1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements semantic analysis for declarations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "TypeLocBuilder.h" 14 #include "clang/AST/ASTConsumer.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTLambda.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/CharUnits.h" 19 #include "clang/AST/CommentDiagnostic.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/DeclTemplate.h" 23 #include "clang/AST/EvaluatedExprVisitor.h" 24 #include "clang/AST/Expr.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/NonTrivialTypeVisitor.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/PartialDiagnostic.h" 30 #include "clang/Basic/SourceManager.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex 33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. 34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex 35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled() 36 #include "clang/Sema/CXXFieldCollector.h" 37 #include "clang/Sema/DeclSpec.h" 38 #include "clang/Sema/DelayedDiagnostic.h" 39 #include "clang/Sema/Initialization.h" 40 #include "clang/Sema/Lookup.h" 41 #include "clang/Sema/ParsedTemplate.h" 42 #include "clang/Sema/Scope.h" 43 #include "clang/Sema/ScopeInfo.h" 44 #include "clang/Sema/SemaInternal.h" 45 #include "clang/Sema/Template.h" 46 #include "llvm/ADT/SmallString.h" 47 #include "llvm/ADT/Triple.h" 48 #include <algorithm> 49 #include <cstring> 50 #include <functional> 51 #include <unordered_map> 52 53 using namespace clang; 54 using namespace sema; 55 56 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { 57 if (OwnedType) { 58 Decl *Group[2] = { OwnedType, Ptr }; 59 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2)); 60 } 61 62 return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); 63 } 64 65 namespace { 66 67 class TypeNameValidatorCCC final : public CorrectionCandidateCallback { 68 public: 69 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false, 70 bool AllowTemplates = false, 71 bool AllowNonTemplates = true) 72 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass), 73 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) { 74 WantExpressionKeywords = false; 75 WantCXXNamedCasts = false; 76 WantRemainingKeywords = false; 77 } 78 79 bool ValidateCandidate(const TypoCorrection &candidate) override { 80 if (NamedDecl *ND = candidate.getCorrectionDecl()) { 81 if (!AllowInvalidDecl && ND->isInvalidDecl()) 82 return false; 83 84 if (getAsTypeTemplateDecl(ND)) 85 return AllowTemplates; 86 87 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND); 88 if (!IsType) 89 return false; 90 91 if (AllowNonTemplates) 92 return true; 93 94 // An injected-class-name of a class template (specialization) is valid 95 // as a template or as a non-template. 96 if (AllowTemplates) { 97 auto *RD = dyn_cast<CXXRecordDecl>(ND); 98 if (!RD || !RD->isInjectedClassName()) 99 return false; 100 RD = cast<CXXRecordDecl>(RD->getDeclContext()); 101 return RD->getDescribedClassTemplate() || 102 isa<ClassTemplateSpecializationDecl>(RD); 103 } 104 105 return false; 106 } 107 108 return !WantClassName && candidate.isKeyword(); 109 } 110 111 std::unique_ptr<CorrectionCandidateCallback> clone() override { 112 return std::make_unique<TypeNameValidatorCCC>(*this); 113 } 114 115 private: 116 bool AllowInvalidDecl; 117 bool WantClassName; 118 bool AllowTemplates; 119 bool AllowNonTemplates; 120 }; 121 122 } // end anonymous namespace 123 124 /// Determine whether the token kind starts a simple-type-specifier. 125 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const { 126 switch (Kind) { 127 // FIXME: Take into account the current language when deciding whether a 128 // token kind is a valid type specifier 129 case tok::kw_short: 130 case tok::kw_long: 131 case tok::kw___int64: 132 case tok::kw___int128: 133 case tok::kw_signed: 134 case tok::kw_unsigned: 135 case tok::kw_void: 136 case tok::kw_char: 137 case tok::kw_int: 138 case tok::kw_half: 139 case tok::kw_float: 140 case tok::kw_double: 141 case tok::kw__Float16: 142 case tok::kw___float128: 143 case tok::kw_wchar_t: 144 case tok::kw_bool: 145 case tok::kw___underlying_type: 146 case tok::kw___auto_type: 147 return true; 148 149 case tok::annot_typename: 150 case tok::kw_char16_t: 151 case tok::kw_char32_t: 152 case tok::kw_typeof: 153 case tok::annot_decltype: 154 case tok::kw_decltype: 155 return getLangOpts().CPlusPlus; 156 157 case tok::kw_char8_t: 158 return getLangOpts().Char8; 159 160 default: 161 break; 162 } 163 164 return false; 165 } 166 167 namespace { 168 enum class UnqualifiedTypeNameLookupResult { 169 NotFound, 170 FoundNonType, 171 FoundType 172 }; 173 } // end anonymous namespace 174 175 /// Tries to perform unqualified lookup of the type decls in bases for 176 /// dependent class. 177 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a 178 /// type decl, \a FoundType if only type decls are found. 179 static UnqualifiedTypeNameLookupResult 180 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II, 181 SourceLocation NameLoc, 182 const CXXRecordDecl *RD) { 183 if (!RD->hasDefinition()) 184 return UnqualifiedTypeNameLookupResult::NotFound; 185 // Look for type decls in base classes. 186 UnqualifiedTypeNameLookupResult FoundTypeDecl = 187 UnqualifiedTypeNameLookupResult::NotFound; 188 for (const auto &Base : RD->bases()) { 189 const CXXRecordDecl *BaseRD = nullptr; 190 if (auto *BaseTT = Base.getType()->getAs<TagType>()) 191 BaseRD = BaseTT->getAsCXXRecordDecl(); 192 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) { 193 // Look for type decls in dependent base classes that have known primary 194 // templates. 195 if (!TST || !TST->isDependentType()) 196 continue; 197 auto *TD = TST->getTemplateName().getAsTemplateDecl(); 198 if (!TD) 199 continue; 200 if (auto *BasePrimaryTemplate = 201 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) { 202 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl()) 203 BaseRD = BasePrimaryTemplate; 204 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) { 205 if (const ClassTemplatePartialSpecializationDecl *PS = 206 CTD->findPartialSpecialization(Base.getType())) 207 if (PS->getCanonicalDecl() != RD->getCanonicalDecl()) 208 BaseRD = PS; 209 } 210 } 211 } 212 if (BaseRD) { 213 for (NamedDecl *ND : BaseRD->lookup(&II)) { 214 if (!isa<TypeDecl>(ND)) 215 return UnqualifiedTypeNameLookupResult::FoundNonType; 216 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; 217 } 218 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) { 219 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) { 220 case UnqualifiedTypeNameLookupResult::FoundNonType: 221 return UnqualifiedTypeNameLookupResult::FoundNonType; 222 case UnqualifiedTypeNameLookupResult::FoundType: 223 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; 224 break; 225 case UnqualifiedTypeNameLookupResult::NotFound: 226 break; 227 } 228 } 229 } 230 } 231 232 return FoundTypeDecl; 233 } 234 235 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, 236 const IdentifierInfo &II, 237 SourceLocation NameLoc) { 238 // Lookup in the parent class template context, if any. 239 const CXXRecordDecl *RD = nullptr; 240 UnqualifiedTypeNameLookupResult FoundTypeDecl = 241 UnqualifiedTypeNameLookupResult::NotFound; 242 for (DeclContext *DC = S.CurContext; 243 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound; 244 DC = DC->getParent()) { 245 // Look for type decls in dependent base classes that have known primary 246 // templates. 247 RD = dyn_cast<CXXRecordDecl>(DC); 248 if (RD && RD->getDescribedClassTemplate()) 249 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD); 250 } 251 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType) 252 return nullptr; 253 254 // We found some types in dependent base classes. Recover as if the user 255 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the 256 // lookup during template instantiation. 257 S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II; 258 259 ASTContext &Context = S.Context; 260 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false, 261 cast<Type>(Context.getRecordType(RD))); 262 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II); 263 264 CXXScopeSpec SS; 265 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 266 267 TypeLocBuilder Builder; 268 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); 269 DepTL.setNameLoc(NameLoc); 270 DepTL.setElaboratedKeywordLoc(SourceLocation()); 271 DepTL.setQualifierLoc(SS.getWithLocInContext(Context)); 272 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 273 } 274 275 /// If the identifier refers to a type name within this scope, 276 /// return the declaration of that type. 277 /// 278 /// This routine performs ordinary name lookup of the identifier II 279 /// within the given scope, with optional C++ scope specifier SS, to 280 /// determine whether the name refers to a type. If so, returns an 281 /// opaque pointer (actually a QualType) corresponding to that 282 /// type. Otherwise, returns NULL. 283 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, 284 Scope *S, CXXScopeSpec *SS, 285 bool isClassName, bool HasTrailingDot, 286 ParsedType ObjectTypePtr, 287 bool IsCtorOrDtorName, 288 bool WantNontrivialTypeSourceInfo, 289 bool IsClassTemplateDeductionContext, 290 IdentifierInfo **CorrectedII) { 291 // FIXME: Consider allowing this outside C++1z mode as an extension. 292 bool AllowDeducedTemplate = IsClassTemplateDeductionContext && 293 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName && 294 !isClassName && !HasTrailingDot; 295 296 // Determine where we will perform name lookup. 297 DeclContext *LookupCtx = nullptr; 298 if (ObjectTypePtr) { 299 QualType ObjectType = ObjectTypePtr.get(); 300 if (ObjectType->isRecordType()) 301 LookupCtx = computeDeclContext(ObjectType); 302 } else if (SS && SS->isNotEmpty()) { 303 LookupCtx = computeDeclContext(*SS, false); 304 305 if (!LookupCtx) { 306 if (isDependentScopeSpecifier(*SS)) { 307 // C++ [temp.res]p3: 308 // A qualified-id that refers to a type and in which the 309 // nested-name-specifier depends on a template-parameter (14.6.2) 310 // shall be prefixed by the keyword typename to indicate that the 311 // qualified-id denotes a type, forming an 312 // elaborated-type-specifier (7.1.5.3). 313 // 314 // We therefore do not perform any name lookup if the result would 315 // refer to a member of an unknown specialization. 316 if (!isClassName && !IsCtorOrDtorName) 317 return nullptr; 318 319 // We know from the grammar that this name refers to a type, 320 // so build a dependent node to describe the type. 321 if (WantNontrivialTypeSourceInfo) 322 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get(); 323 324 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); 325 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc, 326 II, NameLoc); 327 return ParsedType::make(T); 328 } 329 330 return nullptr; 331 } 332 333 if (!LookupCtx->isDependentContext() && 334 RequireCompleteDeclContext(*SS, LookupCtx)) 335 return nullptr; 336 } 337 338 // FIXME: LookupNestedNameSpecifierName isn't the right kind of 339 // lookup for class-names. 340 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : 341 LookupOrdinaryName; 342 LookupResult Result(*this, &II, NameLoc, Kind); 343 if (LookupCtx) { 344 // Perform "qualified" name lookup into the declaration context we 345 // computed, which is either the type of the base of a member access 346 // expression or the declaration context associated with a prior 347 // nested-name-specifier. 348 LookupQualifiedName(Result, LookupCtx); 349 350 if (ObjectTypePtr && Result.empty()) { 351 // C++ [basic.lookup.classref]p3: 352 // If the unqualified-id is ~type-name, the type-name is looked up 353 // in the context of the entire postfix-expression. If the type T of 354 // the object expression is of a class type C, the type-name is also 355 // looked up in the scope of class C. At least one of the lookups shall 356 // find a name that refers to (possibly cv-qualified) T. 357 LookupName(Result, S); 358 } 359 } else { 360 // Perform unqualified name lookup. 361 LookupName(Result, S); 362 363 // For unqualified lookup in a class template in MSVC mode, look into 364 // dependent base classes where the primary class template is known. 365 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) { 366 if (ParsedType TypeInBase = 367 recoverFromTypeInKnownDependentBase(*this, II, NameLoc)) 368 return TypeInBase; 369 } 370 } 371 372 NamedDecl *IIDecl = nullptr; 373 switch (Result.getResultKind()) { 374 case LookupResult::NotFound: 375 case LookupResult::NotFoundInCurrentInstantiation: 376 if (CorrectedII) { 377 TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName, 378 AllowDeducedTemplate); 379 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind, 380 S, SS, CCC, CTK_ErrorRecovery); 381 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo(); 382 TemplateTy Template; 383 bool MemberOfUnknownSpecialization; 384 UnqualifiedId TemplateName; 385 TemplateName.setIdentifier(NewII, NameLoc); 386 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier(); 387 CXXScopeSpec NewSS, *NewSSPtr = SS; 388 if (SS && NNS) { 389 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 390 NewSSPtr = &NewSS; 391 } 392 if (Correction && (NNS || NewII != &II) && 393 // Ignore a correction to a template type as the to-be-corrected 394 // identifier is not a template (typo correction for template names 395 // is handled elsewhere). 396 !(getLangOpts().CPlusPlus && NewSSPtr && 397 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false, 398 Template, MemberOfUnknownSpecialization))) { 399 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr, 400 isClassName, HasTrailingDot, ObjectTypePtr, 401 IsCtorOrDtorName, 402 WantNontrivialTypeSourceInfo, 403 IsClassTemplateDeductionContext); 404 if (Ty) { 405 diagnoseTypo(Correction, 406 PDiag(diag::err_unknown_type_or_class_name_suggest) 407 << Result.getLookupName() << isClassName); 408 if (SS && NNS) 409 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc)); 410 *CorrectedII = NewII; 411 return Ty; 412 } 413 } 414 } 415 // If typo correction failed or was not performed, fall through 416 LLVM_FALLTHROUGH; 417 case LookupResult::FoundOverloaded: 418 case LookupResult::FoundUnresolvedValue: 419 Result.suppressDiagnostics(); 420 return nullptr; 421 422 case LookupResult::Ambiguous: 423 // Recover from type-hiding ambiguities by hiding the type. We'll 424 // do the lookup again when looking for an object, and we can 425 // diagnose the error then. If we don't do this, then the error 426 // about hiding the type will be immediately followed by an error 427 // that only makes sense if the identifier was treated like a type. 428 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { 429 Result.suppressDiagnostics(); 430 return nullptr; 431 } 432 433 // Look to see if we have a type anywhere in the list of results. 434 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); 435 Res != ResEnd; ++Res) { 436 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) || 437 (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) { 438 if (!IIDecl || 439 (*Res)->getLocation().getRawEncoding() < 440 IIDecl->getLocation().getRawEncoding()) 441 IIDecl = *Res; 442 } 443 } 444 445 if (!IIDecl) { 446 // None of the entities we found is a type, so there is no way 447 // to even assume that the result is a type. In this case, don't 448 // complain about the ambiguity. The parser will either try to 449 // perform this lookup again (e.g., as an object name), which 450 // will produce the ambiguity, or will complain that it expected 451 // a type name. 452 Result.suppressDiagnostics(); 453 return nullptr; 454 } 455 456 // We found a type within the ambiguous lookup; diagnose the 457 // ambiguity and then return that type. This might be the right 458 // answer, or it might not be, but it suppresses any attempt to 459 // perform the name lookup again. 460 break; 461 462 case LookupResult::Found: 463 IIDecl = Result.getFoundDecl(); 464 break; 465 } 466 467 assert(IIDecl && "Didn't find decl"); 468 469 QualType T; 470 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { 471 // C++ [class.qual]p2: A lookup that would find the injected-class-name 472 // instead names the constructors of the class, except when naming a class. 473 // This is ill-formed when we're not actually forming a ctor or dtor name. 474 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); 475 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD); 476 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD && 477 FoundRD->isInjectedClassName() && 478 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) 479 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor) 480 << &II << /*Type*/1; 481 482 DiagnoseUseOfDecl(IIDecl, NameLoc); 483 484 T = Context.getTypeDeclType(TD); 485 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); 486 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { 487 (void)DiagnoseUseOfDecl(IDecl, NameLoc); 488 if (!HasTrailingDot) 489 T = Context.getObjCInterfaceType(IDecl); 490 } else if (AllowDeducedTemplate) { 491 if (auto *TD = getAsTypeTemplateDecl(IIDecl)) 492 T = Context.getDeducedTemplateSpecializationType(TemplateName(TD), 493 QualType(), false); 494 } 495 496 if (T.isNull()) { 497 // If it's not plausibly a type, suppress diagnostics. 498 Result.suppressDiagnostics(); 499 return nullptr; 500 } 501 502 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a 503 // constructor or destructor name (in such a case, the scope specifier 504 // will be attached to the enclosing Expr or Decl node). 505 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName && 506 !isa<ObjCInterfaceDecl>(IIDecl)) { 507 if (WantNontrivialTypeSourceInfo) { 508 // Construct a type with type-source information. 509 TypeLocBuilder Builder; 510 Builder.pushTypeSpec(T).setNameLoc(NameLoc); 511 512 T = getElaboratedType(ETK_None, *SS, T); 513 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); 514 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 515 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context)); 516 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 517 } else { 518 T = getElaboratedType(ETK_None, *SS, T); 519 } 520 } 521 522 return ParsedType::make(T); 523 } 524 525 // Builds a fake NNS for the given decl context. 526 static NestedNameSpecifier * 527 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) { 528 for (;; DC = DC->getLookupParent()) { 529 DC = DC->getPrimaryContext(); 530 auto *ND = dyn_cast<NamespaceDecl>(DC); 531 if (ND && !ND->isInline() && !ND->isAnonymousNamespace()) 532 return NestedNameSpecifier::Create(Context, nullptr, ND); 533 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) 534 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), 535 RD->getTypeForDecl()); 536 else if (isa<TranslationUnitDecl>(DC)) 537 return NestedNameSpecifier::GlobalSpecifier(Context); 538 } 539 llvm_unreachable("something isn't in TU scope?"); 540 } 541 542 /// Find the parent class with dependent bases of the innermost enclosing method 543 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end 544 /// up allowing unqualified dependent type names at class-level, which MSVC 545 /// correctly rejects. 546 static const CXXRecordDecl * 547 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) { 548 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) { 549 DC = DC->getPrimaryContext(); 550 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) 551 if (MD->getParent()->hasAnyDependentBases()) 552 return MD->getParent(); 553 } 554 return nullptr; 555 } 556 557 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II, 558 SourceLocation NameLoc, 559 bool IsTemplateTypeArg) { 560 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode"); 561 562 NestedNameSpecifier *NNS = nullptr; 563 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) { 564 // If we weren't able to parse a default template argument, delay lookup 565 // until instantiation time by making a non-dependent DependentTypeName. We 566 // pretend we saw a NestedNameSpecifier referring to the current scope, and 567 // lookup is retried. 568 // FIXME: This hurts our diagnostic quality, since we get errors like "no 569 // type named 'Foo' in 'current_namespace'" when the user didn't write any 570 // name specifiers. 571 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext); 572 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II; 573 } else if (const CXXRecordDecl *RD = 574 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) { 575 // Build a DependentNameType that will perform lookup into RD at 576 // instantiation time. 577 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), 578 RD->getTypeForDecl()); 579 580 // Diagnose that this identifier was undeclared, and retry the lookup during 581 // template instantiation. 582 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II 583 << RD; 584 } else { 585 // This is not a situation that we should recover from. 586 return ParsedType(); 587 } 588 589 QualType T = Context.getDependentNameType(ETK_None, NNS, &II); 590 591 // Build type location information. We synthesized the qualifier, so we have 592 // to build a fake NestedNameSpecifierLoc. 593 NestedNameSpecifierLocBuilder NNSLocBuilder; 594 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc)); 595 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context); 596 597 TypeLocBuilder Builder; 598 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); 599 DepTL.setNameLoc(NameLoc); 600 DepTL.setElaboratedKeywordLoc(SourceLocation()); 601 DepTL.setQualifierLoc(QualifierLoc); 602 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 603 } 604 605 /// isTagName() - This method is called *for error recovery purposes only* 606 /// to determine if the specified name is a valid tag name ("struct foo"). If 607 /// so, this returns the TST for the tag corresponding to it (TST_enum, 608 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose 609 /// cases in C where the user forgot to specify the tag. 610 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { 611 // Do a tag name lookup in this scope. 612 LookupResult R(*this, &II, SourceLocation(), LookupTagName); 613 LookupName(R, S, false); 614 R.suppressDiagnostics(); 615 if (R.getResultKind() == LookupResult::Found) 616 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { 617 switch (TD->getTagKind()) { 618 case TTK_Struct: return DeclSpec::TST_struct; 619 case TTK_Interface: return DeclSpec::TST_interface; 620 case TTK_Union: return DeclSpec::TST_union; 621 case TTK_Class: return DeclSpec::TST_class; 622 case TTK_Enum: return DeclSpec::TST_enum; 623 } 624 } 625 626 return DeclSpec::TST_unspecified; 627 } 628 629 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope, 630 /// if a CXXScopeSpec's type is equal to the type of one of the base classes 631 /// then downgrade the missing typename error to a warning. 632 /// This is needed for MSVC compatibility; Example: 633 /// @code 634 /// template<class T> class A { 635 /// public: 636 /// typedef int TYPE; 637 /// }; 638 /// template<class T> class B : public A<T> { 639 /// public: 640 /// A<T>::TYPE a; // no typename required because A<T> is a base class. 641 /// }; 642 /// @endcode 643 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) { 644 if (CurContext->isRecord()) { 645 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super) 646 return true; 647 648 const Type *Ty = SS->getScopeRep()->getAsType(); 649 650 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext); 651 for (const auto &Base : RD->bases()) 652 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType())) 653 return true; 654 return S->isFunctionPrototypeScope(); 655 } 656 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope(); 657 } 658 659 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II, 660 SourceLocation IILoc, 661 Scope *S, 662 CXXScopeSpec *SS, 663 ParsedType &SuggestedType, 664 bool IsTemplateName) { 665 // Don't report typename errors for editor placeholders. 666 if (II->isEditorPlaceholder()) 667 return; 668 // We don't have anything to suggest (yet). 669 SuggestedType = nullptr; 670 671 // There may have been a typo in the name of the type. Look up typo 672 // results, in case we have something that we can suggest. 673 TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false, 674 /*AllowTemplates=*/IsTemplateName, 675 /*AllowNonTemplates=*/!IsTemplateName); 676 if (TypoCorrection Corrected = 677 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS, 678 CCC, CTK_ErrorRecovery)) { 679 // FIXME: Support error recovery for the template-name case. 680 bool CanRecover = !IsTemplateName; 681 if (Corrected.isKeyword()) { 682 // We corrected to a keyword. 683 diagnoseTypo(Corrected, 684 PDiag(IsTemplateName ? diag::err_no_template_suggest 685 : diag::err_unknown_typename_suggest) 686 << II); 687 II = Corrected.getCorrectionAsIdentifierInfo(); 688 } else { 689 // We found a similarly-named type or interface; suggest that. 690 if (!SS || !SS->isSet()) { 691 diagnoseTypo(Corrected, 692 PDiag(IsTemplateName ? diag::err_no_template_suggest 693 : diag::err_unknown_typename_suggest) 694 << II, CanRecover); 695 } else if (DeclContext *DC = computeDeclContext(*SS, false)) { 696 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 697 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 698 II->getName().equals(CorrectedStr); 699 diagnoseTypo(Corrected, 700 PDiag(IsTemplateName 701 ? diag::err_no_member_template_suggest 702 : diag::err_unknown_nested_typename_suggest) 703 << II << DC << DroppedSpecifier << SS->getRange(), 704 CanRecover); 705 } else { 706 llvm_unreachable("could not have corrected a typo here"); 707 } 708 709 if (!CanRecover) 710 return; 711 712 CXXScopeSpec tmpSS; 713 if (Corrected.getCorrectionSpecifier()) 714 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), 715 SourceRange(IILoc)); 716 // FIXME: Support class template argument deduction here. 717 SuggestedType = 718 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S, 719 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr, 720 /*IsCtorOrDtorName=*/false, 721 /*WantNontrivialTypeSourceInfo=*/true); 722 } 723 return; 724 } 725 726 if (getLangOpts().CPlusPlus && !IsTemplateName) { 727 // See if II is a class template that the user forgot to pass arguments to. 728 UnqualifiedId Name; 729 Name.setIdentifier(II, IILoc); 730 CXXScopeSpec EmptySS; 731 TemplateTy TemplateResult; 732 bool MemberOfUnknownSpecialization; 733 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, 734 Name, nullptr, true, TemplateResult, 735 MemberOfUnknownSpecialization) == TNK_Type_template) { 736 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc); 737 return; 738 } 739 } 740 741 // FIXME: Should we move the logic that tries to recover from a missing tag 742 // (struct, union, enum) from Parser::ParseImplicitInt here, instead? 743 744 if (!SS || (!SS->isSet() && !SS->isInvalid())) 745 Diag(IILoc, IsTemplateName ? diag::err_no_template 746 : diag::err_unknown_typename) 747 << II; 748 else if (DeclContext *DC = computeDeclContext(*SS, false)) 749 Diag(IILoc, IsTemplateName ? diag::err_no_member_template 750 : diag::err_typename_nested_not_found) 751 << II << DC << SS->getRange(); 752 else if (isDependentScopeSpecifier(*SS)) { 753 unsigned DiagID = diag::err_typename_missing; 754 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S)) 755 DiagID = diag::ext_typename_missing; 756 757 Diag(SS->getRange().getBegin(), DiagID) 758 << SS->getScopeRep() << II->getName() 759 << SourceRange(SS->getRange().getBegin(), IILoc) 760 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); 761 SuggestedType = ActOnTypenameType(S, SourceLocation(), 762 *SS, *II, IILoc).get(); 763 } else { 764 assert(SS && SS->isInvalid() && 765 "Invalid scope specifier has already been diagnosed"); 766 } 767 } 768 769 /// Determine whether the given result set contains either a type name 770 /// or 771 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { 772 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus && 773 NextToken.is(tok::less); 774 775 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { 776 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I)) 777 return true; 778 779 if (CheckTemplate && isa<TemplateDecl>(*I)) 780 return true; 781 } 782 783 return false; 784 } 785 786 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, 787 Scope *S, CXXScopeSpec &SS, 788 IdentifierInfo *&Name, 789 SourceLocation NameLoc) { 790 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName); 791 SemaRef.LookupParsedName(R, S, &SS); 792 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) { 793 StringRef FixItTagName; 794 switch (Tag->getTagKind()) { 795 case TTK_Class: 796 FixItTagName = "class "; 797 break; 798 799 case TTK_Enum: 800 FixItTagName = "enum "; 801 break; 802 803 case TTK_Struct: 804 FixItTagName = "struct "; 805 break; 806 807 case TTK_Interface: 808 FixItTagName = "__interface "; 809 break; 810 811 case TTK_Union: 812 FixItTagName = "union "; 813 break; 814 } 815 816 StringRef TagName = FixItTagName.drop_back(); 817 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag) 818 << Name << TagName << SemaRef.getLangOpts().CPlusPlus 819 << FixItHint::CreateInsertion(NameLoc, FixItTagName); 820 821 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end(); 822 I != IEnd; ++I) 823 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) 824 << Name << TagName; 825 826 // Replace lookup results with just the tag decl. 827 Result.clear(Sema::LookupTagName); 828 SemaRef.LookupParsedName(Result, S, &SS); 829 return true; 830 } 831 832 return false; 833 } 834 835 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier. 836 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS, 837 QualType T, SourceLocation NameLoc) { 838 ASTContext &Context = S.Context; 839 840 TypeLocBuilder Builder; 841 Builder.pushTypeSpec(T).setNameLoc(NameLoc); 842 843 T = S.getElaboratedType(ETK_None, SS, T); 844 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T); 845 ElabTL.setElaboratedKeywordLoc(SourceLocation()); 846 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); 847 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); 848 } 849 850 Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, 851 IdentifierInfo *&Name, 852 SourceLocation NameLoc, 853 const Token &NextToken, 854 CorrectionCandidateCallback *CCC) { 855 DeclarationNameInfo NameInfo(Name, NameLoc); 856 ObjCMethodDecl *CurMethod = getCurMethodDecl(); 857 858 assert(NextToken.isNot(tok::coloncolon) && 859 "parse nested name specifiers before calling ClassifyName"); 860 if (getLangOpts().CPlusPlus && SS.isSet() && 861 isCurrentClassName(*Name, S, &SS)) { 862 // Per [class.qual]p2, this names the constructors of SS, not the 863 // injected-class-name. We don't have a classification for that. 864 // There's not much point caching this result, since the parser 865 // will reject it later. 866 return NameClassification::Unknown(); 867 } 868 869 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 870 LookupParsedName(Result, S, &SS, !CurMethod); 871 872 if (SS.isInvalid()) 873 return NameClassification::Error(); 874 875 // For unqualified lookup in a class template in MSVC mode, look into 876 // dependent base classes where the primary class template is known. 877 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) { 878 if (ParsedType TypeInBase = 879 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc)) 880 return TypeInBase; 881 } 882 883 // Perform lookup for Objective-C instance variables (including automatically 884 // synthesized instance variables), if we're in an Objective-C method. 885 // FIXME: This lookup really, really needs to be folded in to the normal 886 // unqualified lookup mechanism. 887 if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) { 888 DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name); 889 if (Ivar.isInvalid()) 890 return NameClassification::Error(); 891 if (Ivar.isUsable()) 892 return NameClassification::NonType(cast<NamedDecl>(Ivar.get())); 893 894 // We defer builtin creation until after ivar lookup inside ObjC methods. 895 if (Result.empty()) 896 LookupBuiltin(Result); 897 } 898 899 bool SecondTry = false; 900 bool IsFilteredTemplateName = false; 901 902 Corrected: 903 switch (Result.getResultKind()) { 904 case LookupResult::NotFound: 905 // If an unqualified-id is followed by a '(', then we have a function 906 // call. 907 if (SS.isEmpty() && NextToken.is(tok::l_paren)) { 908 // In C++, this is an ADL-only call. 909 // FIXME: Reference? 910 if (getLangOpts().CPlusPlus) 911 return NameClassification::UndeclaredNonType(); 912 913 // C90 6.3.2.2: 914 // If the expression that precedes the parenthesized argument list in a 915 // function call consists solely of an identifier, and if no 916 // declaration is visible for this identifier, the identifier is 917 // implicitly declared exactly as if, in the innermost block containing 918 // the function call, the declaration 919 // 920 // extern int identifier (); 921 // 922 // appeared. 923 // 924 // We also allow this in C99 as an extension. 925 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) 926 return NameClassification::NonType(D); 927 } 928 929 if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) { 930 // In C++20 onwards, this could be an ADL-only call to a function 931 // template, and we're required to assume that this is a template name. 932 // 933 // FIXME: Find a way to still do typo correction in this case. 934 TemplateName Template = 935 Context.getAssumedTemplateName(NameInfo.getName()); 936 return NameClassification::UndeclaredTemplate(Template); 937 } 938 939 // In C, we first see whether there is a tag type by the same name, in 940 // which case it's likely that the user just forgot to write "enum", 941 // "struct", or "union". 942 if (!getLangOpts().CPlusPlus && !SecondTry && 943 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { 944 break; 945 } 946 947 // Perform typo correction to determine if there is another name that is 948 // close to this name. 949 if (!SecondTry && CCC) { 950 SecondTry = true; 951 if (TypoCorrection Corrected = 952 CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S, 953 &SS, *CCC, CTK_ErrorRecovery)) { 954 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; 955 unsigned QualifiedDiag = diag::err_no_member_suggest; 956 957 NamedDecl *FirstDecl = Corrected.getFoundDecl(); 958 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl(); 959 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 960 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) { 961 UnqualifiedDiag = diag::err_no_template_suggest; 962 QualifiedDiag = diag::err_no_member_template_suggest; 963 } else if (UnderlyingFirstDecl && 964 (isa<TypeDecl>(UnderlyingFirstDecl) || 965 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) || 966 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) { 967 UnqualifiedDiag = diag::err_unknown_typename_suggest; 968 QualifiedDiag = diag::err_unknown_nested_typename_suggest; 969 } 970 971 if (SS.isEmpty()) { 972 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name); 973 } else {// FIXME: is this even reachable? Test it. 974 std::string CorrectedStr(Corrected.getAsString(getLangOpts())); 975 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && 976 Name->getName().equals(CorrectedStr); 977 diagnoseTypo(Corrected, PDiag(QualifiedDiag) 978 << Name << computeDeclContext(SS, false) 979 << DroppedSpecifier << SS.getRange()); 980 } 981 982 // Update the name, so that the caller has the new name. 983 Name = Corrected.getCorrectionAsIdentifierInfo(); 984 985 // Typo correction corrected to a keyword. 986 if (Corrected.isKeyword()) 987 return Name; 988 989 // Also update the LookupResult... 990 // FIXME: This should probably go away at some point 991 Result.clear(); 992 Result.setLookupName(Corrected.getCorrection()); 993 if (FirstDecl) 994 Result.addDecl(FirstDecl); 995 996 // If we found an Objective-C instance variable, let 997 // LookupInObjCMethod build the appropriate expression to 998 // reference the ivar. 999 // FIXME: This is a gross hack. 1000 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { 1001 DeclResult R = 1002 LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier()); 1003 if (R.isInvalid()) 1004 return NameClassification::Error(); 1005 if (R.isUsable()) 1006 return NameClassification::NonType(Ivar); 1007 } 1008 1009 goto Corrected; 1010 } 1011 } 1012 1013 // We failed to correct; just fall through and let the parser deal with it. 1014 Result.suppressDiagnostics(); 1015 return NameClassification::Unknown(); 1016 1017 case LookupResult::NotFoundInCurrentInstantiation: { 1018 // We performed name lookup into the current instantiation, and there were 1019 // dependent bases, so we treat this result the same way as any other 1020 // dependent nested-name-specifier. 1021 1022 // C++ [temp.res]p2: 1023 // A name used in a template declaration or definition and that is 1024 // dependent on a template-parameter is assumed not to name a type 1025 // unless the applicable name lookup finds a type name or the name is 1026 // qualified by the keyword typename. 1027 // 1028 // FIXME: If the next token is '<', we might want to ask the parser to 1029 // perform some heroics to see if we actually have a 1030 // template-argument-list, which would indicate a missing 'template' 1031 // keyword here. 1032 return NameClassification::DependentNonType(); 1033 } 1034 1035 case LookupResult::Found: 1036 case LookupResult::FoundOverloaded: 1037 case LookupResult::FoundUnresolvedValue: 1038 break; 1039 1040 case LookupResult::Ambiguous: 1041 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 1042 hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true, 1043 /*AllowDependent=*/false)) { 1044 // C++ [temp.local]p3: 1045 // A lookup that finds an injected-class-name (10.2) can result in an 1046 // ambiguity in certain cases (for example, if it is found in more than 1047 // one base class). If all of the injected-class-names that are found 1048 // refer to specializations of the same class template, and if the name 1049 // is followed by a template-argument-list, the reference refers to the 1050 // class template itself and not a specialization thereof, and is not 1051 // ambiguous. 1052 // 1053 // This filtering can make an ambiguous result into an unambiguous one, 1054 // so try again after filtering out template names. 1055 FilterAcceptableTemplateNames(Result); 1056 if (!Result.isAmbiguous()) { 1057 IsFilteredTemplateName = true; 1058 break; 1059 } 1060 } 1061 1062 // Diagnose the ambiguity and return an error. 1063 return NameClassification::Error(); 1064 } 1065 1066 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && 1067 (IsFilteredTemplateName || 1068 hasAnyAcceptableTemplateNames( 1069 Result, /*AllowFunctionTemplates=*/true, 1070 /*AllowDependent=*/false, 1071 /*AllowNonTemplateFunctions*/ SS.isEmpty() && 1072 getLangOpts().CPlusPlus20))) { 1073 // C++ [temp.names]p3: 1074 // After name lookup (3.4) finds that a name is a template-name or that 1075 // an operator-function-id or a literal- operator-id refers to a set of 1076 // overloaded functions any member of which is a function template if 1077 // this is followed by a <, the < is always taken as the delimiter of a 1078 // template-argument-list and never as the less-than operator. 1079 // C++2a [temp.names]p2: 1080 // A name is also considered to refer to a template if it is an 1081 // unqualified-id followed by a < and name lookup finds either one 1082 // or more functions or finds nothing. 1083 if (!IsFilteredTemplateName) 1084 FilterAcceptableTemplateNames(Result); 1085 1086 bool IsFunctionTemplate; 1087 bool IsVarTemplate; 1088 TemplateName Template; 1089 if (Result.end() - Result.begin() > 1) { 1090 IsFunctionTemplate = true; 1091 Template = Context.getOverloadedTemplateName(Result.begin(), 1092 Result.end()); 1093 } else if (!Result.empty()) { 1094 auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl( 1095 *Result.begin(), /*AllowFunctionTemplates=*/true, 1096 /*AllowDependent=*/false)); 1097 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD); 1098 IsVarTemplate = isa<VarTemplateDecl>(TD); 1099 1100 if (SS.isNotEmpty()) 1101 Template = 1102 Context.getQualifiedTemplateName(SS.getScopeRep(), 1103 /*TemplateKeyword=*/false, TD); 1104 else 1105 Template = TemplateName(TD); 1106 } else { 1107 // All results were non-template functions. This is a function template 1108 // name. 1109 IsFunctionTemplate = true; 1110 Template = Context.getAssumedTemplateName(NameInfo.getName()); 1111 } 1112 1113 if (IsFunctionTemplate) { 1114 // Function templates always go through overload resolution, at which 1115 // point we'll perform the various checks (e.g., accessibility) we need 1116 // to based on which function we selected. 1117 Result.suppressDiagnostics(); 1118 1119 return NameClassification::FunctionTemplate(Template); 1120 } 1121 1122 return IsVarTemplate ? NameClassification::VarTemplate(Template) 1123 : NameClassification::TypeTemplate(Template); 1124 } 1125 1126 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); 1127 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) { 1128 DiagnoseUseOfDecl(Type, NameLoc); 1129 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 1130 QualType T = Context.getTypeDeclType(Type); 1131 if (SS.isNotEmpty()) 1132 return buildNestedType(*this, SS, T, NameLoc); 1133 return ParsedType::make(T); 1134 } 1135 1136 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl); 1137 if (!Class) { 1138 // FIXME: It's unfortunate that we don't have a Type node for handling this. 1139 if (ObjCCompatibleAliasDecl *Alias = 1140 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl)) 1141 Class = Alias->getClassInterface(); 1142 } 1143 1144 if (Class) { 1145 DiagnoseUseOfDecl(Class, NameLoc); 1146 1147 if (NextToken.is(tok::period)) { 1148 // Interface. <something> is parsed as a property reference expression. 1149 // Just return "unknown" as a fall-through for now. 1150 Result.suppressDiagnostics(); 1151 return NameClassification::Unknown(); 1152 } 1153 1154 QualType T = Context.getObjCInterfaceType(Class); 1155 return ParsedType::make(T); 1156 } 1157 1158 if (isa<ConceptDecl>(FirstDecl)) 1159 return NameClassification::Concept( 1160 TemplateName(cast<TemplateDecl>(FirstDecl))); 1161 1162 // We can have a type template here if we're classifying a template argument. 1163 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) && 1164 !isa<VarTemplateDecl>(FirstDecl)) 1165 return NameClassification::TypeTemplate( 1166 TemplateName(cast<TemplateDecl>(FirstDecl))); 1167 1168 // Check for a tag type hidden by a non-type decl in a few cases where it 1169 // seems likely a type is wanted instead of the non-type that was found. 1170 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star); 1171 if ((NextToken.is(tok::identifier) || 1172 (NextIsOp && 1173 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) && 1174 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { 1175 TypeDecl *Type = Result.getAsSingle<TypeDecl>(); 1176 DiagnoseUseOfDecl(Type, NameLoc); 1177 QualType T = Context.getTypeDeclType(Type); 1178 if (SS.isNotEmpty()) 1179 return buildNestedType(*this, SS, T, NameLoc); 1180 return ParsedType::make(T); 1181 } 1182 1183 // FIXME: This is context-dependent. We need to defer building the member 1184 // expression until the classification is consumed. 1185 if (FirstDecl->isCXXClassMember()) 1186 return NameClassification::ContextIndependentExpr( 1187 BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, nullptr, 1188 S)); 1189 1190 // If we already know which single declaration is referenced, just annotate 1191 // that declaration directly. 1192 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); 1193 if (Result.isSingleResult() && !ADL) 1194 return NameClassification::NonType(Result.getRepresentativeDecl()); 1195 1196 // Build an UnresolvedLookupExpr. Note that this doesn't depend on the 1197 // context in which we performed classification, so it's safe to do now. 1198 return NameClassification::ContextIndependentExpr( 1199 BuildDeclarationNameExpr(SS, Result, ADL)); 1200 } 1201 1202 ExprResult 1203 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name, 1204 SourceLocation NameLoc) { 1205 assert(getLangOpts().CPlusPlus && "ADL-only call in C?"); 1206 CXXScopeSpec SS; 1207 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); 1208 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true); 1209 } 1210 1211 ExprResult 1212 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS, 1213 IdentifierInfo *Name, 1214 SourceLocation NameLoc, 1215 bool IsAddressOfOperand) { 1216 DeclarationNameInfo NameInfo(Name, NameLoc); 1217 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(), 1218 NameInfo, IsAddressOfOperand, 1219 /*TemplateArgs=*/nullptr); 1220 } 1221 1222 ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS, 1223 NamedDecl *Found, 1224 SourceLocation NameLoc, 1225 const Token &NextToken) { 1226 if (getCurMethodDecl() && SS.isEmpty()) 1227 if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl())) 1228 return BuildIvarRefExpr(S, NameLoc, Ivar); 1229 1230 // Reconstruct the lookup result. 1231 LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName); 1232 Result.addDecl(Found); 1233 Result.resolveKind(); 1234 1235 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); 1236 return BuildDeclarationNameExpr(SS, Result, ADL); 1237 } 1238 1239 Sema::TemplateNameKindForDiagnostics 1240 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) { 1241 auto *TD = Name.getAsTemplateDecl(); 1242 if (!TD) 1243 return TemplateNameKindForDiagnostics::DependentTemplate; 1244 if (isa<ClassTemplateDecl>(TD)) 1245 return TemplateNameKindForDiagnostics::ClassTemplate; 1246 if (isa<FunctionTemplateDecl>(TD)) 1247 return TemplateNameKindForDiagnostics::FunctionTemplate; 1248 if (isa<VarTemplateDecl>(TD)) 1249 return TemplateNameKindForDiagnostics::VarTemplate; 1250 if (isa<TypeAliasTemplateDecl>(TD)) 1251 return TemplateNameKindForDiagnostics::AliasTemplate; 1252 if (isa<TemplateTemplateParmDecl>(TD)) 1253 return TemplateNameKindForDiagnostics::TemplateTemplateParam; 1254 if (isa<ConceptDecl>(TD)) 1255 return TemplateNameKindForDiagnostics::Concept; 1256 return TemplateNameKindForDiagnostics::DependentTemplate; 1257 } 1258 1259 // Determines the context to return to after temporarily entering a 1260 // context. This depends in an unnecessarily complicated way on the 1261 // exact ordering of callbacks from the parser. 1262 DeclContext *Sema::getContainingDC(DeclContext *DC) { 1263 1264 // Functions defined inline within classes aren't parsed until we've 1265 // finished parsing the top-level class, so the top-level class is 1266 // the context we'll need to return to. 1267 // A Lambda call operator whose parent is a class must not be treated 1268 // as an inline member function. A Lambda can be used legally 1269 // either as an in-class member initializer or a default argument. These 1270 // are parsed once the class has been marked complete and so the containing 1271 // context would be the nested class (when the lambda is defined in one); 1272 // If the class is not complete, then the lambda is being used in an 1273 // ill-formed fashion (such as to specify the width of a bit-field, or 1274 // in an array-bound) - in which case we still want to return the 1275 // lexically containing DC (which could be a nested class). 1276 if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) { 1277 DC = DC->getLexicalParent(); 1278 1279 // A function not defined within a class will always return to its 1280 // lexical context. 1281 if (!isa<CXXRecordDecl>(DC)) 1282 return DC; 1283 1284 // A C++ inline method/friend is parsed *after* the topmost class 1285 // it was declared in is fully parsed ("complete"); the topmost 1286 // class is the context we need to return to. 1287 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent())) 1288 DC = RD; 1289 1290 // Return the declaration context of the topmost class the inline method is 1291 // declared in. 1292 return DC; 1293 } 1294 1295 return DC->getLexicalParent(); 1296 } 1297 1298 void Sema::PushDeclContext(Scope *S, DeclContext *DC) { 1299 assert(getContainingDC(DC) == CurContext && 1300 "The next DeclContext should be lexically contained in the current one."); 1301 CurContext = DC; 1302 S->setEntity(DC); 1303 } 1304 1305 void Sema::PopDeclContext() { 1306 assert(CurContext && "DeclContext imbalance!"); 1307 1308 CurContext = getContainingDC(CurContext); 1309 assert(CurContext && "Popped translation unit!"); 1310 } 1311 1312 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S, 1313 Decl *D) { 1314 // Unlike PushDeclContext, the context to which we return is not necessarily 1315 // the containing DC of TD, because the new context will be some pre-existing 1316 // TagDecl definition instead of a fresh one. 1317 auto Result = static_cast<SkippedDefinitionContext>(CurContext); 1318 CurContext = cast<TagDecl>(D)->getDefinition(); 1319 assert(CurContext && "skipping definition of undefined tag"); 1320 // Start lookups from the parent of the current context; we don't want to look 1321 // into the pre-existing complete definition. 1322 S->setEntity(CurContext->getLookupParent()); 1323 return Result; 1324 } 1325 1326 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) { 1327 CurContext = static_cast<decltype(CurContext)>(Context); 1328 } 1329 1330 /// EnterDeclaratorContext - Used when we must lookup names in the context 1331 /// of a declarator's nested name specifier. 1332 /// 1333 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { 1334 // C++0x [basic.lookup.unqual]p13: 1335 // A name used in the definition of a static data member of class 1336 // X (after the qualified-id of the static member) is looked up as 1337 // if the name was used in a member function of X. 1338 // C++0x [basic.lookup.unqual]p14: 1339 // If a variable member of a namespace is defined outside of the 1340 // scope of its namespace then any name used in the definition of 1341 // the variable member (after the declarator-id) is looked up as 1342 // if the definition of the variable member occurred in its 1343 // namespace. 1344 // Both of these imply that we should push a scope whose context 1345 // is the semantic context of the declaration. We can't use 1346 // PushDeclContext here because that context is not necessarily 1347 // lexically contained in the current context. Fortunately, 1348 // the containing scope should have the appropriate information. 1349 1350 assert(!S->getEntity() && "scope already has entity"); 1351 1352 #ifndef NDEBUG 1353 Scope *Ancestor = S->getParent(); 1354 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); 1355 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch"); 1356 #endif 1357 1358 CurContext = DC; 1359 S->setEntity(DC); 1360 } 1361 1362 void Sema::ExitDeclaratorContext(Scope *S) { 1363 assert(S->getEntity() == CurContext && "Context imbalance!"); 1364 1365 // Switch back to the lexical context. The safety of this is 1366 // enforced by an assert in EnterDeclaratorContext. 1367 Scope *Ancestor = S->getParent(); 1368 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); 1369 CurContext = Ancestor->getEntity(); 1370 1371 // We don't need to do anything with the scope, which is going to 1372 // disappear. 1373 } 1374 1375 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { 1376 // We assume that the caller has already called 1377 // ActOnReenterTemplateScope so getTemplatedDecl() works. 1378 FunctionDecl *FD = D->getAsFunction(); 1379 if (!FD) 1380 return; 1381 1382 // Same implementation as PushDeclContext, but enters the context 1383 // from the lexical parent, rather than the top-level class. 1384 assert(CurContext == FD->getLexicalParent() && 1385 "The next DeclContext should be lexically contained in the current one."); 1386 CurContext = FD; 1387 S->setEntity(CurContext); 1388 1389 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { 1390 ParmVarDecl *Param = FD->getParamDecl(P); 1391 // If the parameter has an identifier, then add it to the scope 1392 if (Param->getIdentifier()) { 1393 S->AddDecl(Param); 1394 IdResolver.AddDecl(Param); 1395 } 1396 } 1397 } 1398 1399 void Sema::ActOnExitFunctionContext() { 1400 // Same implementation as PopDeclContext, but returns to the lexical parent, 1401 // rather than the top-level class. 1402 assert(CurContext && "DeclContext imbalance!"); 1403 CurContext = CurContext->getLexicalParent(); 1404 assert(CurContext && "Popped translation unit!"); 1405 } 1406 1407 /// Determine whether we allow overloading of the function 1408 /// PrevDecl with another declaration. 1409 /// 1410 /// This routine determines whether overloading is possible, not 1411 /// whether some new function is actually an overload. It will return 1412 /// true in C++ (where we can always provide overloads) or, as an 1413 /// extension, in C when the previous function is already an 1414 /// overloaded function declaration or has the "overloadable" 1415 /// attribute. 1416 static bool AllowOverloadingOfFunction(LookupResult &Previous, 1417 ASTContext &Context, 1418 const FunctionDecl *New) { 1419 if (Context.getLangOpts().CPlusPlus) 1420 return true; 1421 1422 if (Previous.getResultKind() == LookupResult::FoundOverloaded) 1423 return true; 1424 1425 return Previous.getResultKind() == LookupResult::Found && 1426 (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() || 1427 New->hasAttr<OverloadableAttr>()); 1428 } 1429 1430 /// Add this decl to the scope shadowed decl chains. 1431 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { 1432 // Move up the scope chain until we find the nearest enclosing 1433 // non-transparent context. The declaration will be introduced into this 1434 // scope. 1435 while (S->getEntity() && S->getEntity()->isTransparentContext()) 1436 S = S->getParent(); 1437 1438 // Add scoped declarations into their context, so that they can be 1439 // found later. Declarations without a context won't be inserted 1440 // into any context. 1441 if (AddToContext) 1442 CurContext->addDecl(D); 1443 1444 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they 1445 // are function-local declarations. 1446 if (getLangOpts().CPlusPlus && D->isOutOfLine() && 1447 !D->getDeclContext()->getRedeclContext()->Equals( 1448 D->getLexicalDeclContext()->getRedeclContext()) && 1449 !D->getLexicalDeclContext()->isFunctionOrMethod()) 1450 return; 1451 1452 // Template instantiations should also not be pushed into scope. 1453 if (isa<FunctionDecl>(D) && 1454 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) 1455 return; 1456 1457 // If this replaces anything in the current scope, 1458 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), 1459 IEnd = IdResolver.end(); 1460 for (; I != IEnd; ++I) { 1461 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { 1462 S->RemoveDecl(*I); 1463 IdResolver.RemoveDecl(*I); 1464 1465 // Should only need to replace one decl. 1466 break; 1467 } 1468 } 1469 1470 S->AddDecl(D); 1471 1472 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) { 1473 // Implicitly-generated labels may end up getting generated in an order that 1474 // isn't strictly lexical, which breaks name lookup. Be careful to insert 1475 // the label at the appropriate place in the identifier chain. 1476 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) { 1477 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); 1478 if (IDC == CurContext) { 1479 if (!S->isDeclScope(*I)) 1480 continue; 1481 } else if (IDC->Encloses(CurContext)) 1482 break; 1483 } 1484 1485 IdResolver.InsertDeclAfter(I, D); 1486 } else { 1487 IdResolver.AddDecl(D); 1488 } 1489 } 1490 1491 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S, 1492 bool AllowInlineNamespace) { 1493 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace); 1494 } 1495 1496 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { 1497 DeclContext *TargetDC = DC->getPrimaryContext(); 1498 do { 1499 if (DeclContext *ScopeDC = S->getEntity()) 1500 if (ScopeDC->getPrimaryContext() == TargetDC) 1501 return S; 1502 } while ((S = S->getParent())); 1503 1504 return nullptr; 1505 } 1506 1507 static bool isOutOfScopePreviousDeclaration(NamedDecl *, 1508 DeclContext*, 1509 ASTContext&); 1510 1511 /// Filters out lookup results that don't fall within the given scope 1512 /// as determined by isDeclInScope. 1513 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, 1514 bool ConsiderLinkage, 1515 bool AllowInlineNamespace) { 1516 LookupResult::Filter F = R.makeFilter(); 1517 while (F.hasNext()) { 1518 NamedDecl *D = F.next(); 1519 1520 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace)) 1521 continue; 1522 1523 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context)) 1524 continue; 1525 1526 F.erase(); 1527 } 1528 1529 F.done(); 1530 } 1531 1532 /// We've determined that \p New is a redeclaration of \p Old. Check that they 1533 /// have compatible owning modules. 1534 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) { 1535 // FIXME: The Modules TS is not clear about how friend declarations are 1536 // to be treated. It's not meaningful to have different owning modules for 1537 // linkage in redeclarations of the same entity, so for now allow the 1538 // redeclaration and change the owning modules to match. 1539 if (New->getFriendObjectKind() && 1540 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) { 1541 New->setLocalOwningModule(Old->getOwningModule()); 1542 makeMergedDefinitionVisible(New); 1543 return false; 1544 } 1545 1546 Module *NewM = New->getOwningModule(); 1547 Module *OldM = Old->getOwningModule(); 1548 1549 if (NewM && NewM->Kind == Module::PrivateModuleFragment) 1550 NewM = NewM->Parent; 1551 if (OldM && OldM->Kind == Module::PrivateModuleFragment) 1552 OldM = OldM->Parent; 1553 1554 if (NewM == OldM) 1555 return false; 1556 1557 bool NewIsModuleInterface = NewM && NewM->isModulePurview(); 1558 bool OldIsModuleInterface = OldM && OldM->isModulePurview(); 1559 if (NewIsModuleInterface || OldIsModuleInterface) { 1560 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]: 1561 // if a declaration of D [...] appears in the purview of a module, all 1562 // other such declarations shall appear in the purview of the same module 1563 Diag(New->getLocation(), diag::err_mismatched_owning_module) 1564 << New 1565 << NewIsModuleInterface 1566 << (NewIsModuleInterface ? NewM->getFullModuleName() : "") 1567 << OldIsModuleInterface 1568 << (OldIsModuleInterface ? OldM->getFullModuleName() : ""); 1569 Diag(Old->getLocation(), diag::note_previous_declaration); 1570 New->setInvalidDecl(); 1571 return true; 1572 } 1573 1574 return false; 1575 } 1576 1577 static bool isUsingDecl(NamedDecl *D) { 1578 return isa<UsingShadowDecl>(D) || 1579 isa<UnresolvedUsingTypenameDecl>(D) || 1580 isa<UnresolvedUsingValueDecl>(D); 1581 } 1582 1583 /// Removes using shadow declarations from the lookup results. 1584 static void RemoveUsingDecls(LookupResult &R) { 1585 LookupResult::Filter F = R.makeFilter(); 1586 while (F.hasNext()) 1587 if (isUsingDecl(F.next())) 1588 F.erase(); 1589 1590 F.done(); 1591 } 1592 1593 /// Check for this common pattern: 1594 /// @code 1595 /// class S { 1596 /// S(const S&); // DO NOT IMPLEMENT 1597 /// void operator=(const S&); // DO NOT IMPLEMENT 1598 /// }; 1599 /// @endcode 1600 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { 1601 // FIXME: Should check for private access too but access is set after we get 1602 // the decl here. 1603 if (D->doesThisDeclarationHaveABody()) 1604 return false; 1605 1606 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 1607 return CD->isCopyConstructor(); 1608 return D->isCopyAssignmentOperator(); 1609 } 1610 1611 // We need this to handle 1612 // 1613 // typedef struct { 1614 // void *foo() { return 0; } 1615 // } A; 1616 // 1617 // When we see foo we don't know if after the typedef we will get 'A' or '*A' 1618 // for example. If 'A', foo will have external linkage. If we have '*A', 1619 // foo will have no linkage. Since we can't know until we get to the end 1620 // of the typedef, this function finds out if D might have non-external linkage. 1621 // Callers should verify at the end of the TU if it D has external linkage or 1622 // not. 1623 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) { 1624 const DeclContext *DC = D->getDeclContext(); 1625 while (!DC->isTranslationUnit()) { 1626 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){ 1627 if (!RD->hasNameForLinkage()) 1628 return true; 1629 } 1630 DC = DC->getParent(); 1631 } 1632 1633 return !D->isExternallyVisible(); 1634 } 1635 1636 // FIXME: This needs to be refactored; some other isInMainFile users want 1637 // these semantics. 1638 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) { 1639 if (S.TUKind != TU_Complete) 1640 return false; 1641 return S.SourceMgr.isInMainFile(Loc); 1642 } 1643 1644 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { 1645 assert(D); 1646 1647 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) 1648 return false; 1649 1650 // Ignore all entities declared within templates, and out-of-line definitions 1651 // of members of class templates. 1652 if (D->getDeclContext()->isDependentContext() || 1653 D->getLexicalDeclContext()->isDependentContext()) 1654 return false; 1655 1656 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1657 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1658 return false; 1659 // A non-out-of-line declaration of a member specialization was implicitly 1660 // instantiated; it's the out-of-line declaration that we're interested in. 1661 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 1662 FD->getMemberSpecializationInfo() && !FD->isOutOfLine()) 1663 return false; 1664 1665 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 1666 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) 1667 return false; 1668 } else { 1669 // 'static inline' functions are defined in headers; don't warn. 1670 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation())) 1671 return false; 1672 } 1673 1674 if (FD->doesThisDeclarationHaveABody() && 1675 Context.DeclMustBeEmitted(FD)) 1676 return false; 1677 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1678 // Constants and utility variables are defined in headers with internal 1679 // linkage; don't warn. (Unlike functions, there isn't a convenient marker 1680 // like "inline".) 1681 if (!isMainFileLoc(*this, VD->getLocation())) 1682 return false; 1683 1684 if (Context.DeclMustBeEmitted(VD)) 1685 return false; 1686 1687 if (VD->isStaticDataMember() && 1688 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1689 return false; 1690 if (VD->isStaticDataMember() && 1691 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && 1692 VD->getMemberSpecializationInfo() && !VD->isOutOfLine()) 1693 return false; 1694 1695 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation())) 1696 return false; 1697 } else { 1698 return false; 1699 } 1700 1701 // Only warn for unused decls internal to the translation unit. 1702 // FIXME: This seems like a bogus check; it suppresses -Wunused-function 1703 // for inline functions defined in the main source file, for instance. 1704 return mightHaveNonExternalLinkage(D); 1705 } 1706 1707 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { 1708 if (!D) 1709 return; 1710 1711 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1712 const FunctionDecl *First = FD->getFirstDecl(); 1713 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) 1714 return; // First should already be in the vector. 1715 } 1716 1717 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1718 const VarDecl *First = VD->getFirstDecl(); 1719 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) 1720 return; // First should already be in the vector. 1721 } 1722 1723 if (ShouldWarnIfUnusedFileScopedDecl(D)) 1724 UnusedFileScopedDecls.push_back(D); 1725 } 1726 1727 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) { 1728 if (D->isInvalidDecl()) 1729 return false; 1730 1731 bool Referenced = false; 1732 if (auto *DD = dyn_cast<DecompositionDecl>(D)) { 1733 // For a decomposition declaration, warn if none of the bindings are 1734 // referenced, instead of if the variable itself is referenced (which 1735 // it is, by the bindings' expressions). 1736 for (auto *BD : DD->bindings()) { 1737 if (BD->isReferenced()) { 1738 Referenced = true; 1739 break; 1740 } 1741 } 1742 } else if (!D->getDeclName()) { 1743 return false; 1744 } else if (D->isReferenced() || D->isUsed()) { 1745 Referenced = true; 1746 } 1747 1748 if (Referenced || D->hasAttr<UnusedAttr>() || 1749 D->hasAttr<ObjCPreciseLifetimeAttr>()) 1750 return false; 1751 1752 if (isa<LabelDecl>(D)) 1753 return true; 1754 1755 // Except for labels, we only care about unused decls that are local to 1756 // functions. 1757 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod(); 1758 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext())) 1759 // For dependent types, the diagnostic is deferred. 1760 WithinFunction = 1761 WithinFunction || (R->isLocalClass() && !R->isDependentType()); 1762 if (!WithinFunction) 1763 return false; 1764 1765 if (isa<TypedefNameDecl>(D)) 1766 return true; 1767 1768 // White-list anything that isn't a local variable. 1769 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) 1770 return false; 1771 1772 // Types of valid local variables should be complete, so this should succeed. 1773 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 1774 1775 // White-list anything with an __attribute__((unused)) type. 1776 const auto *Ty = VD->getType().getTypePtr(); 1777 1778 // Only look at the outermost level of typedef. 1779 if (const TypedefType *TT = Ty->getAs<TypedefType>()) { 1780 if (TT->getDecl()->hasAttr<UnusedAttr>()) 1781 return false; 1782 } 1783 1784 // If we failed to complete the type for some reason, or if the type is 1785 // dependent, don't diagnose the variable. 1786 if (Ty->isIncompleteType() || Ty->isDependentType()) 1787 return false; 1788 1789 // Look at the element type to ensure that the warning behaviour is 1790 // consistent for both scalars and arrays. 1791 Ty = Ty->getBaseElementTypeUnsafe(); 1792 1793 if (const TagType *TT = Ty->getAs<TagType>()) { 1794 const TagDecl *Tag = TT->getDecl(); 1795 if (Tag->hasAttr<UnusedAttr>()) 1796 return false; 1797 1798 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) { 1799 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>()) 1800 return false; 1801 1802 if (const Expr *Init = VD->getInit()) { 1803 if (const ExprWithCleanups *Cleanups = 1804 dyn_cast<ExprWithCleanups>(Init)) 1805 Init = Cleanups->getSubExpr(); 1806 const CXXConstructExpr *Construct = 1807 dyn_cast<CXXConstructExpr>(Init); 1808 if (Construct && !Construct->isElidable()) { 1809 CXXConstructorDecl *CD = Construct->getConstructor(); 1810 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() && 1811 (VD->getInit()->isValueDependent() || !VD->evaluateValue())) 1812 return false; 1813 } 1814 1815 // Suppress the warning if we don't know how this is constructed, and 1816 // it could possibly be non-trivial constructor. 1817 if (Init->isTypeDependent()) 1818 for (const CXXConstructorDecl *Ctor : RD->ctors()) 1819 if (!Ctor->isTrivial()) 1820 return false; 1821 } 1822 } 1823 } 1824 1825 // TODO: __attribute__((unused)) templates? 1826 } 1827 1828 return true; 1829 } 1830 1831 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, 1832 FixItHint &Hint) { 1833 if (isa<LabelDecl>(D)) { 1834 SourceLocation AfterColon = Lexer::findLocationAfterToken( 1835 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), 1836 true); 1837 if (AfterColon.isInvalid()) 1838 return; 1839 Hint = FixItHint::CreateRemoval( 1840 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon)); 1841 } 1842 } 1843 1844 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) { 1845 if (D->getTypeForDecl()->isDependentType()) 1846 return; 1847 1848 for (auto *TmpD : D->decls()) { 1849 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD)) 1850 DiagnoseUnusedDecl(T); 1851 else if(const auto *R = dyn_cast<RecordDecl>(TmpD)) 1852 DiagnoseUnusedNestedTypedefs(R); 1853 } 1854 } 1855 1856 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used 1857 /// unless they are marked attr(unused). 1858 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { 1859 if (!ShouldDiagnoseUnusedDecl(D)) 1860 return; 1861 1862 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { 1863 // typedefs can be referenced later on, so the diagnostics are emitted 1864 // at end-of-translation-unit. 1865 UnusedLocalTypedefNameCandidates.insert(TD); 1866 return; 1867 } 1868 1869 FixItHint Hint; 1870 GenerateFixForUnusedDecl(D, Context, Hint); 1871 1872 unsigned DiagID; 1873 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) 1874 DiagID = diag::warn_unused_exception_param; 1875 else if (isa<LabelDecl>(D)) 1876 DiagID = diag::warn_unused_label; 1877 else 1878 DiagID = diag::warn_unused_variable; 1879 1880 Diag(D->getLocation(), DiagID) << D << Hint; 1881 } 1882 1883 static void CheckPoppedLabel(LabelDecl *L, Sema &S) { 1884 // Verify that we have no forward references left. If so, there was a goto 1885 // or address of a label taken, but no definition of it. Label fwd 1886 // definitions are indicated with a null substmt which is also not a resolved 1887 // MS inline assembly label name. 1888 bool Diagnose = false; 1889 if (L->isMSAsmLabel()) 1890 Diagnose = !L->isResolvedMSAsmLabel(); 1891 else 1892 Diagnose = L->getStmt() == nullptr; 1893 if (Diagnose) 1894 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName(); 1895 } 1896 1897 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { 1898 S->mergeNRVOIntoParent(); 1899 1900 if (S->decl_empty()) return; 1901 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && 1902 "Scope shouldn't contain decls!"); 1903 1904 for (auto *TmpD : S->decls()) { 1905 assert(TmpD && "This decl didn't get pushed??"); 1906 1907 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"); 1908 NamedDecl *D = cast<NamedDecl>(TmpD); 1909 1910 // Diagnose unused variables in this scope. 1911 if (!S->hasUnrecoverableErrorOccurred()) { 1912 DiagnoseUnusedDecl(D); 1913 if (const auto *RD = dyn_cast<RecordDecl>(D)) 1914 DiagnoseUnusedNestedTypedefs(RD); 1915 } 1916 1917 if (!D->getDeclName()) continue; 1918 1919 // If this was a forward reference to a label, verify it was defined. 1920 if (LabelDecl *LD = dyn_cast<LabelDecl>(D)) 1921 CheckPoppedLabel(LD, *this); 1922 1923 // Remove this name from our lexical scope, and warn on it if we haven't 1924 // already. 1925 IdResolver.RemoveDecl(D); 1926 auto ShadowI = ShadowingDecls.find(D); 1927 if (ShadowI != ShadowingDecls.end()) { 1928 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) { 1929 Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field) 1930 << D << FD << FD->getParent(); 1931 Diag(FD->getLocation(), diag::note_previous_declaration); 1932 } 1933 ShadowingDecls.erase(ShadowI); 1934 } 1935 } 1936 } 1937 1938 /// Look for an Objective-C class in the translation unit. 1939 /// 1940 /// \param Id The name of the Objective-C class we're looking for. If 1941 /// typo-correction fixes this name, the Id will be updated 1942 /// to the fixed name. 1943 /// 1944 /// \param IdLoc The location of the name in the translation unit. 1945 /// 1946 /// \param DoTypoCorrection If true, this routine will attempt typo correction 1947 /// if there is no class with the given name. 1948 /// 1949 /// \returns The declaration of the named Objective-C class, or NULL if the 1950 /// class could not be found. 1951 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, 1952 SourceLocation IdLoc, 1953 bool DoTypoCorrection) { 1954 // The third "scope" argument is 0 since we aren't enabling lazy built-in 1955 // creation from this context. 1956 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); 1957 1958 if (!IDecl && DoTypoCorrection) { 1959 // Perform typo correction at the given location, but only if we 1960 // find an Objective-C class name. 1961 DeclFilterCCC<ObjCInterfaceDecl> CCC{}; 1962 if (TypoCorrection C = 1963 CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, 1964 TUScope, nullptr, CCC, CTK_ErrorRecovery)) { 1965 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id); 1966 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); 1967 Id = IDecl->getIdentifier(); 1968 } 1969 } 1970 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); 1971 // This routine must always return a class definition, if any. 1972 if (Def && Def->getDefinition()) 1973 Def = Def->getDefinition(); 1974 return Def; 1975 } 1976 1977 /// getNonFieldDeclScope - Retrieves the innermost scope, starting 1978 /// from S, where a non-field would be declared. This routine copes 1979 /// with the difference between C and C++ scoping rules in structs and 1980 /// unions. For example, the following code is well-formed in C but 1981 /// ill-formed in C++: 1982 /// @code 1983 /// struct S6 { 1984 /// enum { BAR } e; 1985 /// }; 1986 /// 1987 /// void test_S6() { 1988 /// struct S6 a; 1989 /// a.e = BAR; 1990 /// } 1991 /// @endcode 1992 /// For the declaration of BAR, this routine will return a different 1993 /// scope. The scope S will be the scope of the unnamed enumeration 1994 /// within S6. In C++, this routine will return the scope associated 1995 /// with S6, because the enumeration's scope is a transparent 1996 /// context but structures can contain non-field names. In C, this 1997 /// routine will return the translation unit scope, since the 1998 /// enumeration's scope is a transparent context and structures cannot 1999 /// contain non-field names. 2000 Scope *Sema::getNonFieldDeclScope(Scope *S) { 2001 while (((S->getFlags() & Scope::DeclScope) == 0) || 2002 (S->getEntity() && S->getEntity()->isTransparentContext()) || 2003 (S->isClassScope() && !getLangOpts().CPlusPlus)) 2004 S = S->getParent(); 2005 return S; 2006 } 2007 2008 /// Looks up the declaration of "struct objc_super" and 2009 /// saves it for later use in building builtin declaration of 2010 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such 2011 /// pre-existing declaration exists no action takes place. 2012 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S, 2013 IdentifierInfo *II) { 2014 if (!II->isStr("objc_msgSendSuper")) 2015 return; 2016 ASTContext &Context = ThisSema.Context; 2017 2018 LookupResult Result(ThisSema, &Context.Idents.get("objc_super"), 2019 SourceLocation(), Sema::LookupTagName); 2020 ThisSema.LookupName(Result, S); 2021 if (Result.getResultKind() == LookupResult::Found) 2022 if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) 2023 Context.setObjCSuperType(Context.getTagDeclType(TD)); 2024 } 2025 2026 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID, 2027 ASTContext::GetBuiltinTypeError Error) { 2028 switch (Error) { 2029 case ASTContext::GE_None: 2030 return ""; 2031 case ASTContext::GE_Missing_type: 2032 return BuiltinInfo.getHeaderName(ID); 2033 case ASTContext::GE_Missing_stdio: 2034 return "stdio.h"; 2035 case ASTContext::GE_Missing_setjmp: 2036 return "setjmp.h"; 2037 case ASTContext::GE_Missing_ucontext: 2038 return "ucontext.h"; 2039 } 2040 llvm_unreachable("unhandled error kind"); 2041 } 2042 2043 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at 2044 /// file scope. lazily create a decl for it. ForRedeclaration is true 2045 /// if we're creating this built-in in anticipation of redeclaring the 2046 /// built-in. 2047 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, 2048 Scope *S, bool ForRedeclaration, 2049 SourceLocation Loc) { 2050 LookupPredefedObjCSuperType(*this, S, II); 2051 2052 ASTContext::GetBuiltinTypeError Error; 2053 QualType R = Context.GetBuiltinType(ID, Error); 2054 if (Error) { 2055 if (!ForRedeclaration) 2056 return nullptr; 2057 2058 // If we have a builtin without an associated type we should not emit a 2059 // warning when we were not able to find a type for it. 2060 if (Error == ASTContext::GE_Missing_type) 2061 return nullptr; 2062 2063 // If we could not find a type for setjmp it is because the jmp_buf type was 2064 // not defined prior to the setjmp declaration. 2065 if (Error == ASTContext::GE_Missing_setjmp) { 2066 Diag(Loc, diag::warn_implicit_decl_no_jmp_buf) 2067 << Context.BuiltinInfo.getName(ID); 2068 return nullptr; 2069 } 2070 2071 // Generally, we emit a warning that the declaration requires the 2072 // appropriate header. 2073 Diag(Loc, diag::warn_implicit_decl_requires_sysheader) 2074 << getHeaderName(Context.BuiltinInfo, ID, Error) 2075 << Context.BuiltinInfo.getName(ID); 2076 return nullptr; 2077 } 2078 2079 if (!ForRedeclaration && 2080 (Context.BuiltinInfo.isPredefinedLibFunction(ID) || 2081 Context.BuiltinInfo.isHeaderDependentFunction(ID))) { 2082 Diag(Loc, diag::ext_implicit_lib_function_decl) 2083 << Context.BuiltinInfo.getName(ID) << R; 2084 if (Context.BuiltinInfo.getHeaderName(ID) && 2085 !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc)) 2086 Diag(Loc, diag::note_include_header_or_declare) 2087 << Context.BuiltinInfo.getHeaderName(ID) 2088 << Context.BuiltinInfo.getName(ID); 2089 } 2090 2091 if (R.isNull()) 2092 return nullptr; 2093 2094 DeclContext *Parent = Context.getTranslationUnitDecl(); 2095 if (getLangOpts().CPlusPlus) { 2096 LinkageSpecDecl *CLinkageDecl = 2097 LinkageSpecDecl::Create(Context, Parent, Loc, Loc, 2098 LinkageSpecDecl::lang_c, false); 2099 CLinkageDecl->setImplicit(); 2100 Parent->addDecl(CLinkageDecl); 2101 Parent = CLinkageDecl; 2102 } 2103 2104 FunctionDecl *New = FunctionDecl::Create(Context, 2105 Parent, 2106 Loc, Loc, II, R, /*TInfo=*/nullptr, 2107 SC_Extern, 2108 false, 2109 R->isFunctionProtoType()); 2110 New->setImplicit(); 2111 2112 // Create Decl objects for each parameter, adding them to the 2113 // FunctionDecl. 2114 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) { 2115 SmallVector<ParmVarDecl*, 16> Params; 2116 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 2117 ParmVarDecl *parm = 2118 ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(), 2119 nullptr, FT->getParamType(i), /*TInfo=*/nullptr, 2120 SC_None, nullptr); 2121 parm->setScopeInfo(0, i); 2122 Params.push_back(parm); 2123 } 2124 New->setParams(Params); 2125 } 2126 2127 AddKnownFunctionAttributes(New); 2128 RegisterLocallyScopedExternCDecl(New, S); 2129 2130 // TUScope is the translation-unit scope to insert this function into. 2131 // FIXME: This is hideous. We need to teach PushOnScopeChains to 2132 // relate Scopes to DeclContexts, and probably eliminate CurContext 2133 // entirely, but we're not there yet. 2134 DeclContext *SavedContext = CurContext; 2135 CurContext = Parent; 2136 PushOnScopeChains(New, TUScope); 2137 CurContext = SavedContext; 2138 return New; 2139 } 2140 2141 /// Typedef declarations don't have linkage, but they still denote the same 2142 /// entity if their types are the same. 2143 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's 2144 /// isSameEntity. 2145 static void filterNonConflictingPreviousTypedefDecls(Sema &S, 2146 TypedefNameDecl *Decl, 2147 LookupResult &Previous) { 2148 // This is only interesting when modules are enabled. 2149 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility) 2150 return; 2151 2152 // Empty sets are uninteresting. 2153 if (Previous.empty()) 2154 return; 2155 2156 LookupResult::Filter Filter = Previous.makeFilter(); 2157 while (Filter.hasNext()) { 2158 NamedDecl *Old = Filter.next(); 2159 2160 // Non-hidden declarations are never ignored. 2161 if (S.isVisible(Old)) 2162 continue; 2163 2164 // Declarations of the same entity are not ignored, even if they have 2165 // different linkages. 2166 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { 2167 if (S.Context.hasSameType(OldTD->getUnderlyingType(), 2168 Decl->getUnderlyingType())) 2169 continue; 2170 2171 // If both declarations give a tag declaration a typedef name for linkage 2172 // purposes, then they declare the same entity. 2173 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) && 2174 Decl->getAnonDeclWithTypedefName()) 2175 continue; 2176 } 2177 2178 Filter.erase(); 2179 } 2180 2181 Filter.done(); 2182 } 2183 2184 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) { 2185 QualType OldType; 2186 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old)) 2187 OldType = OldTypedef->getUnderlyingType(); 2188 else 2189 OldType = Context.getTypeDeclType(Old); 2190 QualType NewType = New->getUnderlyingType(); 2191 2192 if (NewType->isVariablyModifiedType()) { 2193 // Must not redefine a typedef with a variably-modified type. 2194 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; 2195 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef) 2196 << Kind << NewType; 2197 if (Old->getLocation().isValid()) 2198 notePreviousDefinition(Old, New->getLocation()); 2199 New->setInvalidDecl(); 2200 return true; 2201 } 2202 2203 if (OldType != NewType && 2204 !OldType->isDependentType() && 2205 !NewType->isDependentType() && 2206 !Context.hasSameType(OldType, NewType)) { 2207 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; 2208 Diag(New->getLocation(), diag::err_redefinition_different_typedef) 2209 << Kind << NewType << OldType; 2210 if (Old->getLocation().isValid()) 2211 notePreviousDefinition(Old, New->getLocation()); 2212 New->setInvalidDecl(); 2213 return true; 2214 } 2215 return false; 2216 } 2217 2218 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the 2219 /// same name and scope as a previous declaration 'Old'. Figure out 2220 /// how to resolve this situation, merging decls or emitting 2221 /// diagnostics as appropriate. If there was an error, set New to be invalid. 2222 /// 2223 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, 2224 LookupResult &OldDecls) { 2225 // If the new decl is known invalid already, don't bother doing any 2226 // merging checks. 2227 if (New->isInvalidDecl()) return; 2228 2229 // Allow multiple definitions for ObjC built-in typedefs. 2230 // FIXME: Verify the underlying types are equivalent! 2231 if (getLangOpts().ObjC) { 2232 const IdentifierInfo *TypeID = New->getIdentifier(); 2233 switch (TypeID->getLength()) { 2234 default: break; 2235 case 2: 2236 { 2237 if (!TypeID->isStr("id")) 2238 break; 2239 QualType T = New->getUnderlyingType(); 2240 if (!T->isPointerType()) 2241 break; 2242 if (!T->isVoidPointerType()) { 2243 QualType PT = T->castAs<PointerType>()->getPointeeType(); 2244 if (!PT->isStructureType()) 2245 break; 2246 } 2247 Context.setObjCIdRedefinitionType(T); 2248 // Install the built-in type for 'id', ignoring the current definition. 2249 New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); 2250 return; 2251 } 2252 case 5: 2253 if (!TypeID->isStr("Class")) 2254 break; 2255 Context.setObjCClassRedefinitionType(New->getUnderlyingType()); 2256 // Install the built-in type for 'Class', ignoring the current definition. 2257 New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); 2258 return; 2259 case 3: 2260 if (!TypeID->isStr("SEL")) 2261 break; 2262 Context.setObjCSelRedefinitionType(New->getUnderlyingType()); 2263 // Install the built-in type for 'SEL', ignoring the current definition. 2264 New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); 2265 return; 2266 } 2267 // Fall through - the typedef name was not a builtin type. 2268 } 2269 2270 // Verify the old decl was also a type. 2271 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); 2272 if (!Old) { 2273 Diag(New->getLocation(), diag::err_redefinition_different_kind) 2274 << New->getDeclName(); 2275 2276 NamedDecl *OldD = OldDecls.getRepresentativeDecl(); 2277 if (OldD->getLocation().isValid()) 2278 notePreviousDefinition(OldD, New->getLocation()); 2279 2280 return New->setInvalidDecl(); 2281 } 2282 2283 // If the old declaration is invalid, just give up here. 2284 if (Old->isInvalidDecl()) 2285 return New->setInvalidDecl(); 2286 2287 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { 2288 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true); 2289 auto *NewTag = New->getAnonDeclWithTypedefName(); 2290 NamedDecl *Hidden = nullptr; 2291 if (OldTag && NewTag && 2292 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() && 2293 !hasVisibleDefinition(OldTag, &Hidden)) { 2294 // There is a definition of this tag, but it is not visible. Use it 2295 // instead of our tag. 2296 New->setTypeForDecl(OldTD->getTypeForDecl()); 2297 if (OldTD->isModed()) 2298 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(), 2299 OldTD->getUnderlyingType()); 2300 else 2301 New->setTypeSourceInfo(OldTD->getTypeSourceInfo()); 2302 2303 // Make the old tag definition visible. 2304 makeMergedDefinitionVisible(Hidden); 2305 2306 // If this was an unscoped enumeration, yank all of its enumerators 2307 // out of the scope. 2308 if (isa<EnumDecl>(NewTag)) { 2309 Scope *EnumScope = getNonFieldDeclScope(S); 2310 for (auto *D : NewTag->decls()) { 2311 auto *ED = cast<EnumConstantDecl>(D); 2312 assert(EnumScope->isDeclScope(ED)); 2313 EnumScope->RemoveDecl(ED); 2314 IdResolver.RemoveDecl(ED); 2315 ED->getLexicalDeclContext()->removeDecl(ED); 2316 } 2317 } 2318 } 2319 } 2320 2321 // If the typedef types are not identical, reject them in all languages and 2322 // with any extensions enabled. 2323 if (isIncompatibleTypedef(Old, New)) 2324 return; 2325 2326 // The types match. Link up the redeclaration chain and merge attributes if 2327 // the old declaration was a typedef. 2328 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) { 2329 New->setPreviousDecl(Typedef); 2330 mergeDeclAttributes(New, Old); 2331 } 2332 2333 if (getLangOpts().MicrosoftExt) 2334 return; 2335 2336 if (getLangOpts().CPlusPlus) { 2337 // C++ [dcl.typedef]p2: 2338 // In a given non-class scope, a typedef specifier can be used to 2339 // redefine the name of any type declared in that scope to refer 2340 // to the type to which it already refers. 2341 if (!isa<CXXRecordDecl>(CurContext)) 2342 return; 2343 2344 // C++0x [dcl.typedef]p4: 2345 // In a given class scope, a typedef specifier can be used to redefine 2346 // any class-name declared in that scope that is not also a typedef-name 2347 // to refer to the type to which it already refers. 2348 // 2349 // This wording came in via DR424, which was a correction to the 2350 // wording in DR56, which accidentally banned code like: 2351 // 2352 // struct S { 2353 // typedef struct A { } A; 2354 // }; 2355 // 2356 // in the C++03 standard. We implement the C++0x semantics, which 2357 // allow the above but disallow 2358 // 2359 // struct S { 2360 // typedef int I; 2361 // typedef int I; 2362 // }; 2363 // 2364 // since that was the intent of DR56. 2365 if (!isa<TypedefNameDecl>(Old)) 2366 return; 2367 2368 Diag(New->getLocation(), diag::err_redefinition) 2369 << New->getDeclName(); 2370 notePreviousDefinition(Old, New->getLocation()); 2371 return New->setInvalidDecl(); 2372 } 2373 2374 // Modules always permit redefinition of typedefs, as does C11. 2375 if (getLangOpts().Modules || getLangOpts().C11) 2376 return; 2377 2378 // If we have a redefinition of a typedef in C, emit a warning. This warning 2379 // is normally mapped to an error, but can be controlled with 2380 // -Wtypedef-redefinition. If either the original or the redefinition is 2381 // in a system header, don't emit this for compatibility with GCC. 2382 if (getDiagnostics().getSuppressSystemWarnings() && 2383 // Some standard types are defined implicitly in Clang (e.g. OpenCL). 2384 (Old->isImplicit() || 2385 Context.getSourceManager().isInSystemHeader(Old->getLocation()) || 2386 Context.getSourceManager().isInSystemHeader(New->getLocation()))) 2387 return; 2388 2389 Diag(New->getLocation(), diag::ext_redefinition_of_typedef) 2390 << New->getDeclName(); 2391 notePreviousDefinition(Old, New->getLocation()); 2392 } 2393 2394 /// DeclhasAttr - returns true if decl Declaration already has the target 2395 /// attribute. 2396 static bool DeclHasAttr(const Decl *D, const Attr *A) { 2397 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); 2398 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); 2399 for (const auto *i : D->attrs()) 2400 if (i->getKind() == A->getKind()) { 2401 if (Ann) { 2402 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation()) 2403 return true; 2404 continue; 2405 } 2406 // FIXME: Don't hardcode this check 2407 if (OA && isa<OwnershipAttr>(i)) 2408 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind(); 2409 return true; 2410 } 2411 2412 return false; 2413 } 2414 2415 static bool isAttributeTargetADefinition(Decl *D) { 2416 if (VarDecl *VD = dyn_cast<VarDecl>(D)) 2417 return VD->isThisDeclarationADefinition(); 2418 if (TagDecl *TD = dyn_cast<TagDecl>(D)) 2419 return TD->isCompleteDefinition() || TD->isBeingDefined(); 2420 return true; 2421 } 2422 2423 /// Merge alignment attributes from \p Old to \p New, taking into account the 2424 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute. 2425 /// 2426 /// \return \c true if any attributes were added to \p New. 2427 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) { 2428 // Look for alignas attributes on Old, and pick out whichever attribute 2429 // specifies the strictest alignment requirement. 2430 AlignedAttr *OldAlignasAttr = nullptr; 2431 AlignedAttr *OldStrictestAlignAttr = nullptr; 2432 unsigned OldAlign = 0; 2433 for (auto *I : Old->specific_attrs<AlignedAttr>()) { 2434 // FIXME: We have no way of representing inherited dependent alignments 2435 // in a case like: 2436 // template<int A, int B> struct alignas(A) X; 2437 // template<int A, int B> struct alignas(B) X {}; 2438 // For now, we just ignore any alignas attributes which are not on the 2439 // definition in such a case. 2440 if (I->isAlignmentDependent()) 2441 return false; 2442 2443 if (I->isAlignas()) 2444 OldAlignasAttr = I; 2445 2446 unsigned Align = I->getAlignment(S.Context); 2447 if (Align > OldAlign) { 2448 OldAlign = Align; 2449 OldStrictestAlignAttr = I; 2450 } 2451 } 2452 2453 // Look for alignas attributes on New. 2454 AlignedAttr *NewAlignasAttr = nullptr; 2455 unsigned NewAlign = 0; 2456 for (auto *I : New->specific_attrs<AlignedAttr>()) { 2457 if (I->isAlignmentDependent()) 2458 return false; 2459 2460 if (I->isAlignas()) 2461 NewAlignasAttr = I; 2462 2463 unsigned Align = I->getAlignment(S.Context); 2464 if (Align > NewAlign) 2465 NewAlign = Align; 2466 } 2467 2468 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) { 2469 // Both declarations have 'alignas' attributes. We require them to match. 2470 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but 2471 // fall short. (If two declarations both have alignas, they must both match 2472 // every definition, and so must match each other if there is a definition.) 2473 2474 // If either declaration only contains 'alignas(0)' specifiers, then it 2475 // specifies the natural alignment for the type. 2476 if (OldAlign == 0 || NewAlign == 0) { 2477 QualType Ty; 2478 if (ValueDecl *VD = dyn_cast<ValueDecl>(New)) 2479 Ty = VD->getType(); 2480 else 2481 Ty = S.Context.getTagDeclType(cast<TagDecl>(New)); 2482 2483 if (OldAlign == 0) 2484 OldAlign = S.Context.getTypeAlign(Ty); 2485 if (NewAlign == 0) 2486 NewAlign = S.Context.getTypeAlign(Ty); 2487 } 2488 2489 if (OldAlign != NewAlign) { 2490 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch) 2491 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity() 2492 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity(); 2493 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration); 2494 } 2495 } 2496 2497 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) { 2498 // C++11 [dcl.align]p6: 2499 // if any declaration of an entity has an alignment-specifier, 2500 // every defining declaration of that entity shall specify an 2501 // equivalent alignment. 2502 // C11 6.7.5/7: 2503 // If the definition of an object does not have an alignment 2504 // specifier, any other declaration of that object shall also 2505 // have no alignment specifier. 2506 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition) 2507 << OldAlignasAttr; 2508 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration) 2509 << OldAlignasAttr; 2510 } 2511 2512 bool AnyAdded = false; 2513 2514 // Ensure we have an attribute representing the strictest alignment. 2515 if (OldAlign > NewAlign) { 2516 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context); 2517 Clone->setInherited(true); 2518 New->addAttr(Clone); 2519 AnyAdded = true; 2520 } 2521 2522 // Ensure we have an alignas attribute if the old declaration had one. 2523 if (OldAlignasAttr && !NewAlignasAttr && 2524 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) { 2525 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context); 2526 Clone->setInherited(true); 2527 New->addAttr(Clone); 2528 AnyAdded = true; 2529 } 2530 2531 return AnyAdded; 2532 } 2533 2534 static bool mergeDeclAttribute(Sema &S, NamedDecl *D, 2535 const InheritableAttr *Attr, 2536 Sema::AvailabilityMergeKind AMK) { 2537 // This function copies an attribute Attr from a previous declaration to the 2538 // new declaration D if the new declaration doesn't itself have that attribute 2539 // yet or if that attribute allows duplicates. 2540 // If you're adding a new attribute that requires logic different from 2541 // "use explicit attribute on decl if present, else use attribute from 2542 // previous decl", for example if the attribute needs to be consistent 2543 // between redeclarations, you need to call a custom merge function here. 2544 InheritableAttr *NewAttr = nullptr; 2545 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr)) 2546 NewAttr = S.mergeAvailabilityAttr( 2547 D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(), 2548 AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(), 2549 AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK, 2550 AA->getPriority()); 2551 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr)) 2552 NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility()); 2553 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr)) 2554 NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility()); 2555 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr)) 2556 NewAttr = S.mergeDLLImportAttr(D, *ImportA); 2557 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr)) 2558 NewAttr = S.mergeDLLExportAttr(D, *ExportA); 2559 else if (const auto *FA = dyn_cast<FormatAttr>(Attr)) 2560 NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(), 2561 FA->getFirstArg()); 2562 else if (const auto *SA = dyn_cast<SectionAttr>(Attr)) 2563 NewAttr = S.mergeSectionAttr(D, *SA, SA->getName()); 2564 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr)) 2565 NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName()); 2566 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr)) 2567 NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(), 2568 IA->getInheritanceModel()); 2569 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr)) 2570 NewAttr = S.mergeAlwaysInlineAttr(D, *AA, 2571 &S.Context.Idents.get(AA->getSpelling())); 2572 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) && 2573 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) || 2574 isa<CUDAGlobalAttr>(Attr))) { 2575 // CUDA target attributes are part of function signature for 2576 // overloading purposes and must not be merged. 2577 return false; 2578 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr)) 2579 NewAttr = S.mergeMinSizeAttr(D, *MA); 2580 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr)) 2581 NewAttr = S.mergeOptimizeNoneAttr(D, *OA); 2582 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr)) 2583 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA); 2584 else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr)) 2585 NewAttr = S.mergeCommonAttr(D, *CommonA); 2586 else if (isa<AlignedAttr>(Attr)) 2587 // AlignedAttrs are handled separately, because we need to handle all 2588 // such attributes on a declaration at the same time. 2589 NewAttr = nullptr; 2590 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) && 2591 (AMK == Sema::AMK_Override || 2592 AMK == Sema::AMK_ProtocolImplementation)) 2593 NewAttr = nullptr; 2594 else if (const auto *UA = dyn_cast<UuidAttr>(Attr)) 2595 NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl()); 2596 else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr)) 2597 NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA); 2598 else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr)) 2599 NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA); 2600 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr)) 2601 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context)); 2602 2603 if (NewAttr) { 2604 NewAttr->setInherited(true); 2605 D->addAttr(NewAttr); 2606 if (isa<MSInheritanceAttr>(NewAttr)) 2607 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); 2608 return true; 2609 } 2610 2611 return false; 2612 } 2613 2614 static const NamedDecl *getDefinition(const Decl *D) { 2615 if (const TagDecl *TD = dyn_cast<TagDecl>(D)) 2616 return TD->getDefinition(); 2617 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 2618 const VarDecl *Def = VD->getDefinition(); 2619 if (Def) 2620 return Def; 2621 return VD->getActingDefinition(); 2622 } 2623 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) 2624 return FD->getDefinition(); 2625 return nullptr; 2626 } 2627 2628 static bool hasAttribute(const Decl *D, attr::Kind Kind) { 2629 for (const auto *Attribute : D->attrs()) 2630 if (Attribute->getKind() == Kind) 2631 return true; 2632 return false; 2633 } 2634 2635 /// checkNewAttributesAfterDef - If we already have a definition, check that 2636 /// there are no new attributes in this declaration. 2637 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) { 2638 if (!New->hasAttrs()) 2639 return; 2640 2641 const NamedDecl *Def = getDefinition(Old); 2642 if (!Def || Def == New) 2643 return; 2644 2645 AttrVec &NewAttributes = New->getAttrs(); 2646 for (unsigned I = 0, E = NewAttributes.size(); I != E;) { 2647 const Attr *NewAttribute = NewAttributes[I]; 2648 2649 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) { 2650 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) { 2651 Sema::SkipBodyInfo SkipBody; 2652 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody); 2653 2654 // If we're skipping this definition, drop the "alias" attribute. 2655 if (SkipBody.ShouldSkip) { 2656 NewAttributes.erase(NewAttributes.begin() + I); 2657 --E; 2658 continue; 2659 } 2660 } else { 2661 VarDecl *VD = cast<VarDecl>(New); 2662 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() == 2663 VarDecl::TentativeDefinition 2664 ? diag::err_alias_after_tentative 2665 : diag::err_redefinition; 2666 S.Diag(VD->getLocation(), Diag) << VD->getDeclName(); 2667 if (Diag == diag::err_redefinition) 2668 S.notePreviousDefinition(Def, VD->getLocation()); 2669 else 2670 S.Diag(Def->getLocation(), diag::note_previous_definition); 2671 VD->setInvalidDecl(); 2672 } 2673 ++I; 2674 continue; 2675 } 2676 2677 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) { 2678 // Tentative definitions are only interesting for the alias check above. 2679 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) { 2680 ++I; 2681 continue; 2682 } 2683 } 2684 2685 if (hasAttribute(Def, NewAttribute->getKind())) { 2686 ++I; 2687 continue; // regular attr merging will take care of validating this. 2688 } 2689 2690 if (isa<C11NoReturnAttr>(NewAttribute)) { 2691 // C's _Noreturn is allowed to be added to a function after it is defined. 2692 ++I; 2693 continue; 2694 } else if (isa<UuidAttr>(NewAttribute)) { 2695 // msvc will allow a subsequent definition to add an uuid to a class 2696 ++I; 2697 continue; 2698 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) { 2699 if (AA->isAlignas()) { 2700 // C++11 [dcl.align]p6: 2701 // if any declaration of an entity has an alignment-specifier, 2702 // every defining declaration of that entity shall specify an 2703 // equivalent alignment. 2704 // C11 6.7.5/7: 2705 // If the definition of an object does not have an alignment 2706 // specifier, any other declaration of that object shall also 2707 // have no alignment specifier. 2708 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition) 2709 << AA; 2710 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration) 2711 << AA; 2712 NewAttributes.erase(NewAttributes.begin() + I); 2713 --E; 2714 continue; 2715 } 2716 } else if (isa<LoaderUninitializedAttr>(NewAttribute)) { 2717 // If there is a C definition followed by a redeclaration with this 2718 // attribute then there are two different definitions. In C++, prefer the 2719 // standard diagnostics. 2720 if (!S.getLangOpts().CPlusPlus) { 2721 S.Diag(NewAttribute->getLocation(), 2722 diag::err_loader_uninitialized_redeclaration); 2723 S.Diag(Def->getLocation(), diag::note_previous_definition); 2724 NewAttributes.erase(NewAttributes.begin() + I); 2725 --E; 2726 continue; 2727 } 2728 } else if (isa<SelectAnyAttr>(NewAttribute) && 2729 cast<VarDecl>(New)->isInline() && 2730 !cast<VarDecl>(New)->isInlineSpecified()) { 2731 // Don't warn about applying selectany to implicitly inline variables. 2732 // Older compilers and language modes would require the use of selectany 2733 // to make such variables inline, and it would have no effect if we 2734 // honored it. 2735 ++I; 2736 continue; 2737 } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) { 2738 // We allow to add OMP[Begin]DeclareVariantAttr to be added to 2739 // declarations after defintions. 2740 ++I; 2741 continue; 2742 } 2743 2744 S.Diag(NewAttribute->getLocation(), 2745 diag::warn_attribute_precede_definition); 2746 S.Diag(Def->getLocation(), diag::note_previous_definition); 2747 NewAttributes.erase(NewAttributes.begin() + I); 2748 --E; 2749 } 2750 } 2751 2752 static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl, 2753 const ConstInitAttr *CIAttr, 2754 bool AttrBeforeInit) { 2755 SourceLocation InsertLoc = InitDecl->getInnerLocStart(); 2756 2757 // Figure out a good way to write this specifier on the old declaration. 2758 // FIXME: We should just use the spelling of CIAttr, but we don't preserve 2759 // enough of the attribute list spelling information to extract that without 2760 // heroics. 2761 std::string SuitableSpelling; 2762 if (S.getLangOpts().CPlusPlus20) 2763 SuitableSpelling = std::string( 2764 S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit})); 2765 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) 2766 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( 2767 InsertLoc, {tok::l_square, tok::l_square, 2768 S.PP.getIdentifierInfo("clang"), tok::coloncolon, 2769 S.PP.getIdentifierInfo("require_constant_initialization"), 2770 tok::r_square, tok::r_square})); 2771 if (SuitableSpelling.empty()) 2772 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( 2773 InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren, 2774 S.PP.getIdentifierInfo("require_constant_initialization"), 2775 tok::r_paren, tok::r_paren})); 2776 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20) 2777 SuitableSpelling = "constinit"; 2778 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) 2779 SuitableSpelling = "[[clang::require_constant_initialization]]"; 2780 if (SuitableSpelling.empty()) 2781 SuitableSpelling = "__attribute__((require_constant_initialization))"; 2782 SuitableSpelling += " "; 2783 2784 if (AttrBeforeInit) { 2785 // extern constinit int a; 2786 // int a = 0; // error (missing 'constinit'), accepted as extension 2787 assert(CIAttr->isConstinit() && "should not diagnose this for attribute"); 2788 S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing) 2789 << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); 2790 S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here); 2791 } else { 2792 // int a = 0; 2793 // constinit extern int a; // error (missing 'constinit') 2794 S.Diag(CIAttr->getLocation(), 2795 CIAttr->isConstinit() ? diag::err_constinit_added_too_late 2796 : diag::warn_require_const_init_added_too_late) 2797 << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation())); 2798 S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here) 2799 << CIAttr->isConstinit() 2800 << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); 2801 } 2802 } 2803 2804 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one. 2805 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old, 2806 AvailabilityMergeKind AMK) { 2807 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) { 2808 UsedAttr *NewAttr = OldAttr->clone(Context); 2809 NewAttr->setInherited(true); 2810 New->addAttr(NewAttr); 2811 } 2812 2813 if (!Old->hasAttrs() && !New->hasAttrs()) 2814 return; 2815 2816 // [dcl.constinit]p1: 2817 // If the [constinit] specifier is applied to any declaration of a 2818 // variable, it shall be applied to the initializing declaration. 2819 const auto *OldConstInit = Old->getAttr<ConstInitAttr>(); 2820 const auto *NewConstInit = New->getAttr<ConstInitAttr>(); 2821 if (bool(OldConstInit) != bool(NewConstInit)) { 2822 const auto *OldVD = cast<VarDecl>(Old); 2823 auto *NewVD = cast<VarDecl>(New); 2824 2825 // Find the initializing declaration. Note that we might not have linked 2826 // the new declaration into the redeclaration chain yet. 2827 const VarDecl *InitDecl = OldVD->getInitializingDeclaration(); 2828 if (!InitDecl && 2829 (NewVD->hasInit() || NewVD->isThisDeclarationADefinition())) 2830 InitDecl = NewVD; 2831 2832 if (InitDecl == NewVD) { 2833 // This is the initializing declaration. If it would inherit 'constinit', 2834 // that's ill-formed. (Note that we do not apply this to the attribute 2835 // form). 2836 if (OldConstInit && OldConstInit->isConstinit()) 2837 diagnoseMissingConstinit(*this, NewVD, OldConstInit, 2838 /*AttrBeforeInit=*/true); 2839 } else if (NewConstInit) { 2840 // This is the first time we've been told that this declaration should 2841 // have a constant initializer. If we already saw the initializing 2842 // declaration, this is too late. 2843 if (InitDecl && InitDecl != NewVD) { 2844 diagnoseMissingConstinit(*this, InitDecl, NewConstInit, 2845 /*AttrBeforeInit=*/false); 2846 NewVD->dropAttr<ConstInitAttr>(); 2847 } 2848 } 2849 } 2850 2851 // Attributes declared post-definition are currently ignored. 2852 checkNewAttributesAfterDef(*this, New, Old); 2853 2854 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) { 2855 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) { 2856 if (!OldA->isEquivalent(NewA)) { 2857 // This redeclaration changes __asm__ label. 2858 Diag(New->getLocation(), diag::err_different_asm_label); 2859 Diag(OldA->getLocation(), diag::note_previous_declaration); 2860 } 2861 } else if (Old->isUsed()) { 2862 // This redeclaration adds an __asm__ label to a declaration that has 2863 // already been ODR-used. 2864 Diag(New->getLocation(), diag::err_late_asm_label_name) 2865 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange(); 2866 } 2867 } 2868 2869 // Re-declaration cannot add abi_tag's. 2870 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) { 2871 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) { 2872 for (const auto &NewTag : NewAbiTagAttr->tags()) { 2873 if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(), 2874 NewTag) == OldAbiTagAttr->tags_end()) { 2875 Diag(NewAbiTagAttr->getLocation(), 2876 diag::err_new_abi_tag_on_redeclaration) 2877 << NewTag; 2878 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration); 2879 } 2880 } 2881 } else { 2882 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration); 2883 Diag(Old->getLocation(), diag::note_previous_declaration); 2884 } 2885 } 2886 2887 // This redeclaration adds a section attribute. 2888 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) { 2889 if (auto *VD = dyn_cast<VarDecl>(New)) { 2890 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) { 2891 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration); 2892 Diag(Old->getLocation(), diag::note_previous_declaration); 2893 } 2894 } 2895 } 2896 2897 // Redeclaration adds code-seg attribute. 2898 const auto *NewCSA = New->getAttr<CodeSegAttr>(); 2899 if (NewCSA && !Old->hasAttr<CodeSegAttr>() && 2900 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) { 2901 Diag(New->getLocation(), diag::warn_mismatched_section) 2902 << 0 /*codeseg*/; 2903 Diag(Old->getLocation(), diag::note_previous_declaration); 2904 } 2905 2906 if (!Old->hasAttrs()) 2907 return; 2908 2909 bool foundAny = New->hasAttrs(); 2910 2911 // Ensure that any moving of objects within the allocated map is done before 2912 // we process them. 2913 if (!foundAny) New->setAttrs(AttrVec()); 2914 2915 for (auto *I : Old->specific_attrs<InheritableAttr>()) { 2916 // Ignore deprecated/unavailable/availability attributes if requested. 2917 AvailabilityMergeKind LocalAMK = AMK_None; 2918 if (isa<DeprecatedAttr>(I) || 2919 isa<UnavailableAttr>(I) || 2920 isa<AvailabilityAttr>(I)) { 2921 switch (AMK) { 2922 case AMK_None: 2923 continue; 2924 2925 case AMK_Redeclaration: 2926 case AMK_Override: 2927 case AMK_ProtocolImplementation: 2928 LocalAMK = AMK; 2929 break; 2930 } 2931 } 2932 2933 // Already handled. 2934 if (isa<UsedAttr>(I)) 2935 continue; 2936 2937 if (mergeDeclAttribute(*this, New, I, LocalAMK)) 2938 foundAny = true; 2939 } 2940 2941 if (mergeAlignedAttrs(*this, New, Old)) 2942 foundAny = true; 2943 2944 if (!foundAny) New->dropAttrs(); 2945 } 2946 2947 /// mergeParamDeclAttributes - Copy attributes from the old parameter 2948 /// to the new one. 2949 static void mergeParamDeclAttributes(ParmVarDecl *newDecl, 2950 const ParmVarDecl *oldDecl, 2951 Sema &S) { 2952 // C++11 [dcl.attr.depend]p2: 2953 // The first declaration of a function shall specify the 2954 // carries_dependency attribute for its declarator-id if any declaration 2955 // of the function specifies the carries_dependency attribute. 2956 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>(); 2957 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) { 2958 S.Diag(CDA->getLocation(), 2959 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/; 2960 // Find the first declaration of the parameter. 2961 // FIXME: Should we build redeclaration chains for function parameters? 2962 const FunctionDecl *FirstFD = 2963 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl(); 2964 const ParmVarDecl *FirstVD = 2965 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex()); 2966 S.Diag(FirstVD->getLocation(), 2967 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/; 2968 } 2969 2970 if (!oldDecl->hasAttrs()) 2971 return; 2972 2973 bool foundAny = newDecl->hasAttrs(); 2974 2975 // Ensure that any moving of objects within the allocated map is 2976 // done before we process them. 2977 if (!foundAny) newDecl->setAttrs(AttrVec()); 2978 2979 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) { 2980 if (!DeclHasAttr(newDecl, I)) { 2981 InheritableAttr *newAttr = 2982 cast<InheritableParamAttr>(I->clone(S.Context)); 2983 newAttr->setInherited(true); 2984 newDecl->addAttr(newAttr); 2985 foundAny = true; 2986 } 2987 } 2988 2989 if (!foundAny) newDecl->dropAttrs(); 2990 } 2991 2992 static void mergeParamDeclTypes(ParmVarDecl *NewParam, 2993 const ParmVarDecl *OldParam, 2994 Sema &S) { 2995 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) { 2996 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) { 2997 if (*Oldnullability != *Newnullability) { 2998 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr) 2999 << DiagNullabilityKind( 3000 *Newnullability, 3001 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 3002 != 0)) 3003 << DiagNullabilityKind( 3004 *Oldnullability, 3005 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) 3006 != 0)); 3007 S.Diag(OldParam->getLocation(), diag::note_previous_declaration); 3008 } 3009 } else { 3010 QualType NewT = NewParam->getType(); 3011 NewT = S.Context.getAttributedType( 3012 AttributedType::getNullabilityAttrKind(*Oldnullability), 3013 NewT, NewT); 3014 NewParam->setType(NewT); 3015 } 3016 } 3017 } 3018 3019 namespace { 3020 3021 /// Used in MergeFunctionDecl to keep track of function parameters in 3022 /// C. 3023 struct GNUCompatibleParamWarning { 3024 ParmVarDecl *OldParm; 3025 ParmVarDecl *NewParm; 3026 QualType PromotedType; 3027 }; 3028 3029 } // end anonymous namespace 3030 3031 // Determine whether the previous declaration was a definition, implicit 3032 // declaration, or a declaration. 3033 template <typename T> 3034 static std::pair<diag::kind, SourceLocation> 3035 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { 3036 diag::kind PrevDiag; 3037 SourceLocation OldLocation = Old->getLocation(); 3038 if (Old->isThisDeclarationADefinition()) 3039 PrevDiag = diag::note_previous_definition; 3040 else if (Old->isImplicit()) { 3041 PrevDiag = diag::note_previous_implicit_declaration; 3042 if (OldLocation.isInvalid()) 3043 OldLocation = New->getLocation(); 3044 } else 3045 PrevDiag = diag::note_previous_declaration; 3046 return std::make_pair(PrevDiag, OldLocation); 3047 } 3048 3049 /// canRedefineFunction - checks if a function can be redefined. Currently, 3050 /// only extern inline functions can be redefined, and even then only in 3051 /// GNU89 mode. 3052 static bool canRedefineFunction(const FunctionDecl *FD, 3053 const LangOptions& LangOpts) { 3054 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && 3055 !LangOpts.CPlusPlus && 3056 FD->isInlineSpecified() && 3057 FD->getStorageClass() == SC_Extern); 3058 } 3059 3060 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const { 3061 const AttributedType *AT = T->getAs<AttributedType>(); 3062 while (AT && !AT->isCallingConv()) 3063 AT = AT->getModifiedType()->getAs<AttributedType>(); 3064 return AT; 3065 } 3066 3067 template <typename T> 3068 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { 3069 const DeclContext *DC = Old->getDeclContext(); 3070 if (DC->isRecord()) 3071 return false; 3072 3073 LanguageLinkage OldLinkage = Old->getLanguageLinkage(); 3074 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) 3075 return true; 3076 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) 3077 return true; 3078 return false; 3079 } 3080 3081 template<typename T> static bool isExternC(T *D) { return D->isExternC(); } 3082 static bool isExternC(VarTemplateDecl *) { return false; } 3083 3084 /// Check whether a redeclaration of an entity introduced by a 3085 /// using-declaration is valid, given that we know it's not an overload 3086 /// (nor a hidden tag declaration). 3087 template<typename ExpectedDecl> 3088 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS, 3089 ExpectedDecl *New) { 3090 // C++11 [basic.scope.declarative]p4: 3091 // Given a set of declarations in a single declarative region, each of 3092 // which specifies the same unqualified name, 3093 // -- they shall all refer to the same entity, or all refer to functions 3094 // and function templates; or 3095 // -- exactly one declaration shall declare a class name or enumeration 3096 // name that is not a typedef name and the other declarations shall all 3097 // refer to the same variable or enumerator, or all refer to functions 3098 // and function templates; in this case the class name or enumeration 3099 // name is hidden (3.3.10). 3100 3101 // C++11 [namespace.udecl]p14: 3102 // If a function declaration in namespace scope or block scope has the 3103 // same name and the same parameter-type-list as a function introduced 3104 // by a using-declaration, and the declarations do not declare the same 3105 // function, the program is ill-formed. 3106 3107 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl()); 3108 if (Old && 3109 !Old->getDeclContext()->getRedeclContext()->Equals( 3110 New->getDeclContext()->getRedeclContext()) && 3111 !(isExternC(Old) && isExternC(New))) 3112 Old = nullptr; 3113 3114 if (!Old) { 3115 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); 3116 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target); 3117 S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0; 3118 return true; 3119 } 3120 return false; 3121 } 3122 3123 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A, 3124 const FunctionDecl *B) { 3125 assert(A->getNumParams() == B->getNumParams()); 3126 3127 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) { 3128 const auto *AttrA = A->getAttr<PassObjectSizeAttr>(); 3129 const auto *AttrB = B->getAttr<PassObjectSizeAttr>(); 3130 if (AttrA == AttrB) 3131 return true; 3132 return AttrA && AttrB && AttrA->getType() == AttrB->getType() && 3133 AttrA->isDynamic() == AttrB->isDynamic(); 3134 }; 3135 3136 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq); 3137 } 3138 3139 /// If necessary, adjust the semantic declaration context for a qualified 3140 /// declaration to name the correct inline namespace within the qualifier. 3141 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD, 3142 DeclaratorDecl *OldD) { 3143 // The only case where we need to update the DeclContext is when 3144 // redeclaration lookup for a qualified name finds a declaration 3145 // in an inline namespace within the context named by the qualifier: 3146 // 3147 // inline namespace N { int f(); } 3148 // int ::f(); // Sema DC needs adjusting from :: to N::. 3149 // 3150 // For unqualified declarations, the semantic context *can* change 3151 // along the redeclaration chain (for local extern declarations, 3152 // extern "C" declarations, and friend declarations in particular). 3153 if (!NewD->getQualifier()) 3154 return; 3155 3156 // NewD is probably already in the right context. 3157 auto *NamedDC = NewD->getDeclContext()->getRedeclContext(); 3158 auto *SemaDC = OldD->getDeclContext()->getRedeclContext(); 3159 if (NamedDC->Equals(SemaDC)) 3160 return; 3161 3162 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || 3163 NewD->isInvalidDecl() || OldD->isInvalidDecl()) && 3164 "unexpected context for redeclaration"); 3165 3166 auto *LexDC = NewD->getLexicalDeclContext(); 3167 auto FixSemaDC = [=](NamedDecl *D) { 3168 if (!D) 3169 return; 3170 D->setDeclContext(SemaDC); 3171 D->setLexicalDeclContext(LexDC); 3172 }; 3173 3174 FixSemaDC(NewD); 3175 if (auto *FD = dyn_cast<FunctionDecl>(NewD)) 3176 FixSemaDC(FD->getDescribedFunctionTemplate()); 3177 else if (auto *VD = dyn_cast<VarDecl>(NewD)) 3178 FixSemaDC(VD->getDescribedVarTemplate()); 3179 } 3180 3181 /// MergeFunctionDecl - We just parsed a function 'New' from 3182 /// declarator D which has the same name and scope as a previous 3183 /// declaration 'Old'. Figure out how to resolve this situation, 3184 /// merging decls or emitting diagnostics as appropriate. 3185 /// 3186 /// In C++, New and Old must be declarations that are not 3187 /// overloaded. Use IsOverload to determine whether New and Old are 3188 /// overloaded, and to select the Old declaration that New should be 3189 /// merged with. 3190 /// 3191 /// Returns true if there was an error, false otherwise. 3192 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, 3193 Scope *S, bool MergeTypeWithOld) { 3194 // Verify the old decl was also a function. 3195 FunctionDecl *Old = OldD->getAsFunction(); 3196 if (!Old) { 3197 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { 3198 if (New->getFriendObjectKind()) { 3199 Diag(New->getLocation(), diag::err_using_decl_friend); 3200 Diag(Shadow->getTargetDecl()->getLocation(), 3201 diag::note_using_decl_target); 3202 Diag(Shadow->getUsingDecl()->getLocation(), 3203 diag::note_using_decl) << 0; 3204 return true; 3205 } 3206 3207 // Check whether the two declarations might declare the same function. 3208 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New)) 3209 return true; 3210 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl()); 3211 } else { 3212 Diag(New->getLocation(), diag::err_redefinition_different_kind) 3213 << New->getDeclName(); 3214 notePreviousDefinition(OldD, New->getLocation()); 3215 return true; 3216 } 3217 } 3218 3219 // If the old declaration is invalid, just give up here. 3220 if (Old->isInvalidDecl()) 3221 return true; 3222 3223 // Disallow redeclaration of some builtins. 3224 if (!getASTContext().canBuiltinBeRedeclared(Old)) { 3225 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName(); 3226 Diag(Old->getLocation(), diag::note_previous_builtin_declaration) 3227 << Old << Old->getType(); 3228 return true; 3229 } 3230 3231 diag::kind PrevDiag; 3232 SourceLocation OldLocation; 3233 std::tie(PrevDiag, OldLocation) = 3234 getNoteDiagForInvalidRedeclaration(Old, New); 3235 3236 // Don't complain about this if we're in GNU89 mode and the old function 3237 // is an extern inline function. 3238 // Don't complain about specializations. They are not supposed to have 3239 // storage classes. 3240 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && 3241 New->getStorageClass() == SC_Static && 3242 Old->hasExternalFormalLinkage() && 3243 !New->getTemplateSpecializationInfo() && 3244 !canRedefineFunction(Old, getLangOpts())) { 3245 if (getLangOpts().MicrosoftExt) { 3246 Diag(New->getLocation(), diag::ext_static_non_static) << New; 3247 Diag(OldLocation, PrevDiag); 3248 } else { 3249 Diag(New->getLocation(), diag::err_static_non_static) << New; 3250 Diag(OldLocation, PrevDiag); 3251 return true; 3252 } 3253 } 3254 3255 if (New->hasAttr<InternalLinkageAttr>() && 3256 !Old->hasAttr<InternalLinkageAttr>()) { 3257 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration) 3258 << New->getDeclName(); 3259 notePreviousDefinition(Old, New->getLocation()); 3260 New->dropAttr<InternalLinkageAttr>(); 3261 } 3262 3263 if (CheckRedeclarationModuleOwnership(New, Old)) 3264 return true; 3265 3266 if (!getLangOpts().CPlusPlus) { 3267 bool OldOvl = Old->hasAttr<OverloadableAttr>(); 3268 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) { 3269 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch) 3270 << New << OldOvl; 3271 3272 // Try our best to find a decl that actually has the overloadable 3273 // attribute for the note. In most cases (e.g. programs with only one 3274 // broken declaration/definition), this won't matter. 3275 // 3276 // FIXME: We could do this if we juggled some extra state in 3277 // OverloadableAttr, rather than just removing it. 3278 const Decl *DiagOld = Old; 3279 if (OldOvl) { 3280 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) { 3281 const auto *A = D->getAttr<OverloadableAttr>(); 3282 return A && !A->isImplicit(); 3283 }); 3284 // If we've implicitly added *all* of the overloadable attrs to this 3285 // chain, emitting a "previous redecl" note is pointless. 3286 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter; 3287 } 3288 3289 if (DiagOld) 3290 Diag(DiagOld->getLocation(), 3291 diag::note_attribute_overloadable_prev_overload) 3292 << OldOvl; 3293 3294 if (OldOvl) 3295 New->addAttr(OverloadableAttr::CreateImplicit(Context)); 3296 else 3297 New->dropAttr<OverloadableAttr>(); 3298 } 3299 } 3300 3301 // If a function is first declared with a calling convention, but is later 3302 // declared or defined without one, all following decls assume the calling 3303 // convention of the first. 3304 // 3305 // It's OK if a function is first declared without a calling convention, 3306 // but is later declared or defined with the default calling convention. 3307 // 3308 // To test if either decl has an explicit calling convention, we look for 3309 // AttributedType sugar nodes on the type as written. If they are missing or 3310 // were canonicalized away, we assume the calling convention was implicit. 3311 // 3312 // Note also that we DO NOT return at this point, because we still have 3313 // other tests to run. 3314 QualType OldQType = Context.getCanonicalType(Old->getType()); 3315 QualType NewQType = Context.getCanonicalType(New->getType()); 3316 const FunctionType *OldType = cast<FunctionType>(OldQType); 3317 const FunctionType *NewType = cast<FunctionType>(NewQType); 3318 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); 3319 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); 3320 bool RequiresAdjustment = false; 3321 3322 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) { 3323 FunctionDecl *First = Old->getFirstDecl(); 3324 const FunctionType *FT = 3325 First->getType().getCanonicalType()->castAs<FunctionType>(); 3326 FunctionType::ExtInfo FI = FT->getExtInfo(); 3327 bool NewCCExplicit = getCallingConvAttributedType(New->getType()); 3328 if (!NewCCExplicit) { 3329 // Inherit the CC from the previous declaration if it was specified 3330 // there but not here. 3331 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); 3332 RequiresAdjustment = true; 3333 } else if (New->getBuiltinID()) { 3334 // Calling Conventions on a Builtin aren't really useful and setting a 3335 // default calling convention and cdecl'ing some builtin redeclarations is 3336 // common, so warn and ignore the calling convention on the redeclaration. 3337 Diag(New->getLocation(), diag::warn_cconv_unsupported) 3338 << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) 3339 << (int)CallingConventionIgnoredReason::BuiltinFunction; 3340 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); 3341 RequiresAdjustment = true; 3342 } else { 3343 // Calling conventions aren't compatible, so complain. 3344 bool FirstCCExplicit = getCallingConvAttributedType(First->getType()); 3345 Diag(New->getLocation(), diag::err_cconv_change) 3346 << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) 3347 << !FirstCCExplicit 3348 << (!FirstCCExplicit ? "" : 3349 FunctionType::getNameForCallConv(FI.getCC())); 3350 3351 // Put the note on the first decl, since it is the one that matters. 3352 Diag(First->getLocation(), diag::note_previous_declaration); 3353 return true; 3354 } 3355 } 3356 3357 // FIXME: diagnose the other way around? 3358 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { 3359 NewTypeInfo = NewTypeInfo.withNoReturn(true); 3360 RequiresAdjustment = true; 3361 } 3362 3363 // Merge regparm attribute. 3364 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || 3365 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { 3366 if (NewTypeInfo.getHasRegParm()) { 3367 Diag(New->getLocation(), diag::err_regparm_mismatch) 3368 << NewType->getRegParmType() 3369 << OldType->getRegParmType(); 3370 Diag(OldLocation, diag::note_previous_declaration); 3371 return true; 3372 } 3373 3374 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); 3375 RequiresAdjustment = true; 3376 } 3377 3378 // Merge ns_returns_retained attribute. 3379 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) { 3380 if (NewTypeInfo.getProducesResult()) { 3381 Diag(New->getLocation(), diag::err_function_attribute_mismatch) 3382 << "'ns_returns_retained'"; 3383 Diag(OldLocation, diag::note_previous_declaration); 3384 return true; 3385 } 3386 3387 NewTypeInfo = NewTypeInfo.withProducesResult(true); 3388 RequiresAdjustment = true; 3389 } 3390 3391 if (OldTypeInfo.getNoCallerSavedRegs() != 3392 NewTypeInfo.getNoCallerSavedRegs()) { 3393 if (NewTypeInfo.getNoCallerSavedRegs()) { 3394 AnyX86NoCallerSavedRegistersAttr *Attr = 3395 New->getAttr<AnyX86NoCallerSavedRegistersAttr>(); 3396 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr; 3397 Diag(OldLocation, diag::note_previous_declaration); 3398 return true; 3399 } 3400 3401 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true); 3402 RequiresAdjustment = true; 3403 } 3404 3405 if (RequiresAdjustment) { 3406 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>(); 3407 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo); 3408 New->setType(QualType(AdjustedType, 0)); 3409 NewQType = Context.getCanonicalType(New->getType()); 3410 } 3411 3412 // If this redeclaration makes the function inline, we may need to add it to 3413 // UndefinedButUsed. 3414 if (!Old->isInlined() && New->isInlined() && 3415 !New->hasAttr<GNUInlineAttr>() && 3416 !getLangOpts().GNUInline && 3417 Old->isUsed(false) && 3418 !Old->isDefined() && !New->isThisDeclarationADefinition()) 3419 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), 3420 SourceLocation())); 3421 3422 // If this redeclaration makes it newly gnu_inline, we don't want to warn 3423 // about it. 3424 if (New->hasAttr<GNUInlineAttr>() && 3425 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) { 3426 UndefinedButUsed.erase(Old->getCanonicalDecl()); 3427 } 3428 3429 // If pass_object_size params don't match up perfectly, this isn't a valid 3430 // redeclaration. 3431 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() && 3432 !hasIdenticalPassObjectSizeAttrs(Old, New)) { 3433 Diag(New->getLocation(), diag::err_different_pass_object_size_params) 3434 << New->getDeclName(); 3435 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3436 return true; 3437 } 3438 3439 if (getLangOpts().CPlusPlus) { 3440 // C++1z [over.load]p2 3441 // Certain function declarations cannot be overloaded: 3442 // -- Function declarations that differ only in the return type, 3443 // the exception specification, or both cannot be overloaded. 3444 3445 // Check the exception specifications match. This may recompute the type of 3446 // both Old and New if it resolved exception specifications, so grab the 3447 // types again after this. Because this updates the type, we do this before 3448 // any of the other checks below, which may update the "de facto" NewQType 3449 // but do not necessarily update the type of New. 3450 if (CheckEquivalentExceptionSpec(Old, New)) 3451 return true; 3452 OldQType = Context.getCanonicalType(Old->getType()); 3453 NewQType = Context.getCanonicalType(New->getType()); 3454 3455 // Go back to the type source info to compare the declared return types, 3456 // per C++1y [dcl.type.auto]p13: 3457 // Redeclarations or specializations of a function or function template 3458 // with a declared return type that uses a placeholder type shall also 3459 // use that placeholder, not a deduced type. 3460 QualType OldDeclaredReturnType = Old->getDeclaredReturnType(); 3461 QualType NewDeclaredReturnType = New->getDeclaredReturnType(); 3462 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) && 3463 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType, 3464 OldDeclaredReturnType)) { 3465 QualType ResQT; 3466 if (NewDeclaredReturnType->isObjCObjectPointerType() && 3467 OldDeclaredReturnType->isObjCObjectPointerType()) 3468 // FIXME: This does the wrong thing for a deduced return type. 3469 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); 3470 if (ResQT.isNull()) { 3471 if (New->isCXXClassMember() && New->isOutOfLine()) 3472 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type) 3473 << New << New->getReturnTypeSourceRange(); 3474 else 3475 Diag(New->getLocation(), diag::err_ovl_diff_return_type) 3476 << New->getReturnTypeSourceRange(); 3477 Diag(OldLocation, PrevDiag) << Old << Old->getType() 3478 << Old->getReturnTypeSourceRange(); 3479 return true; 3480 } 3481 else 3482 NewQType = ResQT; 3483 } 3484 3485 QualType OldReturnType = OldType->getReturnType(); 3486 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType(); 3487 if (OldReturnType != NewReturnType) { 3488 // If this function has a deduced return type and has already been 3489 // defined, copy the deduced value from the old declaration. 3490 AutoType *OldAT = Old->getReturnType()->getContainedAutoType(); 3491 if (OldAT && OldAT->isDeduced()) { 3492 New->setType( 3493 SubstAutoType(New->getType(), 3494 OldAT->isDependentType() ? Context.DependentTy 3495 : OldAT->getDeducedType())); 3496 NewQType = Context.getCanonicalType( 3497 SubstAutoType(NewQType, 3498 OldAT->isDependentType() ? Context.DependentTy 3499 : OldAT->getDeducedType())); 3500 } 3501 } 3502 3503 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); 3504 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); 3505 if (OldMethod && NewMethod) { 3506 // Preserve triviality. 3507 NewMethod->setTrivial(OldMethod->isTrivial()); 3508 3509 // MSVC allows explicit template specialization at class scope: 3510 // 2 CXXMethodDecls referring to the same function will be injected. 3511 // We don't want a redeclaration error. 3512 bool IsClassScopeExplicitSpecialization = 3513 OldMethod->isFunctionTemplateSpecialization() && 3514 NewMethod->isFunctionTemplateSpecialization(); 3515 bool isFriend = NewMethod->getFriendObjectKind(); 3516 3517 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && 3518 !IsClassScopeExplicitSpecialization) { 3519 // -- Member function declarations with the same name and the 3520 // same parameter types cannot be overloaded if any of them 3521 // is a static member function declaration. 3522 if (OldMethod->isStatic() != NewMethod->isStatic()) { 3523 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); 3524 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3525 return true; 3526 } 3527 3528 // C++ [class.mem]p1: 3529 // [...] A member shall not be declared twice in the 3530 // member-specification, except that a nested class or member 3531 // class template can be declared and then later defined. 3532 if (!inTemplateInstantiation()) { 3533 unsigned NewDiag; 3534 if (isa<CXXConstructorDecl>(OldMethod)) 3535 NewDiag = diag::err_constructor_redeclared; 3536 else if (isa<CXXDestructorDecl>(NewMethod)) 3537 NewDiag = diag::err_destructor_redeclared; 3538 else if (isa<CXXConversionDecl>(NewMethod)) 3539 NewDiag = diag::err_conv_function_redeclared; 3540 else 3541 NewDiag = diag::err_member_redeclared; 3542 3543 Diag(New->getLocation(), NewDiag); 3544 } else { 3545 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation) 3546 << New << New->getType(); 3547 } 3548 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3549 return true; 3550 3551 // Complain if this is an explicit declaration of a special 3552 // member that was initially declared implicitly. 3553 // 3554 // As an exception, it's okay to befriend such methods in order 3555 // to permit the implicit constructor/destructor/operator calls. 3556 } else if (OldMethod->isImplicit()) { 3557 if (isFriend) { 3558 NewMethod->setImplicit(); 3559 } else { 3560 Diag(NewMethod->getLocation(), 3561 diag::err_definition_of_implicitly_declared_member) 3562 << New << getSpecialMember(OldMethod); 3563 return true; 3564 } 3565 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) { 3566 Diag(NewMethod->getLocation(), 3567 diag::err_definition_of_explicitly_defaulted_member) 3568 << getSpecialMember(OldMethod); 3569 return true; 3570 } 3571 } 3572 3573 // C++11 [dcl.attr.noreturn]p1: 3574 // The first declaration of a function shall specify the noreturn 3575 // attribute if any declaration of that function specifies the noreturn 3576 // attribute. 3577 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>(); 3578 if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) { 3579 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl); 3580 Diag(Old->getFirstDecl()->getLocation(), 3581 diag::note_noreturn_missing_first_decl); 3582 } 3583 3584 // C++11 [dcl.attr.depend]p2: 3585 // The first declaration of a function shall specify the 3586 // carries_dependency attribute for its declarator-id if any declaration 3587 // of the function specifies the carries_dependency attribute. 3588 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>(); 3589 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) { 3590 Diag(CDA->getLocation(), 3591 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/; 3592 Diag(Old->getFirstDecl()->getLocation(), 3593 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/; 3594 } 3595 3596 // (C++98 8.3.5p3): 3597 // All declarations for a function shall agree exactly in both the 3598 // return type and the parameter-type-list. 3599 // We also want to respect all the extended bits except noreturn. 3600 3601 // noreturn should now match unless the old type info didn't have it. 3602 QualType OldQTypeForComparison = OldQType; 3603 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { 3604 auto *OldType = OldQType->castAs<FunctionProtoType>(); 3605 const FunctionType *OldTypeForComparison 3606 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); 3607 OldQTypeForComparison = QualType(OldTypeForComparison, 0); 3608 assert(OldQTypeForComparison.isCanonical()); 3609 } 3610 3611 if (haveIncompatibleLanguageLinkages(Old, New)) { 3612 // As a special case, retain the language linkage from previous 3613 // declarations of a friend function as an extension. 3614 // 3615 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC 3616 // and is useful because there's otherwise no way to specify language 3617 // linkage within class scope. 3618 // 3619 // Check cautiously as the friend object kind isn't yet complete. 3620 if (New->getFriendObjectKind() != Decl::FOK_None) { 3621 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New; 3622 Diag(OldLocation, PrevDiag); 3623 } else { 3624 Diag(New->getLocation(), diag::err_different_language_linkage) << New; 3625 Diag(OldLocation, PrevDiag); 3626 return true; 3627 } 3628 } 3629 3630 // If the function types are compatible, merge the declarations. Ignore the 3631 // exception specifier because it was already checked above in 3632 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics 3633 // about incompatible types under -fms-compatibility. 3634 if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison, 3635 NewQType)) 3636 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 3637 3638 // If the types are imprecise (due to dependent constructs in friends or 3639 // local extern declarations), it's OK if they differ. We'll check again 3640 // during instantiation. 3641 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType)) 3642 return false; 3643 3644 // Fall through for conflicting redeclarations and redefinitions. 3645 } 3646 3647 // C: Function types need to be compatible, not identical. This handles 3648 // duplicate function decls like "void f(int); void f(enum X);" properly. 3649 if (!getLangOpts().CPlusPlus && 3650 Context.typesAreCompatible(OldQType, NewQType)) { 3651 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); 3652 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); 3653 const FunctionProtoType *OldProto = nullptr; 3654 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) && 3655 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { 3656 // The old declaration provided a function prototype, but the 3657 // new declaration does not. Merge in the prototype. 3658 assert(!OldProto->hasExceptionSpec() && "Exception spec in C"); 3659 SmallVector<QualType, 16> ParamTypes(OldProto->param_types()); 3660 NewQType = 3661 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes, 3662 OldProto->getExtProtoInfo()); 3663 New->setType(NewQType); 3664 New->setHasInheritedPrototype(); 3665 3666 // Synthesize parameters with the same types. 3667 SmallVector<ParmVarDecl*, 16> Params; 3668 for (const auto &ParamType : OldProto->param_types()) { 3669 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(), 3670 SourceLocation(), nullptr, 3671 ParamType, /*TInfo=*/nullptr, 3672 SC_None, nullptr); 3673 Param->setScopeInfo(0, Params.size()); 3674 Param->setImplicit(); 3675 Params.push_back(Param); 3676 } 3677 3678 New->setParams(Params); 3679 } 3680 3681 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 3682 } 3683 3684 // Check if the function types are compatible when pointer size address 3685 // spaces are ignored. 3686 if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType)) 3687 return false; 3688 3689 // GNU C permits a K&R definition to follow a prototype declaration 3690 // if the declared types of the parameters in the K&R definition 3691 // match the types in the prototype declaration, even when the 3692 // promoted types of the parameters from the K&R definition differ 3693 // from the types in the prototype. GCC then keeps the types from 3694 // the prototype. 3695 // 3696 // If a variadic prototype is followed by a non-variadic K&R definition, 3697 // the K&R definition becomes variadic. This is sort of an edge case, but 3698 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and 3699 // C99 6.9.1p8. 3700 if (!getLangOpts().CPlusPlus && 3701 Old->hasPrototype() && !New->hasPrototype() && 3702 New->getType()->getAs<FunctionProtoType>() && 3703 Old->getNumParams() == New->getNumParams()) { 3704 SmallVector<QualType, 16> ArgTypes; 3705 SmallVector<GNUCompatibleParamWarning, 16> Warnings; 3706 const FunctionProtoType *OldProto 3707 = Old->getType()->getAs<FunctionProtoType>(); 3708 const FunctionProtoType *NewProto 3709 = New->getType()->getAs<FunctionProtoType>(); 3710 3711 // Determine whether this is the GNU C extension. 3712 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(), 3713 NewProto->getReturnType()); 3714 bool LooseCompatible = !MergedReturn.isNull(); 3715 for (unsigned Idx = 0, End = Old->getNumParams(); 3716 LooseCompatible && Idx != End; ++Idx) { 3717 ParmVarDecl *OldParm = Old->getParamDecl(Idx); 3718 ParmVarDecl *NewParm = New->getParamDecl(Idx); 3719 if (Context.typesAreCompatible(OldParm->getType(), 3720 NewProto->getParamType(Idx))) { 3721 ArgTypes.push_back(NewParm->getType()); 3722 } else if (Context.typesAreCompatible(OldParm->getType(), 3723 NewParm->getType(), 3724 /*CompareUnqualified=*/true)) { 3725 GNUCompatibleParamWarning Warn = { OldParm, NewParm, 3726 NewProto->getParamType(Idx) }; 3727 Warnings.push_back(Warn); 3728 ArgTypes.push_back(NewParm->getType()); 3729 } else 3730 LooseCompatible = false; 3731 } 3732 3733 if (LooseCompatible) { 3734 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { 3735 Diag(Warnings[Warn].NewParm->getLocation(), 3736 diag::ext_param_promoted_not_compatible_with_prototype) 3737 << Warnings[Warn].PromotedType 3738 << Warnings[Warn].OldParm->getType(); 3739 if (Warnings[Warn].OldParm->getLocation().isValid()) 3740 Diag(Warnings[Warn].OldParm->getLocation(), 3741 diag::note_previous_declaration); 3742 } 3743 3744 if (MergeTypeWithOld) 3745 New->setType(Context.getFunctionType(MergedReturn, ArgTypes, 3746 OldProto->getExtProtoInfo())); 3747 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); 3748 } 3749 3750 // Fall through to diagnose conflicting types. 3751 } 3752 3753 // A function that has already been declared has been redeclared or 3754 // defined with a different type; show an appropriate diagnostic. 3755 3756 // If the previous declaration was an implicitly-generated builtin 3757 // declaration, then at the very least we should use a specialized note. 3758 unsigned BuiltinID; 3759 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) { 3760 // If it's actually a library-defined builtin function like 'malloc' 3761 // or 'printf', just warn about the incompatible redeclaration. 3762 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { 3763 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; 3764 Diag(OldLocation, diag::note_previous_builtin_declaration) 3765 << Old << Old->getType(); 3766 3767 // If this is a global redeclaration, just forget hereafter 3768 // about the "builtin-ness" of the function. 3769 // 3770 // Doing this for local extern declarations is problematic. If 3771 // the builtin declaration remains visible, a second invalid 3772 // local declaration will produce a hard error; if it doesn't 3773 // remain visible, a single bogus local redeclaration (which is 3774 // actually only a warning) could break all the downstream code. 3775 if (!New->getLexicalDeclContext()->isFunctionOrMethod()) 3776 New->getIdentifier()->revertBuiltin(); 3777 3778 return false; 3779 } 3780 3781 PrevDiag = diag::note_previous_builtin_declaration; 3782 } 3783 3784 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); 3785 Diag(OldLocation, PrevDiag) << Old << Old->getType(); 3786 return true; 3787 } 3788 3789 /// Completes the merge of two function declarations that are 3790 /// known to be compatible. 3791 /// 3792 /// This routine handles the merging of attributes and other 3793 /// properties of function declarations from the old declaration to 3794 /// the new declaration, once we know that New is in fact a 3795 /// redeclaration of Old. 3796 /// 3797 /// \returns false 3798 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, 3799 Scope *S, bool MergeTypeWithOld) { 3800 // Merge the attributes 3801 mergeDeclAttributes(New, Old); 3802 3803 // Merge "pure" flag. 3804 if (Old->isPure()) 3805 New->setPure(); 3806 3807 // Merge "used" flag. 3808 if (Old->getMostRecentDecl()->isUsed(false)) 3809 New->setIsUsed(); 3810 3811 // Merge attributes from the parameters. These can mismatch with K&R 3812 // declarations. 3813 if (New->getNumParams() == Old->getNumParams()) 3814 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) { 3815 ParmVarDecl *NewParam = New->getParamDecl(i); 3816 ParmVarDecl *OldParam = Old->getParamDecl(i); 3817 mergeParamDeclAttributes(NewParam, OldParam, *this); 3818 mergeParamDeclTypes(NewParam, OldParam, *this); 3819 } 3820 3821 if (getLangOpts().CPlusPlus) 3822 return MergeCXXFunctionDecl(New, Old, S); 3823 3824 // Merge the function types so the we get the composite types for the return 3825 // and argument types. Per C11 6.2.7/4, only update the type if the old decl 3826 // was visible. 3827 QualType Merged = Context.mergeTypes(Old->getType(), New->getType()); 3828 if (!Merged.isNull() && MergeTypeWithOld) 3829 New->setType(Merged); 3830 3831 return false; 3832 } 3833 3834 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, 3835 ObjCMethodDecl *oldMethod) { 3836 // Merge the attributes, including deprecated/unavailable 3837 AvailabilityMergeKind MergeKind = 3838 isa<ObjCProtocolDecl>(oldMethod->getDeclContext()) 3839 ? AMK_ProtocolImplementation 3840 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration 3841 : AMK_Override; 3842 3843 mergeDeclAttributes(newMethod, oldMethod, MergeKind); 3844 3845 // Merge attributes from the parameters. 3846 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(), 3847 oe = oldMethod->param_end(); 3848 for (ObjCMethodDecl::param_iterator 3849 ni = newMethod->param_begin(), ne = newMethod->param_end(); 3850 ni != ne && oi != oe; ++ni, ++oi) 3851 mergeParamDeclAttributes(*ni, *oi, *this); 3852 3853 CheckObjCMethodOverride(newMethod, oldMethod); 3854 } 3855 3856 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) { 3857 assert(!S.Context.hasSameType(New->getType(), Old->getType())); 3858 3859 S.Diag(New->getLocation(), New->isThisDeclarationADefinition() 3860 ? diag::err_redefinition_different_type 3861 : diag::err_redeclaration_different_type) 3862 << New->getDeclName() << New->getType() << Old->getType(); 3863 3864 diag::kind PrevDiag; 3865 SourceLocation OldLocation; 3866 std::tie(PrevDiag, OldLocation) 3867 = getNoteDiagForInvalidRedeclaration(Old, New); 3868 S.Diag(OldLocation, PrevDiag); 3869 New->setInvalidDecl(); 3870 } 3871 3872 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and 3873 /// scope as a previous declaration 'Old'. Figure out how to merge their types, 3874 /// emitting diagnostics as appropriate. 3875 /// 3876 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back 3877 /// to here in AddInitializerToDecl. We can't check them before the initializer 3878 /// is attached. 3879 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, 3880 bool MergeTypeWithOld) { 3881 if (New->isInvalidDecl() || Old->isInvalidDecl()) 3882 return; 3883 3884 QualType MergedT; 3885 if (getLangOpts().CPlusPlus) { 3886 if (New->getType()->isUndeducedType()) { 3887 // We don't know what the new type is until the initializer is attached. 3888 return; 3889 } else if (Context.hasSameType(New->getType(), Old->getType())) { 3890 // These could still be something that needs exception specs checked. 3891 return MergeVarDeclExceptionSpecs(New, Old); 3892 } 3893 // C++ [basic.link]p10: 3894 // [...] the types specified by all declarations referring to a given 3895 // object or function shall be identical, except that declarations for an 3896 // array object can specify array types that differ by the presence or 3897 // absence of a major array bound (8.3.4). 3898 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) { 3899 const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); 3900 const ArrayType *NewArray = Context.getAsArrayType(New->getType()); 3901 3902 // We are merging a variable declaration New into Old. If it has an array 3903 // bound, and that bound differs from Old's bound, we should diagnose the 3904 // mismatch. 3905 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) { 3906 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD; 3907 PrevVD = PrevVD->getPreviousDecl()) { 3908 const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType()); 3909 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType()) 3910 continue; 3911 3912 if (!Context.hasSameType(NewArray, PrevVDTy)) 3913 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD); 3914 } 3915 } 3916 3917 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) { 3918 if (Context.hasSameType(OldArray->getElementType(), 3919 NewArray->getElementType())) 3920 MergedT = New->getType(); 3921 } 3922 // FIXME: Check visibility. New is hidden but has a complete type. If New 3923 // has no array bound, it should not inherit one from Old, if Old is not 3924 // visible. 3925 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) { 3926 if (Context.hasSameType(OldArray->getElementType(), 3927 NewArray->getElementType())) 3928 MergedT = Old->getType(); 3929 } 3930 } 3931 else if (New->getType()->isObjCObjectPointerType() && 3932 Old->getType()->isObjCObjectPointerType()) { 3933 MergedT = Context.mergeObjCGCQualifiers(New->getType(), 3934 Old->getType()); 3935 } 3936 } else { 3937 // C 6.2.7p2: 3938 // All declarations that refer to the same object or function shall have 3939 // compatible type. 3940 MergedT = Context.mergeTypes(New->getType(), Old->getType()); 3941 } 3942 if (MergedT.isNull()) { 3943 // It's OK if we couldn't merge types if either type is dependent, for a 3944 // block-scope variable. In other cases (static data members of class 3945 // templates, variable templates, ...), we require the types to be 3946 // equivalent. 3947 // FIXME: The C++ standard doesn't say anything about this. 3948 if ((New->getType()->isDependentType() || 3949 Old->getType()->isDependentType()) && New->isLocalVarDecl()) { 3950 // If the old type was dependent, we can't merge with it, so the new type 3951 // becomes dependent for now. We'll reproduce the original type when we 3952 // instantiate the TypeSourceInfo for the variable. 3953 if (!New->getType()->isDependentType() && MergeTypeWithOld) 3954 New->setType(Context.DependentTy); 3955 return; 3956 } 3957 return diagnoseVarDeclTypeMismatch(*this, New, Old); 3958 } 3959 3960 // Don't actually update the type on the new declaration if the old 3961 // declaration was an extern declaration in a different scope. 3962 if (MergeTypeWithOld) 3963 New->setType(MergedT); 3964 } 3965 3966 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, 3967 LookupResult &Previous) { 3968 // C11 6.2.7p4: 3969 // For an identifier with internal or external linkage declared 3970 // in a scope in which a prior declaration of that identifier is 3971 // visible, if the prior declaration specifies internal or 3972 // external linkage, the type of the identifier at the later 3973 // declaration becomes the composite type. 3974 // 3975 // If the variable isn't visible, we do not merge with its type. 3976 if (Previous.isShadowed()) 3977 return false; 3978 3979 if (S.getLangOpts().CPlusPlus) { 3980 // C++11 [dcl.array]p3: 3981 // If there is a preceding declaration of the entity in the same 3982 // scope in which the bound was specified, an omitted array bound 3983 // is taken to be the same as in that earlier declaration. 3984 return NewVD->isPreviousDeclInSameBlockScope() || 3985 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() && 3986 !NewVD->getLexicalDeclContext()->isFunctionOrMethod()); 3987 } else { 3988 // If the old declaration was function-local, don't merge with its 3989 // type unless we're in the same function. 3990 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() || 3991 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext(); 3992 } 3993 } 3994 3995 /// MergeVarDecl - We just parsed a variable 'New' which has the same name 3996 /// and scope as a previous declaration 'Old'. Figure out how to resolve this 3997 /// situation, merging decls or emitting diagnostics as appropriate. 3998 /// 3999 /// Tentative definition rules (C99 6.9.2p2) are checked by 4000 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative 4001 /// definitions here, since the initializer hasn't been attached. 4002 /// 4003 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { 4004 // If the new decl is already invalid, don't do any other checking. 4005 if (New->isInvalidDecl()) 4006 return; 4007 4008 if (!shouldLinkPossiblyHiddenDecl(Previous, New)) 4009 return; 4010 4011 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate(); 4012 4013 // Verify the old decl was also a variable or variable template. 4014 VarDecl *Old = nullptr; 4015 VarTemplateDecl *OldTemplate = nullptr; 4016 if (Previous.isSingleResult()) { 4017 if (NewTemplate) { 4018 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl()); 4019 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr; 4020 4021 if (auto *Shadow = 4022 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) 4023 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate)) 4024 return New->setInvalidDecl(); 4025 } else { 4026 Old = dyn_cast<VarDecl>(Previous.getFoundDecl()); 4027 4028 if (auto *Shadow = 4029 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) 4030 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New)) 4031 return New->setInvalidDecl(); 4032 } 4033 } 4034 if (!Old) { 4035 Diag(New->getLocation(), diag::err_redefinition_different_kind) 4036 << New->getDeclName(); 4037 notePreviousDefinition(Previous.getRepresentativeDecl(), 4038 New->getLocation()); 4039 return New->setInvalidDecl(); 4040 } 4041 4042 // Ensure the template parameters are compatible. 4043 if (NewTemplate && 4044 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), 4045 OldTemplate->getTemplateParameters(), 4046 /*Complain=*/true, TPL_TemplateMatch)) 4047 return New->setInvalidDecl(); 4048 4049 // C++ [class.mem]p1: 4050 // A member shall not be declared twice in the member-specification [...] 4051 // 4052 // Here, we need only consider static data members. 4053 if (Old->isStaticDataMember() && !New->isOutOfLine()) { 4054 Diag(New->getLocation(), diag::err_duplicate_member) 4055 << New->getIdentifier(); 4056 Diag(Old->getLocation(), diag::note_previous_declaration); 4057 New->setInvalidDecl(); 4058 } 4059 4060 mergeDeclAttributes(New, Old); 4061 // Warn if an already-declared variable is made a weak_import in a subsequent 4062 // declaration 4063 if (New->hasAttr<WeakImportAttr>() && 4064 Old->getStorageClass() == SC_None && 4065 !Old->hasAttr<WeakImportAttr>()) { 4066 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); 4067 notePreviousDefinition(Old, New->getLocation()); 4068 // Remove weak_import attribute on new declaration. 4069 New->dropAttr<WeakImportAttr>(); 4070 } 4071 4072 if (New->hasAttr<InternalLinkageAttr>() && 4073 !Old->hasAttr<InternalLinkageAttr>()) { 4074 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration) 4075 << New->getDeclName(); 4076 notePreviousDefinition(Old, New->getLocation()); 4077 New->dropAttr<InternalLinkageAttr>(); 4078 } 4079 4080 // Merge the types. 4081 VarDecl *MostRecent = Old->getMostRecentDecl(); 4082 if (MostRecent != Old) { 4083 MergeVarDeclTypes(New, MostRecent, 4084 mergeTypeWithPrevious(*this, New, MostRecent, Previous)); 4085 if (New->isInvalidDecl()) 4086 return; 4087 } 4088 4089 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous)); 4090 if (New->isInvalidDecl()) 4091 return; 4092 4093 diag::kind PrevDiag; 4094 SourceLocation OldLocation; 4095 std::tie(PrevDiag, OldLocation) = 4096 getNoteDiagForInvalidRedeclaration(Old, New); 4097 4098 // [dcl.stc]p8: Check if we have a non-static decl followed by a static. 4099 if (New->getStorageClass() == SC_Static && 4100 !New->isStaticDataMember() && 4101 Old->hasExternalFormalLinkage()) { 4102 if (getLangOpts().MicrosoftExt) { 4103 Diag(New->getLocation(), diag::ext_static_non_static) 4104 << New->getDeclName(); 4105 Diag(OldLocation, PrevDiag); 4106 } else { 4107 Diag(New->getLocation(), diag::err_static_non_static) 4108 << New->getDeclName(); 4109 Diag(OldLocation, PrevDiag); 4110 return New->setInvalidDecl(); 4111 } 4112 } 4113 // C99 6.2.2p4: 4114 // For an identifier declared with the storage-class specifier 4115 // extern in a scope in which a prior declaration of that 4116 // identifier is visible,23) if the prior declaration specifies 4117 // internal or external linkage, the linkage of the identifier at 4118 // the later declaration is the same as the linkage specified at 4119 // the prior declaration. If no prior declaration is visible, or 4120 // if the prior declaration specifies no linkage, then the 4121 // identifier has external linkage. 4122 if (New->hasExternalStorage() && Old->hasLinkage()) 4123 /* Okay */; 4124 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static && 4125 !New->isStaticDataMember() && 4126 Old->getCanonicalDecl()->getStorageClass() == SC_Static) { 4127 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); 4128 Diag(OldLocation, PrevDiag); 4129 return New->setInvalidDecl(); 4130 } 4131 4132 // Check if extern is followed by non-extern and vice-versa. 4133 if (New->hasExternalStorage() && 4134 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) { 4135 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); 4136 Diag(OldLocation, PrevDiag); 4137 return New->setInvalidDecl(); 4138 } 4139 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() && 4140 !New->hasExternalStorage()) { 4141 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); 4142 Diag(OldLocation, PrevDiag); 4143 return New->setInvalidDecl(); 4144 } 4145 4146 if (CheckRedeclarationModuleOwnership(New, Old)) 4147 return; 4148 4149 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. 4150 4151 // FIXME: The test for external storage here seems wrong? We still 4152 // need to check for mismatches. 4153 if (!New->hasExternalStorage() && !New->isFileVarDecl() && 4154 // Don't complain about out-of-line definitions of static members. 4155 !(Old->getLexicalDeclContext()->isRecord() && 4156 !New->getLexicalDeclContext()->isRecord())) { 4157 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); 4158 Diag(OldLocation, PrevDiag); 4159 return New->setInvalidDecl(); 4160 } 4161 4162 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) { 4163 if (VarDecl *Def = Old->getDefinition()) { 4164 // C++1z [dcl.fcn.spec]p4: 4165 // If the definition of a variable appears in a translation unit before 4166 // its first declaration as inline, the program is ill-formed. 4167 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; 4168 Diag(Def->getLocation(), diag::note_previous_definition); 4169 } 4170 } 4171 4172 // If this redeclaration makes the variable inline, we may need to add it to 4173 // UndefinedButUsed. 4174 if (!Old->isInline() && New->isInline() && Old->isUsed(false) && 4175 !Old->getDefinition() && !New->isThisDeclarationADefinition()) 4176 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), 4177 SourceLocation())); 4178 4179 if (New->getTLSKind() != Old->getTLSKind()) { 4180 if (!Old->getTLSKind()) { 4181 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); 4182 Diag(OldLocation, PrevDiag); 4183 } else if (!New->getTLSKind()) { 4184 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); 4185 Diag(OldLocation, PrevDiag); 4186 } else { 4187 // Do not allow redeclaration to change the variable between requiring 4188 // static and dynamic initialization. 4189 // FIXME: GCC allows this, but uses the TLS keyword on the first 4190 // declaration to determine the kind. Do we need to be compatible here? 4191 Diag(New->getLocation(), diag::err_thread_thread_different_kind) 4192 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic); 4193 Diag(OldLocation, PrevDiag); 4194 } 4195 } 4196 4197 // C++ doesn't have tentative definitions, so go right ahead and check here. 4198 if (getLangOpts().CPlusPlus && 4199 New->isThisDeclarationADefinition() == VarDecl::Definition) { 4200 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() && 4201 Old->getCanonicalDecl()->isConstexpr()) { 4202 // This definition won't be a definition any more once it's been merged. 4203 Diag(New->getLocation(), 4204 diag::warn_deprecated_redundant_constexpr_static_def); 4205 } else if (VarDecl *Def = Old->getDefinition()) { 4206 if (checkVarDeclRedefinition(Def, New)) 4207 return; 4208 } 4209 } 4210 4211 if (haveIncompatibleLanguageLinkages(Old, New)) { 4212 Diag(New->getLocation(), diag::err_different_language_linkage) << New; 4213 Diag(OldLocation, PrevDiag); 4214 New->setInvalidDecl(); 4215 return; 4216 } 4217 4218 // Merge "used" flag. 4219 if (Old->getMostRecentDecl()->isUsed(false)) 4220 New->setIsUsed(); 4221 4222 // Keep a chain of previous declarations. 4223 New->setPreviousDecl(Old); 4224 if (NewTemplate) 4225 NewTemplate->setPreviousDecl(OldTemplate); 4226 adjustDeclContextForDeclaratorDecl(New, Old); 4227 4228 // Inherit access appropriately. 4229 New->setAccess(Old->getAccess()); 4230 if (NewTemplate) 4231 NewTemplate->setAccess(New->getAccess()); 4232 4233 if (Old->isInline()) 4234 New->setImplicitlyInline(); 4235 } 4236 4237 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) { 4238 SourceManager &SrcMgr = getSourceManager(); 4239 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New); 4240 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation()); 4241 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first); 4242 auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first); 4243 auto &HSI = PP.getHeaderSearchInfo(); 4244 StringRef HdrFilename = 4245 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation())); 4246 4247 auto noteFromModuleOrInclude = [&](Module *Mod, 4248 SourceLocation IncLoc) -> bool { 4249 // Redefinition errors with modules are common with non modular mapped 4250 // headers, example: a non-modular header H in module A that also gets 4251 // included directly in a TU. Pointing twice to the same header/definition 4252 // is confusing, try to get better diagnostics when modules is on. 4253 if (IncLoc.isValid()) { 4254 if (Mod) { 4255 Diag(IncLoc, diag::note_redefinition_modules_same_file) 4256 << HdrFilename.str() << Mod->getFullModuleName(); 4257 if (!Mod->DefinitionLoc.isInvalid()) 4258 Diag(Mod->DefinitionLoc, diag::note_defined_here) 4259 << Mod->getFullModuleName(); 4260 } else { 4261 Diag(IncLoc, diag::note_redefinition_include_same_file) 4262 << HdrFilename.str(); 4263 } 4264 return true; 4265 } 4266 4267 return false; 4268 }; 4269 4270 // Is it the same file and same offset? Provide more information on why 4271 // this leads to a redefinition error. 4272 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) { 4273 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first); 4274 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first); 4275 bool EmittedDiag = 4276 noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc); 4277 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc); 4278 4279 // If the header has no guards, emit a note suggesting one. 4280 if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld)) 4281 Diag(Old->getLocation(), diag::note_use_ifdef_guards); 4282 4283 if (EmittedDiag) 4284 return; 4285 } 4286 4287 // Redefinition coming from different files or couldn't do better above. 4288 if (Old->getLocation().isValid()) 4289 Diag(Old->getLocation(), diag::note_previous_definition); 4290 } 4291 4292 /// We've just determined that \p Old and \p New both appear to be definitions 4293 /// of the same variable. Either diagnose or fix the problem. 4294 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) { 4295 if (!hasVisibleDefinition(Old) && 4296 (New->getFormalLinkage() == InternalLinkage || 4297 New->isInline() || 4298 New->getDescribedVarTemplate() || 4299 New->getNumTemplateParameterLists() || 4300 New->getDeclContext()->isDependentContext())) { 4301 // The previous definition is hidden, and multiple definitions are 4302 // permitted (in separate TUs). Demote this to a declaration. 4303 New->demoteThisDefinitionToDeclaration(); 4304 4305 // Make the canonical definition visible. 4306 if (auto *OldTD = Old->getDescribedVarTemplate()) 4307 makeMergedDefinitionVisible(OldTD); 4308 makeMergedDefinitionVisible(Old); 4309 return false; 4310 } else { 4311 Diag(New->getLocation(), diag::err_redefinition) << New; 4312 notePreviousDefinition(Old, New->getLocation()); 4313 New->setInvalidDecl(); 4314 return true; 4315 } 4316 } 4317 4318 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with 4319 /// no declarator (e.g. "struct foo;") is parsed. 4320 Decl * 4321 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, 4322 RecordDecl *&AnonRecord) { 4323 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false, 4324 AnonRecord); 4325 } 4326 4327 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to 4328 // disambiguate entities defined in different scopes. 4329 // While the VS2015 ABI fixes potential miscompiles, it is also breaks 4330 // compatibility. 4331 // We will pick our mangling number depending on which version of MSVC is being 4332 // targeted. 4333 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) { 4334 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015) 4335 ? S->getMSCurManglingNumber() 4336 : S->getMSLastManglingNumber(); 4337 } 4338 4339 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) { 4340 if (!Context.getLangOpts().CPlusPlus) 4341 return; 4342 4343 if (isa<CXXRecordDecl>(Tag->getParent())) { 4344 // If this tag is the direct child of a class, number it if 4345 // it is anonymous. 4346 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl()) 4347 return; 4348 MangleNumberingContext &MCtx = 4349 Context.getManglingNumberContext(Tag->getParent()); 4350 Context.setManglingNumber( 4351 Tag, MCtx.getManglingNumber( 4352 Tag, getMSManglingNumber(getLangOpts(), TagScope))); 4353 return; 4354 } 4355 4356 // If this tag isn't a direct child of a class, number it if it is local. 4357 MangleNumberingContext *MCtx; 4358 Decl *ManglingContextDecl; 4359 std::tie(MCtx, ManglingContextDecl) = 4360 getCurrentMangleNumberContext(Tag->getDeclContext()); 4361 if (MCtx) { 4362 Context.setManglingNumber( 4363 Tag, MCtx->getManglingNumber( 4364 Tag, getMSManglingNumber(getLangOpts(), TagScope))); 4365 } 4366 } 4367 4368 namespace { 4369 struct NonCLikeKind { 4370 enum { 4371 None, 4372 BaseClass, 4373 DefaultMemberInit, 4374 Lambda, 4375 Friend, 4376 OtherMember, 4377 Invalid, 4378 } Kind = None; 4379 SourceRange Range; 4380 4381 explicit operator bool() { return Kind != None; } 4382 }; 4383 } 4384 4385 /// Determine whether a class is C-like, according to the rules of C++ 4386 /// [dcl.typedef] for anonymous classes with typedef names for linkage. 4387 static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) { 4388 if (RD->isInvalidDecl()) 4389 return {NonCLikeKind::Invalid, {}}; 4390 4391 // C++ [dcl.typedef]p9: [P1766R1] 4392 // An unnamed class with a typedef name for linkage purposes shall not 4393 // 4394 // -- have any base classes 4395 if (RD->getNumBases()) 4396 return {NonCLikeKind::BaseClass, 4397 SourceRange(RD->bases_begin()->getBeginLoc(), 4398 RD->bases_end()[-1].getEndLoc())}; 4399 bool Invalid = false; 4400 for (Decl *D : RD->decls()) { 4401 // Don't complain about things we already diagnosed. 4402 if (D->isInvalidDecl()) { 4403 Invalid = true; 4404 continue; 4405 } 4406 4407 // -- have any [...] default member initializers 4408 if (auto *FD = dyn_cast<FieldDecl>(D)) { 4409 if (FD->hasInClassInitializer()) { 4410 auto *Init = FD->getInClassInitializer(); 4411 return {NonCLikeKind::DefaultMemberInit, 4412 Init ? Init->getSourceRange() : D->getSourceRange()}; 4413 } 4414 continue; 4415 } 4416 4417 // FIXME: We don't allow friend declarations. This violates the wording of 4418 // P1766, but not the intent. 4419 if (isa<FriendDecl>(D)) 4420 return {NonCLikeKind::Friend, D->getSourceRange()}; 4421 4422 // -- declare any members other than non-static data members, member 4423 // enumerations, or member classes, 4424 if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) || 4425 isa<EnumDecl>(D)) 4426 continue; 4427 auto *MemberRD = dyn_cast<CXXRecordDecl>(D); 4428 if (!MemberRD) { 4429 if (D->isImplicit()) 4430 continue; 4431 return {NonCLikeKind::OtherMember, D->getSourceRange()}; 4432 } 4433 4434 // -- contain a lambda-expression, 4435 if (MemberRD->isLambda()) 4436 return {NonCLikeKind::Lambda, MemberRD->getSourceRange()}; 4437 4438 // and all member classes shall also satisfy these requirements 4439 // (recursively). 4440 if (MemberRD->isThisDeclarationADefinition()) { 4441 if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD)) 4442 return Kind; 4443 } 4444 } 4445 4446 return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}}; 4447 } 4448 4449 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, 4450 TypedefNameDecl *NewTD) { 4451 if (TagFromDeclSpec->isInvalidDecl()) 4452 return; 4453 4454 // Do nothing if the tag already has a name for linkage purposes. 4455 if (TagFromDeclSpec->hasNameForLinkage()) 4456 return; 4457 4458 // A well-formed anonymous tag must always be a TUK_Definition. 4459 assert(TagFromDeclSpec->isThisDeclarationADefinition()); 4460 4461 // The type must match the tag exactly; no qualifiers allowed. 4462 if (!Context.hasSameType(NewTD->getUnderlyingType(), 4463 Context.getTagDeclType(TagFromDeclSpec))) { 4464 if (getLangOpts().CPlusPlus) 4465 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD); 4466 return; 4467 } 4468 4469 // C++ [dcl.typedef]p9: [P1766R1, applied as DR] 4470 // An unnamed class with a typedef name for linkage purposes shall [be 4471 // C-like]. 4472 // 4473 // FIXME: Also diagnose if we've already computed the linkage. That ideally 4474 // shouldn't happen, but there are constructs that the language rule doesn't 4475 // disallow for which we can't reasonably avoid computing linkage early. 4476 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec); 4477 NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD) 4478 : NonCLikeKind(); 4479 bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed(); 4480 if (NonCLike || ChangesLinkage) { 4481 if (NonCLike.Kind == NonCLikeKind::Invalid) 4482 return; 4483 4484 unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef; 4485 if (ChangesLinkage) { 4486 // If the linkage changes, we can't accept this as an extension. 4487 if (NonCLike.Kind == NonCLikeKind::None) 4488 DiagID = diag::err_typedef_changes_linkage; 4489 else 4490 DiagID = diag::err_non_c_like_anon_struct_in_typedef; 4491 } 4492 4493 SourceLocation FixitLoc = 4494 getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart()); 4495 llvm::SmallString<40> TextToInsert; 4496 TextToInsert += ' '; 4497 TextToInsert += NewTD->getIdentifier()->getName(); 4498 4499 Diag(FixitLoc, DiagID) 4500 << isa<TypeAliasDecl>(NewTD) 4501 << FixItHint::CreateInsertion(FixitLoc, TextToInsert); 4502 if (NonCLike.Kind != NonCLikeKind::None) { 4503 Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct) 4504 << NonCLike.Kind - 1 << NonCLike.Range; 4505 } 4506 Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here) 4507 << NewTD << isa<TypeAliasDecl>(NewTD); 4508 4509 if (ChangesLinkage) 4510 return; 4511 } 4512 4513 // Otherwise, set this as the anon-decl typedef for the tag. 4514 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); 4515 } 4516 4517 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) { 4518 switch (T) { 4519 case DeclSpec::TST_class: 4520 return 0; 4521 case DeclSpec::TST_struct: 4522 return 1; 4523 case DeclSpec::TST_interface: 4524 return 2; 4525 case DeclSpec::TST_union: 4526 return 3; 4527 case DeclSpec::TST_enum: 4528 return 4; 4529 default: 4530 llvm_unreachable("unexpected type specifier"); 4531 } 4532 } 4533 4534 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with 4535 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template 4536 /// parameters to cope with template friend declarations. 4537 Decl * 4538 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS, 4539 MultiTemplateParamsArg TemplateParams, 4540 bool IsExplicitInstantiation, 4541 RecordDecl *&AnonRecord) { 4542 Decl *TagD = nullptr; 4543 TagDecl *Tag = nullptr; 4544 if (DS.getTypeSpecType() == DeclSpec::TST_class || 4545 DS.getTypeSpecType() == DeclSpec::TST_struct || 4546 DS.getTypeSpecType() == DeclSpec::TST_interface || 4547 DS.getTypeSpecType() == DeclSpec::TST_union || 4548 DS.getTypeSpecType() == DeclSpec::TST_enum) { 4549 TagD = DS.getRepAsDecl(); 4550 4551 if (!TagD) // We probably had an error 4552 return nullptr; 4553 4554 // Note that the above type specs guarantee that the 4555 // type rep is a Decl, whereas in many of the others 4556 // it's a Type. 4557 if (isa<TagDecl>(TagD)) 4558 Tag = cast<TagDecl>(TagD); 4559 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD)) 4560 Tag = CTD->getTemplatedDecl(); 4561 } 4562 4563 if (Tag) { 4564 handleTagNumbering(Tag, S); 4565 Tag->setFreeStanding(); 4566 if (Tag->isInvalidDecl()) 4567 return Tag; 4568 } 4569 4570 if (unsigned TypeQuals = DS.getTypeQualifiers()) { 4571 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object 4572 // or incomplete types shall not be restrict-qualified." 4573 if (TypeQuals & DeclSpec::TQ_restrict) 4574 Diag(DS.getRestrictSpecLoc(), 4575 diag::err_typecheck_invalid_restrict_not_pointer_noarg) 4576 << DS.getSourceRange(); 4577 } 4578 4579 if (DS.isInlineSpecified()) 4580 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) 4581 << getLangOpts().CPlusPlus17; 4582 4583 if (DS.hasConstexprSpecifier()) { 4584 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations 4585 // and definitions of functions and variables. 4586 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to 4587 // the declaration of a function or function template 4588 if (Tag) 4589 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) 4590 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) 4591 << DS.getConstexprSpecifier(); 4592 else 4593 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind) 4594 << DS.getConstexprSpecifier(); 4595 // Don't emit warnings after this error. 4596 return TagD; 4597 } 4598 4599 DiagnoseFunctionSpecifiers(DS); 4600 4601 if (DS.isFriendSpecified()) { 4602 // If we're dealing with a decl but not a TagDecl, assume that 4603 // whatever routines created it handled the friendship aspect. 4604 if (TagD && !Tag) 4605 return nullptr; 4606 return ActOnFriendTypeDecl(S, DS, TemplateParams); 4607 } 4608 4609 const CXXScopeSpec &SS = DS.getTypeSpecScope(); 4610 bool IsExplicitSpecialization = 4611 !TemplateParams.empty() && TemplateParams.back()->size() == 0; 4612 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() && 4613 !IsExplicitInstantiation && !IsExplicitSpecialization && 4614 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) { 4615 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a 4616 // nested-name-specifier unless it is an explicit instantiation 4617 // or an explicit specialization. 4618 // 4619 // FIXME: We allow class template partial specializations here too, per the 4620 // obvious intent of DR1819. 4621 // 4622 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either. 4623 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier) 4624 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange(); 4625 return nullptr; 4626 } 4627 4628 // Track whether this decl-specifier declares anything. 4629 bool DeclaresAnything = true; 4630 4631 // Handle anonymous struct definitions. 4632 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { 4633 if (!Record->getDeclName() && Record->isCompleteDefinition() && 4634 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { 4635 if (getLangOpts().CPlusPlus || 4636 Record->getDeclContext()->isRecord()) { 4637 // If CurContext is a DeclContext that can contain statements, 4638 // RecursiveASTVisitor won't visit the decls that 4639 // BuildAnonymousStructOrUnion() will put into CurContext. 4640 // Also store them here so that they can be part of the 4641 // DeclStmt that gets created in this case. 4642 // FIXME: Also return the IndirectFieldDecls created by 4643 // BuildAnonymousStructOr union, for the same reason? 4644 if (CurContext->isFunctionOrMethod()) 4645 AnonRecord = Record; 4646 return BuildAnonymousStructOrUnion(S, DS, AS, Record, 4647 Context.getPrintingPolicy()); 4648 } 4649 4650 DeclaresAnything = false; 4651 } 4652 } 4653 4654 // C11 6.7.2.1p2: 4655 // A struct-declaration that does not declare an anonymous structure or 4656 // anonymous union shall contain a struct-declarator-list. 4657 // 4658 // This rule also existed in C89 and C99; the grammar for struct-declaration 4659 // did not permit a struct-declaration without a struct-declarator-list. 4660 if (!getLangOpts().CPlusPlus && CurContext->isRecord() && 4661 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { 4662 // Check for Microsoft C extension: anonymous struct/union member. 4663 // Handle 2 kinds of anonymous struct/union: 4664 // struct STRUCT; 4665 // union UNION; 4666 // and 4667 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct. 4668 // UNION_TYPE; <- where UNION_TYPE is a typedef union. 4669 if ((Tag && Tag->getDeclName()) || 4670 DS.getTypeSpecType() == DeclSpec::TST_typename) { 4671 RecordDecl *Record = nullptr; 4672 if (Tag) 4673 Record = dyn_cast<RecordDecl>(Tag); 4674 else if (const RecordType *RT = 4675 DS.getRepAsType().get()->getAsStructureType()) 4676 Record = RT->getDecl(); 4677 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType()) 4678 Record = UT->getDecl(); 4679 4680 if (Record && getLangOpts().MicrosoftExt) { 4681 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record) 4682 << Record->isUnion() << DS.getSourceRange(); 4683 return BuildMicrosoftCAnonymousStruct(S, DS, Record); 4684 } 4685 4686 DeclaresAnything = false; 4687 } 4688 } 4689 4690 // Skip all the checks below if we have a type error. 4691 if (DS.getTypeSpecType() == DeclSpec::TST_error || 4692 (TagD && TagD->isInvalidDecl())) 4693 return TagD; 4694 4695 if (getLangOpts().CPlusPlus && 4696 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) 4697 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) 4698 if (Enum->enumerator_begin() == Enum->enumerator_end() && 4699 !Enum->getIdentifier() && !Enum->isInvalidDecl()) 4700 DeclaresAnything = false; 4701 4702 if (!DS.isMissingDeclaratorOk()) { 4703 // Customize diagnostic for a typedef missing a name. 4704 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) 4705 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name) 4706 << DS.getSourceRange(); 4707 else 4708 DeclaresAnything = false; 4709 } 4710 4711 if (DS.isModulePrivateSpecified() && 4712 Tag && Tag->getDeclContext()->isFunctionOrMethod()) 4713 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) 4714 << Tag->getTagKind() 4715 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); 4716 4717 ActOnDocumentableDecl(TagD); 4718 4719 // C 6.7/2: 4720 // A declaration [...] shall declare at least a declarator [...], a tag, 4721 // or the members of an enumeration. 4722 // C++ [dcl.dcl]p3: 4723 // [If there are no declarators], and except for the declaration of an 4724 // unnamed bit-field, the decl-specifier-seq shall introduce one or more 4725 // names into the program, or shall redeclare a name introduced by a 4726 // previous declaration. 4727 if (!DeclaresAnything) { 4728 // In C, we allow this as a (popular) extension / bug. Don't bother 4729 // producing further diagnostics for redundant qualifiers after this. 4730 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange(); 4731 return TagD; 4732 } 4733 4734 // C++ [dcl.stc]p1: 4735 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the 4736 // init-declarator-list of the declaration shall not be empty. 4737 // C++ [dcl.fct.spec]p1: 4738 // If a cv-qualifier appears in a decl-specifier-seq, the 4739 // init-declarator-list of the declaration shall not be empty. 4740 // 4741 // Spurious qualifiers here appear to be valid in C. 4742 unsigned DiagID = diag::warn_standalone_specifier; 4743 if (getLangOpts().CPlusPlus) 4744 DiagID = diag::ext_standalone_specifier; 4745 4746 // Note that a linkage-specification sets a storage class, but 4747 // 'extern "C" struct foo;' is actually valid and not theoretically 4748 // useless. 4749 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { 4750 if (SCS == DeclSpec::SCS_mutable) 4751 // Since mutable is not a viable storage class specifier in C, there is 4752 // no reason to treat it as an extension. Instead, diagnose as an error. 4753 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember); 4754 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef) 4755 Diag(DS.getStorageClassSpecLoc(), DiagID) 4756 << DeclSpec::getSpecifierName(SCS); 4757 } 4758 4759 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) 4760 Diag(DS.getThreadStorageClassSpecLoc(), DiagID) 4761 << DeclSpec::getSpecifierName(TSCS); 4762 if (DS.getTypeQualifiers()) { 4763 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 4764 Diag(DS.getConstSpecLoc(), DiagID) << "const"; 4765 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 4766 Diag(DS.getConstSpecLoc(), DiagID) << "volatile"; 4767 // Restrict is covered above. 4768 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 4769 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic"; 4770 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 4771 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned"; 4772 } 4773 4774 // Warn about ignored type attributes, for example: 4775 // __attribute__((aligned)) struct A; 4776 // Attributes should be placed after tag to apply to type declaration. 4777 if (!DS.getAttributes().empty()) { 4778 DeclSpec::TST TypeSpecType = DS.getTypeSpecType(); 4779 if (TypeSpecType == DeclSpec::TST_class || 4780 TypeSpecType == DeclSpec::TST_struct || 4781 TypeSpecType == DeclSpec::TST_interface || 4782 TypeSpecType == DeclSpec::TST_union || 4783 TypeSpecType == DeclSpec::TST_enum) { 4784 for (const ParsedAttr &AL : DS.getAttributes()) 4785 Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored) 4786 << AL << GetDiagnosticTypeSpecifierID(TypeSpecType); 4787 } 4788 } 4789 4790 return TagD; 4791 } 4792 4793 /// We are trying to inject an anonymous member into the given scope; 4794 /// check if there's an existing declaration that can't be overloaded. 4795 /// 4796 /// \return true if this is a forbidden redeclaration 4797 static bool CheckAnonMemberRedeclaration(Sema &SemaRef, 4798 Scope *S, 4799 DeclContext *Owner, 4800 DeclarationName Name, 4801 SourceLocation NameLoc, 4802 bool IsUnion) { 4803 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName, 4804 Sema::ForVisibleRedeclaration); 4805 if (!SemaRef.LookupName(R, S)) return false; 4806 4807 // Pick a representative declaration. 4808 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); 4809 assert(PrevDecl && "Expected a non-null Decl"); 4810 4811 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) 4812 return false; 4813 4814 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl) 4815 << IsUnion << Name; 4816 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 4817 4818 return true; 4819 } 4820 4821 /// InjectAnonymousStructOrUnionMembers - Inject the members of the 4822 /// anonymous struct or union AnonRecord into the owning context Owner 4823 /// and scope S. This routine will be invoked just after we realize 4824 /// that an unnamed union or struct is actually an anonymous union or 4825 /// struct, e.g., 4826 /// 4827 /// @code 4828 /// union { 4829 /// int i; 4830 /// float f; 4831 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and 4832 /// // f into the surrounding scope.x 4833 /// @endcode 4834 /// 4835 /// This routine is recursive, injecting the names of nested anonymous 4836 /// structs/unions into the owning context and scope as well. 4837 static bool 4838 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner, 4839 RecordDecl *AnonRecord, AccessSpecifier AS, 4840 SmallVectorImpl<NamedDecl *> &Chaining) { 4841 bool Invalid = false; 4842 4843 // Look every FieldDecl and IndirectFieldDecl with a name. 4844 for (auto *D : AnonRecord->decls()) { 4845 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) && 4846 cast<NamedDecl>(D)->getDeclName()) { 4847 ValueDecl *VD = cast<ValueDecl>(D); 4848 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), 4849 VD->getLocation(), 4850 AnonRecord->isUnion())) { 4851 // C++ [class.union]p2: 4852 // The names of the members of an anonymous union shall be 4853 // distinct from the names of any other entity in the 4854 // scope in which the anonymous union is declared. 4855 Invalid = true; 4856 } else { 4857 // C++ [class.union]p2: 4858 // For the purpose of name lookup, after the anonymous union 4859 // definition, the members of the anonymous union are 4860 // considered to have been defined in the scope in which the 4861 // anonymous union is declared. 4862 unsigned OldChainingSize = Chaining.size(); 4863 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) 4864 Chaining.append(IF->chain_begin(), IF->chain_end()); 4865 else 4866 Chaining.push_back(VD); 4867 4868 assert(Chaining.size() >= 2); 4869 NamedDecl **NamedChain = 4870 new (SemaRef.Context)NamedDecl*[Chaining.size()]; 4871 for (unsigned i = 0; i < Chaining.size(); i++) 4872 NamedChain[i] = Chaining[i]; 4873 4874 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( 4875 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(), 4876 VD->getType(), {NamedChain, Chaining.size()}); 4877 4878 for (const auto *Attr : VD->attrs()) 4879 IndirectField->addAttr(Attr->clone(SemaRef.Context)); 4880 4881 IndirectField->setAccess(AS); 4882 IndirectField->setImplicit(); 4883 SemaRef.PushOnScopeChains(IndirectField, S); 4884 4885 // That includes picking up the appropriate access specifier. 4886 if (AS != AS_none) IndirectField->setAccess(AS); 4887 4888 Chaining.resize(OldChainingSize); 4889 } 4890 } 4891 } 4892 4893 return Invalid; 4894 } 4895 4896 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to 4897 /// a VarDecl::StorageClass. Any error reporting is up to the caller: 4898 /// illegal input values are mapped to SC_None. 4899 static StorageClass 4900 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) { 4901 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec(); 4902 assert(StorageClassSpec != DeclSpec::SCS_typedef && 4903 "Parser allowed 'typedef' as storage class VarDecl."); 4904 switch (StorageClassSpec) { 4905 case DeclSpec::SCS_unspecified: return SC_None; 4906 case DeclSpec::SCS_extern: 4907 if (DS.isExternInLinkageSpec()) 4908 return SC_None; 4909 return SC_Extern; 4910 case DeclSpec::SCS_static: return SC_Static; 4911 case DeclSpec::SCS_auto: return SC_Auto; 4912 case DeclSpec::SCS_register: return SC_Register; 4913 case DeclSpec::SCS_private_extern: return SC_PrivateExtern; 4914 // Illegal SCSs map to None: error reporting is up to the caller. 4915 case DeclSpec::SCS_mutable: // Fall through. 4916 case DeclSpec::SCS_typedef: return SC_None; 4917 } 4918 llvm_unreachable("unknown storage class specifier"); 4919 } 4920 4921 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) { 4922 assert(Record->hasInClassInitializer()); 4923 4924 for (const auto *I : Record->decls()) { 4925 const auto *FD = dyn_cast<FieldDecl>(I); 4926 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) 4927 FD = IFD->getAnonField(); 4928 if (FD && FD->hasInClassInitializer()) 4929 return FD->getLocation(); 4930 } 4931 4932 llvm_unreachable("couldn't find in-class initializer"); 4933 } 4934 4935 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, 4936 SourceLocation DefaultInitLoc) { 4937 if (!Parent->isUnion() || !Parent->hasInClassInitializer()) 4938 return; 4939 4940 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization); 4941 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0; 4942 } 4943 4944 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, 4945 CXXRecordDecl *AnonUnion) { 4946 if (!Parent->isUnion() || !Parent->hasInClassInitializer()) 4947 return; 4948 4949 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion)); 4950 } 4951 4952 /// BuildAnonymousStructOrUnion - Handle the declaration of an 4953 /// anonymous structure or union. Anonymous unions are a C++ feature 4954 /// (C++ [class.union]) and a C11 feature; anonymous structures 4955 /// are a C11 feature and GNU C++ extension. 4956 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, 4957 AccessSpecifier AS, 4958 RecordDecl *Record, 4959 const PrintingPolicy &Policy) { 4960 DeclContext *Owner = Record->getDeclContext(); 4961 4962 // Diagnose whether this anonymous struct/union is an extension. 4963 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11) 4964 Diag(Record->getLocation(), diag::ext_anonymous_union); 4965 else if (!Record->isUnion() && getLangOpts().CPlusPlus) 4966 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct); 4967 else if (!Record->isUnion() && !getLangOpts().C11) 4968 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct); 4969 4970 // C and C++ require different kinds of checks for anonymous 4971 // structs/unions. 4972 bool Invalid = false; 4973 if (getLangOpts().CPlusPlus) { 4974 const char *PrevSpec = nullptr; 4975 if (Record->isUnion()) { 4976 // C++ [class.union]p6: 4977 // C++17 [class.union.anon]p2: 4978 // Anonymous unions declared in a named namespace or in the 4979 // global namespace shall be declared static. 4980 unsigned DiagID; 4981 DeclContext *OwnerScope = Owner->getRedeclContext(); 4982 if (DS.getStorageClassSpec() != DeclSpec::SCS_static && 4983 (OwnerScope->isTranslationUnit() || 4984 (OwnerScope->isNamespace() && 4985 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) { 4986 Diag(Record->getLocation(), diag::err_anonymous_union_not_static) 4987 << FixItHint::CreateInsertion(Record->getLocation(), "static "); 4988 4989 // Recover by adding 'static'. 4990 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(), 4991 PrevSpec, DiagID, Policy); 4992 } 4993 // C++ [class.union]p6: 4994 // A storage class is not allowed in a declaration of an 4995 // anonymous union in a class scope. 4996 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && 4997 isa<RecordDecl>(Owner)) { 4998 Diag(DS.getStorageClassSpecLoc(), 4999 diag::err_anonymous_union_with_storage_spec) 5000 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 5001 5002 // Recover by removing the storage specifier. 5003 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, 5004 SourceLocation(), 5005 PrevSpec, DiagID, Context.getPrintingPolicy()); 5006 } 5007 } 5008 5009 // Ignore const/volatile/restrict qualifiers. 5010 if (DS.getTypeQualifiers()) { 5011 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 5012 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) 5013 << Record->isUnion() << "const" 5014 << FixItHint::CreateRemoval(DS.getConstSpecLoc()); 5015 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 5016 Diag(DS.getVolatileSpecLoc(), 5017 diag::ext_anonymous_struct_union_qualified) 5018 << Record->isUnion() << "volatile" 5019 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); 5020 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) 5021 Diag(DS.getRestrictSpecLoc(), 5022 diag::ext_anonymous_struct_union_qualified) 5023 << Record->isUnion() << "restrict" 5024 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); 5025 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 5026 Diag(DS.getAtomicSpecLoc(), 5027 diag::ext_anonymous_struct_union_qualified) 5028 << Record->isUnion() << "_Atomic" 5029 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc()); 5030 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) 5031 Diag(DS.getUnalignedSpecLoc(), 5032 diag::ext_anonymous_struct_union_qualified) 5033 << Record->isUnion() << "__unaligned" 5034 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc()); 5035 5036 DS.ClearTypeQualifiers(); 5037 } 5038 5039 // C++ [class.union]p2: 5040 // The member-specification of an anonymous union shall only 5041 // define non-static data members. [Note: nested types and 5042 // functions cannot be declared within an anonymous union. ] 5043 for (auto *Mem : Record->decls()) { 5044 // Ignore invalid declarations; we already diagnosed them. 5045 if (Mem->isInvalidDecl()) 5046 continue; 5047 5048 if (auto *FD = dyn_cast<FieldDecl>(Mem)) { 5049 // C++ [class.union]p3: 5050 // An anonymous union shall not have private or protected 5051 // members (clause 11). 5052 assert(FD->getAccess() != AS_none); 5053 if (FD->getAccess() != AS_public) { 5054 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) 5055 << Record->isUnion() << (FD->getAccess() == AS_protected); 5056 Invalid = true; 5057 } 5058 5059 // C++ [class.union]p1 5060 // An object of a class with a non-trivial constructor, a non-trivial 5061 // copy constructor, a non-trivial destructor, or a non-trivial copy 5062 // assignment operator cannot be a member of a union, nor can an 5063 // array of such objects. 5064 if (CheckNontrivialField(FD)) 5065 Invalid = true; 5066 } else if (Mem->isImplicit()) { 5067 // Any implicit members are fine. 5068 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) { 5069 // This is a type that showed up in an 5070 // elaborated-type-specifier inside the anonymous struct or 5071 // union, but which actually declares a type outside of the 5072 // anonymous struct or union. It's okay. 5073 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) { 5074 if (!MemRecord->isAnonymousStructOrUnion() && 5075 MemRecord->getDeclName()) { 5076 // Visual C++ allows type definition in anonymous struct or union. 5077 if (getLangOpts().MicrosoftExt) 5078 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) 5079 << Record->isUnion(); 5080 else { 5081 // This is a nested type declaration. 5082 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) 5083 << Record->isUnion(); 5084 Invalid = true; 5085 } 5086 } else { 5087 // This is an anonymous type definition within another anonymous type. 5088 // This is a popular extension, provided by Plan9, MSVC and GCC, but 5089 // not part of standard C++. 5090 Diag(MemRecord->getLocation(), 5091 diag::ext_anonymous_record_with_anonymous_type) 5092 << Record->isUnion(); 5093 } 5094 } else if (isa<AccessSpecDecl>(Mem)) { 5095 // Any access specifier is fine. 5096 } else if (isa<StaticAssertDecl>(Mem)) { 5097 // In C++1z, static_assert declarations are also fine. 5098 } else { 5099 // We have something that isn't a non-static data 5100 // member. Complain about it. 5101 unsigned DK = diag::err_anonymous_record_bad_member; 5102 if (isa<TypeDecl>(Mem)) 5103 DK = diag::err_anonymous_record_with_type; 5104 else if (isa<FunctionDecl>(Mem)) 5105 DK = diag::err_anonymous_record_with_function; 5106 else if (isa<VarDecl>(Mem)) 5107 DK = diag::err_anonymous_record_with_static; 5108 5109 // Visual C++ allows type definition in anonymous struct or union. 5110 if (getLangOpts().MicrosoftExt && 5111 DK == diag::err_anonymous_record_with_type) 5112 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type) 5113 << Record->isUnion(); 5114 else { 5115 Diag(Mem->getLocation(), DK) << Record->isUnion(); 5116 Invalid = true; 5117 } 5118 } 5119 } 5120 5121 // C++11 [class.union]p8 (DR1460): 5122 // At most one variant member of a union may have a 5123 // brace-or-equal-initializer. 5124 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() && 5125 Owner->isRecord()) 5126 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner), 5127 cast<CXXRecordDecl>(Record)); 5128 } 5129 5130 if (!Record->isUnion() && !Owner->isRecord()) { 5131 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) 5132 << getLangOpts().CPlusPlus; 5133 Invalid = true; 5134 } 5135 5136 // C++ [dcl.dcl]p3: 5137 // [If there are no declarators], and except for the declaration of an 5138 // unnamed bit-field, the decl-specifier-seq shall introduce one or more 5139 // names into the program 5140 // C++ [class.mem]p2: 5141 // each such member-declaration shall either declare at least one member 5142 // name of the class or declare at least one unnamed bit-field 5143 // 5144 // For C this is an error even for a named struct, and is diagnosed elsewhere. 5145 if (getLangOpts().CPlusPlus && Record->field_empty()) 5146 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange(); 5147 5148 // Mock up a declarator. 5149 Declarator Dc(DS, DeclaratorContext::MemberContext); 5150 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); 5151 assert(TInfo && "couldn't build declarator info for anonymous struct/union"); 5152 5153 // Create a declaration for this anonymous struct/union. 5154 NamedDecl *Anon = nullptr; 5155 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { 5156 Anon = FieldDecl::Create( 5157 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(), 5158 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo, 5159 /*BitWidth=*/nullptr, /*Mutable=*/false, 5160 /*InitStyle=*/ICIS_NoInit); 5161 Anon->setAccess(AS); 5162 ProcessDeclAttributes(S, Anon, Dc); 5163 5164 if (getLangOpts().CPlusPlus) 5165 FieldCollector->Add(cast<FieldDecl>(Anon)); 5166 } else { 5167 DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); 5168 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS); 5169 if (SCSpec == DeclSpec::SCS_mutable) { 5170 // mutable can only appear on non-static class members, so it's always 5171 // an error here 5172 Diag(Record->getLocation(), diag::err_mutable_nonmember); 5173 Invalid = true; 5174 SC = SC_None; 5175 } 5176 5177 assert(DS.getAttributes().empty() && "No attribute expected"); 5178 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(), 5179 Record->getLocation(), /*IdentifierInfo=*/nullptr, 5180 Context.getTypeDeclType(Record), TInfo, SC); 5181 5182 // Default-initialize the implicit variable. This initialization will be 5183 // trivial in almost all cases, except if a union member has an in-class 5184 // initializer: 5185 // union { int n = 0; }; 5186 ActOnUninitializedDecl(Anon); 5187 } 5188 Anon->setImplicit(); 5189 5190 // Mark this as an anonymous struct/union type. 5191 Record->setAnonymousStructOrUnion(true); 5192 5193 // Add the anonymous struct/union object to the current 5194 // context. We'll be referencing this object when we refer to one of 5195 // its members. 5196 Owner->addDecl(Anon); 5197 5198 // Inject the members of the anonymous struct/union into the owning 5199 // context and into the identifier resolver chain for name lookup 5200 // purposes. 5201 SmallVector<NamedDecl*, 2> Chain; 5202 Chain.push_back(Anon); 5203 5204 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain)) 5205 Invalid = true; 5206 5207 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) { 5208 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { 5209 MangleNumberingContext *MCtx; 5210 Decl *ManglingContextDecl; 5211 std::tie(MCtx, ManglingContextDecl) = 5212 getCurrentMangleNumberContext(NewVD->getDeclContext()); 5213 if (MCtx) { 5214 Context.setManglingNumber( 5215 NewVD, MCtx->getManglingNumber( 5216 NewVD, getMSManglingNumber(getLangOpts(), S))); 5217 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); 5218 } 5219 } 5220 } 5221 5222 if (Invalid) 5223 Anon->setInvalidDecl(); 5224 5225 return Anon; 5226 } 5227 5228 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an 5229 /// Microsoft C anonymous structure. 5230 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx 5231 /// Example: 5232 /// 5233 /// struct A { int a; }; 5234 /// struct B { struct A; int b; }; 5235 /// 5236 /// void foo() { 5237 /// B var; 5238 /// var.a = 3; 5239 /// } 5240 /// 5241 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, 5242 RecordDecl *Record) { 5243 assert(Record && "expected a record!"); 5244 5245 // Mock up a declarator. 5246 Declarator Dc(DS, DeclaratorContext::TypeNameContext); 5247 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); 5248 assert(TInfo && "couldn't build declarator info for anonymous struct"); 5249 5250 auto *ParentDecl = cast<RecordDecl>(CurContext); 5251 QualType RecTy = Context.getTypeDeclType(Record); 5252 5253 // Create a declaration for this anonymous struct. 5254 NamedDecl *Anon = 5255 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(), 5256 /*IdentifierInfo=*/nullptr, RecTy, TInfo, 5257 /*BitWidth=*/nullptr, /*Mutable=*/false, 5258 /*InitStyle=*/ICIS_NoInit); 5259 Anon->setImplicit(); 5260 5261 // Add the anonymous struct object to the current context. 5262 CurContext->addDecl(Anon); 5263 5264 // Inject the members of the anonymous struct into the current 5265 // context and into the identifier resolver chain for name lookup 5266 // purposes. 5267 SmallVector<NamedDecl*, 2> Chain; 5268 Chain.push_back(Anon); 5269 5270 RecordDecl *RecordDef = Record->getDefinition(); 5271 if (RequireCompleteSizedType(Anon->getLocation(), RecTy, 5272 diag::err_field_incomplete_or_sizeless) || 5273 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef, 5274 AS_none, Chain)) { 5275 Anon->setInvalidDecl(); 5276 ParentDecl->setInvalidDecl(); 5277 } 5278 5279 return Anon; 5280 } 5281 5282 /// GetNameForDeclarator - Determine the full declaration name for the 5283 /// given Declarator. 5284 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { 5285 return GetNameFromUnqualifiedId(D.getName()); 5286 } 5287 5288 /// Retrieves the declaration name from a parsed unqualified-id. 5289 DeclarationNameInfo 5290 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { 5291 DeclarationNameInfo NameInfo; 5292 NameInfo.setLoc(Name.StartLocation); 5293 5294 switch (Name.getKind()) { 5295 5296 case UnqualifiedIdKind::IK_ImplicitSelfParam: 5297 case UnqualifiedIdKind::IK_Identifier: 5298 NameInfo.setName(Name.Identifier); 5299 return NameInfo; 5300 5301 case UnqualifiedIdKind::IK_DeductionGuideName: { 5302 // C++ [temp.deduct.guide]p3: 5303 // The simple-template-id shall name a class template specialization. 5304 // The template-name shall be the same identifier as the template-name 5305 // of the simple-template-id. 5306 // These together intend to imply that the template-name shall name a 5307 // class template. 5308 // FIXME: template<typename T> struct X {}; 5309 // template<typename T> using Y = X<T>; 5310 // Y(int) -> Y<int>; 5311 // satisfies these rules but does not name a class template. 5312 TemplateName TN = Name.TemplateName.get().get(); 5313 auto *Template = TN.getAsTemplateDecl(); 5314 if (!Template || !isa<ClassTemplateDecl>(Template)) { 5315 Diag(Name.StartLocation, 5316 diag::err_deduction_guide_name_not_class_template) 5317 << (int)getTemplateNameKindForDiagnostics(TN) << TN; 5318 if (Template) 5319 Diag(Template->getLocation(), diag::note_template_decl_here); 5320 return DeclarationNameInfo(); 5321 } 5322 5323 NameInfo.setName( 5324 Context.DeclarationNames.getCXXDeductionGuideName(Template)); 5325 return NameInfo; 5326 } 5327 5328 case UnqualifiedIdKind::IK_OperatorFunctionId: 5329 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( 5330 Name.OperatorFunctionId.Operator)); 5331 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc 5332 = Name.OperatorFunctionId.SymbolLocations[0]; 5333 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc 5334 = Name.EndLocation.getRawEncoding(); 5335 return NameInfo; 5336 5337 case UnqualifiedIdKind::IK_LiteralOperatorId: 5338 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( 5339 Name.Identifier)); 5340 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); 5341 return NameInfo; 5342 5343 case UnqualifiedIdKind::IK_ConversionFunctionId: { 5344 TypeSourceInfo *TInfo; 5345 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); 5346 if (Ty.isNull()) 5347 return DeclarationNameInfo(); 5348 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( 5349 Context.getCanonicalType(Ty))); 5350 NameInfo.setNamedTypeInfo(TInfo); 5351 return NameInfo; 5352 } 5353 5354 case UnqualifiedIdKind::IK_ConstructorName: { 5355 TypeSourceInfo *TInfo; 5356 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); 5357 if (Ty.isNull()) 5358 return DeclarationNameInfo(); 5359 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 5360 Context.getCanonicalType(Ty))); 5361 NameInfo.setNamedTypeInfo(TInfo); 5362 return NameInfo; 5363 } 5364 5365 case UnqualifiedIdKind::IK_ConstructorTemplateId: { 5366 // In well-formed code, we can only have a constructor 5367 // template-id that refers to the current context, so go there 5368 // to find the actual type being constructed. 5369 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); 5370 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) 5371 return DeclarationNameInfo(); 5372 5373 // Determine the type of the class being constructed. 5374 QualType CurClassType = Context.getTypeDeclType(CurClass); 5375 5376 // FIXME: Check two things: that the template-id names the same type as 5377 // CurClassType, and that the template-id does not occur when the name 5378 // was qualified. 5379 5380 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( 5381 Context.getCanonicalType(CurClassType))); 5382 // FIXME: should we retrieve TypeSourceInfo? 5383 NameInfo.setNamedTypeInfo(nullptr); 5384 return NameInfo; 5385 } 5386 5387 case UnqualifiedIdKind::IK_DestructorName: { 5388 TypeSourceInfo *TInfo; 5389 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo); 5390 if (Ty.isNull()) 5391 return DeclarationNameInfo(); 5392 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( 5393 Context.getCanonicalType(Ty))); 5394 NameInfo.setNamedTypeInfo(TInfo); 5395 return NameInfo; 5396 } 5397 5398 case UnqualifiedIdKind::IK_TemplateId: { 5399 TemplateName TName = Name.TemplateId->Template.get(); 5400 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; 5401 return Context.getNameForTemplate(TName, TNameLoc); 5402 } 5403 5404 } // switch (Name.getKind()) 5405 5406 llvm_unreachable("Unknown name kind"); 5407 } 5408 5409 static QualType getCoreType(QualType Ty) { 5410 do { 5411 if (Ty->isPointerType() || Ty->isReferenceType()) 5412 Ty = Ty->getPointeeType(); 5413 else if (Ty->isArrayType()) 5414 Ty = Ty->castAsArrayTypeUnsafe()->getElementType(); 5415 else 5416 return Ty.withoutLocalFastQualifiers(); 5417 } while (true); 5418 } 5419 5420 /// hasSimilarParameters - Determine whether the C++ functions Declaration 5421 /// and Definition have "nearly" matching parameters. This heuristic is 5422 /// used to improve diagnostics in the case where an out-of-line function 5423 /// definition doesn't match any declaration within the class or namespace. 5424 /// Also sets Params to the list of indices to the parameters that differ 5425 /// between the declaration and the definition. If hasSimilarParameters 5426 /// returns true and Params is empty, then all of the parameters match. 5427 static bool hasSimilarParameters(ASTContext &Context, 5428 FunctionDecl *Declaration, 5429 FunctionDecl *Definition, 5430 SmallVectorImpl<unsigned> &Params) { 5431 Params.clear(); 5432 if (Declaration->param_size() != Definition->param_size()) 5433 return false; 5434 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { 5435 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); 5436 QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); 5437 5438 // The parameter types are identical 5439 if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy)) 5440 continue; 5441 5442 QualType DeclParamBaseTy = getCoreType(DeclParamTy); 5443 QualType DefParamBaseTy = getCoreType(DefParamTy); 5444 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier(); 5445 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier(); 5446 5447 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) || 5448 (DeclTyName && DeclTyName == DefTyName)) 5449 Params.push_back(Idx); 5450 else // The two parameters aren't even close 5451 return false; 5452 } 5453 5454 return true; 5455 } 5456 5457 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given 5458 /// declarator needs to be rebuilt in the current instantiation. 5459 /// Any bits of declarator which appear before the name are valid for 5460 /// consideration here. That's specifically the type in the decl spec 5461 /// and the base type in any member-pointer chunks. 5462 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, 5463 DeclarationName Name) { 5464 // The types we specifically need to rebuild are: 5465 // - typenames, typeofs, and decltypes 5466 // - types which will become injected class names 5467 // Of course, we also need to rebuild any type referencing such a 5468 // type. It's safest to just say "dependent", but we call out a 5469 // few cases here. 5470 5471 DeclSpec &DS = D.getMutableDeclSpec(); 5472 switch (DS.getTypeSpecType()) { 5473 case DeclSpec::TST_typename: 5474 case DeclSpec::TST_typeofType: 5475 case DeclSpec::TST_underlyingType: 5476 case DeclSpec::TST_atomic: { 5477 // Grab the type from the parser. 5478 TypeSourceInfo *TSI = nullptr; 5479 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI); 5480 if (T.isNull() || !T->isDependentType()) break; 5481 5482 // Make sure there's a type source info. This isn't really much 5483 // of a waste; most dependent types should have type source info 5484 // attached already. 5485 if (!TSI) 5486 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc()); 5487 5488 // Rebuild the type in the current instantiation. 5489 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name); 5490 if (!TSI) return true; 5491 5492 // Store the new type back in the decl spec. 5493 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI); 5494 DS.UpdateTypeRep(LocType); 5495 break; 5496 } 5497 5498 case DeclSpec::TST_decltype: 5499 case DeclSpec::TST_typeofExpr: { 5500 Expr *E = DS.getRepAsExpr(); 5501 ExprResult Result = S.RebuildExprInCurrentInstantiation(E); 5502 if (Result.isInvalid()) return true; 5503 DS.UpdateExprRep(Result.get()); 5504 break; 5505 } 5506 5507 default: 5508 // Nothing to do for these decl specs. 5509 break; 5510 } 5511 5512 // It doesn't matter what order we do this in. 5513 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { 5514 DeclaratorChunk &Chunk = D.getTypeObject(I); 5515 5516 // The only type information in the declarator which can come 5517 // before the declaration name is the base type of a member 5518 // pointer. 5519 if (Chunk.Kind != DeclaratorChunk::MemberPointer) 5520 continue; 5521 5522 // Rebuild the scope specifier in-place. 5523 CXXScopeSpec &SS = Chunk.Mem.Scope(); 5524 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) 5525 return true; 5526 } 5527 5528 return false; 5529 } 5530 5531 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { 5532 D.setFunctionDefinitionKind(FDK_Declaration); 5533 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg()); 5534 5535 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() && 5536 Dcl && Dcl->getDeclContext()->isFileContext()) 5537 Dcl->setTopLevelDeclInObjCContainer(); 5538 5539 if (getLangOpts().OpenCL) 5540 setCurrentOpenCLExtensionForDecl(Dcl); 5541 5542 return Dcl; 5543 } 5544 5545 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13: 5546 /// If T is the name of a class, then each of the following shall have a 5547 /// name different from T: 5548 /// - every static data member of class T; 5549 /// - every member function of class T 5550 /// - every member of class T that is itself a type; 5551 /// \returns true if the declaration name violates these rules. 5552 bool Sema::DiagnoseClassNameShadow(DeclContext *DC, 5553 DeclarationNameInfo NameInfo) { 5554 DeclarationName Name = NameInfo.getName(); 5555 5556 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC); 5557 while (Record && Record->isAnonymousStructOrUnion()) 5558 Record = dyn_cast<CXXRecordDecl>(Record->getParent()); 5559 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) { 5560 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name; 5561 return true; 5562 } 5563 5564 return false; 5565 } 5566 5567 /// Diagnose a declaration whose declarator-id has the given 5568 /// nested-name-specifier. 5569 /// 5570 /// \param SS The nested-name-specifier of the declarator-id. 5571 /// 5572 /// \param DC The declaration context to which the nested-name-specifier 5573 /// resolves. 5574 /// 5575 /// \param Name The name of the entity being declared. 5576 /// 5577 /// \param Loc The location of the name of the entity being declared. 5578 /// 5579 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus 5580 /// we're declaring an explicit / partial specialization / instantiation. 5581 /// 5582 /// \returns true if we cannot safely recover from this error, false otherwise. 5583 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, 5584 DeclarationName Name, 5585 SourceLocation Loc, bool IsTemplateId) { 5586 DeclContext *Cur = CurContext; 5587 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur)) 5588 Cur = Cur->getParent(); 5589 5590 // If the user provided a superfluous scope specifier that refers back to the 5591 // class in which the entity is already declared, diagnose and ignore it. 5592 // 5593 // class X { 5594 // void X::f(); 5595 // }; 5596 // 5597 // Note, it was once ill-formed to give redundant qualification in all 5598 // contexts, but that rule was removed by DR482. 5599 if (Cur->Equals(DC)) { 5600 if (Cur->isRecord()) { 5601 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification 5602 : diag::err_member_extra_qualification) 5603 << Name << FixItHint::CreateRemoval(SS.getRange()); 5604 SS.clear(); 5605 } else { 5606 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name; 5607 } 5608 return false; 5609 } 5610 5611 // Check whether the qualifying scope encloses the scope of the original 5612 // declaration. For a template-id, we perform the checks in 5613 // CheckTemplateSpecializationScope. 5614 if (!Cur->Encloses(DC) && !IsTemplateId) { 5615 if (Cur->isRecord()) 5616 Diag(Loc, diag::err_member_qualification) 5617 << Name << SS.getRange(); 5618 else if (isa<TranslationUnitDecl>(DC)) 5619 Diag(Loc, diag::err_invalid_declarator_global_scope) 5620 << Name << SS.getRange(); 5621 else if (isa<FunctionDecl>(Cur)) 5622 Diag(Loc, diag::err_invalid_declarator_in_function) 5623 << Name << SS.getRange(); 5624 else if (isa<BlockDecl>(Cur)) 5625 Diag(Loc, diag::err_invalid_declarator_in_block) 5626 << Name << SS.getRange(); 5627 else 5628 Diag(Loc, diag::err_invalid_declarator_scope) 5629 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange(); 5630 5631 return true; 5632 } 5633 5634 if (Cur->isRecord()) { 5635 // Cannot qualify members within a class. 5636 Diag(Loc, diag::err_member_qualification) 5637 << Name << SS.getRange(); 5638 SS.clear(); 5639 5640 // C++ constructors and destructors with incorrect scopes can break 5641 // our AST invariants by having the wrong underlying types. If 5642 // that's the case, then drop this declaration entirely. 5643 if ((Name.getNameKind() == DeclarationName::CXXConstructorName || 5644 Name.getNameKind() == DeclarationName::CXXDestructorName) && 5645 !Context.hasSameType(Name.getCXXNameType(), 5646 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur)))) 5647 return true; 5648 5649 return false; 5650 } 5651 5652 // C++11 [dcl.meaning]p1: 5653 // [...] "The nested-name-specifier of the qualified declarator-id shall 5654 // not begin with a decltype-specifer" 5655 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data()); 5656 while (SpecLoc.getPrefix()) 5657 SpecLoc = SpecLoc.getPrefix(); 5658 if (dyn_cast_or_null<DecltypeType>( 5659 SpecLoc.getNestedNameSpecifier()->getAsType())) 5660 Diag(Loc, diag::err_decltype_in_declarator) 5661 << SpecLoc.getTypeLoc().getSourceRange(); 5662 5663 return false; 5664 } 5665 5666 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D, 5667 MultiTemplateParamsArg TemplateParamLists) { 5668 // TODO: consider using NameInfo for diagnostic. 5669 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 5670 DeclarationName Name = NameInfo.getName(); 5671 5672 // All of these full declarators require an identifier. If it doesn't have 5673 // one, the ParsedFreeStandingDeclSpec action should be used. 5674 if (D.isDecompositionDeclarator()) { 5675 return ActOnDecompositionDeclarator(S, D, TemplateParamLists); 5676 } else if (!Name) { 5677 if (!D.isInvalidType()) // Reject this if we think it is valid. 5678 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident) 5679 << D.getDeclSpec().getSourceRange() << D.getSourceRange(); 5680 return nullptr; 5681 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType)) 5682 return nullptr; 5683 5684 // The scope passed in may not be a decl scope. Zip up the scope tree until 5685 // we find one that is. 5686 while ((S->getFlags() & Scope::DeclScope) == 0 || 5687 (S->getFlags() & Scope::TemplateParamScope) != 0) 5688 S = S->getParent(); 5689 5690 DeclContext *DC = CurContext; 5691 if (D.getCXXScopeSpec().isInvalid()) 5692 D.setInvalidType(); 5693 else if (D.getCXXScopeSpec().isSet()) { 5694 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), 5695 UPPC_DeclarationQualifier)) 5696 return nullptr; 5697 5698 bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); 5699 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext); 5700 if (!DC || isa<EnumDecl>(DC)) { 5701 // If we could not compute the declaration context, it's because the 5702 // declaration context is dependent but does not refer to a class, 5703 // class template, or class template partial specialization. Complain 5704 // and return early, to avoid the coming semantic disaster. 5705 Diag(D.getIdentifierLoc(), 5706 diag::err_template_qualified_declarator_no_match) 5707 << D.getCXXScopeSpec().getScopeRep() 5708 << D.getCXXScopeSpec().getRange(); 5709 return nullptr; 5710 } 5711 bool IsDependentContext = DC->isDependentContext(); 5712 5713 if (!IsDependentContext && 5714 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC)) 5715 return nullptr; 5716 5717 // If a class is incomplete, do not parse entities inside it. 5718 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) { 5719 Diag(D.getIdentifierLoc(), 5720 diag::err_member_def_undefined_record) 5721 << Name << DC << D.getCXXScopeSpec().getRange(); 5722 return nullptr; 5723 } 5724 if (!D.getDeclSpec().isFriendSpecified()) { 5725 if (diagnoseQualifiedDeclaration( 5726 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(), 5727 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) { 5728 if (DC->isRecord()) 5729 return nullptr; 5730 5731 D.setInvalidType(); 5732 } 5733 } 5734 5735 // Check whether we need to rebuild the type of the given 5736 // declaration in the current instantiation. 5737 if (EnteringContext && IsDependentContext && 5738 TemplateParamLists.size() != 0) { 5739 ContextRAII SavedContext(*this, DC); 5740 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name)) 5741 D.setInvalidType(); 5742 } 5743 } 5744 5745 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 5746 QualType R = TInfo->getType(); 5747 5748 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 5749 UPPC_DeclarationType)) 5750 D.setInvalidType(); 5751 5752 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, 5753 forRedeclarationInCurContext()); 5754 5755 // See if this is a redefinition of a variable in the same scope. 5756 if (!D.getCXXScopeSpec().isSet()) { 5757 bool IsLinkageLookup = false; 5758 bool CreateBuiltins = false; 5759 5760 // If the declaration we're planning to build will be a function 5761 // or object with linkage, then look for another declaration with 5762 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). 5763 // 5764 // If the declaration we're planning to build will be declared with 5765 // external linkage in the translation unit, create any builtin with 5766 // the same name. 5767 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) 5768 /* Do nothing*/; 5769 else if (CurContext->isFunctionOrMethod() && 5770 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern || 5771 R->isFunctionType())) { 5772 IsLinkageLookup = true; 5773 CreateBuiltins = 5774 CurContext->getEnclosingNamespaceContext()->isTranslationUnit(); 5775 } else if (CurContext->getRedeclContext()->isTranslationUnit() && 5776 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) 5777 CreateBuiltins = true; 5778 5779 if (IsLinkageLookup) { 5780 Previous.clear(LookupRedeclarationWithLinkage); 5781 Previous.setRedeclarationKind(ForExternalRedeclaration); 5782 } 5783 5784 LookupName(Previous, S, CreateBuiltins); 5785 } else { // Something like "int foo::x;" 5786 LookupQualifiedName(Previous, DC); 5787 5788 // C++ [dcl.meaning]p1: 5789 // When the declarator-id is qualified, the declaration shall refer to a 5790 // previously declared member of the class or namespace to which the 5791 // qualifier refers (or, in the case of a namespace, of an element of the 5792 // inline namespace set of that namespace (7.3.1)) or to a specialization 5793 // thereof; [...] 5794 // 5795 // Note that we already checked the context above, and that we do not have 5796 // enough information to make sure that Previous contains the declaration 5797 // we want to match. For example, given: 5798 // 5799 // class X { 5800 // void f(); 5801 // void f(float); 5802 // }; 5803 // 5804 // void X::f(int) { } // ill-formed 5805 // 5806 // In this case, Previous will point to the overload set 5807 // containing the two f's declared in X, but neither of them 5808 // matches. 5809 5810 // C++ [dcl.meaning]p1: 5811 // [...] the member shall not merely have been introduced by a 5812 // using-declaration in the scope of the class or namespace nominated by 5813 // the nested-name-specifier of the declarator-id. 5814 RemoveUsingDecls(Previous); 5815 } 5816 5817 if (Previous.isSingleResult() && 5818 Previous.getFoundDecl()->isTemplateParameter()) { 5819 // Maybe we will complain about the shadowed template parameter. 5820 if (!D.isInvalidType()) 5821 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), 5822 Previous.getFoundDecl()); 5823 5824 // Just pretend that we didn't see the previous declaration. 5825 Previous.clear(); 5826 } 5827 5828 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo)) 5829 // Forget that the previous declaration is the injected-class-name. 5830 Previous.clear(); 5831 5832 // In C++, the previous declaration we find might be a tag type 5833 // (class or enum). In this case, the new declaration will hide the 5834 // tag type. Note that this applies to functions, function templates, and 5835 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates. 5836 if (Previous.isSingleTagDecl() && 5837 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 5838 (TemplateParamLists.size() == 0 || R->isFunctionType())) 5839 Previous.clear(); 5840 5841 // Check that there are no default arguments other than in the parameters 5842 // of a function declaration (C++ only). 5843 if (getLangOpts().CPlusPlus) 5844 CheckExtraCXXDefaultArguments(D); 5845 5846 NamedDecl *New; 5847 5848 bool AddToScope = true; 5849 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { 5850 if (TemplateParamLists.size()) { 5851 Diag(D.getIdentifierLoc(), diag::err_template_typedef); 5852 return nullptr; 5853 } 5854 5855 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous); 5856 } else if (R->isFunctionType()) { 5857 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous, 5858 TemplateParamLists, 5859 AddToScope); 5860 } else { 5861 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists, 5862 AddToScope); 5863 } 5864 5865 if (!New) 5866 return nullptr; 5867 5868 // If this has an identifier and is not a function template specialization, 5869 // add it to the scope stack. 5870 if (New->getDeclName() && AddToScope) 5871 PushOnScopeChains(New, S); 5872 5873 if (isInOpenMPDeclareTargetContext()) 5874 checkDeclIsAllowedInOpenMPTarget(nullptr, New); 5875 5876 return New; 5877 } 5878 5879 /// Helper method to turn variable array types into constant array 5880 /// types in certain situations which would otherwise be errors (for 5881 /// GCC compatibility). 5882 static QualType TryToFixInvalidVariablyModifiedType(QualType T, 5883 ASTContext &Context, 5884 bool &SizeIsNegative, 5885 llvm::APSInt &Oversized) { 5886 // This method tries to turn a variable array into a constant 5887 // array even when the size isn't an ICE. This is necessary 5888 // for compatibility with code that depends on gcc's buggy 5889 // constant expression folding, like struct {char x[(int)(char*)2];} 5890 SizeIsNegative = false; 5891 Oversized = 0; 5892 5893 if (T->isDependentType()) 5894 return QualType(); 5895 5896 QualifierCollector Qs; 5897 const Type *Ty = Qs.strip(T); 5898 5899 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) { 5900 QualType Pointee = PTy->getPointeeType(); 5901 QualType FixedType = 5902 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative, 5903 Oversized); 5904 if (FixedType.isNull()) return FixedType; 5905 FixedType = Context.getPointerType(FixedType); 5906 return Qs.apply(Context, FixedType); 5907 } 5908 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) { 5909 QualType Inner = PTy->getInnerType(); 5910 QualType FixedType = 5911 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative, 5912 Oversized); 5913 if (FixedType.isNull()) return FixedType; 5914 FixedType = Context.getParenType(FixedType); 5915 return Qs.apply(Context, FixedType); 5916 } 5917 5918 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); 5919 if (!VLATy) 5920 return QualType(); 5921 // FIXME: We should probably handle this case 5922 if (VLATy->getElementType()->isVariablyModifiedType()) 5923 return QualType(); 5924 5925 Expr::EvalResult Result; 5926 if (!VLATy->getSizeExpr() || 5927 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context)) 5928 return QualType(); 5929 5930 llvm::APSInt Res = Result.Val.getInt(); 5931 5932 // Check whether the array size is negative. 5933 if (Res.isSigned() && Res.isNegative()) { 5934 SizeIsNegative = true; 5935 return QualType(); 5936 } 5937 5938 // Check whether the array is too large to be addressed. 5939 unsigned ActiveSizeBits 5940 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(), 5941 Res); 5942 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { 5943 Oversized = Res; 5944 return QualType(); 5945 } 5946 5947 return Context.getConstantArrayType( 5948 VLATy->getElementType(), Res, VLATy->getSizeExpr(), ArrayType::Normal, 0); 5949 } 5950 5951 static void 5952 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) { 5953 SrcTL = SrcTL.getUnqualifiedLoc(); 5954 DstTL = DstTL.getUnqualifiedLoc(); 5955 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) { 5956 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>(); 5957 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(), 5958 DstPTL.getPointeeLoc()); 5959 DstPTL.setStarLoc(SrcPTL.getStarLoc()); 5960 return; 5961 } 5962 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) { 5963 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>(); 5964 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(), 5965 DstPTL.getInnerLoc()); 5966 DstPTL.setLParenLoc(SrcPTL.getLParenLoc()); 5967 DstPTL.setRParenLoc(SrcPTL.getRParenLoc()); 5968 return; 5969 } 5970 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>(); 5971 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>(); 5972 TypeLoc SrcElemTL = SrcATL.getElementLoc(); 5973 TypeLoc DstElemTL = DstATL.getElementLoc(); 5974 DstElemTL.initializeFullCopy(SrcElemTL); 5975 DstATL.setLBracketLoc(SrcATL.getLBracketLoc()); 5976 DstATL.setSizeExpr(SrcATL.getSizeExpr()); 5977 DstATL.setRBracketLoc(SrcATL.getRBracketLoc()); 5978 } 5979 5980 /// Helper method to turn variable array types into constant array 5981 /// types in certain situations which would otherwise be errors (for 5982 /// GCC compatibility). 5983 static TypeSourceInfo* 5984 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo, 5985 ASTContext &Context, 5986 bool &SizeIsNegative, 5987 llvm::APSInt &Oversized) { 5988 QualType FixedTy 5989 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context, 5990 SizeIsNegative, Oversized); 5991 if (FixedTy.isNull()) 5992 return nullptr; 5993 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy); 5994 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(), 5995 FixedTInfo->getTypeLoc()); 5996 return FixedTInfo; 5997 } 5998 5999 /// Register the given locally-scoped extern "C" declaration so 6000 /// that it can be found later for redeclarations. We include any extern "C" 6001 /// declaration that is not visible in the translation unit here, not just 6002 /// function-scope declarations. 6003 void 6004 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) { 6005 if (!getLangOpts().CPlusPlus && 6006 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit()) 6007 // Don't need to track declarations in the TU in C. 6008 return; 6009 6010 // Note that we have a locally-scoped external with this name. 6011 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND); 6012 } 6013 6014 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) { 6015 // FIXME: We can have multiple results via __attribute__((overloadable)). 6016 auto Result = Context.getExternCContextDecl()->lookup(Name); 6017 return Result.empty() ? nullptr : *Result.begin(); 6018 } 6019 6020 /// Diagnose function specifiers on a declaration of an identifier that 6021 /// does not identify a function. 6022 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) { 6023 // FIXME: We should probably indicate the identifier in question to avoid 6024 // confusion for constructs like "virtual int a(), b;" 6025 if (DS.isVirtualSpecified()) 6026 Diag(DS.getVirtualSpecLoc(), 6027 diag::err_virtual_non_function); 6028 6029 if (DS.hasExplicitSpecifier()) 6030 Diag(DS.getExplicitSpecLoc(), 6031 diag::err_explicit_non_function); 6032 6033 if (DS.isNoreturnSpecified()) 6034 Diag(DS.getNoreturnSpecLoc(), 6035 diag::err_noreturn_non_function); 6036 } 6037 6038 NamedDecl* 6039 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, 6040 TypeSourceInfo *TInfo, LookupResult &Previous) { 6041 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). 6042 if (D.getCXXScopeSpec().isSet()) { 6043 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) 6044 << D.getCXXScopeSpec().getRange(); 6045 D.setInvalidType(); 6046 // Pretend we didn't see the scope specifier. 6047 DC = CurContext; 6048 Previous.clear(); 6049 } 6050 6051 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 6052 6053 if (D.getDeclSpec().isInlineSpecified()) 6054 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 6055 << getLangOpts().CPlusPlus17; 6056 if (D.getDeclSpec().hasConstexprSpecifier()) 6057 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) 6058 << 1 << D.getDeclSpec().getConstexprSpecifier(); 6059 6060 if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) { 6061 if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName) 6062 Diag(D.getName().StartLocation, 6063 diag::err_deduction_guide_invalid_specifier) 6064 << "typedef"; 6065 else 6066 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) 6067 << D.getName().getSourceRange(); 6068 return nullptr; 6069 } 6070 6071 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo); 6072 if (!NewTD) return nullptr; 6073 6074 // Handle attributes prior to checking for duplicates in MergeVarDecl 6075 ProcessDeclAttributes(S, NewTD, D); 6076 6077 CheckTypedefForVariablyModifiedType(S, NewTD); 6078 6079 bool Redeclaration = D.isRedeclaration(); 6080 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration); 6081 D.setRedeclaration(Redeclaration); 6082 return ND; 6083 } 6084 6085 void 6086 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) { 6087 // C99 6.7.7p2: If a typedef name specifies a variably modified type 6088 // then it shall have block scope. 6089 // Note that variably modified types must be fixed before merging the decl so 6090 // that redeclarations will match. 6091 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo(); 6092 QualType T = TInfo->getType(); 6093 if (T->isVariablyModifiedType()) { 6094 setFunctionHasBranchProtectedScope(); 6095 6096 if (S->getFnParent() == nullptr) { 6097 bool SizeIsNegative; 6098 llvm::APSInt Oversized; 6099 TypeSourceInfo *FixedTInfo = 6100 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 6101 SizeIsNegative, 6102 Oversized); 6103 if (FixedTInfo) { 6104 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size); 6105 NewTD->setTypeSourceInfo(FixedTInfo); 6106 } else { 6107 if (SizeIsNegative) 6108 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size); 6109 else if (T->isVariableArrayType()) 6110 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope); 6111 else if (Oversized.getBoolValue()) 6112 Diag(NewTD->getLocation(), diag::err_array_too_large) 6113 << Oversized.toString(10); 6114 else 6115 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope); 6116 NewTD->setInvalidDecl(); 6117 } 6118 } 6119 } 6120 } 6121 6122 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which 6123 /// declares a typedef-name, either using the 'typedef' type specifier or via 6124 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'. 6125 NamedDecl* 6126 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD, 6127 LookupResult &Previous, bool &Redeclaration) { 6128 6129 // Find the shadowed declaration before filtering for scope. 6130 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous); 6131 6132 // Merge the decl with the existing one if appropriate. If the decl is 6133 // in an outer scope, it isn't the same thing. 6134 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false, 6135 /*AllowInlineNamespace*/false); 6136 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous); 6137 if (!Previous.empty()) { 6138 Redeclaration = true; 6139 MergeTypedefNameDecl(S, NewTD, Previous); 6140 } else { 6141 inferGslPointerAttribute(NewTD); 6142 } 6143 6144 if (ShadowedDecl && !Redeclaration) 6145 CheckShadow(NewTD, ShadowedDecl, Previous); 6146 6147 // If this is the C FILE type, notify the AST context. 6148 if (IdentifierInfo *II = NewTD->getIdentifier()) 6149 if (!NewTD->isInvalidDecl() && 6150 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 6151 if (II->isStr("FILE")) 6152 Context.setFILEDecl(NewTD); 6153 else if (II->isStr("jmp_buf")) 6154 Context.setjmp_bufDecl(NewTD); 6155 else if (II->isStr("sigjmp_buf")) 6156 Context.setsigjmp_bufDecl(NewTD); 6157 else if (II->isStr("ucontext_t")) 6158 Context.setucontext_tDecl(NewTD); 6159 } 6160 6161 return NewTD; 6162 } 6163 6164 /// Determines whether the given declaration is an out-of-scope 6165 /// previous declaration. 6166 /// 6167 /// This routine should be invoked when name lookup has found a 6168 /// previous declaration (PrevDecl) that is not in the scope where a 6169 /// new declaration by the same name is being introduced. If the new 6170 /// declaration occurs in a local scope, previous declarations with 6171 /// linkage may still be considered previous declarations (C99 6172 /// 6.2.2p4-5, C++ [basic.link]p6). 6173 /// 6174 /// \param PrevDecl the previous declaration found by name 6175 /// lookup 6176 /// 6177 /// \param DC the context in which the new declaration is being 6178 /// declared. 6179 /// 6180 /// \returns true if PrevDecl is an out-of-scope previous declaration 6181 /// for a new delcaration with the same name. 6182 static bool 6183 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, 6184 ASTContext &Context) { 6185 if (!PrevDecl) 6186 return false; 6187 6188 if (!PrevDecl->hasLinkage()) 6189 return false; 6190 6191 if (Context.getLangOpts().CPlusPlus) { 6192 // C++ [basic.link]p6: 6193 // If there is a visible declaration of an entity with linkage 6194 // having the same name and type, ignoring entities declared 6195 // outside the innermost enclosing namespace scope, the block 6196 // scope declaration declares that same entity and receives the 6197 // linkage of the previous declaration. 6198 DeclContext *OuterContext = DC->getRedeclContext(); 6199 if (!OuterContext->isFunctionOrMethod()) 6200 // This rule only applies to block-scope declarations. 6201 return false; 6202 6203 DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); 6204 if (PrevOuterContext->isRecord()) 6205 // We found a member function: ignore it. 6206 return false; 6207 6208 // Find the innermost enclosing namespace for the new and 6209 // previous declarations. 6210 OuterContext = OuterContext->getEnclosingNamespaceContext(); 6211 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); 6212 6213 // The previous declaration is in a different namespace, so it 6214 // isn't the same function. 6215 if (!OuterContext->Equals(PrevOuterContext)) 6216 return false; 6217 } 6218 6219 return true; 6220 } 6221 6222 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) { 6223 CXXScopeSpec &SS = D.getCXXScopeSpec(); 6224 if (!SS.isSet()) return; 6225 DD->setQualifierInfo(SS.getWithLocInContext(S.Context)); 6226 } 6227 6228 bool Sema::inferObjCARCLifetime(ValueDecl *decl) { 6229 QualType type = decl->getType(); 6230 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); 6231 if (lifetime == Qualifiers::OCL_Autoreleasing) { 6232 // Various kinds of declaration aren't allowed to be __autoreleasing. 6233 unsigned kind = -1U; 6234 if (VarDecl *var = dyn_cast<VarDecl>(decl)) { 6235 if (var->hasAttr<BlocksAttr>()) 6236 kind = 0; // __block 6237 else if (!var->hasLocalStorage()) 6238 kind = 1; // global 6239 } else if (isa<ObjCIvarDecl>(decl)) { 6240 kind = 3; // ivar 6241 } else if (isa<FieldDecl>(decl)) { 6242 kind = 2; // field 6243 } 6244 6245 if (kind != -1U) { 6246 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) 6247 << kind; 6248 } 6249 } else if (lifetime == Qualifiers::OCL_None) { 6250 // Try to infer lifetime. 6251 if (!type->isObjCLifetimeType()) 6252 return false; 6253 6254 lifetime = type->getObjCARCImplicitLifetime(); 6255 type = Context.getLifetimeQualifiedType(type, lifetime); 6256 decl->setType(type); 6257 } 6258 6259 if (VarDecl *var = dyn_cast<VarDecl>(decl)) { 6260 // Thread-local variables cannot have lifetime. 6261 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && 6262 var->getTLSKind()) { 6263 Diag(var->getLocation(), diag::err_arc_thread_ownership) 6264 << var->getType(); 6265 return true; 6266 } 6267 } 6268 6269 return false; 6270 } 6271 6272 void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) { 6273 if (Decl->getType().hasAddressSpace()) 6274 return; 6275 if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) { 6276 QualType Type = Var->getType(); 6277 if (Type->isSamplerT() || Type->isVoidType()) 6278 return; 6279 LangAS ImplAS = LangAS::opencl_private; 6280 if ((getLangOpts().OpenCLCPlusPlus || getLangOpts().OpenCLVersion >= 200) && 6281 Var->hasGlobalStorage()) 6282 ImplAS = LangAS::opencl_global; 6283 // If the original type from a decayed type is an array type and that array 6284 // type has no address space yet, deduce it now. 6285 if (auto DT = dyn_cast<DecayedType>(Type)) { 6286 auto OrigTy = DT->getOriginalType(); 6287 if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) { 6288 // Add the address space to the original array type and then propagate 6289 // that to the element type through `getAsArrayType`. 6290 OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS); 6291 OrigTy = QualType(Context.getAsArrayType(OrigTy), 0); 6292 // Re-generate the decayed type. 6293 Type = Context.getDecayedType(OrigTy); 6294 } 6295 } 6296 Type = Context.getAddrSpaceQualType(Type, ImplAS); 6297 // Apply any qualifiers (including address space) from the array type to 6298 // the element type. This implements C99 6.7.3p8: "If the specification of 6299 // an array type includes any type qualifiers, the element type is so 6300 // qualified, not the array type." 6301 if (Type->isArrayType()) 6302 Type = QualType(Context.getAsArrayType(Type), 0); 6303 Decl->setType(Type); 6304 } 6305 } 6306 6307 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) { 6308 // Ensure that an auto decl is deduced otherwise the checks below might cache 6309 // the wrong linkage. 6310 assert(S.ParsingInitForAutoVars.count(&ND) == 0); 6311 6312 // 'weak' only applies to declarations with external linkage. 6313 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) { 6314 if (!ND.isExternallyVisible()) { 6315 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static); 6316 ND.dropAttr<WeakAttr>(); 6317 } 6318 } 6319 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) { 6320 if (ND.isExternallyVisible()) { 6321 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static); 6322 ND.dropAttr<WeakRefAttr>(); 6323 ND.dropAttr<AliasAttr>(); 6324 } 6325 } 6326 6327 if (auto *VD = dyn_cast<VarDecl>(&ND)) { 6328 if (VD->hasInit()) { 6329 if (const auto *Attr = VD->getAttr<AliasAttr>()) { 6330 assert(VD->isThisDeclarationADefinition() && 6331 !VD->isExternallyVisible() && "Broken AliasAttr handled late!"); 6332 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0; 6333 VD->dropAttr<AliasAttr>(); 6334 } 6335 } 6336 } 6337 6338 // 'selectany' only applies to externally visible variable declarations. 6339 // It does not apply to functions. 6340 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) { 6341 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) { 6342 S.Diag(Attr->getLocation(), 6343 diag::err_attribute_selectany_non_extern_data); 6344 ND.dropAttr<SelectAnyAttr>(); 6345 } 6346 } 6347 6348 if (const InheritableAttr *Attr = getDLLAttr(&ND)) { 6349 auto *VD = dyn_cast<VarDecl>(&ND); 6350 bool IsAnonymousNS = false; 6351 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft(); 6352 if (VD) { 6353 const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext()); 6354 while (NS && !IsAnonymousNS) { 6355 IsAnonymousNS = NS->isAnonymousNamespace(); 6356 NS = dyn_cast<NamespaceDecl>(NS->getParent()); 6357 } 6358 } 6359 // dll attributes require external linkage. Static locals may have external 6360 // linkage but still cannot be explicitly imported or exported. 6361 // In Microsoft mode, a variable defined in anonymous namespace must have 6362 // external linkage in order to be exported. 6363 bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft; 6364 if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) || 6365 (!AnonNSInMicrosoftMode && 6366 (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) { 6367 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern) 6368 << &ND << Attr; 6369 ND.setInvalidDecl(); 6370 } 6371 } 6372 6373 // Virtual functions cannot be marked as 'notail'. 6374 if (auto *Attr = ND.getAttr<NotTailCalledAttr>()) 6375 if (auto *MD = dyn_cast<CXXMethodDecl>(&ND)) 6376 if (MD->isVirtual()) { 6377 S.Diag(ND.getLocation(), 6378 diag::err_invalid_attribute_on_virtual_function) 6379 << Attr; 6380 ND.dropAttr<NotTailCalledAttr>(); 6381 } 6382 6383 // Check the attributes on the function type, if any. 6384 if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) { 6385 // Don't declare this variable in the second operand of the for-statement; 6386 // GCC miscompiles that by ending its lifetime before evaluating the 6387 // third operand. See gcc.gnu.org/PR86769. 6388 AttributedTypeLoc ATL; 6389 for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc(); 6390 (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); 6391 TL = ATL.getModifiedLoc()) { 6392 // The [[lifetimebound]] attribute can be applied to the implicit object 6393 // parameter of a non-static member function (other than a ctor or dtor) 6394 // by applying it to the function type. 6395 if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) { 6396 const auto *MD = dyn_cast<CXXMethodDecl>(FD); 6397 if (!MD || MD->isStatic()) { 6398 S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param) 6399 << !MD << A->getRange(); 6400 } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) { 6401 S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor) 6402 << isa<CXXDestructorDecl>(MD) << A->getRange(); 6403 } 6404 } 6405 } 6406 } 6407 } 6408 6409 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl, 6410 NamedDecl *NewDecl, 6411 bool IsSpecialization, 6412 bool IsDefinition) { 6413 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl()) 6414 return; 6415 6416 bool IsTemplate = false; 6417 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) { 6418 OldDecl = OldTD->getTemplatedDecl(); 6419 IsTemplate = true; 6420 if (!IsSpecialization) 6421 IsDefinition = false; 6422 } 6423 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) { 6424 NewDecl = NewTD->getTemplatedDecl(); 6425 IsTemplate = true; 6426 } 6427 6428 if (!OldDecl || !NewDecl) 6429 return; 6430 6431 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>(); 6432 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>(); 6433 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>(); 6434 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>(); 6435 6436 // dllimport and dllexport are inheritable attributes so we have to exclude 6437 // inherited attribute instances. 6438 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) || 6439 (NewExportAttr && !NewExportAttr->isInherited()); 6440 6441 // A redeclaration is not allowed to add a dllimport or dllexport attribute, 6442 // the only exception being explicit specializations. 6443 // Implicitly generated declarations are also excluded for now because there 6444 // is no other way to switch these to use dllimport or dllexport. 6445 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr; 6446 6447 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) { 6448 // Allow with a warning for free functions and global variables. 6449 bool JustWarn = false; 6450 if (!OldDecl->isCXXClassMember()) { 6451 auto *VD = dyn_cast<VarDecl>(OldDecl); 6452 if (VD && !VD->getDescribedVarTemplate()) 6453 JustWarn = true; 6454 auto *FD = dyn_cast<FunctionDecl>(OldDecl); 6455 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) 6456 JustWarn = true; 6457 } 6458 6459 // We cannot change a declaration that's been used because IR has already 6460 // been emitted. Dllimported functions will still work though (modulo 6461 // address equality) as they can use the thunk. 6462 if (OldDecl->isUsed()) 6463 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr) 6464 JustWarn = false; 6465 6466 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration 6467 : diag::err_attribute_dll_redeclaration; 6468 S.Diag(NewDecl->getLocation(), DiagID) 6469 << NewDecl 6470 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr); 6471 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 6472 if (!JustWarn) { 6473 NewDecl->setInvalidDecl(); 6474 return; 6475 } 6476 } 6477 6478 // A redeclaration is not allowed to drop a dllimport attribute, the only 6479 // exceptions being inline function definitions (except for function 6480 // templates), local extern declarations, qualified friend declarations or 6481 // special MSVC extension: in the last case, the declaration is treated as if 6482 // it were marked dllexport. 6483 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false; 6484 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft(); 6485 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) { 6486 // Ignore static data because out-of-line definitions are diagnosed 6487 // separately. 6488 IsStaticDataMember = VD->isStaticDataMember(); 6489 IsDefinition = VD->isThisDeclarationADefinition(S.Context) != 6490 VarDecl::DeclarationOnly; 6491 } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) { 6492 IsInline = FD->isInlined(); 6493 IsQualifiedFriend = FD->getQualifier() && 6494 FD->getFriendObjectKind() == Decl::FOK_Declared; 6495 } 6496 6497 if (OldImportAttr && !HasNewAttr && 6498 (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember && 6499 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) { 6500 if (IsMicrosoft && IsDefinition) { 6501 S.Diag(NewDecl->getLocation(), 6502 diag::warn_redeclaration_without_import_attribute) 6503 << NewDecl; 6504 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 6505 NewDecl->dropAttr<DLLImportAttr>(); 6506 NewDecl->addAttr( 6507 DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange())); 6508 } else { 6509 S.Diag(NewDecl->getLocation(), 6510 diag::warn_redeclaration_without_attribute_prev_attribute_ignored) 6511 << NewDecl << OldImportAttr; 6512 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); 6513 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute); 6514 OldDecl->dropAttr<DLLImportAttr>(); 6515 NewDecl->dropAttr<DLLImportAttr>(); 6516 } 6517 } else if (IsInline && OldImportAttr && !IsMicrosoft) { 6518 // In MinGW, seeing a function declared inline drops the dllimport 6519 // attribute. 6520 OldDecl->dropAttr<DLLImportAttr>(); 6521 NewDecl->dropAttr<DLLImportAttr>(); 6522 S.Diag(NewDecl->getLocation(), 6523 diag::warn_dllimport_dropped_from_inline_function) 6524 << NewDecl << OldImportAttr; 6525 } 6526 6527 // A specialization of a class template member function is processed here 6528 // since it's a redeclaration. If the parent class is dllexport, the 6529 // specialization inherits that attribute. This doesn't happen automatically 6530 // since the parent class isn't instantiated until later. 6531 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) { 6532 if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization && 6533 !NewImportAttr && !NewExportAttr) { 6534 if (const DLLExportAttr *ParentExportAttr = 6535 MD->getParent()->getAttr<DLLExportAttr>()) { 6536 DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context); 6537 NewAttr->setInherited(true); 6538 NewDecl->addAttr(NewAttr); 6539 } 6540 } 6541 } 6542 } 6543 6544 /// Given that we are within the definition of the given function, 6545 /// will that definition behave like C99's 'inline', where the 6546 /// definition is discarded except for optimization purposes? 6547 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) { 6548 // Try to avoid calling GetGVALinkageForFunction. 6549 6550 // All cases of this require the 'inline' keyword. 6551 if (!FD->isInlined()) return false; 6552 6553 // This is only possible in C++ with the gnu_inline attribute. 6554 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>()) 6555 return false; 6556 6557 // Okay, go ahead and call the relatively-more-expensive function. 6558 return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally; 6559 } 6560 6561 /// Determine whether a variable is extern "C" prior to attaching 6562 /// an initializer. We can't just call isExternC() here, because that 6563 /// will also compute and cache whether the declaration is externally 6564 /// visible, which might change when we attach the initializer. 6565 /// 6566 /// This can only be used if the declaration is known to not be a 6567 /// redeclaration of an internal linkage declaration. 6568 /// 6569 /// For instance: 6570 /// 6571 /// auto x = []{}; 6572 /// 6573 /// Attaching the initializer here makes this declaration not externally 6574 /// visible, because its type has internal linkage. 6575 /// 6576 /// FIXME: This is a hack. 6577 template<typename T> 6578 static bool isIncompleteDeclExternC(Sema &S, const T *D) { 6579 if (S.getLangOpts().CPlusPlus) { 6580 // In C++, the overloadable attribute negates the effects of extern "C". 6581 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>()) 6582 return false; 6583 6584 // So do CUDA's host/device attributes. 6585 if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() || 6586 D->template hasAttr<CUDAHostAttr>())) 6587 return false; 6588 } 6589 return D->isExternC(); 6590 } 6591 6592 static bool shouldConsiderLinkage(const VarDecl *VD) { 6593 const DeclContext *DC = VD->getDeclContext()->getRedeclContext(); 6594 if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) || 6595 isa<OMPDeclareMapperDecl>(DC)) 6596 return VD->hasExternalStorage(); 6597 if (DC->isFileContext()) 6598 return true; 6599 if (DC->isRecord()) 6600 return false; 6601 if (isa<RequiresExprBodyDecl>(DC)) 6602 return false; 6603 llvm_unreachable("Unexpected context"); 6604 } 6605 6606 static bool shouldConsiderLinkage(const FunctionDecl *FD) { 6607 const DeclContext *DC = FD->getDeclContext()->getRedeclContext(); 6608 if (DC->isFileContext() || DC->isFunctionOrMethod() || 6609 isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC)) 6610 return true; 6611 if (DC->isRecord()) 6612 return false; 6613 llvm_unreachable("Unexpected context"); 6614 } 6615 6616 static bool hasParsedAttr(Scope *S, const Declarator &PD, 6617 ParsedAttr::Kind Kind) { 6618 // Check decl attributes on the DeclSpec. 6619 if (PD.getDeclSpec().getAttributes().hasAttribute(Kind)) 6620 return true; 6621 6622 // Walk the declarator structure, checking decl attributes that were in a type 6623 // position to the decl itself. 6624 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) { 6625 if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind)) 6626 return true; 6627 } 6628 6629 // Finally, check attributes on the decl itself. 6630 return PD.getAttributes().hasAttribute(Kind); 6631 } 6632 6633 /// Adjust the \c DeclContext for a function or variable that might be a 6634 /// function-local external declaration. 6635 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) { 6636 if (!DC->isFunctionOrMethod()) 6637 return false; 6638 6639 // If this is a local extern function or variable declared within a function 6640 // template, don't add it into the enclosing namespace scope until it is 6641 // instantiated; it might have a dependent type right now. 6642 if (DC->isDependentContext()) 6643 return true; 6644 6645 // C++11 [basic.link]p7: 6646 // When a block scope declaration of an entity with linkage is not found to 6647 // refer to some other declaration, then that entity is a member of the 6648 // innermost enclosing namespace. 6649 // 6650 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a 6651 // semantically-enclosing namespace, not a lexically-enclosing one. 6652 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) 6653 DC = DC->getParent(); 6654 return true; 6655 } 6656 6657 /// Returns true if given declaration has external C language linkage. 6658 static bool isDeclExternC(const Decl *D) { 6659 if (const auto *FD = dyn_cast<FunctionDecl>(D)) 6660 return FD->isExternC(); 6661 if (const auto *VD = dyn_cast<VarDecl>(D)) 6662 return VD->isExternC(); 6663 6664 llvm_unreachable("Unknown type of decl!"); 6665 } 6666 /// Returns true if there hasn't been any invalid type diagnosed. 6667 static bool diagnoseOpenCLTypes(Scope *S, Sema &Se, Declarator &D, 6668 DeclContext *DC, QualType R) { 6669 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument. 6670 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function 6671 // argument. 6672 if (R->isImageType() || R->isPipeType()) { 6673 Se.Diag(D.getIdentifierLoc(), 6674 diag::err_opencl_type_can_only_be_used_as_function_parameter) 6675 << R; 6676 D.setInvalidType(); 6677 return false; 6678 } 6679 6680 // OpenCL v1.2 s6.9.r: 6681 // The event type cannot be used to declare a program scope variable. 6682 // OpenCL v2.0 s6.9.q: 6683 // The clk_event_t and reserve_id_t types cannot be declared in program 6684 // scope. 6685 if (NULL == S->getParent()) { 6686 if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) { 6687 Se.Diag(D.getIdentifierLoc(), 6688 diag::err_invalid_type_for_program_scope_var) 6689 << R; 6690 D.setInvalidType(); 6691 return false; 6692 } 6693 } 6694 6695 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed. 6696 QualType NR = R; 6697 while (NR->isPointerType()) { 6698 if (NR->isFunctionPointerType()) { 6699 Se.Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer); 6700 D.setInvalidType(); 6701 return false; 6702 } 6703 NR = NR->getPointeeType(); 6704 } 6705 6706 if (!Se.getOpenCLOptions().isEnabled("cl_khr_fp16")) { 6707 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and 6708 // half array type (unless the cl_khr_fp16 extension is enabled). 6709 if (Se.Context.getBaseElementType(R)->isHalfType()) { 6710 Se.Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R; 6711 D.setInvalidType(); 6712 return false; 6713 } 6714 } 6715 6716 // OpenCL v1.2 s6.9.r: 6717 // The event type cannot be used with the __local, __constant and __global 6718 // address space qualifiers. 6719 if (R->isEventT()) { 6720 if (R.getAddressSpace() != LangAS::opencl_private) { 6721 Se.Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual); 6722 D.setInvalidType(); 6723 return false; 6724 } 6725 } 6726 6727 // C++ for OpenCL does not allow the thread_local storage qualifier. 6728 // OpenCL C does not support thread_local either, and 6729 // also reject all other thread storage class specifiers. 6730 DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec(); 6731 if (TSC != TSCS_unspecified) { 6732 bool IsCXX = Se.getLangOpts().OpenCLCPlusPlus; 6733 Se.Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 6734 diag::err_opencl_unknown_type_specifier) 6735 << IsCXX << Se.getLangOpts().getOpenCLVersionTuple().getAsString() 6736 << DeclSpec::getSpecifierName(TSC) << 1; 6737 D.setInvalidType(); 6738 return false; 6739 } 6740 6741 if (R->isSamplerT()) { 6742 // OpenCL v1.2 s6.9.b p4: 6743 // The sampler type cannot be used with the __local and __global address 6744 // space qualifiers. 6745 if (R.getAddressSpace() == LangAS::opencl_local || 6746 R.getAddressSpace() == LangAS::opencl_global) { 6747 Se.Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace); 6748 D.setInvalidType(); 6749 } 6750 6751 // OpenCL v1.2 s6.12.14.1: 6752 // A global sampler must be declared with either the constant address 6753 // space qualifier or with the const qualifier. 6754 if (DC->isTranslationUnit() && 6755 !(R.getAddressSpace() == LangAS::opencl_constant || 6756 R.isConstQualified())) { 6757 Se.Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler); 6758 D.setInvalidType(); 6759 } 6760 if (D.isInvalidType()) 6761 return false; 6762 } 6763 return true; 6764 } 6765 6766 NamedDecl *Sema::ActOnVariableDeclarator( 6767 Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, 6768 LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, 6769 bool &AddToScope, ArrayRef<BindingDecl *> Bindings) { 6770 QualType R = TInfo->getType(); 6771 DeclarationName Name = GetNameForDeclarator(D).getName(); 6772 6773 IdentifierInfo *II = Name.getAsIdentifierInfo(); 6774 6775 if (D.isDecompositionDeclarator()) { 6776 // Take the name of the first declarator as our name for diagnostic 6777 // purposes. 6778 auto &Decomp = D.getDecompositionDeclarator(); 6779 if (!Decomp.bindings().empty()) { 6780 II = Decomp.bindings()[0].Name; 6781 Name = II; 6782 } 6783 } else if (!II) { 6784 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name; 6785 return nullptr; 6786 } 6787 6788 6789 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); 6790 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec()); 6791 6792 // dllimport globals without explicit storage class are treated as extern. We 6793 // have to change the storage class this early to get the right DeclContext. 6794 if (SC == SC_None && !DC->isRecord() && 6795 hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) && 6796 !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport)) 6797 SC = SC_Extern; 6798 6799 DeclContext *OriginalDC = DC; 6800 bool IsLocalExternDecl = SC == SC_Extern && 6801 adjustContextForLocalExternDecl(DC); 6802 6803 if (SCSpec == DeclSpec::SCS_mutable) { 6804 // mutable can only appear on non-static class members, so it's always 6805 // an error here 6806 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); 6807 D.setInvalidType(); 6808 SC = SC_None; 6809 } 6810 6811 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register && 6812 !D.getAsmLabel() && !getSourceManager().isInSystemMacro( 6813 D.getDeclSpec().getStorageClassSpecLoc())) { 6814 // In C++11, the 'register' storage class specifier is deprecated. 6815 // Suppress the warning in system macros, it's used in macros in some 6816 // popular C system headers, such as in glibc's htonl() macro. 6817 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 6818 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class 6819 : diag::warn_deprecated_register) 6820 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6821 } 6822 6823 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 6824 6825 if (!DC->isRecord() && S->getFnParent() == nullptr) { 6826 // C99 6.9p2: The storage-class specifiers auto and register shall not 6827 // appear in the declaration specifiers in an external declaration. 6828 // Global Register+Asm is a GNU extension we support. 6829 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) { 6830 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); 6831 D.setInvalidType(); 6832 } 6833 } 6834 6835 bool IsMemberSpecialization = false; 6836 bool IsVariableTemplateSpecialization = false; 6837 bool IsPartialSpecialization = false; 6838 bool IsVariableTemplate = false; 6839 VarDecl *NewVD = nullptr; 6840 VarTemplateDecl *NewTemplate = nullptr; 6841 TemplateParameterList *TemplateParams = nullptr; 6842 if (!getLangOpts().CPlusPlus) { 6843 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), 6844 II, R, TInfo, SC); 6845 6846 if (R->getContainedDeducedType()) 6847 ParsingInitForAutoVars.insert(NewVD); 6848 6849 if (D.isInvalidType()) 6850 NewVD->setInvalidDecl(); 6851 6852 if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() && 6853 NewVD->hasLocalStorage()) 6854 checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(), 6855 NTCUC_AutoVar, NTCUK_Destruct); 6856 } else { 6857 bool Invalid = false; 6858 6859 if (DC->isRecord() && !CurContext->isRecord()) { 6860 // This is an out-of-line definition of a static data member. 6861 switch (SC) { 6862 case SC_None: 6863 break; 6864 case SC_Static: 6865 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 6866 diag::err_static_out_of_line) 6867 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6868 break; 6869 case SC_Auto: 6870 case SC_Register: 6871 case SC_Extern: 6872 // [dcl.stc] p2: The auto or register specifiers shall be applied only 6873 // to names of variables declared in a block or to function parameters. 6874 // [dcl.stc] p6: The extern specifier cannot be used in the declaration 6875 // of class members 6876 6877 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 6878 diag::err_storage_class_for_static_member) 6879 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 6880 break; 6881 case SC_PrivateExtern: 6882 llvm_unreachable("C storage class in c++!"); 6883 } 6884 } 6885 6886 if (SC == SC_Static && CurContext->isRecord()) { 6887 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { 6888 // C++ [class.static.data]p2: 6889 // A static data member shall not be a direct member of an unnamed 6890 // or local class 6891 // FIXME: or of a (possibly indirectly) nested class thereof. 6892 if (RD->isLocalClass()) { 6893 Diag(D.getIdentifierLoc(), 6894 diag::err_static_data_member_not_allowed_in_local_class) 6895 << Name << RD->getDeclName() << RD->getTagKind(); 6896 } else if (!RD->getDeclName()) { 6897 Diag(D.getIdentifierLoc(), 6898 diag::err_static_data_member_not_allowed_in_anon_struct) 6899 << Name << RD->getTagKind(); 6900 Invalid = true; 6901 } else if (RD->isUnion()) { 6902 // C++98 [class.union]p1: If a union contains a static data member, 6903 // the program is ill-formed. C++11 drops this restriction. 6904 Diag(D.getIdentifierLoc(), 6905 getLangOpts().CPlusPlus11 6906 ? diag::warn_cxx98_compat_static_data_member_in_union 6907 : diag::ext_static_data_member_in_union) << Name; 6908 } 6909 } 6910 } 6911 6912 // Match up the template parameter lists with the scope specifier, then 6913 // determine whether we have a template or a template specialization. 6914 bool InvalidScope = false; 6915 TemplateParams = MatchTemplateParametersToScopeSpecifier( 6916 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), 6917 D.getCXXScopeSpec(), 6918 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId 6919 ? D.getName().TemplateId 6920 : nullptr, 6921 TemplateParamLists, 6922 /*never a friend*/ false, IsMemberSpecialization, InvalidScope); 6923 Invalid |= InvalidScope; 6924 6925 if (TemplateParams) { 6926 if (!TemplateParams->size() && 6927 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 6928 // There is an extraneous 'template<>' for this variable. Complain 6929 // about it, but allow the declaration of the variable. 6930 Diag(TemplateParams->getTemplateLoc(), 6931 diag::err_template_variable_noparams) 6932 << II 6933 << SourceRange(TemplateParams->getTemplateLoc(), 6934 TemplateParams->getRAngleLoc()); 6935 TemplateParams = nullptr; 6936 } else { 6937 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 6938 // This is an explicit specialization or a partial specialization. 6939 // FIXME: Check that we can declare a specialization here. 6940 IsVariableTemplateSpecialization = true; 6941 IsPartialSpecialization = TemplateParams->size() > 0; 6942 } else { // if (TemplateParams->size() > 0) 6943 // This is a template declaration. 6944 IsVariableTemplate = true; 6945 6946 // Check that we can declare a template here. 6947 if (CheckTemplateDeclScope(S, TemplateParams)) 6948 return nullptr; 6949 6950 // Only C++1y supports variable templates (N3651). 6951 Diag(D.getIdentifierLoc(), 6952 getLangOpts().CPlusPlus14 6953 ? diag::warn_cxx11_compat_variable_template 6954 : diag::ext_variable_template); 6955 } 6956 } 6957 } else { 6958 assert((Invalid || 6959 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && 6960 "should have a 'template<>' for this decl"); 6961 } 6962 6963 if (IsVariableTemplateSpecialization) { 6964 SourceLocation TemplateKWLoc = 6965 TemplateParamLists.size() > 0 6966 ? TemplateParamLists[0]->getTemplateLoc() 6967 : SourceLocation(); 6968 DeclResult Res = ActOnVarTemplateSpecialization( 6969 S, D, TInfo, TemplateKWLoc, TemplateParams, SC, 6970 IsPartialSpecialization); 6971 if (Res.isInvalid()) 6972 return nullptr; 6973 NewVD = cast<VarDecl>(Res.get()); 6974 AddToScope = false; 6975 } else if (D.isDecompositionDeclarator()) { 6976 NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(), 6977 D.getIdentifierLoc(), R, TInfo, SC, 6978 Bindings); 6979 } else 6980 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), 6981 D.getIdentifierLoc(), II, R, TInfo, SC); 6982 6983 // If this is supposed to be a variable template, create it as such. 6984 if (IsVariableTemplate) { 6985 NewTemplate = 6986 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name, 6987 TemplateParams, NewVD); 6988 NewVD->setDescribedVarTemplate(NewTemplate); 6989 } 6990 6991 // If this decl has an auto type in need of deduction, make a note of the 6992 // Decl so we can diagnose uses of it in its own initializer. 6993 if (R->getContainedDeducedType()) 6994 ParsingInitForAutoVars.insert(NewVD); 6995 6996 if (D.isInvalidType() || Invalid) { 6997 NewVD->setInvalidDecl(); 6998 if (NewTemplate) 6999 NewTemplate->setInvalidDecl(); 7000 } 7001 7002 SetNestedNameSpecifier(*this, NewVD, D); 7003 7004 // If we have any template parameter lists that don't directly belong to 7005 // the variable (matching the scope specifier), store them. 7006 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0; 7007 if (TemplateParamLists.size() > VDTemplateParamLists) 7008 NewVD->setTemplateParameterListsInfo( 7009 Context, TemplateParamLists.drop_back(VDTemplateParamLists)); 7010 } 7011 7012 if (D.getDeclSpec().isInlineSpecified()) { 7013 if (!getLangOpts().CPlusPlus) { 7014 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 7015 << 0; 7016 } else if (CurContext->isFunctionOrMethod()) { 7017 // 'inline' is not allowed on block scope variable declaration. 7018 Diag(D.getDeclSpec().getInlineSpecLoc(), 7019 diag::err_inline_declaration_block_scope) << Name 7020 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 7021 } else { 7022 Diag(D.getDeclSpec().getInlineSpecLoc(), 7023 getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable 7024 : diag::ext_inline_variable); 7025 NewVD->setInlineSpecified(); 7026 } 7027 } 7028 7029 // Set the lexical context. If the declarator has a C++ scope specifier, the 7030 // lexical context will be different from the semantic context. 7031 NewVD->setLexicalDeclContext(CurContext); 7032 if (NewTemplate) 7033 NewTemplate->setLexicalDeclContext(CurContext); 7034 7035 if (IsLocalExternDecl) { 7036 if (D.isDecompositionDeclarator()) 7037 for (auto *B : Bindings) 7038 B->setLocalExternDecl(); 7039 else 7040 NewVD->setLocalExternDecl(); 7041 } 7042 7043 bool EmitTLSUnsupportedError = false; 7044 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) { 7045 // C++11 [dcl.stc]p4: 7046 // When thread_local is applied to a variable of block scope the 7047 // storage-class-specifier static is implied if it does not appear 7048 // explicitly. 7049 // Core issue: 'static' is not implied if the variable is declared 7050 // 'extern'. 7051 if (NewVD->hasLocalStorage() && 7052 (SCSpec != DeclSpec::SCS_unspecified || 7053 TSCS != DeclSpec::TSCS_thread_local || 7054 !DC->isFunctionOrMethod())) 7055 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 7056 diag::err_thread_non_global) 7057 << DeclSpec::getSpecifierName(TSCS); 7058 else if (!Context.getTargetInfo().isTLSSupported()) { 7059 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) { 7060 // Postpone error emission until we've collected attributes required to 7061 // figure out whether it's a host or device variable and whether the 7062 // error should be ignored. 7063 EmitTLSUnsupportedError = true; 7064 // We still need to mark the variable as TLS so it shows up in AST with 7065 // proper storage class for other tools to use even if we're not going 7066 // to emit any code for it. 7067 NewVD->setTSCSpec(TSCS); 7068 } else 7069 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 7070 diag::err_thread_unsupported); 7071 } else 7072 NewVD->setTSCSpec(TSCS); 7073 } 7074 7075 switch (D.getDeclSpec().getConstexprSpecifier()) { 7076 case CSK_unspecified: 7077 break; 7078 7079 case CSK_consteval: 7080 Diag(D.getDeclSpec().getConstexprSpecLoc(), 7081 diag::err_constexpr_wrong_decl_kind) 7082 << D.getDeclSpec().getConstexprSpecifier(); 7083 LLVM_FALLTHROUGH; 7084 7085 case CSK_constexpr: 7086 NewVD->setConstexpr(true); 7087 // C++1z [dcl.spec.constexpr]p1: 7088 // A static data member declared with the constexpr specifier is 7089 // implicitly an inline variable. 7090 if (NewVD->isStaticDataMember() && 7091 (getLangOpts().CPlusPlus17 || 7092 Context.getTargetInfo().getCXXABI().isMicrosoft())) 7093 NewVD->setImplicitlyInline(); 7094 break; 7095 7096 case CSK_constinit: 7097 if (!NewVD->hasGlobalStorage()) 7098 Diag(D.getDeclSpec().getConstexprSpecLoc(), 7099 diag::err_constinit_local_variable); 7100 else 7101 NewVD->addAttr(ConstInitAttr::Create( 7102 Context, D.getDeclSpec().getConstexprSpecLoc(), 7103 AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit)); 7104 break; 7105 } 7106 7107 // C99 6.7.4p3 7108 // An inline definition of a function with external linkage shall 7109 // not contain a definition of a modifiable object with static or 7110 // thread storage duration... 7111 // We only apply this when the function is required to be defined 7112 // elsewhere, i.e. when the function is not 'extern inline'. Note 7113 // that a local variable with thread storage duration still has to 7114 // be marked 'static'. Also note that it's possible to get these 7115 // semantics in C++ using __attribute__((gnu_inline)). 7116 if (SC == SC_Static && S->getFnParent() != nullptr && 7117 !NewVD->getType().isConstQualified()) { 7118 FunctionDecl *CurFD = getCurFunctionDecl(); 7119 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) { 7120 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 7121 diag::warn_static_local_in_extern_inline); 7122 MaybeSuggestAddingStaticToDecl(CurFD); 7123 } 7124 } 7125 7126 if (D.getDeclSpec().isModulePrivateSpecified()) { 7127 if (IsVariableTemplateSpecialization) 7128 Diag(NewVD->getLocation(), diag::err_module_private_specialization) 7129 << (IsPartialSpecialization ? 1 : 0) 7130 << FixItHint::CreateRemoval( 7131 D.getDeclSpec().getModulePrivateSpecLoc()); 7132 else if (IsMemberSpecialization) 7133 Diag(NewVD->getLocation(), diag::err_module_private_specialization) 7134 << 2 7135 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 7136 else if (NewVD->hasLocalStorage()) 7137 Diag(NewVD->getLocation(), diag::err_module_private_local) 7138 << 0 << NewVD->getDeclName() 7139 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 7140 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 7141 else { 7142 NewVD->setModulePrivate(); 7143 if (NewTemplate) 7144 NewTemplate->setModulePrivate(); 7145 for (auto *B : Bindings) 7146 B->setModulePrivate(); 7147 } 7148 } 7149 7150 if (getLangOpts().OpenCL) { 7151 7152 deduceOpenCLAddressSpace(NewVD); 7153 7154 diagnoseOpenCLTypes(S, *this, D, DC, NewVD->getType()); 7155 } 7156 7157 // Handle attributes prior to checking for duplicates in MergeVarDecl 7158 ProcessDeclAttributes(S, NewVD, D); 7159 7160 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) { 7161 if (EmitTLSUnsupportedError && 7162 ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) || 7163 (getLangOpts().OpenMPIsDevice && 7164 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD)))) 7165 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 7166 diag::err_thread_unsupported); 7167 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static 7168 // storage [duration]." 7169 if (SC == SC_None && S->getFnParent() != nullptr && 7170 (NewVD->hasAttr<CUDASharedAttr>() || 7171 NewVD->hasAttr<CUDAConstantAttr>())) { 7172 NewVD->setStorageClass(SC_Static); 7173 } 7174 } 7175 7176 // Ensure that dllimport globals without explicit storage class are treated as 7177 // extern. The storage class is set above using parsed attributes. Now we can 7178 // check the VarDecl itself. 7179 assert(!NewVD->hasAttr<DLLImportAttr>() || 7180 NewVD->getAttr<DLLImportAttr>()->isInherited() || 7181 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None); 7182 7183 // In auto-retain/release, infer strong retension for variables of 7184 // retainable type. 7185 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD)) 7186 NewVD->setInvalidDecl(); 7187 7188 // Handle GNU asm-label extension (encoded as an attribute). 7189 if (Expr *E = (Expr*)D.getAsmLabel()) { 7190 // The parser guarantees this is a string. 7191 StringLiteral *SE = cast<StringLiteral>(E); 7192 StringRef Label = SE->getString(); 7193 if (S->getFnParent() != nullptr) { 7194 switch (SC) { 7195 case SC_None: 7196 case SC_Auto: 7197 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label; 7198 break; 7199 case SC_Register: 7200 // Local Named register 7201 if (!Context.getTargetInfo().isValidGCCRegisterName(Label) && 7202 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl())) 7203 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; 7204 break; 7205 case SC_Static: 7206 case SC_Extern: 7207 case SC_PrivateExtern: 7208 break; 7209 } 7210 } else if (SC == SC_Register) { 7211 // Global Named register 7212 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) { 7213 const auto &TI = Context.getTargetInfo(); 7214 bool HasSizeMismatch; 7215 7216 if (!TI.isValidGCCRegisterName(Label)) 7217 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; 7218 else if (!TI.validateGlobalRegisterVariable(Label, 7219 Context.getTypeSize(R), 7220 HasSizeMismatch)) 7221 Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label; 7222 else if (HasSizeMismatch) 7223 Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label; 7224 } 7225 7226 if (!R->isIntegralType(Context) && !R->isPointerType()) { 7227 Diag(D.getBeginLoc(), diag::err_asm_bad_register_type); 7228 NewVD->setInvalidDecl(true); 7229 } 7230 } 7231 7232 NewVD->addAttr(AsmLabelAttr::Create(Context, Label, 7233 /*IsLiteralLabel=*/true, 7234 SE->getStrTokenLoc(0))); 7235 } else if (!ExtnameUndeclaredIdentifiers.empty()) { 7236 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = 7237 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier()); 7238 if (I != ExtnameUndeclaredIdentifiers.end()) { 7239 if (isDeclExternC(NewVD)) { 7240 NewVD->addAttr(I->second); 7241 ExtnameUndeclaredIdentifiers.erase(I); 7242 } else 7243 Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied) 7244 << /*Variable*/1 << NewVD; 7245 } 7246 } 7247 7248 // Find the shadowed declaration before filtering for scope. 7249 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() 7250 ? getShadowedDeclaration(NewVD, Previous) 7251 : nullptr; 7252 7253 // Don't consider existing declarations that are in a different 7254 // scope and are out-of-semantic-context declarations (if the new 7255 // declaration has linkage). 7256 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD), 7257 D.getCXXScopeSpec().isNotEmpty() || 7258 IsMemberSpecialization || 7259 IsVariableTemplateSpecialization); 7260 7261 // Check whether the previous declaration is in the same block scope. This 7262 // affects whether we merge types with it, per C++11 [dcl.array]p3. 7263 if (getLangOpts().CPlusPlus && 7264 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage()) 7265 NewVD->setPreviousDeclInSameBlockScope( 7266 Previous.isSingleResult() && !Previous.isShadowed() && 7267 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false)); 7268 7269 if (!getLangOpts().CPlusPlus) { 7270 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); 7271 } else { 7272 // If this is an explicit specialization of a static data member, check it. 7273 if (IsMemberSpecialization && !NewVD->isInvalidDecl() && 7274 CheckMemberSpecialization(NewVD, Previous)) 7275 NewVD->setInvalidDecl(); 7276 7277 // Merge the decl with the existing one if appropriate. 7278 if (!Previous.empty()) { 7279 if (Previous.isSingleResult() && 7280 isa<FieldDecl>(Previous.getFoundDecl()) && 7281 D.getCXXScopeSpec().isSet()) { 7282 // The user tried to define a non-static data member 7283 // out-of-line (C++ [dcl.meaning]p1). 7284 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) 7285 << D.getCXXScopeSpec().getRange(); 7286 Previous.clear(); 7287 NewVD->setInvalidDecl(); 7288 } 7289 } else if (D.getCXXScopeSpec().isSet()) { 7290 // No previous declaration in the qualifying scope. 7291 Diag(D.getIdentifierLoc(), diag::err_no_member) 7292 << Name << computeDeclContext(D.getCXXScopeSpec(), true) 7293 << D.getCXXScopeSpec().getRange(); 7294 NewVD->setInvalidDecl(); 7295 } 7296 7297 if (!IsVariableTemplateSpecialization) 7298 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); 7299 7300 if (NewTemplate) { 7301 VarTemplateDecl *PrevVarTemplate = 7302 NewVD->getPreviousDecl() 7303 ? NewVD->getPreviousDecl()->getDescribedVarTemplate() 7304 : nullptr; 7305 7306 // Check the template parameter list of this declaration, possibly 7307 // merging in the template parameter list from the previous variable 7308 // template declaration. 7309 if (CheckTemplateParameterList( 7310 TemplateParams, 7311 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters() 7312 : nullptr, 7313 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() && 7314 DC->isDependentContext()) 7315 ? TPC_ClassTemplateMember 7316 : TPC_VarTemplate)) 7317 NewVD->setInvalidDecl(); 7318 7319 // If we are providing an explicit specialization of a static variable 7320 // template, make a note of that. 7321 if (PrevVarTemplate && 7322 PrevVarTemplate->getInstantiatedFromMemberTemplate()) 7323 PrevVarTemplate->setMemberSpecialization(); 7324 } 7325 } 7326 7327 // Diagnose shadowed variables iff this isn't a redeclaration. 7328 if (ShadowedDecl && !D.isRedeclaration()) 7329 CheckShadow(NewVD, ShadowedDecl, Previous); 7330 7331 ProcessPragmaWeak(S, NewVD); 7332 7333 // If this is the first declaration of an extern C variable, update 7334 // the map of such variables. 7335 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() && 7336 isIncompleteDeclExternC(*this, NewVD)) 7337 RegisterLocallyScopedExternCDecl(NewVD, S); 7338 7339 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { 7340 MangleNumberingContext *MCtx; 7341 Decl *ManglingContextDecl; 7342 std::tie(MCtx, ManglingContextDecl) = 7343 getCurrentMangleNumberContext(NewVD->getDeclContext()); 7344 if (MCtx) { 7345 Context.setManglingNumber( 7346 NewVD, MCtx->getManglingNumber( 7347 NewVD, getMSManglingNumber(getLangOpts(), S))); 7348 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); 7349 } 7350 } 7351 7352 // Special handling of variable named 'main'. 7353 if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") && 7354 NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() && 7355 !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) { 7356 7357 // C++ [basic.start.main]p3 7358 // A program that declares a variable main at global scope is ill-formed. 7359 if (getLangOpts().CPlusPlus) 7360 Diag(D.getBeginLoc(), diag::err_main_global_variable); 7361 7362 // In C, and external-linkage variable named main results in undefined 7363 // behavior. 7364 else if (NewVD->hasExternalFormalLinkage()) 7365 Diag(D.getBeginLoc(), diag::warn_main_redefined); 7366 } 7367 7368 if (D.isRedeclaration() && !Previous.empty()) { 7369 NamedDecl *Prev = Previous.getRepresentativeDecl(); 7370 checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization, 7371 D.isFunctionDefinition()); 7372 } 7373 7374 if (NewTemplate) { 7375 if (NewVD->isInvalidDecl()) 7376 NewTemplate->setInvalidDecl(); 7377 ActOnDocumentableDecl(NewTemplate); 7378 return NewTemplate; 7379 } 7380 7381 if (IsMemberSpecialization && !NewVD->isInvalidDecl()) 7382 CompleteMemberSpecialization(NewVD, Previous); 7383 7384 return NewVD; 7385 } 7386 7387 /// Enum describing the %select options in diag::warn_decl_shadow. 7388 enum ShadowedDeclKind { 7389 SDK_Local, 7390 SDK_Global, 7391 SDK_StaticMember, 7392 SDK_Field, 7393 SDK_Typedef, 7394 SDK_Using 7395 }; 7396 7397 /// Determine what kind of declaration we're shadowing. 7398 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl, 7399 const DeclContext *OldDC) { 7400 if (isa<TypeAliasDecl>(ShadowedDecl)) 7401 return SDK_Using; 7402 else if (isa<TypedefDecl>(ShadowedDecl)) 7403 return SDK_Typedef; 7404 else if (isa<RecordDecl>(OldDC)) 7405 return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember; 7406 7407 return OldDC->isFileContext() ? SDK_Global : SDK_Local; 7408 } 7409 7410 /// Return the location of the capture if the given lambda captures the given 7411 /// variable \p VD, or an invalid source location otherwise. 7412 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI, 7413 const VarDecl *VD) { 7414 for (const Capture &Capture : LSI->Captures) { 7415 if (Capture.isVariableCapture() && Capture.getVariable() == VD) 7416 return Capture.getLocation(); 7417 } 7418 return SourceLocation(); 7419 } 7420 7421 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags, 7422 const LookupResult &R) { 7423 // Only diagnose if we're shadowing an unambiguous field or variable. 7424 if (R.getResultKind() != LookupResult::Found) 7425 return false; 7426 7427 // Return false if warning is ignored. 7428 return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()); 7429 } 7430 7431 /// Return the declaration shadowed by the given variable \p D, or null 7432 /// if it doesn't shadow any declaration or shadowing warnings are disabled. 7433 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D, 7434 const LookupResult &R) { 7435 if (!shouldWarnIfShadowedDecl(Diags, R)) 7436 return nullptr; 7437 7438 // Don't diagnose declarations at file scope. 7439 if (D->hasGlobalStorage()) 7440 return nullptr; 7441 7442 NamedDecl *ShadowedDecl = R.getFoundDecl(); 7443 return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl) 7444 ? ShadowedDecl 7445 : nullptr; 7446 } 7447 7448 /// Return the declaration shadowed by the given typedef \p D, or null 7449 /// if it doesn't shadow any declaration or shadowing warnings are disabled. 7450 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D, 7451 const LookupResult &R) { 7452 // Don't warn if typedef declaration is part of a class 7453 if (D->getDeclContext()->isRecord()) 7454 return nullptr; 7455 7456 if (!shouldWarnIfShadowedDecl(Diags, R)) 7457 return nullptr; 7458 7459 NamedDecl *ShadowedDecl = R.getFoundDecl(); 7460 return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr; 7461 } 7462 7463 /// Diagnose variable or built-in function shadowing. Implements 7464 /// -Wshadow. 7465 /// 7466 /// This method is called whenever a VarDecl is added to a "useful" 7467 /// scope. 7468 /// 7469 /// \param ShadowedDecl the declaration that is shadowed by the given variable 7470 /// \param R the lookup of the name 7471 /// 7472 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl, 7473 const LookupResult &R) { 7474 DeclContext *NewDC = D->getDeclContext(); 7475 7476 if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) { 7477 // Fields are not shadowed by variables in C++ static methods. 7478 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC)) 7479 if (MD->isStatic()) 7480 return; 7481 7482 // Fields shadowed by constructor parameters are a special case. Usually 7483 // the constructor initializes the field with the parameter. 7484 if (isa<CXXConstructorDecl>(NewDC)) 7485 if (const auto PVD = dyn_cast<ParmVarDecl>(D)) { 7486 // Remember that this was shadowed so we can either warn about its 7487 // modification or its existence depending on warning settings. 7488 ShadowingDecls.insert({PVD->getCanonicalDecl(), FD}); 7489 return; 7490 } 7491 } 7492 7493 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl)) 7494 if (shadowedVar->isExternC()) { 7495 // For shadowing external vars, make sure that we point to the global 7496 // declaration, not a locally scoped extern declaration. 7497 for (auto I : shadowedVar->redecls()) 7498 if (I->isFileVarDecl()) { 7499 ShadowedDecl = I; 7500 break; 7501 } 7502 } 7503 7504 DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext(); 7505 7506 unsigned WarningDiag = diag::warn_decl_shadow; 7507 SourceLocation CaptureLoc; 7508 if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC && 7509 isa<CXXMethodDecl>(NewDC)) { 7510 if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) { 7511 if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) { 7512 if (RD->getLambdaCaptureDefault() == LCD_None) { 7513 // Try to avoid warnings for lambdas with an explicit capture list. 7514 const auto *LSI = cast<LambdaScopeInfo>(getCurFunction()); 7515 // Warn only when the lambda captures the shadowed decl explicitly. 7516 CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl)); 7517 if (CaptureLoc.isInvalid()) 7518 WarningDiag = diag::warn_decl_shadow_uncaptured_local; 7519 } else { 7520 // Remember that this was shadowed so we can avoid the warning if the 7521 // shadowed decl isn't captured and the warning settings allow it. 7522 cast<LambdaScopeInfo>(getCurFunction()) 7523 ->ShadowingDecls.push_back( 7524 {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)}); 7525 return; 7526 } 7527 } 7528 7529 if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) { 7530 // A variable can't shadow a local variable in an enclosing scope, if 7531 // they are separated by a non-capturing declaration context. 7532 for (DeclContext *ParentDC = NewDC; 7533 ParentDC && !ParentDC->Equals(OldDC); 7534 ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) { 7535 // Only block literals, captured statements, and lambda expressions 7536 // can capture; other scopes don't. 7537 if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) && 7538 !isLambdaCallOperator(ParentDC)) { 7539 return; 7540 } 7541 } 7542 } 7543 } 7544 } 7545 7546 // Only warn about certain kinds of shadowing for class members. 7547 if (NewDC && NewDC->isRecord()) { 7548 // In particular, don't warn about shadowing non-class members. 7549 if (!OldDC->isRecord()) 7550 return; 7551 7552 // TODO: should we warn about static data members shadowing 7553 // static data members from base classes? 7554 7555 // TODO: don't diagnose for inaccessible shadowed members. 7556 // This is hard to do perfectly because we might friend the 7557 // shadowing context, but that's just a false negative. 7558 } 7559 7560 7561 DeclarationName Name = R.getLookupName(); 7562 7563 // Emit warning and note. 7564 if (getSourceManager().isInSystemMacro(R.getNameLoc())) 7565 return; 7566 ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC); 7567 Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC; 7568 if (!CaptureLoc.isInvalid()) 7569 Diag(CaptureLoc, diag::note_var_explicitly_captured_here) 7570 << Name << /*explicitly*/ 1; 7571 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 7572 } 7573 7574 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD 7575 /// when these variables are captured by the lambda. 7576 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) { 7577 for (const auto &Shadow : LSI->ShadowingDecls) { 7578 const VarDecl *ShadowedDecl = Shadow.ShadowedDecl; 7579 // Try to avoid the warning when the shadowed decl isn't captured. 7580 SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl); 7581 const DeclContext *OldDC = ShadowedDecl->getDeclContext(); 7582 Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid() 7583 ? diag::warn_decl_shadow_uncaptured_local 7584 : diag::warn_decl_shadow) 7585 << Shadow.VD->getDeclName() 7586 << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC; 7587 if (!CaptureLoc.isInvalid()) 7588 Diag(CaptureLoc, diag::note_var_explicitly_captured_here) 7589 << Shadow.VD->getDeclName() << /*explicitly*/ 0; 7590 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 7591 } 7592 } 7593 7594 /// Check -Wshadow without the advantage of a previous lookup. 7595 void Sema::CheckShadow(Scope *S, VarDecl *D) { 7596 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation())) 7597 return; 7598 7599 LookupResult R(*this, D->getDeclName(), D->getLocation(), 7600 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); 7601 LookupName(R, S); 7602 if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R)) 7603 CheckShadow(D, ShadowedDecl, R); 7604 } 7605 7606 /// Check if 'E', which is an expression that is about to be modified, refers 7607 /// to a constructor parameter that shadows a field. 7608 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) { 7609 // Quickly ignore expressions that can't be shadowing ctor parameters. 7610 if (!getLangOpts().CPlusPlus || ShadowingDecls.empty()) 7611 return; 7612 E = E->IgnoreParenImpCasts(); 7613 auto *DRE = dyn_cast<DeclRefExpr>(E); 7614 if (!DRE) 7615 return; 7616 const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl()); 7617 auto I = ShadowingDecls.find(D); 7618 if (I == ShadowingDecls.end()) 7619 return; 7620 const NamedDecl *ShadowedDecl = I->second; 7621 const DeclContext *OldDC = ShadowedDecl->getDeclContext(); 7622 Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC; 7623 Diag(D->getLocation(), diag::note_var_declared_here) << D; 7624 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); 7625 7626 // Avoid issuing multiple warnings about the same decl. 7627 ShadowingDecls.erase(I); 7628 } 7629 7630 /// Check for conflict between this global or extern "C" declaration and 7631 /// previous global or extern "C" declarations. This is only used in C++. 7632 template<typename T> 7633 static bool checkGlobalOrExternCConflict( 7634 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) { 7635 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""); 7636 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName()); 7637 7638 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) { 7639 // The common case: this global doesn't conflict with any extern "C" 7640 // declaration. 7641 return false; 7642 } 7643 7644 if (Prev) { 7645 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) { 7646 // Both the old and new declarations have C language linkage. This is a 7647 // redeclaration. 7648 Previous.clear(); 7649 Previous.addDecl(Prev); 7650 return true; 7651 } 7652 7653 // This is a global, non-extern "C" declaration, and there is a previous 7654 // non-global extern "C" declaration. Diagnose if this is a variable 7655 // declaration. 7656 if (!isa<VarDecl>(ND)) 7657 return false; 7658 } else { 7659 // The declaration is extern "C". Check for any declaration in the 7660 // translation unit which might conflict. 7661 if (IsGlobal) { 7662 // We have already performed the lookup into the translation unit. 7663 IsGlobal = false; 7664 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 7665 I != E; ++I) { 7666 if (isa<VarDecl>(*I)) { 7667 Prev = *I; 7668 break; 7669 } 7670 } 7671 } else { 7672 DeclContext::lookup_result R = 7673 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName()); 7674 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end(); 7675 I != E; ++I) { 7676 if (isa<VarDecl>(*I)) { 7677 Prev = *I; 7678 break; 7679 } 7680 // FIXME: If we have any other entity with this name in global scope, 7681 // the declaration is ill-formed, but that is a defect: it breaks the 7682 // 'stat' hack, for instance. Only variables can have mangled name 7683 // clashes with extern "C" declarations, so only they deserve a 7684 // diagnostic. 7685 } 7686 } 7687 7688 if (!Prev) 7689 return false; 7690 } 7691 7692 // Use the first declaration's location to ensure we point at something which 7693 // is lexically inside an extern "C" linkage-spec. 7694 assert(Prev && "should have found a previous declaration to diagnose"); 7695 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev)) 7696 Prev = FD->getFirstDecl(); 7697 else 7698 Prev = cast<VarDecl>(Prev)->getFirstDecl(); 7699 7700 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict) 7701 << IsGlobal << ND; 7702 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict) 7703 << IsGlobal; 7704 return false; 7705 } 7706 7707 /// Apply special rules for handling extern "C" declarations. Returns \c true 7708 /// if we have found that this is a redeclaration of some prior entity. 7709 /// 7710 /// Per C++ [dcl.link]p6: 7711 /// Two declarations [for a function or variable] with C language linkage 7712 /// with the same name that appear in different scopes refer to the same 7713 /// [entity]. An entity with C language linkage shall not be declared with 7714 /// the same name as an entity in global scope. 7715 template<typename T> 7716 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND, 7717 LookupResult &Previous) { 7718 if (!S.getLangOpts().CPlusPlus) { 7719 // In C, when declaring a global variable, look for a corresponding 'extern' 7720 // variable declared in function scope. We don't need this in C++, because 7721 // we find local extern decls in the surrounding file-scope DeclContext. 7722 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 7723 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) { 7724 Previous.clear(); 7725 Previous.addDecl(Prev); 7726 return true; 7727 } 7728 } 7729 return false; 7730 } 7731 7732 // A declaration in the translation unit can conflict with an extern "C" 7733 // declaration. 7734 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) 7735 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous); 7736 7737 // An extern "C" declaration can conflict with a declaration in the 7738 // translation unit or can be a redeclaration of an extern "C" declaration 7739 // in another scope. 7740 if (isIncompleteDeclExternC(S,ND)) 7741 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous); 7742 7743 // Neither global nor extern "C": nothing to do. 7744 return false; 7745 } 7746 7747 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) { 7748 // If the decl is already known invalid, don't check it. 7749 if (NewVD->isInvalidDecl()) 7750 return; 7751 7752 QualType T = NewVD->getType(); 7753 7754 // Defer checking an 'auto' type until its initializer is attached. 7755 if (T->isUndeducedType()) 7756 return; 7757 7758 if (NewVD->hasAttrs()) 7759 CheckAlignasUnderalignment(NewVD); 7760 7761 if (T->isObjCObjectType()) { 7762 Diag(NewVD->getLocation(), diag::err_statically_allocated_object) 7763 << FixItHint::CreateInsertion(NewVD->getLocation(), "*"); 7764 T = Context.getObjCObjectPointerType(T); 7765 NewVD->setType(T); 7766 } 7767 7768 // Emit an error if an address space was applied to decl with local storage. 7769 // This includes arrays of objects with address space qualifiers, but not 7770 // automatic variables that point to other address spaces. 7771 // ISO/IEC TR 18037 S5.1.2 7772 if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() && 7773 T.getAddressSpace() != LangAS::Default) { 7774 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0; 7775 NewVD->setInvalidDecl(); 7776 return; 7777 } 7778 7779 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program 7780 // scope. 7781 if (getLangOpts().OpenCLVersion == 120 && 7782 !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") && 7783 NewVD->isStaticLocal()) { 7784 Diag(NewVD->getLocation(), diag::err_static_function_scope); 7785 NewVD->setInvalidDecl(); 7786 return; 7787 } 7788 7789 if (getLangOpts().OpenCL) { 7790 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported. 7791 if (NewVD->hasAttr<BlocksAttr>()) { 7792 Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type); 7793 return; 7794 } 7795 7796 if (T->isBlockPointerType()) { 7797 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and 7798 // can't use 'extern' storage class. 7799 if (!T.isConstQualified()) { 7800 Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration) 7801 << 0 /*const*/; 7802 NewVD->setInvalidDecl(); 7803 return; 7804 } 7805 if (NewVD->hasExternalStorage()) { 7806 Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration); 7807 NewVD->setInvalidDecl(); 7808 return; 7809 } 7810 } 7811 // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the 7812 // __constant address space. 7813 // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static 7814 // variables inside a function can also be declared in the global 7815 // address space. 7816 // C++ for OpenCL inherits rule from OpenCL C v2.0. 7817 // FIXME: Adding local AS in C++ for OpenCL might make sense. 7818 if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() || 7819 NewVD->hasExternalStorage()) { 7820 if (!T->isSamplerT() && 7821 !(T.getAddressSpace() == LangAS::opencl_constant || 7822 (T.getAddressSpace() == LangAS::opencl_global && 7823 (getLangOpts().OpenCLVersion == 200 || 7824 getLangOpts().OpenCLCPlusPlus)))) { 7825 int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1; 7826 if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus) 7827 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) 7828 << Scope << "global or constant"; 7829 else 7830 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) 7831 << Scope << "constant"; 7832 NewVD->setInvalidDecl(); 7833 return; 7834 } 7835 } else { 7836 if (T.getAddressSpace() == LangAS::opencl_global) { 7837 Diag(NewVD->getLocation(), diag::err_opencl_function_variable) 7838 << 1 /*is any function*/ << "global"; 7839 NewVD->setInvalidDecl(); 7840 return; 7841 } 7842 if (T.getAddressSpace() == LangAS::opencl_constant || 7843 T.getAddressSpace() == LangAS::opencl_local) { 7844 FunctionDecl *FD = getCurFunctionDecl(); 7845 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables 7846 // in functions. 7847 if (FD && !FD->hasAttr<OpenCLKernelAttr>()) { 7848 if (T.getAddressSpace() == LangAS::opencl_constant) 7849 Diag(NewVD->getLocation(), diag::err_opencl_function_variable) 7850 << 0 /*non-kernel only*/ << "constant"; 7851 else 7852 Diag(NewVD->getLocation(), diag::err_opencl_function_variable) 7853 << 0 /*non-kernel only*/ << "local"; 7854 NewVD->setInvalidDecl(); 7855 return; 7856 } 7857 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be 7858 // in the outermost scope of a kernel function. 7859 if (FD && FD->hasAttr<OpenCLKernelAttr>()) { 7860 if (!getCurScope()->isFunctionScope()) { 7861 if (T.getAddressSpace() == LangAS::opencl_constant) 7862 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) 7863 << "constant"; 7864 else 7865 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) 7866 << "local"; 7867 NewVD->setInvalidDecl(); 7868 return; 7869 } 7870 } 7871 } else if (T.getAddressSpace() != LangAS::opencl_private && 7872 // If we are parsing a template we didn't deduce an addr 7873 // space yet. 7874 T.getAddressSpace() != LangAS::Default) { 7875 // Do not allow other address spaces on automatic variable. 7876 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1; 7877 NewVD->setInvalidDecl(); 7878 return; 7879 } 7880 } 7881 } 7882 7883 if (NewVD->hasLocalStorage() && T.isObjCGCWeak() 7884 && !NewVD->hasAttr<BlocksAttr>()) { 7885 if (getLangOpts().getGC() != LangOptions::NonGC) 7886 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local); 7887 else { 7888 assert(!getLangOpts().ObjCAutoRefCount); 7889 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); 7890 } 7891 } 7892 7893 bool isVM = T->isVariablyModifiedType(); 7894 if (isVM || NewVD->hasAttr<CleanupAttr>() || 7895 NewVD->hasAttr<BlocksAttr>()) 7896 setFunctionHasBranchProtectedScope(); 7897 7898 if ((isVM && NewVD->hasLinkage()) || 7899 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) { 7900 bool SizeIsNegative; 7901 llvm::APSInt Oversized; 7902 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo( 7903 NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized); 7904 QualType FixedT; 7905 if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType()) 7906 FixedT = FixedTInfo->getType(); 7907 else if (FixedTInfo) { 7908 // Type and type-as-written are canonically different. We need to fix up 7909 // both types separately. 7910 FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, 7911 Oversized); 7912 } 7913 if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) { 7914 const VariableArrayType *VAT = Context.getAsVariableArrayType(T); 7915 // FIXME: This won't give the correct result for 7916 // int a[10][n]; 7917 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); 7918 7919 if (NewVD->isFileVarDecl()) 7920 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) 7921 << SizeRange; 7922 else if (NewVD->isStaticLocal()) 7923 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) 7924 << SizeRange; 7925 else 7926 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) 7927 << SizeRange; 7928 NewVD->setInvalidDecl(); 7929 return; 7930 } 7931 7932 if (!FixedTInfo) { 7933 if (NewVD->isFileVarDecl()) 7934 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); 7935 else 7936 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); 7937 NewVD->setInvalidDecl(); 7938 return; 7939 } 7940 7941 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size); 7942 NewVD->setType(FixedT); 7943 NewVD->setTypeSourceInfo(FixedTInfo); 7944 } 7945 7946 if (T->isVoidType()) { 7947 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names 7948 // of objects and functions. 7949 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) { 7950 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) 7951 << T; 7952 NewVD->setInvalidDecl(); 7953 return; 7954 } 7955 } 7956 7957 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { 7958 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); 7959 NewVD->setInvalidDecl(); 7960 return; 7961 } 7962 7963 if (!NewVD->hasLocalStorage() && T->isSizelessType()) { 7964 Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T; 7965 NewVD->setInvalidDecl(); 7966 return; 7967 } 7968 7969 if (isVM && NewVD->hasAttr<BlocksAttr>()) { 7970 Diag(NewVD->getLocation(), diag::err_block_on_vm); 7971 NewVD->setInvalidDecl(); 7972 return; 7973 } 7974 7975 if (NewVD->isConstexpr() && !T->isDependentType() && 7976 RequireLiteralType(NewVD->getLocation(), T, 7977 diag::err_constexpr_var_non_literal)) { 7978 NewVD->setInvalidDecl(); 7979 return; 7980 } 7981 } 7982 7983 /// Perform semantic checking on a newly-created variable 7984 /// declaration. 7985 /// 7986 /// This routine performs all of the type-checking required for a 7987 /// variable declaration once it has been built. It is used both to 7988 /// check variables after they have been parsed and their declarators 7989 /// have been translated into a declaration, and to check variables 7990 /// that have been instantiated from a template. 7991 /// 7992 /// Sets NewVD->isInvalidDecl() if an error was encountered. 7993 /// 7994 /// Returns true if the variable declaration is a redeclaration. 7995 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) { 7996 CheckVariableDeclarationType(NewVD); 7997 7998 // If the decl is already known invalid, don't check it. 7999 if (NewVD->isInvalidDecl()) 8000 return false; 8001 8002 // If we did not find anything by this name, look for a non-visible 8003 // extern "C" declaration with the same name. 8004 if (Previous.empty() && 8005 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous)) 8006 Previous.setShadowed(); 8007 8008 if (!Previous.empty()) { 8009 MergeVarDecl(NewVD, Previous); 8010 return true; 8011 } 8012 return false; 8013 } 8014 8015 namespace { 8016 struct FindOverriddenMethod { 8017 Sema *S; 8018 CXXMethodDecl *Method; 8019 8020 /// Member lookup function that determines whether a given C++ 8021 /// method overrides a method in a base class, to be used with 8022 /// CXXRecordDecl::lookupInBases(). 8023 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { 8024 RecordDecl *BaseRecord = 8025 Specifier->getType()->castAs<RecordType>()->getDecl(); 8026 8027 DeclarationName Name = Method->getDeclName(); 8028 8029 // FIXME: Do we care about other names here too? 8030 if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 8031 // We really want to find the base class destructor here. 8032 QualType T = S->Context.getTypeDeclType(BaseRecord); 8033 CanQualType CT = S->Context.getCanonicalType(T); 8034 8035 Name = S->Context.DeclarationNames.getCXXDestructorName(CT); 8036 } 8037 8038 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty(); 8039 Path.Decls = Path.Decls.slice(1)) { 8040 NamedDecl *D = Path.Decls.front(); 8041 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 8042 if (MD->isVirtual() && 8043 !S->IsOverload( 8044 Method, MD, /*UseMemberUsingDeclRules=*/false, 8045 /*ConsiderCudaAttrs=*/true, 8046 // C++2a [class.virtual]p2 does not consider requires clauses 8047 // when overriding. 8048 /*ConsiderRequiresClauses=*/false)) 8049 return true; 8050 } 8051 } 8052 8053 return false; 8054 } 8055 }; 8056 } // end anonymous namespace 8057 8058 /// AddOverriddenMethods - See if a method overrides any in the base classes, 8059 /// and if so, check that it's a valid override and remember it. 8060 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { 8061 // Look for methods in base classes that this method might override. 8062 CXXBasePaths Paths; 8063 FindOverriddenMethod FOM; 8064 FOM.Method = MD; 8065 FOM.S = this; 8066 bool AddedAny = false; 8067 if (DC->lookupInBases(FOM, Paths)) { 8068 for (auto *I : Paths.found_decls()) { 8069 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) { 8070 MD->addOverriddenMethod(OldMD->getCanonicalDecl()); 8071 if (!CheckOverridingFunctionReturnType(MD, OldMD) && 8072 !CheckOverridingFunctionAttributes(MD, OldMD) && 8073 !CheckOverridingFunctionExceptionSpec(MD, OldMD) && 8074 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) { 8075 AddedAny = true; 8076 } 8077 } 8078 } 8079 } 8080 8081 return AddedAny; 8082 } 8083 8084 namespace { 8085 // Struct for holding all of the extra arguments needed by 8086 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator. 8087 struct ActOnFDArgs { 8088 Scope *S; 8089 Declarator &D; 8090 MultiTemplateParamsArg TemplateParamLists; 8091 bool AddToScope; 8092 }; 8093 } // end anonymous namespace 8094 8095 namespace { 8096 8097 // Callback to only accept typo corrections that have a non-zero edit distance. 8098 // Also only accept corrections that have the same parent decl. 8099 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback { 8100 public: 8101 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD, 8102 CXXRecordDecl *Parent) 8103 : Context(Context), OriginalFD(TypoFD), 8104 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {} 8105 8106 bool ValidateCandidate(const TypoCorrection &candidate) override { 8107 if (candidate.getEditDistance() == 0) 8108 return false; 8109 8110 SmallVector<unsigned, 1> MismatchedParams; 8111 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(), 8112 CDeclEnd = candidate.end(); 8113 CDecl != CDeclEnd; ++CDecl) { 8114 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); 8115 8116 if (FD && !FD->hasBody() && 8117 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) { 8118 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 8119 CXXRecordDecl *Parent = MD->getParent(); 8120 if (Parent && Parent->getCanonicalDecl() == ExpectedParent) 8121 return true; 8122 } else if (!ExpectedParent) { 8123 return true; 8124 } 8125 } 8126 } 8127 8128 return false; 8129 } 8130 8131 std::unique_ptr<CorrectionCandidateCallback> clone() override { 8132 return std::make_unique<DifferentNameValidatorCCC>(*this); 8133 } 8134 8135 private: 8136 ASTContext &Context; 8137 FunctionDecl *OriginalFD; 8138 CXXRecordDecl *ExpectedParent; 8139 }; 8140 8141 } // end anonymous namespace 8142 8143 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) { 8144 TypoCorrectedFunctionDefinitions.insert(F); 8145 } 8146 8147 /// Generate diagnostics for an invalid function redeclaration. 8148 /// 8149 /// This routine handles generating the diagnostic messages for an invalid 8150 /// function redeclaration, including finding possible similar declarations 8151 /// or performing typo correction if there are no previous declarations with 8152 /// the same name. 8153 /// 8154 /// Returns a NamedDecl iff typo correction was performed and substituting in 8155 /// the new declaration name does not cause new errors. 8156 static NamedDecl *DiagnoseInvalidRedeclaration( 8157 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD, 8158 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) { 8159 DeclarationName Name = NewFD->getDeclName(); 8160 DeclContext *NewDC = NewFD->getDeclContext(); 8161 SmallVector<unsigned, 1> MismatchedParams; 8162 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches; 8163 TypoCorrection Correction; 8164 bool IsDefinition = ExtraArgs.D.isFunctionDefinition(); 8165 unsigned DiagMsg = 8166 IsLocalFriend ? diag::err_no_matching_local_friend : 8167 NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match : 8168 diag::err_member_decl_does_not_match; 8169 LookupResult Prev(SemaRef, Name, NewFD->getLocation(), 8170 IsLocalFriend ? Sema::LookupLocalFriendName 8171 : Sema::LookupOrdinaryName, 8172 Sema::ForVisibleRedeclaration); 8173 8174 NewFD->setInvalidDecl(); 8175 if (IsLocalFriend) 8176 SemaRef.LookupName(Prev, S); 8177 else 8178 SemaRef.LookupQualifiedName(Prev, NewDC); 8179 assert(!Prev.isAmbiguous() && 8180 "Cannot have an ambiguity in previous-declaration lookup"); 8181 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 8182 DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD, 8183 MD ? MD->getParent() : nullptr); 8184 if (!Prev.empty()) { 8185 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); 8186 Func != FuncEnd; ++Func) { 8187 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func); 8188 if (FD && 8189 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { 8190 // Add 1 to the index so that 0 can mean the mismatch didn't 8191 // involve a parameter 8192 unsigned ParamNum = 8193 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1; 8194 NearMatches.push_back(std::make_pair(FD, ParamNum)); 8195 } 8196 } 8197 // If the qualified name lookup yielded nothing, try typo correction 8198 } else if ((Correction = SemaRef.CorrectTypo( 8199 Prev.getLookupNameInfo(), Prev.getLookupKind(), S, 8200 &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery, 8201 IsLocalFriend ? nullptr : NewDC))) { 8202 // Set up everything for the call to ActOnFunctionDeclarator 8203 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(), 8204 ExtraArgs.D.getIdentifierLoc()); 8205 Previous.clear(); 8206 Previous.setLookupName(Correction.getCorrection()); 8207 for (TypoCorrection::decl_iterator CDecl = Correction.begin(), 8208 CDeclEnd = Correction.end(); 8209 CDecl != CDeclEnd; ++CDecl) { 8210 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); 8211 if (FD && !FD->hasBody() && 8212 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { 8213 Previous.addDecl(FD); 8214 } 8215 } 8216 bool wasRedeclaration = ExtraArgs.D.isRedeclaration(); 8217 8218 NamedDecl *Result; 8219 // Retry building the function declaration with the new previous 8220 // declarations, and with errors suppressed. 8221 { 8222 // Trap errors. 8223 Sema::SFINAETrap Trap(SemaRef); 8224 8225 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the 8226 // pieces need to verify the typo-corrected C++ declaration and hopefully 8227 // eliminate the need for the parameter pack ExtraArgs. 8228 Result = SemaRef.ActOnFunctionDeclarator( 8229 ExtraArgs.S, ExtraArgs.D, 8230 Correction.getCorrectionDecl()->getDeclContext(), 8231 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists, 8232 ExtraArgs.AddToScope); 8233 8234 if (Trap.hasErrorOccurred()) 8235 Result = nullptr; 8236 } 8237 8238 if (Result) { 8239 // Determine which correction we picked. 8240 Decl *Canonical = Result->getCanonicalDecl(); 8241 for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); 8242 I != E; ++I) 8243 if ((*I)->getCanonicalDecl() == Canonical) 8244 Correction.setCorrectionDecl(*I); 8245 8246 // Let Sema know about the correction. 8247 SemaRef.MarkTypoCorrectedFunctionDefinition(Result); 8248 SemaRef.diagnoseTypo( 8249 Correction, 8250 SemaRef.PDiag(IsLocalFriend 8251 ? diag::err_no_matching_local_friend_suggest 8252 : diag::err_member_decl_does_not_match_suggest) 8253 << Name << NewDC << IsDefinition); 8254 return Result; 8255 } 8256 8257 // Pretend the typo correction never occurred 8258 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(), 8259 ExtraArgs.D.getIdentifierLoc()); 8260 ExtraArgs.D.setRedeclaration(wasRedeclaration); 8261 Previous.clear(); 8262 Previous.setLookupName(Name); 8263 } 8264 8265 SemaRef.Diag(NewFD->getLocation(), DiagMsg) 8266 << Name << NewDC << IsDefinition << NewFD->getLocation(); 8267 8268 bool NewFDisConst = false; 8269 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) 8270 NewFDisConst = NewMD->isConst(); 8271 8272 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator 8273 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end(); 8274 NearMatch != NearMatchEnd; ++NearMatch) { 8275 FunctionDecl *FD = NearMatch->first; 8276 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 8277 bool FDisConst = MD && MD->isConst(); 8278 bool IsMember = MD || !IsLocalFriend; 8279 8280 // FIXME: These notes are poorly worded for the local friend case. 8281 if (unsigned Idx = NearMatch->second) { 8282 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1); 8283 SourceLocation Loc = FDParam->getTypeSpecStartLoc(); 8284 if (Loc.isInvalid()) Loc = FD->getLocation(); 8285 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match 8286 : diag::note_local_decl_close_param_match) 8287 << Idx << FDParam->getType() 8288 << NewFD->getParamDecl(Idx - 1)->getType(); 8289 } else if (FDisConst != NewFDisConst) { 8290 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match) 8291 << NewFDisConst << FD->getSourceRange().getEnd(); 8292 } else 8293 SemaRef.Diag(FD->getLocation(), 8294 IsMember ? diag::note_member_def_close_match 8295 : diag::note_local_decl_close_match); 8296 } 8297 return nullptr; 8298 } 8299 8300 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) { 8301 switch (D.getDeclSpec().getStorageClassSpec()) { 8302 default: llvm_unreachable("Unknown storage class!"); 8303 case DeclSpec::SCS_auto: 8304 case DeclSpec::SCS_register: 8305 case DeclSpec::SCS_mutable: 8306 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), 8307 diag::err_typecheck_sclass_func); 8308 D.getMutableDeclSpec().ClearStorageClassSpecs(); 8309 D.setInvalidType(); 8310 break; 8311 case DeclSpec::SCS_unspecified: break; 8312 case DeclSpec::SCS_extern: 8313 if (D.getDeclSpec().isExternInLinkageSpec()) 8314 return SC_None; 8315 return SC_Extern; 8316 case DeclSpec::SCS_static: { 8317 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) { 8318 // C99 6.7.1p5: 8319 // The declaration of an identifier for a function that has 8320 // block scope shall have no explicit storage-class specifier 8321 // other than extern 8322 // See also (C++ [dcl.stc]p4). 8323 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), 8324 diag::err_static_block_func); 8325 break; 8326 } else 8327 return SC_Static; 8328 } 8329 case DeclSpec::SCS_private_extern: return SC_PrivateExtern; 8330 } 8331 8332 // No explicit storage class has already been returned 8333 return SC_None; 8334 } 8335 8336 static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D, 8337 DeclContext *DC, QualType &R, 8338 TypeSourceInfo *TInfo, 8339 StorageClass SC, 8340 bool &IsVirtualOkay) { 8341 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D); 8342 DeclarationName Name = NameInfo.getName(); 8343 8344 FunctionDecl *NewFD = nullptr; 8345 bool isInline = D.getDeclSpec().isInlineSpecified(); 8346 8347 if (!SemaRef.getLangOpts().CPlusPlus) { 8348 // Determine whether the function was written with a 8349 // prototype. This true when: 8350 // - there is a prototype in the declarator, or 8351 // - the type R of the function is some kind of typedef or other non- 8352 // attributed reference to a type name (which eventually refers to a 8353 // function type). 8354 bool HasPrototype = 8355 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) || 8356 (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType()); 8357 8358 NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo, 8359 R, TInfo, SC, isInline, HasPrototype, 8360 CSK_unspecified, 8361 /*TrailingRequiresClause=*/nullptr); 8362 if (D.isInvalidType()) 8363 NewFD->setInvalidDecl(); 8364 8365 return NewFD; 8366 } 8367 8368 ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier(); 8369 8370 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); 8371 if (ConstexprKind == CSK_constinit) { 8372 SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(), 8373 diag::err_constexpr_wrong_decl_kind) 8374 << ConstexprKind; 8375 ConstexprKind = CSK_unspecified; 8376 D.getMutableDeclSpec().ClearConstexprSpec(); 8377 } 8378 Expr *TrailingRequiresClause = D.getTrailingRequiresClause(); 8379 8380 // Check that the return type is not an abstract class type. 8381 // For record types, this is done by the AbstractClassUsageDiagnoser once 8382 // the class has been completely parsed. 8383 if (!DC->isRecord() && 8384 SemaRef.RequireNonAbstractType( 8385 D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(), 8386 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType)) 8387 D.setInvalidType(); 8388 8389 if (Name.getNameKind() == DeclarationName::CXXConstructorName) { 8390 // This is a C++ constructor declaration. 8391 assert(DC->isRecord() && 8392 "Constructors can only be declared in a member context"); 8393 8394 R = SemaRef.CheckConstructorDeclarator(D, R, SC); 8395 return CXXConstructorDecl::Create( 8396 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, 8397 TInfo, ExplicitSpecifier, isInline, 8398 /*isImplicitlyDeclared=*/false, ConstexprKind, InheritedConstructor(), 8399 TrailingRequiresClause); 8400 8401 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 8402 // This is a C++ destructor declaration. 8403 if (DC->isRecord()) { 8404 R = SemaRef.CheckDestructorDeclarator(D, R, SC); 8405 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); 8406 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create( 8407 SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo, 8408 isInline, /*isImplicitlyDeclared=*/false, ConstexprKind, 8409 TrailingRequiresClause); 8410 8411 // If the destructor needs an implicit exception specification, set it 8412 // now. FIXME: It'd be nice to be able to create the right type to start 8413 // with, but the type needs to reference the destructor declaration. 8414 if (SemaRef.getLangOpts().CPlusPlus11) 8415 SemaRef.AdjustDestructorExceptionSpec(NewDD); 8416 8417 IsVirtualOkay = true; 8418 return NewDD; 8419 8420 } else { 8421 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); 8422 D.setInvalidType(); 8423 8424 // Create a FunctionDecl to satisfy the function definition parsing 8425 // code path. 8426 return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), 8427 D.getIdentifierLoc(), Name, R, TInfo, SC, 8428 isInline, 8429 /*hasPrototype=*/true, ConstexprKind, 8430 TrailingRequiresClause); 8431 } 8432 8433 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { 8434 if (!DC->isRecord()) { 8435 SemaRef.Diag(D.getIdentifierLoc(), 8436 diag::err_conv_function_not_member); 8437 return nullptr; 8438 } 8439 8440 SemaRef.CheckConversionDeclarator(D, R, SC); 8441 if (D.isInvalidType()) 8442 return nullptr; 8443 8444 IsVirtualOkay = true; 8445 return CXXConversionDecl::Create( 8446 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, 8447 TInfo, isInline, ExplicitSpecifier, ConstexprKind, SourceLocation(), 8448 TrailingRequiresClause); 8449 8450 } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { 8451 if (TrailingRequiresClause) 8452 SemaRef.Diag(TrailingRequiresClause->getBeginLoc(), 8453 diag::err_trailing_requires_clause_on_deduction_guide) 8454 << TrailingRequiresClause->getSourceRange(); 8455 SemaRef.CheckDeductionGuideDeclarator(D, R, SC); 8456 8457 return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), 8458 ExplicitSpecifier, NameInfo, R, TInfo, 8459 D.getEndLoc()); 8460 } else if (DC->isRecord()) { 8461 // If the name of the function is the same as the name of the record, 8462 // then this must be an invalid constructor that has a return type. 8463 // (The parser checks for a return type and makes the declarator a 8464 // constructor if it has no return type). 8465 if (Name.getAsIdentifierInfo() && 8466 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){ 8467 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) 8468 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) 8469 << SourceRange(D.getIdentifierLoc()); 8470 return nullptr; 8471 } 8472 8473 // This is a C++ method declaration. 8474 CXXMethodDecl *Ret = CXXMethodDecl::Create( 8475 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, 8476 TInfo, SC, isInline, ConstexprKind, SourceLocation(), 8477 TrailingRequiresClause); 8478 IsVirtualOkay = !Ret->isStatic(); 8479 return Ret; 8480 } else { 8481 bool isFriend = 8482 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified(); 8483 if (!isFriend && SemaRef.CurContext->isRecord()) 8484 return nullptr; 8485 8486 // Determine whether the function was written with a 8487 // prototype. This true when: 8488 // - we're in C++ (where every function has a prototype), 8489 return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo, 8490 R, TInfo, SC, isInline, true /*HasPrototype*/, 8491 ConstexprKind, TrailingRequiresClause); 8492 } 8493 } 8494 8495 enum OpenCLParamType { 8496 ValidKernelParam, 8497 PtrPtrKernelParam, 8498 PtrKernelParam, 8499 InvalidAddrSpacePtrKernelParam, 8500 InvalidKernelParam, 8501 RecordKernelParam 8502 }; 8503 8504 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) { 8505 // Size dependent types are just typedefs to normal integer types 8506 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to 8507 // integers other than by their names. 8508 StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"}; 8509 8510 // Remove typedefs one by one until we reach a typedef 8511 // for a size dependent type. 8512 QualType DesugaredTy = Ty; 8513 do { 8514 ArrayRef<StringRef> Names(SizeTypeNames); 8515 auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString()); 8516 if (Names.end() != Match) 8517 return true; 8518 8519 Ty = DesugaredTy; 8520 DesugaredTy = Ty.getSingleStepDesugaredType(C); 8521 } while (DesugaredTy != Ty); 8522 8523 return false; 8524 } 8525 8526 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) { 8527 if (PT->isPointerType()) { 8528 QualType PointeeType = PT->getPointeeType(); 8529 if (PointeeType->isPointerType()) 8530 return PtrPtrKernelParam; 8531 if (PointeeType.getAddressSpace() == LangAS::opencl_generic || 8532 PointeeType.getAddressSpace() == LangAS::opencl_private || 8533 PointeeType.getAddressSpace() == LangAS::Default) 8534 return InvalidAddrSpacePtrKernelParam; 8535 return PtrKernelParam; 8536 } 8537 8538 // OpenCL v1.2 s6.9.k: 8539 // Arguments to kernel functions in a program cannot be declared with the 8540 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and 8541 // uintptr_t or a struct and/or union that contain fields declared to be one 8542 // of these built-in scalar types. 8543 if (isOpenCLSizeDependentType(S.getASTContext(), PT)) 8544 return InvalidKernelParam; 8545 8546 if (PT->isImageType()) 8547 return PtrKernelParam; 8548 8549 if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT()) 8550 return InvalidKernelParam; 8551 8552 // OpenCL extension spec v1.2 s9.5: 8553 // This extension adds support for half scalar and vector types as built-in 8554 // types that can be used for arithmetic operations, conversions etc. 8555 if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType()) 8556 return InvalidKernelParam; 8557 8558 if (PT->isRecordType()) 8559 return RecordKernelParam; 8560 8561 // Look into an array argument to check if it has a forbidden type. 8562 if (PT->isArrayType()) { 8563 const Type *UnderlyingTy = PT->getPointeeOrArrayElementType(); 8564 // Call ourself to check an underlying type of an array. Since the 8565 // getPointeeOrArrayElementType returns an innermost type which is not an 8566 // array, this recursive call only happens once. 8567 return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0)); 8568 } 8569 8570 return ValidKernelParam; 8571 } 8572 8573 static void checkIsValidOpenCLKernelParameter( 8574 Sema &S, 8575 Declarator &D, 8576 ParmVarDecl *Param, 8577 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) { 8578 QualType PT = Param->getType(); 8579 8580 // Cache the valid types we encounter to avoid rechecking structs that are 8581 // used again 8582 if (ValidTypes.count(PT.getTypePtr())) 8583 return; 8584 8585 switch (getOpenCLKernelParameterType(S, PT)) { 8586 case PtrPtrKernelParam: 8587 // OpenCL v1.2 s6.9.a: 8588 // A kernel function argument cannot be declared as a 8589 // pointer to a pointer type. 8590 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param); 8591 D.setInvalidType(); 8592 return; 8593 8594 case InvalidAddrSpacePtrKernelParam: 8595 // OpenCL v1.0 s6.5: 8596 // __kernel function arguments declared to be a pointer of a type can point 8597 // to one of the following address spaces only : __global, __local or 8598 // __constant. 8599 S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space); 8600 D.setInvalidType(); 8601 return; 8602 8603 // OpenCL v1.2 s6.9.k: 8604 // Arguments to kernel functions in a program cannot be declared with the 8605 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and 8606 // uintptr_t or a struct and/or union that contain fields declared to be 8607 // one of these built-in scalar types. 8608 8609 case InvalidKernelParam: 8610 // OpenCL v1.2 s6.8 n: 8611 // A kernel function argument cannot be declared 8612 // of event_t type. 8613 // Do not diagnose half type since it is diagnosed as invalid argument 8614 // type for any function elsewhere. 8615 if (!PT->isHalfType()) { 8616 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; 8617 8618 // Explain what typedefs are involved. 8619 const TypedefType *Typedef = nullptr; 8620 while ((Typedef = PT->getAs<TypedefType>())) { 8621 SourceLocation Loc = Typedef->getDecl()->getLocation(); 8622 // SourceLocation may be invalid for a built-in type. 8623 if (Loc.isValid()) 8624 S.Diag(Loc, diag::note_entity_declared_at) << PT; 8625 PT = Typedef->desugar(); 8626 } 8627 } 8628 8629 D.setInvalidType(); 8630 return; 8631 8632 case PtrKernelParam: 8633 case ValidKernelParam: 8634 ValidTypes.insert(PT.getTypePtr()); 8635 return; 8636 8637 case RecordKernelParam: 8638 break; 8639 } 8640 8641 // Track nested structs we will inspect 8642 SmallVector<const Decl *, 4> VisitStack; 8643 8644 // Track where we are in the nested structs. Items will migrate from 8645 // VisitStack to HistoryStack as we do the DFS for bad field. 8646 SmallVector<const FieldDecl *, 4> HistoryStack; 8647 HistoryStack.push_back(nullptr); 8648 8649 // At this point we already handled everything except of a RecordType or 8650 // an ArrayType of a RecordType. 8651 assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type."); 8652 const RecordType *RecTy = 8653 PT->getPointeeOrArrayElementType()->getAs<RecordType>(); 8654 const RecordDecl *OrigRecDecl = RecTy->getDecl(); 8655 8656 VisitStack.push_back(RecTy->getDecl()); 8657 assert(VisitStack.back() && "First decl null?"); 8658 8659 do { 8660 const Decl *Next = VisitStack.pop_back_val(); 8661 if (!Next) { 8662 assert(!HistoryStack.empty()); 8663 // Found a marker, we have gone up a level 8664 if (const FieldDecl *Hist = HistoryStack.pop_back_val()) 8665 ValidTypes.insert(Hist->getType().getTypePtr()); 8666 8667 continue; 8668 } 8669 8670 // Adds everything except the original parameter declaration (which is not a 8671 // field itself) to the history stack. 8672 const RecordDecl *RD; 8673 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) { 8674 HistoryStack.push_back(Field); 8675 8676 QualType FieldTy = Field->getType(); 8677 // Other field types (known to be valid or invalid) are handled while we 8678 // walk around RecordDecl::fields(). 8679 assert((FieldTy->isArrayType() || FieldTy->isRecordType()) && 8680 "Unexpected type."); 8681 const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType(); 8682 8683 RD = FieldRecTy->castAs<RecordType>()->getDecl(); 8684 } else { 8685 RD = cast<RecordDecl>(Next); 8686 } 8687 8688 // Add a null marker so we know when we've gone back up a level 8689 VisitStack.push_back(nullptr); 8690 8691 for (const auto *FD : RD->fields()) { 8692 QualType QT = FD->getType(); 8693 8694 if (ValidTypes.count(QT.getTypePtr())) 8695 continue; 8696 8697 OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT); 8698 if (ParamType == ValidKernelParam) 8699 continue; 8700 8701 if (ParamType == RecordKernelParam) { 8702 VisitStack.push_back(FD); 8703 continue; 8704 } 8705 8706 // OpenCL v1.2 s6.9.p: 8707 // Arguments to kernel functions that are declared to be a struct or union 8708 // do not allow OpenCL objects to be passed as elements of the struct or 8709 // union. 8710 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam || 8711 ParamType == InvalidAddrSpacePtrKernelParam) { 8712 S.Diag(Param->getLocation(), 8713 diag::err_record_with_pointers_kernel_param) 8714 << PT->isUnionType() 8715 << PT; 8716 } else { 8717 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; 8718 } 8719 8720 S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type) 8721 << OrigRecDecl->getDeclName(); 8722 8723 // We have an error, now let's go back up through history and show where 8724 // the offending field came from 8725 for (ArrayRef<const FieldDecl *>::const_iterator 8726 I = HistoryStack.begin() + 1, 8727 E = HistoryStack.end(); 8728 I != E; ++I) { 8729 const FieldDecl *OuterField = *I; 8730 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type) 8731 << OuterField->getType(); 8732 } 8733 8734 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here) 8735 << QT->isPointerType() 8736 << QT; 8737 D.setInvalidType(); 8738 return; 8739 } 8740 } while (!VisitStack.empty()); 8741 } 8742 8743 /// Find the DeclContext in which a tag is implicitly declared if we see an 8744 /// elaborated type specifier in the specified context, and lookup finds 8745 /// nothing. 8746 static DeclContext *getTagInjectionContext(DeclContext *DC) { 8747 while (!DC->isFileContext() && !DC->isFunctionOrMethod()) 8748 DC = DC->getParent(); 8749 return DC; 8750 } 8751 8752 /// Find the Scope in which a tag is implicitly declared if we see an 8753 /// elaborated type specifier in the specified context, and lookup finds 8754 /// nothing. 8755 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) { 8756 while (S->isClassScope() || 8757 (LangOpts.CPlusPlus && 8758 S->isFunctionPrototypeScope()) || 8759 ((S->getFlags() & Scope::DeclScope) == 0) || 8760 (S->getEntity() && S->getEntity()->isTransparentContext())) 8761 S = S->getParent(); 8762 return S; 8763 } 8764 8765 NamedDecl* 8766 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC, 8767 TypeSourceInfo *TInfo, LookupResult &Previous, 8768 MultiTemplateParamsArg TemplateParamListsRef, 8769 bool &AddToScope) { 8770 QualType R = TInfo->getType(); 8771 8772 assert(R->isFunctionType()); 8773 if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr()) 8774 Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call); 8775 8776 SmallVector<TemplateParameterList *, 4> TemplateParamLists; 8777 for (TemplateParameterList *TPL : TemplateParamListsRef) 8778 TemplateParamLists.push_back(TPL); 8779 if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) { 8780 if (!TemplateParamLists.empty() && 8781 Invented->getDepth() == TemplateParamLists.back()->getDepth()) 8782 TemplateParamLists.back() = Invented; 8783 else 8784 TemplateParamLists.push_back(Invented); 8785 } 8786 8787 // TODO: consider using NameInfo for diagnostic. 8788 DeclarationNameInfo NameInfo = GetNameForDeclarator(D); 8789 DeclarationName Name = NameInfo.getName(); 8790 StorageClass SC = getFunctionStorageClass(*this, D); 8791 8792 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 8793 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 8794 diag::err_invalid_thread) 8795 << DeclSpec::getSpecifierName(TSCS); 8796 8797 if (D.isFirstDeclarationOfMember()) 8798 adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(), 8799 D.getIdentifierLoc()); 8800 8801 bool isFriend = false; 8802 FunctionTemplateDecl *FunctionTemplate = nullptr; 8803 bool isMemberSpecialization = false; 8804 bool isFunctionTemplateSpecialization = false; 8805 8806 bool isDependentClassScopeExplicitSpecialization = false; 8807 bool HasExplicitTemplateArgs = false; 8808 TemplateArgumentListInfo TemplateArgs; 8809 8810 bool isVirtualOkay = false; 8811 8812 DeclContext *OriginalDC = DC; 8813 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC); 8814 8815 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC, 8816 isVirtualOkay); 8817 if (!NewFD) return nullptr; 8818 8819 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer()) 8820 NewFD->setTopLevelDeclInObjCContainer(); 8821 8822 // Set the lexical context. If this is a function-scope declaration, or has a 8823 // C++ scope specifier, or is the object of a friend declaration, the lexical 8824 // context will be different from the semantic context. 8825 NewFD->setLexicalDeclContext(CurContext); 8826 8827 if (IsLocalExternDecl) 8828 NewFD->setLocalExternDecl(); 8829 8830 if (getLangOpts().CPlusPlus) { 8831 bool isInline = D.getDeclSpec().isInlineSpecified(); 8832 bool isVirtual = D.getDeclSpec().isVirtualSpecified(); 8833 bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier(); 8834 isFriend = D.getDeclSpec().isFriendSpecified(); 8835 if (isFriend && !isInline && D.isFunctionDefinition()) { 8836 // C++ [class.friend]p5 8837 // A function can be defined in a friend declaration of a 8838 // class . . . . Such a function is implicitly inline. 8839 NewFD->setImplicitlyInline(); 8840 } 8841 8842 // If this is a method defined in an __interface, and is not a constructor 8843 // or an overloaded operator, then set the pure flag (isVirtual will already 8844 // return true). 8845 if (const CXXRecordDecl *Parent = 8846 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) { 8847 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided()) 8848 NewFD->setPure(true); 8849 8850 // C++ [class.union]p2 8851 // A union can have member functions, but not virtual functions. 8852 if (isVirtual && Parent->isUnion()) 8853 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union); 8854 } 8855 8856 SetNestedNameSpecifier(*this, NewFD, D); 8857 isMemberSpecialization = false; 8858 isFunctionTemplateSpecialization = false; 8859 if (D.isInvalidType()) 8860 NewFD->setInvalidDecl(); 8861 8862 // Match up the template parameter lists with the scope specifier, then 8863 // determine whether we have a template or a template specialization. 8864 bool Invalid = false; 8865 TemplateParameterList *TemplateParams = 8866 MatchTemplateParametersToScopeSpecifier( 8867 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), 8868 D.getCXXScopeSpec(), 8869 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId 8870 ? D.getName().TemplateId 8871 : nullptr, 8872 TemplateParamLists, isFriend, isMemberSpecialization, 8873 Invalid); 8874 if (TemplateParams) { 8875 if (TemplateParams->size() > 0) { 8876 // This is a function template 8877 8878 // Check that we can declare a template here. 8879 if (CheckTemplateDeclScope(S, TemplateParams)) 8880 NewFD->setInvalidDecl(); 8881 8882 // A destructor cannot be a template. 8883 if (Name.getNameKind() == DeclarationName::CXXDestructorName) { 8884 Diag(NewFD->getLocation(), diag::err_destructor_template); 8885 NewFD->setInvalidDecl(); 8886 } 8887 8888 // If we're adding a template to a dependent context, we may need to 8889 // rebuilding some of the types used within the template parameter list, 8890 // now that we know what the current instantiation is. 8891 if (DC->isDependentContext()) { 8892 ContextRAII SavedContext(*this, DC); 8893 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) 8894 Invalid = true; 8895 } 8896 8897 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC, 8898 NewFD->getLocation(), 8899 Name, TemplateParams, 8900 NewFD); 8901 FunctionTemplate->setLexicalDeclContext(CurContext); 8902 NewFD->setDescribedFunctionTemplate(FunctionTemplate); 8903 8904 // For source fidelity, store the other template param lists. 8905 if (TemplateParamLists.size() > 1) { 8906 NewFD->setTemplateParameterListsInfo(Context, 8907 ArrayRef<TemplateParameterList *>(TemplateParamLists) 8908 .drop_back(1)); 8909 } 8910 } else { 8911 // This is a function template specialization. 8912 isFunctionTemplateSpecialization = true; 8913 // For source fidelity, store all the template param lists. 8914 if (TemplateParamLists.size() > 0) 8915 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); 8916 8917 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". 8918 if (isFriend) { 8919 // We want to remove the "template<>", found here. 8920 SourceRange RemoveRange = TemplateParams->getSourceRange(); 8921 8922 // If we remove the template<> and the name is not a 8923 // template-id, we're actually silently creating a problem: 8924 // the friend declaration will refer to an untemplated decl, 8925 // and clearly the user wants a template specialization. So 8926 // we need to insert '<>' after the name. 8927 SourceLocation InsertLoc; 8928 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 8929 InsertLoc = D.getName().getSourceRange().getEnd(); 8930 InsertLoc = getLocForEndOfToken(InsertLoc); 8931 } 8932 8933 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) 8934 << Name << RemoveRange 8935 << FixItHint::CreateRemoval(RemoveRange) 8936 << FixItHint::CreateInsertion(InsertLoc, "<>"); 8937 } 8938 } 8939 } else { 8940 // All template param lists were matched against the scope specifier: 8941 // this is NOT (an explicit specialization of) a template. 8942 if (TemplateParamLists.size() > 0) 8943 // For source fidelity, store all the template param lists. 8944 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); 8945 } 8946 8947 if (Invalid) { 8948 NewFD->setInvalidDecl(); 8949 if (FunctionTemplate) 8950 FunctionTemplate->setInvalidDecl(); 8951 } 8952 8953 // C++ [dcl.fct.spec]p5: 8954 // The virtual specifier shall only be used in declarations of 8955 // nonstatic class member functions that appear within a 8956 // member-specification of a class declaration; see 10.3. 8957 // 8958 if (isVirtual && !NewFD->isInvalidDecl()) { 8959 if (!isVirtualOkay) { 8960 Diag(D.getDeclSpec().getVirtualSpecLoc(), 8961 diag::err_virtual_non_function); 8962 } else if (!CurContext->isRecord()) { 8963 // 'virtual' was specified outside of the class. 8964 Diag(D.getDeclSpec().getVirtualSpecLoc(), 8965 diag::err_virtual_out_of_class) 8966 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); 8967 } else if (NewFD->getDescribedFunctionTemplate()) { 8968 // C++ [temp.mem]p3: 8969 // A member function template shall not be virtual. 8970 Diag(D.getDeclSpec().getVirtualSpecLoc(), 8971 diag::err_virtual_member_function_template) 8972 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); 8973 } else { 8974 // Okay: Add virtual to the method. 8975 NewFD->setVirtualAsWritten(true); 8976 } 8977 8978 if (getLangOpts().CPlusPlus14 && 8979 NewFD->getReturnType()->isUndeducedType()) 8980 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual); 8981 } 8982 8983 if (getLangOpts().CPlusPlus14 && 8984 (NewFD->isDependentContext() || 8985 (isFriend && CurContext->isDependentContext())) && 8986 NewFD->getReturnType()->isUndeducedType()) { 8987 // If the function template is referenced directly (for instance, as a 8988 // member of the current instantiation), pretend it has a dependent type. 8989 // This is not really justified by the standard, but is the only sane 8990 // thing to do. 8991 // FIXME: For a friend function, we have not marked the function as being 8992 // a friend yet, so 'isDependentContext' on the FD doesn't work. 8993 const FunctionProtoType *FPT = 8994 NewFD->getType()->castAs<FunctionProtoType>(); 8995 QualType Result = 8996 SubstAutoType(FPT->getReturnType(), Context.DependentTy); 8997 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(), 8998 FPT->getExtProtoInfo())); 8999 } 9000 9001 // C++ [dcl.fct.spec]p3: 9002 // The inline specifier shall not appear on a block scope function 9003 // declaration. 9004 if (isInline && !NewFD->isInvalidDecl()) { 9005 if (CurContext->isFunctionOrMethod()) { 9006 // 'inline' is not allowed on block scope function declaration. 9007 Diag(D.getDeclSpec().getInlineSpecLoc(), 9008 diag::err_inline_declaration_block_scope) << Name 9009 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); 9010 } 9011 } 9012 9013 // C++ [dcl.fct.spec]p6: 9014 // The explicit specifier shall be used only in the declaration of a 9015 // constructor or conversion function within its class definition; 9016 // see 12.3.1 and 12.3.2. 9017 if (hasExplicit && !NewFD->isInvalidDecl() && 9018 !isa<CXXDeductionGuideDecl>(NewFD)) { 9019 if (!CurContext->isRecord()) { 9020 // 'explicit' was specified outside of the class. 9021 Diag(D.getDeclSpec().getExplicitSpecLoc(), 9022 diag::err_explicit_out_of_class) 9023 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); 9024 } else if (!isa<CXXConstructorDecl>(NewFD) && 9025 !isa<CXXConversionDecl>(NewFD)) { 9026 // 'explicit' was specified on a function that wasn't a constructor 9027 // or conversion function. 9028 Diag(D.getDeclSpec().getExplicitSpecLoc(), 9029 diag::err_explicit_non_ctor_or_conv_function) 9030 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); 9031 } 9032 } 9033 9034 if (ConstexprSpecKind ConstexprKind = 9035 D.getDeclSpec().getConstexprSpecifier()) { 9036 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors 9037 // are implicitly inline. 9038 NewFD->setImplicitlyInline(); 9039 9040 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to 9041 // be either constructors or to return a literal type. Therefore, 9042 // destructors cannot be declared constexpr. 9043 if (isa<CXXDestructorDecl>(NewFD) && 9044 (!getLangOpts().CPlusPlus20 || ConstexprKind == CSK_consteval)) { 9045 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor) 9046 << ConstexprKind; 9047 NewFD->setConstexprKind(getLangOpts().CPlusPlus20 ? CSK_unspecified : CSK_constexpr); 9048 } 9049 // C++20 [dcl.constexpr]p2: An allocation function, or a 9050 // deallocation function shall not be declared with the consteval 9051 // specifier. 9052 if (ConstexprKind == CSK_consteval && 9053 (NewFD->getOverloadedOperator() == OO_New || 9054 NewFD->getOverloadedOperator() == OO_Array_New || 9055 NewFD->getOverloadedOperator() == OO_Delete || 9056 NewFD->getOverloadedOperator() == OO_Array_Delete)) { 9057 Diag(D.getDeclSpec().getConstexprSpecLoc(), 9058 diag::err_invalid_consteval_decl_kind) 9059 << NewFD; 9060 NewFD->setConstexprKind(CSK_constexpr); 9061 } 9062 } 9063 9064 // If __module_private__ was specified, mark the function accordingly. 9065 if (D.getDeclSpec().isModulePrivateSpecified()) { 9066 if (isFunctionTemplateSpecialization) { 9067 SourceLocation ModulePrivateLoc 9068 = D.getDeclSpec().getModulePrivateSpecLoc(); 9069 Diag(ModulePrivateLoc, diag::err_module_private_specialization) 9070 << 0 9071 << FixItHint::CreateRemoval(ModulePrivateLoc); 9072 } else { 9073 NewFD->setModulePrivate(); 9074 if (FunctionTemplate) 9075 FunctionTemplate->setModulePrivate(); 9076 } 9077 } 9078 9079 if (isFriend) { 9080 if (FunctionTemplate) { 9081 FunctionTemplate->setObjectOfFriendDecl(); 9082 FunctionTemplate->setAccess(AS_public); 9083 } 9084 NewFD->setObjectOfFriendDecl(); 9085 NewFD->setAccess(AS_public); 9086 } 9087 9088 // If a function is defined as defaulted or deleted, mark it as such now. 9089 // We'll do the relevant checks on defaulted / deleted functions later. 9090 switch (D.getFunctionDefinitionKind()) { 9091 case FDK_Declaration: 9092 case FDK_Definition: 9093 break; 9094 9095 case FDK_Defaulted: 9096 NewFD->setDefaulted(); 9097 break; 9098 9099 case FDK_Deleted: 9100 NewFD->setDeletedAsWritten(); 9101 break; 9102 } 9103 9104 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && 9105 D.isFunctionDefinition()) { 9106 // C++ [class.mfct]p2: 9107 // A member function may be defined (8.4) in its class definition, in 9108 // which case it is an inline member function (7.1.2) 9109 NewFD->setImplicitlyInline(); 9110 } 9111 9112 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) && 9113 !CurContext->isRecord()) { 9114 // C++ [class.static]p1: 9115 // A data or function member of a class may be declared static 9116 // in a class definition, in which case it is a static member of 9117 // the class. 9118 9119 // Complain about the 'static' specifier if it's on an out-of-line 9120 // member function definition. 9121 9122 // MSVC permits the use of a 'static' storage specifier on an out-of-line 9123 // member function template declaration and class member template 9124 // declaration (MSVC versions before 2015), warn about this. 9125 Diag(D.getDeclSpec().getStorageClassSpecLoc(), 9126 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && 9127 cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) || 9128 (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate())) 9129 ? diag::ext_static_out_of_line : diag::err_static_out_of_line) 9130 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); 9131 } 9132 9133 // C++11 [except.spec]p15: 9134 // A deallocation function with no exception-specification is treated 9135 // as if it were specified with noexcept(true). 9136 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>(); 9137 if ((Name.getCXXOverloadedOperator() == OO_Delete || 9138 Name.getCXXOverloadedOperator() == OO_Array_Delete) && 9139 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) 9140 NewFD->setType(Context.getFunctionType( 9141 FPT->getReturnType(), FPT->getParamTypes(), 9142 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept))); 9143 } 9144 9145 // Filter out previous declarations that don't match the scope. 9146 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD), 9147 D.getCXXScopeSpec().isNotEmpty() || 9148 isMemberSpecialization || 9149 isFunctionTemplateSpecialization); 9150 9151 // Handle GNU asm-label extension (encoded as an attribute). 9152 if (Expr *E = (Expr*) D.getAsmLabel()) { 9153 // The parser guarantees this is a string. 9154 StringLiteral *SE = cast<StringLiteral>(E); 9155 NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(), 9156 /*IsLiteralLabel=*/true, 9157 SE->getStrTokenLoc(0))); 9158 } else if (!ExtnameUndeclaredIdentifiers.empty()) { 9159 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = 9160 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier()); 9161 if (I != ExtnameUndeclaredIdentifiers.end()) { 9162 if (isDeclExternC(NewFD)) { 9163 NewFD->addAttr(I->second); 9164 ExtnameUndeclaredIdentifiers.erase(I); 9165 } else 9166 Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied) 9167 << /*Variable*/0 << NewFD; 9168 } 9169 } 9170 9171 // Copy the parameter declarations from the declarator D to the function 9172 // declaration NewFD, if they are available. First scavenge them into Params. 9173 SmallVector<ParmVarDecl*, 16> Params; 9174 unsigned FTIIdx; 9175 if (D.isFunctionDeclarator(FTIIdx)) { 9176 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun; 9177 9178 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs 9179 // function that takes no arguments, not a function that takes a 9180 // single void argument. 9181 // We let through "const void" here because Sema::GetTypeForDeclarator 9182 // already checks for that case. 9183 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) { 9184 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { 9185 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); 9186 assert(Param->getDeclContext() != NewFD && "Was set before ?"); 9187 Param->setDeclContext(NewFD); 9188 Params.push_back(Param); 9189 9190 if (Param->isInvalidDecl()) 9191 NewFD->setInvalidDecl(); 9192 } 9193 } 9194 9195 if (!getLangOpts().CPlusPlus) { 9196 // In C, find all the tag declarations from the prototype and move them 9197 // into the function DeclContext. Remove them from the surrounding tag 9198 // injection context of the function, which is typically but not always 9199 // the TU. 9200 DeclContext *PrototypeTagContext = 9201 getTagInjectionContext(NewFD->getLexicalDeclContext()); 9202 for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) { 9203 auto *TD = dyn_cast<TagDecl>(NonParmDecl); 9204 9205 // We don't want to reparent enumerators. Look at their parent enum 9206 // instead. 9207 if (!TD) { 9208 if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl)) 9209 TD = cast<EnumDecl>(ECD->getDeclContext()); 9210 } 9211 if (!TD) 9212 continue; 9213 DeclContext *TagDC = TD->getLexicalDeclContext(); 9214 if (!TagDC->containsDecl(TD)) 9215 continue; 9216 TagDC->removeDecl(TD); 9217 TD->setDeclContext(NewFD); 9218 NewFD->addDecl(TD); 9219 9220 // Preserve the lexical DeclContext if it is not the surrounding tag 9221 // injection context of the FD. In this example, the semantic context of 9222 // E will be f and the lexical context will be S, while both the 9223 // semantic and lexical contexts of S will be f: 9224 // void f(struct S { enum E { a } f; } s); 9225 if (TagDC != PrototypeTagContext) 9226 TD->setLexicalDeclContext(TagDC); 9227 } 9228 } 9229 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { 9230 // When we're declaring a function with a typedef, typeof, etc as in the 9231 // following example, we'll need to synthesize (unnamed) 9232 // parameters for use in the declaration. 9233 // 9234 // @code 9235 // typedef void fn(int); 9236 // fn f; 9237 // @endcode 9238 9239 // Synthesize a parameter for each argument type. 9240 for (const auto &AI : FT->param_types()) { 9241 ParmVarDecl *Param = 9242 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI); 9243 Param->setScopeInfo(0, Params.size()); 9244 Params.push_back(Param); 9245 } 9246 } else { 9247 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && 9248 "Should not need args for typedef of non-prototype fn"); 9249 } 9250 9251 // Finally, we know we have the right number of parameters, install them. 9252 NewFD->setParams(Params); 9253 9254 if (D.getDeclSpec().isNoreturnSpecified()) 9255 NewFD->addAttr(C11NoReturnAttr::Create(Context, 9256 D.getDeclSpec().getNoreturnSpecLoc(), 9257 AttributeCommonInfo::AS_Keyword)); 9258 9259 // Functions returning a variably modified type violate C99 6.7.5.2p2 9260 // because all functions have linkage. 9261 if (!NewFD->isInvalidDecl() && 9262 NewFD->getReturnType()->isVariablyModifiedType()) { 9263 Diag(NewFD->getLocation(), diag::err_vm_func_decl); 9264 NewFD->setInvalidDecl(); 9265 } 9266 9267 // Apply an implicit SectionAttr if '#pragma clang section text' is active 9268 if (PragmaClangTextSection.Valid && D.isFunctionDefinition() && 9269 !NewFD->hasAttr<SectionAttr>()) 9270 NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit( 9271 Context, PragmaClangTextSection.SectionName, 9272 PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma)); 9273 9274 // Apply an implicit SectionAttr if #pragma code_seg is active. 9275 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() && 9276 !NewFD->hasAttr<SectionAttr>()) { 9277 NewFD->addAttr(SectionAttr::CreateImplicit( 9278 Context, CodeSegStack.CurrentValue->getString(), 9279 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma, 9280 SectionAttr::Declspec_allocate)); 9281 if (UnifySection(CodeSegStack.CurrentValue->getString(), 9282 ASTContext::PSF_Implicit | ASTContext::PSF_Execute | 9283 ASTContext::PSF_Read, 9284 NewFD)) 9285 NewFD->dropAttr<SectionAttr>(); 9286 } 9287 9288 // Apply an implicit CodeSegAttr from class declspec or 9289 // apply an implicit SectionAttr from #pragma code_seg if active. 9290 if (!NewFD->hasAttr<CodeSegAttr>()) { 9291 if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD, 9292 D.isFunctionDefinition())) { 9293 NewFD->addAttr(SAttr); 9294 } 9295 } 9296 9297 // Handle attributes. 9298 ProcessDeclAttributes(S, NewFD, D); 9299 9300 if (getLangOpts().OpenCL) { 9301 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return 9302 // type declaration will generate a compilation error. 9303 LangAS AddressSpace = NewFD->getReturnType().getAddressSpace(); 9304 if (AddressSpace != LangAS::Default) { 9305 Diag(NewFD->getLocation(), 9306 diag::err_opencl_return_value_with_address_space); 9307 NewFD->setInvalidDecl(); 9308 } 9309 } 9310 9311 if (!getLangOpts().CPlusPlus) { 9312 // Perform semantic checking on the function declaration. 9313 if (!NewFD->isInvalidDecl() && NewFD->isMain()) 9314 CheckMain(NewFD, D.getDeclSpec()); 9315 9316 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) 9317 CheckMSVCRTEntryPoint(NewFD); 9318 9319 if (!NewFD->isInvalidDecl()) 9320 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, 9321 isMemberSpecialization)); 9322 else if (!Previous.empty()) 9323 // Recover gracefully from an invalid redeclaration. 9324 D.setRedeclaration(true); 9325 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || 9326 Previous.getResultKind() != LookupResult::FoundOverloaded) && 9327 "previous declaration set still overloaded"); 9328 9329 // Diagnose no-prototype function declarations with calling conventions that 9330 // don't support variadic calls. Only do this in C and do it after merging 9331 // possibly prototyped redeclarations. 9332 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>(); 9333 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) { 9334 CallingConv CC = FT->getExtInfo().getCC(); 9335 if (!supportsVariadicCall(CC)) { 9336 // Windows system headers sometimes accidentally use stdcall without 9337 // (void) parameters, so we relax this to a warning. 9338 int DiagID = 9339 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr; 9340 Diag(NewFD->getLocation(), DiagID) 9341 << FunctionType::getNameForCallConv(CC); 9342 } 9343 } 9344 9345 if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() || 9346 NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion()) 9347 checkNonTrivialCUnion(NewFD->getReturnType(), 9348 NewFD->getReturnTypeSourceRange().getBegin(), 9349 NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy); 9350 } else { 9351 // C++11 [replacement.functions]p3: 9352 // The program's definitions shall not be specified as inline. 9353 // 9354 // N.B. We diagnose declarations instead of definitions per LWG issue 2340. 9355 // 9356 // Suppress the diagnostic if the function is __attribute__((used)), since 9357 // that forces an external definition to be emitted. 9358 if (D.getDeclSpec().isInlineSpecified() && 9359 NewFD->isReplaceableGlobalAllocationFunction() && 9360 !NewFD->hasAttr<UsedAttr>()) 9361 Diag(D.getDeclSpec().getInlineSpecLoc(), 9362 diag::ext_operator_new_delete_declared_inline) 9363 << NewFD->getDeclName(); 9364 9365 // If the declarator is a template-id, translate the parser's template 9366 // argument list into our AST format. 9367 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { 9368 TemplateIdAnnotation *TemplateId = D.getName().TemplateId; 9369 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); 9370 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); 9371 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 9372 TemplateId->NumArgs); 9373 translateTemplateArguments(TemplateArgsPtr, 9374 TemplateArgs); 9375 9376 HasExplicitTemplateArgs = true; 9377 9378 if (NewFD->isInvalidDecl()) { 9379 HasExplicitTemplateArgs = false; 9380 } else if (FunctionTemplate) { 9381 // Function template with explicit template arguments. 9382 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec) 9383 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc); 9384 9385 HasExplicitTemplateArgs = false; 9386 } else { 9387 assert((isFunctionTemplateSpecialization || 9388 D.getDeclSpec().isFriendSpecified()) && 9389 "should have a 'template<>' for this decl"); 9390 // "friend void foo<>(int);" is an implicit specialization decl. 9391 isFunctionTemplateSpecialization = true; 9392 } 9393 } else if (isFriend && isFunctionTemplateSpecialization) { 9394 // This combination is only possible in a recovery case; the user 9395 // wrote something like: 9396 // template <> friend void foo(int); 9397 // which we're recovering from as if the user had written: 9398 // friend void foo<>(int); 9399 // Go ahead and fake up a template id. 9400 HasExplicitTemplateArgs = true; 9401 TemplateArgs.setLAngleLoc(D.getIdentifierLoc()); 9402 TemplateArgs.setRAngleLoc(D.getIdentifierLoc()); 9403 } 9404 9405 // We do not add HD attributes to specializations here because 9406 // they may have different constexpr-ness compared to their 9407 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied, 9408 // may end up with different effective targets. Instead, a 9409 // specialization inherits its target attributes from its template 9410 // in the CheckFunctionTemplateSpecialization() call below. 9411 if (getLangOpts().CUDA && !isFunctionTemplateSpecialization) 9412 maybeAddCUDAHostDeviceAttrs(NewFD, Previous); 9413 9414 // If it's a friend (and only if it's a friend), it's possible 9415 // that either the specialized function type or the specialized 9416 // template is dependent, and therefore matching will fail. In 9417 // this case, don't check the specialization yet. 9418 bool InstantiationDependent = false; 9419 if (isFunctionTemplateSpecialization && isFriend && 9420 (NewFD->getType()->isDependentType() || DC->isDependentContext() || 9421 TemplateSpecializationType::anyDependentTemplateArguments( 9422 TemplateArgs, 9423 InstantiationDependent))) { 9424 assert(HasExplicitTemplateArgs && 9425 "friend function specialization without template args"); 9426 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs, 9427 Previous)) 9428 NewFD->setInvalidDecl(); 9429 } else if (isFunctionTemplateSpecialization) { 9430 if (CurContext->isDependentContext() && CurContext->isRecord() 9431 && !isFriend) { 9432 isDependentClassScopeExplicitSpecialization = true; 9433 } else if (!NewFD->isInvalidDecl() && 9434 CheckFunctionTemplateSpecialization( 9435 NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), 9436 Previous)) 9437 NewFD->setInvalidDecl(); 9438 9439 // C++ [dcl.stc]p1: 9440 // A storage-class-specifier shall not be specified in an explicit 9441 // specialization (14.7.3) 9442 FunctionTemplateSpecializationInfo *Info = 9443 NewFD->getTemplateSpecializationInfo(); 9444 if (Info && SC != SC_None) { 9445 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass()) 9446 Diag(NewFD->getLocation(), 9447 diag::err_explicit_specialization_inconsistent_storage_class) 9448 << SC 9449 << FixItHint::CreateRemoval( 9450 D.getDeclSpec().getStorageClassSpecLoc()); 9451 9452 else 9453 Diag(NewFD->getLocation(), 9454 diag::ext_explicit_specialization_storage_class) 9455 << FixItHint::CreateRemoval( 9456 D.getDeclSpec().getStorageClassSpecLoc()); 9457 } 9458 } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) { 9459 if (CheckMemberSpecialization(NewFD, Previous)) 9460 NewFD->setInvalidDecl(); 9461 } 9462 9463 // Perform semantic checking on the function declaration. 9464 if (!isDependentClassScopeExplicitSpecialization) { 9465 if (!NewFD->isInvalidDecl() && NewFD->isMain()) 9466 CheckMain(NewFD, D.getDeclSpec()); 9467 9468 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) 9469 CheckMSVCRTEntryPoint(NewFD); 9470 9471 if (!NewFD->isInvalidDecl()) 9472 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, 9473 isMemberSpecialization)); 9474 else if (!Previous.empty()) 9475 // Recover gracefully from an invalid redeclaration. 9476 D.setRedeclaration(true); 9477 } 9478 9479 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || 9480 Previous.getResultKind() != LookupResult::FoundOverloaded) && 9481 "previous declaration set still overloaded"); 9482 9483 NamedDecl *PrincipalDecl = (FunctionTemplate 9484 ? cast<NamedDecl>(FunctionTemplate) 9485 : NewFD); 9486 9487 if (isFriend && NewFD->getPreviousDecl()) { 9488 AccessSpecifier Access = AS_public; 9489 if (!NewFD->isInvalidDecl()) 9490 Access = NewFD->getPreviousDecl()->getAccess(); 9491 9492 NewFD->setAccess(Access); 9493 if (FunctionTemplate) FunctionTemplate->setAccess(Access); 9494 } 9495 9496 if (NewFD->isOverloadedOperator() && !DC->isRecord() && 9497 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) 9498 PrincipalDecl->setNonMemberOperator(); 9499 9500 // If we have a function template, check the template parameter 9501 // list. This will check and merge default template arguments. 9502 if (FunctionTemplate) { 9503 FunctionTemplateDecl *PrevTemplate = 9504 FunctionTemplate->getPreviousDecl(); 9505 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(), 9506 PrevTemplate ? PrevTemplate->getTemplateParameters() 9507 : nullptr, 9508 D.getDeclSpec().isFriendSpecified() 9509 ? (D.isFunctionDefinition() 9510 ? TPC_FriendFunctionTemplateDefinition 9511 : TPC_FriendFunctionTemplate) 9512 : (D.getCXXScopeSpec().isSet() && 9513 DC && DC->isRecord() && 9514 DC->isDependentContext()) 9515 ? TPC_ClassTemplateMember 9516 : TPC_FunctionTemplate); 9517 } 9518 9519 if (NewFD->isInvalidDecl()) { 9520 // Ignore all the rest of this. 9521 } else if (!D.isRedeclaration()) { 9522 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists, 9523 AddToScope }; 9524 // Fake up an access specifier if it's supposed to be a class member. 9525 if (isa<CXXRecordDecl>(NewFD->getDeclContext())) 9526 NewFD->setAccess(AS_public); 9527 9528 // Qualified decls generally require a previous declaration. 9529 if (D.getCXXScopeSpec().isSet()) { 9530 // ...with the major exception of templated-scope or 9531 // dependent-scope friend declarations. 9532 9533 // TODO: we currently also suppress this check in dependent 9534 // contexts because (1) the parameter depth will be off when 9535 // matching friend templates and (2) we might actually be 9536 // selecting a friend based on a dependent factor. But there 9537 // are situations where these conditions don't apply and we 9538 // can actually do this check immediately. 9539 // 9540 // Unless the scope is dependent, it's always an error if qualified 9541 // redeclaration lookup found nothing at all. Diagnose that now; 9542 // nothing will diagnose that error later. 9543 if (isFriend && 9544 (D.getCXXScopeSpec().getScopeRep()->isDependent() || 9545 (!Previous.empty() && CurContext->isDependentContext()))) { 9546 // ignore these 9547 } else { 9548 // The user tried to provide an out-of-line definition for a 9549 // function that is a member of a class or namespace, but there 9550 // was no such member function declared (C++ [class.mfct]p2, 9551 // C++ [namespace.memdef]p2). For example: 9552 // 9553 // class X { 9554 // void f() const; 9555 // }; 9556 // 9557 // void X::f() { } // ill-formed 9558 // 9559 // Complain about this problem, and attempt to suggest close 9560 // matches (e.g., those that differ only in cv-qualifiers and 9561 // whether the parameter types are references). 9562 9563 if (NamedDecl *Result = DiagnoseInvalidRedeclaration( 9564 *this, Previous, NewFD, ExtraArgs, false, nullptr)) { 9565 AddToScope = ExtraArgs.AddToScope; 9566 return Result; 9567 } 9568 } 9569 9570 // Unqualified local friend declarations are required to resolve 9571 // to something. 9572 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) { 9573 if (NamedDecl *Result = DiagnoseInvalidRedeclaration( 9574 *this, Previous, NewFD, ExtraArgs, true, S)) { 9575 AddToScope = ExtraArgs.AddToScope; 9576 return Result; 9577 } 9578 } 9579 } else if (!D.isFunctionDefinition() && 9580 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() && 9581 !isFriend && !isFunctionTemplateSpecialization && 9582 !isMemberSpecialization) { 9583 // An out-of-line member function declaration must also be a 9584 // definition (C++ [class.mfct]p2). 9585 // Note that this is not the case for explicit specializations of 9586 // function templates or member functions of class templates, per 9587 // C++ [temp.expl.spec]p2. We also allow these declarations as an 9588 // extension for compatibility with old SWIG code which likes to 9589 // generate them. 9590 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) 9591 << D.getCXXScopeSpec().getRange(); 9592 } 9593 } 9594 9595 ProcessPragmaWeak(S, NewFD); 9596 checkAttributesAfterMerging(*this, *NewFD); 9597 9598 AddKnownFunctionAttributes(NewFD); 9599 9600 if (NewFD->hasAttr<OverloadableAttr>() && 9601 !NewFD->getType()->getAs<FunctionProtoType>()) { 9602 Diag(NewFD->getLocation(), 9603 diag::err_attribute_overloadable_no_prototype) 9604 << NewFD; 9605 9606 // Turn this into a variadic function with no parameters. 9607 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>(); 9608 FunctionProtoType::ExtProtoInfo EPI( 9609 Context.getDefaultCallingConvention(true, false)); 9610 EPI.Variadic = true; 9611 EPI.ExtInfo = FT->getExtInfo(); 9612 9613 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI); 9614 NewFD->setType(R); 9615 } 9616 9617 // If there's a #pragma GCC visibility in scope, and this isn't a class 9618 // member, set the visibility of this function. 9619 if (!DC->isRecord() && NewFD->isExternallyVisible()) 9620 AddPushedVisibilityAttribute(NewFD); 9621 9622 // If there's a #pragma clang arc_cf_code_audited in scope, consider 9623 // marking the function. 9624 AddCFAuditedAttribute(NewFD); 9625 9626 // If this is a function definition, check if we have to apply optnone due to 9627 // a pragma. 9628 if(D.isFunctionDefinition()) 9629 AddRangeBasedOptnone(NewFD); 9630 9631 // If this is the first declaration of an extern C variable, update 9632 // the map of such variables. 9633 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() && 9634 isIncompleteDeclExternC(*this, NewFD)) 9635 RegisterLocallyScopedExternCDecl(NewFD, S); 9636 9637 // Set this FunctionDecl's range up to the right paren. 9638 NewFD->setRangeEnd(D.getSourceRange().getEnd()); 9639 9640 if (D.isRedeclaration() && !Previous.empty()) { 9641 NamedDecl *Prev = Previous.getRepresentativeDecl(); 9642 checkDLLAttributeRedeclaration(*this, Prev, NewFD, 9643 isMemberSpecialization || 9644 isFunctionTemplateSpecialization, 9645 D.isFunctionDefinition()); 9646 } 9647 9648 if (getLangOpts().CUDA) { 9649 IdentifierInfo *II = NewFD->getIdentifier(); 9650 if (II && II->isStr(getCudaConfigureFuncName()) && 9651 !NewFD->isInvalidDecl() && 9652 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { 9653 if (!R->getAs<FunctionType>()->getReturnType()->isScalarType()) 9654 Diag(NewFD->getLocation(), diag::err_config_scalar_return) 9655 << getCudaConfigureFuncName(); 9656 Context.setcudaConfigureCallDecl(NewFD); 9657 } 9658 9659 // Variadic functions, other than a *declaration* of printf, are not allowed 9660 // in device-side CUDA code, unless someone passed 9661 // -fcuda-allow-variadic-functions. 9662 if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() && 9663 (NewFD->hasAttr<CUDADeviceAttr>() || 9664 NewFD->hasAttr<CUDAGlobalAttr>()) && 9665 !(II && II->isStr("printf") && NewFD->isExternC() && 9666 !D.isFunctionDefinition())) { 9667 Diag(NewFD->getLocation(), diag::err_variadic_device_fn); 9668 } 9669 } 9670 9671 MarkUnusedFileScopedDecl(NewFD); 9672 9673 9674 9675 if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) { 9676 // OpenCL v1.2 s6.8 static is invalid for kernel functions. 9677 if ((getLangOpts().OpenCLVersion >= 120) 9678 && (SC == SC_Static)) { 9679 Diag(D.getIdentifierLoc(), diag::err_static_kernel); 9680 D.setInvalidType(); 9681 } 9682 9683 // OpenCL v1.2, s6.9 -- Kernels can only have return type void. 9684 if (!NewFD->getReturnType()->isVoidType()) { 9685 SourceRange RTRange = NewFD->getReturnTypeSourceRange(); 9686 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type) 9687 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") 9688 : FixItHint()); 9689 D.setInvalidType(); 9690 } 9691 9692 llvm::SmallPtrSet<const Type *, 16> ValidTypes; 9693 for (auto Param : NewFD->parameters()) 9694 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes); 9695 9696 if (getLangOpts().OpenCLCPlusPlus) { 9697 if (DC->isRecord()) { 9698 Diag(D.getIdentifierLoc(), diag::err_method_kernel); 9699 D.setInvalidType(); 9700 } 9701 if (FunctionTemplate) { 9702 Diag(D.getIdentifierLoc(), diag::err_template_kernel); 9703 D.setInvalidType(); 9704 } 9705 } 9706 } 9707 9708 if (getLangOpts().CPlusPlus) { 9709 if (FunctionTemplate) { 9710 if (NewFD->isInvalidDecl()) 9711 FunctionTemplate->setInvalidDecl(); 9712 return FunctionTemplate; 9713 } 9714 9715 if (isMemberSpecialization && !NewFD->isInvalidDecl()) 9716 CompleteMemberSpecialization(NewFD, Previous); 9717 } 9718 9719 for (const ParmVarDecl *Param : NewFD->parameters()) { 9720 QualType PT = Param->getType(); 9721 9722 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value 9723 // types. 9724 if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) { 9725 if(const PipeType *PipeTy = PT->getAs<PipeType>()) { 9726 QualType ElemTy = PipeTy->getElementType(); 9727 if (ElemTy->isReferenceType() || ElemTy->isPointerType()) { 9728 Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type ); 9729 D.setInvalidType(); 9730 } 9731 } 9732 } 9733 } 9734 9735 // Here we have an function template explicit specialization at class scope. 9736 // The actual specialization will be postponed to template instatiation 9737 // time via the ClassScopeFunctionSpecializationDecl node. 9738 if (isDependentClassScopeExplicitSpecialization) { 9739 ClassScopeFunctionSpecializationDecl *NewSpec = 9740 ClassScopeFunctionSpecializationDecl::Create( 9741 Context, CurContext, NewFD->getLocation(), 9742 cast<CXXMethodDecl>(NewFD), 9743 HasExplicitTemplateArgs, TemplateArgs); 9744 CurContext->addDecl(NewSpec); 9745 AddToScope = false; 9746 } 9747 9748 // Diagnose availability attributes. Availability cannot be used on functions 9749 // that are run during load/unload. 9750 if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) { 9751 if (NewFD->hasAttr<ConstructorAttr>()) { 9752 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) 9753 << 1; 9754 NewFD->dropAttr<AvailabilityAttr>(); 9755 } 9756 if (NewFD->hasAttr<DestructorAttr>()) { 9757 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) 9758 << 2; 9759 NewFD->dropAttr<AvailabilityAttr>(); 9760 } 9761 } 9762 9763 // Diagnose no_builtin attribute on function declaration that are not a 9764 // definition. 9765 // FIXME: We should really be doing this in 9766 // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to 9767 // the FunctionDecl and at this point of the code 9768 // FunctionDecl::isThisDeclarationADefinition() which always returns `false` 9769 // because Sema::ActOnStartOfFunctionDef has not been called yet. 9770 if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>()) 9771 switch (D.getFunctionDefinitionKind()) { 9772 case FDK_Defaulted: 9773 case FDK_Deleted: 9774 Diag(NBA->getLocation(), 9775 diag::err_attribute_no_builtin_on_defaulted_deleted_function) 9776 << NBA->getSpelling(); 9777 break; 9778 case FDK_Declaration: 9779 Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition) 9780 << NBA->getSpelling(); 9781 break; 9782 case FDK_Definition: 9783 break; 9784 } 9785 9786 return NewFD; 9787 } 9788 9789 /// Return a CodeSegAttr from a containing class. The Microsoft docs say 9790 /// when __declspec(code_seg) "is applied to a class, all member functions of 9791 /// the class and nested classes -- this includes compiler-generated special 9792 /// member functions -- are put in the specified segment." 9793 /// The actual behavior is a little more complicated. The Microsoft compiler 9794 /// won't check outer classes if there is an active value from #pragma code_seg. 9795 /// The CodeSeg is always applied from the direct parent but only from outer 9796 /// classes when the #pragma code_seg stack is empty. See: 9797 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer 9798 /// available since MS has removed the page. 9799 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) { 9800 const auto *Method = dyn_cast<CXXMethodDecl>(FD); 9801 if (!Method) 9802 return nullptr; 9803 const CXXRecordDecl *Parent = Method->getParent(); 9804 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { 9805 Attr *NewAttr = SAttr->clone(S.getASTContext()); 9806 NewAttr->setImplicit(true); 9807 return NewAttr; 9808 } 9809 9810 // The Microsoft compiler won't check outer classes for the CodeSeg 9811 // when the #pragma code_seg stack is active. 9812 if (S.CodeSegStack.CurrentValue) 9813 return nullptr; 9814 9815 while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) { 9816 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { 9817 Attr *NewAttr = SAttr->clone(S.getASTContext()); 9818 NewAttr->setImplicit(true); 9819 return NewAttr; 9820 } 9821 } 9822 return nullptr; 9823 } 9824 9825 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a 9826 /// containing class. Otherwise it will return implicit SectionAttr if the 9827 /// function is a definition and there is an active value on CodeSegStack 9828 /// (from the current #pragma code-seg value). 9829 /// 9830 /// \param FD Function being declared. 9831 /// \param IsDefinition Whether it is a definition or just a declarartion. 9832 /// \returns A CodeSegAttr or SectionAttr to apply to the function or 9833 /// nullptr if no attribute should be added. 9834 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD, 9835 bool IsDefinition) { 9836 if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD)) 9837 return A; 9838 if (!FD->hasAttr<SectionAttr>() && IsDefinition && 9839 CodeSegStack.CurrentValue) 9840 return SectionAttr::CreateImplicit( 9841 getASTContext(), CodeSegStack.CurrentValue->getString(), 9842 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma, 9843 SectionAttr::Declspec_allocate); 9844 return nullptr; 9845 } 9846 9847 /// Determines if we can perform a correct type check for \p D as a 9848 /// redeclaration of \p PrevDecl. If not, we can generally still perform a 9849 /// best-effort check. 9850 /// 9851 /// \param NewD The new declaration. 9852 /// \param OldD The old declaration. 9853 /// \param NewT The portion of the type of the new declaration to check. 9854 /// \param OldT The portion of the type of the old declaration to check. 9855 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD, 9856 QualType NewT, QualType OldT) { 9857 if (!NewD->getLexicalDeclContext()->isDependentContext()) 9858 return true; 9859 9860 // For dependently-typed local extern declarations and friends, we can't 9861 // perform a correct type check in general until instantiation: 9862 // 9863 // int f(); 9864 // template<typename T> void g() { T f(); } 9865 // 9866 // (valid if g() is only instantiated with T = int). 9867 if (NewT->isDependentType() && 9868 (NewD->isLocalExternDecl() || NewD->getFriendObjectKind())) 9869 return false; 9870 9871 // Similarly, if the previous declaration was a dependent local extern 9872 // declaration, we don't really know its type yet. 9873 if (OldT->isDependentType() && OldD->isLocalExternDecl()) 9874 return false; 9875 9876 return true; 9877 } 9878 9879 /// Checks if the new declaration declared in dependent context must be 9880 /// put in the same redeclaration chain as the specified declaration. 9881 /// 9882 /// \param D Declaration that is checked. 9883 /// \param PrevDecl Previous declaration found with proper lookup method for the 9884 /// same declaration name. 9885 /// \returns True if D must be added to the redeclaration chain which PrevDecl 9886 /// belongs to. 9887 /// 9888 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) { 9889 if (!D->getLexicalDeclContext()->isDependentContext()) 9890 return true; 9891 9892 // Don't chain dependent friend function definitions until instantiation, to 9893 // permit cases like 9894 // 9895 // void func(); 9896 // template<typename T> class C1 { friend void func() {} }; 9897 // template<typename T> class C2 { friend void func() {} }; 9898 // 9899 // ... which is valid if only one of C1 and C2 is ever instantiated. 9900 // 9901 // FIXME: This need only apply to function definitions. For now, we proxy 9902 // this by checking for a file-scope function. We do not want this to apply 9903 // to friend declarations nominating member functions, because that gets in 9904 // the way of access checks. 9905 if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext()) 9906 return false; 9907 9908 auto *VD = dyn_cast<ValueDecl>(D); 9909 auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl); 9910 return !VD || !PrevVD || 9911 canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(), 9912 PrevVD->getType()); 9913 } 9914 9915 /// Check the target attribute of the function for MultiVersion 9916 /// validity. 9917 /// 9918 /// Returns true if there was an error, false otherwise. 9919 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) { 9920 const auto *TA = FD->getAttr<TargetAttr>(); 9921 assert(TA && "MultiVersion Candidate requires a target attribute"); 9922 ParsedTargetAttr ParseInfo = TA->parse(); 9923 const TargetInfo &TargetInfo = S.Context.getTargetInfo(); 9924 enum ErrType { Feature = 0, Architecture = 1 }; 9925 9926 if (!ParseInfo.Architecture.empty() && 9927 !TargetInfo.validateCpuIs(ParseInfo.Architecture)) { 9928 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) 9929 << Architecture << ParseInfo.Architecture; 9930 return true; 9931 } 9932 9933 for (const auto &Feat : ParseInfo.Features) { 9934 auto BareFeat = StringRef{Feat}.substr(1); 9935 if (Feat[0] == '-') { 9936 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) 9937 << Feature << ("no-" + BareFeat).str(); 9938 return true; 9939 } 9940 9941 if (!TargetInfo.validateCpuSupports(BareFeat) || 9942 !TargetInfo.isValidFeatureName(BareFeat)) { 9943 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) 9944 << Feature << BareFeat; 9945 return true; 9946 } 9947 } 9948 return false; 9949 } 9950 9951 // Provide a white-list of attributes that are allowed to be combined with 9952 // multiversion functions. 9953 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind, 9954 MultiVersionKind MVType) { 9955 switch (Kind) { 9956 default: 9957 return false; 9958 case attr::Used: 9959 return MVType == MultiVersionKind::Target; 9960 } 9961 } 9962 9963 static bool HasNonMultiVersionAttributes(const FunctionDecl *FD, 9964 MultiVersionKind MVType) { 9965 for (const Attr *A : FD->attrs()) { 9966 switch (A->getKind()) { 9967 case attr::CPUDispatch: 9968 case attr::CPUSpecific: 9969 if (MVType != MultiVersionKind::CPUDispatch && 9970 MVType != MultiVersionKind::CPUSpecific) 9971 return true; 9972 break; 9973 case attr::Target: 9974 if (MVType != MultiVersionKind::Target) 9975 return true; 9976 break; 9977 default: 9978 if (!AttrCompatibleWithMultiVersion(A->getKind(), MVType)) 9979 return true; 9980 break; 9981 } 9982 } 9983 return false; 9984 } 9985 9986 bool Sema::areMultiversionVariantFunctionsCompatible( 9987 const FunctionDecl *OldFD, const FunctionDecl *NewFD, 9988 const PartialDiagnostic &NoProtoDiagID, 9989 const PartialDiagnosticAt &NoteCausedDiagIDAt, 9990 const PartialDiagnosticAt &NoSupportDiagIDAt, 9991 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported, 9992 bool ConstexprSupported, bool CLinkageMayDiffer) { 9993 enum DoesntSupport { 9994 FuncTemplates = 0, 9995 VirtFuncs = 1, 9996 DeducedReturn = 2, 9997 Constructors = 3, 9998 Destructors = 4, 9999 DeletedFuncs = 5, 10000 DefaultedFuncs = 6, 10001 ConstexprFuncs = 7, 10002 ConstevalFuncs = 8, 10003 }; 10004 enum Different { 10005 CallingConv = 0, 10006 ReturnType = 1, 10007 ConstexprSpec = 2, 10008 InlineSpec = 3, 10009 StorageClass = 4, 10010 Linkage = 5, 10011 }; 10012 10013 if (NoProtoDiagID.getDiagID() != 0 && OldFD && 10014 !OldFD->getType()->getAs<FunctionProtoType>()) { 10015 Diag(OldFD->getLocation(), NoProtoDiagID); 10016 Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second); 10017 return true; 10018 } 10019 10020 if (NoProtoDiagID.getDiagID() != 0 && 10021 !NewFD->getType()->getAs<FunctionProtoType>()) 10022 return Diag(NewFD->getLocation(), NoProtoDiagID); 10023 10024 if (!TemplatesSupported && 10025 NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) 10026 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10027 << FuncTemplates; 10028 10029 if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) { 10030 if (NewCXXFD->isVirtual()) 10031 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10032 << VirtFuncs; 10033 10034 if (isa<CXXConstructorDecl>(NewCXXFD)) 10035 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10036 << Constructors; 10037 10038 if (isa<CXXDestructorDecl>(NewCXXFD)) 10039 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10040 << Destructors; 10041 } 10042 10043 if (NewFD->isDeleted()) 10044 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10045 << DeletedFuncs; 10046 10047 if (NewFD->isDefaulted()) 10048 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10049 << DefaultedFuncs; 10050 10051 if (!ConstexprSupported && NewFD->isConstexpr()) 10052 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10053 << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs); 10054 10055 QualType NewQType = Context.getCanonicalType(NewFD->getType()); 10056 const auto *NewType = cast<FunctionType>(NewQType); 10057 QualType NewReturnType = NewType->getReturnType(); 10058 10059 if (NewReturnType->isUndeducedType()) 10060 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) 10061 << DeducedReturn; 10062 10063 // Ensure the return type is identical. 10064 if (OldFD) { 10065 QualType OldQType = Context.getCanonicalType(OldFD->getType()); 10066 const auto *OldType = cast<FunctionType>(OldQType); 10067 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); 10068 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); 10069 10070 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) 10071 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv; 10072 10073 QualType OldReturnType = OldType->getReturnType(); 10074 10075 if (OldReturnType != NewReturnType) 10076 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType; 10077 10078 if (OldFD->getConstexprKind() != NewFD->getConstexprKind()) 10079 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec; 10080 10081 if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified()) 10082 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec; 10083 10084 if (OldFD->getStorageClass() != NewFD->getStorageClass()) 10085 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << StorageClass; 10086 10087 if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC()) 10088 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage; 10089 10090 if (CheckEquivalentExceptionSpec( 10091 OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(), 10092 NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation())) 10093 return true; 10094 } 10095 return false; 10096 } 10097 10098 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD, 10099 const FunctionDecl *NewFD, 10100 bool CausesMV, 10101 MultiVersionKind MVType) { 10102 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { 10103 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); 10104 if (OldFD) 10105 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 10106 return true; 10107 } 10108 10109 bool IsCPUSpecificCPUDispatchMVType = 10110 MVType == MultiVersionKind::CPUDispatch || 10111 MVType == MultiVersionKind::CPUSpecific; 10112 10113 // For now, disallow all other attributes. These should be opt-in, but 10114 // an analysis of all of them is a future FIXME. 10115 if (CausesMV && OldFD && HasNonMultiVersionAttributes(OldFD, MVType)) { 10116 S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs) 10117 << IsCPUSpecificCPUDispatchMVType; 10118 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); 10119 return true; 10120 } 10121 10122 if (HasNonMultiVersionAttributes(NewFD, MVType)) 10123 return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs) 10124 << IsCPUSpecificCPUDispatchMVType; 10125 10126 // Only allow transition to MultiVersion if it hasn't been used. 10127 if (OldFD && CausesMV && OldFD->isUsed(false)) 10128 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used); 10129 10130 return S.areMultiversionVariantFunctionsCompatible( 10131 OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto), 10132 PartialDiagnosticAt(NewFD->getLocation(), 10133 S.PDiag(diag::note_multiversioning_caused_here)), 10134 PartialDiagnosticAt(NewFD->getLocation(), 10135 S.PDiag(diag::err_multiversion_doesnt_support) 10136 << IsCPUSpecificCPUDispatchMVType), 10137 PartialDiagnosticAt(NewFD->getLocation(), 10138 S.PDiag(diag::err_multiversion_diff)), 10139 /*TemplatesSupported=*/false, 10140 /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVType, 10141 /*CLinkageMayDiffer=*/false); 10142 } 10143 10144 /// Check the validity of a multiversion function declaration that is the 10145 /// first of its kind. Also sets the multiversion'ness' of the function itself. 10146 /// 10147 /// This sets NewFD->isInvalidDecl() to true if there was an error. 10148 /// 10149 /// Returns true if there was an error, false otherwise. 10150 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD, 10151 MultiVersionKind MVType, 10152 const TargetAttr *TA) { 10153 assert(MVType != MultiVersionKind::None && 10154 "Function lacks multiversion attribute"); 10155 10156 // Target only causes MV if it is default, otherwise this is a normal 10157 // function. 10158 if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion()) 10159 return false; 10160 10161 if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) { 10162 FD->setInvalidDecl(); 10163 return true; 10164 } 10165 10166 if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) { 10167 FD->setInvalidDecl(); 10168 return true; 10169 } 10170 10171 FD->setIsMultiVersion(); 10172 return false; 10173 } 10174 10175 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) { 10176 for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) { 10177 if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None) 10178 return true; 10179 } 10180 10181 return false; 10182 } 10183 10184 static bool CheckTargetCausesMultiVersioning( 10185 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA, 10186 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, 10187 LookupResult &Previous) { 10188 const auto *OldTA = OldFD->getAttr<TargetAttr>(); 10189 ParsedTargetAttr NewParsed = NewTA->parse(); 10190 // Sort order doesn't matter, it just needs to be consistent. 10191 llvm::sort(NewParsed.Features); 10192 10193 // If the old decl is NOT MultiVersioned yet, and we don't cause that 10194 // to change, this is a simple redeclaration. 10195 if (!NewTA->isDefaultVersion() && 10196 (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())) 10197 return false; 10198 10199 // Otherwise, this decl causes MultiVersioning. 10200 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { 10201 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); 10202 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 10203 NewFD->setInvalidDecl(); 10204 return true; 10205 } 10206 10207 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true, 10208 MultiVersionKind::Target)) { 10209 NewFD->setInvalidDecl(); 10210 return true; 10211 } 10212 10213 if (CheckMultiVersionValue(S, NewFD)) { 10214 NewFD->setInvalidDecl(); 10215 return true; 10216 } 10217 10218 // If this is 'default', permit the forward declaration. 10219 if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) { 10220 Redeclaration = true; 10221 OldDecl = OldFD; 10222 OldFD->setIsMultiVersion(); 10223 NewFD->setIsMultiVersion(); 10224 return false; 10225 } 10226 10227 if (CheckMultiVersionValue(S, OldFD)) { 10228 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); 10229 NewFD->setInvalidDecl(); 10230 return true; 10231 } 10232 10233 ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>()); 10234 10235 if (OldParsed == NewParsed) { 10236 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); 10237 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 10238 NewFD->setInvalidDecl(); 10239 return true; 10240 } 10241 10242 for (const auto *FD : OldFD->redecls()) { 10243 const auto *CurTA = FD->getAttr<TargetAttr>(); 10244 // We allow forward declarations before ANY multiversioning attributes, but 10245 // nothing after the fact. 10246 if (PreviousDeclsHaveMultiVersionAttribute(FD) && 10247 (!CurTA || CurTA->isInherited())) { 10248 S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl) 10249 << 0; 10250 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); 10251 NewFD->setInvalidDecl(); 10252 return true; 10253 } 10254 } 10255 10256 OldFD->setIsMultiVersion(); 10257 NewFD->setIsMultiVersion(); 10258 Redeclaration = false; 10259 MergeTypeWithPrevious = false; 10260 OldDecl = nullptr; 10261 Previous.clear(); 10262 return false; 10263 } 10264 10265 /// Check the validity of a new function declaration being added to an existing 10266 /// multiversioned declaration collection. 10267 static bool CheckMultiVersionAdditionalDecl( 10268 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, 10269 MultiVersionKind NewMVType, const TargetAttr *NewTA, 10270 const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec, 10271 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious, 10272 LookupResult &Previous) { 10273 10274 MultiVersionKind OldMVType = OldFD->getMultiVersionKind(); 10275 // Disallow mixing of multiversioning types. 10276 if ((OldMVType == MultiVersionKind::Target && 10277 NewMVType != MultiVersionKind::Target) || 10278 (NewMVType == MultiVersionKind::Target && 10279 OldMVType != MultiVersionKind::Target)) { 10280 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); 10281 S.Diag(OldFD->getLocation(), diag::note_previous_declaration); 10282 NewFD->setInvalidDecl(); 10283 return true; 10284 } 10285 10286 ParsedTargetAttr NewParsed; 10287 if (NewTA) { 10288 NewParsed = NewTA->parse(); 10289 llvm::sort(NewParsed.Features); 10290 } 10291 10292 bool UseMemberUsingDeclRules = 10293 S.CurContext->isRecord() && !NewFD->getFriendObjectKind(); 10294 10295 // Next, check ALL non-overloads to see if this is a redeclaration of a 10296 // previous member of the MultiVersion set. 10297 for (NamedDecl *ND : Previous) { 10298 FunctionDecl *CurFD = ND->getAsFunction(); 10299 if (!CurFD) 10300 continue; 10301 if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules)) 10302 continue; 10303 10304 if (NewMVType == MultiVersionKind::Target) { 10305 const auto *CurTA = CurFD->getAttr<TargetAttr>(); 10306 if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) { 10307 NewFD->setIsMultiVersion(); 10308 Redeclaration = true; 10309 OldDecl = ND; 10310 return false; 10311 } 10312 10313 ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>()); 10314 if (CurParsed == NewParsed) { 10315 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); 10316 S.Diag(CurFD->getLocation(), diag::note_previous_declaration); 10317 NewFD->setInvalidDecl(); 10318 return true; 10319 } 10320 } else { 10321 const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>(); 10322 const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>(); 10323 // Handle CPUDispatch/CPUSpecific versions. 10324 // Only 1 CPUDispatch function is allowed, this will make it go through 10325 // the redeclaration errors. 10326 if (NewMVType == MultiVersionKind::CPUDispatch && 10327 CurFD->hasAttr<CPUDispatchAttr>()) { 10328 if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() && 10329 std::equal( 10330 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(), 10331 NewCPUDisp->cpus_begin(), 10332 [](const IdentifierInfo *Cur, const IdentifierInfo *New) { 10333 return Cur->getName() == New->getName(); 10334 })) { 10335 NewFD->setIsMultiVersion(); 10336 Redeclaration = true; 10337 OldDecl = ND; 10338 return false; 10339 } 10340 10341 // If the declarations don't match, this is an error condition. 10342 S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch); 10343 S.Diag(CurFD->getLocation(), diag::note_previous_declaration); 10344 NewFD->setInvalidDecl(); 10345 return true; 10346 } 10347 if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) { 10348 10349 if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() && 10350 std::equal( 10351 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(), 10352 NewCPUSpec->cpus_begin(), 10353 [](const IdentifierInfo *Cur, const IdentifierInfo *New) { 10354 return Cur->getName() == New->getName(); 10355 })) { 10356 NewFD->setIsMultiVersion(); 10357 Redeclaration = true; 10358 OldDecl = ND; 10359 return false; 10360 } 10361 10362 // Only 1 version of CPUSpecific is allowed for each CPU. 10363 for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) { 10364 for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) { 10365 if (CurII == NewII) { 10366 S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs) 10367 << NewII; 10368 S.Diag(CurFD->getLocation(), diag::note_previous_declaration); 10369 NewFD->setInvalidDecl(); 10370 return true; 10371 } 10372 } 10373 } 10374 } 10375 // If the two decls aren't the same MVType, there is no possible error 10376 // condition. 10377 } 10378 } 10379 10380 // Else, this is simply a non-redecl case. Checking the 'value' is only 10381 // necessary in the Target case, since The CPUSpecific/Dispatch cases are 10382 // handled in the attribute adding step. 10383 if (NewMVType == MultiVersionKind::Target && 10384 CheckMultiVersionValue(S, NewFD)) { 10385 NewFD->setInvalidDecl(); 10386 return true; 10387 } 10388 10389 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, 10390 !OldFD->isMultiVersion(), NewMVType)) { 10391 NewFD->setInvalidDecl(); 10392 return true; 10393 } 10394 10395 // Permit forward declarations in the case where these two are compatible. 10396 if (!OldFD->isMultiVersion()) { 10397 OldFD->setIsMultiVersion(); 10398 NewFD->setIsMultiVersion(); 10399 Redeclaration = true; 10400 OldDecl = OldFD; 10401 return false; 10402 } 10403 10404 NewFD->setIsMultiVersion(); 10405 Redeclaration = false; 10406 MergeTypeWithPrevious = false; 10407 OldDecl = nullptr; 10408 Previous.clear(); 10409 return false; 10410 } 10411 10412 10413 /// Check the validity of a mulitversion function declaration. 10414 /// Also sets the multiversion'ness' of the function itself. 10415 /// 10416 /// This sets NewFD->isInvalidDecl() to true if there was an error. 10417 /// 10418 /// Returns true if there was an error, false otherwise. 10419 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD, 10420 bool &Redeclaration, NamedDecl *&OldDecl, 10421 bool &MergeTypeWithPrevious, 10422 LookupResult &Previous) { 10423 const auto *NewTA = NewFD->getAttr<TargetAttr>(); 10424 const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>(); 10425 const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>(); 10426 10427 // Mixing Multiversioning types is prohibited. 10428 if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) || 10429 (NewCPUDisp && NewCPUSpec)) { 10430 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); 10431 NewFD->setInvalidDecl(); 10432 return true; 10433 } 10434 10435 MultiVersionKind MVType = NewFD->getMultiVersionKind(); 10436 10437 // Main isn't allowed to become a multiversion function, however it IS 10438 // permitted to have 'main' be marked with the 'target' optimization hint. 10439 if (NewFD->isMain()) { 10440 if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) || 10441 MVType == MultiVersionKind::CPUDispatch || 10442 MVType == MultiVersionKind::CPUSpecific) { 10443 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main); 10444 NewFD->setInvalidDecl(); 10445 return true; 10446 } 10447 return false; 10448 } 10449 10450 if (!OldDecl || !OldDecl->getAsFunction() || 10451 OldDecl->getDeclContext()->getRedeclContext() != 10452 NewFD->getDeclContext()->getRedeclContext()) { 10453 // If there's no previous declaration, AND this isn't attempting to cause 10454 // multiversioning, this isn't an error condition. 10455 if (MVType == MultiVersionKind::None) 10456 return false; 10457 return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA); 10458 } 10459 10460 FunctionDecl *OldFD = OldDecl->getAsFunction(); 10461 10462 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None) 10463 return false; 10464 10465 if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) { 10466 S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl) 10467 << (OldFD->getMultiVersionKind() != MultiVersionKind::Target); 10468 NewFD->setInvalidDecl(); 10469 return true; 10470 } 10471 10472 // Handle the target potentially causes multiversioning case. 10473 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target) 10474 return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA, 10475 Redeclaration, OldDecl, 10476 MergeTypeWithPrevious, Previous); 10477 10478 // At this point, we have a multiversion function decl (in OldFD) AND an 10479 // appropriate attribute in the current function decl. Resolve that these are 10480 // still compatible with previous declarations. 10481 return CheckMultiVersionAdditionalDecl( 10482 S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration, 10483 OldDecl, MergeTypeWithPrevious, Previous); 10484 } 10485 10486 /// Perform semantic checking of a new function declaration. 10487 /// 10488 /// Performs semantic analysis of the new function declaration 10489 /// NewFD. This routine performs all semantic checking that does not 10490 /// require the actual declarator involved in the declaration, and is 10491 /// used both for the declaration of functions as they are parsed 10492 /// (called via ActOnDeclarator) and for the declaration of functions 10493 /// that have been instantiated via C++ template instantiation (called 10494 /// via InstantiateDecl). 10495 /// 10496 /// \param IsMemberSpecialization whether this new function declaration is 10497 /// a member specialization (that replaces any definition provided by the 10498 /// previous declaration). 10499 /// 10500 /// This sets NewFD->isInvalidDecl() to true if there was an error. 10501 /// 10502 /// \returns true if the function declaration is a redeclaration. 10503 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, 10504 LookupResult &Previous, 10505 bool IsMemberSpecialization) { 10506 assert(!NewFD->getReturnType()->isVariablyModifiedType() && 10507 "Variably modified return types are not handled here"); 10508 10509 // Determine whether the type of this function should be merged with 10510 // a previous visible declaration. This never happens for functions in C++, 10511 // and always happens in C if the previous declaration was visible. 10512 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus && 10513 !Previous.isShadowed(); 10514 10515 bool Redeclaration = false; 10516 NamedDecl *OldDecl = nullptr; 10517 bool MayNeedOverloadableChecks = false; 10518 10519 // Merge or overload the declaration with an existing declaration of 10520 // the same name, if appropriate. 10521 if (!Previous.empty()) { 10522 // Determine whether NewFD is an overload of PrevDecl or 10523 // a declaration that requires merging. If it's an overload, 10524 // there's no more work to do here; we'll just add the new 10525 // function to the scope. 10526 if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) { 10527 NamedDecl *Candidate = Previous.getRepresentativeDecl(); 10528 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) { 10529 Redeclaration = true; 10530 OldDecl = Candidate; 10531 } 10532 } else { 10533 MayNeedOverloadableChecks = true; 10534 switch (CheckOverload(S, NewFD, Previous, OldDecl, 10535 /*NewIsUsingDecl*/ false)) { 10536 case Ovl_Match: 10537 Redeclaration = true; 10538 break; 10539 10540 case Ovl_NonFunction: 10541 Redeclaration = true; 10542 break; 10543 10544 case Ovl_Overload: 10545 Redeclaration = false; 10546 break; 10547 } 10548 } 10549 } 10550 10551 // Check for a previous extern "C" declaration with this name. 10552 if (!Redeclaration && 10553 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) { 10554 if (!Previous.empty()) { 10555 // This is an extern "C" declaration with the same name as a previous 10556 // declaration, and thus redeclares that entity... 10557 Redeclaration = true; 10558 OldDecl = Previous.getFoundDecl(); 10559 MergeTypeWithPrevious = false; 10560 10561 // ... except in the presence of __attribute__((overloadable)). 10562 if (OldDecl->hasAttr<OverloadableAttr>() || 10563 NewFD->hasAttr<OverloadableAttr>()) { 10564 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) { 10565 MayNeedOverloadableChecks = true; 10566 Redeclaration = false; 10567 OldDecl = nullptr; 10568 } 10569 } 10570 } 10571 } 10572 10573 if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, 10574 MergeTypeWithPrevious, Previous)) 10575 return Redeclaration; 10576 10577 // C++11 [dcl.constexpr]p8: 10578 // A constexpr specifier for a non-static member function that is not 10579 // a constructor declares that member function to be const. 10580 // 10581 // This needs to be delayed until we know whether this is an out-of-line 10582 // definition of a static member function. 10583 // 10584 // This rule is not present in C++1y, so we produce a backwards 10585 // compatibility warning whenever it happens in C++11. 10586 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); 10587 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() && 10588 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) && 10589 !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) { 10590 CXXMethodDecl *OldMD = nullptr; 10591 if (OldDecl) 10592 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction()); 10593 if (!OldMD || !OldMD->isStatic()) { 10594 const FunctionProtoType *FPT = 10595 MD->getType()->castAs<FunctionProtoType>(); 10596 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); 10597 EPI.TypeQuals.addConst(); 10598 MD->setType(Context.getFunctionType(FPT->getReturnType(), 10599 FPT->getParamTypes(), EPI)); 10600 10601 // Warn that we did this, if we're not performing template instantiation. 10602 // In that case, we'll have warned already when the template was defined. 10603 if (!inTemplateInstantiation()) { 10604 SourceLocation AddConstLoc; 10605 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc() 10606 .IgnoreParens().getAs<FunctionTypeLoc>()) 10607 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc()); 10608 10609 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const) 10610 << FixItHint::CreateInsertion(AddConstLoc, " const"); 10611 } 10612 } 10613 } 10614 10615 if (Redeclaration) { 10616 // NewFD and OldDecl represent declarations that need to be 10617 // merged. 10618 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) { 10619 NewFD->setInvalidDecl(); 10620 return Redeclaration; 10621 } 10622 10623 Previous.clear(); 10624 Previous.addDecl(OldDecl); 10625 10626 if (FunctionTemplateDecl *OldTemplateDecl = 10627 dyn_cast<FunctionTemplateDecl>(OldDecl)) { 10628 auto *OldFD = OldTemplateDecl->getTemplatedDecl(); 10629 FunctionTemplateDecl *NewTemplateDecl 10630 = NewFD->getDescribedFunctionTemplate(); 10631 assert(NewTemplateDecl && "Template/non-template mismatch"); 10632 10633 // The call to MergeFunctionDecl above may have created some state in 10634 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we 10635 // can add it as a redeclaration. 10636 NewTemplateDecl->mergePrevDecl(OldTemplateDecl); 10637 10638 NewFD->setPreviousDeclaration(OldFD); 10639 adjustDeclContextForDeclaratorDecl(NewFD, OldFD); 10640 if (NewFD->isCXXClassMember()) { 10641 NewFD->setAccess(OldTemplateDecl->getAccess()); 10642 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); 10643 } 10644 10645 // If this is an explicit specialization of a member that is a function 10646 // template, mark it as a member specialization. 10647 if (IsMemberSpecialization && 10648 NewTemplateDecl->getInstantiatedFromMemberTemplate()) { 10649 NewTemplateDecl->setMemberSpecialization(); 10650 assert(OldTemplateDecl->isMemberSpecialization()); 10651 // Explicit specializations of a member template do not inherit deleted 10652 // status from the parent member template that they are specializing. 10653 if (OldFD->isDeleted()) { 10654 // FIXME: This assert will not hold in the presence of modules. 10655 assert(OldFD->getCanonicalDecl() == OldFD); 10656 // FIXME: We need an update record for this AST mutation. 10657 OldFD->setDeletedAsWritten(false); 10658 } 10659 } 10660 10661 } else { 10662 if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) { 10663 auto *OldFD = cast<FunctionDecl>(OldDecl); 10664 // This needs to happen first so that 'inline' propagates. 10665 NewFD->setPreviousDeclaration(OldFD); 10666 adjustDeclContextForDeclaratorDecl(NewFD, OldFD); 10667 if (NewFD->isCXXClassMember()) 10668 NewFD->setAccess(OldFD->getAccess()); 10669 } 10670 } 10671 } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks && 10672 !NewFD->getAttr<OverloadableAttr>()) { 10673 assert((Previous.empty() || 10674 llvm::any_of(Previous, 10675 [](const NamedDecl *ND) { 10676 return ND->hasAttr<OverloadableAttr>(); 10677 })) && 10678 "Non-redecls shouldn't happen without overloadable present"); 10679 10680 auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) { 10681 const auto *FD = dyn_cast<FunctionDecl>(ND); 10682 return FD && !FD->hasAttr<OverloadableAttr>(); 10683 }); 10684 10685 if (OtherUnmarkedIter != Previous.end()) { 10686 Diag(NewFD->getLocation(), 10687 diag::err_attribute_overloadable_multiple_unmarked_overloads); 10688 Diag((*OtherUnmarkedIter)->getLocation(), 10689 diag::note_attribute_overloadable_prev_overload) 10690 << false; 10691 10692 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); 10693 } 10694 } 10695 10696 // Semantic checking for this function declaration (in isolation). 10697 10698 if (getLangOpts().CPlusPlus) { 10699 // C++-specific checks. 10700 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) { 10701 CheckConstructor(Constructor); 10702 } else if (CXXDestructorDecl *Destructor = 10703 dyn_cast<CXXDestructorDecl>(NewFD)) { 10704 CXXRecordDecl *Record = Destructor->getParent(); 10705 QualType ClassType = Context.getTypeDeclType(Record); 10706 10707 // FIXME: Shouldn't we be able to perform this check even when the class 10708 // type is dependent? Both gcc and edg can handle that. 10709 if (!ClassType->isDependentType()) { 10710 DeclarationName Name 10711 = Context.DeclarationNames.getCXXDestructorName( 10712 Context.getCanonicalType(ClassType)); 10713 if (NewFD->getDeclName() != Name) { 10714 Diag(NewFD->getLocation(), diag::err_destructor_name); 10715 NewFD->setInvalidDecl(); 10716 return Redeclaration; 10717 } 10718 } 10719 } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) { 10720 if (auto *TD = Guide->getDescribedFunctionTemplate()) 10721 CheckDeductionGuideTemplate(TD); 10722 10723 // A deduction guide is not on the list of entities that can be 10724 // explicitly specialized. 10725 if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 10726 Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized) 10727 << /*explicit specialization*/ 1; 10728 } 10729 10730 // Find any virtual functions that this function overrides. 10731 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) { 10732 if (!Method->isFunctionTemplateSpecialization() && 10733 !Method->getDescribedFunctionTemplate() && 10734 Method->isCanonicalDecl()) { 10735 AddOverriddenMethods(Method->getParent(), Method); 10736 } 10737 if (Method->isVirtual() && NewFD->getTrailingRequiresClause()) 10738 // C++2a [class.virtual]p6 10739 // A virtual method shall not have a requires-clause. 10740 Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(), 10741 diag::err_constrained_virtual_method); 10742 10743 if (Method->isStatic()) 10744 checkThisInStaticMemberFunctionType(Method); 10745 } 10746 10747 if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD)) 10748 ActOnConversionDeclarator(Conversion); 10749 10750 // Extra checking for C++ overloaded operators (C++ [over.oper]). 10751 if (NewFD->isOverloadedOperator() && 10752 CheckOverloadedOperatorDeclaration(NewFD)) { 10753 NewFD->setInvalidDecl(); 10754 return Redeclaration; 10755 } 10756 10757 // Extra checking for C++0x literal operators (C++0x [over.literal]). 10758 if (NewFD->getLiteralIdentifier() && 10759 CheckLiteralOperatorDeclaration(NewFD)) { 10760 NewFD->setInvalidDecl(); 10761 return Redeclaration; 10762 } 10763 10764 // In C++, check default arguments now that we have merged decls. Unless 10765 // the lexical context is the class, because in this case this is done 10766 // during delayed parsing anyway. 10767 if (!CurContext->isRecord()) 10768 CheckCXXDefaultArguments(NewFD); 10769 10770 // If this function declares a builtin function, check the type of this 10771 // declaration against the expected type for the builtin. 10772 if (unsigned BuiltinID = NewFD->getBuiltinID()) { 10773 ASTContext::GetBuiltinTypeError Error; 10774 LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier()); 10775 QualType T = Context.GetBuiltinType(BuiltinID, Error); 10776 // If the type of the builtin differs only in its exception 10777 // specification, that's OK. 10778 // FIXME: If the types do differ in this way, it would be better to 10779 // retain the 'noexcept' form of the type. 10780 if (!T.isNull() && 10781 !Context.hasSameFunctionTypeIgnoringExceptionSpec(T, 10782 NewFD->getType())) 10783 // The type of this function differs from the type of the builtin, 10784 // so forget about the builtin entirely. 10785 Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents); 10786 } 10787 10788 // If this function is declared as being extern "C", then check to see if 10789 // the function returns a UDT (class, struct, or union type) that is not C 10790 // compatible, and if it does, warn the user. 10791 // But, issue any diagnostic on the first declaration only. 10792 if (Previous.empty() && NewFD->isExternC()) { 10793 QualType R = NewFD->getReturnType(); 10794 if (R->isIncompleteType() && !R->isVoidType()) 10795 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete) 10796 << NewFD << R; 10797 else if (!R.isPODType(Context) && !R->isVoidType() && 10798 !R->isObjCObjectPointerType()) 10799 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R; 10800 } 10801 10802 // C++1z [dcl.fct]p6: 10803 // [...] whether the function has a non-throwing exception-specification 10804 // [is] part of the function type 10805 // 10806 // This results in an ABI break between C++14 and C++17 for functions whose 10807 // declared type includes an exception-specification in a parameter or 10808 // return type. (Exception specifications on the function itself are OK in 10809 // most cases, and exception specifications are not permitted in most other 10810 // contexts where they could make it into a mangling.) 10811 if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) { 10812 auto HasNoexcept = [&](QualType T) -> bool { 10813 // Strip off declarator chunks that could be between us and a function 10814 // type. We don't need to look far, exception specifications are very 10815 // restricted prior to C++17. 10816 if (auto *RT = T->getAs<ReferenceType>()) 10817 T = RT->getPointeeType(); 10818 else if (T->isAnyPointerType()) 10819 T = T->getPointeeType(); 10820 else if (auto *MPT = T->getAs<MemberPointerType>()) 10821 T = MPT->getPointeeType(); 10822 if (auto *FPT = T->getAs<FunctionProtoType>()) 10823 if (FPT->isNothrow()) 10824 return true; 10825 return false; 10826 }; 10827 10828 auto *FPT = NewFD->getType()->castAs<FunctionProtoType>(); 10829 bool AnyNoexcept = HasNoexcept(FPT->getReturnType()); 10830 for (QualType T : FPT->param_types()) 10831 AnyNoexcept |= HasNoexcept(T); 10832 if (AnyNoexcept) 10833 Diag(NewFD->getLocation(), 10834 diag::warn_cxx17_compat_exception_spec_in_signature) 10835 << NewFD; 10836 } 10837 10838 if (!Redeclaration && LangOpts.CUDA) 10839 checkCUDATargetOverload(NewFD, Previous); 10840 } 10841 return Redeclaration; 10842 } 10843 10844 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) { 10845 // C++11 [basic.start.main]p3: 10846 // A program that [...] declares main to be inline, static or 10847 // constexpr is ill-formed. 10848 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall 10849 // appear in a declaration of main. 10850 // static main is not an error under C99, but we should warn about it. 10851 // We accept _Noreturn main as an extension. 10852 if (FD->getStorageClass() == SC_Static) 10853 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus 10854 ? diag::err_static_main : diag::warn_static_main) 10855 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 10856 if (FD->isInlineSpecified()) 10857 Diag(DS.getInlineSpecLoc(), diag::err_inline_main) 10858 << FixItHint::CreateRemoval(DS.getInlineSpecLoc()); 10859 if (DS.isNoreturnSpecified()) { 10860 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc(); 10861 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc)); 10862 Diag(NoreturnLoc, diag::ext_noreturn_main); 10863 Diag(NoreturnLoc, diag::note_main_remove_noreturn) 10864 << FixItHint::CreateRemoval(NoreturnRange); 10865 } 10866 if (FD->isConstexpr()) { 10867 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main) 10868 << FD->isConsteval() 10869 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc()); 10870 FD->setConstexprKind(CSK_unspecified); 10871 } 10872 10873 if (getLangOpts().OpenCL) { 10874 Diag(FD->getLocation(), diag::err_opencl_no_main) 10875 << FD->hasAttr<OpenCLKernelAttr>(); 10876 FD->setInvalidDecl(); 10877 return; 10878 } 10879 10880 QualType T = FD->getType(); 10881 assert(T->isFunctionType() && "function decl is not of function type"); 10882 const FunctionType* FT = T->castAs<FunctionType>(); 10883 10884 // Set default calling convention for main() 10885 if (FT->getCallConv() != CC_C) { 10886 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C)); 10887 FD->setType(QualType(FT, 0)); 10888 T = Context.getCanonicalType(FD->getType()); 10889 } 10890 10891 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) { 10892 // In C with GNU extensions we allow main() to have non-integer return 10893 // type, but we should warn about the extension, and we disable the 10894 // implicit-return-zero rule. 10895 10896 // GCC in C mode accepts qualified 'int'. 10897 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy)) 10898 FD->setHasImplicitReturnZero(true); 10899 else { 10900 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint); 10901 SourceRange RTRange = FD->getReturnTypeSourceRange(); 10902 if (RTRange.isValid()) 10903 Diag(RTRange.getBegin(), diag::note_main_change_return_type) 10904 << FixItHint::CreateReplacement(RTRange, "int"); 10905 } 10906 } else { 10907 // In C and C++, main magically returns 0 if you fall off the end; 10908 // set the flag which tells us that. 10909 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3. 10910 10911 // All the standards say that main() should return 'int'. 10912 if (Context.hasSameType(FT->getReturnType(), Context.IntTy)) 10913 FD->setHasImplicitReturnZero(true); 10914 else { 10915 // Otherwise, this is just a flat-out error. 10916 SourceRange RTRange = FD->getReturnTypeSourceRange(); 10917 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint) 10918 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int") 10919 : FixItHint()); 10920 FD->setInvalidDecl(true); 10921 } 10922 } 10923 10924 // Treat protoless main() as nullary. 10925 if (isa<FunctionNoProtoType>(FT)) return; 10926 10927 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT); 10928 unsigned nparams = FTP->getNumParams(); 10929 assert(FD->getNumParams() == nparams); 10930 10931 bool HasExtraParameters = (nparams > 3); 10932 10933 if (FTP->isVariadic()) { 10934 Diag(FD->getLocation(), diag::ext_variadic_main); 10935 // FIXME: if we had information about the location of the ellipsis, we 10936 // could add a FixIt hint to remove it as a parameter. 10937 } 10938 10939 // Darwin passes an undocumented fourth argument of type char**. If 10940 // other platforms start sprouting these, the logic below will start 10941 // getting shifty. 10942 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin()) 10943 HasExtraParameters = false; 10944 10945 if (HasExtraParameters) { 10946 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; 10947 FD->setInvalidDecl(true); 10948 nparams = 3; 10949 } 10950 10951 // FIXME: a lot of the following diagnostics would be improved 10952 // if we had some location information about types. 10953 10954 QualType CharPP = 10955 Context.getPointerType(Context.getPointerType(Context.CharTy)); 10956 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; 10957 10958 for (unsigned i = 0; i < nparams; ++i) { 10959 QualType AT = FTP->getParamType(i); 10960 10961 bool mismatch = true; 10962 10963 if (Context.hasSameUnqualifiedType(AT, Expected[i])) 10964 mismatch = false; 10965 else if (Expected[i] == CharPP) { 10966 // As an extension, the following forms are okay: 10967 // char const ** 10968 // char const * const * 10969 // char * const * 10970 10971 QualifierCollector qs; 10972 const PointerType* PT; 10973 if ((PT = qs.strip(AT)->getAs<PointerType>()) && 10974 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) && 10975 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0), 10976 Context.CharTy)) { 10977 qs.removeConst(); 10978 mismatch = !qs.empty(); 10979 } 10980 } 10981 10982 if (mismatch) { 10983 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; 10984 // TODO: suggest replacing given type with expected type 10985 FD->setInvalidDecl(true); 10986 } 10987 } 10988 10989 if (nparams == 1 && !FD->isInvalidDecl()) { 10990 Diag(FD->getLocation(), diag::warn_main_one_arg); 10991 } 10992 10993 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { 10994 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; 10995 FD->setInvalidDecl(); 10996 } 10997 } 10998 10999 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) { 11000 QualType T = FD->getType(); 11001 assert(T->isFunctionType() && "function decl is not of function type"); 11002 const FunctionType *FT = T->castAs<FunctionType>(); 11003 11004 // Set an implicit return of 'zero' if the function can return some integral, 11005 // enumeration, pointer or nullptr type. 11006 if (FT->getReturnType()->isIntegralOrEnumerationType() || 11007 FT->getReturnType()->isAnyPointerType() || 11008 FT->getReturnType()->isNullPtrType()) 11009 // DllMain is exempt because a return value of zero means it failed. 11010 if (FD->getName() != "DllMain") 11011 FD->setHasImplicitReturnZero(true); 11012 11013 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { 11014 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; 11015 FD->setInvalidDecl(); 11016 } 11017 } 11018 11019 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { 11020 // FIXME: Need strict checking. In C89, we need to check for 11021 // any assignment, increment, decrement, function-calls, or 11022 // commas outside of a sizeof. In C99, it's the same list, 11023 // except that the aforementioned are allowed in unevaluated 11024 // expressions. Everything else falls under the 11025 // "may accept other forms of constant expressions" exception. 11026 // (We never end up here for C++, so the constant expression 11027 // rules there don't matter.) 11028 const Expr *Culprit; 11029 if (Init->isConstantInitializer(Context, false, &Culprit)) 11030 return false; 11031 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant) 11032 << Culprit->getSourceRange(); 11033 return true; 11034 } 11035 11036 namespace { 11037 // Visits an initialization expression to see if OrigDecl is evaluated in 11038 // its own initialization and throws a warning if it does. 11039 class SelfReferenceChecker 11040 : public EvaluatedExprVisitor<SelfReferenceChecker> { 11041 Sema &S; 11042 Decl *OrigDecl; 11043 bool isRecordType; 11044 bool isPODType; 11045 bool isReferenceType; 11046 11047 bool isInitList; 11048 llvm::SmallVector<unsigned, 4> InitFieldIndex; 11049 11050 public: 11051 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited; 11052 11053 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context), 11054 S(S), OrigDecl(OrigDecl) { 11055 isPODType = false; 11056 isRecordType = false; 11057 isReferenceType = false; 11058 isInitList = false; 11059 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) { 11060 isPODType = VD->getType().isPODType(S.Context); 11061 isRecordType = VD->getType()->isRecordType(); 11062 isReferenceType = VD->getType()->isReferenceType(); 11063 } 11064 } 11065 11066 // For most expressions, just call the visitor. For initializer lists, 11067 // track the index of the field being initialized since fields are 11068 // initialized in order allowing use of previously initialized fields. 11069 void CheckExpr(Expr *E) { 11070 InitListExpr *InitList = dyn_cast<InitListExpr>(E); 11071 if (!InitList) { 11072 Visit(E); 11073 return; 11074 } 11075 11076 // Track and increment the index here. 11077 isInitList = true; 11078 InitFieldIndex.push_back(0); 11079 for (auto Child : InitList->children()) { 11080 CheckExpr(cast<Expr>(Child)); 11081 ++InitFieldIndex.back(); 11082 } 11083 InitFieldIndex.pop_back(); 11084 } 11085 11086 // Returns true if MemberExpr is checked and no further checking is needed. 11087 // Returns false if additional checking is required. 11088 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) { 11089 llvm::SmallVector<FieldDecl*, 4> Fields; 11090 Expr *Base = E; 11091 bool ReferenceField = false; 11092 11093 // Get the field members used. 11094 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 11095 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); 11096 if (!FD) 11097 return false; 11098 Fields.push_back(FD); 11099 if (FD->getType()->isReferenceType()) 11100 ReferenceField = true; 11101 Base = ME->getBase()->IgnoreParenImpCasts(); 11102 } 11103 11104 // Keep checking only if the base Decl is the same. 11105 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base); 11106 if (!DRE || DRE->getDecl() != OrigDecl) 11107 return false; 11108 11109 // A reference field can be bound to an unininitialized field. 11110 if (CheckReference && !ReferenceField) 11111 return true; 11112 11113 // Convert FieldDecls to their index number. 11114 llvm::SmallVector<unsigned, 4> UsedFieldIndex; 11115 for (const FieldDecl *I : llvm::reverse(Fields)) 11116 UsedFieldIndex.push_back(I->getFieldIndex()); 11117 11118 // See if a warning is needed by checking the first difference in index 11119 // numbers. If field being used has index less than the field being 11120 // initialized, then the use is safe. 11121 for (auto UsedIter = UsedFieldIndex.begin(), 11122 UsedEnd = UsedFieldIndex.end(), 11123 OrigIter = InitFieldIndex.begin(), 11124 OrigEnd = InitFieldIndex.end(); 11125 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { 11126 if (*UsedIter < *OrigIter) 11127 return true; 11128 if (*UsedIter > *OrigIter) 11129 break; 11130 } 11131 11132 // TODO: Add a different warning which will print the field names. 11133 HandleDeclRefExpr(DRE); 11134 return true; 11135 } 11136 11137 // For most expressions, the cast is directly above the DeclRefExpr. 11138 // For conditional operators, the cast can be outside the conditional 11139 // operator if both expressions are DeclRefExpr's. 11140 void HandleValue(Expr *E) { 11141 E = E->IgnoreParens(); 11142 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) { 11143 HandleDeclRefExpr(DRE); 11144 return; 11145 } 11146 11147 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { 11148 Visit(CO->getCond()); 11149 HandleValue(CO->getTrueExpr()); 11150 HandleValue(CO->getFalseExpr()); 11151 return; 11152 } 11153 11154 if (BinaryConditionalOperator *BCO = 11155 dyn_cast<BinaryConditionalOperator>(E)) { 11156 Visit(BCO->getCond()); 11157 HandleValue(BCO->getFalseExpr()); 11158 return; 11159 } 11160 11161 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { 11162 HandleValue(OVE->getSourceExpr()); 11163 return; 11164 } 11165 11166 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 11167 if (BO->getOpcode() == BO_Comma) { 11168 Visit(BO->getLHS()); 11169 HandleValue(BO->getRHS()); 11170 return; 11171 } 11172 } 11173 11174 if (isa<MemberExpr>(E)) { 11175 if (isInitList) { 11176 if (CheckInitListMemberExpr(cast<MemberExpr>(E), 11177 false /*CheckReference*/)) 11178 return; 11179 } 11180 11181 Expr *Base = E->IgnoreParenImpCasts(); 11182 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 11183 // Check for static member variables and don't warn on them. 11184 if (!isa<FieldDecl>(ME->getMemberDecl())) 11185 return; 11186 Base = ME->getBase()->IgnoreParenImpCasts(); 11187 } 11188 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) 11189 HandleDeclRefExpr(DRE); 11190 return; 11191 } 11192 11193 Visit(E); 11194 } 11195 11196 // Reference types not handled in HandleValue are handled here since all 11197 // uses of references are bad, not just r-value uses. 11198 void VisitDeclRefExpr(DeclRefExpr *E) { 11199 if (isReferenceType) 11200 HandleDeclRefExpr(E); 11201 } 11202 11203 void VisitImplicitCastExpr(ImplicitCastExpr *E) { 11204 if (E->getCastKind() == CK_LValueToRValue) { 11205 HandleValue(E->getSubExpr()); 11206 return; 11207 } 11208 11209 Inherited::VisitImplicitCastExpr(E); 11210 } 11211 11212 void VisitMemberExpr(MemberExpr *E) { 11213 if (isInitList) { 11214 if (CheckInitListMemberExpr(E, true /*CheckReference*/)) 11215 return; 11216 } 11217 11218 // Don't warn on arrays since they can be treated as pointers. 11219 if (E->getType()->canDecayToPointerType()) return; 11220 11221 // Warn when a non-static method call is followed by non-static member 11222 // field accesses, which is followed by a DeclRefExpr. 11223 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl()); 11224 bool Warn = (MD && !MD->isStatic()); 11225 Expr *Base = E->getBase()->IgnoreParenImpCasts(); 11226 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { 11227 if (!isa<FieldDecl>(ME->getMemberDecl())) 11228 Warn = false; 11229 Base = ME->getBase()->IgnoreParenImpCasts(); 11230 } 11231 11232 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 11233 if (Warn) 11234 HandleDeclRefExpr(DRE); 11235 return; 11236 } 11237 11238 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr. 11239 // Visit that expression. 11240 Visit(Base); 11241 } 11242 11243 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { 11244 Expr *Callee = E->getCallee(); 11245 11246 if (isa<UnresolvedLookupExpr>(Callee)) 11247 return Inherited::VisitCXXOperatorCallExpr(E); 11248 11249 Visit(Callee); 11250 for (auto Arg: E->arguments()) 11251 HandleValue(Arg->IgnoreParenImpCasts()); 11252 } 11253 11254 void VisitUnaryOperator(UnaryOperator *E) { 11255 // For POD record types, addresses of its own members are well-defined. 11256 if (E->getOpcode() == UO_AddrOf && isRecordType && 11257 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) { 11258 if (!isPODType) 11259 HandleValue(E->getSubExpr()); 11260 return; 11261 } 11262 11263 if (E->isIncrementDecrementOp()) { 11264 HandleValue(E->getSubExpr()); 11265 return; 11266 } 11267 11268 Inherited::VisitUnaryOperator(E); 11269 } 11270 11271 void VisitObjCMessageExpr(ObjCMessageExpr *E) {} 11272 11273 void VisitCXXConstructExpr(CXXConstructExpr *E) { 11274 if (E->getConstructor()->isCopyConstructor()) { 11275 Expr *ArgExpr = E->getArg(0); 11276 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) 11277 if (ILE->getNumInits() == 1) 11278 ArgExpr = ILE->getInit(0); 11279 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) 11280 if (ICE->getCastKind() == CK_NoOp) 11281 ArgExpr = ICE->getSubExpr(); 11282 HandleValue(ArgExpr); 11283 return; 11284 } 11285 Inherited::VisitCXXConstructExpr(E); 11286 } 11287 11288 void VisitCallExpr(CallExpr *E) { 11289 // Treat std::move as a use. 11290 if (E->isCallToStdMove()) { 11291 HandleValue(E->getArg(0)); 11292 return; 11293 } 11294 11295 Inherited::VisitCallExpr(E); 11296 } 11297 11298 void VisitBinaryOperator(BinaryOperator *E) { 11299 if (E->isCompoundAssignmentOp()) { 11300 HandleValue(E->getLHS()); 11301 Visit(E->getRHS()); 11302 return; 11303 } 11304 11305 Inherited::VisitBinaryOperator(E); 11306 } 11307 11308 // A custom visitor for BinaryConditionalOperator is needed because the 11309 // regular visitor would check the condition and true expression separately 11310 // but both point to the same place giving duplicate diagnostics. 11311 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { 11312 Visit(E->getCond()); 11313 Visit(E->getFalseExpr()); 11314 } 11315 11316 void HandleDeclRefExpr(DeclRefExpr *DRE) { 11317 Decl* ReferenceDecl = DRE->getDecl(); 11318 if (OrigDecl != ReferenceDecl) return; 11319 unsigned diag; 11320 if (isReferenceType) { 11321 diag = diag::warn_uninit_self_reference_in_reference_init; 11322 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) { 11323 diag = diag::warn_static_self_reference_in_init; 11324 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) || 11325 isa<NamespaceDecl>(OrigDecl->getDeclContext()) || 11326 DRE->getDecl()->getType()->isRecordType()) { 11327 diag = diag::warn_uninit_self_reference_in_init; 11328 } else { 11329 // Local variables will be handled by the CFG analysis. 11330 return; 11331 } 11332 11333 S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE, 11334 S.PDiag(diag) 11335 << DRE->getDecl() << OrigDecl->getLocation() 11336 << DRE->getSourceRange()); 11337 } 11338 }; 11339 11340 /// CheckSelfReference - Warns if OrigDecl is used in expression E. 11341 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E, 11342 bool DirectInit) { 11343 // Parameters arguments are occassionially constructed with itself, 11344 // for instance, in recursive functions. Skip them. 11345 if (isa<ParmVarDecl>(OrigDecl)) 11346 return; 11347 11348 E = E->IgnoreParens(); 11349 11350 // Skip checking T a = a where T is not a record or reference type. 11351 // Doing so is a way to silence uninitialized warnings. 11352 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType()) 11353 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 11354 if (ICE->getCastKind() == CK_LValueToRValue) 11355 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) 11356 if (DRE->getDecl() == OrigDecl) 11357 return; 11358 11359 SelfReferenceChecker(S, OrigDecl).CheckExpr(E); 11360 } 11361 } // end anonymous namespace 11362 11363 namespace { 11364 // Simple wrapper to add the name of a variable or (if no variable is 11365 // available) a DeclarationName into a diagnostic. 11366 struct VarDeclOrName { 11367 VarDecl *VDecl; 11368 DeclarationName Name; 11369 11370 friend const Sema::SemaDiagnosticBuilder & 11371 operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) { 11372 return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name; 11373 } 11374 }; 11375 } // end anonymous namespace 11376 11377 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl, 11378 DeclarationName Name, QualType Type, 11379 TypeSourceInfo *TSI, 11380 SourceRange Range, bool DirectInit, 11381 Expr *Init) { 11382 bool IsInitCapture = !VDecl; 11383 assert((!VDecl || !VDecl->isInitCapture()) && 11384 "init captures are expected to be deduced prior to initialization"); 11385 11386 VarDeclOrName VN{VDecl, Name}; 11387 11388 DeducedType *Deduced = Type->getContainedDeducedType(); 11389 assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type"); 11390 11391 // C++11 [dcl.spec.auto]p3 11392 if (!Init) { 11393 assert(VDecl && "no init for init capture deduction?"); 11394 11395 // Except for class argument deduction, and then for an initializing 11396 // declaration only, i.e. no static at class scope or extern. 11397 if (!isa<DeducedTemplateSpecializationType>(Deduced) || 11398 VDecl->hasExternalStorage() || 11399 VDecl->isStaticDataMember()) { 11400 Diag(VDecl->getLocation(), diag::err_auto_var_requires_init) 11401 << VDecl->getDeclName() << Type; 11402 return QualType(); 11403 } 11404 } 11405 11406 ArrayRef<Expr*> DeduceInits; 11407 if (Init) 11408 DeduceInits = Init; 11409 11410 if (DirectInit) { 11411 if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init)) 11412 DeduceInits = PL->exprs(); 11413 } 11414 11415 if (isa<DeducedTemplateSpecializationType>(Deduced)) { 11416 assert(VDecl && "non-auto type for init capture deduction?"); 11417 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); 11418 InitializationKind Kind = InitializationKind::CreateForInit( 11419 VDecl->getLocation(), DirectInit, Init); 11420 // FIXME: Initialization should not be taking a mutable list of inits. 11421 SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end()); 11422 return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, 11423 InitsCopy); 11424 } 11425 11426 if (DirectInit) { 11427 if (auto *IL = dyn_cast<InitListExpr>(Init)) 11428 DeduceInits = IL->inits(); 11429 } 11430 11431 // Deduction only works if we have exactly one source expression. 11432 if (DeduceInits.empty()) { 11433 // It isn't possible to write this directly, but it is possible to 11434 // end up in this situation with "auto x(some_pack...);" 11435 Diag(Init->getBeginLoc(), IsInitCapture 11436 ? diag::err_init_capture_no_expression 11437 : diag::err_auto_var_init_no_expression) 11438 << VN << Type << Range; 11439 return QualType(); 11440 } 11441 11442 if (DeduceInits.size() > 1) { 11443 Diag(DeduceInits[1]->getBeginLoc(), 11444 IsInitCapture ? diag::err_init_capture_multiple_expressions 11445 : diag::err_auto_var_init_multiple_expressions) 11446 << VN << Type << Range; 11447 return QualType(); 11448 } 11449 11450 Expr *DeduceInit = DeduceInits[0]; 11451 if (DirectInit && isa<InitListExpr>(DeduceInit)) { 11452 Diag(Init->getBeginLoc(), IsInitCapture 11453 ? diag::err_init_capture_paren_braces 11454 : diag::err_auto_var_init_paren_braces) 11455 << isa<InitListExpr>(Init) << VN << Type << Range; 11456 return QualType(); 11457 } 11458 11459 // Expressions default to 'id' when we're in a debugger. 11460 bool DefaultedAnyToId = false; 11461 if (getLangOpts().DebuggerCastResultToId && 11462 Init->getType() == Context.UnknownAnyTy && !IsInitCapture) { 11463 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); 11464 if (Result.isInvalid()) { 11465 return QualType(); 11466 } 11467 Init = Result.get(); 11468 DefaultedAnyToId = true; 11469 } 11470 11471 // C++ [dcl.decomp]p1: 11472 // If the assignment-expression [...] has array type A and no ref-qualifier 11473 // is present, e has type cv A 11474 if (VDecl && isa<DecompositionDecl>(VDecl) && 11475 Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) && 11476 DeduceInit->getType()->isConstantArrayType()) 11477 return Context.getQualifiedType(DeduceInit->getType(), 11478 Type.getQualifiers()); 11479 11480 QualType DeducedType; 11481 if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) { 11482 if (!IsInitCapture) 11483 DiagnoseAutoDeductionFailure(VDecl, DeduceInit); 11484 else if (isa<InitListExpr>(Init)) 11485 Diag(Range.getBegin(), 11486 diag::err_init_capture_deduction_failure_from_init_list) 11487 << VN 11488 << (DeduceInit->getType().isNull() ? TSI->getType() 11489 : DeduceInit->getType()) 11490 << DeduceInit->getSourceRange(); 11491 else 11492 Diag(Range.getBegin(), diag::err_init_capture_deduction_failure) 11493 << VN << TSI->getType() 11494 << (DeduceInit->getType().isNull() ? TSI->getType() 11495 : DeduceInit->getType()) 11496 << DeduceInit->getSourceRange(); 11497 } 11498 11499 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using 11500 // 'id' instead of a specific object type prevents most of our usual 11501 // checks. 11502 // We only want to warn outside of template instantiations, though: 11503 // inside a template, the 'id' could have come from a parameter. 11504 if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture && 11505 !DeducedType.isNull() && DeducedType->isObjCIdType()) { 11506 SourceLocation Loc = TSI->getTypeLoc().getBeginLoc(); 11507 Diag(Loc, diag::warn_auto_var_is_id) << VN << Range; 11508 } 11509 11510 return DeducedType; 11511 } 11512 11513 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit, 11514 Expr *Init) { 11515 assert(!Init || !Init->containsErrors()); 11516 QualType DeducedType = deduceVarTypeFromInitializer( 11517 VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(), 11518 VDecl->getSourceRange(), DirectInit, Init); 11519 if (DeducedType.isNull()) { 11520 VDecl->setInvalidDecl(); 11521 return true; 11522 } 11523 11524 VDecl->setType(DeducedType); 11525 assert(VDecl->isLinkageValid()); 11526 11527 // In ARC, infer lifetime. 11528 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl)) 11529 VDecl->setInvalidDecl(); 11530 11531 if (getLangOpts().OpenCL) 11532 deduceOpenCLAddressSpace(VDecl); 11533 11534 // If this is a redeclaration, check that the type we just deduced matches 11535 // the previously declared type. 11536 if (VarDecl *Old = VDecl->getPreviousDecl()) { 11537 // We never need to merge the type, because we cannot form an incomplete 11538 // array of auto, nor deduce such a type. 11539 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false); 11540 } 11541 11542 // Check the deduced type is valid for a variable declaration. 11543 CheckVariableDeclarationType(VDecl); 11544 return VDecl->isInvalidDecl(); 11545 } 11546 11547 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init, 11548 SourceLocation Loc) { 11549 if (auto *EWC = dyn_cast<ExprWithCleanups>(Init)) 11550 Init = EWC->getSubExpr(); 11551 11552 if (auto *CE = dyn_cast<ConstantExpr>(Init)) 11553 Init = CE->getSubExpr(); 11554 11555 QualType InitType = Init->getType(); 11556 assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 11557 InitType.hasNonTrivialToPrimitiveCopyCUnion()) && 11558 "shouldn't be called if type doesn't have a non-trivial C struct"); 11559 if (auto *ILE = dyn_cast<InitListExpr>(Init)) { 11560 for (auto I : ILE->inits()) { 11561 if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() && 11562 !I->getType().hasNonTrivialToPrimitiveCopyCUnion()) 11563 continue; 11564 SourceLocation SL = I->getExprLoc(); 11565 checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc); 11566 } 11567 return; 11568 } 11569 11570 if (isa<ImplicitValueInitExpr>(Init)) { 11571 if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) 11572 checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject, 11573 NTCUK_Init); 11574 } else { 11575 // Assume all other explicit initializers involving copying some existing 11576 // object. 11577 // TODO: ignore any explicit initializers where we can guarantee 11578 // copy-elision. 11579 if (InitType.hasNonTrivialToPrimitiveCopyCUnion()) 11580 checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy); 11581 } 11582 } 11583 11584 namespace { 11585 11586 bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) { 11587 // Ignore unavailable fields. A field can be marked as unavailable explicitly 11588 // in the source code or implicitly by the compiler if it is in a union 11589 // defined in a system header and has non-trivial ObjC ownership 11590 // qualifications. We don't want those fields to participate in determining 11591 // whether the containing union is non-trivial. 11592 return FD->hasAttr<UnavailableAttr>(); 11593 } 11594 11595 struct DiagNonTrivalCUnionDefaultInitializeVisitor 11596 : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, 11597 void> { 11598 using Super = 11599 DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, 11600 void>; 11601 11602 DiagNonTrivalCUnionDefaultInitializeVisitor( 11603 QualType OrigTy, SourceLocation OrigLoc, 11604 Sema::NonTrivialCUnionContext UseContext, Sema &S) 11605 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} 11606 11607 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT, 11608 const FieldDecl *FD, bool InNonTrivialUnion) { 11609 if (const auto *AT = S.Context.getAsArrayType(QT)) 11610 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, 11611 InNonTrivialUnion); 11612 return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion); 11613 } 11614 11615 void visitARCStrong(QualType QT, const FieldDecl *FD, 11616 bool InNonTrivialUnion) { 11617 if (InNonTrivialUnion) 11618 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11619 << 1 << 0 << QT << FD->getName(); 11620 } 11621 11622 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11623 if (InNonTrivialUnion) 11624 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11625 << 1 << 0 << QT << FD->getName(); 11626 } 11627 11628 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11629 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); 11630 if (RD->isUnion()) { 11631 if (OrigLoc.isValid()) { 11632 bool IsUnion = false; 11633 if (auto *OrigRD = OrigTy->getAsRecordDecl()) 11634 IsUnion = OrigRD->isUnion(); 11635 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) 11636 << 0 << OrigTy << IsUnion << UseContext; 11637 // Reset OrigLoc so that this diagnostic is emitted only once. 11638 OrigLoc = SourceLocation(); 11639 } 11640 InNonTrivialUnion = true; 11641 } 11642 11643 if (InNonTrivialUnion) 11644 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) 11645 << 0 << 0 << QT.getUnqualifiedType() << ""; 11646 11647 for (const FieldDecl *FD : RD->fields()) 11648 if (!shouldIgnoreForRecordTriviality(FD)) 11649 asDerived().visit(FD->getType(), FD, InNonTrivialUnion); 11650 } 11651 11652 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} 11653 11654 // The non-trivial C union type or the struct/union type that contains a 11655 // non-trivial C union. 11656 QualType OrigTy; 11657 SourceLocation OrigLoc; 11658 Sema::NonTrivialCUnionContext UseContext; 11659 Sema &S; 11660 }; 11661 11662 struct DiagNonTrivalCUnionDestructedTypeVisitor 11663 : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> { 11664 using Super = 11665 DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>; 11666 11667 DiagNonTrivalCUnionDestructedTypeVisitor( 11668 QualType OrigTy, SourceLocation OrigLoc, 11669 Sema::NonTrivialCUnionContext UseContext, Sema &S) 11670 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} 11671 11672 void visitWithKind(QualType::DestructionKind DK, QualType QT, 11673 const FieldDecl *FD, bool InNonTrivialUnion) { 11674 if (const auto *AT = S.Context.getAsArrayType(QT)) 11675 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, 11676 InNonTrivialUnion); 11677 return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion); 11678 } 11679 11680 void visitARCStrong(QualType QT, const FieldDecl *FD, 11681 bool InNonTrivialUnion) { 11682 if (InNonTrivialUnion) 11683 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11684 << 1 << 1 << QT << FD->getName(); 11685 } 11686 11687 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11688 if (InNonTrivialUnion) 11689 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11690 << 1 << 1 << QT << FD->getName(); 11691 } 11692 11693 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11694 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); 11695 if (RD->isUnion()) { 11696 if (OrigLoc.isValid()) { 11697 bool IsUnion = false; 11698 if (auto *OrigRD = OrigTy->getAsRecordDecl()) 11699 IsUnion = OrigRD->isUnion(); 11700 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) 11701 << 1 << OrigTy << IsUnion << UseContext; 11702 // Reset OrigLoc so that this diagnostic is emitted only once. 11703 OrigLoc = SourceLocation(); 11704 } 11705 InNonTrivialUnion = true; 11706 } 11707 11708 if (InNonTrivialUnion) 11709 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) 11710 << 0 << 1 << QT.getUnqualifiedType() << ""; 11711 11712 for (const FieldDecl *FD : RD->fields()) 11713 if (!shouldIgnoreForRecordTriviality(FD)) 11714 asDerived().visit(FD->getType(), FD, InNonTrivialUnion); 11715 } 11716 11717 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} 11718 void visitCXXDestructor(QualType QT, const FieldDecl *FD, 11719 bool InNonTrivialUnion) {} 11720 11721 // The non-trivial C union type or the struct/union type that contains a 11722 // non-trivial C union. 11723 QualType OrigTy; 11724 SourceLocation OrigLoc; 11725 Sema::NonTrivialCUnionContext UseContext; 11726 Sema &S; 11727 }; 11728 11729 struct DiagNonTrivalCUnionCopyVisitor 11730 : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> { 11731 using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>; 11732 11733 DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc, 11734 Sema::NonTrivialCUnionContext UseContext, 11735 Sema &S) 11736 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} 11737 11738 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT, 11739 const FieldDecl *FD, bool InNonTrivialUnion) { 11740 if (const auto *AT = S.Context.getAsArrayType(QT)) 11741 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, 11742 InNonTrivialUnion); 11743 return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion); 11744 } 11745 11746 void visitARCStrong(QualType QT, const FieldDecl *FD, 11747 bool InNonTrivialUnion) { 11748 if (InNonTrivialUnion) 11749 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11750 << 1 << 2 << QT << FD->getName(); 11751 } 11752 11753 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11754 if (InNonTrivialUnion) 11755 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) 11756 << 1 << 2 << QT << FD->getName(); 11757 } 11758 11759 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { 11760 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); 11761 if (RD->isUnion()) { 11762 if (OrigLoc.isValid()) { 11763 bool IsUnion = false; 11764 if (auto *OrigRD = OrigTy->getAsRecordDecl()) 11765 IsUnion = OrigRD->isUnion(); 11766 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) 11767 << 2 << OrigTy << IsUnion << UseContext; 11768 // Reset OrigLoc so that this diagnostic is emitted only once. 11769 OrigLoc = SourceLocation(); 11770 } 11771 InNonTrivialUnion = true; 11772 } 11773 11774 if (InNonTrivialUnion) 11775 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) 11776 << 0 << 2 << QT.getUnqualifiedType() << ""; 11777 11778 for (const FieldDecl *FD : RD->fields()) 11779 if (!shouldIgnoreForRecordTriviality(FD)) 11780 asDerived().visit(FD->getType(), FD, InNonTrivialUnion); 11781 } 11782 11783 void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT, 11784 const FieldDecl *FD, bool InNonTrivialUnion) {} 11785 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} 11786 void visitVolatileTrivial(QualType QT, const FieldDecl *FD, 11787 bool InNonTrivialUnion) {} 11788 11789 // The non-trivial C union type or the struct/union type that contains a 11790 // non-trivial C union. 11791 QualType OrigTy; 11792 SourceLocation OrigLoc; 11793 Sema::NonTrivialCUnionContext UseContext; 11794 Sema &S; 11795 }; 11796 11797 } // namespace 11798 11799 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc, 11800 NonTrivialCUnionContext UseContext, 11801 unsigned NonTrivialKind) { 11802 assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 11803 QT.hasNonTrivialToPrimitiveDestructCUnion() || 11804 QT.hasNonTrivialToPrimitiveCopyCUnion()) && 11805 "shouldn't be called if type doesn't have a non-trivial C union"); 11806 11807 if ((NonTrivialKind & NTCUK_Init) && 11808 QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) 11809 DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this) 11810 .visit(QT, nullptr, false); 11811 if ((NonTrivialKind & NTCUK_Destruct) && 11812 QT.hasNonTrivialToPrimitiveDestructCUnion()) 11813 DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this) 11814 .visit(QT, nullptr, false); 11815 if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion()) 11816 DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this) 11817 .visit(QT, nullptr, false); 11818 } 11819 11820 /// AddInitializerToDecl - Adds the initializer Init to the 11821 /// declaration dcl. If DirectInit is true, this is C++ direct 11822 /// initialization rather than copy initialization. 11823 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) { 11824 // If there is no declaration, there was an error parsing it. Just ignore 11825 // the initializer. 11826 if (!RealDecl || RealDecl->isInvalidDecl()) { 11827 CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl)); 11828 return; 11829 } 11830 11831 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) { 11832 // Pure-specifiers are handled in ActOnPureSpecifier. 11833 Diag(Method->getLocation(), diag::err_member_function_initialization) 11834 << Method->getDeclName() << Init->getSourceRange(); 11835 Method->setInvalidDecl(); 11836 return; 11837 } 11838 11839 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); 11840 if (!VDecl) { 11841 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"); 11842 Diag(RealDecl->getLocation(), diag::err_illegal_initializer); 11843 RealDecl->setInvalidDecl(); 11844 return; 11845 } 11846 11847 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. 11848 if (VDecl->getType()->isUndeducedType()) { 11849 // Attempt typo correction early so that the type of the init expression can 11850 // be deduced based on the chosen correction if the original init contains a 11851 // TypoExpr. 11852 ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl); 11853 if (!Res.isUsable()) { 11854 // There are unresolved typos in Init, just drop them. 11855 // FIXME: improve the recovery strategy to preserve the Init. 11856 RealDecl->setInvalidDecl(); 11857 return; 11858 } 11859 if (Res.get()->containsErrors()) { 11860 // Invalidate the decl as we don't know the type for recovery-expr yet. 11861 RealDecl->setInvalidDecl(); 11862 VDecl->setInit(Res.get()); 11863 return; 11864 } 11865 Init = Res.get(); 11866 11867 if (DeduceVariableDeclarationType(VDecl, DirectInit, Init)) 11868 return; 11869 } 11870 11871 // dllimport cannot be used on variable definitions. 11872 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) { 11873 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition); 11874 VDecl->setInvalidDecl(); 11875 return; 11876 } 11877 11878 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) { 11879 // C99 6.7.8p5. C++ has no such restriction, but that is a defect. 11880 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); 11881 VDecl->setInvalidDecl(); 11882 return; 11883 } 11884 11885 if (!VDecl->getType()->isDependentType()) { 11886 // A definition must end up with a complete type, which means it must be 11887 // complete with the restriction that an array type might be completed by 11888 // the initializer; note that later code assumes this restriction. 11889 QualType BaseDeclType = VDecl->getType(); 11890 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType)) 11891 BaseDeclType = Array->getElementType(); 11892 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, 11893 diag::err_typecheck_decl_incomplete_type)) { 11894 RealDecl->setInvalidDecl(); 11895 return; 11896 } 11897 11898 // The variable can not have an abstract class type. 11899 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), 11900 diag::err_abstract_type_in_decl, 11901 AbstractVariableType)) 11902 VDecl->setInvalidDecl(); 11903 } 11904 11905 // If adding the initializer will turn this declaration into a definition, 11906 // and we already have a definition for this variable, diagnose or otherwise 11907 // handle the situation. 11908 VarDecl *Def; 11909 if ((Def = VDecl->getDefinition()) && Def != VDecl && 11910 (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) && 11911 !VDecl->isThisDeclarationADemotedDefinition() && 11912 checkVarDeclRedefinition(Def, VDecl)) 11913 return; 11914 11915 if (getLangOpts().CPlusPlus) { 11916 // C++ [class.static.data]p4 11917 // If a static data member is of const integral or const 11918 // enumeration type, its declaration in the class definition can 11919 // specify a constant-initializer which shall be an integral 11920 // constant expression (5.19). In that case, the member can appear 11921 // in integral constant expressions. The member shall still be 11922 // defined in a namespace scope if it is used in the program and the 11923 // namespace scope definition shall not contain an initializer. 11924 // 11925 // We already performed a redefinition check above, but for static 11926 // data members we also need to check whether there was an in-class 11927 // declaration with an initializer. 11928 if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) { 11929 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization) 11930 << VDecl->getDeclName(); 11931 Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(), 11932 diag::note_previous_initializer) 11933 << 0; 11934 return; 11935 } 11936 11937 if (VDecl->hasLocalStorage()) 11938 setFunctionHasBranchProtectedScope(); 11939 11940 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) { 11941 VDecl->setInvalidDecl(); 11942 return; 11943 } 11944 } 11945 11946 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside 11947 // a kernel function cannot be initialized." 11948 if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) { 11949 Diag(VDecl->getLocation(), diag::err_local_cant_init); 11950 VDecl->setInvalidDecl(); 11951 return; 11952 } 11953 11954 // The LoaderUninitialized attribute acts as a definition (of undef). 11955 if (VDecl->hasAttr<LoaderUninitializedAttr>()) { 11956 Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init); 11957 VDecl->setInvalidDecl(); 11958 return; 11959 } 11960 11961 // Get the decls type and save a reference for later, since 11962 // CheckInitializerTypes may change it. 11963 QualType DclT = VDecl->getType(), SavT = DclT; 11964 11965 // Expressions default to 'id' when we're in a debugger 11966 // and we are assigning it to a variable of Objective-C pointer type. 11967 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() && 11968 Init->getType() == Context.UnknownAnyTy) { 11969 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); 11970 if (Result.isInvalid()) { 11971 VDecl->setInvalidDecl(); 11972 return; 11973 } 11974 Init = Result.get(); 11975 } 11976 11977 // Perform the initialization. 11978 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); 11979 if (!VDecl->isInvalidDecl()) { 11980 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); 11981 InitializationKind Kind = InitializationKind::CreateForInit( 11982 VDecl->getLocation(), DirectInit, Init); 11983 11984 MultiExprArg Args = Init; 11985 if (CXXDirectInit) 11986 Args = MultiExprArg(CXXDirectInit->getExprs(), 11987 CXXDirectInit->getNumExprs()); 11988 11989 // Try to correct any TypoExprs in the initialization arguments. 11990 for (size_t Idx = 0; Idx < Args.size(); ++Idx) { 11991 ExprResult Res = CorrectDelayedTyposInExpr( 11992 Args[Idx], VDecl, [this, Entity, Kind](Expr *E) { 11993 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E)); 11994 return Init.Failed() ? ExprError() : E; 11995 }); 11996 if (Res.isInvalid()) { 11997 VDecl->setInvalidDecl(); 11998 } else if (Res.get() != Args[Idx]) { 11999 Args[Idx] = Res.get(); 12000 } 12001 } 12002 if (VDecl->isInvalidDecl()) 12003 return; 12004 12005 InitializationSequence InitSeq(*this, Entity, Kind, Args, 12006 /*TopLevelOfInitList=*/false, 12007 /*TreatUnavailableAsInvalid=*/false); 12008 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); 12009 if (Result.isInvalid()) { 12010 // If the provied initializer fails to initialize the var decl, 12011 // we attach a recovery expr for better recovery. 12012 auto RecoveryExpr = 12013 CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args); 12014 if (RecoveryExpr.get()) 12015 VDecl->setInit(RecoveryExpr.get()); 12016 return; 12017 } 12018 12019 Init = Result.getAs<Expr>(); 12020 } 12021 12022 // Check for self-references within variable initializers. 12023 // Variables declared within a function/method body (except for references) 12024 // are handled by a dataflow analysis. 12025 // This is undefined behavior in C++, but valid in C. 12026 if (getLangOpts().CPlusPlus) { 12027 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() || 12028 VDecl->getType()->isReferenceType()) { 12029 CheckSelfReference(*this, RealDecl, Init, DirectInit); 12030 } 12031 } 12032 12033 // If the type changed, it means we had an incomplete type that was 12034 // completed by the initializer. For example: 12035 // int ary[] = { 1, 3, 5 }; 12036 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType. 12037 if (!VDecl->isInvalidDecl() && (DclT != SavT)) 12038 VDecl->setType(DclT); 12039 12040 if (!VDecl->isInvalidDecl()) { 12041 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init); 12042 12043 if (VDecl->hasAttr<BlocksAttr>()) 12044 checkRetainCycles(VDecl, Init); 12045 12046 // It is safe to assign a weak reference into a strong variable. 12047 // Although this code can still have problems: 12048 // id x = self.weakProp; 12049 // id y = self.weakProp; 12050 // we do not warn to warn spuriously when 'x' and 'y' are on separate 12051 // paths through the function. This should be revisited if 12052 // -Wrepeated-use-of-weak is made flow-sensitive. 12053 if (FunctionScopeInfo *FSI = getCurFunction()) 12054 if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong || 12055 VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) && 12056 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, 12057 Init->getBeginLoc())) 12058 FSI->markSafeWeakUse(Init); 12059 } 12060 12061 // The initialization is usually a full-expression. 12062 // 12063 // FIXME: If this is a braced initialization of an aggregate, it is not 12064 // an expression, and each individual field initializer is a separate 12065 // full-expression. For instance, in: 12066 // 12067 // struct Temp { ~Temp(); }; 12068 // struct S { S(Temp); }; 12069 // struct T { S a, b; } t = { Temp(), Temp() } 12070 // 12071 // we should destroy the first Temp before constructing the second. 12072 ExprResult Result = 12073 ActOnFinishFullExpr(Init, VDecl->getLocation(), 12074 /*DiscardedValue*/ false, VDecl->isConstexpr()); 12075 if (Result.isInvalid()) { 12076 VDecl->setInvalidDecl(); 12077 return; 12078 } 12079 Init = Result.get(); 12080 12081 // Attach the initializer to the decl. 12082 VDecl->setInit(Init); 12083 12084 if (VDecl->isLocalVarDecl()) { 12085 // Don't check the initializer if the declaration is malformed. 12086 if (VDecl->isInvalidDecl()) { 12087 // do nothing 12088 12089 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized. 12090 // This is true even in C++ for OpenCL. 12091 } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) { 12092 CheckForConstantInitializer(Init, DclT); 12093 12094 // Otherwise, C++ does not restrict the initializer. 12095 } else if (getLangOpts().CPlusPlus) { 12096 // do nothing 12097 12098 // C99 6.7.8p4: All the expressions in an initializer for an object that has 12099 // static storage duration shall be constant expressions or string literals. 12100 } else if (VDecl->getStorageClass() == SC_Static) { 12101 CheckForConstantInitializer(Init, DclT); 12102 12103 // C89 is stricter than C99 for aggregate initializers. 12104 // C89 6.5.7p3: All the expressions [...] in an initializer list 12105 // for an object that has aggregate or union type shall be 12106 // constant expressions. 12107 } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() && 12108 isa<InitListExpr>(Init)) { 12109 const Expr *Culprit; 12110 if (!Init->isConstantInitializer(Context, false, &Culprit)) { 12111 Diag(Culprit->getExprLoc(), 12112 diag::ext_aggregate_init_not_constant) 12113 << Culprit->getSourceRange(); 12114 } 12115 } 12116 12117 if (auto *E = dyn_cast<ExprWithCleanups>(Init)) 12118 if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens())) 12119 if (VDecl->hasLocalStorage()) 12120 BE->getBlockDecl()->setCanAvoidCopyToHeap(); 12121 } else if (VDecl->isStaticDataMember() && !VDecl->isInline() && 12122 VDecl->getLexicalDeclContext()->isRecord()) { 12123 // This is an in-class initialization for a static data member, e.g., 12124 // 12125 // struct S { 12126 // static const int value = 17; 12127 // }; 12128 12129 // C++ [class.mem]p4: 12130 // A member-declarator can contain a constant-initializer only 12131 // if it declares a static member (9.4) of const integral or 12132 // const enumeration type, see 9.4.2. 12133 // 12134 // C++11 [class.static.data]p3: 12135 // If a non-volatile non-inline const static data member is of integral 12136 // or enumeration type, its declaration in the class definition can 12137 // specify a brace-or-equal-initializer in which every initializer-clause 12138 // that is an assignment-expression is a constant expression. A static 12139 // data member of literal type can be declared in the class definition 12140 // with the constexpr specifier; if so, its declaration shall specify a 12141 // brace-or-equal-initializer in which every initializer-clause that is 12142 // an assignment-expression is a constant expression. 12143 12144 // Do nothing on dependent types. 12145 if (DclT->isDependentType()) { 12146 12147 // Allow any 'static constexpr' members, whether or not they are of literal 12148 // type. We separately check that every constexpr variable is of literal 12149 // type. 12150 } else if (VDecl->isConstexpr()) { 12151 12152 // Require constness. 12153 } else if (!DclT.isConstQualified()) { 12154 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) 12155 << Init->getSourceRange(); 12156 VDecl->setInvalidDecl(); 12157 12158 // We allow integer constant expressions in all cases. 12159 } else if (DclT->isIntegralOrEnumerationType()) { 12160 // Check whether the expression is a constant expression. 12161 SourceLocation Loc; 12162 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified()) 12163 // In C++11, a non-constexpr const static data member with an 12164 // in-class initializer cannot be volatile. 12165 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile); 12166 else if (Init->isValueDependent()) 12167 ; // Nothing to check. 12168 else if (Init->isIntegerConstantExpr(Context, &Loc)) 12169 ; // Ok, it's an ICE! 12170 else if (Init->getType()->isScopedEnumeralType() && 12171 Init->isCXX11ConstantExpr(Context)) 12172 ; // Ok, it is a scoped-enum constant expression. 12173 else if (Init->isEvaluatable(Context)) { 12174 // If we can constant fold the initializer through heroics, accept it, 12175 // but report this as a use of an extension for -pedantic. 12176 Diag(Loc, diag::ext_in_class_initializer_non_constant) 12177 << Init->getSourceRange(); 12178 } else { 12179 // Otherwise, this is some crazy unknown case. Report the issue at the 12180 // location provided by the isIntegerConstantExpr failed check. 12181 Diag(Loc, diag::err_in_class_initializer_non_constant) 12182 << Init->getSourceRange(); 12183 VDecl->setInvalidDecl(); 12184 } 12185 12186 // We allow foldable floating-point constants as an extension. 12187 } else if (DclT->isFloatingType()) { // also permits complex, which is ok 12188 // In C++98, this is a GNU extension. In C++11, it is not, but we support 12189 // it anyway and provide a fixit to add the 'constexpr'. 12190 if (getLangOpts().CPlusPlus11) { 12191 Diag(VDecl->getLocation(), 12192 diag::ext_in_class_initializer_float_type_cxx11) 12193 << DclT << Init->getSourceRange(); 12194 Diag(VDecl->getBeginLoc(), 12195 diag::note_in_class_initializer_float_type_cxx11) 12196 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); 12197 } else { 12198 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) 12199 << DclT << Init->getSourceRange(); 12200 12201 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) { 12202 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) 12203 << Init->getSourceRange(); 12204 VDecl->setInvalidDecl(); 12205 } 12206 } 12207 12208 // Suggest adding 'constexpr' in C++11 for literal types. 12209 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) { 12210 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type) 12211 << DclT << Init->getSourceRange() 12212 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); 12213 VDecl->setConstexpr(true); 12214 12215 } else { 12216 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) 12217 << DclT << Init->getSourceRange(); 12218 VDecl->setInvalidDecl(); 12219 } 12220 } else if (VDecl->isFileVarDecl()) { 12221 // In C, extern is typically used to avoid tentative definitions when 12222 // declaring variables in headers, but adding an intializer makes it a 12223 // definition. This is somewhat confusing, so GCC and Clang both warn on it. 12224 // In C++, extern is often used to give implictly static const variables 12225 // external linkage, so don't warn in that case. If selectany is present, 12226 // this might be header code intended for C and C++ inclusion, so apply the 12227 // C++ rules. 12228 if (VDecl->getStorageClass() == SC_Extern && 12229 ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) || 12230 !Context.getBaseElementType(VDecl->getType()).isConstQualified()) && 12231 !(getLangOpts().CPlusPlus && VDecl->isExternC()) && 12232 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind())) 12233 Diag(VDecl->getLocation(), diag::warn_extern_init); 12234 12235 // In Microsoft C++ mode, a const variable defined in namespace scope has 12236 // external linkage by default if the variable is declared with 12237 // __declspec(dllexport). 12238 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && 12239 getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() && 12240 VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition()) 12241 VDecl->setStorageClass(SC_Extern); 12242 12243 // C99 6.7.8p4. All file scoped initializers need to be constant. 12244 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) 12245 CheckForConstantInitializer(Init, DclT); 12246 } 12247 12248 QualType InitType = Init->getType(); 12249 if (!InitType.isNull() && 12250 (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 12251 InitType.hasNonTrivialToPrimitiveCopyCUnion())) 12252 checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc()); 12253 12254 // We will represent direct-initialization similarly to copy-initialization: 12255 // int x(1); -as-> int x = 1; 12256 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); 12257 // 12258 // Clients that want to distinguish between the two forms, can check for 12259 // direct initializer using VarDecl::getInitStyle(). 12260 // A major benefit is that clients that don't particularly care about which 12261 // exactly form was it (like the CodeGen) can handle both cases without 12262 // special case code. 12263 12264 // C++ 8.5p11: 12265 // The form of initialization (using parentheses or '=') is generally 12266 // insignificant, but does matter when the entity being initialized has a 12267 // class type. 12268 if (CXXDirectInit) { 12269 assert(DirectInit && "Call-style initializer must be direct init."); 12270 VDecl->setInitStyle(VarDecl::CallInit); 12271 } else if (DirectInit) { 12272 // This must be list-initialization. No other way is direct-initialization. 12273 VDecl->setInitStyle(VarDecl::ListInit); 12274 } 12275 12276 if (LangOpts.OpenMP && VDecl->isFileVarDecl()) 12277 DeclsToCheckForDeferredDiags.push_back(VDecl); 12278 CheckCompleteVariableDeclaration(VDecl); 12279 } 12280 12281 /// ActOnInitializerError - Given that there was an error parsing an 12282 /// initializer for the given declaration, try to return to some form 12283 /// of sanity. 12284 void Sema::ActOnInitializerError(Decl *D) { 12285 // Our main concern here is re-establishing invariants like "a 12286 // variable's type is either dependent or complete". 12287 if (!D || D->isInvalidDecl()) return; 12288 12289 VarDecl *VD = dyn_cast<VarDecl>(D); 12290 if (!VD) return; 12291 12292 // Bindings are not usable if we can't make sense of the initializer. 12293 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 12294 for (auto *BD : DD->bindings()) 12295 BD->setInvalidDecl(); 12296 12297 // Auto types are meaningless if we can't make sense of the initializer. 12298 if (ParsingInitForAutoVars.count(D)) { 12299 D->setInvalidDecl(); 12300 return; 12301 } 12302 12303 QualType Ty = VD->getType(); 12304 if (Ty->isDependentType()) return; 12305 12306 // Require a complete type. 12307 if (RequireCompleteType(VD->getLocation(), 12308 Context.getBaseElementType(Ty), 12309 diag::err_typecheck_decl_incomplete_type)) { 12310 VD->setInvalidDecl(); 12311 return; 12312 } 12313 12314 // Require a non-abstract type. 12315 if (RequireNonAbstractType(VD->getLocation(), Ty, 12316 diag::err_abstract_type_in_decl, 12317 AbstractVariableType)) { 12318 VD->setInvalidDecl(); 12319 return; 12320 } 12321 12322 // Don't bother complaining about constructors or destructors, 12323 // though. 12324 } 12325 12326 void Sema::ActOnUninitializedDecl(Decl *RealDecl) { 12327 // If there is no declaration, there was an error parsing it. Just ignore it. 12328 if (!RealDecl) 12329 return; 12330 12331 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { 12332 QualType Type = Var->getType(); 12333 12334 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory. 12335 if (isa<DecompositionDecl>(RealDecl)) { 12336 Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var; 12337 Var->setInvalidDecl(); 12338 return; 12339 } 12340 12341 if (Type->isUndeducedType() && 12342 DeduceVariableDeclarationType(Var, false, nullptr)) 12343 return; 12344 12345 // C++11 [class.static.data]p3: A static data member can be declared with 12346 // the constexpr specifier; if so, its declaration shall specify 12347 // a brace-or-equal-initializer. 12348 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to 12349 // the definition of a variable [...] or the declaration of a static data 12350 // member. 12351 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() && 12352 !Var->isThisDeclarationADemotedDefinition()) { 12353 if (Var->isStaticDataMember()) { 12354 // C++1z removes the relevant rule; the in-class declaration is always 12355 // a definition there. 12356 if (!getLangOpts().CPlusPlus17 && 12357 !Context.getTargetInfo().getCXXABI().isMicrosoft()) { 12358 Diag(Var->getLocation(), 12359 diag::err_constexpr_static_mem_var_requires_init) 12360 << Var->getDeclName(); 12361 Var->setInvalidDecl(); 12362 return; 12363 } 12364 } else { 12365 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl); 12366 Var->setInvalidDecl(); 12367 return; 12368 } 12369 } 12370 12371 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must 12372 // be initialized. 12373 if (!Var->isInvalidDecl() && 12374 Var->getType().getAddressSpace() == LangAS::opencl_constant && 12375 Var->getStorageClass() != SC_Extern && !Var->getInit()) { 12376 Diag(Var->getLocation(), diag::err_opencl_constant_no_init); 12377 Var->setInvalidDecl(); 12378 return; 12379 } 12380 12381 if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) { 12382 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) { 12383 if (!RD->hasTrivialDefaultConstructor()) { 12384 Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor); 12385 Var->setInvalidDecl(); 12386 return; 12387 } 12388 } 12389 if (Var->getStorageClass() == SC_Extern) { 12390 Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl) 12391 << Var; 12392 Var->setInvalidDecl(); 12393 return; 12394 } 12395 } 12396 12397 VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition(); 12398 if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly && 12399 Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion()) 12400 checkNonTrivialCUnion(Var->getType(), Var->getLocation(), 12401 NTCUC_DefaultInitializedObject, NTCUK_Init); 12402 12403 12404 switch (DefKind) { 12405 case VarDecl::Definition: 12406 if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) 12407 break; 12408 12409 // We have an out-of-line definition of a static data member 12410 // that has an in-class initializer, so we type-check this like 12411 // a declaration. 12412 // 12413 LLVM_FALLTHROUGH; 12414 12415 case VarDecl::DeclarationOnly: 12416 // It's only a declaration. 12417 12418 // Block scope. C99 6.7p7: If an identifier for an object is 12419 // declared with no linkage (C99 6.2.2p6), the type for the 12420 // object shall be complete. 12421 if (!Type->isDependentType() && Var->isLocalVarDecl() && 12422 !Var->hasLinkage() && !Var->isInvalidDecl() && 12423 RequireCompleteType(Var->getLocation(), Type, 12424 diag::err_typecheck_decl_incomplete_type)) 12425 Var->setInvalidDecl(); 12426 12427 // Make sure that the type is not abstract. 12428 if (!Type->isDependentType() && !Var->isInvalidDecl() && 12429 RequireNonAbstractType(Var->getLocation(), Type, 12430 diag::err_abstract_type_in_decl, 12431 AbstractVariableType)) 12432 Var->setInvalidDecl(); 12433 if (!Type->isDependentType() && !Var->isInvalidDecl() && 12434 Var->getStorageClass() == SC_PrivateExtern) { 12435 Diag(Var->getLocation(), diag::warn_private_extern); 12436 Diag(Var->getLocation(), diag::note_private_extern); 12437 } 12438 12439 if (Context.getTargetInfo().allowDebugInfoForExternalVar() && 12440 !Var->isInvalidDecl() && !getLangOpts().CPlusPlus) 12441 ExternalDeclarations.push_back(Var); 12442 12443 return; 12444 12445 case VarDecl::TentativeDefinition: 12446 // File scope. C99 6.9.2p2: A declaration of an identifier for an 12447 // object that has file scope without an initializer, and without a 12448 // storage-class specifier or with the storage-class specifier "static", 12449 // constitutes a tentative definition. Note: A tentative definition with 12450 // external linkage is valid (C99 6.2.2p5). 12451 if (!Var->isInvalidDecl()) { 12452 if (const IncompleteArrayType *ArrayT 12453 = Context.getAsIncompleteArrayType(Type)) { 12454 if (RequireCompleteSizedType( 12455 Var->getLocation(), ArrayT->getElementType(), 12456 diag::err_array_incomplete_or_sizeless_type)) 12457 Var->setInvalidDecl(); 12458 } else if (Var->getStorageClass() == SC_Static) { 12459 // C99 6.9.2p3: If the declaration of an identifier for an object is 12460 // a tentative definition and has internal linkage (C99 6.2.2p3), the 12461 // declared type shall not be an incomplete type. 12462 // NOTE: code such as the following 12463 // static struct s; 12464 // struct s { int a; }; 12465 // is accepted by gcc. Hence here we issue a warning instead of 12466 // an error and we do not invalidate the static declaration. 12467 // NOTE: to avoid multiple warnings, only check the first declaration. 12468 if (Var->isFirstDecl()) 12469 RequireCompleteType(Var->getLocation(), Type, 12470 diag::ext_typecheck_decl_incomplete_type); 12471 } 12472 } 12473 12474 // Record the tentative definition; we're done. 12475 if (!Var->isInvalidDecl()) 12476 TentativeDefinitions.push_back(Var); 12477 return; 12478 } 12479 12480 // Provide a specific diagnostic for uninitialized variable 12481 // definitions with incomplete array type. 12482 if (Type->isIncompleteArrayType()) { 12483 Diag(Var->getLocation(), 12484 diag::err_typecheck_incomplete_array_needs_initializer); 12485 Var->setInvalidDecl(); 12486 return; 12487 } 12488 12489 // Provide a specific diagnostic for uninitialized variable 12490 // definitions with reference type. 12491 if (Type->isReferenceType()) { 12492 Diag(Var->getLocation(), diag::err_reference_var_requires_init) 12493 << Var->getDeclName() 12494 << SourceRange(Var->getLocation(), Var->getLocation()); 12495 Var->setInvalidDecl(); 12496 return; 12497 } 12498 12499 // Do not attempt to type-check the default initializer for a 12500 // variable with dependent type. 12501 if (Type->isDependentType()) 12502 return; 12503 12504 if (Var->isInvalidDecl()) 12505 return; 12506 12507 if (!Var->hasAttr<AliasAttr>()) { 12508 if (RequireCompleteType(Var->getLocation(), 12509 Context.getBaseElementType(Type), 12510 diag::err_typecheck_decl_incomplete_type)) { 12511 Var->setInvalidDecl(); 12512 return; 12513 } 12514 } else { 12515 return; 12516 } 12517 12518 // The variable can not have an abstract class type. 12519 if (RequireNonAbstractType(Var->getLocation(), Type, 12520 diag::err_abstract_type_in_decl, 12521 AbstractVariableType)) { 12522 Var->setInvalidDecl(); 12523 return; 12524 } 12525 12526 // Check for jumps past the implicit initializer. C++0x 12527 // clarifies that this applies to a "variable with automatic 12528 // storage duration", not a "local variable". 12529 // C++11 [stmt.dcl]p3 12530 // A program that jumps from a point where a variable with automatic 12531 // storage duration is not in scope to a point where it is in scope is 12532 // ill-formed unless the variable has scalar type, class type with a 12533 // trivial default constructor and a trivial destructor, a cv-qualified 12534 // version of one of these types, or an array of one of the preceding 12535 // types and is declared without an initializer. 12536 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) { 12537 if (const RecordType *Record 12538 = Context.getBaseElementType(Type)->getAs<RecordType>()) { 12539 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl()); 12540 // Mark the function (if we're in one) for further checking even if the 12541 // looser rules of C++11 do not require such checks, so that we can 12542 // diagnose incompatibilities with C++98. 12543 if (!CXXRecord->isPOD()) 12544 setFunctionHasBranchProtectedScope(); 12545 } 12546 } 12547 // In OpenCL, we can't initialize objects in the __local address space, 12548 // even implicitly, so don't synthesize an implicit initializer. 12549 if (getLangOpts().OpenCL && 12550 Var->getType().getAddressSpace() == LangAS::opencl_local) 12551 return; 12552 // C++03 [dcl.init]p9: 12553 // If no initializer is specified for an object, and the 12554 // object is of (possibly cv-qualified) non-POD class type (or 12555 // array thereof), the object shall be default-initialized; if 12556 // the object is of const-qualified type, the underlying class 12557 // type shall have a user-declared default 12558 // constructor. Otherwise, if no initializer is specified for 12559 // a non- static object, the object and its subobjects, if 12560 // any, have an indeterminate initial value); if the object 12561 // or any of its subobjects are of const-qualified type, the 12562 // program is ill-formed. 12563 // C++0x [dcl.init]p11: 12564 // If no initializer is specified for an object, the object is 12565 // default-initialized; [...]. 12566 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); 12567 InitializationKind Kind 12568 = InitializationKind::CreateDefault(Var->getLocation()); 12569 12570 InitializationSequence InitSeq(*this, Entity, Kind, None); 12571 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None); 12572 12573 if (Init.get()) { 12574 Var->setInit(MaybeCreateExprWithCleanups(Init.get())); 12575 // This is important for template substitution. 12576 Var->setInitStyle(VarDecl::CallInit); 12577 } else if (Init.isInvalid()) { 12578 // If default-init fails, attach a recovery-expr initializer to track 12579 // that initialization was attempted and failed. 12580 auto RecoveryExpr = 12581 CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {}); 12582 if (RecoveryExpr.get()) 12583 Var->setInit(RecoveryExpr.get()); 12584 } 12585 12586 CheckCompleteVariableDeclaration(Var); 12587 } 12588 } 12589 12590 void Sema::ActOnCXXForRangeDecl(Decl *D) { 12591 // If there is no declaration, there was an error parsing it. Ignore it. 12592 if (!D) 12593 return; 12594 12595 VarDecl *VD = dyn_cast<VarDecl>(D); 12596 if (!VD) { 12597 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var); 12598 D->setInvalidDecl(); 12599 return; 12600 } 12601 12602 VD->setCXXForRangeDecl(true); 12603 12604 // for-range-declaration cannot be given a storage class specifier. 12605 int Error = -1; 12606 switch (VD->getStorageClass()) { 12607 case SC_None: 12608 break; 12609 case SC_Extern: 12610 Error = 0; 12611 break; 12612 case SC_Static: 12613 Error = 1; 12614 break; 12615 case SC_PrivateExtern: 12616 Error = 2; 12617 break; 12618 case SC_Auto: 12619 Error = 3; 12620 break; 12621 case SC_Register: 12622 Error = 4; 12623 break; 12624 } 12625 if (Error != -1) { 12626 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class) 12627 << VD->getDeclName() << Error; 12628 D->setInvalidDecl(); 12629 } 12630 } 12631 12632 StmtResult 12633 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, 12634 IdentifierInfo *Ident, 12635 ParsedAttributes &Attrs, 12636 SourceLocation AttrEnd) { 12637 // C++1y [stmt.iter]p1: 12638 // A range-based for statement of the form 12639 // for ( for-range-identifier : for-range-initializer ) statement 12640 // is equivalent to 12641 // for ( auto&& for-range-identifier : for-range-initializer ) statement 12642 DeclSpec DS(Attrs.getPool().getFactory()); 12643 12644 const char *PrevSpec; 12645 unsigned DiagID; 12646 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID, 12647 getPrintingPolicy()); 12648 12649 Declarator D(DS, DeclaratorContext::ForContext); 12650 D.SetIdentifier(Ident, IdentLoc); 12651 D.takeAttributes(Attrs, AttrEnd); 12652 12653 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false), 12654 IdentLoc); 12655 Decl *Var = ActOnDeclarator(S, D); 12656 cast<VarDecl>(Var)->setCXXForRangeDecl(true); 12657 FinalizeDeclaration(Var); 12658 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc, 12659 AttrEnd.isValid() ? AttrEnd : IdentLoc); 12660 } 12661 12662 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) { 12663 if (var->isInvalidDecl()) return; 12664 12665 if (getLangOpts().OpenCL) { 12666 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an 12667 // initialiser 12668 if (var->getTypeSourceInfo()->getType()->isBlockPointerType() && 12669 !var->hasInit()) { 12670 Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration) 12671 << 1 /*Init*/; 12672 var->setInvalidDecl(); 12673 return; 12674 } 12675 } 12676 12677 // In Objective-C, don't allow jumps past the implicit initialization of a 12678 // local retaining variable. 12679 if (getLangOpts().ObjC && 12680 var->hasLocalStorage()) { 12681 switch (var->getType().getObjCLifetime()) { 12682 case Qualifiers::OCL_None: 12683 case Qualifiers::OCL_ExplicitNone: 12684 case Qualifiers::OCL_Autoreleasing: 12685 break; 12686 12687 case Qualifiers::OCL_Weak: 12688 case Qualifiers::OCL_Strong: 12689 setFunctionHasBranchProtectedScope(); 12690 break; 12691 } 12692 } 12693 12694 if (var->hasLocalStorage() && 12695 var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) 12696 setFunctionHasBranchProtectedScope(); 12697 12698 // Warn about externally-visible variables being defined without a 12699 // prior declaration. We only want to do this for global 12700 // declarations, but we also specifically need to avoid doing it for 12701 // class members because the linkage of an anonymous class can 12702 // change if it's later given a typedef name. 12703 if (var->isThisDeclarationADefinition() && 12704 var->getDeclContext()->getRedeclContext()->isFileContext() && 12705 var->isExternallyVisible() && var->hasLinkage() && 12706 !var->isInline() && !var->getDescribedVarTemplate() && 12707 !isa<VarTemplatePartialSpecializationDecl>(var) && 12708 !isTemplateInstantiation(var->getTemplateSpecializationKind()) && 12709 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations, 12710 var->getLocation())) { 12711 // Find a previous declaration that's not a definition. 12712 VarDecl *prev = var->getPreviousDecl(); 12713 while (prev && prev->isThisDeclarationADefinition()) 12714 prev = prev->getPreviousDecl(); 12715 12716 if (!prev) { 12717 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var; 12718 Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage) 12719 << /* variable */ 0; 12720 } 12721 } 12722 12723 // Cache the result of checking for constant initialization. 12724 Optional<bool> CacheHasConstInit; 12725 const Expr *CacheCulprit = nullptr; 12726 auto checkConstInit = [&]() mutable { 12727 if (!CacheHasConstInit) 12728 CacheHasConstInit = var->getInit()->isConstantInitializer( 12729 Context, var->getType()->isReferenceType(), &CacheCulprit); 12730 return *CacheHasConstInit; 12731 }; 12732 12733 if (var->getTLSKind() == VarDecl::TLS_Static) { 12734 if (var->getType().isDestructedType()) { 12735 // GNU C++98 edits for __thread, [basic.start.term]p3: 12736 // The type of an object with thread storage duration shall not 12737 // have a non-trivial destructor. 12738 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor); 12739 if (getLangOpts().CPlusPlus11) 12740 Diag(var->getLocation(), diag::note_use_thread_local); 12741 } else if (getLangOpts().CPlusPlus && var->hasInit()) { 12742 if (!checkConstInit()) { 12743 // GNU C++98 edits for __thread, [basic.start.init]p4: 12744 // An object of thread storage duration shall not require dynamic 12745 // initialization. 12746 // FIXME: Need strict checking here. 12747 Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init) 12748 << CacheCulprit->getSourceRange(); 12749 if (getLangOpts().CPlusPlus11) 12750 Diag(var->getLocation(), diag::note_use_thread_local); 12751 } 12752 } 12753 } 12754 12755 // Apply section attributes and pragmas to global variables. 12756 bool GlobalStorage = var->hasGlobalStorage(); 12757 if (GlobalStorage && var->isThisDeclarationADefinition() && 12758 !inTemplateInstantiation()) { 12759 PragmaStack<StringLiteral *> *Stack = nullptr; 12760 int SectionFlags = ASTContext::PSF_Read; 12761 if (var->getType().isConstQualified()) 12762 Stack = &ConstSegStack; 12763 else if (!var->getInit()) { 12764 Stack = &BSSSegStack; 12765 SectionFlags |= ASTContext::PSF_Write; 12766 } else { 12767 Stack = &DataSegStack; 12768 SectionFlags |= ASTContext::PSF_Write; 12769 } 12770 if (const SectionAttr *SA = var->getAttr<SectionAttr>()) { 12771 if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec) 12772 SectionFlags |= ASTContext::PSF_Implicit; 12773 UnifySection(SA->getName(), SectionFlags, var); 12774 } else if (Stack->CurrentValue) { 12775 SectionFlags |= ASTContext::PSF_Implicit; 12776 auto SectionName = Stack->CurrentValue->getString(); 12777 var->addAttr(SectionAttr::CreateImplicit( 12778 Context, SectionName, Stack->CurrentPragmaLocation, 12779 AttributeCommonInfo::AS_Pragma, SectionAttr::Declspec_allocate)); 12780 if (UnifySection(SectionName, SectionFlags, var)) 12781 var->dropAttr<SectionAttr>(); 12782 } 12783 12784 // Apply the init_seg attribute if this has an initializer. If the 12785 // initializer turns out to not be dynamic, we'll end up ignoring this 12786 // attribute. 12787 if (CurInitSeg && var->getInit()) 12788 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(), 12789 CurInitSegLoc, 12790 AttributeCommonInfo::AS_Pragma)); 12791 } 12792 12793 // All the following checks are C++ only. 12794 if (!getLangOpts().CPlusPlus) { 12795 // If this variable must be emitted, add it as an initializer for the 12796 // current module. 12797 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) 12798 Context.addModuleInitializer(ModuleScopes.back().Module, var); 12799 return; 12800 } 12801 12802 if (auto *DD = dyn_cast<DecompositionDecl>(var)) 12803 CheckCompleteDecompositionDeclaration(DD); 12804 12805 QualType type = var->getType(); 12806 if (type->isDependentType()) return; 12807 12808 if (var->hasAttr<BlocksAttr>()) 12809 getCurFunction()->addByrefBlockVar(var); 12810 12811 Expr *Init = var->getInit(); 12812 bool IsGlobal = GlobalStorage && !var->isStaticLocal(); 12813 QualType baseType = Context.getBaseElementType(type); 12814 12815 if (Init && !Init->isValueDependent()) { 12816 if (var->isConstexpr()) { 12817 SmallVector<PartialDiagnosticAt, 8> Notes; 12818 if (!var->evaluateValue(Notes) || !var->isInitICE()) { 12819 SourceLocation DiagLoc = var->getLocation(); 12820 // If the note doesn't add any useful information other than a source 12821 // location, fold it into the primary diagnostic. 12822 if (Notes.size() == 1 && Notes[0].second.getDiagID() == 12823 diag::note_invalid_subexpr_in_const_expr) { 12824 DiagLoc = Notes[0].first; 12825 Notes.clear(); 12826 } 12827 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init) 12828 << var << Init->getSourceRange(); 12829 for (unsigned I = 0, N = Notes.size(); I != N; ++I) 12830 Diag(Notes[I].first, Notes[I].second); 12831 } 12832 } else if (var->mightBeUsableInConstantExpressions(Context)) { 12833 // Check whether the initializer of a const variable of integral or 12834 // enumeration type is an ICE now, since we can't tell whether it was 12835 // initialized by a constant expression if we check later. 12836 var->checkInitIsICE(); 12837 } 12838 12839 // Don't emit further diagnostics about constexpr globals since they 12840 // were just diagnosed. 12841 if (!var->isConstexpr() && GlobalStorage && var->hasAttr<ConstInitAttr>()) { 12842 // FIXME: Need strict checking in C++03 here. 12843 bool DiagErr = getLangOpts().CPlusPlus11 12844 ? !var->checkInitIsICE() : !checkConstInit(); 12845 if (DiagErr) { 12846 auto *Attr = var->getAttr<ConstInitAttr>(); 12847 Diag(var->getLocation(), diag::err_require_constant_init_failed) 12848 << Init->getSourceRange(); 12849 Diag(Attr->getLocation(), 12850 diag::note_declared_required_constant_init_here) 12851 << Attr->getRange() << Attr->isConstinit(); 12852 if (getLangOpts().CPlusPlus11) { 12853 APValue Value; 12854 SmallVector<PartialDiagnosticAt, 8> Notes; 12855 Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes); 12856 for (auto &it : Notes) 12857 Diag(it.first, it.second); 12858 } else { 12859 Diag(CacheCulprit->getExprLoc(), 12860 diag::note_invalid_subexpr_in_const_expr) 12861 << CacheCulprit->getSourceRange(); 12862 } 12863 } 12864 } 12865 else if (!var->isConstexpr() && IsGlobal && 12866 !getDiagnostics().isIgnored(diag::warn_global_constructor, 12867 var->getLocation())) { 12868 // Warn about globals which don't have a constant initializer. Don't 12869 // warn about globals with a non-trivial destructor because we already 12870 // warned about them. 12871 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl(); 12872 if (!(RD && !RD->hasTrivialDestructor())) { 12873 if (!checkConstInit()) 12874 Diag(var->getLocation(), diag::warn_global_constructor) 12875 << Init->getSourceRange(); 12876 } 12877 } 12878 } 12879 12880 // Require the destructor. 12881 if (const RecordType *recordType = baseType->getAs<RecordType>()) 12882 FinalizeVarWithDestructor(var, recordType); 12883 12884 // If this variable must be emitted, add it as an initializer for the current 12885 // module. 12886 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) 12887 Context.addModuleInitializer(ModuleScopes.back().Module, var); 12888 } 12889 12890 /// Determines if a variable's alignment is dependent. 12891 static bool hasDependentAlignment(VarDecl *VD) { 12892 if (VD->getType()->isDependentType()) 12893 return true; 12894 for (auto *I : VD->specific_attrs<AlignedAttr>()) 12895 if (I->isAlignmentDependent()) 12896 return true; 12897 return false; 12898 } 12899 12900 /// Check if VD needs to be dllexport/dllimport due to being in a 12901 /// dllexport/import function. 12902 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) { 12903 assert(VD->isStaticLocal()); 12904 12905 auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); 12906 12907 // Find outermost function when VD is in lambda function. 12908 while (FD && !getDLLAttr(FD) && 12909 !FD->hasAttr<DLLExportStaticLocalAttr>() && 12910 !FD->hasAttr<DLLImportStaticLocalAttr>()) { 12911 FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod()); 12912 } 12913 12914 if (!FD) 12915 return; 12916 12917 // Static locals inherit dll attributes from their function. 12918 if (Attr *A = getDLLAttr(FD)) { 12919 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext())); 12920 NewAttr->setInherited(true); 12921 VD->addAttr(NewAttr); 12922 } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) { 12923 auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A); 12924 NewAttr->setInherited(true); 12925 VD->addAttr(NewAttr); 12926 12927 // Export this function to enforce exporting this static variable even 12928 // if it is not used in this compilation unit. 12929 if (!FD->hasAttr<DLLExportAttr>()) 12930 FD->addAttr(NewAttr); 12931 12932 } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) { 12933 auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A); 12934 NewAttr->setInherited(true); 12935 VD->addAttr(NewAttr); 12936 } 12937 } 12938 12939 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform 12940 /// any semantic actions necessary after any initializer has been attached. 12941 void Sema::FinalizeDeclaration(Decl *ThisDecl) { 12942 // Note that we are no longer parsing the initializer for this declaration. 12943 ParsingInitForAutoVars.erase(ThisDecl); 12944 12945 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl); 12946 if (!VD) 12947 return; 12948 12949 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active 12950 if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() && 12951 !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) { 12952 if (PragmaClangBSSSection.Valid) 12953 VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit( 12954 Context, PragmaClangBSSSection.SectionName, 12955 PragmaClangBSSSection.PragmaLocation, 12956 AttributeCommonInfo::AS_Pragma)); 12957 if (PragmaClangDataSection.Valid) 12958 VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit( 12959 Context, PragmaClangDataSection.SectionName, 12960 PragmaClangDataSection.PragmaLocation, 12961 AttributeCommonInfo::AS_Pragma)); 12962 if (PragmaClangRodataSection.Valid) 12963 VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit( 12964 Context, PragmaClangRodataSection.SectionName, 12965 PragmaClangRodataSection.PragmaLocation, 12966 AttributeCommonInfo::AS_Pragma)); 12967 if (PragmaClangRelroSection.Valid) 12968 VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit( 12969 Context, PragmaClangRelroSection.SectionName, 12970 PragmaClangRelroSection.PragmaLocation, 12971 AttributeCommonInfo::AS_Pragma)); 12972 } 12973 12974 if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) { 12975 for (auto *BD : DD->bindings()) { 12976 FinalizeDeclaration(BD); 12977 } 12978 } 12979 12980 checkAttributesAfterMerging(*this, *VD); 12981 12982 // Perform TLS alignment check here after attributes attached to the variable 12983 // which may affect the alignment have been processed. Only perform the check 12984 // if the target has a maximum TLS alignment (zero means no constraints). 12985 if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) { 12986 // Protect the check so that it's not performed on dependent types and 12987 // dependent alignments (we can't determine the alignment in that case). 12988 if (VD->getTLSKind() && !hasDependentAlignment(VD) && 12989 !VD->isInvalidDecl()) { 12990 CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign); 12991 if (Context.getDeclAlign(VD) > MaxAlignChars) { 12992 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) 12993 << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD 12994 << (unsigned)MaxAlignChars.getQuantity(); 12995 } 12996 } 12997 } 12998 12999 if (VD->isStaticLocal()) { 13000 CheckStaticLocalForDllExport(VD); 13001 13002 if (dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) { 13003 // CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__ 13004 // function, only __shared__ variables or variables without any device 13005 // memory qualifiers may be declared with static storage class. 13006 // Note: It is unclear how a function-scope non-const static variable 13007 // without device memory qualifier is implemented, therefore only static 13008 // const variable without device memory qualifier is allowed. 13009 [&]() { 13010 if (!getLangOpts().CUDA) 13011 return; 13012 if (VD->hasAttr<CUDASharedAttr>()) 13013 return; 13014 if (VD->getType().isConstQualified() && 13015 !(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>())) 13016 return; 13017 if (CUDADiagIfDeviceCode(VD->getLocation(), 13018 diag::err_device_static_local_var) 13019 << CurrentCUDATarget()) 13020 VD->setInvalidDecl(); 13021 }(); 13022 } 13023 } 13024 13025 // Perform check for initializers of device-side global variables. 13026 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA 13027 // 7.5). We must also apply the same checks to all __shared__ 13028 // variables whether they are local or not. CUDA also allows 13029 // constant initializers for __constant__ and __device__ variables. 13030 if (getLangOpts().CUDA) 13031 checkAllowedCUDAInitializer(VD); 13032 13033 // Grab the dllimport or dllexport attribute off of the VarDecl. 13034 const InheritableAttr *DLLAttr = getDLLAttr(VD); 13035 13036 // Imported static data members cannot be defined out-of-line. 13037 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) { 13038 if (VD->isStaticDataMember() && VD->isOutOfLine() && 13039 VD->isThisDeclarationADefinition()) { 13040 // We allow definitions of dllimport class template static data members 13041 // with a warning. 13042 CXXRecordDecl *Context = 13043 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext()); 13044 bool IsClassTemplateMember = 13045 isa<ClassTemplatePartialSpecializationDecl>(Context) || 13046 Context->getDescribedClassTemplate(); 13047 13048 Diag(VD->getLocation(), 13049 IsClassTemplateMember 13050 ? diag::warn_attribute_dllimport_static_field_definition 13051 : diag::err_attribute_dllimport_static_field_definition); 13052 Diag(IA->getLocation(), diag::note_attribute); 13053 if (!IsClassTemplateMember) 13054 VD->setInvalidDecl(); 13055 } 13056 } 13057 13058 // dllimport/dllexport variables cannot be thread local, their TLS index 13059 // isn't exported with the variable. 13060 if (DLLAttr && VD->getTLSKind()) { 13061 auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); 13062 if (F && getDLLAttr(F)) { 13063 assert(VD->isStaticLocal()); 13064 // But if this is a static local in a dlimport/dllexport function, the 13065 // function will never be inlined, which means the var would never be 13066 // imported, so having it marked import/export is safe. 13067 } else { 13068 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD 13069 << DLLAttr; 13070 VD->setInvalidDecl(); 13071 } 13072 } 13073 13074 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) { 13075 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { 13076 Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr; 13077 VD->dropAttr<UsedAttr>(); 13078 } 13079 } 13080 13081 const DeclContext *DC = VD->getDeclContext(); 13082 // If there's a #pragma GCC visibility in scope, and this isn't a class 13083 // member, set the visibility of this variable. 13084 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible()) 13085 AddPushedVisibilityAttribute(VD); 13086 13087 // FIXME: Warn on unused var template partial specializations. 13088 if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD)) 13089 MarkUnusedFileScopedDecl(VD); 13090 13091 // Now we have parsed the initializer and can update the table of magic 13092 // tag values. 13093 if (!VD->hasAttr<TypeTagForDatatypeAttr>() || 13094 !VD->getType()->isIntegralOrEnumerationType()) 13095 return; 13096 13097 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) { 13098 const Expr *MagicValueExpr = VD->getInit(); 13099 if (!MagicValueExpr) { 13100 continue; 13101 } 13102 llvm::APSInt MagicValueInt; 13103 if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) { 13104 Diag(I->getRange().getBegin(), 13105 diag::err_type_tag_for_datatype_not_ice) 13106 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); 13107 continue; 13108 } 13109 if (MagicValueInt.getActiveBits() > 64) { 13110 Diag(I->getRange().getBegin(), 13111 diag::err_type_tag_for_datatype_too_large) 13112 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); 13113 continue; 13114 } 13115 uint64_t MagicValue = MagicValueInt.getZExtValue(); 13116 RegisterTypeTagForDatatype(I->getArgumentKind(), 13117 MagicValue, 13118 I->getMatchingCType(), 13119 I->getLayoutCompatible(), 13120 I->getMustBeNull()); 13121 } 13122 } 13123 13124 static bool hasDeducedAuto(DeclaratorDecl *DD) { 13125 auto *VD = dyn_cast<VarDecl>(DD); 13126 return VD && !VD->getType()->hasAutoForTrailingReturnType(); 13127 } 13128 13129 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, 13130 ArrayRef<Decl *> Group) { 13131 SmallVector<Decl*, 8> Decls; 13132 13133 if (DS.isTypeSpecOwned()) 13134 Decls.push_back(DS.getRepAsDecl()); 13135 13136 DeclaratorDecl *FirstDeclaratorInGroup = nullptr; 13137 DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr; 13138 bool DiagnosedMultipleDecomps = false; 13139 DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr; 13140 bool DiagnosedNonDeducedAuto = false; 13141 13142 for (unsigned i = 0, e = Group.size(); i != e; ++i) { 13143 if (Decl *D = Group[i]) { 13144 // For declarators, there are some additional syntactic-ish checks we need 13145 // to perform. 13146 if (auto *DD = dyn_cast<DeclaratorDecl>(D)) { 13147 if (!FirstDeclaratorInGroup) 13148 FirstDeclaratorInGroup = DD; 13149 if (!FirstDecompDeclaratorInGroup) 13150 FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D); 13151 if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() && 13152 !hasDeducedAuto(DD)) 13153 FirstNonDeducedAutoInGroup = DD; 13154 13155 if (FirstDeclaratorInGroup != DD) { 13156 // A decomposition declaration cannot be combined with any other 13157 // declaration in the same group. 13158 if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) { 13159 Diag(FirstDecompDeclaratorInGroup->getLocation(), 13160 diag::err_decomp_decl_not_alone) 13161 << FirstDeclaratorInGroup->getSourceRange() 13162 << DD->getSourceRange(); 13163 DiagnosedMultipleDecomps = true; 13164 } 13165 13166 // A declarator that uses 'auto' in any way other than to declare a 13167 // variable with a deduced type cannot be combined with any other 13168 // declarator in the same group. 13169 if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) { 13170 Diag(FirstNonDeducedAutoInGroup->getLocation(), 13171 diag::err_auto_non_deduced_not_alone) 13172 << FirstNonDeducedAutoInGroup->getType() 13173 ->hasAutoForTrailingReturnType() 13174 << FirstDeclaratorInGroup->getSourceRange() 13175 << DD->getSourceRange(); 13176 DiagnosedNonDeducedAuto = true; 13177 } 13178 } 13179 } 13180 13181 Decls.push_back(D); 13182 } 13183 } 13184 13185 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) { 13186 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) { 13187 handleTagNumbering(Tag, S); 13188 if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() && 13189 getLangOpts().CPlusPlus) 13190 Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup); 13191 } 13192 } 13193 13194 return BuildDeclaratorGroup(Decls); 13195 } 13196 13197 /// BuildDeclaratorGroup - convert a list of declarations into a declaration 13198 /// group, performing any necessary semantic checking. 13199 Sema::DeclGroupPtrTy 13200 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) { 13201 // C++14 [dcl.spec.auto]p7: (DR1347) 13202 // If the type that replaces the placeholder type is not the same in each 13203 // deduction, the program is ill-formed. 13204 if (Group.size() > 1) { 13205 QualType Deduced; 13206 VarDecl *DeducedDecl = nullptr; 13207 for (unsigned i = 0, e = Group.size(); i != e; ++i) { 13208 VarDecl *D = dyn_cast<VarDecl>(Group[i]); 13209 if (!D || D->isInvalidDecl()) 13210 break; 13211 DeducedType *DT = D->getType()->getContainedDeducedType(); 13212 if (!DT || DT->getDeducedType().isNull()) 13213 continue; 13214 if (Deduced.isNull()) { 13215 Deduced = DT->getDeducedType(); 13216 DeducedDecl = D; 13217 } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) { 13218 auto *AT = dyn_cast<AutoType>(DT); 13219 auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), 13220 diag::err_auto_different_deductions) 13221 << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced 13222 << DeducedDecl->getDeclName() << DT->getDeducedType() 13223 << D->getDeclName(); 13224 if (DeducedDecl->hasInit()) 13225 Dia << DeducedDecl->getInit()->getSourceRange(); 13226 if (D->getInit()) 13227 Dia << D->getInit()->getSourceRange(); 13228 D->setInvalidDecl(); 13229 break; 13230 } 13231 } 13232 } 13233 13234 ActOnDocumentableDecls(Group); 13235 13236 return DeclGroupPtrTy::make( 13237 DeclGroupRef::Create(Context, Group.data(), Group.size())); 13238 } 13239 13240 void Sema::ActOnDocumentableDecl(Decl *D) { 13241 ActOnDocumentableDecls(D); 13242 } 13243 13244 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) { 13245 // Don't parse the comment if Doxygen diagnostics are ignored. 13246 if (Group.empty() || !Group[0]) 13247 return; 13248 13249 if (Diags.isIgnored(diag::warn_doc_param_not_found, 13250 Group[0]->getLocation()) && 13251 Diags.isIgnored(diag::warn_unknown_comment_command_name, 13252 Group[0]->getLocation())) 13253 return; 13254 13255 if (Group.size() >= 2) { 13256 // This is a decl group. Normally it will contain only declarations 13257 // produced from declarator list. But in case we have any definitions or 13258 // additional declaration references: 13259 // 'typedef struct S {} S;' 13260 // 'typedef struct S *S;' 13261 // 'struct S *pS;' 13262 // FinalizeDeclaratorGroup adds these as separate declarations. 13263 Decl *MaybeTagDecl = Group[0]; 13264 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) { 13265 Group = Group.slice(1); 13266 } 13267 } 13268 13269 // FIMXE: We assume every Decl in the group is in the same file. 13270 // This is false when preprocessor constructs the group from decls in 13271 // different files (e. g. macros or #include). 13272 Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor()); 13273 } 13274 13275 /// Common checks for a parameter-declaration that should apply to both function 13276 /// parameters and non-type template parameters. 13277 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) { 13278 // Check that there are no default arguments inside the type of this 13279 // parameter. 13280 if (getLangOpts().CPlusPlus) 13281 CheckExtraCXXDefaultArguments(D); 13282 13283 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). 13284 if (D.getCXXScopeSpec().isSet()) { 13285 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) 13286 << D.getCXXScopeSpec().getRange(); 13287 } 13288 13289 // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a 13290 // simple identifier except [...irrelevant cases...]. 13291 switch (D.getName().getKind()) { 13292 case UnqualifiedIdKind::IK_Identifier: 13293 break; 13294 13295 case UnqualifiedIdKind::IK_OperatorFunctionId: 13296 case UnqualifiedIdKind::IK_ConversionFunctionId: 13297 case UnqualifiedIdKind::IK_LiteralOperatorId: 13298 case UnqualifiedIdKind::IK_ConstructorName: 13299 case UnqualifiedIdKind::IK_DestructorName: 13300 case UnqualifiedIdKind::IK_ImplicitSelfParam: 13301 case UnqualifiedIdKind::IK_DeductionGuideName: 13302 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name) 13303 << GetNameForDeclarator(D).getName(); 13304 break; 13305 13306 case UnqualifiedIdKind::IK_TemplateId: 13307 case UnqualifiedIdKind::IK_ConstructorTemplateId: 13308 // GetNameForDeclarator would not produce a useful name in this case. 13309 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id); 13310 break; 13311 } 13312 } 13313 13314 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() 13315 /// to introduce parameters into function prototype scope. 13316 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) { 13317 const DeclSpec &DS = D.getDeclSpec(); 13318 13319 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. 13320 13321 // C++03 [dcl.stc]p2 also permits 'auto'. 13322 StorageClass SC = SC_None; 13323 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { 13324 SC = SC_Register; 13325 // In C++11, the 'register' storage class specifier is deprecated. 13326 // In C++17, it is not allowed, but we tolerate it as an extension. 13327 if (getLangOpts().CPlusPlus11) { 13328 Diag(DS.getStorageClassSpecLoc(), 13329 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class 13330 : diag::warn_deprecated_register) 13331 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 13332 } 13333 } else if (getLangOpts().CPlusPlus && 13334 DS.getStorageClassSpec() == DeclSpec::SCS_auto) { 13335 SC = SC_Auto; 13336 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { 13337 Diag(DS.getStorageClassSpecLoc(), 13338 diag::err_invalid_storage_class_in_func_decl); 13339 D.getMutableDeclSpec().ClearStorageClassSpecs(); 13340 } 13341 13342 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) 13343 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread) 13344 << DeclSpec::getSpecifierName(TSCS); 13345 if (DS.isInlineSpecified()) 13346 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) 13347 << getLangOpts().CPlusPlus17; 13348 if (DS.hasConstexprSpecifier()) 13349 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr) 13350 << 0 << D.getDeclSpec().getConstexprSpecifier(); 13351 13352 DiagnoseFunctionSpecifiers(DS); 13353 13354 CheckFunctionOrTemplateParamDeclarator(S, D); 13355 13356 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 13357 QualType parmDeclType = TInfo->getType(); 13358 13359 // Check for redeclaration of parameters, e.g. int foo(int x, int x); 13360 IdentifierInfo *II = D.getIdentifier(); 13361 if (II) { 13362 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, 13363 ForVisibleRedeclaration); 13364 LookupName(R, S); 13365 if (R.isSingleResult()) { 13366 NamedDecl *PrevDecl = R.getFoundDecl(); 13367 if (PrevDecl->isTemplateParameter()) { 13368 // Maybe we will complain about the shadowed template parameter. 13369 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 13370 // Just pretend that we didn't see the previous declaration. 13371 PrevDecl = nullptr; 13372 } else if (S->isDeclScope(PrevDecl)) { 13373 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; 13374 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 13375 13376 // Recover by removing the name 13377 II = nullptr; 13378 D.SetIdentifier(nullptr, D.getIdentifierLoc()); 13379 D.setInvalidType(true); 13380 } 13381 } 13382 } 13383 13384 // Temporarily put parameter variables in the translation unit, not 13385 // the enclosing context. This prevents them from accidentally 13386 // looking like class members in C++. 13387 ParmVarDecl *New = 13388 CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(), 13389 D.getIdentifierLoc(), II, parmDeclType, TInfo, SC); 13390 13391 if (D.isInvalidType()) 13392 New->setInvalidDecl(); 13393 13394 assert(S->isFunctionPrototypeScope()); 13395 assert(S->getFunctionPrototypeDepth() >= 1); 13396 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1, 13397 S->getNextFunctionPrototypeIndex()); 13398 13399 // Add the parameter declaration into this scope. 13400 S->AddDecl(New); 13401 if (II) 13402 IdResolver.AddDecl(New); 13403 13404 ProcessDeclAttributes(S, New, D); 13405 13406 if (D.getDeclSpec().isModulePrivateSpecified()) 13407 Diag(New->getLocation(), diag::err_module_private_local) 13408 << 1 << New->getDeclName() 13409 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 13410 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 13411 13412 if (New->hasAttr<BlocksAttr>()) { 13413 Diag(New->getLocation(), diag::err_block_on_nonlocal); 13414 } 13415 13416 if (getLangOpts().OpenCL) 13417 deduceOpenCLAddressSpace(New); 13418 13419 return New; 13420 } 13421 13422 /// Synthesizes a variable for a parameter arising from a 13423 /// typedef. 13424 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, 13425 SourceLocation Loc, 13426 QualType T) { 13427 /* FIXME: setting StartLoc == Loc. 13428 Would it be worth to modify callers so as to provide proper source 13429 location for the unnamed parameters, embedding the parameter's type? */ 13430 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr, 13431 T, Context.getTrivialTypeSourceInfo(T, Loc), 13432 SC_None, nullptr); 13433 Param->setImplicit(); 13434 return Param; 13435 } 13436 13437 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) { 13438 // Don't diagnose unused-parameter errors in template instantiations; we 13439 // will already have done so in the template itself. 13440 if (inTemplateInstantiation()) 13441 return; 13442 13443 for (const ParmVarDecl *Parameter : Parameters) { 13444 if (!Parameter->isReferenced() && Parameter->getDeclName() && 13445 !Parameter->hasAttr<UnusedAttr>()) { 13446 Diag(Parameter->getLocation(), diag::warn_unused_parameter) 13447 << Parameter->getDeclName(); 13448 } 13449 } 13450 } 13451 13452 void Sema::DiagnoseSizeOfParametersAndReturnValue( 13453 ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) { 13454 if (LangOpts.NumLargeByValueCopy == 0) // No check. 13455 return; 13456 13457 // Warn if the return value is pass-by-value and larger than the specified 13458 // threshold. 13459 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) { 13460 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity(); 13461 if (Size > LangOpts.NumLargeByValueCopy) 13462 Diag(D->getLocation(), diag::warn_return_value_size) 13463 << D->getDeclName() << Size; 13464 } 13465 13466 // Warn if any parameter is pass-by-value and larger than the specified 13467 // threshold. 13468 for (const ParmVarDecl *Parameter : Parameters) { 13469 QualType T = Parameter->getType(); 13470 if (T->isDependentType() || !T.isPODType(Context)) 13471 continue; 13472 unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); 13473 if (Size > LangOpts.NumLargeByValueCopy) 13474 Diag(Parameter->getLocation(), diag::warn_parameter_size) 13475 << Parameter->getDeclName() << Size; 13476 } 13477 } 13478 13479 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc, 13480 SourceLocation NameLoc, IdentifierInfo *Name, 13481 QualType T, TypeSourceInfo *TSInfo, 13482 StorageClass SC) { 13483 // In ARC, infer a lifetime qualifier for appropriate parameter types. 13484 if (getLangOpts().ObjCAutoRefCount && 13485 T.getObjCLifetime() == Qualifiers::OCL_None && 13486 T->isObjCLifetimeType()) { 13487 13488 Qualifiers::ObjCLifetime lifetime; 13489 13490 // Special cases for arrays: 13491 // - if it's const, use __unsafe_unretained 13492 // - otherwise, it's an error 13493 if (T->isArrayType()) { 13494 if (!T.isConstQualified()) { 13495 if (DelayedDiagnostics.shouldDelayDiagnostics()) 13496 DelayedDiagnostics.add( 13497 sema::DelayedDiagnostic::makeForbiddenType( 13498 NameLoc, diag::err_arc_array_param_no_ownership, T, false)); 13499 else 13500 Diag(NameLoc, diag::err_arc_array_param_no_ownership) 13501 << TSInfo->getTypeLoc().getSourceRange(); 13502 } 13503 lifetime = Qualifiers::OCL_ExplicitNone; 13504 } else { 13505 lifetime = T->getObjCARCImplicitLifetime(); 13506 } 13507 T = Context.getLifetimeQualifiedType(T, lifetime); 13508 } 13509 13510 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name, 13511 Context.getAdjustedParameterType(T), 13512 TSInfo, SC, nullptr); 13513 13514 // Make a note if we created a new pack in the scope of a lambda, so that 13515 // we know that references to that pack must also be expanded within the 13516 // lambda scope. 13517 if (New->isParameterPack()) 13518 if (auto *LSI = getEnclosingLambda()) 13519 LSI->LocalPacks.push_back(New); 13520 13521 if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() || 13522 New->getType().hasNonTrivialToPrimitiveCopyCUnion()) 13523 checkNonTrivialCUnion(New->getType(), New->getLocation(), 13524 NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy); 13525 13526 // Parameters can not be abstract class types. 13527 // For record types, this is done by the AbstractClassUsageDiagnoser once 13528 // the class has been completely parsed. 13529 if (!CurContext->isRecord() && 13530 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl, 13531 AbstractParamType)) 13532 New->setInvalidDecl(); 13533 13534 // Parameter declarators cannot be interface types. All ObjC objects are 13535 // passed by reference. 13536 if (T->isObjCObjectType()) { 13537 SourceLocation TypeEndLoc = 13538 getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc()); 13539 Diag(NameLoc, 13540 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T 13541 << FixItHint::CreateInsertion(TypeEndLoc, "*"); 13542 T = Context.getObjCObjectPointerType(T); 13543 New->setType(T); 13544 } 13545 13546 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 13547 // duration shall not be qualified by an address-space qualifier." 13548 // Since all parameters have automatic store duration, they can not have 13549 // an address space. 13550 if (T.getAddressSpace() != LangAS::Default && 13551 // OpenCL allows function arguments declared to be an array of a type 13552 // to be qualified with an address space. 13553 !(getLangOpts().OpenCL && 13554 (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) { 13555 Diag(NameLoc, diag::err_arg_with_address_space); 13556 New->setInvalidDecl(); 13557 } 13558 13559 return New; 13560 } 13561 13562 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, 13563 SourceLocation LocAfterDecls) { 13564 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); 13565 13566 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' 13567 // for a K&R function. 13568 if (!FTI.hasPrototype) { 13569 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) { 13570 --i; 13571 if (FTI.Params[i].Param == nullptr) { 13572 SmallString<256> Code; 13573 llvm::raw_svector_ostream(Code) 13574 << " int " << FTI.Params[i].Ident->getName() << ";\n"; 13575 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared) 13576 << FTI.Params[i].Ident 13577 << FixItHint::CreateInsertion(LocAfterDecls, Code); 13578 13579 // Implicitly declare the argument as type 'int' for lack of a better 13580 // type. 13581 AttributeFactory attrs; 13582 DeclSpec DS(attrs); 13583 const char* PrevSpec; // unused 13584 unsigned DiagID; // unused 13585 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec, 13586 DiagID, Context.getPrintingPolicy()); 13587 // Use the identifier location for the type source range. 13588 DS.SetRangeStart(FTI.Params[i].IdentLoc); 13589 DS.SetRangeEnd(FTI.Params[i].IdentLoc); 13590 Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext); 13591 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc); 13592 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD); 13593 } 13594 } 13595 } 13596 } 13597 13598 Decl * 13599 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D, 13600 MultiTemplateParamsArg TemplateParameterLists, 13601 SkipBodyInfo *SkipBody) { 13602 assert(getCurFunctionDecl() == nullptr && "Function parsing confused"); 13603 assert(D.isFunctionDeclarator() && "Not a function declarator!"); 13604 Scope *ParentScope = FnBodyScope->getParent(); 13605 13606 // Check if we are in an `omp begin/end declare variant` scope. If we are, and 13607 // we define a non-templated function definition, we will create a declaration 13608 // instead (=BaseFD), and emit the definition with a mangled name afterwards. 13609 // The base function declaration will have the equivalent of an `omp declare 13610 // variant` annotation which specifies the mangled definition as a 13611 // specialization function under the OpenMP context defined as part of the 13612 // `omp begin declare variant`. 13613 FunctionDecl *BaseFD = nullptr; 13614 if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope() && 13615 TemplateParameterLists.empty()) 13616 BaseFD = ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope( 13617 ParentScope, D); 13618 13619 D.setFunctionDefinitionKind(FDK_Definition); 13620 Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists); 13621 Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody); 13622 13623 if (BaseFD) 13624 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope( 13625 cast<FunctionDecl>(Dcl), BaseFD); 13626 13627 return Dcl; 13628 } 13629 13630 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) { 13631 Consumer.HandleInlineFunctionDefinition(D); 13632 } 13633 13634 static bool 13635 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD, 13636 const FunctionDecl *&PossiblePrototype) { 13637 // Don't warn about invalid declarations. 13638 if (FD->isInvalidDecl()) 13639 return false; 13640 13641 // Or declarations that aren't global. 13642 if (!FD->isGlobal()) 13643 return false; 13644 13645 // Don't warn about C++ member functions. 13646 if (isa<CXXMethodDecl>(FD)) 13647 return false; 13648 13649 // Don't warn about 'main'. 13650 if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext())) 13651 if (IdentifierInfo *II = FD->getIdentifier()) 13652 if (II->isStr("main")) 13653 return false; 13654 13655 // Don't warn about inline functions. 13656 if (FD->isInlined()) 13657 return false; 13658 13659 // Don't warn about function templates. 13660 if (FD->getDescribedFunctionTemplate()) 13661 return false; 13662 13663 // Don't warn about function template specializations. 13664 if (FD->isFunctionTemplateSpecialization()) 13665 return false; 13666 13667 // Don't warn for OpenCL kernels. 13668 if (FD->hasAttr<OpenCLKernelAttr>()) 13669 return false; 13670 13671 // Don't warn on explicitly deleted functions. 13672 if (FD->isDeleted()) 13673 return false; 13674 13675 for (const FunctionDecl *Prev = FD->getPreviousDecl(); 13676 Prev; Prev = Prev->getPreviousDecl()) { 13677 // Ignore any declarations that occur in function or method 13678 // scope, because they aren't visible from the header. 13679 if (Prev->getLexicalDeclContext()->isFunctionOrMethod()) 13680 continue; 13681 13682 PossiblePrototype = Prev; 13683 return Prev->getType()->isFunctionNoProtoType(); 13684 } 13685 13686 return true; 13687 } 13688 13689 void 13690 Sema::CheckForFunctionRedefinition(FunctionDecl *FD, 13691 const FunctionDecl *EffectiveDefinition, 13692 SkipBodyInfo *SkipBody) { 13693 const FunctionDecl *Definition = EffectiveDefinition; 13694 if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) { 13695 // If this is a friend function defined in a class template, it does not 13696 // have a body until it is used, nevertheless it is a definition, see 13697 // [temp.inst]p2: 13698 // 13699 // ... for the purpose of determining whether an instantiated redeclaration 13700 // is valid according to [basic.def.odr] and [class.mem], a declaration that 13701 // corresponds to a definition in the template is considered to be a 13702 // definition. 13703 // 13704 // The following code must produce redefinition error: 13705 // 13706 // template<typename T> struct C20 { friend void func_20() {} }; 13707 // C20<int> c20i; 13708 // void func_20() {} 13709 // 13710 for (auto I : FD->redecls()) { 13711 if (I != FD && !I->isInvalidDecl() && 13712 I->getFriendObjectKind() != Decl::FOK_None) { 13713 if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) { 13714 if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) { 13715 // A merged copy of the same function, instantiated as a member of 13716 // the same class, is OK. 13717 if (declaresSameEntity(OrigFD, Original) && 13718 declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()), 13719 cast<Decl>(FD->getLexicalDeclContext()))) 13720 continue; 13721 } 13722 13723 if (Original->isThisDeclarationADefinition()) { 13724 Definition = I; 13725 break; 13726 } 13727 } 13728 } 13729 } 13730 } 13731 13732 if (!Definition) 13733 // Similar to friend functions a friend function template may be a 13734 // definition and do not have a body if it is instantiated in a class 13735 // template. 13736 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) { 13737 for (auto I : FTD->redecls()) { 13738 auto D = cast<FunctionTemplateDecl>(I); 13739 if (D != FTD) { 13740 assert(!D->isThisDeclarationADefinition() && 13741 "More than one definition in redeclaration chain"); 13742 if (D->getFriendObjectKind() != Decl::FOK_None) 13743 if (FunctionTemplateDecl *FT = 13744 D->getInstantiatedFromMemberTemplate()) { 13745 if (FT->isThisDeclarationADefinition()) { 13746 Definition = D->getTemplatedDecl(); 13747 break; 13748 } 13749 } 13750 } 13751 } 13752 } 13753 13754 if (!Definition) 13755 return; 13756 13757 if (canRedefineFunction(Definition, getLangOpts())) 13758 return; 13759 13760 // Don't emit an error when this is redefinition of a typo-corrected 13761 // definition. 13762 if (TypoCorrectedFunctionDefinitions.count(Definition)) 13763 return; 13764 13765 // If we don't have a visible definition of the function, and it's inline or 13766 // a template, skip the new definition. 13767 if (SkipBody && !hasVisibleDefinition(Definition) && 13768 (Definition->getFormalLinkage() == InternalLinkage || 13769 Definition->isInlined() || 13770 Definition->getDescribedFunctionTemplate() || 13771 Definition->getNumTemplateParameterLists())) { 13772 SkipBody->ShouldSkip = true; 13773 SkipBody->Previous = const_cast<FunctionDecl*>(Definition); 13774 if (auto *TD = Definition->getDescribedFunctionTemplate()) 13775 makeMergedDefinitionVisible(TD); 13776 makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition)); 13777 return; 13778 } 13779 13780 if (getLangOpts().GNUMode && Definition->isInlineSpecified() && 13781 Definition->getStorageClass() == SC_Extern) 13782 Diag(FD->getLocation(), diag::err_redefinition_extern_inline) 13783 << FD->getDeclName() << getLangOpts().CPlusPlus; 13784 else 13785 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName(); 13786 13787 Diag(Definition->getLocation(), diag::note_previous_definition); 13788 FD->setInvalidDecl(); 13789 } 13790 13791 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator, 13792 Sema &S) { 13793 CXXRecordDecl *const LambdaClass = CallOperator->getParent(); 13794 13795 LambdaScopeInfo *LSI = S.PushLambdaScope(); 13796 LSI->CallOperator = CallOperator; 13797 LSI->Lambda = LambdaClass; 13798 LSI->ReturnType = CallOperator->getReturnType(); 13799 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault(); 13800 13801 if (LCD == LCD_None) 13802 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None; 13803 else if (LCD == LCD_ByCopy) 13804 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval; 13805 else if (LCD == LCD_ByRef) 13806 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref; 13807 DeclarationNameInfo DNI = CallOperator->getNameInfo(); 13808 13809 LSI->IntroducerRange = DNI.getCXXOperatorNameRange(); 13810 LSI->Mutable = !CallOperator->isConst(); 13811 13812 // Add the captures to the LSI so they can be noted as already 13813 // captured within tryCaptureVar. 13814 auto I = LambdaClass->field_begin(); 13815 for (const auto &C : LambdaClass->captures()) { 13816 if (C.capturesVariable()) { 13817 VarDecl *VD = C.getCapturedVar(); 13818 if (VD->isInitCapture()) 13819 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD); 13820 const bool ByRef = C.getCaptureKind() == LCK_ByRef; 13821 LSI->addCapture(VD, /*IsBlock*/false, ByRef, 13822 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(), 13823 /*EllipsisLoc*/C.isPackExpansion() 13824 ? C.getEllipsisLoc() : SourceLocation(), 13825 I->getType(), /*Invalid*/false); 13826 13827 } else if (C.capturesThis()) { 13828 LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(), 13829 C.getCaptureKind() == LCK_StarThis); 13830 } else { 13831 LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(), 13832 I->getType()); 13833 } 13834 ++I; 13835 } 13836 } 13837 13838 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D, 13839 SkipBodyInfo *SkipBody) { 13840 if (!D) { 13841 // Parsing the function declaration failed in some way. Push on a fake scope 13842 // anyway so we can try to parse the function body. 13843 PushFunctionScope(); 13844 PushExpressionEvaluationContext(ExprEvalContexts.back().Context); 13845 return D; 13846 } 13847 13848 FunctionDecl *FD = nullptr; 13849 13850 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) 13851 FD = FunTmpl->getTemplatedDecl(); 13852 else 13853 FD = cast<FunctionDecl>(D); 13854 13855 // Do not push if it is a lambda because one is already pushed when building 13856 // the lambda in ActOnStartOfLambdaDefinition(). 13857 if (!isLambdaCallOperator(FD)) 13858 PushExpressionEvaluationContext( 13859 FD->isConsteval() ? ExpressionEvaluationContext::ConstantEvaluated 13860 : ExprEvalContexts.back().Context); 13861 13862 // Check for defining attributes before the check for redefinition. 13863 if (const auto *Attr = FD->getAttr<AliasAttr>()) { 13864 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0; 13865 FD->dropAttr<AliasAttr>(); 13866 FD->setInvalidDecl(); 13867 } 13868 if (const auto *Attr = FD->getAttr<IFuncAttr>()) { 13869 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1; 13870 FD->dropAttr<IFuncAttr>(); 13871 FD->setInvalidDecl(); 13872 } 13873 13874 // See if this is a redefinition. If 'will have body' is already set, then 13875 // these checks were already performed when it was set. 13876 if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) { 13877 CheckForFunctionRedefinition(FD, nullptr, SkipBody); 13878 13879 // If we're skipping the body, we're done. Don't enter the scope. 13880 if (SkipBody && SkipBody->ShouldSkip) 13881 return D; 13882 } 13883 13884 // Mark this function as "will have a body eventually". This lets users to 13885 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing 13886 // this function. 13887 FD->setWillHaveBody(); 13888 13889 // If we are instantiating a generic lambda call operator, push 13890 // a LambdaScopeInfo onto the function stack. But use the information 13891 // that's already been calculated (ActOnLambdaExpr) to prime the current 13892 // LambdaScopeInfo. 13893 // When the template operator is being specialized, the LambdaScopeInfo, 13894 // has to be properly restored so that tryCaptureVariable doesn't try 13895 // and capture any new variables. In addition when calculating potential 13896 // captures during transformation of nested lambdas, it is necessary to 13897 // have the LSI properly restored. 13898 if (isGenericLambdaCallOperatorSpecialization(FD)) { 13899 assert(inTemplateInstantiation() && 13900 "There should be an active template instantiation on the stack " 13901 "when instantiating a generic lambda!"); 13902 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this); 13903 } else { 13904 // Enter a new function scope 13905 PushFunctionScope(); 13906 } 13907 13908 // Builtin functions cannot be defined. 13909 if (unsigned BuiltinID = FD->getBuiltinID()) { 13910 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && 13911 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) { 13912 Diag(FD->getLocation(), diag::err_builtin_definition) << FD; 13913 FD->setInvalidDecl(); 13914 } 13915 } 13916 13917 // The return type of a function definition must be complete 13918 // (C99 6.9.1p3, C++ [dcl.fct]p6). 13919 QualType ResultType = FD->getReturnType(); 13920 if (!ResultType->isDependentType() && !ResultType->isVoidType() && 13921 !FD->isInvalidDecl() && 13922 RequireCompleteType(FD->getLocation(), ResultType, 13923 diag::err_func_def_incomplete_result)) 13924 FD->setInvalidDecl(); 13925 13926 if (FnBodyScope) 13927 PushDeclContext(FnBodyScope, FD); 13928 13929 // Check the validity of our function parameters 13930 CheckParmsForFunctionDef(FD->parameters(), 13931 /*CheckParameterNames=*/true); 13932 13933 // Add non-parameter declarations already in the function to the current 13934 // scope. 13935 if (FnBodyScope) { 13936 for (Decl *NPD : FD->decls()) { 13937 auto *NonParmDecl = dyn_cast<NamedDecl>(NPD); 13938 if (!NonParmDecl) 13939 continue; 13940 assert(!isa<ParmVarDecl>(NonParmDecl) && 13941 "parameters should not be in newly created FD yet"); 13942 13943 // If the decl has a name, make it accessible in the current scope. 13944 if (NonParmDecl->getDeclName()) 13945 PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false); 13946 13947 // Similarly, dive into enums and fish their constants out, making them 13948 // accessible in this scope. 13949 if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) { 13950 for (auto *EI : ED->enumerators()) 13951 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false); 13952 } 13953 } 13954 } 13955 13956 // Introduce our parameters into the function scope 13957 for (auto Param : FD->parameters()) { 13958 Param->setOwningFunction(FD); 13959 13960 // If this has an identifier, add it to the scope stack. 13961 if (Param->getIdentifier() && FnBodyScope) { 13962 CheckShadow(FnBodyScope, Param); 13963 13964 PushOnScopeChains(Param, FnBodyScope); 13965 } 13966 } 13967 13968 // Ensure that the function's exception specification is instantiated. 13969 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>()) 13970 ResolveExceptionSpec(D->getLocation(), FPT); 13971 13972 // dllimport cannot be applied to non-inline function definitions. 13973 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() && 13974 !FD->isTemplateInstantiation()) { 13975 assert(!FD->hasAttr<DLLExportAttr>()); 13976 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition); 13977 FD->setInvalidDecl(); 13978 return D; 13979 } 13980 // We want to attach documentation to original Decl (which might be 13981 // a function template). 13982 ActOnDocumentableDecl(D); 13983 if (getCurLexicalContext()->isObjCContainer() && 13984 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl && 13985 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation) 13986 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container); 13987 13988 return D; 13989 } 13990 13991 /// Given the set of return statements within a function body, 13992 /// compute the variables that are subject to the named return value 13993 /// optimization. 13994 /// 13995 /// Each of the variables that is subject to the named return value 13996 /// optimization will be marked as NRVO variables in the AST, and any 13997 /// return statement that has a marked NRVO variable as its NRVO candidate can 13998 /// use the named return value optimization. 13999 /// 14000 /// This function applies a very simplistic algorithm for NRVO: if every return 14001 /// statement in the scope of a variable has the same NRVO candidate, that 14002 /// candidate is an NRVO variable. 14003 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { 14004 ReturnStmt **Returns = Scope->Returns.data(); 14005 14006 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { 14007 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) { 14008 if (!NRVOCandidate->isNRVOVariable()) 14009 Returns[I]->setNRVOCandidate(nullptr); 14010 } 14011 } 14012 } 14013 14014 bool Sema::canDelayFunctionBody(const Declarator &D) { 14015 // We can't delay parsing the body of a constexpr function template (yet). 14016 if (D.getDeclSpec().hasConstexprSpecifier()) 14017 return false; 14018 14019 // We can't delay parsing the body of a function template with a deduced 14020 // return type (yet). 14021 if (D.getDeclSpec().hasAutoTypeSpec()) { 14022 // If the placeholder introduces a non-deduced trailing return type, 14023 // we can still delay parsing it. 14024 if (D.getNumTypeObjects()) { 14025 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1); 14026 if (Outer.Kind == DeclaratorChunk::Function && 14027 Outer.Fun.hasTrailingReturnType()) { 14028 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType()); 14029 return Ty.isNull() || !Ty->isUndeducedType(); 14030 } 14031 } 14032 return false; 14033 } 14034 14035 return true; 14036 } 14037 14038 bool Sema::canSkipFunctionBody(Decl *D) { 14039 // We cannot skip the body of a function (or function template) which is 14040 // constexpr, since we may need to evaluate its body in order to parse the 14041 // rest of the file. 14042 // We cannot skip the body of a function with an undeduced return type, 14043 // because any callers of that function need to know the type. 14044 if (const FunctionDecl *FD = D->getAsFunction()) { 14045 if (FD->isConstexpr()) 14046 return false; 14047 // We can't simply call Type::isUndeducedType here, because inside template 14048 // auto can be deduced to a dependent type, which is not considered 14049 // "undeduced". 14050 if (FD->getReturnType()->getContainedDeducedType()) 14051 return false; 14052 } 14053 return Consumer.shouldSkipFunctionBody(D); 14054 } 14055 14056 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) { 14057 if (!Decl) 14058 return nullptr; 14059 if (FunctionDecl *FD = Decl->getAsFunction()) 14060 FD->setHasSkippedBody(); 14061 else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl)) 14062 MD->setHasSkippedBody(); 14063 return Decl; 14064 } 14065 14066 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { 14067 return ActOnFinishFunctionBody(D, BodyArg, false); 14068 } 14069 14070 /// RAII object that pops an ExpressionEvaluationContext when exiting a function 14071 /// body. 14072 class ExitFunctionBodyRAII { 14073 public: 14074 ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {} 14075 ~ExitFunctionBodyRAII() { 14076 if (!IsLambda) 14077 S.PopExpressionEvaluationContext(); 14078 } 14079 14080 private: 14081 Sema &S; 14082 bool IsLambda = false; 14083 }; 14084 14085 static void diagnoseImplicitlyRetainedSelf(Sema &S) { 14086 llvm::DenseMap<const BlockDecl *, bool> EscapeInfo; 14087 14088 auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) { 14089 if (EscapeInfo.count(BD)) 14090 return EscapeInfo[BD]; 14091 14092 bool R = false; 14093 const BlockDecl *CurBD = BD; 14094 14095 do { 14096 R = !CurBD->doesNotEscape(); 14097 if (R) 14098 break; 14099 CurBD = CurBD->getParent()->getInnermostBlockDecl(); 14100 } while (CurBD); 14101 14102 return EscapeInfo[BD] = R; 14103 }; 14104 14105 // If the location where 'self' is implicitly retained is inside a escaping 14106 // block, emit a diagnostic. 14107 for (const std::pair<SourceLocation, const BlockDecl *> &P : 14108 S.ImplicitlyRetainedSelfLocs) 14109 if (IsOrNestedInEscapingBlock(P.second)) 14110 S.Diag(P.first, diag::warn_implicitly_retains_self) 14111 << FixItHint::CreateInsertion(P.first, "self->"); 14112 } 14113 14114 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, 14115 bool IsInstantiation) { 14116 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr; 14117 14118 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); 14119 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr; 14120 14121 if (getLangOpts().Coroutines && getCurFunction()->isCoroutine()) 14122 CheckCompletedCoroutineBody(FD, Body); 14123 14124 // Do not call PopExpressionEvaluationContext() if it is a lambda because one 14125 // is already popped when finishing the lambda in BuildLambdaExpr(). This is 14126 // meant to pop the context added in ActOnStartOfFunctionDef(). 14127 ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD)); 14128 14129 if (FD) { 14130 FD->setBody(Body); 14131 FD->setWillHaveBody(false); 14132 14133 if (getLangOpts().CPlusPlus14) { 14134 if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() && 14135 FD->getReturnType()->isUndeducedType()) { 14136 // If the function has a deduced result type but contains no 'return' 14137 // statements, the result type as written must be exactly 'auto', and 14138 // the deduced result type is 'void'. 14139 if (!FD->getReturnType()->getAs<AutoType>()) { 14140 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto) 14141 << FD->getReturnType(); 14142 FD->setInvalidDecl(); 14143 } else { 14144 // Substitute 'void' for the 'auto' in the type. 14145 TypeLoc ResultType = getReturnTypeLoc(FD); 14146 Context.adjustDeducedFunctionResultType( 14147 FD, SubstAutoType(ResultType.getType(), Context.VoidTy)); 14148 } 14149 } 14150 } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) { 14151 // In C++11, we don't use 'auto' deduction rules for lambda call 14152 // operators because we don't support return type deduction. 14153 auto *LSI = getCurLambda(); 14154 if (LSI->HasImplicitReturnType) { 14155 deduceClosureReturnType(*LSI); 14156 14157 // C++11 [expr.prim.lambda]p4: 14158 // [...] if there are no return statements in the compound-statement 14159 // [the deduced type is] the type void 14160 QualType RetType = 14161 LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType; 14162 14163 // Update the return type to the deduced type. 14164 const auto *Proto = FD->getType()->castAs<FunctionProtoType>(); 14165 FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(), 14166 Proto->getExtProtoInfo())); 14167 } 14168 } 14169 14170 // If the function implicitly returns zero (like 'main') or is naked, 14171 // don't complain about missing return statements. 14172 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>()) 14173 WP.disableCheckFallThrough(); 14174 14175 // MSVC permits the use of pure specifier (=0) on function definition, 14176 // defined at class scope, warn about this non-standard construct. 14177 if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine()) 14178 Diag(FD->getLocation(), diag::ext_pure_function_definition); 14179 14180 if (!FD->isInvalidDecl()) { 14181 // Don't diagnose unused parameters of defaulted or deleted functions. 14182 if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody()) 14183 DiagnoseUnusedParameters(FD->parameters()); 14184 DiagnoseSizeOfParametersAndReturnValue(FD->parameters(), 14185 FD->getReturnType(), FD); 14186 14187 // If this is a structor, we need a vtable. 14188 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD)) 14189 MarkVTableUsed(FD->getLocation(), Constructor->getParent()); 14190 else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD)) 14191 MarkVTableUsed(FD->getLocation(), Destructor->getParent()); 14192 14193 // Try to apply the named return value optimization. We have to check 14194 // if we can do this here because lambdas keep return statements around 14195 // to deduce an implicit return type. 14196 if (FD->getReturnType()->isRecordType() && 14197 (!getLangOpts().CPlusPlus || !FD->isDependentContext())) 14198 computeNRVO(Body, getCurFunction()); 14199 } 14200 14201 // GNU warning -Wmissing-prototypes: 14202 // Warn if a global function is defined without a previous 14203 // prototype declaration. This warning is issued even if the 14204 // definition itself provides a prototype. The aim is to detect 14205 // global functions that fail to be declared in header files. 14206 const FunctionDecl *PossiblePrototype = nullptr; 14207 if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) { 14208 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; 14209 14210 if (PossiblePrototype) { 14211 // We found a declaration that is not a prototype, 14212 // but that could be a zero-parameter prototype 14213 if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) { 14214 TypeLoc TL = TI->getTypeLoc(); 14215 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>()) 14216 Diag(PossiblePrototype->getLocation(), 14217 diag::note_declaration_not_a_prototype) 14218 << (FD->getNumParams() != 0) 14219 << (FD->getNumParams() == 0 14220 ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void") 14221 : FixItHint{}); 14222 } 14223 } else { 14224 Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage) 14225 << /* function */ 1 14226 << (FD->getStorageClass() == SC_None 14227 ? FixItHint::CreateInsertion(FD->getTypeSpecStartLoc(), 14228 "static ") 14229 : FixItHint{}); 14230 } 14231 14232 // GNU warning -Wstrict-prototypes 14233 // Warn if K&R function is defined without a previous declaration. 14234 // This warning is issued only if the definition itself does not provide 14235 // a prototype. Only K&R definitions do not provide a prototype. 14236 if (!FD->hasWrittenPrototype()) { 14237 TypeSourceInfo *TI = FD->getTypeSourceInfo(); 14238 TypeLoc TL = TI->getTypeLoc(); 14239 FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>(); 14240 Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2; 14241 } 14242 } 14243 14244 // Warn on CPUDispatch with an actual body. 14245 if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body) 14246 if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body)) 14247 if (!CmpndBody->body_empty()) 14248 Diag(CmpndBody->body_front()->getBeginLoc(), 14249 diag::warn_dispatch_body_ignored); 14250 14251 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { 14252 const CXXMethodDecl *KeyFunction; 14253 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) && 14254 MD->isVirtual() && 14255 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) && 14256 MD == KeyFunction->getCanonicalDecl()) { 14257 // Update the key-function state if necessary for this ABI. 14258 if (FD->isInlined() && 14259 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { 14260 Context.setNonKeyFunction(MD); 14261 14262 // If the newly-chosen key function is already defined, then we 14263 // need to mark the vtable as used retroactively. 14264 KeyFunction = Context.getCurrentKeyFunction(MD->getParent()); 14265 const FunctionDecl *Definition; 14266 if (KeyFunction && KeyFunction->isDefined(Definition)) 14267 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true); 14268 } else { 14269 // We just defined they key function; mark the vtable as used. 14270 MarkVTableUsed(FD->getLocation(), MD->getParent(), true); 14271 } 14272 } 14273 } 14274 14275 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && 14276 "Function parsing confused"); 14277 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { 14278 assert(MD == getCurMethodDecl() && "Method parsing confused"); 14279 MD->setBody(Body); 14280 if (!MD->isInvalidDecl()) { 14281 DiagnoseSizeOfParametersAndReturnValue(MD->parameters(), 14282 MD->getReturnType(), MD); 14283 14284 if (Body) 14285 computeNRVO(Body, getCurFunction()); 14286 } 14287 if (getCurFunction()->ObjCShouldCallSuper) { 14288 Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call) 14289 << MD->getSelector().getAsString(); 14290 getCurFunction()->ObjCShouldCallSuper = false; 14291 } 14292 if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) { 14293 const ObjCMethodDecl *InitMethod = nullptr; 14294 bool isDesignated = 14295 MD->isDesignatedInitializerForTheInterface(&InitMethod); 14296 assert(isDesignated && InitMethod); 14297 (void)isDesignated; 14298 14299 auto superIsNSObject = [&](const ObjCMethodDecl *MD) { 14300 auto IFace = MD->getClassInterface(); 14301 if (!IFace) 14302 return false; 14303 auto SuperD = IFace->getSuperClass(); 14304 if (!SuperD) 14305 return false; 14306 return SuperD->getIdentifier() == 14307 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); 14308 }; 14309 // Don't issue this warning for unavailable inits or direct subclasses 14310 // of NSObject. 14311 if (!MD->isUnavailable() && !superIsNSObject(MD)) { 14312 Diag(MD->getLocation(), 14313 diag::warn_objc_designated_init_missing_super_call); 14314 Diag(InitMethod->getLocation(), 14315 diag::note_objc_designated_init_marked_here); 14316 } 14317 getCurFunction()->ObjCWarnForNoDesignatedInitChain = false; 14318 } 14319 if (getCurFunction()->ObjCWarnForNoInitDelegation) { 14320 // Don't issue this warning for unavaialable inits. 14321 if (!MD->isUnavailable()) 14322 Diag(MD->getLocation(), 14323 diag::warn_objc_secondary_init_missing_init_call); 14324 getCurFunction()->ObjCWarnForNoInitDelegation = false; 14325 } 14326 14327 diagnoseImplicitlyRetainedSelf(*this); 14328 } else { 14329 // Parsing the function declaration failed in some way. Pop the fake scope 14330 // we pushed on. 14331 PopFunctionScopeInfo(ActivePolicy, dcl); 14332 return nullptr; 14333 } 14334 14335 if (Body && getCurFunction()->HasPotentialAvailabilityViolations) 14336 DiagnoseUnguardedAvailabilityViolations(dcl); 14337 14338 assert(!getCurFunction()->ObjCShouldCallSuper && 14339 "This should only be set for ObjC methods, which should have been " 14340 "handled in the block above."); 14341 14342 // Verify and clean out per-function state. 14343 if (Body && (!FD || !FD->isDefaulted())) { 14344 // C++ constructors that have function-try-blocks can't have return 14345 // statements in the handlers of that block. (C++ [except.handle]p14) 14346 // Verify this. 14347 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body)) 14348 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body)); 14349 14350 // Verify that gotos and switch cases don't jump into scopes illegally. 14351 if (getCurFunction()->NeedsScopeChecking() && 14352 !PP.isCodeCompletionEnabled()) 14353 DiagnoseInvalidJumps(Body); 14354 14355 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) { 14356 if (!Destructor->getParent()->isDependentType()) 14357 CheckDestructor(Destructor); 14358 14359 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), 14360 Destructor->getParent()); 14361 } 14362 14363 // If any errors have occurred, clear out any temporaries that may have 14364 // been leftover. This ensures that these temporaries won't be picked up for 14365 // deletion in some later function. 14366 if (getDiagnostics().hasErrorOccurred() || 14367 getDiagnostics().getSuppressAllDiagnostics()) { 14368 DiscardCleanupsInEvaluationContext(); 14369 } 14370 if (!getDiagnostics().hasUncompilableErrorOccurred() && 14371 !isa<FunctionTemplateDecl>(dcl)) { 14372 // Since the body is valid, issue any analysis-based warnings that are 14373 // enabled. 14374 ActivePolicy = &WP; 14375 } 14376 14377 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() && 14378 !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose)) 14379 FD->setInvalidDecl(); 14380 14381 if (FD && FD->hasAttr<NakedAttr>()) { 14382 for (const Stmt *S : Body->children()) { 14383 // Allow local register variables without initializer as they don't 14384 // require prologue. 14385 bool RegisterVariables = false; 14386 if (auto *DS = dyn_cast<DeclStmt>(S)) { 14387 for (const auto *Decl : DS->decls()) { 14388 if (const auto *Var = dyn_cast<VarDecl>(Decl)) { 14389 RegisterVariables = 14390 Var->hasAttr<AsmLabelAttr>() && !Var->hasInit(); 14391 if (!RegisterVariables) 14392 break; 14393 } 14394 } 14395 } 14396 if (RegisterVariables) 14397 continue; 14398 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) { 14399 Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function); 14400 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); 14401 FD->setInvalidDecl(); 14402 break; 14403 } 14404 } 14405 } 14406 14407 assert(ExprCleanupObjects.size() == 14408 ExprEvalContexts.back().NumCleanupObjects && 14409 "Leftover temporaries in function"); 14410 assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function"); 14411 assert(MaybeODRUseExprs.empty() && 14412 "Leftover expressions for odr-use checking"); 14413 } 14414 14415 if (!IsInstantiation) 14416 PopDeclContext(); 14417 14418 PopFunctionScopeInfo(ActivePolicy, dcl); 14419 // If any errors have occurred, clear out any temporaries that may have 14420 // been leftover. This ensures that these temporaries won't be picked up for 14421 // deletion in some later function. 14422 if (getDiagnostics().hasErrorOccurred()) { 14423 DiscardCleanupsInEvaluationContext(); 14424 } 14425 14426 if (LangOpts.OpenMP || LangOpts.CUDA) { 14427 auto ES = getEmissionStatus(FD); 14428 if (ES == Sema::FunctionEmissionStatus::Emitted || 14429 ES == Sema::FunctionEmissionStatus::Unknown) 14430 DeclsToCheckForDeferredDiags.push_back(FD); 14431 } 14432 14433 return dcl; 14434 } 14435 14436 /// When we finish delayed parsing of an attribute, we must attach it to the 14437 /// relevant Decl. 14438 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D, 14439 ParsedAttributes &Attrs) { 14440 // Always attach attributes to the underlying decl. 14441 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) 14442 D = TD->getTemplatedDecl(); 14443 ProcessDeclAttributeList(S, D, Attrs); 14444 14445 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D)) 14446 if (Method->isStatic()) 14447 checkThisInStaticMemberFunctionAttributes(Method); 14448 } 14449 14450 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function 14451 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). 14452 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, 14453 IdentifierInfo &II, Scope *S) { 14454 // Find the scope in which the identifier is injected and the corresponding 14455 // DeclContext. 14456 // FIXME: C89 does not say what happens if there is no enclosing block scope. 14457 // In that case, we inject the declaration into the translation unit scope 14458 // instead. 14459 Scope *BlockScope = S; 14460 while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent()) 14461 BlockScope = BlockScope->getParent(); 14462 14463 Scope *ContextScope = BlockScope; 14464 while (!ContextScope->getEntity()) 14465 ContextScope = ContextScope->getParent(); 14466 ContextRAII SavedContext(*this, ContextScope->getEntity()); 14467 14468 // Before we produce a declaration for an implicitly defined 14469 // function, see whether there was a locally-scoped declaration of 14470 // this name as a function or variable. If so, use that 14471 // (non-visible) declaration, and complain about it. 14472 NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II); 14473 if (ExternCPrev) { 14474 // We still need to inject the function into the enclosing block scope so 14475 // that later (non-call) uses can see it. 14476 PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false); 14477 14478 // C89 footnote 38: 14479 // If in fact it is not defined as having type "function returning int", 14480 // the behavior is undefined. 14481 if (!isa<FunctionDecl>(ExternCPrev) || 14482 !Context.typesAreCompatible( 14483 cast<FunctionDecl>(ExternCPrev)->getType(), 14484 Context.getFunctionNoProtoType(Context.IntTy))) { 14485 Diag(Loc, diag::ext_use_out_of_scope_declaration) 14486 << ExternCPrev << !getLangOpts().C99; 14487 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration); 14488 return ExternCPrev; 14489 } 14490 } 14491 14492 // Extension in C99. Legal in C90, but warn about it. 14493 unsigned diag_id; 14494 if (II.getName().startswith("__builtin_")) 14495 diag_id = diag::warn_builtin_unknown; 14496 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported. 14497 else if (getLangOpts().OpenCL) 14498 diag_id = diag::err_opencl_implicit_function_decl; 14499 else if (getLangOpts().C99) 14500 diag_id = diag::ext_implicit_function_decl; 14501 else 14502 diag_id = diag::warn_implicit_function_decl; 14503 Diag(Loc, diag_id) << &II; 14504 14505 // If we found a prior declaration of this function, don't bother building 14506 // another one. We've already pushed that one into scope, so there's nothing 14507 // more to do. 14508 if (ExternCPrev) 14509 return ExternCPrev; 14510 14511 // Because typo correction is expensive, only do it if the implicit 14512 // function declaration is going to be treated as an error. 14513 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) { 14514 TypoCorrection Corrected; 14515 DeclFilterCCC<FunctionDecl> CCC{}; 14516 if (S && (Corrected = 14517 CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName, 14518 S, nullptr, CCC, CTK_NonError))) 14519 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion), 14520 /*ErrorRecovery*/false); 14521 } 14522 14523 // Set a Declarator for the implicit definition: int foo(); 14524 const char *Dummy; 14525 AttributeFactory attrFactory; 14526 DeclSpec DS(attrFactory); 14527 unsigned DiagID; 14528 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID, 14529 Context.getPrintingPolicy()); 14530 (void)Error; // Silence warning. 14531 assert(!Error && "Error setting up implicit decl!"); 14532 SourceLocation NoLoc; 14533 Declarator D(DS, DeclaratorContext::BlockContext); 14534 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false, 14535 /*IsAmbiguous=*/false, 14536 /*LParenLoc=*/NoLoc, 14537 /*Params=*/nullptr, 14538 /*NumParams=*/0, 14539 /*EllipsisLoc=*/NoLoc, 14540 /*RParenLoc=*/NoLoc, 14541 /*RefQualifierIsLvalueRef=*/true, 14542 /*RefQualifierLoc=*/NoLoc, 14543 /*MutableLoc=*/NoLoc, EST_None, 14544 /*ESpecRange=*/SourceRange(), 14545 /*Exceptions=*/nullptr, 14546 /*ExceptionRanges=*/nullptr, 14547 /*NumExceptions=*/0, 14548 /*NoexceptExpr=*/nullptr, 14549 /*ExceptionSpecTokens=*/nullptr, 14550 /*DeclsInPrototype=*/None, Loc, 14551 Loc, D), 14552 std::move(DS.getAttributes()), SourceLocation()); 14553 D.SetIdentifier(&II, Loc); 14554 14555 // Insert this function into the enclosing block scope. 14556 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D)); 14557 FD->setImplicit(); 14558 14559 AddKnownFunctionAttributes(FD); 14560 14561 return FD; 14562 } 14563 14564 /// If this function is a C++ replaceable global allocation function 14565 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]), 14566 /// adds any function attributes that we know a priori based on the standard. 14567 /// 14568 /// We need to check for duplicate attributes both here and where user-written 14569 /// attributes are applied to declarations. 14570 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction( 14571 FunctionDecl *FD) { 14572 if (FD->isInvalidDecl()) 14573 return; 14574 14575 if (FD->getDeclName().getCXXOverloadedOperator() != OO_New && 14576 FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New) 14577 return; 14578 14579 Optional<unsigned> AlignmentParam; 14580 bool IsNothrow = false; 14581 if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow)) 14582 return; 14583 14584 // C++2a [basic.stc.dynamic.allocation]p4: 14585 // An allocation function that has a non-throwing exception specification 14586 // indicates failure by returning a null pointer value. Any other allocation 14587 // function never returns a null pointer value and indicates failure only by 14588 // throwing an exception [...] 14589 if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>()) 14590 FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation())); 14591 14592 // C++2a [basic.stc.dynamic.allocation]p2: 14593 // An allocation function attempts to allocate the requested amount of 14594 // storage. [...] If the request succeeds, the value returned by a 14595 // replaceable allocation function is a [...] pointer value p0 different 14596 // from any previously returned value p1 [...] 14597 // 14598 // However, this particular information is being added in codegen, 14599 // because there is an opt-out switch for it (-fno-assume-sane-operator-new) 14600 14601 // C++2a [basic.stc.dynamic.allocation]p2: 14602 // An allocation function attempts to allocate the requested amount of 14603 // storage. If it is successful, it returns the address of the start of a 14604 // block of storage whose length in bytes is at least as large as the 14605 // requested size. 14606 if (!FD->hasAttr<AllocSizeAttr>()) { 14607 FD->addAttr(AllocSizeAttr::CreateImplicit( 14608 Context, /*ElemSizeParam=*/ParamIdx(1, FD), 14609 /*NumElemsParam=*/ParamIdx(), FD->getLocation())); 14610 } 14611 14612 // C++2a [basic.stc.dynamic.allocation]p3: 14613 // For an allocation function [...], the pointer returned on a successful 14614 // call shall represent the address of storage that is aligned as follows: 14615 // (3.1) If the allocation function takes an argument of type 14616 // std::align_val_t, the storage will have the alignment 14617 // specified by the value of this argument. 14618 if (AlignmentParam.hasValue() && !FD->hasAttr<AllocAlignAttr>()) { 14619 FD->addAttr(AllocAlignAttr::CreateImplicit( 14620 Context, ParamIdx(AlignmentParam.getValue(), FD), FD->getLocation())); 14621 } 14622 14623 // FIXME: 14624 // C++2a [basic.stc.dynamic.allocation]p3: 14625 // For an allocation function [...], the pointer returned on a successful 14626 // call shall represent the address of storage that is aligned as follows: 14627 // (3.2) Otherwise, if the allocation function is named operator new[], 14628 // the storage is aligned for any object that does not have 14629 // new-extended alignment ([basic.align]) and is no larger than the 14630 // requested size. 14631 // (3.3) Otherwise, the storage is aligned for any object that does not 14632 // have new-extended alignment and is of the requested size. 14633 } 14634 14635 /// Adds any function attributes that we know a priori based on 14636 /// the declaration of this function. 14637 /// 14638 /// These attributes can apply both to implicitly-declared builtins 14639 /// (like __builtin___printf_chk) or to library-declared functions 14640 /// like NSLog or printf. 14641 /// 14642 /// We need to check for duplicate attributes both here and where user-written 14643 /// attributes are applied to declarations. 14644 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { 14645 if (FD->isInvalidDecl()) 14646 return; 14647 14648 // If this is a built-in function, map its builtin attributes to 14649 // actual attributes. 14650 if (unsigned BuiltinID = FD->getBuiltinID()) { 14651 // Handle printf-formatting attributes. 14652 unsigned FormatIdx; 14653 bool HasVAListArg; 14654 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { 14655 if (!FD->hasAttr<FormatAttr>()) { 14656 const char *fmt = "printf"; 14657 unsigned int NumParams = FD->getNumParams(); 14658 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf) 14659 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType()) 14660 fmt = "NSString"; 14661 FD->addAttr(FormatAttr::CreateImplicit(Context, 14662 &Context.Idents.get(fmt), 14663 FormatIdx+1, 14664 HasVAListArg ? 0 : FormatIdx+2, 14665 FD->getLocation())); 14666 } 14667 } 14668 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx, 14669 HasVAListArg)) { 14670 if (!FD->hasAttr<FormatAttr>()) 14671 FD->addAttr(FormatAttr::CreateImplicit(Context, 14672 &Context.Idents.get("scanf"), 14673 FormatIdx+1, 14674 HasVAListArg ? 0 : FormatIdx+2, 14675 FD->getLocation())); 14676 } 14677 14678 // Handle automatically recognized callbacks. 14679 SmallVector<int, 4> Encoding; 14680 if (!FD->hasAttr<CallbackAttr>() && 14681 Context.BuiltinInfo.performsCallback(BuiltinID, Encoding)) 14682 FD->addAttr(CallbackAttr::CreateImplicit( 14683 Context, Encoding.data(), Encoding.size(), FD->getLocation())); 14684 14685 // Mark const if we don't care about errno and that is the only thing 14686 // preventing the function from being const. This allows IRgen to use LLVM 14687 // intrinsics for such functions. 14688 if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() && 14689 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) 14690 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 14691 14692 // We make "fma" on some platforms const because we know it does not set 14693 // errno in those environments even though it could set errno based on the 14694 // C standard. 14695 const llvm::Triple &Trip = Context.getTargetInfo().getTriple(); 14696 if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) && 14697 !FD->hasAttr<ConstAttr>()) { 14698 switch (BuiltinID) { 14699 case Builtin::BI__builtin_fma: 14700 case Builtin::BI__builtin_fmaf: 14701 case Builtin::BI__builtin_fmal: 14702 case Builtin::BIfma: 14703 case Builtin::BIfmaf: 14704 case Builtin::BIfmal: 14705 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 14706 break; 14707 default: 14708 break; 14709 } 14710 } 14711 14712 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) && 14713 !FD->hasAttr<ReturnsTwiceAttr>()) 14714 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context, 14715 FD->getLocation())); 14716 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>()) 14717 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); 14718 if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>()) 14719 FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation())); 14720 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>()) 14721 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); 14722 if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) && 14723 !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) { 14724 // Add the appropriate attribute, depending on the CUDA compilation mode 14725 // and which target the builtin belongs to. For example, during host 14726 // compilation, aux builtins are __device__, while the rest are __host__. 14727 if (getLangOpts().CUDAIsDevice != 14728 Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) 14729 FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation())); 14730 else 14731 FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation())); 14732 } 14733 } 14734 14735 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD); 14736 14737 // If C++ exceptions are enabled but we are told extern "C" functions cannot 14738 // throw, add an implicit nothrow attribute to any extern "C" function we come 14739 // across. 14740 if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind && 14741 FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) { 14742 const auto *FPT = FD->getType()->getAs<FunctionProtoType>(); 14743 if (!FPT || FPT->getExceptionSpecType() == EST_None) 14744 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); 14745 } 14746 14747 IdentifierInfo *Name = FD->getIdentifier(); 14748 if (!Name) 14749 return; 14750 if ((!getLangOpts().CPlusPlus && 14751 FD->getDeclContext()->isTranslationUnit()) || 14752 (isa<LinkageSpecDecl>(FD->getDeclContext()) && 14753 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == 14754 LinkageSpecDecl::lang_c)) { 14755 // Okay: this could be a libc/libm/Objective-C function we know 14756 // about. 14757 } else 14758 return; 14759 14760 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) { 14761 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be 14762 // target-specific builtins, perhaps? 14763 if (!FD->hasAttr<FormatAttr>()) 14764 FD->addAttr(FormatAttr::CreateImplicit(Context, 14765 &Context.Idents.get("printf"), 2, 14766 Name->isStr("vasprintf") ? 0 : 3, 14767 FD->getLocation())); 14768 } 14769 14770 if (Name->isStr("__CFStringMakeConstantString")) { 14771 // We already have a __builtin___CFStringMakeConstantString, 14772 // but builds that use -fno-constant-cfstrings don't go through that. 14773 if (!FD->hasAttr<FormatArgAttr>()) 14774 FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD), 14775 FD->getLocation())); 14776 } 14777 } 14778 14779 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, 14780 TypeSourceInfo *TInfo) { 14781 assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); 14782 assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); 14783 14784 if (!TInfo) { 14785 assert(D.isInvalidType() && "no declarator info for valid type"); 14786 TInfo = Context.getTrivialTypeSourceInfo(T); 14787 } 14788 14789 // Scope manipulation handled by caller. 14790 TypedefDecl *NewTD = 14791 TypedefDecl::Create(Context, CurContext, D.getBeginLoc(), 14792 D.getIdentifierLoc(), D.getIdentifier(), TInfo); 14793 14794 // Bail out immediately if we have an invalid declaration. 14795 if (D.isInvalidType()) { 14796 NewTD->setInvalidDecl(); 14797 return NewTD; 14798 } 14799 14800 if (D.getDeclSpec().isModulePrivateSpecified()) { 14801 if (CurContext->isFunctionOrMethod()) 14802 Diag(NewTD->getLocation(), diag::err_module_private_local) 14803 << 2 << NewTD->getDeclName() 14804 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) 14805 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); 14806 else 14807 NewTD->setModulePrivate(); 14808 } 14809 14810 // C++ [dcl.typedef]p8: 14811 // If the typedef declaration defines an unnamed class (or 14812 // enum), the first typedef-name declared by the declaration 14813 // to be that class type (or enum type) is used to denote the 14814 // class type (or enum type) for linkage purposes only. 14815 // We need to check whether the type was declared in the declaration. 14816 switch (D.getDeclSpec().getTypeSpecType()) { 14817 case TST_enum: 14818 case TST_struct: 14819 case TST_interface: 14820 case TST_union: 14821 case TST_class: { 14822 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); 14823 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD); 14824 break; 14825 } 14826 14827 default: 14828 break; 14829 } 14830 14831 return NewTD; 14832 } 14833 14834 /// Check that this is a valid underlying type for an enum declaration. 14835 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) { 14836 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); 14837 QualType T = TI->getType(); 14838 14839 if (T->isDependentType()) 14840 return false; 14841 14842 // This doesn't use 'isIntegralType' despite the error message mentioning 14843 // integral type because isIntegralType would also allow enum types in C. 14844 if (const BuiltinType *BT = T->getAs<BuiltinType>()) 14845 if (BT->isInteger()) 14846 return false; 14847 14848 if (T->isExtIntType()) 14849 return false; 14850 14851 return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T; 14852 } 14853 14854 /// Check whether this is a valid redeclaration of a previous enumeration. 14855 /// \return true if the redeclaration was invalid. 14856 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, 14857 QualType EnumUnderlyingTy, bool IsFixed, 14858 const EnumDecl *Prev) { 14859 if (IsScoped != Prev->isScoped()) { 14860 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch) 14861 << Prev->isScoped(); 14862 Diag(Prev->getLocation(), diag::note_previous_declaration); 14863 return true; 14864 } 14865 14866 if (IsFixed && Prev->isFixed()) { 14867 if (!EnumUnderlyingTy->isDependentType() && 14868 !Prev->getIntegerType()->isDependentType() && 14869 !Context.hasSameUnqualifiedType(EnumUnderlyingTy, 14870 Prev->getIntegerType())) { 14871 // TODO: Highlight the underlying type of the redeclaration. 14872 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch) 14873 << EnumUnderlyingTy << Prev->getIntegerType(); 14874 Diag(Prev->getLocation(), diag::note_previous_declaration) 14875 << Prev->getIntegerTypeRange(); 14876 return true; 14877 } 14878 } else if (IsFixed != Prev->isFixed()) { 14879 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch) 14880 << Prev->isFixed(); 14881 Diag(Prev->getLocation(), diag::note_previous_declaration); 14882 return true; 14883 } 14884 14885 return false; 14886 } 14887 14888 /// Get diagnostic %select index for tag kind for 14889 /// redeclaration diagnostic message. 14890 /// WARNING: Indexes apply to particular diagnostics only! 14891 /// 14892 /// \returns diagnostic %select index. 14893 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) { 14894 switch (Tag) { 14895 case TTK_Struct: return 0; 14896 case TTK_Interface: return 1; 14897 case TTK_Class: return 2; 14898 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!"); 14899 } 14900 } 14901 14902 /// Determine if tag kind is a class-key compatible with 14903 /// class for redeclaration (class, struct, or __interface). 14904 /// 14905 /// \returns true iff the tag kind is compatible. 14906 static bool isClassCompatTagKind(TagTypeKind Tag) 14907 { 14908 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface; 14909 } 14910 14911 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl, 14912 TagTypeKind TTK) { 14913 if (isa<TypedefDecl>(PrevDecl)) 14914 return NTK_Typedef; 14915 else if (isa<TypeAliasDecl>(PrevDecl)) 14916 return NTK_TypeAlias; 14917 else if (isa<ClassTemplateDecl>(PrevDecl)) 14918 return NTK_Template; 14919 else if (isa<TypeAliasTemplateDecl>(PrevDecl)) 14920 return NTK_TypeAliasTemplate; 14921 else if (isa<TemplateTemplateParmDecl>(PrevDecl)) 14922 return NTK_TemplateTemplateArgument; 14923 switch (TTK) { 14924 case TTK_Struct: 14925 case TTK_Interface: 14926 case TTK_Class: 14927 return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct; 14928 case TTK_Union: 14929 return NTK_NonUnion; 14930 case TTK_Enum: 14931 return NTK_NonEnum; 14932 } 14933 llvm_unreachable("invalid TTK"); 14934 } 14935 14936 /// Determine whether a tag with a given kind is acceptable 14937 /// as a redeclaration of the given tag declaration. 14938 /// 14939 /// \returns true if the new tag kind is acceptable, false otherwise. 14940 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, 14941 TagTypeKind NewTag, bool isDefinition, 14942 SourceLocation NewTagLoc, 14943 const IdentifierInfo *Name) { 14944 // C++ [dcl.type.elab]p3: 14945 // The class-key or enum keyword present in the 14946 // elaborated-type-specifier shall agree in kind with the 14947 // declaration to which the name in the elaborated-type-specifier 14948 // refers. This rule also applies to the form of 14949 // elaborated-type-specifier that declares a class-name or 14950 // friend class since it can be construed as referring to the 14951 // definition of the class. Thus, in any 14952 // elaborated-type-specifier, the enum keyword shall be used to 14953 // refer to an enumeration (7.2), the union class-key shall be 14954 // used to refer to a union (clause 9), and either the class or 14955 // struct class-key shall be used to refer to a class (clause 9) 14956 // declared using the class or struct class-key. 14957 TagTypeKind OldTag = Previous->getTagKind(); 14958 if (OldTag != NewTag && 14959 !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag))) 14960 return false; 14961 14962 // Tags are compatible, but we might still want to warn on mismatched tags. 14963 // Non-class tags can't be mismatched at this point. 14964 if (!isClassCompatTagKind(NewTag)) 14965 return true; 14966 14967 // Declarations for which -Wmismatched-tags is disabled are entirely ignored 14968 // by our warning analysis. We don't want to warn about mismatches with (eg) 14969 // declarations in system headers that are designed to be specialized, but if 14970 // a user asks us to warn, we should warn if their code contains mismatched 14971 // declarations. 14972 auto IsIgnoredLoc = [&](SourceLocation Loc) { 14973 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch, 14974 Loc); 14975 }; 14976 if (IsIgnoredLoc(NewTagLoc)) 14977 return true; 14978 14979 auto IsIgnored = [&](const TagDecl *Tag) { 14980 return IsIgnoredLoc(Tag->getLocation()); 14981 }; 14982 while (IsIgnored(Previous)) { 14983 Previous = Previous->getPreviousDecl(); 14984 if (!Previous) 14985 return true; 14986 OldTag = Previous->getTagKind(); 14987 } 14988 14989 bool isTemplate = false; 14990 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous)) 14991 isTemplate = Record->getDescribedClassTemplate(); 14992 14993 if (inTemplateInstantiation()) { 14994 if (OldTag != NewTag) { 14995 // In a template instantiation, do not offer fix-its for tag mismatches 14996 // since they usually mess up the template instead of fixing the problem. 14997 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) 14998 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name 14999 << getRedeclDiagFromTagKind(OldTag); 15000 // FIXME: Note previous location? 15001 } 15002 return true; 15003 } 15004 15005 if (isDefinition) { 15006 // On definitions, check all previous tags and issue a fix-it for each 15007 // one that doesn't match the current tag. 15008 if (Previous->getDefinition()) { 15009 // Don't suggest fix-its for redefinitions. 15010 return true; 15011 } 15012 15013 bool previousMismatch = false; 15014 for (const TagDecl *I : Previous->redecls()) { 15015 if (I->getTagKind() != NewTag) { 15016 // Ignore previous declarations for which the warning was disabled. 15017 if (IsIgnored(I)) 15018 continue; 15019 15020 if (!previousMismatch) { 15021 previousMismatch = true; 15022 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch) 15023 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name 15024 << getRedeclDiagFromTagKind(I->getTagKind()); 15025 } 15026 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion) 15027 << getRedeclDiagFromTagKind(NewTag) 15028 << FixItHint::CreateReplacement(I->getInnerLocStart(), 15029 TypeWithKeyword::getTagTypeKindName(NewTag)); 15030 } 15031 } 15032 return true; 15033 } 15034 15035 // Identify the prevailing tag kind: this is the kind of the definition (if 15036 // there is a non-ignored definition), or otherwise the kind of the prior 15037 // (non-ignored) declaration. 15038 const TagDecl *PrevDef = Previous->getDefinition(); 15039 if (PrevDef && IsIgnored(PrevDef)) 15040 PrevDef = nullptr; 15041 const TagDecl *Redecl = PrevDef ? PrevDef : Previous; 15042 if (Redecl->getTagKind() != NewTag) { 15043 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) 15044 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name 15045 << getRedeclDiagFromTagKind(OldTag); 15046 Diag(Redecl->getLocation(), diag::note_previous_use); 15047 15048 // If there is a previous definition, suggest a fix-it. 15049 if (PrevDef) { 15050 Diag(NewTagLoc, diag::note_struct_class_suggestion) 15051 << getRedeclDiagFromTagKind(Redecl->getTagKind()) 15052 << FixItHint::CreateReplacement(SourceRange(NewTagLoc), 15053 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind())); 15054 } 15055 } 15056 15057 return true; 15058 } 15059 15060 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name 15061 /// from an outer enclosing namespace or file scope inside a friend declaration. 15062 /// This should provide the commented out code in the following snippet: 15063 /// namespace N { 15064 /// struct X; 15065 /// namespace M { 15066 /// struct Y { friend struct /*N::*/ X; }; 15067 /// } 15068 /// } 15069 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S, 15070 SourceLocation NameLoc) { 15071 // While the decl is in a namespace, do repeated lookup of that name and see 15072 // if we get the same namespace back. If we do not, continue until 15073 // translation unit scope, at which point we have a fully qualified NNS. 15074 SmallVector<IdentifierInfo *, 4> Namespaces; 15075 DeclContext *DC = ND->getDeclContext()->getRedeclContext(); 15076 for (; !DC->isTranslationUnit(); DC = DC->getParent()) { 15077 // This tag should be declared in a namespace, which can only be enclosed by 15078 // other namespaces. Bail if there's an anonymous namespace in the chain. 15079 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC); 15080 if (!Namespace || Namespace->isAnonymousNamespace()) 15081 return FixItHint(); 15082 IdentifierInfo *II = Namespace->getIdentifier(); 15083 Namespaces.push_back(II); 15084 NamedDecl *Lookup = SemaRef.LookupSingleName( 15085 S, II, NameLoc, Sema::LookupNestedNameSpecifierName); 15086 if (Lookup == Namespace) 15087 break; 15088 } 15089 15090 // Once we have all the namespaces, reverse them to go outermost first, and 15091 // build an NNS. 15092 SmallString<64> Insertion; 15093 llvm::raw_svector_ostream OS(Insertion); 15094 if (DC->isTranslationUnit()) 15095 OS << "::"; 15096 std::reverse(Namespaces.begin(), Namespaces.end()); 15097 for (auto *II : Namespaces) 15098 OS << II->getName() << "::"; 15099 return FixItHint::CreateInsertion(NameLoc, Insertion); 15100 } 15101 15102 /// Determine whether a tag originally declared in context \p OldDC can 15103 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup 15104 /// found a declaration in \p OldDC as a previous decl, perhaps through a 15105 /// using-declaration). 15106 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC, 15107 DeclContext *NewDC) { 15108 OldDC = OldDC->getRedeclContext(); 15109 NewDC = NewDC->getRedeclContext(); 15110 15111 if (OldDC->Equals(NewDC)) 15112 return true; 15113 15114 // In MSVC mode, we allow a redeclaration if the contexts are related (either 15115 // encloses the other). 15116 if (S.getLangOpts().MSVCCompat && 15117 (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC))) 15118 return true; 15119 15120 return false; 15121 } 15122 15123 /// This is invoked when we see 'struct foo' or 'struct {'. In the 15124 /// former case, Name will be non-null. In the later case, Name will be null. 15125 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a 15126 /// reference/declaration/definition of a tag. 15127 /// 15128 /// \param IsTypeSpecifier \c true if this is a type-specifier (or 15129 /// trailing-type-specifier) other than one in an alias-declaration. 15130 /// 15131 /// \param SkipBody If non-null, will be set to indicate if the caller should 15132 /// skip the definition of this tag and treat it as if it were a declaration. 15133 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, 15134 SourceLocation KWLoc, CXXScopeSpec &SS, 15135 IdentifierInfo *Name, SourceLocation NameLoc, 15136 const ParsedAttributesView &Attrs, AccessSpecifier AS, 15137 SourceLocation ModulePrivateLoc, 15138 MultiTemplateParamsArg TemplateParameterLists, 15139 bool &OwnedDecl, bool &IsDependent, 15140 SourceLocation ScopedEnumKWLoc, 15141 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, 15142 bool IsTypeSpecifier, bool IsTemplateParamOrArg, 15143 SkipBodyInfo *SkipBody) { 15144 // If this is not a definition, it must have a name. 15145 IdentifierInfo *OrigName = Name; 15146 assert((Name != nullptr || TUK == TUK_Definition) && 15147 "Nameless record must be a definition!"); 15148 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference); 15149 15150 OwnedDecl = false; 15151 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); 15152 bool ScopedEnum = ScopedEnumKWLoc.isValid(); 15153 15154 // FIXME: Check member specializations more carefully. 15155 bool isMemberSpecialization = false; 15156 bool Invalid = false; 15157 15158 // We only need to do this matching if we have template parameters 15159 // or a scope specifier, which also conveniently avoids this work 15160 // for non-C++ cases. 15161 if (TemplateParameterLists.size() > 0 || 15162 (SS.isNotEmpty() && TUK != TUK_Reference)) { 15163 if (TemplateParameterList *TemplateParams = 15164 MatchTemplateParametersToScopeSpecifier( 15165 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists, 15166 TUK == TUK_Friend, isMemberSpecialization, Invalid)) { 15167 if (Kind == TTK_Enum) { 15168 Diag(KWLoc, diag::err_enum_template); 15169 return nullptr; 15170 } 15171 15172 if (TemplateParams->size() > 0) { 15173 // This is a declaration or definition of a class template (which may 15174 // be a member of another template). 15175 15176 if (Invalid) 15177 return nullptr; 15178 15179 OwnedDecl = false; 15180 DeclResult Result = CheckClassTemplate( 15181 S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams, 15182 AS, ModulePrivateLoc, 15183 /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1, 15184 TemplateParameterLists.data(), SkipBody); 15185 return Result.get(); 15186 } else { 15187 // The "template<>" header is extraneous. 15188 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) 15189 << TypeWithKeyword::getTagTypeKindName(Kind) << Name; 15190 isMemberSpecialization = true; 15191 } 15192 } 15193 } 15194 15195 // Figure out the underlying type if this a enum declaration. We need to do 15196 // this early, because it's needed to detect if this is an incompatible 15197 // redeclaration. 15198 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; 15199 bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum; 15200 15201 if (Kind == TTK_Enum) { 15202 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) { 15203 // No underlying type explicitly specified, or we failed to parse the 15204 // type, default to int. 15205 EnumUnderlying = Context.IntTy.getTypePtr(); 15206 } else if (UnderlyingType.get()) { 15207 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an 15208 // integral type; any cv-qualification is ignored. 15209 TypeSourceInfo *TI = nullptr; 15210 GetTypeFromParser(UnderlyingType.get(), &TI); 15211 EnumUnderlying = TI; 15212 15213 if (CheckEnumUnderlyingType(TI)) 15214 // Recover by falling back to int. 15215 EnumUnderlying = Context.IntTy.getTypePtr(); 15216 15217 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI, 15218 UPPC_FixedUnderlyingType)) 15219 EnumUnderlying = Context.IntTy.getTypePtr(); 15220 15221 } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) { 15222 // For MSVC ABI compatibility, unfixed enums must use an underlying type 15223 // of 'int'. However, if this is an unfixed forward declaration, don't set 15224 // the underlying type unless the user enables -fms-compatibility. This 15225 // makes unfixed forward declared enums incomplete and is more conforming. 15226 if (TUK == TUK_Definition || getLangOpts().MSVCCompat) 15227 EnumUnderlying = Context.IntTy.getTypePtr(); 15228 } 15229 } 15230 15231 DeclContext *SearchDC = CurContext; 15232 DeclContext *DC = CurContext; 15233 bool isStdBadAlloc = false; 15234 bool isStdAlignValT = false; 15235 15236 RedeclarationKind Redecl = forRedeclarationInCurContext(); 15237 if (TUK == TUK_Friend || TUK == TUK_Reference) 15238 Redecl = NotForRedeclaration; 15239 15240 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C 15241 /// implemented asks for structural equivalence checking, the returned decl 15242 /// here is passed back to the parser, allowing the tag body to be parsed. 15243 auto createTagFromNewDecl = [&]() -> TagDecl * { 15244 assert(!getLangOpts().CPlusPlus && "not meant for C++ usage"); 15245 // If there is an identifier, use the location of the identifier as the 15246 // location of the decl, otherwise use the location of the struct/union 15247 // keyword. 15248 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; 15249 TagDecl *New = nullptr; 15250 15251 if (Kind == TTK_Enum) { 15252 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr, 15253 ScopedEnum, ScopedEnumUsesClassTag, IsFixed); 15254 // If this is an undefined enum, bail. 15255 if (TUK != TUK_Definition && !Invalid) 15256 return nullptr; 15257 if (EnumUnderlying) { 15258 EnumDecl *ED = cast<EnumDecl>(New); 15259 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>()) 15260 ED->setIntegerTypeSourceInfo(TI); 15261 else 15262 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0)); 15263 ED->setPromotionType(ED->getIntegerType()); 15264 } 15265 } else { // struct/union 15266 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 15267 nullptr); 15268 } 15269 15270 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { 15271 // Add alignment attributes if necessary; these attributes are checked 15272 // when the ASTContext lays out the structure. 15273 // 15274 // It is important for implementing the correct semantics that this 15275 // happen here (in ActOnTag). The #pragma pack stack is 15276 // maintained as a result of parser callbacks which can occur at 15277 // many points during the parsing of a struct declaration (because 15278 // the #pragma tokens are effectively skipped over during the 15279 // parsing of the struct). 15280 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 15281 AddAlignmentAttributesForRecord(RD); 15282 AddMsStructLayoutForRecord(RD); 15283 } 15284 } 15285 New->setLexicalDeclContext(CurContext); 15286 return New; 15287 }; 15288 15289 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); 15290 if (Name && SS.isNotEmpty()) { 15291 // We have a nested-name tag ('struct foo::bar'). 15292 15293 // Check for invalid 'foo::'. 15294 if (SS.isInvalid()) { 15295 Name = nullptr; 15296 goto CreateNewDecl; 15297 } 15298 15299 // If this is a friend or a reference to a class in a dependent 15300 // context, don't try to make a decl for it. 15301 if (TUK == TUK_Friend || TUK == TUK_Reference) { 15302 DC = computeDeclContext(SS, false); 15303 if (!DC) { 15304 IsDependent = true; 15305 return nullptr; 15306 } 15307 } else { 15308 DC = computeDeclContext(SS, true); 15309 if (!DC) { 15310 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) 15311 << SS.getRange(); 15312 return nullptr; 15313 } 15314 } 15315 15316 if (RequireCompleteDeclContext(SS, DC)) 15317 return nullptr; 15318 15319 SearchDC = DC; 15320 // Look-up name inside 'foo::'. 15321 LookupQualifiedName(Previous, DC); 15322 15323 if (Previous.isAmbiguous()) 15324 return nullptr; 15325 15326 if (Previous.empty()) { 15327 // Name lookup did not find anything. However, if the 15328 // nested-name-specifier refers to the current instantiation, 15329 // and that current instantiation has any dependent base 15330 // classes, we might find something at instantiation time: treat 15331 // this as a dependent elaborated-type-specifier. 15332 // But this only makes any sense for reference-like lookups. 15333 if (Previous.wasNotFoundInCurrentInstantiation() && 15334 (TUK == TUK_Reference || TUK == TUK_Friend)) { 15335 IsDependent = true; 15336 return nullptr; 15337 } 15338 15339 // A tag 'foo::bar' must already exist. 15340 Diag(NameLoc, diag::err_not_tag_in_scope) 15341 << Kind << Name << DC << SS.getRange(); 15342 Name = nullptr; 15343 Invalid = true; 15344 goto CreateNewDecl; 15345 } 15346 } else if (Name) { 15347 // C++14 [class.mem]p14: 15348 // If T is the name of a class, then each of the following shall have a 15349 // name different from T: 15350 // -- every member of class T that is itself a type 15351 if (TUK != TUK_Reference && TUK != TUK_Friend && 15352 DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc))) 15353 return nullptr; 15354 15355 // If this is a named struct, check to see if there was a previous forward 15356 // declaration or definition. 15357 // FIXME: We're looking into outer scopes here, even when we 15358 // shouldn't be. Doing so can result in ambiguities that we 15359 // shouldn't be diagnosing. 15360 LookupName(Previous, S); 15361 15362 // When declaring or defining a tag, ignore ambiguities introduced 15363 // by types using'ed into this scope. 15364 if (Previous.isAmbiguous() && 15365 (TUK == TUK_Definition || TUK == TUK_Declaration)) { 15366 LookupResult::Filter F = Previous.makeFilter(); 15367 while (F.hasNext()) { 15368 NamedDecl *ND = F.next(); 15369 if (!ND->getDeclContext()->getRedeclContext()->Equals( 15370 SearchDC->getRedeclContext())) 15371 F.erase(); 15372 } 15373 F.done(); 15374 } 15375 15376 // C++11 [namespace.memdef]p3: 15377 // If the name in a friend declaration is neither qualified nor 15378 // a template-id and the declaration is a function or an 15379 // elaborated-type-specifier, the lookup to determine whether 15380 // the entity has been previously declared shall not consider 15381 // any scopes outside the innermost enclosing namespace. 15382 // 15383 // MSVC doesn't implement the above rule for types, so a friend tag 15384 // declaration may be a redeclaration of a type declared in an enclosing 15385 // scope. They do implement this rule for friend functions. 15386 // 15387 // Does it matter that this should be by scope instead of by 15388 // semantic context? 15389 if (!Previous.empty() && TUK == TUK_Friend) { 15390 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext(); 15391 LookupResult::Filter F = Previous.makeFilter(); 15392 bool FriendSawTagOutsideEnclosingNamespace = false; 15393 while (F.hasNext()) { 15394 NamedDecl *ND = F.next(); 15395 DeclContext *DC = ND->getDeclContext()->getRedeclContext(); 15396 if (DC->isFileContext() && 15397 !EnclosingNS->Encloses(ND->getDeclContext())) { 15398 if (getLangOpts().MSVCCompat) 15399 FriendSawTagOutsideEnclosingNamespace = true; 15400 else 15401 F.erase(); 15402 } 15403 } 15404 F.done(); 15405 15406 // Diagnose this MSVC extension in the easy case where lookup would have 15407 // unambiguously found something outside the enclosing namespace. 15408 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) { 15409 NamedDecl *ND = Previous.getFoundDecl(); 15410 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace) 15411 << createFriendTagNNSFixIt(*this, ND, S, NameLoc); 15412 } 15413 } 15414 15415 // Note: there used to be some attempt at recovery here. 15416 if (Previous.isAmbiguous()) 15417 return nullptr; 15418 15419 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) { 15420 // FIXME: This makes sure that we ignore the contexts associated 15421 // with C structs, unions, and enums when looking for a matching 15422 // tag declaration or definition. See the similar lookup tweak 15423 // in Sema::LookupName; is there a better way to deal with this? 15424 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC)) 15425 SearchDC = SearchDC->getParent(); 15426 } 15427 } 15428 15429 if (Previous.isSingleResult() && 15430 Previous.getFoundDecl()->isTemplateParameter()) { 15431 // Maybe we will complain about the shadowed template parameter. 15432 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); 15433 // Just pretend that we didn't see the previous declaration. 15434 Previous.clear(); 15435 } 15436 15437 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace && 15438 DC->Equals(getStdNamespace())) { 15439 if (Name->isStr("bad_alloc")) { 15440 // This is a declaration of or a reference to "std::bad_alloc". 15441 isStdBadAlloc = true; 15442 15443 // If std::bad_alloc has been implicitly declared (but made invisible to 15444 // name lookup), fill in this implicit declaration as the previous 15445 // declaration, so that the declarations get chained appropriately. 15446 if (Previous.empty() && StdBadAlloc) 15447 Previous.addDecl(getStdBadAlloc()); 15448 } else if (Name->isStr("align_val_t")) { 15449 isStdAlignValT = true; 15450 if (Previous.empty() && StdAlignValT) 15451 Previous.addDecl(getStdAlignValT()); 15452 } 15453 } 15454 15455 // If we didn't find a previous declaration, and this is a reference 15456 // (or friend reference), move to the correct scope. In C++, we 15457 // also need to do a redeclaration lookup there, just in case 15458 // there's a shadow friend decl. 15459 if (Name && Previous.empty() && 15460 (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) { 15461 if (Invalid) goto CreateNewDecl; 15462 assert(SS.isEmpty()); 15463 15464 if (TUK == TUK_Reference || IsTemplateParamOrArg) { 15465 // C++ [basic.scope.pdecl]p5: 15466 // -- for an elaborated-type-specifier of the form 15467 // 15468 // class-key identifier 15469 // 15470 // if the elaborated-type-specifier is used in the 15471 // decl-specifier-seq or parameter-declaration-clause of a 15472 // function defined in namespace scope, the identifier is 15473 // declared as a class-name in the namespace that contains 15474 // the declaration; otherwise, except as a friend 15475 // declaration, the identifier is declared in the smallest 15476 // non-class, non-function-prototype scope that contains the 15477 // declaration. 15478 // 15479 // C99 6.7.2.3p8 has a similar (but not identical!) provision for 15480 // C structs and unions. 15481 // 15482 // It is an error in C++ to declare (rather than define) an enum 15483 // type, including via an elaborated type specifier. We'll 15484 // diagnose that later; for now, declare the enum in the same 15485 // scope as we would have picked for any other tag type. 15486 // 15487 // GNU C also supports this behavior as part of its incomplete 15488 // enum types extension, while GNU C++ does not. 15489 // 15490 // Find the context where we'll be declaring the tag. 15491 // FIXME: We would like to maintain the current DeclContext as the 15492 // lexical context, 15493 SearchDC = getTagInjectionContext(SearchDC); 15494 15495 // Find the scope where we'll be declaring the tag. 15496 S = getTagInjectionScope(S, getLangOpts()); 15497 } else { 15498 assert(TUK == TUK_Friend); 15499 // C++ [namespace.memdef]p3: 15500 // If a friend declaration in a non-local class first declares a 15501 // class or function, the friend class or function is a member of 15502 // the innermost enclosing namespace. 15503 SearchDC = SearchDC->getEnclosingNamespaceContext(); 15504 } 15505 15506 // In C++, we need to do a redeclaration lookup to properly 15507 // diagnose some problems. 15508 // FIXME: redeclaration lookup is also used (with and without C++) to find a 15509 // hidden declaration so that we don't get ambiguity errors when using a 15510 // type declared by an elaborated-type-specifier. In C that is not correct 15511 // and we should instead merge compatible types found by lookup. 15512 if (getLangOpts().CPlusPlus) { 15513 Previous.setRedeclarationKind(forRedeclarationInCurContext()); 15514 LookupQualifiedName(Previous, SearchDC); 15515 } else { 15516 Previous.setRedeclarationKind(forRedeclarationInCurContext()); 15517 LookupName(Previous, S); 15518 } 15519 } 15520 15521 // If we have a known previous declaration to use, then use it. 15522 if (Previous.empty() && SkipBody && SkipBody->Previous) 15523 Previous.addDecl(SkipBody->Previous); 15524 15525 if (!Previous.empty()) { 15526 NamedDecl *PrevDecl = Previous.getFoundDecl(); 15527 NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl(); 15528 15529 // It's okay to have a tag decl in the same scope as a typedef 15530 // which hides a tag decl in the same scope. Finding this 15531 // insanity with a redeclaration lookup can only actually happen 15532 // in C++. 15533 // 15534 // This is also okay for elaborated-type-specifiers, which is 15535 // technically forbidden by the current standard but which is 15536 // okay according to the likely resolution of an open issue; 15537 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 15538 if (getLangOpts().CPlusPlus) { 15539 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) { 15540 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { 15541 TagDecl *Tag = TT->getDecl(); 15542 if (Tag->getDeclName() == Name && 15543 Tag->getDeclContext()->getRedeclContext() 15544 ->Equals(TD->getDeclContext()->getRedeclContext())) { 15545 PrevDecl = Tag; 15546 Previous.clear(); 15547 Previous.addDecl(Tag); 15548 Previous.resolveKind(); 15549 } 15550 } 15551 } 15552 } 15553 15554 // If this is a redeclaration of a using shadow declaration, it must 15555 // declare a tag in the same context. In MSVC mode, we allow a 15556 // redefinition if either context is within the other. 15557 if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) { 15558 auto *OldTag = dyn_cast<TagDecl>(PrevDecl); 15559 if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend && 15560 isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) && 15561 !(OldTag && isAcceptableTagRedeclContext( 15562 *this, OldTag->getDeclContext(), SearchDC))) { 15563 Diag(KWLoc, diag::err_using_decl_conflict_reverse); 15564 Diag(Shadow->getTargetDecl()->getLocation(), 15565 diag::note_using_decl_target); 15566 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) 15567 << 0; 15568 // Recover by ignoring the old declaration. 15569 Previous.clear(); 15570 goto CreateNewDecl; 15571 } 15572 } 15573 15574 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { 15575 // If this is a use of a previous tag, or if the tag is already declared 15576 // in the same scope (so that the definition/declaration completes or 15577 // rementions the tag), reuse the decl. 15578 if (TUK == TUK_Reference || TUK == TUK_Friend || 15579 isDeclInScope(DirectPrevDecl, SearchDC, S, 15580 SS.isNotEmpty() || isMemberSpecialization)) { 15581 // Make sure that this wasn't declared as an enum and now used as a 15582 // struct or something similar. 15583 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, 15584 TUK == TUK_Definition, KWLoc, 15585 Name)) { 15586 bool SafeToContinue 15587 = (PrevTagDecl->getTagKind() != TTK_Enum && 15588 Kind != TTK_Enum); 15589 if (SafeToContinue) 15590 Diag(KWLoc, diag::err_use_with_wrong_tag) 15591 << Name 15592 << FixItHint::CreateReplacement(SourceRange(KWLoc), 15593 PrevTagDecl->getKindName()); 15594 else 15595 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; 15596 Diag(PrevTagDecl->getLocation(), diag::note_previous_use); 15597 15598 if (SafeToContinue) 15599 Kind = PrevTagDecl->getTagKind(); 15600 else { 15601 // Recover by making this an anonymous redefinition. 15602 Name = nullptr; 15603 Previous.clear(); 15604 Invalid = true; 15605 } 15606 } 15607 15608 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) { 15609 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); 15610 if (TUK == TUK_Reference || TUK == TUK_Friend) 15611 return PrevTagDecl; 15612 15613 QualType EnumUnderlyingTy; 15614 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) 15615 EnumUnderlyingTy = TI->getType().getUnqualifiedType(); 15616 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>()) 15617 EnumUnderlyingTy = QualType(T, 0); 15618 15619 // All conflicts with previous declarations are recovered by 15620 // returning the previous declaration, unless this is a definition, 15621 // in which case we want the caller to bail out. 15622 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc, 15623 ScopedEnum, EnumUnderlyingTy, 15624 IsFixed, PrevEnum)) 15625 return TUK == TUK_Declaration ? PrevTagDecl : nullptr; 15626 } 15627 15628 // C++11 [class.mem]p1: 15629 // A member shall not be declared twice in the member-specification, 15630 // except that a nested class or member class template can be declared 15631 // and then later defined. 15632 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() && 15633 S->isDeclScope(PrevDecl)) { 15634 Diag(NameLoc, diag::ext_member_redeclared); 15635 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration); 15636 } 15637 15638 if (!Invalid) { 15639 // If this is a use, just return the declaration we found, unless 15640 // we have attributes. 15641 if (TUK == TUK_Reference || TUK == TUK_Friend) { 15642 if (!Attrs.empty()) { 15643 // FIXME: Diagnose these attributes. For now, we create a new 15644 // declaration to hold them. 15645 } else if (TUK == TUK_Reference && 15646 (PrevTagDecl->getFriendObjectKind() == 15647 Decl::FOK_Undeclared || 15648 PrevDecl->getOwningModule() != getCurrentModule()) && 15649 SS.isEmpty()) { 15650 // This declaration is a reference to an existing entity, but 15651 // has different visibility from that entity: it either makes 15652 // a friend visible or it makes a type visible in a new module. 15653 // In either case, create a new declaration. We only do this if 15654 // the declaration would have meant the same thing if no prior 15655 // declaration were found, that is, if it was found in the same 15656 // scope where we would have injected a declaration. 15657 if (!getTagInjectionContext(CurContext)->getRedeclContext() 15658 ->Equals(PrevDecl->getDeclContext()->getRedeclContext())) 15659 return PrevTagDecl; 15660 // This is in the injected scope, create a new declaration in 15661 // that scope. 15662 S = getTagInjectionScope(S, getLangOpts()); 15663 } else { 15664 return PrevTagDecl; 15665 } 15666 } 15667 15668 // Diagnose attempts to redefine a tag. 15669 if (TUK == TUK_Definition) { 15670 if (NamedDecl *Def = PrevTagDecl->getDefinition()) { 15671 // If we're defining a specialization and the previous definition 15672 // is from an implicit instantiation, don't emit an error 15673 // here; we'll catch this in the general case below. 15674 bool IsExplicitSpecializationAfterInstantiation = false; 15675 if (isMemberSpecialization) { 15676 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def)) 15677 IsExplicitSpecializationAfterInstantiation = 15678 RD->getTemplateSpecializationKind() != 15679 TSK_ExplicitSpecialization; 15680 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def)) 15681 IsExplicitSpecializationAfterInstantiation = 15682 ED->getTemplateSpecializationKind() != 15683 TSK_ExplicitSpecialization; 15684 } 15685 15686 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do 15687 // not keep more that one definition around (merge them). However, 15688 // ensure the decl passes the structural compatibility check in 15689 // C11 6.2.7/1 (or 6.1.2.6/1 in C89). 15690 NamedDecl *Hidden = nullptr; 15691 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { 15692 // There is a definition of this tag, but it is not visible. We 15693 // explicitly make use of C++'s one definition rule here, and 15694 // assume that this definition is identical to the hidden one 15695 // we already have. Make the existing definition visible and 15696 // use it in place of this one. 15697 if (!getLangOpts().CPlusPlus) { 15698 // Postpone making the old definition visible until after we 15699 // complete parsing the new one and do the structural 15700 // comparison. 15701 SkipBody->CheckSameAsPrevious = true; 15702 SkipBody->New = createTagFromNewDecl(); 15703 SkipBody->Previous = Def; 15704 return Def; 15705 } else { 15706 SkipBody->ShouldSkip = true; 15707 SkipBody->Previous = Def; 15708 makeMergedDefinitionVisible(Hidden); 15709 // Carry on and handle it like a normal definition. We'll 15710 // skip starting the definitiion later. 15711 } 15712 } else if (!IsExplicitSpecializationAfterInstantiation) { 15713 // A redeclaration in function prototype scope in C isn't 15714 // visible elsewhere, so merely issue a warning. 15715 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope()) 15716 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name; 15717 else 15718 Diag(NameLoc, diag::err_redefinition) << Name; 15719 notePreviousDefinition(Def, 15720 NameLoc.isValid() ? NameLoc : KWLoc); 15721 // If this is a redefinition, recover by making this 15722 // struct be anonymous, which will make any later 15723 // references get the previous definition. 15724 Name = nullptr; 15725 Previous.clear(); 15726 Invalid = true; 15727 } 15728 } else { 15729 // If the type is currently being defined, complain 15730 // about a nested redefinition. 15731 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl(); 15732 if (TD->isBeingDefined()) { 15733 Diag(NameLoc, diag::err_nested_redefinition) << Name; 15734 Diag(PrevTagDecl->getLocation(), 15735 diag::note_previous_definition); 15736 Name = nullptr; 15737 Previous.clear(); 15738 Invalid = true; 15739 } 15740 } 15741 15742 // Okay, this is definition of a previously declared or referenced 15743 // tag. We're going to create a new Decl for it. 15744 } 15745 15746 // Okay, we're going to make a redeclaration. If this is some kind 15747 // of reference, make sure we build the redeclaration in the same DC 15748 // as the original, and ignore the current access specifier. 15749 if (TUK == TUK_Friend || TUK == TUK_Reference) { 15750 SearchDC = PrevTagDecl->getDeclContext(); 15751 AS = AS_none; 15752 } 15753 } 15754 // If we get here we have (another) forward declaration or we 15755 // have a definition. Just create a new decl. 15756 15757 } else { 15758 // If we get here, this is a definition of a new tag type in a nested 15759 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a 15760 // new decl/type. We set PrevDecl to NULL so that the entities 15761 // have distinct types. 15762 Previous.clear(); 15763 } 15764 // If we get here, we're going to create a new Decl. If PrevDecl 15765 // is non-NULL, it's a definition of the tag declared by 15766 // PrevDecl. If it's NULL, we have a new definition. 15767 15768 // Otherwise, PrevDecl is not a tag, but was found with tag 15769 // lookup. This is only actually possible in C++, where a few 15770 // things like templates still live in the tag namespace. 15771 } else { 15772 // Use a better diagnostic if an elaborated-type-specifier 15773 // found the wrong kind of type on the first 15774 // (non-redeclaration) lookup. 15775 if ((TUK == TUK_Reference || TUK == TUK_Friend) && 15776 !Previous.isForRedeclaration()) { 15777 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); 15778 Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK 15779 << Kind; 15780 Diag(PrevDecl->getLocation(), diag::note_declared_at); 15781 Invalid = true; 15782 15783 // Otherwise, only diagnose if the declaration is in scope. 15784 } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S, 15785 SS.isNotEmpty() || isMemberSpecialization)) { 15786 // do nothing 15787 15788 // Diagnose implicit declarations introduced by elaborated types. 15789 } else if (TUK == TUK_Reference || TUK == TUK_Friend) { 15790 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); 15791 Diag(NameLoc, diag::err_tag_reference_conflict) << NTK; 15792 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; 15793 Invalid = true; 15794 15795 // Otherwise it's a declaration. Call out a particularly common 15796 // case here. 15797 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) { 15798 unsigned Kind = 0; 15799 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1; 15800 Diag(NameLoc, diag::err_tag_definition_of_typedef) 15801 << Name << Kind << TND->getUnderlyingType(); 15802 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; 15803 Invalid = true; 15804 15805 // Otherwise, diagnose. 15806 } else { 15807 // The tag name clashes with something else in the target scope, 15808 // issue an error and recover by making this tag be anonymous. 15809 Diag(NameLoc, diag::err_redefinition_different_kind) << Name; 15810 notePreviousDefinition(PrevDecl, NameLoc); 15811 Name = nullptr; 15812 Invalid = true; 15813 } 15814 15815 // The existing declaration isn't relevant to us; we're in a 15816 // new scope, so clear out the previous declaration. 15817 Previous.clear(); 15818 } 15819 } 15820 15821 CreateNewDecl: 15822 15823 TagDecl *PrevDecl = nullptr; 15824 if (Previous.isSingleResult()) 15825 PrevDecl = cast<TagDecl>(Previous.getFoundDecl()); 15826 15827 // If there is an identifier, use the location of the identifier as the 15828 // location of the decl, otherwise use the location of the struct/union 15829 // keyword. 15830 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; 15831 15832 // Otherwise, create a new declaration. If there is a previous 15833 // declaration of the same entity, the two will be linked via 15834 // PrevDecl. 15835 TagDecl *New; 15836 15837 if (Kind == TTK_Enum) { 15838 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: 15839 // enum X { A, B, C } D; D should chain to X. 15840 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, 15841 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum, 15842 ScopedEnumUsesClassTag, IsFixed); 15843 15844 if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit())) 15845 StdAlignValT = cast<EnumDecl>(New); 15846 15847 // If this is an undefined enum, warn. 15848 if (TUK != TUK_Definition && !Invalid) { 15849 TagDecl *Def; 15850 if (IsFixed && cast<EnumDecl>(New)->isFixed()) { 15851 // C++0x: 7.2p2: opaque-enum-declaration. 15852 // Conflicts are diagnosed above. Do nothing. 15853 } 15854 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) { 15855 Diag(Loc, diag::ext_forward_ref_enum_def) 15856 << New; 15857 Diag(Def->getLocation(), diag::note_previous_definition); 15858 } else { 15859 unsigned DiagID = diag::ext_forward_ref_enum; 15860 if (getLangOpts().MSVCCompat) 15861 DiagID = diag::ext_ms_forward_ref_enum; 15862 else if (getLangOpts().CPlusPlus) 15863 DiagID = diag::err_forward_ref_enum; 15864 Diag(Loc, DiagID); 15865 } 15866 } 15867 15868 if (EnumUnderlying) { 15869 EnumDecl *ED = cast<EnumDecl>(New); 15870 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) 15871 ED->setIntegerTypeSourceInfo(TI); 15872 else 15873 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0)); 15874 ED->setPromotionType(ED->getIntegerType()); 15875 assert(ED->isComplete() && "enum with type should be complete"); 15876 } 15877 } else { 15878 // struct/union/class 15879 15880 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: 15881 // struct X { int A; } D; D should chain to X. 15882 if (getLangOpts().CPlusPlus) { 15883 // FIXME: Look for a way to use RecordDecl for simple structs. 15884 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 15885 cast_or_null<CXXRecordDecl>(PrevDecl)); 15886 15887 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) 15888 StdBadAlloc = cast<CXXRecordDecl>(New); 15889 } else 15890 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, 15891 cast_or_null<RecordDecl>(PrevDecl)); 15892 } 15893 15894 // C++11 [dcl.type]p3: 15895 // A type-specifier-seq shall not define a class or enumeration [...]. 15896 if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) && 15897 TUK == TUK_Definition) { 15898 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier) 15899 << Context.getTagDeclType(New); 15900 Invalid = true; 15901 } 15902 15903 if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition && 15904 DC->getDeclKind() == Decl::Enum) { 15905 Diag(New->getLocation(), diag::err_type_defined_in_enum) 15906 << Context.getTagDeclType(New); 15907 Invalid = true; 15908 } 15909 15910 // Maybe add qualifier info. 15911 if (SS.isNotEmpty()) { 15912 if (SS.isSet()) { 15913 // If this is either a declaration or a definition, check the 15914 // nested-name-specifier against the current context. 15915 if ((TUK == TUK_Definition || TUK == TUK_Declaration) && 15916 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc, 15917 isMemberSpecialization)) 15918 Invalid = true; 15919 15920 New->setQualifierInfo(SS.getWithLocInContext(Context)); 15921 if (TemplateParameterLists.size() > 0) { 15922 New->setTemplateParameterListsInfo(Context, TemplateParameterLists); 15923 } 15924 } 15925 else 15926 Invalid = true; 15927 } 15928 15929 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { 15930 // Add alignment attributes if necessary; these attributes are checked when 15931 // the ASTContext lays out the structure. 15932 // 15933 // It is important for implementing the correct semantics that this 15934 // happen here (in ActOnTag). The #pragma pack stack is 15935 // maintained as a result of parser callbacks which can occur at 15936 // many points during the parsing of a struct declaration (because 15937 // the #pragma tokens are effectively skipped over during the 15938 // parsing of the struct). 15939 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { 15940 AddAlignmentAttributesForRecord(RD); 15941 AddMsStructLayoutForRecord(RD); 15942 } 15943 } 15944 15945 if (ModulePrivateLoc.isValid()) { 15946 if (isMemberSpecialization) 15947 Diag(New->getLocation(), diag::err_module_private_specialization) 15948 << 2 15949 << FixItHint::CreateRemoval(ModulePrivateLoc); 15950 // __module_private__ does not apply to local classes. However, we only 15951 // diagnose this as an error when the declaration specifiers are 15952 // freestanding. Here, we just ignore the __module_private__. 15953 else if (!SearchDC->isFunctionOrMethod()) 15954 New->setModulePrivate(); 15955 } 15956 15957 // If this is a specialization of a member class (of a class template), 15958 // check the specialization. 15959 if (isMemberSpecialization && CheckMemberSpecialization(New, Previous)) 15960 Invalid = true; 15961 15962 // If we're declaring or defining a tag in function prototype scope in C, 15963 // note that this type can only be used within the function and add it to 15964 // the list of decls to inject into the function definition scope. 15965 if ((Name || Kind == TTK_Enum) && 15966 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) { 15967 if (getLangOpts().CPlusPlus) { 15968 // C++ [dcl.fct]p6: 15969 // Types shall not be defined in return or parameter types. 15970 if (TUK == TUK_Definition && !IsTypeSpecifier) { 15971 Diag(Loc, diag::err_type_defined_in_param_type) 15972 << Name; 15973 Invalid = true; 15974 } 15975 } else if (!PrevDecl) { 15976 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); 15977 } 15978 } 15979 15980 if (Invalid) 15981 New->setInvalidDecl(); 15982 15983 // Set the lexical context. If the tag has a C++ scope specifier, the 15984 // lexical context will be different from the semantic context. 15985 New->setLexicalDeclContext(CurContext); 15986 15987 // Mark this as a friend decl if applicable. 15988 // In Microsoft mode, a friend declaration also acts as a forward 15989 // declaration so we always pass true to setObjectOfFriendDecl to make 15990 // the tag name visible. 15991 if (TUK == TUK_Friend) 15992 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat); 15993 15994 // Set the access specifier. 15995 if (!Invalid && SearchDC->isRecord()) 15996 SetMemberAccessSpecifier(New, PrevDecl, AS); 15997 15998 if (PrevDecl) 15999 CheckRedeclarationModuleOwnership(New, PrevDecl); 16000 16001 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) 16002 New->startDefinition(); 16003 16004 ProcessDeclAttributeList(S, New, Attrs); 16005 AddPragmaAttributes(S, New); 16006 16007 // If this has an identifier, add it to the scope stack. 16008 if (TUK == TUK_Friend) { 16009 // We might be replacing an existing declaration in the lookup tables; 16010 // if so, borrow its access specifier. 16011 if (PrevDecl) 16012 New->setAccess(PrevDecl->getAccess()); 16013 16014 DeclContext *DC = New->getDeclContext()->getRedeclContext(); 16015 DC->makeDeclVisibleInContext(New); 16016 if (Name) // can be null along some error paths 16017 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) 16018 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); 16019 } else if (Name) { 16020 S = getNonFieldDeclScope(S); 16021 PushOnScopeChains(New, S, true); 16022 } else { 16023 CurContext->addDecl(New); 16024 } 16025 16026 // If this is the C FILE type, notify the AST context. 16027 if (IdentifierInfo *II = New->getIdentifier()) 16028 if (!New->isInvalidDecl() && 16029 New->getDeclContext()->getRedeclContext()->isTranslationUnit() && 16030 II->isStr("FILE")) 16031 Context.setFILEDecl(New); 16032 16033 if (PrevDecl) 16034 mergeDeclAttributes(New, PrevDecl); 16035 16036 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New)) 16037 inferGslOwnerPointerAttribute(CXXRD); 16038 16039 // If there's a #pragma GCC visibility in scope, set the visibility of this 16040 // record. 16041 AddPushedVisibilityAttribute(New); 16042 16043 if (isMemberSpecialization && !New->isInvalidDecl()) 16044 CompleteMemberSpecialization(New, Previous); 16045 16046 OwnedDecl = true; 16047 // In C++, don't return an invalid declaration. We can't recover well from 16048 // the cases where we make the type anonymous. 16049 if (Invalid && getLangOpts().CPlusPlus) { 16050 if (New->isBeingDefined()) 16051 if (auto RD = dyn_cast<RecordDecl>(New)) 16052 RD->completeDefinition(); 16053 return nullptr; 16054 } else if (SkipBody && SkipBody->ShouldSkip) { 16055 return SkipBody->Previous; 16056 } else { 16057 return New; 16058 } 16059 } 16060 16061 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { 16062 AdjustDeclIfTemplate(TagD); 16063 TagDecl *Tag = cast<TagDecl>(TagD); 16064 16065 // Enter the tag context. 16066 PushDeclContext(S, Tag); 16067 16068 ActOnDocumentableDecl(TagD); 16069 16070 // If there's a #pragma GCC visibility in scope, set the visibility of this 16071 // record. 16072 AddPushedVisibilityAttribute(Tag); 16073 } 16074 16075 bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev, 16076 SkipBodyInfo &SkipBody) { 16077 if (!hasStructuralCompatLayout(Prev, SkipBody.New)) 16078 return false; 16079 16080 // Make the previous decl visible. 16081 makeMergedDefinitionVisible(SkipBody.Previous); 16082 return true; 16083 } 16084 16085 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) { 16086 assert(isa<ObjCContainerDecl>(IDecl) && 16087 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"); 16088 DeclContext *OCD = cast<DeclContext>(IDecl); 16089 assert(getContainingDC(OCD) == CurContext && 16090 "The next DeclContext should be lexically contained in the current one."); 16091 CurContext = OCD; 16092 return IDecl; 16093 } 16094 16095 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD, 16096 SourceLocation FinalLoc, 16097 bool IsFinalSpelledSealed, 16098 SourceLocation LBraceLoc) { 16099 AdjustDeclIfTemplate(TagD); 16100 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD); 16101 16102 FieldCollector->StartClass(); 16103 16104 if (!Record->getIdentifier()) 16105 return; 16106 16107 if (FinalLoc.isValid()) 16108 Record->addAttr(FinalAttr::Create( 16109 Context, FinalLoc, AttributeCommonInfo::AS_Keyword, 16110 static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed))); 16111 16112 // C++ [class]p2: 16113 // [...] The class-name is also inserted into the scope of the 16114 // class itself; this is known as the injected-class-name. For 16115 // purposes of access checking, the injected-class-name is treated 16116 // as if it were a public member name. 16117 CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create( 16118 Context, Record->getTagKind(), CurContext, Record->getBeginLoc(), 16119 Record->getLocation(), Record->getIdentifier(), 16120 /*PrevDecl=*/nullptr, 16121 /*DelayTypeCreation=*/true); 16122 Context.getTypeDeclType(InjectedClassName, Record); 16123 InjectedClassName->setImplicit(); 16124 InjectedClassName->setAccess(AS_public); 16125 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) 16126 InjectedClassName->setDescribedClassTemplate(Template); 16127 PushOnScopeChains(InjectedClassName, S); 16128 assert(InjectedClassName->isInjectedClassName() && 16129 "Broken injected-class-name"); 16130 } 16131 16132 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, 16133 SourceRange BraceRange) { 16134 AdjustDeclIfTemplate(TagD); 16135 TagDecl *Tag = cast<TagDecl>(TagD); 16136 Tag->setBraceRange(BraceRange); 16137 16138 // Make sure we "complete" the definition even it is invalid. 16139 if (Tag->isBeingDefined()) { 16140 assert(Tag->isInvalidDecl() && "We should already have completed it"); 16141 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) 16142 RD->completeDefinition(); 16143 } 16144 16145 if (isa<CXXRecordDecl>(Tag)) { 16146 FieldCollector->FinishClass(); 16147 } 16148 16149 // Exit this scope of this tag's definition. 16150 PopDeclContext(); 16151 16152 if (getCurLexicalContext()->isObjCContainer() && 16153 Tag->getDeclContext()->isFileContext()) 16154 Tag->setTopLevelDeclInObjCContainer(); 16155 16156 // Notify the consumer that we've defined a tag. 16157 if (!Tag->isInvalidDecl()) 16158 Consumer.HandleTagDeclDefinition(Tag); 16159 } 16160 16161 void Sema::ActOnObjCContainerFinishDefinition() { 16162 // Exit this scope of this interface definition. 16163 PopDeclContext(); 16164 } 16165 16166 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) { 16167 assert(DC == CurContext && "Mismatch of container contexts"); 16168 OriginalLexicalContext = DC; 16169 ActOnObjCContainerFinishDefinition(); 16170 } 16171 16172 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) { 16173 ActOnObjCContainerStartDefinition(cast<Decl>(DC)); 16174 OriginalLexicalContext = nullptr; 16175 } 16176 16177 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { 16178 AdjustDeclIfTemplate(TagD); 16179 TagDecl *Tag = cast<TagDecl>(TagD); 16180 Tag->setInvalidDecl(); 16181 16182 // Make sure we "complete" the definition even it is invalid. 16183 if (Tag->isBeingDefined()) { 16184 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) 16185 RD->completeDefinition(); 16186 } 16187 16188 // We're undoing ActOnTagStartDefinition here, not 16189 // ActOnStartCXXMemberDeclarations, so we don't have to mess with 16190 // the FieldCollector. 16191 16192 PopDeclContext(); 16193 } 16194 16195 // Note that FieldName may be null for anonymous bitfields. 16196 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc, 16197 IdentifierInfo *FieldName, 16198 QualType FieldTy, bool IsMsStruct, 16199 Expr *BitWidth, bool *ZeroWidth) { 16200 assert(BitWidth); 16201 if (BitWidth->containsErrors()) 16202 return ExprError(); 16203 16204 // Default to true; that shouldn't confuse checks for emptiness 16205 if (ZeroWidth) 16206 *ZeroWidth = true; 16207 16208 // C99 6.7.2.1p4 - verify the field type. 16209 // C++ 9.6p3: A bit-field shall have integral or enumeration type. 16210 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { 16211 // Handle incomplete and sizeless types with a specific error. 16212 if (RequireCompleteSizedType(FieldLoc, FieldTy, 16213 diag::err_field_incomplete_or_sizeless)) 16214 return ExprError(); 16215 if (FieldName) 16216 return Diag(FieldLoc, diag::err_not_integral_type_bitfield) 16217 << FieldName << FieldTy << BitWidth->getSourceRange(); 16218 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) 16219 << FieldTy << BitWidth->getSourceRange(); 16220 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth), 16221 UPPC_BitFieldWidth)) 16222 return ExprError(); 16223 16224 // If the bit-width is type- or value-dependent, don't try to check 16225 // it now. 16226 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) 16227 return BitWidth; 16228 16229 llvm::APSInt Value; 16230 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value); 16231 if (ICE.isInvalid()) 16232 return ICE; 16233 BitWidth = ICE.get(); 16234 16235 if (Value != 0 && ZeroWidth) 16236 *ZeroWidth = false; 16237 16238 // Zero-width bitfield is ok for anonymous field. 16239 if (Value == 0 && FieldName) 16240 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName; 16241 16242 if (Value.isSigned() && Value.isNegative()) { 16243 if (FieldName) 16244 return Diag(FieldLoc, diag::err_bitfield_has_negative_width) 16245 << FieldName << Value.toString(10); 16246 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) 16247 << Value.toString(10); 16248 } 16249 16250 if (!FieldTy->isDependentType()) { 16251 uint64_t TypeStorageSize = Context.getTypeSize(FieldTy); 16252 uint64_t TypeWidth = Context.getIntWidth(FieldTy); 16253 bool BitfieldIsOverwide = Value.ugt(TypeWidth); 16254 16255 // Over-wide bitfields are an error in C or when using the MSVC bitfield 16256 // ABI. 16257 bool CStdConstraintViolation = 16258 BitfieldIsOverwide && !getLangOpts().CPlusPlus; 16259 bool MSBitfieldViolation = 16260 Value.ugt(TypeStorageSize) && 16261 (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft()); 16262 if (CStdConstraintViolation || MSBitfieldViolation) { 16263 unsigned DiagWidth = 16264 CStdConstraintViolation ? TypeWidth : TypeStorageSize; 16265 if (FieldName) 16266 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width) 16267 << FieldName << (unsigned)Value.getZExtValue() 16268 << !CStdConstraintViolation << DiagWidth; 16269 16270 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width) 16271 << (unsigned)Value.getZExtValue() << !CStdConstraintViolation 16272 << DiagWidth; 16273 } 16274 16275 // Warn on types where the user might conceivably expect to get all 16276 // specified bits as value bits: that's all integral types other than 16277 // 'bool'. 16278 if (BitfieldIsOverwide && !FieldTy->isBooleanType()) { 16279 if (FieldName) 16280 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width) 16281 << FieldName << (unsigned)Value.getZExtValue() 16282 << (unsigned)TypeWidth; 16283 else 16284 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width) 16285 << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth; 16286 } 16287 } 16288 16289 return BitWidth; 16290 } 16291 16292 /// ActOnField - Each field of a C struct/union is passed into this in order 16293 /// to create a FieldDecl object for it. 16294 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, 16295 Declarator &D, Expr *BitfieldWidth) { 16296 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD), 16297 DeclStart, D, static_cast<Expr*>(BitfieldWidth), 16298 /*InitStyle=*/ICIS_NoInit, AS_public); 16299 return Res; 16300 } 16301 16302 /// HandleField - Analyze a field of a C struct or a C++ data member. 16303 /// 16304 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, 16305 SourceLocation DeclStart, 16306 Declarator &D, Expr *BitWidth, 16307 InClassInitStyle InitStyle, 16308 AccessSpecifier AS) { 16309 if (D.isDecompositionDeclarator()) { 16310 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); 16311 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) 16312 << Decomp.getSourceRange(); 16313 return nullptr; 16314 } 16315 16316 IdentifierInfo *II = D.getIdentifier(); 16317 SourceLocation Loc = DeclStart; 16318 if (II) Loc = D.getIdentifierLoc(); 16319 16320 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16321 QualType T = TInfo->getType(); 16322 if (getLangOpts().CPlusPlus) { 16323 CheckExtraCXXDefaultArguments(D); 16324 16325 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, 16326 UPPC_DataMemberType)) { 16327 D.setInvalidType(); 16328 T = Context.IntTy; 16329 TInfo = Context.getTrivialTypeSourceInfo(T, Loc); 16330 } 16331 } 16332 16333 DiagnoseFunctionSpecifiers(D.getDeclSpec()); 16334 16335 if (D.getDeclSpec().isInlineSpecified()) 16336 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) 16337 << getLangOpts().CPlusPlus17; 16338 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) 16339 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), 16340 diag::err_invalid_thread) 16341 << DeclSpec::getSpecifierName(TSCS); 16342 16343 // Check to see if this name was declared as a member previously 16344 NamedDecl *PrevDecl = nullptr; 16345 LookupResult Previous(*this, II, Loc, LookupMemberName, 16346 ForVisibleRedeclaration); 16347 LookupName(Previous, S); 16348 switch (Previous.getResultKind()) { 16349 case LookupResult::Found: 16350 case LookupResult::FoundUnresolvedValue: 16351 PrevDecl = Previous.getAsSingle<NamedDecl>(); 16352 break; 16353 16354 case LookupResult::FoundOverloaded: 16355 PrevDecl = Previous.getRepresentativeDecl(); 16356 break; 16357 16358 case LookupResult::NotFound: 16359 case LookupResult::NotFoundInCurrentInstantiation: 16360 case LookupResult::Ambiguous: 16361 break; 16362 } 16363 Previous.suppressDiagnostics(); 16364 16365 if (PrevDecl && PrevDecl->isTemplateParameter()) { 16366 // Maybe we will complain about the shadowed template parameter. 16367 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); 16368 // Just pretend that we didn't see the previous declaration. 16369 PrevDecl = nullptr; 16370 } 16371 16372 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) 16373 PrevDecl = nullptr; 16374 16375 bool Mutable 16376 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); 16377 SourceLocation TSSL = D.getBeginLoc(); 16378 FieldDecl *NewFD 16379 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle, 16380 TSSL, AS, PrevDecl, &D); 16381 16382 if (NewFD->isInvalidDecl()) 16383 Record->setInvalidDecl(); 16384 16385 if (D.getDeclSpec().isModulePrivateSpecified()) 16386 NewFD->setModulePrivate(); 16387 16388 if (NewFD->isInvalidDecl() && PrevDecl) { 16389 // Don't introduce NewFD into scope; there's already something 16390 // with the same name in the same scope. 16391 } else if (II) { 16392 PushOnScopeChains(NewFD, S); 16393 } else 16394 Record->addDecl(NewFD); 16395 16396 return NewFD; 16397 } 16398 16399 /// Build a new FieldDecl and check its well-formedness. 16400 /// 16401 /// This routine builds a new FieldDecl given the fields name, type, 16402 /// record, etc. \p PrevDecl should refer to any previous declaration 16403 /// with the same name and in the same scope as the field to be 16404 /// created. 16405 /// 16406 /// \returns a new FieldDecl. 16407 /// 16408 /// \todo The Declarator argument is a hack. It will be removed once 16409 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, 16410 TypeSourceInfo *TInfo, 16411 RecordDecl *Record, SourceLocation Loc, 16412 bool Mutable, Expr *BitWidth, 16413 InClassInitStyle InitStyle, 16414 SourceLocation TSSL, 16415 AccessSpecifier AS, NamedDecl *PrevDecl, 16416 Declarator *D) { 16417 IdentifierInfo *II = Name.getAsIdentifierInfo(); 16418 bool InvalidDecl = false; 16419 if (D) InvalidDecl = D->isInvalidType(); 16420 16421 // If we receive a broken type, recover by assuming 'int' and 16422 // marking this declaration as invalid. 16423 if (T.isNull()) { 16424 InvalidDecl = true; 16425 T = Context.IntTy; 16426 } 16427 16428 QualType EltTy = Context.getBaseElementType(T); 16429 if (!EltTy->isDependentType() && !EltTy->containsErrors()) { 16430 if (RequireCompleteSizedType(Loc, EltTy, 16431 diag::err_field_incomplete_or_sizeless)) { 16432 // Fields of incomplete type force their record to be invalid. 16433 Record->setInvalidDecl(); 16434 InvalidDecl = true; 16435 } else { 16436 NamedDecl *Def; 16437 EltTy->isIncompleteType(&Def); 16438 if (Def && Def->isInvalidDecl()) { 16439 Record->setInvalidDecl(); 16440 InvalidDecl = true; 16441 } 16442 } 16443 } 16444 16445 // TR 18037 does not allow fields to be declared with address space 16446 if (T.hasAddressSpace() || T->isDependentAddressSpaceType() || 16447 T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) { 16448 Diag(Loc, diag::err_field_with_address_space); 16449 Record->setInvalidDecl(); 16450 InvalidDecl = true; 16451 } 16452 16453 if (LangOpts.OpenCL) { 16454 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be 16455 // used as structure or union field: image, sampler, event or block types. 16456 if (T->isEventT() || T->isImageType() || T->isSamplerT() || 16457 T->isBlockPointerType()) { 16458 Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T; 16459 Record->setInvalidDecl(); 16460 InvalidDecl = true; 16461 } 16462 // OpenCL v1.2 s6.9.c: bitfields are not supported. 16463 if (BitWidth) { 16464 Diag(Loc, diag::err_opencl_bitfields); 16465 InvalidDecl = true; 16466 } 16467 } 16468 16469 // Anonymous bit-fields cannot be cv-qualified (CWG 2229). 16470 if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth && 16471 T.hasQualifiers()) { 16472 InvalidDecl = true; 16473 Diag(Loc, diag::err_anon_bitfield_qualifiers); 16474 } 16475 16476 // C99 6.7.2.1p8: A member of a structure or union may have any type other 16477 // than a variably modified type. 16478 if (!InvalidDecl && T->isVariablyModifiedType()) { 16479 bool SizeIsNegative; 16480 llvm::APSInt Oversized; 16481 16482 TypeSourceInfo *FixedTInfo = 16483 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, 16484 SizeIsNegative, 16485 Oversized); 16486 if (FixedTInfo) { 16487 Diag(Loc, diag::warn_illegal_constant_array_size); 16488 TInfo = FixedTInfo; 16489 T = FixedTInfo->getType(); 16490 } else { 16491 if (SizeIsNegative) 16492 Diag(Loc, diag::err_typecheck_negative_array_size); 16493 else if (Oversized.getBoolValue()) 16494 Diag(Loc, diag::err_array_too_large) 16495 << Oversized.toString(10); 16496 else 16497 Diag(Loc, diag::err_typecheck_field_variable_size); 16498 InvalidDecl = true; 16499 } 16500 } 16501 16502 // Fields can not have abstract class types 16503 if (!InvalidDecl && RequireNonAbstractType(Loc, T, 16504 diag::err_abstract_type_in_decl, 16505 AbstractFieldType)) 16506 InvalidDecl = true; 16507 16508 bool ZeroWidth = false; 16509 if (InvalidDecl) 16510 BitWidth = nullptr; 16511 // If this is declared as a bit-field, check the bit-field. 16512 if (BitWidth) { 16513 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth, 16514 &ZeroWidth).get(); 16515 if (!BitWidth) { 16516 InvalidDecl = true; 16517 BitWidth = nullptr; 16518 ZeroWidth = false; 16519 } 16520 16521 // Only data members can have in-class initializers. 16522 if (BitWidth && !II && InitStyle) { 16523 Diag(Loc, diag::err_anon_bitfield_init); 16524 InvalidDecl = true; 16525 BitWidth = nullptr; 16526 ZeroWidth = false; 16527 } 16528 } 16529 16530 // Check that 'mutable' is consistent with the type of the declaration. 16531 if (!InvalidDecl && Mutable) { 16532 unsigned DiagID = 0; 16533 if (T->isReferenceType()) 16534 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference 16535 : diag::err_mutable_reference; 16536 else if (T.isConstQualified()) 16537 DiagID = diag::err_mutable_const; 16538 16539 if (DiagID) { 16540 SourceLocation ErrLoc = Loc; 16541 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) 16542 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); 16543 Diag(ErrLoc, DiagID); 16544 if (DiagID != diag::ext_mutable_reference) { 16545 Mutable = false; 16546 InvalidDecl = true; 16547 } 16548 } 16549 } 16550 16551 // C++11 [class.union]p8 (DR1460): 16552 // At most one variant member of a union may have a 16553 // brace-or-equal-initializer. 16554 if (InitStyle != ICIS_NoInit) 16555 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc); 16556 16557 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo, 16558 BitWidth, Mutable, InitStyle); 16559 if (InvalidDecl) 16560 NewFD->setInvalidDecl(); 16561 16562 if (PrevDecl && !isa<TagDecl>(PrevDecl)) { 16563 Diag(Loc, diag::err_duplicate_member) << II; 16564 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 16565 NewFD->setInvalidDecl(); 16566 } 16567 16568 if (!InvalidDecl && getLangOpts().CPlusPlus) { 16569 if (Record->isUnion()) { 16570 if (const RecordType *RT = EltTy->getAs<RecordType>()) { 16571 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); 16572 if (RDecl->getDefinition()) { 16573 // C++ [class.union]p1: An object of a class with a non-trivial 16574 // constructor, a non-trivial copy constructor, a non-trivial 16575 // destructor, or a non-trivial copy assignment operator 16576 // cannot be a member of a union, nor can an array of such 16577 // objects. 16578 if (CheckNontrivialField(NewFD)) 16579 NewFD->setInvalidDecl(); 16580 } 16581 } 16582 16583 // C++ [class.union]p1: If a union contains a member of reference type, 16584 // the program is ill-formed, except when compiling with MSVC extensions 16585 // enabled. 16586 if (EltTy->isReferenceType()) { 16587 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? 16588 diag::ext_union_member_of_reference_type : 16589 diag::err_union_member_of_reference_type) 16590 << NewFD->getDeclName() << EltTy; 16591 if (!getLangOpts().MicrosoftExt) 16592 NewFD->setInvalidDecl(); 16593 } 16594 } 16595 } 16596 16597 // FIXME: We need to pass in the attributes given an AST 16598 // representation, not a parser representation. 16599 if (D) { 16600 // FIXME: The current scope is almost... but not entirely... correct here. 16601 ProcessDeclAttributes(getCurScope(), NewFD, *D); 16602 16603 if (NewFD->hasAttrs()) 16604 CheckAlignasUnderalignment(NewFD); 16605 } 16606 16607 // In auto-retain/release, infer strong retension for fields of 16608 // retainable type. 16609 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD)) 16610 NewFD->setInvalidDecl(); 16611 16612 if (T.isObjCGCWeak()) 16613 Diag(Loc, diag::warn_attribute_weak_on_field); 16614 16615 NewFD->setAccess(AS); 16616 return NewFD; 16617 } 16618 16619 bool Sema::CheckNontrivialField(FieldDecl *FD) { 16620 assert(FD); 16621 assert(getLangOpts().CPlusPlus && "valid check only for C++"); 16622 16623 if (FD->isInvalidDecl() || FD->getType()->isDependentType()) 16624 return false; 16625 16626 QualType EltTy = Context.getBaseElementType(FD->getType()); 16627 if (const RecordType *RT = EltTy->getAs<RecordType>()) { 16628 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl()); 16629 if (RDecl->getDefinition()) { 16630 // We check for copy constructors before constructors 16631 // because otherwise we'll never get complaints about 16632 // copy constructors. 16633 16634 CXXSpecialMember member = CXXInvalid; 16635 // We're required to check for any non-trivial constructors. Since the 16636 // implicit default constructor is suppressed if there are any 16637 // user-declared constructors, we just need to check that there is a 16638 // trivial default constructor and a trivial copy constructor. (We don't 16639 // worry about move constructors here, since this is a C++98 check.) 16640 if (RDecl->hasNonTrivialCopyConstructor()) 16641 member = CXXCopyConstructor; 16642 else if (!RDecl->hasTrivialDefaultConstructor()) 16643 member = CXXDefaultConstructor; 16644 else if (RDecl->hasNonTrivialCopyAssignment()) 16645 member = CXXCopyAssignment; 16646 else if (RDecl->hasNonTrivialDestructor()) 16647 member = CXXDestructor; 16648 16649 if (member != CXXInvalid) { 16650 if (!getLangOpts().CPlusPlus11 && 16651 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) { 16652 // Objective-C++ ARC: it is an error to have a non-trivial field of 16653 // a union. However, system headers in Objective-C programs 16654 // occasionally have Objective-C lifetime objects within unions, 16655 // and rather than cause the program to fail, we make those 16656 // members unavailable. 16657 SourceLocation Loc = FD->getLocation(); 16658 if (getSourceManager().isInSystemHeader(Loc)) { 16659 if (!FD->hasAttr<UnavailableAttr>()) 16660 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "", 16661 UnavailableAttr::IR_ARCFieldWithOwnership, Loc)); 16662 return false; 16663 } 16664 } 16665 16666 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ? 16667 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member : 16668 diag::err_illegal_union_or_anon_struct_member) 16669 << FD->getParent()->isUnion() << FD->getDeclName() << member; 16670 DiagnoseNontrivial(RDecl, member); 16671 return !getLangOpts().CPlusPlus11; 16672 } 16673 } 16674 } 16675 16676 return false; 16677 } 16678 16679 /// TranslateIvarVisibility - Translate visibility from a token ID to an 16680 /// AST enum value. 16681 static ObjCIvarDecl::AccessControl 16682 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { 16683 switch (ivarVisibility) { 16684 default: llvm_unreachable("Unknown visitibility kind"); 16685 case tok::objc_private: return ObjCIvarDecl::Private; 16686 case tok::objc_public: return ObjCIvarDecl::Public; 16687 case tok::objc_protected: return ObjCIvarDecl::Protected; 16688 case tok::objc_package: return ObjCIvarDecl::Package; 16689 } 16690 } 16691 16692 /// ActOnIvar - Each ivar field of an objective-c class is passed into this 16693 /// in order to create an IvarDecl object for it. 16694 Decl *Sema::ActOnIvar(Scope *S, 16695 SourceLocation DeclStart, 16696 Declarator &D, Expr *BitfieldWidth, 16697 tok::ObjCKeywordKind Visibility) { 16698 16699 IdentifierInfo *II = D.getIdentifier(); 16700 Expr *BitWidth = (Expr*)BitfieldWidth; 16701 SourceLocation Loc = DeclStart; 16702 if (II) Loc = D.getIdentifierLoc(); 16703 16704 // FIXME: Unnamed fields can be handled in various different ways, for 16705 // example, unnamed unions inject all members into the struct namespace! 16706 16707 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); 16708 QualType T = TInfo->getType(); 16709 16710 if (BitWidth) { 16711 // 6.7.2.1p3, 6.7.2.1p4 16712 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get(); 16713 if (!BitWidth) 16714 D.setInvalidType(); 16715 } else { 16716 // Not a bitfield. 16717 16718 // validate II. 16719 16720 } 16721 if (T->isReferenceType()) { 16722 Diag(Loc, diag::err_ivar_reference_type); 16723 D.setInvalidType(); 16724 } 16725 // C99 6.7.2.1p8: A member of a structure or union may have any type other 16726 // than a variably modified type. 16727 else if (T->isVariablyModifiedType()) { 16728 Diag(Loc, diag::err_typecheck_ivar_variable_size); 16729 D.setInvalidType(); 16730 } 16731 16732 // Get the visibility (access control) for this ivar. 16733 ObjCIvarDecl::AccessControl ac = 16734 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) 16735 : ObjCIvarDecl::None; 16736 // Must set ivar's DeclContext to its enclosing interface. 16737 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext); 16738 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl()) 16739 return nullptr; 16740 ObjCContainerDecl *EnclosingContext; 16741 if (ObjCImplementationDecl *IMPDecl = 16742 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { 16743 if (LangOpts.ObjCRuntime.isFragile()) { 16744 // Case of ivar declared in an implementation. Context is that of its class. 16745 EnclosingContext = IMPDecl->getClassInterface(); 16746 assert(EnclosingContext && "Implementation has no class interface!"); 16747 } 16748 else 16749 EnclosingContext = EnclosingDecl; 16750 } else { 16751 if (ObjCCategoryDecl *CDecl = 16752 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { 16753 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) { 16754 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); 16755 return nullptr; 16756 } 16757 } 16758 EnclosingContext = EnclosingDecl; 16759 } 16760 16761 // Construct the decl. 16762 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext, 16763 DeclStart, Loc, II, T, 16764 TInfo, ac, (Expr *)BitfieldWidth); 16765 16766 if (II) { 16767 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName, 16768 ForVisibleRedeclaration); 16769 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S) 16770 && !isa<TagDecl>(PrevDecl)) { 16771 Diag(Loc, diag::err_duplicate_member) << II; 16772 Diag(PrevDecl->getLocation(), diag::note_previous_declaration); 16773 NewID->setInvalidDecl(); 16774 } 16775 } 16776 16777 // Process attributes attached to the ivar. 16778 ProcessDeclAttributes(S, NewID, D); 16779 16780 if (D.isInvalidType()) 16781 NewID->setInvalidDecl(); 16782 16783 // In ARC, infer 'retaining' for ivars of retainable type. 16784 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID)) 16785 NewID->setInvalidDecl(); 16786 16787 if (D.getDeclSpec().isModulePrivateSpecified()) 16788 NewID->setModulePrivate(); 16789 16790 if (II) { 16791 // FIXME: When interfaces are DeclContexts, we'll need to add 16792 // these to the interface. 16793 S->AddDecl(NewID); 16794 IdResolver.AddDecl(NewID); 16795 } 16796 16797 if (LangOpts.ObjCRuntime.isNonFragile() && 16798 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl)) 16799 Diag(Loc, diag::warn_ivars_in_interface); 16800 16801 return NewID; 16802 } 16803 16804 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for 16805 /// class and class extensions. For every class \@interface and class 16806 /// extension \@interface, if the last ivar is a bitfield of any type, 16807 /// then add an implicit `char :0` ivar to the end of that interface. 16808 void Sema::ActOnLastBitfield(SourceLocation DeclLoc, 16809 SmallVectorImpl<Decl *> &AllIvarDecls) { 16810 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty()) 16811 return; 16812 16813 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; 16814 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl); 16815 16816 if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context)) 16817 return; 16818 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext); 16819 if (!ID) { 16820 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) { 16821 if (!CD->IsClassExtension()) 16822 return; 16823 } 16824 // No need to add this to end of @implementation. 16825 else 16826 return; 16827 } 16828 // All conditions are met. Add a new bitfield to the tail end of ivars. 16829 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0); 16830 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc); 16831 16832 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext), 16833 DeclLoc, DeclLoc, nullptr, 16834 Context.CharTy, 16835 Context.getTrivialTypeSourceInfo(Context.CharTy, 16836 DeclLoc), 16837 ObjCIvarDecl::Private, BW, 16838 true); 16839 AllIvarDecls.push_back(Ivar); 16840 } 16841 16842 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl, 16843 ArrayRef<Decl *> Fields, SourceLocation LBrac, 16844 SourceLocation RBrac, 16845 const ParsedAttributesView &Attrs) { 16846 assert(EnclosingDecl && "missing record or interface decl"); 16847 16848 // If this is an Objective-C @implementation or category and we have 16849 // new fields here we should reset the layout of the interface since 16850 // it will now change. 16851 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) { 16852 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl); 16853 switch (DC->getKind()) { 16854 default: break; 16855 case Decl::ObjCCategory: 16856 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface()); 16857 break; 16858 case Decl::ObjCImplementation: 16859 Context. 16860 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface()); 16861 break; 16862 } 16863 } 16864 16865 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); 16866 CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl); 16867 16868 // Start counting up the number of named members; make sure to include 16869 // members of anonymous structs and unions in the total. 16870 unsigned NumNamedMembers = 0; 16871 if (Record) { 16872 for (const auto *I : Record->decls()) { 16873 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) 16874 if (IFD->getDeclName()) 16875 ++NumNamedMembers; 16876 } 16877 } 16878 16879 // Verify that all the fields are okay. 16880 SmallVector<FieldDecl*, 32> RecFields; 16881 16882 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end(); 16883 i != end; ++i) { 16884 FieldDecl *FD = cast<FieldDecl>(*i); 16885 16886 // Get the type for the field. 16887 const Type *FDTy = FD->getType().getTypePtr(); 16888 16889 if (!FD->isAnonymousStructOrUnion()) { 16890 // Remember all fields written by the user. 16891 RecFields.push_back(FD); 16892 } 16893 16894 // If the field is already invalid for some reason, don't emit more 16895 // diagnostics about it. 16896 if (FD->isInvalidDecl()) { 16897 EnclosingDecl->setInvalidDecl(); 16898 continue; 16899 } 16900 16901 // C99 6.7.2.1p2: 16902 // A structure or union shall not contain a member with 16903 // incomplete or function type (hence, a structure shall not 16904 // contain an instance of itself, but may contain a pointer to 16905 // an instance of itself), except that the last member of a 16906 // structure with more than one named member may have incomplete 16907 // array type; such a structure (and any union containing, 16908 // possibly recursively, a member that is such a structure) 16909 // shall not be a member of a structure or an element of an 16910 // array. 16911 bool IsLastField = (i + 1 == Fields.end()); 16912 if (FDTy->isFunctionType()) { 16913 // Field declared as a function. 16914 Diag(FD->getLocation(), diag::err_field_declared_as_function) 16915 << FD->getDeclName(); 16916 FD->setInvalidDecl(); 16917 EnclosingDecl->setInvalidDecl(); 16918 continue; 16919 } else if (FDTy->isIncompleteArrayType() && 16920 (Record || isa<ObjCContainerDecl>(EnclosingDecl))) { 16921 if (Record) { 16922 // Flexible array member. 16923 // Microsoft and g++ is more permissive regarding flexible array. 16924 // It will accept flexible array in union and also 16925 // as the sole element of a struct/class. 16926 unsigned DiagID = 0; 16927 if (!Record->isUnion() && !IsLastField) { 16928 Diag(FD->getLocation(), diag::err_flexible_array_not_at_end) 16929 << FD->getDeclName() << FD->getType() << Record->getTagKind(); 16930 Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration); 16931 FD->setInvalidDecl(); 16932 EnclosingDecl->setInvalidDecl(); 16933 continue; 16934 } else if (Record->isUnion()) 16935 DiagID = getLangOpts().MicrosoftExt 16936 ? diag::ext_flexible_array_union_ms 16937 : getLangOpts().CPlusPlus 16938 ? diag::ext_flexible_array_union_gnu 16939 : diag::err_flexible_array_union; 16940 else if (NumNamedMembers < 1) 16941 DiagID = getLangOpts().MicrosoftExt 16942 ? diag::ext_flexible_array_empty_aggregate_ms 16943 : getLangOpts().CPlusPlus 16944 ? diag::ext_flexible_array_empty_aggregate_gnu 16945 : diag::err_flexible_array_empty_aggregate; 16946 16947 if (DiagID) 16948 Diag(FD->getLocation(), DiagID) << FD->getDeclName() 16949 << Record->getTagKind(); 16950 // While the layout of types that contain virtual bases is not specified 16951 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place 16952 // virtual bases after the derived members. This would make a flexible 16953 // array member declared at the end of an object not adjacent to the end 16954 // of the type. 16955 if (CXXRecord && CXXRecord->getNumVBases() != 0) 16956 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base) 16957 << FD->getDeclName() << Record->getTagKind(); 16958 if (!getLangOpts().C99) 16959 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member) 16960 << FD->getDeclName() << Record->getTagKind(); 16961 16962 // If the element type has a non-trivial destructor, we would not 16963 // implicitly destroy the elements, so disallow it for now. 16964 // 16965 // FIXME: GCC allows this. We should probably either implicitly delete 16966 // the destructor of the containing class, or just allow this. 16967 QualType BaseElem = Context.getBaseElementType(FD->getType()); 16968 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) { 16969 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor) 16970 << FD->getDeclName() << FD->getType(); 16971 FD->setInvalidDecl(); 16972 EnclosingDecl->setInvalidDecl(); 16973 continue; 16974 } 16975 // Okay, we have a legal flexible array member at the end of the struct. 16976 Record->setHasFlexibleArrayMember(true); 16977 } else { 16978 // In ObjCContainerDecl ivars with incomplete array type are accepted, 16979 // unless they are followed by another ivar. That check is done 16980 // elsewhere, after synthesized ivars are known. 16981 } 16982 } else if (!FDTy->isDependentType() && 16983 RequireCompleteSizedType( 16984 FD->getLocation(), FD->getType(), 16985 diag::err_field_incomplete_or_sizeless)) { 16986 // Incomplete type 16987 FD->setInvalidDecl(); 16988 EnclosingDecl->setInvalidDecl(); 16989 continue; 16990 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { 16991 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) { 16992 // A type which contains a flexible array member is considered to be a 16993 // flexible array member. 16994 Record->setHasFlexibleArrayMember(true); 16995 if (!Record->isUnion()) { 16996 // If this is a struct/class and this is not the last element, reject 16997 // it. Note that GCC supports variable sized arrays in the middle of 16998 // structures. 16999 if (!IsLastField) 17000 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) 17001 << FD->getDeclName() << FD->getType(); 17002 else { 17003 // We support flexible arrays at the end of structs in 17004 // other structs as an extension. 17005 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) 17006 << FD->getDeclName(); 17007 } 17008 } 17009 } 17010 if (isa<ObjCContainerDecl>(EnclosingDecl) && 17011 RequireNonAbstractType(FD->getLocation(), FD->getType(), 17012 diag::err_abstract_type_in_decl, 17013 AbstractIvarType)) { 17014 // Ivars can not have abstract class types 17015 FD->setInvalidDecl(); 17016 } 17017 if (Record && FDTTy->getDecl()->hasObjectMember()) 17018 Record->setHasObjectMember(true); 17019 if (Record && FDTTy->getDecl()->hasVolatileMember()) 17020 Record->setHasVolatileMember(true); 17021 } else if (FDTy->isObjCObjectType()) { 17022 /// A field cannot be an Objective-c object 17023 Diag(FD->getLocation(), diag::err_statically_allocated_object) 17024 << FixItHint::CreateInsertion(FD->getLocation(), "*"); 17025 QualType T = Context.getObjCObjectPointerType(FD->getType()); 17026 FD->setType(T); 17027 } else if (Record && Record->isUnion() && 17028 FD->getType().hasNonTrivialObjCLifetime() && 17029 getSourceManager().isInSystemHeader(FD->getLocation()) && 17030 !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() && 17031 (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong || 17032 !Context.hasDirectOwnershipQualifier(FD->getType()))) { 17033 // For backward compatibility, fields of C unions declared in system 17034 // headers that have non-trivial ObjC ownership qualifications are marked 17035 // as unavailable unless the qualifier is explicit and __strong. This can 17036 // break ABI compatibility between programs compiled with ARC and MRR, but 17037 // is a better option than rejecting programs using those unions under 17038 // ARC. 17039 FD->addAttr(UnavailableAttr::CreateImplicit( 17040 Context, "", UnavailableAttr::IR_ARCFieldWithOwnership, 17041 FD->getLocation())); 17042 } else if (getLangOpts().ObjC && 17043 getLangOpts().getGC() != LangOptions::NonGC && Record && 17044 !Record->hasObjectMember()) { 17045 if (FD->getType()->isObjCObjectPointerType() || 17046 FD->getType().isObjCGCStrong()) 17047 Record->setHasObjectMember(true); 17048 else if (Context.getAsArrayType(FD->getType())) { 17049 QualType BaseType = Context.getBaseElementType(FD->getType()); 17050 if (BaseType->isRecordType() && 17051 BaseType->castAs<RecordType>()->getDecl()->hasObjectMember()) 17052 Record->setHasObjectMember(true); 17053 else if (BaseType->isObjCObjectPointerType() || 17054 BaseType.isObjCGCStrong()) 17055 Record->setHasObjectMember(true); 17056 } 17057 } 17058 17059 if (Record && !getLangOpts().CPlusPlus && 17060 !shouldIgnoreForRecordTriviality(FD)) { 17061 QualType FT = FD->getType(); 17062 if (FT.isNonTrivialToPrimitiveDefaultInitialize()) { 17063 Record->setNonTrivialToPrimitiveDefaultInitialize(true); 17064 if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || 17065 Record->isUnion()) 17066 Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true); 17067 } 17068 QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy(); 17069 if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) { 17070 Record->setNonTrivialToPrimitiveCopy(true); 17071 if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion()) 17072 Record->setHasNonTrivialToPrimitiveCopyCUnion(true); 17073 } 17074 if (FT.isDestructedType()) { 17075 Record->setNonTrivialToPrimitiveDestroy(true); 17076 Record->setParamDestroyedInCallee(true); 17077 if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion()) 17078 Record->setHasNonTrivialToPrimitiveDestructCUnion(true); 17079 } 17080 17081 if (const auto *RT = FT->getAs<RecordType>()) { 17082 if (RT->getDecl()->getArgPassingRestrictions() == 17083 RecordDecl::APK_CanNeverPassInRegs) 17084 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 17085 } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak) 17086 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); 17087 } 17088 17089 if (Record && FD->getType().isVolatileQualified()) 17090 Record->setHasVolatileMember(true); 17091 // Keep track of the number of named members. 17092 if (FD->getIdentifier()) 17093 ++NumNamedMembers; 17094 } 17095 17096 // Okay, we successfully defined 'Record'. 17097 if (Record) { 17098 bool Completed = false; 17099 if (CXXRecord) { 17100 if (!CXXRecord->isInvalidDecl()) { 17101 // Set access bits correctly on the directly-declared conversions. 17102 for (CXXRecordDecl::conversion_iterator 17103 I = CXXRecord->conversion_begin(), 17104 E = CXXRecord->conversion_end(); I != E; ++I) 17105 I.setAccess((*I)->getAccess()); 17106 } 17107 17108 if (!CXXRecord->isDependentType()) { 17109 // Add any implicitly-declared members to this class. 17110 AddImplicitlyDeclaredMembersToClass(CXXRecord); 17111 17112 if (!CXXRecord->isInvalidDecl()) { 17113 // If we have virtual base classes, we may end up finding multiple 17114 // final overriders for a given virtual function. Check for this 17115 // problem now. 17116 if (CXXRecord->getNumVBases()) { 17117 CXXFinalOverriderMap FinalOverriders; 17118 CXXRecord->getFinalOverriders(FinalOverriders); 17119 17120 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), 17121 MEnd = FinalOverriders.end(); 17122 M != MEnd; ++M) { 17123 for (OverridingMethods::iterator SO = M->second.begin(), 17124 SOEnd = M->second.end(); 17125 SO != SOEnd; ++SO) { 17126 assert(SO->second.size() > 0 && 17127 "Virtual function without overriding functions?"); 17128 if (SO->second.size() == 1) 17129 continue; 17130 17131 // C++ [class.virtual]p2: 17132 // In a derived class, if a virtual member function of a base 17133 // class subobject has more than one final overrider the 17134 // program is ill-formed. 17135 Diag(Record->getLocation(), diag::err_multiple_final_overriders) 17136 << (const NamedDecl *)M->first << Record; 17137 Diag(M->first->getLocation(), 17138 diag::note_overridden_virtual_function); 17139 for (OverridingMethods::overriding_iterator 17140 OM = SO->second.begin(), 17141 OMEnd = SO->second.end(); 17142 OM != OMEnd; ++OM) 17143 Diag(OM->Method->getLocation(), diag::note_final_overrider) 17144 << (const NamedDecl *)M->first << OM->Method->getParent(); 17145 17146 Record->setInvalidDecl(); 17147 } 17148 } 17149 CXXRecord->completeDefinition(&FinalOverriders); 17150 Completed = true; 17151 } 17152 } 17153 } 17154 } 17155 17156 if (!Completed) 17157 Record->completeDefinition(); 17158 17159 // Handle attributes before checking the layout. 17160 ProcessDeclAttributeList(S, Record, Attrs); 17161 17162 // We may have deferred checking for a deleted destructor. Check now. 17163 if (CXXRecord) { 17164 auto *Dtor = CXXRecord->getDestructor(); 17165 if (Dtor && Dtor->isImplicit() && 17166 ShouldDeleteSpecialMember(Dtor, CXXDestructor)) { 17167 CXXRecord->setImplicitDestructorIsDeleted(); 17168 SetDeclDeleted(Dtor, CXXRecord->getLocation()); 17169 } 17170 } 17171 17172 if (Record->hasAttrs()) { 17173 CheckAlignasUnderalignment(Record); 17174 17175 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>()) 17176 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record), 17177 IA->getRange(), IA->getBestCase(), 17178 IA->getInheritanceModel()); 17179 } 17180 17181 // Check if the structure/union declaration is a type that can have zero 17182 // size in C. For C this is a language extension, for C++ it may cause 17183 // compatibility problems. 17184 bool CheckForZeroSize; 17185 if (!getLangOpts().CPlusPlus) { 17186 CheckForZeroSize = true; 17187 } else { 17188 // For C++ filter out types that cannot be referenced in C code. 17189 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record); 17190 CheckForZeroSize = 17191 CXXRecord->getLexicalDeclContext()->isExternCContext() && 17192 !CXXRecord->isDependentType() && 17193 CXXRecord->isCLike(); 17194 } 17195 if (CheckForZeroSize) { 17196 bool ZeroSize = true; 17197 bool IsEmpty = true; 17198 unsigned NonBitFields = 0; 17199 for (RecordDecl::field_iterator I = Record->field_begin(), 17200 E = Record->field_end(); 17201 (NonBitFields == 0 || ZeroSize) && I != E; ++I) { 17202 IsEmpty = false; 17203 if (I->isUnnamedBitfield()) { 17204 if (!I->isZeroLengthBitField(Context)) 17205 ZeroSize = false; 17206 } else { 17207 ++NonBitFields; 17208 QualType FieldType = I->getType(); 17209 if (FieldType->isIncompleteType() || 17210 !Context.getTypeSizeInChars(FieldType).isZero()) 17211 ZeroSize = false; 17212 } 17213 } 17214 17215 // Empty structs are an extension in C (C99 6.7.2.1p7). They are 17216 // allowed in C++, but warn if its declaration is inside 17217 // extern "C" block. 17218 if (ZeroSize) { 17219 Diag(RecLoc, getLangOpts().CPlusPlus ? 17220 diag::warn_zero_size_struct_union_in_extern_c : 17221 diag::warn_zero_size_struct_union_compat) 17222 << IsEmpty << Record->isUnion() << (NonBitFields > 1); 17223 } 17224 17225 // Structs without named members are extension in C (C99 6.7.2.1p7), 17226 // but are accepted by GCC. 17227 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) { 17228 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union : 17229 diag::ext_no_named_members_in_struct_union) 17230 << Record->isUnion(); 17231 } 17232 } 17233 } else { 17234 ObjCIvarDecl **ClsFields = 17235 reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); 17236 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { 17237 ID->setEndOfDefinitionLoc(RBrac); 17238 // Add ivar's to class's DeclContext. 17239 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 17240 ClsFields[i]->setLexicalDeclContext(ID); 17241 ID->addDecl(ClsFields[i]); 17242 } 17243 // Must enforce the rule that ivars in the base classes may not be 17244 // duplicates. 17245 if (ID->getSuperClass()) 17246 DiagnoseDuplicateIvars(ID, ID->getSuperClass()); 17247 } else if (ObjCImplementationDecl *IMPDecl = 17248 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { 17249 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); 17250 for (unsigned I = 0, N = RecFields.size(); I != N; ++I) 17251 // Ivar declared in @implementation never belongs to the implementation. 17252 // Only it is in implementation's lexical context. 17253 ClsFields[I]->setLexicalDeclContext(IMPDecl); 17254 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); 17255 IMPDecl->setIvarLBraceLoc(LBrac); 17256 IMPDecl->setIvarRBraceLoc(RBrac); 17257 } else if (ObjCCategoryDecl *CDecl = 17258 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { 17259 // case of ivars in class extension; all other cases have been 17260 // reported as errors elsewhere. 17261 // FIXME. Class extension does not have a LocEnd field. 17262 // CDecl->setLocEnd(RBrac); 17263 // Add ivar's to class extension's DeclContext. 17264 // Diagnose redeclaration of private ivars. 17265 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface(); 17266 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { 17267 if (IDecl) { 17268 if (const ObjCIvarDecl *ClsIvar = 17269 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) { 17270 Diag(ClsFields[i]->getLocation(), 17271 diag::err_duplicate_ivar_declaration); 17272 Diag(ClsIvar->getLocation(), diag::note_previous_definition); 17273 continue; 17274 } 17275 for (const auto *Ext : IDecl->known_extensions()) { 17276 if (const ObjCIvarDecl *ClsExtIvar 17277 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) { 17278 Diag(ClsFields[i]->getLocation(), 17279 diag::err_duplicate_ivar_declaration); 17280 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); 17281 continue; 17282 } 17283 } 17284 } 17285 ClsFields[i]->setLexicalDeclContext(CDecl); 17286 CDecl->addDecl(ClsFields[i]); 17287 } 17288 CDecl->setIvarLBraceLoc(LBrac); 17289 CDecl->setIvarRBraceLoc(RBrac); 17290 } 17291 } 17292 } 17293 17294 /// Determine whether the given integral value is representable within 17295 /// the given type T. 17296 static bool isRepresentableIntegerValue(ASTContext &Context, 17297 llvm::APSInt &Value, 17298 QualType T) { 17299 assert((T->isIntegralType(Context) || T->isEnumeralType()) && 17300 "Integral type required!"); 17301 unsigned BitWidth = Context.getIntWidth(T); 17302 17303 if (Value.isUnsigned() || Value.isNonNegative()) { 17304 if (T->isSignedIntegerOrEnumerationType()) 17305 --BitWidth; 17306 return Value.getActiveBits() <= BitWidth; 17307 } 17308 return Value.getMinSignedBits() <= BitWidth; 17309 } 17310 17311 // Given an integral type, return the next larger integral type 17312 // (or a NULL type of no such type exists). 17313 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { 17314 // FIXME: Int128/UInt128 support, which also needs to be introduced into 17315 // enum checking below. 17316 assert((T->isIntegralType(Context) || 17317 T->isEnumeralType()) && "Integral type required!"); 17318 const unsigned NumTypes = 4; 17319 QualType SignedIntegralTypes[NumTypes] = { 17320 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy 17321 }; 17322 QualType UnsignedIntegralTypes[NumTypes] = { 17323 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, 17324 Context.UnsignedLongLongTy 17325 }; 17326 17327 unsigned BitWidth = Context.getTypeSize(T); 17328 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes 17329 : UnsignedIntegralTypes; 17330 for (unsigned I = 0; I != NumTypes; ++I) 17331 if (Context.getTypeSize(Types[I]) > BitWidth) 17332 return Types[I]; 17333 17334 return QualType(); 17335 } 17336 17337 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, 17338 EnumConstantDecl *LastEnumConst, 17339 SourceLocation IdLoc, 17340 IdentifierInfo *Id, 17341 Expr *Val) { 17342 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 17343 llvm::APSInt EnumVal(IntWidth); 17344 QualType EltTy; 17345 17346 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue)) 17347 Val = nullptr; 17348 17349 if (Val) 17350 Val = DefaultLvalueConversion(Val).get(); 17351 17352 if (Val) { 17353 if (Enum->isDependentType() || Val->isTypeDependent()) 17354 EltTy = Context.DependentTy; 17355 else { 17356 if (getLangOpts().CPlusPlus11 && Enum->isFixed()) { 17357 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the 17358 // constant-expression in the enumerator-definition shall be a converted 17359 // constant expression of the underlying type. 17360 EltTy = Enum->getIntegerType(); 17361 ExprResult Converted = 17362 CheckConvertedConstantExpression(Val, EltTy, EnumVal, 17363 CCEK_Enumerator); 17364 if (Converted.isInvalid()) 17365 Val = nullptr; 17366 else 17367 Val = Converted.get(); 17368 } else if (!Val->isValueDependent() && 17369 !(Val = VerifyIntegerConstantExpression(Val, 17370 &EnumVal).get())) { 17371 // C99 6.7.2.2p2: Make sure we have an integer constant expression. 17372 } else { 17373 if (Enum->isComplete()) { 17374 EltTy = Enum->getIntegerType(); 17375 17376 // In Obj-C and Microsoft mode, require the enumeration value to be 17377 // representable in the underlying type of the enumeration. In C++11, 17378 // we perform a non-narrowing conversion as part of converted constant 17379 // expression checking. 17380 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) { 17381 if (Context.getTargetInfo() 17382 .getTriple() 17383 .isWindowsMSVCEnvironment()) { 17384 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy; 17385 } else { 17386 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy; 17387 } 17388 } 17389 17390 // Cast to the underlying type. 17391 Val = ImpCastExprToType(Val, EltTy, 17392 EltTy->isBooleanType() ? CK_IntegralToBoolean 17393 : CK_IntegralCast) 17394 .get(); 17395 } else if (getLangOpts().CPlusPlus) { 17396 // C++11 [dcl.enum]p5: 17397 // If the underlying type is not fixed, the type of each enumerator 17398 // is the type of its initializing value: 17399 // - If an initializer is specified for an enumerator, the 17400 // initializing value has the same type as the expression. 17401 EltTy = Val->getType(); 17402 } else { 17403 // C99 6.7.2.2p2: 17404 // The expression that defines the value of an enumeration constant 17405 // shall be an integer constant expression that has a value 17406 // representable as an int. 17407 17408 // Complain if the value is not representable in an int. 17409 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) 17410 Diag(IdLoc, diag::ext_enum_value_not_int) 17411 << EnumVal.toString(10) << Val->getSourceRange() 17412 << (EnumVal.isUnsigned() || EnumVal.isNonNegative()); 17413 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { 17414 // Force the type of the expression to 'int'. 17415 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get(); 17416 } 17417 EltTy = Val->getType(); 17418 } 17419 } 17420 } 17421 } 17422 17423 if (!Val) { 17424 if (Enum->isDependentType()) 17425 EltTy = Context.DependentTy; 17426 else if (!LastEnumConst) { 17427 // C++0x [dcl.enum]p5: 17428 // If the underlying type is not fixed, the type of each enumerator 17429 // is the type of its initializing value: 17430 // - If no initializer is specified for the first enumerator, the 17431 // initializing value has an unspecified integral type. 17432 // 17433 // GCC uses 'int' for its unspecified integral type, as does 17434 // C99 6.7.2.2p3. 17435 if (Enum->isFixed()) { 17436 EltTy = Enum->getIntegerType(); 17437 } 17438 else { 17439 EltTy = Context.IntTy; 17440 } 17441 } else { 17442 // Assign the last value + 1. 17443 EnumVal = LastEnumConst->getInitVal(); 17444 ++EnumVal; 17445 EltTy = LastEnumConst->getType(); 17446 17447 // Check for overflow on increment. 17448 if (EnumVal < LastEnumConst->getInitVal()) { 17449 // C++0x [dcl.enum]p5: 17450 // If the underlying type is not fixed, the type of each enumerator 17451 // is the type of its initializing value: 17452 // 17453 // - Otherwise the type of the initializing value is the same as 17454 // the type of the initializing value of the preceding enumerator 17455 // unless the incremented value is not representable in that type, 17456 // in which case the type is an unspecified integral type 17457 // sufficient to contain the incremented value. If no such type 17458 // exists, the program is ill-formed. 17459 QualType T = getNextLargerIntegralType(Context, EltTy); 17460 if (T.isNull() || Enum->isFixed()) { 17461 // There is no integral type larger enough to represent this 17462 // value. Complain, then allow the value to wrap around. 17463 EnumVal = LastEnumConst->getInitVal(); 17464 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2); 17465 ++EnumVal; 17466 if (Enum->isFixed()) 17467 // When the underlying type is fixed, this is ill-formed. 17468 Diag(IdLoc, diag::err_enumerator_wrapped) 17469 << EnumVal.toString(10) 17470 << EltTy; 17471 else 17472 Diag(IdLoc, diag::ext_enumerator_increment_too_large) 17473 << EnumVal.toString(10); 17474 } else { 17475 EltTy = T; 17476 } 17477 17478 // Retrieve the last enumerator's value, extent that type to the 17479 // type that is supposed to be large enough to represent the incremented 17480 // value, then increment. 17481 EnumVal = LastEnumConst->getInitVal(); 17482 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); 17483 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); 17484 ++EnumVal; 17485 17486 // If we're not in C++, diagnose the overflow of enumerator values, 17487 // which in C99 means that the enumerator value is not representable in 17488 // an int (C99 6.7.2.2p2). However, we support GCC's extension that 17489 // permits enumerator values that are representable in some larger 17490 // integral type. 17491 if (!getLangOpts().CPlusPlus && !T.isNull()) 17492 Diag(IdLoc, diag::warn_enum_value_overflow); 17493 } else if (!getLangOpts().CPlusPlus && 17494 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) { 17495 // Enforce C99 6.7.2.2p2 even when we compute the next value. 17496 Diag(IdLoc, diag::ext_enum_value_not_int) 17497 << EnumVal.toString(10) << 1; 17498 } 17499 } 17500 } 17501 17502 if (!EltTy->isDependentType()) { 17503 // Make the enumerator value match the signedness and size of the 17504 // enumerator's type. 17505 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy)); 17506 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); 17507 } 17508 17509 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy, 17510 Val, EnumVal); 17511 } 17512 17513 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, 17514 SourceLocation IILoc) { 17515 if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) || 17516 !getLangOpts().CPlusPlus) 17517 return SkipBodyInfo(); 17518 17519 // We have an anonymous enum definition. Look up the first enumerator to 17520 // determine if we should merge the definition with an existing one and 17521 // skip the body. 17522 NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName, 17523 forRedeclarationInCurContext()); 17524 auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl); 17525 if (!PrevECD) 17526 return SkipBodyInfo(); 17527 17528 EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext()); 17529 NamedDecl *Hidden; 17530 if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) { 17531 SkipBodyInfo Skip; 17532 Skip.Previous = Hidden; 17533 return Skip; 17534 } 17535 17536 return SkipBodyInfo(); 17537 } 17538 17539 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst, 17540 SourceLocation IdLoc, IdentifierInfo *Id, 17541 const ParsedAttributesView &Attrs, 17542 SourceLocation EqualLoc, Expr *Val) { 17543 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl); 17544 EnumConstantDecl *LastEnumConst = 17545 cast_or_null<EnumConstantDecl>(lastEnumConst); 17546 17547 // The scope passed in may not be a decl scope. Zip up the scope tree until 17548 // we find one that is. 17549 S = getNonFieldDeclScope(S); 17550 17551 // Verify that there isn't already something declared with this name in this 17552 // scope. 17553 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration); 17554 LookupName(R, S); 17555 NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>(); 17556 17557 if (PrevDecl && PrevDecl->isTemplateParameter()) { 17558 // Maybe we will complain about the shadowed template parameter. 17559 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); 17560 // Just pretend that we didn't see the previous declaration. 17561 PrevDecl = nullptr; 17562 } 17563 17564 // C++ [class.mem]p15: 17565 // If T is the name of a class, then each of the following shall have a name 17566 // different from T: 17567 // - every enumerator of every member of class T that is an unscoped 17568 // enumerated type 17569 if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped()) 17570 DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(), 17571 DeclarationNameInfo(Id, IdLoc)); 17572 17573 EnumConstantDecl *New = 17574 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val); 17575 if (!New) 17576 return nullptr; 17577 17578 if (PrevDecl) { 17579 if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) { 17580 // Check for other kinds of shadowing not already handled. 17581 CheckShadow(New, PrevDecl, R); 17582 } 17583 17584 // When in C++, we may get a TagDecl with the same name; in this case the 17585 // enum constant will 'hide' the tag. 17586 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && 17587 "Received TagDecl when not in C++!"); 17588 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { 17589 if (isa<EnumConstantDecl>(PrevDecl)) 17590 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; 17591 else 17592 Diag(IdLoc, diag::err_redefinition) << Id; 17593 notePreviousDefinition(PrevDecl, IdLoc); 17594 return nullptr; 17595 } 17596 } 17597 17598 // Process attributes. 17599 ProcessDeclAttributeList(S, New, Attrs); 17600 AddPragmaAttributes(S, New); 17601 17602 // Register this decl in the current scope stack. 17603 New->setAccess(TheEnumDecl->getAccess()); 17604 PushOnScopeChains(New, S); 17605 17606 ActOnDocumentableDecl(New); 17607 17608 return New; 17609 } 17610 17611 // Returns true when the enum initial expression does not trigger the 17612 // duplicate enum warning. A few common cases are exempted as follows: 17613 // Element2 = Element1 17614 // Element2 = Element1 + 1 17615 // Element2 = Element1 - 1 17616 // Where Element2 and Element1 are from the same enum. 17617 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) { 17618 Expr *InitExpr = ECD->getInitExpr(); 17619 if (!InitExpr) 17620 return true; 17621 InitExpr = InitExpr->IgnoreImpCasts(); 17622 17623 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) { 17624 if (!BO->isAdditiveOp()) 17625 return true; 17626 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS()); 17627 if (!IL) 17628 return true; 17629 if (IL->getValue() != 1) 17630 return true; 17631 17632 InitExpr = BO->getLHS(); 17633 } 17634 17635 // This checks if the elements are from the same enum. 17636 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr); 17637 if (!DRE) 17638 return true; 17639 17640 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl()); 17641 if (!EnumConstant) 17642 return true; 17643 17644 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) != 17645 Enum) 17646 return true; 17647 17648 return false; 17649 } 17650 17651 // Emits a warning when an element is implicitly set a value that 17652 // a previous element has already been set to. 17653 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements, 17654 EnumDecl *Enum, QualType EnumType) { 17655 // Avoid anonymous enums 17656 if (!Enum->getIdentifier()) 17657 return; 17658 17659 // Only check for small enums. 17660 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64) 17661 return; 17662 17663 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation())) 17664 return; 17665 17666 typedef SmallVector<EnumConstantDecl *, 3> ECDVector; 17667 typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector; 17668 17669 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector; 17670 17671 // DenseMaps cannot contain the all ones int64_t value, so use unordered_map. 17672 typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap; 17673 17674 // Use int64_t as a key to avoid needing special handling for map keys. 17675 auto EnumConstantToKey = [](const EnumConstantDecl *D) { 17676 llvm::APSInt Val = D->getInitVal(); 17677 return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(); 17678 }; 17679 17680 DuplicatesVector DupVector; 17681 ValueToVectorMap EnumMap; 17682 17683 // Populate the EnumMap with all values represented by enum constants without 17684 // an initializer. 17685 for (auto *Element : Elements) { 17686 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element); 17687 17688 // Null EnumConstantDecl means a previous diagnostic has been emitted for 17689 // this constant. Skip this enum since it may be ill-formed. 17690 if (!ECD) { 17691 return; 17692 } 17693 17694 // Constants with initalizers are handled in the next loop. 17695 if (ECD->getInitExpr()) 17696 continue; 17697 17698 // Duplicate values are handled in the next loop. 17699 EnumMap.insert({EnumConstantToKey(ECD), ECD}); 17700 } 17701 17702 if (EnumMap.size() == 0) 17703 return; 17704 17705 // Create vectors for any values that has duplicates. 17706 for (auto *Element : Elements) { 17707 // The last loop returned if any constant was null. 17708 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element); 17709 if (!ValidDuplicateEnum(ECD, Enum)) 17710 continue; 17711 17712 auto Iter = EnumMap.find(EnumConstantToKey(ECD)); 17713 if (Iter == EnumMap.end()) 17714 continue; 17715 17716 DeclOrVector& Entry = Iter->second; 17717 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) { 17718 // Ensure constants are different. 17719 if (D == ECD) 17720 continue; 17721 17722 // Create new vector and push values onto it. 17723 auto Vec = std::make_unique<ECDVector>(); 17724 Vec->push_back(D); 17725 Vec->push_back(ECD); 17726 17727 // Update entry to point to the duplicates vector. 17728 Entry = Vec.get(); 17729 17730 // Store the vector somewhere we can consult later for quick emission of 17731 // diagnostics. 17732 DupVector.emplace_back(std::move(Vec)); 17733 continue; 17734 } 17735 17736 ECDVector *Vec = Entry.get<ECDVector*>(); 17737 // Make sure constants are not added more than once. 17738 if (*Vec->begin() == ECD) 17739 continue; 17740 17741 Vec->push_back(ECD); 17742 } 17743 17744 // Emit diagnostics. 17745 for (const auto &Vec : DupVector) { 17746 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements."); 17747 17748 // Emit warning for one enum constant. 17749 auto *FirstECD = Vec->front(); 17750 S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values) 17751 << FirstECD << FirstECD->getInitVal().toString(10) 17752 << FirstECD->getSourceRange(); 17753 17754 // Emit one note for each of the remaining enum constants with 17755 // the same value. 17756 for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end())) 17757 S.Diag(ECD->getLocation(), diag::note_duplicate_element) 17758 << ECD << ECD->getInitVal().toString(10) 17759 << ECD->getSourceRange(); 17760 } 17761 } 17762 17763 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, 17764 bool AllowMask) const { 17765 assert(ED->isClosedFlag() && "looking for value in non-flag or open enum"); 17766 assert(ED->isCompleteDefinition() && "expected enum definition"); 17767 17768 auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt())); 17769 llvm::APInt &FlagBits = R.first->second; 17770 17771 if (R.second) { 17772 for (auto *E : ED->enumerators()) { 17773 const auto &EVal = E->getInitVal(); 17774 // Only single-bit enumerators introduce new flag values. 17775 if (EVal.isPowerOf2()) 17776 FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal; 17777 } 17778 } 17779 17780 // A value is in a flag enum if either its bits are a subset of the enum's 17781 // flag bits (the first condition) or we are allowing masks and the same is 17782 // true of its complement (the second condition). When masks are allowed, we 17783 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value. 17784 // 17785 // While it's true that any value could be used as a mask, the assumption is 17786 // that a mask will have all of the insignificant bits set. Anything else is 17787 // likely a logic error. 17788 llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth()); 17789 return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val)); 17790 } 17791 17792 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, 17793 Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S, 17794 const ParsedAttributesView &Attrs) { 17795 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX); 17796 QualType EnumType = Context.getTypeDeclType(Enum); 17797 17798 ProcessDeclAttributeList(S, Enum, Attrs); 17799 17800 if (Enum->isDependentType()) { 17801 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 17802 EnumConstantDecl *ECD = 17803 cast_or_null<EnumConstantDecl>(Elements[i]); 17804 if (!ECD) continue; 17805 17806 ECD->setType(EnumType); 17807 } 17808 17809 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0); 17810 return; 17811 } 17812 17813 // TODO: If the result value doesn't fit in an int, it must be a long or long 17814 // long value. ISO C does not support this, but GCC does as an extension, 17815 // emit a warning. 17816 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 17817 unsigned CharWidth = Context.getTargetInfo().getCharWidth(); 17818 unsigned ShortWidth = Context.getTargetInfo().getShortWidth(); 17819 17820 // Verify that all the values are okay, compute the size of the values, and 17821 // reverse the list. 17822 unsigned NumNegativeBits = 0; 17823 unsigned NumPositiveBits = 0; 17824 17825 // Keep track of whether all elements have type int. 17826 bool AllElementsInt = true; 17827 17828 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 17829 EnumConstantDecl *ECD = 17830 cast_or_null<EnumConstantDecl>(Elements[i]); 17831 if (!ECD) continue; // Already issued a diagnostic. 17832 17833 const llvm::APSInt &InitVal = ECD->getInitVal(); 17834 17835 // Keep track of the size of positive and negative values. 17836 if (InitVal.isUnsigned() || InitVal.isNonNegative()) 17837 NumPositiveBits = std::max(NumPositiveBits, 17838 (unsigned)InitVal.getActiveBits()); 17839 else 17840 NumNegativeBits = std::max(NumNegativeBits, 17841 (unsigned)InitVal.getMinSignedBits()); 17842 17843 // Keep track of whether every enum element has type int (very common). 17844 if (AllElementsInt) 17845 AllElementsInt = ECD->getType() == Context.IntTy; 17846 } 17847 17848 // Figure out the type that should be used for this enum. 17849 QualType BestType; 17850 unsigned BestWidth; 17851 17852 // C++0x N3000 [conv.prom]p3: 17853 // An rvalue of an unscoped enumeration type whose underlying 17854 // type is not fixed can be converted to an rvalue of the first 17855 // of the following types that can represent all the values of 17856 // the enumeration: int, unsigned int, long int, unsigned long 17857 // int, long long int, or unsigned long long int. 17858 // C99 6.4.4.3p2: 17859 // An identifier declared as an enumeration constant has type int. 17860 // The C99 rule is modified by a gcc extension 17861 QualType BestPromotionType; 17862 17863 bool Packed = Enum->hasAttr<PackedAttr>(); 17864 // -fshort-enums is the equivalent to specifying the packed attribute on all 17865 // enum definitions. 17866 if (LangOpts.ShortEnums) 17867 Packed = true; 17868 17869 // If the enum already has a type because it is fixed or dictated by the 17870 // target, promote that type instead of analyzing the enumerators. 17871 if (Enum->isComplete()) { 17872 BestType = Enum->getIntegerType(); 17873 if (BestType->isPromotableIntegerType()) 17874 BestPromotionType = Context.getPromotedIntegerType(BestType); 17875 else 17876 BestPromotionType = BestType; 17877 17878 BestWidth = Context.getIntWidth(BestType); 17879 } 17880 else if (NumNegativeBits) { 17881 // If there is a negative value, figure out the smallest integer type (of 17882 // int/long/longlong) that fits. 17883 // If it's packed, check also if it fits a char or a short. 17884 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) { 17885 BestType = Context.SignedCharTy; 17886 BestWidth = CharWidth; 17887 } else if (Packed && NumNegativeBits <= ShortWidth && 17888 NumPositiveBits < ShortWidth) { 17889 BestType = Context.ShortTy; 17890 BestWidth = ShortWidth; 17891 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { 17892 BestType = Context.IntTy; 17893 BestWidth = IntWidth; 17894 } else { 17895 BestWidth = Context.getTargetInfo().getLongWidth(); 17896 17897 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { 17898 BestType = Context.LongTy; 17899 } else { 17900 BestWidth = Context.getTargetInfo().getLongLongWidth(); 17901 17902 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) 17903 Diag(Enum->getLocation(), diag::ext_enum_too_large); 17904 BestType = Context.LongLongTy; 17905 } 17906 } 17907 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType); 17908 } else { 17909 // If there is no negative value, figure out the smallest type that fits 17910 // all of the enumerator values. 17911 // If it's packed, check also if it fits a char or a short. 17912 if (Packed && NumPositiveBits <= CharWidth) { 17913 BestType = Context.UnsignedCharTy; 17914 BestPromotionType = Context.IntTy; 17915 BestWidth = CharWidth; 17916 } else if (Packed && NumPositiveBits <= ShortWidth) { 17917 BestType = Context.UnsignedShortTy; 17918 BestPromotionType = Context.IntTy; 17919 BestWidth = ShortWidth; 17920 } else if (NumPositiveBits <= IntWidth) { 17921 BestType = Context.UnsignedIntTy; 17922 BestWidth = IntWidth; 17923 BestPromotionType 17924 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 17925 ? Context.UnsignedIntTy : Context.IntTy; 17926 } else if (NumPositiveBits <= 17927 (BestWidth = Context.getTargetInfo().getLongWidth())) { 17928 BestType = Context.UnsignedLongTy; 17929 BestPromotionType 17930 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 17931 ? Context.UnsignedLongTy : Context.LongTy; 17932 } else { 17933 BestWidth = Context.getTargetInfo().getLongLongWidth(); 17934 assert(NumPositiveBits <= BestWidth && 17935 "How could an initializer get larger than ULL?"); 17936 BestType = Context.UnsignedLongLongTy; 17937 BestPromotionType 17938 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) 17939 ? Context.UnsignedLongLongTy : Context.LongLongTy; 17940 } 17941 } 17942 17943 // Loop over all of the enumerator constants, changing their types to match 17944 // the type of the enum if needed. 17945 for (auto *D : Elements) { 17946 auto *ECD = cast_or_null<EnumConstantDecl>(D); 17947 if (!ECD) continue; // Already issued a diagnostic. 17948 17949 // Standard C says the enumerators have int type, but we allow, as an 17950 // extension, the enumerators to be larger than int size. If each 17951 // enumerator value fits in an int, type it as an int, otherwise type it the 17952 // same as the enumerator decl itself. This means that in "enum { X = 1U }" 17953 // that X has type 'int', not 'unsigned'. 17954 17955 // Determine whether the value fits into an int. 17956 llvm::APSInt InitVal = ECD->getInitVal(); 17957 17958 // If it fits into an integer type, force it. Otherwise force it to match 17959 // the enum decl type. 17960 QualType NewTy; 17961 unsigned NewWidth; 17962 bool NewSign; 17963 if (!getLangOpts().CPlusPlus && 17964 !Enum->isFixed() && 17965 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) { 17966 NewTy = Context.IntTy; 17967 NewWidth = IntWidth; 17968 NewSign = true; 17969 } else if (ECD->getType() == BestType) { 17970 // Already the right type! 17971 if (getLangOpts().CPlusPlus) 17972 // C++ [dcl.enum]p4: Following the closing brace of an 17973 // enum-specifier, each enumerator has the type of its 17974 // enumeration. 17975 ECD->setType(EnumType); 17976 continue; 17977 } else { 17978 NewTy = BestType; 17979 NewWidth = BestWidth; 17980 NewSign = BestType->isSignedIntegerOrEnumerationType(); 17981 } 17982 17983 // Adjust the APSInt value. 17984 InitVal = InitVal.extOrTrunc(NewWidth); 17985 InitVal.setIsSigned(NewSign); 17986 ECD->setInitVal(InitVal); 17987 17988 // Adjust the Expr initializer and type. 17989 if (ECD->getInitExpr() && 17990 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType())) 17991 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy, 17992 CK_IntegralCast, 17993 ECD->getInitExpr(), 17994 /*base paths*/ nullptr, 17995 VK_RValue)); 17996 if (getLangOpts().CPlusPlus) 17997 // C++ [dcl.enum]p4: Following the closing brace of an 17998 // enum-specifier, each enumerator has the type of its 17999 // enumeration. 18000 ECD->setType(EnumType); 18001 else 18002 ECD->setType(NewTy); 18003 } 18004 18005 Enum->completeDefinition(BestType, BestPromotionType, 18006 NumPositiveBits, NumNegativeBits); 18007 18008 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType); 18009 18010 if (Enum->isClosedFlag()) { 18011 for (Decl *D : Elements) { 18012 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D); 18013 if (!ECD) continue; // Already issued a diagnostic. 18014 18015 llvm::APSInt InitVal = ECD->getInitVal(); 18016 if (InitVal != 0 && !InitVal.isPowerOf2() && 18017 !IsValueInFlagEnum(Enum, InitVal, true)) 18018 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range) 18019 << ECD << Enum; 18020 } 18021 } 18022 18023 // Now that the enum type is defined, ensure it's not been underaligned. 18024 if (Enum->hasAttrs()) 18025 CheckAlignasUnderalignment(Enum); 18026 } 18027 18028 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr, 18029 SourceLocation StartLoc, 18030 SourceLocation EndLoc) { 18031 StringLiteral *AsmString = cast<StringLiteral>(expr); 18032 18033 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext, 18034 AsmString, StartLoc, 18035 EndLoc); 18036 CurContext->addDecl(New); 18037 return New; 18038 } 18039 18040 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name, 18041 IdentifierInfo* AliasName, 18042 SourceLocation PragmaLoc, 18043 SourceLocation NameLoc, 18044 SourceLocation AliasNameLoc) { 18045 NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, 18046 LookupOrdinaryName); 18047 AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc), 18048 AttributeCommonInfo::AS_Pragma); 18049 AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit( 18050 Context, AliasName->getName(), /*LiteralLabel=*/true, Info); 18051 18052 // If a declaration that: 18053 // 1) declares a function or a variable 18054 // 2) has external linkage 18055 // already exists, add a label attribute to it. 18056 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { 18057 if (isDeclExternC(PrevDecl)) 18058 PrevDecl->addAttr(Attr); 18059 else 18060 Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied) 18061 << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl; 18062 // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers. 18063 } else 18064 (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr)); 18065 } 18066 18067 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, 18068 SourceLocation PragmaLoc, 18069 SourceLocation NameLoc) { 18070 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName); 18071 18072 if (PrevDecl) { 18073 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma)); 18074 } else { 18075 (void)WeakUndeclaredIdentifiers.insert( 18076 std::pair<IdentifierInfo*,WeakInfo> 18077 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc))); 18078 } 18079 } 18080 18081 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, 18082 IdentifierInfo* AliasName, 18083 SourceLocation PragmaLoc, 18084 SourceLocation NameLoc, 18085 SourceLocation AliasNameLoc) { 18086 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc, 18087 LookupOrdinaryName); 18088 WeakInfo W = WeakInfo(Name, NameLoc); 18089 18090 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { 18091 if (!PrevDecl->hasAttr<AliasAttr>()) 18092 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl)) 18093 DeclApplyPragmaWeak(TUScope, ND, W); 18094 } else { 18095 (void)WeakUndeclaredIdentifiers.insert( 18096 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W)); 18097 } 18098 } 18099 18100 Decl *Sema::getObjCDeclContext() const { 18101 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext)); 18102 } 18103 18104 Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD, 18105 bool Final) { 18106 // Templates are emitted when they're instantiated. 18107 if (FD->isDependentContext()) 18108 return FunctionEmissionStatus::TemplateDiscarded; 18109 18110 FunctionEmissionStatus OMPES = FunctionEmissionStatus::Unknown; 18111 if (LangOpts.OpenMPIsDevice) { 18112 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = 18113 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl()); 18114 if (DevTy.hasValue()) { 18115 if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host) 18116 OMPES = FunctionEmissionStatus::OMPDiscarded; 18117 else if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost || 18118 *DevTy == OMPDeclareTargetDeclAttr::DT_Any) { 18119 OMPES = FunctionEmissionStatus::Emitted; 18120 } 18121 } 18122 } else if (LangOpts.OpenMP) { 18123 // In OpenMP 4.5 all the functions are host functions. 18124 if (LangOpts.OpenMP <= 45) { 18125 OMPES = FunctionEmissionStatus::Emitted; 18126 } else { 18127 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = 18128 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl()); 18129 // In OpenMP 5.0 or above, DevTy may be changed later by 18130 // #pragma omp declare target to(*) device_type(*). Therefore DevTy 18131 // having no value does not imply host. The emission status will be 18132 // checked again at the end of compilation unit. 18133 if (DevTy.hasValue()) { 18134 if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) { 18135 OMPES = FunctionEmissionStatus::OMPDiscarded; 18136 } else if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host || 18137 *DevTy == OMPDeclareTargetDeclAttr::DT_Any) 18138 OMPES = FunctionEmissionStatus::Emitted; 18139 } else if (Final) 18140 OMPES = FunctionEmissionStatus::Emitted; 18141 } 18142 } 18143 if (OMPES == FunctionEmissionStatus::OMPDiscarded || 18144 (OMPES == FunctionEmissionStatus::Emitted && !LangOpts.CUDA)) 18145 return OMPES; 18146 18147 if (LangOpts.CUDA) { 18148 // When compiling for device, host functions are never emitted. Similarly, 18149 // when compiling for host, device and global functions are never emitted. 18150 // (Technically, we do emit a host-side stub for global functions, but this 18151 // doesn't count for our purposes here.) 18152 Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD); 18153 if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host) 18154 return FunctionEmissionStatus::CUDADiscarded; 18155 if (!LangOpts.CUDAIsDevice && 18156 (T == Sema::CFT_Device || T == Sema::CFT_Global)) 18157 return FunctionEmissionStatus::CUDADiscarded; 18158 18159 // Check whether this function is externally visible -- if so, it's 18160 // known-emitted. 18161 // 18162 // We have to check the GVA linkage of the function's *definition* -- if we 18163 // only have a declaration, we don't know whether or not the function will 18164 // be emitted, because (say) the definition could include "inline". 18165 FunctionDecl *Def = FD->getDefinition(); 18166 18167 if (Def && 18168 !isDiscardableGVALinkage(getASTContext().GetGVALinkageForFunction(Def)) 18169 && (!LangOpts.OpenMP || OMPES == FunctionEmissionStatus::Emitted)) 18170 return FunctionEmissionStatus::Emitted; 18171 } 18172 18173 // Otherwise, the function is known-emitted if it's in our set of 18174 // known-emitted functions. 18175 return FunctionEmissionStatus::Unknown; 18176 } 18177 18178 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) { 18179 // Host-side references to a __global__ function refer to the stub, so the 18180 // function itself is never emitted and therefore should not be marked. 18181 // If we have host fn calls kernel fn calls host+device, the HD function 18182 // does not get instantiated on the host. We model this by omitting at the 18183 // call to the kernel from the callgraph. This ensures that, when compiling 18184 // for host, only HD functions actually called from the host get marked as 18185 // known-emitted. 18186 return LangOpts.CUDA && !LangOpts.CUDAIsDevice && 18187 IdentifyCUDATarget(Callee) == CFT_Global; 18188 } 18189