMVType != MultiVersionKind::Target) ||
10294       (NewMVType == MultiVersionKind::Target &&
10295        OldMVType != MultiVersionKind::Target)) {
10296     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10297     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10298     NewFD->setInvalidDecl();
10299     return true;
10300   }
10301 
10302   ParsedTargetAttr NewParsed;
10303   if (NewTA) {
10304     NewParsed = NewTA->parse();
10305     llvm::sort(NewParsed.Features);
10306   }
10307 
10308   bool UseMemberUsingDeclRules =
10309       S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
10310 
10311   // Next, check ALL non-overloads to see if this is a redeclaration of a
10312   // previous member of the MultiVersion set.
10313   for (NamedDecl *ND : Previous) {
10314     FunctionDecl *CurFD = ND->getAsFunction();
10315     if (!CurFD)
10316       continue;
10317     if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
10318       continue;
10319 
10320     if (NewMVType == MultiVersionKind::Target) {
10321       const auto *CurTA = CurFD->getAttr<TargetAttr>();
10322       if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
10323         NewFD->setIsMultiVersion();
10324         Redeclaration = true;
10325         OldDecl = ND;
10326         return false;
10327       }
10328 
10329       ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>());
10330       if (CurParsed == NewParsed) {
10331         S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10332         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10333         NewFD->setInvalidDecl();
10334         return true;
10335       }
10336     } else {
10337       const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
10338       const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
10339       // Handle CPUDispatch/CPUSpecific versions.
10340       // Only 1 CPUDispatch function is allowed, this will make it go through
10341       // the redeclaration errors.
10342       if (NewMVType == MultiVersionKind::CPUDispatch &&
10343           CurFD->hasAttr<CPUDispatchAttr>()) {
10344         if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
10345             std::equal(
10346                 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
10347                 NewCPUDisp->cpus_begin(),
10348                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10349                   return Cur->getName() == New->getName();
10350                 })) {
10351           NewFD->setIsMultiVersion();
10352           Redeclaration = true;
10353           OldDecl = ND;
10354           return false;
10355         }
10356 
10357         // If the declarations don't match, this is an error condition.
10358         S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
10359         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10360         NewFD->setInvalidDecl();
10361         return true;
10362       }
10363       if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
10364 
10365         if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
10366             std::equal(
10367                 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
10368                 NewCPUSpec->cpus_begin(),
10369                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10370                   return Cur->getName() == New->getName();
10371                 })) {
10372           NewFD->setIsMultiVersion();
10373           Redeclaration = true;
10374           OldDecl = ND;
10375           return false;
10376         }
10377 
10378         // Only 1 version of CPUSpecific is allowed for each CPU.
10379         for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
10380           for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
10381             if (CurII == NewII) {
10382               S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
10383                   << NewII;
10384               S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10385               NewFD->setInvalidDecl();
10386               return true;
10387             }
10388           }
10389         }
10390       }
10391       // If the two decls aren't the same MVType, there is no possible error
10392       // condition.
10393     }
10394   }
10395 
10396   // Else, this is simply a non-redecl case.  Checking the 'value' is only
10397   // necessary in the Target case, since The CPUSpecific/Dispatch cases are
10398   // handled in the attribute adding step.
10399   if (NewMVType == MultiVersionKind::Target &&
10400       CheckMultiVersionValue(S, NewFD)) {
10401     NewFD->setInvalidDecl();
10402     return true;
10403   }
10404 
10405   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
10406                                        !OldFD->isMultiVersion(), NewMVType)) {
10407     NewFD->setInvalidDecl();
10408     return true;
10409   }
10410 
10411   // Permit forward declarations in the case where these two are compatible.
10412   if (!OldFD->isMultiVersion()) {
10413     OldFD->setIsMultiVersion();
10414     NewFD->setIsMultiVersion();
10415     Redeclaration = true;
10416     OldDecl = OldFD;
10417     return false;
10418   }
10419 
10420   NewFD->setIsMultiVersion();
10421   Redeclaration = false;
10422   MergeTypeWithPrevious = false;
10423   OldDecl = nullptr;
10424   Previous.clear();
10425   return false;
10426 }
10427 
10428 
10429 /// Check the validity of a mulitversion function declaration.
10430 /// Also sets the multiversion'ness' of the function itself.
10431 ///
10432 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10433 ///
10434 /// Returns true if there was an error, false otherwise.
10435 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
10436                                       bool &Redeclaration, NamedDecl *&OldDecl,
10437                                       bool &MergeTypeWithPrevious,
10438                                       LookupResult &Previous) {
10439   const auto *NewTA = NewFD->getAttr<TargetAttr>();
10440   const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
10441   const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
10442 
10443   // Mixing Multiversioning types is prohibited.
10444   if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
10445       (NewCPUDisp && NewCPUSpec)) {
10446     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10447     NewFD->setInvalidDecl();
10448     return true;
10449   }
10450 
10451   MultiVersionKind  MVType = NewFD->getMultiVersionKind();
10452 
10453   // Main isn't allowed to become a multiversion function, however it IS
10454   // permitted to have 'main' be marked with the 'target' optimization hint.
10455   if (NewFD->isMain()) {
10456     if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
10457         MVType == MultiVersionKind::CPUDispatch ||
10458         MVType == MultiVersionKind::CPUSpecific) {
10459       S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
10460       NewFD->setInvalidDecl();
10461       return true;
10462     }
10463     return false;
10464   }
10465 
10466   if (!OldDecl || !OldDecl->getAsFunction() ||
10467       OldDecl->getDeclContext()->getRedeclContext() !=
10468           NewFD->getDeclContext()->getRedeclContext()) {
10469     // If there's no previous declaration, AND this isn't attempting to cause
10470     // multiversioning, this isn't an error condition.
10471     if (MVType == MultiVersionKind::None)
10472       return false;
10473     return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA);
10474   }
10475 
10476   FunctionDecl *OldFD = OldDecl->getAsFunction();
10477 
10478   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
10479     return false;
10480 
10481   if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
10482     S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
10483         << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
10484     NewFD->setInvalidDecl();
10485     return true;
10486   }
10487 
10488   // Handle the target potentially causes multiversioning case.
10489   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
10490     return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
10491                                             Redeclaration, OldDecl,
10492                                             MergeTypeWithPrevious, Previous);
10493 
10494   // At this point, we have a multiversion function decl (in OldFD) AND an
10495   // appropriate attribute in the current function decl.  Resolve that these are
10496   // still compatible with previous declarations.
10497   return CheckMultiVersionAdditionalDecl(
10498       S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
10499       OldDecl, MergeTypeWithPrevious, Previous);
10500 }
10501 
10502 /// Perform semantic checking of a new function declaration.
10503 ///
10504 /// Performs semantic analysis of the new function declaration
10505 /// NewFD. This routine performs all semantic checking that does not
10506 /// require the actual declarator involved in the declaration, and is
10507 /// used both for the declaration of functions as they are parsed
10508 /// (called via ActOnDeclarator) and for the declaration of functions
10509 /// that have been instantiated via C++ template instantiation (called
10510 /// via InstantiateDecl).
10511 ///
10512 /// \param IsMemberSpecialization whether this new function declaration is
10513 /// a member specialization (that replaces any definition provided by the
10514 /// previous declaration).
10515 ///
10516 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10517 ///
10518 /// \returns true if the function declaration is a redeclaration.
10519 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
10520                                     LookupResult &Previous,
10521                                     bool IsMemberSpecialization) {
10522   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
10523          "Variably modified return types are not handled here");
10524 
10525   // Determine whether the type of this function should be merged with
10526   // a previous visible declaration. This never happens for functions in C++,
10527   // and always happens in C if the previous declaration was visible.
10528   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
10529                                !Previous.isShadowed();
10530 
10531   bool Redeclaration = false;
10532   NamedDecl *OldDecl = nullptr;
10533   bool MayNeedOverloadableChecks = false;
10534 
10535   // Merge or overload the declaration with an existing declaration of
10536   // the same name, if appropriate.
10537   if (!Previous.empty()) {
10538     // Determine whether NewFD is an overload of PrevDecl or
10539     // a declaration that requires merging. If it's an overload,
10540     // there's no more work to do here; we'll just add the new
10541     // function to the scope.
10542     if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
10543       NamedDecl *Candidate = Previous.getRepresentativeDecl();
10544       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
10545         Redeclaration = true;
10546         OldDecl = Candidate;
10547       }
10548     } else {
10549       MayNeedOverloadableChecks = true;
10550       switch (CheckOverload(S, NewFD, Previous, OldDecl,
10551                             /*NewIsUsingDecl*/ false)) {
10552       case Ovl_Match:
10553         Redeclaration = true;
10554         break;
10555 
10556       case Ovl_NonFunction:
10557         Redeclaration = true;
10558         break;
10559 
10560       case Ovl_Overload:
10561         Redeclaration = false;
10562         break;
10563       }
10564     }
10565   }
10566 
10567   // Check for a previous extern "C" declaration with this name.
10568   if (!Redeclaration &&
10569       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
10570     if (!Previous.empty()) {
10571       // This is an extern "C" declaration with the same name as a previous
10572       // declaration, and thus redeclares that entity...
10573       Redeclaration = true;
10574       OldDecl = Previous.getFoundDecl();
10575       MergeTypeWithPrevious = false;
10576 
10577       // ... except in the presence of __attribute__((overloadable)).
10578       if (OldDecl->hasAttr<OverloadableAttr>() ||
10579           NewFD->hasAttr<OverloadableAttr>()) {
10580         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
10581           MayNeedOverloadableChecks = true;
10582           Redeclaration = false;
10583           OldDecl = nullptr;
10584         }
10585       }
10586     }
10587   }
10588 
10589   if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10590                                 MergeTypeWithPrevious, Previous))
10591     return Redeclaration;
10592 
10593   // C++11 [dcl.constexpr]p8:
10594   //   A constexpr specifier for a non-static member function that is not
10595   //   a constructor declares that member function to be const.
10596   //
10597   // This needs to be delayed until we know whether this is an out-of-line
10598   // definition of a static member function.
10599   //
10600   // This rule is not present in C++1y, so we produce a backwards
10601   // compatibility warning whenever it happens in C++11.
10602   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10603   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10604       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10605       !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
10606     CXXMethodDecl *OldMD = nullptr;
10607     if (OldDecl)
10608       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10609     if (!OldMD || !OldMD->isStatic()) {
10610       const FunctionProtoType *FPT =
10611         MD->getType()->castAs<FunctionProtoType>();
10612       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10613       EPI.TypeQuals.addConst();
10614       MD->setType(Context.getFunctionType(FPT->getReturnType(),
10615                                           FPT->getParamTypes(), EPI));
10616 
10617       // Warn that we did this, if we're not performing template instantiation.
10618       // In that case, we'll have warned already when the template was defined.
10619       if (!inTemplateInstantiation()) {
10620         SourceLocation AddConstLoc;
10621         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10622                 .IgnoreParens().getAs<FunctionTypeLoc>())
10623           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10624 
10625         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10626           << FixItHint::CreateInsertion(AddConstLoc, " const");
10627       }
10628     }
10629   }
10630 
10631   if (Redeclaration) {
10632     // NewFD and OldDecl represent declarations that need to be
10633     // merged.
10634     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10635       NewFD->setInvalidDecl();
10636       return Redeclaration;
10637     }
10638 
10639     Previous.clear();
10640     Previous.addDecl(OldDecl);
10641 
10642     if (FunctionTemplateDecl *OldTemplateDecl =
10643             dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10644       auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10645       FunctionTemplateDecl *NewTemplateDecl
10646         = NewFD->getDescribedFunctionTemplate();
10647       assert(NewTemplateDecl && "Template/non-template mismatch");
10648 
10649       // The call to MergeFunctionDecl above may have created some state in
10650       // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10651       // can add it as a redeclaration.
10652       NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10653 
10654       NewFD->setPreviousDeclaration(OldFD);
10655       adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10656       if (NewFD->isCXXClassMember()) {
10657         NewFD->setAccess(OldTemplateDecl->getAccess());
10658         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10659       }
10660 
10661       // If this is an explicit specialization of a member that is a function
10662       // template, mark it as a member specialization.
10663       if (IsMemberSpecialization &&
10664           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10665         NewTemplateDecl->setMemberSpecialization();
10666         assert(OldTemplateDecl->isMemberSpecialization());
10667         // Explicit specializations of a member template do not inherit deleted
10668         // status from the parent member template that they are specializing.
10669         if (OldFD->isDeleted()) {
10670           // FIXME: This assert will not hold in the presence of modules.
10671           assert(OldFD->getCanonicalDecl() == OldFD);
10672           // FIXME: We need an update record for this AST mutation.
10673           OldFD->setDeletedAsWritten(false);
10674         }
10675       }
10676 
10677     } else {
10678       if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10679         auto *OldFD = cast<FunctionDecl>(OldDecl);
10680         // This needs to happen first so that 'inline' propagates.
10681         NewFD->setPreviousDeclaration(OldFD);
10682         adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10683         if (NewFD->isCXXClassMember())
10684           NewFD->setAccess(OldFD->getAccess());
10685       }
10686     }
10687   } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10688              !NewFD->getAttr<OverloadableAttr>()) {
10689     assert((Previous.empty() ||
10690             llvm::any_of(Previous,
10691                          [](const NamedDecl *ND) {
10692                            return ND->hasAttr<OverloadableAttr>();
10693                          })) &&
10694            "Non-redecls shouldn't happen without overloadable present");
10695 
10696     auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10697       const auto *FD = dyn_cast<FunctionDecl>(ND);
10698       return FD && !FD->hasAttr<OverloadableAttr>();
10699     });
10700 
10701     if (OtherUnmarkedIter != Previous.end()) {
10702       Diag(NewFD->getLocation(),
10703            diag::err_attribute_overloadable_multiple_unmarked_overloads);
10704       Diag((*OtherUnmarkedIter)->getLocation(),
10705            diag::note_attribute_overloadable_prev_overload)
10706           << false;
10707 
10708       NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
10709     }
10710   }
10711 
10712   // Semantic checking for this function declaration (in isolation).
10713 
10714   if (getLangOpts().CPlusPlus) {
10715     // C++-specific checks.
10716     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
10717       CheckConstructor(Constructor);
10718     } else if (CXXDestructorDecl *Destructor =
10719                 dyn_cast<CXXDestructorDecl>(NewFD)) {
10720       CXXRecordDecl *Record = Destructor->getParent();
10721       QualType ClassType = Context.getTypeDeclType(Record);
10722 
10723       // FIXME: Shouldn't we be able to perform this check even when the class
10724       // type is dependent? Both gcc and edg can handle that.
10725       if (!ClassType->isDependentType()) {
10726         DeclarationName Name
10727           = Context.DeclarationNames.getCXXDestructorName(
10728                                         Context.getCanonicalType(ClassType));
10729         if (NewFD->getDeclName() != Name) {
10730           Diag(NewFD->getLocation(), diag::err_destructor_name);
10731           NewFD->setInvalidDecl();
10732           return Redeclaration;
10733         }
10734       }
10735     } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
10736       if (auto *TD = Guide->getDescribedFunctionTemplate())
10737         CheckDeductionGuideTemplate(TD);
10738 
10739       // A deduction guide is not on the list of entities that can be
10740       // explicitly specialized.
10741       if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
10742         Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
10743             << /*explicit specialization*/ 1;
10744     }
10745 
10746     // Find any virtual functions that this function overrides.
10747     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
10748       if (!Method->isFunctionTemplateSpecialization() &&
10749           !Method->getDescribedFunctionTemplate() &&
10750           Method->isCanonicalDecl()) {
10751         AddOverriddenMethods(Method->getParent(), Method);
10752       }
10753       if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
10754         // C++2a [class.virtual]p6
10755         // A virtual method shall not have a requires-clause.
10756         Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
10757              diag::err_constrained_virtual_method);
10758 
10759       if (Method->isStatic())
10760         checkThisInStaticMemberFunctionType(Method);
10761     }
10762 
10763     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
10764       ActOnConversionDeclarator(Conversion);
10765 
10766     // Extra checking for C++ overloaded operators (C++ [over.oper]).
10767     if (NewFD->isOverloadedOperator() &&
10768         CheckOverloadedOperatorDeclaration(NewFD)) {
10769       NewFD->setInvalidDecl();
10770       return Redeclaration;
10771     }
10772 
10773     // Extra checking for C++0x literal operators (C++0x [over.literal]).
10774     if (NewFD->getLiteralIdentifier() &&
10775         CheckLiteralOperatorDeclaration(NewFD)) {
10776       NewFD->setInvalidDecl();
10777       return Redeclaration;
10778     }
10779 
10780     // In C++, check default arguments now that we have merged decls. Unless
10781     // the lexical context is the class, because in this case this is done
10782     // during delayed parsing anyway.
10783     if (!CurContext->isRecord())
10784       CheckCXXDefaultArguments(NewFD);
10785 
10786     // If this function declares a builtin function, check the type of this
10787     // declaration against the expected type for the builtin.
10788     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
10789       ASTContext::GetBuiltinTypeError Error;
10790       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
10791       QualType T = Context.GetBuiltinType(BuiltinID, Error);
10792       // If the type of the builtin differs only in its exception
10793       // specification, that's OK.
10794       // FIXME: If the types do differ in this way, it would be better to
10795       // retain the 'noexcept' form of the type.
10796       if (!T.isNull() &&
10797           !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
10798                                                             NewFD->getType()))
10799         // The type of this function differs from the type of the builtin,
10800         // so forget about the builtin entirely.
10801         Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
10802     }
10803 
10804     // If this function is declared as being extern "C", then check to see if
10805     // the function returns a UDT (class, struct, or union type) that is not C
10806     // compatible, and if it does, warn the user.
10807     // But, issue any diagnostic on the first declaration only.
10808     if (Previous.empty() && NewFD->isExternC()) {
10809       QualType R = NewFD->getReturnType();
10810       if (R->isIncompleteType() && !R->isVoidType())
10811         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
10812             << NewFD << R;
10813       else if (!R.isPODType(Context) && !R->isVoidType() &&
10814                !R->isObjCObjectPointerType())
10815         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
10816     }
10817 
10818     // C++1z [dcl.fct]p6:
10819     //   [...] whether the function has a non-throwing exception-specification
10820     //   [is] part of the function type
10821     //
10822     // This results in an ABI break between C++14 and C++17 for functions whose
10823     // declared type includes an exception-specification in a parameter or
10824     // return type. (Exception specifications on the function itself are OK in
10825     // most cases, and exception specifications are not permitted in most other
10826     // contexts where they could make it into a mangling.)
10827     if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
10828       auto HasNoexcept = [&](QualType T) -> bool {
10829         // Strip off declarator chunks that could be between us and a function
10830         // type. We don't need to look far, exception specifications are very
10831         // restricted prior to C++17.
10832         if (auto *RT = T->getAs<ReferenceType>())
10833           T = RT->getPointeeType();
10834         else if (T->isAnyPointerType())
10835           T = T->getPointeeType();
10836         else if (auto *MPT = T->getAs<MemberPointerType>())
10837           T = MPT->getPointeeType();
10838         if (auto *FPT = T->getAs<FunctionProtoType>())
10839           if (FPT->isNothrow())
10840             return true;
10841         return false;
10842       };
10843 
10844       auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
10845       bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
10846       for (QualType T : FPT->param_types())
10847         AnyNoexcept |= HasNoexcept(T);
10848       if (AnyNoexcept)
10849         Diag(NewFD->getLocation(),
10850              diag::warn_cxx17_compat_exception_spec_in_signature)
10851             << NewFD;
10852     }
10853 
10854     if (!Redeclaration && LangOpts.CUDA)
10855       checkCUDATargetOverload(NewFD, Previous);
10856   }
10857   return Redeclaration;
10858 }
10859 
10860 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
10861   // C++11 [basic.start.main]p3:
10862   //   A program that [...] declares main to be inline, static or
10863   //   constexpr is ill-formed.
10864   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
10865   //   appear in a declaration of main.
10866   // static main is not an error under C99, but we should warn about it.
10867   // We accept _Noreturn main as an extension.
10868   if (FD->getStorageClass() == SC_Static)
10869     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
10870          ? diag::err_static_main : diag::warn_static_main)
10871       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
10872   if (FD->isInlineSpecified())
10873     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
10874       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
10875   if (DS.isNoreturnSpecified()) {
10876     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
10877     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
10878     Diag(NoreturnLoc, diag::ext_noreturn_main);
10879     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
10880       << FixItHint::CreateRemoval(NoreturnRange);
10881   }
10882   if (FD->isConstexpr()) {
10883     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
10884         << FD->isConsteval()
10885         << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
10886     FD->setConstexprKind(CSK_unspecified);
10887   }
10888 
10889   if (getLangOpts().OpenCL) {
10890     Diag(FD->getLocation(), diag::err_opencl_no_main)
10891         << FD->hasAttr<OpenCLKernelAttr>();
10892     FD->setInvalidDecl();
10893     return;
10894   }
10895 
10896   QualType T = FD->getType();
10897   assert(T->isFunctionType() && "function decl is not of function type");
10898   const FunctionType* FT = T->castAs<FunctionType>();
10899 
10900   // Set default calling convention for main()
10901   if (FT->getCallConv() != CC_C) {
10902     FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
10903     FD->setType(QualType(FT, 0));
10904     T = Context.getCanonicalType(FD->getType());
10905   }
10906 
10907   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
10908     // In C with GNU extensions we allow main() to have non-integer return
10909     // type, but we should warn about the extension, and we disable the
10910     // implicit-return-zero rule.
10911 
10912     // GCC in C mode accepts qualified 'int'.
10913     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
10914       FD->setHasImplicitReturnZero(true);
10915     else {
10916       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
10917       SourceRange RTRange = FD->getReturnTypeSourceRange();
10918       if (RTRange.isValid())
10919         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
10920             << FixItHint::CreateReplacement(RTRange, "int");
10921     }
10922   } else {
10923     // In C and C++, main magically returns 0 if you fall off the end;
10924     // set the flag which tells us that.
10925     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
10926 
10927     // All the standards say that main() should return 'int'.
10928     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
10929       FD->setHasImplicitReturnZero(true);
10930     else {
10931       // Otherwise, this is just a flat-out error.
10932       SourceRange RTRange = FD->getReturnTypeSourceRange();
10933       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
10934           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
10935                                 : FixItHint());
10936       FD->setInvalidDecl(true);
10937     }
10938   }
10939 
10940   // Treat protoless main() as nullary.
10941   if (isa<FunctionNoProtoType>(FT)) return;
10942 
10943   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
10944   unsigned nparams = FTP->getNumParams();
10945   assert(FD->getNumParams() == nparams);
10946 
10947   bool HasExtraParameters = (nparams > 3);
10948 
10949   if (FTP->isVariadic()) {
10950     Diag(FD->getLocation(), diag::ext_variadic_main);
10951     // FIXME: if we had information about the location of the ellipsis, we
10952     // could add a FixIt hint to remove it as a parameter.
10953   }
10954 
10955   // Darwin passes an undocumented fourth argument of type char**.  If
10956   // other platforms start sprouting these, the logic below will start
10957   // getting shifty.
10958   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
10959     HasExtraParameters = false;
10960 
10961   if (HasExtraParameters) {
10962     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
10963     FD->setInvalidDecl(true);
10964     nparams = 3;
10965   }
10966 
10967   // FIXME: a lot of the following diagnostics would be improved
10968   // if we had some location information about types.
10969 
10970   QualType CharPP =
10971     Context.getPointerType(Context.getPointerType(Context.CharTy));
10972   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
10973 
10974   for (unsigned i = 0; i < nparams; ++i) {
10975     QualType AT = FTP->getParamType(i);
10976 
10977     bool mismatch = true;
10978 
10979     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
10980       mismatch = false;
10981     else if (Expected[i] == CharPP) {
10982       // As an extension, the following forms are okay:
10983       //   char const **
10984       //   char const * const *
10985       //   char * const *
10986 
10987       QualifierCollector qs;
10988       const PointerType* PT;
10989       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
10990           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
10991           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
10992                               Context.CharTy)) {
10993         qs.removeConst();
10994         mismatch = !qs.empty();
10995       }
10996     }
10997 
10998     if (mismatch) {
10999       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
11000       // TODO: suggest replacing given type with expected type
11001       FD->setInvalidDecl(true);
11002     }
11003   }
11004 
11005   if (nparams == 1 && !FD->isInvalidDecl()) {
11006     Diag(FD->getLocation(), diag::warn_main_one_arg);
11007   }
11008 
11009   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11010     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11011     FD->setInvalidDecl();
11012   }
11013 }
11014 
11015 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
11016   QualType T = FD->getType();
11017   assert(T->isFunctionType() && "function decl is not of function type");
11018   const FunctionType *FT = T->castAs<FunctionType>();
11019 
11020   // Set an implicit return of 'zero' if the function can return some integral,
11021   // enumeration, pointer or nullptr type.
11022   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
11023       FT->getReturnType()->isAnyPointerType() ||
11024       FT->getReturnType()->isNullPtrType())
11025     // DllMain is exempt because a return value of zero means it failed.
11026     if (FD->getName() != "DllMain")
11027       FD->setHasImplicitReturnZero(true);
11028 
11029   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11030     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11031     FD->setInvalidDecl();
11032   }
11033 }
11034 
11035 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
11036   // FIXME: Need strict checking.  In C89, we need to check for
11037   // any assignment, increment, decrement, function-calls, or
11038   // commas outside of a sizeof.  In C99, it's the same list,
11039   // except that the aforementioned are allowed in unevaluated
11040   // expressions.  Everything else falls under the
11041   // "may accept other forms of constant expressions" exception.
11042   // (We never end up here for C++, so the constant expression
11043   // rules there don't matter.)
11044   const Expr *Culprit;
11045   if (Init->isConstantInitializer(Context, false, &Culprit))
11046     return false;
11047   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
11048     << Culprit->getSourceRange();
11049   return true;
11050 }
11051 
11052 namespace {
11053   // Visits an initialization expression to see if OrigDecl is evaluated in
11054   // its own initialization and throws a warning if it does.
11055   class SelfReferenceChecker
11056       : public EvaluatedExprVisitor<SelfReferenceChecker> {
11057     Sema &S;
11058     Decl *OrigDecl;
11059     bool isRecordType;
11060     bool isPODType;
11061     bool isReferenceType;
11062 
11063     bool isInitList;
11064     llvm::SmallVector<unsigned, 4> InitFieldIndex;
11065 
11066   public:
11067     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
11068 
11069     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
11070                                                     S(S), OrigDecl(OrigDecl) {
11071       isPODType = false;
11072       isRecordType = false;
11073       isReferenceType = false;
11074       isInitList = false;
11075       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
11076         isPODType = VD->getType().isPODType(S.Context);
11077         isRecordType = VD->getType()->isRecordType();
11078         isReferenceType = VD->getType()->isReferenceType();
11079       }
11080     }
11081 
11082     // For most expressions, just call the visitor.  For initializer lists,
11083     // track the index of the field being initialized since fields are
11084     // initialized in order allowing use of previously initialized fields.
11085     void CheckExpr(Expr *E) {
11086       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
11087       if (!InitList) {
11088         Visit(E);
11089         return;
11090       }
11091 
11092       // Track and increment the index here.
11093       isInitList = true;
11094       InitFieldIndex.push_back(0);
11095       for (auto Child : InitList->children()) {
11096         CheckExpr(cast<Expr>(Child));
11097         ++InitFieldIndex.back();
11098       }
11099       InitFieldIndex.pop_back();
11100     }
11101 
11102     // Returns true if MemberExpr is checked and no further checking is needed.
11103     // Returns false if additional checking is required.
11104     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
11105       llvm::SmallVector<FieldDecl*, 4> Fields;
11106       Expr *Base = E;
11107       bool ReferenceField = false;
11108 
11109       // Get the field members used.
11110       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11111         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
11112         if (!FD)
11113           return false;
11114         Fields.push_back(FD);
11115         if (FD->getType()->isReferenceType())
11116           ReferenceField = true;
11117         Base = ME->getBase()->IgnoreParenImpCasts();
11118       }
11119 
11120       // Keep checking only if the base Decl is the same.
11121       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
11122       if (!DRE || DRE->getDecl() != OrigDecl)
11123         return false;
11124 
11125       // A reference field can be bound to an unininitialized field.
11126       if (CheckReference && !ReferenceField)
11127         return true;
11128 
11129       // Convert FieldDecls to their index number.
11130       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
11131       for (const FieldDecl *I : llvm::reverse(Fields))
11132         UsedFieldIndex.push_back(I->getFieldIndex());
11133 
11134       // See if a warning is needed by checking the first difference in index
11135       // numbers.  If field being used has index less than the field being
11136       // initialized, then the use is safe.
11137       for (auto UsedIter = UsedFieldIndex.begin(),
11138                 UsedEnd = UsedFieldIndex.end(),
11139                 OrigIter = InitFieldIndex.begin(),
11140                 OrigEnd = InitFieldIndex.end();
11141            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
11142         if (*UsedIter < *OrigIter)
11143           return true;
11144         if (*UsedIter > *OrigIter)
11145           break;
11146       }
11147 
11148       // TODO: Add a different warning which will print the field names.
11149       HandleDeclRefExpr(DRE);
11150       return true;
11151     }
11152 
11153     // For most expressions, the cast is directly above the DeclRefExpr.
11154     // For conditional operators, the cast can be outside the conditional
11155     // operator if both expressions are DeclRefExpr's.
11156     void HandleValue(Expr *E) {
11157       E = E->IgnoreParens();
11158       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
11159         HandleDeclRefExpr(DRE);
11160         return;
11161       }
11162 
11163       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
11164         Visit(CO->getCond());
11165         HandleValue(CO->getTrueExpr());
11166         HandleValue(CO->getFalseExpr());
11167         return;
11168       }
11169 
11170       if (BinaryConditionalOperator *BCO =
11171               dyn_cast<BinaryConditionalOperator>(E)) {
11172         Visit(BCO->getCond());
11173         HandleValue(BCO->getFalseExpr());
11174         return;
11175       }
11176 
11177       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
11178         HandleValue(OVE->getSourceExpr());
11179         return;
11180       }
11181 
11182       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11183         if (BO->getOpcode() == BO_Comma) {
11184           Visit(BO->getLHS());
11185           HandleValue(BO->getRHS());
11186           return;
11187         }
11188       }
11189 
11190       if (isa<MemberExpr>(E)) {
11191         if (isInitList) {
11192           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
11193                                       false /*CheckReference*/))
11194             return;
11195         }
11196 
11197         Expr *Base = E->IgnoreParenImpCasts();
11198         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11199           // Check for static member variables and don't warn on them.
11200           if (!isa<FieldDecl>(ME->getMemberDecl()))
11201             return;
11202           Base = ME->getBase()->IgnoreParenImpCasts();
11203         }
11204         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
11205           HandleDeclRefExpr(DRE);
11206         return;
11207       }
11208 
11209       Visit(E);
11210     }
11211 
11212     // Reference types not handled in HandleValue are handled here since all
11213     // uses of references are bad, not just r-value uses.
11214     void VisitDeclRefExpr(DeclRefExpr *E) {
11215       if (isReferenceType)
11216         HandleDeclRefExpr(E);
11217     }
11218 
11219     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11220       if (E->getCastKind() == CK_LValueToRValue) {
11221         HandleValue(E->getSubExpr());
11222         return;
11223       }
11224 
11225       Inherited::VisitImplicitCastExpr(E);
11226     }
11227 
11228     void VisitMemberExpr(MemberExpr *E) {
11229       if (isInitList) {
11230         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
11231           return;
11232       }
11233 
11234       // Don't warn on arrays since they can be treated as pointers.
11235       if (E->getType()->canDecayToPointerType()) return;
11236 
11237       // Warn when a non-static method call is followed by non-static member
11238       // field accesses, which is followed by a DeclRefExpr.
11239       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
11240       bool Warn = (MD && !MD->isStatic());
11241       Expr *Base = E->getBase()->IgnoreParenImpCasts();
11242       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11243         if (!isa<FieldDecl>(ME->getMemberDecl()))
11244           Warn = false;
11245         Base = ME->getBase()->IgnoreParenImpCasts();
11246       }
11247 
11248       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
11249         if (Warn)
11250           HandleDeclRefExpr(DRE);
11251         return;
11252       }
11253 
11254       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
11255       // Visit that expression.
11256       Visit(Base);
11257     }
11258 
11259     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
11260       Expr *Callee = E->getCallee();
11261 
11262       if (isa<UnresolvedLookupExpr>(Callee))
11263         return Inherited::VisitCXXOperatorCallExpr(E);
11264 
11265       Visit(Callee);
11266       for (auto Arg: E->arguments())
11267         HandleValue(Arg->IgnoreParenImpCasts());
11268     }
11269 
11270     void VisitUnaryOperator(UnaryOperator *E) {
11271       // For POD record types, addresses of its own members are well-defined.
11272       if (E->getOpcode() == UO_AddrOf && isRecordType &&
11273           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
11274         if (!isPODType)
11275           HandleValue(E->getSubExpr());
11276         return;
11277       }
11278 
11279       if (E->isIncrementDecrementOp()) {
11280         HandleValue(E->getSubExpr());
11281         return;
11282       }
11283 
11284       Inherited::VisitUnaryOperator(E);
11285     }
11286 
11287     void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
11288 
11289     void VisitCXXConstructExpr(CXXConstructExpr *E) {
11290       if (E->getConstructor()->isCopyConstructor()) {
11291         Expr *ArgExpr = E->getArg(0);
11292         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
11293           if (ILE->getNumInits() == 1)
11294             ArgExpr = ILE->getInit(0);
11295         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
11296           if (ICE->getCastKind() == CK_NoOp)
11297             ArgExpr = ICE->getSubExpr();
11298         HandleValue(ArgExpr);
11299         return;
11300       }
11301       Inherited::VisitCXXConstructExpr(E);
11302     }
11303 
11304     void VisitCallExpr(CallExpr *E) {
11305       // Treat std::move as a use.
11306       if (E->isCallToStdMove()) {
11307         HandleValue(E->getArg(0));
11308         return;
11309       }
11310 
11311       Inherited::VisitCallExpr(E);
11312     }
11313 
11314     void VisitBinaryOperator(BinaryOperator *E) {
11315       if (E->isCompoundAssignmentOp()) {
11316         HandleValue(E->getLHS());
11317         Visit(E->getRHS());
11318         return;
11319       }
11320 
11321       Inherited::VisitBinaryOperator(E);
11322     }
11323 
11324     // A custom visitor for BinaryConditionalOperator is needed because the
11325     // regular visitor would check the condition and true expression separately
11326     // but both point to the same place giving duplicate diagnostics.
11327     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
11328       Visit(E->getCond());
11329       Visit(E->getFalseExpr());
11330     }
11331 
11332     void HandleDeclRefExpr(DeclRefExpr *DRE) {
11333       Decl* ReferenceDecl = DRE->getDecl();
11334       if (OrigDecl != ReferenceDecl) return;
11335       unsigned diag;
11336       if (isReferenceType) {
11337         diag = diag::warn_uninit_self_reference_in_reference_init;
11338       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
11339         diag = diag::warn_static_self_reference_in_init;
11340       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
11341                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
11342                  DRE->getDecl()->getType()->isRecordType()) {
11343         diag = diag::warn_uninit_self_reference_in_init;
11344       } else {
11345         // Local variables will be handled by the CFG analysis.
11346         return;
11347       }
11348 
11349       S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
11350                             S.PDiag(diag)
11351                                 << DRE->getDecl() << OrigDecl->getLocation()
11352                                 << DRE->getSourceRange());
11353     }
11354   };
11355 
11356   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
11357   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
11358                                  bool DirectInit) {
11359     // Parameters arguments are occassionially constructed with itself,
11360     // for instance, in recursive functions.  Skip them.
11361     if (isa<ParmVarDecl>(OrigDecl))
11362       return;
11363 
11364     E = E->IgnoreParens();
11365 
11366     // Skip checking T a = a where T is not a record or reference type.
11367     // Doing so is a way to silence uninitialized warnings.
11368     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
11369       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
11370         if (ICE->getCastKind() == CK_LValueToRValue)
11371           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
11372             if (DRE->getDecl() == OrigDecl)
11373               return;
11374 
11375     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
11376   }
11377 } // end anonymous namespace
11378 
11379 namespace {
11380   // Simple wrapper to add the name of a variable or (if no variable is
11381   // available) a DeclarationName into a diagnostic.
11382   struct VarDeclOrName {
11383     VarDecl *VDecl;
11384     DeclarationName Name;
11385 
11386     friend const Sema::SemaDiagnosticBuilder &
11387     operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
11388       return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
11389     }
11390   };
11391 } // end anonymous namespace
11392 
11393 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
11394                                             DeclarationName Name, QualType Type,
11395                                             TypeSourceInfo *TSI,
11396                                             SourceRange Range, bool DirectInit,
11397                                             Expr *Init) {
11398   bool IsInitCapture = !VDecl;
11399   assert((!VDecl || !VDecl->isInitCapture()) &&
11400          "init captures are expected to be deduced prior to initialization");
11401 
11402   VarDeclOrName VN{VDecl, Name};
11403 
11404   DeducedType *Deduced = Type->getContainedDeducedType();
11405   assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
11406 
11407   // C++11 [dcl.spec.auto]p3
11408   if (!Init) {
11409     assert(VDecl && "no init for init capture deduction?");
11410 
11411     // Except for class argument deduction, and then for an initializing
11412     // declaration only, i.e. no static at class scope or extern.
11413     if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
11414         VDecl->hasExternalStorage() ||
11415         VDecl->isStaticDataMember()) {
11416       Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
11417         << VDecl->getDeclName() << Type;
11418       return QualType();
11419     }
11420   }
11421 
11422   ArrayRef<Expr*> DeduceInits;
11423   if (Init)
11424     DeduceInits = Init;
11425 
11426   if (DirectInit) {
11427     if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
11428       DeduceInits = PL->exprs();
11429   }
11430 
11431   if (isa<DeducedTemplateSpecializationType>(Deduced)) {
11432     assert(VDecl && "non-auto type for init capture deduction?");
11433     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11434     InitializationKind Kind = InitializationKind::CreateForInit(
11435         VDecl->getLocation(), DirectInit, Init);
11436     // FIXME: Initialization should not be taking a mutable list of inits.
11437     SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
11438     return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
11439                                                        InitsCopy);
11440   }
11441 
11442   if (DirectInit) {
11443     if (auto *IL = dyn_cast<InitListExpr>(Init))
11444       DeduceInits = IL->inits();
11445   }
11446 
11447   // Deduction only works if we have exactly one source expression.
11448   if (DeduceInits.empty()) {
11449     // It isn't possible to write this directly, but it is possible to
11450     // end up in this situation with "auto x(some_pack...);"
11451     Diag(Init->getBeginLoc(), IsInitCapture
11452                                   ? diag::err_init_capture_no_expression
11453                                   : diag::err_auto_var_init_no_expression)
11454         << VN << Type << Range;
11455     return QualType();
11456   }
11457 
11458   if (DeduceInits.size() > 1) {
11459     Diag(DeduceInits[1]->getBeginLoc(),
11460          IsInitCapture ? diag::err_init_capture_multiple_expressions
11461                        : diag::err_auto_var_init_multiple_expressions)
11462         << VN << Type << Range;
11463     return QualType();
11464   }
11465 
11466   Expr *DeduceInit = DeduceInits[0];
11467   if (DirectInit && isa<InitListExpr>(DeduceInit)) {
11468     Diag(Init->getBeginLoc(), IsInitCapture
11469                                   ? diag::err_init_capture_paren_braces
11470                                   : diag::err_auto_var_init_paren_braces)
11471         << isa<InitListExpr>(Init) << VN << Type << Range;
11472     return QualType();
11473   }
11474 
11475   // Expressions default to 'id' when we're in a debugger.
11476   bool DefaultedAnyToId = false;
11477   if (getLangOpts().DebuggerCastResultToId &&
11478       Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
11479     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11480     if (Result.isInvalid()) {
11481       return QualType();
11482     }
11483     Init = Result.get();
11484     DefaultedAnyToId = true;
11485   }
11486 
11487   // C++ [dcl.decomp]p1:
11488   //   If the assignment-expression [...] has array type A and no ref-qualifier
11489   //   is present, e has type cv A
11490   if (VDecl && isa<DecompositionDecl>(VDecl) &&
11491       Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
11492       DeduceInit->getType()->isConstantArrayType())
11493     return Context.getQualifiedType(DeduceInit->getType(),
11494                                     Type.getQualifiers());
11495 
11496   QualType DeducedType;
11497   if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
11498     if (!IsInitCapture)
11499       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
11500     else if (isa<InitListExpr>(Init))
11501       Diag(Range.getBegin(),
11502            diag::err_init_capture_deduction_failure_from_init_list)
11503           << VN
11504           << (DeduceInit->getType().isNull() ? TSI->getType()
11505                                              : DeduceInit->getType())
11506           << DeduceInit->getSourceRange();
11507     else
11508       Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
11509           << VN << TSI->getType()
11510           << (DeduceInit->getType().isNull() ? TSI->getType()
11511                                              : DeduceInit->getType())
11512           << DeduceInit->getSourceRange();
11513   }
11514 
11515   // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
11516   // 'id' instead of a specific object type prevents most of our usual
11517   // checks.
11518   // We only want to warn outside of template instantiations, though:
11519   // inside a template, the 'id' could have come from a parameter.
11520   if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
11521       !DeducedType.isNull() && DeducedType->isObjCIdType()) {
11522     SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
11523     Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
11524   }
11525 
11526   return DeducedType;
11527 }
11528 
11529 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
11530                                          Expr *Init) {
11531   assert(!Init || !Init->containsErrors());
11532   QualType DeducedType = deduceVarTypeFromInitializer(
11533       VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
11534       VDecl->getSourceRange(), DirectInit, Init);
11535   if (DeducedType.isNull()) {
11536     VDecl->setInvalidDecl();
11537     return true;
11538   }
11539 
11540   VDecl->setType(DeducedType);
11541   assert(VDecl->isLinkageValid());
11542 
11543   // In ARC, infer lifetime.
11544   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
11545     VDecl->setInvalidDecl();
11546 
11547   if (getLangOpts().OpenCL)
11548     deduceOpenCLAddressSpace(VDecl);
11549 
11550   // If this is a redeclaration, check that the type we just deduced matches
11551   // the previously declared type.
11552   if (VarDecl *Old = VDecl->getPreviousDecl()) {
11553     // We never need to merge the type, because we cannot form an incomplete
11554     // array of auto, nor deduce such a type.
11555     MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
11556   }
11557 
11558   // Check the deduced type is valid for a variable declaration.
11559   CheckVariableDeclarationType(VDecl);
11560   return VDecl->isInvalidDecl();
11561 }
11562 
11563 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
11564                                               SourceLocation Loc) {
11565   if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
11566     Init = EWC->getSubExpr();
11567 
11568   if (auto *CE = dyn_cast<ConstantExpr>(Init))
11569     Init = CE->getSubExpr();
11570 
11571   QualType InitType = Init->getType();
11572   assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
11573           InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
11574          "shouldn't be called if type doesn't have a non-trivial C struct");
11575   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
11576     for (auto I : ILE->inits()) {
11577       if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
11578           !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
11579         continue;
11580       SourceLocation SL = I->getExprLoc();
11581       checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
11582     }
11583     return;
11584   }
11585 
11586   if (isa<ImplicitValueInitExpr>(Init)) {
11587     if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11588       checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
11589                             NTCUK_Init);
11590   } else {
11591     // Assume all other explicit initializers involving copying some existing
11592     // object.
11593     // TODO: ignore any explicit initializers where we can guarantee
11594     // copy-elision.
11595     if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
11596       checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
11597   }
11598 }
11599 
11600 namespace {
11601 
11602 bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
11603   // Ignore unavailable fields. A field can be marked as unavailable explicitly
11604   // in the source code or implicitly by the compiler if it is in a union
11605   // defined in a system header and has non-trivial ObjC ownership
11606   // qualifications. We don't want those fields to participate in determining
11607   // whether the containing union is non-trivial.
11608   return FD->hasAttr<UnavailableAttr>();
11609 }
11610 
11611 struct DiagNonTrivalCUnionDefaultInitializeVisitor
11612     : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11613                                     void> {
11614   using Super =
11615       DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11616                                     void>;
11617 
11618   DiagNonTrivalCUnionDefaultInitializeVisitor(
11619       QualType OrigTy, SourceLocation OrigLoc,
11620       Sema::NonTrivialCUnionContext UseContext, Sema &S)
11621       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11622 
11623   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
11624                      const FieldDecl *FD, bool InNonTrivialUnion) {
11625     if (const auto *AT = S.Context.getAsArrayType(QT))
11626       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11627                                      InNonTrivialUnion);
11628     return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
11629   }
11630 
11631   void visitARCStrong(QualType QT, const FieldDecl *FD,
11632                       bool InNonTrivialUnion) {
11633     if (InNonTrivialUnion)
11634       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11635           << 1 << 0 << QT << FD->getName();
11636   }
11637 
11638   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11639     if (InNonTrivialUnion)
11640       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11641           << 1 << 0 << QT << FD->getName();
11642   }
11643 
11644   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11645     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11646     if (RD->isUnion()) {
11647       if (OrigLoc.isValid()) {
11648         bool IsUnion = false;
11649         if (auto *OrigRD = OrigTy->getAsRecordDecl())
11650           IsUnion = OrigRD->isUnion();
11651         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11652             << 0 << OrigTy << IsUnion << UseContext;
11653         // Reset OrigLoc so that this diagnostic is emitted only once.
11654         OrigLoc = SourceLocation();
11655       }
11656       InNonTrivialUnion = true;
11657     }
11658 
11659     if (InNonTrivialUnion)
11660       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11661           << 0 << 0 << QT.getUnqualifiedType() << "";
11662 
11663     for (const FieldDecl *FD : RD->fields())
11664       if (!shouldIgnoreForRecordTriviality(FD))
11665         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11666   }
11667 
11668   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11669 
11670   // The non-trivial C union type or the struct/union type that contains a
11671   // non-trivial C union.
11672   QualType OrigTy;
11673   SourceLocation OrigLoc;
11674   Sema::NonTrivialCUnionContext UseContext;
11675   Sema &S;
11676 };
11677 
11678 struct DiagNonTrivalCUnionDestructedTypeVisitor
11679     : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
11680   using Super =
11681       DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
11682 
11683   DiagNonTrivalCUnionDestructedTypeVisitor(
11684       QualType OrigTy, SourceLocation OrigLoc,
11685       Sema::NonTrivialCUnionContext UseContext, Sema &S)
11686       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11687 
11688   void visitWithKind(QualType::DestructionKind DK, QualType QT,
11689                      const FieldDecl *FD, bool InNonTrivialUnion) {
11690     if (const auto *AT = S.Context.getAsArrayType(QT))
11691       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11692                                      InNonTrivialUnion);
11693     return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
11694   }
11695 
11696   void visitARCStrong(QualType QT, const FieldDecl *FD,
11697                       bool InNonTrivialUnion) {
11698     if (InNonTrivialUnion)
11699       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11700           << 1 << 1 << QT << FD->getName();
11701   }
11702 
11703   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11704     if (InNonTrivialUnion)
11705       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11706           << 1 << 1 << QT << FD->getName();
11707   }
11708 
11709   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11710     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11711     if (RD->isUnion()) {
11712       if (OrigLoc.isValid()) {
11713         bool IsUnion = false;
11714         if (auto *OrigRD = OrigTy->getAsRecordDecl())
11715           IsUnion = OrigRD->isUnion();
11716         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11717             << 1 << OrigTy << IsUnion << UseContext;
11718         // Reset OrigLoc so that this diagnostic is emitted only once.
11719         OrigLoc = SourceLocation();
11720       }
11721       InNonTrivialUnion = true;
11722     }
11723 
11724     if (InNonTrivialUnion)
11725       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11726           << 0 << 1 << QT.getUnqualifiedType() << "";
11727 
11728     for (const FieldDecl *FD : RD->fields())
11729       if (!shouldIgnoreForRecordTriviality(FD))
11730         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11731   }
11732 
11733   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11734   void visitCXXDestructor(QualType QT, const FieldDecl *FD,
11735                           bool InNonTrivialUnion) {}
11736 
11737   // The non-trivial C union type or the struct/union type that contains a
11738   // non-trivial C union.
11739   QualType OrigTy;
11740   SourceLocation OrigLoc;
11741   Sema::NonTrivialCUnionContext UseContext;
11742   Sema &S;
11743 };
11744 
11745 struct DiagNonTrivalCUnionCopyVisitor
11746     : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
11747   using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
11748 
11749   DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
11750                                  Sema::NonTrivialCUnionContext UseContext,
11751                                  Sema &S)
11752       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11753 
11754   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
11755                      const FieldDecl *FD, bool InNonTrivialUnion) {
11756     if (const auto *AT = S.Context.getAsArrayType(QT))
11757       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11758                                      InNonTrivialUnion);
11759     return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
11760   }
11761 
11762   void visitARCStrong(QualType QT, const FieldDecl *FD,
11763                       bool InNonTrivialUnion) {
11764     if (InNonTrivialUnion)
11765       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11766           << 1 << 2 << QT << FD->getName();
11767   }
11768 
11769   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11770     if (InNonTrivialUnion)
11771       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11772           << 1 << 2 << QT << FD->getName();
11773   }
11774 
11775   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11776     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11777     if (RD->isUnion()) {
11778       if (OrigLoc.isValid()) {
11779         bool IsUnion = false;
11780         if (auto *OrigRD = OrigTy->getAsRecordDecl())
11781           IsUnion = OrigRD->isUnion();
11782         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11783             << 2 << OrigTy << IsUnion << UseContext;
11784         // Reset OrigLoc so that this diagnostic is emitted only once.
11785         OrigLoc = SourceLocation();
11786       }
11787       InNonTrivialUnion = true;
11788     }
11789 
11790     if (InNonTrivialUnion)
11791       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11792           << 0 << 2 << QT.getUnqualifiedType() << "";
11793 
11794     for (const FieldDecl *FD : RD->fields())
11795       if (!shouldIgnoreForRecordTriviality(FD))
11796         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11797   }
11798 
11799   void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
11800                 const FieldDecl *FD, bool InNonTrivialUnion) {}
11801   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11802   void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
11803                             bool InNonTrivialUnion) {}
11804 
11805   // The non-trivial C union type or the struct/union type that contains a
11806   // non-trivial C union.
11807   QualType OrigTy;
11808   SourceLocation OrigLoc;
11809   Sema::NonTrivialCUnionContext UseContext;
11810   Sema &S;
11811 };
11812 
11813 } // namespace
11814 
11815 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
11816                                  NonTrivialCUnionContext UseContext,
11817                                  unsigned NonTrivialKind) {
11818   assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
11819           QT.hasNonTrivialToPrimitiveDestructCUnion() ||
11820           QT.hasNonTrivialToPrimitiveCopyCUnion()) &&
11821          "shouldn't be called if type doesn't have a non-trivial C union");
11822 
11823   if ((NonTrivialKind & NTCUK_Init) &&
11824       QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11825     DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
11826         .visit(QT, nullptr, false);
11827   if ((NonTrivialKind & NTCUK_Destruct) &&
11828       QT.hasNonTrivialToPrimitiveDestructCUnion())
11829     DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
11830         .visit(QT, nullptr, false);
11831   if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
11832     DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
11833         .visit(QT, nullptr, false);
11834 }
11835 
11836 /// AddInitializerToDecl - Adds the initializer Init to the
11837 /// declaration dcl. If DirectInit is true, this is C++ direct
11838 /// initialization rather than copy initialization.
11839 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
11840   // If there is no declaration, there was an error parsing it.  Just ignore
11841   // the initializer.
11842   if (!RealDecl || RealDecl->isInvalidDecl()) {
11843     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
11844     return;
11845   }
11846 
11847   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
11848     // Pure-specifiers are handled in ActOnPureSpecifier.
11849     Diag(Method->getLocation(), diag::err_member_function_initialization)
11850       << Method->getDeclName() << Init->getSourceRange();
11851     Method->setInvalidDecl();
11852     return;
11853   }
11854 
11855   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
11856   if (!VDecl) {
11857     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
11858     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
11859     RealDecl->setInvalidDecl();
11860     return;
11861   }
11862 
11863   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
11864   if (VDecl->getType()->isUndeducedType()) {
11865     // Attempt typo correction early so that the type of the init expression can
11866     // be deduced based on the chosen correction if the original init contains a
11867     // TypoExpr.
11868     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
11869     if (!Res.isUsable()) {
11870       // There are unresolved typos in Init, just drop them.
11871       // FIXME: improve the recovery strategy to preserve the Init.
11872       RealDecl->setInvalidDecl();
11873       return;
11874     }
11875     if (Res.get()->containsErrors()) {
11876       // Invalidate the decl as we don't know the type for recovery-expr yet.
11877       RealDecl->setInvalidDecl();
11878       VDecl->setInit(Res.get());
11879       return;
11880     }
11881     Init = Res.get();
11882 
11883     if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
11884       return;
11885   }
11886 
11887   // dllimport cannot be used on variable definitions.
11888   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
11889     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
11890     VDecl->setInvalidDecl();
11891     return;
11892   }
11893 
11894   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
11895     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
11896     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
11897     VDecl->setInvalidDecl();
11898     return;
11899   }
11900 
11901   if (!VDecl->getType()->isDependentType()) {
11902     // A definition must end up with a complete type, which means it must be
11903     // complete with the restriction that an array type might be completed by
11904     // the initializer; note that later code assumes this restriction.
11905     QualType BaseDeclType = VDecl->getType();
11906     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
11907       BaseDeclType = Array->getElementType();
11908     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
11909                             diag::err_typecheck_decl_incomplete_type)) {
11910       RealDecl->setInvalidDecl();
11911       return;
11912     }
11913 
11914     // The variable can not have an abstract class type.
11915     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
11916                                diag::err_abstract_type_in_decl,
11917                                AbstractVariableType))
11918       VDecl->setInvalidDecl();
11919   }
11920 
11921   // If adding the initializer will turn this declaration into a definition,
11922   // and we already have a definition for this variable, diagnose or otherwise
11923   // handle the situation.
11924   VarDecl *Def;
11925   if ((Def = VDecl->getDefinition()) && Def != VDecl &&
11926       (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
11927       !VDecl->isThisDeclarationADemotedDefinition() &&
11928       checkVarDeclRedefinition(Def, VDecl))
11929     return;
11930 
11931   if (getLangOpts().CPlusPlus) {
11932     // C++ [class.static.data]p4
11933     //   If a static data member is of const integral or const
11934     //   enumeration type, its declaration in the class definition can
11935     //   specify a constant-initializer which shall be an integral
11936     //   constant expression (5.19). In that case, the member can appear
11937     //   in integral constant expressions. The member shall still be
11938     //   defined in a namespace scope if it is used in the program and the
11939     //   namespace scope definition shall not contain an initializer.
11940     //
11941     // We already performed a redefinition check above, but for static
11942     // data members we also need to check whether there was an in-class
11943     // declaration with an initializer.
11944     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
11945       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
11946           << VDecl->getDeclName();
11947       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
11948            diag::note_previous_initializer)
11949           << 0;
11950       return;
11951     }
11952 
11953     if (VDecl->hasLocalStorage())
11954       setFunctionHasBranchProtectedScope();
11955 
11956     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
11957       VDecl->setInvalidDecl();
11958       return;
11959     }
11960   }
11961 
11962   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
11963   // a kernel function cannot be initialized."
11964   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
11965     Diag(VDecl->getLocation(), diag::err_local_cant_init);
11966     VDecl->setInvalidDecl();
11967     return;
11968   }
11969 
11970   // The LoaderUninitialized attribute acts as a definition (of undef).
11971   if (VDecl->hasAttr<LoaderUninitializedAttr>()) {
11972     Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init);
11973     VDecl->setInvalidDecl();
11974     return;
11975   }
11976 
11977   // Get the decls type and save a reference for later, since
11978   // CheckInitializerTypes may change it.
11979   QualType DclT = VDecl->getType(), SavT = DclT;
11980 
11981   // Expressions default to 'id' when we're in a debugger
11982   // and we are assigning it to a variable of Objective-C pointer type.
11983   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
11984       Init->getType() == Context.UnknownAnyTy) {
11985     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11986     if (Result.isInvalid()) {
11987       VDecl->setInvalidDecl();
11988       return;
11989     }
11990     Init = Result.get();
11991   }
11992 
11993   // Perform the initialization.
11994   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
11995   if (!VDecl->isInvalidDecl()) {
11996     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11997     InitializationKind Kind = InitializationKind::CreateForInit(
11998         VDecl->getLocation(), DirectInit, Init);
11999 
12000     MultiExprArg Args = Init;
12001     if (CXXDirectInit)
12002       Args = MultiExprArg(CXXDirectInit->getExprs(),
12003                           CXXDirectInit->getNumExprs());
12004 
12005     // Try to correct any TypoExprs in the initialization arguments.
12006     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
12007       ExprResult Res = CorrectDelayedTyposInExpr(
12008           Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
12009             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
12010             return Init.Failed() ? ExprError() : E;
12011           });
12012       if (Res.isInvalid()) {
12013         VDecl->setInvalidDecl();
12014       } else if (Res.get() != Args[Idx]) {
12015         Args[Idx] = Res.get();
12016       }
12017     }
12018     if (VDecl->isInvalidDecl())
12019       return;
12020 
12021     InitializationSequence InitSeq(*this, Entity, Kind, Args,
12022                                    /*TopLevelOfInitList=*/false,
12023                                    /*TreatUnavailableAsInvalid=*/false);
12024     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
12025     if (Result.isInvalid()) {
12026       // If the provied initializer fails to initialize the var decl,
12027       // we attach a recovery expr for better recovery.
12028       auto RecoveryExpr =
12029           CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args);
12030       if (RecoveryExpr.get())
12031         VDecl->setInit(RecoveryExpr.get());
12032       return;
12033     }
12034 
12035     Init = Result.getAs<Expr>();
12036   }
12037 
12038   // Check for self-references within variable initializers.
12039   // Variables declared within a function/method body (except for references)
12040   // are handled by a dataflow analysis.
12041   // This is undefined behavior in C++, but valid in C.
12042   if (getLangOpts().CPlusPlus) {
12043     if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
12044         VDecl->getType()->isReferenceType()) {
12045       CheckSelfReference(*this, RealDecl, Init, DirectInit);
12046     }
12047   }
12048 
12049   // If the type changed, it means we had an incomplete type that was
12050   // completed by the initializer. For example:
12051   //   int ary[] = { 1, 3, 5 };
12052   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
12053   if (!VDecl->isInvalidDecl() && (DclT != SavT))
12054     VDecl->setType(DclT);
12055 
12056   if (!VDecl->isInvalidDecl()) {
12057     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
12058 
12059     if (VDecl->hasAttr<BlocksAttr>())
12060       checkRetainCycles(VDecl, Init);
12061 
12062     // It is safe to assign a weak reference into a strong variable.
12063     // Although this code can still have problems:
12064     //   id x = self.weakProp;
12065     //   id y = self.weakProp;
12066     // we do not warn to warn spuriously when 'x' and 'y' are on separate
12067     // paths through the function. This should be revisited if
12068     // -Wrepeated-use-of-weak is made flow-sensitive.
12069     if (FunctionScopeInfo *FSI = getCurFunction())
12070       if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
12071            VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
12072           !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
12073                            Init->getBeginLoc()))
12074         FSI->markSafeWeakUse(Init);
12075   }
12076 
12077   // The initialization is usually a full-expression.
12078   //
12079   // FIXME: If this is a braced initialization of an aggregate, it is not
12080   // an expression, and each individual field initializer is a separate
12081   // full-expression. For instance, in:
12082   //
12083   //   struct Temp { ~Temp(); };
12084   //   struct S { S(Temp); };
12085   //   struct T { S a, b; } t = { Temp(), Temp() }
12086   //
12087   // we should destroy the first Temp before constructing the second.
12088   ExprResult Result =
12089       ActOnFinishFullExpr(Init, VDecl->getLocation(),
12090                           /*DiscardedValue*/ false, VDecl->isConstexpr());
12091   if (Result.isInvalid()) {
12092     VDecl->setInvalidDecl();
12093     return;
12094   }
12095   Init = Result.get();
12096 
12097   // Attach the initializer to the decl.
12098   VDecl->setInit(Init);
12099 
12100   if (VDecl->isLocalVarDecl()) {
12101     // Don't check the initializer if the declaration is malformed.
12102     if (VDecl->isInvalidDecl()) {
12103       // do nothing
12104 
12105     // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
12106     // This is true even in C++ for OpenCL.
12107     } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
12108       CheckForConstantInitializer(Init, DclT);
12109 
12110     // Otherwise, C++ does not restrict the initializer.
12111     } else if (getLangOpts().CPlusPlus) {
12112       // do nothing
12113 
12114     // C99 6.7.8p4: All the expressions in an initializer for an object that has
12115     // static storage duration shall be constant expressions or string literals.
12116     } else if (VDecl->getStorageClass() == SC_Static) {
12117       CheckForConstantInitializer(Init, DclT);
12118 
12119     // C89 is stricter than C99 for aggregate initializers.
12120     // C89 6.5.7p3: All the expressions [...] in an initializer list
12121     // for an object that has aggregate or union type shall be
12122     // constant expressions.
12123     } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
12124                isa<InitListExpr>(Init)) {
12125       const Expr *Culprit;
12126       if (!Init->isConstantInitializer(Context, false, &Culprit)) {
12127         Diag(Culprit->getExprLoc(),
12128              diag::ext_aggregate_init_not_constant)
12129           << Culprit->getSourceRange();
12130       }
12131     }
12132 
12133     if (auto *E = dyn_cast<ExprWithCleanups>(Init))
12134       if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
12135         if (VDecl->hasLocalStorage())
12136           BE->getBlockDecl()->setCanAvoidCopyToHeap();
12137   } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
12138              VDecl->getLexicalDeclContext()->isRecord()) {
12139     // This is an in-class initialization for a static data member, e.g.,
12140     //
12141     // struct S {
12142     //   static const int value = 17;
12143     // };
12144 
12145     // C++ [class.mem]p4:
12146     //   A member-declarator can contain a constant-initializer only
12147     //   if it declares a static member (9.4) of const integral or
12148     //   const enumeration type, see 9.4.2.
12149     //
12150     // C++11 [class.static.data]p3:
12151     //   If a non-volatile non-inline const static data member is of integral
12152     //   or enumeration type, its declaration in the class definition can
12153     //   specify a brace-or-equal-initializer in which every initializer-clause
12154     //   that is an assignment-expression is a constant expression. A static
12155     //   data member of literal type can be declared in the class definition
12156     //   with the constexpr specifier; if so, its declaration shall specify a
12157     //   brace-or-equal-initializer in which every initializer-clause that is
12158     //   an assignment-expression is a constant expression.
12159 
12160     // Do nothing on dependent types.
12161     if (DclT->isDependentType()) {
12162 
12163     // Allow any 'static constexpr' members, whether or not they are of literal
12164     // type. We separately check that every constexpr variable is of literal
12165     // type.
12166     } else if (VDecl->isConstexpr()) {
12167 
12168     // Require constness.
12169     } else if (!DclT.isConstQualified()) {
12170       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
12171         << Init->getSourceRange();
12172       VDecl->setInvalidDecl();
12173 
12174     // We allow integer constant expressions in all cases.
12175     } else if (DclT->isIntegralOrEnumerationType()) {
12176       // Check whether the expression is a constant expression.
12177       SourceLocation Loc;
12178       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
12179         // In C++11, a non-constexpr const static data member with an
12180         // in-class initializer cannot be volatile.
12181         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
12182       else if (Init->isValueDependent())
12183         ; // Nothing to check.
12184       else if (Init->isIntegerConstantExpr(Context, &Loc))
12185         ; // Ok, it's an ICE!
12186       else if (Init->getType()->isScopedEnumeralType() &&
12187                Init->isCXX11ConstantExpr(Context))
12188         ; // Ok, it is a scoped-enum constant expression.
12189       else if (Init->isEvaluatable(Context)) {
12190         // If we can constant fold the initializer through heroics, accept it,
12191         // but report this as a use of an extension for -pedantic.
12192         Diag(Loc, diag::ext_in_class_initializer_non_constant)
12193           << Init->getSourceRange();
12194       } else {
12195         // Otherwise, this is some crazy unknown case.  Report the issue at the
12196         // location provided by the isIntegerConstantExpr failed check.
12197         Diag(Loc, diag::err_in_class_initializer_non_constant)
12198           << Init->getSourceRange();
12199         VDecl->setInvalidDecl();
12200       }
12201 
12202     // We allow foldable floating-point constants as an extension.
12203     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
12204       // In C++98, this is a GNU extension. In C++11, it is not, but we support
12205       // it anyway and provide a fixit to add the 'constexpr'.
12206       if (getLangOpts().CPlusPlus11) {
12207         Diag(VDecl->getLocation(),
12208              diag::ext_in_class_initializer_float_type_cxx11)
12209             << DclT << Init->getSourceRange();
12210         Diag(VDecl->getBeginLoc(),
12211              diag::note_in_class_initializer_float_type_cxx11)
12212             << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12213       } else {
12214         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
12215           << DclT << Init->getSourceRange();
12216 
12217         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
12218           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
12219             << Init->getSourceRange();
12220           VDecl->setInvalidDecl();
12221         }
12222       }
12223 
12224     // Suggest adding 'constexpr' in C++11 for literal types.
12225     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
12226       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
12227           << DclT << Init->getSourceRange()
12228           << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12229       VDecl->setConstexpr(true);
12230 
12231     } else {
12232       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
12233         << DclT << Init->getSourceRange();
12234       VDecl->setInvalidDecl();
12235     }
12236   } else if (VDecl->isFileVarDecl()) {
12237     // In C, extern is typically used to avoid tentative definitions when
12238     // declaring variables in headers, but adding an intializer makes it a
12239     // definition. This is somewhat confusing, so GCC and Clang both warn on it.
12240     // In C++, extern is often used to give implictly static const variables
12241     // external linkage, so don't warn in that case. If selectany is present,
12242     // this might be header code intended for C and C++ inclusion, so apply the
12243     // C++ rules.
12244     if (VDecl->getStorageClass() == SC_Extern &&
12245         ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
12246          !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
12247         !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
12248         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
12249       Diag(VDecl->getLocation(), diag::warn_extern_init);
12250 
12251     // In Microsoft C++ mode, a const variable defined in namespace scope has
12252     // external linkage by default if the variable is declared with
12253     // __declspec(dllexport).
12254     if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
12255         getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
12256         VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
12257       VDecl->setStorageClass(SC_Extern);
12258 
12259     // C99 6.7.8p4. All file scoped initializers need to be constant.
12260     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
12261       CheckForConstantInitializer(Init, DclT);
12262   }
12263 
12264   QualType InitType = Init->getType();
12265   if (!InitType.isNull() &&
12266       (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
12267        InitType.hasNonTrivialToPrimitiveCopyCUnion()))
12268     checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
12269 
12270   // We will represent direct-initialization similarly to copy-initialization:
12271   //    int x(1);  -as-> int x = 1;
12272   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
12273   //
12274   // Clients that want to distinguish between the two forms, can check for
12275   // direct initializer using VarDecl::getInitStyle().
12276   // A major benefit is that clients that don't particularly care about which
12277   // exactly form was it (like the CodeGen) can handle both cases without
12278   // special case code.
12279 
12280   // C++ 8.5p11:
12281   // The form of initialization (using parentheses or '=') is generally
12282   // insignificant, but does matter when the entity being initialized has a
12283   // class type.
12284   if (CXXDirectInit) {
12285     assert(DirectInit && "Call-style initializer must be direct init.");
12286     VDecl->setInitStyle(VarDecl::CallInit);
12287   } else if (DirectInit) {
12288     // This must be list-initialization. No other way is direct-initialization.
12289     VDecl->setInitStyle(VarDecl::ListInit);
12290   }
12291 
12292   if (LangOpts.OpenMP && VDecl->isFileVarDecl())
12293     DeclsToCheckForDeferredDiags.push_back(VDecl);
12294   CheckCompleteVariableDeclaration(VDecl);
12295 }
12296 
12297 /// ActOnInitializerError - Given that there was an error parsing an
12298 /// initializer for the given declaration, try to return to some form
12299 /// of sanity.
12300 void Sema::ActOnInitializerError(Decl *D) {
12301   // Our main concern here is re-establishing invariants like "a
12302   // variable's type is either dependent or complete".
12303   if (!D || D->isInvalidDecl()) return;
12304 
12305   VarDecl *VD = dyn_cast<VarDecl>(D);
12306   if (!VD) return;
12307 
12308   // Bindings are not usable if we can't make sense of the initializer.
12309   if (auto *DD = dyn_cast<DecompositionDecl>(D))
12310     for (auto *BD : DD->bindings())
12311       BD->setInvalidDecl();
12312 
12313   // Auto types are meaningless if we can't make sense of the initializer.
12314   if (ParsingInitForAutoVars.count(D)) {
12315     D->setInvalidDecl();
12316     return;
12317   }
12318 
12319   QualType Ty = VD->getType();
12320   if (Ty->isDependentType()) return;
12321 
12322   // Require a complete type.
12323   if (RequireCompleteType(VD->getLocation(),
12324                           Context.getBaseElementType(Ty),
12325                           diag::err_typecheck_decl_incomplete_type)) {
12326     VD->setInvalidDecl();
12327     return;
12328   }
12329 
12330   // Require a non-abstract type.
12331   if (RequireNonAbstractType(VD->getLocation(), Ty,
12332                              diag::err_abstract_type_in_decl,
12333                              AbstractVariableType)) {
12334     VD->setInvalidDecl();
12335     return;
12336   }
12337 
12338   // Don't bother complaining about constructors or destructors,
12339   // though.
12340 }
12341 
12342 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
12343   // If there is no declaration, there was an error parsing it. Just ignore it.
12344   if (!RealDecl)
12345     return;
12346 
12347   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
12348     QualType Type = Var->getType();
12349 
12350     // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
12351     if (isa<DecompositionDecl>(RealDecl)) {
12352       Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
12353       Var->setInvalidDecl();
12354       return;
12355     }
12356 
12357     if (Type->isUndeducedType() &&
12358         DeduceVariableDeclarationType(Var, false, nullptr))
12359       return;
12360 
12361     // C++11 [class.static.data]p3: A static data member can be declared with
12362     // the constexpr specifier; if so, its declaration shall specify
12363     // a brace-or-equal-initializer.
12364     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
12365     // the definition of a variable [...] or the declaration of a static data
12366     // member.
12367     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
12368         !Var->isThisDeclarationADemotedDefinition()) {
12369       if (Var->isStaticDataMember()) {
12370         // C++1z removes the relevant rule; the in-class declaration is always
12371         // a definition there.
12372         if (!getLangOpts().CPlusPlus17 &&
12373             !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
12374           Diag(Var->getLocation(),
12375                diag::err_constexpr_static_mem_var_requires_init)
12376             << Var->getDeclName();
12377           Var->setInvalidDecl();
12378           return;
12379         }
12380       } else {
12381         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
12382         Var->setInvalidDecl();
12383         return;
12384       }
12385     }
12386 
12387     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
12388     // be initialized.
12389     if (!Var->isInvalidDecl() &&
12390         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
12391         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
12392       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
12393       Var->setInvalidDecl();
12394       return;
12395     }
12396 
12397     if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) {
12398       if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
12399         if (!RD->hasTrivialDefaultConstructor()) {
12400           Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor);
12401           Var->setInvalidDecl();
12402           return;
12403         }
12404       }
12405       if (Var->getStorageClass() == SC_Extern) {
12406         Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl)
12407             << Var;
12408         Var->setInvalidDecl();
12409         return;
12410       }
12411     }
12412 
12413     VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
12414     if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
12415         Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12416       checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
12417                             NTCUC_DefaultInitializedObject, NTCUK_Init);
12418 
12419 
12420     switch (DefKind) {
12421     case VarDecl::Definition:
12422       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
12423         break;
12424 
12425       // We have an out-of-line definition of a static data member
12426       // that has an in-class initializer, so we type-check this like
12427       // a declaration.
12428       //
12429       LLVM_FALLTHROUGH;
12430 
12431     case VarDecl::DeclarationOnly:
12432       // It's only a declaration.
12433 
12434       // Block scope. C99 6.7p7: If an identifier for an object is
12435       // declared with no linkage (C99 6.2.2p6), the type for the
12436       // object shall be complete.
12437       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
12438           !Var->hasLinkage() && !Var->isInvalidDecl() &&
12439           RequireCompleteType(Var->getLocation(), Type,
12440                               diag::err_typecheck_decl_incomplete_type))
12441         Var->setInvalidDecl();
12442 
12443       // Make sure that the type is not abstract.
12444       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12445           RequireNonAbstractType(Var->getLocation(), Type,
12446                                  diag::err_abstract_type_in_decl,
12447                                  AbstractVariableType))
12448         Var->setInvalidDecl();
12449       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12450           Var->getStorageClass() == SC_PrivateExtern) {
12451         Diag(Var->getLocation(), diag::warn_private_extern);
12452         Diag(Var->getLocation(), diag::note_private_extern);
12453       }
12454 
12455       if (Context.getTargetInfo().allowDebugInfoForExternalVar() &&
12456           !Var->isInvalidDecl() && !getLangOpts().CPlusPlus)
12457         ExternalDeclarations.push_back(Var);
12458 
12459       return;
12460 
12461     case VarDecl::TentativeDefinition:
12462       // File scope. C99 6.9.2p2: A declaration of an identifier for an
12463       // object that has file scope without an initializer, and without a
12464       // storage-class specifier or with the storage-class specifier "static",
12465       // constitutes a tentative definition. Note: A tentative definition with
12466       // external linkage is valid (C99 6.2.2p5).
12467       if (!Var->isInvalidDecl()) {
12468         if (const IncompleteArrayType *ArrayT
12469                                     = Context.getAsIncompleteArrayType(Type)) {
12470           if (RequireCompleteSizedType(
12471                   Var->getLocation(), ArrayT->getElementType(),
12472                   diag::err_array_incomplete_or_sizeless_type))
12473             Var->setInvalidDecl();
12474         } else if (Var->getStorageClass() == SC_Static) {
12475           // C99 6.9.2p3: If the declaration of an identifier for an object is
12476           // a tentative definition and has internal linkage (C99 6.2.2p3), the
12477           // declared type shall not be an incomplete type.
12478           // NOTE: code such as the following
12479           //     static struct s;
12480           //     struct s { int a; };
12481           // is accepted by gcc. Hence here we issue a warning instead of
12482           // an error and we do not invalidate the static declaration.
12483           // NOTE: to avoid multiple warnings, only check the first declaration.
12484           if (Var->isFirstDecl())
12485             RequireCompleteType(Var->getLocation(), Type,
12486                                 diag::ext_typecheck_decl_incomplete_type);
12487         }
12488       }
12489 
12490       // Record the tentative definition; we're done.
12491       if (!Var->isInvalidDecl())
12492         TentativeDefinitions.push_back(Var);
12493       return;
12494     }
12495 
12496     // Provide a specific diagnostic for uninitialized variable
12497     // definitions with incomplete array type.
12498     if (Type->isIncompleteArrayType()) {
12499       Diag(Var->getLocation(),
12500            diag::err_typecheck_incomplete_array_needs_initializer);
12501       Var->setInvalidDecl();
12502       return;
12503     }
12504 
12505     // Provide a specific diagnostic for uninitialized variable
12506     // definitions with reference type.
12507     if (Type->isReferenceType()) {
12508       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
12509         << Var->getDeclName()
12510         << SourceRange(Var->getLocation(), Var->getLocation());
12511       Var->setInvalidDecl();
12512       return;
12513     }
12514 
12515     // Do not attempt to type-check the default initializer for a
12516     // variable with dependent type.
12517     if (Type->isDependentType())
12518       return;
12519 
12520     if (Var->isInvalidDecl())
12521       return;
12522 
12523     if (!Var->hasAttr<AliasAttr>()) {
12524       if (RequireCompleteType(Var->getLocation(),
12525                               Context.getBaseElementType(Type),
12526                               diag::err_typecheck_decl_incomplete_type)) {
12527         Var->setInvalidDecl();
12528         return;
12529       }
12530     } else {
12531       return;
12532     }
12533 
12534     // The variable can not have an abstract class type.
12535     if (RequireNonAbstractType(Var->getLocation(), Type,
12536                                diag::err_abstract_type_in_decl,
12537                                AbstractVariableType)) {
12538       Var->setInvalidDecl();
12539       return;
12540     }
12541 
12542     // Check for jumps past the implicit initializer.  C++0x
12543     // clarifies that this applies to a "variable with automatic
12544     // storage duration", not a "local variable".
12545     // C++11 [stmt.dcl]p3
12546     //   A program that jumps from a point where a variable with automatic
12547     //   storage duration is not in scope to a point where it is in scope is
12548     //   ill-formed unless the variable has scalar type, class type with a
12549     //   trivial default constructor and a trivial destructor, a cv-qualified
12550     //   version of one of these types, or an array of one of the preceding
12551     //   types and is declared without an initializer.
12552     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
12553       if (const RecordType *Record
12554             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
12555         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
12556         // Mark the function (if we're in one) for further checking even if the
12557         // looser rules of C++11 do not require such checks, so that we can
12558         // diagnose incompatibilities with C++98.
12559         if (!CXXRecord->isPOD())
12560           setFunctionHasBranchProtectedScope();
12561       }
12562     }
12563     // In OpenCL, we can't initialize objects in the __local address space,
12564     // even implicitly, so don't synthesize an implicit initializer.
12565     if (getLangOpts().OpenCL &&
12566         Var->getType().getAddressSpace() == LangAS::opencl_local)
12567       return;
12568     // C++03 [dcl.init]p9:
12569     //   If no initializer is specified for an object, and the
12570     //   object is of (possibly cv-qualified) non-POD class type (or
12571     //   array thereof), the object shall be default-initialized; if
12572     //   the object is of const-qualified type, the underlying class
12573     //   type shall have a user-declared default
12574     //   constructor. Otherwise, if no initializer is specified for
12575     //   a non- static object, the object and its subobjects, if
12576     //   any, have an indeterminate initial value); if the object
12577     //   or any of its subobjects are of const-qualified type, the
12578     //   program is ill-formed.
12579     // C++0x [dcl.init]p11:
12580     //   If no initializer is specified for an object, the object is
12581     //   default-initialized; [...].
12582     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
12583     InitializationKind Kind
12584       = InitializationKind::CreateDefault(Var->getLocation());
12585 
12586     InitializationSequence InitSeq(*this, Entity, Kind, None);
12587     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
12588 
12589     if (Init.get()) {
12590       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
12591       // This is important for template substitution.
12592       Var->setInitStyle(VarDecl::CallInit);
12593     } else if (Init.isInvalid()) {
12594       // If default-init fails, attach a recovery-expr initializer to track
12595       // that initialization was attempted and failed.
12596       auto RecoveryExpr =
12597           CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {});
12598       if (RecoveryExpr.get())
12599         Var->setInit(RecoveryExpr.get());
12600     }
12601 
12602     CheckCompleteVariableDeclaration(Var);
12603   }
12604 }
12605 
12606 void Sema::ActOnCXXForRangeDecl(Decl *D) {
12607   // If there is no declaration, there was an error parsing it. Ignore it.
12608   if (!D)
12609     return;
12610 
12611   VarDecl *VD = dyn_cast<VarDecl>(D);
12612   if (!VD) {
12613     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
12614     D->setInvalidDecl();
12615     return;
12616   }
12617 
12618   VD->setCXXForRangeDecl(true);
12619 
12620   // for-range-declaration cannot be given a storage class specifier.
12621   int Error = -1;
12622   switch (VD->getStorageClass()) {
12623   case SC_None:
12624     break;
12625   case SC_Extern:
12626     Error = 0;
12627     break;
12628   case SC_Static:
12629     Error = 1;
12630     break;
12631   case SC_PrivateExtern:
12632     Error = 2;
12633     break;
12634   case SC_Auto:
12635     Error = 3;
12636     break;
12637   case SC_Register:
12638     Error = 4;
12639     break;
12640   }
12641   if (Error != -1) {
12642     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
12643       << VD->getDeclName() << Error;
12644     D->setInvalidDecl();
12645   }
12646 }
12647 
12648 StmtResult
12649 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
12650                                  IdentifierInfo *Ident,
12651                                  ParsedAttributes &Attrs,
12652                                  SourceLocation AttrEnd) {
12653   // C++1y [stmt.iter]p1:
12654   //   A range-based for statement of the form
12655   //      for ( for-range-identifier : for-range-initializer ) statement
12656   //   is equivalent to
12657   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
12658   DeclSpec DS(Attrs.getPool().getFactory());
12659 
12660   const char *PrevSpec;
12661   unsigned DiagID;
12662   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
12663                      getPrintingPolicy());
12664 
12665   Declarator D(DS, DeclaratorContext::ForContext);
12666   D.SetIdentifier(Ident, IdentLoc);
12667   D.takeAttributes(Attrs, AttrEnd);
12668 
12669   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
12670                 IdentLoc);
12671   Decl *Var = ActOnDeclarator(S, D);
12672   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
12673   FinalizeDeclaration(Var);
12674   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
12675                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
12676 }
12677 
12678 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
12679   if (var->isInvalidDecl()) return;
12680 
12681   if (getLangOpts().OpenCL) {
12682     // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
12683     // initialiser
12684     if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
12685         !var->hasInit()) {
12686       Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
12687           << 1 /*Init*/;
12688       var->setInvalidDecl();
12689       return;
12690     }
12691   }
12692 
12693   // In Objective-C, don't allow jumps past the implicit initialization of a
12694   // local retaining variable.
12695   if (getLangOpts().ObjC &&
12696       var->hasLocalStorage()) {
12697     switch (var->getType().getObjCLifetime()) {
12698     case Qualifiers::OCL_None:
12699     case Qualifiers::OCL_ExplicitNone:
12700     case Qualifiers::OCL_Autoreleasing:
12701       break;
12702 
12703     case Qualifiers::OCL_Weak:
12704     case Qualifiers::OCL_Strong:
12705       setFunctionHasBranchProtectedScope();
12706       break;
12707     }
12708   }
12709 
12710   if (var->hasLocalStorage() &&
12711       var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
12712     setFunctionHasBranchProtectedScope();
12713 
12714   // Warn about externally-visible variables being defined without a
12715   // prior declaration.  We only want to do this for global
12716   // declarations, but we also specifically need to avoid doing it for
12717   // class members because the linkage of an anonymous class can
12718   // change if it's later given a typedef name.
12719   if (var->isThisDeclarationADefinition() &&
12720       var->getDeclContext()->getRedeclContext()->isFileContext() &&
12721       var->isExternallyVisible() && var->hasLinkage() &&
12722       !var->isInline() && !var->getDescribedVarTemplate() &&
12723       !isa<VarTemplatePartialSpecializationDecl>(var) &&
12724       !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
12725       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
12726                                   var->getLocation())) {
12727     // Find a previous declaration that's not a definition.
12728     VarDecl *prev = var->getPreviousDecl();
12729     while (prev && prev->isThisDeclarationADefinition())
12730       prev = prev->getPreviousDecl();
12731 
12732     if (!prev) {
12733       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
12734       Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
12735           << /* variable */ 0;
12736     }
12737   }
12738 
12739   // Cache the result of checking for constant initialization.
12740   Optional<bool> CacheHasConstInit;
12741   const Expr *CacheCulprit = nullptr;
12742   auto checkConstInit = [&]() mutable {
12743     if (!CacheHasConstInit)
12744       CacheHasConstInit = var->getInit()->isConstantInitializer(
12745             Context, var->getType()->isReferenceType(), &CacheCulprit);
12746     return *CacheHasConstInit;
12747   };
12748 
12749   if (var->getTLSKind() == VarDecl::TLS_Static) {
12750     if (var->getType().isDestructedType()) {
12751       // GNU C++98 edits for __thread, [basic.start.term]p3:
12752       //   The type of an object with thread storage duration shall not
12753       //   have a non-trivial destructor.
12754       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
12755       if (getLangOpts().CPlusPlus11)
12756         Diag(var->getLocation(), diag::note_use_thread_local);
12757     } else if (getLangOpts().CPlusPlus && var->hasInit()) {
12758       if (!checkConstInit()) {
12759         // GNU C++98 edits for __thread, [basic.start.init]p4:
12760         //   An object of thread storage duration shall not require dynamic
12761         //   initialization.
12762         // FIXME: Need strict checking here.
12763         Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
12764           << CacheCulprit->getSourceRange();
12765         if (getLangOpts().CPlusPlus11)
12766           Diag(var->getLocation(), diag::note_use_thread_local);
12767       }
12768     }
12769   }
12770 
12771   // Apply section attributes and pragmas to global variables.
12772   bool GlobalStorage = var->hasGlobalStorage();
12773   if (GlobalStorage && var->isThisDeclarationADefinition() &&
12774       !inTemplateInstantiation()) {
12775     PragmaStack<StringLiteral *> *Stack = nullptr;
12776     int SectionFlags = ASTContext::PSF_Read;
12777     if (var->getType().isConstQualified())
12778       Stack = &ConstSegStack;
12779     else if (!var->getInit()) {
12780       Stack = &BSSSegStack;
12781       SectionFlags |= ASTContext::PSF_Write;
12782     } else {
12783       Stack = &DataSegStack;
12784       SectionFlags |= ASTContext::PSF_Write;
12785     }
12786     if (const SectionAttr *SA = var->getAttr<SectionAttr>()) {
12787       if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec)
12788         SectionFlags |= ASTContext::PSF_Implicit;
12789       UnifySection(SA->getName(), SectionFlags, var);
12790     } else if (Stack->CurrentValue) {
12791       SectionFlags |= ASTContext::PSF_Implicit;
12792       auto SectionName = Stack->CurrentValue->getString();
12793       var->addAttr(SectionAttr::CreateImplicit(
12794           Context, SectionName, Stack->CurrentPragmaLocation,
12795           AttributeCommonInfo::AS_Pragma, SectionAttr::Declspec_allocate));
12796       if (UnifySection(SectionName, SectionFlags, var))
12797         var->dropAttr<SectionAttr>();
12798     }
12799 
12800     // Apply the init_seg attribute if this has an initializer.  If the
12801     // initializer turns out to not be dynamic, we'll end up ignoring this
12802     // attribute.
12803     if (CurInitSeg && var->getInit())
12804       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
12805                                                CurInitSegLoc,
12806                                                AttributeCommonInfo::AS_Pragma));
12807   }
12808 
12809   // All the following checks are C++ only.
12810   if (!getLangOpts().CPlusPlus) {
12811       // If this variable must be emitted, add it as an initializer for the
12812       // current module.
12813      if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
12814        Context.addModuleInitializer(ModuleScopes.back().Module, var);
12815      return;
12816   }
12817 
12818   if (auto *DD = dyn_cast<DecompositionDecl>(var))
12819     CheckCompleteDecompositionDeclaration(DD);
12820 
12821   QualType type = var->getType();
12822   if (type->isDependentType()) return;
12823 
12824   if (var->hasAttr<BlocksAttr>())
12825     getCurFunction()->addByrefBlockVar(var);
12826 
12827   Expr *Init = var->getInit();
12828   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
12829   QualType baseType = Context.getBaseElementType(type);
12830 
12831   if (Init && !Init->isValueDependent()) {
12832     if (var->isConstexpr()) {
12833       SmallVector<PartialDiagnosticAt, 8> Notes;
12834       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
12835         SourceLocation DiagLoc = var->getLocation();
12836         // If the note doesn't add any useful information other than a source
12837         // location, fold it into the primary diagnostic.
12838         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
12839               diag::note_invalid_subexpr_in_const_expr) {
12840           DiagLoc = Notes[0].first;
12841           Notes.clear();
12842         }
12843         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
12844           << var << Init->getSourceRange();
12845         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
12846           Diag(Notes[I].first, Notes[I].second);
12847       }
12848     } else if (var->mightBeUsableInConstantExpressions(Context)) {
12849       // Check whether the initializer of a const variable of integral or
12850       // enumeration type is an ICE now, since we can't tell whether it was
12851       // initialized by a constant expression if we check later.
12852       var->checkInitIsICE();
12853     }
12854 
12855     // Don't emit further diagnostics about constexpr globals since they
12856     // were just diagnosed.
12857     if (!var->isConstexpr() && GlobalStorage && var->hasAttr<ConstInitAttr>()) {
12858       // FIXME: Need strict checking in C++03 here.
12859       bool DiagErr = getLangOpts().CPlusPlus11
12860           ? !var->checkInitIsICE() : !checkConstInit();
12861       if (DiagErr) {
12862         auto *Attr = var->getAttr<ConstInitAttr>();
12863         Diag(var->getLocation(), diag::err_require_constant_init_failed)
12864           << Init->getSourceRange();
12865         Diag(Attr->getLocation(),
12866              diag::note_declared_required_constant_init_here)
12867             << Attr->getRange() << Attr->isConstinit();
12868         if (getLangOpts().CPlusPlus11) {
12869           APValue Value;
12870           SmallVector<PartialDiagnosticAt, 8> Notes;
12871           Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes);
12872           for (auto &it : Notes)
12873             Diag(it.first, it.second);
12874         } else {
12875           Diag(CacheCulprit->getExprLoc(),
12876                diag::note_invalid_subexpr_in_const_expr)
12877               << CacheCulprit->getSourceRange();
12878         }
12879       }
12880     }
12881     else if (!var->isConstexpr() && IsGlobal &&
12882              !getDiagnostics().isIgnored(diag::warn_global_constructor,
12883                                     var->getLocation())) {
12884       // Warn about globals which don't have a constant initializer.  Don't
12885       // warn about globals with a non-trivial destructor because we already
12886       // warned about them.
12887       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
12888       if (!(RD && !RD->hasTrivialDestructor())) {
12889         if (!checkConstInit())
12890           Diag(var->getLocation(), diag::warn_global_constructor)
12891             << Init->getSourceRange();
12892       }
12893     }
12894   }
12895 
12896   // Require the destructor.
12897   if (const RecordType *recordType = baseType->getAs<RecordType>())
12898     FinalizeVarWithDestructor(var, recordType);
12899 
12900   // If this variable must be emitted, add it as an initializer for the current
12901   // module.
12902   if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
12903     Context.addModuleInitializer(ModuleScopes.back().Module, var);
12904 }
12905 
12906 /// Determines if a variable's alignment is dependent.
12907 static bool hasDependentAlignment(VarDecl *VD) {
12908   if (VD->getType()->isDependentType())
12909     return true;
12910   for (auto *I : VD->specific_attrs<AlignedAttr>())
12911     if (I->isAlignmentDependent())
12912       return true;
12913   return false;
12914 }
12915 
12916 /// Check if VD needs to be dllexport/dllimport due to being in a
12917 /// dllexport/import function.
12918 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
12919   assert(VD->isStaticLocal());
12920 
12921   auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
12922 
12923   // Find outermost function when VD is in lambda function.
12924   while (FD && !getDLLAttr(FD) &&
12925          !FD->hasAttr<DLLExportStaticLocalAttr>() &&
12926          !FD->hasAttr<DLLImportStaticLocalAttr>()) {
12927     FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
12928   }
12929 
12930   if (!FD)
12931     return;
12932 
12933   // Static locals inherit dll attributes from their function.
12934   if (Attr *A = getDLLAttr(FD)) {
12935     auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
12936     NewAttr->setInherited(true);
12937     VD->addAttr(NewAttr);
12938   } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
12939     auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
12940     NewAttr->setInherited(true);
12941     VD->addAttr(NewAttr);
12942 
12943     // Export this function to enforce exporting this static variable even
12944     // if it is not used in this compilation unit.
12945     if (!FD->hasAttr<DLLExportAttr>())
12946       FD->addAttr(NewAttr);
12947 
12948   } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
12949     auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
12950     NewAttr->setInherited(true);
12951     VD->addAttr(NewAttr);
12952   }
12953 }
12954 
12955 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
12956 /// any semantic actions necessary after any initializer has been attached.
12957 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
12958   // Note that we are no longer parsing the initializer for this declaration.
12959   ParsingInitForAutoVars.erase(ThisDecl);
12960 
12961   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
12962   if (!VD)
12963     return;
12964 
12965   // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
12966   if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
12967       !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
12968     if (PragmaClangBSSSection.Valid)
12969       VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
12970           Context, PragmaClangBSSSection.SectionName,
12971           PragmaClangBSSSection.PragmaLocation,
12972           AttributeCommonInfo::AS_Pragma));
12973     if (PragmaClangDataSection.Valid)
12974       VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
12975           Context, PragmaClangDataSection.SectionName,
12976           PragmaClangDataSection.PragmaLocation,
12977           AttributeCommonInfo::AS_Pragma));
12978     if (PragmaClangRodataSection.Valid)
12979       VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
12980           Context, PragmaClangRodataSection.SectionName,
12981           PragmaClangRodataSection.PragmaLocation,
12982           AttributeCommonInfo::AS_Pragma));
12983     if (PragmaClangRelroSection.Valid)
12984       VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
12985           Context, PragmaClangRelroSection.SectionName,
12986           PragmaClangRelroSection.PragmaLocation,
12987           AttributeCommonInfo::AS_Pragma));
12988   }
12989 
12990   if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
12991     for (auto *BD : DD->bindings()) {
12992       FinalizeDeclaration(BD);
12993     }
12994   }
12995 
12996   checkAttributesAfterMerging(*this, *VD);
12997 
12998   // Perform TLS alignment check here after attributes attached to the variable
12999   // which may affect the alignment have been processed. Only perform the check
13000   // if the target has a maximum TLS alignment (zero means no constraints).
13001   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
13002     // Protect the check so that it's not performed on dependent types and
13003     // dependent alignments (we can't determine the alignment in that case).
13004     if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
13005         !VD->isInvalidDecl()) {
13006       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
13007       if (Context.getDeclAlign(VD) > MaxAlignChars) {
13008         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
13009           << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
13010           << (unsigned)MaxAlignChars.getQuantity();
13011       }
13012     }
13013   }
13014 
13015   if (VD->isStaticLocal()) {
13016     CheckStaticLocalForDllExport(VD);
13017 
13018     if (dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
13019       // CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__
13020       // function, only __shared__ variables or variables without any device
13021       // memory qualifiers may be declared with static storage class.
13022       // Note: It is unclear how a function-scope non-const static variable
13023       // without device memory qualifier is implemented, therefore only static
13024       // const variable without device memory qualifier is allowed.
13025       [&]() {
13026         if (!getLangOpts().CUDA)
13027           return;
13028         if (VD->hasAttr<CUDASharedAttr>())
13029           return;
13030         if (VD->getType().isConstQualified() &&
13031             !(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
13032           return;
13033         if (CUDADiagIfDeviceCode(VD->getLocation(),
13034                                  diag::err_device_static_local_var)
13035             << CurrentCUDATarget())
13036           VD->setInvalidDecl();
13037       }();
13038     }
13039   }
13040 
13041   // Perform check for initializers of device-side global variables.
13042   // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
13043   // 7.5). We must also apply the same checks to all __shared__
13044   // variables whether they are local or not. CUDA also allows
13045   // constant initializers for __constant__ and __device__ variables.
13046   if (getLangOpts().CUDA)
13047     checkAllowedCUDAInitializer(VD);
13048 
13049   // Grab the dllimport or dllexport attribute off of the VarDecl.
13050   const InheritableAttr *DLLAttr = getDLLAttr(VD);
13051 
13052   // Imported static data members cannot be defined out-of-line.
13053   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
13054     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
13055         VD->isThisDeclarationADefinition()) {
13056       // We allow definitions of dllimport class template static data members
13057       // with a warning.
13058       CXXRecordDecl *Context =
13059         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
13060       bool IsClassTemplateMember =
13061           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
13062           Context->getDescribedClassTemplate();
13063 
13064       Diag(VD->getLocation(),
13065            IsClassTemplateMember
13066                ? diag::warn_attribute_dllimport_static_field_definition
13067                : diag::err_attribute_dllimport_static_field_definition);
13068       Diag(IA->getLocation(), diag::note_attribute);
13069       if (!IsClassTemplateMember)
13070         VD->setInvalidDecl();
13071     }
13072   }
13073 
13074   // dllimport/dllexport variables cannot be thread local, their TLS index
13075   // isn't exported with the variable.
13076   if (DLLAttr && VD->getTLSKind()) {
13077     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13078     if (F && getDLLAttr(F)) {
13079       assert(VD->isStaticLocal());
13080       // But if this is a static local in a dlimport/dllexport function, the
13081       // function will never be inlined, which means the var would never be
13082       // imported, so having it marked import/export is safe.
13083     } else {
13084       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
13085                                                                     << DLLAttr;
13086       VD->setInvalidDecl();
13087     }
13088   }
13089 
13090   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
13091     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
13092       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
13093       VD->dropAttr<UsedAttr>();
13094     }
13095   }
13096 
13097   const DeclContext *DC = VD->getDeclContext();
13098   // If there's a #pragma GCC visibility in scope, and this isn't a class
13099   // member, set the visibility of this variable.
13100   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
13101     AddPushedVisibilityAttribute(VD);
13102 
13103   // FIXME: Warn on unused var template partial specializations.
13104   if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
13105     MarkUnusedFileScopedDecl(VD);
13106 
13107   // Now we have parsed the initializer and can update the table of magic
13108   // tag values.
13109   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
13110       !VD->getType()->isIntegralOrEnumerationType())
13111     return;
13112 
13113   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
13114     const Expr *MagicValueExpr = VD->getInit();
13115     if (!MagicValueExpr) {
13116       continue;
13117     }
13118     llvm::APSInt MagicValueInt;
13119     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
13120       Diag(I->getRange().getBegin(),
13121            diag::err_type_tag_for_datatype_not_ice)
13122         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13123       continue;
13124     }
13125     if (MagicValueInt.getActiveBits() > 64) {
13126       Diag(I->getRange().getBegin(),
13127            diag::err_type_tag_for_datatype_too_large)
13128         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13129       continue;
13130     }
13131     uint64_t MagicValue = MagicValueInt.getZExtValue();
13132     RegisterTypeTagForDatatype(I->getArgumentKind(),
13133                                MagicValue,
13134                                I->getMatchingCType(),
13135                                I->getLayoutCompatible(),
13136                                I->getMustBeNull());
13137   }
13138 }
13139 
13140 static bool hasDeducedAuto(DeclaratorDecl *DD) {
13141   auto *VD = dyn_cast<VarDecl>(DD);
13142   return VD && !VD->getType()->hasAutoForTrailingReturnType();
13143 }
13144 
13145 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
13146                                                    ArrayRef<Decl *> Group) {
13147   SmallVector<Decl*, 8> Decls;
13148 
13149   if (DS.isTypeSpecOwned())
13150     Decls.push_back(DS.getRepAsDecl());
13151 
13152   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
13153   DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
13154   bool DiagnosedMultipleDecomps = false;
13155   DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
13156   bool DiagnosedNonDeducedAuto = false;
13157 
13158   for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13159     if (Decl *D = Group[i]) {
13160       // For declarators, there are some additional syntactic-ish checks we need
13161       // to perform.
13162       if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
13163         if (!FirstDeclaratorInGroup)
13164           FirstDeclaratorInGroup = DD;
13165         if (!FirstDecompDeclaratorInGroup)
13166           FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
13167         if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
13168             !hasDeducedAuto(DD))
13169           FirstNonDeducedAutoInGroup = DD;
13170 
13171         if (FirstDeclaratorInGroup != DD) {
13172           // A decomposition declaration cannot be combined with any other
13173           // declaration in the same group.
13174           if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
13175             Diag(FirstDecompDeclaratorInGroup->getLocation(),
13176                  diag::err_decomp_decl_not_alone)
13177                 << FirstDeclaratorInGroup->getSourceRange()
13178                 << DD->getSourceRange();
13179             DiagnosedMultipleDecomps = true;
13180           }
13181 
13182           // A declarator that uses 'auto' in any way other than to declare a
13183           // variable with a deduced type cannot be combined with any other
13184           // declarator in the same group.
13185           if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
13186             Diag(FirstNonDeducedAutoInGroup->getLocation(),
13187                  diag::err_auto_non_deduced_not_alone)
13188                 << FirstNonDeducedAutoInGroup->getType()
13189                        ->hasAutoForTrailingReturnType()
13190                 << FirstDeclaratorInGroup->getSourceRange()
13191                 << DD->getSourceRange();
13192             DiagnosedNonDeducedAuto = true;
13193           }
13194         }
13195       }
13196 
13197       Decls.push_back(D);
13198     }
13199   }
13200 
13201   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
13202     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
13203       handleTagNumbering(Tag, S);
13204       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
13205           getLangOpts().CPlusPlus)
13206         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
13207     }
13208   }
13209 
13210   return BuildDeclaratorGroup(Decls);
13211 }
13212 
13213 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
13214 /// group, performing any necessary semantic checking.
13215 Sema::DeclGroupPtrTy
13216 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
13217   // C++14 [dcl.spec.auto]p7: (DR1347)
13218   //   If the type that replaces the placeholder type is not the same in each
13219   //   deduction, the program is ill-formed.
13220   if (Group.size() > 1) {
13221     QualType Deduced;
13222     VarDecl *DeducedDecl = nullptr;
13223     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13224       VarDecl *D = dyn_cast<VarDecl>(Group[i]);
13225       if (!D || D->isInvalidDecl())
13226         break;
13227       DeducedType *DT = D->getType()->getContainedDeducedType();
13228       if (!DT || DT->getDeducedType().isNull())
13229         continue;
13230       if (Deduced.isNull()) {
13231         Deduced = DT->getDeducedType();
13232         DeducedDecl = D;
13233       } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
13234         auto *AT = dyn_cast<AutoType>(DT);
13235         auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
13236                         diag::err_auto_different_deductions)
13237                    << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced
13238                    << DeducedDecl->getDeclName() << DT->getDeducedType()
13239                    << D->getDeclName();
13240         if (DeducedDecl->hasInit())
13241           Dia << DeducedDecl->getInit()->getSourceRange();
13242         if (D->getInit())
13243           Dia << D->getInit()->getSourceRange();
13244         D->setInvalidDecl();
13245         break;
13246       }
13247     }
13248   }
13249 
13250   ActOnDocumentableDecls(Group);
13251 
13252   return DeclGroupPtrTy::make(
13253       DeclGroupRef::Create(Context, Group.data(), Group.size()));
13254 }
13255 
13256 void Sema::ActOnDocumentableDecl(Decl *D) {
13257   ActOnDocumentableDecls(D);
13258 }
13259 
13260 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
13261   // Don't parse the comment if Doxygen diagnostics are ignored.
13262   if (Group.empty() || !Group[0])
13263     return;
13264 
13265   if (Diags.isIgnored(diag::warn_doc_param_not_found,
13266                       Group[0]->getLocation()) &&
13267       Diags.isIgnored(diag::warn_unknown_comment_command_name,
13268                       Group[0]->getLocation()))
13269     return;
13270 
13271   if (Group.size() >= 2) {
13272     // This is a decl group.  Normally it will contain only declarations
13273     // produced from declarator list.  But in case we have any definitions or
13274     // additional declaration references:
13275     //   'typedef struct S {} S;'
13276     //   'typedef struct S *S;'
13277     //   'struct S *pS;'
13278     // FinalizeDeclaratorGroup adds these as separate declarations.
13279     Decl *MaybeTagDecl = Group[0];
13280     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
13281       Group = Group.slice(1);
13282     }
13283   }
13284 
13285   // FIMXE: We assume every Decl in the group is in the same file.
13286   // This is false when preprocessor constructs the group from decls in
13287   // different files (e. g. macros or #include).
13288   Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
13289 }
13290 
13291 /// Common checks for a parameter-declaration that should apply to both function
13292 /// parameters and non-type template parameters.
13293 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
13294   // Check that there are no default arguments inside the type of this
13295   // parameter.
13296   if (getLangOpts().CPlusPlus)
13297     CheckExtraCXXDefaultArguments(D);
13298 
13299   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
13300   if (D.getCXXScopeSpec().isSet()) {
13301     Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
13302       << D.getCXXScopeSpec().getRange();
13303   }
13304 
13305   // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
13306   // simple identifier except [...irrelevant cases...].
13307   switch (D.getName().getKind()) {
13308   case UnqualifiedIdKind::IK_Identifier:
13309     break;
13310 
13311   case UnqualifiedIdKind::IK_OperatorFunctionId:
13312   case UnqualifiedIdKind::IK_ConversionFunctionId:
13313   case UnqualifiedIdKind::IK_LiteralOperatorId:
13314   case UnqualifiedIdKind::IK_ConstructorName:
13315   case UnqualifiedIdKind::IK_DestructorName:
13316   case UnqualifiedIdKind::IK_ImplicitSelfParam:
13317   case UnqualifiedIdKind::IK_DeductionGuideName:
13318     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
13319       << GetNameForDeclarator(D).getName();
13320     break;
13321 
13322   case UnqualifiedIdKind::IK_TemplateId:
13323   case UnqualifiedIdKind::IK_ConstructorTemplateId:
13324     // GetNameForDeclarator would not produce a useful name in this case.
13325     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
13326     break;
13327   }
13328 }
13329 
13330 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
13331 /// to introduce parameters into function prototype scope.
13332 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
13333   const DeclSpec &DS = D.getDeclSpec();
13334 
13335   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
13336 
13337   // C++03 [dcl.stc]p2 also permits 'auto'.
13338   StorageClass SC = SC_None;
13339   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
13340     SC = SC_Register;
13341     // In C++11, the 'register' storage class specifier is deprecated.
13342     // In C++17, it is not allowed, but we tolerate it as an extension.
13343     if (getLangOpts().CPlusPlus11) {
13344       Diag(DS.getStorageClassSpecLoc(),
13345            getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
13346                                      : diag::warn_deprecated_register)
13347         << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
13348     }
13349   } else if (getLangOpts().CPlusPlus &&
13350              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
13351     SC = SC_Auto;
13352   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
13353     Diag(DS.getStorageClassSpecLoc(),
13354          diag::err_invalid_storage_class_in_func_decl);
13355     D.getMutableDeclSpec().ClearStorageClassSpecs();
13356   }
13357 
13358   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
13359     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
13360       << DeclSpec::getSpecifierName(TSCS);
13361   if (DS.isInlineSpecified())
13362     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
13363         << getLangOpts().CPlusPlus17;
13364   if (DS.hasConstexprSpecifier())
13365     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
13366         << 0 << D.getDeclSpec().getConstexprSpecifier();
13367 
13368   DiagnoseFunctionSpecifiers(DS);
13369 
13370   CheckFunctionOrTemplateParamDeclarator(S, D);
13371 
13372   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13373   QualType parmDeclType = TInfo->getType();
13374 
13375   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
13376   IdentifierInfo *II = D.getIdentifier();
13377   if (II) {
13378     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
13379                    ForVisibleRedeclaration);
13380     LookupName(R, S);
13381     if (R.isSingleResult()) {
13382       NamedDecl *PrevDecl = R.getFoundDecl();
13383       if (PrevDecl->isTemplateParameter()) {
13384         // Maybe we will complain about the shadowed template parameter.
13385         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
13386         // Just pretend that we didn't see the previous declaration.
13387         PrevDecl = nullptr;
13388       } else if (S->isDeclScope(PrevDecl)) {
13389         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
13390         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
13391 
13392         // Recover by removing the name
13393         II = nullptr;
13394         D.SetIdentifier(nullptr, D.getIdentifierLoc());
13395         D.setInvalidType(true);
13396       }
13397     }
13398   }
13399 
13400   // Temporarily put parameter variables in the translation unit, not
13401   // the enclosing context.  This prevents them from accidentally
13402   // looking like class members in C++.
13403   ParmVarDecl *New =
13404       CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
13405                      D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
13406 
13407   if (D.isInvalidType())
13408     New->setInvalidDecl();
13409 
13410   assert(S->isFunctionPrototypeScope());
13411   assert(S->getFunctionPrototypeDepth() >= 1);
13412   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
13413                     S->getNextFunctionPrototypeIndex());
13414 
13415   // Add the parameter declaration into this scope.
13416   S->AddDecl(New);
13417   if (II)
13418     IdResolver.AddDecl(New);
13419 
13420   ProcessDeclAttributes(S, New, D);
13421 
13422   if (D.getDeclSpec().isModulePrivateSpecified())
13423     Diag(New->getLocation(), diag::err_module_private_local)
13424       << 1 << New->getDeclName()
13425       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13426       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13427 
13428   if (New->hasAttr<BlocksAttr>()) {
13429     Diag(New->getLocation(), diag::err_block_on_nonlocal);
13430   }
13431 
13432   if (getLangOpts().OpenCL)
13433     deduceOpenCLAddressSpace(New);
13434 
13435   return New;
13436 }
13437 
13438 /// Synthesizes a variable for a parameter arising from a
13439 /// typedef.
13440 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
13441                                               SourceLocation Loc,
13442                                               QualType T) {
13443   /* FIXME: setting StartLoc == Loc.
13444      Would it be worth to modify callers so as to provide proper source
13445      location for the unnamed parameters, embedding the parameter's type? */
13446   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
13447                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
13448                                            SC_None, nullptr);
13449   Param->setImplicit();
13450   return Param;
13451 }
13452 
13453 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
13454   // Don't diagnose unused-parameter errors in template instantiations; we
13455   // will already have done so in the template itself.
13456   if (inTemplateInstantiation())
13457     return;
13458 
13459   for (const ParmVarDecl *Parameter : Parameters) {
13460     if (!Parameter->isReferenced() && Parameter->getDeclName() &&
13461         !Parameter->hasAttr<UnusedAttr>()) {
13462       Diag(Parameter->getLocation(), diag::warn_unused_parameter)
13463         << Parameter->getDeclName();
13464     }
13465   }
13466 }
13467 
13468 void Sema::DiagnoseSizeOfParametersAndReturnValue(
13469     ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
13470   if (LangOpts.NumLargeByValueCopy == 0) // No check.
13471     return;
13472 
13473   // Warn if the return value is pass-by-value and larger than the specified
13474   // threshold.
13475   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
13476     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
13477     if (Size > LangOpts.NumLargeByValueCopy)
13478       Diag(D->getLocation(), diag::warn_return_value_size)
13479           << D->getDeclName() << Size;
13480   }
13481 
13482   // Warn if any parameter is pass-by-value and larger than the specified
13483   // threshold.
13484   for (const ParmVarDecl *Parameter : Parameters) {
13485     QualType T = Parameter->getType();
13486     if (T->isDependentType() || !T.isPODType(Context))
13487       continue;
13488     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
13489     if (Size > LangOpts.NumLargeByValueCopy)
13490       Diag(Parameter->getLocation(), diag::warn_parameter_size)
13491           << Parameter->getDeclName() << Size;
13492   }
13493 }
13494 
13495 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
13496                                   SourceLocation NameLoc, IdentifierInfo *Name,
13497                                   QualType T, TypeSourceInfo *TSInfo,
13498                                   StorageClass SC) {
13499   // In ARC, infer a lifetime qualifier for appropriate parameter types.
13500   if (getLangOpts().ObjCAutoRefCount &&
13501       T.getObjCLifetime() == Qualifiers::OCL_None &&
13502       T->isObjCLifetimeType()) {
13503 
13504     Qualifiers::ObjCLifetime lifetime;
13505 
13506     // Special cases for arrays:
13507     //   - if it's const, use __unsafe_unretained
13508     //   - otherwise, it's an error
13509     if (T->isArrayType()) {
13510       if (!T.isConstQualified()) {
13511         if (DelayedDiagnostics.shouldDelayDiagnostics())
13512           DelayedDiagnostics.add(
13513               sema::DelayedDiagnostic::makeForbiddenType(
13514               NameLoc, diag::err_arc_array_param_no_ownership, T, false));
13515         else
13516           Diag(NameLoc, diag::err_arc_array_param_no_ownership)
13517               << TSInfo->getTypeLoc().getSourceRange();
13518       }
13519       lifetime = Qualifiers::OCL_ExplicitNone;
13520     } else {
13521       lifetime = T->getObjCARCImplicitLifetime();
13522     }
13523     T = Context.getLifetimeQualifiedType(T, lifetime);
13524   }
13525 
13526   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
13527                                          Context.getAdjustedParameterType(T),
13528                                          TSInfo, SC, nullptr);
13529 
13530   // Make a note if we created a new pack in the scope of a lambda, so that
13531   // we know that references to that pack must also be expanded within the
13532   // lambda scope.
13533   if (New->isParameterPack())
13534     if (auto *LSI = getEnclosingLambda())
13535       LSI->LocalPacks.push_back(New);
13536 
13537   if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
13538       New->getType().hasNonTrivialToPrimitiveCopyCUnion())
13539     checkNonTrivialCUnion(New->getType(), New->getLocation(),
13540                           NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
13541 
13542   // Parameters can not be abstract class types.
13543   // For record types, this is done by the AbstractClassUsageDiagnoser once
13544   // the class has been completely parsed.
13545   if (!CurContext->isRecord() &&
13546       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
13547                              AbstractParamType))
13548     New->setInvalidDecl();
13549 
13550   // Parameter declarators cannot be interface types. All ObjC objects are
13551   // passed by reference.
13552   if (T->isObjCObjectType()) {
13553     SourceLocation TypeEndLoc =
13554         getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
13555     Diag(NameLoc,
13556          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
13557       << FixItHint::CreateInsertion(TypeEndLoc, "*");
13558     T = Context.getObjCObjectPointerType(T);
13559     New->setType(T);
13560   }
13561 
13562   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
13563   // duration shall not be qualified by an address-space qualifier."
13564   // Since all parameters have automatic store duration, they can not have
13565   // an address space.
13566   if (T.getAddressSpace() != LangAS::Default &&
13567       // OpenCL allows function arguments declared to be an array of a type
13568       // to be qualified with an address space.
13569       !(getLangOpts().OpenCL &&
13570         (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
13571     Diag(NameLoc, diag::err_arg_with_address_space);
13572     New->setInvalidDecl();
13573   }
13574 
13575   return New;
13576 }
13577 
13578 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
13579                                            SourceLocation LocAfterDecls) {
13580   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
13581 
13582   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
13583   // for a K&R function.
13584   if (!FTI.hasPrototype) {
13585     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
13586       --i;
13587       if (FTI.Params[i].Param == nullptr) {
13588         SmallString<256> Code;
13589         llvm::raw_svector_ostream(Code)
13590             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
13591         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
13592             << FTI.Params[i].Ident
13593             << FixItHint::CreateInsertion(LocAfterDecls, Code);
13594 
13595         // Implicitly declare the argument as type 'int' for lack of a better
13596         // type.
13597         AttributeFactory attrs;
13598         DeclSpec DS(attrs);
13599         const char* PrevSpec; // unused
13600         unsigned DiagID; // unused
13601         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
13602                            DiagID, Context.getPrintingPolicy());
13603         // Use the identifier location for the type source range.
13604         DS.SetRangeStart(FTI.Params[i].IdentLoc);
13605         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
13606         Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext);
13607         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
13608         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
13609       }
13610     }
13611   }
13612 }
13613 
13614 Decl *
13615 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
13616                               MultiTemplateParamsArg TemplateParameterLists,
13617                               SkipBodyInfo *SkipBody) {
13618   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
13619   assert(D.isFunctionDeclarator() && "Not a function declarator!");
13620   Scope *ParentScope = FnBodyScope->getParent();
13621 
13622   // Check if we are in an `omp begin/end declare variant` scope. If we are, and
13623   // we define a non-templated function definition, we will create a declaration
13624   // instead (=BaseFD), and emit the definition with a mangled name afterwards.
13625   // The base function declaration will have the equivalent of an `omp declare
13626   // variant` annotation which specifies the mangled definition as a
13627   // specialization function under the OpenMP context defined as part of the
13628   // `omp begin declare variant`.
13629   FunctionDecl *BaseFD = nullptr;
13630   if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope() &&
13631       TemplateParameterLists.empty())
13632     BaseFD = ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
13633         ParentScope, D);
13634 
13635   D.setFunctionDefinitionKind(FDK_Definition);
13636   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
13637   Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
13638 
13639   if (BaseFD)
13640     ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(
13641         cast<FunctionDecl>(Dcl), BaseFD);
13642 
13643   return Dcl;
13644 }
13645 
13646 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
13647   Consumer.HandleInlineFunctionDefinition(D);
13648 }
13649 
13650 static bool
13651 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
13652                                 const FunctionDecl *&PossiblePrototype) {
13653   // Don't warn about invalid declarations.
13654   if (FD->isInvalidDecl())
13655     return false;
13656 
13657   // Or declarations that aren't global.
13658   if (!FD->isGlobal())
13659     return false;
13660 
13661   // Don't warn about C++ member functions.
13662   if (isa<CXXMethodDecl>(FD))
13663     return false;
13664 
13665   // Don't warn about 'main'.
13666   if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
13667     if (IdentifierInfo *II = FD->getIdentifier())
13668       if (II->isStr("main"))
13669         return false;
13670 
13671   // Don't warn about inline functions.
13672   if (FD->isInlined())
13673     return false;
13674 
13675   // Don't warn about function templates.
13676   if (FD->getDescribedFunctionTemplate())
13677     return false;
13678 
13679   // Don't warn about function template specializations.
13680   if (FD->isFunctionTemplateSpecialization())
13681     return false;
13682 
13683   // Don't warn for OpenCL kernels.
13684   if (FD->hasAttr<OpenCLKernelAttr>())
13685     return false;
13686 
13687   // Don't warn on explicitly deleted functions.
13688   if (FD->isDeleted())
13689     return false;
13690 
13691   for (const FunctionDecl *Prev = FD->getPreviousDecl();
13692        Prev; Prev = Prev->getPreviousDecl()) {
13693     // Ignore any declarations that occur in function or method
13694     // scope, because they aren't visible from the header.
13695     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
13696       continue;
13697 
13698     PossiblePrototype = Prev;
13699     return Prev->getType()->isFunctionNoProtoType();
13700   }
13701 
13702   return true;
13703 }
13704 
13705 void
13706 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
13707                                    const FunctionDecl *EffectiveDefinition,
13708                                    SkipBodyInfo *SkipBody) {
13709   const FunctionDecl *Definition = EffectiveDefinition;
13710   if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) {
13711     // If this is a friend function defined in a class template, it does not
13712     // have a body until it is used, nevertheless it is a definition, see
13713     // [temp.inst]p2:
13714     //
13715     // ... for the purpose of determining whether an instantiated redeclaration
13716     // is valid according to [basic.def.odr] and [class.mem], a declaration that
13717     // corresponds to a definition in the template is considered to be a
13718     // definition.
13719     //
13720     // The following code must produce redefinition error:
13721     //
13722     //     template<typename T> struct C20 { friend void func_20() {} };
13723     //     C20<int> c20i;
13724     //     void func_20() {}
13725     //
13726     for (auto I : FD->redecls()) {
13727       if (I != FD && !I->isInvalidDecl() &&
13728           I->getFriendObjectKind() != Decl::FOK_None) {
13729         if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) {
13730           if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
13731             // A merged copy of the same function, instantiated as a member of
13732             // the same class, is OK.
13733             if (declaresSameEntity(OrigFD, Original) &&
13734                 declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()),
13735                                    cast<Decl>(FD->getLexicalDeclContext())))
13736               continue;
13737           }
13738 
13739           if (Original->isThisDeclarationADefinition()) {
13740             Definition = I;
13741             break;
13742           }
13743         }
13744       }
13745     }
13746   }
13747 
13748   if (!Definition)
13749     // Similar to friend functions a friend function template may be a
13750     // definition and do not have a body if it is instantiated in a class
13751     // template.
13752     if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) {
13753       for (auto I : FTD->redecls()) {
13754         auto D = cast<FunctionTemplateDecl>(I);
13755         if (D != FTD) {
13756           assert(!D->isThisDeclarationADefinition() &&
13757                  "More than one definition in redeclaration chain");
13758           if (D->getFriendObjectKind() != Decl::FOK_None)
13759             if (FunctionTemplateDecl *FT =
13760                                        D->getInstantiatedFromMemberTemplate()) {
13761               if (FT->isThisDeclarationADefinition()) {
13762                 Definition = D->getTemplatedDecl();
13763                 break;
13764               }
13765             }
13766         }
13767       }
13768     }
13769 
13770   if (!Definition)
13771     return;
13772 
13773   if (canRedefineFunction(Definition, getLangOpts()))
13774     return;
13775 
13776   // Don't emit an error when this is redefinition of a typo-corrected
13777   // definition.
13778   if (TypoCorrectedFunctionDefinitions.count(Definition))
13779     return;
13780 
13781   // If we don't have a visible definition of the function, and it's inline or
13782   // a template, skip the new definition.
13783   if (SkipBody && !hasVisibleDefinition(Definition) &&
13784       (Definition->getFormalLinkage() == InternalLinkage ||
13785        Definition->isInlined() ||
13786        Definition->getDescribedFunctionTemplate() ||
13787        Definition->getNumTemplateParameterLists())) {
13788     SkipBody->ShouldSkip = true;
13789     SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
13790     if (auto *TD = Definition->getDescribedFunctionTemplate())
13791       makeMergedDefinitionVisible(TD);
13792     makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
13793     return;
13794   }
13795 
13796   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
13797       Definition->getStorageClass() == SC_Extern)
13798     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
13799         << FD->getDeclName() << getLangOpts().CPlusPlus;
13800   else
13801     Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
13802 
13803   Diag(Definition->getLocation(), diag::note_previous_definition);
13804   FD->setInvalidDecl();
13805 }
13806 
13807 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
13808                                    Sema &S) {
13809   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
13810 
13811   LambdaScopeInfo *LSI = S.PushLambdaScope();
13812   LSI->CallOperator = CallOperator;
13813   LSI->Lambda = LambdaClass;
13814   LSI->ReturnType = CallOperator->getReturnType();
13815   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
13816 
13817   if (LCD == LCD_None)
13818     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
13819   else if (LCD == LCD_ByCopy)
13820     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
13821   else if (LCD == LCD_ByRef)
13822     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
13823   DeclarationNameInfo DNI = CallOperator->getNameInfo();
13824 
13825   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
13826   LSI->Mutable = !CallOperator->isConst();
13827 
13828   // Add the captures to the LSI so they can be noted as already
13829   // captured within tryCaptureVar.
13830   auto I = LambdaClass->field_begin();
13831   for (const auto &C : LambdaClass->captures()) {
13832     if (C.capturesVariable()) {
13833       VarDecl *VD = C.getCapturedVar();
13834       if (VD->isInitCapture())
13835         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
13836       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
13837       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
13838           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
13839           /*EllipsisLoc*/C.isPackExpansion()
13840                          ? C.getEllipsisLoc() : SourceLocation(),
13841           I->getType(), /*Invalid*/false);
13842 
13843     } else if (C.capturesThis()) {
13844       LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
13845                           C.getCaptureKind() == LCK_StarThis);
13846     } else {
13847       LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
13848                              I->getType());
13849     }
13850     ++I;
13851   }
13852 }
13853 
13854 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
13855                                     SkipBodyInfo *SkipBody) {
13856   if (!D) {
13857     // Parsing the function declaration failed in some way. Push on a fake scope
13858     // anyway so we can try to parse the function body.
13859     PushFunctionScope();
13860     PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
13861     return D;
13862   }
13863 
13864   FunctionDecl *FD = nullptr;
13865 
13866   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
13867     FD = FunTmpl->getTemplatedDecl();
13868   else
13869     FD = cast<FunctionDecl>(D);
13870 
13871   // Do not push if it is a lambda because one is already pushed when building
13872   // the lambda in ActOnStartOfLambdaDefinition().
13873   if (!isLambdaCallOperator(FD))
13874     PushExpressionEvaluationContext(
13875         FD->isConsteval() ? ExpressionEvaluationContext::ConstantEvaluated
13876                           : ExprEvalContexts.back().Context);
13877 
13878   // Check for defining attributes before the check for redefinition.
13879   if (const auto *Attr = FD->getAttr<AliasAttr>()) {
13880     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
13881     FD->dropAttr<AliasAttr>();
13882     FD->setInvalidDecl();
13883   }
13884   if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
13885     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
13886     FD->dropAttr<IFuncAttr>();
13887     FD->setInvalidDecl();
13888   }
13889 
13890   // See if this is a redefinition. If 'will have body' is already set, then
13891   // these checks were already performed when it was set.
13892   if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) {
13893     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
13894 
13895     // If we're skipping the body, we're done. Don't enter the scope.
13896     if (SkipBody && SkipBody->ShouldSkip)
13897       return D;
13898   }
13899 
13900   // Mark this function as "will have a body eventually".  This lets users to
13901   // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
13902   // this function.
13903   FD->setWillHaveBody();
13904 
13905   // If we are instantiating a generic lambda call operator, push
13906   // a LambdaScopeInfo onto the function stack.  But use the information
13907   // that's already been calculated (ActOnLambdaExpr) to prime the current
13908   // LambdaScopeInfo.
13909   // When the template operator is being specialized, the LambdaScopeInfo,
13910   // has to be properly restored so that tryCaptureVariable doesn't try
13911   // and capture any new variables. In addition when calculating potential
13912   // captures during transformation of nested lambdas, it is necessary to
13913   // have the LSI properly restored.
13914   if (isGenericLambdaCallOperatorSpecialization(FD)) {
13915     assert(inTemplateInstantiation() &&
13916            "There should be an active template instantiation on the stack "
13917            "when instantiating a generic lambda!");
13918     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
13919   } else {
13920     // Enter a new function scope
13921     PushFunctionScope();
13922   }
13923 
13924   // Builtin functions cannot be defined.
13925   if (unsigned BuiltinID = FD->getBuiltinID()) {
13926     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
13927         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
13928       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
13929       FD->setInvalidDecl();
13930     }
13931   }
13932 
13933   // The return type of a function definition must be complete
13934   // (C99 6.9.1p3, C++ [dcl.fct]p6).
13935   QualType ResultType = FD->getReturnType();
13936   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
13937       !FD->isInvalidDecl() &&
13938       RequireCompleteType(FD->getLocation(), ResultType,
13939                           diag::err_func_def_incomplete_result))
13940     FD->setInvalidDecl();
13941 
13942   if (FnBodyScope)
13943     PushDeclContext(FnBodyScope, FD);
13944 
13945   // Check the validity of our function parameters
13946   CheckParmsForFunctionDef(FD->parameters(),
13947                            /*CheckParameterNames=*/true);
13948 
13949   // Add non-parameter declarations already in the function to the current
13950   // scope.
13951   if (FnBodyScope) {
13952     for (Decl *NPD : FD->decls()) {
13953       auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
13954       if (!NonParmDecl)
13955         continue;
13956       assert(!isa<ParmVarDecl>(NonParmDecl) &&
13957              "parameters should not be in newly created FD yet");
13958 
13959       // If the decl has a name, make it accessible in the current scope.
13960       if (NonParmDecl->getDeclName())
13961         PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
13962 
13963       // Similarly, dive into enums and fish their constants out, making them
13964       // accessible in this scope.
13965       if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
13966         for (auto *EI : ED->enumerators())
13967           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
13968       }
13969     }
13970   }
13971 
13972   // Introduce our parameters into the function scope
13973   for (auto Param : FD->parameters()) {
13974     Param->setOwningFunction(FD);
13975 
13976     // If this has an identifier, add it to the scope stack.
13977     if (Param->getIdentifier() && FnBodyScope) {
13978       CheckShadow(FnBodyScope, Param);
13979 
13980       PushOnScopeChains(Param, FnBodyScope);
13981     }
13982   }
13983 
13984   // Ensure that the function's exception specification is instantiated.
13985   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
13986     ResolveExceptionSpec(D->getLocation(), FPT);
13987 
13988   // dllimport cannot be applied to non-inline function definitions.
13989   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
13990       !FD->isTemplateInstantiation()) {
13991     assert(!FD->hasAttr<DLLExportAttr>());
13992     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
13993     FD->setInvalidDecl();
13994     return D;
13995   }
13996   // We want to attach documentation to original Decl (which might be
13997   // a function template).
13998   ActOnDocumentableDecl(D);
13999   if (getCurLexicalContext()->isObjCContainer() &&
14000       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
14001       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
14002     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
14003 
14004   return D;
14005 }
14006 
14007 /// Given the set of return statements within a function body,
14008 /// compute the variables that are subject to the named return value
14009 /// optimization.
14010 ///
14011 /// Each of the variables that is subject to the named return value
14012 /// optimization will be marked as NRVO variables in the AST, and any
14013 /// return statement that has a marked NRVO variable as its NRVO candidate can
14014 /// use the named return value optimization.
14015 ///
14016 /// This function applies a very simplistic algorithm for NRVO: if every return
14017 /// statement in the scope of a variable has the same NRVO candidate, that
14018 /// candidate is an NRVO variable.
14019 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
14020   ReturnStmt **Returns = Scope->Returns.data();
14021 
14022   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
14023     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
14024       if (!NRVOCandidate->isNRVOVariable())
14025         Returns[I]->setNRVOCandidate(nullptr);
14026     }
14027   }
14028 }
14029 
14030 bool Sema::canDelayFunctionBody(const Declarator &D) {
14031   // We can't delay parsing the body of a constexpr function template (yet).
14032   if (D.getDeclSpec().hasConstexprSpecifier())
14033     return false;
14034 
14035   // We can't delay parsing the body of a function template with a deduced
14036   // return type (yet).
14037   if (D.getDeclSpec().hasAutoTypeSpec()) {
14038     // If the placeholder introduces a non-deduced trailing return type,
14039     // we can still delay parsing it.
14040     if (D.getNumTypeObjects()) {
14041       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
14042       if (Outer.Kind == DeclaratorChunk::Function &&
14043           Outer.Fun.hasTrailingReturnType()) {
14044         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
14045         return Ty.isNull() || !Ty->isUndeducedType();
14046       }
14047     }
14048     return false;
14049   }
14050 
14051   return true;
14052 }
14053 
14054 bool Sema::canSkipFunctionBody(Decl *D) {
14055   // We cannot skip the body of a function (or function template) which is
14056   // constexpr, since we may need to evaluate its body in order to parse the
14057   // rest of the file.
14058   // We cannot skip the body of a function with an undeduced return type,
14059   // because any callers of that function need to know the type.
14060   if (const FunctionDecl *FD = D->getAsFunction()) {
14061     if (FD->isConstexpr())
14062       return false;
14063     // We can't simply call Type::isUndeducedType here, because inside template
14064     // auto can be deduced to a dependent type, which is not considered
14065     // "undeduced".
14066     if (FD->getReturnType()->getContainedDeducedType())
14067       return false;
14068   }
14069   return Consumer.shouldSkipFunctionBody(D);
14070 }
14071 
14072 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
14073   if (!Decl)
14074     return nullptr;
14075   if (FunctionDecl *FD = Decl->getAsFunction())
14076     FD->setHasSkippedBody();
14077   else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
14078     MD->setHasSkippedBody();
14079   return Decl;
14080 }
14081 
14082 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
14083   return ActOnFinishFunctionBody(D, BodyArg, false);
14084 }
14085 
14086 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
14087 /// body.
14088 class ExitFunctionBodyRAII {
14089 public:
14090   ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
14091   ~ExitFunctionBodyRAII() {
14092     if (!IsLambda)
14093       S.PopExpressionEvaluationContext();
14094   }
14095 
14096 private:
14097   Sema &S;
14098   bool IsLambda = false;
14099 };
14100 
14101 static void diagnoseImplicitlyRetainedSelf(Sema &S) {
14102   llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
14103 
14104   auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
14105     if (EscapeInfo.count(BD))
14106       return EscapeInfo[BD];
14107 
14108     bool R = false;
14109     const BlockDecl *CurBD = BD;
14110 
14111     do {
14112       R = !CurBD->doesNotEscape();
14113       if (R)
14114         break;
14115       CurBD = CurBD->getParent()->getInnermostBlockDecl();
14116     } while (CurBD);
14117 
14118     return EscapeInfo[BD] = R;
14119   };
14120 
14121   // If the location where 'self' is implicitly retained is inside a escaping
14122   // block, emit a diagnostic.
14123   for (const std::pair<SourceLocation, const BlockDecl *> &P :
14124        S.ImplicitlyRetainedSelfLocs)
14125     if (IsOrNestedInEscapingBlock(P.second))
14126       S.Diag(P.first, diag::warn_implicitly_retains_self)
14127           << FixItHint::CreateInsertion(P.first, "self->");
14128 }
14129 
14130 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
14131                                     bool IsInstantiation) {
14132   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
14133 
14134   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
14135   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
14136 
14137   if (getLangOpts().Coroutines && getCurFunction()->isCoroutine())
14138     CheckCompletedCoroutineBody(FD, Body);
14139 
14140   // Do not call PopExpressionEvaluationContext() if it is a lambda because one
14141   // is already popped when finishing the lambda in BuildLambdaExpr(). This is
14142   // meant to pop the context added in ActOnStartOfFunctionDef().
14143   ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
14144 
14145   if (FD) {
14146     FD->setBody(Body);
14147     FD->setWillHaveBody(false);
14148 
14149     if (getLangOpts().CPlusPlus14) {
14150       if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
14151           FD->getReturnType()->isUndeducedType()) {
14152         // If the function has a deduced result type but contains no 'return'
14153         // statements, the result type as written must be exactly 'auto', and
14154         // the deduced result type is 'void'.
14155         if (!FD->getReturnType()->getAs<AutoType>()) {
14156           Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
14157               << FD->getReturnType();
14158           FD->setInvalidDecl();
14159         } else {
14160           // Substitute 'void' for the 'auto' in the type.
14161           TypeLoc ResultType = getReturnTypeLoc(FD);
14162           Context.adjustDeducedFunctionResultType(
14163               FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
14164         }
14165       }
14166     } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
14167       // In C++11, we don't use 'auto' deduction rules for lambda call
14168       // operators because we don't support return type deduction.
14169       auto *LSI = getCurLambda();
14170       if (LSI->HasImplicitReturnType) {
14171         deduceClosureReturnType(*LSI);
14172 
14173         // C++11 [expr.prim.lambda]p4:
14174         //   [...] if there are no return statements in the compound-statement
14175         //   [the deduced type is] the type void
14176         QualType RetType =
14177             LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
14178 
14179         // Update the return type to the deduced type.
14180         const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
14181         FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
14182                                             Proto->getExtProtoInfo()));
14183       }
14184     }
14185 
14186     // If the function implicitly returns zero (like 'main') or is naked,
14187     // don't complain about missing return statements.
14188     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
14189       WP.disableCheckFallThrough();
14190 
14191     // MSVC permits the use of pure specifier (=0) on function definition,
14192     // defined at class scope, warn about this non-standard construct.
14193     if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
14194       Diag(FD->getLocation(), diag::ext_pure_function_definition);
14195 
14196     if (!FD->isInvalidDecl()) {
14197       // Don't diagnose unused parameters of defaulted or deleted functions.
14198       if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
14199         DiagnoseUnusedParameters(FD->parameters());
14200       DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
14201                                              FD->getReturnType(), FD);
14202 
14203       // If this is a structor, we need a vtable.
14204       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
14205         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
14206       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
14207         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
14208 
14209       // Try to apply the named return value optimization. We have to check
14210       // if we can do this here because lambdas keep return statements around
14211       // to deduce an implicit return type.
14212       if (FD->getReturnType()->isRecordType() &&
14213           (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
14214         computeNRVO(Body, getCurFunction());
14215     }
14216 
14217     // GNU warning -Wmissing-prototypes:
14218     //   Warn if a global function is defined without a previous
14219     //   prototype declaration. This warning is issued even if the
14220     //   definition itself provides a prototype. The aim is to detect
14221     //   global functions that fail to be declared in header files.
14222     const FunctionDecl *PossiblePrototype = nullptr;
14223     if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
14224       Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
14225 
14226       if (PossiblePrototype) {
14227         // We found a declaration that is not a prototype,
14228         // but that could be a zero-parameter prototype
14229         if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
14230           TypeLoc TL = TI->getTypeLoc();
14231           if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
14232             Diag(PossiblePrototype->getLocation(),
14233                  diag::note_declaration_not_a_prototype)
14234                 << (FD->getNumParams() != 0)
14235                 << (FD->getNumParams() == 0
14236                         ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void")
14237                         : FixItHint{});
14238         }
14239       } else {
14240         Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
14241             << /* function */ 1
14242             << (FD->getStorageClass() == SC_None
14243                     ? FixItHint::CreateInsertion(FD->getTypeSpecStartLoc(),
14244                                                  "static ")
14245                     : FixItHint{});
14246       }
14247 
14248       // GNU warning -Wstrict-prototypes
14249       //   Warn if K&R function is defined without a previous declaration.
14250       //   This warning is issued only if the definition itself does not provide
14251       //   a prototype. Only K&R definitions do not provide a prototype.
14252       if (!FD->hasWrittenPrototype()) {
14253         TypeSourceInfo *TI = FD->getTypeSourceInfo();
14254         TypeLoc TL = TI->getTypeLoc();
14255         FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
14256         Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
14257       }
14258     }
14259 
14260     // Warn on CPUDispatch with an actual body.
14261     if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
14262       if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
14263         if (!CmpndBody->body_empty())
14264           Diag(CmpndBody->body_front()->getBeginLoc(),
14265                diag::warn_dispatch_body_ignored);
14266 
14267     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
14268       const CXXMethodDecl *KeyFunction;
14269       if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
14270           MD->isVirtual() &&
14271           (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
14272           MD == KeyFunction->getCanonicalDecl()) {
14273         // Update the key-function state if necessary for this ABI.
14274         if (FD->isInlined() &&
14275             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
14276           Context.setNonKeyFunction(MD);
14277 
14278           // If the newly-chosen key function is already defined, then we
14279           // need to mark the vtable as used retroactively.
14280           KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
14281           const FunctionDecl *Definition;
14282           if (KeyFunction && KeyFunction->isDefined(Definition))
14283             MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
14284         } else {
14285           // We just defined they key function; mark the vtable as used.
14286           MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
14287         }
14288       }
14289     }
14290 
14291     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
14292            "Function parsing confused");
14293   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
14294     assert(MD == getCurMethodDecl() && "Method parsing confused");
14295     MD->setBody(Body);
14296     if (!MD->isInvalidDecl()) {
14297       DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
14298                                              MD->getReturnType(), MD);
14299 
14300       if (Body)
14301         computeNRVO(Body, getCurFunction());
14302     }
14303     if (getCurFunction()->ObjCShouldCallSuper) {
14304       Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
14305           << MD->getSelector().getAsString();
14306       getCurFunction()->ObjCShouldCallSuper = false;
14307     }
14308     if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
14309       const ObjCMethodDecl *InitMethod = nullptr;
14310       bool isDesignated =
14311           MD->isDesignatedInitializerForTheInterface(&InitMethod);
14312       assert(isDesignated && InitMethod);
14313       (void)isDesignated;
14314 
14315       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
14316         auto IFace = MD->getClassInterface();
14317         if (!IFace)
14318           return false;
14319         auto SuperD = IFace->getSuperClass();
14320         if (!SuperD)
14321           return false;
14322         return SuperD->getIdentifier() ==
14323             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
14324       };
14325       // Don't issue this warning for unavailable inits or direct subclasses
14326       // of NSObject.
14327       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
14328         Diag(MD->getLocation(),
14329              diag::warn_objc_designated_init_missing_super_call);
14330         Diag(InitMethod->getLocation(),
14331              diag::note_objc_designated_init_marked_here);
14332       }
14333       getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
14334     }
14335     if (getCurFunction()->ObjCWarnForNoInitDelegation) {
14336       // Don't issue this warning for unavaialable inits.
14337       if (!MD->isUnavailable())
14338         Diag(MD->getLocation(),
14339              diag::warn_objc_secondary_init_missing_init_call);
14340       getCurFunction()->ObjCWarnForNoInitDelegation = false;
14341     }
14342 
14343     diagnoseImplicitlyRetainedSelf(*this);
14344   } else {
14345     // Parsing the function declaration failed in some way. Pop the fake scope
14346     // we pushed on.
14347     PopFunctionScopeInfo(ActivePolicy, dcl);
14348     return nullptr;
14349   }
14350 
14351   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
14352     DiagnoseUnguardedAvailabilityViolations(dcl);
14353 
14354   assert(!getCurFunction()->ObjCShouldCallSuper &&
14355          "This should only be set for ObjC methods, which should have been "
14356          "handled in the block above.");
14357 
14358   // Verify and clean out per-function state.
14359   if (Body && (!FD || !FD->isDefaulted())) {
14360     // C++ constructors that have function-try-blocks can't have return
14361     // statements in the handlers of that block. (C++ [except.handle]p14)
14362     // Verify this.
14363     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
14364       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
14365 
14366     // Verify that gotos and switch cases don't jump into scopes illegally.
14367     if (getCurFunction()->NeedsScopeChecking() &&
14368         !PP.isCodeCompletionEnabled())
14369       DiagnoseInvalidJumps(Body);
14370 
14371     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
14372       if (!Destructor->getParent()->isDependentType())
14373         CheckDestructor(Destructor);
14374 
14375       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
14376                                              Destructor->getParent());
14377     }
14378 
14379     // If any errors have occurred, clear out any temporaries that may have
14380     // been leftover. This ensures that these temporaries won't be picked up for
14381     // deletion in some later function.
14382     if (getDiagnostics().hasErrorOccurred() ||
14383         getDiagnostics().getSuppressAllDiagnostics()) {
14384       DiscardCleanupsInEvaluationContext();
14385     }
14386     if (!getDiagnostics().hasUncompilableErrorOccurred() &&
14387         !isa<FunctionTemplateDecl>(dcl)) {
14388       // Since the body is valid, issue any analysis-based warnings that are
14389       // enabled.
14390       ActivePolicy = &WP;
14391     }
14392 
14393     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
14394         !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
14395       FD->setInvalidDecl();
14396 
14397     if (FD && FD->hasAttr<NakedAttr>()) {
14398       for (const Stmt *S : Body->children()) {
14399         // Allow local register variables without initializer as they don't
14400         // require prologue.
14401         bool RegisterVariables = false;
14402         if (auto *DS = dyn_cast<DeclStmt>(S)) {
14403           for (const auto *Decl : DS->decls()) {
14404             if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
14405               RegisterVariables =
14406                   Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
14407               if (!RegisterVariables)
14408                 break;
14409             }
14410           }
14411         }
14412         if (RegisterVariables)
14413           continue;
14414         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
14415           Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
14416           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
14417           FD->setInvalidDecl();
14418           break;
14419         }
14420       }
14421     }
14422 
14423     assert(ExprCleanupObjects.size() ==
14424                ExprEvalContexts.back().NumCleanupObjects &&
14425            "Leftover temporaries in function");
14426     assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
14427     assert(MaybeODRUseExprs.empty() &&
14428            "Leftover expressions for odr-use checking");
14429   }
14430 
14431   if (!IsInstantiation)
14432     PopDeclContext();
14433 
14434   PopFunctionScopeInfo(ActivePolicy, dcl);
14435   // If any errors have occurred, clear out any temporaries that may have
14436   // been leftover. This ensures that these temporaries won't be picked up for
14437   // deletion in some later function.
14438   if (getDiagnostics().hasErrorOccurred()) {
14439     DiscardCleanupsInEvaluationContext();
14440   }
14441 
14442   if (LangOpts.OpenMP || LangOpts.CUDA || LangOpts.SYCLIsDevice) {
14443     auto ES = getEmissionStatus(FD);
14444     if (ES == Sema::FunctionEmissionStatus::Emitted ||
14445         ES == Sema::FunctionEmissionStatus::Unknown)
14446       DeclsToCheckForDeferredDiags.push_back(FD);
14447   }
14448 
14449   return dcl;
14450 }
14451 
14452 /// When we finish delayed parsing of an attribute, we must attach it to the
14453 /// relevant Decl.
14454 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
14455                                        ParsedAttributes &Attrs) {
14456   // Always attach attributes to the underlying decl.
14457   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
14458     D = TD->getTemplatedDecl();
14459   ProcessDeclAttributeList(S, D, Attrs);
14460 
14461   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
14462     if (Method->isStatic())
14463       checkThisInStaticMemberFunctionAttributes(Method);
14464 }
14465 
14466 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
14467 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
14468 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
14469                                           IdentifierInfo &II, Scope *S) {
14470   // Find the scope in which the identifier is injected and the corresponding
14471   // DeclContext.
14472   // FIXME: C89 does not say what happens if there is no enclosing block scope.
14473   // In that case, we inject the declaration into the translation unit scope
14474   // instead.
14475   Scope *BlockScope = S;
14476   while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
14477     BlockScope = BlockScope->getParent();
14478 
14479   Scope *ContextScope = BlockScope;
14480   while (!ContextScope->getEntity())
14481     ContextScope = ContextScope->getParent();
14482   ContextRAII SavedContext(*this, ContextScope->getEntity());
14483 
14484   // Before we produce a declaration for an implicitly defined
14485   // function, see whether there was a locally-scoped declaration of
14486   // this name as a function or variable. If so, use that
14487   // (non-visible) declaration, and complain about it.
14488   NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
14489   if (ExternCPrev) {
14490     // We still need to inject the function into the enclosing block scope so
14491     // that later (non-call) uses can see it.
14492     PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
14493 
14494     // C89 footnote 38:
14495     //   If in fact it is not defined as having type "function returning int",
14496     //   the behavior is undefined.
14497     if (!isa<FunctionDecl>(ExternCPrev) ||
14498         !Context.typesAreCompatible(
14499             cast<FunctionDecl>(ExternCPrev)->getType(),
14500             Context.getFunctionNoProtoType(Context.IntTy))) {
14501       Diag(Loc, diag::ext_use_out_of_scope_declaration)
14502           << ExternCPrev << !getLangOpts().C99;
14503       Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
14504       return ExternCPrev;
14505     }
14506   }
14507 
14508   // Extension in C99.  Legal in C90, but warn about it.
14509   unsigned diag_id;
14510   if (II.getName().startswith("__builtin_"))
14511     diag_id = diag::warn_builtin_unknown;
14512   // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
14513   else if (getLangOpts().OpenCL)
14514     diag_id = diag::err_opencl_implicit_function_decl;
14515   else if (getLangOpts().C99)
14516     diag_id = diag::ext_implicit_function_decl;
14517   else
14518     diag_id = diag::warn_implicit_function_decl;
14519   Diag(Loc, diag_id) << &II;
14520 
14521   // If we found a prior declaration of this function, don't bother building
14522   // another one. We've already pushed that one into scope, so there's nothing
14523   // more to do.
14524   if (ExternCPrev)
14525     return ExternCPrev;
14526 
14527   // Because typo correction is expensive, only do it if the implicit
14528   // function declaration is going to be treated as an error.
14529   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
14530     TypoCorrection Corrected;
14531     DeclFilterCCC<FunctionDecl> CCC{};
14532     if (S && (Corrected =
14533                   CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
14534                               S, nullptr, CCC, CTK_NonError)))
14535       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
14536                    /*ErrorRecovery*/false);
14537   }
14538 
14539   // Set a Declarator for the implicit definition: int foo();
14540   const char *Dummy;
14541   AttributeFactory attrFactory;
14542   DeclSpec DS(attrFactory);
14543   unsigned DiagID;
14544   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
14545                                   Context.getPrintingPolicy());
14546   (void)Error; // Silence warning.
14547   assert(!Error && "Error setting up implicit decl!");
14548   SourceLocation NoLoc;
14549   Declarator D(DS, DeclaratorContext::BlockContext);
14550   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
14551                                              /*IsAmbiguous=*/false,
14552                                              /*LParenLoc=*/NoLoc,
14553                                              /*Params=*/nullptr,
14554                                              /*NumParams=*/0,
14555                                              /*EllipsisLoc=*/NoLoc,
14556                                              /*RParenLoc=*/NoLoc,
14557                                              /*RefQualifierIsLvalueRef=*/true,
14558                                              /*RefQualifierLoc=*/NoLoc,
14559                                              /*MutableLoc=*/NoLoc, EST_None,
14560                                              /*ESpecRange=*/SourceRange(),
14561                                              /*Exceptions=*/nullptr,
14562                                              /*ExceptionRanges=*/nullptr,
14563                                              /*NumExceptions=*/0,
14564                                              /*NoexceptExpr=*/nullptr,
14565                                              /*ExceptionSpecTokens=*/nullptr,
14566                                              /*DeclsInPrototype=*/None, Loc,
14567                                              Loc, D),
14568                 std::move(DS.getAttributes()), SourceLocation());
14569   D.SetIdentifier(&II, Loc);
14570 
14571   // Insert this function into the enclosing block scope.
14572   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
14573   FD->setImplicit();
14574 
14575   AddKnownFunctionAttributes(FD);
14576 
14577   return FD;
14578 }
14579 
14580 /// If this function is a C++ replaceable global allocation function
14581 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
14582 /// adds any function attributes that we know a priori based on the standard.
14583 ///
14584 /// We need to check for duplicate attributes both here and where user-written
14585 /// attributes are applied to declarations.
14586 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
14587     FunctionDecl *FD) {
14588   if (FD->isInvalidDecl())
14589     return;
14590 
14591   if (FD->getDeclName().getCXXOverloadedOperator() != OO_New &&
14592       FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New)
14593     return;
14594 
14595   Optional<unsigned> AlignmentParam;
14596   bool IsNothrow = false;
14597   if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow))
14598     return;
14599 
14600   // C++2a [basic.stc.dynamic.allocation]p4:
14601   //   An allocation function that has a non-throwing exception specification
14602   //   indicates failure by returning a null pointer value. Any other allocation
14603   //   function never returns a null pointer value and indicates failure only by
14604   //   throwing an exception [...]
14605   if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>())
14606     FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation()));
14607 
14608   // C++2a [basic.stc.dynamic.allocation]p2:
14609   //   An allocation function attempts to allocate the requested amount of
14610   //   storage. [...] If the request succeeds, the value returned by a
14611   //   replaceable allocation function is a [...] pointer value p0 different
14612   //   from any previously returned value p1 [...]
14613   //
14614   // However, this particular information is being added in codegen,
14615   // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
14616 
14617   // C++2a [basic.stc.dynamic.allocation]p2:
14618   //   An allocation function attempts to allocate the requested amount of
14619   //   storage. If it is successful, it returns the address of the start of a
14620   //   block of storage whose length in bytes is at least as large as the
14621   //   requested size.
14622   if (!FD->hasAttr<AllocSizeAttr>()) {
14623     FD->addAttr(AllocSizeAttr::CreateImplicit(
14624         Context, /*ElemSizeParam=*/ParamIdx(1, FD),
14625         /*NumElemsParam=*/ParamIdx(), FD->getLocation()));
14626   }
14627 
14628   // C++2a [basic.stc.dynamic.allocation]p3:
14629   //   For an allocation function [...], the pointer returned on a successful
14630   //   call shall represent the address of storage that is aligned as follows:
14631   //   (3.1) If the allocation function takes an argument of type
14632   //         std​::​align_­val_­t, the storage will have the alignment
14633   //         specified by the value of this argument.
14634   if (AlignmentParam.hasValue() && !FD->hasAttr<AllocAlignAttr>()) {
14635     FD->addAttr(AllocAlignAttr::CreateImplicit(
14636         Context, ParamIdx(AlignmentParam.getValue(), FD), FD->getLocation()));
14637   }
14638 
14639   // FIXME:
14640   // C++2a [basic.stc.dynamic.allocation]p3:
14641   //   For an allocation function [...], the pointer returned on a successful
14642   //   call shall represent the address of storage that is aligned as follows:
14643   //   (3.2) Otherwise, if the allocation function is named operator new[],
14644   //         the storage is aligned for any object that does not have
14645   //         new-extended alignment ([basic.align]) and is no larger than the
14646   //         requested size.
14647   //   (3.3) Otherwise, the storage is aligned for any object that does not
14648   //         have new-extended alignment and is of the requested size.
14649 }
14650 
14651 /// Adds any function attributes that we know a priori based on
14652 /// the declaration of this function.
14653 ///
14654 /// These attributes can apply both to implicitly-declared builtins
14655 /// (like __builtin___printf_chk) or to library-declared functions
14656 /// like NSLog or printf.
14657 ///
14658 /// We need to check for duplicate attributes both here and where user-written
14659 /// attributes are applied to declarations.
14660 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
14661   if (FD->isInvalidDecl())
14662     return;
14663 
14664   // If this is a built-in function, map its builtin attributes to
14665   // actual attributes.
14666   if (unsigned BuiltinID = FD->getBuiltinID()) {
14667     // Handle printf-formatting attributes.
14668     unsigned FormatIdx;
14669     bool HasVAListArg;
14670     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
14671       if (!FD->hasAttr<FormatAttr>()) {
14672         const char *fmt = "printf";
14673         unsigned int NumParams = FD->getNumParams();
14674         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
14675             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
14676           fmt = "NSString";
14677         FD->addAttr(FormatAttr::CreateImplicit(Context,
14678                                                &Context.Idents.get(fmt),
14679                                                FormatIdx+1,
14680                                                HasVAListArg ? 0 : FormatIdx+2,
14681                                                FD->getLocation()));
14682       }
14683     }
14684     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
14685                                              HasVAListArg)) {
14686      if (!FD->hasAttr<FormatAttr>())
14687        FD->addAttr(FormatAttr::CreateImplicit(Context,
14688                                               &Context.Idents.get("scanf"),
14689                                               FormatIdx+1,
14690                                               HasVAListArg ? 0 : FormatIdx+2,
14691                                               FD->getLocation()));
14692     }
14693 
14694     // Handle automatically recognized callbacks.
14695     SmallVector<int, 4> Encoding;
14696     if (!FD->hasAttr<CallbackAttr>() &&
14697         Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
14698       FD->addAttr(CallbackAttr::CreateImplicit(
14699           Context, Encoding.data(), Encoding.size(), FD->getLocation()));
14700 
14701     // Mark const if we don't care about errno and that is the only thing
14702     // preventing the function from being const. This allows IRgen to use LLVM
14703     // intrinsics for such functions.
14704     if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
14705         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
14706       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14707 
14708     // We make "fma" on some platforms const because we know it does not set
14709     // errno in those environments even though it could set errno based on the
14710     // C standard.
14711     const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
14712     if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
14713         !FD->hasAttr<ConstAttr>()) {
14714       switch (BuiltinID) {
14715       case Builtin::BI__builtin_fma:
14716       case Builtin::BI__builtin_fmaf:
14717       case Builtin::BI__builtin_fmal:
14718       case Builtin::BIfma:
14719       case Builtin::BIfmaf:
14720       case Builtin::BIfmal:
14721         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14722         break;
14723       default:
14724         break;
14725       }
14726     }
14727 
14728     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
14729         !FD->hasAttr<ReturnsTwiceAttr>())
14730       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
14731                                          FD->getLocation()));
14732     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
14733       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
14734     if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
14735       FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
14736     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
14737       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14738     if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
14739         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
14740       // Add the appropriate attribute, depending on the CUDA compilation mode
14741       // and which target the builtin belongs to. For example, during host
14742       // compilation, aux builtins are __device__, while the rest are __host__.
14743       if (getLangOpts().CUDAIsDevice !=
14744           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
14745         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
14746       else
14747         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
14748     }
14749   }
14750 
14751   AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD);
14752 
14753   // If C++ exceptions are enabled but we are told extern "C" functions cannot
14754   // throw, add an implicit nothrow attribute to any extern "C" function we come
14755   // across.
14756   if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
14757       FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
14758     const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
14759     if (!FPT || FPT->getExceptionSpecType() == EST_None)
14760       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
14761   }
14762 
14763   IdentifierInfo *Name = FD->getIdentifier();
14764   if (!Name)
14765     return;
14766   if ((!getLangOpts().CPlusPlus &&
14767        FD->getDeclContext()->isTranslationUnit()) ||
14768       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
14769        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
14770        LinkageSpecDecl::lang_c)) {
14771     // Okay: this could be a libc/libm/Objective-C function we know
14772     // about.
14773   } else
14774     return;
14775 
14776   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
14777     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
14778     // target-specific builtins, perhaps?
14779     if (!FD->hasAttr<FormatAttr>())
14780       FD->addAttr(FormatAttr::CreateImplicit(Context,
14781                                              &Context.Idents.get("printf"), 2,
14782                                              Name->isStr("vasprintf") ? 0 : 3,
14783                                              FD->getLocation()));
14784   }
14785 
14786   if (Name->isStr("__CFStringMakeConstantString")) {
14787     // We already have a __builtin___CFStringMakeConstantString,
14788     // but builds that use -fno-constant-cfstrings don't go through that.
14789     if (!FD->hasAttr<FormatArgAttr>())
14790       FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
14791                                                 FD->getLocation()));
14792   }
14793 }
14794 
14795 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
14796                                     TypeSourceInfo *TInfo) {
14797   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
14798   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
14799 
14800   if (!TInfo) {
14801     assert(D.isInvalidType() && "no declarator info for valid type");
14802     TInfo = Context.getTrivialTypeSourceInfo(T);
14803   }
14804 
14805   // Scope manipulation handled by caller.
14806   TypedefDecl *NewTD =
14807       TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
14808                           D.getIdentifierLoc(), D.getIdentifier(), TInfo);
14809 
14810   // Bail out immediately if we have an invalid declaration.
14811   if (D.isInvalidType()) {
14812     NewTD->setInvalidDecl();
14813     return NewTD;
14814   }
14815 
14816   if (D.getDeclSpec().isModulePrivateSpecified()) {
14817     if (CurContext->isFunctionOrMethod())
14818       Diag(NewTD->getLocation(), diag::err_module_private_local)
14819         << 2 << NewTD->getDeclName()
14820         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
14821         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
14822     else
14823       NewTD->setModulePrivate();
14824   }
14825 
14826   // C++ [dcl.typedef]p8:
14827   //   If the typedef declaration defines an unnamed class (or
14828   //   enum), the first typedef-name declared by the declaration
14829   //   to be that class type (or enum type) is used to denote the
14830   //   class type (or enum type) for linkage purposes only.
14831   // We need to check whether the type was declared in the declaration.
14832   switch (D.getDeclSpec().getTypeSpecType()) {
14833   case TST_enum:
14834   case TST_struct:
14835   case TST_interface:
14836   case TST_union:
14837   case TST_class: {
14838     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
14839     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
14840     break;
14841   }
14842 
14843   default:
14844     break;
14845   }
14846 
14847   return NewTD;
14848 }
14849 
14850 /// Check that this is a valid underlying type for an enum declaration.
14851 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
14852   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
14853   QualType T = TI->getType();
14854 
14855   if (T->isDependentType())
14856     return false;
14857 
14858   // This doesn't use 'isIntegralType' despite the error message mentioning
14859   // integral type because isIntegralType would also allow enum types in C.
14860   if (const BuiltinType *BT = T->getAs<BuiltinType>())
14861     if (BT->isInteger())
14862       return false;
14863 
14864   if (T->isExtIntType())
14865     return false;
14866 
14867   return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
14868 }
14869 
14870 /// Check whether this is a valid redeclaration of a previous enumeration.
14871 /// \return true if the redeclaration was invalid.
14872 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
14873                                   QualType EnumUnderlyingTy, bool IsFixed,
14874                                   const EnumDecl *Prev) {
14875   if (IsScoped != Prev->isScoped()) {
14876     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
14877       << Prev->isScoped();
14878     Diag(Prev->getLocation(), diag::note_previous_declaration);
14879     return true;
14880   }
14881 
14882   if (IsFixed && Prev->isFixed()) {
14883     if (!EnumUnderlyingTy->isDependentType() &&
14884         !Prev->getIntegerType()->isDependentType() &&
14885         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
14886                                         Prev->getIntegerType())) {
14887       // TODO: Highlight the underlying type of the redeclaration.
14888       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
14889         << EnumUnderlyingTy << Prev->getIntegerType();
14890       Diag(Prev->getLocation(), diag::note_previous_declaration)
14891           << Prev->getIntegerTypeRange();
14892       return true;
14893     }
14894   } else if (IsFixed != Prev->isFixed()) {
14895     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
14896       << Prev->isFixed();
14897     Diag(Prev->getLocation(), diag::note_previous_declaration);
14898     return true;
14899   }
14900 
14901   return false;
14902 }
14903 
14904 /// Get diagnostic %select index for tag kind for
14905 /// redeclaration diagnostic message.
14906 /// WARNING: Indexes apply to particular diagnostics only!
14907 ///
14908 /// \returns diagnostic %select index.
14909 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
14910   switch (Tag) {
14911   case TTK_Struct: return 0;
14912   case TTK_Interface: return 1;
14913   case TTK_Class:  return 2;
14914   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
14915   }
14916 }
14917 
14918 /// Determine if tag kind is a class-key compatible with
14919 /// class for redeclaration (class, struct, or __interface).
14920 ///
14921 /// \returns true iff the tag kind is compatible.
14922 static bool isClassCompatTagKind(TagTypeKind Tag)
14923 {
14924   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
14925 }
14926 
14927 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
14928                                              TagTypeKind TTK) {
14929   if (isa<TypedefDecl>(PrevDecl))
14930     return NTK_Typedef;
14931   else if (isa<TypeAliasDecl>(PrevDecl))
14932     return NTK_TypeAlias;
14933   else if (isa<ClassTemplateDecl>(PrevDecl))
14934     return NTK_Template;
14935   else if (isa<TypeAliasTemplateDecl>(PrevDecl))
14936     return NTK_TypeAliasTemplate;
14937   else if (isa<TemplateTemplateParmDecl>(PrevDecl))
14938     return NTK_TemplateTemplateArgument;
14939   switch (TTK) {
14940   case TTK_Struct:
14941   case TTK_Interface:
14942   case TTK_Class:
14943     return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
14944   case TTK_Union:
14945     return NTK_NonUnion;
14946   case TTK_Enum:
14947     return NTK_NonEnum;
14948   }
14949   llvm_unreachable("invalid TTK");
14950 }
14951 
14952 /// Determine whether a tag with a given kind is acceptable
14953 /// as a redeclaration of the given tag declaration.
14954 ///
14955 /// \returns true if the new tag kind is acceptable, false otherwise.
14956 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
14957                                         TagTypeKind NewTag, bool isDefinition,
14958                                         SourceLocation NewTagLoc,
14959                                         const IdentifierInfo *Name) {
14960   // C++ [dcl.type.elab]p3:
14961   //   The class-key or enum keyword present in the
14962   //   elaborated-type-specifier shall agree in kind with the
14963   //   declaration to which the name in the elaborated-type-specifier
14964   //   refers. This rule also applies to the form of
14965   //   elaborated-type-specifier that declares a class-name or
14966   //   friend class since it can be construed as referring to the
14967   //   definition of the class. Thus, in any
14968   //   elaborated-type-specifier, the enum keyword shall be used to
14969   //   refer to an enumeration (7.2), the union class-key shall be
14970   //   used to refer to a union (clause 9), and either the class or
14971   //   struct class-key shall be used to refer to a class (clause 9)
14972   //   declared using the class or struct class-key.
14973   TagTypeKind OldTag = Previous->getTagKind();
14974   if (OldTag != NewTag &&
14975       !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
14976     return false;
14977 
14978   // Tags are compatible, but we might still want to warn on mismatched tags.
14979   // Non-class tags can't be mismatched at this point.
14980   if (!isClassCompatTagKind(NewTag))
14981     return true;
14982 
14983   // Declarations for which -Wmismatched-tags is disabled are entirely ignored
14984   // by our warning analysis. We don't want to warn about mismatches with (eg)
14985   // declarations in system headers that are designed to be specialized, but if
14986   // a user asks us to warn, we should warn if their code contains mismatched
14987   // declarations.
14988   auto IsIgnoredLoc = [&](SourceLocation Loc) {
14989     return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
14990                                       Loc);
14991   };
14992   if (IsIgnoredLoc(NewTagLoc))
14993     return true;
14994 
14995   auto IsIgnored = [&](const TagDecl *Tag) {
14996     return IsIgnoredLoc(Tag->getLocation());
14997   };
14998   while (IsIgnored(Previous)) {
14999     Previous = Previous->getPreviousDecl();
15000     if (!Previous)
15001       return true;
15002     OldTag = Previous->getTagKind();
15003   }
15004 
15005   bool isTemplate = false;
15006   if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
15007     isTemplate = Record->getDescribedClassTemplate();
15008 
15009   if (inTemplateInstantiation()) {
15010     if (OldTag != NewTag) {
15011       // In a template instantiation, do not offer fix-its for tag mismatches
15012       // since they usually mess up the template instead of fixing the problem.
15013       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15014         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15015         << getRedeclDiagFromTagKind(OldTag);
15016       // FIXME: Note previous location?
15017     }
15018     return true;
15019   }
15020 
15021   if (isDefinition) {
15022     // On definitions, check all previous tags and issue a fix-it for each
15023     // one that doesn't match the current tag.
15024     if (Previous->getDefinition()) {
15025       // Don't suggest fix-its for redefinitions.
15026       return true;
15027     }
15028 
15029     bool previousMismatch = false;
15030     for (const TagDecl *I : Previous->redecls()) {
15031       if (I->getTagKind() != NewTag) {
15032         // Ignore previous declarations for which the warning was disabled.
15033         if (IsIgnored(I))
15034           continue;
15035 
15036         if (!previousMismatch) {
15037           previousMismatch = true;
15038           Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
15039             << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15040             << getRedeclDiagFromTagKind(I->getTagKind());
15041         }
15042         Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
15043           << getRedeclDiagFromTagKind(NewTag)
15044           << FixItHint::CreateReplacement(I->getInnerLocStart(),
15045                TypeWithKeyword::getTagTypeKindName(NewTag));
15046       }
15047     }
15048     return true;
15049   }
15050 
15051   // Identify the prevailing tag kind: this is the kind of the definition (if
15052   // there is a non-ignored definition), or otherwise the kind of the prior
15053   // (non-ignored) declaration.
15054   const TagDecl *PrevDef = Previous->getDefinition();
15055   if (PrevDef && IsIgnored(PrevDef))
15056     PrevDef = nullptr;
15057   const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
15058   if (Redecl->getTagKind() != NewTag) {
15059     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15060       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15061       << getRedeclDiagFromTagKind(OldTag);
15062     Diag(Redecl->getLocation(), diag::note_previous_use);
15063 
15064     // If there is a previous definition, suggest a fix-it.
15065     if (PrevDef) {
15066       Diag(NewTagLoc, diag::note_struct_class_suggestion)
15067         << getRedeclDiagFromTagKind(Redecl->getTagKind())
15068         << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
15069              TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
15070     }
15071   }
15072 
15073   return true;
15074 }
15075 
15076 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
15077 /// from an outer enclosing namespace or file scope inside a friend declaration.
15078 /// This should provide the commented out code in the following snippet:
15079 ///   namespace N {
15080 ///     struct X;
15081 ///     namespace M {
15082 ///       struct Y { friend struct /*N::*/ X; };
15083 ///     }
15084 ///   }
15085 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
15086                                          SourceLocation NameLoc) {
15087   // While the decl is in a namespace, do repeated lookup of that name and see
15088   // if we get the same namespace back.  If we do not, continue until
15089   // translation unit scope, at which point we have a fully qualified NNS.
15090   SmallVector<IdentifierInfo *, 4> Namespaces;
15091   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15092   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
15093     // This tag should be declared in a namespace, which can only be enclosed by
15094     // other namespaces.  Bail if there's an anonymous namespace in the chain.
15095     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
15096     if (!Namespace || Namespace->isAnonymousNamespace())
15097       return FixItHint();
15098     IdentifierInfo *II = Namespace->getIdentifier();
15099     Namespaces.push_back(II);
15100     NamedDecl *Lookup = SemaRef.LookupSingleName(
15101         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
15102     if (Lookup == Namespace)
15103       break;
15104   }
15105 
15106   // Once we have all the namespaces, reverse them to go outermost first, and
15107   // build an NNS.
15108   SmallString<64> Insertion;
15109   llvm::raw_svector_ostream OS(Insertion);
15110   if (DC->isTranslationUnit())
15111     OS << "::";
15112   std::reverse(Namespaces.begin(), Namespaces.end());
15113   for (auto *II : Namespaces)
15114     OS << II->getName() << "::";
15115   return FixItHint::CreateInsertion(NameLoc, Insertion);
15116 }
15117 
15118 /// Determine whether a tag originally declared in context \p OldDC can
15119 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
15120 /// found a declaration in \p OldDC as a previous decl, perhaps through a
15121 /// using-declaration).
15122 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
15123                                          DeclContext *NewDC) {
15124   OldDC = OldDC->getRedeclContext();
15125   NewDC = NewDC->getRedeclContext();
15126 
15127   if (OldDC->Equals(NewDC))
15128     return true;
15129 
15130   // In MSVC mode, we allow a redeclaration if the contexts are related (either
15131   // encloses the other).
15132   if (S.getLangOpts().MSVCCompat &&
15133       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
15134     return true;
15135 
15136   return false;
15137 }
15138 
15139 /// This is invoked when we see 'struct foo' or 'struct {'.  In the
15140 /// former case, Name will be non-null.  In the later case, Name will be null.
15141 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
15142 /// reference/declaration/definition of a tag.
15143 ///
15144 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
15145 /// trailing-type-specifier) other than one in an alias-declaration.
15146 ///
15147 /// \param SkipBody If non-null, will be set to indicate if the caller should
15148 /// skip the definition of this tag and treat it as if it were a declaration.
15149 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
15150                      SourceLocation KWLoc, CXXScopeSpec &SS,
15151                      IdentifierInfo *Name, SourceLocation NameLoc,
15152                      const ParsedAttributesView &Attrs, AccessSpecifier AS,
15153                      SourceLocation ModulePrivateLoc,
15154                      MultiTemplateParamsArg TemplateParameterLists,
15155                      bool &OwnedDecl, bool &IsDependent,
15156                      SourceLocation ScopedEnumKWLoc,
15157                      bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
15158                      bool IsTypeSpecifier, bool IsTemplateParamOrArg,
15159                      SkipBodyInfo *SkipBody) {
15160   // If this is not a definition, it must have a name.
15161   IdentifierInfo *OrigName = Name;
15162   assert((Name != nullptr || TUK == TUK_Definition) &&
15163          "Nameless record must be a definition!");
15164   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
15165 
15166   OwnedDecl = false;
15167   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
15168   bool ScopedEnum = ScopedEnumKWLoc.isValid();
15169 
15170   // FIXME: Check member specializations more carefully.
15171   bool isMemberSpecialization = false;
15172   bool Invalid = false;
15173 
15174   // We only need to do this matching if we have template parameters
15175   // or a scope specifier, which also conveniently avoids this work
15176   // for non-C++ cases.
15177   if (TemplateParameterLists.size() > 0 ||
15178       (SS.isNotEmpty() && TUK != TUK_Reference)) {
15179     if (TemplateParameterList *TemplateParams =
15180             MatchTemplateParametersToScopeSpecifier(
15181                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
15182                 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
15183       if (Kind == TTK_Enum) {
15184         Diag(KWLoc, diag::err_enum_template);
15185         return nullptr;
15186       }
15187 
15188       if (TemplateParams->size() > 0) {
15189         // This is a declaration or definition of a class template (which may
15190         // be a member of another template).
15191 
15192         if (Invalid)
15193           return nullptr;
15194 
15195         OwnedDecl = false;
15196         DeclResult Result = CheckClassTemplate(
15197             S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
15198             AS, ModulePrivateLoc,
15199             /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
15200             TemplateParameterLists.data(), SkipBody);
15201         return Result.get();
15202       } else {
15203         // The "template<>" header is extraneous.
15204         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
15205           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
15206         isMemberSpecialization = true;
15207       }
15208     }
15209   }
15210 
15211   // Figure out the underlying type if this a enum declaration. We need to do
15212   // this early, because it's needed to detect if this is an incompatible
15213   // redeclaration.
15214   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
15215   bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
15216 
15217   if (Kind == TTK_Enum) {
15218     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
15219       // No underlying type explicitly specified, or we failed to parse the
15220       // type, default to int.
15221       EnumUnderlying = Context.IntTy.getTypePtr();
15222     } else if (UnderlyingType.get()) {
15223       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
15224       // integral type; any cv-qualification is ignored.
15225       TypeSourceInfo *TI = nullptr;
15226       GetTypeFromParser(UnderlyingType.get(), &TI);
15227       EnumUnderlying = TI;
15228 
15229       if (CheckEnumUnderlyingType(TI))
15230         // Recover by falling back to int.
15231         EnumUnderlying = Context.IntTy.getTypePtr();
15232 
15233       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
15234                                           UPPC_FixedUnderlyingType))
15235         EnumUnderlying = Context.IntTy.getTypePtr();
15236 
15237     } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
15238       // For MSVC ABI compatibility, unfixed enums must use an underlying type
15239       // of 'int'. However, if this is an unfixed forward declaration, don't set
15240       // the underlying type unless the user enables -fms-compatibility. This
15241       // makes unfixed forward declared enums incomplete and is more conforming.
15242       if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
15243         EnumUnderlying = Context.IntTy.getTypePtr();
15244     }
15245   }
15246 
15247   DeclContext *SearchDC = CurContext;
15248   DeclContext *DC = CurContext;
15249   bool isStdBadAlloc = false;
15250   bool isStdAlignValT = false;
15251 
15252   RedeclarationKind Redecl = forRedeclarationInCurContext();
15253   if (TUK == TUK_Friend || TUK == TUK_Reference)
15254     Redecl = NotForRedeclaration;
15255 
15256   /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
15257   /// implemented asks for structural equivalence checking, the returned decl
15258   /// here is passed back to the parser, allowing the tag body to be parsed.
15259   auto createTagFromNewDecl = [&]() -> TagDecl * {
15260     assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
15261     // If there is an identifier, use the location of the identifier as the
15262     // location of the decl, otherwise use the location of the struct/union
15263     // keyword.
15264     SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
15265     TagDecl *New = nullptr;
15266 
15267     if (Kind == TTK_Enum) {
15268       New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
15269                              ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
15270       // If this is an undefined enum, bail.
15271       if (TUK != TUK_Definition && !Invalid)
15272         return nullptr;
15273       if (EnumUnderlying) {
15274         EnumDecl *ED = cast<EnumDecl>(New);
15275         if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
15276           ED->setIntegerTypeSourceInfo(TI);
15277         else
15278           ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
15279         ED->setPromotionType(ED->getIntegerType());
15280       }
15281     } else { // struct/union
15282       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
15283                                nullptr);
15284     }
15285 
15286     if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
15287       // Add alignment attributes if necessary; these attributes are checked
15288       // when the ASTContext lays out the structure.
15289       //
15290       // It is important for implementing the correct semantics that this
15291       // happen here (in ActOnTag). The #pragma pack stack is
15292       // maintained as a result of parser callbacks which can occur at
15293       // many points during the parsing of a struct declaration (because
15294       // the #pragma tokens are effectively skipped over during the
15295       // parsing of the struct).
15296       if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
15297         AddAlignmentAttributesForRecord(RD);
15298         AddMsStructLayoutForRecord(RD);
15299       }
15300     }
15301     New->setLexicalDeclContext(CurContext);
15302     return New;
15303   };
15304 
15305   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
15306   if (Name && SS.isNotEmpty()) {
15307     // We have a nested-name tag ('struct foo::bar').
15308 
15309     // Check for invalid 'foo::'.
15310     if (SS.isInvalid()) {
15311       Name = nullptr;
15312       goto CreateNewDecl;
15313     }
15314 
15315     // If this is a friend or a reference to a class in a dependent
15316     // context, don't try to make a decl for it.
15317     if (TUK == TUK_Friend || TUK == TUK_Reference) {
15318       DC = computeDeclContext(SS, false);
15319       if (!DC) {
15320         IsDependent = true;
15321         return nullptr;
15322       }
15323     } else {
15324       DC = computeDeclContext(SS, true);
15325       if (!DC) {
15326         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
15327           << SS.getRange();
15328         return nullptr;
15329       }
15330     }
15331 
15332     if (RequireCompleteDeclContext(SS, DC))
15333       return nullptr;
15334 
15335     SearchDC = DC;
15336     // Look-up name inside 'foo::'.
15337     LookupQualifiedName(Previous, DC);
15338 
15339     if (Previous.isAmbiguous())
15340       return nullptr;
15341 
15342     if (Previous.empty()) {
15343       // Name lookup did not find anything. However, if the
15344       // nested-name-specifier refers to the current instantiation,
15345       // and that current instantiation has any dependent base
15346       // classes, we might find something at instantiation time: treat
15347       // this as a dependent elaborated-type-specifier.
15348       // But this only makes any sense for reference-like lookups.
15349       if (Previous.wasNotFoundInCurrentInstantiation() &&
15350           (TUK == TUK_Reference || TUK == TUK_Friend)) {
15351         IsDependent = true;
15352         return nullptr;
15353       }
15354 
15355       // A tag 'foo::bar' must already exist.
15356       Diag(NameLoc, diag::err_not_tag_in_scope)
15357         << Kind << Name << DC << SS.getRange();
15358       Name = nullptr;
15359       Invalid = true;
15360       goto CreateNewDecl;
15361     }
15362   } else if (Name) {
15363     // C++14 [class.mem]p14:
15364     //   If T is the name of a class, then each of the following shall have a
15365     //   name different from T:
15366     //    -- every member of class T that is itself a type
15367     if (TUK != TUK_Reference && TUK != TUK_Friend &&
15368         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
15369       return nullptr;
15370 
15371     // If this is a named struct, check to see if there was a previous forward
15372     // declaration or definition.
15373     // FIXME: We're looking into outer scopes here, even when we
15374     // shouldn't be. Doing so can result in ambiguities that we
15375     // shouldn't be diagnosing.
15376     LookupName(Previous, S);
15377 
15378     // When declaring or defining a tag, ignore ambiguities introduced
15379     // by types using'ed into this scope.
15380     if (Previous.isAmbiguous() &&
15381         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
15382       LookupResult::Filter F = Previous.makeFilter();
15383       while (F.hasNext()) {
15384         NamedDecl *ND = F.next();
15385         if (!ND->getDeclContext()->getRedeclContext()->Equals(
15386                 SearchDC->getRedeclContext()))
15387           F.erase();
15388       }
15389       F.done();
15390     }
15391 
15392     // C++11 [namespace.memdef]p3:
15393     //   If the name in a friend declaration is neither qualified nor
15394     //   a template-id and the declaration is a function or an
15395     //   elaborated-type-specifier, the lookup to determine whether
15396     //   the entity has been previously declared shall not consider
15397     //   any scopes outside the innermost enclosing namespace.
15398     //
15399     // MSVC doesn't implement the above rule for types, so a friend tag
15400     // declaration may be a redeclaration of a type declared in an enclosing
15401     // scope.  They do implement this rule for friend functions.
15402     //
15403     // Does it matter that this should be by scope instead of by
15404     // semantic context?
15405     if (!Previous.empty() && TUK == TUK_Friend) {
15406       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
15407       LookupResult::Filter F = Previous.makeFilter();
15408       bool FriendSawTagOutsideEnclosingNamespace = false;
15409       while (F.hasNext()) {
15410         NamedDecl *ND = F.next();
15411         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15412         if (DC->isFileContext() &&
15413             !EnclosingNS->Encloses(ND->getDeclContext())) {
15414           if (getLangOpts().MSVCCompat)
15415             FriendSawTagOutsideEnclosingNamespace = true;
15416           else
15417             F.erase();
15418         }
15419       }
15420       F.done();
15421 
15422       // Diagnose this MSVC extension in the easy case where lookup would have
15423       // unambiguously found something outside the enclosing namespace.
15424       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
15425         NamedDecl *ND = Previous.getFoundDecl();
15426         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
15427             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
15428       }
15429     }
15430 
15431     // Note:  there used to be some attempt at recovery here.
15432     if (Previous.isAmbiguous())
15433       return nullptr;
15434 
15435     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
15436       // FIXME: This makes sure that we ignore the contexts associated
15437       // with C structs, unions, and enums when looking for a matching
15438       // tag declaration or definition. See the similar lookup tweak
15439       // in Sema::LookupName; is there a better way to deal with this?
15440       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
15441         SearchDC = SearchDC->getParent();
15442     }
15443   }
15444 
15445   if (Previous.isSingleResult() &&
15446       Previous.getFoundDecl()->isTemplateParameter()) {
15447     // Maybe we will complain about the shadowed template parameter.
15448     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
15449     // Just pretend that we didn't see the previous declaration.
15450     Previous.clear();
15451   }
15452 
15453   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
15454       DC->Equals(getStdNamespace())) {
15455     if (Name->isStr("bad_alloc")) {
15456       // This is a declaration of or a reference to "std::bad_alloc".
15457       isStdBadAlloc = true;
15458 
15459       // If std::bad_alloc has been implicitly declared (but made invisible to
15460       // name lookup), fill in this implicit declaration as the previous
15461       // declaration, so that the declarations get chained appropriately.
15462       if (Previous.empty() && StdBadAlloc)
15463         Previous.addDecl(getStdBadAlloc());
15464     } else if (Name->isStr("align_val_t")) {
15465       isStdAlignValT = true;
15466       if (Previous.empty() && StdAlignValT)
15467         Previous.addDecl(getStdAlignValT());
15468     }
15469   }
15470 
15471   // If we didn't find a previous declaration, and this is a reference
15472   // (or friend reference), move to the correct scope.  In C++, we
15473   // also need to do a redeclaration lookup there, just in case
15474   // there's a shadow friend decl.
15475   if (Name && Previous.empty() &&
15476       (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
15477     if (Invalid) goto CreateNewDecl;
15478     assert(SS.isEmpty());
15479 
15480     if (TUK == TUK_Reference || IsTemplateParamOrArg) {
15481       // C++ [basic.scope.pdecl]p5:
15482       //   -- for an elaborated-type-specifier of the form
15483       //
15484       //          class-key identifier
15485       //
15486       //      if the elaborated-type-specifier is used in the
15487       //      decl-specifier-seq or parameter-declaration-clause of a
15488       //      function defined in namespace scope, the identifier is
15489       //      declared as a class-name in the namespace that contains
15490       //      the declaration; otherwise, except as a friend
15491       //      declaration, the identifier is declared in the smallest
15492       //      non-class, non-function-prototype scope that contains the
15493       //      declaration.
15494       //
15495       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
15496       // C structs and unions.
15497       //
15498       // It is an error in C++ to declare (rather than define) an enum
15499       // type, including via an elaborated type specifier.  We'll
15500       // diagnose that later; for now, declare the enum in the same
15501       // scope as we would have picked for any other tag type.
15502       //
15503       // GNU C also supports this behavior as part of its incomplete
15504       // enum types extension, while GNU C++ does not.
15505       //
15506       // Find the context where we'll be declaring the tag.
15507       // FIXME: We would like to maintain the current DeclContext as the
15508       // lexical context,
15509       SearchDC = getTagInjectionContext(SearchDC);
15510 
15511       // Find the scope where we'll be declaring the tag.
15512       S = getTagInjectionScope(S, getLangOpts());
15513     } else {
15514       assert(TUK == TUK_Friend);
15515       // C++ [namespace.memdef]p3:
15516       //   If a friend declaration in a non-local class first declares a
15517       //   class or function, the friend class or function is a member of
15518       //   the innermost enclosing namespace.
15519       SearchDC = SearchDC->getEnclosingNamespaceContext();
15520     }
15521 
15522     // In C++, we need to do a redeclaration lookup to properly
15523     // diagnose some problems.
15524     // FIXME: redeclaration lookup is also used (with and without C++) to find a
15525     // hidden declaration so that we don't get ambiguity errors when using a
15526     // type declared by an elaborated-type-specifier.  In C that is not correct
15527     // and we should instead merge compatible types found by lookup.
15528     if (getLangOpts().CPlusPlus) {
15529       Previous.setRedeclarationKind(forRedeclarationInCurContext());
15530       LookupQualifiedName(Previous, SearchDC);
15531     } else {
15532       Previous.setRedeclarationKind(forRedeclarationInCurContext());
15533       LookupName(Previous, S);
15534     }
15535   }
15536 
15537   // If we have a known previous declaration to use, then use it.
15538   if (Previous.empty() && SkipBody && SkipBody->Previous)
15539     Previous.addDecl(SkipBody->Previous);
15540 
15541   if (!Previous.empty()) {
15542     NamedDecl *PrevDecl = Previous.getFoundDecl();
15543     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
15544 
15545     // It's okay to have a tag decl in the same scope as a typedef
15546     // which hides a tag decl in the same scope.  Finding this
15547     // insanity with a redeclaration lookup can only actually happen
15548     // in C++.
15549     //
15550     // This is also okay for elaborated-type-specifiers, which is
15551     // technically forbidden by the current standard but which is
15552     // okay according to the likely resolution of an open issue;
15553     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
15554     if (getLangOpts().CPlusPlus) {
15555       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
15556         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
15557           TagDecl *Tag = TT->getDecl();
15558           if (Tag->getDeclName() == Name &&
15559               Tag->getDeclContext()->getRedeclContext()
15560                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
15561             PrevDecl = Tag;
15562             Previous.clear();
15563             Previous.addDecl(Tag);
15564             Previous.resolveKind();
15565           }
15566         }
15567       }
15568     }
15569 
15570     // If this is a redeclaration of a using shadow declaration, it must
15571     // declare a tag in the same context. In MSVC mode, we allow a
15572     // redefinition if either context is within the other.
15573     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
15574       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
15575       if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
15576           isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
15577           !(OldTag && isAcceptableTagRedeclContext(
15578                           *this, OldTag->getDeclContext(), SearchDC))) {
15579         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
15580         Diag(Shadow->getTargetDecl()->getLocation(),
15581              diag::note_using_decl_target);
15582         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
15583             << 0;
15584         // Recover by ignoring the old declaration.
15585         Previous.clear();
15586         goto CreateNewDecl;
15587       }
15588     }
15589 
15590     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
15591       // If this is a use of a previous tag, or if the tag is already declared
15592       // in the same scope (so that the definition/declaration completes or
15593       // rementions the tag), reuse the decl.
15594       if (TUK == TUK_Reference || TUK == TUK_Friend ||
15595           isDeclInScope(DirectPrevDecl, SearchDC, S,
15596                         SS.isNotEmpty() || isMemberSpecialization)) {
15597         // Make sure that this wasn't declared as an enum and now used as a
15598         // struct or something similar.
15599         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
15600                                           TUK == TUK_Definition, KWLoc,
15601                                           Name)) {
15602           bool SafeToContinue
15603             = (PrevTagDecl->getTagKind() != TTK_Enum &&
15604                Kind != TTK_Enum);
15605           if (SafeToContinue)
15606             Diag(KWLoc, diag::err_use_with_wrong_tag)
15607               << Name
15608               << FixItHint::CreateReplacement(SourceRange(KWLoc),
15609                                               PrevTagDecl->getKindName());
15610           else
15611             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
15612           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
15613 
15614           if (SafeToContinue)
15615             Kind = PrevTagDecl->getTagKind();
15616           else {
15617             // Recover by making this an anonymous redefinition.
15618             Name = nullptr;
15619             Previous.clear();
15620             Invalid = true;
15621           }
15622         }
15623 
15624         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
15625           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
15626           if (TUK == TUK_Reference || TUK == TUK_Friend)
15627             return PrevTagDecl;
15628 
15629           QualType EnumUnderlyingTy;
15630           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
15631             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
15632           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
15633             EnumUnderlyingTy = QualType(T, 0);
15634 
15635           // All conflicts with previous declarations are recovered by
15636           // returning the previous declaration, unless this is a definition,
15637           // in which case we want the caller to bail out.
15638           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
15639                                      ScopedEnum, EnumUnderlyingTy,
15640                                      IsFixed, PrevEnum))
15641             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
15642         }
15643 
15644         // C++11 [class.mem]p1:
15645         //   A member shall not be declared twice in the member-specification,
15646         //   except that a nested class or member class template can be declared
15647         //   and then later defined.
15648         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
15649             S->isDeclScope(PrevDecl)) {
15650           Diag(NameLoc, diag::ext_member_redeclared);
15651           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
15652         }
15653 
15654         if (!Invalid) {
15655           // If this is a use, just return the declaration we found, unless
15656           // we have attributes.
15657           if (TUK == TUK_Reference || TUK == TUK_Friend) {
15658             if (!Attrs.empty()) {
15659               // FIXME: Diagnose these attributes. For now, we create a new
15660               // declaration to hold them.
15661             } else if (TUK == TUK_Reference &&
15662                        (PrevTagDecl->getFriendObjectKind() ==
15663                             Decl::FOK_Undeclared ||
15664                         PrevDecl->getOwningModule() != getCurrentModule()) &&
15665                        SS.isEmpty()) {
15666               // This declaration is a reference to an existing entity, but
15667               // has different visibility from that entity: it either makes
15668               // a friend visible or it makes a type visible in a new module.
15669               // In either case, create a new declaration. We only do this if
15670               // the declaration would have meant the same thing if no prior
15671               // declaration were found, that is, if it was found in the same
15672               // scope where we would have injected a declaration.
15673               if (!getTagInjectionContext(CurContext)->getRedeclContext()
15674                        ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
15675                 return PrevTagDecl;
15676               // This is in the injected scope, create a new declaration in
15677               // that scope.
15678               S = getTagInjectionScope(S, getLangOpts());
15679             } else {
15680               return PrevTagDecl;
15681             }
15682           }
15683 
15684           // Diagnose attempts to redefine a tag.
15685           if (TUK == TUK_Definition) {
15686             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
15687               // If we're defining a specialization and the previous definition
15688               // is from an implicit instantiation, don't emit an error
15689               // here; we'll catch this in the general case below.
15690               bool IsExplicitSpecializationAfterInstantiation = false;
15691               if (isMemberSpecialization) {
15692                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
15693                   IsExplicitSpecializationAfterInstantiation =
15694                     RD->getTemplateSpecializationKind() !=
15695                     TSK_ExplicitSpecialization;
15696                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
15697                   IsExplicitSpecializationAfterInstantiation =
15698                     ED->getTemplateSpecializationKind() !=
15699                     TSK_ExplicitSpecialization;
15700               }
15701 
15702               // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
15703               // not keep more that one definition around (merge them). However,
15704               // ensure the decl passes the structural compatibility check in
15705               // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
15706               NamedDecl *Hidden = nullptr;
15707               if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
15708                 // There is a definition of this tag, but it is not visible. We
15709                 // explicitly make use of C++'s one definition rule here, and
15710                 // assume that this definition is identical to the hidden one
15711                 // we already have. Make the existing definition visible and
15712                 // use it in place of this one.
15713                 if (!getLangOpts().CPlusPlus) {
15714                   // Postpone making the old definition visible until after we
15715                   // complete parsing the new one and do the structural
15716                   // comparison.
15717                   SkipBody->CheckSameAsPrevious = true;
15718                   SkipBody->New = createTagFromNewDecl();
15719                   SkipBody->Previous = Def;
15720                   return Def;
15721                 } else {
15722                   SkipBody->ShouldSkip = true;
15723                   SkipBody->Previous = Def;
15724                   makeMergedDefinitionVisible(Hidden);
15725                   // Carry on and handle it like a normal definition. We'll
15726                   // skip starting the definitiion later.
15727                 }
15728               } else if (!IsExplicitSpecializationAfterInstantiation) {
15729                 // A redeclaration in function prototype scope in C isn't
15730                 // visible elsewhere, so merely issue a warning.
15731                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
15732                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
15733                 else
15734                   Diag(NameLoc, diag::err_redefinition) << Name;
15735                 notePreviousDefinition(Def,
15736                                        NameLoc.isValid() ? NameLoc : KWLoc);
15737                 // If this is a redefinition, recover by making this
15738                 // struct be anonymous, which will make any later
15739                 // references get the previous definition.
15740                 Name = nullptr;
15741                 Previous.clear();
15742                 Invalid = true;
15743               }
15744             } else {
15745               // If the type is currently being defined, complain
15746               // about a nested redefinition.
15747               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
15748               if (TD->isBeingDefined()) {
15749                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
15750                 Diag(PrevTagDecl->getLocation(),
15751                      diag::note_previous_definition);
15752                 Name = nullptr;
15753                 Previous.clear();
15754                 Invalid = true;
15755               }
15756             }
15757 
15758             // Okay, this is definition of a previously declared or referenced
15759             // tag. We're going to create a new Decl for it.
15760           }
15761 
15762           // Okay, we're going to make a redeclaration.  If this is some kind
15763           // of reference, make sure we build the redeclaration in the same DC
15764           // as the original, and ignore the current access specifier.
15765           if (TUK == TUK_Friend || TUK == TUK_Reference) {
15766             SearchDC = PrevTagDecl->getDeclContext();
15767             AS = AS_none;
15768           }
15769         }
15770         // If we get here we have (another) forward declaration or we
15771         // have a definition.  Just create a new decl.
15772 
15773       } else {
15774         // If we get here, this is a definition of a new tag type in a nested
15775         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
15776         // new decl/type.  We set PrevDecl to NULL so that the entities
15777         // have distinct types.
15778         Previous.clear();
15779       }
15780       // If we get here, we're going to create a new Decl. If PrevDecl
15781       // is non-NULL, it's a definition of the tag declared by
15782       // PrevDecl. If it's NULL, we have a new definition.
15783 
15784     // Otherwise, PrevDecl is not a tag, but was found with tag
15785     // lookup.  This is only actually possible in C++, where a few
15786     // things like templates still live in the tag namespace.
15787     } else {
15788       // Use a better diagnostic if an elaborated-type-specifier
15789       // found the wrong kind of type on the first
15790       // (non-redeclaration) lookup.
15791       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
15792           !Previous.isForRedeclaration()) {
15793         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
15794         Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
15795                                                        << Kind;
15796         Diag(PrevDecl->getLocation(), diag::note_declared_at);
15797         Invalid = true;
15798 
15799       // Otherwise, only diagnose if the declaration is in scope.
15800       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
15801                                 SS.isNotEmpty() || isMemberSpecialization)) {
15802         // do nothing
15803 
15804       // Diagnose implicit declarations introduced by elaborated types.
15805       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
15806         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
15807         Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
15808         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
15809         Invalid = true;
15810 
15811       // Otherwise it's a declaration.  Call out a particularly common
15812       // case here.
15813       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
15814         unsigned Kind = 0;
15815         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
15816         Diag(NameLoc, diag::err_tag_definition_of_typedef)
15817           << Name << Kind << TND->getUnderlyingType();
15818         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
15819         Invalid = true;
15820 
15821       // Otherwise, diagnose.
15822       } else {
15823         // The tag name clashes with something else in the target scope,
15824         // issue an error and recover by making this tag be anonymous.
15825         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
15826         notePreviousDefinition(PrevDecl, NameLoc);
15827         Name = nullptr;
15828         Invalid = true;
15829       }
15830 
15831       // The existing declaration isn't relevant to us; we're in a
15832       // new scope, so clear out the previous declaration.
15833       Previous.clear();
15834     }
15835   }
15836 
15837 CreateNewDecl:
15838 
15839   TagDecl *PrevDecl = nullptr;
15840   if (Previous.isSingleResult())
15841     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
15842 
15843   // If there is an identifier, use the location of the identifier as the
15844   // location of the decl, otherwise use the location of the struct/union
15845   // keyword.
15846   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
15847 
15848   // Otherwise, create a new declaration. If there is a previous
15849   // declaration of the same entity, the two will be linked via
15850   // PrevDecl.
15851   TagDecl *New;
15852 
15853   if (Kind == TTK_Enum) {
15854     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
15855     // enum X { A, B, C } D;    D should chain to X.
15856     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
15857                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
15858                            ScopedEnumUsesClassTag, IsFixed);
15859 
15860     if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
15861       StdAlignValT = cast<EnumDecl>(New);
15862 
15863     // If this is an undefined enum, warn.
15864     if (TUK != TUK_Definition && !Invalid) {
15865       TagDecl *Def;
15866       if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
15867         // C++0x: 7.2p2: opaque-enum-declaration.
15868         // Conflicts are diagnosed above. Do nothing.
15869       }
15870       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
15871         Diag(Loc, diag::ext_forward_ref_enum_def)
15872           << New;
15873         Diag(Def->getLocation(), diag::note_previous_definition);
15874       } else {
15875         unsigned DiagID = diag::ext_forward_ref_enum;
15876         if (getLangOpts().MSVCCompat)
15877           DiagID = diag::ext_ms_forward_ref_enum;
15878         else if (getLangOpts().CPlusPlus)
15879           DiagID = diag::err_forward_ref_enum;
15880         Diag(Loc, DiagID);
15881       }
15882     }
15883 
15884     if (EnumUnderlying) {
15885       EnumDecl *ED = cast<EnumDecl>(New);
15886       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
15887         ED->setIntegerTypeSourceInfo(TI);
15888       else
15889         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
15890       ED->setPromotionType(ED->getIntegerType());
15891       assert(ED->isComplete() && "enum with type should be complete");
15892     }
15893   } else {
15894     // struct/union/class
15895 
15896     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
15897     // struct X { int A; } D;    D should chain to X.
15898     if (getLangOpts().CPlusPlus) {
15899       // FIXME: Look for a way to use RecordDecl for simple structs.
15900       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
15901                                   cast_or_null<CXXRecordDecl>(PrevDecl));
15902 
15903       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
15904         StdBadAlloc = cast<CXXRecordDecl>(New);
15905     } else
15906       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
15907                                cast_or_null<RecordDecl>(PrevDecl));
15908   }
15909 
15910   // C++11 [dcl.type]p3:
15911   //   A type-specifier-seq shall not define a class or enumeration [...].
15912   if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
15913       TUK == TUK_Definition) {
15914     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
15915       << Context.getTagDeclType(New);
15916     Invalid = true;
15917   }
15918 
15919   if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
15920       DC->getDeclKind() == Decl::Enum) {
15921     Diag(New->getLocation(), diag::err_type_defined_in_enum)
15922       << Context.getTagDeclType(New);
15923     Invalid = true;
15924   }
15925 
15926   // Maybe add qualifier info.
15927   if (SS.isNotEmpty()) {
15928     if (SS.isSet()) {
15929       // If this is either a declaration or a definition, check the
15930       // nested-name-specifier against the current context.
15931       if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
15932           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
15933                                        isMemberSpecialization))
15934         Invalid = true;
15935 
15936       New->setQualifierInfo(SS.getWithLocInContext(Context));
15937       if (TemplateParameterLists.size() > 0) {
15938         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
15939       }
15940     }
15941     else
15942       Invalid = true;
15943   }
15944 
15945   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
15946     // Add alignment attributes if necessary; these attributes are checked when
15947     // the ASTContext lays out the structure.
15948     //
15949     // It is important for implementing the correct semantics that this
15950     // happen here (in ActOnTag). The #pragma pack stack is
15951     // maintained as a result of parser callbacks which can occur at
15952     // many points during the parsing of a struct declaration (because
15953     // the #pragma tokens are effectively skipped over during the
15954     // parsing of the struct).
15955     if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
15956       AddAlignmentAttributesForRecord(RD);
15957       AddMsStructLayoutForRecord(RD);
15958     }
15959   }
15960 
15961   if (ModulePrivateLoc.isValid()) {
15962     if (isMemberSpecialization)
15963       Diag(New->getLocation(), diag::err_module_private_specialization)
15964         << 2
15965         << FixItHint::CreateRemoval(ModulePrivateLoc);
15966     // __module_private__ does not apply to local classes. However, we only
15967     // diagnose this as an error when the declaration specifiers are
15968     // freestanding. Here, we just ignore the __module_private__.
15969     else if (!SearchDC->isFunctionOrMethod())
15970       New->setModulePrivate();
15971   }
15972 
15973   // If this is a specialization of a member class (of a class template),
15974   // check the specialization.
15975   if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
15976     Invalid = true;
15977 
15978   // If we're declaring or defining a tag in function prototype scope in C,
15979   // note that this type can only be used within the function and add it to
15980   // the list of decls to inject into the function definition scope.
15981   if ((Name || Kind == TTK_Enum) &&
15982       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
15983     if (getLangOpts().CPlusPlus) {
15984       // C++ [dcl.fct]p6:
15985       //   Types shall not be defined in return or parameter types.
15986       if (TUK == TUK_Definition && !IsTypeSpecifier) {
15987         Diag(Loc, diag::err_type_defined_in_param_type)
15988             << Name;
15989         Invalid = true;
15990       }
15991     } else if (!PrevDecl) {
15992       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
15993     }
15994   }
15995 
15996   if (Invalid)
15997     New->setInvalidDecl();
15998 
15999   // Set the lexical context. If the tag has a C++ scope specifier, the
16000   // lexical context will be different from the semantic context.
16001   New->setLexicalDeclContext(CurContext);
16002 
16003   // Mark this as a friend decl if applicable.
16004   // In Microsoft mode, a friend declaration also acts as a forward
16005   // declaration so we always pass true to setObjectOfFriendDecl to make
16006   // the tag name visible.
16007   if (TUK == TUK_Friend)
16008     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
16009 
16010   // Set the access specifier.
16011   if (!Invalid && SearchDC->isRecord())
16012     SetMemberAccessSpecifier(New, PrevDecl, AS);
16013 
16014   if (PrevDecl)
16015     CheckRedeclarationModuleOwnership(New, PrevDecl);
16016 
16017   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
16018     New->startDefinition();
16019 
16020   ProcessDeclAttributeList(S, New, Attrs);
16021   AddPragmaAttributes(S, New);
16022 
16023   // If this has an identifier, add it to the scope stack.
16024   if (TUK == TUK_Friend) {
16025     // We might be replacing an existing declaration in the lookup tables;
16026     // if so, borrow its access specifier.
16027     if (PrevDecl)
16028       New->setAccess(PrevDecl->getAccess());
16029 
16030     DeclContext *DC = New->getDeclContext()->getRedeclContext();
16031     DC->makeDeclVisibleInContext(New);
16032     if (Name) // can be null along some error paths
16033       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
16034         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
16035   } else if (Name) {
16036     S = getNonFieldDeclScope(S);
16037     PushOnScopeChains(New, S, true);
16038   } else {
16039     CurContext->addDecl(New);
16040   }
16041 
16042   // If this is the C FILE type, notify the AST context.
16043   if (IdentifierInfo *II = New->getIdentifier())
16044     if (!New->isInvalidDecl() &&
16045         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
16046         II->isStr("FILE"))
16047       Context.setFILEDecl(New);
16048 
16049   if (PrevDecl)
16050     mergeDeclAttributes(New, PrevDecl);
16051 
16052   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
16053     inferGslOwnerPointerAttribute(CXXRD);
16054 
16055   // If there's a #pragma GCC visibility in scope, set the visibility of this
16056   // record.
16057   AddPushedVisibilityAttribute(New);
16058 
16059   if (isMemberSpecialization && !New->isInvalidDecl())
16060     CompleteMemberSpecialization(New, Previous);
16061 
16062   OwnedDecl = true;
16063   // In C++, don't return an invalid declaration. We can't recover well from
16064   // the cases where we make the type anonymous.
16065   if (Invalid && getLangOpts().CPlusPlus) {
16066     if (New->isBeingDefined())
16067       if (auto RD = dyn_cast<RecordDecl>(New))
16068         RD->completeDefinition();
16069     return nullptr;
16070   } else if (SkipBody && SkipBody->ShouldSkip) {
16071     return SkipBody->Previous;
16072   } else {
16073     return New;
16074   }
16075 }
16076 
16077 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
16078   AdjustDeclIfTemplate(TagD);
16079   TagDecl *Tag = cast<TagDecl>(TagD);
16080 
16081   // Enter the tag context.
16082   PushDeclContext(S, Tag);
16083 
16084   ActOnDocumentableDecl(TagD);
16085 
16086   // If there's a #pragma GCC visibility in scope, set the visibility of this
16087   // record.
16088   AddPushedVisibilityAttribute(Tag);
16089 }
16090 
16091 bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
16092                                     SkipBodyInfo &SkipBody) {
16093   if (!hasStructuralCompatLayout(Prev, SkipBody.New))
16094     return false;
16095 
16096   // Make the previous decl visible.
16097   makeMergedDefinitionVisible(SkipBody.Previous);
16098   return true;
16099 }
16100 
16101 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
16102   assert(isa<ObjCContainerDecl>(IDecl) &&
16103          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
16104   DeclContext *OCD = cast<DeclContext>(IDecl);
16105   assert(getContainingDC(OCD) == CurContext &&
16106       "The next DeclContext should be lexically contained in the current one.");
16107   CurContext = OCD;
16108   return IDecl;
16109 }
16110 
16111 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
16112                                            SourceLocation FinalLoc,
16113                                            bool IsFinalSpelledSealed,
16114                                            SourceLocation LBraceLoc) {
16115   AdjustDeclIfTemplate(TagD);
16116   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
16117 
16118   FieldCollector->StartClass();
16119 
16120   if (!Record->getIdentifier())
16121     return;
16122 
16123   if (FinalLoc.isValid())
16124     Record->addAttr(FinalAttr::Create(
16125         Context, FinalLoc, AttributeCommonInfo::AS_Keyword,
16126         static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed)));
16127 
16128   // C++ [class]p2:
16129   //   [...] The class-name is also inserted into the scope of the
16130   //   class itself; this is known as the injected-class-name. For
16131   //   purposes of access checking, the injected-class-name is treated
16132   //   as if it were a public member name.
16133   CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
16134       Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
16135       Record->getLocation(), Record->getIdentifier(),
16136       /*PrevDecl=*/nullptr,
16137       /*DelayTypeCreation=*/true);
16138   Context.getTypeDeclType(InjectedClassName, Record);
16139   InjectedClassName->setImplicit();
16140   InjectedClassName->setAccess(AS_public);
16141   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
16142       InjectedClassName->setDescribedClassTemplate(Template);
16143   PushOnScopeChains(InjectedClassName, S);
16144   assert(InjectedClassName->isInjectedClassName() &&
16145          "Broken injected-class-name");
16146 }
16147 
16148 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
16149                                     SourceRange BraceRange) {
16150   AdjustDeclIfTemplate(TagD);
16151   TagDecl *Tag = cast<TagDecl>(TagD);
16152   Tag->setBraceRange(BraceRange);
16153 
16154   // Make sure we "complete" the definition even it is invalid.
16155   if (Tag->isBeingDefined()) {
16156     assert(Tag->isInvalidDecl() && "We should already have completed it");
16157     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
16158       RD->completeDefinition();
16159   }
16160 
16161   if (isa<CXXRecordDecl>(Tag)) {
16162     FieldCollector->FinishClass();
16163   }
16164 
16165   // Exit this scope of this tag's definition.
16166   PopDeclContext();
16167 
16168   if (getCurLexicalContext()->isObjCContainer() &&
16169       Tag->getDeclContext()->isFileContext())
16170     Tag->setTopLevelDeclInObjCContainer();
16171 
16172   // Notify the consumer that we've defined a tag.
16173   if (!Tag->isInvalidDecl())
16174     Consumer.HandleTagDeclDefinition(Tag);
16175 }
16176 
16177 void Sema::ActOnObjCContainerFinishDefinition() {
16178   // Exit this scope of this interface definition.
16179   PopDeclContext();
16180 }
16181 
16182 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
16183   assert(DC == CurContext && "Mismatch of container contexts");
16184   OriginalLexicalContext = DC;
16185   ActOnObjCContainerFinishDefinition();
16186 }
16187 
16188 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
16189   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
16190   OriginalLexicalContext = nullptr;
16191 }
16192 
16193 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
16194   AdjustDeclIfTemplate(TagD);
16195   TagDecl *Tag = cast<TagDecl>(TagD);
16196   Tag->setInvalidDecl();
16197 
16198   // Make sure we "complete" the definition even it is invalid.
16199   if (Tag->isBeingDefined()) {
16200     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
16201       RD->completeDefinition();
16202   }
16203 
16204   // We're undoing ActOnTagStartDefinition here, not
16205   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
16206   // the FieldCollector.
16207 
16208   PopDeclContext();
16209 }
16210 
16211 // Note that FieldName may be null for anonymous bitfields.
16212 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
16213                                 IdentifierInfo *FieldName,
16214                                 QualType FieldTy, bool IsMsStruct,
16215                                 Expr *BitWidth, bool *ZeroWidth) {
16216   assert(BitWidth);
16217   if (BitWidth->containsErrors())
16218     return ExprError();
16219 
16220   // Default to true; that shouldn't confuse checks for emptiness
16221   if (ZeroWidth)
16222     *ZeroWidth = true;
16223 
16224   // C99 6.7.2.1p4 - verify the field type.
16225   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
16226   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
16227     // Handle incomplete and sizeless types with a specific error.
16228     if (RequireCompleteSizedType(FieldLoc, FieldTy,
16229                                  diag::err_field_incomplete_or_sizeless))
16230       return ExprError();
16231     if (FieldName)
16232       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
16233         << FieldName << FieldTy << BitWidth->getSourceRange();
16234     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
16235       << FieldTy << BitWidth->getSourceRange();
16236   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
16237                                              UPPC_BitFieldWidth))
16238     return ExprError();
16239 
16240   // If the bit-width is type- or value-dependent, don't try to check
16241   // it now.
16242   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
16243     return BitWidth;
16244 
16245   llvm::APSInt Value;
16246   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
16247   if (ICE.isInvalid())
16248     return ICE;
16249   BitWidth = ICE.get();
16250 
16251   if (Value != 0 && ZeroWidth)
16252     *ZeroWidth = false;
16253 
16254   // Zero-width bitfield is ok for anonymous field.
16255   if (Value == 0 && FieldName)
16256     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
16257 
16258   if (Value.isSigned() && Value.isNegative()) {
16259     if (FieldName)
16260       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
16261                << FieldName << Value.toString(10);
16262     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
16263       << Value.toString(10);
16264   }
16265 
16266   if (!FieldTy->isDependentType()) {
16267     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
16268     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
16269     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
16270 
16271     // Over-wide bitfields are an error in C or when using the MSVC bitfield
16272     // ABI.
16273     bool CStdConstraintViolation =
16274         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
16275     bool MSBitfieldViolation =
16276         Value.ugt(TypeStorageSize) &&
16277         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
16278     if (CStdConstraintViolation || MSBitfieldViolation) {
16279       unsigned DiagWidth =
16280           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
16281       if (FieldName)
16282         return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
16283                << FieldName << (unsigned)Value.getZExtValue()
16284                << !CStdConstraintViolation << DiagWidth;
16285 
16286       return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
16287              << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
16288              << DiagWidth;
16289     }
16290 
16291     // Warn on types where the user might conceivably expect to get all
16292     // specified bits as value bits: that's all integral types other than
16293     // 'bool'.
16294     if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
16295       if (FieldName)
16296         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
16297             << FieldName << (unsigned)Value.getZExtValue()
16298             << (unsigned)TypeWidth;
16299       else
16300         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
16301             << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
16302     }
16303   }
16304 
16305   return BitWidth;
16306 }
16307 
16308 /// ActOnField - Each field of a C struct/union is passed into this in order
16309 /// to create a FieldDecl object for it.
16310 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
16311                        Declarator &D, Expr *BitfieldWidth) {
16312   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
16313                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
16314                                /*InitStyle=*/ICIS_NoInit, AS_public);
16315   return Res;
16316 }
16317 
16318 /// HandleField - Analyze a field of a C struct or a C++ data member.
16319 ///
16320 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
16321                              SourceLocation DeclStart,
16322                              Declarator &D, Expr *BitWidth,
16323                              InClassInitStyle InitStyle,
16324                              AccessSpecifier AS) {
16325   if (D.isDecompositionDeclarator()) {
16326     const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
16327     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
16328       << Decomp.getSourceRange();
16329     return nullptr;
16330   }
16331 
16332   IdentifierInfo *II = D.getIdentifier();
16333   SourceLocation Loc = DeclStart;
16334   if (II) Loc = D.getIdentifierLoc();
16335 
16336   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16337   QualType T = TInfo->getType();
16338   if (getLangOpts().CPlusPlus) {
16339     CheckExtraCXXDefaultArguments(D);
16340 
16341     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
16342                                         UPPC_DataMemberType)) {
16343       D.setInvalidType();
16344       T = Context.IntTy;
16345       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
16346     }
16347   }
16348 
16349   DiagnoseFunctionSpecifiers(D.getDeclSpec());
16350 
16351   if (D.getDeclSpec().isInlineSpecified())
16352     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
16353         << getLangOpts().CPlusPlus17;
16354   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
16355     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
16356          diag::err_invalid_thread)
16357       << DeclSpec::getSpecifierName(TSCS);
16358 
16359   // Check to see if this name was declared as a member previously
16360   NamedDecl *PrevDecl = nullptr;
16361   LookupResult Previous(*this, II, Loc, LookupMemberName,
16362                         ForVisibleRedeclaration);
16363   LookupName(Previous, S);
16364   switch (Previous.getResultKind()) {
16365     case LookupResult::Found:
16366     case LookupResult::FoundUnresolvedValue:
16367       PrevDecl = Previous.getAsSingle<NamedDecl>();
16368       break;
16369 
16370     case LookupResult::FoundOverloaded:
16371       PrevDecl = Previous.getRepresentativeDecl();
16372       break;
16373 
16374     case LookupResult::NotFound:
16375     case LookupResult::NotFoundInCurrentInstantiation:
16376     case LookupResult::Ambiguous:
16377       break;
16378   }
16379   Previous.suppressDiagnostics();
16380 
16381   if (PrevDecl && PrevDecl->isTemplateParameter()) {
16382     // Maybe we will complain about the shadowed template parameter.
16383     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
16384     // Just pretend that we didn't see the previous declaration.
16385     PrevDecl = nullptr;
16386   }
16387 
16388   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
16389     PrevDecl = nullptr;
16390 
16391   bool Mutable
16392     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
16393   SourceLocation TSSL = D.getBeginLoc();
16394   FieldDecl *NewFD
16395     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
16396                      TSSL, AS, PrevDecl, &D);
16397 
16398   if (NewFD->isInvalidDecl())
16399     Record->setInvalidDecl();
16400 
16401   if (D.getDeclSpec().isModulePrivateSpecified())
16402     NewFD->setModulePrivate();
16403 
16404   if (NewFD->isInvalidDecl() && PrevDecl) {
16405     // Don't introduce NewFD into scope; there's already something
16406     // with the same name in the same scope.
16407   } else if (II) {
16408     PushOnScopeChains(NewFD, S);
16409   } else
16410     Record->addDecl(NewFD);
16411 
16412   return NewFD;
16413 }
16414 
16415 /// Build a new FieldDecl and check its well-formedness.
16416 ///
16417 /// This routine builds a new FieldDecl given the fields name, type,
16418 /// record, etc. \p PrevDecl should refer to any previous declaration
16419 /// with the same name and in the same scope as the field to be
16420 /// created.
16421 ///
16422 /// \returns a new FieldDecl.
16423 ///
16424 /// \todo The Declarator argument is a hack. It will be removed once
16425 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
16426                                 TypeSourceInfo *TInfo,
16427                                 RecordDecl *Record, SourceLocation Loc,
16428                                 bool Mutable, Expr *BitWidth,
16429                                 InClassInitStyle InitStyle,
16430                                 SourceLocation TSSL,
16431                                 AccessSpecifier AS, NamedDecl *PrevDecl,
16432                                 Declarator *D) {
16433   IdentifierInfo *II = Name.getAsIdentifierInfo();
16434   bool InvalidDecl = false;
16435   if (D) InvalidDecl = D->isInvalidType();
16436 
16437   // If we receive a broken type, recover by assuming 'int' and
16438   // marking this declaration as invalid.
16439   if (T.isNull()) {
16440     InvalidDecl = true;
16441     T = Context.IntTy;
16442   }
16443 
16444   QualType EltTy = Context.getBaseElementType(T);
16445   if (!EltTy->isDependentType() && !EltTy->containsErrors()) {
16446     if (RequireCompleteSizedType(Loc, EltTy,
16447                                  diag::err_field_incomplete_or_sizeless)) {
16448       // Fields of incomplete type force their record to be invalid.
16449       Record->setInvalidDecl();
16450       InvalidDecl = true;
16451     } else {
16452       NamedDecl *Def;
16453       EltTy->isIncompleteType(&Def);
16454       if (Def && Def->isInvalidDecl()) {
16455         Record->setInvalidDecl();
16456         InvalidDecl = true;
16457       }
16458     }
16459   }
16460 
16461   // TR 18037 does not allow fields to be declared with address space
16462   if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
16463       T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
16464     Diag(Loc, diag::err_field_with_address_space);
16465     Record->setInvalidDecl();
16466     InvalidDecl = true;
16467   }
16468 
16469   if (LangOpts.OpenCL) {
16470     // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
16471     // used as structure or union field: image, sampler, event or block types.
16472     if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
16473         T->isBlockPointerType()) {
16474       Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
16475       Record->setInvalidDecl();
16476       InvalidDecl = true;
16477     }
16478     // OpenCL v1.2 s6.9.c: bitfields are not supported.
16479     if (BitWidth) {
16480       Diag(Loc, diag::err_opencl_bitfields);
16481       InvalidDecl = true;
16482     }
16483   }
16484 
16485   // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
16486   if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
16487       T.hasQualifiers()) {
16488     InvalidDecl = true;
16489     Diag(Loc, diag::err_anon_bitfield_qualifiers);
16490   }
16491 
16492   // C99 6.7.2.1p8: A member of a structure or union may have any type other
16493   // than a variably modified type.
16494   if (!InvalidDecl && T->isVariablyModifiedType()) {
16495     bool SizeIsNegative;
16496     llvm::APSInt Oversized;
16497 
16498     TypeSourceInfo *FixedTInfo =
16499       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
16500                                                     SizeIsNegative,
16501                                                     Oversized);
16502     if (FixedTInfo) {
16503       Diag(Loc, diag::warn_illegal_constant_array_size);
16504       TInfo = FixedTInfo;
16505       T = FixedTInfo->getType();
16506     } else {
16507       if (SizeIsNegative)
16508         Diag(Loc, diag::err_typecheck_negative_array_size);
16509       else if (Oversized.getBoolValue())
16510         Diag(Loc, diag::err_array_too_large)
16511           << Oversized.toString(10);
16512       else
16513         Diag(Loc, diag::err_typecheck_field_variable_size);
16514       InvalidDecl = true;
16515     }
16516   }
16517 
16518   // Fields can not have abstract class types
16519   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
16520                                              diag::err_abstract_type_in_decl,
16521                                              AbstractFieldType))
16522     InvalidDecl = true;
16523 
16524   bool ZeroWidth = false;
16525   if (InvalidDecl)
16526     BitWidth = nullptr;
16527   // If this is declared as a bit-field, check the bit-field.
16528   if (BitWidth) {
16529     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
16530                               &ZeroWidth).get();
16531     if (!BitWidth) {
16532       InvalidDecl = true;
16533       BitWidth = nullptr;
16534       ZeroWidth = false;
16535     }
16536 
16537     // Only data members can have in-class initializers.
16538     if (BitWidth && !II && InitStyle) {
16539       Diag(Loc, diag::err_anon_bitfield_init);
16540       InvalidDecl = true;
16541       BitWidth = nullptr;
16542       ZeroWidth = false;
16543     }
16544   }
16545 
16546   // Check that 'mutable' is consistent with the type of the declaration.
16547   if (!InvalidDecl && Mutable) {
16548     unsigned DiagID = 0;
16549     if (T->isReferenceType())
16550       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
16551                                         : diag::err_mutable_reference;
16552     else if (T.isConstQualified())
16553       DiagID = diag::err_mutable_const;
16554 
16555     if (DiagID) {
16556       SourceLocation ErrLoc = Loc;
16557       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
16558         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
16559       Diag(ErrLoc, DiagID);
16560       if (DiagID != diag::ext_mutable_reference) {
16561         Mutable = false;
16562         InvalidDecl = true;
16563       }
16564     }
16565   }
16566 
16567   // C++11 [class.union]p8 (DR1460):
16568   //   At most one variant member of a union may have a
16569   //   brace-or-equal-initializer.
16570   if (InitStyle != ICIS_NoInit)
16571     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
16572 
16573   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
16574                                        BitWidth, Mutable, InitStyle);
16575   if (InvalidDecl)
16576     NewFD->setInvalidDecl();
16577 
16578   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
16579     Diag(Loc, diag::err_duplicate_member) << II;
16580     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16581     NewFD->setInvalidDecl();
16582   }
16583 
16584   if (!InvalidDecl && getLangOpts().CPlusPlus) {
16585     if (Record->isUnion()) {
16586       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
16587         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
16588         if (RDecl->getDefinition()) {
16589           // C++ [class.union]p1: An object of a class with a non-trivial
16590           // constructor, a non-trivial copy constructor, a non-trivial
16591           // destructor, or a non-trivial copy assignment operator
16592           // cannot be a member of a union, nor can an array of such
16593           // objects.
16594           if (CheckNontrivialField(NewFD))
16595             NewFD->setInvalidDecl();
16596         }
16597       }
16598 
16599       // C++ [class.union]p1: If a union contains a member of reference type,
16600       // the program is ill-formed, except when compiling with MSVC extensions
16601       // enabled.
16602       if (EltTy->isReferenceType()) {
16603         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
16604                                     diag::ext_union_member_of_reference_type :
16605                                     diag::err_union_member_of_reference_type)
16606           << NewFD->getDeclName() << EltTy;
16607         if (!getLangOpts().MicrosoftExt)
16608           NewFD->setInvalidDecl();
16609       }
16610     }
16611   }
16612 
16613   // FIXME: We need to pass in the attributes given an AST
16614   // representation, not a parser representation.
16615   if (D) {
16616     // FIXME: The current scope is almost... but not entirely... correct here.
16617     ProcessDeclAttributes(getCurScope(), NewFD, *D);
16618 
16619     if (NewFD->hasAttrs())
16620       CheckAlignasUnderalignment(NewFD);
16621   }
16622 
16623   // In auto-retain/release, infer strong retension for fields of
16624   // retainable type.
16625   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
16626     NewFD->setInvalidDecl();
16627 
16628   if (T.isObjCGCWeak())
16629     Diag(Loc, diag::warn_attribute_weak_on_field);
16630 
16631   NewFD->setAccess(AS);
16632   return NewFD;
16633 }
16634 
16635 bool Sema::CheckNontrivialField(FieldDecl *FD) {
16636   assert(FD);
16637   assert(getLangOpts().CPlusPlus && "valid check only for C++");
16638 
16639   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
16640     return false;
16641 
16642   QualType EltTy = Context.getBaseElementType(FD->getType());
16643   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
16644     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
16645     if (RDecl->getDefinition()) {
16646       // We check for copy constructors before constructors
16647       // because otherwise we'll never get complaints about
16648       // copy constructors.
16649 
16650       CXXSpecialMember member = CXXInvalid;
16651       // We're required to check for any non-trivial constructors. Since the
16652       // implicit default constructor is suppressed if there are any
16653       // user-declared constructors, we just need to check that there is a
16654       // trivial default constructor and a trivial copy constructor. (We don't
16655       // worry about move constructors here, since this is a C++98 check.)
16656       if (RDecl->hasNonTrivialCopyConstructor())
16657         member = CXXCopyConstructor;
16658       else if (!RDecl->hasTrivialDefaultConstructor())
16659         member = CXXDefaultConstructor;
16660       else if (RDecl->hasNonTrivialCopyAssignment())
16661         member = CXXCopyAssignment;
16662       else if (RDecl->hasNonTrivialDestructor())
16663         member = CXXDestructor;
16664 
16665       if (member != CXXInvalid) {
16666         if (!getLangOpts().CPlusPlus11 &&
16667             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
16668           // Objective-C++ ARC: it is an error to have a non-trivial field of
16669           // a union. However, system headers in Objective-C programs
16670           // occasionally have Objective-C lifetime objects within unions,
16671           // and rather than cause the program to fail, we make those
16672           // members unavailable.
16673           SourceLocation Loc = FD->getLocation();
16674           if (getSourceManager().isInSystemHeader(Loc)) {
16675             if (!FD->hasAttr<UnavailableAttr>())
16676               FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
16677                             UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
16678             return false;
16679           }
16680         }
16681 
16682         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
16683                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
16684                diag::err_illegal_union_or_anon_struct_member)
16685           << FD->getParent()->isUnion() << FD->getDeclName() << member;
16686         DiagnoseNontrivial(RDecl, member);
16687         return !getLangOpts().CPlusPlus11;
16688       }
16689     }
16690   }
16691 
16692   return false;
16693 }
16694 
16695 /// TranslateIvarVisibility - Translate visibility from a token ID to an
16696 ///  AST enum value.
16697 static ObjCIvarDecl::AccessControl
16698 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
16699   switch (ivarVisibility) {
16700   default: llvm_unreachable("Unknown visitibility kind");
16701   case tok::objc_private: return ObjCIvarDecl::Private;
16702   case tok::objc_public: return ObjCIvarDecl::Public;
16703   case tok::objc_protected: return ObjCIvarDecl::Protected;
16704   case tok::objc_package: return ObjCIvarDecl::Package;
16705   }
16706 }
16707 
16708 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
16709 /// in order to create an IvarDecl object for it.
16710 Decl *Sema::ActOnIvar(Scope *S,
16711                                 SourceLocation DeclStart,
16712                                 Declarator &D, Expr *BitfieldWidth,
16713                                 tok::ObjCKeywordKind Visibility) {
16714 
16715   IdentifierInfo *II = D.getIdentifier();
16716   Expr *BitWidth = (Expr*)BitfieldWidth;
16717   SourceLocation Loc = DeclStart;
16718   if (II) Loc = D.getIdentifierLoc();
16719 
16720   // FIXME: Unnamed fields can be handled in various different ways, for
16721   // example, unnamed unions inject all members into the struct namespace!
16722 
16723   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16724   QualType T = TInfo->getType();
16725 
16726   if (BitWidth) {
16727     // 6.7.2.1p3, 6.7.2.1p4
16728     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
16729     if (!BitWidth)
16730       D.setInvalidType();
16731   } else {
16732     // Not a bitfield.
16733 
16734     // validate II.
16735 
16736   }
16737   if (T->isReferenceType()) {
16738     Diag(Loc, diag::err_ivar_reference_type);
16739     D.setInvalidType();
16740   }
16741   // C99 6.7.2.1p8: A member of a structure or union may have any type other
16742   // than a variably modified type.
16743   else if (T->isVariablyModifiedType()) {
16744     Diag(Loc, diag::err_typecheck_ivar_variable_size);
16745     D.setInvalidType();
16746   }
16747 
16748   // Get the visibility (access control) for this ivar.
16749   ObjCIvarDecl::AccessControl ac =
16750     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
16751                                         : ObjCIvarDecl::None;
16752   // Must set ivar's DeclContext to its enclosing interface.
16753   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
16754   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
16755     return nullptr;
16756   ObjCContainerDecl *EnclosingContext;
16757   if (ObjCImplementationDecl *IMPDecl =
16758       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16759     if (LangOpts.ObjCRuntime.isFragile()) {
16760     // Case of ivar declared in an implementation. Context is that of its class.
16761       EnclosingContext = IMPDecl->getClassInterface();
16762       assert(EnclosingContext && "Implementation has no class interface!");
16763     }
16764     else
16765       EnclosingContext = EnclosingDecl;
16766   } else {
16767     if (ObjCCategoryDecl *CDecl =
16768         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16769       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
16770         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
16771         return nullptr;
16772       }
16773     }
16774     EnclosingContext = EnclosingDecl;
16775   }
16776 
16777   // Construct the decl.
16778   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
16779                                              DeclStart, Loc, II, T,
16780                                              TInfo, ac, (Expr *)BitfieldWidth);
16781 
16782   if (II) {
16783     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
16784                                            ForVisibleRedeclaration);
16785     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
16786         && !isa<TagDecl>(PrevDecl)) {
16787       Diag(Loc, diag::err_duplicate_member) << II;
16788       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16789       NewID->setInvalidDecl();
16790     }
16791   }
16792 
16793   // Process attributes attached to the ivar.
16794   ProcessDeclAttributes(S, NewID, D);
16795 
16796   if (D.isInvalidType())
16797     NewID->setInvalidDecl();
16798 
16799   // In ARC, infer 'retaining' for ivars of retainable type.
16800   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
16801     NewID->setInvalidDecl();
16802 
16803   if (D.getDeclSpec().isModulePrivateSpecified())
16804     NewID->setModulePrivate();
16805 
16806   if (II) {
16807     // FIXME: When interfaces are DeclContexts, we'll need to add
16808     // these to the interface.
16809     S->AddDecl(NewID);
16810     IdResolver.AddDecl(NewID);
16811   }
16812 
16813   if (LangOpts.ObjCRuntime.isNonFragile() &&
16814       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
16815     Diag(Loc, diag::warn_ivars_in_interface);
16816 
16817   return NewID;
16818 }
16819 
16820 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
16821 /// class and class extensions. For every class \@interface and class
16822 /// extension \@interface, if the last ivar is a bitfield of any type,
16823 /// then add an implicit `char :0` ivar to the end of that interface.
16824 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
16825                              SmallVectorImpl<Decl *> &AllIvarDecls) {
16826   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
16827     return;
16828 
16829   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
16830   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
16831 
16832   if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
16833     return;
16834   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
16835   if (!ID) {
16836     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
16837       if (!CD->IsClassExtension())
16838         return;
16839     }
16840     // No need to add this to end of @implementation.
16841     else
16842       return;
16843   }
16844   // All conditions are met. Add a new bitfield to the tail end of ivars.
16845   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
16846   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
16847 
16848   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
16849                               DeclLoc, DeclLoc, nullptr,
16850                               Context.CharTy,
16851                               Context.getTrivialTypeSourceInfo(Context.CharTy,
16852                                                                DeclLoc),
16853                               ObjCIvarDecl::Private, BW,
16854                               true);
16855   AllIvarDecls.push_back(Ivar);
16856 }
16857 
16858 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
16859                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
16860                        SourceLocation RBrac,
16861                        const ParsedAttributesView &Attrs) {
16862   assert(EnclosingDecl && "missing record or interface decl");
16863 
16864   // If this is an Objective-C @implementation or category and we have
16865   // new fields here we should reset the layout of the interface since
16866   // it will now change.
16867   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
16868     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
16869     switch (DC->getKind()) {
16870     default: break;
16871     case Decl::ObjCCategory:
16872       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
16873       break;
16874     case Decl::ObjCImplementation:
16875       Context.
16876         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
16877       break;
16878     }
16879   }
16880 
16881   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
16882   CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
16883 
16884   // Start counting up the number of named members; make sure to include
16885   // members of anonymous structs and unions in the total.
16886   unsigned NumNamedMembers = 0;
16887   if (Record) {
16888     for (const auto *I : Record->decls()) {
16889       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
16890         if (IFD->getDeclName())
16891           ++NumNamedMembers;
16892     }
16893   }
16894 
16895   // Verify that all the fields are okay.
16896   SmallVector<FieldDecl*, 32> RecFields;
16897 
16898   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
16899        i != end; ++i) {
16900     FieldDecl *FD = cast<FieldDecl>(*i);
16901 
16902     // Get the type for the field.
16903     const Type *FDTy = FD->getType().getTypePtr();
16904 
16905     if (!FD->isAnonymousStructOrUnion()) {
16906       // Remember all fields written by the user.
16907       RecFields.push_back(FD);
16908     }
16909 
16910     // If the field is already invalid for some reason, don't emit more
16911     // diagnostics about it.
16912     if (FD->isInvalidDecl()) {
16913       EnclosingDecl->setInvalidDecl();
16914       continue;
16915     }
16916 
16917     // C99 6.7.2.1p2:
16918     //   A structure or union shall not contain a member with
16919     //   incomplete or function type (hence, a structure shall not
16920     //   contain an instance of itself, but may contain a pointer to
16921     //   an instance of itself), except that the last member of a
16922     //   structure with more than one named member may have incomplete
16923     //   array type; such a structure (and any union containing,
16924     //   possibly recursively, a member that is such a structure)
16925     //   shall not be a member of a structure or an element of an
16926     //   array.
16927     bool IsLastField = (i + 1 == Fields.end());
16928     if (FDTy->isFunctionType()) {
16929       // Field declared as a function.
16930       Diag(FD->getLocation(), diag::err_field_declared_as_function)
16931         << FD->getDeclName();
16932       FD->setInvalidDecl();
16933       EnclosingDecl->setInvalidDecl();
16934       continue;
16935     } else if (FDTy->isIncompleteArrayType() &&
16936                (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
16937       if (Record) {
16938         // Flexible array member.
16939         // Microsoft and g++ is more permissive regarding flexible array.
16940         // It will accept flexible array in union and also
16941         // as the sole element of a struct/class.
16942         unsigned DiagID = 0;
16943         if (!Record->isUnion() && !IsLastField) {
16944           Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
16945             << FD->getDeclName() << FD->getType() << Record->getTagKind();
16946           Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
16947           FD->setInvalidDecl();
16948           EnclosingDecl->setInvalidDecl();
16949           continue;
16950         } else if (Record->isUnion())
16951           DiagID = getLangOpts().MicrosoftExt
16952                        ? diag::ext_flexible_array_union_ms
16953                        : getLangOpts().CPlusPlus
16954                              ? diag::ext_flexible_array_union_gnu
16955                              : diag::err_flexible_array_union;
16956         else if (NumNamedMembers < 1)
16957           DiagID = getLangOpts().MicrosoftExt
16958                        ? diag::ext_flexible_array_empty_aggregate_ms
16959                        : getLangOpts().CPlusPlus
16960                              ? diag::ext_flexible_array_empty_aggregate_gnu
16961                              : diag::err_flexible_array_empty_aggregate;
16962 
16963         if (DiagID)
16964           Diag(FD->getLocation(), DiagID) << FD->getDeclName()
16965                                           << Record->getTagKind();
16966         // While the layout of types that contain virtual bases is not specified
16967         // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
16968         // virtual bases after the derived members.  This would make a flexible
16969         // array member declared at the end of an object not adjacent to the end
16970         // of the type.
16971         if (CXXRecord && CXXRecord->getNumVBases() != 0)
16972           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
16973               << FD->getDeclName() << Record->getTagKind();
16974         if (!getLangOpts().C99)
16975           Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
16976             << FD->getDeclName() << Record->getTagKind();
16977 
16978         // If the element type has a non-trivial destructor, we would not
16979         // implicitly destroy the elements, so disallow it for now.
16980         //
16981         // FIXME: GCC allows this. We should probably either implicitly delete
16982         // the destructor of the containing class, or just allow this.
16983         QualType BaseElem = Context.getBaseElementType(FD->getType());
16984         if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
16985           Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
16986             << FD->getDeclName() << FD->getType();
16987           FD->setInvalidDecl();
16988           EnclosingDecl->setInvalidDecl();
16989           continue;
16990         }
16991         // Okay, we have a legal flexible array member at the end of the struct.
16992         Record->setHasFlexibleArrayMember(true);
16993       } else {
16994         // In ObjCContainerDecl ivars with incomplete array type are accepted,
16995         // unless they are followed by another ivar. That check is done
16996         // elsewhere, after synthesized ivars are known.
16997       }
16998     } else if (!FDTy->isDependentType() &&
16999                RequireCompleteSizedType(
17000                    FD->getLocation(), FD->getType(),
17001                    diag::err_field_incomplete_or_sizeless)) {
17002       // Incomplete type
17003       FD->setInvalidDecl();
17004       EnclosingDecl->setInvalidDecl();
17005       continue;
17006     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
17007       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
17008         // A type which contains a flexible array member is considered to be a
17009         // flexible array member.
17010         Record->setHasFlexibleArrayMember(true);
17011         if (!Record->isUnion()) {
17012           // If this is a struct/class and this is not the last element, reject
17013           // it.  Note that GCC supports variable sized arrays in the middle of
17014           // structures.
17015           if (!IsLastField)
17016             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
17017               << FD->getDeclName() << FD->getType();
17018           else {
17019             // We support flexible arrays at the end of structs in
17020             // other structs as an extension.
17021             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
17022               << FD->getDeclName();
17023           }
17024         }
17025       }
17026       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
17027           RequireNonAbstractType(FD->getLocation(), FD->getType(),
17028                                  diag::err_abstract_type_in_decl,
17029                                  AbstractIvarType)) {
17030         // Ivars can not have abstract class types
17031         FD->setInvalidDecl();
17032       }
17033       if (Record && FDTTy->getDecl()->hasObjectMember())
17034         Record->setHasObjectMember(true);
17035       if (Record && FDTTy->getDecl()->hasVolatileMember())
17036         Record->setHasVolatileMember(true);
17037     } else if (FDTy->isObjCObjectType()) {
17038       /// A field cannot be an Objective-c object
17039       Diag(FD->getLocation(), diag::err_statically_allocated_object)
17040         << FixItHint::CreateInsertion(FD->getLocation(), "*");
17041       QualType T = Context.getObjCObjectPointerType(FD->getType());
17042       FD->setType(T);
17043     } else if (Record && Record->isUnion() &&
17044                FD->getType().hasNonTrivialObjCLifetime() &&
17045                getSourceManager().isInSystemHeader(FD->getLocation()) &&
17046                !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
17047                (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
17048                 !Context.hasDirectOwnershipQualifier(FD->getType()))) {
17049       // For backward compatibility, fields of C unions declared in system
17050       // headers that have non-trivial ObjC ownership qualifications are marked
17051       // as unavailable unless the qualifier is explicit and __strong. This can
17052       // break ABI compatibility between programs compiled with ARC and MRR, but
17053       // is a better option than rejecting programs using those unions under
17054       // ARC.
17055       FD->addAttr(UnavailableAttr::CreateImplicit(
17056           Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
17057           FD->getLocation()));
17058     } else if (getLangOpts().ObjC &&
17059                getLangOpts().getGC() != LangOptions::NonGC && Record &&
17060                !Record->hasObjectMember()) {
17061       if (FD->getType()->isObjCObjectPointerType() ||
17062           FD->getType().isObjCGCStrong())
17063         Record->setHasObjectMember(true);
17064       else if (Context.getAsArrayType(FD->getType())) {
17065         QualType BaseType = Context.getBaseElementType(FD->getType());
17066         if (BaseType->isRecordType() &&
17067             BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
17068           Record->setHasObjectMember(true);
17069         else if (BaseType->isObjCObjectPointerType() ||
17070                  BaseType.isObjCGCStrong())
17071                Record->setHasObjectMember(true);
17072       }
17073     }
17074 
17075     if (Record && !getLangOpts().CPlusPlus &&
17076         !shouldIgnoreForRecordTriviality(FD)) {
17077       QualType FT = FD->getType();
17078       if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
17079         Record->setNonTrivialToPrimitiveDefaultInitialize(true);
17080         if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
17081             Record->isUnion())
17082           Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
17083       }
17084       QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
17085       if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
17086         Record->setNonTrivialToPrimitiveCopy(true);
17087         if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
17088           Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
17089       }
17090       if (FT.isDestructedType()) {
17091         Record->setNonTrivialToPrimitiveDestroy(true);
17092         Record->setParamDestroyedInCallee(true);
17093         if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
17094           Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
17095       }
17096 
17097       if (const auto *RT = FT->getAs<RecordType>()) {
17098         if (RT->getDecl()->getArgPassingRestrictions() ==
17099             RecordDecl::APK_CanNeverPassInRegs)
17100           Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17101       } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
17102         Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17103     }
17104 
17105     if (Record && FD->getType().isVolatileQualified())
17106       Record->setHasVolatileMember(true);
17107     // Keep track of the number of named members.
17108     if (FD->getIdentifier())
17109       ++NumNamedMembers;
17110   }
17111 
17112   // Okay, we successfully defined 'Record'.
17113   if (Record) {
17114     bool Completed = false;
17115     if (CXXRecord) {
17116       if (!CXXRecord->isInvalidDecl()) {
17117         // Set access bits correctly on the directly-declared conversions.
17118         for (CXXRecordDecl::conversion_iterator
17119                I = CXXRecord->conversion_begin(),
17120                E = CXXRecord->conversion_end(); I != E; ++I)
17121           I.setAccess((*I)->getAccess());
17122       }
17123 
17124       if (!CXXRecord->isDependentType()) {
17125         // Add any implicitly-declared members to this class.
17126         AddImplicitlyDeclaredMembersToClass(CXXRecord);
17127 
17128         if (!CXXRecord->isInvalidDecl()) {
17129           // If we have virtual base classes, we may end up finding multiple
17130           // final overriders for a given virtual function. Check for this
17131           // problem now.
17132           if (CXXRecord->getNumVBases()) {
17133             CXXFinalOverriderMap FinalOverriders;
17134             CXXRecord->getFinalOverriders(FinalOverriders);
17135 
17136             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
17137                                              MEnd = FinalOverriders.end();
17138                  M != MEnd; ++M) {
17139               for (OverridingMethods::iterator SO = M->second.begin(),
17140                                             SOEnd = M->second.end();
17141                    SO != SOEnd; ++SO) {
17142                 assert(SO->second.size() > 0 &&
17143                        "Virtual function without overriding functions?");
17144                 if (SO->second.size() == 1)
17145                   continue;
17146 
17147                 // C++ [class.virtual]p2:
17148                 //   In a derived class, if a virtual member function of a base
17149                 //   class subobject has more than one final overrider the
17150                 //   program is ill-formed.
17151                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
17152                   << (const NamedDecl *)M->first << Record;
17153                 Diag(M->first->getLocation(),
17154                      diag::note_overridden_virtual_function);
17155                 for (OverridingMethods::overriding_iterator
17156                           OM = SO->second.begin(),
17157                        OMEnd = SO->second.end();
17158                      OM != OMEnd; ++OM)
17159                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
17160                     << (const NamedDecl *)M->first << OM->Method->getParent();
17161 
17162                 Record->setInvalidDecl();
17163               }
17164             }
17165             CXXRecord->completeDefinition(&FinalOverriders);
17166             Completed = true;
17167           }
17168         }
17169       }
17170     }
17171 
17172     if (!Completed)
17173       Record->completeDefinition();
17174 
17175     // Handle attributes before checking the layout.
17176     ProcessDeclAttributeList(S, Record, Attrs);
17177 
17178     // We may have deferred checking for a deleted destructor. Check now.
17179     if (CXXRecord) {
17180       auto *Dtor = CXXRecord->getDestructor();
17181       if (Dtor && Dtor->isImplicit() &&
17182           ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
17183         CXXRecord->setImplicitDestructorIsDeleted();
17184         SetDeclDeleted(Dtor, CXXRecord->getLocation());
17185       }
17186     }
17187 
17188     if (Record->hasAttrs()) {
17189       CheckAlignasUnderalignment(Record);
17190 
17191       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
17192         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
17193                                            IA->getRange(), IA->getBestCase(),
17194                                            IA->getInheritanceModel());
17195     }
17196 
17197     // Check if the structure/union declaration is a type that can have zero
17198     // size in C. For C this is a language extension, for C++ it may cause
17199     // compatibility problems.
17200     bool CheckForZeroSize;
17201     if (!getLangOpts().CPlusPlus) {
17202       CheckForZeroSize = true;
17203     } else {
17204       // For C++ filter out types that cannot be referenced in C code.
17205       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
17206       CheckForZeroSize =
17207           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
17208           !CXXRecord->isDependentType() &&
17209           CXXRecord->isCLike();
17210     }
17211     if (CheckForZeroSize) {
17212       bool ZeroSize = true;
17213       bool IsEmpty = true;
17214       unsigned NonBitFields = 0;
17215       for (RecordDecl::field_iterator I = Record->field_begin(),
17216                                       E = Record->field_end();
17217            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
17218         IsEmpty = false;
17219         if (I->isUnnamedBitfield()) {
17220           if (!I->isZeroLengthBitField(Context))
17221             ZeroSize = false;
17222         } else {
17223           ++NonBitFields;
17224           QualType FieldType = I->getType();
17225           if (FieldType->isIncompleteType() ||
17226               !Context.getTypeSizeInChars(FieldType).isZero())
17227             ZeroSize = false;
17228         }
17229       }
17230 
17231       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
17232       // allowed in C++, but warn if its declaration is inside
17233       // extern "C" block.
17234       if (ZeroSize) {
17235         Diag(RecLoc, getLangOpts().CPlusPlus ?
17236                          diag::warn_zero_size_struct_union_in_extern_c :
17237                          diag::warn_zero_size_struct_union_compat)
17238           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
17239       }
17240 
17241       // Structs without named members are extension in C (C99 6.7.2.1p7),
17242       // but are accepted by GCC.
17243       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
17244         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
17245                                diag::ext_no_named_members_in_struct_union)
17246           << Record->isUnion();
17247       }
17248     }
17249   } else {
17250     ObjCIvarDecl **ClsFields =
17251       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
17252     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
17253       ID->setEndOfDefinitionLoc(RBrac);
17254       // Add ivar's to class's DeclContext.
17255       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
17256         ClsFields[i]->setLexicalDeclContext(ID);
17257         ID->addDecl(ClsFields[i]);
17258       }
17259       // Must enforce the rule that ivars in the base classes may not be
17260       // duplicates.
17261       if (ID->getSuperClass())
17262         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
17263     } else if (ObjCImplementationDecl *IMPDecl =
17264                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
17265       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
17266       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
17267         // Ivar declared in @implementation never belongs to the implementation.
17268         // Only it is in implementation's lexical context.
17269         ClsFields[I]->setLexicalDeclContext(IMPDecl);
17270       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
17271       IMPDecl->setIvarLBraceLoc(LBrac);
17272       IMPDecl->setIvarRBraceLoc(RBrac);
17273     } else if (ObjCCategoryDecl *CDecl =
17274                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
17275       // case of ivars in class extension; all other cases have been
17276       // reported as errors elsewhere.
17277       // FIXME. Class extension does not have a LocEnd field.
17278       // CDecl->setLocEnd(RBrac);
17279       // Add ivar's to class extension's DeclContext.
17280       // Diagnose redeclaration of private ivars.
17281       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
17282       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
17283         if (IDecl) {
17284           if (const ObjCIvarDecl *ClsIvar =
17285               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
17286             Diag(ClsFields[i]->getLocation(),
17287                  diag::err_duplicate_ivar_declaration);
17288             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
17289             continue;
17290           }
17291           for (const auto *Ext : IDecl->known_extensions()) {
17292             if (const ObjCIvarDecl *ClsExtIvar
17293                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
17294               Diag(ClsFields[i]->getLocation(),
17295                    diag::err_duplicate_ivar_declaration);
17296               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
17297               continue;
17298             }
17299           }
17300         }
17301         ClsFields[i]->setLexicalDeclContext(CDecl);
17302         CDecl->addDecl(ClsFields[i]);
17303       }
17304       CDecl->setIvarLBraceLoc(LBrac);
17305       CDecl->setIvarRBraceLoc(RBrac);
17306     }
17307   }
17308 }
17309 
17310 /// Determine whether the given integral value is representable within
17311 /// the given type T.
17312 static bool isRepresentableIntegerValue(ASTContext &Context,
17313                                         llvm::APSInt &Value,
17314                                         QualType T) {
17315   assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
17316          "Integral type required!");
17317   unsigned BitWidth = Context.getIntWidth(T);
17318 
17319   if (Value.isUnsigned() || Value.isNonNegative()) {
17320     if (T->isSignedIntegerOrEnumerationType())
17321       --BitWidth;
17322     return Value.getActiveBits() <= BitWidth;
17323   }
17324   return Value.getMinSignedBits() <= BitWidth;
17325 }
17326 
17327 // Given an integral type, return the next larger integral type
17328 // (or a NULL type of no such type exists).
17329 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
17330   // FIXME: Int128/UInt128 support, which also needs to be introduced into
17331   // enum checking below.
17332   assert((T->isIntegralType(Context) ||
17333          T->isEnumeralType()) && "Integral type required!");
17334   const unsigned NumTypes = 4;
17335   QualType SignedIntegralTypes[NumTypes] = {
17336     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
17337   };
17338   QualType UnsignedIntegralTypes[NumTypes] = {
17339     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
17340     Context.UnsignedLongLongTy
17341   };
17342 
17343   unsigned BitWidth = Context.getTypeSize(T);
17344   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
17345                                                         : UnsignedIntegralTypes;
17346   for (unsigned I = 0; I != NumTypes; ++I)
17347     if (Context.getTypeSize(Types[I]) > BitWidth)
17348       return Types[I];
17349 
17350   return QualType();
17351 }
17352 
17353 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
17354                                           EnumConstantDecl *LastEnumConst,
17355                                           SourceLocation IdLoc,
17356                                           IdentifierInfo *Id,
17357                                           Expr *Val) {
17358   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
17359   llvm::APSInt EnumVal(IntWidth);
17360   QualType EltTy;
17361 
17362   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
17363     Val = nullptr;
17364 
17365   if (Val)
17366     Val = DefaultLvalueConversion(Val).get();
17367 
17368   if (Val) {
17369     if (Enum->isDependentType() || Val->isTypeDependent())
17370       EltTy = Context.DependentTy;
17371     else {
17372       if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
17373         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
17374         // constant-expression in the enumerator-definition shall be a converted
17375         // constant expression of the underlying type.
17376         EltTy = Enum->getIntegerType();
17377         ExprResult Converted =
17378           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
17379                                            CCEK_Enumerator);
17380         if (Converted.isInvalid())
17381           Val = nullptr;
17382         else
17383           Val = Converted.get();
17384       } else if (!Val->isValueDependent() &&
17385                  !(Val = VerifyIntegerConstantExpression(Val,
17386                                                          &EnumVal).get())) {
17387         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
17388       } else {
17389         if (Enum->isComplete()) {
17390           EltTy = Enum->getIntegerType();
17391 
17392           // In Obj-C and Microsoft mode, require the enumeration value to be
17393           // representable in the underlying type of the enumeration. In C++11,
17394           // we perform a non-narrowing conversion as part of converted constant
17395           // expression checking.
17396           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17397             if (Context.getTargetInfo()
17398                     .getTriple()
17399                     .isWindowsMSVCEnvironment()) {
17400               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
17401             } else {
17402               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
17403             }
17404           }
17405 
17406           // Cast to the underlying type.
17407           Val = ImpCastExprToType(Val, EltTy,
17408                                   EltTy->isBooleanType() ? CK_IntegralToBoolean
17409                                                          : CK_IntegralCast)
17410                     .get();
17411         } else if (getLangOpts().CPlusPlus) {
17412           // C++11 [dcl.enum]p5:
17413           //   If the underlying type is not fixed, the type of each enumerator
17414           //   is the type of its initializing value:
17415           //     - If an initializer is specified for an enumerator, the
17416           //       initializing value has the same type as the expression.
17417           EltTy = Val->getType();
17418         } else {
17419           // C99 6.7.2.2p2:
17420           //   The expression that defines the value of an enumeration constant
17421           //   shall be an integer constant expression that has a value
17422           //   representable as an int.
17423 
17424           // Complain if the value is not representable in an int.
17425           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
17426             Diag(IdLoc, diag::ext_enum_value_not_int)
17427               << EnumVal.toString(10) << Val->getSourceRange()
17428               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
17429           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
17430             // Force the type of the expression to 'int'.
17431             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
17432           }
17433           EltTy = Val->getType();
17434         }
17435       }
17436     }
17437   }
17438 
17439   if (!Val) {
17440     if (Enum->isDependentType())
17441       EltTy = Context.DependentTy;
17442     else if (!LastEnumConst) {
17443       // C++0x [dcl.enum]p5:
17444       //   If the underlying type is not fixed, the type of each enumerator
17445       //   is the type of its initializing value:
17446       //     - If no initializer is specified for the first enumerator, the
17447       //       initializing value has an unspecified integral type.
17448       //
17449       // GCC uses 'int' for its unspecified integral type, as does
17450       // C99 6.7.2.2p3.
17451       if (Enum->isFixed()) {
17452         EltTy = Enum->getIntegerType();
17453       }
17454       else {
17455         EltTy = Context.IntTy;
17456       }
17457     } else {
17458       // Assign the last value + 1.
17459       EnumVal = LastEnumConst->getInitVal();
17460       ++EnumVal;
17461       EltTy = LastEnumConst->getType();
17462 
17463       // Check for overflow on increment.
17464       if (EnumVal < LastEnumConst->getInitVal()) {
17465         // C++0x [dcl.enum]p5:
17466         //   If the underlying type is not fixed, the type of each enumerator
17467         //   is the type of its initializing value:
17468         //
17469         //     - Otherwise the type of the initializing value is the same as
17470         //       the type of the initializing value of the preceding enumerator
17471         //       unless the incremented value is not representable in that type,
17472         //       in which case the type is an unspecified integral type
17473         //       sufficient to contain the incremented value. If no such type
17474         //       exists, the program is ill-formed.
17475         QualType T = getNextLargerIntegralType(Context, EltTy);
17476         if (T.isNull() || Enum->isFixed()) {
17477           // There is no integral type larger enough to represent this
17478           // value. Complain, then allow the value to wrap around.
17479           EnumVal = LastEnumConst->getInitVal();
17480           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
17481           ++EnumVal;
17482           if (Enum->isFixed())
17483             // When the underlying type is fixed, this is ill-formed.
17484             Diag(IdLoc, diag::err_enumerator_wrapped)
17485               << EnumVal.toString(10)
17486               << EltTy;
17487           else
17488             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
17489               << EnumVal.toString(10);
17490         } else {
17491           EltTy = T;
17492         }
17493 
17494         // Retrieve the last enumerator's value, extent that type to the
17495         // type that is supposed to be large enough to represent the incremented
17496         // value, then increment.
17497         EnumVal = LastEnumConst->getInitVal();
17498         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17499         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
17500         ++EnumVal;
17501 
17502         // If we're not in C++, diagnose the overflow of enumerator values,
17503         // which in C99 means that the enumerator value is not representable in
17504         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
17505         // permits enumerator values that are representable in some larger
17506         // integral type.
17507         if (!getLangOpts().CPlusPlus && !T.isNull())
17508           Diag(IdLoc, diag::warn_enum_value_overflow);
17509       } else if (!getLangOpts().CPlusPlus &&
17510                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17511         // Enforce C99 6.7.2.2p2 even when we compute the next value.
17512         Diag(IdLoc, diag::ext_enum_value_not_int)
17513           << EnumVal.toString(10) << 1;
17514       }
17515     }
17516   }
17517 
17518   if (!EltTy->isDependentType()) {
17519     // Make the enumerator value match the signedness and size of the
17520     // enumerator's type.
17521     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
17522     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17523   }
17524 
17525   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
17526                                   Val, EnumVal);
17527 }
17528 
17529 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
17530                                                 SourceLocation IILoc) {
17531   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
17532       !getLangOpts().CPlusPlus)
17533     return SkipBodyInfo();
17534 
17535   // We have an anonymous enum definition. Look up the first enumerator to
17536   // determine if we should merge the definition with an existing one and
17537   // skip the body.
17538   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
17539                                          forRedeclarationInCurContext());
17540   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
17541   if (!PrevECD)
17542     return SkipBodyInfo();
17543 
17544   EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
17545   NamedDecl *Hidden;
17546   if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
17547     SkipBodyInfo Skip;
17548     Skip.Previous = Hidden;
17549     return Skip;
17550   }
17551 
17552   return SkipBodyInfo();
17553 }
17554 
17555 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
17556                               SourceLocation IdLoc, IdentifierInfo *Id,
17557                               const ParsedAttributesView &Attrs,
17558                               SourceLocation EqualLoc, Expr *Val) {
17559   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
17560   EnumConstantDecl *LastEnumConst =
17561     cast_or_null<EnumConstantDecl>(lastEnumConst);
17562 
17563   // The scope passed in may not be a decl scope.  Zip up the scope tree until
17564   // we find one that is.
17565   S = getNonFieldDeclScope(S);
17566 
17567   // Verify that there isn't already something declared with this name in this
17568   // scope.
17569   LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
17570   LookupName(R, S);
17571   NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
17572 
17573   if (PrevDecl && PrevDecl->isTemplateParameter()) {
17574     // Maybe we will complain about the shadowed template parameter.
17575     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
17576     // Just pretend that we didn't see the previous declaration.
17577     PrevDecl = nullptr;
17578   }
17579 
17580   // C++ [class.mem]p15:
17581   // If T is the name of a class, then each of the following shall have a name
17582   // different from T:
17583   // - every enumerator of every member of class T that is an unscoped
17584   // enumerated type
17585   if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
17586     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
17587                             DeclarationNameInfo(Id, IdLoc));
17588 
17589   EnumConstantDecl *New =
17590     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
17591   if (!New)
17592     return nullptr;
17593 
17594   if (PrevDecl) {
17595     if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
17596       // Check for other kinds of shadowing not already handled.
17597       CheckShadow(New, PrevDecl, R);
17598     }
17599 
17600     // When in C++, we may get a TagDecl with the same name; in this case the
17601     // enum constant will 'hide' the tag.
17602     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
17603            "Received TagDecl when not in C++!");
17604     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
17605       if (isa<EnumConstantDecl>(PrevDecl))
17606         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
17607       else
17608         Diag(IdLoc, diag::err_redefinition) << Id;
17609       notePreviousDefinition(PrevDecl, IdLoc);
17610       return nullptr;
17611     }
17612   }
17613 
17614   // Process attributes.
17615   ProcessDeclAttributeList(S, New, Attrs);
17616   AddPragmaAttributes(S, New);
17617 
17618   // Register this decl in the current scope stack.
17619   New->setAccess(TheEnumDecl->getAccess());
17620   PushOnScopeChains(New, S);
17621 
17622   ActOnDocumentableDecl(New);
17623 
17624   return New;
17625 }
17626 
17627 // Returns true when the enum initial expression does not trigger the
17628 // duplicate enum warning.  A few common cases are exempted as follows:
17629 // Element2 = Element1
17630 // Element2 = Element1 + 1
17631 // Element2 = Element1 - 1
17632 // Where Element2 and Element1 are from the same enum.
17633 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
17634   Expr *InitExpr = ECD->getInitExpr();
17635   if (!InitExpr)
17636     return true;
17637   InitExpr = InitExpr->IgnoreImpCasts();
17638 
17639   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
17640     if (!BO->isAdditiveOp())
17641       return true;
17642     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
17643     if (!IL)
17644       return true;
17645     if (IL->getValue() != 1)
17646       return true;
17647 
17648     InitExpr = BO->getLHS();
17649   }
17650 
17651   // This checks if the elements are from the same enum.
17652   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
17653   if (!DRE)
17654     return true;
17655 
17656   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
17657   if (!EnumConstant)
17658     return true;
17659 
17660   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
17661       Enum)
17662     return true;
17663 
17664   return false;
17665 }
17666 
17667 // Emits a warning when an element is implicitly set a value that
17668 // a previous element has already been set to.
17669 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
17670                                         EnumDecl *Enum, QualType EnumType) {
17671   // Avoid anonymous enums
17672   if (!Enum->getIdentifier())
17673     return;
17674 
17675   // Only check for small enums.
17676   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
17677     return;
17678 
17679   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
17680     return;
17681 
17682   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
17683   typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
17684 
17685   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
17686 
17687   // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
17688   typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
17689 
17690   // Use int64_t as a key to avoid needing special handling for map keys.
17691   auto EnumConstantToKey = [](const EnumConstantDecl *D) {
17692     llvm::APSInt Val = D->getInitVal();
17693     return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
17694   };
17695 
17696   DuplicatesVector DupVector;
17697   ValueToVectorMap EnumMap;
17698 
17699   // Populate the EnumMap with all values represented by enum constants without
17700   // an initializer.
17701   for (auto *Element : Elements) {
17702     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
17703 
17704     // Null EnumConstantDecl means a previous diagnostic has been emitted for
17705     // this constant.  Skip this enum since it may be ill-formed.
17706     if (!ECD) {
17707       return;
17708     }
17709 
17710     // Constants with initalizers are handled in the next loop.
17711     if (ECD->getInitExpr())
17712       continue;
17713 
17714     // Duplicate values are handled in the next loop.
17715     EnumMap.insert({EnumConstantToKey(ECD), ECD});
17716   }
17717 
17718   if (EnumMap.size() == 0)
17719     return;
17720 
17721   // Create vectors for any values that has duplicates.
17722   for (auto *Element : Elements) {
17723     // The last loop returned if any constant was null.
17724     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
17725     if (!ValidDuplicateEnum(ECD, Enum))
17726       continue;
17727 
17728     auto Iter = EnumMap.find(EnumConstantToKey(ECD));
17729     if (Iter == EnumMap.end())
17730       continue;
17731 
17732     DeclOrVector& Entry = Iter->second;
17733     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
17734       // Ensure constants are different.
17735       if (D == ECD)
17736         continue;
17737 
17738       // Create new vector and push values onto it.
17739       auto Vec = std::make_unique<ECDVector>();
17740       Vec->push_back(D);
17741       Vec->push_back(ECD);
17742 
17743       // Update entry to point to the duplicates vector.
17744       Entry = Vec.get();
17745 
17746       // Store the vector somewhere we can consult later for quick emission of
17747       // diagnostics.
17748       DupVector.emplace_back(std::move(Vec));
17749       continue;
17750     }
17751 
17752     ECDVector *Vec = Entry.get<ECDVector*>();
17753     // Make sure constants are not added more than once.
17754     if (*Vec->begin() == ECD)
17755       continue;
17756 
17757     Vec->push_back(ECD);
17758   }
17759 
17760   // Emit diagnostics.
17761   for (const auto &Vec : DupVector) {
17762     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
17763 
17764     // Emit warning for one enum constant.
17765     auto *FirstECD = Vec->front();
17766     S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
17767       << FirstECD << FirstECD->getInitVal().toString(10)
17768       << FirstECD->getSourceRange();
17769 
17770     // Emit one note for each of the remaining enum constants with
17771     // the same value.
17772     for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
17773       S.Diag(ECD->getLocation(), diag::note_duplicate_element)
17774         << ECD << ECD->getInitVal().toString(10)
17775         << ECD->getSourceRange();
17776   }
17777 }
17778 
17779 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
17780                              bool AllowMask) const {
17781   assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
17782   assert(ED->isCompleteDefinition() && "expected enum definition");
17783 
17784   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
17785   llvm::APInt &FlagBits = R.first->second;
17786 
17787   if (R.second) {
17788     for (auto *E : ED->enumerators()) {
17789       const auto &EVal = E->getInitVal();
17790       // Only single-bit enumerators introduce new flag values.
17791       if (EVal.isPowerOf2())
17792         FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
17793     }
17794   }
17795 
17796   // A value is in a flag enum if either its bits are a subset of the enum's
17797   // flag bits (the first condition) or we are allowing masks and the same is
17798   // true of its complement (the second condition). When masks are allowed, we
17799   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
17800   //
17801   // While it's true that any value could be used as a mask, the assumption is
17802   // that a mask will have all of the insignificant bits set. Anything else is
17803   // likely a logic error.
17804   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
17805   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
17806 }
17807 
17808 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
17809                          Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
17810                          const ParsedAttributesView &Attrs) {
17811   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
17812   QualType EnumType = Context.getTypeDeclType(Enum);
17813 
17814   ProcessDeclAttributeList(S, Enum, Attrs);
17815 
17816   if (Enum->isDependentType()) {
17817     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
17818       EnumConstantDecl *ECD =
17819         cast_or_null<EnumConstantDecl>(Elements[i]);
17820       if (!ECD) continue;
17821 
17822       ECD->setType(EnumType);
17823     }
17824 
17825     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
17826     return;
17827   }
17828 
17829   // TODO: If the result value doesn't fit in an int, it must be a long or long
17830   // long value.  ISO C does not support this, but GCC does as an extension,
17831   // emit a warning.
17832   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
17833   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
17834   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
17835 
17836   // Verify that all the values are okay, compute the size of the values, and
17837   // reverse the list.
17838   unsigned NumNegativeBits = 0;
17839   unsigned NumPositiveBits = 0;
17840 
17841   // Keep track of whether all elements have type int.
17842   bool AllElementsInt = true;
17843 
17844   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
17845     EnumConstantDecl *ECD =
17846       cast_or_null<EnumConstantDecl>(Elements[i]);
17847     if (!ECD) continue;  // Already issued a diagnostic.
17848 
17849     const llvm::APSInt &InitVal = ECD->getInitVal();
17850 
17851     // Keep track of the size of positive and negative values.
17852     if (InitVal.isUnsigned() || InitVal.isNonNegative())
17853       NumPositiveBits = std::max(NumPositiveBits,
17854                                  (unsigned)InitVal.getActiveBits());
17855     else
17856       NumNegativeBits = std::max(NumNegativeBits,
17857                                  (unsigned)InitVal.getMinSignedBits());
17858 
17859     // Keep track of whether every enum element has type int (very common).
17860     if (AllElementsInt)
17861       AllElementsInt = ECD->getType() == Context.IntTy;
17862   }
17863 
17864   // Figure out the type that should be used for this enum.
17865   QualType BestType;
17866   unsigned BestWidth;
17867 
17868   // C++0x N3000 [conv.prom]p3:
17869   //   An rvalue of an unscoped enumeration type whose underlying
17870   //   type is not fixed can be converted to an rvalue of the first
17871   //   of the following types that can represent all the values of
17872   //   the enumeration: int, unsigned int, long int, unsigned long
17873   //   int, long long int, or unsigned long long int.
17874   // C99 6.4.4.3p2:
17875   //   An identifier declared as an enumeration constant has type int.
17876   // The C99 rule is modified by a gcc extension
17877   QualType BestPromotionType;
17878 
17879   bool Packed = Enum->hasAttr<PackedAttr>();
17880   // -fshort-enums is the equivalent to specifying the packed attribute on all
17881   // enum definitions.
17882   if (LangOpts.ShortEnums)
17883     Packed = true;
17884 
17885   // If the enum already has a type because it is fixed or dictated by the
17886   // target, promote that type instead of analyzing the enumerators.
17887   if (Enum->isComplete()) {
17888     BestType = Enum->getIntegerType();
17889     if (BestType->isPromotableIntegerType())
17890       BestPromotionType = Context.getPromotedIntegerType(BestType);
17891     else
17892       BestPromotionType = BestType;
17893 
17894     BestWidth = Context.getIntWidth(BestType);
17895   }
17896   else if (NumNegativeBits) {
17897     // If there is a negative value, figure out the smallest integer type (of
17898     // int/long/longlong) that fits.
17899     // If it's packed, check also if it fits a char or a short.
17900     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
17901       BestType = Context.SignedCharTy;
17902       BestWidth = CharWidth;
17903     } else if (Packed && NumNegativeBits <= ShortWidth &&
17904                NumPositiveBits < ShortWidth) {
17905       BestType = Context.ShortTy;
17906       BestWidth = ShortWidth;
17907     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
17908       BestType = Context.IntTy;
17909       BestWidth = IntWidth;
17910     } else {
17911       BestWidth = Context.getTargetInfo().getLongWidth();
17912 
17913       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
17914         BestType = Context.LongTy;
17915       } else {
17916         BestWidth = Context.getTargetInfo().getLongLongWidth();
17917 
17918         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
17919           Diag(Enum->getLocation(), diag::ext_enum_too_large);
17920         BestType = Context.LongLongTy;
17921       }
17922     }
17923     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
17924   } else {
17925     // If there is no negative value, figure out the smallest type that fits
17926     // all of the enumerator values.
17927     // If it's packed, check also if it fits a char or a short.
17928     if (Packed && NumPositiveBits <= CharWidth) {
17929       BestType = Context.UnsignedCharTy;
17930       BestPromotionType = Context.IntTy;
17931       BestWidth = CharWidth;
17932     } else if (Packed && NumPositiveBits <= ShortWidth) {
17933       BestType = Context.UnsignedShortTy;
17934       BestPromotionType = Context.IntTy;
17935       BestWidth = ShortWidth;
17936     } else if (NumPositiveBits <= IntWidth) {
17937       BestType = Context.UnsignedIntTy;
17938       BestWidth = IntWidth;
17939       BestPromotionType
17940         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
17941                            ? Context.UnsignedIntTy : Context.IntTy;
17942     } else if (NumPositiveBits <=
17943                (BestWidth = Context.getTargetInfo().getLongWidth())) {
17944       BestType = Context.UnsignedLongTy;
17945       BestPromotionType
17946         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
17947                            ? Context.UnsignedLongTy : Context.LongTy;
17948     } else {
17949       BestWidth = Context.getTargetInfo().getLongLongWidth();
17950       assert(NumPositiveBits <= BestWidth &&
17951              "How could an initializer get larger than ULL?");
17952       BestType = Context.UnsignedLongLongTy;
17953       BestPromotionType
17954         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
17955                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
17956     }
17957   }
17958 
17959   // Loop over all of the enumerator constants, changing their types to match
17960   // the type of the enum if needed.
17961   for (auto *D : Elements) {
17962     auto *ECD = cast_or_null<EnumConstantDecl>(D);
17963     if (!ECD) continue;  // Already issued a diagnostic.
17964 
17965     // Standard C says the enumerators have int type, but we allow, as an
17966     // extension, the enumerators to be larger than int size.  If each
17967     // enumerator value fits in an int, type it as an int, otherwise type it the
17968     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
17969     // that X has type 'int', not 'unsigned'.
17970 
17971     // Determine whether the value fits into an int.
17972     llvm::APSInt InitVal = ECD->getInitVal();
17973 
17974     // If it fits into an integer type, force it.  Otherwise force it to match
17975     // the enum decl type.
17976     QualType NewTy;
17977     unsigned NewWidth;
17978     bool NewSign;
17979     if (!getLangOpts().CPlusPlus &&
17980         !Enum->isFixed() &&
17981         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
17982       NewTy = Context.IntTy;
17983       NewWidth = IntWidth;
17984       NewSign = true;
17985     } else if (ECD->getType() == BestType) {
17986       // Already the right type!
17987       if (getLangOpts().CPlusPlus)
17988         // C++ [dcl.enum]p4: Following the closing brace of an
17989         // enum-specifier, each enumerator has the type of its
17990         // enumeration.
17991         ECD->setType(EnumType);
17992       continue;
17993     } else {
17994       NewTy = BestType;
17995       NewWidth = BestWidth;
17996       NewSign = BestType->isSignedIntegerOrEnumerationType();
17997     }
17998 
17999     // Adjust the APSInt value.
18000     InitVal = InitVal.extOrTrunc(NewWidth);
18001     InitVal.setIsSigned(NewSign);
18002     ECD->setInitVal(InitVal);
18003 
18004     // Adjust the Expr initializer and type.
18005     if (ECD->getInitExpr() &&
18006         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
18007       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
18008                                                 CK_IntegralCast,
18009                                                 ECD->getInitExpr(),
18010                                                 /*base paths*/ nullptr,
18011                                                 VK_RValue));
18012     if (getLangOpts().CPlusPlus)
18013       // C++ [dcl.enum]p4: Following the closing brace of an
18014       // enum-specifier, each enumerator has the type of its
18015       // enumeration.
18016       ECD->setType(EnumType);
18017     else
18018       ECD->setType(NewTy);
18019   }
18020 
18021   Enum->completeDefinition(BestType, BestPromotionType,
18022                            NumPositiveBits, NumNegativeBits);
18023 
18024   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
18025 
18026   if (Enum->isClosedFlag()) {
18027     for (Decl *D : Elements) {
18028       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
18029       if (!ECD) continue;  // Already issued a diagnostic.
18030 
18031       llvm::APSInt InitVal = ECD->getInitVal();
18032       if (InitVal != 0 && !InitVal.isPowerOf2() &&
18033           !IsValueInFlagEnum(Enum, InitVal, true))
18034         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
18035           << ECD << Enum;
18036     }
18037   }
18038 
18039   // Now that the enum type is defined, ensure it's not been underaligned.
18040   if (Enum->hasAttrs())
18041     CheckAlignasUnderalignment(Enum);
18042 }
18043 
18044 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
18045                                   SourceLocation StartLoc,
18046                                   SourceLocation EndLoc) {
18047   StringLiteral *AsmString = cast<StringLiteral>(expr);
18048 
18049   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
18050                                                    AsmString, StartLoc,
18051                                                    EndLoc);
18052   CurContext->addDecl(New);
18053   return New;
18054 }
18055 
18056 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
18057                                       IdentifierInfo* AliasName,
18058                                       SourceLocation PragmaLoc,
18059                                       SourceLocation NameLoc,
18060                                       SourceLocation AliasNameLoc) {
18061   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
18062                                          LookupOrdinaryName);
18063   AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
18064                            AttributeCommonInfo::AS_Pragma);
18065   AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
18066       Context, AliasName->getName(), /*LiteralLabel=*/true, Info);
18067 
18068   // If a declaration that:
18069   // 1) declares a function or a variable
18070   // 2) has external linkage
18071   // already exists, add a label attribute to it.
18072   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18073     if (isDeclExternC(PrevDecl))
18074       PrevDecl->addAttr(Attr);
18075     else
18076       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
18077           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
18078   // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
18079   } else
18080     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
18081 }
18082 
18083 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
18084                              SourceLocation PragmaLoc,
18085                              SourceLocation NameLoc) {
18086   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
18087 
18088   if (PrevDecl) {
18089     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma));
18090   } else {
18091     (void)WeakUndeclaredIdentifiers.insert(
18092       std::pair<IdentifierInfo*,WeakInfo>
18093         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
18094   }
18095 }
18096 
18097 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
18098                                 IdentifierInfo* AliasName,
18099                                 SourceLocation PragmaLoc,
18100                                 SourceLocation NameLoc,
18101                                 SourceLocation AliasNameLoc) {
18102   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
18103                                     LookupOrdinaryName);
18104   WeakInfo W = WeakInfo(Name, NameLoc);
18105 
18106   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18107     if (!PrevDecl->hasAttr<AliasAttr>())
18108       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
18109         DeclApplyPragmaWeak(TUScope, ND, W);
18110   } else {
18111     (void)WeakUndeclaredIdentifiers.insert(
18112       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
18113   }
18114 }
18115 
18116 Decl *Sema::getObjCDeclContext() const {
18117   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
18118 }
18119 
18120 Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD,
18121                                                      bool Final) {
18122   // SYCL functions can be template, so we check if they have appropriate
18123   // attribute prior to checking if it is a template.
18124   if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>())
18125     return FunctionEmissionStatus::Emitted;
18126 
18127   // Templates are emitted when they're instantiated.
18128   if (FD->isDependentContext())
18129     return FunctionEmissionStatus::TemplateDiscarded;
18130 
18131   FunctionEmissionStatus OMPES = FunctionEmissionStatus::Unknown;
18132   if (LangOpts.OpenMPIsDevice) {
18133     Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
18134         OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
18135     if (DevTy.hasValue()) {
18136       if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
18137         OMPES = FunctionEmissionStatus::OMPDiscarded;
18138       else if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost ||
18139                *DevTy == OMPDeclareTargetDeclAttr::DT_Any) {
18140         OMPES = FunctionEmissionStatus::Emitted;
18141       }
18142     }
18143   } else if (LangOpts.OpenMP) {
18144     // In OpenMP 4.5 all the functions are host functions.
18145     if (LangOpts.OpenMP <= 45) {
18146       OMPES = FunctionEmissionStatus::Emitted;
18147     } else {
18148       Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
18149           OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
18150       // In OpenMP 5.0 or above, DevTy may be changed later by
18151       // #pragma omp declare target to(*) device_type(*). Therefore DevTy
18152       // having no value does not imply host. The emission status will be
18153       // checked again at the end of compilation unit.
18154       if (DevTy.hasValue()) {
18155         if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) {
18156           OMPES = FunctionEmissionStatus::OMPDiscarded;
18157         } else if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host ||
18158                    *DevTy == OMPDeclareTargetDeclAttr::DT_Any)
18159           OMPES = FunctionEmissionStatus::Emitted;
18160       } else if (Final)
18161         OMPES = FunctionEmissionStatus::Emitted;
18162     }
18163   }
18164   if (OMPES == FunctionEmissionStatus::OMPDiscarded ||
18165       (OMPES == FunctionEmissionStatus::Emitted && !LangOpts.CUDA))
18166     return OMPES;
18167 
18168   if (LangOpts.CUDA) {
18169     // When compiling for device, host functions are never emitted.  Similarly,
18170     // when compiling for host, device and global functions are never emitted.
18171     // (Technically, we do emit a host-side stub for global functions, but this
18172     // doesn't count for our purposes here.)
18173     Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD);
18174     if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host)
18175       return FunctionEmissionStatus::CUDADiscarded;
18176     if (!LangOpts.CUDAIsDevice &&
18177         (T == Sema::CFT_Device || T == Sema::CFT_Global))
18178       return FunctionEmissionStatus::CUDADiscarded;
18179 
18180     // Check whether this function is externally visible -- if so, it's
18181     // known-emitted.
18182     //
18183     // We have to check the GVA linkage of the function's *definition* -- if we
18184     // only have a declaration, we don't know whether or not the function will
18185     // be emitted, because (say) the definition could include "inline".
18186     FunctionDecl *Def = FD->getDefinition();
18187 
18188     if (Def &&
18189         !isDiscardableGVALinkage(getASTContext().GetGVALinkageForFunction(Def))
18190         && (!LangOpts.OpenMP || OMPES == FunctionEmissionStatus::Emitted))
18191       return FunctionEmissionStatus::Emitted;
18192   }
18193 
18194   // Otherwise, the function is known-emitted if it's in our set of
18195   // known-emitted functions.
18196   return FunctionEmissionStatus::Unknown;
18197 }
18198 
18199 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
18200   // Host-side references to a __global__ function refer to the stub, so the
18201   // function itself is never emitted and therefore should not be marked.
18202   // If we have host fn calls kernel fn calls host+device, the HD function
18203   // does not get instantiated on the host. We model this by omitting at the
18204   // call to the kernel from the callgraph. This ensures that, when compiling
18205   // for host, only HD functions actually called from the host get marked as
18206   // known-emitted.
18207   return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
18208          IdentifyCUDATarget(Callee) == CFT_Global;
18209 }
18210