1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CommentDiagnostic.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/NonTrivialTypeVisitor.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36 #include "clang/Sema/CXXFieldCollector.h"
37 #include "clang/Sema/DeclSpec.h"
38 #include "clang/Sema/DelayedDiagnostic.h"
39 #include "clang/Sema/Initialization.h"
40 #include "clang/Sema/Lookup.h"
41 #include "clang/Sema/ParsedTemplate.h"
42 #include "clang/Sema/Scope.h"
43 #include "clang/Sema/ScopeInfo.h"
44 #include "clang/Sema/SemaInternal.h"
45 #include "clang/Sema/Template.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/Triple.h"
48 #include <algorithm>
49 #include <cstring>
50 #include <functional>
51 #include <unordered_map>
52 
53 using namespace clang;
54 using namespace sema;
55 
56 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
57   if (OwnedType) {
58     Decl *Group[2] = { OwnedType, Ptr };
59     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
60   }
61 
62   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
63 }
64 
65 namespace {
66 
67 class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
68  public:
69    TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
70                         bool AllowTemplates = false,
71                         bool AllowNonTemplates = true)
72        : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
73          AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
74      WantExpressionKeywords = false;
75      WantCXXNamedCasts = false;
76      WantRemainingKeywords = false;
77   }
78 
79   bool ValidateCandidate(const TypoCorrection &candidate) override {
80     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
81       if (!AllowInvalidDecl && ND->isInvalidDecl())
82         return false;
83 
84       if (getAsTypeTemplateDecl(ND))
85         return AllowTemplates;
86 
87       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
88       if (!IsType)
89         return false;
90 
91       if (AllowNonTemplates)
92         return true;
93 
94       // An injected-class-name of a class template (specialization) is valid
95       // as a template or as a non-template.
96       if (AllowTemplates) {
97         auto *RD = dyn_cast<CXXRecordDecl>(ND);
98         if (!RD || !RD->isInjectedClassName())
99           return false;
100         RD = cast<CXXRecordDecl>(RD->getDeclContext());
101         return RD->getDescribedClassTemplate() ||
102                isa<ClassTemplateSpecializationDecl>(RD);
103       }
104 
105       return false;
106     }
107 
108     return !WantClassName && candidate.isKeyword();
109   }
110 
111   std::unique_ptr<CorrectionCandidateCallback> clone() override {
112     return std::make_unique<TypeNameValidatorCCC>(*this);
113   }
114 
115  private:
116   bool AllowInvalidDecl;
117   bool WantClassName;
118   bool AllowTemplates;
119   bool AllowNonTemplates;
120 };
121 
122 } // end anonymous namespace
123 
124 /// Determine whether the token kind starts a simple-type-specifier.
125 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
126   switch (Kind) {
127   // FIXME: Take into account the current language when deciding whether a
128   // token kind is a valid type specifier
129   case tok::kw_short:
130   case tok::kw_long:
131   case tok::kw___int64:
132   case tok::kw___int128:
133   case tok::kw_signed:
134   case tok::kw_unsigned:
135   case tok::kw_void:
136   case tok::kw_char:
137   case tok::kw_int:
138   case tok::kw_half:
139   case tok::kw_float:
140   case tok::kw_double:
141   case tok::kw___bf16:
142   case tok::kw__Float16:
143   case tok::kw___float128:
144   case tok::kw_wchar_t:
145   case tok::kw_bool:
146   case tok::kw___underlying_type:
147   case tok::kw___auto_type:
148     return true;
149 
150   case tok::annot_typename:
151   case tok::kw_char16_t:
152   case tok::kw_char32_t:
153   case tok::kw_typeof:
154   case tok::annot_decltype:
155   case tok::kw_decltype:
156     return getLangOpts().CPlusPlus;
157 
158   case tok::kw_char8_t:
159     return getLangOpts().Char8;
160 
161   default:
162     break;
163   }
164 
165   return false;
166 }
167 
168 namespace {
169 enum class UnqualifiedTypeNameLookupResult {
170   NotFound,
171   FoundNonType,
172   FoundType
173 };
174 } // end anonymous namespace
175 
176 /// Tries to perform unqualified lookup of the type decls in bases for
177 /// dependent class.
178 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
179 /// type decl, \a FoundType if only type decls are found.
180 static UnqualifiedTypeNameLookupResult
181 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
182                                 SourceLocation NameLoc,
183                                 const CXXRecordDecl *RD) {
184   if (!RD->hasDefinition())
185     return UnqualifiedTypeNameLookupResult::NotFound;
186   // Look for type decls in base classes.
187   UnqualifiedTypeNameLookupResult FoundTypeDecl =
188       UnqualifiedTypeNameLookupResult::NotFound;
189   for (const auto &Base : RD->bases()) {
190     const CXXRecordDecl *BaseRD = nullptr;
191     if (auto *BaseTT = Base.getType()->getAs<TagType>())
192       BaseRD = BaseTT->getAsCXXRecordDecl();
193     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
194       // Look for type decls in dependent base classes that have known primary
195       // templates.
196       if (!TST || !TST->isDependentType())
197         continue;
198       auto *TD = TST->getTemplateName().getAsTemplateDecl();
199       if (!TD)
200         continue;
201       if (auto *BasePrimaryTemplate =
202           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
203         if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
204           BaseRD = BasePrimaryTemplate;
205         else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
206           if (const ClassTemplatePartialSpecializationDecl *PS =
207                   CTD->findPartialSpecialization(Base.getType()))
208             if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
209               BaseRD = PS;
210         }
211       }
212     }
213     if (BaseRD) {
214       for (NamedDecl *ND : BaseRD->lookup(&II)) {
215         if (!isa<TypeDecl>(ND))
216           return UnqualifiedTypeNameLookupResult::FoundNonType;
217         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
218       }
219       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
220         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
221         case UnqualifiedTypeNameLookupResult::FoundNonType:
222           return UnqualifiedTypeNameLookupResult::FoundNonType;
223         case UnqualifiedTypeNameLookupResult::FoundType:
224           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
225           break;
226         case UnqualifiedTypeNameLookupResult::NotFound:
227           break;
228         }
229       }
230     }
231   }
232 
233   return FoundTypeDecl;
234 }
235 
236 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
237                                                       const IdentifierInfo &II,
238                                                       SourceLocation NameLoc) {
239   // Lookup in the parent class template context, if any.
240   const CXXRecordDecl *RD = nullptr;
241   UnqualifiedTypeNameLookupResult FoundTypeDecl =
242       UnqualifiedTypeNameLookupResult::NotFound;
243   for (DeclContext *DC = S.CurContext;
244        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
245        DC = DC->getParent()) {
246     // Look for type decls in dependent base classes that have known primary
247     // templates.
248     RD = dyn_cast<CXXRecordDecl>(DC);
249     if (RD && RD->getDescribedClassTemplate())
250       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
251   }
252   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
253     return nullptr;
254 
255   // We found some types in dependent base classes.  Recover as if the user
256   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
257   // lookup during template instantiation.
258   S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II;
259 
260   ASTContext &Context = S.Context;
261   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
262                                           cast<Type>(Context.getRecordType(RD)));
263   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
264 
265   CXXScopeSpec SS;
266   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
267 
268   TypeLocBuilder Builder;
269   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
270   DepTL.setNameLoc(NameLoc);
271   DepTL.setElaboratedKeywordLoc(SourceLocation());
272   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
273   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
274 }
275 
276 /// If the identifier refers to a type name within this scope,
277 /// return the declaration of that type.
278 ///
279 /// This routine performs ordinary name lookup of the identifier II
280 /// within the given scope, with optional C++ scope specifier SS, to
281 /// determine whether the name refers to a type. If so, returns an
282 /// opaque pointer (actually a QualType) corresponding to that
283 /// type. Otherwise, returns NULL.
284 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
285                              Scope *S, CXXScopeSpec *SS,
286                              bool isClassName, bool HasTrailingDot,
287                              ParsedType ObjectTypePtr,
288                              bool IsCtorOrDtorName,
289                              bool WantNontrivialTypeSourceInfo,
290                              bool IsClassTemplateDeductionContext,
291                              IdentifierInfo **CorrectedII) {
292   // FIXME: Consider allowing this outside C++1z mode as an extension.
293   bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
294                               getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
295                               !isClassName && !HasTrailingDot;
296 
297   // Determine where we will perform name lookup.
298   DeclContext *LookupCtx = nullptr;
299   if (ObjectTypePtr) {
300     QualType ObjectType = ObjectTypePtr.get();
301     if (ObjectType->isRecordType())
302       LookupCtx = computeDeclContext(ObjectType);
303   } else if (SS && SS->isNotEmpty()) {
304     LookupCtx = computeDeclContext(*SS, false);
305 
306     if (!LookupCtx) {
307       if (isDependentScopeSpecifier(*SS)) {
308         // C++ [temp.res]p3:
309         //   A qualified-id that refers to a type and in which the
310         //   nested-name-specifier depends on a template-parameter (14.6.2)
311         //   shall be prefixed by the keyword typename to indicate that the
312         //   qualified-id denotes a type, forming an
313         //   elaborated-type-specifier (7.1.5.3).
314         //
315         // We therefore do not perform any name lookup if the result would
316         // refer to a member of an unknown specialization.
317         if (!isClassName && !IsCtorOrDtorName)
318           return nullptr;
319 
320         // We know from the grammar that this name refers to a type,
321         // so build a dependent node to describe the type.
322         if (WantNontrivialTypeSourceInfo)
323           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
324 
325         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
326         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
327                                        II, NameLoc);
328         return ParsedType::make(T);
329       }
330 
331       return nullptr;
332     }
333 
334     if (!LookupCtx->isDependentContext() &&
335         RequireCompleteDeclContext(*SS, LookupCtx))
336       return nullptr;
337   }
338 
339   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
340   // lookup for class-names.
341   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
342                                       LookupOrdinaryName;
343   LookupResult Result(*this, &II, NameLoc, Kind);
344   if (LookupCtx) {
345     // Perform "qualified" name lookup into the declaration context we
346     // computed, which is either the type of the base of a member access
347     // expression or the declaration context associated with a prior
348     // nested-name-specifier.
349     LookupQualifiedName(Result, LookupCtx);
350 
351     if (ObjectTypePtr && Result.empty()) {
352       // C++ [basic.lookup.classref]p3:
353       //   If the unqualified-id is ~type-name, the type-name is looked up
354       //   in the context of the entire postfix-expression. If the type T of
355       //   the object expression is of a class type C, the type-name is also
356       //   looked up in the scope of class C. At least one of the lookups shall
357       //   find a name that refers to (possibly cv-qualified) T.
358       LookupName(Result, S);
359     }
360   } else {
361     // Perform unqualified name lookup.
362     LookupName(Result, S);
363 
364     // For unqualified lookup in a class template in MSVC mode, look into
365     // dependent base classes where the primary class template is known.
366     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
367       if (ParsedType TypeInBase =
368               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
369         return TypeInBase;
370     }
371   }
372 
373   NamedDecl *IIDecl = nullptr;
374   switch (Result.getResultKind()) {
375   case LookupResult::NotFound:
376   case LookupResult::NotFoundInCurrentInstantiation:
377     if (CorrectedII) {
378       TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
379                                AllowDeducedTemplate);
380       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
381                                               S, SS, CCC, CTK_ErrorRecovery);
382       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
383       TemplateTy Template;
384       bool MemberOfUnknownSpecialization;
385       UnqualifiedId TemplateName;
386       TemplateName.setIdentifier(NewII, NameLoc);
387       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
388       CXXScopeSpec NewSS, *NewSSPtr = SS;
389       if (SS && NNS) {
390         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
391         NewSSPtr = &NewSS;
392       }
393       if (Correction && (NNS || NewII != &II) &&
394           // Ignore a correction to a template type as the to-be-corrected
395           // identifier is not a template (typo correction for template names
396           // is handled elsewhere).
397           !(getLangOpts().CPlusPlus && NewSSPtr &&
398             isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
399                            Template, MemberOfUnknownSpecialization))) {
400         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
401                                     isClassName, HasTrailingDot, ObjectTypePtr,
402                                     IsCtorOrDtorName,
403                                     WantNontrivialTypeSourceInfo,
404                                     IsClassTemplateDeductionContext);
405         if (Ty) {
406           diagnoseTypo(Correction,
407                        PDiag(diag::err_unknown_type_or_class_name_suggest)
408                          << Result.getLookupName() << isClassName);
409           if (SS && NNS)
410             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
411           *CorrectedII = NewII;
412           return Ty;
413         }
414       }
415     }
416     // If typo correction failed or was not performed, fall through
417     LLVM_FALLTHROUGH;
418   case LookupResult::FoundOverloaded:
419   case LookupResult::FoundUnresolvedValue:
420     Result.suppressDiagnostics();
421     return nullptr;
422 
423   case LookupResult::Ambiguous:
424     // Recover from type-hiding ambiguities by hiding the type.  We'll
425     // do the lookup again when looking for an object, and we can
426     // diagnose the error then.  If we don't do this, then the error
427     // about hiding the type will be immediately followed by an error
428     // that only makes sense if the identifier was treated like a type.
429     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
430       Result.suppressDiagnostics();
431       return nullptr;
432     }
433 
434     // Look to see if we have a type anywhere in the list of results.
435     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
436          Res != ResEnd; ++Res) {
437       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
438           (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
439         if (!IIDecl ||
440             (*Res)->getLocation().getRawEncoding() <
441               IIDecl->getLocation().getRawEncoding())
442           IIDecl = *Res;
443       }
444     }
445 
446     if (!IIDecl) {
447       // None of the entities we found is a type, so there is no way
448       // to even assume that the result is a type. In this case, don't
449       // complain about the ambiguity. The parser will either try to
450       // perform this lookup again (e.g., as an object name), which
451       // will produce the ambiguity, or will complain that it expected
452       // a type name.
453       Result.suppressDiagnostics();
454       return nullptr;
455     }
456 
457     // We found a type within the ambiguous lookup; diagnose the
458     // ambiguity and then return that type. This might be the right
459     // answer, or it might not be, but it suppresses any attempt to
460     // perform the name lookup again.
461     break;
462 
463   case LookupResult::Found:
464     IIDecl = Result.getFoundDecl();
465     break;
466   }
467 
468   assert(IIDecl && "Didn't find decl");
469 
470   QualType T;
471   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
472     // C++ [class.qual]p2: A lookup that would find the injected-class-name
473     // instead names the constructors of the class, except when naming a class.
474     // This is ill-formed when we're not actually forming a ctor or dtor name.
475     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
476     auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
477     if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
478         FoundRD->isInjectedClassName() &&
479         declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
480       Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
481           << &II << /*Type*/1;
482 
483     DiagnoseUseOfDecl(IIDecl, NameLoc);
484 
485     T = Context.getTypeDeclType(TD);
486     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
487   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
488     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
489     if (!HasTrailingDot)
490       T = Context.getObjCInterfaceType(IDecl);
491   } else if (AllowDeducedTemplate) {
492     if (auto *TD = getAsTypeTemplateDecl(IIDecl))
493       T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
494                                                        QualType(), false);
495   }
496 
497   if (T.isNull()) {
498     // If it's not plausibly a type, suppress diagnostics.
499     Result.suppressDiagnostics();
500     return nullptr;
501   }
502 
503   // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
504   // constructor or destructor name (in such a case, the scope specifier
505   // will be attached to the enclosing Expr or Decl node).
506   if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
507       !isa<ObjCInterfaceDecl>(IIDecl)) {
508     if (WantNontrivialTypeSourceInfo) {
509       // Construct a type with type-source information.
510       TypeLocBuilder Builder;
511       Builder.pushTypeSpec(T).setNameLoc(NameLoc);
512 
513       T = getElaboratedType(ETK_None, *SS, T);
514       ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
515       ElabTL.setElaboratedKeywordLoc(SourceLocation());
516       ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
517       return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
518     } else {
519       T = getElaboratedType(ETK_None, *SS, T);
520     }
521   }
522 
523   return ParsedType::make(T);
524 }
525 
526 // Builds a fake NNS for the given decl context.
527 static NestedNameSpecifier *
528 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
529   for (;; DC = DC->getLookupParent()) {
530     DC = DC->getPrimaryContext();
531     auto *ND = dyn_cast<NamespaceDecl>(DC);
532     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
533       return NestedNameSpecifier::Create(Context, nullptr, ND);
534     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
535       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
536                                          RD->getTypeForDecl());
537     else if (isa<TranslationUnitDecl>(DC))
538       return NestedNameSpecifier::GlobalSpecifier(Context);
539   }
540   llvm_unreachable("something isn't in TU scope?");
541 }
542 
543 /// Find the parent class with dependent bases of the innermost enclosing method
544 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
545 /// up allowing unqualified dependent type names at class-level, which MSVC
546 /// correctly rejects.
547 static const CXXRecordDecl *
548 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
549   for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
550     DC = DC->getPrimaryContext();
551     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
552       if (MD->getParent()->hasAnyDependentBases())
553         return MD->getParent();
554   }
555   return nullptr;
556 }
557 
558 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
559                                           SourceLocation NameLoc,
560                                           bool IsTemplateTypeArg) {
561   assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
562 
563   NestedNameSpecifier *NNS = nullptr;
564   if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
565     // If we weren't able to parse a default template argument, delay lookup
566     // until instantiation time by making a non-dependent DependentTypeName. We
567     // pretend we saw a NestedNameSpecifier referring to the current scope, and
568     // lookup is retried.
569     // FIXME: This hurts our diagnostic quality, since we get errors like "no
570     // type named 'Foo' in 'current_namespace'" when the user didn't write any
571     // name specifiers.
572     NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
573     Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
574   } else if (const CXXRecordDecl *RD =
575                  findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
576     // Build a DependentNameType that will perform lookup into RD at
577     // instantiation time.
578     NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
579                                       RD->getTypeForDecl());
580 
581     // Diagnose that this identifier was undeclared, and retry the lookup during
582     // template instantiation.
583     Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
584                                                                       << RD;
585   } else {
586     // This is not a situation that we should recover from.
587     return ParsedType();
588   }
589 
590   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
591 
592   // Build type location information.  We synthesized the qualifier, so we have
593   // to build a fake NestedNameSpecifierLoc.
594   NestedNameSpecifierLocBuilder NNSLocBuilder;
595   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
596   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
597 
598   TypeLocBuilder Builder;
599   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
600   DepTL.setNameLoc(NameLoc);
601   DepTL.setElaboratedKeywordLoc(SourceLocation());
602   DepTL.setQualifierLoc(QualifierLoc);
603   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
604 }
605 
606 /// isTagName() - This method is called *for error recovery purposes only*
607 /// to determine if the specified name is a valid tag name ("struct foo").  If
608 /// so, this returns the TST for the tag corresponding to it (TST_enum,
609 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
610 /// cases in C where the user forgot to specify the tag.
611 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
612   // Do a tag name lookup in this scope.
613   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
614   LookupName(R, S, false);
615   R.suppressDiagnostics();
616   if (R.getResultKind() == LookupResult::Found)
617     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
618       switch (TD->getTagKind()) {
619       case TTK_Struct: return DeclSpec::TST_struct;
620       case TTK_Interface: return DeclSpec::TST_interface;
621       case TTK_Union:  return DeclSpec::TST_union;
622       case TTK_Class:  return DeclSpec::TST_class;
623       case TTK_Enum:   return DeclSpec::TST_enum;
624       }
625     }
626 
627   return DeclSpec::TST_unspecified;
628 }
629 
630 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
631 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
632 /// then downgrade the missing typename error to a warning.
633 /// This is needed for MSVC compatibility; Example:
634 /// @code
635 /// template<class T> class A {
636 /// public:
637 ///   typedef int TYPE;
638 /// };
639 /// template<class T> class B : public A<T> {
640 /// public:
641 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
642 /// };
643 /// @endcode
644 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
645   if (CurContext->isRecord()) {
646     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
647       return true;
648 
649     const Type *Ty = SS->getScopeRep()->getAsType();
650 
651     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
652     for (const auto &Base : RD->bases())
653       if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
654         return true;
655     return S->isFunctionPrototypeScope();
656   }
657   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
658 }
659 
660 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
661                                    SourceLocation IILoc,
662                                    Scope *S,
663                                    CXXScopeSpec *SS,
664                                    ParsedType &SuggestedType,
665                                    bool IsTemplateName) {
666   // Don't report typename errors for editor placeholders.
667   if (II->isEditorPlaceholder())
668     return;
669   // We don't have anything to suggest (yet).
670   SuggestedType = nullptr;
671 
672   // There may have been a typo in the name of the type. Look up typo
673   // results, in case we have something that we can suggest.
674   TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
675                            /*AllowTemplates=*/IsTemplateName,
676                            /*AllowNonTemplates=*/!IsTemplateName);
677   if (TypoCorrection Corrected =
678           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
679                       CCC, CTK_ErrorRecovery)) {
680     // FIXME: Support error recovery for the template-name case.
681     bool CanRecover = !IsTemplateName;
682     if (Corrected.isKeyword()) {
683       // We corrected to a keyword.
684       diagnoseTypo(Corrected,
685                    PDiag(IsTemplateName ? diag::err_no_template_suggest
686                                         : diag::err_unknown_typename_suggest)
687                        << II);
688       II = Corrected.getCorrectionAsIdentifierInfo();
689     } else {
690       // We found a similarly-named type or interface; suggest that.
691       if (!SS || !SS->isSet()) {
692         diagnoseTypo(Corrected,
693                      PDiag(IsTemplateName ? diag::err_no_template_suggest
694                                           : diag::err_unknown_typename_suggest)
695                          << II, CanRecover);
696       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
697         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
698         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
699                                 II->getName().equals(CorrectedStr);
700         diagnoseTypo(Corrected,
701                      PDiag(IsTemplateName
702                                ? diag::err_no_member_template_suggest
703                                : diag::err_unknown_nested_typename_suggest)
704                          << II << DC << DroppedSpecifier << SS->getRange(),
705                      CanRecover);
706       } else {
707         llvm_unreachable("could not have corrected a typo here");
708       }
709 
710       if (!CanRecover)
711         return;
712 
713       CXXScopeSpec tmpSS;
714       if (Corrected.getCorrectionSpecifier())
715         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
716                           SourceRange(IILoc));
717       // FIXME: Support class template argument deduction here.
718       SuggestedType =
719           getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
720                       tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
721                       /*IsCtorOrDtorName=*/false,
722                       /*WantNontrivialTypeSourceInfo=*/true);
723     }
724     return;
725   }
726 
727   if (getLangOpts().CPlusPlus && !IsTemplateName) {
728     // See if II is a class template that the user forgot to pass arguments to.
729     UnqualifiedId Name;
730     Name.setIdentifier(II, IILoc);
731     CXXScopeSpec EmptySS;
732     TemplateTy TemplateResult;
733     bool MemberOfUnknownSpecialization;
734     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
735                        Name, nullptr, true, TemplateResult,
736                        MemberOfUnknownSpecialization) == TNK_Type_template) {
737       diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
738       return;
739     }
740   }
741 
742   // FIXME: Should we move the logic that tries to recover from a missing tag
743   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
744 
745   if (!SS || (!SS->isSet() && !SS->isInvalid()))
746     Diag(IILoc, IsTemplateName ? diag::err_no_template
747                                : diag::err_unknown_typename)
748         << II;
749   else if (DeclContext *DC = computeDeclContext(*SS, false))
750     Diag(IILoc, IsTemplateName ? diag::err_no_member_template
751                                : diag::err_typename_nested_not_found)
752         << II << DC << SS->getRange();
753   else if (SS->isValid() && SS->getScopeRep()->containsErrors()) {
754     SuggestedType =
755         ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get();
756   } else if (isDependentScopeSpecifier(*SS)) {
757     unsigned DiagID = diag::err_typename_missing;
758     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
759       DiagID = diag::ext_typename_missing;
760 
761     Diag(SS->getRange().getBegin(), DiagID)
762       << SS->getScopeRep() << II->getName()
763       << SourceRange(SS->getRange().getBegin(), IILoc)
764       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
765     SuggestedType = ActOnTypenameType(S, SourceLocation(),
766                                       *SS, *II, IILoc).get();
767   } else {
768     assert(SS && SS->isInvalid() &&
769            "Invalid scope specifier has already been diagnosed");
770   }
771 }
772 
773 /// Determine whether the given result set contains either a type name
774 /// or
775 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
776   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
777                        NextToken.is(tok::less);
778 
779   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
780     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
781       return true;
782 
783     if (CheckTemplate && isa<TemplateDecl>(*I))
784       return true;
785   }
786 
787   return false;
788 }
789 
790 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
791                                     Scope *S, CXXScopeSpec &SS,
792                                     IdentifierInfo *&Name,
793                                     SourceLocation NameLoc) {
794   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
795   SemaRef.LookupParsedName(R, S, &SS);
796   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
797     StringRef FixItTagName;
798     switch (Tag->getTagKind()) {
799       case TTK_Class:
800         FixItTagName = "class ";
801         break;
802 
803       case TTK_Enum:
804         FixItTagName = "enum ";
805         break;
806 
807       case TTK_Struct:
808         FixItTagName = "struct ";
809         break;
810 
811       case TTK_Interface:
812         FixItTagName = "__interface ";
813         break;
814 
815       case TTK_Union:
816         FixItTagName = "union ";
817         break;
818     }
819 
820     StringRef TagName = FixItTagName.drop_back();
821     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
822       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
823       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
824 
825     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
826          I != IEnd; ++I)
827       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
828         << Name << TagName;
829 
830     // Replace lookup results with just the tag decl.
831     Result.clear(Sema::LookupTagName);
832     SemaRef.LookupParsedName(Result, S, &SS);
833     return true;
834   }
835 
836   return false;
837 }
838 
839 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
840 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
841                                   QualType T, SourceLocation NameLoc) {
842   ASTContext &Context = S.Context;
843 
844   TypeLocBuilder Builder;
845   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
846 
847   T = S.getElaboratedType(ETK_None, SS, T);
848   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
849   ElabTL.setElaboratedKeywordLoc(SourceLocation());
850   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
851   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
852 }
853 
854 Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
855                                             IdentifierInfo *&Name,
856                                             SourceLocation NameLoc,
857                                             const Token &NextToken,
858                                             CorrectionCandidateCallback *CCC) {
859   DeclarationNameInfo NameInfo(Name, NameLoc);
860   ObjCMethodDecl *CurMethod = getCurMethodDecl();
861 
862   assert(NextToken.isNot(tok::coloncolon) &&
863          "parse nested name specifiers before calling ClassifyName");
864   if (getLangOpts().CPlusPlus && SS.isSet() &&
865       isCurrentClassName(*Name, S, &SS)) {
866     // Per [class.qual]p2, this names the constructors of SS, not the
867     // injected-class-name. We don't have a classification for that.
868     // There's not much point caching this result, since the parser
869     // will reject it later.
870     return NameClassification::Unknown();
871   }
872 
873   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
874   LookupParsedName(Result, S, &SS, !CurMethod);
875 
876   if (SS.isInvalid())
877     return NameClassification::Error();
878 
879   // For unqualified lookup in a class template in MSVC mode, look into
880   // dependent base classes where the primary class template is known.
881   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
882     if (ParsedType TypeInBase =
883             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
884       return TypeInBase;
885   }
886 
887   // Perform lookup for Objective-C instance variables (including automatically
888   // synthesized instance variables), if we're in an Objective-C method.
889   // FIXME: This lookup really, really needs to be folded in to the normal
890   // unqualified lookup mechanism.
891   if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
892     DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
893     if (Ivar.isInvalid())
894       return NameClassification::Error();
895     if (Ivar.isUsable())
896       return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
897 
898     // We defer builtin creation until after ivar lookup inside ObjC methods.
899     if (Result.empty())
900       LookupBuiltin(Result);
901   }
902 
903   bool SecondTry = false;
904   bool IsFilteredTemplateName = false;
905 
906 Corrected:
907   switch (Result.getResultKind()) {
908   case LookupResult::NotFound:
909     // If an unqualified-id is followed by a '(', then we have a function
910     // call.
911     if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
912       // In C++, this is an ADL-only call.
913       // FIXME: Reference?
914       if (getLangOpts().CPlusPlus)
915         return NameClassification::UndeclaredNonType();
916 
917       // C90 6.3.2.2:
918       //   If the expression that precedes the parenthesized argument list in a
919       //   function call consists solely of an identifier, and if no
920       //   declaration is visible for this identifier, the identifier is
921       //   implicitly declared exactly as if, in the innermost block containing
922       //   the function call, the declaration
923       //
924       //     extern int identifier ();
925       //
926       //   appeared.
927       //
928       // We also allow this in C99 as an extension.
929       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
930         return NameClassification::NonType(D);
931     }
932 
933     if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) {
934       // In C++20 onwards, this could be an ADL-only call to a function
935       // template, and we're required to assume that this is a template name.
936       //
937       // FIXME: Find a way to still do typo correction in this case.
938       TemplateName Template =
939           Context.getAssumedTemplateName(NameInfo.getName());
940       return NameClassification::UndeclaredTemplate(Template);
941     }
942 
943     // In C, we first see whether there is a tag type by the same name, in
944     // which case it's likely that the user just forgot to write "enum",
945     // "struct", or "union".
946     if (!getLangOpts().CPlusPlus && !SecondTry &&
947         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
948       break;
949     }
950 
951     // Perform typo correction to determine if there is another name that is
952     // close to this name.
953     if (!SecondTry && CCC) {
954       SecondTry = true;
955       if (TypoCorrection Corrected =
956               CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
957                           &SS, *CCC, CTK_ErrorRecovery)) {
958         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
959         unsigned QualifiedDiag = diag::err_no_member_suggest;
960 
961         NamedDecl *FirstDecl = Corrected.getFoundDecl();
962         NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
963         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
964             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
965           UnqualifiedDiag = diag::err_no_template_suggest;
966           QualifiedDiag = diag::err_no_member_template_suggest;
967         } else if (UnderlyingFirstDecl &&
968                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
969                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
970                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
971           UnqualifiedDiag = diag::err_unknown_typename_suggest;
972           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
973         }
974 
975         if (SS.isEmpty()) {
976           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
977         } else {// FIXME: is this even reachable? Test it.
978           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
979           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
980                                   Name->getName().equals(CorrectedStr);
981           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
982                                     << Name << computeDeclContext(SS, false)
983                                     << DroppedSpecifier << SS.getRange());
984         }
985 
986         // Update the name, so that the caller has the new name.
987         Name = Corrected.getCorrectionAsIdentifierInfo();
988 
989         // Typo correction corrected to a keyword.
990         if (Corrected.isKeyword())
991           return Name;
992 
993         // Also update the LookupResult...
994         // FIXME: This should probably go away at some point
995         Result.clear();
996         Result.setLookupName(Corrected.getCorrection());
997         if (FirstDecl)
998           Result.addDecl(FirstDecl);
999 
1000         // If we found an Objective-C instance variable, let
1001         // LookupInObjCMethod build the appropriate expression to
1002         // reference the ivar.
1003         // FIXME: This is a gross hack.
1004         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1005           DeclResult R =
1006               LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1007           if (R.isInvalid())
1008             return NameClassification::Error();
1009           if (R.isUsable())
1010             return NameClassification::NonType(Ivar);
1011         }
1012 
1013         goto Corrected;
1014       }
1015     }
1016 
1017     // We failed to correct; just fall through and let the parser deal with it.
1018     Result.suppressDiagnostics();
1019     return NameClassification::Unknown();
1020 
1021   case LookupResult::NotFoundInCurrentInstantiation: {
1022     // We performed name lookup into the current instantiation, and there were
1023     // dependent bases, so we treat this result the same way as any other
1024     // dependent nested-name-specifier.
1025 
1026     // C++ [temp.res]p2:
1027     //   A name used in a template declaration or definition and that is
1028     //   dependent on a template-parameter is assumed not to name a type
1029     //   unless the applicable name lookup finds a type name or the name is
1030     //   qualified by the keyword typename.
1031     //
1032     // FIXME: If the next token is '<', we might want to ask the parser to
1033     // perform some heroics to see if we actually have a
1034     // template-argument-list, which would indicate a missing 'template'
1035     // keyword here.
1036     return NameClassification::DependentNonType();
1037   }
1038 
1039   case LookupResult::Found:
1040   case LookupResult::FoundOverloaded:
1041   case LookupResult::FoundUnresolvedValue:
1042     break;
1043 
1044   case LookupResult::Ambiguous:
1045     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1046         hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1047                                       /*AllowDependent=*/false)) {
1048       // C++ [temp.local]p3:
1049       //   A lookup that finds an injected-class-name (10.2) can result in an
1050       //   ambiguity in certain cases (for example, if it is found in more than
1051       //   one base class). If all of the injected-class-names that are found
1052       //   refer to specializations of the same class template, and if the name
1053       //   is followed by a template-argument-list, the reference refers to the
1054       //   class template itself and not a specialization thereof, and is not
1055       //   ambiguous.
1056       //
1057       // This filtering can make an ambiguous result into an unambiguous one,
1058       // so try again after filtering out template names.
1059       FilterAcceptableTemplateNames(Result);
1060       if (!Result.isAmbiguous()) {
1061         IsFilteredTemplateName = true;
1062         break;
1063       }
1064     }
1065 
1066     // Diagnose the ambiguity and return an error.
1067     return NameClassification::Error();
1068   }
1069 
1070   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1071       (IsFilteredTemplateName ||
1072        hasAnyAcceptableTemplateNames(
1073            Result, /*AllowFunctionTemplates=*/true,
1074            /*AllowDependent=*/false,
1075            /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1076                getLangOpts().CPlusPlus20))) {
1077     // C++ [temp.names]p3:
1078     //   After name lookup (3.4) finds that a name is a template-name or that
1079     //   an operator-function-id or a literal- operator-id refers to a set of
1080     //   overloaded functions any member of which is a function template if
1081     //   this is followed by a <, the < is always taken as the delimiter of a
1082     //   template-argument-list and never as the less-than operator.
1083     // C++2a [temp.names]p2:
1084     //   A name is also considered to refer to a template if it is an
1085     //   unqualified-id followed by a < and name lookup finds either one
1086     //   or more functions or finds nothing.
1087     if (!IsFilteredTemplateName)
1088       FilterAcceptableTemplateNames(Result);
1089 
1090     bool IsFunctionTemplate;
1091     bool IsVarTemplate;
1092     TemplateName Template;
1093     if (Result.end() - Result.begin() > 1) {
1094       IsFunctionTemplate = true;
1095       Template = Context.getOverloadedTemplateName(Result.begin(),
1096                                                    Result.end());
1097     } else if (!Result.empty()) {
1098       auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1099           *Result.begin(), /*AllowFunctionTemplates=*/true,
1100           /*AllowDependent=*/false));
1101       IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1102       IsVarTemplate = isa<VarTemplateDecl>(TD);
1103 
1104       if (SS.isNotEmpty())
1105         Template =
1106             Context.getQualifiedTemplateName(SS.getScopeRep(),
1107                                              /*TemplateKeyword=*/false, TD);
1108       else
1109         Template = TemplateName(TD);
1110     } else {
1111       // All results were non-template functions. This is a function template
1112       // name.
1113       IsFunctionTemplate = true;
1114       Template = Context.getAssumedTemplateName(NameInfo.getName());
1115     }
1116 
1117     if (IsFunctionTemplate) {
1118       // Function templates always go through overload resolution, at which
1119       // point we'll perform the various checks (e.g., accessibility) we need
1120       // to based on which function we selected.
1121       Result.suppressDiagnostics();
1122 
1123       return NameClassification::FunctionTemplate(Template);
1124     }
1125 
1126     return IsVarTemplate ? NameClassification::VarTemplate(Template)
1127                          : NameClassification::TypeTemplate(Template);
1128   }
1129 
1130   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1131   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1132     DiagnoseUseOfDecl(Type, NameLoc);
1133     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1134     QualType T = Context.getTypeDeclType(Type);
1135     if (SS.isNotEmpty())
1136       return buildNestedType(*this, SS, T, NameLoc);
1137     return ParsedType::make(T);
1138   }
1139 
1140   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1141   if (!Class) {
1142     // FIXME: It's unfortunate that we don't have a Type node for handling this.
1143     if (ObjCCompatibleAliasDecl *Alias =
1144             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1145       Class = Alias->getClassInterface();
1146   }
1147 
1148   if (Class) {
1149     DiagnoseUseOfDecl(Class, NameLoc);
1150 
1151     if (NextToken.is(tok::period)) {
1152       // Interface. <something> is parsed as a property reference expression.
1153       // Just return "unknown" as a fall-through for now.
1154       Result.suppressDiagnostics();
1155       return NameClassification::Unknown();
1156     }
1157 
1158     QualType T = Context.getObjCInterfaceType(Class);
1159     return ParsedType::make(T);
1160   }
1161 
1162   if (isa<ConceptDecl>(FirstDecl))
1163     return NameClassification::Concept(
1164         TemplateName(cast<TemplateDecl>(FirstDecl)));
1165 
1166   // We can have a type template here if we're classifying a template argument.
1167   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1168       !isa<VarTemplateDecl>(FirstDecl))
1169     return NameClassification::TypeTemplate(
1170         TemplateName(cast<TemplateDecl>(FirstDecl)));
1171 
1172   // Check for a tag type hidden by a non-type decl in a few cases where it
1173   // seems likely a type is wanted instead of the non-type that was found.
1174   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1175   if ((NextToken.is(tok::identifier) ||
1176        (NextIsOp &&
1177         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1178       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1179     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1180     DiagnoseUseOfDecl(Type, NameLoc);
1181     QualType T = Context.getTypeDeclType(Type);
1182     if (SS.isNotEmpty())
1183       return buildNestedType(*this, SS, T, NameLoc);
1184     return ParsedType::make(T);
1185   }
1186 
1187   // If we already know which single declaration is referenced, just annotate
1188   // that declaration directly. Defer resolving even non-overloaded class
1189   // member accesses, as we need to defer certain access checks until we know
1190   // the context.
1191   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1192   if (Result.isSingleResult() && !ADL && !FirstDecl->isCXXClassMember())
1193     return NameClassification::NonType(Result.getRepresentativeDecl());
1194 
1195   // Otherwise, this is an overload set that we will need to resolve later.
1196   Result.suppressDiagnostics();
1197   return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1198       Context, Result.getNamingClass(), SS.getWithLocInContext(Context),
1199       Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(),
1200       Result.begin(), Result.end()));
1201 }
1202 
1203 ExprResult
1204 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1205                                              SourceLocation NameLoc) {
1206   assert(getLangOpts().CPlusPlus && "ADL-only call in C?");
1207   CXXScopeSpec SS;
1208   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1209   return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1210 }
1211 
1212 ExprResult
1213 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1214                                             IdentifierInfo *Name,
1215                                             SourceLocation NameLoc,
1216                                             bool IsAddressOfOperand) {
1217   DeclarationNameInfo NameInfo(Name, NameLoc);
1218   return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1219                                     NameInfo, IsAddressOfOperand,
1220                                     /*TemplateArgs=*/nullptr);
1221 }
1222 
1223 ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1224                                               NamedDecl *Found,
1225                                               SourceLocation NameLoc,
1226                                               const Token &NextToken) {
1227   if (getCurMethodDecl() && SS.isEmpty())
1228     if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1229       return BuildIvarRefExpr(S, NameLoc, Ivar);
1230 
1231   // Reconstruct the lookup result.
1232   LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1233   Result.addDecl(Found);
1234   Result.resolveKind();
1235 
1236   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1237   return BuildDeclarationNameExpr(SS, Result, ADL);
1238 }
1239 
1240 ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) {
1241   // For an implicit class member access, transform the result into a member
1242   // access expression if necessary.
1243   auto *ULE = cast<UnresolvedLookupExpr>(E);
1244   if ((*ULE->decls_begin())->isCXXClassMember()) {
1245     CXXScopeSpec SS;
1246     SS.Adopt(ULE->getQualifierLoc());
1247 
1248     // Reconstruct the lookup result.
1249     LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(),
1250                         LookupOrdinaryName);
1251     Result.setNamingClass(ULE->getNamingClass());
1252     for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I)
1253       Result.addDecl(*I, I.getAccess());
1254     Result.resolveKind();
1255     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1256                                            nullptr, S);
1257   }
1258 
1259   // Otherwise, this is already in the form we needed, and no further checks
1260   // are necessary.
1261   return ULE;
1262 }
1263 
1264 Sema::TemplateNameKindForDiagnostics
1265 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1266   auto *TD = Name.getAsTemplateDecl();
1267   if (!TD)
1268     return TemplateNameKindForDiagnostics::DependentTemplate;
1269   if (isa<ClassTemplateDecl>(TD))
1270     return TemplateNameKindForDiagnostics::ClassTemplate;
1271   if (isa<FunctionTemplateDecl>(TD))
1272     return TemplateNameKindForDiagnostics::FunctionTemplate;
1273   if (isa<VarTemplateDecl>(TD))
1274     return TemplateNameKindForDiagnostics::VarTemplate;
1275   if (isa<TypeAliasTemplateDecl>(TD))
1276     return TemplateNameKindForDiagnostics::AliasTemplate;
1277   if (isa<TemplateTemplateParmDecl>(TD))
1278     return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1279   if (isa<ConceptDecl>(TD))
1280     return TemplateNameKindForDiagnostics::Concept;
1281   return TemplateNameKindForDiagnostics::DependentTemplate;
1282 }
1283 
1284 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1285   assert(DC->getLexicalParent() == CurContext &&
1286       "The next DeclContext should be lexically contained in the current one.");
1287   CurContext = DC;
1288   S->setEntity(DC);
1289 }
1290 
1291 void Sema::PopDeclContext() {
1292   assert(CurContext && "DeclContext imbalance!");
1293 
1294   CurContext = CurContext->getLexicalParent();
1295   assert(CurContext && "Popped translation unit!");
1296 }
1297 
1298 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1299                                                                     Decl *D) {
1300   // Unlike PushDeclContext, the context to which we return is not necessarily
1301   // the containing DC of TD, because the new context will be some pre-existing
1302   // TagDecl definition instead of a fresh one.
1303   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1304   CurContext = cast<TagDecl>(D)->getDefinition();
1305   assert(CurContext && "skipping definition of undefined tag");
1306   // Start lookups from the parent of the current context; we don't want to look
1307   // into the pre-existing complete definition.
1308   S->setEntity(CurContext->getLookupParent());
1309   return Result;
1310 }
1311 
1312 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1313   CurContext = static_cast<decltype(CurContext)>(Context);
1314 }
1315 
1316 /// EnterDeclaratorContext - Used when we must lookup names in the context
1317 /// of a declarator's nested name specifier.
1318 ///
1319 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1320   // C++0x [basic.lookup.unqual]p13:
1321   //   A name used in the definition of a static data member of class
1322   //   X (after the qualified-id of the static member) is looked up as
1323   //   if the name was used in a member function of X.
1324   // C++0x [basic.lookup.unqual]p14:
1325   //   If a variable member of a namespace is defined outside of the
1326   //   scope of its namespace then any name used in the definition of
1327   //   the variable member (after the declarator-id) is looked up as
1328   //   if the definition of the variable member occurred in its
1329   //   namespace.
1330   // Both of these imply that we should push a scope whose context
1331   // is the semantic context of the declaration.  We can't use
1332   // PushDeclContext here because that context is not necessarily
1333   // lexically contained in the current context.  Fortunately,
1334   // the containing scope should have the appropriate information.
1335 
1336   assert(!S->getEntity() && "scope already has entity");
1337 
1338 #ifndef NDEBUG
1339   Scope *Ancestor = S->getParent();
1340   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1341   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1342 #endif
1343 
1344   CurContext = DC;
1345   S->setEntity(DC);
1346 
1347   if (S->getParent()->isTemplateParamScope()) {
1348     // Also set the corresponding entities for all immediately-enclosing
1349     // template parameter scopes.
1350     EnterTemplatedContext(S->getParent(), DC);
1351   }
1352 }
1353 
1354 void Sema::ExitDeclaratorContext(Scope *S) {
1355   assert(S->getEntity() == CurContext && "Context imbalance!");
1356 
1357   // Switch back to the lexical context.  The safety of this is
1358   // enforced by an assert in EnterDeclaratorContext.
1359   Scope *Ancestor = S->getParent();
1360   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1361   CurContext = Ancestor->getEntity();
1362 
1363   // We don't need to do anything with the scope, which is going to
1364   // disappear.
1365 }
1366 
1367 void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) {
1368   assert(S->isTemplateParamScope() &&
1369          "expected to be initializing a template parameter scope");
1370 
1371   // C++20 [temp.local]p7:
1372   //   In the definition of a member of a class template that appears outside
1373   //   of the class template definition, the name of a member of the class
1374   //   template hides the name of a template-parameter of any enclosing class
1375   //   templates (but not a template-parameter of the member if the member is a
1376   //   class or function template).
1377   // C++20 [temp.local]p9:
1378   //   In the definition of a class template or in the definition of a member
1379   //   of such a template that appears outside of the template definition, for
1380   //   each non-dependent base class (13.8.2.1), if the name of the base class
1381   //   or the name of a member of the base class is the same as the name of a
1382   //   template-parameter, the base class name or member name hides the
1383   //   template-parameter name (6.4.10).
1384   //
1385   // This means that a template parameter scope should be searched immediately
1386   // after searching the DeclContext for which it is a template parameter
1387   // scope. For example, for
1388   //   template<typename T> template<typename U> template<typename V>
1389   //     void N::A<T>::B<U>::f(...)
1390   // we search V then B<U> (and base classes) then U then A<T> (and base
1391   // classes) then T then N then ::.
1392   unsigned ScopeDepth = getTemplateDepth(S);
1393   for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) {
1394     DeclContext *SearchDCAfterScope = DC;
1395     for (; DC; DC = DC->getLookupParent()) {
1396       if (const TemplateParameterList *TPL =
1397               cast<Decl>(DC)->getDescribedTemplateParams()) {
1398         unsigned DCDepth = TPL->getDepth() + 1;
1399         if (DCDepth > ScopeDepth)
1400           continue;
1401         if (ScopeDepth == DCDepth)
1402           SearchDCAfterScope = DC = DC->getLookupParent();
1403         break;
1404       }
1405     }
1406     S->setLookupEntity(SearchDCAfterScope);
1407   }
1408 }
1409 
1410 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1411   // We assume that the caller has already called
1412   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1413   FunctionDecl *FD = D->getAsFunction();
1414   if (!FD)
1415     return;
1416 
1417   // Same implementation as PushDeclContext, but enters the context
1418   // from the lexical parent, rather than the top-level class.
1419   assert(CurContext == FD->getLexicalParent() &&
1420     "The next DeclContext should be lexically contained in the current one.");
1421   CurContext = FD;
1422   S->setEntity(CurContext);
1423 
1424   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1425     ParmVarDecl *Param = FD->getParamDecl(P);
1426     // If the parameter has an identifier, then add it to the scope
1427     if (Param->getIdentifier()) {
1428       S->AddDecl(Param);
1429       IdResolver.AddDecl(Param);
1430     }
1431   }
1432 }
1433 
1434 void Sema::ActOnExitFunctionContext() {
1435   // Same implementation as PopDeclContext, but returns to the lexical parent,
1436   // rather than the top-level class.
1437   assert(CurContext && "DeclContext imbalance!");
1438   CurContext = CurContext->getLexicalParent();
1439   assert(CurContext && "Popped translation unit!");
1440 }
1441 
1442 /// Determine whether we allow overloading of the function
1443 /// PrevDecl with another declaration.
1444 ///
1445 /// This routine determines whether overloading is possible, not
1446 /// whether some new function is actually an overload. It will return
1447 /// true in C++ (where we can always provide overloads) or, as an
1448 /// extension, in C when the previous function is already an
1449 /// overloaded function declaration or has the "overloadable"
1450 /// attribute.
1451 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1452                                        ASTContext &Context,
1453                                        const FunctionDecl *New) {
1454   if (Context.getLangOpts().CPlusPlus)
1455     return true;
1456 
1457   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1458     return true;
1459 
1460   return Previous.getResultKind() == LookupResult::Found &&
1461          (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1462           New->hasAttr<OverloadableAttr>());
1463 }
1464 
1465 /// Add this decl to the scope shadowed decl chains.
1466 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1467   // Move up the scope chain until we find the nearest enclosing
1468   // non-transparent context. The declaration will be introduced into this
1469   // scope.
1470   while (S->getEntity() && S->getEntity()->isTransparentContext())
1471     S = S->getParent();
1472 
1473   // Add scoped declarations into their context, so that they can be
1474   // found later. Declarations without a context won't be inserted
1475   // into any context.
1476   if (AddToContext)
1477     CurContext->addDecl(D);
1478 
1479   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1480   // are function-local declarations.
1481   if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent())
1482     return;
1483 
1484   // Template instantiations should also not be pushed into scope.
1485   if (isa<FunctionDecl>(D) &&
1486       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1487     return;
1488 
1489   // If this replaces anything in the current scope,
1490   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1491                                IEnd = IdResolver.end();
1492   for (; I != IEnd; ++I) {
1493     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1494       S->RemoveDecl(*I);
1495       IdResolver.RemoveDecl(*I);
1496 
1497       // Should only need to replace one decl.
1498       break;
1499     }
1500   }
1501 
1502   S->AddDecl(D);
1503 
1504   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1505     // Implicitly-generated labels may end up getting generated in an order that
1506     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1507     // the label at the appropriate place in the identifier chain.
1508     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1509       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1510       if (IDC == CurContext) {
1511         if (!S->isDeclScope(*I))
1512           continue;
1513       } else if (IDC->Encloses(CurContext))
1514         break;
1515     }
1516 
1517     IdResolver.InsertDeclAfter(I, D);
1518   } else {
1519     IdResolver.AddDecl(D);
1520   }
1521 }
1522 
1523 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1524                          bool AllowInlineNamespace) {
1525   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1526 }
1527 
1528 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1529   DeclContext *TargetDC = DC->getPrimaryContext();
1530   do {
1531     if (DeclContext *ScopeDC = S->getEntity())
1532       if (ScopeDC->getPrimaryContext() == TargetDC)
1533         return S;
1534   } while ((S = S->getParent()));
1535 
1536   return nullptr;
1537 }
1538 
1539 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1540                                             DeclContext*,
1541                                             ASTContext&);
1542 
1543 /// Filters out lookup results that don't fall within the given scope
1544 /// as determined by isDeclInScope.
1545 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1546                                 bool ConsiderLinkage,
1547                                 bool AllowInlineNamespace) {
1548   LookupResult::Filter F = R.makeFilter();
1549   while (F.hasNext()) {
1550     NamedDecl *D = F.next();
1551 
1552     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1553       continue;
1554 
1555     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1556       continue;
1557 
1558     F.erase();
1559   }
1560 
1561   F.done();
1562 }
1563 
1564 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1565 /// have compatible owning modules.
1566 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1567   // FIXME: The Modules TS is not clear about how friend declarations are
1568   // to be treated. It's not meaningful to have different owning modules for
1569   // linkage in redeclarations of the same entity, so for now allow the
1570   // redeclaration and change the owning modules to match.
1571   if (New->getFriendObjectKind() &&
1572       Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1573     New->setLocalOwningModule(Old->getOwningModule());
1574     makeMergedDefinitionVisible(New);
1575     return false;
1576   }
1577 
1578   Module *NewM = New->getOwningModule();
1579   Module *OldM = Old->getOwningModule();
1580 
1581   if (NewM && NewM->Kind == Module::PrivateModuleFragment)
1582     NewM = NewM->Parent;
1583   if (OldM && OldM->Kind == Module::PrivateModuleFragment)
1584     OldM = OldM->Parent;
1585 
1586   if (NewM == OldM)
1587     return false;
1588 
1589   bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1590   bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1591   if (NewIsModuleInterface || OldIsModuleInterface) {
1592     // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1593     //   if a declaration of D [...] appears in the purview of a module, all
1594     //   other such declarations shall appear in the purview of the same module
1595     Diag(New->getLocation(), diag::err_mismatched_owning_module)
1596       << New
1597       << NewIsModuleInterface
1598       << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1599       << OldIsModuleInterface
1600       << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1601     Diag(Old->getLocation(), diag::note_previous_declaration);
1602     New->setInvalidDecl();
1603     return true;
1604   }
1605 
1606   return false;
1607 }
1608 
1609 static bool isUsingDecl(NamedDecl *D) {
1610   return isa<UsingShadowDecl>(D) ||
1611          isa<UnresolvedUsingTypenameDecl>(D) ||
1612          isa<UnresolvedUsingValueDecl>(D);
1613 }
1614 
1615 /// Removes using shadow declarations from the lookup results.
1616 static void RemoveUsingDecls(LookupResult &R) {
1617   LookupResult::Filter F = R.makeFilter();
1618   while (F.hasNext())
1619     if (isUsingDecl(F.next()))
1620       F.erase();
1621 
1622   F.done();
1623 }
1624 
1625 /// Check for this common pattern:
1626 /// @code
1627 /// class S {
1628 ///   S(const S&); // DO NOT IMPLEMENT
1629 ///   void operator=(const S&); // DO NOT IMPLEMENT
1630 /// };
1631 /// @endcode
1632 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1633   // FIXME: Should check for private access too but access is set after we get
1634   // the decl here.
1635   if (D->doesThisDeclarationHaveABody())
1636     return false;
1637 
1638   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1639     return CD->isCopyConstructor();
1640   return D->isCopyAssignmentOperator();
1641 }
1642 
1643 // We need this to handle
1644 //
1645 // typedef struct {
1646 //   void *foo() { return 0; }
1647 // } A;
1648 //
1649 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1650 // for example. If 'A', foo will have external linkage. If we have '*A',
1651 // foo will have no linkage. Since we can't know until we get to the end
1652 // of the typedef, this function finds out if D might have non-external linkage.
1653 // Callers should verify at the end of the TU if it D has external linkage or
1654 // not.
1655 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1656   const DeclContext *DC = D->getDeclContext();
1657   while (!DC->isTranslationUnit()) {
1658     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1659       if (!RD->hasNameForLinkage())
1660         return true;
1661     }
1662     DC = DC->getParent();
1663   }
1664 
1665   return !D->isExternallyVisible();
1666 }
1667 
1668 // FIXME: This needs to be refactored; some other isInMainFile users want
1669 // these semantics.
1670 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1671   if (S.TUKind != TU_Complete)
1672     return false;
1673   return S.SourceMgr.isInMainFile(Loc);
1674 }
1675 
1676 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1677   assert(D);
1678 
1679   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1680     return false;
1681 
1682   // Ignore all entities declared within templates, and out-of-line definitions
1683   // of members of class templates.
1684   if (D->getDeclContext()->isDependentContext() ||
1685       D->getLexicalDeclContext()->isDependentContext())
1686     return false;
1687 
1688   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1689     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1690       return false;
1691     // A non-out-of-line declaration of a member specialization was implicitly
1692     // instantiated; it's the out-of-line declaration that we're interested in.
1693     if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1694         FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1695       return false;
1696 
1697     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1698       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1699         return false;
1700     } else {
1701       // 'static inline' functions are defined in headers; don't warn.
1702       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1703         return false;
1704     }
1705 
1706     if (FD->doesThisDeclarationHaveABody() &&
1707         Context.DeclMustBeEmitted(FD))
1708       return false;
1709   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1710     // Constants and utility variables are defined in headers with internal
1711     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1712     // like "inline".)
1713     if (!isMainFileLoc(*this, VD->getLocation()))
1714       return false;
1715 
1716     if (Context.DeclMustBeEmitted(VD))
1717       return false;
1718 
1719     if (VD->isStaticDataMember() &&
1720         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1721       return false;
1722     if (VD->isStaticDataMember() &&
1723         VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1724         VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1725       return false;
1726 
1727     if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1728       return false;
1729   } else {
1730     return false;
1731   }
1732 
1733   // Only warn for unused decls internal to the translation unit.
1734   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1735   // for inline functions defined in the main source file, for instance.
1736   return mightHaveNonExternalLinkage(D);
1737 }
1738 
1739 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1740   if (!D)
1741     return;
1742 
1743   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1744     const FunctionDecl *First = FD->getFirstDecl();
1745     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1746       return; // First should already be in the vector.
1747   }
1748 
1749   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1750     const VarDecl *First = VD->getFirstDecl();
1751     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1752       return; // First should already be in the vector.
1753   }
1754 
1755   if (ShouldWarnIfUnusedFileScopedDecl(D))
1756     UnusedFileScopedDecls.push_back(D);
1757 }
1758 
1759 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1760   if (D->isInvalidDecl())
1761     return false;
1762 
1763   if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1764     // For a decomposition declaration, warn if none of the bindings are
1765     // referenced, instead of if the variable itself is referenced (which
1766     // it is, by the bindings' expressions).
1767     for (auto *BD : DD->bindings())
1768       if (BD->isReferenced())
1769         return false;
1770   } else if (!D->getDeclName()) {
1771     return false;
1772   } else if (D->isReferenced() || D->isUsed()) {
1773     return false;
1774   }
1775 
1776   if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>())
1777     return false;
1778 
1779   if (isa<LabelDecl>(D))
1780     return true;
1781 
1782   // Except for labels, we only care about unused decls that are local to
1783   // functions.
1784   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1785   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1786     // For dependent types, the diagnostic is deferred.
1787     WithinFunction =
1788         WithinFunction || (R->isLocalClass() && !R->isDependentType());
1789   if (!WithinFunction)
1790     return false;
1791 
1792   if (isa<TypedefNameDecl>(D))
1793     return true;
1794 
1795   // White-list anything that isn't a local variable.
1796   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1797     return false;
1798 
1799   // Types of valid local variables should be complete, so this should succeed.
1800   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1801 
1802     // White-list anything with an __attribute__((unused)) type.
1803     const auto *Ty = VD->getType().getTypePtr();
1804 
1805     // Only look at the outermost level of typedef.
1806     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1807       if (TT->getDecl()->hasAttr<UnusedAttr>())
1808         return false;
1809     }
1810 
1811     // If we failed to complete the type for some reason, or if the type is
1812     // dependent, don't diagnose the variable.
1813     if (Ty->isIncompleteType() || Ty->isDependentType())
1814       return false;
1815 
1816     // Look at the element type to ensure that the warning behaviour is
1817     // consistent for both scalars and arrays.
1818     Ty = Ty->getBaseElementTypeUnsafe();
1819 
1820     if (const TagType *TT = Ty->getAs<TagType>()) {
1821       const TagDecl *Tag = TT->getDecl();
1822       if (Tag->hasAttr<UnusedAttr>())
1823         return false;
1824 
1825       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1826         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1827           return false;
1828 
1829         if (const Expr *Init = VD->getInit()) {
1830           if (const ExprWithCleanups *Cleanups =
1831                   dyn_cast<ExprWithCleanups>(Init))
1832             Init = Cleanups->getSubExpr();
1833           const CXXConstructExpr *Construct =
1834             dyn_cast<CXXConstructExpr>(Init);
1835           if (Construct && !Construct->isElidable()) {
1836             CXXConstructorDecl *CD = Construct->getConstructor();
1837             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1838                 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1839               return false;
1840           }
1841 
1842           // Suppress the warning if we don't know how this is constructed, and
1843           // it could possibly be non-trivial constructor.
1844           if (Init->isTypeDependent())
1845             for (const CXXConstructorDecl *Ctor : RD->ctors())
1846               if (!Ctor->isTrivial())
1847                 return false;
1848         }
1849       }
1850     }
1851 
1852     // TODO: __attribute__((unused)) templates?
1853   }
1854 
1855   return true;
1856 }
1857 
1858 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1859                                      FixItHint &Hint) {
1860   if (isa<LabelDecl>(D)) {
1861     SourceLocation AfterColon = Lexer::findLocationAfterToken(
1862         D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1863         true);
1864     if (AfterColon.isInvalid())
1865       return;
1866     Hint = FixItHint::CreateRemoval(
1867         CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1868   }
1869 }
1870 
1871 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1872   if (D->getTypeForDecl()->isDependentType())
1873     return;
1874 
1875   for (auto *TmpD : D->decls()) {
1876     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1877       DiagnoseUnusedDecl(T);
1878     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1879       DiagnoseUnusedNestedTypedefs(R);
1880   }
1881 }
1882 
1883 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1884 /// unless they are marked attr(unused).
1885 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1886   if (!ShouldDiagnoseUnusedDecl(D))
1887     return;
1888 
1889   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1890     // typedefs can be referenced later on, so the diagnostics are emitted
1891     // at end-of-translation-unit.
1892     UnusedLocalTypedefNameCandidates.insert(TD);
1893     return;
1894   }
1895 
1896   FixItHint Hint;
1897   GenerateFixForUnusedDecl(D, Context, Hint);
1898 
1899   unsigned DiagID;
1900   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1901     DiagID = diag::warn_unused_exception_param;
1902   else if (isa<LabelDecl>(D))
1903     DiagID = diag::warn_unused_label;
1904   else
1905     DiagID = diag::warn_unused_variable;
1906 
1907   Diag(D->getLocation(), DiagID) << D << Hint;
1908 }
1909 
1910 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1911   // Verify that we have no forward references left.  If so, there was a goto
1912   // or address of a label taken, but no definition of it.  Label fwd
1913   // definitions are indicated with a null substmt which is also not a resolved
1914   // MS inline assembly label name.
1915   bool Diagnose = false;
1916   if (L->isMSAsmLabel())
1917     Diagnose = !L->isResolvedMSAsmLabel();
1918   else
1919     Diagnose = L->getStmt() == nullptr;
1920   if (Diagnose)
1921     S.Diag(L->getLocation(), diag::err_undeclared_label_use) << L;
1922 }
1923 
1924 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1925   S->mergeNRVOIntoParent();
1926 
1927   if (S->decl_empty()) return;
1928   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1929          "Scope shouldn't contain decls!");
1930 
1931   for (auto *TmpD : S->decls()) {
1932     assert(TmpD && "This decl didn't get pushed??");
1933 
1934     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1935     NamedDecl *D = cast<NamedDecl>(TmpD);
1936 
1937     // Diagnose unused variables in this scope.
1938     if (!S->hasUnrecoverableErrorOccurred()) {
1939       DiagnoseUnusedDecl(D);
1940       if (const auto *RD = dyn_cast<RecordDecl>(D))
1941         DiagnoseUnusedNestedTypedefs(RD);
1942     }
1943 
1944     if (!D->getDeclName()) continue;
1945 
1946     // If this was a forward reference to a label, verify it was defined.
1947     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1948       CheckPoppedLabel(LD, *this);
1949 
1950     // Remove this name from our lexical scope, and warn on it if we haven't
1951     // already.
1952     IdResolver.RemoveDecl(D);
1953     auto ShadowI = ShadowingDecls.find(D);
1954     if (ShadowI != ShadowingDecls.end()) {
1955       if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1956         Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1957             << D << FD << FD->getParent();
1958         Diag(FD->getLocation(), diag::note_previous_declaration);
1959       }
1960       ShadowingDecls.erase(ShadowI);
1961     }
1962   }
1963 }
1964 
1965 /// Look for an Objective-C class in the translation unit.
1966 ///
1967 /// \param Id The name of the Objective-C class we're looking for. If
1968 /// typo-correction fixes this name, the Id will be updated
1969 /// to the fixed name.
1970 ///
1971 /// \param IdLoc The location of the name in the translation unit.
1972 ///
1973 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1974 /// if there is no class with the given name.
1975 ///
1976 /// \returns The declaration of the named Objective-C class, or NULL if the
1977 /// class could not be found.
1978 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1979                                               SourceLocation IdLoc,
1980                                               bool DoTypoCorrection) {
1981   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1982   // creation from this context.
1983   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1984 
1985   if (!IDecl && DoTypoCorrection) {
1986     // Perform typo correction at the given location, but only if we
1987     // find an Objective-C class name.
1988     DeclFilterCCC<ObjCInterfaceDecl> CCC{};
1989     if (TypoCorrection C =
1990             CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1991                         TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
1992       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1993       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1994       Id = IDecl->getIdentifier();
1995     }
1996   }
1997   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1998   // This routine must always return a class definition, if any.
1999   if (Def && Def->getDefinition())
2000       Def = Def->getDefinition();
2001   return Def;
2002 }
2003 
2004 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
2005 /// from S, where a non-field would be declared. This routine copes
2006 /// with the difference between C and C++ scoping rules in structs and
2007 /// unions. For example, the following code is well-formed in C but
2008 /// ill-formed in C++:
2009 /// @code
2010 /// struct S6 {
2011 ///   enum { BAR } e;
2012 /// };
2013 ///
2014 /// void test_S6() {
2015 ///   struct S6 a;
2016 ///   a.e = BAR;
2017 /// }
2018 /// @endcode
2019 /// For the declaration of BAR, this routine will return a different
2020 /// scope. The scope S will be the scope of the unnamed enumeration
2021 /// within S6. In C++, this routine will return the scope associated
2022 /// with S6, because the enumeration's scope is a transparent
2023 /// context but structures can contain non-field names. In C, this
2024 /// routine will return the translation unit scope, since the
2025 /// enumeration's scope is a transparent context and structures cannot
2026 /// contain non-field names.
2027 Scope *Sema::getNonFieldDeclScope(Scope *S) {
2028   while (((S->getFlags() & Scope::DeclScope) == 0) ||
2029          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2030          (S->isClassScope() && !getLangOpts().CPlusPlus))
2031     S = S->getParent();
2032   return S;
2033 }
2034 
2035 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2036                                ASTContext::GetBuiltinTypeError Error) {
2037   switch (Error) {
2038   case ASTContext::GE_None:
2039     return "";
2040   case ASTContext::GE_Missing_type:
2041     return BuiltinInfo.getHeaderName(ID);
2042   case ASTContext::GE_Missing_stdio:
2043     return "stdio.h";
2044   case ASTContext::GE_Missing_setjmp:
2045     return "setjmp.h";
2046   case ASTContext::GE_Missing_ucontext:
2047     return "ucontext.h";
2048   }
2049   llvm_unreachable("unhandled error kind");
2050 }
2051 
2052 FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type,
2053                                   unsigned ID, SourceLocation Loc) {
2054   DeclContext *Parent = Context.getTranslationUnitDecl();
2055 
2056   if (getLangOpts().CPlusPlus) {
2057     LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create(
2058         Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false);
2059     CLinkageDecl->setImplicit();
2060     Parent->addDecl(CLinkageDecl);
2061     Parent = CLinkageDecl;
2062   }
2063 
2064   FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type,
2065                                            /*TInfo=*/nullptr, SC_Extern, false,
2066                                            Type->isFunctionProtoType());
2067   New->setImplicit();
2068   New->addAttr(BuiltinAttr::CreateImplicit(Context, ID));
2069 
2070   // Create Decl objects for each parameter, adding them to the
2071   // FunctionDecl.
2072   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) {
2073     SmallVector<ParmVarDecl *, 16> Params;
2074     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2075       ParmVarDecl *parm = ParmVarDecl::Create(
2076           Context, New, SourceLocation(), SourceLocation(), nullptr,
2077           FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr);
2078       parm->setScopeInfo(0, i);
2079       Params.push_back(parm);
2080     }
2081     New->setParams(Params);
2082   }
2083 
2084   AddKnownFunctionAttributes(New);
2085   return New;
2086 }
2087 
2088 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2089 /// file scope.  lazily create a decl for it. ForRedeclaration is true
2090 /// if we're creating this built-in in anticipation of redeclaring the
2091 /// built-in.
2092 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2093                                      Scope *S, bool ForRedeclaration,
2094                                      SourceLocation Loc) {
2095   LookupNecessaryTypesForBuiltin(S, ID);
2096 
2097   ASTContext::GetBuiltinTypeError Error;
2098   QualType R = Context.GetBuiltinType(ID, Error);
2099   if (Error) {
2100     if (!ForRedeclaration)
2101       return nullptr;
2102 
2103     // If we have a builtin without an associated type we should not emit a
2104     // warning when we were not able to find a type for it.
2105     if (Error == ASTContext::GE_Missing_type ||
2106         Context.BuiltinInfo.allowTypeMismatch(ID))
2107       return nullptr;
2108 
2109     // If we could not find a type for setjmp it is because the jmp_buf type was
2110     // not defined prior to the setjmp declaration.
2111     if (Error == ASTContext::GE_Missing_setjmp) {
2112       Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2113           << Context.BuiltinInfo.getName(ID);
2114       return nullptr;
2115     }
2116 
2117     // Generally, we emit a warning that the declaration requires the
2118     // appropriate header.
2119     Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2120         << getHeaderName(Context.BuiltinInfo, ID, Error)
2121         << Context.BuiltinInfo.getName(ID);
2122     return nullptr;
2123   }
2124 
2125   if (!ForRedeclaration &&
2126       (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2127        Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2128     Diag(Loc, diag::ext_implicit_lib_function_decl)
2129         << Context.BuiltinInfo.getName(ID) << R;
2130     if (const char *Header = Context.BuiltinInfo.getHeaderName(ID))
2131       Diag(Loc, diag::note_include_header_or_declare)
2132           << Header << Context.BuiltinInfo.getName(ID);
2133   }
2134 
2135   if (R.isNull())
2136     return nullptr;
2137 
2138   FunctionDecl *New = CreateBuiltin(II, R, ID, Loc);
2139   RegisterLocallyScopedExternCDecl(New, S);
2140 
2141   // TUScope is the translation-unit scope to insert this function into.
2142   // FIXME: This is hideous. We need to teach PushOnScopeChains to
2143   // relate Scopes to DeclContexts, and probably eliminate CurContext
2144   // entirely, but we're not there yet.
2145   DeclContext *SavedContext = CurContext;
2146   CurContext = New->getDeclContext();
2147   PushOnScopeChains(New, TUScope);
2148   CurContext = SavedContext;
2149   return New;
2150 }
2151 
2152 /// Typedef declarations don't have linkage, but they still denote the same
2153 /// entity if their types are the same.
2154 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2155 /// isSameEntity.
2156 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2157                                                      TypedefNameDecl *Decl,
2158                                                      LookupResult &Previous) {
2159   // This is only interesting when modules are enabled.
2160   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2161     return;
2162 
2163   // Empty sets are uninteresting.
2164   if (Previous.empty())
2165     return;
2166 
2167   LookupResult::Filter Filter = Previous.makeFilter();
2168   while (Filter.hasNext()) {
2169     NamedDecl *Old = Filter.next();
2170 
2171     // Non-hidden declarations are never ignored.
2172     if (S.isVisible(Old))
2173       continue;
2174 
2175     // Declarations of the same entity are not ignored, even if they have
2176     // different linkages.
2177     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2178       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2179                                 Decl->getUnderlyingType()))
2180         continue;
2181 
2182       // If both declarations give a tag declaration a typedef name for linkage
2183       // purposes, then they declare the same entity.
2184       if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2185           Decl->getAnonDeclWithTypedefName())
2186         continue;
2187     }
2188 
2189     Filter.erase();
2190   }
2191 
2192   Filter.done();
2193 }
2194 
2195 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2196   QualType OldType;
2197   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2198     OldType = OldTypedef->getUnderlyingType();
2199   else
2200     OldType = Context.getTypeDeclType(Old);
2201   QualType NewType = New->getUnderlyingType();
2202 
2203   if (NewType->isVariablyModifiedType()) {
2204     // Must not redefine a typedef with a variably-modified type.
2205     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2206     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2207       << Kind << NewType;
2208     if (Old->getLocation().isValid())
2209       notePreviousDefinition(Old, New->getLocation());
2210     New->setInvalidDecl();
2211     return true;
2212   }
2213 
2214   if (OldType != NewType &&
2215       !OldType->isDependentType() &&
2216       !NewType->isDependentType() &&
2217       !Context.hasSameType(OldType, NewType)) {
2218     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2219     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2220       << Kind << NewType << OldType;
2221     if (Old->getLocation().isValid())
2222       notePreviousDefinition(Old, New->getLocation());
2223     New->setInvalidDecl();
2224     return true;
2225   }
2226   return false;
2227 }
2228 
2229 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2230 /// same name and scope as a previous declaration 'Old'.  Figure out
2231 /// how to resolve this situation, merging decls or emitting
2232 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2233 ///
2234 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2235                                 LookupResult &OldDecls) {
2236   // If the new decl is known invalid already, don't bother doing any
2237   // merging checks.
2238   if (New->isInvalidDecl()) return;
2239 
2240   // Allow multiple definitions for ObjC built-in typedefs.
2241   // FIXME: Verify the underlying types are equivalent!
2242   if (getLangOpts().ObjC) {
2243     const IdentifierInfo *TypeID = New->getIdentifier();
2244     switch (TypeID->getLength()) {
2245     default: break;
2246     case 2:
2247       {
2248         if (!TypeID->isStr("id"))
2249           break;
2250         QualType T = New->getUnderlyingType();
2251         if (!T->isPointerType())
2252           break;
2253         if (!T->isVoidPointerType()) {
2254           QualType PT = T->castAs<PointerType>()->getPointeeType();
2255           if (!PT->isStructureType())
2256             break;
2257         }
2258         Context.setObjCIdRedefinitionType(T);
2259         // Install the built-in type for 'id', ignoring the current definition.
2260         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2261         return;
2262       }
2263     case 5:
2264       if (!TypeID->isStr("Class"))
2265         break;
2266       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2267       // Install the built-in type for 'Class', ignoring the current definition.
2268       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2269       return;
2270     case 3:
2271       if (!TypeID->isStr("SEL"))
2272         break;
2273       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2274       // Install the built-in type for 'SEL', ignoring the current definition.
2275       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2276       return;
2277     }
2278     // Fall through - the typedef name was not a builtin type.
2279   }
2280 
2281   // Verify the old decl was also a type.
2282   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2283   if (!Old) {
2284     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2285       << New->getDeclName();
2286 
2287     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2288     if (OldD->getLocation().isValid())
2289       notePreviousDefinition(OldD, New->getLocation());
2290 
2291     return New->setInvalidDecl();
2292   }
2293 
2294   // If the old declaration is invalid, just give up here.
2295   if (Old->isInvalidDecl())
2296     return New->setInvalidDecl();
2297 
2298   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2299     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2300     auto *NewTag = New->getAnonDeclWithTypedefName();
2301     NamedDecl *Hidden = nullptr;
2302     if (OldTag && NewTag &&
2303         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2304         !hasVisibleDefinition(OldTag, &Hidden)) {
2305       // There is a definition of this tag, but it is not visible. Use it
2306       // instead of our tag.
2307       New->setTypeForDecl(OldTD->getTypeForDecl());
2308       if (OldTD->isModed())
2309         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2310                                     OldTD->getUnderlyingType());
2311       else
2312         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2313 
2314       // Make the old tag definition visible.
2315       makeMergedDefinitionVisible(Hidden);
2316 
2317       // If this was an unscoped enumeration, yank all of its enumerators
2318       // out of the scope.
2319       if (isa<EnumDecl>(NewTag)) {
2320         Scope *EnumScope = getNonFieldDeclScope(S);
2321         for (auto *D : NewTag->decls()) {
2322           auto *ED = cast<EnumConstantDecl>(D);
2323           assert(EnumScope->isDeclScope(ED));
2324           EnumScope->RemoveDecl(ED);
2325           IdResolver.RemoveDecl(ED);
2326           ED->getLexicalDeclContext()->removeDecl(ED);
2327         }
2328       }
2329     }
2330   }
2331 
2332   // If the typedef types are not identical, reject them in all languages and
2333   // with any extensions enabled.
2334   if (isIncompatibleTypedef(Old, New))
2335     return;
2336 
2337   // The types match.  Link up the redeclaration chain and merge attributes if
2338   // the old declaration was a typedef.
2339   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2340     New->setPreviousDecl(Typedef);
2341     mergeDeclAttributes(New, Old);
2342   }
2343 
2344   if (getLangOpts().MicrosoftExt)
2345     return;
2346 
2347   if (getLangOpts().CPlusPlus) {
2348     // C++ [dcl.typedef]p2:
2349     //   In a given non-class scope, a typedef specifier can be used to
2350     //   redefine the name of any type declared in that scope to refer
2351     //   to the type to which it already refers.
2352     if (!isa<CXXRecordDecl>(CurContext))
2353       return;
2354 
2355     // C++0x [dcl.typedef]p4:
2356     //   In a given class scope, a typedef specifier can be used to redefine
2357     //   any class-name declared in that scope that is not also a typedef-name
2358     //   to refer to the type to which it already refers.
2359     //
2360     // This wording came in via DR424, which was a correction to the
2361     // wording in DR56, which accidentally banned code like:
2362     //
2363     //   struct S {
2364     //     typedef struct A { } A;
2365     //   };
2366     //
2367     // in the C++03 standard. We implement the C++0x semantics, which
2368     // allow the above but disallow
2369     //
2370     //   struct S {
2371     //     typedef int I;
2372     //     typedef int I;
2373     //   };
2374     //
2375     // since that was the intent of DR56.
2376     if (!isa<TypedefNameDecl>(Old))
2377       return;
2378 
2379     Diag(New->getLocation(), diag::err_redefinition)
2380       << New->getDeclName();
2381     notePreviousDefinition(Old, New->getLocation());
2382     return New->setInvalidDecl();
2383   }
2384 
2385   // Modules always permit redefinition of typedefs, as does C11.
2386   if (getLangOpts().Modules || getLangOpts().C11)
2387     return;
2388 
2389   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2390   // is normally mapped to an error, but can be controlled with
2391   // -Wtypedef-redefinition.  If either the original or the redefinition is
2392   // in a system header, don't emit this for compatibility with GCC.
2393   if (getDiagnostics().getSuppressSystemWarnings() &&
2394       // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2395       (Old->isImplicit() ||
2396        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2397        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2398     return;
2399 
2400   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2401     << New->getDeclName();
2402   notePreviousDefinition(Old, New->getLocation());
2403 }
2404 
2405 /// DeclhasAttr - returns true if decl Declaration already has the target
2406 /// attribute.
2407 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2408   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2409   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2410   for (const auto *i : D->attrs())
2411     if (i->getKind() == A->getKind()) {
2412       if (Ann) {
2413         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2414           return true;
2415         continue;
2416       }
2417       // FIXME: Don't hardcode this check
2418       if (OA && isa<OwnershipAttr>(i))
2419         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2420       return true;
2421     }
2422 
2423   return false;
2424 }
2425 
2426 static bool isAttributeTargetADefinition(Decl *D) {
2427   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2428     return VD->isThisDeclarationADefinition();
2429   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2430     return TD->isCompleteDefinition() || TD->isBeingDefined();
2431   return true;
2432 }
2433 
2434 /// Merge alignment attributes from \p Old to \p New, taking into account the
2435 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2436 ///
2437 /// \return \c true if any attributes were added to \p New.
2438 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2439   // Look for alignas attributes on Old, and pick out whichever attribute
2440   // specifies the strictest alignment requirement.
2441   AlignedAttr *OldAlignasAttr = nullptr;
2442   AlignedAttr *OldStrictestAlignAttr = nullptr;
2443   unsigned OldAlign = 0;
2444   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2445     // FIXME: We have no way of representing inherited dependent alignments
2446     // in a case like:
2447     //   template<int A, int B> struct alignas(A) X;
2448     //   template<int A, int B> struct alignas(B) X {};
2449     // For now, we just ignore any alignas attributes which are not on the
2450     // definition in such a case.
2451     if (I->isAlignmentDependent())
2452       return false;
2453 
2454     if (I->isAlignas())
2455       OldAlignasAttr = I;
2456 
2457     unsigned Align = I->getAlignment(S.Context);
2458     if (Align > OldAlign) {
2459       OldAlign = Align;
2460       OldStrictestAlignAttr = I;
2461     }
2462   }
2463 
2464   // Look for alignas attributes on New.
2465   AlignedAttr *NewAlignasAttr = nullptr;
2466   unsigned NewAlign = 0;
2467   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2468     if (I->isAlignmentDependent())
2469       return false;
2470 
2471     if (I->isAlignas())
2472       NewAlignasAttr = I;
2473 
2474     unsigned Align = I->getAlignment(S.Context);
2475     if (Align > NewAlign)
2476       NewAlign = Align;
2477   }
2478 
2479   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2480     // Both declarations have 'alignas' attributes. We require them to match.
2481     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2482     // fall short. (If two declarations both have alignas, they must both match
2483     // every definition, and so must match each other if there is a definition.)
2484 
2485     // If either declaration only contains 'alignas(0)' specifiers, then it
2486     // specifies the natural alignment for the type.
2487     if (OldAlign == 0 || NewAlign == 0) {
2488       QualType Ty;
2489       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2490         Ty = VD->getType();
2491       else
2492         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2493 
2494       if (OldAlign == 0)
2495         OldAlign = S.Context.getTypeAlign(Ty);
2496       if (NewAlign == 0)
2497         NewAlign = S.Context.getTypeAlign(Ty);
2498     }
2499 
2500     if (OldAlign != NewAlign) {
2501       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2502         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2503         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2504       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2505     }
2506   }
2507 
2508   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2509     // C++11 [dcl.align]p6:
2510     //   if any declaration of an entity has an alignment-specifier,
2511     //   every defining declaration of that entity shall specify an
2512     //   equivalent alignment.
2513     // C11 6.7.5/7:
2514     //   If the definition of an object does not have an alignment
2515     //   specifier, any other declaration of that object shall also
2516     //   have no alignment specifier.
2517     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2518       << OldAlignasAttr;
2519     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2520       << OldAlignasAttr;
2521   }
2522 
2523   bool AnyAdded = false;
2524 
2525   // Ensure we have an attribute representing the strictest alignment.
2526   if (OldAlign > NewAlign) {
2527     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2528     Clone->setInherited(true);
2529     New->addAttr(Clone);
2530     AnyAdded = true;
2531   }
2532 
2533   // Ensure we have an alignas attribute if the old declaration had one.
2534   if (OldAlignasAttr && !NewAlignasAttr &&
2535       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2536     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2537     Clone->setInherited(true);
2538     New->addAttr(Clone);
2539     AnyAdded = true;
2540   }
2541 
2542   return AnyAdded;
2543 }
2544 
2545 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2546                                const InheritableAttr *Attr,
2547                                Sema::AvailabilityMergeKind AMK) {
2548   // This function copies an attribute Attr from a previous declaration to the
2549   // new declaration D if the new declaration doesn't itself have that attribute
2550   // yet or if that attribute allows duplicates.
2551   // If you're adding a new attribute that requires logic different from
2552   // "use explicit attribute on decl if present, else use attribute from
2553   // previous decl", for example if the attribute needs to be consistent
2554   // between redeclarations, you need to call a custom merge function here.
2555   InheritableAttr *NewAttr = nullptr;
2556   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2557     NewAttr = S.mergeAvailabilityAttr(
2558         D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2559         AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2560         AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2561         AA->getPriority());
2562   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2563     NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2564   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2565     NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2566   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2567     NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2568   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2569     NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2570   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2571     NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2572                                 FA->getFirstArg());
2573   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2574     NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2575   else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2576     NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2577   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2578     NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2579                                        IA->getInheritanceModel());
2580   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2581     NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2582                                       &S.Context.Idents.get(AA->getSpelling()));
2583   else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2584            (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2585             isa<CUDAGlobalAttr>(Attr))) {
2586     // CUDA target attributes are part of function signature for
2587     // overloading purposes and must not be merged.
2588     return false;
2589   } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2590     NewAttr = S.mergeMinSizeAttr(D, *MA);
2591   else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr))
2592     NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName());
2593   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2594     NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2595   else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2596     NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2597   else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2598     NewAttr = S.mergeCommonAttr(D, *CommonA);
2599   else if (isa<AlignedAttr>(Attr))
2600     // AlignedAttrs are handled separately, because we need to handle all
2601     // such attributes on a declaration at the same time.
2602     NewAttr = nullptr;
2603   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2604            (AMK == Sema::AMK_Override ||
2605             AMK == Sema::AMK_ProtocolImplementation))
2606     NewAttr = nullptr;
2607   else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2608     NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl());
2609   else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr))
2610     NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA);
2611   else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr))
2612     NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA);
2613   else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr))
2614     NewAttr = S.mergeImportModuleAttr(D, *IMA);
2615   else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr))
2616     NewAttr = S.mergeImportNameAttr(D, *INA);
2617   else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2618     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2619 
2620   if (NewAttr) {
2621     NewAttr->setInherited(true);
2622     D->addAttr(NewAttr);
2623     if (isa<MSInheritanceAttr>(NewAttr))
2624       S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2625     return true;
2626   }
2627 
2628   return false;
2629 }
2630 
2631 static const NamedDecl *getDefinition(const Decl *D) {
2632   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2633     return TD->getDefinition();
2634   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2635     const VarDecl *Def = VD->getDefinition();
2636     if (Def)
2637       return Def;
2638     return VD->getActingDefinition();
2639   }
2640   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2641     const FunctionDecl *Def = nullptr;
2642     if (FD->isDefined(Def, true))
2643       return Def;
2644   }
2645   return nullptr;
2646 }
2647 
2648 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2649   for (const auto *Attribute : D->attrs())
2650     if (Attribute->getKind() == Kind)
2651       return true;
2652   return false;
2653 }
2654 
2655 /// checkNewAttributesAfterDef - If we already have a definition, check that
2656 /// there are no new attributes in this declaration.
2657 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2658   if (!New->hasAttrs())
2659     return;
2660 
2661   const NamedDecl *Def = getDefinition(Old);
2662   if (!Def || Def == New)
2663     return;
2664 
2665   AttrVec &NewAttributes = New->getAttrs();
2666   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2667     const Attr *NewAttribute = NewAttributes[I];
2668 
2669     if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2670       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2671         Sema::SkipBodyInfo SkipBody;
2672         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2673 
2674         // If we're skipping this definition, drop the "alias" attribute.
2675         if (SkipBody.ShouldSkip) {
2676           NewAttributes.erase(NewAttributes.begin() + I);
2677           --E;
2678           continue;
2679         }
2680       } else {
2681         VarDecl *VD = cast<VarDecl>(New);
2682         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2683                                 VarDecl::TentativeDefinition
2684                             ? diag::err_alias_after_tentative
2685                             : diag::err_redefinition;
2686         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2687         if (Diag == diag::err_redefinition)
2688           S.notePreviousDefinition(Def, VD->getLocation());
2689         else
2690           S.Diag(Def->getLocation(), diag::note_previous_definition);
2691         VD->setInvalidDecl();
2692       }
2693       ++I;
2694       continue;
2695     }
2696 
2697     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2698       // Tentative definitions are only interesting for the alias check above.
2699       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2700         ++I;
2701         continue;
2702       }
2703     }
2704 
2705     if (hasAttribute(Def, NewAttribute->getKind())) {
2706       ++I;
2707       continue; // regular attr merging will take care of validating this.
2708     }
2709 
2710     if (isa<C11NoReturnAttr>(NewAttribute)) {
2711       // C's _Noreturn is allowed to be added to a function after it is defined.
2712       ++I;
2713       continue;
2714     } else if (isa<UuidAttr>(NewAttribute)) {
2715       // msvc will allow a subsequent definition to add an uuid to a class
2716       ++I;
2717       continue;
2718     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2719       if (AA->isAlignas()) {
2720         // C++11 [dcl.align]p6:
2721         //   if any declaration of an entity has an alignment-specifier,
2722         //   every defining declaration of that entity shall specify an
2723         //   equivalent alignment.
2724         // C11 6.7.5/7:
2725         //   If the definition of an object does not have an alignment
2726         //   specifier, any other declaration of that object shall also
2727         //   have no alignment specifier.
2728         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2729           << AA;
2730         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2731           << AA;
2732         NewAttributes.erase(NewAttributes.begin() + I);
2733         --E;
2734         continue;
2735       }
2736     } else if (isa<LoaderUninitializedAttr>(NewAttribute)) {
2737       // If there is a C definition followed by a redeclaration with this
2738       // attribute then there are two different definitions. In C++, prefer the
2739       // standard diagnostics.
2740       if (!S.getLangOpts().CPlusPlus) {
2741         S.Diag(NewAttribute->getLocation(),
2742                diag::err_loader_uninitialized_redeclaration);
2743         S.Diag(Def->getLocation(), diag::note_previous_definition);
2744         NewAttributes.erase(NewAttributes.begin() + I);
2745         --E;
2746         continue;
2747       }
2748     } else if (isa<SelectAnyAttr>(NewAttribute) &&
2749                cast<VarDecl>(New)->isInline() &&
2750                !cast<VarDecl>(New)->isInlineSpecified()) {
2751       // Don't warn about applying selectany to implicitly inline variables.
2752       // Older compilers and language modes would require the use of selectany
2753       // to make such variables inline, and it would have no effect if we
2754       // honored it.
2755       ++I;
2756       continue;
2757     } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) {
2758       // We allow to add OMP[Begin]DeclareVariantAttr to be added to
2759       // declarations after defintions.
2760       ++I;
2761       continue;
2762     }
2763 
2764     S.Diag(NewAttribute->getLocation(),
2765            diag::warn_attribute_precede_definition);
2766     S.Diag(Def->getLocation(), diag::note_previous_definition);
2767     NewAttributes.erase(NewAttributes.begin() + I);
2768     --E;
2769   }
2770 }
2771 
2772 static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
2773                                      const ConstInitAttr *CIAttr,
2774                                      bool AttrBeforeInit) {
2775   SourceLocation InsertLoc = InitDecl->getInnerLocStart();
2776 
2777   // Figure out a good way to write this specifier on the old declaration.
2778   // FIXME: We should just use the spelling of CIAttr, but we don't preserve
2779   // enough of the attribute list spelling information to extract that without
2780   // heroics.
2781   std::string SuitableSpelling;
2782   if (S.getLangOpts().CPlusPlus20)
2783     SuitableSpelling = std::string(
2784         S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit}));
2785   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2786     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2787         InsertLoc, {tok::l_square, tok::l_square,
2788                     S.PP.getIdentifierInfo("clang"), tok::coloncolon,
2789                     S.PP.getIdentifierInfo("require_constant_initialization"),
2790                     tok::r_square, tok::r_square}));
2791   if (SuitableSpelling.empty())
2792     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2793         InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren,
2794                     S.PP.getIdentifierInfo("require_constant_initialization"),
2795                     tok::r_paren, tok::r_paren}));
2796   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20)
2797     SuitableSpelling = "constinit";
2798   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2799     SuitableSpelling = "[[clang::require_constant_initialization]]";
2800   if (SuitableSpelling.empty())
2801     SuitableSpelling = "__attribute__((require_constant_initialization))";
2802   SuitableSpelling += " ";
2803 
2804   if (AttrBeforeInit) {
2805     // extern constinit int a;
2806     // int a = 0; // error (missing 'constinit'), accepted as extension
2807     assert(CIAttr->isConstinit() && "should not diagnose this for attribute");
2808     S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
2809         << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2810     S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
2811   } else {
2812     // int a = 0;
2813     // constinit extern int a; // error (missing 'constinit')
2814     S.Diag(CIAttr->getLocation(),
2815            CIAttr->isConstinit() ? diag::err_constinit_added_too_late
2816                                  : diag::warn_require_const_init_added_too_late)
2817         << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
2818     S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
2819         << CIAttr->isConstinit()
2820         << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2821   }
2822 }
2823 
2824 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2825 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2826                                AvailabilityMergeKind AMK) {
2827   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2828     UsedAttr *NewAttr = OldAttr->clone(Context);
2829     NewAttr->setInherited(true);
2830     New->addAttr(NewAttr);
2831   }
2832 
2833   if (!Old->hasAttrs() && !New->hasAttrs())
2834     return;
2835 
2836   // [dcl.constinit]p1:
2837   //   If the [constinit] specifier is applied to any declaration of a
2838   //   variable, it shall be applied to the initializing declaration.
2839   const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
2840   const auto *NewConstInit = New->getAttr<ConstInitAttr>();
2841   if (bool(OldConstInit) != bool(NewConstInit)) {
2842     const auto *OldVD = cast<VarDecl>(Old);
2843     auto *NewVD = cast<VarDecl>(New);
2844 
2845     // Find the initializing declaration. Note that we might not have linked
2846     // the new declaration into the redeclaration chain yet.
2847     const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
2848     if (!InitDecl &&
2849         (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
2850       InitDecl = NewVD;
2851 
2852     if (InitDecl == NewVD) {
2853       // This is the initializing declaration. If it would inherit 'constinit',
2854       // that's ill-formed. (Note that we do not apply this to the attribute
2855       // form).
2856       if (OldConstInit && OldConstInit->isConstinit())
2857         diagnoseMissingConstinit(*this, NewVD, OldConstInit,
2858                                  /*AttrBeforeInit=*/true);
2859     } else if (NewConstInit) {
2860       // This is the first time we've been told that this declaration should
2861       // have a constant initializer. If we already saw the initializing
2862       // declaration, this is too late.
2863       if (InitDecl && InitDecl != NewVD) {
2864         diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
2865                                  /*AttrBeforeInit=*/false);
2866         NewVD->dropAttr<ConstInitAttr>();
2867       }
2868     }
2869   }
2870 
2871   // Attributes declared post-definition are currently ignored.
2872   checkNewAttributesAfterDef(*this, New, Old);
2873 
2874   if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2875     if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2876       if (!OldA->isEquivalent(NewA)) {
2877         // This redeclaration changes __asm__ label.
2878         Diag(New->getLocation(), diag::err_different_asm_label);
2879         Diag(OldA->getLocation(), diag::note_previous_declaration);
2880       }
2881     } else if (Old->isUsed()) {
2882       // This redeclaration adds an __asm__ label to a declaration that has
2883       // already been ODR-used.
2884       Diag(New->getLocation(), diag::err_late_asm_label_name)
2885         << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2886     }
2887   }
2888 
2889   // Re-declaration cannot add abi_tag's.
2890   if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2891     if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2892       for (const auto &NewTag : NewAbiTagAttr->tags()) {
2893         if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2894                       NewTag) == OldAbiTagAttr->tags_end()) {
2895           Diag(NewAbiTagAttr->getLocation(),
2896                diag::err_new_abi_tag_on_redeclaration)
2897               << NewTag;
2898           Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2899         }
2900       }
2901     } else {
2902       Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2903       Diag(Old->getLocation(), diag::note_previous_declaration);
2904     }
2905   }
2906 
2907   // This redeclaration adds a section attribute.
2908   if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2909     if (auto *VD = dyn_cast<VarDecl>(New)) {
2910       if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2911         Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2912         Diag(Old->getLocation(), diag::note_previous_declaration);
2913       }
2914     }
2915   }
2916 
2917   // Redeclaration adds code-seg attribute.
2918   const auto *NewCSA = New->getAttr<CodeSegAttr>();
2919   if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2920       !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2921     Diag(New->getLocation(), diag::warn_mismatched_section)
2922          << 0 /*codeseg*/;
2923     Diag(Old->getLocation(), diag::note_previous_declaration);
2924   }
2925 
2926   if (!Old->hasAttrs())
2927     return;
2928 
2929   bool foundAny = New->hasAttrs();
2930 
2931   // Ensure that any moving of objects within the allocated map is done before
2932   // we process them.
2933   if (!foundAny) New->setAttrs(AttrVec());
2934 
2935   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2936     // Ignore deprecated/unavailable/availability attributes if requested.
2937     AvailabilityMergeKind LocalAMK = AMK_None;
2938     if (isa<DeprecatedAttr>(I) ||
2939         isa<UnavailableAttr>(I) ||
2940         isa<AvailabilityAttr>(I)) {
2941       switch (AMK) {
2942       case AMK_None:
2943         continue;
2944 
2945       case AMK_Redeclaration:
2946       case AMK_Override:
2947       case AMK_ProtocolImplementation:
2948         LocalAMK = AMK;
2949         break;
2950       }
2951     }
2952 
2953     // Already handled.
2954     if (isa<UsedAttr>(I))
2955       continue;
2956 
2957     if (mergeDeclAttribute(*this, New, I, LocalAMK))
2958       foundAny = true;
2959   }
2960 
2961   if (mergeAlignedAttrs(*this, New, Old))
2962     foundAny = true;
2963 
2964   if (!foundAny) New->dropAttrs();
2965 }
2966 
2967 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2968 /// to the new one.
2969 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2970                                      const ParmVarDecl *oldDecl,
2971                                      Sema &S) {
2972   // C++11 [dcl.attr.depend]p2:
2973   //   The first declaration of a function shall specify the
2974   //   carries_dependency attribute for its declarator-id if any declaration
2975   //   of the function specifies the carries_dependency attribute.
2976   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2977   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2978     S.Diag(CDA->getLocation(),
2979            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2980     // Find the first declaration of the parameter.
2981     // FIXME: Should we build redeclaration chains for function parameters?
2982     const FunctionDecl *FirstFD =
2983       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2984     const ParmVarDecl *FirstVD =
2985       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2986     S.Diag(FirstVD->getLocation(),
2987            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2988   }
2989 
2990   if (!oldDecl->hasAttrs())
2991     return;
2992 
2993   bool foundAny = newDecl->hasAttrs();
2994 
2995   // Ensure that any moving of objects within the allocated map is
2996   // done before we process them.
2997   if (!foundAny) newDecl->setAttrs(AttrVec());
2998 
2999   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
3000     if (!DeclHasAttr(newDecl, I)) {
3001       InheritableAttr *newAttr =
3002         cast<InheritableParamAttr>(I->clone(S.Context));
3003       newAttr->setInherited(true);
3004       newDecl->addAttr(newAttr);
3005       foundAny = true;
3006     }
3007   }
3008 
3009   if (!foundAny) newDecl->dropAttrs();
3010 }
3011 
3012 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
3013                                 const ParmVarDecl *OldParam,
3014                                 Sema &S) {
3015   if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
3016     if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
3017       if (*Oldnullability != *Newnullability) {
3018         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
3019           << DiagNullabilityKind(
3020                *Newnullability,
3021                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3022                 != 0))
3023           << DiagNullabilityKind(
3024                *Oldnullability,
3025                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3026                 != 0));
3027         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
3028       }
3029     } else {
3030       QualType NewT = NewParam->getType();
3031       NewT = S.Context.getAttributedType(
3032                          AttributedType::getNullabilityAttrKind(*Oldnullability),
3033                          NewT, NewT);
3034       NewParam->setType(NewT);
3035     }
3036   }
3037 }
3038 
3039 namespace {
3040 
3041 /// Used in MergeFunctionDecl to keep track of function parameters in
3042 /// C.
3043 struct GNUCompatibleParamWarning {
3044   ParmVarDecl *OldParm;
3045   ParmVarDecl *NewParm;
3046   QualType PromotedType;
3047 };
3048 
3049 } // end anonymous namespace
3050 
3051 // Determine whether the previous declaration was a definition, implicit
3052 // declaration, or a declaration.
3053 template <typename T>
3054 static std::pair<diag::kind, SourceLocation>
3055 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3056   diag::kind PrevDiag;
3057   SourceLocation OldLocation = Old->getLocation();
3058   if (Old->isThisDeclarationADefinition())
3059     PrevDiag = diag::note_previous_definition;
3060   else if (Old->isImplicit()) {
3061     PrevDiag = diag::note_previous_implicit_declaration;
3062     if (OldLocation.isInvalid())
3063       OldLocation = New->getLocation();
3064   } else
3065     PrevDiag = diag::note_previous_declaration;
3066   return std::make_pair(PrevDiag, OldLocation);
3067 }
3068 
3069 /// canRedefineFunction - checks if a function can be redefined. Currently,
3070 /// only extern inline functions can be redefined, and even then only in
3071 /// GNU89 mode.
3072 static bool canRedefineFunction(const FunctionDecl *FD,
3073                                 const LangOptions& LangOpts) {
3074   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3075           !LangOpts.CPlusPlus &&
3076           FD->isInlineSpecified() &&
3077           FD->getStorageClass() == SC_Extern);
3078 }
3079 
3080 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3081   const AttributedType *AT = T->getAs<AttributedType>();
3082   while (AT && !AT->isCallingConv())
3083     AT = AT->getModifiedType()->getAs<AttributedType>();
3084   return AT;
3085 }
3086 
3087 template <typename T>
3088 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3089   const DeclContext *DC = Old->getDeclContext();
3090   if (DC->isRecord())
3091     return false;
3092 
3093   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3094   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3095     return true;
3096   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3097     return true;
3098   return false;
3099 }
3100 
3101 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
3102 static bool isExternC(VarTemplateDecl *) { return false; }
3103 
3104 /// Check whether a redeclaration of an entity introduced by a
3105 /// using-declaration is valid, given that we know it's not an overload
3106 /// (nor a hidden tag declaration).
3107 template<typename ExpectedDecl>
3108 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3109                                    ExpectedDecl *New) {
3110   // C++11 [basic.scope.declarative]p4:
3111   //   Given a set of declarations in a single declarative region, each of
3112   //   which specifies the same unqualified name,
3113   //   -- they shall all refer to the same entity, or all refer to functions
3114   //      and function templates; or
3115   //   -- exactly one declaration shall declare a class name or enumeration
3116   //      name that is not a typedef name and the other declarations shall all
3117   //      refer to the same variable or enumerator, or all refer to functions
3118   //      and function templates; in this case the class name or enumeration
3119   //      name is hidden (3.3.10).
3120 
3121   // C++11 [namespace.udecl]p14:
3122   //   If a function declaration in namespace scope or block scope has the
3123   //   same name and the same parameter-type-list as a function introduced
3124   //   by a using-declaration, and the declarations do not declare the same
3125   //   function, the program is ill-formed.
3126 
3127   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3128   if (Old &&
3129       !Old->getDeclContext()->getRedeclContext()->Equals(
3130           New->getDeclContext()->getRedeclContext()) &&
3131       !(isExternC(Old) && isExternC(New)))
3132     Old = nullptr;
3133 
3134   if (!Old) {
3135     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3136     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3137     S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
3138     return true;
3139   }
3140   return false;
3141 }
3142 
3143 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3144                                             const FunctionDecl *B) {
3145   assert(A->getNumParams() == B->getNumParams());
3146 
3147   auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3148     const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3149     const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3150     if (AttrA == AttrB)
3151       return true;
3152     return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3153            AttrA->isDynamic() == AttrB->isDynamic();
3154   };
3155 
3156   return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3157 }
3158 
3159 /// If necessary, adjust the semantic declaration context for a qualified
3160 /// declaration to name the correct inline namespace within the qualifier.
3161 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3162                                                DeclaratorDecl *OldD) {
3163   // The only case where we need to update the DeclContext is when
3164   // redeclaration lookup for a qualified name finds a declaration
3165   // in an inline namespace within the context named by the qualifier:
3166   //
3167   //   inline namespace N { int f(); }
3168   //   int ::f(); // Sema DC needs adjusting from :: to N::.
3169   //
3170   // For unqualified declarations, the semantic context *can* change
3171   // along the redeclaration chain (for local extern declarations,
3172   // extern "C" declarations, and friend declarations in particular).
3173   if (!NewD->getQualifier())
3174     return;
3175 
3176   // NewD is probably already in the right context.
3177   auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3178   auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3179   if (NamedDC->Equals(SemaDC))
3180     return;
3181 
3182   assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
3183           NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
3184          "unexpected context for redeclaration");
3185 
3186   auto *LexDC = NewD->getLexicalDeclContext();
3187   auto FixSemaDC = [=](NamedDecl *D) {
3188     if (!D)
3189       return;
3190     D->setDeclContext(SemaDC);
3191     D->setLexicalDeclContext(LexDC);
3192   };
3193 
3194   FixSemaDC(NewD);
3195   if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3196     FixSemaDC(FD->getDescribedFunctionTemplate());
3197   else if (auto *VD = dyn_cast<VarDecl>(NewD))
3198     FixSemaDC(VD->getDescribedVarTemplate());
3199 }
3200 
3201 /// MergeFunctionDecl - We just parsed a function 'New' from
3202 /// declarator D which has the same name and scope as a previous
3203 /// declaration 'Old'.  Figure out how to resolve this situation,
3204 /// merging decls or emitting diagnostics as appropriate.
3205 ///
3206 /// In C++, New and Old must be declarations that are not
3207 /// overloaded. Use IsOverload to determine whether New and Old are
3208 /// overloaded, and to select the Old declaration that New should be
3209 /// merged with.
3210 ///
3211 /// Returns true if there was an error, false otherwise.
3212 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
3213                              Scope *S, bool MergeTypeWithOld) {
3214   // Verify the old decl was also a function.
3215   FunctionDecl *Old = OldD->getAsFunction();
3216   if (!Old) {
3217     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3218       if (New->getFriendObjectKind()) {
3219         Diag(New->getLocation(), diag::err_using_decl_friend);
3220         Diag(Shadow->getTargetDecl()->getLocation(),
3221              diag::note_using_decl_target);
3222         Diag(Shadow->getUsingDecl()->getLocation(),
3223              diag::note_using_decl) << 0;
3224         return true;
3225       }
3226 
3227       // Check whether the two declarations might declare the same function.
3228       if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3229         return true;
3230       OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3231     } else {
3232       Diag(New->getLocation(), diag::err_redefinition_different_kind)
3233         << New->getDeclName();
3234       notePreviousDefinition(OldD, New->getLocation());
3235       return true;
3236     }
3237   }
3238 
3239   // If the old declaration is invalid, just give up here.
3240   if (Old->isInvalidDecl())
3241     return true;
3242 
3243   // Disallow redeclaration of some builtins.
3244   if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3245     Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3246     Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3247         << Old << Old->getType();
3248     return true;
3249   }
3250 
3251   diag::kind PrevDiag;
3252   SourceLocation OldLocation;
3253   std::tie(PrevDiag, OldLocation) =
3254       getNoteDiagForInvalidRedeclaration(Old, New);
3255 
3256   // Don't complain about this if we're in GNU89 mode and the old function
3257   // is an extern inline function.
3258   // Don't complain about specializations. They are not supposed to have
3259   // storage classes.
3260   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3261       New->getStorageClass() == SC_Static &&
3262       Old->hasExternalFormalLinkage() &&
3263       !New->getTemplateSpecializationInfo() &&
3264       !canRedefineFunction(Old, getLangOpts())) {
3265     if (getLangOpts().MicrosoftExt) {
3266       Diag(New->getLocation(), diag::ext_static_non_static) << New;
3267       Diag(OldLocation, PrevDiag);
3268     } else {
3269       Diag(New->getLocation(), diag::err_static_non_static) << New;
3270       Diag(OldLocation, PrevDiag);
3271       return true;
3272     }
3273   }
3274 
3275   if (New->hasAttr<InternalLinkageAttr>() &&
3276       !Old->hasAttr<InternalLinkageAttr>()) {
3277     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3278         << New->getDeclName();
3279     notePreviousDefinition(Old, New->getLocation());
3280     New->dropAttr<InternalLinkageAttr>();
3281   }
3282 
3283   if (CheckRedeclarationModuleOwnership(New, Old))
3284     return true;
3285 
3286   if (!getLangOpts().CPlusPlus) {
3287     bool OldOvl = Old->hasAttr<OverloadableAttr>();
3288     if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3289       Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3290         << New << OldOvl;
3291 
3292       // Try our best to find a decl that actually has the overloadable
3293       // attribute for the note. In most cases (e.g. programs with only one
3294       // broken declaration/definition), this won't matter.
3295       //
3296       // FIXME: We could do this if we juggled some extra state in
3297       // OverloadableAttr, rather than just removing it.
3298       const Decl *DiagOld = Old;
3299       if (OldOvl) {
3300         auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3301           const auto *A = D->getAttr<OverloadableAttr>();
3302           return A && !A->isImplicit();
3303         });
3304         // If we've implicitly added *all* of the overloadable attrs to this
3305         // chain, emitting a "previous redecl" note is pointless.
3306         DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3307       }
3308 
3309       if (DiagOld)
3310         Diag(DiagOld->getLocation(),
3311              diag::note_attribute_overloadable_prev_overload)
3312           << OldOvl;
3313 
3314       if (OldOvl)
3315         New->addAttr(OverloadableAttr::CreateImplicit(Context));
3316       else
3317         New->dropAttr<OverloadableAttr>();
3318     }
3319   }
3320 
3321   // If a function is first declared with a calling convention, but is later
3322   // declared or defined without one, all following decls assume the calling
3323   // convention of the first.
3324   //
3325   // It's OK if a function is first declared without a calling convention,
3326   // but is later declared or defined with the default calling convention.
3327   //
3328   // To test if either decl has an explicit calling convention, we look for
3329   // AttributedType sugar nodes on the type as written.  If they are missing or
3330   // were canonicalized away, we assume the calling convention was implicit.
3331   //
3332   // Note also that we DO NOT return at this point, because we still have
3333   // other tests to run.
3334   QualType OldQType = Context.getCanonicalType(Old->getType());
3335   QualType NewQType = Context.getCanonicalType(New->getType());
3336   const FunctionType *OldType = cast<FunctionType>(OldQType);
3337   const FunctionType *NewType = cast<FunctionType>(NewQType);
3338   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3339   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3340   bool RequiresAdjustment = false;
3341 
3342   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3343     FunctionDecl *First = Old->getFirstDecl();
3344     const FunctionType *FT =
3345         First->getType().getCanonicalType()->castAs<FunctionType>();
3346     FunctionType::ExtInfo FI = FT->getExtInfo();
3347     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3348     if (!NewCCExplicit) {
3349       // Inherit the CC from the previous declaration if it was specified
3350       // there but not here.
3351       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3352       RequiresAdjustment = true;
3353     } else if (Old->getBuiltinID()) {
3354       // Builtin attribute isn't propagated to the new one yet at this point,
3355       // so we check if the old one is a builtin.
3356 
3357       // Calling Conventions on a Builtin aren't really useful and setting a
3358       // default calling convention and cdecl'ing some builtin redeclarations is
3359       // common, so warn and ignore the calling convention on the redeclaration.
3360       Diag(New->getLocation(), diag::warn_cconv_unsupported)
3361           << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3362           << (int)CallingConventionIgnoredReason::BuiltinFunction;
3363       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3364       RequiresAdjustment = true;
3365     } else {
3366       // Calling conventions aren't compatible, so complain.
3367       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3368       Diag(New->getLocation(), diag::err_cconv_change)
3369         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3370         << !FirstCCExplicit
3371         << (!FirstCCExplicit ? "" :
3372             FunctionType::getNameForCallConv(FI.getCC()));
3373 
3374       // Put the note on the first decl, since it is the one that matters.
3375       Diag(First->getLocation(), diag::note_previous_declaration);
3376       return true;
3377     }
3378   }
3379 
3380   // FIXME: diagnose the other way around?
3381   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3382     NewTypeInfo = NewTypeInfo.withNoReturn(true);
3383     RequiresAdjustment = true;
3384   }
3385 
3386   // Merge regparm attribute.
3387   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3388       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3389     if (NewTypeInfo.getHasRegParm()) {
3390       Diag(New->getLocation(), diag::err_regparm_mismatch)
3391         << NewType->getRegParmType()
3392         << OldType->getRegParmType();
3393       Diag(OldLocation, diag::note_previous_declaration);
3394       return true;
3395     }
3396 
3397     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3398     RequiresAdjustment = true;
3399   }
3400 
3401   // Merge ns_returns_retained attribute.
3402   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3403     if (NewTypeInfo.getProducesResult()) {
3404       Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3405           << "'ns_returns_retained'";
3406       Diag(OldLocation, diag::note_previous_declaration);
3407       return true;
3408     }
3409 
3410     NewTypeInfo = NewTypeInfo.withProducesResult(true);
3411     RequiresAdjustment = true;
3412   }
3413 
3414   if (OldTypeInfo.getNoCallerSavedRegs() !=
3415       NewTypeInfo.getNoCallerSavedRegs()) {
3416     if (NewTypeInfo.getNoCallerSavedRegs()) {
3417       AnyX86NoCallerSavedRegistersAttr *Attr =
3418         New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3419       Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3420       Diag(OldLocation, diag::note_previous_declaration);
3421       return true;
3422     }
3423 
3424     NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3425     RequiresAdjustment = true;
3426   }
3427 
3428   if (RequiresAdjustment) {
3429     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3430     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3431     New->setType(QualType(AdjustedType, 0));
3432     NewQType = Context.getCanonicalType(New->getType());
3433   }
3434 
3435   // If this redeclaration makes the function inline, we may need to add it to
3436   // UndefinedButUsed.
3437   if (!Old->isInlined() && New->isInlined() &&
3438       !New->hasAttr<GNUInlineAttr>() &&
3439       !getLangOpts().GNUInline &&
3440       Old->isUsed(false) &&
3441       !Old->isDefined() && !New->isThisDeclarationADefinition())
3442     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3443                                            SourceLocation()));
3444 
3445   // If this redeclaration makes it newly gnu_inline, we don't want to warn
3446   // about it.
3447   if (New->hasAttr<GNUInlineAttr>() &&
3448       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3449     UndefinedButUsed.erase(Old->getCanonicalDecl());
3450   }
3451 
3452   // If pass_object_size params don't match up perfectly, this isn't a valid
3453   // redeclaration.
3454   if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3455       !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3456     Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3457         << New->getDeclName();
3458     Diag(OldLocation, PrevDiag) << Old << Old->getType();
3459     return true;
3460   }
3461 
3462   if (getLangOpts().CPlusPlus) {
3463     // C++1z [over.load]p2
3464     //   Certain function declarations cannot be overloaded:
3465     //     -- Function declarations that differ only in the return type,
3466     //        the exception specification, or both cannot be overloaded.
3467 
3468     // Check the exception specifications match. This may recompute the type of
3469     // both Old and New if it resolved exception specifications, so grab the
3470     // types again after this. Because this updates the type, we do this before
3471     // any of the other checks below, which may update the "de facto" NewQType
3472     // but do not necessarily update the type of New.
3473     if (CheckEquivalentExceptionSpec(Old, New))
3474       return true;
3475     OldQType = Context.getCanonicalType(Old->getType());
3476     NewQType = Context.getCanonicalType(New->getType());
3477 
3478     // Go back to the type source info to compare the declared return types,
3479     // per C++1y [dcl.type.auto]p13:
3480     //   Redeclarations or specializations of a function or function template
3481     //   with a declared return type that uses a placeholder type shall also
3482     //   use that placeholder, not a deduced type.
3483     QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3484     QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3485     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3486         canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3487                                        OldDeclaredReturnType)) {
3488       QualType ResQT;
3489       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3490           OldDeclaredReturnType->isObjCObjectPointerType())
3491         // FIXME: This does the wrong thing for a deduced return type.
3492         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3493       if (ResQT.isNull()) {
3494         if (New->isCXXClassMember() && New->isOutOfLine())
3495           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3496               << New << New->getReturnTypeSourceRange();
3497         else
3498           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3499               << New->getReturnTypeSourceRange();
3500         Diag(OldLocation, PrevDiag) << Old << Old->getType()
3501                                     << Old->getReturnTypeSourceRange();
3502         return true;
3503       }
3504       else
3505         NewQType = ResQT;
3506     }
3507 
3508     QualType OldReturnType = OldType->getReturnType();
3509     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3510     if (OldReturnType != NewReturnType) {
3511       // If this function has a deduced return type and has already been
3512       // defined, copy the deduced value from the old declaration.
3513       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3514       if (OldAT && OldAT->isDeduced()) {
3515         New->setType(
3516             SubstAutoType(New->getType(),
3517                           OldAT->isDependentType() ? Context.DependentTy
3518                                                    : OldAT->getDeducedType()));
3519         NewQType = Context.getCanonicalType(
3520             SubstAutoType(NewQType,
3521                           OldAT->isDependentType() ? Context.DependentTy
3522                                                    : OldAT->getDeducedType()));
3523       }
3524     }
3525 
3526     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3527     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3528     if (OldMethod && NewMethod) {
3529       // Preserve triviality.
3530       NewMethod->setTrivial(OldMethod->isTrivial());
3531 
3532       // MSVC allows explicit template specialization at class scope:
3533       // 2 CXXMethodDecls referring to the same function will be injected.
3534       // We don't want a redeclaration error.
3535       bool IsClassScopeExplicitSpecialization =
3536                               OldMethod->isFunctionTemplateSpecialization() &&
3537                               NewMethod->isFunctionTemplateSpecialization();
3538       bool isFriend = NewMethod->getFriendObjectKind();
3539 
3540       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3541           !IsClassScopeExplicitSpecialization) {
3542         //    -- Member function declarations with the same name and the
3543         //       same parameter types cannot be overloaded if any of them
3544         //       is a static member function declaration.
3545         if (OldMethod->isStatic() != NewMethod->isStatic()) {
3546           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3547           Diag(OldLocation, PrevDiag) << Old << Old->getType();
3548           return true;
3549         }
3550 
3551         // C++ [class.mem]p1:
3552         //   [...] A member shall not be declared twice in the
3553         //   member-specification, except that a nested class or member
3554         //   class template can be declared and then later defined.
3555         if (!inTemplateInstantiation()) {
3556           unsigned NewDiag;
3557           if (isa<CXXConstructorDecl>(OldMethod))
3558             NewDiag = diag::err_constructor_redeclared;
3559           else if (isa<CXXDestructorDecl>(NewMethod))
3560             NewDiag = diag::err_destructor_redeclared;
3561           else if (isa<CXXConversionDecl>(NewMethod))
3562             NewDiag = diag::err_conv_function_redeclared;
3563           else
3564             NewDiag = diag::err_member_redeclared;
3565 
3566           Diag(New->getLocation(), NewDiag);
3567         } else {
3568           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3569             << New << New->getType();
3570         }
3571         Diag(OldLocation, PrevDiag) << Old << Old->getType();
3572         return true;
3573 
3574       // Complain if this is an explicit declaration of a special
3575       // member that was initially declared implicitly.
3576       //
3577       // As an exception, it's okay to befriend such methods in order
3578       // to permit the implicit constructor/destructor/operator calls.
3579       } else if (OldMethod->isImplicit()) {
3580         if (isFriend) {
3581           NewMethod->setImplicit();
3582         } else {
3583           Diag(NewMethod->getLocation(),
3584                diag::err_definition_of_implicitly_declared_member)
3585             << New << getSpecialMember(OldMethod);
3586           return true;
3587         }
3588       } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3589         Diag(NewMethod->getLocation(),
3590              diag::err_definition_of_explicitly_defaulted_member)
3591           << getSpecialMember(OldMethod);
3592         return true;
3593       }
3594     }
3595 
3596     // C++11 [dcl.attr.noreturn]p1:
3597     //   The first declaration of a function shall specify the noreturn
3598     //   attribute if any declaration of that function specifies the noreturn
3599     //   attribute.
3600     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3601     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3602       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3603       Diag(Old->getFirstDecl()->getLocation(),
3604            diag::note_noreturn_missing_first_decl);
3605     }
3606 
3607     // C++11 [dcl.attr.depend]p2:
3608     //   The first declaration of a function shall specify the
3609     //   carries_dependency attribute for its declarator-id if any declaration
3610     //   of the function specifies the carries_dependency attribute.
3611     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3612     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3613       Diag(CDA->getLocation(),
3614            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3615       Diag(Old->getFirstDecl()->getLocation(),
3616            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3617     }
3618 
3619     // (C++98 8.3.5p3):
3620     //   All declarations for a function shall agree exactly in both the
3621     //   return type and the parameter-type-list.
3622     // We also want to respect all the extended bits except noreturn.
3623 
3624     // noreturn should now match unless the old type info didn't have it.
3625     QualType OldQTypeForComparison = OldQType;
3626     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3627       auto *OldType = OldQType->castAs<FunctionProtoType>();
3628       const FunctionType *OldTypeForComparison
3629         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3630       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3631       assert(OldQTypeForComparison.isCanonical());
3632     }
3633 
3634     if (haveIncompatibleLanguageLinkages(Old, New)) {
3635       // As a special case, retain the language linkage from previous
3636       // declarations of a friend function as an extension.
3637       //
3638       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3639       // and is useful because there's otherwise no way to specify language
3640       // linkage within class scope.
3641       //
3642       // Check cautiously as the friend object kind isn't yet complete.
3643       if (New->getFriendObjectKind() != Decl::FOK_None) {
3644         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3645         Diag(OldLocation, PrevDiag);
3646       } else {
3647         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3648         Diag(OldLocation, PrevDiag);
3649         return true;
3650       }
3651     }
3652 
3653     // If the function types are compatible, merge the declarations. Ignore the
3654     // exception specifier because it was already checked above in
3655     // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
3656     // about incompatible types under -fms-compatibility.
3657     if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
3658                                                          NewQType))
3659       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3660 
3661     // If the types are imprecise (due to dependent constructs in friends or
3662     // local extern declarations), it's OK if they differ. We'll check again
3663     // during instantiation.
3664     if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3665       return false;
3666 
3667     // Fall through for conflicting redeclarations and redefinitions.
3668   }
3669 
3670   // C: Function types need to be compatible, not identical. This handles
3671   // duplicate function decls like "void f(int); void f(enum X);" properly.
3672   if (!getLangOpts().CPlusPlus &&
3673       Context.typesAreCompatible(OldQType, NewQType)) {
3674     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3675     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3676     const FunctionProtoType *OldProto = nullptr;
3677     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3678         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3679       // The old declaration provided a function prototype, but the
3680       // new declaration does not. Merge in the prototype.
3681       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
3682       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3683       NewQType =
3684           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3685                                   OldProto->getExtProtoInfo());
3686       New->setType(NewQType);
3687       New->setHasInheritedPrototype();
3688 
3689       // Synthesize parameters with the same types.
3690       SmallVector<ParmVarDecl*, 16> Params;
3691       for (const auto &ParamType : OldProto->param_types()) {
3692         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3693                                                  SourceLocation(), nullptr,
3694                                                  ParamType, /*TInfo=*/nullptr,
3695                                                  SC_None, nullptr);
3696         Param->setScopeInfo(0, Params.size());
3697         Param->setImplicit();
3698         Params.push_back(Param);
3699       }
3700 
3701       New->setParams(Params);
3702     }
3703 
3704     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3705   }
3706 
3707   // Check if the function types are compatible when pointer size address
3708   // spaces are ignored.
3709   if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
3710     return false;
3711 
3712   // GNU C permits a K&R definition to follow a prototype declaration
3713   // if the declared types of the parameters in the K&R definition
3714   // match the types in the prototype declaration, even when the
3715   // promoted types of the parameters from the K&R definition differ
3716   // from the types in the prototype. GCC then keeps the types from
3717   // the prototype.
3718   //
3719   // If a variadic prototype is followed by a non-variadic K&R definition,
3720   // the K&R definition becomes variadic.  This is sort of an edge case, but
3721   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3722   // C99 6.9.1p8.
3723   if (!getLangOpts().CPlusPlus &&
3724       Old->hasPrototype() && !New->hasPrototype() &&
3725       New->getType()->getAs<FunctionProtoType>() &&
3726       Old->getNumParams() == New->getNumParams()) {
3727     SmallVector<QualType, 16> ArgTypes;
3728     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3729     const FunctionProtoType *OldProto
3730       = Old->getType()->getAs<FunctionProtoType>();
3731     const FunctionProtoType *NewProto
3732       = New->getType()->getAs<FunctionProtoType>();
3733 
3734     // Determine whether this is the GNU C extension.
3735     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3736                                                NewProto->getReturnType());
3737     bool LooseCompatible = !MergedReturn.isNull();
3738     for (unsigned Idx = 0, End = Old->getNumParams();
3739          LooseCompatible && Idx != End; ++Idx) {
3740       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3741       ParmVarDecl *NewParm = New->getParamDecl(Idx);
3742       if (Context.typesAreCompatible(OldParm->getType(),
3743                                      NewProto->getParamType(Idx))) {
3744         ArgTypes.push_back(NewParm->getType());
3745       } else if (Context.typesAreCompatible(OldParm->getType(),
3746                                             NewParm->getType(),
3747                                             /*CompareUnqualified=*/true)) {
3748         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3749                                            NewProto->getParamType(Idx) };
3750         Warnings.push_back(Warn);
3751         ArgTypes.push_back(NewParm->getType());
3752       } else
3753         LooseCompatible = false;
3754     }
3755 
3756     if (LooseCompatible) {
3757       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3758         Diag(Warnings[Warn].NewParm->getLocation(),
3759              diag::ext_param_promoted_not_compatible_with_prototype)
3760           << Warnings[Warn].PromotedType
3761           << Warnings[Warn].OldParm->getType();
3762         if (Warnings[Warn].OldParm->getLocation().isValid())
3763           Diag(Warnings[Warn].OldParm->getLocation(),
3764                diag::note_previous_declaration);
3765       }
3766 
3767       if (MergeTypeWithOld)
3768         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3769                                              OldProto->getExtProtoInfo()));
3770       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3771     }
3772 
3773     // Fall through to diagnose conflicting types.
3774   }
3775 
3776   // A function that has already been declared has been redeclared or
3777   // defined with a different type; show an appropriate diagnostic.
3778 
3779   // If the previous declaration was an implicitly-generated builtin
3780   // declaration, then at the very least we should use a specialized note.
3781   unsigned BuiltinID;
3782   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3783     // If it's actually a library-defined builtin function like 'malloc'
3784     // or 'printf', just warn about the incompatible redeclaration.
3785     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3786       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3787       Diag(OldLocation, diag::note_previous_builtin_declaration)
3788         << Old << Old->getType();
3789       return false;
3790     }
3791 
3792     PrevDiag = diag::note_previous_builtin_declaration;
3793   }
3794 
3795   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3796   Diag(OldLocation, PrevDiag) << Old << Old->getType();
3797   return true;
3798 }
3799 
3800 /// Completes the merge of two function declarations that are
3801 /// known to be compatible.
3802 ///
3803 /// This routine handles the merging of attributes and other
3804 /// properties of function declarations from the old declaration to
3805 /// the new declaration, once we know that New is in fact a
3806 /// redeclaration of Old.
3807 ///
3808 /// \returns false
3809 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3810                                         Scope *S, bool MergeTypeWithOld) {
3811   // Merge the attributes
3812   mergeDeclAttributes(New, Old);
3813 
3814   // Merge "pure" flag.
3815   if (Old->isPure())
3816     New->setPure();
3817 
3818   // Merge "used" flag.
3819   if (Old->getMostRecentDecl()->isUsed(false))
3820     New->setIsUsed();
3821 
3822   // Merge attributes from the parameters.  These can mismatch with K&R
3823   // declarations.
3824   if (New->getNumParams() == Old->getNumParams())
3825       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3826         ParmVarDecl *NewParam = New->getParamDecl(i);
3827         ParmVarDecl *OldParam = Old->getParamDecl(i);
3828         mergeParamDeclAttributes(NewParam, OldParam, *this);
3829         mergeParamDeclTypes(NewParam, OldParam, *this);
3830       }
3831 
3832   if (getLangOpts().CPlusPlus)
3833     return MergeCXXFunctionDecl(New, Old, S);
3834 
3835   // Merge the function types so the we get the composite types for the return
3836   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3837   // was visible.
3838   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3839   if (!Merged.isNull() && MergeTypeWithOld)
3840     New->setType(Merged);
3841 
3842   return false;
3843 }
3844 
3845 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3846                                 ObjCMethodDecl *oldMethod) {
3847   // Merge the attributes, including deprecated/unavailable
3848   AvailabilityMergeKind MergeKind =
3849     isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3850       ? AMK_ProtocolImplementation
3851       : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3852                                                        : AMK_Override;
3853 
3854   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3855 
3856   // Merge attributes from the parameters.
3857   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3858                                        oe = oldMethod->param_end();
3859   for (ObjCMethodDecl::param_iterator
3860          ni = newMethod->param_begin(), ne = newMethod->param_end();
3861        ni != ne && oi != oe; ++ni, ++oi)
3862     mergeParamDeclAttributes(*ni, *oi, *this);
3863 
3864   CheckObjCMethodOverride(newMethod, oldMethod);
3865 }
3866 
3867 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3868   assert(!S.Context.hasSameType(New->getType(), Old->getType()));
3869 
3870   S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3871          ? diag::err_redefinition_different_type
3872          : diag::err_redeclaration_different_type)
3873     << New->getDeclName() << New->getType() << Old->getType();
3874 
3875   diag::kind PrevDiag;
3876   SourceLocation OldLocation;
3877   std::tie(PrevDiag, OldLocation)
3878     = getNoteDiagForInvalidRedeclaration(Old, New);
3879   S.Diag(OldLocation, PrevDiag);
3880   New->setInvalidDecl();
3881 }
3882 
3883 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3884 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3885 /// emitting diagnostics as appropriate.
3886 ///
3887 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3888 /// to here in AddInitializerToDecl. We can't check them before the initializer
3889 /// is attached.
3890 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3891                              bool MergeTypeWithOld) {
3892   if (New->isInvalidDecl() || Old->isInvalidDecl())
3893     return;
3894 
3895   QualType MergedT;
3896   if (getLangOpts().CPlusPlus) {
3897     if (New->getType()->isUndeducedType()) {
3898       // We don't know what the new type is until the initializer is attached.
3899       return;
3900     } else if (Context.hasSameType(New->getType(), Old->getType())) {
3901       // These could still be something that needs exception specs checked.
3902       return MergeVarDeclExceptionSpecs(New, Old);
3903     }
3904     // C++ [basic.link]p10:
3905     //   [...] the types specified by all declarations referring to a given
3906     //   object or function shall be identical, except that declarations for an
3907     //   array object can specify array types that differ by the presence or
3908     //   absence of a major array bound (8.3.4).
3909     else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3910       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3911       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3912 
3913       // We are merging a variable declaration New into Old. If it has an array
3914       // bound, and that bound differs from Old's bound, we should diagnose the
3915       // mismatch.
3916       if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3917         for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3918              PrevVD = PrevVD->getPreviousDecl()) {
3919           QualType PrevVDTy = PrevVD->getType();
3920           if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3921             continue;
3922 
3923           if (!Context.hasSameType(New->getType(), PrevVDTy))
3924             return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3925         }
3926       }
3927 
3928       if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3929         if (Context.hasSameType(OldArray->getElementType(),
3930                                 NewArray->getElementType()))
3931           MergedT = New->getType();
3932       }
3933       // FIXME: Check visibility. New is hidden but has a complete type. If New
3934       // has no array bound, it should not inherit one from Old, if Old is not
3935       // visible.
3936       else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3937         if (Context.hasSameType(OldArray->getElementType(),
3938                                 NewArray->getElementType()))
3939           MergedT = Old->getType();
3940       }
3941     }
3942     else if (New->getType()->isObjCObjectPointerType() &&
3943                Old->getType()->isObjCObjectPointerType()) {
3944       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3945                                               Old->getType());
3946     }
3947   } else {
3948     // C 6.2.7p2:
3949     //   All declarations that refer to the same object or function shall have
3950     //   compatible type.
3951     MergedT = Context.mergeTypes(New->getType(), Old->getType());
3952   }
3953   if (MergedT.isNull()) {
3954     // It's OK if we couldn't merge types if either type is dependent, for a
3955     // block-scope variable. In other cases (static data members of class
3956     // templates, variable templates, ...), we require the types to be
3957     // equivalent.
3958     // FIXME: The C++ standard doesn't say anything about this.
3959     if ((New->getType()->isDependentType() ||
3960          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3961       // If the old type was dependent, we can't merge with it, so the new type
3962       // becomes dependent for now. We'll reproduce the original type when we
3963       // instantiate the TypeSourceInfo for the variable.
3964       if (!New->getType()->isDependentType() && MergeTypeWithOld)
3965         New->setType(Context.DependentTy);
3966       return;
3967     }
3968     return diagnoseVarDeclTypeMismatch(*this, New, Old);
3969   }
3970 
3971   // Don't actually update the type on the new declaration if the old
3972   // declaration was an extern declaration in a different scope.
3973   if (MergeTypeWithOld)
3974     New->setType(MergedT);
3975 }
3976 
3977 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3978                                   LookupResult &Previous) {
3979   // C11 6.2.7p4:
3980   //   For an identifier with internal or external linkage declared
3981   //   in a scope in which a prior declaration of that identifier is
3982   //   visible, if the prior declaration specifies internal or
3983   //   external linkage, the type of the identifier at the later
3984   //   declaration becomes the composite type.
3985   //
3986   // If the variable isn't visible, we do not merge with its type.
3987   if (Previous.isShadowed())
3988     return false;
3989 
3990   if (S.getLangOpts().CPlusPlus) {
3991     // C++11 [dcl.array]p3:
3992     //   If there is a preceding declaration of the entity in the same
3993     //   scope in which the bound was specified, an omitted array bound
3994     //   is taken to be the same as in that earlier declaration.
3995     return NewVD->isPreviousDeclInSameBlockScope() ||
3996            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3997             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3998   } else {
3999     // If the old declaration was function-local, don't merge with its
4000     // type unless we're in the same function.
4001     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
4002            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
4003   }
4004 }
4005 
4006 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
4007 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
4008 /// situation, merging decls or emitting diagnostics as appropriate.
4009 ///
4010 /// Tentative definition rules (C99 6.9.2p2) are checked by
4011 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4012 /// definitions here, since the initializer hasn't been attached.
4013 ///
4014 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
4015   // If the new decl is already invalid, don't do any other checking.
4016   if (New->isInvalidDecl())
4017     return;
4018 
4019   if (!shouldLinkPossiblyHiddenDecl(Previous, New))
4020     return;
4021 
4022   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
4023 
4024   // Verify the old decl was also a variable or variable template.
4025   VarDecl *Old = nullptr;
4026   VarTemplateDecl *OldTemplate = nullptr;
4027   if (Previous.isSingleResult()) {
4028     if (NewTemplate) {
4029       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4030       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4031 
4032       if (auto *Shadow =
4033               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4034         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4035           return New->setInvalidDecl();
4036     } else {
4037       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4038 
4039       if (auto *Shadow =
4040               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4041         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4042           return New->setInvalidDecl();
4043     }
4044   }
4045   if (!Old) {
4046     Diag(New->getLocation(), diag::err_redefinition_different_kind)
4047         << New->getDeclName();
4048     notePreviousDefinition(Previous.getRepresentativeDecl(),
4049                            New->getLocation());
4050     return New->setInvalidDecl();
4051   }
4052 
4053   // Ensure the template parameters are compatible.
4054   if (NewTemplate &&
4055       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4056                                       OldTemplate->getTemplateParameters(),
4057                                       /*Complain=*/true, TPL_TemplateMatch))
4058     return New->setInvalidDecl();
4059 
4060   // C++ [class.mem]p1:
4061   //   A member shall not be declared twice in the member-specification [...]
4062   //
4063   // Here, we need only consider static data members.
4064   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4065     Diag(New->getLocation(), diag::err_duplicate_member)
4066       << New->getIdentifier();
4067     Diag(Old->getLocation(), diag::note_previous_declaration);
4068     New->setInvalidDecl();
4069   }
4070 
4071   mergeDeclAttributes(New, Old);
4072   // Warn if an already-declared variable is made a weak_import in a subsequent
4073   // declaration
4074   if (New->hasAttr<WeakImportAttr>() &&
4075       Old->getStorageClass() == SC_None &&
4076       !Old->hasAttr<WeakImportAttr>()) {
4077     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4078     notePreviousDefinition(Old, New->getLocation());
4079     // Remove weak_import attribute on new declaration.
4080     New->dropAttr<WeakImportAttr>();
4081   }
4082 
4083   if (New->hasAttr<InternalLinkageAttr>() &&
4084       !Old->hasAttr<InternalLinkageAttr>()) {
4085     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
4086         << New->getDeclName();
4087     notePreviousDefinition(Old, New->getLocation());
4088     New->dropAttr<InternalLinkageAttr>();
4089   }
4090 
4091   // Merge the types.
4092   VarDecl *MostRecent = Old->getMostRecentDecl();
4093   if (MostRecent != Old) {
4094     MergeVarDeclTypes(New, MostRecent,
4095                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4096     if (New->isInvalidDecl())
4097       return;
4098   }
4099 
4100   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4101   if (New->isInvalidDecl())
4102     return;
4103 
4104   diag::kind PrevDiag;
4105   SourceLocation OldLocation;
4106   std::tie(PrevDiag, OldLocation) =
4107       getNoteDiagForInvalidRedeclaration(Old, New);
4108 
4109   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4110   if (New->getStorageClass() == SC_Static &&
4111       !New->isStaticDataMember() &&
4112       Old->hasExternalFormalLinkage()) {
4113     if (getLangOpts().MicrosoftExt) {
4114       Diag(New->getLocation(), diag::ext_static_non_static)
4115           << New->getDeclName();
4116       Diag(OldLocation, PrevDiag);
4117     } else {
4118       Diag(New->getLocation(), diag::err_static_non_static)
4119           << New->getDeclName();
4120       Diag(OldLocation, PrevDiag);
4121       return New->setInvalidDecl();
4122     }
4123   }
4124   // C99 6.2.2p4:
4125   //   For an identifier declared with the storage-class specifier
4126   //   extern in a scope in which a prior declaration of that
4127   //   identifier is visible,23) if the prior declaration specifies
4128   //   internal or external linkage, the linkage of the identifier at
4129   //   the later declaration is the same as the linkage specified at
4130   //   the prior declaration. If no prior declaration is visible, or
4131   //   if the prior declaration specifies no linkage, then the
4132   //   identifier has external linkage.
4133   if (New->hasExternalStorage() && Old->hasLinkage())
4134     /* Okay */;
4135   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4136            !New->isStaticDataMember() &&
4137            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4138     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4139     Diag(OldLocation, PrevDiag);
4140     return New->setInvalidDecl();
4141   }
4142 
4143   // Check if extern is followed by non-extern and vice-versa.
4144   if (New->hasExternalStorage() &&
4145       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4146     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4147     Diag(OldLocation, PrevDiag);
4148     return New->setInvalidDecl();
4149   }
4150   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4151       !New->hasExternalStorage()) {
4152     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4153     Diag(OldLocation, PrevDiag);
4154     return New->setInvalidDecl();
4155   }
4156 
4157   if (CheckRedeclarationModuleOwnership(New, Old))
4158     return;
4159 
4160   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4161 
4162   // FIXME: The test for external storage here seems wrong? We still
4163   // need to check for mismatches.
4164   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4165       // Don't complain about out-of-line definitions of static members.
4166       !(Old->getLexicalDeclContext()->isRecord() &&
4167         !New->getLexicalDeclContext()->isRecord())) {
4168     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4169     Diag(OldLocation, PrevDiag);
4170     return New->setInvalidDecl();
4171   }
4172 
4173   if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4174     if (VarDecl *Def = Old->getDefinition()) {
4175       // C++1z [dcl.fcn.spec]p4:
4176       //   If the definition of a variable appears in a translation unit before
4177       //   its first declaration as inline, the program is ill-formed.
4178       Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4179       Diag(Def->getLocation(), diag::note_previous_definition);
4180     }
4181   }
4182 
4183   // If this redeclaration makes the variable inline, we may need to add it to
4184   // UndefinedButUsed.
4185   if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4186       !Old->getDefinition() && !New->isThisDeclarationADefinition())
4187     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4188                                            SourceLocation()));
4189 
4190   if (New->getTLSKind() != Old->getTLSKind()) {
4191     if (!Old->getTLSKind()) {
4192       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4193       Diag(OldLocation, PrevDiag);
4194     } else if (!New->getTLSKind()) {
4195       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4196       Diag(OldLocation, PrevDiag);
4197     } else {
4198       // Do not allow redeclaration to change the variable between requiring
4199       // static and dynamic initialization.
4200       // FIXME: GCC allows this, but uses the TLS keyword on the first
4201       // declaration to determine the kind. Do we need to be compatible here?
4202       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4203         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4204       Diag(OldLocation, PrevDiag);
4205     }
4206   }
4207 
4208   // C++ doesn't have tentative definitions, so go right ahead and check here.
4209   if (getLangOpts().CPlusPlus &&
4210       New->isThisDeclarationADefinition() == VarDecl::Definition) {
4211     if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4212         Old->getCanonicalDecl()->isConstexpr()) {
4213       // This definition won't be a definition any more once it's been merged.
4214       Diag(New->getLocation(),
4215            diag::warn_deprecated_redundant_constexpr_static_def);
4216     } else if (VarDecl *Def = Old->getDefinition()) {
4217       if (checkVarDeclRedefinition(Def, New))
4218         return;
4219     }
4220   }
4221 
4222   if (haveIncompatibleLanguageLinkages(Old, New)) {
4223     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4224     Diag(OldLocation, PrevDiag);
4225     New->setInvalidDecl();
4226     return;
4227   }
4228 
4229   // Merge "used" flag.
4230   if (Old->getMostRecentDecl()->isUsed(false))
4231     New->setIsUsed();
4232 
4233   // Keep a chain of previous declarations.
4234   New->setPreviousDecl(Old);
4235   if (NewTemplate)
4236     NewTemplate->setPreviousDecl(OldTemplate);
4237   adjustDeclContextForDeclaratorDecl(New, Old);
4238 
4239   // Inherit access appropriately.
4240   New->setAccess(Old->getAccess());
4241   if (NewTemplate)
4242     NewTemplate->setAccess(New->getAccess());
4243 
4244   if (Old->isInline())
4245     New->setImplicitlyInline();
4246 }
4247 
4248 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4249   SourceManager &SrcMgr = getSourceManager();
4250   auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4251   auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4252   auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4253   auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4254   auto &HSI = PP.getHeaderSearchInfo();
4255   StringRef HdrFilename =
4256       SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4257 
4258   auto noteFromModuleOrInclude = [&](Module *Mod,
4259                                      SourceLocation IncLoc) -> bool {
4260     // Redefinition errors with modules are common with non modular mapped
4261     // headers, example: a non-modular header H in module A that also gets
4262     // included directly in a TU. Pointing twice to the same header/definition
4263     // is confusing, try to get better diagnostics when modules is on.
4264     if (IncLoc.isValid()) {
4265       if (Mod) {
4266         Diag(IncLoc, diag::note_redefinition_modules_same_file)
4267             << HdrFilename.str() << Mod->getFullModuleName();
4268         if (!Mod->DefinitionLoc.isInvalid())
4269           Diag(Mod->DefinitionLoc, diag::note_defined_here)
4270               << Mod->getFullModuleName();
4271       } else {
4272         Diag(IncLoc, diag::note_redefinition_include_same_file)
4273             << HdrFilename.str();
4274       }
4275       return true;
4276     }
4277 
4278     return false;
4279   };
4280 
4281   // Is it the same file and same offset? Provide more information on why
4282   // this leads to a redefinition error.
4283   if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4284     SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4285     SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4286     bool EmittedDiag =
4287         noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4288     EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4289 
4290     // If the header has no guards, emit a note suggesting one.
4291     if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4292       Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4293 
4294     if (EmittedDiag)
4295       return;
4296   }
4297 
4298   // Redefinition coming from different files or couldn't do better above.
4299   if (Old->getLocation().isValid())
4300     Diag(Old->getLocation(), diag::note_previous_definition);
4301 }
4302 
4303 /// We've just determined that \p Old and \p New both appear to be definitions
4304 /// of the same variable. Either diagnose or fix the problem.
4305 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4306   if (!hasVisibleDefinition(Old) &&
4307       (New->getFormalLinkage() == InternalLinkage ||
4308        New->isInline() ||
4309        New->getDescribedVarTemplate() ||
4310        New->getNumTemplateParameterLists() ||
4311        New->getDeclContext()->isDependentContext())) {
4312     // The previous definition is hidden, and multiple definitions are
4313     // permitted (in separate TUs). Demote this to a declaration.
4314     New->demoteThisDefinitionToDeclaration();
4315 
4316     // Make the canonical definition visible.
4317     if (auto *OldTD = Old->getDescribedVarTemplate())
4318       makeMergedDefinitionVisible(OldTD);
4319     makeMergedDefinitionVisible(Old);
4320     return false;
4321   } else {
4322     Diag(New->getLocation(), diag::err_redefinition) << New;
4323     notePreviousDefinition(Old, New->getLocation());
4324     New->setInvalidDecl();
4325     return true;
4326   }
4327 }
4328 
4329 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4330 /// no declarator (e.g. "struct foo;") is parsed.
4331 Decl *
4332 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4333                                  RecordDecl *&AnonRecord) {
4334   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4335                                     AnonRecord);
4336 }
4337 
4338 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4339 // disambiguate entities defined in different scopes.
4340 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4341 // compatibility.
4342 // We will pick our mangling number depending on which version of MSVC is being
4343 // targeted.
4344 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4345   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4346              ? S->getMSCurManglingNumber()
4347              : S->getMSLastManglingNumber();
4348 }
4349 
4350 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4351   if (!Context.getLangOpts().CPlusPlus)
4352     return;
4353 
4354   if (isa<CXXRecordDecl>(Tag->getParent())) {
4355     // If this tag is the direct child of a class, number it if
4356     // it is anonymous.
4357     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4358       return;
4359     MangleNumberingContext &MCtx =
4360         Context.getManglingNumberContext(Tag->getParent());
4361     Context.setManglingNumber(
4362         Tag, MCtx.getManglingNumber(
4363                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4364     return;
4365   }
4366 
4367   // If this tag isn't a direct child of a class, number it if it is local.
4368   MangleNumberingContext *MCtx;
4369   Decl *ManglingContextDecl;
4370   std::tie(MCtx, ManglingContextDecl) =
4371       getCurrentMangleNumberContext(Tag->getDeclContext());
4372   if (MCtx) {
4373     Context.setManglingNumber(
4374         Tag, MCtx->getManglingNumber(
4375                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4376   }
4377 }
4378 
4379 namespace {
4380 struct NonCLikeKind {
4381   enum {
4382     None,
4383     BaseClass,
4384     DefaultMemberInit,
4385     Lambda,
4386     Friend,
4387     OtherMember,
4388     Invalid,
4389   } Kind = None;
4390   SourceRange Range;
4391 
4392   explicit operator bool() { return Kind != None; }
4393 };
4394 }
4395 
4396 /// Determine whether a class is C-like, according to the rules of C++
4397 /// [dcl.typedef] for anonymous classes with typedef names for linkage.
4398 static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) {
4399   if (RD->isInvalidDecl())
4400     return {NonCLikeKind::Invalid, {}};
4401 
4402   // C++ [dcl.typedef]p9: [P1766R1]
4403   //   An unnamed class with a typedef name for linkage purposes shall not
4404   //
4405   //    -- have any base classes
4406   if (RD->getNumBases())
4407     return {NonCLikeKind::BaseClass,
4408             SourceRange(RD->bases_begin()->getBeginLoc(),
4409                         RD->bases_end()[-1].getEndLoc())};
4410   bool Invalid = false;
4411   for (Decl *D : RD->decls()) {
4412     // Don't complain about things we already diagnosed.
4413     if (D->isInvalidDecl()) {
4414       Invalid = true;
4415       continue;
4416     }
4417 
4418     //  -- have any [...] default member initializers
4419     if (auto *FD = dyn_cast<FieldDecl>(D)) {
4420       if (FD->hasInClassInitializer()) {
4421         auto *Init = FD->getInClassInitializer();
4422         return {NonCLikeKind::DefaultMemberInit,
4423                 Init ? Init->getSourceRange() : D->getSourceRange()};
4424       }
4425       continue;
4426     }
4427 
4428     // FIXME: We don't allow friend declarations. This violates the wording of
4429     // P1766, but not the intent.
4430     if (isa<FriendDecl>(D))
4431       return {NonCLikeKind::Friend, D->getSourceRange()};
4432 
4433     //  -- declare any members other than non-static data members, member
4434     //     enumerations, or member classes,
4435     if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) ||
4436         isa<EnumDecl>(D))
4437       continue;
4438     auto *MemberRD = dyn_cast<CXXRecordDecl>(D);
4439     if (!MemberRD) {
4440       if (D->isImplicit())
4441         continue;
4442       return {NonCLikeKind::OtherMember, D->getSourceRange()};
4443     }
4444 
4445     //  -- contain a lambda-expression,
4446     if (MemberRD->isLambda())
4447       return {NonCLikeKind::Lambda, MemberRD->getSourceRange()};
4448 
4449     //  and all member classes shall also satisfy these requirements
4450     //  (recursively).
4451     if (MemberRD->isThisDeclarationADefinition()) {
4452       if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD))
4453         return Kind;
4454     }
4455   }
4456 
4457   return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}};
4458 }
4459 
4460 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4461                                         TypedefNameDecl *NewTD) {
4462   if (TagFromDeclSpec->isInvalidDecl())
4463     return;
4464 
4465   // Do nothing if the tag already has a name for linkage purposes.
4466   if (TagFromDeclSpec->hasNameForLinkage())
4467     return;
4468 
4469   // A well-formed anonymous tag must always be a TUK_Definition.
4470   assert(TagFromDeclSpec->isThisDeclarationADefinition());
4471 
4472   // The type must match the tag exactly;  no qualifiers allowed.
4473   if (!Context.hasSameType(NewTD->getUnderlyingType(),
4474                            Context.getTagDeclType(TagFromDeclSpec))) {
4475     if (getLangOpts().CPlusPlus)
4476       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4477     return;
4478   }
4479 
4480   // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
4481   //   An unnamed class with a typedef name for linkage purposes shall [be
4482   //   C-like].
4483   //
4484   // FIXME: Also diagnose if we've already computed the linkage. That ideally
4485   // shouldn't happen, but there are constructs that the language rule doesn't
4486   // disallow for which we can't reasonably avoid computing linkage early.
4487   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec);
4488   NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD)
4489                              : NonCLikeKind();
4490   bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed();
4491   if (NonCLike || ChangesLinkage) {
4492     if (NonCLike.Kind == NonCLikeKind::Invalid)
4493       return;
4494 
4495     unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef;
4496     if (ChangesLinkage) {
4497       // If the linkage changes, we can't accept this as an extension.
4498       if (NonCLike.Kind == NonCLikeKind::None)
4499         DiagID = diag::err_typedef_changes_linkage;
4500       else
4501         DiagID = diag::err_non_c_like_anon_struct_in_typedef;
4502     }
4503 
4504     SourceLocation FixitLoc =
4505         getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart());
4506     llvm::SmallString<40> TextToInsert;
4507     TextToInsert += ' ';
4508     TextToInsert += NewTD->getIdentifier()->getName();
4509 
4510     Diag(FixitLoc, DiagID)
4511       << isa<TypeAliasDecl>(NewTD)
4512       << FixItHint::CreateInsertion(FixitLoc, TextToInsert);
4513     if (NonCLike.Kind != NonCLikeKind::None) {
4514       Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct)
4515         << NonCLike.Kind - 1 << NonCLike.Range;
4516     }
4517     Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here)
4518       << NewTD << isa<TypeAliasDecl>(NewTD);
4519 
4520     if (ChangesLinkage)
4521       return;
4522   }
4523 
4524   // Otherwise, set this as the anon-decl typedef for the tag.
4525   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4526 }
4527 
4528 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4529   switch (T) {
4530   case DeclSpec::TST_class:
4531     return 0;
4532   case DeclSpec::TST_struct:
4533     return 1;
4534   case DeclSpec::TST_interface:
4535     return 2;
4536   case DeclSpec::TST_union:
4537     return 3;
4538   case DeclSpec::TST_enum:
4539     return 4;
4540   default:
4541     llvm_unreachable("unexpected type specifier");
4542   }
4543 }
4544 
4545 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4546 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4547 /// parameters to cope with template friend declarations.
4548 Decl *
4549 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4550                                  MultiTemplateParamsArg TemplateParams,
4551                                  bool IsExplicitInstantiation,
4552                                  RecordDecl *&AnonRecord) {
4553   Decl *TagD = nullptr;
4554   TagDecl *Tag = nullptr;
4555   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4556       DS.getTypeSpecType() == DeclSpec::TST_struct ||
4557       DS.getTypeSpecType() == DeclSpec::TST_interface ||
4558       DS.getTypeSpecType() == DeclSpec::TST_union ||
4559       DS.getTypeSpecType() == DeclSpec::TST_enum) {
4560     TagD = DS.getRepAsDecl();
4561 
4562     if (!TagD) // We probably had an error
4563       return nullptr;
4564 
4565     // Note that the above type specs guarantee that the
4566     // type rep is a Decl, whereas in many of the others
4567     // it's a Type.
4568     if (isa<TagDecl>(TagD))
4569       Tag = cast<TagDecl>(TagD);
4570     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4571       Tag = CTD->getTemplatedDecl();
4572   }
4573 
4574   if (Tag) {
4575     handleTagNumbering(Tag, S);
4576     Tag->setFreeStanding();
4577     if (Tag->isInvalidDecl())
4578       return Tag;
4579   }
4580 
4581   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4582     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4583     // or incomplete types shall not be restrict-qualified."
4584     if (TypeQuals & DeclSpec::TQ_restrict)
4585       Diag(DS.getRestrictSpecLoc(),
4586            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4587            << DS.getSourceRange();
4588   }
4589 
4590   if (DS.isInlineSpecified())
4591     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4592         << getLangOpts().CPlusPlus17;
4593 
4594   if (DS.hasConstexprSpecifier()) {
4595     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4596     // and definitions of functions and variables.
4597     // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
4598     // the declaration of a function or function template
4599     if (Tag)
4600       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4601           << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType())
4602           << static_cast<int>(DS.getConstexprSpecifier());
4603     else
4604       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
4605           << static_cast<int>(DS.getConstexprSpecifier());
4606     // Don't emit warnings after this error.
4607     return TagD;
4608   }
4609 
4610   DiagnoseFunctionSpecifiers(DS);
4611 
4612   if (DS.isFriendSpecified()) {
4613     // If we're dealing with a decl but not a TagDecl, assume that
4614     // whatever routines created it handled the friendship aspect.
4615     if (TagD && !Tag)
4616       return nullptr;
4617     return ActOnFriendTypeDecl(S, DS, TemplateParams);
4618   }
4619 
4620   const CXXScopeSpec &SS = DS.getTypeSpecScope();
4621   bool IsExplicitSpecialization =
4622     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4623   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4624       !IsExplicitInstantiation && !IsExplicitSpecialization &&
4625       !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4626     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4627     // nested-name-specifier unless it is an explicit instantiation
4628     // or an explicit specialization.
4629     //
4630     // FIXME: We allow class template partial specializations here too, per the
4631     // obvious intent of DR1819.
4632     //
4633     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4634     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4635         << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4636     return nullptr;
4637   }
4638 
4639   // Track whether this decl-specifier declares anything.
4640   bool DeclaresAnything = true;
4641 
4642   // Handle anonymous struct definitions.
4643   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4644     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4645         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4646       if (getLangOpts().CPlusPlus ||
4647           Record->getDeclContext()->isRecord()) {
4648         // If CurContext is a DeclContext that can contain statements,
4649         // RecursiveASTVisitor won't visit the decls that
4650         // BuildAnonymousStructOrUnion() will put into CurContext.
4651         // Also store them here so that they can be part of the
4652         // DeclStmt that gets created in this case.
4653         // FIXME: Also return the IndirectFieldDecls created by
4654         // BuildAnonymousStructOr union, for the same reason?
4655         if (CurContext->isFunctionOrMethod())
4656           AnonRecord = Record;
4657         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4658                                            Context.getPrintingPolicy());
4659       }
4660 
4661       DeclaresAnything = false;
4662     }
4663   }
4664 
4665   // C11 6.7.2.1p2:
4666   //   A struct-declaration that does not declare an anonymous structure or
4667   //   anonymous union shall contain a struct-declarator-list.
4668   //
4669   // This rule also existed in C89 and C99; the grammar for struct-declaration
4670   // did not permit a struct-declaration without a struct-declarator-list.
4671   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4672       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4673     // Check for Microsoft C extension: anonymous struct/union member.
4674     // Handle 2 kinds of anonymous struct/union:
4675     //   struct STRUCT;
4676     //   union UNION;
4677     // and
4678     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
4679     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
4680     if ((Tag && Tag->getDeclName()) ||
4681         DS.getTypeSpecType() == DeclSpec::TST_typename) {
4682       RecordDecl *Record = nullptr;
4683       if (Tag)
4684         Record = dyn_cast<RecordDecl>(Tag);
4685       else if (const RecordType *RT =
4686                    DS.getRepAsType().get()->getAsStructureType())
4687         Record = RT->getDecl();
4688       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4689         Record = UT->getDecl();
4690 
4691       if (Record && getLangOpts().MicrosoftExt) {
4692         Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4693             << Record->isUnion() << DS.getSourceRange();
4694         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4695       }
4696 
4697       DeclaresAnything = false;
4698     }
4699   }
4700 
4701   // Skip all the checks below if we have a type error.
4702   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4703       (TagD && TagD->isInvalidDecl()))
4704     return TagD;
4705 
4706   if (getLangOpts().CPlusPlus &&
4707       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4708     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4709       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4710           !Enum->getIdentifier() && !Enum->isInvalidDecl())
4711         DeclaresAnything = false;
4712 
4713   if (!DS.isMissingDeclaratorOk()) {
4714     // Customize diagnostic for a typedef missing a name.
4715     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4716       Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4717           << DS.getSourceRange();
4718     else
4719       DeclaresAnything = false;
4720   }
4721 
4722   if (DS.isModulePrivateSpecified() &&
4723       Tag && Tag->getDeclContext()->isFunctionOrMethod())
4724     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4725       << Tag->getTagKind()
4726       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4727 
4728   ActOnDocumentableDecl(TagD);
4729 
4730   // C 6.7/2:
4731   //   A declaration [...] shall declare at least a declarator [...], a tag,
4732   //   or the members of an enumeration.
4733   // C++ [dcl.dcl]p3:
4734   //   [If there are no declarators], and except for the declaration of an
4735   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
4736   //   names into the program, or shall redeclare a name introduced by a
4737   //   previous declaration.
4738   if (!DeclaresAnything) {
4739     // In C, we allow this as a (popular) extension / bug. Don't bother
4740     // producing further diagnostics for redundant qualifiers after this.
4741     Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty())
4742                                ? diag::err_no_declarators
4743                                : diag::ext_no_declarators)
4744         << DS.getSourceRange();
4745     return TagD;
4746   }
4747 
4748   // C++ [dcl.stc]p1:
4749   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4750   //   init-declarator-list of the declaration shall not be empty.
4751   // C++ [dcl.fct.spec]p1:
4752   //   If a cv-qualifier appears in a decl-specifier-seq, the
4753   //   init-declarator-list of the declaration shall not be empty.
4754   //
4755   // Spurious qualifiers here appear to be valid in C.
4756   unsigned DiagID = diag::warn_standalone_specifier;
4757   if (getLangOpts().CPlusPlus)
4758     DiagID = diag::ext_standalone_specifier;
4759 
4760   // Note that a linkage-specification sets a storage class, but
4761   // 'extern "C" struct foo;' is actually valid and not theoretically
4762   // useless.
4763   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4764     if (SCS == DeclSpec::SCS_mutable)
4765       // Since mutable is not a viable storage class specifier in C, there is
4766       // no reason to treat it as an extension. Instead, diagnose as an error.
4767       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4768     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4769       Diag(DS.getStorageClassSpecLoc(), DiagID)
4770         << DeclSpec::getSpecifierName(SCS);
4771   }
4772 
4773   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4774     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4775       << DeclSpec::getSpecifierName(TSCS);
4776   if (DS.getTypeQualifiers()) {
4777     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4778       Diag(DS.getConstSpecLoc(), DiagID) << "const";
4779     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4780       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4781     // Restrict is covered above.
4782     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4783       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4784     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4785       Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4786   }
4787 
4788   // Warn about ignored type attributes, for example:
4789   // __attribute__((aligned)) struct A;
4790   // Attributes should be placed after tag to apply to type declaration.
4791   if (!DS.getAttributes().empty()) {
4792     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4793     if (TypeSpecType == DeclSpec::TST_class ||
4794         TypeSpecType == DeclSpec::TST_struct ||
4795         TypeSpecType == DeclSpec::TST_interface ||
4796         TypeSpecType == DeclSpec::TST_union ||
4797         TypeSpecType == DeclSpec::TST_enum) {
4798       for (const ParsedAttr &AL : DS.getAttributes())
4799         Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4800             << AL << GetDiagnosticTypeSpecifierID(TypeSpecType);
4801     }
4802   }
4803 
4804   return TagD;
4805 }
4806 
4807 /// We are trying to inject an anonymous member into the given scope;
4808 /// check if there's an existing declaration that can't be overloaded.
4809 ///
4810 /// \return true if this is a forbidden redeclaration
4811 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4812                                          Scope *S,
4813                                          DeclContext *Owner,
4814                                          DeclarationName Name,
4815                                          SourceLocation NameLoc,
4816                                          bool IsUnion) {
4817   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4818                  Sema::ForVisibleRedeclaration);
4819   if (!SemaRef.LookupName(R, S)) return false;
4820 
4821   // Pick a representative declaration.
4822   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4823   assert(PrevDecl && "Expected a non-null Decl");
4824 
4825   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4826     return false;
4827 
4828   SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4829     << IsUnion << Name;
4830   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4831 
4832   return true;
4833 }
4834 
4835 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
4836 /// anonymous struct or union AnonRecord into the owning context Owner
4837 /// and scope S. This routine will be invoked just after we realize
4838 /// that an unnamed union or struct is actually an anonymous union or
4839 /// struct, e.g.,
4840 ///
4841 /// @code
4842 /// union {
4843 ///   int i;
4844 ///   float f;
4845 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4846 ///    // f into the surrounding scope.x
4847 /// @endcode
4848 ///
4849 /// This routine is recursive, injecting the names of nested anonymous
4850 /// structs/unions into the owning context and scope as well.
4851 static bool
4852 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4853                                     RecordDecl *AnonRecord, AccessSpecifier AS,
4854                                     SmallVectorImpl<NamedDecl *> &Chaining) {
4855   bool Invalid = false;
4856 
4857   // Look every FieldDecl and IndirectFieldDecl with a name.
4858   for (auto *D : AnonRecord->decls()) {
4859     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4860         cast<NamedDecl>(D)->getDeclName()) {
4861       ValueDecl *VD = cast<ValueDecl>(D);
4862       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4863                                        VD->getLocation(),
4864                                        AnonRecord->isUnion())) {
4865         // C++ [class.union]p2:
4866         //   The names of the members of an anonymous union shall be
4867         //   distinct from the names of any other entity in the
4868         //   scope in which the anonymous union is declared.
4869         Invalid = true;
4870       } else {
4871         // C++ [class.union]p2:
4872         //   For the purpose of name lookup, after the anonymous union
4873         //   definition, the members of the anonymous union are
4874         //   considered to have been defined in the scope in which the
4875         //   anonymous union is declared.
4876         unsigned OldChainingSize = Chaining.size();
4877         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4878           Chaining.append(IF->chain_begin(), IF->chain_end());
4879         else
4880           Chaining.push_back(VD);
4881 
4882         assert(Chaining.size() >= 2);
4883         NamedDecl **NamedChain =
4884           new (SemaRef.Context)NamedDecl*[Chaining.size()];
4885         for (unsigned i = 0; i < Chaining.size(); i++)
4886           NamedChain[i] = Chaining[i];
4887 
4888         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4889             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4890             VD->getType(), {NamedChain, Chaining.size()});
4891 
4892         for (const auto *Attr : VD->attrs())
4893           IndirectField->addAttr(Attr->clone(SemaRef.Context));
4894 
4895         IndirectField->setAccess(AS);
4896         IndirectField->setImplicit();
4897         SemaRef.PushOnScopeChains(IndirectField, S);
4898 
4899         // That includes picking up the appropriate access specifier.
4900         if (AS != AS_none) IndirectField->setAccess(AS);
4901 
4902         Chaining.resize(OldChainingSize);
4903       }
4904     }
4905   }
4906 
4907   return Invalid;
4908 }
4909 
4910 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4911 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
4912 /// illegal input values are mapped to SC_None.
4913 static StorageClass
4914 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4915   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4916   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
4917          "Parser allowed 'typedef' as storage class VarDecl.");
4918   switch (StorageClassSpec) {
4919   case DeclSpec::SCS_unspecified:    return SC_None;
4920   case DeclSpec::SCS_extern:
4921     if (DS.isExternInLinkageSpec())
4922       return SC_None;
4923     return SC_Extern;
4924   case DeclSpec::SCS_static:         return SC_Static;
4925   case DeclSpec::SCS_auto:           return SC_Auto;
4926   case DeclSpec::SCS_register:       return SC_Register;
4927   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4928     // Illegal SCSs map to None: error reporting is up to the caller.
4929   case DeclSpec::SCS_mutable:        // Fall through.
4930   case DeclSpec::SCS_typedef:        return SC_None;
4931   }
4932   llvm_unreachable("unknown storage class specifier");
4933 }
4934 
4935 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4936   assert(Record->hasInClassInitializer());
4937 
4938   for (const auto *I : Record->decls()) {
4939     const auto *FD = dyn_cast<FieldDecl>(I);
4940     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4941       FD = IFD->getAnonField();
4942     if (FD && FD->hasInClassInitializer())
4943       return FD->getLocation();
4944   }
4945 
4946   llvm_unreachable("couldn't find in-class initializer");
4947 }
4948 
4949 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4950                                       SourceLocation DefaultInitLoc) {
4951   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4952     return;
4953 
4954   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4955   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4956 }
4957 
4958 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4959                                       CXXRecordDecl *AnonUnion) {
4960   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4961     return;
4962 
4963   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4964 }
4965 
4966 /// BuildAnonymousStructOrUnion - Handle the declaration of an
4967 /// anonymous structure or union. Anonymous unions are a C++ feature
4968 /// (C++ [class.union]) and a C11 feature; anonymous structures
4969 /// are a C11 feature and GNU C++ extension.
4970 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4971                                         AccessSpecifier AS,
4972                                         RecordDecl *Record,
4973                                         const PrintingPolicy &Policy) {
4974   DeclContext *Owner = Record->getDeclContext();
4975 
4976   // Diagnose whether this anonymous struct/union is an extension.
4977   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4978     Diag(Record->getLocation(), diag::ext_anonymous_union);
4979   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4980     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4981   else if (!Record->isUnion() && !getLangOpts().C11)
4982     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4983 
4984   // C and C++ require different kinds of checks for anonymous
4985   // structs/unions.
4986   bool Invalid = false;
4987   if (getLangOpts().CPlusPlus) {
4988     const char *PrevSpec = nullptr;
4989     if (Record->isUnion()) {
4990       // C++ [class.union]p6:
4991       // C++17 [class.union.anon]p2:
4992       //   Anonymous unions declared in a named namespace or in the
4993       //   global namespace shall be declared static.
4994       unsigned DiagID;
4995       DeclContext *OwnerScope = Owner->getRedeclContext();
4996       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4997           (OwnerScope->isTranslationUnit() ||
4998            (OwnerScope->isNamespace() &&
4999             !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
5000         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
5001           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
5002 
5003         // Recover by adding 'static'.
5004         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
5005                                PrevSpec, DiagID, Policy);
5006       }
5007       // C++ [class.union]p6:
5008       //   A storage class is not allowed in a declaration of an
5009       //   anonymous union in a class scope.
5010       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
5011                isa<RecordDecl>(Owner)) {
5012         Diag(DS.getStorageClassSpecLoc(),
5013              diag::err_anonymous_union_with_storage_spec)
5014           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5015 
5016         // Recover by removing the storage specifier.
5017         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
5018                                SourceLocation(),
5019                                PrevSpec, DiagID, Context.getPrintingPolicy());
5020       }
5021     }
5022 
5023     // Ignore const/volatile/restrict qualifiers.
5024     if (DS.getTypeQualifiers()) {
5025       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5026         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
5027           << Record->isUnion() << "const"
5028           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
5029       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5030         Diag(DS.getVolatileSpecLoc(),
5031              diag::ext_anonymous_struct_union_qualified)
5032           << Record->isUnion() << "volatile"
5033           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
5034       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
5035         Diag(DS.getRestrictSpecLoc(),
5036              diag::ext_anonymous_struct_union_qualified)
5037           << Record->isUnion() << "restrict"
5038           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
5039       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5040         Diag(DS.getAtomicSpecLoc(),
5041              diag::ext_anonymous_struct_union_qualified)
5042           << Record->isUnion() << "_Atomic"
5043           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
5044       if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5045         Diag(DS.getUnalignedSpecLoc(),
5046              diag::ext_anonymous_struct_union_qualified)
5047           << Record->isUnion() << "__unaligned"
5048           << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
5049 
5050       DS.ClearTypeQualifiers();
5051     }
5052 
5053     // C++ [class.union]p2:
5054     //   The member-specification of an anonymous union shall only
5055     //   define non-static data members. [Note: nested types and
5056     //   functions cannot be declared within an anonymous union. ]
5057     for (auto *Mem : Record->decls()) {
5058       // Ignore invalid declarations; we already diagnosed them.
5059       if (Mem->isInvalidDecl())
5060         continue;
5061 
5062       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
5063         // C++ [class.union]p3:
5064         //   An anonymous union shall not have private or protected
5065         //   members (clause 11).
5066         assert(FD->getAccess() != AS_none);
5067         if (FD->getAccess() != AS_public) {
5068           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
5069             << Record->isUnion() << (FD->getAccess() == AS_protected);
5070           Invalid = true;
5071         }
5072 
5073         // C++ [class.union]p1
5074         //   An object of a class with a non-trivial constructor, a non-trivial
5075         //   copy constructor, a non-trivial destructor, or a non-trivial copy
5076         //   assignment operator cannot be a member of a union, nor can an
5077         //   array of such objects.
5078         if (CheckNontrivialField(FD))
5079           Invalid = true;
5080       } else if (Mem->isImplicit()) {
5081         // Any implicit members are fine.
5082       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
5083         // This is a type that showed up in an
5084         // elaborated-type-specifier inside the anonymous struct or
5085         // union, but which actually declares a type outside of the
5086         // anonymous struct or union. It's okay.
5087       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
5088         if (!MemRecord->isAnonymousStructOrUnion() &&
5089             MemRecord->getDeclName()) {
5090           // Visual C++ allows type definition in anonymous struct or union.
5091           if (getLangOpts().MicrosoftExt)
5092             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
5093               << Record->isUnion();
5094           else {
5095             // This is a nested type declaration.
5096             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
5097               << Record->isUnion();
5098             Invalid = true;
5099           }
5100         } else {
5101           // This is an anonymous type definition within another anonymous type.
5102           // This is a popular extension, provided by Plan9, MSVC and GCC, but
5103           // not part of standard C++.
5104           Diag(MemRecord->getLocation(),
5105                diag::ext_anonymous_record_with_anonymous_type)
5106             << Record->isUnion();
5107         }
5108       } else if (isa<AccessSpecDecl>(Mem)) {
5109         // Any access specifier is fine.
5110       } else if (isa<StaticAssertDecl>(Mem)) {
5111         // In C++1z, static_assert declarations are also fine.
5112       } else {
5113         // We have something that isn't a non-static data
5114         // member. Complain about it.
5115         unsigned DK = diag::err_anonymous_record_bad_member;
5116         if (isa<TypeDecl>(Mem))
5117           DK = diag::err_anonymous_record_with_type;
5118         else if (isa<FunctionDecl>(Mem))
5119           DK = diag::err_anonymous_record_with_function;
5120         else if (isa<VarDecl>(Mem))
5121           DK = diag::err_anonymous_record_with_static;
5122 
5123         // Visual C++ allows type definition in anonymous struct or union.
5124         if (getLangOpts().MicrosoftExt &&
5125             DK == diag::err_anonymous_record_with_type)
5126           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
5127             << Record->isUnion();
5128         else {
5129           Diag(Mem->getLocation(), DK) << Record->isUnion();
5130           Invalid = true;
5131         }
5132       }
5133     }
5134 
5135     // C++11 [class.union]p8 (DR1460):
5136     //   At most one variant member of a union may have a
5137     //   brace-or-equal-initializer.
5138     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5139         Owner->isRecord())
5140       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5141                                 cast<CXXRecordDecl>(Record));
5142   }
5143 
5144   if (!Record->isUnion() && !Owner->isRecord()) {
5145     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5146       << getLangOpts().CPlusPlus;
5147     Invalid = true;
5148   }
5149 
5150   // C++ [dcl.dcl]p3:
5151   //   [If there are no declarators], and except for the declaration of an
5152   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
5153   //   names into the program
5154   // C++ [class.mem]p2:
5155   //   each such member-declaration shall either declare at least one member
5156   //   name of the class or declare at least one unnamed bit-field
5157   //
5158   // For C this is an error even for a named struct, and is diagnosed elsewhere.
5159   if (getLangOpts().CPlusPlus && Record->field_empty())
5160     Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5161 
5162   // Mock up a declarator.
5163   Declarator Dc(DS, DeclaratorContext::Member);
5164   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5165   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
5166 
5167   // Create a declaration for this anonymous struct/union.
5168   NamedDecl *Anon = nullptr;
5169   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5170     Anon = FieldDecl::Create(
5171         Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5172         /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5173         /*BitWidth=*/nullptr, /*Mutable=*/false,
5174         /*InitStyle=*/ICIS_NoInit);
5175     Anon->setAccess(AS);
5176     ProcessDeclAttributes(S, Anon, Dc);
5177 
5178     if (getLangOpts().CPlusPlus)
5179       FieldCollector->Add(cast<FieldDecl>(Anon));
5180   } else {
5181     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5182     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5183     if (SCSpec == DeclSpec::SCS_mutable) {
5184       // mutable can only appear on non-static class members, so it's always
5185       // an error here
5186       Diag(Record->getLocation(), diag::err_mutable_nonmember);
5187       Invalid = true;
5188       SC = SC_None;
5189     }
5190 
5191     assert(DS.getAttributes().empty() && "No attribute expected");
5192     Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5193                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
5194                            Context.getTypeDeclType(Record), TInfo, SC);
5195 
5196     // Default-initialize the implicit variable. This initialization will be
5197     // trivial in almost all cases, except if a union member has an in-class
5198     // initializer:
5199     //   union { int n = 0; };
5200     ActOnUninitializedDecl(Anon);
5201   }
5202   Anon->setImplicit();
5203 
5204   // Mark this as an anonymous struct/union type.
5205   Record->setAnonymousStructOrUnion(true);
5206 
5207   // Add the anonymous struct/union object to the current
5208   // context. We'll be referencing this object when we refer to one of
5209   // its members.
5210   Owner->addDecl(Anon);
5211 
5212   // Inject the members of the anonymous struct/union into the owning
5213   // context and into the identifier resolver chain for name lookup
5214   // purposes.
5215   SmallVector<NamedDecl*, 2> Chain;
5216   Chain.push_back(Anon);
5217 
5218   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
5219     Invalid = true;
5220 
5221   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5222     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5223       MangleNumberingContext *MCtx;
5224       Decl *ManglingContextDecl;
5225       std::tie(MCtx, ManglingContextDecl) =
5226           getCurrentMangleNumberContext(NewVD->getDeclContext());
5227       if (MCtx) {
5228         Context.setManglingNumber(
5229             NewVD, MCtx->getManglingNumber(
5230                        NewVD, getMSManglingNumber(getLangOpts(), S)));
5231         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5232       }
5233     }
5234   }
5235 
5236   if (Invalid)
5237     Anon->setInvalidDecl();
5238 
5239   return Anon;
5240 }
5241 
5242 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5243 /// Microsoft C anonymous structure.
5244 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5245 /// Example:
5246 ///
5247 /// struct A { int a; };
5248 /// struct B { struct A; int b; };
5249 ///
5250 /// void foo() {
5251 ///   B var;
5252 ///   var.a = 3;
5253 /// }
5254 ///
5255 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5256                                            RecordDecl *Record) {
5257   assert(Record && "expected a record!");
5258 
5259   // Mock up a declarator.
5260   Declarator Dc(DS, DeclaratorContext::TypeName);
5261   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5262   assert(TInfo && "couldn't build declarator info for anonymous struct");
5263 
5264   auto *ParentDecl = cast<RecordDecl>(CurContext);
5265   QualType RecTy = Context.getTypeDeclType(Record);
5266 
5267   // Create a declaration for this anonymous struct.
5268   NamedDecl *Anon =
5269       FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5270                         /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5271                         /*BitWidth=*/nullptr, /*Mutable=*/false,
5272                         /*InitStyle=*/ICIS_NoInit);
5273   Anon->setImplicit();
5274 
5275   // Add the anonymous struct object to the current context.
5276   CurContext->addDecl(Anon);
5277 
5278   // Inject the members of the anonymous struct into the current
5279   // context and into the identifier resolver chain for name lookup
5280   // purposes.
5281   SmallVector<NamedDecl*, 2> Chain;
5282   Chain.push_back(Anon);
5283 
5284   RecordDecl *RecordDef = Record->getDefinition();
5285   if (RequireCompleteSizedType(Anon->getLocation(), RecTy,
5286                                diag::err_field_incomplete_or_sizeless) ||
5287       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
5288                                           AS_none, Chain)) {
5289     Anon->setInvalidDecl();
5290     ParentDecl->setInvalidDecl();
5291   }
5292 
5293   return Anon;
5294 }
5295 
5296 /// GetNameForDeclarator - Determine the full declaration name for the
5297 /// given Declarator.
5298 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5299   return GetNameFromUnqualifiedId(D.getName());
5300 }
5301 
5302 /// Retrieves the declaration name from a parsed unqualified-id.
5303 DeclarationNameInfo
5304 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5305   DeclarationNameInfo NameInfo;
5306   NameInfo.setLoc(Name.StartLocation);
5307 
5308   switch (Name.getKind()) {
5309 
5310   case UnqualifiedIdKind::IK_ImplicitSelfParam:
5311   case UnqualifiedIdKind::IK_Identifier:
5312     NameInfo.setName(Name.Identifier);
5313     return NameInfo;
5314 
5315   case UnqualifiedIdKind::IK_DeductionGuideName: {
5316     // C++ [temp.deduct.guide]p3:
5317     //   The simple-template-id shall name a class template specialization.
5318     //   The template-name shall be the same identifier as the template-name
5319     //   of the simple-template-id.
5320     // These together intend to imply that the template-name shall name a
5321     // class template.
5322     // FIXME: template<typename T> struct X {};
5323     //        template<typename T> using Y = X<T>;
5324     //        Y(int) -> Y<int>;
5325     //   satisfies these rules but does not name a class template.
5326     TemplateName TN = Name.TemplateName.get().get();
5327     auto *Template = TN.getAsTemplateDecl();
5328     if (!Template || !isa<ClassTemplateDecl>(Template)) {
5329       Diag(Name.StartLocation,
5330            diag::err_deduction_guide_name_not_class_template)
5331         << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5332       if (Template)
5333         Diag(Template->getLocation(), diag::note_template_decl_here);
5334       return DeclarationNameInfo();
5335     }
5336 
5337     NameInfo.setName(
5338         Context.DeclarationNames.getCXXDeductionGuideName(Template));
5339     return NameInfo;
5340   }
5341 
5342   case UnqualifiedIdKind::IK_OperatorFunctionId:
5343     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5344                                            Name.OperatorFunctionId.Operator));
5345     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
5346       = Name.OperatorFunctionId.SymbolLocations[0];
5347     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
5348       = Name.EndLocation.getRawEncoding();
5349     return NameInfo;
5350 
5351   case UnqualifiedIdKind::IK_LiteralOperatorId:
5352     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5353                                                            Name.Identifier));
5354     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5355     return NameInfo;
5356 
5357   case UnqualifiedIdKind::IK_ConversionFunctionId: {
5358     TypeSourceInfo *TInfo;
5359     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5360     if (Ty.isNull())
5361       return DeclarationNameInfo();
5362     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5363                                                Context.getCanonicalType(Ty)));
5364     NameInfo.setNamedTypeInfo(TInfo);
5365     return NameInfo;
5366   }
5367 
5368   case UnqualifiedIdKind::IK_ConstructorName: {
5369     TypeSourceInfo *TInfo;
5370     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5371     if (Ty.isNull())
5372       return DeclarationNameInfo();
5373     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5374                                               Context.getCanonicalType(Ty)));
5375     NameInfo.setNamedTypeInfo(TInfo);
5376     return NameInfo;
5377   }
5378 
5379   case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5380     // In well-formed code, we can only have a constructor
5381     // template-id that refers to the current context, so go there
5382     // to find the actual type being constructed.
5383     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5384     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5385       return DeclarationNameInfo();
5386 
5387     // Determine the type of the class being constructed.
5388     QualType CurClassType = Context.getTypeDeclType(CurClass);
5389 
5390     // FIXME: Check two things: that the template-id names the same type as
5391     // CurClassType, and that the template-id does not occur when the name
5392     // was qualified.
5393 
5394     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5395                                     Context.getCanonicalType(CurClassType)));
5396     // FIXME: should we retrieve TypeSourceInfo?
5397     NameInfo.setNamedTypeInfo(nullptr);
5398     return NameInfo;
5399   }
5400 
5401   case UnqualifiedIdKind::IK_DestructorName: {
5402     TypeSourceInfo *TInfo;
5403     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5404     if (Ty.isNull())
5405       return DeclarationNameInfo();
5406     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5407                                               Context.getCanonicalType(Ty)));
5408     NameInfo.setNamedTypeInfo(TInfo);
5409     return NameInfo;
5410   }
5411 
5412   case UnqualifiedIdKind::IK_TemplateId: {
5413     TemplateName TName = Name.TemplateId->Template.get();
5414     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5415     return Context.getNameForTemplate(TName, TNameLoc);
5416   }
5417 
5418   } // switch (Name.getKind())
5419 
5420   llvm_unreachable("Unknown name kind");
5421 }
5422 
5423 static QualType getCoreType(QualType Ty) {
5424   do {
5425     if (Ty->isPointerType() || Ty->isReferenceType())
5426       Ty = Ty->getPointeeType();
5427     else if (Ty->isArrayType())
5428       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5429     else
5430       return Ty.withoutLocalFastQualifiers();
5431   } while (true);
5432 }
5433 
5434 /// hasSimilarParameters - Determine whether the C++ functions Declaration
5435 /// and Definition have "nearly" matching parameters. This heuristic is
5436 /// used to improve diagnostics in the case where an out-of-line function
5437 /// definition doesn't match any declaration within the class or namespace.
5438 /// Also sets Params to the list of indices to the parameters that differ
5439 /// between the declaration and the definition. If hasSimilarParameters
5440 /// returns true and Params is empty, then all of the parameters match.
5441 static bool hasSimilarParameters(ASTContext &Context,
5442                                      FunctionDecl *Declaration,
5443                                      FunctionDecl *Definition,
5444                                      SmallVectorImpl<unsigned> &Params) {
5445   Params.clear();
5446   if (Declaration->param_size() != Definition->param_size())
5447     return false;
5448   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5449     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5450     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5451 
5452     // The parameter types are identical
5453     if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5454       continue;
5455 
5456     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5457     QualType DefParamBaseTy = getCoreType(DefParamTy);
5458     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5459     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5460 
5461     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5462         (DeclTyName && DeclTyName == DefTyName))
5463       Params.push_back(Idx);
5464     else  // The two parameters aren't even close
5465       return false;
5466   }
5467 
5468   return true;
5469 }
5470 
5471 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5472 /// declarator needs to be rebuilt in the current instantiation.
5473 /// Any bits of declarator which appear before the name are valid for
5474 /// consideration here.  That's specifically the type in the decl spec
5475 /// and the base type in any member-pointer chunks.
5476 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5477                                                     DeclarationName Name) {
5478   // The types we specifically need to rebuild are:
5479   //   - typenames, typeofs, and decltypes
5480   //   - types which will become injected class names
5481   // Of course, we also need to rebuild any type referencing such a
5482   // type.  It's safest to just say "dependent", but we call out a
5483   // few cases here.
5484 
5485   DeclSpec &DS = D.getMutableDeclSpec();
5486   switch (DS.getTypeSpecType()) {
5487   case DeclSpec::TST_typename:
5488   case DeclSpec::TST_typeofType:
5489   case DeclSpec::TST_underlyingType:
5490   case DeclSpec::TST_atomic: {
5491     // Grab the type from the parser.
5492     TypeSourceInfo *TSI = nullptr;
5493     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5494     if (T.isNull() || !T->isInstantiationDependentType()) break;
5495 
5496     // Make sure there's a type source info.  This isn't really much
5497     // of a waste; most dependent types should have type source info
5498     // attached already.
5499     if (!TSI)
5500       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5501 
5502     // Rebuild the type in the current instantiation.
5503     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5504     if (!TSI) return true;
5505 
5506     // Store the new type back in the decl spec.
5507     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5508     DS.UpdateTypeRep(LocType);
5509     break;
5510   }
5511 
5512   case DeclSpec::TST_decltype:
5513   case DeclSpec::TST_typeofExpr: {
5514     Expr *E = DS.getRepAsExpr();
5515     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5516     if (Result.isInvalid()) return true;
5517     DS.UpdateExprRep(Result.get());
5518     break;
5519   }
5520 
5521   default:
5522     // Nothing to do for these decl specs.
5523     break;
5524   }
5525 
5526   // It doesn't matter what order we do this in.
5527   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5528     DeclaratorChunk &Chunk = D.getTypeObject(I);
5529 
5530     // The only type information in the declarator which can come
5531     // before the declaration name is the base type of a member
5532     // pointer.
5533     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5534       continue;
5535 
5536     // Rebuild the scope specifier in-place.
5537     CXXScopeSpec &SS = Chunk.Mem.Scope();
5538     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5539       return true;
5540   }
5541 
5542   return false;
5543 }
5544 
5545 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5546   D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
5547   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5548 
5549   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5550       Dcl && Dcl->getDeclContext()->isFileContext())
5551     Dcl->setTopLevelDeclInObjCContainer();
5552 
5553   if (getLangOpts().OpenCL)
5554     setCurrentOpenCLExtensionForDecl(Dcl);
5555 
5556   return Dcl;
5557 }
5558 
5559 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5560 ///   If T is the name of a class, then each of the following shall have a
5561 ///   name different from T:
5562 ///     - every static data member of class T;
5563 ///     - every member function of class T
5564 ///     - every member of class T that is itself a type;
5565 /// \returns true if the declaration name violates these rules.
5566 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5567                                    DeclarationNameInfo NameInfo) {
5568   DeclarationName Name = NameInfo.getName();
5569 
5570   CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5571   while (Record && Record->isAnonymousStructOrUnion())
5572     Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5573   if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5574     Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5575     return true;
5576   }
5577 
5578   return false;
5579 }
5580 
5581 /// Diagnose a declaration whose declarator-id has the given
5582 /// nested-name-specifier.
5583 ///
5584 /// \param SS The nested-name-specifier of the declarator-id.
5585 ///
5586 /// \param DC The declaration context to which the nested-name-specifier
5587 /// resolves.
5588 ///
5589 /// \param Name The name of the entity being declared.
5590 ///
5591 /// \param Loc The location of the name of the entity being declared.
5592 ///
5593 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5594 /// we're declaring an explicit / partial specialization / instantiation.
5595 ///
5596 /// \returns true if we cannot safely recover from this error, false otherwise.
5597 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5598                                         DeclarationName Name,
5599                                         SourceLocation Loc, bool IsTemplateId) {
5600   DeclContext *Cur = CurContext;
5601   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5602     Cur = Cur->getParent();
5603 
5604   // If the user provided a superfluous scope specifier that refers back to the
5605   // class in which the entity is already declared, diagnose and ignore it.
5606   //
5607   // class X {
5608   //   void X::f();
5609   // };
5610   //
5611   // Note, it was once ill-formed to give redundant qualification in all
5612   // contexts, but that rule was removed by DR482.
5613   if (Cur->Equals(DC)) {
5614     if (Cur->isRecord()) {
5615       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5616                                       : diag::err_member_extra_qualification)
5617         << Name << FixItHint::CreateRemoval(SS.getRange());
5618       SS.clear();
5619     } else {
5620       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5621     }
5622     return false;
5623   }
5624 
5625   // Check whether the qualifying scope encloses the scope of the original
5626   // declaration. For a template-id, we perform the checks in
5627   // CheckTemplateSpecializationScope.
5628   if (!Cur->Encloses(DC) && !IsTemplateId) {
5629     if (Cur->isRecord())
5630       Diag(Loc, diag::err_member_qualification)
5631         << Name << SS.getRange();
5632     else if (isa<TranslationUnitDecl>(DC))
5633       Diag(Loc, diag::err_invalid_declarator_global_scope)
5634         << Name << SS.getRange();
5635     else if (isa<FunctionDecl>(Cur))
5636       Diag(Loc, diag::err_invalid_declarator_in_function)
5637         << Name << SS.getRange();
5638     else if (isa<BlockDecl>(Cur))
5639       Diag(Loc, diag::err_invalid_declarator_in_block)
5640         << Name << SS.getRange();
5641     else
5642       Diag(Loc, diag::err_invalid_declarator_scope)
5643       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5644 
5645     return true;
5646   }
5647 
5648   if (Cur->isRecord()) {
5649     // Cannot qualify members within a class.
5650     Diag(Loc, diag::err_member_qualification)
5651       << Name << SS.getRange();
5652     SS.clear();
5653 
5654     // C++ constructors and destructors with incorrect scopes can break
5655     // our AST invariants by having the wrong underlying types. If
5656     // that's the case, then drop this declaration entirely.
5657     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5658          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5659         !Context.hasSameType(Name.getCXXNameType(),
5660                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5661       return true;
5662 
5663     return false;
5664   }
5665 
5666   // C++11 [dcl.meaning]p1:
5667   //   [...] "The nested-name-specifier of the qualified declarator-id shall
5668   //   not begin with a decltype-specifer"
5669   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5670   while (SpecLoc.getPrefix())
5671     SpecLoc = SpecLoc.getPrefix();
5672   if (dyn_cast_or_null<DecltypeType>(
5673         SpecLoc.getNestedNameSpecifier()->getAsType()))
5674     Diag(Loc, diag::err_decltype_in_declarator)
5675       << SpecLoc.getTypeLoc().getSourceRange();
5676 
5677   return false;
5678 }
5679 
5680 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5681                                   MultiTemplateParamsArg TemplateParamLists) {
5682   // TODO: consider using NameInfo for diagnostic.
5683   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5684   DeclarationName Name = NameInfo.getName();
5685 
5686   // All of these full declarators require an identifier.  If it doesn't have
5687   // one, the ParsedFreeStandingDeclSpec action should be used.
5688   if (D.isDecompositionDeclarator()) {
5689     return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5690   } else if (!Name) {
5691     if (!D.isInvalidType())  // Reject this if we think it is valid.
5692       Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5693           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5694     return nullptr;
5695   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5696     return nullptr;
5697 
5698   // The scope passed in may not be a decl scope.  Zip up the scope tree until
5699   // we find one that is.
5700   while ((S->getFlags() & Scope::DeclScope) == 0 ||
5701          (S->getFlags() & Scope::TemplateParamScope) != 0)
5702     S = S->getParent();
5703 
5704   DeclContext *DC = CurContext;
5705   if (D.getCXXScopeSpec().isInvalid())
5706     D.setInvalidType();
5707   else if (D.getCXXScopeSpec().isSet()) {
5708     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5709                                         UPPC_DeclarationQualifier))
5710       return nullptr;
5711 
5712     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5713     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5714     if (!DC || isa<EnumDecl>(DC)) {
5715       // If we could not compute the declaration context, it's because the
5716       // declaration context is dependent but does not refer to a class,
5717       // class template, or class template partial specialization. Complain
5718       // and return early, to avoid the coming semantic disaster.
5719       Diag(D.getIdentifierLoc(),
5720            diag::err_template_qualified_declarator_no_match)
5721         << D.getCXXScopeSpec().getScopeRep()
5722         << D.getCXXScopeSpec().getRange();
5723       return nullptr;
5724     }
5725     bool IsDependentContext = DC->isDependentContext();
5726 
5727     if (!IsDependentContext &&
5728         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5729       return nullptr;
5730 
5731     // If a class is incomplete, do not parse entities inside it.
5732     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5733       Diag(D.getIdentifierLoc(),
5734            diag::err_member_def_undefined_record)
5735         << Name << DC << D.getCXXScopeSpec().getRange();
5736       return nullptr;
5737     }
5738     if (!D.getDeclSpec().isFriendSpecified()) {
5739       if (diagnoseQualifiedDeclaration(
5740               D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5741               D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5742         if (DC->isRecord())
5743           return nullptr;
5744 
5745         D.setInvalidType();
5746       }
5747     }
5748 
5749     // Check whether we need to rebuild the type of the given
5750     // declaration in the current instantiation.
5751     if (EnteringContext && IsDependentContext &&
5752         TemplateParamLists.size() != 0) {
5753       ContextRAII SavedContext(*this, DC);
5754       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5755         D.setInvalidType();
5756     }
5757   }
5758 
5759   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5760   QualType R = TInfo->getType();
5761 
5762   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5763                                       UPPC_DeclarationType))
5764     D.setInvalidType();
5765 
5766   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5767                         forRedeclarationInCurContext());
5768 
5769   // See if this is a redefinition of a variable in the same scope.
5770   if (!D.getCXXScopeSpec().isSet()) {
5771     bool IsLinkageLookup = false;
5772     bool CreateBuiltins = false;
5773 
5774     // If the declaration we're planning to build will be a function
5775     // or object with linkage, then look for another declaration with
5776     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5777     //
5778     // If the declaration we're planning to build will be declared with
5779     // external linkage in the translation unit, create any builtin with
5780     // the same name.
5781     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5782       /* Do nothing*/;
5783     else if (CurContext->isFunctionOrMethod() &&
5784              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5785               R->isFunctionType())) {
5786       IsLinkageLookup = true;
5787       CreateBuiltins =
5788           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5789     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5790                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5791       CreateBuiltins = true;
5792 
5793     if (IsLinkageLookup) {
5794       Previous.clear(LookupRedeclarationWithLinkage);
5795       Previous.setRedeclarationKind(ForExternalRedeclaration);
5796     }
5797 
5798     LookupName(Previous, S, CreateBuiltins);
5799   } else { // Something like "int foo::x;"
5800     LookupQualifiedName(Previous, DC);
5801 
5802     // C++ [dcl.meaning]p1:
5803     //   When the declarator-id is qualified, the declaration shall refer to a
5804     //  previously declared member of the class or namespace to which the
5805     //  qualifier refers (or, in the case of a namespace, of an element of the
5806     //  inline namespace set of that namespace (7.3.1)) or to a specialization
5807     //  thereof; [...]
5808     //
5809     // Note that we already checked the context above, and that we do not have
5810     // enough information to make sure that Previous contains the declaration
5811     // we want to match. For example, given:
5812     //
5813     //   class X {
5814     //     void f();
5815     //     void f(float);
5816     //   };
5817     //
5818     //   void X::f(int) { } // ill-formed
5819     //
5820     // In this case, Previous will point to the overload set
5821     // containing the two f's declared in X, but neither of them
5822     // matches.
5823 
5824     // C++ [dcl.meaning]p1:
5825     //   [...] the member shall not merely have been introduced by a
5826     //   using-declaration in the scope of the class or namespace nominated by
5827     //   the nested-name-specifier of the declarator-id.
5828     RemoveUsingDecls(Previous);
5829   }
5830 
5831   if (Previous.isSingleResult() &&
5832       Previous.getFoundDecl()->isTemplateParameter()) {
5833     // Maybe we will complain about the shadowed template parameter.
5834     if (!D.isInvalidType())
5835       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5836                                       Previous.getFoundDecl());
5837 
5838     // Just pretend that we didn't see the previous declaration.
5839     Previous.clear();
5840   }
5841 
5842   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5843     // Forget that the previous declaration is the injected-class-name.
5844     Previous.clear();
5845 
5846   // In C++, the previous declaration we find might be a tag type
5847   // (class or enum). In this case, the new declaration will hide the
5848   // tag type. Note that this applies to functions, function templates, and
5849   // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5850   if (Previous.isSingleTagDecl() &&
5851       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5852       (TemplateParamLists.size() == 0 || R->isFunctionType()))
5853     Previous.clear();
5854 
5855   // Check that there are no default arguments other than in the parameters
5856   // of a function declaration (C++ only).
5857   if (getLangOpts().CPlusPlus)
5858     CheckExtraCXXDefaultArguments(D);
5859 
5860   NamedDecl *New;
5861 
5862   bool AddToScope = true;
5863   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5864     if (TemplateParamLists.size()) {
5865       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5866       return nullptr;
5867     }
5868 
5869     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5870   } else if (R->isFunctionType()) {
5871     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5872                                   TemplateParamLists,
5873                                   AddToScope);
5874   } else {
5875     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5876                                   AddToScope);
5877   }
5878 
5879   if (!New)
5880     return nullptr;
5881 
5882   // If this has an identifier and is not a function template specialization,
5883   // add it to the scope stack.
5884   if (New->getDeclName() && AddToScope)
5885     PushOnScopeChains(New, S);
5886 
5887   if (isInOpenMPDeclareTargetContext())
5888     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5889 
5890   return New;
5891 }
5892 
5893 /// Helper method to turn variable array types into constant array
5894 /// types in certain situations which would otherwise be errors (for
5895 /// GCC compatibility).
5896 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5897                                                     ASTContext &Context,
5898                                                     bool &SizeIsNegative,
5899                                                     llvm::APSInt &Oversized) {
5900   // This method tries to turn a variable array into a constant
5901   // array even when the size isn't an ICE.  This is necessary
5902   // for compatibility with code that depends on gcc's buggy
5903   // constant expression folding, like struct {char x[(int)(char*)2];}
5904   SizeIsNegative = false;
5905   Oversized = 0;
5906 
5907   if (T->isDependentType())
5908     return QualType();
5909 
5910   QualifierCollector Qs;
5911   const Type *Ty = Qs.strip(T);
5912 
5913   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5914     QualType Pointee = PTy->getPointeeType();
5915     QualType FixedType =
5916         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5917                                             Oversized);
5918     if (FixedType.isNull()) return FixedType;
5919     FixedType = Context.getPointerType(FixedType);
5920     return Qs.apply(Context, FixedType);
5921   }
5922   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5923     QualType Inner = PTy->getInnerType();
5924     QualType FixedType =
5925         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5926                                             Oversized);
5927     if (FixedType.isNull()) return FixedType;
5928     FixedType = Context.getParenType(FixedType);
5929     return Qs.apply(Context, FixedType);
5930   }
5931 
5932   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5933   if (!VLATy)
5934     return QualType();
5935 
5936   QualType ElemTy = VLATy->getElementType();
5937   if (ElemTy->isVariablyModifiedType()) {
5938     ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context,
5939                                                  SizeIsNegative, Oversized);
5940     if (ElemTy.isNull())
5941       return QualType();
5942   }
5943 
5944   Expr::EvalResult Result;
5945   if (!VLATy->getSizeExpr() ||
5946       !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
5947     return QualType();
5948 
5949   llvm::APSInt Res = Result.Val.getInt();
5950 
5951   // Check whether the array size is negative.
5952   if (Res.isSigned() && Res.isNegative()) {
5953     SizeIsNegative = true;
5954     return QualType();
5955   }
5956 
5957   // Check whether the array is too large to be addressed.
5958   unsigned ActiveSizeBits =
5959       (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() &&
5960        !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType())
5961           ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res)
5962           : Res.getActiveBits();
5963   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5964     Oversized = Res;
5965     return QualType();
5966   }
5967 
5968   QualType FoldedArrayType = Context.getConstantArrayType(
5969       ElemTy, Res, VLATy->getSizeExpr(), ArrayType::Normal, 0);
5970   return Qs.apply(Context, FoldedArrayType);
5971 }
5972 
5973 static void
5974 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5975   SrcTL = SrcTL.getUnqualifiedLoc();
5976   DstTL = DstTL.getUnqualifiedLoc();
5977   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5978     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5979     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5980                                       DstPTL.getPointeeLoc());
5981     DstPTL.setStarLoc(SrcPTL.getStarLoc());
5982     return;
5983   }
5984   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5985     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5986     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5987                                       DstPTL.getInnerLoc());
5988     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5989     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5990     return;
5991   }
5992   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5993   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5994   TypeLoc SrcElemTL = SrcATL.getElementLoc();
5995   TypeLoc DstElemTL = DstATL.getElementLoc();
5996   if (VariableArrayTypeLoc SrcElemATL =
5997           SrcElemTL.getAs<VariableArrayTypeLoc>()) {
5998     ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>();
5999     FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL);
6000   } else {
6001     DstElemTL.initializeFullCopy(SrcElemTL);
6002   }
6003   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
6004   DstATL.setSizeExpr(SrcATL.getSizeExpr());
6005   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
6006 }
6007 
6008 /// Helper method to turn variable array types into constant array
6009 /// types in certain situations which would otherwise be errors (for
6010 /// GCC compatibility).
6011 static TypeSourceInfo*
6012 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
6013                                               ASTContext &Context,
6014                                               bool &SizeIsNegative,
6015                                               llvm::APSInt &Oversized) {
6016   QualType FixedTy
6017     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
6018                                           SizeIsNegative, Oversized);
6019   if (FixedTy.isNull())
6020     return nullptr;
6021   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
6022   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
6023                                     FixedTInfo->getTypeLoc());
6024   return FixedTInfo;
6025 }
6026 
6027 /// Attempt to fold a variable-sized type to a constant-sized type, returning
6028 /// true if we were successful.
6029 static bool tryToFixVariablyModifiedVarType(Sema &S, TypeSourceInfo *&TInfo,
6030                                             QualType &T, SourceLocation Loc,
6031                                             unsigned FailedFoldDiagID) {
6032   bool SizeIsNegative;
6033   llvm::APSInt Oversized;
6034   TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
6035       TInfo, S.Context, SizeIsNegative, Oversized);
6036   if (FixedTInfo) {
6037     S.Diag(Loc, diag::ext_vla_folded_to_constant);
6038     TInfo = FixedTInfo;
6039     T = FixedTInfo->getType();
6040     return true;
6041   }
6042 
6043   if (SizeIsNegative)
6044     S.Diag(Loc, diag::err_typecheck_negative_array_size);
6045   else if (Oversized.getBoolValue())
6046     S.Diag(Loc, diag::err_array_too_large) << Oversized.toString(10);
6047   else if (FailedFoldDiagID)
6048     S.Diag(Loc, FailedFoldDiagID);
6049   return false;
6050 }
6051 
6052 /// Register the given locally-scoped extern "C" declaration so
6053 /// that it can be found later for redeclarations. We include any extern "C"
6054 /// declaration that is not visible in the translation unit here, not just
6055 /// function-scope declarations.
6056 void
6057 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
6058   if (!getLangOpts().CPlusPlus &&
6059       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6060     // Don't need to track declarations in the TU in C.
6061     return;
6062 
6063   // Note that we have a locally-scoped external with this name.
6064   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
6065 }
6066 
6067 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
6068   // FIXME: We can have multiple results via __attribute__((overloadable)).
6069   auto Result = Context.getExternCContextDecl()->lookup(Name);
6070   return Result.empty() ? nullptr : *Result.begin();
6071 }
6072 
6073 /// Diagnose function specifiers on a declaration of an identifier that
6074 /// does not identify a function.
6075 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
6076   // FIXME: We should probably indicate the identifier in question to avoid
6077   // confusion for constructs like "virtual int a(), b;"
6078   if (DS.isVirtualSpecified())
6079     Diag(DS.getVirtualSpecLoc(),
6080          diag::err_virtual_non_function);
6081 
6082   if (DS.hasExplicitSpecifier())
6083     Diag(DS.getExplicitSpecLoc(),
6084          diag::err_explicit_non_function);
6085 
6086   if (DS.isNoreturnSpecified())
6087     Diag(DS.getNoreturnSpecLoc(),
6088          diag::err_noreturn_non_function);
6089 }
6090 
6091 NamedDecl*
6092 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
6093                              TypeSourceInfo *TInfo, LookupResult &Previous) {
6094   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6095   if (D.getCXXScopeSpec().isSet()) {
6096     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
6097       << D.getCXXScopeSpec().getRange();
6098     D.setInvalidType();
6099     // Pretend we didn't see the scope specifier.
6100     DC = CurContext;
6101     Previous.clear();
6102   }
6103 
6104   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6105 
6106   if (D.getDeclSpec().isInlineSpecified())
6107     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6108         << getLangOpts().CPlusPlus17;
6109   if (D.getDeclSpec().hasConstexprSpecifier())
6110     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6111         << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
6112 
6113   if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
6114     if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
6115       Diag(D.getName().StartLocation,
6116            diag::err_deduction_guide_invalid_specifier)
6117           << "typedef";
6118     else
6119       Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
6120           << D.getName().getSourceRange();
6121     return nullptr;
6122   }
6123 
6124   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
6125   if (!NewTD) return nullptr;
6126 
6127   // Handle attributes prior to checking for duplicates in MergeVarDecl
6128   ProcessDeclAttributes(S, NewTD, D);
6129 
6130   CheckTypedefForVariablyModifiedType(S, NewTD);
6131 
6132   bool Redeclaration = D.isRedeclaration();
6133   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
6134   D.setRedeclaration(Redeclaration);
6135   return ND;
6136 }
6137 
6138 void
6139 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
6140   // C99 6.7.7p2: If a typedef name specifies a variably modified type
6141   // then it shall have block scope.
6142   // Note that variably modified types must be fixed before merging the decl so
6143   // that redeclarations will match.
6144   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
6145   QualType T = TInfo->getType();
6146   if (T->isVariablyModifiedType()) {
6147     setFunctionHasBranchProtectedScope();
6148 
6149     if (S->getFnParent() == nullptr) {
6150       bool SizeIsNegative;
6151       llvm::APSInt Oversized;
6152       TypeSourceInfo *FixedTInfo =
6153         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6154                                                       SizeIsNegative,
6155                                                       Oversized);
6156       if (FixedTInfo) {
6157         Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant);
6158         NewTD->setTypeSourceInfo(FixedTInfo);
6159       } else {
6160         if (SizeIsNegative)
6161           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
6162         else if (T->isVariableArrayType())
6163           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
6164         else if (Oversized.getBoolValue())
6165           Diag(NewTD->getLocation(), diag::err_array_too_large)
6166             << Oversized.toString(10);
6167         else
6168           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
6169         NewTD->setInvalidDecl();
6170       }
6171     }
6172   }
6173 }
6174 
6175 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6176 /// declares a typedef-name, either using the 'typedef' type specifier or via
6177 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6178 NamedDecl*
6179 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
6180                            LookupResult &Previous, bool &Redeclaration) {
6181 
6182   // Find the shadowed declaration before filtering for scope.
6183   NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
6184 
6185   // Merge the decl with the existing one if appropriate. If the decl is
6186   // in an outer scope, it isn't the same thing.
6187   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
6188                        /*AllowInlineNamespace*/false);
6189   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
6190   if (!Previous.empty()) {
6191     Redeclaration = true;
6192     MergeTypedefNameDecl(S, NewTD, Previous);
6193   } else {
6194     inferGslPointerAttribute(NewTD);
6195   }
6196 
6197   if (ShadowedDecl && !Redeclaration)
6198     CheckShadow(NewTD, ShadowedDecl, Previous);
6199 
6200   // If this is the C FILE type, notify the AST context.
6201   if (IdentifierInfo *II = NewTD->getIdentifier())
6202     if (!NewTD->isInvalidDecl() &&
6203         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6204       if (II->isStr("FILE"))
6205         Context.setFILEDecl(NewTD);
6206       else if (II->isStr("jmp_buf"))
6207         Context.setjmp_bufDecl(NewTD);
6208       else if (II->isStr("sigjmp_buf"))
6209         Context.setsigjmp_bufDecl(NewTD);
6210       else if (II->isStr("ucontext_t"))
6211         Context.setucontext_tDecl(NewTD);
6212     }
6213 
6214   return NewTD;
6215 }
6216 
6217 /// Determines whether the given declaration is an out-of-scope
6218 /// previous declaration.
6219 ///
6220 /// This routine should be invoked when name lookup has found a
6221 /// previous declaration (PrevDecl) that is not in the scope where a
6222 /// new declaration by the same name is being introduced. If the new
6223 /// declaration occurs in a local scope, previous declarations with
6224 /// linkage may still be considered previous declarations (C99
6225 /// 6.2.2p4-5, C++ [basic.link]p6).
6226 ///
6227 /// \param PrevDecl the previous declaration found by name
6228 /// lookup
6229 ///
6230 /// \param DC the context in which the new declaration is being
6231 /// declared.
6232 ///
6233 /// \returns true if PrevDecl is an out-of-scope previous declaration
6234 /// for a new delcaration with the same name.
6235 static bool
6236 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
6237                                 ASTContext &Context) {
6238   if (!PrevDecl)
6239     return false;
6240 
6241   if (!PrevDecl->hasLinkage())
6242     return false;
6243 
6244   if (Context.getLangOpts().CPlusPlus) {
6245     // C++ [basic.link]p6:
6246     //   If there is a visible declaration of an entity with linkage
6247     //   having the same name and type, ignoring entities declared
6248     //   outside the innermost enclosing namespace scope, the block
6249     //   scope declaration declares that same entity and receives the
6250     //   linkage of the previous declaration.
6251     DeclContext *OuterContext = DC->getRedeclContext();
6252     if (!OuterContext->isFunctionOrMethod())
6253       // This rule only applies to block-scope declarations.
6254       return false;
6255 
6256     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6257     if (PrevOuterContext->isRecord())
6258       // We found a member function: ignore it.
6259       return false;
6260 
6261     // Find the innermost enclosing namespace for the new and
6262     // previous declarations.
6263     OuterContext = OuterContext->getEnclosingNamespaceContext();
6264     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6265 
6266     // The previous declaration is in a different namespace, so it
6267     // isn't the same function.
6268     if (!OuterContext->Equals(PrevOuterContext))
6269       return false;
6270   }
6271 
6272   return true;
6273 }
6274 
6275 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6276   CXXScopeSpec &SS = D.getCXXScopeSpec();
6277   if (!SS.isSet()) return;
6278   DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6279 }
6280 
6281 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
6282   QualType type = decl->getType();
6283   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
6284   if (lifetime == Qualifiers::OCL_Autoreleasing) {
6285     // Various kinds of declaration aren't allowed to be __autoreleasing.
6286     unsigned kind = -1U;
6287     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6288       if (var->hasAttr<BlocksAttr>())
6289         kind = 0; // __block
6290       else if (!var->hasLocalStorage())
6291         kind = 1; // global
6292     } else if (isa<ObjCIvarDecl>(decl)) {
6293       kind = 3; // ivar
6294     } else if (isa<FieldDecl>(decl)) {
6295       kind = 2; // field
6296     }
6297 
6298     if (kind != -1U) {
6299       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
6300         << kind;
6301     }
6302   } else if (lifetime == Qualifiers::OCL_None) {
6303     // Try to infer lifetime.
6304     if (!type->isObjCLifetimeType())
6305       return false;
6306 
6307     lifetime = type->getObjCARCImplicitLifetime();
6308     type = Context.getLifetimeQualifiedType(type, lifetime);
6309     decl->setType(type);
6310   }
6311 
6312   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6313     // Thread-local variables cannot have lifetime.
6314     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
6315         var->getTLSKind()) {
6316       Diag(var->getLocation(), diag::err_arc_thread_ownership)
6317         << var->getType();
6318       return true;
6319     }
6320   }
6321 
6322   return false;
6323 }
6324 
6325 void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
6326   if (Decl->getType().hasAddressSpace())
6327     return;
6328   if (Decl->getType()->isDependentType())
6329     return;
6330   if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
6331     QualType Type = Var->getType();
6332     if (Type->isSamplerT() || Type->isVoidType())
6333       return;
6334     LangAS ImplAS = LangAS::opencl_private;
6335     if ((getLangOpts().OpenCLCPlusPlus || getLangOpts().OpenCLVersion >= 200) &&
6336         Var->hasGlobalStorage())
6337       ImplAS = LangAS::opencl_global;
6338     // If the original type from a decayed type is an array type and that array
6339     // type has no address space yet, deduce it now.
6340     if (auto DT = dyn_cast<DecayedType>(Type)) {
6341       auto OrigTy = DT->getOriginalType();
6342       if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
6343         // Add the address space to the original array type and then propagate
6344         // that to the element type through `getAsArrayType`.
6345         OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
6346         OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
6347         // Re-generate the decayed type.
6348         Type = Context.getDecayedType(OrigTy);
6349       }
6350     }
6351     Type = Context.getAddrSpaceQualType(Type, ImplAS);
6352     // Apply any qualifiers (including address space) from the array type to
6353     // the element type. This implements C99 6.7.3p8: "If the specification of
6354     // an array type includes any type qualifiers, the element type is so
6355     // qualified, not the array type."
6356     if (Type->isArrayType())
6357       Type = QualType(Context.getAsArrayType(Type), 0);
6358     Decl->setType(Type);
6359   }
6360 }
6361 
6362 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
6363   // Ensure that an auto decl is deduced otherwise the checks below might cache
6364   // the wrong linkage.
6365   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
6366 
6367   // 'weak' only applies to declarations with external linkage.
6368   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
6369     if (!ND.isExternallyVisible()) {
6370       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
6371       ND.dropAttr<WeakAttr>();
6372     }
6373   }
6374   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
6375     if (ND.isExternallyVisible()) {
6376       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
6377       ND.dropAttr<WeakRefAttr>();
6378       ND.dropAttr<AliasAttr>();
6379     }
6380   }
6381 
6382   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
6383     if (VD->hasInit()) {
6384       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
6385         assert(VD->isThisDeclarationADefinition() &&
6386                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
6387         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
6388         VD->dropAttr<AliasAttr>();
6389       }
6390     }
6391   }
6392 
6393   // 'selectany' only applies to externally visible variable declarations.
6394   // It does not apply to functions.
6395   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6396     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6397       S.Diag(Attr->getLocation(),
6398              diag::err_attribute_selectany_non_extern_data);
6399       ND.dropAttr<SelectAnyAttr>();
6400     }
6401   }
6402 
6403   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6404     auto *VD = dyn_cast<VarDecl>(&ND);
6405     bool IsAnonymousNS = false;
6406     bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6407     if (VD) {
6408       const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6409       while (NS && !IsAnonymousNS) {
6410         IsAnonymousNS = NS->isAnonymousNamespace();
6411         NS = dyn_cast<NamespaceDecl>(NS->getParent());
6412       }
6413     }
6414     // dll attributes require external linkage. Static locals may have external
6415     // linkage but still cannot be explicitly imported or exported.
6416     // In Microsoft mode, a variable defined in anonymous namespace must have
6417     // external linkage in order to be exported.
6418     bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6419     if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6420         (!AnonNSInMicrosoftMode &&
6421          (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6422       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6423         << &ND << Attr;
6424       ND.setInvalidDecl();
6425     }
6426   }
6427 
6428   // Virtual functions cannot be marked as 'notail'.
6429   if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
6430     if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
6431       if (MD->isVirtual()) {
6432         S.Diag(ND.getLocation(),
6433                diag::err_invalid_attribute_on_virtual_function)
6434             << Attr;
6435         ND.dropAttr<NotTailCalledAttr>();
6436       }
6437 
6438   // Check the attributes on the function type, if any.
6439   if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6440     // Don't declare this variable in the second operand of the for-statement;
6441     // GCC miscompiles that by ending its lifetime before evaluating the
6442     // third operand. See gcc.gnu.org/PR86769.
6443     AttributedTypeLoc ATL;
6444     for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6445          (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6446          TL = ATL.getModifiedLoc()) {
6447       // The [[lifetimebound]] attribute can be applied to the implicit object
6448       // parameter of a non-static member function (other than a ctor or dtor)
6449       // by applying it to the function type.
6450       if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6451         const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6452         if (!MD || MD->isStatic()) {
6453           S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6454               << !MD << A->getRange();
6455         } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6456           S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6457               << isa<CXXDestructorDecl>(MD) << A->getRange();
6458         }
6459       }
6460     }
6461   }
6462 }
6463 
6464 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6465                                            NamedDecl *NewDecl,
6466                                            bool IsSpecialization,
6467                                            bool IsDefinition) {
6468   if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6469     return;
6470 
6471   bool IsTemplate = false;
6472   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6473     OldDecl = OldTD->getTemplatedDecl();
6474     IsTemplate = true;
6475     if (!IsSpecialization)
6476       IsDefinition = false;
6477   }
6478   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6479     NewDecl = NewTD->getTemplatedDecl();
6480     IsTemplate = true;
6481   }
6482 
6483   if (!OldDecl || !NewDecl)
6484     return;
6485 
6486   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6487   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6488   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6489   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6490 
6491   // dllimport and dllexport are inheritable attributes so we have to exclude
6492   // inherited attribute instances.
6493   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6494                     (NewExportAttr && !NewExportAttr->isInherited());
6495 
6496   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6497   // the only exception being explicit specializations.
6498   // Implicitly generated declarations are also excluded for now because there
6499   // is no other way to switch these to use dllimport or dllexport.
6500   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6501 
6502   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6503     // Allow with a warning for free functions and global variables.
6504     bool JustWarn = false;
6505     if (!OldDecl->isCXXClassMember()) {
6506       auto *VD = dyn_cast<VarDecl>(OldDecl);
6507       if (VD && !VD->getDescribedVarTemplate())
6508         JustWarn = true;
6509       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6510       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6511         JustWarn = true;
6512     }
6513 
6514     // We cannot change a declaration that's been used because IR has already
6515     // been emitted. Dllimported functions will still work though (modulo
6516     // address equality) as they can use the thunk.
6517     if (OldDecl->isUsed())
6518       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6519         JustWarn = false;
6520 
6521     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6522                                : diag::err_attribute_dll_redeclaration;
6523     S.Diag(NewDecl->getLocation(), DiagID)
6524         << NewDecl
6525         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6526     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6527     if (!JustWarn) {
6528       NewDecl->setInvalidDecl();
6529       return;
6530     }
6531   }
6532 
6533   // A redeclaration is not allowed to drop a dllimport attribute, the only
6534   // exceptions being inline function definitions (except for function
6535   // templates), local extern declarations, qualified friend declarations or
6536   // special MSVC extension: in the last case, the declaration is treated as if
6537   // it were marked dllexport.
6538   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6539   bool IsMicrosoftABI  = S.Context.getTargetInfo().shouldDLLImportComdatSymbols();
6540   if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6541     // Ignore static data because out-of-line definitions are diagnosed
6542     // separately.
6543     IsStaticDataMember = VD->isStaticDataMember();
6544     IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6545                    VarDecl::DeclarationOnly;
6546   } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6547     IsInline = FD->isInlined();
6548     IsQualifiedFriend = FD->getQualifier() &&
6549                         FD->getFriendObjectKind() == Decl::FOK_Declared;
6550   }
6551 
6552   if (OldImportAttr && !HasNewAttr &&
6553       (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember &&
6554       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6555     if (IsMicrosoftABI && IsDefinition) {
6556       S.Diag(NewDecl->getLocation(),
6557              diag::warn_redeclaration_without_import_attribute)
6558           << NewDecl;
6559       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6560       NewDecl->dropAttr<DLLImportAttr>();
6561       NewDecl->addAttr(
6562           DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange()));
6563     } else {
6564       S.Diag(NewDecl->getLocation(),
6565              diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6566           << NewDecl << OldImportAttr;
6567       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6568       S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6569       OldDecl->dropAttr<DLLImportAttr>();
6570       NewDecl->dropAttr<DLLImportAttr>();
6571     }
6572   } else if (IsInline && OldImportAttr && !IsMicrosoftABI) {
6573     // In MinGW, seeing a function declared inline drops the dllimport
6574     // attribute.
6575     OldDecl->dropAttr<DLLImportAttr>();
6576     NewDecl->dropAttr<DLLImportAttr>();
6577     S.Diag(NewDecl->getLocation(),
6578            diag::warn_dllimport_dropped_from_inline_function)
6579         << NewDecl << OldImportAttr;
6580   }
6581 
6582   // A specialization of a class template member function is processed here
6583   // since it's a redeclaration. If the parent class is dllexport, the
6584   // specialization inherits that attribute. This doesn't happen automatically
6585   // since the parent class isn't instantiated until later.
6586   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6587     if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6588         !NewImportAttr && !NewExportAttr) {
6589       if (const DLLExportAttr *ParentExportAttr =
6590               MD->getParent()->getAttr<DLLExportAttr>()) {
6591         DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6592         NewAttr->setInherited(true);
6593         NewDecl->addAttr(NewAttr);
6594       }
6595     }
6596   }
6597 }
6598 
6599 /// Given that we are within the definition of the given function,
6600 /// will that definition behave like C99's 'inline', where the
6601 /// definition is discarded except for optimization purposes?
6602 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6603   // Try to avoid calling GetGVALinkageForFunction.
6604 
6605   // All cases of this require the 'inline' keyword.
6606   if (!FD->isInlined()) return false;
6607 
6608   // This is only possible in C++ with the gnu_inline attribute.
6609   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6610     return false;
6611 
6612   // Okay, go ahead and call the relatively-more-expensive function.
6613   return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6614 }
6615 
6616 /// Determine whether a variable is extern "C" prior to attaching
6617 /// an initializer. We can't just call isExternC() here, because that
6618 /// will also compute and cache whether the declaration is externally
6619 /// visible, which might change when we attach the initializer.
6620 ///
6621 /// This can only be used if the declaration is known to not be a
6622 /// redeclaration of an internal linkage declaration.
6623 ///
6624 /// For instance:
6625 ///
6626 ///   auto x = []{};
6627 ///
6628 /// Attaching the initializer here makes this declaration not externally
6629 /// visible, because its type has internal linkage.
6630 ///
6631 /// FIXME: This is a hack.
6632 template<typename T>
6633 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6634   if (S.getLangOpts().CPlusPlus) {
6635     // In C++, the overloadable attribute negates the effects of extern "C".
6636     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6637       return false;
6638 
6639     // So do CUDA's host/device attributes.
6640     if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6641                                  D->template hasAttr<CUDAHostAttr>()))
6642       return false;
6643   }
6644   return D->isExternC();
6645 }
6646 
6647 static bool shouldConsiderLinkage(const VarDecl *VD) {
6648   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6649   if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
6650       isa<OMPDeclareMapperDecl>(DC))
6651     return VD->hasExternalStorage();
6652   if (DC->isFileContext())
6653     return true;
6654   if (DC->isRecord())
6655     return false;
6656   if (isa<RequiresExprBodyDecl>(DC))
6657     return false;
6658   llvm_unreachable("Unexpected context");
6659 }
6660 
6661 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6662   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6663   if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6664       isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
6665     return true;
6666   if (DC->isRecord())
6667     return false;
6668   llvm_unreachable("Unexpected context");
6669 }
6670 
6671 static bool hasParsedAttr(Scope *S, const Declarator &PD,
6672                           ParsedAttr::Kind Kind) {
6673   // Check decl attributes on the DeclSpec.
6674   if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6675     return true;
6676 
6677   // Walk the declarator structure, checking decl attributes that were in a type
6678   // position to the decl itself.
6679   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6680     if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6681       return true;
6682   }
6683 
6684   // Finally, check attributes on the decl itself.
6685   return PD.getAttributes().hasAttribute(Kind);
6686 }
6687 
6688 /// Adjust the \c DeclContext for a function or variable that might be a
6689 /// function-local external declaration.
6690 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6691   if (!DC->isFunctionOrMethod())
6692     return false;
6693 
6694   // If this is a local extern function or variable declared within a function
6695   // template, don't add it into the enclosing namespace scope until it is
6696   // instantiated; it might have a dependent type right now.
6697   if (DC->isDependentContext())
6698     return true;
6699 
6700   // C++11 [basic.link]p7:
6701   //   When a block scope declaration of an entity with linkage is not found to
6702   //   refer to some other declaration, then that entity is a member of the
6703   //   innermost enclosing namespace.
6704   //
6705   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6706   // semantically-enclosing namespace, not a lexically-enclosing one.
6707   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6708     DC = DC->getParent();
6709   return true;
6710 }
6711 
6712 /// Returns true if given declaration has external C language linkage.
6713 static bool isDeclExternC(const Decl *D) {
6714   if (const auto *FD = dyn_cast<FunctionDecl>(D))
6715     return FD->isExternC();
6716   if (const auto *VD = dyn_cast<VarDecl>(D))
6717     return VD->isExternC();
6718 
6719   llvm_unreachable("Unknown type of decl!");
6720 }
6721 /// Returns true if there hasn't been any invalid type diagnosed.
6722 static bool diagnoseOpenCLTypes(Scope *S, Sema &Se, Declarator &D,
6723                                 DeclContext *DC, QualType R) {
6724   // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6725   // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6726   // argument.
6727   if (R->isImageType() || R->isPipeType()) {
6728     Se.Diag(D.getIdentifierLoc(),
6729             diag::err_opencl_type_can_only_be_used_as_function_parameter)
6730         << R;
6731     D.setInvalidType();
6732     return false;
6733   }
6734 
6735   // OpenCL v1.2 s6.9.r:
6736   // The event type cannot be used to declare a program scope variable.
6737   // OpenCL v2.0 s6.9.q:
6738   // The clk_event_t and reserve_id_t types cannot be declared in program
6739   // scope.
6740   if (NULL == S->getParent()) {
6741     if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6742       Se.Diag(D.getIdentifierLoc(),
6743               diag::err_invalid_type_for_program_scope_var)
6744           << R;
6745       D.setInvalidType();
6746       return false;
6747     }
6748   }
6749 
6750   // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6751   QualType NR = R;
6752   while (NR->isPointerType()) {
6753     if (NR->isFunctionPointerType()) {
6754       Se.Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
6755       D.setInvalidType();
6756       return false;
6757     }
6758     NR = NR->getPointeeType();
6759   }
6760 
6761   if (!Se.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
6762     // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6763     // half array type (unless the cl_khr_fp16 extension is enabled).
6764     if (Se.Context.getBaseElementType(R)->isHalfType()) {
6765       Se.Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
6766       D.setInvalidType();
6767       return false;
6768     }
6769   }
6770 
6771   // OpenCL v1.2 s6.9.r:
6772   // The event type cannot be used with the __local, __constant and __global
6773   // address space qualifiers.
6774   if (R->isEventT()) {
6775     if (R.getAddressSpace() != LangAS::opencl_private) {
6776       Se.Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual);
6777       D.setInvalidType();
6778       return false;
6779     }
6780   }
6781 
6782   // C++ for OpenCL does not allow the thread_local storage qualifier.
6783   // OpenCL C does not support thread_local either, and
6784   // also reject all other thread storage class specifiers.
6785   DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
6786   if (TSC != TSCS_unspecified) {
6787     bool IsCXX = Se.getLangOpts().OpenCLCPlusPlus;
6788     Se.Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6789             diag::err_opencl_unknown_type_specifier)
6790         << IsCXX << Se.getLangOpts().getOpenCLVersionTuple().getAsString()
6791         << DeclSpec::getSpecifierName(TSC) << 1;
6792     D.setInvalidType();
6793     return false;
6794   }
6795 
6796   if (R->isSamplerT()) {
6797     // OpenCL v1.2 s6.9.b p4:
6798     // The sampler type cannot be used with the __local and __global address
6799     // space qualifiers.
6800     if (R.getAddressSpace() == LangAS::opencl_local ||
6801         R.getAddressSpace() == LangAS::opencl_global) {
6802       Se.Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
6803       D.setInvalidType();
6804     }
6805 
6806     // OpenCL v1.2 s6.12.14.1:
6807     // A global sampler must be declared with either the constant address
6808     // space qualifier or with the const qualifier.
6809     if (DC->isTranslationUnit() &&
6810         !(R.getAddressSpace() == LangAS::opencl_constant ||
6811           R.isConstQualified())) {
6812       Se.Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
6813       D.setInvalidType();
6814     }
6815     if (D.isInvalidType())
6816       return false;
6817   }
6818   return true;
6819 }
6820 
6821 NamedDecl *Sema::ActOnVariableDeclarator(
6822     Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6823     LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6824     bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6825   QualType R = TInfo->getType();
6826   DeclarationName Name = GetNameForDeclarator(D).getName();
6827 
6828   IdentifierInfo *II = Name.getAsIdentifierInfo();
6829 
6830   if (D.isDecompositionDeclarator()) {
6831     // Take the name of the first declarator as our name for diagnostic
6832     // purposes.
6833     auto &Decomp = D.getDecompositionDeclarator();
6834     if (!Decomp.bindings().empty()) {
6835       II = Decomp.bindings()[0].Name;
6836       Name = II;
6837     }
6838   } else if (!II) {
6839     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6840     return nullptr;
6841   }
6842 
6843 
6844   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6845   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6846 
6847   // dllimport globals without explicit storage class are treated as extern. We
6848   // have to change the storage class this early to get the right DeclContext.
6849   if (SC == SC_None && !DC->isRecord() &&
6850       hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6851       !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6852     SC = SC_Extern;
6853 
6854   DeclContext *OriginalDC = DC;
6855   bool IsLocalExternDecl = SC == SC_Extern &&
6856                            adjustContextForLocalExternDecl(DC);
6857 
6858   if (SCSpec == DeclSpec::SCS_mutable) {
6859     // mutable can only appear on non-static class members, so it's always
6860     // an error here
6861     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6862     D.setInvalidType();
6863     SC = SC_None;
6864   }
6865 
6866   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6867       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6868                               D.getDeclSpec().getStorageClassSpecLoc())) {
6869     // In C++11, the 'register' storage class specifier is deprecated.
6870     // Suppress the warning in system macros, it's used in macros in some
6871     // popular C system headers, such as in glibc's htonl() macro.
6872     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6873          getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6874                                    : diag::warn_deprecated_register)
6875       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6876   }
6877 
6878   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6879 
6880   if (!DC->isRecord() && S->getFnParent() == nullptr) {
6881     // C99 6.9p2: The storage-class specifiers auto and register shall not
6882     // appear in the declaration specifiers in an external declaration.
6883     // Global Register+Asm is a GNU extension we support.
6884     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6885       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6886       D.setInvalidType();
6887     }
6888   }
6889 
6890   // If this variable has a variable-modified type and an initializer, try to
6891   // fold to a constant-sized type. This is otherwise invalid.
6892   if (D.hasInitializer() && R->isVariablyModifiedType())
6893     tryToFixVariablyModifiedVarType(*this, TInfo, R, D.getIdentifierLoc(),
6894                                     /*DiagID=*/0);
6895 
6896   bool IsMemberSpecialization = false;
6897   bool IsVariableTemplateSpecialization = false;
6898   bool IsPartialSpecialization = false;
6899   bool IsVariableTemplate = false;
6900   VarDecl *NewVD = nullptr;
6901   VarTemplateDecl *NewTemplate = nullptr;
6902   TemplateParameterList *TemplateParams = nullptr;
6903   if (!getLangOpts().CPlusPlus) {
6904     NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
6905                             II, R, TInfo, SC);
6906 
6907     if (R->getContainedDeducedType())
6908       ParsingInitForAutoVars.insert(NewVD);
6909 
6910     if (D.isInvalidType())
6911       NewVD->setInvalidDecl();
6912 
6913     if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
6914         NewVD->hasLocalStorage())
6915       checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
6916                             NTCUC_AutoVar, NTCUK_Destruct);
6917   } else {
6918     bool Invalid = false;
6919 
6920     if (DC->isRecord() && !CurContext->isRecord()) {
6921       // This is an out-of-line definition of a static data member.
6922       switch (SC) {
6923       case SC_None:
6924         break;
6925       case SC_Static:
6926         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6927              diag::err_static_out_of_line)
6928           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6929         break;
6930       case SC_Auto:
6931       case SC_Register:
6932       case SC_Extern:
6933         // [dcl.stc] p2: The auto or register specifiers shall be applied only
6934         // to names of variables declared in a block or to function parameters.
6935         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
6936         // of class members
6937 
6938         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6939              diag::err_storage_class_for_static_member)
6940           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6941         break;
6942       case SC_PrivateExtern:
6943         llvm_unreachable("C storage class in c++!");
6944       }
6945     }
6946 
6947     if (SC == SC_Static && CurContext->isRecord()) {
6948       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
6949         // Walk up the enclosing DeclContexts to check for any that are
6950         // incompatible with static data members.
6951         const DeclContext *FunctionOrMethod = nullptr;
6952         const CXXRecordDecl *AnonStruct = nullptr;
6953         for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) {
6954           if (Ctxt->isFunctionOrMethod()) {
6955             FunctionOrMethod = Ctxt;
6956             break;
6957           }
6958           const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt);
6959           if (ParentDecl && !ParentDecl->getDeclName()) {
6960             AnonStruct = ParentDecl;
6961             break;
6962           }
6963         }
6964         if (FunctionOrMethod) {
6965           // C++ [class.static.data]p5: A local class shall not have static data
6966           // members.
6967           Diag(D.getIdentifierLoc(),
6968                diag::err_static_data_member_not_allowed_in_local_class)
6969             << Name << RD->getDeclName() << RD->getTagKind();
6970         } else if (AnonStruct) {
6971           // C++ [class.static.data]p4: Unnamed classes and classes contained
6972           // directly or indirectly within unnamed classes shall not contain
6973           // static data members.
6974           Diag(D.getIdentifierLoc(),
6975                diag::err_static_data_member_not_allowed_in_anon_struct)
6976             << Name << AnonStruct->getTagKind();
6977           Invalid = true;
6978         } else if (RD->isUnion()) {
6979           // C++98 [class.union]p1: If a union contains a static data member,
6980           // the program is ill-formed. C++11 drops this restriction.
6981           Diag(D.getIdentifierLoc(),
6982                getLangOpts().CPlusPlus11
6983                  ? diag::warn_cxx98_compat_static_data_member_in_union
6984                  : diag::ext_static_data_member_in_union) << Name;
6985         }
6986       }
6987     }
6988 
6989     // Match up the template parameter lists with the scope specifier, then
6990     // determine whether we have a template or a template specialization.
6991     bool InvalidScope = false;
6992     TemplateParams = MatchTemplateParametersToScopeSpecifier(
6993         D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
6994         D.getCXXScopeSpec(),
6995         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
6996             ? D.getName().TemplateId
6997             : nullptr,
6998         TemplateParamLists,
6999         /*never a friend*/ false, IsMemberSpecialization, InvalidScope);
7000     Invalid |= InvalidScope;
7001 
7002     if (TemplateParams) {
7003       if (!TemplateParams->size() &&
7004           D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
7005         // There is an extraneous 'template<>' for this variable. Complain
7006         // about it, but allow the declaration of the variable.
7007         Diag(TemplateParams->getTemplateLoc(),
7008              diag::err_template_variable_noparams)
7009           << II
7010           << SourceRange(TemplateParams->getTemplateLoc(),
7011                          TemplateParams->getRAngleLoc());
7012         TemplateParams = nullptr;
7013       } else {
7014         // Check that we can declare a template here.
7015         if (CheckTemplateDeclScope(S, TemplateParams))
7016           return nullptr;
7017 
7018         if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
7019           // This is an explicit specialization or a partial specialization.
7020           IsVariableTemplateSpecialization = true;
7021           IsPartialSpecialization = TemplateParams->size() > 0;
7022         } else { // if (TemplateParams->size() > 0)
7023           // This is a template declaration.
7024           IsVariableTemplate = true;
7025 
7026           // Only C++1y supports variable templates (N3651).
7027           Diag(D.getIdentifierLoc(),
7028                getLangOpts().CPlusPlus14
7029                    ? diag::warn_cxx11_compat_variable_template
7030                    : diag::ext_variable_template);
7031         }
7032       }
7033     } else {
7034       // Check that we can declare a member specialization here.
7035       if (!TemplateParamLists.empty() && IsMemberSpecialization &&
7036           CheckTemplateDeclScope(S, TemplateParamLists.back()))
7037         return nullptr;
7038       assert((Invalid ||
7039               D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
7040              "should have a 'template<>' for this decl");
7041     }
7042 
7043     if (IsVariableTemplateSpecialization) {
7044       SourceLocation TemplateKWLoc =
7045           TemplateParamLists.size() > 0
7046               ? TemplateParamLists[0]->getTemplateLoc()
7047               : SourceLocation();
7048       DeclResult Res = ActOnVarTemplateSpecialization(
7049           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
7050           IsPartialSpecialization);
7051       if (Res.isInvalid())
7052         return nullptr;
7053       NewVD = cast<VarDecl>(Res.get());
7054       AddToScope = false;
7055     } else if (D.isDecompositionDeclarator()) {
7056       NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
7057                                         D.getIdentifierLoc(), R, TInfo, SC,
7058                                         Bindings);
7059     } else
7060       NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
7061                               D.getIdentifierLoc(), II, R, TInfo, SC);
7062 
7063     // If this is supposed to be a variable template, create it as such.
7064     if (IsVariableTemplate) {
7065       NewTemplate =
7066           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
7067                                   TemplateParams, NewVD);
7068       NewVD->setDescribedVarTemplate(NewTemplate);
7069     }
7070 
7071     // If this decl has an auto type in need of deduction, make a note of the
7072     // Decl so we can diagnose uses of it in its own initializer.
7073     if (R->getContainedDeducedType())
7074       ParsingInitForAutoVars.insert(NewVD);
7075 
7076     if (D.isInvalidType() || Invalid) {
7077       NewVD->setInvalidDecl();
7078       if (NewTemplate)
7079         NewTemplate->setInvalidDecl();
7080     }
7081 
7082     SetNestedNameSpecifier(*this, NewVD, D);
7083 
7084     // If we have any template parameter lists that don't directly belong to
7085     // the variable (matching the scope specifier), store them.
7086     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
7087     if (TemplateParamLists.size() > VDTemplateParamLists)
7088       NewVD->setTemplateParameterListsInfo(
7089           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
7090   }
7091 
7092   if (D.getDeclSpec().isInlineSpecified()) {
7093     if (!getLangOpts().CPlusPlus) {
7094       Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
7095           << 0;
7096     } else if (CurContext->isFunctionOrMethod()) {
7097       // 'inline' is not allowed on block scope variable declaration.
7098       Diag(D.getDeclSpec().getInlineSpecLoc(),
7099            diag::err_inline_declaration_block_scope) << Name
7100         << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7101     } else {
7102       Diag(D.getDeclSpec().getInlineSpecLoc(),
7103            getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
7104                                      : diag::ext_inline_variable);
7105       NewVD->setInlineSpecified();
7106     }
7107   }
7108 
7109   // Set the lexical context. If the declarator has a C++ scope specifier, the
7110   // lexical context will be different from the semantic context.
7111   NewVD->setLexicalDeclContext(CurContext);
7112   if (NewTemplate)
7113     NewTemplate->setLexicalDeclContext(CurContext);
7114 
7115   if (IsLocalExternDecl) {
7116     if (D.isDecompositionDeclarator())
7117       for (auto *B : Bindings)
7118         B->setLocalExternDecl();
7119     else
7120       NewVD->setLocalExternDecl();
7121   }
7122 
7123   bool EmitTLSUnsupportedError = false;
7124   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
7125     // C++11 [dcl.stc]p4:
7126     //   When thread_local is applied to a variable of block scope the
7127     //   storage-class-specifier static is implied if it does not appear
7128     //   explicitly.
7129     // Core issue: 'static' is not implied if the variable is declared
7130     //   'extern'.
7131     if (NewVD->hasLocalStorage() &&
7132         (SCSpec != DeclSpec::SCS_unspecified ||
7133          TSCS != DeclSpec::TSCS_thread_local ||
7134          !DC->isFunctionOrMethod()))
7135       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7136            diag::err_thread_non_global)
7137         << DeclSpec::getSpecifierName(TSCS);
7138     else if (!Context.getTargetInfo().isTLSSupported()) {
7139       if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7140           getLangOpts().SYCLIsDevice) {
7141         // Postpone error emission until we've collected attributes required to
7142         // figure out whether it's a host or device variable and whether the
7143         // error should be ignored.
7144         EmitTLSUnsupportedError = true;
7145         // We still need to mark the variable as TLS so it shows up in AST with
7146         // proper storage class for other tools to use even if we're not going
7147         // to emit any code for it.
7148         NewVD->setTSCSpec(TSCS);
7149       } else
7150         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7151              diag::err_thread_unsupported);
7152     } else
7153       NewVD->setTSCSpec(TSCS);
7154   }
7155 
7156   switch (D.getDeclSpec().getConstexprSpecifier()) {
7157   case ConstexprSpecKind::Unspecified:
7158     break;
7159 
7160   case ConstexprSpecKind::Consteval:
7161     Diag(D.getDeclSpec().getConstexprSpecLoc(),
7162          diag::err_constexpr_wrong_decl_kind)
7163         << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
7164     LLVM_FALLTHROUGH;
7165 
7166   case ConstexprSpecKind::Constexpr:
7167     NewVD->setConstexpr(true);
7168     MaybeAddCUDAConstantAttr(NewVD);
7169     // C++1z [dcl.spec.constexpr]p1:
7170     //   A static data member declared with the constexpr specifier is
7171     //   implicitly an inline variable.
7172     if (NewVD->isStaticDataMember() &&
7173         (getLangOpts().CPlusPlus17 ||
7174          Context.getTargetInfo().getCXXABI().isMicrosoft()))
7175       NewVD->setImplicitlyInline();
7176     break;
7177 
7178   case ConstexprSpecKind::Constinit:
7179     if (!NewVD->hasGlobalStorage())
7180       Diag(D.getDeclSpec().getConstexprSpecLoc(),
7181            diag::err_constinit_local_variable);
7182     else
7183       NewVD->addAttr(ConstInitAttr::Create(
7184           Context, D.getDeclSpec().getConstexprSpecLoc(),
7185           AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit));
7186     break;
7187   }
7188 
7189   // C99 6.7.4p3
7190   //   An inline definition of a function with external linkage shall
7191   //   not contain a definition of a modifiable object with static or
7192   //   thread storage duration...
7193   // We only apply this when the function is required to be defined
7194   // elsewhere, i.e. when the function is not 'extern inline'.  Note
7195   // that a local variable with thread storage duration still has to
7196   // be marked 'static'.  Also note that it's possible to get these
7197   // semantics in C++ using __attribute__((gnu_inline)).
7198   if (SC == SC_Static && S->getFnParent() != nullptr &&
7199       !NewVD->getType().isConstQualified()) {
7200     FunctionDecl *CurFD = getCurFunctionDecl();
7201     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
7202       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7203            diag::warn_static_local_in_extern_inline);
7204       MaybeSuggestAddingStaticToDecl(CurFD);
7205     }
7206   }
7207 
7208   if (D.getDeclSpec().isModulePrivateSpecified()) {
7209     if (IsVariableTemplateSpecialization)
7210       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7211           << (IsPartialSpecialization ? 1 : 0)
7212           << FixItHint::CreateRemoval(
7213                  D.getDeclSpec().getModulePrivateSpecLoc());
7214     else if (IsMemberSpecialization)
7215       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7216         << 2
7217         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7218     else if (NewVD->hasLocalStorage())
7219       Diag(NewVD->getLocation(), diag::err_module_private_local)
7220           << 0 << NewVD
7221           << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7222           << FixItHint::CreateRemoval(
7223                  D.getDeclSpec().getModulePrivateSpecLoc());
7224     else {
7225       NewVD->setModulePrivate();
7226       if (NewTemplate)
7227         NewTemplate->setModulePrivate();
7228       for (auto *B : Bindings)
7229         B->setModulePrivate();
7230     }
7231   }
7232 
7233   if (getLangOpts().OpenCL) {
7234 
7235     deduceOpenCLAddressSpace(NewVD);
7236 
7237     diagnoseOpenCLTypes(S, *this, D, DC, NewVD->getType());
7238   }
7239 
7240   // Handle attributes prior to checking for duplicates in MergeVarDecl
7241   ProcessDeclAttributes(S, NewVD, D);
7242 
7243   if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7244       getLangOpts().SYCLIsDevice) {
7245     if (EmitTLSUnsupportedError &&
7246         ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
7247          (getLangOpts().OpenMPIsDevice &&
7248           OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
7249       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7250            diag::err_thread_unsupported);
7251 
7252     if (EmitTLSUnsupportedError &&
7253         (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)))
7254       targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported);
7255     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
7256     // storage [duration]."
7257     if (SC == SC_None && S->getFnParent() != nullptr &&
7258         (NewVD->hasAttr<CUDASharedAttr>() ||
7259          NewVD->hasAttr<CUDAConstantAttr>())) {
7260       NewVD->setStorageClass(SC_Static);
7261     }
7262   }
7263 
7264   // Ensure that dllimport globals without explicit storage class are treated as
7265   // extern. The storage class is set above using parsed attributes. Now we can
7266   // check the VarDecl itself.
7267   assert(!NewVD->hasAttr<DLLImportAttr>() ||
7268          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
7269          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
7270 
7271   // In auto-retain/release, infer strong retension for variables of
7272   // retainable type.
7273   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
7274     NewVD->setInvalidDecl();
7275 
7276   // Handle GNU asm-label extension (encoded as an attribute).
7277   if (Expr *E = (Expr*)D.getAsmLabel()) {
7278     // The parser guarantees this is a string.
7279     StringLiteral *SE = cast<StringLiteral>(E);
7280     StringRef Label = SE->getString();
7281     if (S->getFnParent() != nullptr) {
7282       switch (SC) {
7283       case SC_None:
7284       case SC_Auto:
7285         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
7286         break;
7287       case SC_Register:
7288         // Local Named register
7289         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
7290             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
7291           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7292         break;
7293       case SC_Static:
7294       case SC_Extern:
7295       case SC_PrivateExtern:
7296         break;
7297       }
7298     } else if (SC == SC_Register) {
7299       // Global Named register
7300       if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
7301         const auto &TI = Context.getTargetInfo();
7302         bool HasSizeMismatch;
7303 
7304         if (!TI.isValidGCCRegisterName(Label))
7305           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7306         else if (!TI.validateGlobalRegisterVariable(Label,
7307                                                     Context.getTypeSize(R),
7308                                                     HasSizeMismatch))
7309           Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
7310         else if (HasSizeMismatch)
7311           Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
7312       }
7313 
7314       if (!R->isIntegralType(Context) && !R->isPointerType()) {
7315         Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
7316         NewVD->setInvalidDecl(true);
7317       }
7318     }
7319 
7320     NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
7321                                         /*IsLiteralLabel=*/true,
7322                                         SE->getStrTokenLoc(0)));
7323   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7324     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7325       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
7326     if (I != ExtnameUndeclaredIdentifiers.end()) {
7327       if (isDeclExternC(NewVD)) {
7328         NewVD->addAttr(I->second);
7329         ExtnameUndeclaredIdentifiers.erase(I);
7330       } else
7331         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
7332             << /*Variable*/1 << NewVD;
7333     }
7334   }
7335 
7336   // Find the shadowed declaration before filtering for scope.
7337   NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
7338                                 ? getShadowedDeclaration(NewVD, Previous)
7339                                 : nullptr;
7340 
7341   // Don't consider existing declarations that are in a different
7342   // scope and are out-of-semantic-context declarations (if the new
7343   // declaration has linkage).
7344   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
7345                        D.getCXXScopeSpec().isNotEmpty() ||
7346                        IsMemberSpecialization ||
7347                        IsVariableTemplateSpecialization);
7348 
7349   // Check whether the previous declaration is in the same block scope. This
7350   // affects whether we merge types with it, per C++11 [dcl.array]p3.
7351   if (getLangOpts().CPlusPlus &&
7352       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
7353     NewVD->setPreviousDeclInSameBlockScope(
7354         Previous.isSingleResult() && !Previous.isShadowed() &&
7355         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
7356 
7357   if (!getLangOpts().CPlusPlus) {
7358     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7359   } else {
7360     // If this is an explicit specialization of a static data member, check it.
7361     if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
7362         CheckMemberSpecialization(NewVD, Previous))
7363       NewVD->setInvalidDecl();
7364 
7365     // Merge the decl with the existing one if appropriate.
7366     if (!Previous.empty()) {
7367       if (Previous.isSingleResult() &&
7368           isa<FieldDecl>(Previous.getFoundDecl()) &&
7369           D.getCXXScopeSpec().isSet()) {
7370         // The user tried to define a non-static data member
7371         // out-of-line (C++ [dcl.meaning]p1).
7372         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
7373           << D.getCXXScopeSpec().getRange();
7374         Previous.clear();
7375         NewVD->setInvalidDecl();
7376       }
7377     } else if (D.getCXXScopeSpec().isSet()) {
7378       // No previous declaration in the qualifying scope.
7379       Diag(D.getIdentifierLoc(), diag::err_no_member)
7380         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
7381         << D.getCXXScopeSpec().getRange();
7382       NewVD->setInvalidDecl();
7383     }
7384 
7385     if (!IsVariableTemplateSpecialization)
7386       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7387 
7388     if (NewTemplate) {
7389       VarTemplateDecl *PrevVarTemplate =
7390           NewVD->getPreviousDecl()
7391               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
7392               : nullptr;
7393 
7394       // Check the template parameter list of this declaration, possibly
7395       // merging in the template parameter list from the previous variable
7396       // template declaration.
7397       if (CheckTemplateParameterList(
7398               TemplateParams,
7399               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
7400                               : nullptr,
7401               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
7402                DC->isDependentContext())
7403                   ? TPC_ClassTemplateMember
7404                   : TPC_VarTemplate))
7405         NewVD->setInvalidDecl();
7406 
7407       // If we are providing an explicit specialization of a static variable
7408       // template, make a note of that.
7409       if (PrevVarTemplate &&
7410           PrevVarTemplate->getInstantiatedFromMemberTemplate())
7411         PrevVarTemplate->setMemberSpecialization();
7412     }
7413   }
7414 
7415   // Diagnose shadowed variables iff this isn't a redeclaration.
7416   if (ShadowedDecl && !D.isRedeclaration())
7417     CheckShadow(NewVD, ShadowedDecl, Previous);
7418 
7419   ProcessPragmaWeak(S, NewVD);
7420 
7421   // If this is the first declaration of an extern C variable, update
7422   // the map of such variables.
7423   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
7424       isIncompleteDeclExternC(*this, NewVD))
7425     RegisterLocallyScopedExternCDecl(NewVD, S);
7426 
7427   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
7428     MangleNumberingContext *MCtx;
7429     Decl *ManglingContextDecl;
7430     std::tie(MCtx, ManglingContextDecl) =
7431         getCurrentMangleNumberContext(NewVD->getDeclContext());
7432     if (MCtx) {
7433       Context.setManglingNumber(
7434           NewVD, MCtx->getManglingNumber(
7435                      NewVD, getMSManglingNumber(getLangOpts(), S)));
7436       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
7437     }
7438   }
7439 
7440   // Special handling of variable named 'main'.
7441   if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
7442       NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7443       !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
7444 
7445     // C++ [basic.start.main]p3
7446     // A program that declares a variable main at global scope is ill-formed.
7447     if (getLangOpts().CPlusPlus)
7448       Diag(D.getBeginLoc(), diag::err_main_global_variable);
7449 
7450     // In C, and external-linkage variable named main results in undefined
7451     // behavior.
7452     else if (NewVD->hasExternalFormalLinkage())
7453       Diag(D.getBeginLoc(), diag::warn_main_redefined);
7454   }
7455 
7456   if (D.isRedeclaration() && !Previous.empty()) {
7457     NamedDecl *Prev = Previous.getRepresentativeDecl();
7458     checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
7459                                    D.isFunctionDefinition());
7460   }
7461 
7462   if (NewTemplate) {
7463     if (NewVD->isInvalidDecl())
7464       NewTemplate->setInvalidDecl();
7465     ActOnDocumentableDecl(NewTemplate);
7466     return NewTemplate;
7467   }
7468 
7469   if (IsMemberSpecialization && !NewVD->isInvalidDecl())
7470     CompleteMemberSpecialization(NewVD, Previous);
7471 
7472   return NewVD;
7473 }
7474 
7475 /// Enum describing the %select options in diag::warn_decl_shadow.
7476 enum ShadowedDeclKind {
7477   SDK_Local,
7478   SDK_Global,
7479   SDK_StaticMember,
7480   SDK_Field,
7481   SDK_Typedef,
7482   SDK_Using
7483 };
7484 
7485 /// Determine what kind of declaration we're shadowing.
7486 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
7487                                                 const DeclContext *OldDC) {
7488   if (isa<TypeAliasDecl>(ShadowedDecl))
7489     return SDK_Using;
7490   else if (isa<TypedefDecl>(ShadowedDecl))
7491     return SDK_Typedef;
7492   else if (isa<RecordDecl>(OldDC))
7493     return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
7494 
7495   return OldDC->isFileContext() ? SDK_Global : SDK_Local;
7496 }
7497 
7498 /// Return the location of the capture if the given lambda captures the given
7499 /// variable \p VD, or an invalid source location otherwise.
7500 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
7501                                          const VarDecl *VD) {
7502   for (const Capture &Capture : LSI->Captures) {
7503     if (Capture.isVariableCapture() && Capture.getVariable() == VD)
7504       return Capture.getLocation();
7505   }
7506   return SourceLocation();
7507 }
7508 
7509 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
7510                                      const LookupResult &R) {
7511   // Only diagnose if we're shadowing an unambiguous field or variable.
7512   if (R.getResultKind() != LookupResult::Found)
7513     return false;
7514 
7515   // Return false if warning is ignored.
7516   return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
7517 }
7518 
7519 /// Return the declaration shadowed by the given variable \p D, or null
7520 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7521 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
7522                                         const LookupResult &R) {
7523   if (!shouldWarnIfShadowedDecl(Diags, R))
7524     return nullptr;
7525 
7526   // Don't diagnose declarations at file scope.
7527   if (D->hasGlobalStorage())
7528     return nullptr;
7529 
7530   NamedDecl *ShadowedDecl = R.getFoundDecl();
7531   return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
7532              ? ShadowedDecl
7533              : nullptr;
7534 }
7535 
7536 /// Return the declaration shadowed by the given typedef \p D, or null
7537 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7538 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
7539                                         const LookupResult &R) {
7540   // Don't warn if typedef declaration is part of a class
7541   if (D->getDeclContext()->isRecord())
7542     return nullptr;
7543 
7544   if (!shouldWarnIfShadowedDecl(Diags, R))
7545     return nullptr;
7546 
7547   NamedDecl *ShadowedDecl = R.getFoundDecl();
7548   return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7549 }
7550 
7551 /// Diagnose variable or built-in function shadowing.  Implements
7552 /// -Wshadow.
7553 ///
7554 /// This method is called whenever a VarDecl is added to a "useful"
7555 /// scope.
7556 ///
7557 /// \param ShadowedDecl the declaration that is shadowed by the given variable
7558 /// \param R the lookup of the name
7559 ///
7560 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7561                        const LookupResult &R) {
7562   DeclContext *NewDC = D->getDeclContext();
7563 
7564   if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7565     // Fields are not shadowed by variables in C++ static methods.
7566     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7567       if (MD->isStatic())
7568         return;
7569 
7570     // Fields shadowed by constructor parameters are a special case. Usually
7571     // the constructor initializes the field with the parameter.
7572     if (isa<CXXConstructorDecl>(NewDC))
7573       if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7574         // Remember that this was shadowed so we can either warn about its
7575         // modification or its existence depending on warning settings.
7576         ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7577         return;
7578       }
7579   }
7580 
7581   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7582     if (shadowedVar->isExternC()) {
7583       // For shadowing external vars, make sure that we point to the global
7584       // declaration, not a locally scoped extern declaration.
7585       for (auto I : shadowedVar->redecls())
7586         if (I->isFileVarDecl()) {
7587           ShadowedDecl = I;
7588           break;
7589         }
7590     }
7591 
7592   DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7593 
7594   unsigned WarningDiag = diag::warn_decl_shadow;
7595   SourceLocation CaptureLoc;
7596   if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7597       isa<CXXMethodDecl>(NewDC)) {
7598     if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7599       if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7600         if (RD->getLambdaCaptureDefault() == LCD_None) {
7601           // Try to avoid warnings for lambdas with an explicit capture list.
7602           const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7603           // Warn only when the lambda captures the shadowed decl explicitly.
7604           CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7605           if (CaptureLoc.isInvalid())
7606             WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7607         } else {
7608           // Remember that this was shadowed so we can avoid the warning if the
7609           // shadowed decl isn't captured and the warning settings allow it.
7610           cast<LambdaScopeInfo>(getCurFunction())
7611               ->ShadowingDecls.push_back(
7612                   {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7613           return;
7614         }
7615       }
7616 
7617       if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7618         // A variable can't shadow a local variable in an enclosing scope, if
7619         // they are separated by a non-capturing declaration context.
7620         for (DeclContext *ParentDC = NewDC;
7621              ParentDC && !ParentDC->Equals(OldDC);
7622              ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7623           // Only block literals, captured statements, and lambda expressions
7624           // can capture; other scopes don't.
7625           if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7626               !isLambdaCallOperator(ParentDC)) {
7627             return;
7628           }
7629         }
7630       }
7631     }
7632   }
7633 
7634   // Only warn about certain kinds of shadowing for class members.
7635   if (NewDC && NewDC->isRecord()) {
7636     // In particular, don't warn about shadowing non-class members.
7637     if (!OldDC->isRecord())
7638       return;
7639 
7640     // TODO: should we warn about static data members shadowing
7641     // static data members from base classes?
7642 
7643     // TODO: don't diagnose for inaccessible shadowed members.
7644     // This is hard to do perfectly because we might friend the
7645     // shadowing context, but that's just a false negative.
7646   }
7647 
7648 
7649   DeclarationName Name = R.getLookupName();
7650 
7651   // Emit warning and note.
7652   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7653     return;
7654   ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7655   Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7656   if (!CaptureLoc.isInvalid())
7657     Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7658         << Name << /*explicitly*/ 1;
7659   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7660 }
7661 
7662 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7663 /// when these variables are captured by the lambda.
7664 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7665   for (const auto &Shadow : LSI->ShadowingDecls) {
7666     const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7667     // Try to avoid the warning when the shadowed decl isn't captured.
7668     SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7669     const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7670     Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7671                                        ? diag::warn_decl_shadow_uncaptured_local
7672                                        : diag::warn_decl_shadow)
7673         << Shadow.VD->getDeclName()
7674         << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7675     if (!CaptureLoc.isInvalid())
7676       Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7677           << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7678     Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7679   }
7680 }
7681 
7682 /// Check -Wshadow without the advantage of a previous lookup.
7683 void Sema::CheckShadow(Scope *S, VarDecl *D) {
7684   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7685     return;
7686 
7687   LookupResult R(*this, D->getDeclName(), D->getLocation(),
7688                  Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7689   LookupName(R, S);
7690   if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7691     CheckShadow(D, ShadowedDecl, R);
7692 }
7693 
7694 /// Check if 'E', which is an expression that is about to be modified, refers
7695 /// to a constructor parameter that shadows a field.
7696 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7697   // Quickly ignore expressions that can't be shadowing ctor parameters.
7698   if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7699     return;
7700   E = E->IgnoreParenImpCasts();
7701   auto *DRE = dyn_cast<DeclRefExpr>(E);
7702   if (!DRE)
7703     return;
7704   const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7705   auto I = ShadowingDecls.find(D);
7706   if (I == ShadowingDecls.end())
7707     return;
7708   const NamedDecl *ShadowedDecl = I->second;
7709   const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7710   Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7711   Diag(D->getLocation(), diag::note_var_declared_here) << D;
7712   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7713 
7714   // Avoid issuing multiple warnings about the same decl.
7715   ShadowingDecls.erase(I);
7716 }
7717 
7718 /// Check for conflict between this global or extern "C" declaration and
7719 /// previous global or extern "C" declarations. This is only used in C++.
7720 template<typename T>
7721 static bool checkGlobalOrExternCConflict(
7722     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7723   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
7724   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7725 
7726   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7727     // The common case: this global doesn't conflict with any extern "C"
7728     // declaration.
7729     return false;
7730   }
7731 
7732   if (Prev) {
7733     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7734       // Both the old and new declarations have C language linkage. This is a
7735       // redeclaration.
7736       Previous.clear();
7737       Previous.addDecl(Prev);
7738       return true;
7739     }
7740 
7741     // This is a global, non-extern "C" declaration, and there is a previous
7742     // non-global extern "C" declaration. Diagnose if this is a variable
7743     // declaration.
7744     if (!isa<VarDecl>(ND))
7745       return false;
7746   } else {
7747     // The declaration is extern "C". Check for any declaration in the
7748     // translation unit which might conflict.
7749     if (IsGlobal) {
7750       // We have already performed the lookup into the translation unit.
7751       IsGlobal = false;
7752       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7753            I != E; ++I) {
7754         if (isa<VarDecl>(*I)) {
7755           Prev = *I;
7756           break;
7757         }
7758       }
7759     } else {
7760       DeclContext::lookup_result R =
7761           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7762       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7763            I != E; ++I) {
7764         if (isa<VarDecl>(*I)) {
7765           Prev = *I;
7766           break;
7767         }
7768         // FIXME: If we have any other entity with this name in global scope,
7769         // the declaration is ill-formed, but that is a defect: it breaks the
7770         // 'stat' hack, for instance. Only variables can have mangled name
7771         // clashes with extern "C" declarations, so only they deserve a
7772         // diagnostic.
7773       }
7774     }
7775 
7776     if (!Prev)
7777       return false;
7778   }
7779 
7780   // Use the first declaration's location to ensure we point at something which
7781   // is lexically inside an extern "C" linkage-spec.
7782   assert(Prev && "should have found a previous declaration to diagnose");
7783   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7784     Prev = FD->getFirstDecl();
7785   else
7786     Prev = cast<VarDecl>(Prev)->getFirstDecl();
7787 
7788   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7789     << IsGlobal << ND;
7790   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7791     << IsGlobal;
7792   return false;
7793 }
7794 
7795 /// Apply special rules for handling extern "C" declarations. Returns \c true
7796 /// if we have found that this is a redeclaration of some prior entity.
7797 ///
7798 /// Per C++ [dcl.link]p6:
7799 ///   Two declarations [for a function or variable] with C language linkage
7800 ///   with the same name that appear in different scopes refer to the same
7801 ///   [entity]. An entity with C language linkage shall not be declared with
7802 ///   the same name as an entity in global scope.
7803 template<typename T>
7804 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7805                                                   LookupResult &Previous) {
7806   if (!S.getLangOpts().CPlusPlus) {
7807     // In C, when declaring a global variable, look for a corresponding 'extern'
7808     // variable declared in function scope. We don't need this in C++, because
7809     // we find local extern decls in the surrounding file-scope DeclContext.
7810     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7811       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7812         Previous.clear();
7813         Previous.addDecl(Prev);
7814         return true;
7815       }
7816     }
7817     return false;
7818   }
7819 
7820   // A declaration in the translation unit can conflict with an extern "C"
7821   // declaration.
7822   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7823     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7824 
7825   // An extern "C" declaration can conflict with a declaration in the
7826   // translation unit or can be a redeclaration of an extern "C" declaration
7827   // in another scope.
7828   if (isIncompleteDeclExternC(S,ND))
7829     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7830 
7831   // Neither global nor extern "C": nothing to do.
7832   return false;
7833 }
7834 
7835 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7836   // If the decl is already known invalid, don't check it.
7837   if (NewVD->isInvalidDecl())
7838     return;
7839 
7840   QualType T = NewVD->getType();
7841 
7842   // Defer checking an 'auto' type until its initializer is attached.
7843   if (T->isUndeducedType())
7844     return;
7845 
7846   if (NewVD->hasAttrs())
7847     CheckAlignasUnderalignment(NewVD);
7848 
7849   if (T->isObjCObjectType()) {
7850     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7851       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7852     T = Context.getObjCObjectPointerType(T);
7853     NewVD->setType(T);
7854   }
7855 
7856   // Emit an error if an address space was applied to decl with local storage.
7857   // This includes arrays of objects with address space qualifiers, but not
7858   // automatic variables that point to other address spaces.
7859   // ISO/IEC TR 18037 S5.1.2
7860   if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7861       T.getAddressSpace() != LangAS::Default) {
7862     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7863     NewVD->setInvalidDecl();
7864     return;
7865   }
7866 
7867   // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7868   // scope.
7869   if (getLangOpts().OpenCLVersion == 120 &&
7870       !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
7871       NewVD->isStaticLocal()) {
7872     Diag(NewVD->getLocation(), diag::err_static_function_scope);
7873     NewVD->setInvalidDecl();
7874     return;
7875   }
7876 
7877   if (getLangOpts().OpenCL) {
7878     // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
7879     if (NewVD->hasAttr<BlocksAttr>()) {
7880       Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
7881       return;
7882     }
7883 
7884     if (T->isBlockPointerType()) {
7885       // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
7886       // can't use 'extern' storage class.
7887       if (!T.isConstQualified()) {
7888         Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
7889             << 0 /*const*/;
7890         NewVD->setInvalidDecl();
7891         return;
7892       }
7893       if (NewVD->hasExternalStorage()) {
7894         Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
7895         NewVD->setInvalidDecl();
7896         return;
7897       }
7898     }
7899     // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the
7900     // __constant address space.
7901     // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static
7902     // variables inside a function can also be declared in the global
7903     // address space.
7904     // C++ for OpenCL inherits rule from OpenCL C v2.0.
7905     // FIXME: Adding local AS in C++ for OpenCL might make sense.
7906     if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
7907         NewVD->hasExternalStorage()) {
7908       if (!T->isSamplerT() &&
7909           !T->isDependentType() &&
7910           !(T.getAddressSpace() == LangAS::opencl_constant ||
7911             (T.getAddressSpace() == LangAS::opencl_global &&
7912              (getLangOpts().OpenCLVersion == 200 ||
7913               getLangOpts().OpenCLCPlusPlus)))) {
7914         int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
7915         if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus)
7916           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7917               << Scope << "global or constant";
7918         else
7919           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7920               << Scope << "constant";
7921         NewVD->setInvalidDecl();
7922         return;
7923       }
7924     } else {
7925       if (T.getAddressSpace() == LangAS::opencl_global) {
7926         Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7927             << 1 /*is any function*/ << "global";
7928         NewVD->setInvalidDecl();
7929         return;
7930       }
7931       if (T.getAddressSpace() == LangAS::opencl_constant ||
7932           T.getAddressSpace() == LangAS::opencl_local) {
7933         FunctionDecl *FD = getCurFunctionDecl();
7934         // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
7935         // in functions.
7936         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
7937           if (T.getAddressSpace() == LangAS::opencl_constant)
7938             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7939                 << 0 /*non-kernel only*/ << "constant";
7940           else
7941             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7942                 << 0 /*non-kernel only*/ << "local";
7943           NewVD->setInvalidDecl();
7944           return;
7945         }
7946         // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
7947         // in the outermost scope of a kernel function.
7948         if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
7949           if (!getCurScope()->isFunctionScope()) {
7950             if (T.getAddressSpace() == LangAS::opencl_constant)
7951               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7952                   << "constant";
7953             else
7954               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7955                   << "local";
7956             NewVD->setInvalidDecl();
7957             return;
7958           }
7959         }
7960       } else if (T.getAddressSpace() != LangAS::opencl_private &&
7961                  // If we are parsing a template we didn't deduce an addr
7962                  // space yet.
7963                  T.getAddressSpace() != LangAS::Default) {
7964         // Do not allow other address spaces on automatic variable.
7965         Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
7966         NewVD->setInvalidDecl();
7967         return;
7968       }
7969     }
7970   }
7971 
7972   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
7973       && !NewVD->hasAttr<BlocksAttr>()) {
7974     if (getLangOpts().getGC() != LangOptions::NonGC)
7975       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
7976     else {
7977       assert(!getLangOpts().ObjCAutoRefCount);
7978       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
7979     }
7980   }
7981 
7982   bool isVM = T->isVariablyModifiedType();
7983   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
7984       NewVD->hasAttr<BlocksAttr>())
7985     setFunctionHasBranchProtectedScope();
7986 
7987   if ((isVM && NewVD->hasLinkage()) ||
7988       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
7989     bool SizeIsNegative;
7990     llvm::APSInt Oversized;
7991     TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
7992         NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
7993     QualType FixedT;
7994     if (FixedTInfo &&  T == NewVD->getTypeSourceInfo()->getType())
7995       FixedT = FixedTInfo->getType();
7996     else if (FixedTInfo) {
7997       // Type and type-as-written are canonically different. We need to fix up
7998       // both types separately.
7999       FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
8000                                                    Oversized);
8001     }
8002     if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
8003       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
8004       // FIXME: This won't give the correct result for
8005       // int a[10][n];
8006       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
8007 
8008       if (NewVD->isFileVarDecl())
8009         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
8010         << SizeRange;
8011       else if (NewVD->isStaticLocal())
8012         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
8013         << SizeRange;
8014       else
8015         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
8016         << SizeRange;
8017       NewVD->setInvalidDecl();
8018       return;
8019     }
8020 
8021     if (!FixedTInfo) {
8022       if (NewVD->isFileVarDecl())
8023         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
8024       else
8025         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
8026       NewVD->setInvalidDecl();
8027       return;
8028     }
8029 
8030     Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant);
8031     NewVD->setType(FixedT);
8032     NewVD->setTypeSourceInfo(FixedTInfo);
8033   }
8034 
8035   if (T->isVoidType()) {
8036     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8037     //                    of objects and functions.
8038     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
8039       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
8040         << T;
8041       NewVD->setInvalidDecl();
8042       return;
8043     }
8044   }
8045 
8046   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
8047     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
8048     NewVD->setInvalidDecl();
8049     return;
8050   }
8051 
8052   if (!NewVD->hasLocalStorage() && T->isSizelessType()) {
8053     Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T;
8054     NewVD->setInvalidDecl();
8055     return;
8056   }
8057 
8058   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
8059     Diag(NewVD->getLocation(), diag::err_block_on_vm);
8060     NewVD->setInvalidDecl();
8061     return;
8062   }
8063 
8064   if (NewVD->isConstexpr() && !T->isDependentType() &&
8065       RequireLiteralType(NewVD->getLocation(), T,
8066                          diag::err_constexpr_var_non_literal)) {
8067     NewVD->setInvalidDecl();
8068     return;
8069   }
8070 
8071   // PPC MMA non-pointer types are not allowed as non-local variable types.
8072   if (Context.getTargetInfo().getTriple().isPPC64() &&
8073       !NewVD->isLocalVarDecl() &&
8074       CheckPPCMMAType(T, NewVD->getLocation())) {
8075     NewVD->setInvalidDecl();
8076     return;
8077   }
8078 }
8079 
8080 /// Perform semantic checking on a newly-created variable
8081 /// declaration.
8082 ///
8083 /// This routine performs all of the type-checking required for a
8084 /// variable declaration once it has been built. It is used both to
8085 /// check variables after they have been parsed and their declarators
8086 /// have been translated into a declaration, and to check variables
8087 /// that have been instantiated from a template.
8088 ///
8089 /// Sets NewVD->isInvalidDecl() if an error was encountered.
8090 ///
8091 /// Returns true if the variable declaration is a redeclaration.
8092 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
8093   CheckVariableDeclarationType(NewVD);
8094 
8095   // If the decl is already known invalid, don't check it.
8096   if (NewVD->isInvalidDecl())
8097     return false;
8098 
8099   // If we did not find anything by this name, look for a non-visible
8100   // extern "C" declaration with the same name.
8101   if (Previous.empty() &&
8102       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
8103     Previous.setShadowed();
8104 
8105   if (!Previous.empty()) {
8106     MergeVarDecl(NewVD, Previous);
8107     return true;
8108   }
8109   return false;
8110 }
8111 
8112 /// AddOverriddenMethods - See if a method overrides any in the base classes,
8113 /// and if so, check that it's a valid override and remember it.
8114 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
8115   llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden;
8116 
8117   // Look for methods in base classes that this method might override.
8118   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8119                      /*DetectVirtual=*/false);
8120   auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
8121     CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
8122     DeclarationName Name = MD->getDeclName();
8123 
8124     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8125       // We really want to find the base class destructor here.
8126       QualType T = Context.getTypeDeclType(BaseRecord);
8127       CanQualType CT = Context.getCanonicalType(T);
8128       Name = Context.DeclarationNames.getCXXDestructorName(CT);
8129     }
8130 
8131     for (NamedDecl *BaseND : BaseRecord->lookup(Name)) {
8132       CXXMethodDecl *BaseMD =
8133           dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl());
8134       if (!BaseMD || !BaseMD->isVirtual() ||
8135           IsOverload(MD, BaseMD, /*UseMemberUsingDeclRules=*/false,
8136                      /*ConsiderCudaAttrs=*/true,
8137                      // C++2a [class.virtual]p2 does not consider requires
8138                      // clauses when overriding.
8139                      /*ConsiderRequiresClauses=*/false))
8140         continue;
8141 
8142       if (Overridden.insert(BaseMD).second) {
8143         MD->addOverriddenMethod(BaseMD);
8144         CheckOverridingFunctionReturnType(MD, BaseMD);
8145         CheckOverridingFunctionAttributes(MD, BaseMD);
8146         CheckOverridingFunctionExceptionSpec(MD, BaseMD);
8147         CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD);
8148       }
8149 
8150       // A method can only override one function from each base class. We
8151       // don't track indirectly overridden methods from bases of bases.
8152       return true;
8153     }
8154 
8155     return false;
8156   };
8157 
8158   DC->lookupInBases(VisitBase, Paths);
8159   return !Overridden.empty();
8160 }
8161 
8162 namespace {
8163   // Struct for holding all of the extra arguments needed by
8164   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
8165   struct ActOnFDArgs {
8166     Scope *S;
8167     Declarator &D;
8168     MultiTemplateParamsArg TemplateParamLists;
8169     bool AddToScope;
8170   };
8171 } // end anonymous namespace
8172 
8173 namespace {
8174 
8175 // Callback to only accept typo corrections that have a non-zero edit distance.
8176 // Also only accept corrections that have the same parent decl.
8177 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
8178  public:
8179   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
8180                             CXXRecordDecl *Parent)
8181       : Context(Context), OriginalFD(TypoFD),
8182         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
8183 
8184   bool ValidateCandidate(const TypoCorrection &candidate) override {
8185     if (candidate.getEditDistance() == 0)
8186       return false;
8187 
8188     SmallVector<unsigned, 1> MismatchedParams;
8189     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
8190                                           CDeclEnd = candidate.end();
8191          CDecl != CDeclEnd; ++CDecl) {
8192       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8193 
8194       if (FD && !FD->hasBody() &&
8195           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
8196         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8197           CXXRecordDecl *Parent = MD->getParent();
8198           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
8199             return true;
8200         } else if (!ExpectedParent) {
8201           return true;
8202         }
8203       }
8204     }
8205 
8206     return false;
8207   }
8208 
8209   std::unique_ptr<CorrectionCandidateCallback> clone() override {
8210     return std::make_unique<DifferentNameValidatorCCC>(*this);
8211   }
8212 
8213  private:
8214   ASTContext &Context;
8215   FunctionDecl *OriginalFD;
8216   CXXRecordDecl *ExpectedParent;
8217 };
8218 
8219 } // end anonymous namespace
8220 
8221 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
8222   TypoCorrectedFunctionDefinitions.insert(F);
8223 }
8224 
8225 /// Generate diagnostics for an invalid function redeclaration.
8226 ///
8227 /// This routine handles generating the diagnostic messages for an invalid
8228 /// function redeclaration, including finding possible similar declarations
8229 /// or performing typo correction if there are no previous declarations with
8230 /// the same name.
8231 ///
8232 /// Returns a NamedDecl iff typo correction was performed and substituting in
8233 /// the new declaration name does not cause new errors.
8234 static NamedDecl *DiagnoseInvalidRedeclaration(
8235     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
8236     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
8237   DeclarationName Name = NewFD->getDeclName();
8238   DeclContext *NewDC = NewFD->getDeclContext();
8239   SmallVector<unsigned, 1> MismatchedParams;
8240   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
8241   TypoCorrection Correction;
8242   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
8243   unsigned DiagMsg =
8244     IsLocalFriend ? diag::err_no_matching_local_friend :
8245     NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
8246     diag::err_member_decl_does_not_match;
8247   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
8248                     IsLocalFriend ? Sema::LookupLocalFriendName
8249                                   : Sema::LookupOrdinaryName,
8250                     Sema::ForVisibleRedeclaration);
8251 
8252   NewFD->setInvalidDecl();
8253   if (IsLocalFriend)
8254     SemaRef.LookupName(Prev, S);
8255   else
8256     SemaRef.LookupQualifiedName(Prev, NewDC);
8257   assert(!Prev.isAmbiguous() &&
8258          "Cannot have an ambiguity in previous-declaration lookup");
8259   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8260   DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
8261                                 MD ? MD->getParent() : nullptr);
8262   if (!Prev.empty()) {
8263     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
8264          Func != FuncEnd; ++Func) {
8265       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
8266       if (FD &&
8267           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8268         // Add 1 to the index so that 0 can mean the mismatch didn't
8269         // involve a parameter
8270         unsigned ParamNum =
8271             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
8272         NearMatches.push_back(std::make_pair(FD, ParamNum));
8273       }
8274     }
8275   // If the qualified name lookup yielded nothing, try typo correction
8276   } else if ((Correction = SemaRef.CorrectTypo(
8277                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
8278                   &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
8279                   IsLocalFriend ? nullptr : NewDC))) {
8280     // Set up everything for the call to ActOnFunctionDeclarator
8281     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
8282                               ExtraArgs.D.getIdentifierLoc());
8283     Previous.clear();
8284     Previous.setLookupName(Correction.getCorrection());
8285     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
8286                                     CDeclEnd = Correction.end();
8287          CDecl != CDeclEnd; ++CDecl) {
8288       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8289       if (FD && !FD->hasBody() &&
8290           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8291         Previous.addDecl(FD);
8292       }
8293     }
8294     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
8295 
8296     NamedDecl *Result;
8297     // Retry building the function declaration with the new previous
8298     // declarations, and with errors suppressed.
8299     {
8300       // Trap errors.
8301       Sema::SFINAETrap Trap(SemaRef);
8302 
8303       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
8304       // pieces need to verify the typo-corrected C++ declaration and hopefully
8305       // eliminate the need for the parameter pack ExtraArgs.
8306       Result = SemaRef.ActOnFunctionDeclarator(
8307           ExtraArgs.S, ExtraArgs.D,
8308           Correction.getCorrectionDecl()->getDeclContext(),
8309           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
8310           ExtraArgs.AddToScope);
8311 
8312       if (Trap.hasErrorOccurred())
8313         Result = nullptr;
8314     }
8315 
8316     if (Result) {
8317       // Determine which correction we picked.
8318       Decl *Canonical = Result->getCanonicalDecl();
8319       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8320            I != E; ++I)
8321         if ((*I)->getCanonicalDecl() == Canonical)
8322           Correction.setCorrectionDecl(*I);
8323 
8324       // Let Sema know about the correction.
8325       SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
8326       SemaRef.diagnoseTypo(
8327           Correction,
8328           SemaRef.PDiag(IsLocalFriend
8329                           ? diag::err_no_matching_local_friend_suggest
8330                           : diag::err_member_decl_does_not_match_suggest)
8331             << Name << NewDC << IsDefinition);
8332       return Result;
8333     }
8334 
8335     // Pretend the typo correction never occurred
8336     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
8337                               ExtraArgs.D.getIdentifierLoc());
8338     ExtraArgs.D.setRedeclaration(wasRedeclaration);
8339     Previous.clear();
8340     Previous.setLookupName(Name);
8341   }
8342 
8343   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
8344       << Name << NewDC << IsDefinition << NewFD->getLocation();
8345 
8346   bool NewFDisConst = false;
8347   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
8348     NewFDisConst = NewMD->isConst();
8349 
8350   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
8351        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
8352        NearMatch != NearMatchEnd; ++NearMatch) {
8353     FunctionDecl *FD = NearMatch->first;
8354     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8355     bool FDisConst = MD && MD->isConst();
8356     bool IsMember = MD || !IsLocalFriend;
8357 
8358     // FIXME: These notes are poorly worded for the local friend case.
8359     if (unsigned Idx = NearMatch->second) {
8360       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
8361       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
8362       if (Loc.isInvalid()) Loc = FD->getLocation();
8363       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
8364                                  : diag::note_local_decl_close_param_match)
8365         << Idx << FDParam->getType()
8366         << NewFD->getParamDecl(Idx - 1)->getType();
8367     } else if (FDisConst != NewFDisConst) {
8368       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
8369           << NewFDisConst << FD->getSourceRange().getEnd();
8370     } else
8371       SemaRef.Diag(FD->getLocation(),
8372                    IsMember ? diag::note_member_def_close_match
8373                             : diag::note_local_decl_close_match);
8374   }
8375   return nullptr;
8376 }
8377 
8378 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
8379   switch (D.getDeclSpec().getStorageClassSpec()) {
8380   default: llvm_unreachable("Unknown storage class!");
8381   case DeclSpec::SCS_auto:
8382   case DeclSpec::SCS_register:
8383   case DeclSpec::SCS_mutable:
8384     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8385                  diag::err_typecheck_sclass_func);
8386     D.getMutableDeclSpec().ClearStorageClassSpecs();
8387     D.setInvalidType();
8388     break;
8389   case DeclSpec::SCS_unspecified: break;
8390   case DeclSpec::SCS_extern:
8391     if (D.getDeclSpec().isExternInLinkageSpec())
8392       return SC_None;
8393     return SC_Extern;
8394   case DeclSpec::SCS_static: {
8395     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8396       // C99 6.7.1p5:
8397       //   The declaration of an identifier for a function that has
8398       //   block scope shall have no explicit storage-class specifier
8399       //   other than extern
8400       // See also (C++ [dcl.stc]p4).
8401       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8402                    diag::err_static_block_func);
8403       break;
8404     } else
8405       return SC_Static;
8406   }
8407   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
8408   }
8409 
8410   // No explicit storage class has already been returned
8411   return SC_None;
8412 }
8413 
8414 static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
8415                                            DeclContext *DC, QualType &R,
8416                                            TypeSourceInfo *TInfo,
8417                                            StorageClass SC,
8418                                            bool &IsVirtualOkay) {
8419   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
8420   DeclarationName Name = NameInfo.getName();
8421 
8422   FunctionDecl *NewFD = nullptr;
8423   bool isInline = D.getDeclSpec().isInlineSpecified();
8424 
8425   if (!SemaRef.getLangOpts().CPlusPlus) {
8426     // Determine whether the function was written with a
8427     // prototype. This true when:
8428     //   - there is a prototype in the declarator, or
8429     //   - the type R of the function is some kind of typedef or other non-
8430     //     attributed reference to a type name (which eventually refers to a
8431     //     function type).
8432     bool HasPrototype =
8433       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
8434       (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
8435 
8436     NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8437                                  R, TInfo, SC, isInline, HasPrototype,
8438                                  ConstexprSpecKind::Unspecified,
8439                                  /*TrailingRequiresClause=*/nullptr);
8440     if (D.isInvalidType())
8441       NewFD->setInvalidDecl();
8442 
8443     return NewFD;
8444   }
8445 
8446   ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
8447 
8448   ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
8449   if (ConstexprKind == ConstexprSpecKind::Constinit) {
8450     SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
8451                  diag::err_constexpr_wrong_decl_kind)
8452         << static_cast<int>(ConstexprKind);
8453     ConstexprKind = ConstexprSpecKind::Unspecified;
8454     D.getMutableDeclSpec().ClearConstexprSpec();
8455   }
8456   Expr *TrailingRequiresClause = D.getTrailingRequiresClause();
8457 
8458   // Check that the return type is not an abstract class type.
8459   // For record types, this is done by the AbstractClassUsageDiagnoser once
8460   // the class has been completely parsed.
8461   if (!DC->isRecord() &&
8462       SemaRef.RequireNonAbstractType(
8463           D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(),
8464           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
8465     D.setInvalidType();
8466 
8467   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
8468     // This is a C++ constructor declaration.
8469     assert(DC->isRecord() &&
8470            "Constructors can only be declared in a member context");
8471 
8472     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
8473     return CXXConstructorDecl::Create(
8474         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8475         TInfo, ExplicitSpecifier, isInline,
8476         /*isImplicitlyDeclared=*/false, ConstexprKind, InheritedConstructor(),
8477         TrailingRequiresClause);
8478 
8479   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8480     // This is a C++ destructor declaration.
8481     if (DC->isRecord()) {
8482       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
8483       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
8484       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
8485           SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
8486           isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
8487           TrailingRequiresClause);
8488 
8489       // If the destructor needs an implicit exception specification, set it
8490       // now. FIXME: It'd be nice to be able to create the right type to start
8491       // with, but the type needs to reference the destructor declaration.
8492       if (SemaRef.getLangOpts().CPlusPlus11)
8493         SemaRef.AdjustDestructorExceptionSpec(NewDD);
8494 
8495       IsVirtualOkay = true;
8496       return NewDD;
8497 
8498     } else {
8499       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
8500       D.setInvalidType();
8501 
8502       // Create a FunctionDecl to satisfy the function definition parsing
8503       // code path.
8504       return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8505                                   D.getIdentifierLoc(), Name, R, TInfo, SC,
8506                                   isInline,
8507                                   /*hasPrototype=*/true, ConstexprKind,
8508                                   TrailingRequiresClause);
8509     }
8510 
8511   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
8512     if (!DC->isRecord()) {
8513       SemaRef.Diag(D.getIdentifierLoc(),
8514            diag::err_conv_function_not_member);
8515       return nullptr;
8516     }
8517 
8518     SemaRef.CheckConversionDeclarator(D, R, SC);
8519     if (D.isInvalidType())
8520       return nullptr;
8521 
8522     IsVirtualOkay = true;
8523     return CXXConversionDecl::Create(
8524         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8525         TInfo, isInline, ExplicitSpecifier, ConstexprKind, SourceLocation(),
8526         TrailingRequiresClause);
8527 
8528   } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
8529     if (TrailingRequiresClause)
8530       SemaRef.Diag(TrailingRequiresClause->getBeginLoc(),
8531                    diag::err_trailing_requires_clause_on_deduction_guide)
8532           << TrailingRequiresClause->getSourceRange();
8533     SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
8534 
8535     return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8536                                          ExplicitSpecifier, NameInfo, R, TInfo,
8537                                          D.getEndLoc());
8538   } else if (DC->isRecord()) {
8539     // If the name of the function is the same as the name of the record,
8540     // then this must be an invalid constructor that has a return type.
8541     // (The parser checks for a return type and makes the declarator a
8542     // constructor if it has no return type).
8543     if (Name.getAsIdentifierInfo() &&
8544         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8545       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8546         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8547         << SourceRange(D.getIdentifierLoc());
8548       return nullptr;
8549     }
8550 
8551     // This is a C++ method declaration.
8552     CXXMethodDecl *Ret = CXXMethodDecl::Create(
8553         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8554         TInfo, SC, isInline, ConstexprKind, SourceLocation(),
8555         TrailingRequiresClause);
8556     IsVirtualOkay = !Ret->isStatic();
8557     return Ret;
8558   } else {
8559     bool isFriend =
8560         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8561     if (!isFriend && SemaRef.CurContext->isRecord())
8562       return nullptr;
8563 
8564     // Determine whether the function was written with a
8565     // prototype. This true when:
8566     //   - we're in C++ (where every function has a prototype),
8567     return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8568                                 R, TInfo, SC, isInline, true /*HasPrototype*/,
8569                                 ConstexprKind, TrailingRequiresClause);
8570   }
8571 }
8572 
8573 enum OpenCLParamType {
8574   ValidKernelParam,
8575   PtrPtrKernelParam,
8576   PtrKernelParam,
8577   InvalidAddrSpacePtrKernelParam,
8578   InvalidKernelParam,
8579   RecordKernelParam
8580 };
8581 
8582 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8583   // Size dependent types are just typedefs to normal integer types
8584   // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8585   // integers other than by their names.
8586   StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8587 
8588   // Remove typedefs one by one until we reach a typedef
8589   // for a size dependent type.
8590   QualType DesugaredTy = Ty;
8591   do {
8592     ArrayRef<StringRef> Names(SizeTypeNames);
8593     auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
8594     if (Names.end() != Match)
8595       return true;
8596 
8597     Ty = DesugaredTy;
8598     DesugaredTy = Ty.getSingleStepDesugaredType(C);
8599   } while (DesugaredTy != Ty);
8600 
8601   return false;
8602 }
8603 
8604 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8605   if (PT->isPointerType()) {
8606     QualType PointeeType = PT->getPointeeType();
8607     if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8608         PointeeType.getAddressSpace() == LangAS::opencl_private ||
8609         PointeeType.getAddressSpace() == LangAS::Default)
8610       return InvalidAddrSpacePtrKernelParam;
8611 
8612     if (PointeeType->isPointerType()) {
8613       // This is a pointer to pointer parameter.
8614       // Recursively check inner type.
8615       OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType);
8616       if (ParamKind == InvalidAddrSpacePtrKernelParam ||
8617           ParamKind == InvalidKernelParam)
8618         return ParamKind;
8619 
8620       return PtrPtrKernelParam;
8621     }
8622     return PtrKernelParam;
8623   }
8624 
8625   // OpenCL v1.2 s6.9.k:
8626   // Arguments to kernel functions in a program cannot be declared with the
8627   // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8628   // uintptr_t or a struct and/or union that contain fields declared to be one
8629   // of these built-in scalar types.
8630   if (isOpenCLSizeDependentType(S.getASTContext(), PT))
8631     return InvalidKernelParam;
8632 
8633   if (PT->isImageType())
8634     return PtrKernelParam;
8635 
8636   if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8637     return InvalidKernelParam;
8638 
8639   // OpenCL extension spec v1.2 s9.5:
8640   // This extension adds support for half scalar and vector types as built-in
8641   // types that can be used for arithmetic operations, conversions etc.
8642   if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
8643     return InvalidKernelParam;
8644 
8645   if (PT->isRecordType())
8646     return RecordKernelParam;
8647 
8648   // Look into an array argument to check if it has a forbidden type.
8649   if (PT->isArrayType()) {
8650     const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8651     // Call ourself to check an underlying type of an array. Since the
8652     // getPointeeOrArrayElementType returns an innermost type which is not an
8653     // array, this recursive call only happens once.
8654     return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8655   }
8656 
8657   return ValidKernelParam;
8658 }
8659 
8660 static void checkIsValidOpenCLKernelParameter(
8661   Sema &S,
8662   Declarator &D,
8663   ParmVarDecl *Param,
8664   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8665   QualType PT = Param->getType();
8666 
8667   // Cache the valid types we encounter to avoid rechecking structs that are
8668   // used again
8669   if (ValidTypes.count(PT.getTypePtr()))
8670     return;
8671 
8672   switch (getOpenCLKernelParameterType(S, PT)) {
8673   case PtrPtrKernelParam:
8674     // OpenCL v3.0 s6.11.a:
8675     // A kernel function argument cannot be declared as a pointer to a pointer
8676     // type. [...] This restriction only applies to OpenCL C 1.2 or below.
8677     if (S.getLangOpts().OpenCLVersion < 120 &&
8678         !S.getLangOpts().OpenCLCPlusPlus) {
8679       S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8680       D.setInvalidType();
8681       return;
8682     }
8683 
8684     ValidTypes.insert(PT.getTypePtr());
8685     return;
8686 
8687   case InvalidAddrSpacePtrKernelParam:
8688     // OpenCL v1.0 s6.5:
8689     // __kernel function arguments declared to be a pointer of a type can point
8690     // to one of the following address spaces only : __global, __local or
8691     // __constant.
8692     S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8693     D.setInvalidType();
8694     return;
8695 
8696     // OpenCL v1.2 s6.9.k:
8697     // Arguments to kernel functions in a program cannot be declared with the
8698     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8699     // uintptr_t or a struct and/or union that contain fields declared to be
8700     // one of these built-in scalar types.
8701 
8702   case InvalidKernelParam:
8703     // OpenCL v1.2 s6.8 n:
8704     // A kernel function argument cannot be declared
8705     // of event_t type.
8706     // Do not diagnose half type since it is diagnosed as invalid argument
8707     // type for any function elsewhere.
8708     if (!PT->isHalfType()) {
8709       S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8710 
8711       // Explain what typedefs are involved.
8712       const TypedefType *Typedef = nullptr;
8713       while ((Typedef = PT->getAs<TypedefType>())) {
8714         SourceLocation Loc = Typedef->getDecl()->getLocation();
8715         // SourceLocation may be invalid for a built-in type.
8716         if (Loc.isValid())
8717           S.Diag(Loc, diag::note_entity_declared_at) << PT;
8718         PT = Typedef->desugar();
8719       }
8720     }
8721 
8722     D.setInvalidType();
8723     return;
8724 
8725   case PtrKernelParam:
8726   case ValidKernelParam:
8727     ValidTypes.insert(PT.getTypePtr());
8728     return;
8729 
8730   case RecordKernelParam:
8731     break;
8732   }
8733 
8734   // Track nested structs we will inspect
8735   SmallVector<const Decl *, 4> VisitStack;
8736 
8737   // Track where we are in the nested structs. Items will migrate from
8738   // VisitStack to HistoryStack as we do the DFS for bad field.
8739   SmallVector<const FieldDecl *, 4> HistoryStack;
8740   HistoryStack.push_back(nullptr);
8741 
8742   // At this point we already handled everything except of a RecordType or
8743   // an ArrayType of a RecordType.
8744   assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
8745   const RecordType *RecTy =
8746       PT->getPointeeOrArrayElementType()->getAs<RecordType>();
8747   const RecordDecl *OrigRecDecl = RecTy->getDecl();
8748 
8749   VisitStack.push_back(RecTy->getDecl());
8750   assert(VisitStack.back() && "First decl null?");
8751 
8752   do {
8753     const Decl *Next = VisitStack.pop_back_val();
8754     if (!Next) {
8755       assert(!HistoryStack.empty());
8756       // Found a marker, we have gone up a level
8757       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8758         ValidTypes.insert(Hist->getType().getTypePtr());
8759 
8760       continue;
8761     }
8762 
8763     // Adds everything except the original parameter declaration (which is not a
8764     // field itself) to the history stack.
8765     const RecordDecl *RD;
8766     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8767       HistoryStack.push_back(Field);
8768 
8769       QualType FieldTy = Field->getType();
8770       // Other field types (known to be valid or invalid) are handled while we
8771       // walk around RecordDecl::fields().
8772       assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
8773              "Unexpected type.");
8774       const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8775 
8776       RD = FieldRecTy->castAs<RecordType>()->getDecl();
8777     } else {
8778       RD = cast<RecordDecl>(Next);
8779     }
8780 
8781     // Add a null marker so we know when we've gone back up a level
8782     VisitStack.push_back(nullptr);
8783 
8784     for (const auto *FD : RD->fields()) {
8785       QualType QT = FD->getType();
8786 
8787       if (ValidTypes.count(QT.getTypePtr()))
8788         continue;
8789 
8790       OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8791       if (ParamType == ValidKernelParam)
8792         continue;
8793 
8794       if (ParamType == RecordKernelParam) {
8795         VisitStack.push_back(FD);
8796         continue;
8797       }
8798 
8799       // OpenCL v1.2 s6.9.p:
8800       // Arguments to kernel functions that are declared to be a struct or union
8801       // do not allow OpenCL objects to be passed as elements of the struct or
8802       // union.
8803       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8804           ParamType == InvalidAddrSpacePtrKernelParam) {
8805         S.Diag(Param->getLocation(),
8806                diag::err_record_with_pointers_kernel_param)
8807           << PT->isUnionType()
8808           << PT;
8809       } else {
8810         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8811       }
8812 
8813       S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8814           << OrigRecDecl->getDeclName();
8815 
8816       // We have an error, now let's go back up through history and show where
8817       // the offending field came from
8818       for (ArrayRef<const FieldDecl *>::const_iterator
8819                I = HistoryStack.begin() + 1,
8820                E = HistoryStack.end();
8821            I != E; ++I) {
8822         const FieldDecl *OuterField = *I;
8823         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8824           << OuterField->getType();
8825       }
8826 
8827       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8828         << QT->isPointerType()
8829         << QT;
8830       D.setInvalidType();
8831       return;
8832     }
8833   } while (!VisitStack.empty());
8834 }
8835 
8836 /// Find the DeclContext in which a tag is implicitly declared if we see an
8837 /// elaborated type specifier in the specified context, and lookup finds
8838 /// nothing.
8839 static DeclContext *getTagInjectionContext(DeclContext *DC) {
8840   while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8841     DC = DC->getParent();
8842   return DC;
8843 }
8844 
8845 /// Find the Scope in which a tag is implicitly declared if we see an
8846 /// elaborated type specifier in the specified context, and lookup finds
8847 /// nothing.
8848 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8849   while (S->isClassScope() ||
8850          (LangOpts.CPlusPlus &&
8851           S->isFunctionPrototypeScope()) ||
8852          ((S->getFlags() & Scope::DeclScope) == 0) ||
8853          (S->getEntity() && S->getEntity()->isTransparentContext()))
8854     S = S->getParent();
8855   return S;
8856 }
8857 
8858 NamedDecl*
8859 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
8860                               TypeSourceInfo *TInfo, LookupResult &Previous,
8861                               MultiTemplateParamsArg TemplateParamListsRef,
8862                               bool &AddToScope) {
8863   QualType R = TInfo->getType();
8864 
8865   assert(R->isFunctionType());
8866   if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr())
8867     Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call);
8868 
8869   SmallVector<TemplateParameterList *, 4> TemplateParamLists;
8870   for (TemplateParameterList *TPL : TemplateParamListsRef)
8871     TemplateParamLists.push_back(TPL);
8872   if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
8873     if (!TemplateParamLists.empty() &&
8874         Invented->getDepth() == TemplateParamLists.back()->getDepth())
8875       TemplateParamLists.back() = Invented;
8876     else
8877       TemplateParamLists.push_back(Invented);
8878   }
8879 
8880   // TODO: consider using NameInfo for diagnostic.
8881   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8882   DeclarationName Name = NameInfo.getName();
8883   StorageClass SC = getFunctionStorageClass(*this, D);
8884 
8885   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
8886     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8887          diag::err_invalid_thread)
8888       << DeclSpec::getSpecifierName(TSCS);
8889 
8890   if (D.isFirstDeclarationOfMember())
8891     adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
8892                            D.getIdentifierLoc());
8893 
8894   bool isFriend = false;
8895   FunctionTemplateDecl *FunctionTemplate = nullptr;
8896   bool isMemberSpecialization = false;
8897   bool isFunctionTemplateSpecialization = false;
8898 
8899   bool isDependentClassScopeExplicitSpecialization = false;
8900   bool HasExplicitTemplateArgs = false;
8901   TemplateArgumentListInfo TemplateArgs;
8902 
8903   bool isVirtualOkay = false;
8904 
8905   DeclContext *OriginalDC = DC;
8906   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
8907 
8908   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
8909                                               isVirtualOkay);
8910   if (!NewFD) return nullptr;
8911 
8912   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
8913     NewFD->setTopLevelDeclInObjCContainer();
8914 
8915   // Set the lexical context. If this is a function-scope declaration, or has a
8916   // C++ scope specifier, or is the object of a friend declaration, the lexical
8917   // context will be different from the semantic context.
8918   NewFD->setLexicalDeclContext(CurContext);
8919 
8920   if (IsLocalExternDecl)
8921     NewFD->setLocalExternDecl();
8922 
8923   if (getLangOpts().CPlusPlus) {
8924     bool isInline = D.getDeclSpec().isInlineSpecified();
8925     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8926     bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
8927     isFriend = D.getDeclSpec().isFriendSpecified();
8928     if (isFriend && !isInline && D.isFunctionDefinition()) {
8929       // C++ [class.friend]p5
8930       //   A function can be defined in a friend declaration of a
8931       //   class . . . . Such a function is implicitly inline.
8932       NewFD->setImplicitlyInline();
8933     }
8934 
8935     // If this is a method defined in an __interface, and is not a constructor
8936     // or an overloaded operator, then set the pure flag (isVirtual will already
8937     // return true).
8938     if (const CXXRecordDecl *Parent =
8939           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
8940       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
8941         NewFD->setPure(true);
8942 
8943       // C++ [class.union]p2
8944       //   A union can have member functions, but not virtual functions.
8945       if (isVirtual && Parent->isUnion())
8946         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
8947     }
8948 
8949     SetNestedNameSpecifier(*this, NewFD, D);
8950     isMemberSpecialization = false;
8951     isFunctionTemplateSpecialization = false;
8952     if (D.isInvalidType())
8953       NewFD->setInvalidDecl();
8954 
8955     // Match up the template parameter lists with the scope specifier, then
8956     // determine whether we have a template or a template specialization.
8957     bool Invalid = false;
8958     TemplateParameterList *TemplateParams =
8959         MatchTemplateParametersToScopeSpecifier(
8960             D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
8961             D.getCXXScopeSpec(),
8962             D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
8963                 ? D.getName().TemplateId
8964                 : nullptr,
8965             TemplateParamLists, isFriend, isMemberSpecialization,
8966             Invalid);
8967     if (TemplateParams) {
8968       // Check that we can declare a template here.
8969       if (CheckTemplateDeclScope(S, TemplateParams))
8970         NewFD->setInvalidDecl();
8971 
8972       if (TemplateParams->size() > 0) {
8973         // This is a function template
8974 
8975         // A destructor cannot be a template.
8976         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8977           Diag(NewFD->getLocation(), diag::err_destructor_template);
8978           NewFD->setInvalidDecl();
8979         }
8980 
8981         // If we're adding a template to a dependent context, we may need to
8982         // rebuilding some of the types used within the template parameter list,
8983         // now that we know what the current instantiation is.
8984         if (DC->isDependentContext()) {
8985           ContextRAII SavedContext(*this, DC);
8986           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
8987             Invalid = true;
8988         }
8989 
8990         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
8991                                                         NewFD->getLocation(),
8992                                                         Name, TemplateParams,
8993                                                         NewFD);
8994         FunctionTemplate->setLexicalDeclContext(CurContext);
8995         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
8996 
8997         // For source fidelity, store the other template param lists.
8998         if (TemplateParamLists.size() > 1) {
8999           NewFD->setTemplateParameterListsInfo(Context,
9000               ArrayRef<TemplateParameterList *>(TemplateParamLists)
9001                   .drop_back(1));
9002         }
9003       } else {
9004         // This is a function template specialization.
9005         isFunctionTemplateSpecialization = true;
9006         // For source fidelity, store all the template param lists.
9007         if (TemplateParamLists.size() > 0)
9008           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9009 
9010         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9011         if (isFriend) {
9012           // We want to remove the "template<>", found here.
9013           SourceRange RemoveRange = TemplateParams->getSourceRange();
9014 
9015           // If we remove the template<> and the name is not a
9016           // template-id, we're actually silently creating a problem:
9017           // the friend declaration will refer to an untemplated decl,
9018           // and clearly the user wants a template specialization.  So
9019           // we need to insert '<>' after the name.
9020           SourceLocation InsertLoc;
9021           if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9022             InsertLoc = D.getName().getSourceRange().getEnd();
9023             InsertLoc = getLocForEndOfToken(InsertLoc);
9024           }
9025 
9026           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
9027             << Name << RemoveRange
9028             << FixItHint::CreateRemoval(RemoveRange)
9029             << FixItHint::CreateInsertion(InsertLoc, "<>");
9030         }
9031       }
9032     } else {
9033       // Check that we can declare a template here.
9034       if (!TemplateParamLists.empty() && isMemberSpecialization &&
9035           CheckTemplateDeclScope(S, TemplateParamLists.back()))
9036         NewFD->setInvalidDecl();
9037 
9038       // All template param lists were matched against the scope specifier:
9039       // this is NOT (an explicit specialization of) a template.
9040       if (TemplateParamLists.size() > 0)
9041         // For source fidelity, store all the template param lists.
9042         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9043     }
9044 
9045     if (Invalid) {
9046       NewFD->setInvalidDecl();
9047       if (FunctionTemplate)
9048         FunctionTemplate->setInvalidDecl();
9049     }
9050 
9051     // C++ [dcl.fct.spec]p5:
9052     //   The virtual specifier shall only be used in declarations of
9053     //   nonstatic class member functions that appear within a
9054     //   member-specification of a class declaration; see 10.3.
9055     //
9056     if (isVirtual && !NewFD->isInvalidDecl()) {
9057       if (!isVirtualOkay) {
9058         Diag(D.getDeclSpec().getVirtualSpecLoc(),
9059              diag::err_virtual_non_function);
9060       } else if (!CurContext->isRecord()) {
9061         // 'virtual' was specified outside of the class.
9062         Diag(D.getDeclSpec().getVirtualSpecLoc(),
9063              diag::err_virtual_out_of_class)
9064           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9065       } else if (NewFD->getDescribedFunctionTemplate()) {
9066         // C++ [temp.mem]p3:
9067         //  A member function template shall not be virtual.
9068         Diag(D.getDeclSpec().getVirtualSpecLoc(),
9069              diag::err_virtual_member_function_template)
9070           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9071       } else {
9072         // Okay: Add virtual to the method.
9073         NewFD->setVirtualAsWritten(true);
9074       }
9075 
9076       if (getLangOpts().CPlusPlus14 &&
9077           NewFD->getReturnType()->isUndeducedType())
9078         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
9079     }
9080 
9081     if (getLangOpts().CPlusPlus14 &&
9082         (NewFD->isDependentContext() ||
9083          (isFriend && CurContext->isDependentContext())) &&
9084         NewFD->getReturnType()->isUndeducedType()) {
9085       // If the function template is referenced directly (for instance, as a
9086       // member of the current instantiation), pretend it has a dependent type.
9087       // This is not really justified by the standard, but is the only sane
9088       // thing to do.
9089       // FIXME: For a friend function, we have not marked the function as being
9090       // a friend yet, so 'isDependentContext' on the FD doesn't work.
9091       const FunctionProtoType *FPT =
9092           NewFD->getType()->castAs<FunctionProtoType>();
9093       QualType Result =
9094           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
9095       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
9096                                              FPT->getExtProtoInfo()));
9097     }
9098 
9099     // C++ [dcl.fct.spec]p3:
9100     //  The inline specifier shall not appear on a block scope function
9101     //  declaration.
9102     if (isInline && !NewFD->isInvalidDecl()) {
9103       if (CurContext->isFunctionOrMethod()) {
9104         // 'inline' is not allowed on block scope function declaration.
9105         Diag(D.getDeclSpec().getInlineSpecLoc(),
9106              diag::err_inline_declaration_block_scope) << Name
9107           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9108       }
9109     }
9110 
9111     // C++ [dcl.fct.spec]p6:
9112     //  The explicit specifier shall be used only in the declaration of a
9113     //  constructor or conversion function within its class definition;
9114     //  see 12.3.1 and 12.3.2.
9115     if (hasExplicit && !NewFD->isInvalidDecl() &&
9116         !isa<CXXDeductionGuideDecl>(NewFD)) {
9117       if (!CurContext->isRecord()) {
9118         // 'explicit' was specified outside of the class.
9119         Diag(D.getDeclSpec().getExplicitSpecLoc(),
9120              diag::err_explicit_out_of_class)
9121             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9122       } else if (!isa<CXXConstructorDecl>(NewFD) &&
9123                  !isa<CXXConversionDecl>(NewFD)) {
9124         // 'explicit' was specified on a function that wasn't a constructor
9125         // or conversion function.
9126         Diag(D.getDeclSpec().getExplicitSpecLoc(),
9127              diag::err_explicit_non_ctor_or_conv_function)
9128             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9129       }
9130     }
9131 
9132     ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
9133     if (ConstexprKind != ConstexprSpecKind::Unspecified) {
9134       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
9135       // are implicitly inline.
9136       NewFD->setImplicitlyInline();
9137 
9138       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
9139       // be either constructors or to return a literal type. Therefore,
9140       // destructors cannot be declared constexpr.
9141       if (isa<CXXDestructorDecl>(NewFD) &&
9142           (!getLangOpts().CPlusPlus20 ||
9143            ConstexprKind == ConstexprSpecKind::Consteval)) {
9144         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
9145             << static_cast<int>(ConstexprKind);
9146         NewFD->setConstexprKind(getLangOpts().CPlusPlus20
9147                                     ? ConstexprSpecKind::Unspecified
9148                                     : ConstexprSpecKind::Constexpr);
9149       }
9150       // C++20 [dcl.constexpr]p2: An allocation function, or a
9151       // deallocation function shall not be declared with the consteval
9152       // specifier.
9153       if (ConstexprKind == ConstexprSpecKind::Consteval &&
9154           (NewFD->getOverloadedOperator() == OO_New ||
9155            NewFD->getOverloadedOperator() == OO_Array_New ||
9156            NewFD->getOverloadedOperator() == OO_Delete ||
9157            NewFD->getOverloadedOperator() == OO_Array_Delete)) {
9158         Diag(D.getDeclSpec().getConstexprSpecLoc(),
9159              diag::err_invalid_consteval_decl_kind)
9160             << NewFD;
9161         NewFD->setConstexprKind(ConstexprSpecKind::Constexpr);
9162       }
9163     }
9164 
9165     // If __module_private__ was specified, mark the function accordingly.
9166     if (D.getDeclSpec().isModulePrivateSpecified()) {
9167       if (isFunctionTemplateSpecialization) {
9168         SourceLocation ModulePrivateLoc
9169           = D.getDeclSpec().getModulePrivateSpecLoc();
9170         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
9171           << 0
9172           << FixItHint::CreateRemoval(ModulePrivateLoc);
9173       } else {
9174         NewFD->setModulePrivate();
9175         if (FunctionTemplate)
9176           FunctionTemplate->setModulePrivate();
9177       }
9178     }
9179 
9180     if (isFriend) {
9181       if (FunctionTemplate) {
9182         FunctionTemplate->setObjectOfFriendDecl();
9183         FunctionTemplate->setAccess(AS_public);
9184       }
9185       NewFD->setObjectOfFriendDecl();
9186       NewFD->setAccess(AS_public);
9187     }
9188 
9189     // If a function is defined as defaulted or deleted, mark it as such now.
9190     // We'll do the relevant checks on defaulted / deleted functions later.
9191     switch (D.getFunctionDefinitionKind()) {
9192     case FunctionDefinitionKind::Declaration:
9193     case FunctionDefinitionKind::Definition:
9194       break;
9195 
9196     case FunctionDefinitionKind::Defaulted:
9197       NewFD->setDefaulted();
9198       break;
9199 
9200     case FunctionDefinitionKind::Deleted:
9201       NewFD->setDeletedAsWritten();
9202       break;
9203     }
9204 
9205     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
9206         D.isFunctionDefinition()) {
9207       // C++ [class.mfct]p2:
9208       //   A member function may be defined (8.4) in its class definition, in
9209       //   which case it is an inline member function (7.1.2)
9210       NewFD->setImplicitlyInline();
9211     }
9212 
9213     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
9214         !CurContext->isRecord()) {
9215       // C++ [class.static]p1:
9216       //   A data or function member of a class may be declared static
9217       //   in a class definition, in which case it is a static member of
9218       //   the class.
9219 
9220       // Complain about the 'static' specifier if it's on an out-of-line
9221       // member function definition.
9222 
9223       // MSVC permits the use of a 'static' storage specifier on an out-of-line
9224       // member function template declaration and class member template
9225       // declaration (MSVC versions before 2015), warn about this.
9226       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9227            ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
9228              cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
9229            (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
9230            ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
9231         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9232     }
9233 
9234     // C++11 [except.spec]p15:
9235     //   A deallocation function with no exception-specification is treated
9236     //   as if it were specified with noexcept(true).
9237     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
9238     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
9239          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
9240         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
9241       NewFD->setType(Context.getFunctionType(
9242           FPT->getReturnType(), FPT->getParamTypes(),
9243           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
9244   }
9245 
9246   // Filter out previous declarations that don't match the scope.
9247   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
9248                        D.getCXXScopeSpec().isNotEmpty() ||
9249                        isMemberSpecialization ||
9250                        isFunctionTemplateSpecialization);
9251 
9252   // Handle GNU asm-label extension (encoded as an attribute).
9253   if (Expr *E = (Expr*) D.getAsmLabel()) {
9254     // The parser guarantees this is a string.
9255     StringLiteral *SE = cast<StringLiteral>(E);
9256     NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
9257                                         /*IsLiteralLabel=*/true,
9258                                         SE->getStrTokenLoc(0)));
9259   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
9260     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
9261       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
9262     if (I != ExtnameUndeclaredIdentifiers.end()) {
9263       if (isDeclExternC(NewFD)) {
9264         NewFD->addAttr(I->second);
9265         ExtnameUndeclaredIdentifiers.erase(I);
9266       } else
9267         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
9268             << /*Variable*/0 << NewFD;
9269     }
9270   }
9271 
9272   // Copy the parameter declarations from the declarator D to the function
9273   // declaration NewFD, if they are available.  First scavenge them into Params.
9274   SmallVector<ParmVarDecl*, 16> Params;
9275   unsigned FTIIdx;
9276   if (D.isFunctionDeclarator(FTIIdx)) {
9277     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
9278 
9279     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
9280     // function that takes no arguments, not a function that takes a
9281     // single void argument.
9282     // We let through "const void" here because Sema::GetTypeForDeclarator
9283     // already checks for that case.
9284     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
9285       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
9286         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
9287         assert(Param->getDeclContext() != NewFD && "Was set before ?");
9288         Param->setDeclContext(NewFD);
9289         Params.push_back(Param);
9290 
9291         if (Param->isInvalidDecl())
9292           NewFD->setInvalidDecl();
9293       }
9294     }
9295 
9296     if (!getLangOpts().CPlusPlus) {
9297       // In C, find all the tag declarations from the prototype and move them
9298       // into the function DeclContext. Remove them from the surrounding tag
9299       // injection context of the function, which is typically but not always
9300       // the TU.
9301       DeclContext *PrototypeTagContext =
9302           getTagInjectionContext(NewFD->getLexicalDeclContext());
9303       for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
9304         auto *TD = dyn_cast<TagDecl>(NonParmDecl);
9305 
9306         // We don't want to reparent enumerators. Look at their parent enum
9307         // instead.
9308         if (!TD) {
9309           if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
9310             TD = cast<EnumDecl>(ECD->getDeclContext());
9311         }
9312         if (!TD)
9313           continue;
9314         DeclContext *TagDC = TD->getLexicalDeclContext();
9315         if (!TagDC->containsDecl(TD))
9316           continue;
9317         TagDC->removeDecl(TD);
9318         TD->setDeclContext(NewFD);
9319         NewFD->addDecl(TD);
9320 
9321         // Preserve the lexical DeclContext if it is not the surrounding tag
9322         // injection context of the FD. In this example, the semantic context of
9323         // E will be f and the lexical context will be S, while both the
9324         // semantic and lexical contexts of S will be f:
9325         //   void f(struct S { enum E { a } f; } s);
9326         if (TagDC != PrototypeTagContext)
9327           TD->setLexicalDeclContext(TagDC);
9328       }
9329     }
9330   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
9331     // When we're declaring a function with a typedef, typeof, etc as in the
9332     // following example, we'll need to synthesize (unnamed)
9333     // parameters for use in the declaration.
9334     //
9335     // @code
9336     // typedef void fn(int);
9337     // fn f;
9338     // @endcode
9339 
9340     // Synthesize a parameter for each argument type.
9341     for (const auto &AI : FT->param_types()) {
9342       ParmVarDecl *Param =
9343           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
9344       Param->setScopeInfo(0, Params.size());
9345       Params.push_back(Param);
9346     }
9347   } else {
9348     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
9349            "Should not need args for typedef of non-prototype fn");
9350   }
9351 
9352   // Finally, we know we have the right number of parameters, install them.
9353   NewFD->setParams(Params);
9354 
9355   if (D.getDeclSpec().isNoreturnSpecified())
9356     NewFD->addAttr(C11NoReturnAttr::Create(Context,
9357                                            D.getDeclSpec().getNoreturnSpecLoc(),
9358                                            AttributeCommonInfo::AS_Keyword));
9359 
9360   // Functions returning a variably modified type violate C99 6.7.5.2p2
9361   // because all functions have linkage.
9362   if (!NewFD->isInvalidDecl() &&
9363       NewFD->getReturnType()->isVariablyModifiedType()) {
9364     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
9365     NewFD->setInvalidDecl();
9366   }
9367 
9368   // Apply an implicit SectionAttr if '#pragma clang section text' is active
9369   if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
9370       !NewFD->hasAttr<SectionAttr>())
9371     NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
9372         Context, PragmaClangTextSection.SectionName,
9373         PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma));
9374 
9375   // Apply an implicit SectionAttr if #pragma code_seg is active.
9376   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
9377       !NewFD->hasAttr<SectionAttr>()) {
9378     NewFD->addAttr(SectionAttr::CreateImplicit(
9379         Context, CodeSegStack.CurrentValue->getString(),
9380         CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9381         SectionAttr::Declspec_allocate));
9382     if (UnifySection(CodeSegStack.CurrentValue->getString(),
9383                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
9384                          ASTContext::PSF_Read,
9385                      NewFD))
9386       NewFD->dropAttr<SectionAttr>();
9387   }
9388 
9389   // Apply an implicit CodeSegAttr from class declspec or
9390   // apply an implicit SectionAttr from #pragma code_seg if active.
9391   if (!NewFD->hasAttr<CodeSegAttr>()) {
9392     if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
9393                                                                  D.isFunctionDefinition())) {
9394       NewFD->addAttr(SAttr);
9395     }
9396   }
9397 
9398   // Handle attributes.
9399   ProcessDeclAttributes(S, NewFD, D);
9400 
9401   if (getLangOpts().OpenCL) {
9402     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
9403     // type declaration will generate a compilation error.
9404     LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
9405     if (AddressSpace != LangAS::Default) {
9406       Diag(NewFD->getLocation(),
9407            diag::err_opencl_return_value_with_address_space);
9408       NewFD->setInvalidDecl();
9409     }
9410   }
9411 
9412   if (!getLangOpts().CPlusPlus) {
9413     // Perform semantic checking on the function declaration.
9414     if (!NewFD->isInvalidDecl() && NewFD->isMain())
9415       CheckMain(NewFD, D.getDeclSpec());
9416 
9417     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9418       CheckMSVCRTEntryPoint(NewFD);
9419 
9420     if (!NewFD->isInvalidDecl())
9421       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9422                                                   isMemberSpecialization));
9423     else if (!Previous.empty())
9424       // Recover gracefully from an invalid redeclaration.
9425       D.setRedeclaration(true);
9426     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9427             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
9428            "previous declaration set still overloaded");
9429 
9430     // Diagnose no-prototype function declarations with calling conventions that
9431     // don't support variadic calls. Only do this in C and do it after merging
9432     // possibly prototyped redeclarations.
9433     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
9434     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
9435       CallingConv CC = FT->getExtInfo().getCC();
9436       if (!supportsVariadicCall(CC)) {
9437         // Windows system headers sometimes accidentally use stdcall without
9438         // (void) parameters, so we relax this to a warning.
9439         int DiagID =
9440             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
9441         Diag(NewFD->getLocation(), DiagID)
9442             << FunctionType::getNameForCallConv(CC);
9443       }
9444     }
9445 
9446    if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
9447        NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
9448      checkNonTrivialCUnion(NewFD->getReturnType(),
9449                            NewFD->getReturnTypeSourceRange().getBegin(),
9450                            NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
9451   } else {
9452     // C++11 [replacement.functions]p3:
9453     //  The program's definitions shall not be specified as inline.
9454     //
9455     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
9456     //
9457     // Suppress the diagnostic if the function is __attribute__((used)), since
9458     // that forces an external definition to be emitted.
9459     if (D.getDeclSpec().isInlineSpecified() &&
9460         NewFD->isReplaceableGlobalAllocationFunction() &&
9461         !NewFD->hasAttr<UsedAttr>())
9462       Diag(D.getDeclSpec().getInlineSpecLoc(),
9463            diag::ext_operator_new_delete_declared_inline)
9464         << NewFD->getDeclName();
9465 
9466     // If the declarator is a template-id, translate the parser's template
9467     // argument list into our AST format.
9468     if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
9469       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
9470       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
9471       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
9472       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
9473                                          TemplateId->NumArgs);
9474       translateTemplateArguments(TemplateArgsPtr,
9475                                  TemplateArgs);
9476 
9477       HasExplicitTemplateArgs = true;
9478 
9479       if (NewFD->isInvalidDecl()) {
9480         HasExplicitTemplateArgs = false;
9481       } else if (FunctionTemplate) {
9482         // Function template with explicit template arguments.
9483         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
9484           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
9485 
9486         HasExplicitTemplateArgs = false;
9487       } else {
9488         assert((isFunctionTemplateSpecialization ||
9489                 D.getDeclSpec().isFriendSpecified()) &&
9490                "should have a 'template<>' for this decl");
9491         // "friend void foo<>(int);" is an implicit specialization decl.
9492         isFunctionTemplateSpecialization = true;
9493       }
9494     } else if (isFriend && isFunctionTemplateSpecialization) {
9495       // This combination is only possible in a recovery case;  the user
9496       // wrote something like:
9497       //   template <> friend void foo(int);
9498       // which we're recovering from as if the user had written:
9499       //   friend void foo<>(int);
9500       // Go ahead and fake up a template id.
9501       HasExplicitTemplateArgs = true;
9502       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
9503       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
9504     }
9505 
9506     // We do not add HD attributes to specializations here because
9507     // they may have different constexpr-ness compared to their
9508     // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
9509     // may end up with different effective targets. Instead, a
9510     // specialization inherits its target attributes from its template
9511     // in the CheckFunctionTemplateSpecialization() call below.
9512     if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
9513       maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
9514 
9515     // If it's a friend (and only if it's a friend), it's possible
9516     // that either the specialized function type or the specialized
9517     // template is dependent, and therefore matching will fail.  In
9518     // this case, don't check the specialization yet.
9519     if (isFunctionTemplateSpecialization && isFriend &&
9520         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
9521          TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
9522              TemplateArgs.arguments()))) {
9523       assert(HasExplicitTemplateArgs &&
9524              "friend function specialization without template args");
9525       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
9526                                                        Previous))
9527         NewFD->setInvalidDecl();
9528     } else if (isFunctionTemplateSpecialization) {
9529       if (CurContext->isDependentContext() && CurContext->isRecord()
9530           && !isFriend) {
9531         isDependentClassScopeExplicitSpecialization = true;
9532       } else if (!NewFD->isInvalidDecl() &&
9533                  CheckFunctionTemplateSpecialization(
9534                      NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
9535                      Previous))
9536         NewFD->setInvalidDecl();
9537 
9538       // C++ [dcl.stc]p1:
9539       //   A storage-class-specifier shall not be specified in an explicit
9540       //   specialization (14.7.3)
9541       FunctionTemplateSpecializationInfo *Info =
9542           NewFD->getTemplateSpecializationInfo();
9543       if (Info && SC != SC_None) {
9544         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
9545           Diag(NewFD->getLocation(),
9546                diag::err_explicit_specialization_inconsistent_storage_class)
9547             << SC
9548             << FixItHint::CreateRemoval(
9549                                       D.getDeclSpec().getStorageClassSpecLoc());
9550 
9551         else
9552           Diag(NewFD->getLocation(),
9553                diag::ext_explicit_specialization_storage_class)
9554             << FixItHint::CreateRemoval(
9555                                       D.getDeclSpec().getStorageClassSpecLoc());
9556       }
9557     } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
9558       if (CheckMemberSpecialization(NewFD, Previous))
9559           NewFD->setInvalidDecl();
9560     }
9561 
9562     // Perform semantic checking on the function declaration.
9563     if (!isDependentClassScopeExplicitSpecialization) {
9564       if (!NewFD->isInvalidDecl() && NewFD->isMain())
9565         CheckMain(NewFD, D.getDeclSpec());
9566 
9567       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9568         CheckMSVCRTEntryPoint(NewFD);
9569 
9570       if (!NewFD->isInvalidDecl())
9571         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9572                                                     isMemberSpecialization));
9573       else if (!Previous.empty())
9574         // Recover gracefully from an invalid redeclaration.
9575         D.setRedeclaration(true);
9576     }
9577 
9578     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9579             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
9580            "previous declaration set still overloaded");
9581 
9582     NamedDecl *PrincipalDecl = (FunctionTemplate
9583                                 ? cast<NamedDecl>(FunctionTemplate)
9584                                 : NewFD);
9585 
9586     if (isFriend && NewFD->getPreviousDecl()) {
9587       AccessSpecifier Access = AS_public;
9588       if (!NewFD->isInvalidDecl())
9589         Access = NewFD->getPreviousDecl()->getAccess();
9590 
9591       NewFD->setAccess(Access);
9592       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
9593     }
9594 
9595     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
9596         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
9597       PrincipalDecl->setNonMemberOperator();
9598 
9599     // If we have a function template, check the template parameter
9600     // list. This will check and merge default template arguments.
9601     if (FunctionTemplate) {
9602       FunctionTemplateDecl *PrevTemplate =
9603                                      FunctionTemplate->getPreviousDecl();
9604       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
9605                        PrevTemplate ? PrevTemplate->getTemplateParameters()
9606                                     : nullptr,
9607                             D.getDeclSpec().isFriendSpecified()
9608                               ? (D.isFunctionDefinition()
9609                                    ? TPC_FriendFunctionTemplateDefinition
9610                                    : TPC_FriendFunctionTemplate)
9611                               : (D.getCXXScopeSpec().isSet() &&
9612                                  DC && DC->isRecord() &&
9613                                  DC->isDependentContext())
9614                                   ? TPC_ClassTemplateMember
9615                                   : TPC_FunctionTemplate);
9616     }
9617 
9618     if (NewFD->isInvalidDecl()) {
9619       // Ignore all the rest of this.
9620     } else if (!D.isRedeclaration()) {
9621       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9622                                        AddToScope };
9623       // Fake up an access specifier if it's supposed to be a class member.
9624       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9625         NewFD->setAccess(AS_public);
9626 
9627       // Qualified decls generally require a previous declaration.
9628       if (D.getCXXScopeSpec().isSet()) {
9629         // ...with the major exception of templated-scope or
9630         // dependent-scope friend declarations.
9631 
9632         // TODO: we currently also suppress this check in dependent
9633         // contexts because (1) the parameter depth will be off when
9634         // matching friend templates and (2) we might actually be
9635         // selecting a friend based on a dependent factor.  But there
9636         // are situations where these conditions don't apply and we
9637         // can actually do this check immediately.
9638         //
9639         // Unless the scope is dependent, it's always an error if qualified
9640         // redeclaration lookup found nothing at all. Diagnose that now;
9641         // nothing will diagnose that error later.
9642         if (isFriend &&
9643             (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
9644              (!Previous.empty() && CurContext->isDependentContext()))) {
9645           // ignore these
9646         } else {
9647           // The user tried to provide an out-of-line definition for a
9648           // function that is a member of a class or namespace, but there
9649           // was no such member function declared (C++ [class.mfct]p2,
9650           // C++ [namespace.memdef]p2). For example:
9651           //
9652           // class X {
9653           //   void f() const;
9654           // };
9655           //
9656           // void X::f() { } // ill-formed
9657           //
9658           // Complain about this problem, and attempt to suggest close
9659           // matches (e.g., those that differ only in cv-qualifiers and
9660           // whether the parameter types are references).
9661 
9662           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9663                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9664             AddToScope = ExtraArgs.AddToScope;
9665             return Result;
9666           }
9667         }
9668 
9669         // Unqualified local friend declarations are required to resolve
9670         // to something.
9671       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9672         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9673                 *this, Previous, NewFD, ExtraArgs, true, S)) {
9674           AddToScope = ExtraArgs.AddToScope;
9675           return Result;
9676         }
9677       }
9678     } else if (!D.isFunctionDefinition() &&
9679                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9680                !isFriend && !isFunctionTemplateSpecialization &&
9681                !isMemberSpecialization) {
9682       // An out-of-line member function declaration must also be a
9683       // definition (C++ [class.mfct]p2).
9684       // Note that this is not the case for explicit specializations of
9685       // function templates or member functions of class templates, per
9686       // C++ [temp.expl.spec]p2. We also allow these declarations as an
9687       // extension for compatibility with old SWIG code which likes to
9688       // generate them.
9689       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9690         << D.getCXXScopeSpec().getRange();
9691     }
9692   }
9693 
9694   // If this is the first declaration of a library builtin function, add
9695   // attributes as appropriate.
9696   if (!D.isRedeclaration() &&
9697       NewFD->getDeclContext()->getRedeclContext()->isFileContext()) {
9698     if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) {
9699       if (unsigned BuiltinID = II->getBuiltinID()) {
9700         if (NewFD->getLanguageLinkage() == CLanguageLinkage) {
9701           // Validate the type matches unless this builtin is specified as
9702           // matching regardless of its declared type.
9703           if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) {
9704             NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9705           } else {
9706             ASTContext::GetBuiltinTypeError Error;
9707             LookupNecessaryTypesForBuiltin(S, BuiltinID);
9708             QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error);
9709 
9710             if (!Error && !BuiltinType.isNull() &&
9711                 Context.hasSameFunctionTypeIgnoringExceptionSpec(
9712                     NewFD->getType(), BuiltinType))
9713               NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9714           }
9715         } else if (BuiltinID == Builtin::BI__GetExceptionInfo &&
9716                    Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9717           // FIXME: We should consider this a builtin only in the std namespace.
9718           NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9719         }
9720       }
9721     }
9722   }
9723 
9724   ProcessPragmaWeak(S, NewFD);
9725   checkAttributesAfterMerging(*this, *NewFD);
9726 
9727   AddKnownFunctionAttributes(NewFD);
9728 
9729   if (NewFD->hasAttr<OverloadableAttr>() &&
9730       !NewFD->getType()->getAs<FunctionProtoType>()) {
9731     Diag(NewFD->getLocation(),
9732          diag::err_attribute_overloadable_no_prototype)
9733       << NewFD;
9734 
9735     // Turn this into a variadic function with no parameters.
9736     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9737     FunctionProtoType::ExtProtoInfo EPI(
9738         Context.getDefaultCallingConvention(true, false));
9739     EPI.Variadic = true;
9740     EPI.ExtInfo = FT->getExtInfo();
9741 
9742     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9743     NewFD->setType(R);
9744   }
9745 
9746   // If there's a #pragma GCC visibility in scope, and this isn't a class
9747   // member, set the visibility of this function.
9748   if (!DC->isRecord() && NewFD->isExternallyVisible())
9749     AddPushedVisibilityAttribute(NewFD);
9750 
9751   // If there's a #pragma clang arc_cf_code_audited in scope, consider
9752   // marking the function.
9753   AddCFAuditedAttribute(NewFD);
9754 
9755   // If this is a function definition, check if we have to apply optnone due to
9756   // a pragma.
9757   if(D.isFunctionDefinition())
9758     AddRangeBasedOptnone(NewFD);
9759 
9760   // If this is the first declaration of an extern C variable, update
9761   // the map of such variables.
9762   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9763       isIncompleteDeclExternC(*this, NewFD))
9764     RegisterLocallyScopedExternCDecl(NewFD, S);
9765 
9766   // Set this FunctionDecl's range up to the right paren.
9767   NewFD->setRangeEnd(D.getSourceRange().getEnd());
9768 
9769   if (D.isRedeclaration() && !Previous.empty()) {
9770     NamedDecl *Prev = Previous.getRepresentativeDecl();
9771     checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9772                                    isMemberSpecialization ||
9773                                        isFunctionTemplateSpecialization,
9774                                    D.isFunctionDefinition());
9775   }
9776 
9777   if (getLangOpts().CUDA) {
9778     IdentifierInfo *II = NewFD->getIdentifier();
9779     if (II && II->isStr(getCudaConfigureFuncName()) &&
9780         !NewFD->isInvalidDecl() &&
9781         NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9782       if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
9783         Diag(NewFD->getLocation(), diag::err_config_scalar_return)
9784             << getCudaConfigureFuncName();
9785       Context.setcudaConfigureCallDecl(NewFD);
9786     }
9787 
9788     // Variadic functions, other than a *declaration* of printf, are not allowed
9789     // in device-side CUDA code, unless someone passed
9790     // -fcuda-allow-variadic-functions.
9791     if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9792         (NewFD->hasAttr<CUDADeviceAttr>() ||
9793          NewFD->hasAttr<CUDAGlobalAttr>()) &&
9794         !(II && II->isStr("printf") && NewFD->isExternC() &&
9795           !D.isFunctionDefinition())) {
9796       Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9797     }
9798   }
9799 
9800   MarkUnusedFileScopedDecl(NewFD);
9801 
9802 
9803 
9804   if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
9805     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9806     if ((getLangOpts().OpenCLVersion >= 120)
9807         && (SC == SC_Static)) {
9808       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9809       D.setInvalidType();
9810     }
9811 
9812     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9813     if (!NewFD->getReturnType()->isVoidType()) {
9814       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9815       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9816           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9817                                 : FixItHint());
9818       D.setInvalidType();
9819     }
9820 
9821     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9822     for (auto Param : NewFD->parameters())
9823       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9824 
9825     if (getLangOpts().OpenCLCPlusPlus) {
9826       if (DC->isRecord()) {
9827         Diag(D.getIdentifierLoc(), diag::err_method_kernel);
9828         D.setInvalidType();
9829       }
9830       if (FunctionTemplate) {
9831         Diag(D.getIdentifierLoc(), diag::err_template_kernel);
9832         D.setInvalidType();
9833       }
9834     }
9835   }
9836 
9837   if (getLangOpts().CPlusPlus) {
9838     if (FunctionTemplate) {
9839       if (NewFD->isInvalidDecl())
9840         FunctionTemplate->setInvalidDecl();
9841       return FunctionTemplate;
9842     }
9843 
9844     if (isMemberSpecialization && !NewFD->isInvalidDecl())
9845       CompleteMemberSpecialization(NewFD, Previous);
9846   }
9847 
9848   for (const ParmVarDecl *Param : NewFD->parameters()) {
9849     QualType PT = Param->getType();
9850 
9851     // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
9852     // types.
9853     if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
9854       if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
9855         QualType ElemTy = PipeTy->getElementType();
9856           if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
9857             Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
9858             D.setInvalidType();
9859           }
9860       }
9861     }
9862   }
9863 
9864   // Here we have an function template explicit specialization at class scope.
9865   // The actual specialization will be postponed to template instatiation
9866   // time via the ClassScopeFunctionSpecializationDecl node.
9867   if (isDependentClassScopeExplicitSpecialization) {
9868     ClassScopeFunctionSpecializationDecl *NewSpec =
9869                          ClassScopeFunctionSpecializationDecl::Create(
9870                                 Context, CurContext, NewFD->getLocation(),
9871                                 cast<CXXMethodDecl>(NewFD),
9872                                 HasExplicitTemplateArgs, TemplateArgs);
9873     CurContext->addDecl(NewSpec);
9874     AddToScope = false;
9875   }
9876 
9877   // Diagnose availability attributes. Availability cannot be used on functions
9878   // that are run during load/unload.
9879   if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
9880     if (NewFD->hasAttr<ConstructorAttr>()) {
9881       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9882           << 1;
9883       NewFD->dropAttr<AvailabilityAttr>();
9884     }
9885     if (NewFD->hasAttr<DestructorAttr>()) {
9886       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9887           << 2;
9888       NewFD->dropAttr<AvailabilityAttr>();
9889     }
9890   }
9891 
9892   // Diagnose no_builtin attribute on function declaration that are not a
9893   // definition.
9894   // FIXME: We should really be doing this in
9895   // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
9896   // the FunctionDecl and at this point of the code
9897   // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
9898   // because Sema::ActOnStartOfFunctionDef has not been called yet.
9899   if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
9900     switch (D.getFunctionDefinitionKind()) {
9901     case FunctionDefinitionKind::Defaulted:
9902     case FunctionDefinitionKind::Deleted:
9903       Diag(NBA->getLocation(),
9904            diag::err_attribute_no_builtin_on_defaulted_deleted_function)
9905           << NBA->getSpelling();
9906       break;
9907     case FunctionDefinitionKind::Declaration:
9908       Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
9909           << NBA->getSpelling();
9910       break;
9911     case FunctionDefinitionKind::Definition:
9912       break;
9913     }
9914 
9915   return NewFD;
9916 }
9917 
9918 /// Return a CodeSegAttr from a containing class.  The Microsoft docs say
9919 /// when __declspec(code_seg) "is applied to a class, all member functions of
9920 /// the class and nested classes -- this includes compiler-generated special
9921 /// member functions -- are put in the specified segment."
9922 /// The actual behavior is a little more complicated. The Microsoft compiler
9923 /// won't check outer classes if there is an active value from #pragma code_seg.
9924 /// The CodeSeg is always applied from the direct parent but only from outer
9925 /// classes when the #pragma code_seg stack is empty. See:
9926 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
9927 /// available since MS has removed the page.
9928 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
9929   const auto *Method = dyn_cast<CXXMethodDecl>(FD);
9930   if (!Method)
9931     return nullptr;
9932   const CXXRecordDecl *Parent = Method->getParent();
9933   if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9934     Attr *NewAttr = SAttr->clone(S.getASTContext());
9935     NewAttr->setImplicit(true);
9936     return NewAttr;
9937   }
9938 
9939   // The Microsoft compiler won't check outer classes for the CodeSeg
9940   // when the #pragma code_seg stack is active.
9941   if (S.CodeSegStack.CurrentValue)
9942    return nullptr;
9943 
9944   while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
9945     if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9946       Attr *NewAttr = SAttr->clone(S.getASTContext());
9947       NewAttr->setImplicit(true);
9948       return NewAttr;
9949     }
9950   }
9951   return nullptr;
9952 }
9953 
9954 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
9955 /// containing class. Otherwise it will return implicit SectionAttr if the
9956 /// function is a definition and there is an active value on CodeSegStack
9957 /// (from the current #pragma code-seg value).
9958 ///
9959 /// \param FD Function being declared.
9960 /// \param IsDefinition Whether it is a definition or just a declarartion.
9961 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
9962 ///          nullptr if no attribute should be added.
9963 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
9964                                                        bool IsDefinition) {
9965   if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
9966     return A;
9967   if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
9968       CodeSegStack.CurrentValue)
9969     return SectionAttr::CreateImplicit(
9970         getASTContext(), CodeSegStack.CurrentValue->getString(),
9971         CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9972         SectionAttr::Declspec_allocate);
9973   return nullptr;
9974 }
9975 
9976 /// Determines if we can perform a correct type check for \p D as a
9977 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
9978 /// best-effort check.
9979 ///
9980 /// \param NewD The new declaration.
9981 /// \param OldD The old declaration.
9982 /// \param NewT The portion of the type of the new declaration to check.
9983 /// \param OldT The portion of the type of the old declaration to check.
9984 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
9985                                           QualType NewT, QualType OldT) {
9986   if (!NewD->getLexicalDeclContext()->isDependentContext())
9987     return true;
9988 
9989   // For dependently-typed local extern declarations and friends, we can't
9990   // perform a correct type check in general until instantiation:
9991   //
9992   //   int f();
9993   //   template<typename T> void g() { T f(); }
9994   //
9995   // (valid if g() is only instantiated with T = int).
9996   if (NewT->isDependentType() &&
9997       (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
9998     return false;
9999 
10000   // Similarly, if the previous declaration was a dependent local extern
10001   // declaration, we don't really know its type yet.
10002   if (OldT->isDependentType() && OldD->isLocalExternDecl())
10003     return false;
10004 
10005   return true;
10006 }
10007 
10008 /// Checks if the new declaration declared in dependent context must be
10009 /// put in the same redeclaration chain as the specified declaration.
10010 ///
10011 /// \param D Declaration that is checked.
10012 /// \param PrevDecl Previous declaration found with proper lookup method for the
10013 ///                 same declaration name.
10014 /// \returns True if D must be added to the redeclaration chain which PrevDecl
10015 ///          belongs to.
10016 ///
10017 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
10018   if (!D->getLexicalDeclContext()->isDependentContext())
10019     return true;
10020 
10021   // Don't chain dependent friend function definitions until instantiation, to
10022   // permit cases like
10023   //
10024   //   void func();
10025   //   template<typename T> class C1 { friend void func() {} };
10026   //   template<typename T> class C2 { friend void func() {} };
10027   //
10028   // ... which is valid if only one of C1 and C2 is ever instantiated.
10029   //
10030   // FIXME: This need only apply to function definitions. For now, we proxy
10031   // this by checking for a file-scope function. We do not want this to apply
10032   // to friend declarations nominating member functions, because that gets in
10033   // the way of access checks.
10034   if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
10035     return false;
10036 
10037   auto *VD = dyn_cast<ValueDecl>(D);
10038   auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
10039   return !VD || !PrevVD ||
10040          canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
10041                                         PrevVD->getType());
10042 }
10043 
10044 /// Check the target attribute of the function for MultiVersion
10045 /// validity.
10046 ///
10047 /// Returns true if there was an error, false otherwise.
10048 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
10049   const auto *TA = FD->getAttr<TargetAttr>();
10050   assert(TA && "MultiVersion Candidate requires a target attribute");
10051   ParsedTargetAttr ParseInfo = TA->parse();
10052   const TargetInfo &TargetInfo = S.Context.getTargetInfo();
10053   enum ErrType { Feature = 0, Architecture = 1 };
10054 
10055   if (!ParseInfo.Architecture.empty() &&
10056       !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
10057     S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10058         << Architecture << ParseInfo.Architecture;
10059     return true;
10060   }
10061 
10062   for (const auto &Feat : ParseInfo.Features) {
10063     auto BareFeat = StringRef{Feat}.substr(1);
10064     if (Feat[0] == '-') {
10065       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10066           << Feature << ("no-" + BareFeat).str();
10067       return true;
10068     }
10069 
10070     if (!TargetInfo.validateCpuSupports(BareFeat) ||
10071         !TargetInfo.isValidFeatureName(BareFeat)) {
10072       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10073           << Feature << BareFeat;
10074       return true;
10075     }
10076   }
10077   return false;
10078 }
10079 
10080 // Provide a white-list of attributes that are allowed to be combined with
10081 // multiversion functions.
10082 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind,
10083                                            MultiVersionKind MVType) {
10084   // Note: this list/diagnosis must match the list in
10085   // checkMultiversionAttributesAllSame.
10086   switch (Kind) {
10087   default:
10088     return false;
10089   case attr::Used:
10090     return MVType == MultiVersionKind::Target;
10091   case attr::NonNull:
10092   case attr::NoThrow:
10093     return true;
10094   }
10095 }
10096 
10097 static bool checkNonMultiVersionCompatAttributes(Sema &S,
10098                                                  const FunctionDecl *FD,
10099                                                  const FunctionDecl *CausedFD,
10100                                                  MultiVersionKind MVType) {
10101   bool IsCPUSpecificCPUDispatchMVType =
10102       MVType == MultiVersionKind::CPUDispatch ||
10103       MVType == MultiVersionKind::CPUSpecific;
10104   const auto Diagnose = [FD, CausedFD, IsCPUSpecificCPUDispatchMVType](
10105                             Sema &S, const Attr *A) {
10106     S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr)
10107         << IsCPUSpecificCPUDispatchMVType << A;
10108     if (CausedFD)
10109       S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here);
10110     return true;
10111   };
10112 
10113   for (const Attr *A : FD->attrs()) {
10114     switch (A->getKind()) {
10115     case attr::CPUDispatch:
10116     case attr::CPUSpecific:
10117       if (MVType != MultiVersionKind::CPUDispatch &&
10118           MVType != MultiVersionKind::CPUSpecific)
10119         return Diagnose(S, A);
10120       break;
10121     case attr::Target:
10122       if (MVType != MultiVersionKind::Target)
10123         return Diagnose(S, A);
10124       break;
10125     default:
10126       if (!AttrCompatibleWithMultiVersion(A->getKind(), MVType))
10127         return Diagnose(S, A);
10128       break;
10129     }
10130   }
10131   return false;
10132 }
10133 
10134 bool Sema::areMultiversionVariantFunctionsCompatible(
10135     const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10136     const PartialDiagnostic &NoProtoDiagID,
10137     const PartialDiagnosticAt &NoteCausedDiagIDAt,
10138     const PartialDiagnosticAt &NoSupportDiagIDAt,
10139     const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10140     bool ConstexprSupported, bool CLinkageMayDiffer) {
10141   enum DoesntSupport {
10142     FuncTemplates = 0,
10143     VirtFuncs = 1,
10144     DeducedReturn = 2,
10145     Constructors = 3,
10146     Destructors = 4,
10147     DeletedFuncs = 5,
10148     DefaultedFuncs = 6,
10149     ConstexprFuncs = 7,
10150     ConstevalFuncs = 8,
10151   };
10152   enum Different {
10153     CallingConv = 0,
10154     ReturnType = 1,
10155     ConstexprSpec = 2,
10156     InlineSpec = 3,
10157     StorageClass = 4,
10158     Linkage = 5,
10159   };
10160 
10161   if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
10162       !OldFD->getType()->getAs<FunctionProtoType>()) {
10163     Diag(OldFD->getLocation(), NoProtoDiagID);
10164     Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
10165     return true;
10166   }
10167 
10168   if (NoProtoDiagID.getDiagID() != 0 &&
10169       !NewFD->getType()->getAs<FunctionProtoType>())
10170     return Diag(NewFD->getLocation(), NoProtoDiagID);
10171 
10172   if (!TemplatesSupported &&
10173       NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10174     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10175            << FuncTemplates;
10176 
10177   if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
10178     if (NewCXXFD->isVirtual())
10179       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10180              << VirtFuncs;
10181 
10182     if (isa<CXXConstructorDecl>(NewCXXFD))
10183       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10184              << Constructors;
10185 
10186     if (isa<CXXDestructorDecl>(NewCXXFD))
10187       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10188              << Destructors;
10189   }
10190 
10191   if (NewFD->isDeleted())
10192     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10193            << DeletedFuncs;
10194 
10195   if (NewFD->isDefaulted())
10196     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10197            << DefaultedFuncs;
10198 
10199   if (!ConstexprSupported && NewFD->isConstexpr())
10200     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10201            << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
10202 
10203   QualType NewQType = Context.getCanonicalType(NewFD->getType());
10204   const auto *NewType = cast<FunctionType>(NewQType);
10205   QualType NewReturnType = NewType->getReturnType();
10206 
10207   if (NewReturnType->isUndeducedType())
10208     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10209            << DeducedReturn;
10210 
10211   // Ensure the return type is identical.
10212   if (OldFD) {
10213     QualType OldQType = Context.getCanonicalType(OldFD->getType());
10214     const auto *OldType = cast<FunctionType>(OldQType);
10215     FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
10216     FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
10217 
10218     if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
10219       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
10220 
10221     QualType OldReturnType = OldType->getReturnType();
10222 
10223     if (OldReturnType != NewReturnType)
10224       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
10225 
10226     if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
10227       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
10228 
10229     if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
10230       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
10231 
10232     if (OldFD->getStorageClass() != NewFD->getStorageClass())
10233       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << StorageClass;
10234 
10235     if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
10236       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
10237 
10238     if (CheckEquivalentExceptionSpec(
10239             OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
10240             NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
10241       return true;
10242   }
10243   return false;
10244 }
10245 
10246 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
10247                                              const FunctionDecl *NewFD,
10248                                              bool CausesMV,
10249                                              MultiVersionKind MVType) {
10250   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10251     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10252     if (OldFD)
10253       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10254     return true;
10255   }
10256 
10257   bool IsCPUSpecificCPUDispatchMVType =
10258       MVType == MultiVersionKind::CPUDispatch ||
10259       MVType == MultiVersionKind::CPUSpecific;
10260 
10261   if (CausesMV && OldFD &&
10262       checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVType))
10263     return true;
10264 
10265   if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVType))
10266     return true;
10267 
10268   // Only allow transition to MultiVersion if it hasn't been used.
10269   if (OldFD && CausesMV && OldFD->isUsed(false))
10270     return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
10271 
10272   return S.areMultiversionVariantFunctionsCompatible(
10273       OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
10274       PartialDiagnosticAt(NewFD->getLocation(),
10275                           S.PDiag(diag::note_multiversioning_caused_here)),
10276       PartialDiagnosticAt(NewFD->getLocation(),
10277                           S.PDiag(diag::err_multiversion_doesnt_support)
10278                               << IsCPUSpecificCPUDispatchMVType),
10279       PartialDiagnosticAt(NewFD->getLocation(),
10280                           S.PDiag(diag::err_multiversion_diff)),
10281       /*TemplatesSupported=*/false,
10282       /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVType,
10283       /*CLinkageMayDiffer=*/false);
10284 }
10285 
10286 /// Check the validity of a multiversion function declaration that is the
10287 /// first of its kind. Also sets the multiversion'ness' of the function itself.
10288 ///
10289 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10290 ///
10291 /// Returns true if there was an error, false otherwise.
10292 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
10293                                            MultiVersionKind MVType,
10294                                            const TargetAttr *TA) {
10295   assert(MVType != MultiVersionKind::None &&
10296          "Function lacks multiversion attribute");
10297 
10298   // Target only causes MV if it is default, otherwise this is a normal
10299   // function.
10300   if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
10301     return false;
10302 
10303   if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
10304     FD->setInvalidDecl();
10305     return true;
10306   }
10307 
10308   if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
10309     FD->setInvalidDecl();
10310     return true;
10311   }
10312 
10313   FD->setIsMultiVersion();
10314   return false;
10315 }
10316 
10317 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
10318   for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
10319     if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
10320       return true;
10321   }
10322 
10323   return false;
10324 }
10325 
10326 static bool CheckTargetCausesMultiVersioning(
10327     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
10328     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10329     LookupResult &Previous) {
10330   const auto *OldTA = OldFD->getAttr<TargetAttr>();
10331   ParsedTargetAttr NewParsed = NewTA->parse();
10332   // Sort order doesn't matter, it just needs to be consistent.
10333   llvm::sort(NewParsed.Features);
10334 
10335   // If the old decl is NOT MultiVersioned yet, and we don't cause that
10336   // to change, this is a simple redeclaration.
10337   if (!NewTA->isDefaultVersion() &&
10338       (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
10339     return false;
10340 
10341   // Otherwise, this decl causes MultiVersioning.
10342   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10343     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10344     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10345     NewFD->setInvalidDecl();
10346     return true;
10347   }
10348 
10349   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
10350                                        MultiVersionKind::Target)) {
10351     NewFD->setInvalidDecl();
10352     return true;
10353   }
10354 
10355   if (CheckMultiVersionValue(S, NewFD)) {
10356     NewFD->setInvalidDecl();
10357     return true;
10358   }
10359 
10360   // If this is 'default', permit the forward declaration.
10361   if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
10362     Redeclaration = true;
10363     OldDecl = OldFD;
10364     OldFD->setIsMultiVersion();
10365     NewFD->setIsMultiVersion();
10366     return false;
10367   }
10368 
10369   if (CheckMultiVersionValue(S, OldFD)) {
10370     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10371     NewFD->setInvalidDecl();
10372     return true;
10373   }
10374 
10375   ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>());
10376 
10377   if (OldParsed == NewParsed) {
10378     S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10379     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10380     NewFD->setInvalidDecl();
10381     return true;
10382   }
10383 
10384   for (const auto *FD : OldFD->redecls()) {
10385     const auto *CurTA = FD->getAttr<TargetAttr>();
10386     // We allow forward declarations before ANY multiversioning attributes, but
10387     // nothing after the fact.
10388     if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
10389         (!CurTA || CurTA->isInherited())) {
10390       S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
10391           << 0;
10392       S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10393       NewFD->setInvalidDecl();
10394       return true;
10395     }
10396   }
10397 
10398   OldFD->setIsMultiVersion();
10399   NewFD->setIsMultiVersion();
10400   Redeclaration = false;
10401   MergeTypeWithPrevious = false;
10402   OldDecl = nullptr;
10403   Previous.clear();
10404   return false;
10405 }
10406 
10407 /// Check the validity of a new function declaration being added to an existing
10408 /// multiversioned declaration collection.
10409 static bool CheckMultiVersionAdditionalDecl(
10410     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
10411     MultiVersionKind NewMVType, const TargetAttr *NewTA,
10412     const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
10413     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10414     LookupResult &Previous) {
10415 
10416   MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
10417   // Disallow mixing of multiversioning types.
10418   if ((OldMVType == MultiVersionKind::Target &&
10419        NewMVType != MultiVersionKind::Target) ||
10420       (NewMVType == MultiVersionKind::Target &&
10421        OldMVType != MultiVersionKind::Target)) {
10422     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10423     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10424     NewFD->setInvalidDecl();
10425     return true;
10426   }
10427 
10428   ParsedTargetAttr NewParsed;
10429   if (NewTA) {
10430     NewParsed = NewTA->parse();
10431     llvm::sort(NewParsed.Features);
10432   }
10433 
10434   bool UseMemberUsingDeclRules =
10435       S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
10436 
10437   // Next, check ALL non-overloads to see if this is a redeclaration of a
10438   // previous member of the MultiVersion set.
10439   for (NamedDecl *ND : Previous) {
10440     FunctionDecl *CurFD = ND->getAsFunction();
10441     if (!CurFD)
10442       continue;
10443     if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
10444       continue;
10445 
10446     if (NewMVType == MultiVersionKind::Target) {
10447       const auto *CurTA = CurFD->getAttr<TargetAttr>();
10448       if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
10449         NewFD->setIsMultiVersion();
10450         Redeclaration = true;
10451         OldDecl = ND;
10452         return false;
10453       }
10454 
10455       ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>());
10456       if (CurParsed == NewParsed) {
10457         S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10458         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10459         NewFD->setInvalidDecl();
10460         return true;
10461       }
10462     } else {
10463       const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
10464       const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
10465       // Handle CPUDispatch/CPUSpecific versions.
10466       // Only 1 CPUDispatch function is allowed, this will make it go through
10467       // the redeclaration errors.
10468       if (NewMVType == MultiVersionKind::CPUDispatch &&
10469           CurFD->hasAttr<CPUDispatchAttr>()) {
10470         if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
10471             std::equal(
10472                 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
10473                 NewCPUDisp->cpus_begin(),
10474                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10475                   return Cur->getName() == New->getName();
10476                 })) {
10477           NewFD->setIsMultiVersion();
10478           Redeclaration = true;
10479           OldDecl = ND;
10480           return false;
10481         }
10482 
10483         // If the declarations don't match, this is an error condition.
10484         S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
10485         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10486         NewFD->setInvalidDecl();
10487         return true;
10488       }
10489       if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
10490 
10491         if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
10492             std::equal(
10493                 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
10494                 NewCPUSpec->cpus_begin(),
10495                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10496                   return Cur->getName() == New->getName();
10497                 })) {
10498           NewFD->setIsMultiVersion();
10499           Redeclaration = true;
10500           OldDecl = ND;
10501           return false;
10502         }
10503 
10504         // Only 1 version of CPUSpecific is allowed for each CPU.
10505         for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
10506           for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
10507             if (CurII == NewII) {
10508               S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
10509                   << NewII;
10510               S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10511               NewFD->setInvalidDecl();
10512               return true;
10513             }
10514           }
10515         }
10516       }
10517       // If the two decls aren't the same MVType, there is no possible error
10518       // condition.
10519     }
10520   }
10521 
10522   // Else, this is simply a non-redecl case.  Checking the 'value' is only
10523   // necessary in the Target case, since The CPUSpecific/Dispatch cases are
10524   // handled in the attribute adding step.
10525   if (NewMVType == MultiVersionKind::Target &&
10526       CheckMultiVersionValue(S, NewFD)) {
10527     NewFD->setInvalidDecl();
10528     return true;
10529   }
10530 
10531   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
10532                                        !OldFD->isMultiVersion(), NewMVType)) {
10533     NewFD->setInvalidDecl();
10534     return true;
10535   }
10536 
10537   // Permit forward declarations in the case where these two are compatible.
10538   if (!OldFD->isMultiVersion()) {
10539     OldFD->setIsMultiVersion();
10540     NewFD->setIsMultiVersion();
10541     Redeclaration = true;
10542     OldDecl = OldFD;
10543     return false;
10544   }
10545 
10546   NewFD->setIsMultiVersion();
10547   Redeclaration = false;
10548   MergeTypeWithPrevious = false;
10549   OldDecl = nullptr;
10550   Previous.clear();
10551   return false;
10552 }
10553 
10554 
10555 /// Check the validity of a mulitversion function declaration.
10556 /// Also sets the multiversion'ness' of the function itself.
10557 ///
10558 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10559 ///
10560 /// Returns true if there was an error, false otherwise.
10561 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
10562                                       bool &Redeclaration, NamedDecl *&OldDecl,
10563                                       bool &MergeTypeWithPrevious,
10564                                       LookupResult &Previous) {
10565   const auto *NewTA = NewFD->getAttr<TargetAttr>();
10566   const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
10567   const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
10568 
10569   // Mixing Multiversioning types is prohibited.
10570   if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
10571       (NewCPUDisp && NewCPUSpec)) {
10572     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10573     NewFD->setInvalidDecl();
10574     return true;
10575   }
10576 
10577   MultiVersionKind  MVType = NewFD->getMultiVersionKind();
10578 
10579   // Main isn't allowed to become a multiversion function, however it IS
10580   // permitted to have 'main' be marked with the 'target' optimization hint.
10581   if (NewFD->isMain()) {
10582     if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
10583         MVType == MultiVersionKind::CPUDispatch ||
10584         MVType == MultiVersionKind::CPUSpecific) {
10585       S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
10586       NewFD->setInvalidDecl();
10587       return true;
10588     }
10589     return false;
10590   }
10591 
10592   if (!OldDecl || !OldDecl->getAsFunction() ||
10593       OldDecl->getDeclContext()->getRedeclContext() !=
10594           NewFD->getDeclContext()->getRedeclContext()) {
10595     // If there's no previous declaration, AND this isn't attempting to cause
10596     // multiversioning, this isn't an error condition.
10597     if (MVType == MultiVersionKind::None)
10598       return false;
10599     return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA);
10600   }
10601 
10602   FunctionDecl *OldFD = OldDecl->getAsFunction();
10603 
10604   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
10605     return false;
10606 
10607   if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
10608     S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
10609         << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
10610     NewFD->setInvalidDecl();
10611     return true;
10612   }
10613 
10614   // Handle the target potentially causes multiversioning case.
10615   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
10616     return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
10617                                             Redeclaration, OldDecl,
10618                                             MergeTypeWithPrevious, Previous);
10619 
10620   // At this point, we have a multiversion function decl (in OldFD) AND an
10621   // appropriate attribute in the current function decl.  Resolve that these are
10622   // still compatible with previous declarations.
10623   return CheckMultiVersionAdditionalDecl(
10624       S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
10625       OldDecl, MergeTypeWithPrevious, Previous);
10626 }
10627 
10628 /// Perform semantic checking of a new function declaration.
10629 ///
10630 /// Performs semantic analysis of the new function declaration
10631 /// NewFD. This routine performs all semantic checking that does not
10632 /// require the actual declarator involved in the declaration, and is
10633 /// used both for the declaration of functions as they are parsed
10634 /// (called via ActOnDeclarator) and for the declaration of functions
10635 /// that have been instantiated via C++ template instantiation (called
10636 /// via InstantiateDecl).
10637 ///
10638 /// \param IsMemberSpecialization whether this new function declaration is
10639 /// a member specialization (that replaces any definition provided by the
10640 /// previous declaration).
10641 ///
10642 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10643 ///
10644 /// \returns true if the function declaration is a redeclaration.
10645 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
10646                                     LookupResult &Previous,
10647                                     bool IsMemberSpecialization) {
10648   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
10649          "Variably modified return types are not handled here");
10650 
10651   // Determine whether the type of this function should be merged with
10652   // a previous visible declaration. This never happens for functions in C++,
10653   // and always happens in C if the previous declaration was visible.
10654   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
10655                                !Previous.isShadowed();
10656 
10657   bool Redeclaration = false;
10658   NamedDecl *OldDecl = nullptr;
10659   bool MayNeedOverloadableChecks = false;
10660 
10661   // Merge or overload the declaration with an existing declaration of
10662   // the same name, if appropriate.
10663   if (!Previous.empty()) {
10664     // Determine whether NewFD is an overload of PrevDecl or
10665     // a declaration that requires merging. If it's an overload,
10666     // there's no more work to do here; we'll just add the new
10667     // function to the scope.
10668     if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
10669       NamedDecl *Candidate = Previous.getRepresentativeDecl();
10670       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
10671         Redeclaration = true;
10672         OldDecl = Candidate;
10673       }
10674     } else {
10675       MayNeedOverloadableChecks = true;
10676       switch (CheckOverload(S, NewFD, Previous, OldDecl,
10677                             /*NewIsUsingDecl*/ false)) {
10678       case Ovl_Match:
10679         Redeclaration = true;
10680         break;
10681 
10682       case Ovl_NonFunction:
10683         Redeclaration = true;
10684         break;
10685 
10686       case Ovl_Overload:
10687         Redeclaration = false;
10688         break;
10689       }
10690     }
10691   }
10692 
10693   // Check for a previous extern "C" declaration with this name.
10694   if (!Redeclaration &&
10695       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
10696     if (!Previous.empty()) {
10697       // This is an extern "C" declaration with the same name as a previous
10698       // declaration, and thus redeclares that entity...
10699       Redeclaration = true;
10700       OldDecl = Previous.getFoundDecl();
10701       MergeTypeWithPrevious = false;
10702 
10703       // ... except in the presence of __attribute__((overloadable)).
10704       if (OldDecl->hasAttr<OverloadableAttr>() ||
10705           NewFD->hasAttr<OverloadableAttr>()) {
10706         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
10707           MayNeedOverloadableChecks = true;
10708           Redeclaration = false;
10709           OldDecl = nullptr;
10710         }
10711       }
10712     }
10713   }
10714 
10715   if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10716                                 MergeTypeWithPrevious, Previous))
10717     return Redeclaration;
10718 
10719   // PPC MMA non-pointer types are not allowed as function return types.
10720   if (Context.getTargetInfo().getTriple().isPPC64() &&
10721       CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) {
10722     NewFD->setInvalidDecl();
10723   }
10724 
10725   // C++11 [dcl.constexpr]p8:
10726   //   A constexpr specifier for a non-static member function that is not
10727   //   a constructor declares that member function to be const.
10728   //
10729   // This needs to be delayed until we know whether this is an out-of-line
10730   // definition of a static member function.
10731   //
10732   // This rule is not present in C++1y, so we produce a backwards
10733   // compatibility warning whenever it happens in C++11.
10734   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10735   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10736       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10737       !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
10738     CXXMethodDecl *OldMD = nullptr;
10739     if (OldDecl)
10740       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10741     if (!OldMD || !OldMD->isStatic()) {
10742       const FunctionProtoType *FPT =
10743         MD->getType()->castAs<FunctionProtoType>();
10744       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10745       EPI.TypeQuals.addConst();
10746       MD->setType(Context.getFunctionType(FPT->getReturnType(),
10747                                           FPT->getParamTypes(), EPI));
10748 
10749       // Warn that we did this, if we're not performing template instantiation.
10750       // In that case, we'll have warned already when the template was defined.
10751       if (!inTemplateInstantiation()) {
10752         SourceLocation AddConstLoc;
10753         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10754                 .IgnoreParens().getAs<FunctionTypeLoc>())
10755           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10756 
10757         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10758           << FixItHint::CreateInsertion(AddConstLoc, " const");
10759       }
10760     }
10761   }
10762 
10763   if (Redeclaration) {
10764     // NewFD and OldDecl represent declarations that need to be
10765     // merged.
10766     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10767       NewFD->setInvalidDecl();
10768       return Redeclaration;
10769     }
10770 
10771     Previous.clear();
10772     Previous.addDecl(OldDecl);
10773 
10774     if (FunctionTemplateDecl *OldTemplateDecl =
10775             dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10776       auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10777       FunctionTemplateDecl *NewTemplateDecl
10778         = NewFD->getDescribedFunctionTemplate();
10779       assert(NewTemplateDecl && "Template/non-template mismatch");
10780 
10781       // The call to MergeFunctionDecl above may have created some state in
10782       // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10783       // can add it as a redeclaration.
10784       NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10785 
10786       NewFD->setPreviousDeclaration(OldFD);
10787       adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10788       if (NewFD->isCXXClassMember()) {
10789         NewFD->setAccess(OldTemplateDecl->getAccess());
10790         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10791       }
10792 
10793       // If this is an explicit specialization of a member that is a function
10794       // template, mark it as a member specialization.
10795       if (IsMemberSpecialization &&
10796           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10797         NewTemplateDecl->setMemberSpecialization();
10798         assert(OldTemplateDecl->isMemberSpecialization());
10799         // Explicit specializations of a member template do not inherit deleted
10800         // status from the parent member template that they are specializing.
10801         if (OldFD->isDeleted()) {
10802           // FIXME: This assert will not hold in the presence of modules.
10803           assert(OldFD->getCanonicalDecl() == OldFD);
10804           // FIXME: We need an update record for this AST mutation.
10805           OldFD->setDeletedAsWritten(false);
10806         }
10807       }
10808 
10809     } else {
10810       if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10811         auto *OldFD = cast<FunctionDecl>(OldDecl);
10812         // This needs to happen first so that 'inline' propagates.
10813         NewFD->setPreviousDeclaration(OldFD);
10814         adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10815         if (NewFD->isCXXClassMember())
10816           NewFD->setAccess(OldFD->getAccess());
10817       }
10818     }
10819   } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10820              !NewFD->getAttr<OverloadableAttr>()) {
10821     assert((Previous.empty() ||
10822             llvm::any_of(Previous,
10823                          [](const NamedDecl *ND) {
10824                            return ND->hasAttr<OverloadableAttr>();
10825                          })) &&
10826            "Non-redecls shouldn't happen without overloadable present");
10827 
10828     auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10829       const auto *FD = dyn_cast<FunctionDecl>(ND);
10830       return FD && !FD->hasAttr<OverloadableAttr>();
10831     });
10832 
10833     if (OtherUnmarkedIter != Previous.end()) {
10834       Diag(NewFD->getLocation(),
10835            diag::err_attribute_overloadable_multiple_unmarked_overloads);
10836       Diag((*OtherUnmarkedIter)->getLocation(),
10837            diag::note_attribute_overloadable_prev_overload)
10838           << false;
10839 
10840       NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
10841     }
10842   }
10843 
10844   if (LangOpts.OpenMP)
10845     ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD);
10846 
10847   // Semantic checking for this function declaration (in isolation).
10848 
10849   if (getLangOpts().CPlusPlus) {
10850     // C++-specific checks.
10851     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
10852       CheckConstructor(Constructor);
10853     } else if (CXXDestructorDecl *Destructor =
10854                 dyn_cast<CXXDestructorDecl>(NewFD)) {
10855       CXXRecordDecl *Record = Destructor->getParent();
10856       QualType ClassType = Context.getTypeDeclType(Record);
10857 
10858       // FIXME: Shouldn't we be able to perform this check even when the class
10859       // type is dependent? Both gcc and edg can handle that.
10860       if (!ClassType->isDependentType()) {
10861         DeclarationName Name
10862           = Context.DeclarationNames.getCXXDestructorName(
10863                                         Context.getCanonicalType(ClassType));
10864         if (NewFD->getDeclName() != Name) {
10865           Diag(NewFD->getLocation(), diag::err_destructor_name);
10866           NewFD->setInvalidDecl();
10867           return Redeclaration;
10868         }
10869       }
10870     } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
10871       if (auto *TD = Guide->getDescribedFunctionTemplate())
10872         CheckDeductionGuideTemplate(TD);
10873 
10874       // A deduction guide is not on the list of entities that can be
10875       // explicitly specialized.
10876       if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
10877         Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
10878             << /*explicit specialization*/ 1;
10879     }
10880 
10881     // Find any virtual functions that this function overrides.
10882     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
10883       if (!Method->isFunctionTemplateSpecialization() &&
10884           !Method->getDescribedFunctionTemplate() &&
10885           Method->isCanonicalDecl()) {
10886         AddOverriddenMethods(Method->getParent(), Method);
10887       }
10888       if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
10889         // C++2a [class.virtual]p6
10890         // A virtual method shall not have a requires-clause.
10891         Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
10892              diag::err_constrained_virtual_method);
10893 
10894       if (Method->isStatic())
10895         checkThisInStaticMemberFunctionType(Method);
10896     }
10897 
10898     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
10899       ActOnConversionDeclarator(Conversion);
10900 
10901     // Extra checking for C++ overloaded operators (C++ [over.oper]).
10902     if (NewFD->isOverloadedOperator() &&
10903         CheckOverloadedOperatorDeclaration(NewFD)) {
10904       NewFD->setInvalidDecl();
10905       return Redeclaration;
10906     }
10907 
10908     // Extra checking for C++0x literal operators (C++0x [over.literal]).
10909     if (NewFD->getLiteralIdentifier() &&
10910         CheckLiteralOperatorDeclaration(NewFD)) {
10911       NewFD->setInvalidDecl();
10912       return Redeclaration;
10913     }
10914 
10915     // In C++, check default arguments now that we have merged decls. Unless
10916     // the lexical context is the class, because in this case this is done
10917     // during delayed parsing anyway.
10918     if (!CurContext->isRecord())
10919       CheckCXXDefaultArguments(NewFD);
10920 
10921     // If this function declares a builtin function, check the type of this
10922     // declaration against the expected type for the builtin.
10923     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
10924       ASTContext::GetBuiltinTypeError Error;
10925       LookupNecessaryTypesForBuiltin(S, BuiltinID);
10926       QualType T = Context.GetBuiltinType(BuiltinID, Error);
10927       // If the type of the builtin differs only in its exception
10928       // specification, that's OK.
10929       // FIXME: If the types do differ in this way, it would be better to
10930       // retain the 'noexcept' form of the type.
10931       if (!T.isNull() &&
10932           !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
10933                                                             NewFD->getType()))
10934         // The type of this function differs from the type of the builtin,
10935         // so forget about the builtin entirely.
10936         Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
10937     }
10938 
10939     // If this function is declared as being extern "C", then check to see if
10940     // the function returns a UDT (class, struct, or union type) that is not C
10941     // compatible, and if it does, warn the user.
10942     // But, issue any diagnostic on the first declaration only.
10943     if (Previous.empty() && NewFD->isExternC()) {
10944       QualType R = NewFD->getReturnType();
10945       if (R->isIncompleteType() && !R->isVoidType())
10946         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
10947             << NewFD << R;
10948       else if (!R.isPODType(Context) && !R->isVoidType() &&
10949                !R->isObjCObjectPointerType())
10950         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
10951     }
10952 
10953     // C++1z [dcl.fct]p6:
10954     //   [...] whether the function has a non-throwing exception-specification
10955     //   [is] part of the function type
10956     //
10957     // This results in an ABI break between C++14 and C++17 for functions whose
10958     // declared type includes an exception-specification in a parameter or
10959     // return type. (Exception specifications on the function itself are OK in
10960     // most cases, and exception specifications are not permitted in most other
10961     // contexts where they could make it into a mangling.)
10962     if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
10963       auto HasNoexcept = [&](QualType T) -> bool {
10964         // Strip off declarator chunks that could be between us and a function
10965         // type. We don't need to look far, exception specifications are very
10966         // restricted prior to C++17.
10967         if (auto *RT = T->getAs<ReferenceType>())
10968           T = RT->getPointeeType();
10969         else if (T->isAnyPointerType())
10970           T = T->getPointeeType();
10971         else if (auto *MPT = T->getAs<MemberPointerType>())
10972           T = MPT->getPointeeType();
10973         if (auto *FPT = T->getAs<FunctionProtoType>())
10974           if (FPT->isNothrow())
10975             return true;
10976         return false;
10977       };
10978 
10979       auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
10980       bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
10981       for (QualType T : FPT->param_types())
10982         AnyNoexcept |= HasNoexcept(T);
10983       if (AnyNoexcept)
10984         Diag(NewFD->getLocation(),
10985              diag::warn_cxx17_compat_exception_spec_in_signature)
10986             << NewFD;
10987     }
10988 
10989     if (!Redeclaration && LangOpts.CUDA)
10990       checkCUDATargetOverload(NewFD, Previous);
10991   }
10992   return Redeclaration;
10993 }
10994 
10995 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
10996   // C++11 [basic.start.main]p3:
10997   //   A program that [...] declares main to be inline, static or
10998   //   constexpr is ill-formed.
10999   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
11000   //   appear in a declaration of main.
11001   // static main is not an error under C99, but we should warn about it.
11002   // We accept _Noreturn main as an extension.
11003   if (FD->getStorageClass() == SC_Static)
11004     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
11005          ? diag::err_static_main : diag::warn_static_main)
11006       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
11007   if (FD->isInlineSpecified())
11008     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
11009       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
11010   if (DS.isNoreturnSpecified()) {
11011     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
11012     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
11013     Diag(NoreturnLoc, diag::ext_noreturn_main);
11014     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
11015       << FixItHint::CreateRemoval(NoreturnRange);
11016   }
11017   if (FD->isConstexpr()) {
11018     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
11019         << FD->isConsteval()
11020         << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
11021     FD->setConstexprKind(ConstexprSpecKind::Unspecified);
11022   }
11023 
11024   if (getLangOpts().OpenCL) {
11025     Diag(FD->getLocation(), diag::err_opencl_no_main)
11026         << FD->hasAttr<OpenCLKernelAttr>();
11027     FD->setInvalidDecl();
11028     return;
11029   }
11030 
11031   QualType T = FD->getType();
11032   assert(T->isFunctionType() && "function decl is not of function type");
11033   const FunctionType* FT = T->castAs<FunctionType>();
11034 
11035   // Set default calling convention for main()
11036   if (FT->getCallConv() != CC_C) {
11037     FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
11038     FD->setType(QualType(FT, 0));
11039     T = Context.getCanonicalType(FD->getType());
11040   }
11041 
11042   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
11043     // In C with GNU extensions we allow main() to have non-integer return
11044     // type, but we should warn about the extension, and we disable the
11045     // implicit-return-zero rule.
11046 
11047     // GCC in C mode accepts qualified 'int'.
11048     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
11049       FD->setHasImplicitReturnZero(true);
11050     else {
11051       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
11052       SourceRange RTRange = FD->getReturnTypeSourceRange();
11053       if (RTRange.isValid())
11054         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
11055             << FixItHint::CreateReplacement(RTRange, "int");
11056     }
11057   } else {
11058     // In C and C++, main magically returns 0 if you fall off the end;
11059     // set the flag which tells us that.
11060     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
11061 
11062     // All the standards say that main() should return 'int'.
11063     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
11064       FD->setHasImplicitReturnZero(true);
11065     else {
11066       // Otherwise, this is just a flat-out error.
11067       SourceRange RTRange = FD->getReturnTypeSourceRange();
11068       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
11069           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
11070                                 : FixItHint());
11071       FD->setInvalidDecl(true);
11072     }
11073   }
11074 
11075   // Treat protoless main() as nullary.
11076   if (isa<FunctionNoProtoType>(FT)) return;
11077 
11078   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
11079   unsigned nparams = FTP->getNumParams();
11080   assert(FD->getNumParams() == nparams);
11081 
11082   bool HasExtraParameters = (nparams > 3);
11083 
11084   if (FTP->isVariadic()) {
11085     Diag(FD->getLocation(), diag::ext_variadic_main);
11086     // FIXME: if we had information about the location of the ellipsis, we
11087     // could add a FixIt hint to remove it as a parameter.
11088   }
11089 
11090   // Darwin passes an undocumented fourth argument of type char**.  If
11091   // other platforms start sprouting these, the logic below will start
11092   // getting shifty.
11093   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
11094     HasExtraParameters = false;
11095 
11096   if (HasExtraParameters) {
11097     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
11098     FD->setInvalidDecl(true);
11099     nparams = 3;
11100   }
11101 
11102   // FIXME: a lot of the following diagnostics would be improved
11103   // if we had some location information about types.
11104 
11105   QualType CharPP =
11106     Context.getPointerType(Context.getPointerType(Context.CharTy));
11107   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
11108 
11109   for (unsigned i = 0; i < nparams; ++i) {
11110     QualType AT = FTP->getParamType(i);
11111 
11112     bool mismatch = true;
11113 
11114     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
11115       mismatch = false;
11116     else if (Expected[i] == CharPP) {
11117       // As an extension, the following forms are okay:
11118       //   char const **
11119       //   char const * const *
11120       //   char * const *
11121 
11122       QualifierCollector qs;
11123       const PointerType* PT;
11124       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
11125           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
11126           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
11127                               Context.CharTy)) {
11128         qs.removeConst();
11129         mismatch = !qs.empty();
11130       }
11131     }
11132 
11133     if (mismatch) {
11134       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
11135       // TODO: suggest replacing given type with expected type
11136       FD->setInvalidDecl(true);
11137     }
11138   }
11139 
11140   if (nparams == 1 && !FD->isInvalidDecl()) {
11141     Diag(FD->getLocation(), diag::warn_main_one_arg);
11142   }
11143 
11144   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11145     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11146     FD->setInvalidDecl();
11147   }
11148 }
11149 
11150 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
11151   QualType T = FD->getType();
11152   assert(T->isFunctionType() && "function decl is not of function type");
11153   const FunctionType *FT = T->castAs<FunctionType>();
11154 
11155   // Set an implicit return of 'zero' if the function can return some integral,
11156   // enumeration, pointer or nullptr type.
11157   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
11158       FT->getReturnType()->isAnyPointerType() ||
11159       FT->getReturnType()->isNullPtrType())
11160     // DllMain is exempt because a return value of zero means it failed.
11161     if (FD->getName() != "DllMain")
11162       FD->setHasImplicitReturnZero(true);
11163 
11164   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11165     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11166     FD->setInvalidDecl();
11167   }
11168 }
11169 
11170 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
11171   // FIXME: Need strict checking.  In C89, we need to check for
11172   // any assignment, increment, decrement, function-calls, or
11173   // commas outside of a sizeof.  In C99, it's the same list,
11174   // except that the aforementioned are allowed in unevaluated
11175   // expressions.  Everything else falls under the
11176   // "may accept other forms of constant expressions" exception.
11177   //
11178   // Regular C++ code will not end up here (exceptions: language extensions,
11179   // OpenCL C++ etc), so the constant expression rules there don't matter.
11180   if (Init->isValueDependent()) {
11181     assert(Init->containsErrors() &&
11182            "Dependent code should only occur in error-recovery path.");
11183     return true;
11184   }
11185   const Expr *Culprit;
11186   if (Init->isConstantInitializer(Context, false, &Culprit))
11187     return false;
11188   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
11189     << Culprit->getSourceRange();
11190   return true;
11191 }
11192 
11193 namespace {
11194   // Visits an initialization expression to see if OrigDecl is evaluated in
11195   // its own initialization and throws a warning if it does.
11196   class SelfReferenceChecker
11197       : public EvaluatedExprVisitor<SelfReferenceChecker> {
11198     Sema &S;
11199     Decl *OrigDecl;
11200     bool isRecordType;
11201     bool isPODType;
11202     bool isReferenceType;
11203 
11204     bool isInitList;
11205     llvm::SmallVector<unsigned, 4> InitFieldIndex;
11206 
11207   public:
11208     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
11209 
11210     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
11211                                                     S(S), OrigDecl(OrigDecl) {
11212       isPODType = false;
11213       isRecordType = false;
11214       isReferenceType = false;
11215       isInitList = false;
11216       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
11217         isPODType = VD->getType().isPODType(S.Context);
11218         isRecordType = VD->getType()->isRecordType();
11219         isReferenceType = VD->getType()->isReferenceType();
11220       }
11221     }
11222 
11223     // For most expressions, just call the visitor.  For initializer lists,
11224     // track the index of the field being initialized since fields are
11225     // initialized in order allowing use of previously initialized fields.
11226     void CheckExpr(Expr *E) {
11227       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
11228       if (!InitList) {
11229         Visit(E);
11230         return;
11231       }
11232 
11233       // Track and increment the index here.
11234       isInitList = true;
11235       InitFieldIndex.push_back(0);
11236       for (auto Child : InitList->children()) {
11237         CheckExpr(cast<Expr>(Child));
11238         ++InitFieldIndex.back();
11239       }
11240       InitFieldIndex.pop_back();
11241     }
11242 
11243     // Returns true if MemberExpr is checked and no further checking is needed.
11244     // Returns false if additional checking is required.
11245     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
11246       llvm::SmallVector<FieldDecl*, 4> Fields;
11247       Expr *Base = E;
11248       bool ReferenceField = false;
11249 
11250       // Get the field members used.
11251       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11252         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
11253         if (!FD)
11254           return false;
11255         Fields.push_back(FD);
11256         if (FD->getType()->isReferenceType())
11257           ReferenceField = true;
11258         Base = ME->getBase()->IgnoreParenImpCasts();
11259       }
11260 
11261       // Keep checking only if the base Decl is the same.
11262       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
11263       if (!DRE || DRE->getDecl() != OrigDecl)
11264         return false;
11265 
11266       // A reference field can be bound to an unininitialized field.
11267       if (CheckReference && !ReferenceField)
11268         return true;
11269 
11270       // Convert FieldDecls to their index number.
11271       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
11272       for (const FieldDecl *I : llvm::reverse(Fields))
11273         UsedFieldIndex.push_back(I->getFieldIndex());
11274 
11275       // See if a warning is needed by checking the first difference in index
11276       // numbers.  If field being used has index less than the field being
11277       // initialized, then the use is safe.
11278       for (auto UsedIter = UsedFieldIndex.begin(),
11279                 UsedEnd = UsedFieldIndex.end(),
11280                 OrigIter = InitFieldIndex.begin(),
11281                 OrigEnd = InitFieldIndex.end();
11282            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
11283         if (*UsedIter < *OrigIter)
11284           return true;
11285         if (*UsedIter > *OrigIter)
11286           break;
11287       }
11288 
11289       // TODO: Add a different warning which will print the field names.
11290       HandleDeclRefExpr(DRE);
11291       return true;
11292     }
11293 
11294     // For most expressions, the cast is directly above the DeclRefExpr.
11295     // For conditional operators, the cast can be outside the conditional
11296     // operator if both expressions are DeclRefExpr's.
11297     void HandleValue(Expr *E) {
11298       E = E->IgnoreParens();
11299       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
11300         HandleDeclRefExpr(DRE);
11301         return;
11302       }
11303 
11304       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
11305         Visit(CO->getCond());
11306         HandleValue(CO->getTrueExpr());
11307         HandleValue(CO->getFalseExpr());
11308         return;
11309       }
11310 
11311       if (BinaryConditionalOperator *BCO =
11312               dyn_cast<BinaryConditionalOperator>(E)) {
11313         Visit(BCO->getCond());
11314         HandleValue(BCO->getFalseExpr());
11315         return;
11316       }
11317 
11318       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
11319         HandleValue(OVE->getSourceExpr());
11320         return;
11321       }
11322 
11323       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11324         if (BO->getOpcode() == BO_Comma) {
11325           Visit(BO->getLHS());
11326           HandleValue(BO->getRHS());
11327           return;
11328         }
11329       }
11330 
11331       if (isa<MemberExpr>(E)) {
11332         if (isInitList) {
11333           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
11334                                       false /*CheckReference*/))
11335             return;
11336         }
11337 
11338         Expr *Base = E->IgnoreParenImpCasts();
11339         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11340           // Check for static member variables and don't warn on them.
11341           if (!isa<FieldDecl>(ME->getMemberDecl()))
11342             return;
11343           Base = ME->getBase()->IgnoreParenImpCasts();
11344         }
11345         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
11346           HandleDeclRefExpr(DRE);
11347         return;
11348       }
11349 
11350       Visit(E);
11351     }
11352 
11353     // Reference types not handled in HandleValue are handled here since all
11354     // uses of references are bad, not just r-value uses.
11355     void VisitDeclRefExpr(DeclRefExpr *E) {
11356       if (isReferenceType)
11357         HandleDeclRefExpr(E);
11358     }
11359 
11360     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11361       if (E->getCastKind() == CK_LValueToRValue) {
11362         HandleValue(E->getSubExpr());
11363         return;
11364       }
11365 
11366       Inherited::VisitImplicitCastExpr(E);
11367     }
11368 
11369     void VisitMemberExpr(MemberExpr *E) {
11370       if (isInitList) {
11371         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
11372           return;
11373       }
11374 
11375       // Don't warn on arrays since they can be treated as pointers.
11376       if (E->getType()->canDecayToPointerType()) return;
11377 
11378       // Warn when a non-static method call is followed by non-static member
11379       // field accesses, which is followed by a DeclRefExpr.
11380       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
11381       bool Warn = (MD && !MD->isStatic());
11382       Expr *Base = E->getBase()->IgnoreParenImpCasts();
11383       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11384         if (!isa<FieldDecl>(ME->getMemberDecl()))
11385           Warn = false;
11386         Base = ME->getBase()->IgnoreParenImpCasts();
11387       }
11388 
11389       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
11390         if (Warn)
11391           HandleDeclRefExpr(DRE);
11392         return;
11393       }
11394 
11395       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
11396       // Visit that expression.
11397       Visit(Base);
11398     }
11399 
11400     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
11401       Expr *Callee = E->getCallee();
11402 
11403       if (isa<UnresolvedLookupExpr>(Callee))
11404         return Inherited::VisitCXXOperatorCallExpr(E);
11405 
11406       Visit(Callee);
11407       for (auto Arg: E->arguments())
11408         HandleValue(Arg->IgnoreParenImpCasts());
11409     }
11410 
11411     void VisitUnaryOperator(UnaryOperator *E) {
11412       // For POD record types, addresses of its own members are well-defined.
11413       if (E->getOpcode() == UO_AddrOf && isRecordType &&
11414           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
11415         if (!isPODType)
11416           HandleValue(E->getSubExpr());
11417         return;
11418       }
11419 
11420       if (E->isIncrementDecrementOp()) {
11421         HandleValue(E->getSubExpr());
11422         return;
11423       }
11424 
11425       Inherited::VisitUnaryOperator(E);
11426     }
11427 
11428     void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
11429 
11430     void VisitCXXConstructExpr(CXXConstructExpr *E) {
11431       if (E->getConstructor()->isCopyConstructor()) {
11432         Expr *ArgExpr = E->getArg(0);
11433         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
11434           if (ILE->getNumInits() == 1)
11435             ArgExpr = ILE->getInit(0);
11436         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
11437           if (ICE->getCastKind() == CK_NoOp)
11438             ArgExpr = ICE->getSubExpr();
11439         HandleValue(ArgExpr);
11440         return;
11441       }
11442       Inherited::VisitCXXConstructExpr(E);
11443     }
11444 
11445     void VisitCallExpr(CallExpr *E) {
11446       // Treat std::move as a use.
11447       if (E->isCallToStdMove()) {
11448         HandleValue(E->getArg(0));
11449         return;
11450       }
11451 
11452       Inherited::VisitCallExpr(E);
11453     }
11454 
11455     void VisitBinaryOperator(BinaryOperator *E) {
11456       if (E->isCompoundAssignmentOp()) {
11457         HandleValue(E->getLHS());
11458         Visit(E->getRHS());
11459         return;
11460       }
11461 
11462       Inherited::VisitBinaryOperator(E);
11463     }
11464 
11465     // A custom visitor for BinaryConditionalOperator is needed because the
11466     // regular visitor would check the condition and true expression separately
11467     // but both point to the same place giving duplicate diagnostics.
11468     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
11469       Visit(E->getCond());
11470       Visit(E->getFalseExpr());
11471     }
11472 
11473     void HandleDeclRefExpr(DeclRefExpr *DRE) {
11474       Decl* ReferenceDecl = DRE->getDecl();
11475       if (OrigDecl != ReferenceDecl) return;
11476       unsigned diag;
11477       if (isReferenceType) {
11478         diag = diag::warn_uninit_self_reference_in_reference_init;
11479       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
11480         diag = diag::warn_static_self_reference_in_init;
11481       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
11482                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
11483                  DRE->getDecl()->getType()->isRecordType()) {
11484         diag = diag::warn_uninit_self_reference_in_init;
11485       } else {
11486         // Local variables will be handled by the CFG analysis.
11487         return;
11488       }
11489 
11490       S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
11491                             S.PDiag(diag)
11492                                 << DRE->getDecl() << OrigDecl->getLocation()
11493                                 << DRE->getSourceRange());
11494     }
11495   };
11496 
11497   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
11498   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
11499                                  bool DirectInit) {
11500     // Parameters arguments are occassionially constructed with itself,
11501     // for instance, in recursive functions.  Skip them.
11502     if (isa<ParmVarDecl>(OrigDecl))
11503       return;
11504 
11505     E = E->IgnoreParens();
11506 
11507     // Skip checking T a = a where T is not a record or reference type.
11508     // Doing so is a way to silence uninitialized warnings.
11509     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
11510       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
11511         if (ICE->getCastKind() == CK_LValueToRValue)
11512           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
11513             if (DRE->getDecl() == OrigDecl)
11514               return;
11515 
11516     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
11517   }
11518 } // end anonymous namespace
11519 
11520 namespace {
11521   // Simple wrapper to add the name of a variable or (if no variable is
11522   // available) a DeclarationName into a diagnostic.
11523   struct VarDeclOrName {
11524     VarDecl *VDecl;
11525     DeclarationName Name;
11526 
11527     friend const Sema::SemaDiagnosticBuilder &
11528     operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
11529       return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
11530     }
11531   };
11532 } // end anonymous namespace
11533 
11534 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
11535                                             DeclarationName Name, QualType Type,
11536                                             TypeSourceInfo *TSI,
11537                                             SourceRange Range, bool DirectInit,
11538                                             Expr *Init) {
11539   bool IsInitCapture = !VDecl;
11540   assert((!VDecl || !VDecl->isInitCapture()) &&
11541          "init captures are expected to be deduced prior to initialization");
11542 
11543   VarDeclOrName VN{VDecl, Name};
11544 
11545   DeducedType *Deduced = Type->getContainedDeducedType();
11546   assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
11547 
11548   // C++11 [dcl.spec.auto]p3
11549   if (!Init) {
11550     assert(VDecl && "no init for init capture deduction?");
11551 
11552     // Except for class argument deduction, and then for an initializing
11553     // declaration only, i.e. no static at class scope or extern.
11554     if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
11555         VDecl->hasExternalStorage() ||
11556         VDecl->isStaticDataMember()) {
11557       Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
11558         << VDecl->getDeclName() << Type;
11559       return QualType();
11560     }
11561   }
11562 
11563   ArrayRef<Expr*> DeduceInits;
11564   if (Init)
11565     DeduceInits = Init;
11566 
11567   if (DirectInit) {
11568     if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
11569       DeduceInits = PL->exprs();
11570   }
11571 
11572   if (isa<DeducedTemplateSpecializationType>(Deduced)) {
11573     assert(VDecl && "non-auto type for init capture deduction?");
11574     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11575     InitializationKind Kind = InitializationKind::CreateForInit(
11576         VDecl->getLocation(), DirectInit, Init);
11577     // FIXME: Initialization should not be taking a mutable list of inits.
11578     SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
11579     return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
11580                                                        InitsCopy);
11581   }
11582 
11583   if (DirectInit) {
11584     if (auto *IL = dyn_cast<InitListExpr>(Init))
11585       DeduceInits = IL->inits();
11586   }
11587 
11588   // Deduction only works if we have exactly one source expression.
11589   if (DeduceInits.empty()) {
11590     // It isn't possible to write this directly, but it is possible to
11591     // end up in this situation with "auto x(some_pack...);"
11592     Diag(Init->getBeginLoc(), IsInitCapture
11593                                   ? diag::err_init_capture_no_expression
11594                                   : diag::err_auto_var_init_no_expression)
11595         << VN << Type << Range;
11596     return QualType();
11597   }
11598 
11599   if (DeduceInits.size() > 1) {
11600     Diag(DeduceInits[1]->getBeginLoc(),
11601          IsInitCapture ? diag::err_init_capture_multiple_expressions
11602                        : diag::err_auto_var_init_multiple_expressions)
11603         << VN << Type << Range;
11604     return QualType();
11605   }
11606 
11607   Expr *DeduceInit = DeduceInits[0];
11608   if (DirectInit && isa<InitListExpr>(DeduceInit)) {
11609     Diag(Init->getBeginLoc(), IsInitCapture
11610                                   ? diag::err_init_capture_paren_braces
11611                                   : diag::err_auto_var_init_paren_braces)
11612         << isa<InitListExpr>(Init) << VN << Type << Range;
11613     return QualType();
11614   }
11615 
11616   // Expressions default to 'id' when we're in a debugger.
11617   bool DefaultedAnyToId = false;
11618   if (getLangOpts().DebuggerCastResultToId &&
11619       Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
11620     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11621     if (Result.isInvalid()) {
11622       return QualType();
11623     }
11624     Init = Result.get();
11625     DefaultedAnyToId = true;
11626   }
11627 
11628   // C++ [dcl.decomp]p1:
11629   //   If the assignment-expression [...] has array type A and no ref-qualifier
11630   //   is present, e has type cv A
11631   if (VDecl && isa<DecompositionDecl>(VDecl) &&
11632       Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
11633       DeduceInit->getType()->isConstantArrayType())
11634     return Context.getQualifiedType(DeduceInit->getType(),
11635                                     Type.getQualifiers());
11636 
11637   QualType DeducedType;
11638   if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
11639     if (!IsInitCapture)
11640       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
11641     else if (isa<InitListExpr>(Init))
11642       Diag(Range.getBegin(),
11643            diag::err_init_capture_deduction_failure_from_init_list)
11644           << VN
11645           << (DeduceInit->getType().isNull() ? TSI->getType()
11646                                              : DeduceInit->getType())
11647           << DeduceInit->getSourceRange();
11648     else
11649       Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
11650           << VN << TSI->getType()
11651           << (DeduceInit->getType().isNull() ? TSI->getType()
11652                                              : DeduceInit->getType())
11653           << DeduceInit->getSourceRange();
11654   }
11655 
11656   // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
11657   // 'id' instead of a specific object type prevents most of our usual
11658   // checks.
11659   // We only want to warn outside of template instantiations, though:
11660   // inside a template, the 'id' could have come from a parameter.
11661   if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
11662       !DeducedType.isNull() && DeducedType->isObjCIdType()) {
11663     SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
11664     Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
11665   }
11666 
11667   return DeducedType;
11668 }
11669 
11670 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
11671                                          Expr *Init) {
11672   assert(!Init || !Init->containsErrors());
11673   QualType DeducedType = deduceVarTypeFromInitializer(
11674       VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
11675       VDecl->getSourceRange(), DirectInit, Init);
11676   if (DeducedType.isNull()) {
11677     VDecl->setInvalidDecl();
11678     return true;
11679   }
11680 
11681   VDecl->setType(DeducedType);
11682   assert(VDecl->isLinkageValid());
11683 
11684   // In ARC, infer lifetime.
11685   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
11686     VDecl->setInvalidDecl();
11687 
11688   if (getLangOpts().OpenCL)
11689     deduceOpenCLAddressSpace(VDecl);
11690 
11691   // If this is a redeclaration, check that the type we just deduced matches
11692   // the previously declared type.
11693   if (VarDecl *Old = VDecl->getPreviousDecl()) {
11694     // We never need to merge the type, because we cannot form an incomplete
11695     // array of auto, nor deduce such a type.
11696     MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
11697   }
11698 
11699   // Check the deduced type is valid for a variable declaration.
11700   CheckVariableDeclarationType(VDecl);
11701   return VDecl->isInvalidDecl();
11702 }
11703 
11704 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
11705                                               SourceLocation Loc) {
11706   if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
11707     Init = EWC->getSubExpr();
11708 
11709   if (auto *CE = dyn_cast<ConstantExpr>(Init))
11710     Init = CE->getSubExpr();
11711 
11712   QualType InitType = Init->getType();
11713   assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
11714           InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
11715          "shouldn't be called if type doesn't have a non-trivial C struct");
11716   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
11717     for (auto I : ILE->inits()) {
11718       if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
11719           !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
11720         continue;
11721       SourceLocation SL = I->getExprLoc();
11722       checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
11723     }
11724     return;
11725   }
11726 
11727   if (isa<ImplicitValueInitExpr>(Init)) {
11728     if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11729       checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
11730                             NTCUK_Init);
11731   } else {
11732     // Assume all other explicit initializers involving copying some existing
11733     // object.
11734     // TODO: ignore any explicit initializers where we can guarantee
11735     // copy-elision.
11736     if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
11737       checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
11738   }
11739 }
11740 
11741 namespace {
11742 
11743 bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
11744   // Ignore unavailable fields. A field can be marked as unavailable explicitly
11745   // in the source code or implicitly by the compiler if it is in a union
11746   // defined in a system header and has non-trivial ObjC ownership
11747   // qualifications. We don't want those fields to participate in determining
11748   // whether the containing union is non-trivial.
11749   return FD->hasAttr<UnavailableAttr>();
11750 }
11751 
11752 struct DiagNonTrivalCUnionDefaultInitializeVisitor
11753     : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11754                                     void> {
11755   using Super =
11756       DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11757                                     void>;
11758 
11759   DiagNonTrivalCUnionDefaultInitializeVisitor(
11760       QualType OrigTy, SourceLocation OrigLoc,
11761       Sema::NonTrivialCUnionContext UseContext, Sema &S)
11762       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11763 
11764   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
11765                      const FieldDecl *FD, bool InNonTrivialUnion) {
11766     if (const auto *AT = S.Context.getAsArrayType(QT))
11767       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11768                                      InNonTrivialUnion);
11769     return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
11770   }
11771 
11772   void visitARCStrong(QualType QT, const FieldDecl *FD,
11773                       bool InNonTrivialUnion) {
11774     if (InNonTrivialUnion)
11775       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11776           << 1 << 0 << QT << FD->getName();
11777   }
11778 
11779   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11780     if (InNonTrivialUnion)
11781       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11782           << 1 << 0 << QT << FD->getName();
11783   }
11784 
11785   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11786     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11787     if (RD->isUnion()) {
11788       if (OrigLoc.isValid()) {
11789         bool IsUnion = false;
11790         if (auto *OrigRD = OrigTy->getAsRecordDecl())
11791           IsUnion = OrigRD->isUnion();
11792         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11793             << 0 << OrigTy << IsUnion << UseContext;
11794         // Reset OrigLoc so that this diagnostic is emitted only once.
11795         OrigLoc = SourceLocation();
11796       }
11797       InNonTrivialUnion = true;
11798     }
11799 
11800     if (InNonTrivialUnion)
11801       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11802           << 0 << 0 << QT.getUnqualifiedType() << "";
11803 
11804     for (const FieldDecl *FD : RD->fields())
11805       if (!shouldIgnoreForRecordTriviality(FD))
11806         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11807   }
11808 
11809   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11810 
11811   // The non-trivial C union type or the struct/union type that contains a
11812   // non-trivial C union.
11813   QualType OrigTy;
11814   SourceLocation OrigLoc;
11815   Sema::NonTrivialCUnionContext UseContext;
11816   Sema &S;
11817 };
11818 
11819 struct DiagNonTrivalCUnionDestructedTypeVisitor
11820     : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
11821   using Super =
11822       DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
11823 
11824   DiagNonTrivalCUnionDestructedTypeVisitor(
11825       QualType OrigTy, SourceLocation OrigLoc,
11826       Sema::NonTrivialCUnionContext UseContext, Sema &S)
11827       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11828 
11829   void visitWithKind(QualType::DestructionKind DK, QualType QT,
11830                      const FieldDecl *FD, bool InNonTrivialUnion) {
11831     if (const auto *AT = S.Context.getAsArrayType(QT))
11832       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11833                                      InNonTrivialUnion);
11834     return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
11835   }
11836 
11837   void visitARCStrong(QualType QT, const FieldDecl *FD,
11838                       bool InNonTrivialUnion) {
11839     if (InNonTrivialUnion)
11840       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11841           << 1 << 1 << QT << FD->getName();
11842   }
11843 
11844   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11845     if (InNonTrivialUnion)
11846       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11847           << 1 << 1 << QT << FD->getName();
11848   }
11849 
11850   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11851     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11852     if (RD->isUnion()) {
11853       if (OrigLoc.isValid()) {
11854         bool IsUnion = false;
11855         if (auto *OrigRD = OrigTy->getAsRecordDecl())
11856           IsUnion = OrigRD->isUnion();
11857         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11858             << 1 << OrigTy << IsUnion << UseContext;
11859         // Reset OrigLoc so that this diagnostic is emitted only once.
11860         OrigLoc = SourceLocation();
11861       }
11862       InNonTrivialUnion = true;
11863     }
11864 
11865     if (InNonTrivialUnion)
11866       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11867           << 0 << 1 << QT.getUnqualifiedType() << "";
11868 
11869     for (const FieldDecl *FD : RD->fields())
11870       if (!shouldIgnoreForRecordTriviality(FD))
11871         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11872   }
11873 
11874   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11875   void visitCXXDestructor(QualType QT, const FieldDecl *FD,
11876                           bool InNonTrivialUnion) {}
11877 
11878   // The non-trivial C union type or the struct/union type that contains a
11879   // non-trivial C union.
11880   QualType OrigTy;
11881   SourceLocation OrigLoc;
11882   Sema::NonTrivialCUnionContext UseContext;
11883   Sema &S;
11884 };
11885 
11886 struct DiagNonTrivalCUnionCopyVisitor
11887     : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
11888   using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
11889 
11890   DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
11891                                  Sema::NonTrivialCUnionContext UseContext,
11892                                  Sema &S)
11893       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11894 
11895   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
11896                      const FieldDecl *FD, bool InNonTrivialUnion) {
11897     if (const auto *AT = S.Context.getAsArrayType(QT))
11898       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11899                                      InNonTrivialUnion);
11900     return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
11901   }
11902 
11903   void visitARCStrong(QualType QT, const FieldDecl *FD,
11904                       bool InNonTrivialUnion) {
11905     if (InNonTrivialUnion)
11906       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11907           << 1 << 2 << QT << FD->getName();
11908   }
11909 
11910   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11911     if (InNonTrivialUnion)
11912       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11913           << 1 << 2 << QT << FD->getName();
11914   }
11915 
11916   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11917     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11918     if (RD->isUnion()) {
11919       if (OrigLoc.isValid()) {
11920         bool IsUnion = false;
11921         if (auto *OrigRD = OrigTy->getAsRecordDecl())
11922           IsUnion = OrigRD->isUnion();
11923         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11924             << 2 << OrigTy << IsUnion << UseContext;
11925         // Reset OrigLoc so that this diagnostic is emitted only once.
11926         OrigLoc = SourceLocation();
11927       }
11928       InNonTrivialUnion = true;
11929     }
11930 
11931     if (InNonTrivialUnion)
11932       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11933           << 0 << 2 << QT.getUnqualifiedType() << "";
11934 
11935     for (const FieldDecl *FD : RD->fields())
11936       if (!shouldIgnoreForRecordTriviality(FD))
11937         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11938   }
11939 
11940   void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
11941                 const FieldDecl *FD, bool InNonTrivialUnion) {}
11942   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11943   void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
11944                             bool InNonTrivialUnion) {}
11945 
11946   // The non-trivial C union type or the struct/union type that contains a
11947   // non-trivial C union.
11948   QualType OrigTy;
11949   SourceLocation OrigLoc;
11950   Sema::NonTrivialCUnionContext UseContext;
11951   Sema &S;
11952 };
11953 
11954 } // namespace
11955 
11956 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
11957                                  NonTrivialCUnionContext UseContext,
11958                                  unsigned NonTrivialKind) {
11959   assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
11960           QT.hasNonTrivialToPrimitiveDestructCUnion() ||
11961           QT.hasNonTrivialToPrimitiveCopyCUnion()) &&
11962          "shouldn't be called if type doesn't have a non-trivial C union");
11963 
11964   if ((NonTrivialKind & NTCUK_Init) &&
11965       QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11966     DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
11967         .visit(QT, nullptr, false);
11968   if ((NonTrivialKind & NTCUK_Destruct) &&
11969       QT.hasNonTrivialToPrimitiveDestructCUnion())
11970     DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
11971         .visit(QT, nullptr, false);
11972   if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
11973     DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
11974         .visit(QT, nullptr, false);
11975 }
11976 
11977 /// AddInitializerToDecl - Adds the initializer Init to the
11978 /// declaration dcl. If DirectInit is true, this is C++ direct
11979 /// initialization rather than copy initialization.
11980 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
11981   // If there is no declaration, there was an error parsing it.  Just ignore
11982   // the initializer.
11983   if (!RealDecl || RealDecl->isInvalidDecl()) {
11984     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
11985     return;
11986   }
11987 
11988   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
11989     // Pure-specifiers are handled in ActOnPureSpecifier.
11990     Diag(Method->getLocation(), diag::err_member_function_initialization)
11991       << Method->getDeclName() << Init->getSourceRange();
11992     Method->setInvalidDecl();
11993     return;
11994   }
11995 
11996   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
11997   if (!VDecl) {
11998     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
11999     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
12000     RealDecl->setInvalidDecl();
12001     return;
12002   }
12003 
12004   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
12005   if (VDecl->getType()->isUndeducedType()) {
12006     // Attempt typo correction early so that the type of the init expression can
12007     // be deduced based on the chosen correction if the original init contains a
12008     // TypoExpr.
12009     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
12010     if (!Res.isUsable()) {
12011       // There are unresolved typos in Init, just drop them.
12012       // FIXME: improve the recovery strategy to preserve the Init.
12013       RealDecl->setInvalidDecl();
12014       return;
12015     }
12016     if (Res.get()->containsErrors()) {
12017       // Invalidate the decl as we don't know the type for recovery-expr yet.
12018       RealDecl->setInvalidDecl();
12019       VDecl->setInit(Res.get());
12020       return;
12021     }
12022     Init = Res.get();
12023 
12024     if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
12025       return;
12026   }
12027 
12028   // dllimport cannot be used on variable definitions.
12029   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
12030     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
12031     VDecl->setInvalidDecl();
12032     return;
12033   }
12034 
12035   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
12036     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
12037     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
12038     VDecl->setInvalidDecl();
12039     return;
12040   }
12041 
12042   if (!VDecl->getType()->isDependentType()) {
12043     // A definition must end up with a complete type, which means it must be
12044     // complete with the restriction that an array type might be completed by
12045     // the initializer; note that later code assumes this restriction.
12046     QualType BaseDeclType = VDecl->getType();
12047     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
12048       BaseDeclType = Array->getElementType();
12049     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
12050                             diag::err_typecheck_decl_incomplete_type)) {
12051       RealDecl->setInvalidDecl();
12052       return;
12053     }
12054 
12055     // The variable can not have an abstract class type.
12056     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
12057                                diag::err_abstract_type_in_decl,
12058                                AbstractVariableType))
12059       VDecl->setInvalidDecl();
12060   }
12061 
12062   // If adding the initializer will turn this declaration into a definition,
12063   // and we already have a definition for this variable, diagnose or otherwise
12064   // handle the situation.
12065   VarDecl *Def;
12066   if ((Def = VDecl->getDefinition()) && Def != VDecl &&
12067       (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
12068       !VDecl->isThisDeclarationADemotedDefinition() &&
12069       checkVarDeclRedefinition(Def, VDecl))
12070     return;
12071 
12072   if (getLangOpts().CPlusPlus) {
12073     // C++ [class.static.data]p4
12074     //   If a static data member is of const integral or const
12075     //   enumeration type, its declaration in the class definition can
12076     //   specify a constant-initializer which shall be an integral
12077     //   constant expression (5.19). In that case, the member can appear
12078     //   in integral constant expressions. The member shall still be
12079     //   defined in a namespace scope if it is used in the program and the
12080     //   namespace scope definition shall not contain an initializer.
12081     //
12082     // We already performed a redefinition check above, but for static
12083     // data members we also need to check whether there was an in-class
12084     // declaration with an initializer.
12085     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
12086       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
12087           << VDecl->getDeclName();
12088       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
12089            diag::note_previous_initializer)
12090           << 0;
12091       return;
12092     }
12093 
12094     if (VDecl->hasLocalStorage())
12095       setFunctionHasBranchProtectedScope();
12096 
12097     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
12098       VDecl->setInvalidDecl();
12099       return;
12100     }
12101   }
12102 
12103   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
12104   // a kernel function cannot be initialized."
12105   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
12106     Diag(VDecl->getLocation(), diag::err_local_cant_init);
12107     VDecl->setInvalidDecl();
12108     return;
12109   }
12110 
12111   // The LoaderUninitialized attribute acts as a definition (of undef).
12112   if (VDecl->hasAttr<LoaderUninitializedAttr>()) {
12113     Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init);
12114     VDecl->setInvalidDecl();
12115     return;
12116   }
12117 
12118   // Get the decls type and save a reference for later, since
12119   // CheckInitializerTypes may change it.
12120   QualType DclT = VDecl->getType(), SavT = DclT;
12121 
12122   // Expressions default to 'id' when we're in a debugger
12123   // and we are assigning it to a variable of Objective-C pointer type.
12124   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
12125       Init->getType() == Context.UnknownAnyTy) {
12126     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
12127     if (Result.isInvalid()) {
12128       VDecl->setInvalidDecl();
12129       return;
12130     }
12131     Init = Result.get();
12132   }
12133 
12134   // Perform the initialization.
12135   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
12136   if (!VDecl->isInvalidDecl()) {
12137     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
12138     InitializationKind Kind = InitializationKind::CreateForInit(
12139         VDecl->getLocation(), DirectInit, Init);
12140 
12141     MultiExprArg Args = Init;
12142     if (CXXDirectInit)
12143       Args = MultiExprArg(CXXDirectInit->getExprs(),
12144                           CXXDirectInit->getNumExprs());
12145 
12146     // Try to correct any TypoExprs in the initialization arguments.
12147     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
12148       ExprResult Res = CorrectDelayedTyposInExpr(
12149           Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true,
12150           [this, Entity, Kind](Expr *E) {
12151             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
12152             return Init.Failed() ? ExprError() : E;
12153           });
12154       if (Res.isInvalid()) {
12155         VDecl->setInvalidDecl();
12156       } else if (Res.get() != Args[Idx]) {
12157         Args[Idx] = Res.get();
12158       }
12159     }
12160     if (VDecl->isInvalidDecl())
12161       return;
12162 
12163     InitializationSequence InitSeq(*this, Entity, Kind, Args,
12164                                    /*TopLevelOfInitList=*/false,
12165                                    /*TreatUnavailableAsInvalid=*/false);
12166     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
12167     if (Result.isInvalid()) {
12168       // If the provied initializer fails to initialize the var decl,
12169       // we attach a recovery expr for better recovery.
12170       auto RecoveryExpr =
12171           CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args);
12172       if (RecoveryExpr.get())
12173         VDecl->setInit(RecoveryExpr.get());
12174       return;
12175     }
12176 
12177     Init = Result.getAs<Expr>();
12178   }
12179 
12180   // Check for self-references within variable initializers.
12181   // Variables declared within a function/method body (except for references)
12182   // are handled by a dataflow analysis.
12183   // This is undefined behavior in C++, but valid in C.
12184   if (getLangOpts().CPlusPlus) {
12185     if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
12186         VDecl->getType()->isReferenceType()) {
12187       CheckSelfReference(*this, RealDecl, Init, DirectInit);
12188     }
12189   }
12190 
12191   // If the type changed, it means we had an incomplete type that was
12192   // completed by the initializer. For example:
12193   //   int ary[] = { 1, 3, 5 };
12194   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
12195   if (!VDecl->isInvalidDecl() && (DclT != SavT))
12196     VDecl->setType(DclT);
12197 
12198   if (!VDecl->isInvalidDecl()) {
12199     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
12200 
12201     if (VDecl->hasAttr<BlocksAttr>())
12202       checkRetainCycles(VDecl, Init);
12203 
12204     // It is safe to assign a weak reference into a strong variable.
12205     // Although this code can still have problems:
12206     //   id x = self.weakProp;
12207     //   id y = self.weakProp;
12208     // we do not warn to warn spuriously when 'x' and 'y' are on separate
12209     // paths through the function. This should be revisited if
12210     // -Wrepeated-use-of-weak is made flow-sensitive.
12211     if (FunctionScopeInfo *FSI = getCurFunction())
12212       if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
12213            VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
12214           !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
12215                            Init->getBeginLoc()))
12216         FSI->markSafeWeakUse(Init);
12217   }
12218 
12219   // The initialization is usually a full-expression.
12220   //
12221   // FIXME: If this is a braced initialization of an aggregate, it is not
12222   // an expression, and each individual field initializer is a separate
12223   // full-expression. For instance, in:
12224   //
12225   //   struct Temp { ~Temp(); };
12226   //   struct S { S(Temp); };
12227   //   struct T { S a, b; } t = { Temp(), Temp() }
12228   //
12229   // we should destroy the first Temp before constructing the second.
12230   ExprResult Result =
12231       ActOnFinishFullExpr(Init, VDecl->getLocation(),
12232                           /*DiscardedValue*/ false, VDecl->isConstexpr());
12233   if (Result.isInvalid()) {
12234     VDecl->setInvalidDecl();
12235     return;
12236   }
12237   Init = Result.get();
12238 
12239   // Attach the initializer to the decl.
12240   VDecl->setInit(Init);
12241 
12242   if (VDecl->isLocalVarDecl()) {
12243     // Don't check the initializer if the declaration is malformed.
12244     if (VDecl->isInvalidDecl()) {
12245       // do nothing
12246 
12247     // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
12248     // This is true even in C++ for OpenCL.
12249     } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
12250       CheckForConstantInitializer(Init, DclT);
12251 
12252     // Otherwise, C++ does not restrict the initializer.
12253     } else if (getLangOpts().CPlusPlus) {
12254       // do nothing
12255 
12256     // C99 6.7.8p4: All the expressions in an initializer for an object that has
12257     // static storage duration shall be constant expressions or string literals.
12258     } else if (VDecl->getStorageClass() == SC_Static) {
12259       CheckForConstantInitializer(Init, DclT);
12260 
12261     // C89 is stricter than C99 for aggregate initializers.
12262     // C89 6.5.7p3: All the expressions [...] in an initializer list
12263     // for an object that has aggregate or union type shall be
12264     // constant expressions.
12265     } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
12266                isa<InitListExpr>(Init)) {
12267       const Expr *Culprit;
12268       if (!Init->isConstantInitializer(Context, false, &Culprit)) {
12269         Diag(Culprit->getExprLoc(),
12270              diag::ext_aggregate_init_not_constant)
12271           << Culprit->getSourceRange();
12272       }
12273     }
12274 
12275     if (auto *E = dyn_cast<ExprWithCleanups>(Init))
12276       if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
12277         if (VDecl->hasLocalStorage())
12278           BE->getBlockDecl()->setCanAvoidCopyToHeap();
12279   } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
12280              VDecl->getLexicalDeclContext()->isRecord()) {
12281     // This is an in-class initialization for a static data member, e.g.,
12282     //
12283     // struct S {
12284     //   static const int value = 17;
12285     // };
12286 
12287     // C++ [class.mem]p4:
12288     //   A member-declarator can contain a constant-initializer only
12289     //   if it declares a static member (9.4) of const integral or
12290     //   const enumeration type, see 9.4.2.
12291     //
12292     // C++11 [class.static.data]p3:
12293     //   If a non-volatile non-inline const static data member is of integral
12294     //   or enumeration type, its declaration in the class definition can
12295     //   specify a brace-or-equal-initializer in which every initializer-clause
12296     //   that is an assignment-expression is a constant expression. A static
12297     //   data member of literal type can be declared in the class definition
12298     //   with the constexpr specifier; if so, its declaration shall specify a
12299     //   brace-or-equal-initializer in which every initializer-clause that is
12300     //   an assignment-expression is a constant expression.
12301 
12302     // Do nothing on dependent types.
12303     if (DclT->isDependentType()) {
12304 
12305     // Allow any 'static constexpr' members, whether or not they are of literal
12306     // type. We separately check that every constexpr variable is of literal
12307     // type.
12308     } else if (VDecl->isConstexpr()) {
12309 
12310     // Require constness.
12311     } else if (!DclT.isConstQualified()) {
12312       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
12313         << Init->getSourceRange();
12314       VDecl->setInvalidDecl();
12315 
12316     // We allow integer constant expressions in all cases.
12317     } else if (DclT->isIntegralOrEnumerationType()) {
12318       // Check whether the expression is a constant expression.
12319       SourceLocation Loc;
12320       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
12321         // In C++11, a non-constexpr const static data member with an
12322         // in-class initializer cannot be volatile.
12323         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
12324       else if (Init->isValueDependent())
12325         ; // Nothing to check.
12326       else if (Init->isIntegerConstantExpr(Context, &Loc))
12327         ; // Ok, it's an ICE!
12328       else if (Init->getType()->isScopedEnumeralType() &&
12329                Init->isCXX11ConstantExpr(Context))
12330         ; // Ok, it is a scoped-enum constant expression.
12331       else if (Init->isEvaluatable(Context)) {
12332         // If we can constant fold the initializer through heroics, accept it,
12333         // but report this as a use of an extension for -pedantic.
12334         Diag(Loc, diag::ext_in_class_initializer_non_constant)
12335           << Init->getSourceRange();
12336       } else {
12337         // Otherwise, this is some crazy unknown case.  Report the issue at the
12338         // location provided by the isIntegerConstantExpr failed check.
12339         Diag(Loc, diag::err_in_class_initializer_non_constant)
12340           << Init->getSourceRange();
12341         VDecl->setInvalidDecl();
12342       }
12343 
12344     // We allow foldable floating-point constants as an extension.
12345     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
12346       // In C++98, this is a GNU extension. In C++11, it is not, but we support
12347       // it anyway and provide a fixit to add the 'constexpr'.
12348       if (getLangOpts().CPlusPlus11) {
12349         Diag(VDecl->getLocation(),
12350              diag::ext_in_class_initializer_float_type_cxx11)
12351             << DclT << Init->getSourceRange();
12352         Diag(VDecl->getBeginLoc(),
12353              diag::note_in_class_initializer_float_type_cxx11)
12354             << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12355       } else {
12356         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
12357           << DclT << Init->getSourceRange();
12358 
12359         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
12360           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
12361             << Init->getSourceRange();
12362           VDecl->setInvalidDecl();
12363         }
12364       }
12365 
12366     // Suggest adding 'constexpr' in C++11 for literal types.
12367     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
12368       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
12369           << DclT << Init->getSourceRange()
12370           << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12371       VDecl->setConstexpr(true);
12372 
12373     } else {
12374       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
12375         << DclT << Init->getSourceRange();
12376       VDecl->setInvalidDecl();
12377     }
12378   } else if (VDecl->isFileVarDecl()) {
12379     // In C, extern is typically used to avoid tentative definitions when
12380     // declaring variables in headers, but adding an intializer makes it a
12381     // definition. This is somewhat confusing, so GCC and Clang both warn on it.
12382     // In C++, extern is often used to give implictly static const variables
12383     // external linkage, so don't warn in that case. If selectany is present,
12384     // this might be header code intended for C and C++ inclusion, so apply the
12385     // C++ rules.
12386     if (VDecl->getStorageClass() == SC_Extern &&
12387         ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
12388          !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
12389         !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
12390         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
12391       Diag(VDecl->getLocation(), diag::warn_extern_init);
12392 
12393     // In Microsoft C++ mode, a const variable defined in namespace scope has
12394     // external linkage by default if the variable is declared with
12395     // __declspec(dllexport).
12396     if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
12397         getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
12398         VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
12399       VDecl->setStorageClass(SC_Extern);
12400 
12401     // C99 6.7.8p4. All file scoped initializers need to be constant.
12402     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
12403       CheckForConstantInitializer(Init, DclT);
12404   }
12405 
12406   QualType InitType = Init->getType();
12407   if (!InitType.isNull() &&
12408       (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
12409        InitType.hasNonTrivialToPrimitiveCopyCUnion()))
12410     checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
12411 
12412   // We will represent direct-initialization similarly to copy-initialization:
12413   //    int x(1);  -as-> int x = 1;
12414   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
12415   //
12416   // Clients that want to distinguish between the two forms, can check for
12417   // direct initializer using VarDecl::getInitStyle().
12418   // A major benefit is that clients that don't particularly care about which
12419   // exactly form was it (like the CodeGen) can handle both cases without
12420   // special case code.
12421 
12422   // C++ 8.5p11:
12423   // The form of initialization (using parentheses or '=') is generally
12424   // insignificant, but does matter when the entity being initialized has a
12425   // class type.
12426   if (CXXDirectInit) {
12427     assert(DirectInit && "Call-style initializer must be direct init.");
12428     VDecl->setInitStyle(VarDecl::CallInit);
12429   } else if (DirectInit) {
12430     // This must be list-initialization. No other way is direct-initialization.
12431     VDecl->setInitStyle(VarDecl::ListInit);
12432   }
12433 
12434   if (LangOpts.OpenMP && VDecl->isFileVarDecl())
12435     DeclsToCheckForDeferredDiags.push_back(VDecl);
12436   CheckCompleteVariableDeclaration(VDecl);
12437 }
12438 
12439 /// ActOnInitializerError - Given that there was an error parsing an
12440 /// initializer for the given declaration, try to return to some form
12441 /// of sanity.
12442 void Sema::ActOnInitializerError(Decl *D) {
12443   // Our main concern here is re-establishing invariants like "a
12444   // variable's type is either dependent or complete".
12445   if (!D || D->isInvalidDecl()) return;
12446 
12447   VarDecl *VD = dyn_cast<VarDecl>(D);
12448   if (!VD) return;
12449 
12450   // Bindings are not usable if we can't make sense of the initializer.
12451   if (auto *DD = dyn_cast<DecompositionDecl>(D))
12452     for (auto *BD : DD->bindings())
12453       BD->setInvalidDecl();
12454 
12455   // Auto types are meaningless if we can't make sense of the initializer.
12456   if (VD->getType()->isUndeducedType()) {
12457     D->setInvalidDecl();
12458     return;
12459   }
12460 
12461   QualType Ty = VD->getType();
12462   if (Ty->isDependentType()) return;
12463 
12464   // Require a complete type.
12465   if (RequireCompleteType(VD->getLocation(),
12466                           Context.getBaseElementType(Ty),
12467                           diag::err_typecheck_decl_incomplete_type)) {
12468     VD->setInvalidDecl();
12469     return;
12470   }
12471 
12472   // Require a non-abstract type.
12473   if (RequireNonAbstractType(VD->getLocation(), Ty,
12474                              diag::err_abstract_type_in_decl,
12475                              AbstractVariableType)) {
12476     VD->setInvalidDecl();
12477     return;
12478   }
12479 
12480   // Don't bother complaining about constructors or destructors,
12481   // though.
12482 }
12483 
12484 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
12485   // If there is no declaration, there was an error parsing it. Just ignore it.
12486   if (!RealDecl)
12487     return;
12488 
12489   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
12490     QualType Type = Var->getType();
12491 
12492     // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
12493     if (isa<DecompositionDecl>(RealDecl)) {
12494       Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
12495       Var->setInvalidDecl();
12496       return;
12497     }
12498 
12499     if (Type->isUndeducedType() &&
12500         DeduceVariableDeclarationType(Var, false, nullptr))
12501       return;
12502 
12503     // C++11 [class.static.data]p3: A static data member can be declared with
12504     // the constexpr specifier; if so, its declaration shall specify
12505     // a brace-or-equal-initializer.
12506     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
12507     // the definition of a variable [...] or the declaration of a static data
12508     // member.
12509     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
12510         !Var->isThisDeclarationADemotedDefinition()) {
12511       if (Var->isStaticDataMember()) {
12512         // C++1z removes the relevant rule; the in-class declaration is always
12513         // a definition there.
12514         if (!getLangOpts().CPlusPlus17 &&
12515             !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
12516           Diag(Var->getLocation(),
12517                diag::err_constexpr_static_mem_var_requires_init)
12518               << Var;
12519           Var->setInvalidDecl();
12520           return;
12521         }
12522       } else {
12523         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
12524         Var->setInvalidDecl();
12525         return;
12526       }
12527     }
12528 
12529     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
12530     // be initialized.
12531     if (!Var->isInvalidDecl() &&
12532         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
12533         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
12534       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
12535       Var->setInvalidDecl();
12536       return;
12537     }
12538 
12539     if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) {
12540       if (Var->getStorageClass() == SC_Extern) {
12541         Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl)
12542             << Var;
12543         Var->setInvalidDecl();
12544         return;
12545       }
12546       if (RequireCompleteType(Var->getLocation(), Var->getType(),
12547                               diag::err_typecheck_decl_incomplete_type)) {
12548         Var->setInvalidDecl();
12549         return;
12550       }
12551       if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
12552         if (!RD->hasTrivialDefaultConstructor()) {
12553           Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor);
12554           Var->setInvalidDecl();
12555           return;
12556         }
12557       }
12558     }
12559 
12560     VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
12561     if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
12562         Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12563       checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
12564                             NTCUC_DefaultInitializedObject, NTCUK_Init);
12565 
12566 
12567     switch (DefKind) {
12568     case VarDecl::Definition:
12569       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
12570         break;
12571 
12572       // We have an out-of-line definition of a static data member
12573       // that has an in-class initializer, so we type-check this like
12574       // a declaration.
12575       //
12576       LLVM_FALLTHROUGH;
12577 
12578     case VarDecl::DeclarationOnly:
12579       // It's only a declaration.
12580 
12581       // Block scope. C99 6.7p7: If an identifier for an object is
12582       // declared with no linkage (C99 6.2.2p6), the type for the
12583       // object shall be complete.
12584       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
12585           !Var->hasLinkage() && !Var->isInvalidDecl() &&
12586           RequireCompleteType(Var->getLocation(), Type,
12587                               diag::err_typecheck_decl_incomplete_type))
12588         Var->setInvalidDecl();
12589 
12590       // Make sure that the type is not abstract.
12591       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12592           RequireNonAbstractType(Var->getLocation(), Type,
12593                                  diag::err_abstract_type_in_decl,
12594                                  AbstractVariableType))
12595         Var->setInvalidDecl();
12596       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12597           Var->getStorageClass() == SC_PrivateExtern) {
12598         Diag(Var->getLocation(), diag::warn_private_extern);
12599         Diag(Var->getLocation(), diag::note_private_extern);
12600       }
12601 
12602       if (Context.getTargetInfo().allowDebugInfoForExternalVar() &&
12603           !Var->isInvalidDecl() && !getLangOpts().CPlusPlus)
12604         ExternalDeclarations.push_back(Var);
12605 
12606       return;
12607 
12608     case VarDecl::TentativeDefinition:
12609       // File scope. C99 6.9.2p2: A declaration of an identifier for an
12610       // object that has file scope without an initializer, and without a
12611       // storage-class specifier or with the storage-class specifier "static",
12612       // constitutes a tentative definition. Note: A tentative definition with
12613       // external linkage is valid (C99 6.2.2p5).
12614       if (!Var->isInvalidDecl()) {
12615         if (const IncompleteArrayType *ArrayT
12616                                     = Context.getAsIncompleteArrayType(Type)) {
12617           if (RequireCompleteSizedType(
12618                   Var->getLocation(), ArrayT->getElementType(),
12619                   diag::err_array_incomplete_or_sizeless_type))
12620             Var->setInvalidDecl();
12621         } else if (Var->getStorageClass() == SC_Static) {
12622           // C99 6.9.2p3: If the declaration of an identifier for an object is
12623           // a tentative definition and has internal linkage (C99 6.2.2p3), the
12624           // declared type shall not be an incomplete type.
12625           // NOTE: code such as the following
12626           //     static struct s;
12627           //     struct s { int a; };
12628           // is accepted by gcc. Hence here we issue a warning instead of
12629           // an error and we do not invalidate the static declaration.
12630           // NOTE: to avoid multiple warnings, only check the first declaration.
12631           if (Var->isFirstDecl())
12632             RequireCompleteType(Var->getLocation(), Type,
12633                                 diag::ext_typecheck_decl_incomplete_type);
12634         }
12635       }
12636 
12637       // Record the tentative definition; we're done.
12638       if (!Var->isInvalidDecl())
12639         TentativeDefinitions.push_back(Var);
12640       return;
12641     }
12642 
12643     // Provide a specific diagnostic for uninitialized variable
12644     // definitions with incomplete array type.
12645     if (Type->isIncompleteArrayType()) {
12646       Diag(Var->getLocation(),
12647            diag::err_typecheck_incomplete_array_needs_initializer);
12648       Var->setInvalidDecl();
12649       return;
12650     }
12651 
12652     // Provide a specific diagnostic for uninitialized variable
12653     // definitions with reference type.
12654     if (Type->isReferenceType()) {
12655       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
12656           << Var << SourceRange(Var->getLocation(), Var->getLocation());
12657       Var->setInvalidDecl();
12658       return;
12659     }
12660 
12661     // Do not attempt to type-check the default initializer for a
12662     // variable with dependent type.
12663     if (Type->isDependentType())
12664       return;
12665 
12666     if (Var->isInvalidDecl())
12667       return;
12668 
12669     if (!Var->hasAttr<AliasAttr>()) {
12670       if (RequireCompleteType(Var->getLocation(),
12671                               Context.getBaseElementType(Type),
12672                               diag::err_typecheck_decl_incomplete_type)) {
12673         Var->setInvalidDecl();
12674         return;
12675       }
12676     } else {
12677       return;
12678     }
12679 
12680     // The variable can not have an abstract class type.
12681     if (RequireNonAbstractType(Var->getLocation(), Type,
12682                                diag::err_abstract_type_in_decl,
12683                                AbstractVariableType)) {
12684       Var->setInvalidDecl();
12685       return;
12686     }
12687 
12688     // Check for jumps past the implicit initializer.  C++0x
12689     // clarifies that this applies to a "variable with automatic
12690     // storage duration", not a "local variable".
12691     // C++11 [stmt.dcl]p3
12692     //   A program that jumps from a point where a variable with automatic
12693     //   storage duration is not in scope to a point where it is in scope is
12694     //   ill-formed unless the variable has scalar type, class type with a
12695     //   trivial default constructor and a trivial destructor, a cv-qualified
12696     //   version of one of these types, or an array of one of the preceding
12697     //   types and is declared without an initializer.
12698     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
12699       if (const RecordType *Record
12700             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
12701         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
12702         // Mark the function (if we're in one) for further checking even if the
12703         // looser rules of C++11 do not require such checks, so that we can
12704         // diagnose incompatibilities with C++98.
12705         if (!CXXRecord->isPOD())
12706           setFunctionHasBranchProtectedScope();
12707       }
12708     }
12709     // In OpenCL, we can't initialize objects in the __local address space,
12710     // even implicitly, so don't synthesize an implicit initializer.
12711     if (getLangOpts().OpenCL &&
12712         Var->getType().getAddressSpace() == LangAS::opencl_local)
12713       return;
12714     // C++03 [dcl.init]p9:
12715     //   If no initializer is specified for an object, and the
12716     //   object is of (possibly cv-qualified) non-POD class type (or
12717     //   array thereof), the object shall be default-initialized; if
12718     //   the object is of const-qualified type, the underlying class
12719     //   type shall have a user-declared default
12720     //   constructor. Otherwise, if no initializer is specified for
12721     //   a non- static object, the object and its subobjects, if
12722     //   any, have an indeterminate initial value); if the object
12723     //   or any of its subobjects are of const-qualified type, the
12724     //   program is ill-formed.
12725     // C++0x [dcl.init]p11:
12726     //   If no initializer is specified for an object, the object is
12727     //   default-initialized; [...].
12728     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
12729     InitializationKind Kind
12730       = InitializationKind::CreateDefault(Var->getLocation());
12731 
12732     InitializationSequence InitSeq(*this, Entity, Kind, None);
12733     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
12734 
12735     if (Init.get()) {
12736       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
12737       // This is important for template substitution.
12738       Var->setInitStyle(VarDecl::CallInit);
12739     } else if (Init.isInvalid()) {
12740       // If default-init fails, attach a recovery-expr initializer to track
12741       // that initialization was attempted and failed.
12742       auto RecoveryExpr =
12743           CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {});
12744       if (RecoveryExpr.get())
12745         Var->setInit(RecoveryExpr.get());
12746     }
12747 
12748     CheckCompleteVariableDeclaration(Var);
12749   }
12750 }
12751 
12752 void Sema::ActOnCXXForRangeDecl(Decl *D) {
12753   // If there is no declaration, there was an error parsing it. Ignore it.
12754   if (!D)
12755     return;
12756 
12757   VarDecl *VD = dyn_cast<VarDecl>(D);
12758   if (!VD) {
12759     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
12760     D->setInvalidDecl();
12761     return;
12762   }
12763 
12764   VD->setCXXForRangeDecl(true);
12765 
12766   // for-range-declaration cannot be given a storage class specifier.
12767   int Error = -1;
12768   switch (VD->getStorageClass()) {
12769   case SC_None:
12770     break;
12771   case SC_Extern:
12772     Error = 0;
12773     break;
12774   case SC_Static:
12775     Error = 1;
12776     break;
12777   case SC_PrivateExtern:
12778     Error = 2;
12779     break;
12780   case SC_Auto:
12781     Error = 3;
12782     break;
12783   case SC_Register:
12784     Error = 4;
12785     break;
12786   }
12787 
12788   // for-range-declaration cannot be given a storage class specifier con't.
12789   switch (VD->getTSCSpec()) {
12790   case TSCS_thread_local:
12791     Error = 6;
12792     break;
12793   case TSCS___thread:
12794   case TSCS__Thread_local:
12795   case TSCS_unspecified:
12796     break;
12797   }
12798 
12799   if (Error != -1) {
12800     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
12801         << VD << Error;
12802     D->setInvalidDecl();
12803   }
12804 }
12805 
12806 StmtResult
12807 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
12808                                  IdentifierInfo *Ident,
12809                                  ParsedAttributes &Attrs,
12810                                  SourceLocation AttrEnd) {
12811   // C++1y [stmt.iter]p1:
12812   //   A range-based for statement of the form
12813   //      for ( for-range-identifier : for-range-initializer ) statement
12814   //   is equivalent to
12815   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
12816   DeclSpec DS(Attrs.getPool().getFactory());
12817 
12818   const char *PrevSpec;
12819   unsigned DiagID;
12820   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
12821                      getPrintingPolicy());
12822 
12823   Declarator D(DS, DeclaratorContext::ForInit);
12824   D.SetIdentifier(Ident, IdentLoc);
12825   D.takeAttributes(Attrs, AttrEnd);
12826 
12827   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
12828                 IdentLoc);
12829   Decl *Var = ActOnDeclarator(S, D);
12830   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
12831   FinalizeDeclaration(Var);
12832   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
12833                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
12834 }
12835 
12836 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
12837   if (var->isInvalidDecl()) return;
12838 
12839   if (getLangOpts().OpenCL) {
12840     // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
12841     // initialiser
12842     if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
12843         !var->hasInit()) {
12844       Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
12845           << 1 /*Init*/;
12846       var->setInvalidDecl();
12847       return;
12848     }
12849   }
12850 
12851   // In Objective-C, don't allow jumps past the implicit initialization of a
12852   // local retaining variable.
12853   if (getLangOpts().ObjC &&
12854       var->hasLocalStorage()) {
12855     switch (var->getType().getObjCLifetime()) {
12856     case Qualifiers::OCL_None:
12857     case Qualifiers::OCL_ExplicitNone:
12858     case Qualifiers::OCL_Autoreleasing:
12859       break;
12860 
12861     case Qualifiers::OCL_Weak:
12862     case Qualifiers::OCL_Strong:
12863       setFunctionHasBranchProtectedScope();
12864       break;
12865     }
12866   }
12867 
12868   if (var->hasLocalStorage() &&
12869       var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
12870     setFunctionHasBranchProtectedScope();
12871 
12872   // Warn about externally-visible variables being defined without a
12873   // prior declaration.  We only want to do this for global
12874   // declarations, but we also specifically need to avoid doing it for
12875   // class members because the linkage of an anonymous class can
12876   // change if it's later given a typedef name.
12877   if (var->isThisDeclarationADefinition() &&
12878       var->getDeclContext()->getRedeclContext()->isFileContext() &&
12879       var->isExternallyVisible() && var->hasLinkage() &&
12880       !var->isInline() && !var->getDescribedVarTemplate() &&
12881       !isa<VarTemplatePartialSpecializationDecl>(var) &&
12882       !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
12883       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
12884                                   var->getLocation())) {
12885     // Find a previous declaration that's not a definition.
12886     VarDecl *prev = var->getPreviousDecl();
12887     while (prev && prev->isThisDeclarationADefinition())
12888       prev = prev->getPreviousDecl();
12889 
12890     if (!prev) {
12891       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
12892       Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
12893           << /* variable */ 0;
12894     }
12895   }
12896 
12897   // Cache the result of checking for constant initialization.
12898   Optional<bool> CacheHasConstInit;
12899   const Expr *CacheCulprit = nullptr;
12900   auto checkConstInit = [&]() mutable {
12901     if (!CacheHasConstInit)
12902       CacheHasConstInit = var->getInit()->isConstantInitializer(
12903             Context, var->getType()->isReferenceType(), &CacheCulprit);
12904     return *CacheHasConstInit;
12905   };
12906 
12907   if (var->getTLSKind() == VarDecl::TLS_Static) {
12908     if (var->getType().isDestructedType()) {
12909       // GNU C++98 edits for __thread, [basic.start.term]p3:
12910       //   The type of an object with thread storage duration shall not
12911       //   have a non-trivial destructor.
12912       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
12913       if (getLangOpts().CPlusPlus11)
12914         Diag(var->getLocation(), diag::note_use_thread_local);
12915     } else if (getLangOpts().CPlusPlus && var->hasInit()) {
12916       if (!checkConstInit()) {
12917         // GNU C++98 edits for __thread, [basic.start.init]p4:
12918         //   An object of thread storage duration shall not require dynamic
12919         //   initialization.
12920         // FIXME: Need strict checking here.
12921         Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
12922           << CacheCulprit->getSourceRange();
12923         if (getLangOpts().CPlusPlus11)
12924           Diag(var->getLocation(), diag::note_use_thread_local);
12925       }
12926     }
12927   }
12928 
12929   // Apply section attributes and pragmas to global variables.
12930   bool GlobalStorage = var->hasGlobalStorage();
12931   if (GlobalStorage && var->isThisDeclarationADefinition() &&
12932       !inTemplateInstantiation()) {
12933     PragmaStack<StringLiteral *> *Stack = nullptr;
12934     int SectionFlags = ASTContext::PSF_Read;
12935     if (var->getType().isConstQualified())
12936       Stack = &ConstSegStack;
12937     else if (!var->getInit()) {
12938       Stack = &BSSSegStack;
12939       SectionFlags |= ASTContext::PSF_Write;
12940     } else {
12941       Stack = &DataSegStack;
12942       SectionFlags |= ASTContext::PSF_Write;
12943     }
12944     if (const SectionAttr *SA = var->getAttr<SectionAttr>()) {
12945       if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec)
12946         SectionFlags |= ASTContext::PSF_Implicit;
12947       UnifySection(SA->getName(), SectionFlags, var);
12948     } else if (Stack->CurrentValue) {
12949       SectionFlags |= ASTContext::PSF_Implicit;
12950       auto SectionName = Stack->CurrentValue->getString();
12951       var->addAttr(SectionAttr::CreateImplicit(
12952           Context, SectionName, Stack->CurrentPragmaLocation,
12953           AttributeCommonInfo::AS_Pragma, SectionAttr::Declspec_allocate));
12954       if (UnifySection(SectionName, SectionFlags, var))
12955         var->dropAttr<SectionAttr>();
12956     }
12957 
12958     // Apply the init_seg attribute if this has an initializer.  If the
12959     // initializer turns out to not be dynamic, we'll end up ignoring this
12960     // attribute.
12961     if (CurInitSeg && var->getInit())
12962       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
12963                                                CurInitSegLoc,
12964                                                AttributeCommonInfo::AS_Pragma));
12965   }
12966 
12967   if (!var->getType()->isStructureType() && var->hasInit() &&
12968       isa<InitListExpr>(var->getInit())) {
12969     const auto *ILE = cast<InitListExpr>(var->getInit());
12970     unsigned NumInits = ILE->getNumInits();
12971     if (NumInits > 2)
12972       for (unsigned I = 0; I < NumInits; ++I) {
12973         const auto *Init = ILE->getInit(I);
12974         if (!Init)
12975           break;
12976         const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
12977         if (!SL)
12978           break;
12979 
12980         unsigned NumConcat = SL->getNumConcatenated();
12981         // Diagnose missing comma in string array initialization.
12982         // Do not warn when all the elements in the initializer are concatenated
12983         // together. Do not warn for macros too.
12984         if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) {
12985           bool OnlyOneMissingComma = true;
12986           for (unsigned J = I + 1; J < NumInits; ++J) {
12987             const auto *Init = ILE->getInit(J);
12988             if (!Init)
12989               break;
12990             const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
12991             if (!SLJ || SLJ->getNumConcatenated() > 1) {
12992               OnlyOneMissingComma = false;
12993               break;
12994             }
12995           }
12996 
12997           if (OnlyOneMissingComma) {
12998             SmallVector<FixItHint, 1> Hints;
12999             for (unsigned i = 0; i < NumConcat - 1; ++i)
13000               Hints.push_back(FixItHint::CreateInsertion(
13001                   PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ","));
13002 
13003             Diag(SL->getStrTokenLoc(1),
13004                  diag::warn_concatenated_literal_array_init)
13005                 << Hints;
13006             Diag(SL->getBeginLoc(),
13007                  diag::note_concatenated_string_literal_silence);
13008           }
13009           // In any case, stop now.
13010           break;
13011         }
13012       }
13013   }
13014 
13015   // All the following checks are C++ only.
13016   if (!getLangOpts().CPlusPlus) {
13017     // If this variable must be emitted, add it as an initializer for the
13018     // current module.
13019     if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13020       Context.addModuleInitializer(ModuleScopes.back().Module, var);
13021     return;
13022   }
13023 
13024   QualType type = var->getType();
13025 
13026   if (var->hasAttr<BlocksAttr>())
13027     getCurFunction()->addByrefBlockVar(var);
13028 
13029   Expr *Init = var->getInit();
13030   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
13031   QualType baseType = Context.getBaseElementType(type);
13032 
13033   // Check whether the initializer is sufficiently constant.
13034   if (!type->isDependentType() && Init && !Init->isValueDependent() &&
13035       (GlobalStorage || var->isConstexpr() ||
13036        var->mightBeUsableInConstantExpressions(Context))) {
13037     // If this variable might have a constant initializer or might be usable in
13038     // constant expressions, check whether or not it actually is now.  We can't
13039     // do this lazily, because the result might depend on things that change
13040     // later, such as which constexpr functions happen to be defined.
13041     SmallVector<PartialDiagnosticAt, 8> Notes;
13042     bool HasConstInit;
13043     if (!getLangOpts().CPlusPlus11) {
13044       // Prior to C++11, in contexts where a constant initializer is required,
13045       // the set of valid constant initializers is described by syntactic rules
13046       // in [expr.const]p2-6.
13047       // FIXME: Stricter checking for these rules would be useful for constinit /
13048       // -Wglobal-constructors.
13049       HasConstInit = checkConstInit();
13050 
13051       // Compute and cache the constant value, and remember that we have a
13052       // constant initializer.
13053       if (HasConstInit) {
13054         (void)var->checkForConstantInitialization(Notes);
13055         Notes.clear();
13056       } else if (CacheCulprit) {
13057         Notes.emplace_back(CacheCulprit->getExprLoc(),
13058                            PDiag(diag::note_invalid_subexpr_in_const_expr));
13059         Notes.back().second << CacheCulprit->getSourceRange();
13060       }
13061     } else {
13062       // Evaluate the initializer to see if it's a constant initializer.
13063       HasConstInit = var->checkForConstantInitialization(Notes);
13064     }
13065 
13066     if (HasConstInit) {
13067       // FIXME: Consider replacing the initializer with a ConstantExpr.
13068     } else if (var->isConstexpr()) {
13069       SourceLocation DiagLoc = var->getLocation();
13070       // If the note doesn't add any useful information other than a source
13071       // location, fold it into the primary diagnostic.
13072       if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
13073                                    diag::note_invalid_subexpr_in_const_expr) {
13074         DiagLoc = Notes[0].first;
13075         Notes.clear();
13076       }
13077       Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
13078           << var << Init->getSourceRange();
13079       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
13080         Diag(Notes[I].first, Notes[I].second);
13081     } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) {
13082       auto *Attr = var->getAttr<ConstInitAttr>();
13083       Diag(var->getLocation(), diag::err_require_constant_init_failed)
13084           << Init->getSourceRange();
13085       Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here)
13086           << Attr->getRange() << Attr->isConstinit();
13087       for (auto &it : Notes)
13088         Diag(it.first, it.second);
13089     } else if (IsGlobal &&
13090                !getDiagnostics().isIgnored(diag::warn_global_constructor,
13091                                            var->getLocation())) {
13092       // Warn about globals which don't have a constant initializer.  Don't
13093       // warn about globals with a non-trivial destructor because we already
13094       // warned about them.
13095       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
13096       if (!(RD && !RD->hasTrivialDestructor())) {
13097         // checkConstInit() here permits trivial default initialization even in
13098         // C++11 onwards, where such an initializer is not a constant initializer
13099         // but nonetheless doesn't require a global constructor.
13100         if (!checkConstInit())
13101           Diag(var->getLocation(), diag::warn_global_constructor)
13102               << Init->getSourceRange();
13103       }
13104     }
13105   }
13106 
13107   // Require the destructor.
13108   if (!type->isDependentType())
13109     if (const RecordType *recordType = baseType->getAs<RecordType>())
13110       FinalizeVarWithDestructor(var, recordType);
13111 
13112   // If this variable must be emitted, add it as an initializer for the current
13113   // module.
13114   if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13115     Context.addModuleInitializer(ModuleScopes.back().Module, var);
13116 
13117   // Build the bindings if this is a structured binding declaration.
13118   if (auto *DD = dyn_cast<DecompositionDecl>(var))
13119     CheckCompleteDecompositionDeclaration(DD);
13120 }
13121 
13122 /// Determines if a variable's alignment is dependent.
13123 static bool hasDependentAlignment(VarDecl *VD) {
13124   if (VD->getType()->isDependentType())
13125     return true;
13126   for (auto *I : VD->specific_attrs<AlignedAttr>())
13127     if (I->isAlignmentDependent())
13128       return true;
13129   return false;
13130 }
13131 
13132 /// Check if VD needs to be dllexport/dllimport due to being in a
13133 /// dllexport/import function.
13134 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
13135   assert(VD->isStaticLocal());
13136 
13137   auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13138 
13139   // Find outermost function when VD is in lambda function.
13140   while (FD && !getDLLAttr(FD) &&
13141          !FD->hasAttr<DLLExportStaticLocalAttr>() &&
13142          !FD->hasAttr<DLLImportStaticLocalAttr>()) {
13143     FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
13144   }
13145 
13146   if (!FD)
13147     return;
13148 
13149   // Static locals inherit dll attributes from their function.
13150   if (Attr *A = getDLLAttr(FD)) {
13151     auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
13152     NewAttr->setInherited(true);
13153     VD->addAttr(NewAttr);
13154   } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
13155     auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
13156     NewAttr->setInherited(true);
13157     VD->addAttr(NewAttr);
13158 
13159     // Export this function to enforce exporting this static variable even
13160     // if it is not used in this compilation unit.
13161     if (!FD->hasAttr<DLLExportAttr>())
13162       FD->addAttr(NewAttr);
13163 
13164   } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
13165     auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
13166     NewAttr->setInherited(true);
13167     VD->addAttr(NewAttr);
13168   }
13169 }
13170 
13171 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
13172 /// any semantic actions necessary after any initializer has been attached.
13173 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
13174   // Note that we are no longer parsing the initializer for this declaration.
13175   ParsingInitForAutoVars.erase(ThisDecl);
13176 
13177   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
13178   if (!VD)
13179     return;
13180 
13181   // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
13182   if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
13183       !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
13184     if (PragmaClangBSSSection.Valid)
13185       VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
13186           Context, PragmaClangBSSSection.SectionName,
13187           PragmaClangBSSSection.PragmaLocation,
13188           AttributeCommonInfo::AS_Pragma));
13189     if (PragmaClangDataSection.Valid)
13190       VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
13191           Context, PragmaClangDataSection.SectionName,
13192           PragmaClangDataSection.PragmaLocation,
13193           AttributeCommonInfo::AS_Pragma));
13194     if (PragmaClangRodataSection.Valid)
13195       VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
13196           Context, PragmaClangRodataSection.SectionName,
13197           PragmaClangRodataSection.PragmaLocation,
13198           AttributeCommonInfo::AS_Pragma));
13199     if (PragmaClangRelroSection.Valid)
13200       VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
13201           Context, PragmaClangRelroSection.SectionName,
13202           PragmaClangRelroSection.PragmaLocation,
13203           AttributeCommonInfo::AS_Pragma));
13204   }
13205 
13206   if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
13207     for (auto *BD : DD->bindings()) {
13208       FinalizeDeclaration(BD);
13209     }
13210   }
13211 
13212   checkAttributesAfterMerging(*this, *VD);
13213 
13214   // Perform TLS alignment check here after attributes attached to the variable
13215   // which may affect the alignment have been processed. Only perform the check
13216   // if the target has a maximum TLS alignment (zero means no constraints).
13217   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
13218     // Protect the check so that it's not performed on dependent types and
13219     // dependent alignments (we can't determine the alignment in that case).
13220     if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
13221         !VD->isInvalidDecl()) {
13222       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
13223       if (Context.getDeclAlign(VD) > MaxAlignChars) {
13224         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
13225           << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
13226           << (unsigned)MaxAlignChars.getQuantity();
13227       }
13228     }
13229   }
13230 
13231   if (VD->isStaticLocal())
13232     CheckStaticLocalForDllExport(VD);
13233 
13234   // Perform check for initializers of device-side global variables.
13235   // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
13236   // 7.5). We must also apply the same checks to all __shared__
13237   // variables whether they are local or not. CUDA also allows
13238   // constant initializers for __constant__ and __device__ variables.
13239   if (getLangOpts().CUDA)
13240     checkAllowedCUDAInitializer(VD);
13241 
13242   // Grab the dllimport or dllexport attribute off of the VarDecl.
13243   const InheritableAttr *DLLAttr = getDLLAttr(VD);
13244 
13245   // Imported static data members cannot be defined out-of-line.
13246   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
13247     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
13248         VD->isThisDeclarationADefinition()) {
13249       // We allow definitions of dllimport class template static data members
13250       // with a warning.
13251       CXXRecordDecl *Context =
13252         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
13253       bool IsClassTemplateMember =
13254           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
13255           Context->getDescribedClassTemplate();
13256 
13257       Diag(VD->getLocation(),
13258            IsClassTemplateMember
13259                ? diag::warn_attribute_dllimport_static_field_definition
13260                : diag::err_attribute_dllimport_static_field_definition);
13261       Diag(IA->getLocation(), diag::note_attribute);
13262       if (!IsClassTemplateMember)
13263         VD->setInvalidDecl();
13264     }
13265   }
13266 
13267   // dllimport/dllexport variables cannot be thread local, their TLS index
13268   // isn't exported with the variable.
13269   if (DLLAttr && VD->getTLSKind()) {
13270     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13271     if (F && getDLLAttr(F)) {
13272       assert(VD->isStaticLocal());
13273       // But if this is a static local in a dlimport/dllexport function, the
13274       // function will never be inlined, which means the var would never be
13275       // imported, so having it marked import/export is safe.
13276     } else {
13277       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
13278                                                                     << DLLAttr;
13279       VD->setInvalidDecl();
13280     }
13281   }
13282 
13283   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
13284     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
13285       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
13286       VD->dropAttr<UsedAttr>();
13287     }
13288   }
13289 
13290   const DeclContext *DC = VD->getDeclContext();
13291   // If there's a #pragma GCC visibility in scope, and this isn't a class
13292   // member, set the visibility of this variable.
13293   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
13294     AddPushedVisibilityAttribute(VD);
13295 
13296   // FIXME: Warn on unused var template partial specializations.
13297   if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
13298     MarkUnusedFileScopedDecl(VD);
13299 
13300   // Now we have parsed the initializer and can update the table of magic
13301   // tag values.
13302   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
13303       !VD->getType()->isIntegralOrEnumerationType())
13304     return;
13305 
13306   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
13307     const Expr *MagicValueExpr = VD->getInit();
13308     if (!MagicValueExpr) {
13309       continue;
13310     }
13311     Optional<llvm::APSInt> MagicValueInt;
13312     if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) {
13313       Diag(I->getRange().getBegin(),
13314            diag::err_type_tag_for_datatype_not_ice)
13315         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13316       continue;
13317     }
13318     if (MagicValueInt->getActiveBits() > 64) {
13319       Diag(I->getRange().getBegin(),
13320            diag::err_type_tag_for_datatype_too_large)
13321         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13322       continue;
13323     }
13324     uint64_t MagicValue = MagicValueInt->getZExtValue();
13325     RegisterTypeTagForDatatype(I->getArgumentKind(),
13326                                MagicValue,
13327                                I->getMatchingCType(),
13328                                I->getLayoutCompatible(),
13329                                I->getMustBeNull());
13330   }
13331 }
13332 
13333 static bool hasDeducedAuto(DeclaratorDecl *DD) {
13334   auto *VD = dyn_cast<VarDecl>(DD);
13335   return VD && !VD->getType()->hasAutoForTrailingReturnType();
13336 }
13337 
13338 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
13339                                                    ArrayRef<Decl *> Group) {
13340   SmallVector<Decl*, 8> Decls;
13341 
13342   if (DS.isTypeSpecOwned())
13343     Decls.push_back(DS.getRepAsDecl());
13344 
13345   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
13346   DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
13347   bool DiagnosedMultipleDecomps = false;
13348   DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
13349   bool DiagnosedNonDeducedAuto = false;
13350 
13351   for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13352     if (Decl *D = Group[i]) {
13353       // For declarators, there are some additional syntactic-ish checks we need
13354       // to perform.
13355       if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
13356         if (!FirstDeclaratorInGroup)
13357           FirstDeclaratorInGroup = DD;
13358         if (!FirstDecompDeclaratorInGroup)
13359           FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
13360         if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
13361             !hasDeducedAuto(DD))
13362           FirstNonDeducedAutoInGroup = DD;
13363 
13364         if (FirstDeclaratorInGroup != DD) {
13365           // A decomposition declaration cannot be combined with any other
13366           // declaration in the same group.
13367           if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
13368             Diag(FirstDecompDeclaratorInGroup->getLocation(),
13369                  diag::err_decomp_decl_not_alone)
13370                 << FirstDeclaratorInGroup->getSourceRange()
13371                 << DD->getSourceRange();
13372             DiagnosedMultipleDecomps = true;
13373           }
13374 
13375           // A declarator that uses 'auto' in any way other than to declare a
13376           // variable with a deduced type cannot be combined with any other
13377           // declarator in the same group.
13378           if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
13379             Diag(FirstNonDeducedAutoInGroup->getLocation(),
13380                  diag::err_auto_non_deduced_not_alone)
13381                 << FirstNonDeducedAutoInGroup->getType()
13382                        ->hasAutoForTrailingReturnType()
13383                 << FirstDeclaratorInGroup->getSourceRange()
13384                 << DD->getSourceRange();
13385             DiagnosedNonDeducedAuto = true;
13386           }
13387         }
13388       }
13389 
13390       Decls.push_back(D);
13391     }
13392   }
13393 
13394   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
13395     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
13396       handleTagNumbering(Tag, S);
13397       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
13398           getLangOpts().CPlusPlus)
13399         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
13400     }
13401   }
13402 
13403   return BuildDeclaratorGroup(Decls);
13404 }
13405 
13406 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
13407 /// group, performing any necessary semantic checking.
13408 Sema::DeclGroupPtrTy
13409 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
13410   // C++14 [dcl.spec.auto]p7: (DR1347)
13411   //   If the type that replaces the placeholder type is not the same in each
13412   //   deduction, the program is ill-formed.
13413   if (Group.size() > 1) {
13414     QualType Deduced;
13415     VarDecl *DeducedDecl = nullptr;
13416     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13417       VarDecl *D = dyn_cast<VarDecl>(Group[i]);
13418       if (!D || D->isInvalidDecl())
13419         break;
13420       DeducedType *DT = D->getType()->getContainedDeducedType();
13421       if (!DT || DT->getDeducedType().isNull())
13422         continue;
13423       if (Deduced.isNull()) {
13424         Deduced = DT->getDeducedType();
13425         DeducedDecl = D;
13426       } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
13427         auto *AT = dyn_cast<AutoType>(DT);
13428         auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
13429                         diag::err_auto_different_deductions)
13430                    << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced
13431                    << DeducedDecl->getDeclName() << DT->getDeducedType()
13432                    << D->getDeclName();
13433         if (DeducedDecl->hasInit())
13434           Dia << DeducedDecl->getInit()->getSourceRange();
13435         if (D->getInit())
13436           Dia << D->getInit()->getSourceRange();
13437         D->setInvalidDecl();
13438         break;
13439       }
13440     }
13441   }
13442 
13443   ActOnDocumentableDecls(Group);
13444 
13445   return DeclGroupPtrTy::make(
13446       DeclGroupRef::Create(Context, Group.data(), Group.size()));
13447 }
13448 
13449 void Sema::ActOnDocumentableDecl(Decl *D) {
13450   ActOnDocumentableDecls(D);
13451 }
13452 
13453 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
13454   // Don't parse the comment if Doxygen diagnostics are ignored.
13455   if (Group.empty() || !Group[0])
13456     return;
13457 
13458   if (Diags.isIgnored(diag::warn_doc_param_not_found,
13459                       Group[0]->getLocation()) &&
13460       Diags.isIgnored(diag::warn_unknown_comment_command_name,
13461                       Group[0]->getLocation()))
13462     return;
13463 
13464   if (Group.size() >= 2) {
13465     // This is a decl group.  Normally it will contain only declarations
13466     // produced from declarator list.  But in case we have any definitions or
13467     // additional declaration references:
13468     //   'typedef struct S {} S;'
13469     //   'typedef struct S *S;'
13470     //   'struct S *pS;'
13471     // FinalizeDeclaratorGroup adds these as separate declarations.
13472     Decl *MaybeTagDecl = Group[0];
13473     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
13474       Group = Group.slice(1);
13475     }
13476   }
13477 
13478   // FIMXE: We assume every Decl in the group is in the same file.
13479   // This is false when preprocessor constructs the group from decls in
13480   // different files (e. g. macros or #include).
13481   Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
13482 }
13483 
13484 /// Common checks for a parameter-declaration that should apply to both function
13485 /// parameters and non-type template parameters.
13486 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
13487   // Check that there are no default arguments inside the type of this
13488   // parameter.
13489   if (getLangOpts().CPlusPlus)
13490     CheckExtraCXXDefaultArguments(D);
13491 
13492   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
13493   if (D.getCXXScopeSpec().isSet()) {
13494     Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
13495       << D.getCXXScopeSpec().getRange();
13496   }
13497 
13498   // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
13499   // simple identifier except [...irrelevant cases...].
13500   switch (D.getName().getKind()) {
13501   case UnqualifiedIdKind::IK_Identifier:
13502     break;
13503 
13504   case UnqualifiedIdKind::IK_OperatorFunctionId:
13505   case UnqualifiedIdKind::IK_ConversionFunctionId:
13506   case UnqualifiedIdKind::IK_LiteralOperatorId:
13507   case UnqualifiedIdKind::IK_ConstructorName:
13508   case UnqualifiedIdKind::IK_DestructorName:
13509   case UnqualifiedIdKind::IK_ImplicitSelfParam:
13510   case UnqualifiedIdKind::IK_DeductionGuideName:
13511     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
13512       << GetNameForDeclarator(D).getName();
13513     break;
13514 
13515   case UnqualifiedIdKind::IK_TemplateId:
13516   case UnqualifiedIdKind::IK_ConstructorTemplateId:
13517     // GetNameForDeclarator would not produce a useful name in this case.
13518     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
13519     break;
13520   }
13521 }
13522 
13523 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
13524 /// to introduce parameters into function prototype scope.
13525 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
13526   const DeclSpec &DS = D.getDeclSpec();
13527 
13528   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
13529 
13530   // C++03 [dcl.stc]p2 also permits 'auto'.
13531   StorageClass SC = SC_None;
13532   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
13533     SC = SC_Register;
13534     // In C++11, the 'register' storage class specifier is deprecated.
13535     // In C++17, it is not allowed, but we tolerate it as an extension.
13536     if (getLangOpts().CPlusPlus11) {
13537       Diag(DS.getStorageClassSpecLoc(),
13538            getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
13539                                      : diag::warn_deprecated_register)
13540         << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
13541     }
13542   } else if (getLangOpts().CPlusPlus &&
13543              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
13544     SC = SC_Auto;
13545   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
13546     Diag(DS.getStorageClassSpecLoc(),
13547          diag::err_invalid_storage_class_in_func_decl);
13548     D.getMutableDeclSpec().ClearStorageClassSpecs();
13549   }
13550 
13551   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
13552     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
13553       << DeclSpec::getSpecifierName(TSCS);
13554   if (DS.isInlineSpecified())
13555     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
13556         << getLangOpts().CPlusPlus17;
13557   if (DS.hasConstexprSpecifier())
13558     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
13559         << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
13560 
13561   DiagnoseFunctionSpecifiers(DS);
13562 
13563   CheckFunctionOrTemplateParamDeclarator(S, D);
13564 
13565   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13566   QualType parmDeclType = TInfo->getType();
13567 
13568   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
13569   IdentifierInfo *II = D.getIdentifier();
13570   if (II) {
13571     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
13572                    ForVisibleRedeclaration);
13573     LookupName(R, S);
13574     if (R.isSingleResult()) {
13575       NamedDecl *PrevDecl = R.getFoundDecl();
13576       if (PrevDecl->isTemplateParameter()) {
13577         // Maybe we will complain about the shadowed template parameter.
13578         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
13579         // Just pretend that we didn't see the previous declaration.
13580         PrevDecl = nullptr;
13581       } else if (S->isDeclScope(PrevDecl)) {
13582         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
13583         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
13584 
13585         // Recover by removing the name
13586         II = nullptr;
13587         D.SetIdentifier(nullptr, D.getIdentifierLoc());
13588         D.setInvalidType(true);
13589       }
13590     }
13591   }
13592 
13593   // Temporarily put parameter variables in the translation unit, not
13594   // the enclosing context.  This prevents them from accidentally
13595   // looking like class members in C++.
13596   ParmVarDecl *New =
13597       CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
13598                      D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
13599 
13600   if (D.isInvalidType())
13601     New->setInvalidDecl();
13602 
13603   assert(S->isFunctionPrototypeScope());
13604   assert(S->getFunctionPrototypeDepth() >= 1);
13605   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
13606                     S->getNextFunctionPrototypeIndex());
13607 
13608   // Add the parameter declaration into this scope.
13609   S->AddDecl(New);
13610   if (II)
13611     IdResolver.AddDecl(New);
13612 
13613   ProcessDeclAttributes(S, New, D);
13614 
13615   if (D.getDeclSpec().isModulePrivateSpecified())
13616     Diag(New->getLocation(), diag::err_module_private_local)
13617         << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13618         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13619 
13620   if (New->hasAttr<BlocksAttr>()) {
13621     Diag(New->getLocation(), diag::err_block_on_nonlocal);
13622   }
13623 
13624   if (getLangOpts().OpenCL)
13625     deduceOpenCLAddressSpace(New);
13626 
13627   return New;
13628 }
13629 
13630 /// Synthesizes a variable for a parameter arising from a
13631 /// typedef.
13632 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
13633                                               SourceLocation Loc,
13634                                               QualType T) {
13635   /* FIXME: setting StartLoc == Loc.
13636      Would it be worth to modify callers so as to provide proper source
13637      location for the unnamed parameters, embedding the parameter's type? */
13638   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
13639                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
13640                                            SC_None, nullptr);
13641   Param->setImplicit();
13642   return Param;
13643 }
13644 
13645 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
13646   // Don't diagnose unused-parameter errors in template instantiations; we
13647   // will already have done so in the template itself.
13648   if (inTemplateInstantiation())
13649     return;
13650 
13651   for (const ParmVarDecl *Parameter : Parameters) {
13652     if (!Parameter->isReferenced() && Parameter->getDeclName() &&
13653         !Parameter->hasAttr<UnusedAttr>()) {
13654       Diag(Parameter->getLocation(), diag::warn_unused_parameter)
13655         << Parameter->getDeclName();
13656     }
13657   }
13658 }
13659 
13660 void Sema::DiagnoseSizeOfParametersAndReturnValue(
13661     ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
13662   if (LangOpts.NumLargeByValueCopy == 0) // No check.
13663     return;
13664 
13665   // Warn if the return value is pass-by-value and larger than the specified
13666   // threshold.
13667   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
13668     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
13669     if (Size > LangOpts.NumLargeByValueCopy)
13670       Diag(D->getLocation(), diag::warn_return_value_size) << D << Size;
13671   }
13672 
13673   // Warn if any parameter is pass-by-value and larger than the specified
13674   // threshold.
13675   for (const ParmVarDecl *Parameter : Parameters) {
13676     QualType T = Parameter->getType();
13677     if (T->isDependentType() || !T.isPODType(Context))
13678       continue;
13679     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
13680     if (Size > LangOpts.NumLargeByValueCopy)
13681       Diag(Parameter->getLocation(), diag::warn_parameter_size)
13682           << Parameter << Size;
13683   }
13684 }
13685 
13686 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
13687                                   SourceLocation NameLoc, IdentifierInfo *Name,
13688                                   QualType T, TypeSourceInfo *TSInfo,
13689                                   StorageClass SC) {
13690   // In ARC, infer a lifetime qualifier for appropriate parameter types.
13691   if (getLangOpts().ObjCAutoRefCount &&
13692       T.getObjCLifetime() == Qualifiers::OCL_None &&
13693       T->isObjCLifetimeType()) {
13694 
13695     Qualifiers::ObjCLifetime lifetime;
13696 
13697     // Special cases for arrays:
13698     //   - if it's const, use __unsafe_unretained
13699     //   - otherwise, it's an error
13700     if (T->isArrayType()) {
13701       if (!T.isConstQualified()) {
13702         if (DelayedDiagnostics.shouldDelayDiagnostics())
13703           DelayedDiagnostics.add(
13704               sema::DelayedDiagnostic::makeForbiddenType(
13705               NameLoc, diag::err_arc_array_param_no_ownership, T, false));
13706         else
13707           Diag(NameLoc, diag::err_arc_array_param_no_ownership)
13708               << TSInfo->getTypeLoc().getSourceRange();
13709       }
13710       lifetime = Qualifiers::OCL_ExplicitNone;
13711     } else {
13712       lifetime = T->getObjCARCImplicitLifetime();
13713     }
13714     T = Context.getLifetimeQualifiedType(T, lifetime);
13715   }
13716 
13717   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
13718                                          Context.getAdjustedParameterType(T),
13719                                          TSInfo, SC, nullptr);
13720 
13721   // Make a note if we created a new pack in the scope of a lambda, so that
13722   // we know that references to that pack must also be expanded within the
13723   // lambda scope.
13724   if (New->isParameterPack())
13725     if (auto *LSI = getEnclosingLambda())
13726       LSI->LocalPacks.push_back(New);
13727 
13728   if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
13729       New->getType().hasNonTrivialToPrimitiveCopyCUnion())
13730     checkNonTrivialCUnion(New->getType(), New->getLocation(),
13731                           NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
13732 
13733   // Parameters can not be abstract class types.
13734   // For record types, this is done by the AbstractClassUsageDiagnoser once
13735   // the class has been completely parsed.
13736   if (!CurContext->isRecord() &&
13737       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
13738                              AbstractParamType))
13739     New->setInvalidDecl();
13740 
13741   // Parameter declarators cannot be interface types. All ObjC objects are
13742   // passed by reference.
13743   if (T->isObjCObjectType()) {
13744     SourceLocation TypeEndLoc =
13745         getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
13746     Diag(NameLoc,
13747          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
13748       << FixItHint::CreateInsertion(TypeEndLoc, "*");
13749     T = Context.getObjCObjectPointerType(T);
13750     New->setType(T);
13751   }
13752 
13753   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
13754   // duration shall not be qualified by an address-space qualifier."
13755   // Since all parameters have automatic store duration, they can not have
13756   // an address space.
13757   if (T.getAddressSpace() != LangAS::Default &&
13758       // OpenCL allows function arguments declared to be an array of a type
13759       // to be qualified with an address space.
13760       !(getLangOpts().OpenCL &&
13761         (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
13762     Diag(NameLoc, diag::err_arg_with_address_space);
13763     New->setInvalidDecl();
13764   }
13765 
13766   // PPC MMA non-pointer types are not allowed as function argument types.
13767   if (Context.getTargetInfo().getTriple().isPPC64() &&
13768       CheckPPCMMAType(New->getOriginalType(), New->getLocation())) {
13769     New->setInvalidDecl();
13770   }
13771 
13772   return New;
13773 }
13774 
13775 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
13776                                            SourceLocation LocAfterDecls) {
13777   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
13778 
13779   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
13780   // for a K&R function.
13781   if (!FTI.hasPrototype) {
13782     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
13783       --i;
13784       if (FTI.Params[i].Param == nullptr) {
13785         SmallString<256> Code;
13786         llvm::raw_svector_ostream(Code)
13787             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
13788         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
13789             << FTI.Params[i].Ident
13790             << FixItHint::CreateInsertion(LocAfterDecls, Code);
13791 
13792         // Implicitly declare the argument as type 'int' for lack of a better
13793         // type.
13794         AttributeFactory attrs;
13795         DeclSpec DS(attrs);
13796         const char* PrevSpec; // unused
13797         unsigned DiagID; // unused
13798         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
13799                            DiagID, Context.getPrintingPolicy());
13800         // Use the identifier location for the type source range.
13801         DS.SetRangeStart(FTI.Params[i].IdentLoc);
13802         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
13803         Declarator ParamD(DS, DeclaratorContext::KNRTypeList);
13804         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
13805         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
13806       }
13807     }
13808   }
13809 }
13810 
13811 Decl *
13812 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
13813                               MultiTemplateParamsArg TemplateParameterLists,
13814                               SkipBodyInfo *SkipBody) {
13815   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
13816   assert(D.isFunctionDeclarator() && "Not a function declarator!");
13817   Scope *ParentScope = FnBodyScope->getParent();
13818 
13819   // Check if we are in an `omp begin/end declare variant` scope. If we are, and
13820   // we define a non-templated function definition, we will create a declaration
13821   // instead (=BaseFD), and emit the definition with a mangled name afterwards.
13822   // The base function declaration will have the equivalent of an `omp declare
13823   // variant` annotation which specifies the mangled definition as a
13824   // specialization function under the OpenMP context defined as part of the
13825   // `omp begin declare variant`.
13826   SmallVector<FunctionDecl *, 4> Bases;
13827   if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
13828     ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
13829         ParentScope, D, TemplateParameterLists, Bases);
13830 
13831   D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
13832   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
13833   Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
13834 
13835   if (!Bases.empty())
13836     ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
13837 
13838   return Dcl;
13839 }
13840 
13841 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
13842   Consumer.HandleInlineFunctionDefinition(D);
13843 }
13844 
13845 static bool
13846 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
13847                                 const FunctionDecl *&PossiblePrototype) {
13848   // Don't warn about invalid declarations.
13849   if (FD->isInvalidDecl())
13850     return false;
13851 
13852   // Or declarations that aren't global.
13853   if (!FD->isGlobal())
13854     return false;
13855 
13856   // Don't warn about C++ member functions.
13857   if (isa<CXXMethodDecl>(FD))
13858     return false;
13859 
13860   // Don't warn about 'main'.
13861   if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
13862     if (IdentifierInfo *II = FD->getIdentifier())
13863       if (II->isStr("main"))
13864         return false;
13865 
13866   // Don't warn about inline functions.
13867   if (FD->isInlined())
13868     return false;
13869 
13870   // Don't warn about function templates.
13871   if (FD->getDescribedFunctionTemplate())
13872     return false;
13873 
13874   // Don't warn about function template specializations.
13875   if (FD->isFunctionTemplateSpecialization())
13876     return false;
13877 
13878   // Don't warn for OpenCL kernels.
13879   if (FD->hasAttr<OpenCLKernelAttr>())
13880     return false;
13881 
13882   // Don't warn on explicitly deleted functions.
13883   if (FD->isDeleted())
13884     return false;
13885 
13886   for (const FunctionDecl *Prev = FD->getPreviousDecl();
13887        Prev; Prev = Prev->getPreviousDecl()) {
13888     // Ignore any declarations that occur in function or method
13889     // scope, because they aren't visible from the header.
13890     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
13891       continue;
13892 
13893     PossiblePrototype = Prev;
13894     return Prev->getType()->isFunctionNoProtoType();
13895   }
13896 
13897   return true;
13898 }
13899 
13900 void
13901 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
13902                                    const FunctionDecl *EffectiveDefinition,
13903                                    SkipBodyInfo *SkipBody) {
13904   const FunctionDecl *Definition = EffectiveDefinition;
13905   if (!Definition &&
13906       !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true))
13907     return;
13908 
13909   if (Definition->getFriendObjectKind() != Decl::FOK_None) {
13910     if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) {
13911       if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
13912         // A merged copy of the same function, instantiated as a member of
13913         // the same class, is OK.
13914         if (declaresSameEntity(OrigFD, OrigDef) &&
13915             declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()),
13916                                cast<Decl>(FD->getLexicalDeclContext())))
13917           return;
13918       }
13919     }
13920   }
13921 
13922   if (canRedefineFunction(Definition, getLangOpts()))
13923     return;
13924 
13925   // Don't emit an error when this is redefinition of a typo-corrected
13926   // definition.
13927   if (TypoCorrectedFunctionDefinitions.count(Definition))
13928     return;
13929 
13930   // If we don't have a visible definition of the function, and it's inline or
13931   // a template, skip the new definition.
13932   if (SkipBody && !hasVisibleDefinition(Definition) &&
13933       (Definition->getFormalLinkage() == InternalLinkage ||
13934        Definition->isInlined() ||
13935        Definition->getDescribedFunctionTemplate() ||
13936        Definition->getNumTemplateParameterLists())) {
13937     SkipBody->ShouldSkip = true;
13938     SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
13939     if (auto *TD = Definition->getDescribedFunctionTemplate())
13940       makeMergedDefinitionVisible(TD);
13941     makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
13942     return;
13943   }
13944 
13945   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
13946       Definition->getStorageClass() == SC_Extern)
13947     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
13948         << FD << getLangOpts().CPlusPlus;
13949   else
13950     Diag(FD->getLocation(), diag::err_redefinition) << FD;
13951 
13952   Diag(Definition->getLocation(), diag::note_previous_definition);
13953   FD->setInvalidDecl();
13954 }
13955 
13956 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
13957                                    Sema &S) {
13958   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
13959 
13960   LambdaScopeInfo *LSI = S.PushLambdaScope();
13961   LSI->CallOperator = CallOperator;
13962   LSI->Lambda = LambdaClass;
13963   LSI->ReturnType = CallOperator->getReturnType();
13964   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
13965 
13966   if (LCD == LCD_None)
13967     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
13968   else if (LCD == LCD_ByCopy)
13969     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
13970   else if (LCD == LCD_ByRef)
13971     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
13972   DeclarationNameInfo DNI = CallOperator->getNameInfo();
13973 
13974   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
13975   LSI->Mutable = !CallOperator->isConst();
13976 
13977   // Add the captures to the LSI so they can be noted as already
13978   // captured within tryCaptureVar.
13979   auto I = LambdaClass->field_begin();
13980   for (const auto &C : LambdaClass->captures()) {
13981     if (C.capturesVariable()) {
13982       VarDecl *VD = C.getCapturedVar();
13983       if (VD->isInitCapture())
13984         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
13985       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
13986       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
13987           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
13988           /*EllipsisLoc*/C.isPackExpansion()
13989                          ? C.getEllipsisLoc() : SourceLocation(),
13990           I->getType(), /*Invalid*/false);
13991 
13992     } else if (C.capturesThis()) {
13993       LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
13994                           C.getCaptureKind() == LCK_StarThis);
13995     } else {
13996       LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
13997                              I->getType());
13998     }
13999     ++I;
14000   }
14001 }
14002 
14003 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
14004                                     SkipBodyInfo *SkipBody) {
14005   if (!D) {
14006     // Parsing the function declaration failed in some way. Push on a fake scope
14007     // anyway so we can try to parse the function body.
14008     PushFunctionScope();
14009     PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
14010     return D;
14011   }
14012 
14013   FunctionDecl *FD = nullptr;
14014 
14015   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
14016     FD = FunTmpl->getTemplatedDecl();
14017   else
14018     FD = cast<FunctionDecl>(D);
14019 
14020   // Do not push if it is a lambda because one is already pushed when building
14021   // the lambda in ActOnStartOfLambdaDefinition().
14022   if (!isLambdaCallOperator(FD))
14023     PushExpressionEvaluationContext(
14024         FD->isConsteval() ? ExpressionEvaluationContext::ConstantEvaluated
14025                           : ExprEvalContexts.back().Context);
14026 
14027   // Check for defining attributes before the check for redefinition.
14028   if (const auto *Attr = FD->getAttr<AliasAttr>()) {
14029     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
14030     FD->dropAttr<AliasAttr>();
14031     FD->setInvalidDecl();
14032   }
14033   if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
14034     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
14035     FD->dropAttr<IFuncAttr>();
14036     FD->setInvalidDecl();
14037   }
14038 
14039   if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
14040     if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
14041         Ctor->isDefaultConstructor() &&
14042         Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14043       // If this is an MS ABI dllexport default constructor, instantiate any
14044       // default arguments.
14045       InstantiateDefaultCtorDefaultArgs(Ctor);
14046     }
14047   }
14048 
14049   // See if this is a redefinition. If 'will have body' (or similar) is already
14050   // set, then these checks were already performed when it was set.
14051   if (!FD->willHaveBody() && !FD->isLateTemplateParsed() &&
14052       !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
14053     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
14054 
14055     // If we're skipping the body, we're done. Don't enter the scope.
14056     if (SkipBody && SkipBody->ShouldSkip)
14057       return D;
14058   }
14059 
14060   // Mark this function as "will have a body eventually".  This lets users to
14061   // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
14062   // this function.
14063   FD->setWillHaveBody();
14064 
14065   // If we are instantiating a generic lambda call operator, push
14066   // a LambdaScopeInfo onto the function stack.  But use the information
14067   // that's already been calculated (ActOnLambdaExpr) to prime the current
14068   // LambdaScopeInfo.
14069   // When the template operator is being specialized, the LambdaScopeInfo,
14070   // has to be properly restored so that tryCaptureVariable doesn't try
14071   // and capture any new variables. In addition when calculating potential
14072   // captures during transformation of nested lambdas, it is necessary to
14073   // have the LSI properly restored.
14074   if (isGenericLambdaCallOperatorSpecialization(FD)) {
14075     assert(inTemplateInstantiation() &&
14076            "There should be an active template instantiation on the stack "
14077            "when instantiating a generic lambda!");
14078     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
14079   } else {
14080     // Enter a new function scope
14081     PushFunctionScope();
14082   }
14083 
14084   // Builtin functions cannot be defined.
14085   if (unsigned BuiltinID = FD->getBuiltinID()) {
14086     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
14087         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
14088       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
14089       FD->setInvalidDecl();
14090     }
14091   }
14092 
14093   // The return type of a function definition must be complete
14094   // (C99 6.9.1p3, C++ [dcl.fct]p6).
14095   QualType ResultType = FD->getReturnType();
14096   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
14097       !FD->isInvalidDecl() &&
14098       RequireCompleteType(FD->getLocation(), ResultType,
14099                           diag::err_func_def_incomplete_result))
14100     FD->setInvalidDecl();
14101 
14102   if (FnBodyScope)
14103     PushDeclContext(FnBodyScope, FD);
14104 
14105   // Check the validity of our function parameters
14106   CheckParmsForFunctionDef(FD->parameters(),
14107                            /*CheckParameterNames=*/true);
14108 
14109   // Add non-parameter declarations already in the function to the current
14110   // scope.
14111   if (FnBodyScope) {
14112     for (Decl *NPD : FD->decls()) {
14113       auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
14114       if (!NonParmDecl)
14115         continue;
14116       assert(!isa<ParmVarDecl>(NonParmDecl) &&
14117              "parameters should not be in newly created FD yet");
14118 
14119       // If the decl has a name, make it accessible in the current scope.
14120       if (NonParmDecl->getDeclName())
14121         PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
14122 
14123       // Similarly, dive into enums and fish their constants out, making them
14124       // accessible in this scope.
14125       if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
14126         for (auto *EI : ED->enumerators())
14127           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
14128       }
14129     }
14130   }
14131 
14132   // Introduce our parameters into the function scope
14133   for (auto Param : FD->parameters()) {
14134     Param->setOwningFunction(FD);
14135 
14136     // If this has an identifier, add it to the scope stack.
14137     if (Param->getIdentifier() && FnBodyScope) {
14138       CheckShadow(FnBodyScope, Param);
14139 
14140       PushOnScopeChains(Param, FnBodyScope);
14141     }
14142   }
14143 
14144   // Ensure that the function's exception specification is instantiated.
14145   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
14146     ResolveExceptionSpec(D->getLocation(), FPT);
14147 
14148   // dllimport cannot be applied to non-inline function definitions.
14149   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
14150       !FD->isTemplateInstantiation()) {
14151     assert(!FD->hasAttr<DLLExportAttr>());
14152     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
14153     FD->setInvalidDecl();
14154     return D;
14155   }
14156   // We want to attach documentation to original Decl (which might be
14157   // a function template).
14158   ActOnDocumentableDecl(D);
14159   if (getCurLexicalContext()->isObjCContainer() &&
14160       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
14161       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
14162     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
14163 
14164   return D;
14165 }
14166 
14167 /// Given the set of return statements within a function body,
14168 /// compute the variables that are subject to the named return value
14169 /// optimization.
14170 ///
14171 /// Each of the variables that is subject to the named return value
14172 /// optimization will be marked as NRVO variables in the AST, and any
14173 /// return statement that has a marked NRVO variable as its NRVO candidate can
14174 /// use the named return value optimization.
14175 ///
14176 /// This function applies a very simplistic algorithm for NRVO: if every return
14177 /// statement in the scope of a variable has the same NRVO candidate, that
14178 /// candidate is an NRVO variable.
14179 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
14180   ReturnStmt **Returns = Scope->Returns.data();
14181 
14182   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
14183     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
14184       if (!NRVOCandidate->isNRVOVariable())
14185         Returns[I]->setNRVOCandidate(nullptr);
14186     }
14187   }
14188 }
14189 
14190 bool Sema::canDelayFunctionBody(const Declarator &D) {
14191   // We can't delay parsing the body of a constexpr function template (yet).
14192   if (D.getDeclSpec().hasConstexprSpecifier())
14193     return false;
14194 
14195   // We can't delay parsing the body of a function template with a deduced
14196   // return type (yet).
14197   if (D.getDeclSpec().hasAutoTypeSpec()) {
14198     // If the placeholder introduces a non-deduced trailing return type,
14199     // we can still delay parsing it.
14200     if (D.getNumTypeObjects()) {
14201       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
14202       if (Outer.Kind == DeclaratorChunk::Function &&
14203           Outer.Fun.hasTrailingReturnType()) {
14204         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
14205         return Ty.isNull() || !Ty->isUndeducedType();
14206       }
14207     }
14208     return false;
14209   }
14210 
14211   return true;
14212 }
14213 
14214 bool Sema::canSkipFunctionBody(Decl *D) {
14215   // We cannot skip the body of a function (or function template) which is
14216   // constexpr, since we may need to evaluate its body in order to parse the
14217   // rest of the file.
14218   // We cannot skip the body of a function with an undeduced return type,
14219   // because any callers of that function need to know the type.
14220   if (const FunctionDecl *FD = D->getAsFunction()) {
14221     if (FD->isConstexpr())
14222       return false;
14223     // We can't simply call Type::isUndeducedType here, because inside template
14224     // auto can be deduced to a dependent type, which is not considered
14225     // "undeduced".
14226     if (FD->getReturnType()->getContainedDeducedType())
14227       return false;
14228   }
14229   return Consumer.shouldSkipFunctionBody(D);
14230 }
14231 
14232 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
14233   if (!Decl)
14234     return nullptr;
14235   if (FunctionDecl *FD = Decl->getAsFunction())
14236     FD->setHasSkippedBody();
14237   else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
14238     MD->setHasSkippedBody();
14239   return Decl;
14240 }
14241 
14242 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
14243   return ActOnFinishFunctionBody(D, BodyArg, false);
14244 }
14245 
14246 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
14247 /// body.
14248 class ExitFunctionBodyRAII {
14249 public:
14250   ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
14251   ~ExitFunctionBodyRAII() {
14252     if (!IsLambda)
14253       S.PopExpressionEvaluationContext();
14254   }
14255 
14256 private:
14257   Sema &S;
14258   bool IsLambda = false;
14259 };
14260 
14261 static void diagnoseImplicitlyRetainedSelf(Sema &S) {
14262   llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
14263 
14264   auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
14265     if (EscapeInfo.count(BD))
14266       return EscapeInfo[BD];
14267 
14268     bool R = false;
14269     const BlockDecl *CurBD = BD;
14270 
14271     do {
14272       R = !CurBD->doesNotEscape();
14273       if (R)
14274         break;
14275       CurBD = CurBD->getParent()->getInnermostBlockDecl();
14276     } while (CurBD);
14277 
14278     return EscapeInfo[BD] = R;
14279   };
14280 
14281   // If the location where 'self' is implicitly retained is inside a escaping
14282   // block, emit a diagnostic.
14283   for (const std::pair<SourceLocation, const BlockDecl *> &P :
14284        S.ImplicitlyRetainedSelfLocs)
14285     if (IsOrNestedInEscapingBlock(P.second))
14286       S.Diag(P.first, diag::warn_implicitly_retains_self)
14287           << FixItHint::CreateInsertion(P.first, "self->");
14288 }
14289 
14290 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
14291                                     bool IsInstantiation) {
14292   FunctionScopeInfo *FSI = getCurFunction();
14293   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
14294 
14295   if (FSI->UsesFPIntrin && !FD->hasAttr<StrictFPAttr>())
14296     FD->addAttr(StrictFPAttr::CreateImplicit(Context));
14297 
14298   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
14299   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
14300 
14301   if (getLangOpts().Coroutines && FSI->isCoroutine())
14302     CheckCompletedCoroutineBody(FD, Body);
14303 
14304   // Do not call PopExpressionEvaluationContext() if it is a lambda because one
14305   // is already popped when finishing the lambda in BuildLambdaExpr(). This is
14306   // meant to pop the context added in ActOnStartOfFunctionDef().
14307   ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
14308 
14309   if (FD) {
14310     FD->setBody(Body);
14311     FD->setWillHaveBody(false);
14312 
14313     if (getLangOpts().CPlusPlus14) {
14314       if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
14315           FD->getReturnType()->isUndeducedType()) {
14316         // If the function has a deduced result type but contains no 'return'
14317         // statements, the result type as written must be exactly 'auto', and
14318         // the deduced result type is 'void'.
14319         if (!FD->getReturnType()->getAs<AutoType>()) {
14320           Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
14321               << FD->getReturnType();
14322           FD->setInvalidDecl();
14323         } else {
14324           // Substitute 'void' for the 'auto' in the type.
14325           TypeLoc ResultType = getReturnTypeLoc(FD);
14326           Context.adjustDeducedFunctionResultType(
14327               FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
14328         }
14329       }
14330     } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
14331       // In C++11, we don't use 'auto' deduction rules for lambda call
14332       // operators because we don't support return type deduction.
14333       auto *LSI = getCurLambda();
14334       if (LSI->HasImplicitReturnType) {
14335         deduceClosureReturnType(*LSI);
14336 
14337         // C++11 [expr.prim.lambda]p4:
14338         //   [...] if there are no return statements in the compound-statement
14339         //   [the deduced type is] the type void
14340         QualType RetType =
14341             LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
14342 
14343         // Update the return type to the deduced type.
14344         const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
14345         FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
14346                                             Proto->getExtProtoInfo()));
14347       }
14348     }
14349 
14350     // If the function implicitly returns zero (like 'main') or is naked,
14351     // don't complain about missing return statements.
14352     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
14353       WP.disableCheckFallThrough();
14354 
14355     // MSVC permits the use of pure specifier (=0) on function definition,
14356     // defined at class scope, warn about this non-standard construct.
14357     if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
14358       Diag(FD->getLocation(), diag::ext_pure_function_definition);
14359 
14360     if (!FD->isInvalidDecl()) {
14361       // Don't diagnose unused parameters of defaulted or deleted functions.
14362       if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
14363         DiagnoseUnusedParameters(FD->parameters());
14364       DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
14365                                              FD->getReturnType(), FD);
14366 
14367       // If this is a structor, we need a vtable.
14368       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
14369         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
14370       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
14371         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
14372 
14373       // Try to apply the named return value optimization. We have to check
14374       // if we can do this here because lambdas keep return statements around
14375       // to deduce an implicit return type.
14376       if (FD->getReturnType()->isRecordType() &&
14377           (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
14378         computeNRVO(Body, FSI);
14379     }
14380 
14381     // GNU warning -Wmissing-prototypes:
14382     //   Warn if a global function is defined without a previous
14383     //   prototype declaration. This warning is issued even if the
14384     //   definition itself provides a prototype. The aim is to detect
14385     //   global functions that fail to be declared in header files.
14386     const FunctionDecl *PossiblePrototype = nullptr;
14387     if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
14388       Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
14389 
14390       if (PossiblePrototype) {
14391         // We found a declaration that is not a prototype,
14392         // but that could be a zero-parameter prototype
14393         if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
14394           TypeLoc TL = TI->getTypeLoc();
14395           if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
14396             Diag(PossiblePrototype->getLocation(),
14397                  diag::note_declaration_not_a_prototype)
14398                 << (FD->getNumParams() != 0)
14399                 << (FD->getNumParams() == 0
14400                         ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void")
14401                         : FixItHint{});
14402         }
14403       } else {
14404         // Returns true if the token beginning at this Loc is `const`.
14405         auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM,
14406                                 const LangOptions &LangOpts) {
14407           std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
14408           if (LocInfo.first.isInvalid())
14409             return false;
14410 
14411           bool Invalid = false;
14412           StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
14413           if (Invalid)
14414             return false;
14415 
14416           if (LocInfo.second > Buffer.size())
14417             return false;
14418 
14419           const char *LexStart = Buffer.data() + LocInfo.second;
14420           StringRef StartTok(LexStart, Buffer.size() - LocInfo.second);
14421 
14422           return StartTok.consume_front("const") &&
14423                  (StartTok.empty() || isWhitespace(StartTok[0]) ||
14424                   StartTok.startswith("/*") || StartTok.startswith("//"));
14425         };
14426 
14427         auto findBeginLoc = [&]() {
14428           // If the return type has `const` qualifier, we want to insert
14429           // `static` before `const` (and not before the typename).
14430           if ((FD->getReturnType()->isAnyPointerType() &&
14431                FD->getReturnType()->getPointeeType().isConstQualified()) ||
14432               FD->getReturnType().isConstQualified()) {
14433             // But only do this if we can determine where the `const` is.
14434 
14435             if (isLocAtConst(FD->getBeginLoc(), getSourceManager(),
14436                              getLangOpts()))
14437 
14438               return FD->getBeginLoc();
14439           }
14440           return FD->getTypeSpecStartLoc();
14441         };
14442         Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
14443             << /* function */ 1
14444             << (FD->getStorageClass() == SC_None
14445                     ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
14446                     : FixItHint{});
14447       }
14448 
14449       // GNU warning -Wstrict-prototypes
14450       //   Warn if K&R function is defined without a previous declaration.
14451       //   This warning is issued only if the definition itself does not provide
14452       //   a prototype. Only K&R definitions do not provide a prototype.
14453       if (!FD->hasWrittenPrototype()) {
14454         TypeSourceInfo *TI = FD->getTypeSourceInfo();
14455         TypeLoc TL = TI->getTypeLoc();
14456         FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
14457         Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
14458       }
14459     }
14460 
14461     // Warn on CPUDispatch with an actual body.
14462     if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
14463       if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
14464         if (!CmpndBody->body_empty())
14465           Diag(CmpndBody->body_front()->getBeginLoc(),
14466                diag::warn_dispatch_body_ignored);
14467 
14468     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
14469       const CXXMethodDecl *KeyFunction;
14470       if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
14471           MD->isVirtual() &&
14472           (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
14473           MD == KeyFunction->getCanonicalDecl()) {
14474         // Update the key-function state if necessary for this ABI.
14475         if (FD->isInlined() &&
14476             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
14477           Context.setNonKeyFunction(MD);
14478 
14479           // If the newly-chosen key function is already defined, then we
14480           // need to mark the vtable as used retroactively.
14481           KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
14482           const FunctionDecl *Definition;
14483           if (KeyFunction && KeyFunction->isDefined(Definition))
14484             MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
14485         } else {
14486           // We just defined they key function; mark the vtable as used.
14487           MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
14488         }
14489       }
14490     }
14491 
14492     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
14493            "Function parsing confused");
14494   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
14495     assert(MD == getCurMethodDecl() && "Method parsing confused");
14496     MD->setBody(Body);
14497     if (!MD->isInvalidDecl()) {
14498       DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
14499                                              MD->getReturnType(), MD);
14500 
14501       if (Body)
14502         computeNRVO(Body, FSI);
14503     }
14504     if (FSI->ObjCShouldCallSuper) {
14505       Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
14506           << MD->getSelector().getAsString();
14507       FSI->ObjCShouldCallSuper = false;
14508     }
14509     if (FSI->ObjCWarnForNoDesignatedInitChain) {
14510       const ObjCMethodDecl *InitMethod = nullptr;
14511       bool isDesignated =
14512           MD->isDesignatedInitializerForTheInterface(&InitMethod);
14513       assert(isDesignated && InitMethod);
14514       (void)isDesignated;
14515 
14516       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
14517         auto IFace = MD->getClassInterface();
14518         if (!IFace)
14519           return false;
14520         auto SuperD = IFace->getSuperClass();
14521         if (!SuperD)
14522           return false;
14523         return SuperD->getIdentifier() ==
14524             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
14525       };
14526       // Don't issue this warning for unavailable inits or direct subclasses
14527       // of NSObject.
14528       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
14529         Diag(MD->getLocation(),
14530              diag::warn_objc_designated_init_missing_super_call);
14531         Diag(InitMethod->getLocation(),
14532              diag::note_objc_designated_init_marked_here);
14533       }
14534       FSI->ObjCWarnForNoDesignatedInitChain = false;
14535     }
14536     if (FSI->ObjCWarnForNoInitDelegation) {
14537       // Don't issue this warning for unavaialable inits.
14538       if (!MD->isUnavailable())
14539         Diag(MD->getLocation(),
14540              diag::warn_objc_secondary_init_missing_init_call);
14541       FSI->ObjCWarnForNoInitDelegation = false;
14542     }
14543 
14544     diagnoseImplicitlyRetainedSelf(*this);
14545   } else {
14546     // Parsing the function declaration failed in some way. Pop the fake scope
14547     // we pushed on.
14548     PopFunctionScopeInfo(ActivePolicy, dcl);
14549     return nullptr;
14550   }
14551 
14552   if (Body && FSI->HasPotentialAvailabilityViolations)
14553     DiagnoseUnguardedAvailabilityViolations(dcl);
14554 
14555   assert(!FSI->ObjCShouldCallSuper &&
14556          "This should only be set for ObjC methods, which should have been "
14557          "handled in the block above.");
14558 
14559   // Verify and clean out per-function state.
14560   if (Body && (!FD || !FD->isDefaulted())) {
14561     // C++ constructors that have function-try-blocks can't have return
14562     // statements in the handlers of that block. (C++ [except.handle]p14)
14563     // Verify this.
14564     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
14565       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
14566 
14567     // Verify that gotos and switch cases don't jump into scopes illegally.
14568     if (FSI->NeedsScopeChecking() &&
14569         !PP.isCodeCompletionEnabled())
14570       DiagnoseInvalidJumps(Body);
14571 
14572     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
14573       if (!Destructor->getParent()->isDependentType())
14574         CheckDestructor(Destructor);
14575 
14576       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
14577                                              Destructor->getParent());
14578     }
14579 
14580     // If any errors have occurred, clear out any temporaries that may have
14581     // been leftover. This ensures that these temporaries won't be picked up for
14582     // deletion in some later function.
14583     if (hasUncompilableErrorOccurred() ||
14584         getDiagnostics().getSuppressAllDiagnostics()) {
14585       DiscardCleanupsInEvaluationContext();
14586     }
14587     if (!hasUncompilableErrorOccurred() &&
14588         !isa<FunctionTemplateDecl>(dcl)) {
14589       // Since the body is valid, issue any analysis-based warnings that are
14590       // enabled.
14591       ActivePolicy = &WP;
14592     }
14593 
14594     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
14595         !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
14596       FD->setInvalidDecl();
14597 
14598     if (FD && FD->hasAttr<NakedAttr>()) {
14599       for (const Stmt *S : Body->children()) {
14600         // Allow local register variables without initializer as they don't
14601         // require prologue.
14602         bool RegisterVariables = false;
14603         if (auto *DS = dyn_cast<DeclStmt>(S)) {
14604           for (const auto *Decl : DS->decls()) {
14605             if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
14606               RegisterVariables =
14607                   Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
14608               if (!RegisterVariables)
14609                 break;
14610             }
14611           }
14612         }
14613         if (RegisterVariables)
14614           continue;
14615         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
14616           Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
14617           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
14618           FD->setInvalidDecl();
14619           break;
14620         }
14621       }
14622     }
14623 
14624     assert(ExprCleanupObjects.size() ==
14625                ExprEvalContexts.back().NumCleanupObjects &&
14626            "Leftover temporaries in function");
14627     assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
14628     assert(MaybeODRUseExprs.empty() &&
14629            "Leftover expressions for odr-use checking");
14630   }
14631 
14632   if (!IsInstantiation)
14633     PopDeclContext();
14634 
14635   PopFunctionScopeInfo(ActivePolicy, dcl);
14636   // If any errors have occurred, clear out any temporaries that may have
14637   // been leftover. This ensures that these temporaries won't be picked up for
14638   // deletion in some later function.
14639   if (hasUncompilableErrorOccurred()) {
14640     DiscardCleanupsInEvaluationContext();
14641   }
14642 
14643   if (FD && (LangOpts.OpenMP || LangOpts.CUDA || LangOpts.SYCLIsDevice)) {
14644     auto ES = getEmissionStatus(FD);
14645     if (ES == Sema::FunctionEmissionStatus::Emitted ||
14646         ES == Sema::FunctionEmissionStatus::Unknown)
14647       DeclsToCheckForDeferredDiags.push_back(FD);
14648   }
14649 
14650   return dcl;
14651 }
14652 
14653 /// When we finish delayed parsing of an attribute, we must attach it to the
14654 /// relevant Decl.
14655 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
14656                                        ParsedAttributes &Attrs) {
14657   // Always attach attributes to the underlying decl.
14658   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
14659     D = TD->getTemplatedDecl();
14660   ProcessDeclAttributeList(S, D, Attrs);
14661 
14662   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
14663     if (Method->isStatic())
14664       checkThisInStaticMemberFunctionAttributes(Method);
14665 }
14666 
14667 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
14668 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
14669 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
14670                                           IdentifierInfo &II, Scope *S) {
14671   // Find the scope in which the identifier is injected and the corresponding
14672   // DeclContext.
14673   // FIXME: C89 does not say what happens if there is no enclosing block scope.
14674   // In that case, we inject the declaration into the translation unit scope
14675   // instead.
14676   Scope *BlockScope = S;
14677   while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
14678     BlockScope = BlockScope->getParent();
14679 
14680   Scope *ContextScope = BlockScope;
14681   while (!ContextScope->getEntity())
14682     ContextScope = ContextScope->getParent();
14683   ContextRAII SavedContext(*this, ContextScope->getEntity());
14684 
14685   // Before we produce a declaration for an implicitly defined
14686   // function, see whether there was a locally-scoped declaration of
14687   // this name as a function or variable. If so, use that
14688   // (non-visible) declaration, and complain about it.
14689   NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
14690   if (ExternCPrev) {
14691     // We still need to inject the function into the enclosing block scope so
14692     // that later (non-call) uses can see it.
14693     PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
14694 
14695     // C89 footnote 38:
14696     //   If in fact it is not defined as having type "function returning int",
14697     //   the behavior is undefined.
14698     if (!isa<FunctionDecl>(ExternCPrev) ||
14699         !Context.typesAreCompatible(
14700             cast<FunctionDecl>(ExternCPrev)->getType(),
14701             Context.getFunctionNoProtoType(Context.IntTy))) {
14702       Diag(Loc, diag::ext_use_out_of_scope_declaration)
14703           << ExternCPrev << !getLangOpts().C99;
14704       Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
14705       return ExternCPrev;
14706     }
14707   }
14708 
14709   // Extension in C99.  Legal in C90, but warn about it.
14710   unsigned diag_id;
14711   if (II.getName().startswith("__builtin_"))
14712     diag_id = diag::warn_builtin_unknown;
14713   // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
14714   else if (getLangOpts().OpenCL)
14715     diag_id = diag::err_opencl_implicit_function_decl;
14716   else if (getLangOpts().C99)
14717     diag_id = diag::ext_implicit_function_decl;
14718   else
14719     diag_id = diag::warn_implicit_function_decl;
14720   Diag(Loc, diag_id) << &II;
14721 
14722   // If we found a prior declaration of this function, don't bother building
14723   // another one. We've already pushed that one into scope, so there's nothing
14724   // more to do.
14725   if (ExternCPrev)
14726     return ExternCPrev;
14727 
14728   // Because typo correction is expensive, only do it if the implicit
14729   // function declaration is going to be treated as an error.
14730   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
14731     TypoCorrection Corrected;
14732     DeclFilterCCC<FunctionDecl> CCC{};
14733     if (S && (Corrected =
14734                   CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
14735                               S, nullptr, CCC, CTK_NonError)))
14736       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
14737                    /*ErrorRecovery*/false);
14738   }
14739 
14740   // Set a Declarator for the implicit definition: int foo();
14741   const char *Dummy;
14742   AttributeFactory attrFactory;
14743   DeclSpec DS(attrFactory);
14744   unsigned DiagID;
14745   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
14746                                   Context.getPrintingPolicy());
14747   (void)Error; // Silence warning.
14748   assert(!Error && "Error setting up implicit decl!");
14749   SourceLocation NoLoc;
14750   Declarator D(DS, DeclaratorContext::Block);
14751   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
14752                                              /*IsAmbiguous=*/false,
14753                                              /*LParenLoc=*/NoLoc,
14754                                              /*Params=*/nullptr,
14755                                              /*NumParams=*/0,
14756                                              /*EllipsisLoc=*/NoLoc,
14757                                              /*RParenLoc=*/NoLoc,
14758                                              /*RefQualifierIsLvalueRef=*/true,
14759                                              /*RefQualifierLoc=*/NoLoc,
14760                                              /*MutableLoc=*/NoLoc, EST_None,
14761                                              /*ESpecRange=*/SourceRange(),
14762                                              /*Exceptions=*/nullptr,
14763                                              /*ExceptionRanges=*/nullptr,
14764                                              /*NumExceptions=*/0,
14765                                              /*NoexceptExpr=*/nullptr,
14766                                              /*ExceptionSpecTokens=*/nullptr,
14767                                              /*DeclsInPrototype=*/None, Loc,
14768                                              Loc, D),
14769                 std::move(DS.getAttributes()), SourceLocation());
14770   D.SetIdentifier(&II, Loc);
14771 
14772   // Insert this function into the enclosing block scope.
14773   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
14774   FD->setImplicit();
14775 
14776   AddKnownFunctionAttributes(FD);
14777 
14778   return FD;
14779 }
14780 
14781 /// If this function is a C++ replaceable global allocation function
14782 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
14783 /// adds any function attributes that we know a priori based on the standard.
14784 ///
14785 /// We need to check for duplicate attributes both here and where user-written
14786 /// attributes are applied to declarations.
14787 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
14788     FunctionDecl *FD) {
14789   if (FD->isInvalidDecl())
14790     return;
14791 
14792   if (FD->getDeclName().getCXXOverloadedOperator() != OO_New &&
14793       FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New)
14794     return;
14795 
14796   Optional<unsigned> AlignmentParam;
14797   bool IsNothrow = false;
14798   if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow))
14799     return;
14800 
14801   // C++2a [basic.stc.dynamic.allocation]p4:
14802   //   An allocation function that has a non-throwing exception specification
14803   //   indicates failure by returning a null pointer value. Any other allocation
14804   //   function never returns a null pointer value and indicates failure only by
14805   //   throwing an exception [...]
14806   if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>())
14807     FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation()));
14808 
14809   // C++2a [basic.stc.dynamic.allocation]p2:
14810   //   An allocation function attempts to allocate the requested amount of
14811   //   storage. [...] If the request succeeds, the value returned by a
14812   //   replaceable allocation function is a [...] pointer value p0 different
14813   //   from any previously returned value p1 [...]
14814   //
14815   // However, this particular information is being added in codegen,
14816   // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
14817 
14818   // C++2a [basic.stc.dynamic.allocation]p2:
14819   //   An allocation function attempts to allocate the requested amount of
14820   //   storage. If it is successful, it returns the address of the start of a
14821   //   block of storage whose length in bytes is at least as large as the
14822   //   requested size.
14823   if (!FD->hasAttr<AllocSizeAttr>()) {
14824     FD->addAttr(AllocSizeAttr::CreateImplicit(
14825         Context, /*ElemSizeParam=*/ParamIdx(1, FD),
14826         /*NumElemsParam=*/ParamIdx(), FD->getLocation()));
14827   }
14828 
14829   // C++2a [basic.stc.dynamic.allocation]p3:
14830   //   For an allocation function [...], the pointer returned on a successful
14831   //   call shall represent the address of storage that is aligned as follows:
14832   //   (3.1) If the allocation function takes an argument of type
14833   //         std​::​align_­val_­t, the storage will have the alignment
14834   //         specified by the value of this argument.
14835   if (AlignmentParam.hasValue() && !FD->hasAttr<AllocAlignAttr>()) {
14836     FD->addAttr(AllocAlignAttr::CreateImplicit(
14837         Context, ParamIdx(AlignmentParam.getValue(), FD), FD->getLocation()));
14838   }
14839 
14840   // FIXME:
14841   // C++2a [basic.stc.dynamic.allocation]p3:
14842   //   For an allocation function [...], the pointer returned on a successful
14843   //   call shall represent the address of storage that is aligned as follows:
14844   //   (3.2) Otherwise, if the allocation function is named operator new[],
14845   //         the storage is aligned for any object that does not have
14846   //         new-extended alignment ([basic.align]) and is no larger than the
14847   //         requested size.
14848   //   (3.3) Otherwise, the storage is aligned for any object that does not
14849   //         have new-extended alignment and is of the requested size.
14850 }
14851 
14852 /// Adds any function attributes that we know a priori based on
14853 /// the declaration of this function.
14854 ///
14855 /// These attributes can apply both to implicitly-declared builtins
14856 /// (like __builtin___printf_chk) or to library-declared functions
14857 /// like NSLog or printf.
14858 ///
14859 /// We need to check for duplicate attributes both here and where user-written
14860 /// attributes are applied to declarations.
14861 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
14862   if (FD->isInvalidDecl())
14863     return;
14864 
14865   // If this is a built-in function, map its builtin attributes to
14866   // actual attributes.
14867   if (unsigned BuiltinID = FD->getBuiltinID()) {
14868     // Handle printf-formatting attributes.
14869     unsigned FormatIdx;
14870     bool HasVAListArg;
14871     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
14872       if (!FD->hasAttr<FormatAttr>()) {
14873         const char *fmt = "printf";
14874         unsigned int NumParams = FD->getNumParams();
14875         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
14876             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
14877           fmt = "NSString";
14878         FD->addAttr(FormatAttr::CreateImplicit(Context,
14879                                                &Context.Idents.get(fmt),
14880                                                FormatIdx+1,
14881                                                HasVAListArg ? 0 : FormatIdx+2,
14882                                                FD->getLocation()));
14883       }
14884     }
14885     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
14886                                              HasVAListArg)) {
14887      if (!FD->hasAttr<FormatAttr>())
14888        FD->addAttr(FormatAttr::CreateImplicit(Context,
14889                                               &Context.Idents.get("scanf"),
14890                                               FormatIdx+1,
14891                                               HasVAListArg ? 0 : FormatIdx+2,
14892                                               FD->getLocation()));
14893     }
14894 
14895     // Handle automatically recognized callbacks.
14896     SmallVector<int, 4> Encoding;
14897     if (!FD->hasAttr<CallbackAttr>() &&
14898         Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
14899       FD->addAttr(CallbackAttr::CreateImplicit(
14900           Context, Encoding.data(), Encoding.size(), FD->getLocation()));
14901 
14902     // Mark const if we don't care about errno and that is the only thing
14903     // preventing the function from being const. This allows IRgen to use LLVM
14904     // intrinsics for such functions.
14905     if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
14906         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
14907       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14908 
14909     // We make "fma" on some platforms const because we know it does not set
14910     // errno in those environments even though it could set errno based on the
14911     // C standard.
14912     const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
14913     if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
14914         !FD->hasAttr<ConstAttr>()) {
14915       switch (BuiltinID) {
14916       case Builtin::BI__builtin_fma:
14917       case Builtin::BI__builtin_fmaf:
14918       case Builtin::BI__builtin_fmal:
14919       case Builtin::BIfma:
14920       case Builtin::BIfmaf:
14921       case Builtin::BIfmal:
14922         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14923         break;
14924       default:
14925         break;
14926       }
14927     }
14928 
14929     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
14930         !FD->hasAttr<ReturnsTwiceAttr>())
14931       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
14932                                          FD->getLocation()));
14933     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
14934       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
14935     if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
14936       FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
14937     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
14938       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14939     if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
14940         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
14941       // Add the appropriate attribute, depending on the CUDA compilation mode
14942       // and which target the builtin belongs to. For example, during host
14943       // compilation, aux builtins are __device__, while the rest are __host__.
14944       if (getLangOpts().CUDAIsDevice !=
14945           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
14946         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
14947       else
14948         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
14949     }
14950   }
14951 
14952   AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD);
14953 
14954   // If C++ exceptions are enabled but we are told extern "C" functions cannot
14955   // throw, add an implicit nothrow attribute to any extern "C" function we come
14956   // across.
14957   if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
14958       FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
14959     const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
14960     if (!FPT || FPT->getExceptionSpecType() == EST_None)
14961       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
14962   }
14963 
14964   IdentifierInfo *Name = FD->getIdentifier();
14965   if (!Name)
14966     return;
14967   if ((!getLangOpts().CPlusPlus &&
14968        FD->getDeclContext()->isTranslationUnit()) ||
14969       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
14970        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
14971        LinkageSpecDecl::lang_c)) {
14972     // Okay: this could be a libc/libm/Objective-C function we know
14973     // about.
14974   } else
14975     return;
14976 
14977   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
14978     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
14979     // target-specific builtins, perhaps?
14980     if (!FD->hasAttr<FormatAttr>())
14981       FD->addAttr(FormatAttr::CreateImplicit(Context,
14982                                              &Context.Idents.get("printf"), 2,
14983                                              Name->isStr("vasprintf") ? 0 : 3,
14984                                              FD->getLocation()));
14985   }
14986 
14987   if (Name->isStr("__CFStringMakeConstantString")) {
14988     // We already have a __builtin___CFStringMakeConstantString,
14989     // but builds that use -fno-constant-cfstrings don't go through that.
14990     if (!FD->hasAttr<FormatArgAttr>())
14991       FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
14992                                                 FD->getLocation()));
14993   }
14994 }
14995 
14996 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
14997                                     TypeSourceInfo *TInfo) {
14998   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
14999   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
15000 
15001   if (!TInfo) {
15002     assert(D.isInvalidType() && "no declarator info for valid type");
15003     TInfo = Context.getTrivialTypeSourceInfo(T);
15004   }
15005 
15006   // Scope manipulation handled by caller.
15007   TypedefDecl *NewTD =
15008       TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
15009                           D.getIdentifierLoc(), D.getIdentifier(), TInfo);
15010 
15011   // Bail out immediately if we have an invalid declaration.
15012   if (D.isInvalidType()) {
15013     NewTD->setInvalidDecl();
15014     return NewTD;
15015   }
15016 
15017   if (D.getDeclSpec().isModulePrivateSpecified()) {
15018     if (CurContext->isFunctionOrMethod())
15019       Diag(NewTD->getLocation(), diag::err_module_private_local)
15020           << 2 << NewTD
15021           << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
15022           << FixItHint::CreateRemoval(
15023                  D.getDeclSpec().getModulePrivateSpecLoc());
15024     else
15025       NewTD->setModulePrivate();
15026   }
15027 
15028   // C++ [dcl.typedef]p8:
15029   //   If the typedef declaration defines an unnamed class (or
15030   //   enum), the first typedef-name declared by the declaration
15031   //   to be that class type (or enum type) is used to denote the
15032   //   class type (or enum type) for linkage purposes only.
15033   // We need to check whether the type was declared in the declaration.
15034   switch (D.getDeclSpec().getTypeSpecType()) {
15035   case TST_enum:
15036   case TST_struct:
15037   case TST_interface:
15038   case TST_union:
15039   case TST_class: {
15040     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
15041     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
15042     break;
15043   }
15044 
15045   default:
15046     break;
15047   }
15048 
15049   return NewTD;
15050 }
15051 
15052 /// Check that this is a valid underlying type for an enum declaration.
15053 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
15054   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
15055   QualType T = TI->getType();
15056 
15057   if (T->isDependentType())
15058     return false;
15059 
15060   // This doesn't use 'isIntegralType' despite the error message mentioning
15061   // integral type because isIntegralType would also allow enum types in C.
15062   if (const BuiltinType *BT = T->getAs<BuiltinType>())
15063     if (BT->isInteger())
15064       return false;
15065 
15066   if (T->isExtIntType())
15067     return false;
15068 
15069   return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
15070 }
15071 
15072 /// Check whether this is a valid redeclaration of a previous enumeration.
15073 /// \return true if the redeclaration was invalid.
15074 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
15075                                   QualType EnumUnderlyingTy, bool IsFixed,
15076                                   const EnumDecl *Prev) {
15077   if (IsScoped != Prev->isScoped()) {
15078     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
15079       << Prev->isScoped();
15080     Diag(Prev->getLocation(), diag::note_previous_declaration);
15081     return true;
15082   }
15083 
15084   if (IsFixed && Prev->isFixed()) {
15085     if (!EnumUnderlyingTy->isDependentType() &&
15086         !Prev->getIntegerType()->isDependentType() &&
15087         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
15088                                         Prev->getIntegerType())) {
15089       // TODO: Highlight the underlying type of the redeclaration.
15090       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
15091         << EnumUnderlyingTy << Prev->getIntegerType();
15092       Diag(Prev->getLocation(), diag::note_previous_declaration)
15093           << Prev->getIntegerTypeRange();
15094       return true;
15095     }
15096   } else if (IsFixed != Prev->isFixed()) {
15097     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
15098       << Prev->isFixed();
15099     Diag(Prev->getLocation(), diag::note_previous_declaration);
15100     return true;
15101   }
15102 
15103   return false;
15104 }
15105 
15106 /// Get diagnostic %select index for tag kind for
15107 /// redeclaration diagnostic message.
15108 /// WARNING: Indexes apply to particular diagnostics only!
15109 ///
15110 /// \returns diagnostic %select index.
15111 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
15112   switch (Tag) {
15113   case TTK_Struct: return 0;
15114   case TTK_Interface: return 1;
15115   case TTK_Class:  return 2;
15116   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
15117   }
15118 }
15119 
15120 /// Determine if tag kind is a class-key compatible with
15121 /// class for redeclaration (class, struct, or __interface).
15122 ///
15123 /// \returns true iff the tag kind is compatible.
15124 static bool isClassCompatTagKind(TagTypeKind Tag)
15125 {
15126   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
15127 }
15128 
15129 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
15130                                              TagTypeKind TTK) {
15131   if (isa<TypedefDecl>(PrevDecl))
15132     return NTK_Typedef;
15133   else if (isa<TypeAliasDecl>(PrevDecl))
15134     return NTK_TypeAlias;
15135   else if (isa<ClassTemplateDecl>(PrevDecl))
15136     return NTK_Template;
15137   else if (isa<TypeAliasTemplateDecl>(PrevDecl))
15138     return NTK_TypeAliasTemplate;
15139   else if (isa<TemplateTemplateParmDecl>(PrevDecl))
15140     return NTK_TemplateTemplateArgument;
15141   switch (TTK) {
15142   case TTK_Struct:
15143   case TTK_Interface:
15144   case TTK_Class:
15145     return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
15146   case TTK_Union:
15147     return NTK_NonUnion;
15148   case TTK_Enum:
15149     return NTK_NonEnum;
15150   }
15151   llvm_unreachable("invalid TTK");
15152 }
15153 
15154 /// Determine whether a tag with a given kind is acceptable
15155 /// as a redeclaration of the given tag declaration.
15156 ///
15157 /// \returns true if the new tag kind is acceptable, false otherwise.
15158 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
15159                                         TagTypeKind NewTag, bool isDefinition,
15160                                         SourceLocation NewTagLoc,
15161                                         const IdentifierInfo *Name) {
15162   // C++ [dcl.type.elab]p3:
15163   //   The class-key or enum keyword present in the
15164   //   elaborated-type-specifier shall agree in kind with the
15165   //   declaration to which the name in the elaborated-type-specifier
15166   //   refers. This rule also applies to the form of
15167   //   elaborated-type-specifier that declares a class-name or
15168   //   friend class since it can be construed as referring to the
15169   //   definition of the class. Thus, in any
15170   //   elaborated-type-specifier, the enum keyword shall be used to
15171   //   refer to an enumeration (7.2), the union class-key shall be
15172   //   used to refer to a union (clause 9), and either the class or
15173   //   struct class-key shall be used to refer to a class (clause 9)
15174   //   declared using the class or struct class-key.
15175   TagTypeKind OldTag = Previous->getTagKind();
15176   if (OldTag != NewTag &&
15177       !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
15178     return false;
15179 
15180   // Tags are compatible, but we might still want to warn on mismatched tags.
15181   // Non-class tags can't be mismatched at this point.
15182   if (!isClassCompatTagKind(NewTag))
15183     return true;
15184 
15185   // Declarations for which -Wmismatched-tags is disabled are entirely ignored
15186   // by our warning analysis. We don't want to warn about mismatches with (eg)
15187   // declarations in system headers that are designed to be specialized, but if
15188   // a user asks us to warn, we should warn if their code contains mismatched
15189   // declarations.
15190   auto IsIgnoredLoc = [&](SourceLocation Loc) {
15191     return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
15192                                       Loc);
15193   };
15194   if (IsIgnoredLoc(NewTagLoc))
15195     return true;
15196 
15197   auto IsIgnored = [&](const TagDecl *Tag) {
15198     return IsIgnoredLoc(Tag->getLocation());
15199   };
15200   while (IsIgnored(Previous)) {
15201     Previous = Previous->getPreviousDecl();
15202     if (!Previous)
15203       return true;
15204     OldTag = Previous->getTagKind();
15205   }
15206 
15207   bool isTemplate = false;
15208   if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
15209     isTemplate = Record->getDescribedClassTemplate();
15210 
15211   if (inTemplateInstantiation()) {
15212     if (OldTag != NewTag) {
15213       // In a template instantiation, do not offer fix-its for tag mismatches
15214       // since they usually mess up the template instead of fixing the problem.
15215       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15216         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15217         << getRedeclDiagFromTagKind(OldTag);
15218       // FIXME: Note previous location?
15219     }
15220     return true;
15221   }
15222 
15223   if (isDefinition) {
15224     // On definitions, check all previous tags and issue a fix-it for each
15225     // one that doesn't match the current tag.
15226     if (Previous->getDefinition()) {
15227       // Don't suggest fix-its for redefinitions.
15228       return true;
15229     }
15230 
15231     bool previousMismatch = false;
15232     for (const TagDecl *I : Previous->redecls()) {
15233       if (I->getTagKind() != NewTag) {
15234         // Ignore previous declarations for which the warning was disabled.
15235         if (IsIgnored(I))
15236           continue;
15237 
15238         if (!previousMismatch) {
15239           previousMismatch = true;
15240           Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
15241             << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15242             << getRedeclDiagFromTagKind(I->getTagKind());
15243         }
15244         Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
15245           << getRedeclDiagFromTagKind(NewTag)
15246           << FixItHint::CreateReplacement(I->getInnerLocStart(),
15247                TypeWithKeyword::getTagTypeKindName(NewTag));
15248       }
15249     }
15250     return true;
15251   }
15252 
15253   // Identify the prevailing tag kind: this is the kind of the definition (if
15254   // there is a non-ignored definition), or otherwise the kind of the prior
15255   // (non-ignored) declaration.
15256   const TagDecl *PrevDef = Previous->getDefinition();
15257   if (PrevDef && IsIgnored(PrevDef))
15258     PrevDef = nullptr;
15259   const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
15260   if (Redecl->getTagKind() != NewTag) {
15261     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15262       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15263       << getRedeclDiagFromTagKind(OldTag);
15264     Diag(Redecl->getLocation(), diag::note_previous_use);
15265 
15266     // If there is a previous definition, suggest a fix-it.
15267     if (PrevDef) {
15268       Diag(NewTagLoc, diag::note_struct_class_suggestion)
15269         << getRedeclDiagFromTagKind(Redecl->getTagKind())
15270         << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
15271              TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
15272     }
15273   }
15274 
15275   return true;
15276 }
15277 
15278 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
15279 /// from an outer enclosing namespace or file scope inside a friend declaration.
15280 /// This should provide the commented out code in the following snippet:
15281 ///   namespace N {
15282 ///     struct X;
15283 ///     namespace M {
15284 ///       struct Y { friend struct /*N::*/ X; };
15285 ///     }
15286 ///   }
15287 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
15288                                          SourceLocation NameLoc) {
15289   // While the decl is in a namespace, do repeated lookup of that name and see
15290   // if we get the same namespace back.  If we do not, continue until
15291   // translation unit scope, at which point we have a fully qualified NNS.
15292   SmallVector<IdentifierInfo *, 4> Namespaces;
15293   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15294   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
15295     // This tag should be declared in a namespace, which can only be enclosed by
15296     // other namespaces.  Bail if there's an anonymous namespace in the chain.
15297     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
15298     if (!Namespace || Namespace->isAnonymousNamespace())
15299       return FixItHint();
15300     IdentifierInfo *II = Namespace->getIdentifier();
15301     Namespaces.push_back(II);
15302     NamedDecl *Lookup = SemaRef.LookupSingleName(
15303         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
15304     if (Lookup == Namespace)
15305       break;
15306   }
15307 
15308   // Once we have all the namespaces, reverse them to go outermost first, and
15309   // build an NNS.
15310   SmallString<64> Insertion;
15311   llvm::raw_svector_ostream OS(Insertion);
15312   if (DC->isTranslationUnit())
15313     OS << "::";
15314   std::reverse(Namespaces.begin(), Namespaces.end());
15315   for (auto *II : Namespaces)
15316     OS << II->getName() << "::";
15317   return FixItHint::CreateInsertion(NameLoc, Insertion);
15318 }
15319 
15320 /// Determine whether a tag originally declared in context \p OldDC can
15321 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
15322 /// found a declaration in \p OldDC as a previous decl, perhaps through a
15323 /// using-declaration).
15324 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
15325                                          DeclContext *NewDC) {
15326   OldDC = OldDC->getRedeclContext();
15327   NewDC = NewDC->getRedeclContext();
15328 
15329   if (OldDC->Equals(NewDC))
15330     return true;
15331 
15332   // In MSVC mode, we allow a redeclaration if the contexts are related (either
15333   // encloses the other).
15334   if (S.getLangOpts().MSVCCompat &&
15335       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
15336     return true;
15337 
15338   return false;
15339 }
15340 
15341 /// This is invoked when we see 'struct foo' or 'struct {'.  In the
15342 /// former case, Name will be non-null.  In the later case, Name will be null.
15343 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
15344 /// reference/declaration/definition of a tag.
15345 ///
15346 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
15347 /// trailing-type-specifier) other than one in an alias-declaration.
15348 ///
15349 /// \param SkipBody If non-null, will be set to indicate if the caller should
15350 /// skip the definition of this tag and treat it as if it were a declaration.
15351 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
15352                      SourceLocation KWLoc, CXXScopeSpec &SS,
15353                      IdentifierInfo *Name, SourceLocation NameLoc,
15354                      const ParsedAttributesView &Attrs, AccessSpecifier AS,
15355                      SourceLocation ModulePrivateLoc,
15356                      MultiTemplateParamsArg TemplateParameterLists,
15357                      bool &OwnedDecl, bool &IsDependent,
15358                      SourceLocation ScopedEnumKWLoc,
15359                      bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
15360                      bool IsTypeSpecifier, bool IsTemplateParamOrArg,
15361                      SkipBodyInfo *SkipBody) {
15362   // If this is not a definition, it must have a name.
15363   IdentifierInfo *OrigName = Name;
15364   assert((Name != nullptr || TUK == TUK_Definition) &&
15365          "Nameless record must be a definition!");
15366   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
15367 
15368   OwnedDecl = false;
15369   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
15370   bool ScopedEnum = ScopedEnumKWLoc.isValid();
15371 
15372   // FIXME: Check member specializations more carefully.
15373   bool isMemberSpecialization = false;
15374   bool Invalid = false;
15375 
15376   // We only need to do this matching if we have template parameters
15377   // or a scope specifier, which also conveniently avoids this work
15378   // for non-C++ cases.
15379   if (TemplateParameterLists.size() > 0 ||
15380       (SS.isNotEmpty() && TUK != TUK_Reference)) {
15381     if (TemplateParameterList *TemplateParams =
15382             MatchTemplateParametersToScopeSpecifier(
15383                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
15384                 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
15385       if (Kind == TTK_Enum) {
15386         Diag(KWLoc, diag::err_enum_template);
15387         return nullptr;
15388       }
15389 
15390       if (TemplateParams->size() > 0) {
15391         // This is a declaration or definition of a class template (which may
15392         // be a member of another template).
15393 
15394         if (Invalid)
15395           return nullptr;
15396 
15397         OwnedDecl = false;
15398         DeclResult Result = CheckClassTemplate(
15399             S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
15400             AS, ModulePrivateLoc,
15401             /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
15402             TemplateParameterLists.data(), SkipBody);
15403         return Result.get();
15404       } else {
15405         // The "template<>" header is extraneous.
15406         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
15407           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
15408         isMemberSpecialization = true;
15409       }
15410     }
15411 
15412     if (!TemplateParameterLists.empty() && isMemberSpecialization &&
15413         CheckTemplateDeclScope(S, TemplateParameterLists.back()))
15414       return nullptr;
15415   }
15416 
15417   // Figure out the underlying type if this a enum declaration. We need to do
15418   // this early, because it's needed to detect if this is an incompatible
15419   // redeclaration.
15420   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
15421   bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
15422 
15423   if (Kind == TTK_Enum) {
15424     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
15425       // No underlying type explicitly specified, or we failed to parse the
15426       // type, default to int.
15427       EnumUnderlying = Context.IntTy.getTypePtr();
15428     } else if (UnderlyingType.get()) {
15429       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
15430       // integral type; any cv-qualification is ignored.
15431       TypeSourceInfo *TI = nullptr;
15432       GetTypeFromParser(UnderlyingType.get(), &TI);
15433       EnumUnderlying = TI;
15434 
15435       if (CheckEnumUnderlyingType(TI))
15436         // Recover by falling back to int.
15437         EnumUnderlying = Context.IntTy.getTypePtr();
15438 
15439       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
15440                                           UPPC_FixedUnderlyingType))
15441         EnumUnderlying = Context.IntTy.getTypePtr();
15442 
15443     } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
15444       // For MSVC ABI compatibility, unfixed enums must use an underlying type
15445       // of 'int'. However, if this is an unfixed forward declaration, don't set
15446       // the underlying type unless the user enables -fms-compatibility. This
15447       // makes unfixed forward declared enums incomplete and is more conforming.
15448       if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
15449         EnumUnderlying = Context.IntTy.getTypePtr();
15450     }
15451   }
15452 
15453   DeclContext *SearchDC = CurContext;
15454   DeclContext *DC = CurContext;
15455   bool isStdBadAlloc = false;
15456   bool isStdAlignValT = false;
15457 
15458   RedeclarationKind Redecl = forRedeclarationInCurContext();
15459   if (TUK == TUK_Friend || TUK == TUK_Reference)
15460     Redecl = NotForRedeclaration;
15461 
15462   /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
15463   /// implemented asks for structural equivalence checking, the returned decl
15464   /// here is passed back to the parser, allowing the tag body to be parsed.
15465   auto createTagFromNewDecl = [&]() -> TagDecl * {
15466     assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
15467     // If there is an identifier, use the location of the identifier as the
15468     // location of the decl, otherwise use the location of the struct/union
15469     // keyword.
15470     SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
15471     TagDecl *New = nullptr;
15472 
15473     if (Kind == TTK_Enum) {
15474       New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
15475                              ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
15476       // If this is an undefined enum, bail.
15477       if (TUK != TUK_Definition && !Invalid)
15478         return nullptr;
15479       if (EnumUnderlying) {
15480         EnumDecl *ED = cast<EnumDecl>(New);
15481         if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
15482           ED->setIntegerTypeSourceInfo(TI);
15483         else
15484           ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
15485         ED->setPromotionType(ED->getIntegerType());
15486       }
15487     } else { // struct/union
15488       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
15489                                nullptr);
15490     }
15491 
15492     if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
15493       // Add alignment attributes if necessary; these attributes are checked
15494       // when the ASTContext lays out the structure.
15495       //
15496       // It is important for implementing the correct semantics that this
15497       // happen here (in ActOnTag). The #pragma pack stack is
15498       // maintained as a result of parser callbacks which can occur at
15499       // many points during the parsing of a struct declaration (because
15500       // the #pragma tokens are effectively skipped over during the
15501       // parsing of the struct).
15502       if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
15503         AddAlignmentAttributesForRecord(RD);
15504         AddMsStructLayoutForRecord(RD);
15505       }
15506     }
15507     New->setLexicalDeclContext(CurContext);
15508     return New;
15509   };
15510 
15511   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
15512   if (Name && SS.isNotEmpty()) {
15513     // We have a nested-name tag ('struct foo::bar').
15514 
15515     // Check for invalid 'foo::'.
15516     if (SS.isInvalid()) {
15517       Name = nullptr;
15518       goto CreateNewDecl;
15519     }
15520 
15521     // If this is a friend or a reference to a class in a dependent
15522     // context, don't try to make a decl for it.
15523     if (TUK == TUK_Friend || TUK == TUK_Reference) {
15524       DC = computeDeclContext(SS, false);
15525       if (!DC) {
15526         IsDependent = true;
15527         return nullptr;
15528       }
15529     } else {
15530       DC = computeDeclContext(SS, true);
15531       if (!DC) {
15532         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
15533           << SS.getRange();
15534         return nullptr;
15535       }
15536     }
15537 
15538     if (RequireCompleteDeclContext(SS, DC))
15539       return nullptr;
15540 
15541     SearchDC = DC;
15542     // Look-up name inside 'foo::'.
15543     LookupQualifiedName(Previous, DC);
15544 
15545     if (Previous.isAmbiguous())
15546       return nullptr;
15547 
15548     if (Previous.empty()) {
15549       // Name lookup did not find anything. However, if the
15550       // nested-name-specifier refers to the current instantiation,
15551       // and that current instantiation has any dependent base
15552       // classes, we might find something at instantiation time: treat
15553       // this as a dependent elaborated-type-specifier.
15554       // But this only makes any sense for reference-like lookups.
15555       if (Previous.wasNotFoundInCurrentInstantiation() &&
15556           (TUK == TUK_Reference || TUK == TUK_Friend)) {
15557         IsDependent = true;
15558         return nullptr;
15559       }
15560 
15561       // A tag 'foo::bar' must already exist.
15562       Diag(NameLoc, diag::err_not_tag_in_scope)
15563         << Kind << Name << DC << SS.getRange();
15564       Name = nullptr;
15565       Invalid = true;
15566       goto CreateNewDecl;
15567     }
15568   } else if (Name) {
15569     // C++14 [class.mem]p14:
15570     //   If T is the name of a class, then each of the following shall have a
15571     //   name different from T:
15572     //    -- every member of class T that is itself a type
15573     if (TUK != TUK_Reference && TUK != TUK_Friend &&
15574         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
15575       return nullptr;
15576 
15577     // If this is a named struct, check to see if there was a previous forward
15578     // declaration or definition.
15579     // FIXME: We're looking into outer scopes here, even when we
15580     // shouldn't be. Doing so can result in ambiguities that we
15581     // shouldn't be diagnosing.
15582     LookupName(Previous, S);
15583 
15584     // When declaring or defining a tag, ignore ambiguities introduced
15585     // by types using'ed into this scope.
15586     if (Previous.isAmbiguous() &&
15587         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
15588       LookupResult::Filter F = Previous.makeFilter();
15589       while (F.hasNext()) {
15590         NamedDecl *ND = F.next();
15591         if (!ND->getDeclContext()->getRedeclContext()->Equals(
15592                 SearchDC->getRedeclContext()))
15593           F.erase();
15594       }
15595       F.done();
15596     }
15597 
15598     // C++11 [namespace.memdef]p3:
15599     //   If the name in a friend declaration is neither qualified nor
15600     //   a template-id and the declaration is a function or an
15601     //   elaborated-type-specifier, the lookup to determine whether
15602     //   the entity has been previously declared shall not consider
15603     //   any scopes outside the innermost enclosing namespace.
15604     //
15605     // MSVC doesn't implement the above rule for types, so a friend tag
15606     // declaration may be a redeclaration of a type declared in an enclosing
15607     // scope.  They do implement this rule for friend functions.
15608     //
15609     // Does it matter that this should be by scope instead of by
15610     // semantic context?
15611     if (!Previous.empty() && TUK == TUK_Friend) {
15612       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
15613       LookupResult::Filter F = Previous.makeFilter();
15614       bool FriendSawTagOutsideEnclosingNamespace = false;
15615       while (F.hasNext()) {
15616         NamedDecl *ND = F.next();
15617         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15618         if (DC->isFileContext() &&
15619             !EnclosingNS->Encloses(ND->getDeclContext())) {
15620           if (getLangOpts().MSVCCompat)
15621             FriendSawTagOutsideEnclosingNamespace = true;
15622           else
15623             F.erase();
15624         }
15625       }
15626       F.done();
15627 
15628       // Diagnose this MSVC extension in the easy case where lookup would have
15629       // unambiguously found something outside the enclosing namespace.
15630       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
15631         NamedDecl *ND = Previous.getFoundDecl();
15632         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
15633             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
15634       }
15635     }
15636 
15637     // Note:  there used to be some attempt at recovery here.
15638     if (Previous.isAmbiguous())
15639       return nullptr;
15640 
15641     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
15642       // FIXME: This makes sure that we ignore the contexts associated
15643       // with C structs, unions, and enums when looking for a matching
15644       // tag declaration or definition. See the similar lookup tweak
15645       // in Sema::LookupName; is there a better way to deal with this?
15646       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
15647         SearchDC = SearchDC->getParent();
15648     }
15649   }
15650 
15651   if (Previous.isSingleResult() &&
15652       Previous.getFoundDecl()->isTemplateParameter()) {
15653     // Maybe we will complain about the shadowed template parameter.
15654     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
15655     // Just pretend that we didn't see the previous declaration.
15656     Previous.clear();
15657   }
15658 
15659   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
15660       DC->Equals(getStdNamespace())) {
15661     if (Name->isStr("bad_alloc")) {
15662       // This is a declaration of or a reference to "std::bad_alloc".
15663       isStdBadAlloc = true;
15664 
15665       // If std::bad_alloc has been implicitly declared (but made invisible to
15666       // name lookup), fill in this implicit declaration as the previous
15667       // declaration, so that the declarations get chained appropriately.
15668       if (Previous.empty() && StdBadAlloc)
15669         Previous.addDecl(getStdBadAlloc());
15670     } else if (Name->isStr("align_val_t")) {
15671       isStdAlignValT = true;
15672       if (Previous.empty() && StdAlignValT)
15673         Previous.addDecl(getStdAlignValT());
15674     }
15675   }
15676 
15677   // If we didn't find a previous declaration, and this is a reference
15678   // (or friend reference), move to the correct scope.  In C++, we
15679   // also need to do a redeclaration lookup there, just in case
15680   // there's a shadow friend decl.
15681   if (Name && Previous.empty() &&
15682       (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
15683     if (Invalid) goto CreateNewDecl;
15684     assert(SS.isEmpty());
15685 
15686     if (TUK == TUK_Reference || IsTemplateParamOrArg) {
15687       // C++ [basic.scope.pdecl]p5:
15688       //   -- for an elaborated-type-specifier of the form
15689       //
15690       //          class-key identifier
15691       //
15692       //      if the elaborated-type-specifier is used in the
15693       //      decl-specifier-seq or parameter-declaration-clause of a
15694       //      function defined in namespace scope, the identifier is
15695       //      declared as a class-name in the namespace that contains
15696       //      the declaration; otherwise, except as a friend
15697       //      declaration, the identifier is declared in the smallest
15698       //      non-class, non-function-prototype scope that contains the
15699       //      declaration.
15700       //
15701       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
15702       // C structs and unions.
15703       //
15704       // It is an error in C++ to declare (rather than define) an enum
15705       // type, including via an elaborated type specifier.  We'll
15706       // diagnose that later; for now, declare the enum in the same
15707       // scope as we would have picked for any other tag type.
15708       //
15709       // GNU C also supports this behavior as part of its incomplete
15710       // enum types extension, while GNU C++ does not.
15711       //
15712       // Find the context where we'll be declaring the tag.
15713       // FIXME: We would like to maintain the current DeclContext as the
15714       // lexical context,
15715       SearchDC = getTagInjectionContext(SearchDC);
15716 
15717       // Find the scope where we'll be declaring the tag.
15718       S = getTagInjectionScope(S, getLangOpts());
15719     } else {
15720       assert(TUK == TUK_Friend);
15721       // C++ [namespace.memdef]p3:
15722       //   If a friend declaration in a non-local class first declares a
15723       //   class or function, the friend class or function is a member of
15724       //   the innermost enclosing namespace.
15725       SearchDC = SearchDC->getEnclosingNamespaceContext();
15726     }
15727 
15728     // In C++, we need to do a redeclaration lookup to properly
15729     // diagnose some problems.
15730     // FIXME: redeclaration lookup is also used (with and without C++) to find a
15731     // hidden declaration so that we don't get ambiguity errors when using a
15732     // type declared by an elaborated-type-specifier.  In C that is not correct
15733     // and we should instead merge compatible types found by lookup.
15734     if (getLangOpts().CPlusPlus) {
15735       // FIXME: This can perform qualified lookups into function contexts,
15736       // which are meaningless.
15737       Previous.setRedeclarationKind(forRedeclarationInCurContext());
15738       LookupQualifiedName(Previous, SearchDC);
15739     } else {
15740       Previous.setRedeclarationKind(forRedeclarationInCurContext());
15741       LookupName(Previous, S);
15742     }
15743   }
15744 
15745   // If we have a known previous declaration to use, then use it.
15746   if (Previous.empty() && SkipBody && SkipBody->Previous)
15747     Previous.addDecl(SkipBody->Previous);
15748 
15749   if (!Previous.empty()) {
15750     NamedDecl *PrevDecl = Previous.getFoundDecl();
15751     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
15752 
15753     // It's okay to have a tag decl in the same scope as a typedef
15754     // which hides a tag decl in the same scope.  Finding this
15755     // insanity with a redeclaration lookup can only actually happen
15756     // in C++.
15757     //
15758     // This is also okay for elaborated-type-specifiers, which is
15759     // technically forbidden by the current standard but which is
15760     // okay according to the likely resolution of an open issue;
15761     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
15762     if (getLangOpts().CPlusPlus) {
15763       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
15764         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
15765           TagDecl *Tag = TT->getDecl();
15766           if (Tag->getDeclName() == Name &&
15767               Tag->getDeclContext()->getRedeclContext()
15768                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
15769             PrevDecl = Tag;
15770             Previous.clear();
15771             Previous.addDecl(Tag);
15772             Previous.resolveKind();
15773           }
15774         }
15775       }
15776     }
15777 
15778     // If this is a redeclaration of a using shadow declaration, it must
15779     // declare a tag in the same context. In MSVC mode, we allow a
15780     // redefinition if either context is within the other.
15781     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
15782       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
15783       if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
15784           isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
15785           !(OldTag && isAcceptableTagRedeclContext(
15786                           *this, OldTag->getDeclContext(), SearchDC))) {
15787         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
15788         Diag(Shadow->getTargetDecl()->getLocation(),
15789              diag::note_using_decl_target);
15790         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
15791             << 0;
15792         // Recover by ignoring the old declaration.
15793         Previous.clear();
15794         goto CreateNewDecl;
15795       }
15796     }
15797 
15798     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
15799       // If this is a use of a previous tag, or if the tag is already declared
15800       // in the same scope (so that the definition/declaration completes or
15801       // rementions the tag), reuse the decl.
15802       if (TUK == TUK_Reference || TUK == TUK_Friend ||
15803           isDeclInScope(DirectPrevDecl, SearchDC, S,
15804                         SS.isNotEmpty() || isMemberSpecialization)) {
15805         // Make sure that this wasn't declared as an enum and now used as a
15806         // struct or something similar.
15807         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
15808                                           TUK == TUK_Definition, KWLoc,
15809                                           Name)) {
15810           bool SafeToContinue
15811             = (PrevTagDecl->getTagKind() != TTK_Enum &&
15812                Kind != TTK_Enum);
15813           if (SafeToContinue)
15814             Diag(KWLoc, diag::err_use_with_wrong_tag)
15815               << Name
15816               << FixItHint::CreateReplacement(SourceRange(KWLoc),
15817                                               PrevTagDecl->getKindName());
15818           else
15819             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
15820           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
15821 
15822           if (SafeToContinue)
15823             Kind = PrevTagDecl->getTagKind();
15824           else {
15825             // Recover by making this an anonymous redefinition.
15826             Name = nullptr;
15827             Previous.clear();
15828             Invalid = true;
15829           }
15830         }
15831 
15832         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
15833           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
15834           if (TUK == TUK_Reference || TUK == TUK_Friend)
15835             return PrevTagDecl;
15836 
15837           QualType EnumUnderlyingTy;
15838           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
15839             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
15840           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
15841             EnumUnderlyingTy = QualType(T, 0);
15842 
15843           // All conflicts with previous declarations are recovered by
15844           // returning the previous declaration, unless this is a definition,
15845           // in which case we want the caller to bail out.
15846           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
15847                                      ScopedEnum, EnumUnderlyingTy,
15848                                      IsFixed, PrevEnum))
15849             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
15850         }
15851 
15852         // C++11 [class.mem]p1:
15853         //   A member shall not be declared twice in the member-specification,
15854         //   except that a nested class or member class template can be declared
15855         //   and then later defined.
15856         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
15857             S->isDeclScope(PrevDecl)) {
15858           Diag(NameLoc, diag::ext_member_redeclared);
15859           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
15860         }
15861 
15862         if (!Invalid) {
15863           // If this is a use, just return the declaration we found, unless
15864           // we have attributes.
15865           if (TUK == TUK_Reference || TUK == TUK_Friend) {
15866             if (!Attrs.empty()) {
15867               // FIXME: Diagnose these attributes. For now, we create a new
15868               // declaration to hold them.
15869             } else if (TUK == TUK_Reference &&
15870                        (PrevTagDecl->getFriendObjectKind() ==
15871                             Decl::FOK_Undeclared ||
15872                         PrevDecl->getOwningModule() != getCurrentModule()) &&
15873                        SS.isEmpty()) {
15874               // This declaration is a reference to an existing entity, but
15875               // has different visibility from that entity: it either makes
15876               // a friend visible or it makes a type visible in a new module.
15877               // In either case, create a new declaration. We only do this if
15878               // the declaration would have meant the same thing if no prior
15879               // declaration were found, that is, if it was found in the same
15880               // scope where we would have injected a declaration.
15881               if (!getTagInjectionContext(CurContext)->getRedeclContext()
15882                        ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
15883                 return PrevTagDecl;
15884               // This is in the injected scope, create a new declaration in
15885               // that scope.
15886               S = getTagInjectionScope(S, getLangOpts());
15887             } else {
15888               return PrevTagDecl;
15889             }
15890           }
15891 
15892           // Diagnose attempts to redefine a tag.
15893           if (TUK == TUK_Definition) {
15894             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
15895               // If we're defining a specialization and the previous definition
15896               // is from an implicit instantiation, don't emit an error
15897               // here; we'll catch this in the general case below.
15898               bool IsExplicitSpecializationAfterInstantiation = false;
15899               if (isMemberSpecialization) {
15900                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
15901                   IsExplicitSpecializationAfterInstantiation =
15902                     RD->getTemplateSpecializationKind() !=
15903                     TSK_ExplicitSpecialization;
15904                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
15905                   IsExplicitSpecializationAfterInstantiation =
15906                     ED->getTemplateSpecializationKind() !=
15907                     TSK_ExplicitSpecialization;
15908               }
15909 
15910               // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
15911               // not keep more that one definition around (merge them). However,
15912               // ensure the decl passes the structural compatibility check in
15913               // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
15914               NamedDecl *Hidden = nullptr;
15915               if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
15916                 // There is a definition of this tag, but it is not visible. We
15917                 // explicitly make use of C++'s one definition rule here, and
15918                 // assume that this definition is identical to the hidden one
15919                 // we already have. Make the existing definition visible and
15920                 // use it in place of this one.
15921                 if (!getLangOpts().CPlusPlus) {
15922                   // Postpone making the old definition visible until after we
15923                   // complete parsing the new one and do the structural
15924                   // comparison.
15925                   SkipBody->CheckSameAsPrevious = true;
15926                   SkipBody->New = createTagFromNewDecl();
15927                   SkipBody->Previous = Def;
15928                   return Def;
15929                 } else {
15930                   SkipBody->ShouldSkip = true;
15931                   SkipBody->Previous = Def;
15932                   makeMergedDefinitionVisible(Hidden);
15933                   // Carry on and handle it like a normal definition. We'll
15934                   // skip starting the definitiion later.
15935                 }
15936               } else if (!IsExplicitSpecializationAfterInstantiation) {
15937                 // A redeclaration in function prototype scope in C isn't
15938                 // visible elsewhere, so merely issue a warning.
15939                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
15940                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
15941                 else
15942                   Diag(NameLoc, diag::err_redefinition) << Name;
15943                 notePreviousDefinition(Def,
15944                                        NameLoc.isValid() ? NameLoc : KWLoc);
15945                 // If this is a redefinition, recover by making this
15946                 // struct be anonymous, which will make any later
15947                 // references get the previous definition.
15948                 Name = nullptr;
15949                 Previous.clear();
15950                 Invalid = true;
15951               }
15952             } else {
15953               // If the type is currently being defined, complain
15954               // about a nested redefinition.
15955               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
15956               if (TD->isBeingDefined()) {
15957                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
15958                 Diag(PrevTagDecl->getLocation(),
15959                      diag::note_previous_definition);
15960                 Name = nullptr;
15961                 Previous.clear();
15962                 Invalid = true;
15963               }
15964             }
15965 
15966             // Okay, this is definition of a previously declared or referenced
15967             // tag. We're going to create a new Decl for it.
15968           }
15969 
15970           // Okay, we're going to make a redeclaration.  If this is some kind
15971           // of reference, make sure we build the redeclaration in the same DC
15972           // as the original, and ignore the current access specifier.
15973           if (TUK == TUK_Friend || TUK == TUK_Reference) {
15974             SearchDC = PrevTagDecl->getDeclContext();
15975             AS = AS_none;
15976           }
15977         }
15978         // If we get here we have (another) forward declaration or we
15979         // have a definition.  Just create a new decl.
15980 
15981       } else {
15982         // If we get here, this is a definition of a new tag type in a nested
15983         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
15984         // new decl/type.  We set PrevDecl to NULL so that the entities
15985         // have distinct types.
15986         Previous.clear();
15987       }
15988       // If we get here, we're going to create a new Decl. If PrevDecl
15989       // is non-NULL, it's a definition of the tag declared by
15990       // PrevDecl. If it's NULL, we have a new definition.
15991 
15992     // Otherwise, PrevDecl is not a tag, but was found with tag
15993     // lookup.  This is only actually possible in C++, where a few
15994     // things like templates still live in the tag namespace.
15995     } else {
15996       // Use a better diagnostic if an elaborated-type-specifier
15997       // found the wrong kind of type on the first
15998       // (non-redeclaration) lookup.
15999       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
16000           !Previous.isForRedeclaration()) {
16001         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16002         Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
16003                                                        << Kind;
16004         Diag(PrevDecl->getLocation(), diag::note_declared_at);
16005         Invalid = true;
16006 
16007       // Otherwise, only diagnose if the declaration is in scope.
16008       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
16009                                 SS.isNotEmpty() || isMemberSpecialization)) {
16010         // do nothing
16011 
16012       // Diagnose implicit declarations introduced by elaborated types.
16013       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
16014         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16015         Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
16016         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16017         Invalid = true;
16018 
16019       // Otherwise it's a declaration.  Call out a particularly common
16020       // case here.
16021       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
16022         unsigned Kind = 0;
16023         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
16024         Diag(NameLoc, diag::err_tag_definition_of_typedef)
16025           << Name << Kind << TND->getUnderlyingType();
16026         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16027         Invalid = true;
16028 
16029       // Otherwise, diagnose.
16030       } else {
16031         // The tag name clashes with something else in the target scope,
16032         // issue an error and recover by making this tag be anonymous.
16033         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
16034         notePreviousDefinition(PrevDecl, NameLoc);
16035         Name = nullptr;
16036         Invalid = true;
16037       }
16038 
16039       // The existing declaration isn't relevant to us; we're in a
16040       // new scope, so clear out the previous declaration.
16041       Previous.clear();
16042     }
16043   }
16044 
16045 CreateNewDecl:
16046 
16047   TagDecl *PrevDecl = nullptr;
16048   if (Previous.isSingleResult())
16049     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
16050 
16051   // If there is an identifier, use the location of the identifier as the
16052   // location of the decl, otherwise use the location of the struct/union
16053   // keyword.
16054   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
16055 
16056   // Otherwise, create a new declaration. If there is a previous
16057   // declaration of the same entity, the two will be linked via
16058   // PrevDecl.
16059   TagDecl *New;
16060 
16061   if (Kind == TTK_Enum) {
16062     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16063     // enum X { A, B, C } D;    D should chain to X.
16064     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
16065                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
16066                            ScopedEnumUsesClassTag, IsFixed);
16067 
16068     if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
16069       StdAlignValT = cast<EnumDecl>(New);
16070 
16071     // If this is an undefined enum, warn.
16072     if (TUK != TUK_Definition && !Invalid) {
16073       TagDecl *Def;
16074       if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
16075         // C++0x: 7.2p2: opaque-enum-declaration.
16076         // Conflicts are diagnosed above. Do nothing.
16077       }
16078       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
16079         Diag(Loc, diag::ext_forward_ref_enum_def)
16080           << New;
16081         Diag(Def->getLocation(), diag::note_previous_definition);
16082       } else {
16083         unsigned DiagID = diag::ext_forward_ref_enum;
16084         if (getLangOpts().MSVCCompat)
16085           DiagID = diag::ext_ms_forward_ref_enum;
16086         else if (getLangOpts().CPlusPlus)
16087           DiagID = diag::err_forward_ref_enum;
16088         Diag(Loc, DiagID);
16089       }
16090     }
16091 
16092     if (EnumUnderlying) {
16093       EnumDecl *ED = cast<EnumDecl>(New);
16094       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
16095         ED->setIntegerTypeSourceInfo(TI);
16096       else
16097         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
16098       ED->setPromotionType(ED->getIntegerType());
16099       assert(ED->isComplete() && "enum with type should be complete");
16100     }
16101   } else {
16102     // struct/union/class
16103 
16104     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16105     // struct X { int A; } D;    D should chain to X.
16106     if (getLangOpts().CPlusPlus) {
16107       // FIXME: Look for a way to use RecordDecl for simple structs.
16108       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16109                                   cast_or_null<CXXRecordDecl>(PrevDecl));
16110 
16111       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
16112         StdBadAlloc = cast<CXXRecordDecl>(New);
16113     } else
16114       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16115                                cast_or_null<RecordDecl>(PrevDecl));
16116   }
16117 
16118   // C++11 [dcl.type]p3:
16119   //   A type-specifier-seq shall not define a class or enumeration [...].
16120   if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
16121       TUK == TUK_Definition) {
16122     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
16123       << Context.getTagDeclType(New);
16124     Invalid = true;
16125   }
16126 
16127   if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
16128       DC->getDeclKind() == Decl::Enum) {
16129     Diag(New->getLocation(), diag::err_type_defined_in_enum)
16130       << Context.getTagDeclType(New);
16131     Invalid = true;
16132   }
16133 
16134   // Maybe add qualifier info.
16135   if (SS.isNotEmpty()) {
16136     if (SS.isSet()) {
16137       // If this is either a declaration or a definition, check the
16138       // nested-name-specifier against the current context.
16139       if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
16140           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
16141                                        isMemberSpecialization))
16142         Invalid = true;
16143 
16144       New->setQualifierInfo(SS.getWithLocInContext(Context));
16145       if (TemplateParameterLists.size() > 0) {
16146         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
16147       }
16148     }
16149     else
16150       Invalid = true;
16151   }
16152 
16153   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
16154     // Add alignment attributes if necessary; these attributes are checked when
16155     // the ASTContext lays out the structure.
16156     //
16157     // It is important for implementing the correct semantics that this
16158     // happen here (in ActOnTag). The #pragma pack stack is
16159     // maintained as a result of parser callbacks which can occur at
16160     // many points during the parsing of a struct declaration (because
16161     // the #pragma tokens are effectively skipped over during the
16162     // parsing of the struct).
16163     if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
16164       AddAlignmentAttributesForRecord(RD);
16165       AddMsStructLayoutForRecord(RD);
16166     }
16167   }
16168 
16169   if (ModulePrivateLoc.isValid()) {
16170     if (isMemberSpecialization)
16171       Diag(New->getLocation(), diag::err_module_private_specialization)
16172         << 2
16173         << FixItHint::CreateRemoval(ModulePrivateLoc);
16174     // __module_private__ does not apply to local classes. However, we only
16175     // diagnose this as an error when the declaration specifiers are
16176     // freestanding. Here, we just ignore the __module_private__.
16177     else if (!SearchDC->isFunctionOrMethod())
16178       New->setModulePrivate();
16179   }
16180 
16181   // If this is a specialization of a member class (of a class template),
16182   // check the specialization.
16183   if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
16184     Invalid = true;
16185 
16186   // If we're declaring or defining a tag in function prototype scope in C,
16187   // note that this type can only be used within the function and add it to
16188   // the list of decls to inject into the function definition scope.
16189   if ((Name || Kind == TTK_Enum) &&
16190       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
16191     if (getLangOpts().CPlusPlus) {
16192       // C++ [dcl.fct]p6:
16193       //   Types shall not be defined in return or parameter types.
16194       if (TUK == TUK_Definition && !IsTypeSpecifier) {
16195         Diag(Loc, diag::err_type_defined_in_param_type)
16196             << Name;
16197         Invalid = true;
16198       }
16199     } else if (!PrevDecl) {
16200       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
16201     }
16202   }
16203 
16204   if (Invalid)
16205     New->setInvalidDecl();
16206 
16207   // Set the lexical context. If the tag has a C++ scope specifier, the
16208   // lexical context will be different from the semantic context.
16209   New->setLexicalDeclContext(CurContext);
16210 
16211   // Mark this as a friend decl if applicable.
16212   // In Microsoft mode, a friend declaration also acts as a forward
16213   // declaration so we always pass true to setObjectOfFriendDecl to make
16214   // the tag name visible.
16215   if (TUK == TUK_Friend)
16216     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
16217 
16218   // Set the access specifier.
16219   if (!Invalid && SearchDC->isRecord())
16220     SetMemberAccessSpecifier(New, PrevDecl, AS);
16221 
16222   if (PrevDecl)
16223     CheckRedeclarationModuleOwnership(New, PrevDecl);
16224 
16225   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
16226     New->startDefinition();
16227 
16228   ProcessDeclAttributeList(S, New, Attrs);
16229   AddPragmaAttributes(S, New);
16230 
16231   // If this has an identifier, add it to the scope stack.
16232   if (TUK == TUK_Friend) {
16233     // We might be replacing an existing declaration in the lookup tables;
16234     // if so, borrow its access specifier.
16235     if (PrevDecl)
16236       New->setAccess(PrevDecl->getAccess());
16237 
16238     DeclContext *DC = New->getDeclContext()->getRedeclContext();
16239     DC->makeDeclVisibleInContext(New);
16240     if (Name) // can be null along some error paths
16241       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
16242         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
16243   } else if (Name) {
16244     S = getNonFieldDeclScope(S);
16245     PushOnScopeChains(New, S, true);
16246   } else {
16247     CurContext->addDecl(New);
16248   }
16249 
16250   // If this is the C FILE type, notify the AST context.
16251   if (IdentifierInfo *II = New->getIdentifier())
16252     if (!New->isInvalidDecl() &&
16253         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
16254         II->isStr("FILE"))
16255       Context.setFILEDecl(New);
16256 
16257   if (PrevDecl)
16258     mergeDeclAttributes(New, PrevDecl);
16259 
16260   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
16261     inferGslOwnerPointerAttribute(CXXRD);
16262 
16263   // If there's a #pragma GCC visibility in scope, set the visibility of this
16264   // record.
16265   AddPushedVisibilityAttribute(New);
16266 
16267   if (isMemberSpecialization && !New->isInvalidDecl())
16268     CompleteMemberSpecialization(New, Previous);
16269 
16270   OwnedDecl = true;
16271   // In C++, don't return an invalid declaration. We can't recover well from
16272   // the cases where we make the type anonymous.
16273   if (Invalid && getLangOpts().CPlusPlus) {
16274     if (New->isBeingDefined())
16275       if (auto RD = dyn_cast<RecordDecl>(New))
16276         RD->completeDefinition();
16277     return nullptr;
16278   } else if (SkipBody && SkipBody->ShouldSkip) {
16279     return SkipBody->Previous;
16280   } else {
16281     return New;
16282   }
16283 }
16284 
16285 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
16286   AdjustDeclIfTemplate(TagD);
16287   TagDecl *Tag = cast<TagDecl>(TagD);
16288 
16289   // Enter the tag context.
16290   PushDeclContext(S, Tag);
16291 
16292   ActOnDocumentableDecl(TagD);
16293 
16294   // If there's a #pragma GCC visibility in scope, set the visibility of this
16295   // record.
16296   AddPushedVisibilityAttribute(Tag);
16297 }
16298 
16299 bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
16300                                     SkipBodyInfo &SkipBody) {
16301   if (!hasStructuralCompatLayout(Prev, SkipBody.New))
16302     return false;
16303 
16304   // Make the previous decl visible.
16305   makeMergedDefinitionVisible(SkipBody.Previous);
16306   return true;
16307 }
16308 
16309 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
16310   assert(isa<ObjCContainerDecl>(IDecl) &&
16311          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
16312   DeclContext *OCD = cast<DeclContext>(IDecl);
16313   assert(OCD->getLexicalParent() == CurContext &&
16314       "The next DeclContext should be lexically contained in the current one.");
16315   CurContext = OCD;
16316   return IDecl;
16317 }
16318 
16319 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
16320                                            SourceLocation FinalLoc,
16321                                            bool IsFinalSpelledSealed,
16322                                            SourceLocation LBraceLoc) {
16323   AdjustDeclIfTemplate(TagD);
16324   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
16325 
16326   FieldCollector->StartClass();
16327 
16328   if (!Record->getIdentifier())
16329     return;
16330 
16331   if (FinalLoc.isValid())
16332     Record->addAttr(FinalAttr::Create(
16333         Context, FinalLoc, AttributeCommonInfo::AS_Keyword,
16334         static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed)));
16335 
16336   // C++ [class]p2:
16337   //   [...] The class-name is also inserted into the scope of the
16338   //   class itself; this is known as the injected-class-name. For
16339   //   purposes of access checking, the injected-class-name is treated
16340   //   as if it were a public member name.
16341   CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
16342       Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
16343       Record->getLocation(), Record->getIdentifier(),
16344       /*PrevDecl=*/nullptr,
16345       /*DelayTypeCreation=*/true);
16346   Context.getTypeDeclType(InjectedClassName, Record);
16347   InjectedClassName->setImplicit();
16348   InjectedClassName->setAccess(AS_public);
16349   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
16350       InjectedClassName->setDescribedClassTemplate(Template);
16351   PushOnScopeChains(InjectedClassName, S);
16352   assert(InjectedClassName->isInjectedClassName() &&
16353          "Broken injected-class-name");
16354 }
16355 
16356 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
16357                                     SourceRange BraceRange) {
16358   AdjustDeclIfTemplate(TagD);
16359   TagDecl *Tag = cast<TagDecl>(TagD);
16360   Tag->setBraceRange(BraceRange);
16361 
16362   // Make sure we "complete" the definition even it is invalid.
16363   if (Tag->isBeingDefined()) {
16364     assert(Tag->isInvalidDecl() && "We should already have completed it");
16365     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
16366       RD->completeDefinition();
16367   }
16368 
16369   if (isa<CXXRecordDecl>(Tag)) {
16370     FieldCollector->FinishClass();
16371   }
16372 
16373   // Exit this scope of this tag's definition.
16374   PopDeclContext();
16375 
16376   if (getCurLexicalContext()->isObjCContainer() &&
16377       Tag->getDeclContext()->isFileContext())
16378     Tag->setTopLevelDeclInObjCContainer();
16379 
16380   // Notify the consumer that we've defined a tag.
16381   if (!Tag->isInvalidDecl())
16382     Consumer.HandleTagDeclDefinition(Tag);
16383 }
16384 
16385 void Sema::ActOnObjCContainerFinishDefinition() {
16386   // Exit this scope of this interface definition.
16387   PopDeclContext();
16388 }
16389 
16390 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
16391   assert(DC == CurContext && "Mismatch of container contexts");
16392   OriginalLexicalContext = DC;
16393   ActOnObjCContainerFinishDefinition();
16394 }
16395 
16396 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
16397   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
16398   OriginalLexicalContext = nullptr;
16399 }
16400 
16401 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
16402   AdjustDeclIfTemplate(TagD);
16403   TagDecl *Tag = cast<TagDecl>(TagD);
16404   Tag->setInvalidDecl();
16405 
16406   // Make sure we "complete" the definition even it is invalid.
16407   if (Tag->isBeingDefined()) {
16408     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
16409       RD->completeDefinition();
16410   }
16411 
16412   // We're undoing ActOnTagStartDefinition here, not
16413   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
16414   // the FieldCollector.
16415 
16416   PopDeclContext();
16417 }
16418 
16419 // Note that FieldName may be null for anonymous bitfields.
16420 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
16421                                 IdentifierInfo *FieldName,
16422                                 QualType FieldTy, bool IsMsStruct,
16423                                 Expr *BitWidth, bool *ZeroWidth) {
16424   assert(BitWidth);
16425   if (BitWidth->containsErrors())
16426     return ExprError();
16427 
16428   // Default to true; that shouldn't confuse checks for emptiness
16429   if (ZeroWidth)
16430     *ZeroWidth = true;
16431 
16432   // C99 6.7.2.1p4 - verify the field type.
16433   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
16434   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
16435     // Handle incomplete and sizeless types with a specific error.
16436     if (RequireCompleteSizedType(FieldLoc, FieldTy,
16437                                  diag::err_field_incomplete_or_sizeless))
16438       return ExprError();
16439     if (FieldName)
16440       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
16441         << FieldName << FieldTy << BitWidth->getSourceRange();
16442     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
16443       << FieldTy << BitWidth->getSourceRange();
16444   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
16445                                              UPPC_BitFieldWidth))
16446     return ExprError();
16447 
16448   // If the bit-width is type- or value-dependent, don't try to check
16449   // it now.
16450   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
16451     return BitWidth;
16452 
16453   llvm::APSInt Value;
16454   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold);
16455   if (ICE.isInvalid())
16456     return ICE;
16457   BitWidth = ICE.get();
16458 
16459   if (Value != 0 && ZeroWidth)
16460     *ZeroWidth = false;
16461 
16462   // Zero-width bitfield is ok for anonymous field.
16463   if (Value == 0 && FieldName)
16464     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
16465 
16466   if (Value.isSigned() && Value.isNegative()) {
16467     if (FieldName)
16468       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
16469                << FieldName << Value.toString(10);
16470     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
16471       << Value.toString(10);
16472   }
16473 
16474   // The size of the bit-field must not exceed our maximum permitted object
16475   // size.
16476   if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) {
16477     return Diag(FieldLoc, diag::err_bitfield_too_wide)
16478            << !FieldName << FieldName << Value.toString(10);
16479   }
16480 
16481   if (!FieldTy->isDependentType()) {
16482     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
16483     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
16484     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
16485 
16486     // Over-wide bitfields are an error in C or when using the MSVC bitfield
16487     // ABI.
16488     bool CStdConstraintViolation =
16489         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
16490     bool MSBitfieldViolation =
16491         Value.ugt(TypeStorageSize) &&
16492         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
16493     if (CStdConstraintViolation || MSBitfieldViolation) {
16494       unsigned DiagWidth =
16495           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
16496       if (FieldName)
16497         return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
16498                << FieldName << Value.toString(10)
16499                << !CStdConstraintViolation << DiagWidth;
16500 
16501       return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
16502              << Value.toString(10) << !CStdConstraintViolation
16503              << DiagWidth;
16504     }
16505 
16506     // Warn on types where the user might conceivably expect to get all
16507     // specified bits as value bits: that's all integral types other than
16508     // 'bool'.
16509     if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) {
16510       Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
16511           << FieldName << Value.toString(10)
16512           << (unsigned)TypeWidth;
16513     }
16514   }
16515 
16516   return BitWidth;
16517 }
16518 
16519 /// ActOnField - Each field of a C struct/union is passed into this in order
16520 /// to create a FieldDecl object for it.
16521 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
16522                        Declarator &D, Expr *BitfieldWidth) {
16523   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
16524                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
16525                                /*InitStyle=*/ICIS_NoInit, AS_public);
16526   return Res;
16527 }
16528 
16529 /// HandleField - Analyze a field of a C struct or a C++ data member.
16530 ///
16531 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
16532                              SourceLocation DeclStart,
16533                              Declarator &D, Expr *BitWidth,
16534                              InClassInitStyle InitStyle,
16535                              AccessSpecifier AS) {
16536   if (D.isDecompositionDeclarator()) {
16537     const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
16538     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
16539       << Decomp.getSourceRange();
16540     return nullptr;
16541   }
16542 
16543   IdentifierInfo *II = D.getIdentifier();
16544   SourceLocation Loc = DeclStart;
16545   if (II) Loc = D.getIdentifierLoc();
16546 
16547   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16548   QualType T = TInfo->getType();
16549   if (getLangOpts().CPlusPlus) {
16550     CheckExtraCXXDefaultArguments(D);
16551 
16552     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
16553                                         UPPC_DataMemberType)) {
16554       D.setInvalidType();
16555       T = Context.IntTy;
16556       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
16557     }
16558   }
16559 
16560   DiagnoseFunctionSpecifiers(D.getDeclSpec());
16561 
16562   if (D.getDeclSpec().isInlineSpecified())
16563     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
16564         << getLangOpts().CPlusPlus17;
16565   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
16566     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
16567          diag::err_invalid_thread)
16568       << DeclSpec::getSpecifierName(TSCS);
16569 
16570   // Check to see if this name was declared as a member previously
16571   NamedDecl *PrevDecl = nullptr;
16572   LookupResult Previous(*this, II, Loc, LookupMemberName,
16573                         ForVisibleRedeclaration);
16574   LookupName(Previous, S);
16575   switch (Previous.getResultKind()) {
16576     case LookupResult::Found:
16577     case LookupResult::FoundUnresolvedValue:
16578       PrevDecl = Previous.getAsSingle<NamedDecl>();
16579       break;
16580 
16581     case LookupResult::FoundOverloaded:
16582       PrevDecl = Previous.getRepresentativeDecl();
16583       break;
16584 
16585     case LookupResult::NotFound:
16586     case LookupResult::NotFoundInCurrentInstantiation:
16587     case LookupResult::Ambiguous:
16588       break;
16589   }
16590   Previous.suppressDiagnostics();
16591 
16592   if (PrevDecl && PrevDecl->isTemplateParameter()) {
16593     // Maybe we will complain about the shadowed template parameter.
16594     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
16595     // Just pretend that we didn't see the previous declaration.
16596     PrevDecl = nullptr;
16597   }
16598 
16599   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
16600     PrevDecl = nullptr;
16601 
16602   bool Mutable
16603     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
16604   SourceLocation TSSL = D.getBeginLoc();
16605   FieldDecl *NewFD
16606     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
16607                      TSSL, AS, PrevDecl, &D);
16608 
16609   if (NewFD->isInvalidDecl())
16610     Record->setInvalidDecl();
16611 
16612   if (D.getDeclSpec().isModulePrivateSpecified())
16613     NewFD->setModulePrivate();
16614 
16615   if (NewFD->isInvalidDecl() && PrevDecl) {
16616     // Don't introduce NewFD into scope; there's already something
16617     // with the same name in the same scope.
16618   } else if (II) {
16619     PushOnScopeChains(NewFD, S);
16620   } else
16621     Record->addDecl(NewFD);
16622 
16623   return NewFD;
16624 }
16625 
16626 /// Build a new FieldDecl and check its well-formedness.
16627 ///
16628 /// This routine builds a new FieldDecl given the fields name, type,
16629 /// record, etc. \p PrevDecl should refer to any previous declaration
16630 /// with the same name and in the same scope as the field to be
16631 /// created.
16632 ///
16633 /// \returns a new FieldDecl.
16634 ///
16635 /// \todo The Declarator argument is a hack. It will be removed once
16636 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
16637                                 TypeSourceInfo *TInfo,
16638                                 RecordDecl *Record, SourceLocation Loc,
16639                                 bool Mutable, Expr *BitWidth,
16640                                 InClassInitStyle InitStyle,
16641                                 SourceLocation TSSL,
16642                                 AccessSpecifier AS, NamedDecl *PrevDecl,
16643                                 Declarator *D) {
16644   IdentifierInfo *II = Name.getAsIdentifierInfo();
16645   bool InvalidDecl = false;
16646   if (D) InvalidDecl = D->isInvalidType();
16647 
16648   // If we receive a broken type, recover by assuming 'int' and
16649   // marking this declaration as invalid.
16650   if (T.isNull() || T->containsErrors()) {
16651     InvalidDecl = true;
16652     T = Context.IntTy;
16653   }
16654 
16655   QualType EltTy = Context.getBaseElementType(T);
16656   if (!EltTy->isDependentType() && !EltTy->containsErrors()) {
16657     if (RequireCompleteSizedType(Loc, EltTy,
16658                                  diag::err_field_incomplete_or_sizeless)) {
16659       // Fields of incomplete type force their record to be invalid.
16660       Record->setInvalidDecl();
16661       InvalidDecl = true;
16662     } else {
16663       NamedDecl *Def;
16664       EltTy->isIncompleteType(&Def);
16665       if (Def && Def->isInvalidDecl()) {
16666         Record->setInvalidDecl();
16667         InvalidDecl = true;
16668       }
16669     }
16670   }
16671 
16672   // TR 18037 does not allow fields to be declared with address space
16673   if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
16674       T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
16675     Diag(Loc, diag::err_field_with_address_space);
16676     Record->setInvalidDecl();
16677     InvalidDecl = true;
16678   }
16679 
16680   if (LangOpts.OpenCL) {
16681     // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
16682     // used as structure or union field: image, sampler, event or block types.
16683     if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
16684         T->isBlockPointerType()) {
16685       Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
16686       Record->setInvalidDecl();
16687       InvalidDecl = true;
16688     }
16689     // OpenCL v1.2 s6.9.c: bitfields are not supported.
16690     if (BitWidth) {
16691       Diag(Loc, diag::err_opencl_bitfields);
16692       InvalidDecl = true;
16693     }
16694   }
16695 
16696   // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
16697   if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
16698       T.hasQualifiers()) {
16699     InvalidDecl = true;
16700     Diag(Loc, diag::err_anon_bitfield_qualifiers);
16701   }
16702 
16703   // C99 6.7.2.1p8: A member of a structure or union may have any type other
16704   // than a variably modified type.
16705   if (!InvalidDecl && T->isVariablyModifiedType()) {
16706     if (!tryToFixVariablyModifiedVarType(
16707             *this, TInfo, T, Loc, diag::err_typecheck_field_variable_size))
16708       InvalidDecl = true;
16709   }
16710 
16711   // Fields can not have abstract class types
16712   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
16713                                              diag::err_abstract_type_in_decl,
16714                                              AbstractFieldType))
16715     InvalidDecl = true;
16716 
16717   bool ZeroWidth = false;
16718   if (InvalidDecl)
16719     BitWidth = nullptr;
16720   // If this is declared as a bit-field, check the bit-field.
16721   if (BitWidth) {
16722     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
16723                               &ZeroWidth).get();
16724     if (!BitWidth) {
16725       InvalidDecl = true;
16726       BitWidth = nullptr;
16727       ZeroWidth = false;
16728     }
16729   }
16730 
16731   // Check that 'mutable' is consistent with the type of the declaration.
16732   if (!InvalidDecl && Mutable) {
16733     unsigned DiagID = 0;
16734     if (T->isReferenceType())
16735       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
16736                                         : diag::err_mutable_reference;
16737     else if (T.isConstQualified())
16738       DiagID = diag::err_mutable_const;
16739 
16740     if (DiagID) {
16741       SourceLocation ErrLoc = Loc;
16742       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
16743         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
16744       Diag(ErrLoc, DiagID);
16745       if (DiagID != diag::ext_mutable_reference) {
16746         Mutable = false;
16747         InvalidDecl = true;
16748       }
16749     }
16750   }
16751 
16752   // C++11 [class.union]p8 (DR1460):
16753   //   At most one variant member of a union may have a
16754   //   brace-or-equal-initializer.
16755   if (InitStyle != ICIS_NoInit)
16756     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
16757 
16758   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
16759                                        BitWidth, Mutable, InitStyle);
16760   if (InvalidDecl)
16761     NewFD->setInvalidDecl();
16762 
16763   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
16764     Diag(Loc, diag::err_duplicate_member) << II;
16765     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16766     NewFD->setInvalidDecl();
16767   }
16768 
16769   if (!InvalidDecl && getLangOpts().CPlusPlus) {
16770     if (Record->isUnion()) {
16771       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
16772         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
16773         if (RDecl->getDefinition()) {
16774           // C++ [class.union]p1: An object of a class with a non-trivial
16775           // constructor, a non-trivial copy constructor, a non-trivial
16776           // destructor, or a non-trivial copy assignment operator
16777           // cannot be a member of a union, nor can an array of such
16778           // objects.
16779           if (CheckNontrivialField(NewFD))
16780             NewFD->setInvalidDecl();
16781         }
16782       }
16783 
16784       // C++ [class.union]p1: If a union contains a member of reference type,
16785       // the program is ill-formed, except when compiling with MSVC extensions
16786       // enabled.
16787       if (EltTy->isReferenceType()) {
16788         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
16789                                     diag::ext_union_member_of_reference_type :
16790                                     diag::err_union_member_of_reference_type)
16791           << NewFD->getDeclName() << EltTy;
16792         if (!getLangOpts().MicrosoftExt)
16793           NewFD->setInvalidDecl();
16794       }
16795     }
16796   }
16797 
16798   // FIXME: We need to pass in the attributes given an AST
16799   // representation, not a parser representation.
16800   if (D) {
16801     // FIXME: The current scope is almost... but not entirely... correct here.
16802     ProcessDeclAttributes(getCurScope(), NewFD, *D);
16803 
16804     if (NewFD->hasAttrs())
16805       CheckAlignasUnderalignment(NewFD);
16806   }
16807 
16808   // In auto-retain/release, infer strong retension for fields of
16809   // retainable type.
16810   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
16811     NewFD->setInvalidDecl();
16812 
16813   if (T.isObjCGCWeak())
16814     Diag(Loc, diag::warn_attribute_weak_on_field);
16815 
16816   // PPC MMA non-pointer types are not allowed as field types.
16817   if (Context.getTargetInfo().getTriple().isPPC64() &&
16818       CheckPPCMMAType(T, NewFD->getLocation()))
16819     NewFD->setInvalidDecl();
16820 
16821   NewFD->setAccess(AS);
16822   return NewFD;
16823 }
16824 
16825 bool Sema::CheckNontrivialField(FieldDecl *FD) {
16826   assert(FD);
16827   assert(getLangOpts().CPlusPlus && "valid check only for C++");
16828 
16829   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
16830     return false;
16831 
16832   QualType EltTy = Context.getBaseElementType(FD->getType());
16833   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
16834     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
16835     if (RDecl->getDefinition()) {
16836       // We check for copy constructors before constructors
16837       // because otherwise we'll never get complaints about
16838       // copy constructors.
16839 
16840       CXXSpecialMember member = CXXInvalid;
16841       // We're required to check for any non-trivial constructors. Since the
16842       // implicit default constructor is suppressed if there are any
16843       // user-declared constructors, we just need to check that there is a
16844       // trivial default constructor and a trivial copy constructor. (We don't
16845       // worry about move constructors here, since this is a C++98 check.)
16846       if (RDecl->hasNonTrivialCopyConstructor())
16847         member = CXXCopyConstructor;
16848       else if (!RDecl->hasTrivialDefaultConstructor())
16849         member = CXXDefaultConstructor;
16850       else if (RDecl->hasNonTrivialCopyAssignment())
16851         member = CXXCopyAssignment;
16852       else if (RDecl->hasNonTrivialDestructor())
16853         member = CXXDestructor;
16854 
16855       if (member != CXXInvalid) {
16856         if (!getLangOpts().CPlusPlus11 &&
16857             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
16858           // Objective-C++ ARC: it is an error to have a non-trivial field of
16859           // a union. However, system headers in Objective-C programs
16860           // occasionally have Objective-C lifetime objects within unions,
16861           // and rather than cause the program to fail, we make those
16862           // members unavailable.
16863           SourceLocation Loc = FD->getLocation();
16864           if (getSourceManager().isInSystemHeader(Loc)) {
16865             if (!FD->hasAttr<UnavailableAttr>())
16866               FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
16867                             UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
16868             return false;
16869           }
16870         }
16871 
16872         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
16873                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
16874                diag::err_illegal_union_or_anon_struct_member)
16875           << FD->getParent()->isUnion() << FD->getDeclName() << member;
16876         DiagnoseNontrivial(RDecl, member);
16877         return !getLangOpts().CPlusPlus11;
16878       }
16879     }
16880   }
16881 
16882   return false;
16883 }
16884 
16885 /// TranslateIvarVisibility - Translate visibility from a token ID to an
16886 ///  AST enum value.
16887 static ObjCIvarDecl::AccessControl
16888 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
16889   switch (ivarVisibility) {
16890   default: llvm_unreachable("Unknown visitibility kind");
16891   case tok::objc_private: return ObjCIvarDecl::Private;
16892   case tok::objc_public: return ObjCIvarDecl::Public;
16893   case tok::objc_protected: return ObjCIvarDecl::Protected;
16894   case tok::objc_package: return ObjCIvarDecl::Package;
16895   }
16896 }
16897 
16898 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
16899 /// in order to create an IvarDecl object for it.
16900 Decl *Sema::ActOnIvar(Scope *S,
16901                                 SourceLocation DeclStart,
16902                                 Declarator &D, Expr *BitfieldWidth,
16903                                 tok::ObjCKeywordKind Visibility) {
16904 
16905   IdentifierInfo *II = D.getIdentifier();
16906   Expr *BitWidth = (Expr*)BitfieldWidth;
16907   SourceLocation Loc = DeclStart;
16908   if (II) Loc = D.getIdentifierLoc();
16909 
16910   // FIXME: Unnamed fields can be handled in various different ways, for
16911   // example, unnamed unions inject all members into the struct namespace!
16912 
16913   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16914   QualType T = TInfo->getType();
16915 
16916   if (BitWidth) {
16917     // 6.7.2.1p3, 6.7.2.1p4
16918     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
16919     if (!BitWidth)
16920       D.setInvalidType();
16921   } else {
16922     // Not a bitfield.
16923 
16924     // validate II.
16925 
16926   }
16927   if (T->isReferenceType()) {
16928     Diag(Loc, diag::err_ivar_reference_type);
16929     D.setInvalidType();
16930   }
16931   // C99 6.7.2.1p8: A member of a structure or union may have any type other
16932   // than a variably modified type.
16933   else if (T->isVariablyModifiedType()) {
16934     if (!tryToFixVariablyModifiedVarType(
16935             *this, TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
16936       D.setInvalidType();
16937   }
16938 
16939   // Get the visibility (access control) for this ivar.
16940   ObjCIvarDecl::AccessControl ac =
16941     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
16942                                         : ObjCIvarDecl::None;
16943   // Must set ivar's DeclContext to its enclosing interface.
16944   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
16945   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
16946     return nullptr;
16947   ObjCContainerDecl *EnclosingContext;
16948   if (ObjCImplementationDecl *IMPDecl =
16949       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16950     if (LangOpts.ObjCRuntime.isFragile()) {
16951     // Case of ivar declared in an implementation. Context is that of its class.
16952       EnclosingContext = IMPDecl->getClassInterface();
16953       assert(EnclosingContext && "Implementation has no class interface!");
16954     }
16955     else
16956       EnclosingContext = EnclosingDecl;
16957   } else {
16958     if (ObjCCategoryDecl *CDecl =
16959         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16960       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
16961         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
16962         return nullptr;
16963       }
16964     }
16965     EnclosingContext = EnclosingDecl;
16966   }
16967 
16968   // Construct the decl.
16969   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
16970                                              DeclStart, Loc, II, T,
16971                                              TInfo, ac, (Expr *)BitfieldWidth);
16972 
16973   if (II) {
16974     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
16975                                            ForVisibleRedeclaration);
16976     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
16977         && !isa<TagDecl>(PrevDecl)) {
16978       Diag(Loc, diag::err_duplicate_member) << II;
16979       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16980       NewID->setInvalidDecl();
16981     }
16982   }
16983 
16984   // Process attributes attached to the ivar.
16985   ProcessDeclAttributes(S, NewID, D);
16986 
16987   if (D.isInvalidType())
16988     NewID->setInvalidDecl();
16989 
16990   // In ARC, infer 'retaining' for ivars of retainable type.
16991   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
16992     NewID->setInvalidDecl();
16993 
16994   if (D.getDeclSpec().isModulePrivateSpecified())
16995     NewID->setModulePrivate();
16996 
16997   if (II) {
16998     // FIXME: When interfaces are DeclContexts, we'll need to add
16999     // these to the interface.
17000     S->AddDecl(NewID);
17001     IdResolver.AddDecl(NewID);
17002   }
17003 
17004   if (LangOpts.ObjCRuntime.isNonFragile() &&
17005       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
17006     Diag(Loc, diag::warn_ivars_in_interface);
17007 
17008   return NewID;
17009 }
17010 
17011 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
17012 /// class and class extensions. For every class \@interface and class
17013 /// extension \@interface, if the last ivar is a bitfield of any type,
17014 /// then add an implicit `char :0` ivar to the end of that interface.
17015 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
17016                              SmallVectorImpl<Decl *> &AllIvarDecls) {
17017   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
17018     return;
17019 
17020   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
17021   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
17022 
17023   if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
17024     return;
17025   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
17026   if (!ID) {
17027     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
17028       if (!CD->IsClassExtension())
17029         return;
17030     }
17031     // No need to add this to end of @implementation.
17032     else
17033       return;
17034   }
17035   // All conditions are met. Add a new bitfield to the tail end of ivars.
17036   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
17037   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
17038 
17039   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
17040                               DeclLoc, DeclLoc, nullptr,
17041                               Context.CharTy,
17042                               Context.getTrivialTypeSourceInfo(Context.CharTy,
17043                                                                DeclLoc),
17044                               ObjCIvarDecl::Private, BW,
17045                               true);
17046   AllIvarDecls.push_back(Ivar);
17047 }
17048 
17049 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
17050                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
17051                        SourceLocation RBrac,
17052                        const ParsedAttributesView &Attrs) {
17053   assert(EnclosingDecl && "missing record or interface decl");
17054 
17055   // If this is an Objective-C @implementation or category and we have
17056   // new fields here we should reset the layout of the interface since
17057   // it will now change.
17058   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
17059     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
17060     switch (DC->getKind()) {
17061     default: break;
17062     case Decl::ObjCCategory:
17063       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
17064       break;
17065     case Decl::ObjCImplementation:
17066       Context.
17067         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
17068       break;
17069     }
17070   }
17071 
17072   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
17073   CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
17074 
17075   // Start counting up the number of named members; make sure to include
17076   // members of anonymous structs and unions in the total.
17077   unsigned NumNamedMembers = 0;
17078   if (Record) {
17079     for (const auto *I : Record->decls()) {
17080       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
17081         if (IFD->getDeclName())
17082           ++NumNamedMembers;
17083     }
17084   }
17085 
17086   // Verify that all the fields are okay.
17087   SmallVector<FieldDecl*, 32> RecFields;
17088 
17089   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
17090        i != end; ++i) {
17091     FieldDecl *FD = cast<FieldDecl>(*i);
17092 
17093     // Get the type for the field.
17094     const Type *FDTy = FD->getType().getTypePtr();
17095 
17096     if (!FD->isAnonymousStructOrUnion()) {
17097       // Remember all fields written by the user.
17098       RecFields.push_back(FD);
17099     }
17100 
17101     // If the field is already invalid for some reason, don't emit more
17102     // diagnostics about it.
17103     if (FD->isInvalidDecl()) {
17104       EnclosingDecl->setInvalidDecl();
17105       continue;
17106     }
17107 
17108     // C99 6.7.2.1p2:
17109     //   A structure or union shall not contain a member with
17110     //   incomplete or function type (hence, a structure shall not
17111     //   contain an instance of itself, but may contain a pointer to
17112     //   an instance of itself), except that the last member of a
17113     //   structure with more than one named member may have incomplete
17114     //   array type; such a structure (and any union containing,
17115     //   possibly recursively, a member that is such a structure)
17116     //   shall not be a member of a structure or an element of an
17117     //   array.
17118     bool IsLastField = (i + 1 == Fields.end());
17119     if (FDTy->isFunctionType()) {
17120       // Field declared as a function.
17121       Diag(FD->getLocation(), diag::err_field_declared_as_function)
17122         << FD->getDeclName();
17123       FD->setInvalidDecl();
17124       EnclosingDecl->setInvalidDecl();
17125       continue;
17126     } else if (FDTy->isIncompleteArrayType() &&
17127                (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
17128       if (Record) {
17129         // Flexible array member.
17130         // Microsoft and g++ is more permissive regarding flexible array.
17131         // It will accept flexible array in union and also
17132         // as the sole element of a struct/class.
17133         unsigned DiagID = 0;
17134         if (!Record->isUnion() && !IsLastField) {
17135           Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
17136             << FD->getDeclName() << FD->getType() << Record->getTagKind();
17137           Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
17138           FD->setInvalidDecl();
17139           EnclosingDecl->setInvalidDecl();
17140           continue;
17141         } else if (Record->isUnion())
17142           DiagID = getLangOpts().MicrosoftExt
17143                        ? diag::ext_flexible_array_union_ms
17144                        : getLangOpts().CPlusPlus
17145                              ? diag::ext_flexible_array_union_gnu
17146                              : diag::err_flexible_array_union;
17147         else if (NumNamedMembers < 1)
17148           DiagID = getLangOpts().MicrosoftExt
17149                        ? diag::ext_flexible_array_empty_aggregate_ms
17150                        : getLangOpts().CPlusPlus
17151                              ? diag::ext_flexible_array_empty_aggregate_gnu
17152                              : diag::err_flexible_array_empty_aggregate;
17153 
17154         if (DiagID)
17155           Diag(FD->getLocation(), DiagID) << FD->getDeclName()
17156                                           << Record->getTagKind();
17157         // While the layout of types that contain virtual bases is not specified
17158         // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
17159         // virtual bases after the derived members.  This would make a flexible
17160         // array member declared at the end of an object not adjacent to the end
17161         // of the type.
17162         if (CXXRecord && CXXRecord->getNumVBases() != 0)
17163           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
17164               << FD->getDeclName() << Record->getTagKind();
17165         if (!getLangOpts().C99)
17166           Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
17167             << FD->getDeclName() << Record->getTagKind();
17168 
17169         // If the element type has a non-trivial destructor, we would not
17170         // implicitly destroy the elements, so disallow it for now.
17171         //
17172         // FIXME: GCC allows this. We should probably either implicitly delete
17173         // the destructor of the containing class, or just allow this.
17174         QualType BaseElem = Context.getBaseElementType(FD->getType());
17175         if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
17176           Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
17177             << FD->getDeclName() << FD->getType();
17178           FD->setInvalidDecl();
17179           EnclosingDecl->setInvalidDecl();
17180           continue;
17181         }
17182         // Okay, we have a legal flexible array member at the end of the struct.
17183         Record->setHasFlexibleArrayMember(true);
17184       } else {
17185         // In ObjCContainerDecl ivars with incomplete array type are accepted,
17186         // unless they are followed by another ivar. That check is done
17187         // elsewhere, after synthesized ivars are known.
17188       }
17189     } else if (!FDTy->isDependentType() &&
17190                RequireCompleteSizedType(
17191                    FD->getLocation(), FD->getType(),
17192                    diag::err_field_incomplete_or_sizeless)) {
17193       // Incomplete type
17194       FD->setInvalidDecl();
17195       EnclosingDecl->setInvalidDecl();
17196       continue;
17197     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
17198       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
17199         // A type which contains a flexible array member is considered to be a
17200         // flexible array member.
17201         Record->setHasFlexibleArrayMember(true);
17202         if (!Record->isUnion()) {
17203           // If this is a struct/class and this is not the last element, reject
17204           // it.  Note that GCC supports variable sized arrays in the middle of
17205           // structures.
17206           if (!IsLastField)
17207             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
17208               << FD->getDeclName() << FD->getType();
17209           else {
17210             // We support flexible arrays at the end of structs in
17211             // other structs as an extension.
17212             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
17213               << FD->getDeclName();
17214           }
17215         }
17216       }
17217       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
17218           RequireNonAbstractType(FD->getLocation(), FD->getType(),
17219                                  diag::err_abstract_type_in_decl,
17220                                  AbstractIvarType)) {
17221         // Ivars can not have abstract class types
17222         FD->setInvalidDecl();
17223       }
17224       if (Record && FDTTy->getDecl()->hasObjectMember())
17225         Record->setHasObjectMember(true);
17226       if (Record && FDTTy->getDecl()->hasVolatileMember())
17227         Record->setHasVolatileMember(true);
17228     } else if (FDTy->isObjCObjectType()) {
17229       /// A field cannot be an Objective-c object
17230       Diag(FD->getLocation(), diag::err_statically_allocated_object)
17231         << FixItHint::CreateInsertion(FD->getLocation(), "*");
17232       QualType T = Context.getObjCObjectPointerType(FD->getType());
17233       FD->setType(T);
17234     } else if (Record && Record->isUnion() &&
17235                FD->getType().hasNonTrivialObjCLifetime() &&
17236                getSourceManager().isInSystemHeader(FD->getLocation()) &&
17237                !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
17238                (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
17239                 !Context.hasDirectOwnershipQualifier(FD->getType()))) {
17240       // For backward compatibility, fields of C unions declared in system
17241       // headers that have non-trivial ObjC ownership qualifications are marked
17242       // as unavailable unless the qualifier is explicit and __strong. This can
17243       // break ABI compatibility between programs compiled with ARC and MRR, but
17244       // is a better option than rejecting programs using those unions under
17245       // ARC.
17246       FD->addAttr(UnavailableAttr::CreateImplicit(
17247           Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
17248           FD->getLocation()));
17249     } else if (getLangOpts().ObjC &&
17250                getLangOpts().getGC() != LangOptions::NonGC && Record &&
17251                !Record->hasObjectMember()) {
17252       if (FD->getType()->isObjCObjectPointerType() ||
17253           FD->getType().isObjCGCStrong())
17254         Record->setHasObjectMember(true);
17255       else if (Context.getAsArrayType(FD->getType())) {
17256         QualType BaseType = Context.getBaseElementType(FD->getType());
17257         if (BaseType->isRecordType() &&
17258             BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
17259           Record->setHasObjectMember(true);
17260         else if (BaseType->isObjCObjectPointerType() ||
17261                  BaseType.isObjCGCStrong())
17262                Record->setHasObjectMember(true);
17263       }
17264     }
17265 
17266     if (Record && !getLangOpts().CPlusPlus &&
17267         !shouldIgnoreForRecordTriviality(FD)) {
17268       QualType FT = FD->getType();
17269       if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
17270         Record->setNonTrivialToPrimitiveDefaultInitialize(true);
17271         if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
17272             Record->isUnion())
17273           Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
17274       }
17275       QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
17276       if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
17277         Record->setNonTrivialToPrimitiveCopy(true);
17278         if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
17279           Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
17280       }
17281       if (FT.isDestructedType()) {
17282         Record->setNonTrivialToPrimitiveDestroy(true);
17283         Record->setParamDestroyedInCallee(true);
17284         if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
17285           Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
17286       }
17287 
17288       if (const auto *RT = FT->getAs<RecordType>()) {
17289         if (RT->getDecl()->getArgPassingRestrictions() ==
17290             RecordDecl::APK_CanNeverPassInRegs)
17291           Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17292       } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
17293         Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17294     }
17295 
17296     if (Record && FD->getType().isVolatileQualified())
17297       Record->setHasVolatileMember(true);
17298     // Keep track of the number of named members.
17299     if (FD->getIdentifier())
17300       ++NumNamedMembers;
17301   }
17302 
17303   // Okay, we successfully defined 'Record'.
17304   if (Record) {
17305     bool Completed = false;
17306     if (CXXRecord) {
17307       if (!CXXRecord->isInvalidDecl()) {
17308         // Set access bits correctly on the directly-declared conversions.
17309         for (CXXRecordDecl::conversion_iterator
17310                I = CXXRecord->conversion_begin(),
17311                E = CXXRecord->conversion_end(); I != E; ++I)
17312           I.setAccess((*I)->getAccess());
17313       }
17314 
17315       // Add any implicitly-declared members to this class.
17316       AddImplicitlyDeclaredMembersToClass(CXXRecord);
17317 
17318       if (!CXXRecord->isDependentType()) {
17319         if (!CXXRecord->isInvalidDecl()) {
17320           // If we have virtual base classes, we may end up finding multiple
17321           // final overriders for a given virtual function. Check for this
17322           // problem now.
17323           if (CXXRecord->getNumVBases()) {
17324             CXXFinalOverriderMap FinalOverriders;
17325             CXXRecord->getFinalOverriders(FinalOverriders);
17326 
17327             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
17328                                              MEnd = FinalOverriders.end();
17329                  M != MEnd; ++M) {
17330               for (OverridingMethods::iterator SO = M->second.begin(),
17331                                             SOEnd = M->second.end();
17332                    SO != SOEnd; ++SO) {
17333                 assert(SO->second.size() > 0 &&
17334                        "Virtual function without overriding functions?");
17335                 if (SO->second.size() == 1)
17336                   continue;
17337 
17338                 // C++ [class.virtual]p2:
17339                 //   In a derived class, if a virtual member function of a base
17340                 //   class subobject has more than one final overrider the
17341                 //   program is ill-formed.
17342                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
17343                   << (const NamedDecl *)M->first << Record;
17344                 Diag(M->first->getLocation(),
17345                      diag::note_overridden_virtual_function);
17346                 for (OverridingMethods::overriding_iterator
17347                           OM = SO->second.begin(),
17348                        OMEnd = SO->second.end();
17349                      OM != OMEnd; ++OM)
17350                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
17351                     << (const NamedDecl *)M->first << OM->Method->getParent();
17352 
17353                 Record->setInvalidDecl();
17354               }
17355             }
17356             CXXRecord->completeDefinition(&FinalOverriders);
17357             Completed = true;
17358           }
17359         }
17360       }
17361     }
17362 
17363     if (!Completed)
17364       Record->completeDefinition();
17365 
17366     // Handle attributes before checking the layout.
17367     ProcessDeclAttributeList(S, Record, Attrs);
17368 
17369     // We may have deferred checking for a deleted destructor. Check now.
17370     if (CXXRecord) {
17371       auto *Dtor = CXXRecord->getDestructor();
17372       if (Dtor && Dtor->isImplicit() &&
17373           ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
17374         CXXRecord->setImplicitDestructorIsDeleted();
17375         SetDeclDeleted(Dtor, CXXRecord->getLocation());
17376       }
17377     }
17378 
17379     if (Record->hasAttrs()) {
17380       CheckAlignasUnderalignment(Record);
17381 
17382       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
17383         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
17384                                            IA->getRange(), IA->getBestCase(),
17385                                            IA->getInheritanceModel());
17386     }
17387 
17388     // Check if the structure/union declaration is a type that can have zero
17389     // size in C. For C this is a language extension, for C++ it may cause
17390     // compatibility problems.
17391     bool CheckForZeroSize;
17392     if (!getLangOpts().CPlusPlus) {
17393       CheckForZeroSize = true;
17394     } else {
17395       // For C++ filter out types that cannot be referenced in C code.
17396       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
17397       CheckForZeroSize =
17398           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
17399           !CXXRecord->isDependentType() && !inTemplateInstantiation() &&
17400           CXXRecord->isCLike();
17401     }
17402     if (CheckForZeroSize) {
17403       bool ZeroSize = true;
17404       bool IsEmpty = true;
17405       unsigned NonBitFields = 0;
17406       for (RecordDecl::field_iterator I = Record->field_begin(),
17407                                       E = Record->field_end();
17408            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
17409         IsEmpty = false;
17410         if (I->isUnnamedBitfield()) {
17411           if (!I->isZeroLengthBitField(Context))
17412             ZeroSize = false;
17413         } else {
17414           ++NonBitFields;
17415           QualType FieldType = I->getType();
17416           if (FieldType->isIncompleteType() ||
17417               !Context.getTypeSizeInChars(FieldType).isZero())
17418             ZeroSize = false;
17419         }
17420       }
17421 
17422       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
17423       // allowed in C++, but warn if its declaration is inside
17424       // extern "C" block.
17425       if (ZeroSize) {
17426         Diag(RecLoc, getLangOpts().CPlusPlus ?
17427                          diag::warn_zero_size_struct_union_in_extern_c :
17428                          diag::warn_zero_size_struct_union_compat)
17429           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
17430       }
17431 
17432       // Structs without named members are extension in C (C99 6.7.2.1p7),
17433       // but are accepted by GCC.
17434       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
17435         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
17436                                diag::ext_no_named_members_in_struct_union)
17437           << Record->isUnion();
17438       }
17439     }
17440   } else {
17441     ObjCIvarDecl **ClsFields =
17442       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
17443     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
17444       ID->setEndOfDefinitionLoc(RBrac);
17445       // Add ivar's to class's DeclContext.
17446       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
17447         ClsFields[i]->setLexicalDeclContext(ID);
17448         ID->addDecl(ClsFields[i]);
17449       }
17450       // Must enforce the rule that ivars in the base classes may not be
17451       // duplicates.
17452       if (ID->getSuperClass())
17453         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
17454     } else if (ObjCImplementationDecl *IMPDecl =
17455                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
17456       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
17457       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
17458         // Ivar declared in @implementation never belongs to the implementation.
17459         // Only it is in implementation's lexical context.
17460         ClsFields[I]->setLexicalDeclContext(IMPDecl);
17461       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
17462       IMPDecl->setIvarLBraceLoc(LBrac);
17463       IMPDecl->setIvarRBraceLoc(RBrac);
17464     } else if (ObjCCategoryDecl *CDecl =
17465                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
17466       // case of ivars in class extension; all other cases have been
17467       // reported as errors elsewhere.
17468       // FIXME. Class extension does not have a LocEnd field.
17469       // CDecl->setLocEnd(RBrac);
17470       // Add ivar's to class extension's DeclContext.
17471       // Diagnose redeclaration of private ivars.
17472       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
17473       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
17474         if (IDecl) {
17475           if (const ObjCIvarDecl *ClsIvar =
17476               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
17477             Diag(ClsFields[i]->getLocation(),
17478                  diag::err_duplicate_ivar_declaration);
17479             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
17480             continue;
17481           }
17482           for (const auto *Ext : IDecl->known_extensions()) {
17483             if (const ObjCIvarDecl *ClsExtIvar
17484                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
17485               Diag(ClsFields[i]->getLocation(),
17486                    diag::err_duplicate_ivar_declaration);
17487               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
17488               continue;
17489             }
17490           }
17491         }
17492         ClsFields[i]->setLexicalDeclContext(CDecl);
17493         CDecl->addDecl(ClsFields[i]);
17494       }
17495       CDecl->setIvarLBraceLoc(LBrac);
17496       CDecl->setIvarRBraceLoc(RBrac);
17497     }
17498   }
17499 }
17500 
17501 /// Determine whether the given integral value is representable within
17502 /// the given type T.
17503 static bool isRepresentableIntegerValue(ASTContext &Context,
17504                                         llvm::APSInt &Value,
17505                                         QualType T) {
17506   assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
17507          "Integral type required!");
17508   unsigned BitWidth = Context.getIntWidth(T);
17509 
17510   if (Value.isUnsigned() || Value.isNonNegative()) {
17511     if (T->isSignedIntegerOrEnumerationType())
17512       --BitWidth;
17513     return Value.getActiveBits() <= BitWidth;
17514   }
17515   return Value.getMinSignedBits() <= BitWidth;
17516 }
17517 
17518 // Given an integral type, return the next larger integral type
17519 // (or a NULL type of no such type exists).
17520 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
17521   // FIXME: Int128/UInt128 support, which also needs to be introduced into
17522   // enum checking below.
17523   assert((T->isIntegralType(Context) ||
17524          T->isEnumeralType()) && "Integral type required!");
17525   const unsigned NumTypes = 4;
17526   QualType SignedIntegralTypes[NumTypes] = {
17527     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
17528   };
17529   QualType UnsignedIntegralTypes[NumTypes] = {
17530     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
17531     Context.UnsignedLongLongTy
17532   };
17533 
17534   unsigned BitWidth = Context.getTypeSize(T);
17535   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
17536                                                         : UnsignedIntegralTypes;
17537   for (unsigned I = 0; I != NumTypes; ++I)
17538     if (Context.getTypeSize(Types[I]) > BitWidth)
17539       return Types[I];
17540 
17541   return QualType();
17542 }
17543 
17544 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
17545                                           EnumConstantDecl *LastEnumConst,
17546                                           SourceLocation IdLoc,
17547                                           IdentifierInfo *Id,
17548                                           Expr *Val) {
17549   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
17550   llvm::APSInt EnumVal(IntWidth);
17551   QualType EltTy;
17552 
17553   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
17554     Val = nullptr;
17555 
17556   if (Val)
17557     Val = DefaultLvalueConversion(Val).get();
17558 
17559   if (Val) {
17560     if (Enum->isDependentType() || Val->isTypeDependent())
17561       EltTy = Context.DependentTy;
17562     else {
17563       // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
17564       // underlying type, but do allow it in all other contexts.
17565       if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
17566         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
17567         // constant-expression in the enumerator-definition shall be a converted
17568         // constant expression of the underlying type.
17569         EltTy = Enum->getIntegerType();
17570         ExprResult Converted =
17571           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
17572                                            CCEK_Enumerator);
17573         if (Converted.isInvalid())
17574           Val = nullptr;
17575         else
17576           Val = Converted.get();
17577       } else if (!Val->isValueDependent() &&
17578                  !(Val =
17579                        VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold)
17580                            .get())) {
17581         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
17582       } else {
17583         if (Enum->isComplete()) {
17584           EltTy = Enum->getIntegerType();
17585 
17586           // In Obj-C and Microsoft mode, require the enumeration value to be
17587           // representable in the underlying type of the enumeration. In C++11,
17588           // we perform a non-narrowing conversion as part of converted constant
17589           // expression checking.
17590           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17591             if (Context.getTargetInfo()
17592                     .getTriple()
17593                     .isWindowsMSVCEnvironment()) {
17594               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
17595             } else {
17596               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
17597             }
17598           }
17599 
17600           // Cast to the underlying type.
17601           Val = ImpCastExprToType(Val, EltTy,
17602                                   EltTy->isBooleanType() ? CK_IntegralToBoolean
17603                                                          : CK_IntegralCast)
17604                     .get();
17605         } else if (getLangOpts().CPlusPlus) {
17606           // C++11 [dcl.enum]p5:
17607           //   If the underlying type is not fixed, the type of each enumerator
17608           //   is the type of its initializing value:
17609           //     - If an initializer is specified for an enumerator, the
17610           //       initializing value has the same type as the expression.
17611           EltTy = Val->getType();
17612         } else {
17613           // C99 6.7.2.2p2:
17614           //   The expression that defines the value of an enumeration constant
17615           //   shall be an integer constant expression that has a value
17616           //   representable as an int.
17617 
17618           // Complain if the value is not representable in an int.
17619           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
17620             Diag(IdLoc, diag::ext_enum_value_not_int)
17621               << EnumVal.toString(10) << Val->getSourceRange()
17622               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
17623           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
17624             // Force the type of the expression to 'int'.
17625             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
17626           }
17627           EltTy = Val->getType();
17628         }
17629       }
17630     }
17631   }
17632 
17633   if (!Val) {
17634     if (Enum->isDependentType())
17635       EltTy = Context.DependentTy;
17636     else if (!LastEnumConst) {
17637       // C++0x [dcl.enum]p5:
17638       //   If the underlying type is not fixed, the type of each enumerator
17639       //   is the type of its initializing value:
17640       //     - If no initializer is specified for the first enumerator, the
17641       //       initializing value has an unspecified integral type.
17642       //
17643       // GCC uses 'int' for its unspecified integral type, as does
17644       // C99 6.7.2.2p3.
17645       if (Enum->isFixed()) {
17646         EltTy = Enum->getIntegerType();
17647       }
17648       else {
17649         EltTy = Context.IntTy;
17650       }
17651     } else {
17652       // Assign the last value + 1.
17653       EnumVal = LastEnumConst->getInitVal();
17654       ++EnumVal;
17655       EltTy = LastEnumConst->getType();
17656 
17657       // Check for overflow on increment.
17658       if (EnumVal < LastEnumConst->getInitVal()) {
17659         // C++0x [dcl.enum]p5:
17660         //   If the underlying type is not fixed, the type of each enumerator
17661         //   is the type of its initializing value:
17662         //
17663         //     - Otherwise the type of the initializing value is the same as
17664         //       the type of the initializing value of the preceding enumerator
17665         //       unless the incremented value is not representable in that type,
17666         //       in which case the type is an unspecified integral type
17667         //       sufficient to contain the incremented value. If no such type
17668         //       exists, the program is ill-formed.
17669         QualType T = getNextLargerIntegralType(Context, EltTy);
17670         if (T.isNull() || Enum->isFixed()) {
17671           // There is no integral type larger enough to represent this
17672           // value. Complain, then allow the value to wrap around.
17673           EnumVal = LastEnumConst->getInitVal();
17674           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
17675           ++EnumVal;
17676           if (Enum->isFixed())
17677             // When the underlying type is fixed, this is ill-formed.
17678             Diag(IdLoc, diag::err_enumerator_wrapped)
17679               << EnumVal.toString(10)
17680               << EltTy;
17681           else
17682             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
17683               << EnumVal.toString(10);
17684         } else {
17685           EltTy = T;
17686         }
17687 
17688         // Retrieve the last enumerator's value, extent that type to the
17689         // type that is supposed to be large enough to represent the incremented
17690         // value, then increment.
17691         EnumVal = LastEnumConst->getInitVal();
17692         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17693         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
17694         ++EnumVal;
17695 
17696         // If we're not in C++, diagnose the overflow of enumerator values,
17697         // which in C99 means that the enumerator value is not representable in
17698         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
17699         // permits enumerator values that are representable in some larger
17700         // integral type.
17701         if (!getLangOpts().CPlusPlus && !T.isNull())
17702           Diag(IdLoc, diag::warn_enum_value_overflow);
17703       } else if (!getLangOpts().CPlusPlus &&
17704                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17705         // Enforce C99 6.7.2.2p2 even when we compute the next value.
17706         Diag(IdLoc, diag::ext_enum_value_not_int)
17707           << EnumVal.toString(10) << 1;
17708       }
17709     }
17710   }
17711 
17712   if (!EltTy->isDependentType()) {
17713     // Make the enumerator value match the signedness and size of the
17714     // enumerator's type.
17715     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
17716     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17717   }
17718 
17719   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
17720                                   Val, EnumVal);
17721 }
17722 
17723 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
17724                                                 SourceLocation IILoc) {
17725   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
17726       !getLangOpts().CPlusPlus)
17727     return SkipBodyInfo();
17728 
17729   // We have an anonymous enum definition. Look up the first enumerator to
17730   // determine if we should merge the definition with an existing one and
17731   // skip the body.
17732   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
17733                                          forRedeclarationInCurContext());
17734   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
17735   if (!PrevECD)
17736     return SkipBodyInfo();
17737 
17738   EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
17739   NamedDecl *Hidden;
17740   if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
17741     SkipBodyInfo Skip;
17742     Skip.Previous = Hidden;
17743     return Skip;
17744   }
17745 
17746   return SkipBodyInfo();
17747 }
17748 
17749 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
17750                               SourceLocation IdLoc, IdentifierInfo *Id,
17751                               const ParsedAttributesView &Attrs,
17752                               SourceLocation EqualLoc, Expr *Val) {
17753   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
17754   EnumConstantDecl *LastEnumConst =
17755     cast_or_null<EnumConstantDecl>(lastEnumConst);
17756 
17757   // The scope passed in may not be a decl scope.  Zip up the scope tree until
17758   // we find one that is.
17759   S = getNonFieldDeclScope(S);
17760 
17761   // Verify that there isn't already something declared with this name in this
17762   // scope.
17763   LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
17764   LookupName(R, S);
17765   NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
17766 
17767   if (PrevDecl && PrevDecl->isTemplateParameter()) {
17768     // Maybe we will complain about the shadowed template parameter.
17769     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
17770     // Just pretend that we didn't see the previous declaration.
17771     PrevDecl = nullptr;
17772   }
17773 
17774   // C++ [class.mem]p15:
17775   // If T is the name of a class, then each of the following shall have a name
17776   // different from T:
17777   // - every enumerator of every member of class T that is an unscoped
17778   // enumerated type
17779   if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
17780     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
17781                             DeclarationNameInfo(Id, IdLoc));
17782 
17783   EnumConstantDecl *New =
17784     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
17785   if (!New)
17786     return nullptr;
17787 
17788   if (PrevDecl) {
17789     if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
17790       // Check for other kinds of shadowing not already handled.
17791       CheckShadow(New, PrevDecl, R);
17792     }
17793 
17794     // When in C++, we may get a TagDecl with the same name; in this case the
17795     // enum constant will 'hide' the tag.
17796     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
17797            "Received TagDecl when not in C++!");
17798     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
17799       if (isa<EnumConstantDecl>(PrevDecl))
17800         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
17801       else
17802         Diag(IdLoc, diag::err_redefinition) << Id;
17803       notePreviousDefinition(PrevDecl, IdLoc);
17804       return nullptr;
17805     }
17806   }
17807 
17808   // Process attributes.
17809   ProcessDeclAttributeList(S, New, Attrs);
17810   AddPragmaAttributes(S, New);
17811 
17812   // Register this decl in the current scope stack.
17813   New->setAccess(TheEnumDecl->getAccess());
17814   PushOnScopeChains(New, S);
17815 
17816   ActOnDocumentableDecl(New);
17817 
17818   return New;
17819 }
17820 
17821 // Returns true when the enum initial expression does not trigger the
17822 // duplicate enum warning.  A few common cases are exempted as follows:
17823 // Element2 = Element1
17824 // Element2 = Element1 + 1
17825 // Element2 = Element1 - 1
17826 // Where Element2 and Element1 are from the same enum.
17827 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
17828   Expr *InitExpr = ECD->getInitExpr();
17829   if (!InitExpr)
17830     return true;
17831   InitExpr = InitExpr->IgnoreImpCasts();
17832 
17833   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
17834     if (!BO->isAdditiveOp())
17835       return true;
17836     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
17837     if (!IL)
17838       return true;
17839     if (IL->getValue() != 1)
17840       return true;
17841 
17842     InitExpr = BO->getLHS();
17843   }
17844 
17845   // This checks if the elements are from the same enum.
17846   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
17847   if (!DRE)
17848     return true;
17849 
17850   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
17851   if (!EnumConstant)
17852     return true;
17853 
17854   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
17855       Enum)
17856     return true;
17857 
17858   return false;
17859 }
17860 
17861 // Emits a warning when an element is implicitly set a value that
17862 // a previous element has already been set to.
17863 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
17864                                         EnumDecl *Enum, QualType EnumType) {
17865   // Avoid anonymous enums
17866   if (!Enum->getIdentifier())
17867     return;
17868 
17869   // Only check for small enums.
17870   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
17871     return;
17872 
17873   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
17874     return;
17875 
17876   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
17877   typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
17878 
17879   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
17880 
17881   // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
17882   typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
17883 
17884   // Use int64_t as a key to avoid needing special handling for map keys.
17885   auto EnumConstantToKey = [](const EnumConstantDecl *D) {
17886     llvm::APSInt Val = D->getInitVal();
17887     return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
17888   };
17889 
17890   DuplicatesVector DupVector;
17891   ValueToVectorMap EnumMap;
17892 
17893   // Populate the EnumMap with all values represented by enum constants without
17894   // an initializer.
17895   for (auto *Element : Elements) {
17896     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
17897 
17898     // Null EnumConstantDecl means a previous diagnostic has been emitted for
17899     // this constant.  Skip this enum since it may be ill-formed.
17900     if (!ECD) {
17901       return;
17902     }
17903 
17904     // Constants with initalizers are handled in the next loop.
17905     if (ECD->getInitExpr())
17906       continue;
17907 
17908     // Duplicate values are handled in the next loop.
17909     EnumMap.insert({EnumConstantToKey(ECD), ECD});
17910   }
17911 
17912   if (EnumMap.size() == 0)
17913     return;
17914 
17915   // Create vectors for any values that has duplicates.
17916   for (auto *Element : Elements) {
17917     // The last loop returned if any constant was null.
17918     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
17919     if (!ValidDuplicateEnum(ECD, Enum))
17920       continue;
17921 
17922     auto Iter = EnumMap.find(EnumConstantToKey(ECD));
17923     if (Iter == EnumMap.end())
17924       continue;
17925 
17926     DeclOrVector& Entry = Iter->second;
17927     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
17928       // Ensure constants are different.
17929       if (D == ECD)
17930         continue;
17931 
17932       // Create new vector and push values onto it.
17933       auto Vec = std::make_unique<ECDVector>();
17934       Vec->push_back(D);
17935       Vec->push_back(ECD);
17936 
17937       // Update entry to point to the duplicates vector.
17938       Entry = Vec.get();
17939 
17940       // Store the vector somewhere we can consult later for quick emission of
17941       // diagnostics.
17942       DupVector.emplace_back(std::move(Vec));
17943       continue;
17944     }
17945 
17946     ECDVector *Vec = Entry.get<ECDVector*>();
17947     // Make sure constants are not added more than once.
17948     if (*Vec->begin() == ECD)
17949       continue;
17950 
17951     Vec->push_back(ECD);
17952   }
17953 
17954   // Emit diagnostics.
17955   for (const auto &Vec : DupVector) {
17956     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
17957 
17958     // Emit warning for one enum constant.
17959     auto *FirstECD = Vec->front();
17960     S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
17961       << FirstECD << FirstECD->getInitVal().toString(10)
17962       << FirstECD->getSourceRange();
17963 
17964     // Emit one note for each of the remaining enum constants with
17965     // the same value.
17966     for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
17967       S.Diag(ECD->getLocation(), diag::note_duplicate_element)
17968         << ECD << ECD->getInitVal().toString(10)
17969         << ECD->getSourceRange();
17970   }
17971 }
17972 
17973 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
17974                              bool AllowMask) const {
17975   assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
17976   assert(ED->isCompleteDefinition() && "expected enum definition");
17977 
17978   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
17979   llvm::APInt &FlagBits = R.first->second;
17980 
17981   if (R.second) {
17982     for (auto *E : ED->enumerators()) {
17983       const auto &EVal = E->getInitVal();
17984       // Only single-bit enumerators introduce new flag values.
17985       if (EVal.isPowerOf2())
17986         FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
17987     }
17988   }
17989 
17990   // A value is in a flag enum if either its bits are a subset of the enum's
17991   // flag bits (the first condition) or we are allowing masks and the same is
17992   // true of its complement (the second condition). When masks are allowed, we
17993   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
17994   //
17995   // While it's true that any value could be used as a mask, the assumption is
17996   // that a mask will have all of the insignificant bits set. Anything else is
17997   // likely a logic error.
17998   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
17999   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
18000 }
18001 
18002 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
18003                          Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
18004                          const ParsedAttributesView &Attrs) {
18005   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
18006   QualType EnumType = Context.getTypeDeclType(Enum);
18007 
18008   ProcessDeclAttributeList(S, Enum, Attrs);
18009 
18010   if (Enum->isDependentType()) {
18011     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
18012       EnumConstantDecl *ECD =
18013         cast_or_null<EnumConstantDecl>(Elements[i]);
18014       if (!ECD) continue;
18015 
18016       ECD->setType(EnumType);
18017     }
18018 
18019     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
18020     return;
18021   }
18022 
18023   // TODO: If the result value doesn't fit in an int, it must be a long or long
18024   // long value.  ISO C does not support this, but GCC does as an extension,
18025   // emit a warning.
18026   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
18027   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
18028   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
18029 
18030   // Verify that all the values are okay, compute the size of the values, and
18031   // reverse the list.
18032   unsigned NumNegativeBits = 0;
18033   unsigned NumPositiveBits = 0;
18034 
18035   // Keep track of whether all elements have type int.
18036   bool AllElementsInt = true;
18037 
18038   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
18039     EnumConstantDecl *ECD =
18040       cast_or_null<EnumConstantDecl>(Elements[i]);
18041     if (!ECD) continue;  // Already issued a diagnostic.
18042 
18043     const llvm::APSInt &InitVal = ECD->getInitVal();
18044 
18045     // Keep track of the size of positive and negative values.
18046     if (InitVal.isUnsigned() || InitVal.isNonNegative())
18047       NumPositiveBits = std::max(NumPositiveBits,
18048                                  (unsigned)InitVal.getActiveBits());
18049     else
18050       NumNegativeBits = std::max(NumNegativeBits,
18051                                  (unsigned)InitVal.getMinSignedBits());
18052 
18053     // Keep track of whether every enum element has type int (very common).
18054     if (AllElementsInt)
18055       AllElementsInt = ECD->getType() == Context.IntTy;
18056   }
18057 
18058   // Figure out the type that should be used for this enum.
18059   QualType BestType;
18060   unsigned BestWidth;
18061 
18062   // C++0x N3000 [conv.prom]p3:
18063   //   An rvalue of an unscoped enumeration type whose underlying
18064   //   type is not fixed can be converted to an rvalue of the first
18065   //   of the following types that can represent all the values of
18066   //   the enumeration: int, unsigned int, long int, unsigned long
18067   //   int, long long int, or unsigned long long int.
18068   // C99 6.4.4.3p2:
18069   //   An identifier declared as an enumeration constant has type int.
18070   // The C99 rule is modified by a gcc extension
18071   QualType BestPromotionType;
18072 
18073   bool Packed = Enum->hasAttr<PackedAttr>();
18074   // -fshort-enums is the equivalent to specifying the packed attribute on all
18075   // enum definitions.
18076   if (LangOpts.ShortEnums)
18077     Packed = true;
18078 
18079   // If the enum already has a type because it is fixed or dictated by the
18080   // target, promote that type instead of analyzing the enumerators.
18081   if (Enum->isComplete()) {
18082     BestType = Enum->getIntegerType();
18083     if (BestType->isPromotableIntegerType())
18084       BestPromotionType = Context.getPromotedIntegerType(BestType);
18085     else
18086       BestPromotionType = BestType;
18087 
18088     BestWidth = Context.getIntWidth(BestType);
18089   }
18090   else if (NumNegativeBits) {
18091     // If there is a negative value, figure out the smallest integer type (of
18092     // int/long/longlong) that fits.
18093     // If it's packed, check also if it fits a char or a short.
18094     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
18095       BestType = Context.SignedCharTy;
18096       BestWidth = CharWidth;
18097     } else if (Packed && NumNegativeBits <= ShortWidth &&
18098                NumPositiveBits < ShortWidth) {
18099       BestType = Context.ShortTy;
18100       BestWidth = ShortWidth;
18101     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
18102       BestType = Context.IntTy;
18103       BestWidth = IntWidth;
18104     } else {
18105       BestWidth = Context.getTargetInfo().getLongWidth();
18106 
18107       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
18108         BestType = Context.LongTy;
18109       } else {
18110         BestWidth = Context.getTargetInfo().getLongLongWidth();
18111 
18112         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
18113           Diag(Enum->getLocation(), diag::ext_enum_too_large);
18114         BestType = Context.LongLongTy;
18115       }
18116     }
18117     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
18118   } else {
18119     // If there is no negative value, figure out the smallest type that fits
18120     // all of the enumerator values.
18121     // If it's packed, check also if it fits a char or a short.
18122     if (Packed && NumPositiveBits <= CharWidth) {
18123       BestType = Context.UnsignedCharTy;
18124       BestPromotionType = Context.IntTy;
18125       BestWidth = CharWidth;
18126     } else if (Packed && NumPositiveBits <= ShortWidth) {
18127       BestType = Context.UnsignedShortTy;
18128       BestPromotionType = Context.IntTy;
18129       BestWidth = ShortWidth;
18130     } else if (NumPositiveBits <= IntWidth) {
18131       BestType = Context.UnsignedIntTy;
18132       BestWidth = IntWidth;
18133       BestPromotionType
18134         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18135                            ? Context.UnsignedIntTy : Context.IntTy;
18136     } else if (NumPositiveBits <=
18137                (BestWidth = Context.getTargetInfo().getLongWidth())) {
18138       BestType = Context.UnsignedLongTy;
18139       BestPromotionType
18140         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18141                            ? Context.UnsignedLongTy : Context.LongTy;
18142     } else {
18143       BestWidth = Context.getTargetInfo().getLongLongWidth();
18144       assert(NumPositiveBits <= BestWidth &&
18145              "How could an initializer get larger than ULL?");
18146       BestType = Context.UnsignedLongLongTy;
18147       BestPromotionType
18148         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18149                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
18150     }
18151   }
18152 
18153   // Loop over all of the enumerator constants, changing their types to match
18154   // the type of the enum if needed.
18155   for (auto *D : Elements) {
18156     auto *ECD = cast_or_null<EnumConstantDecl>(D);
18157     if (!ECD) continue;  // Already issued a diagnostic.
18158 
18159     // Standard C says the enumerators have int type, but we allow, as an
18160     // extension, the enumerators to be larger than int size.  If each
18161     // enumerator value fits in an int, type it as an int, otherwise type it the
18162     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
18163     // that X has type 'int', not 'unsigned'.
18164 
18165     // Determine whether the value fits into an int.
18166     llvm::APSInt InitVal = ECD->getInitVal();
18167 
18168     // If it fits into an integer type, force it.  Otherwise force it to match
18169     // the enum decl type.
18170     QualType NewTy;
18171     unsigned NewWidth;
18172     bool NewSign;
18173     if (!getLangOpts().CPlusPlus &&
18174         !Enum->isFixed() &&
18175         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
18176       NewTy = Context.IntTy;
18177       NewWidth = IntWidth;
18178       NewSign = true;
18179     } else if (ECD->getType() == BestType) {
18180       // Already the right type!
18181       if (getLangOpts().CPlusPlus)
18182         // C++ [dcl.enum]p4: Following the closing brace of an
18183         // enum-specifier, each enumerator has the type of its
18184         // enumeration.
18185         ECD->setType(EnumType);
18186       continue;
18187     } else {
18188       NewTy = BestType;
18189       NewWidth = BestWidth;
18190       NewSign = BestType->isSignedIntegerOrEnumerationType();
18191     }
18192 
18193     // Adjust the APSInt value.
18194     InitVal = InitVal.extOrTrunc(NewWidth);
18195     InitVal.setIsSigned(NewSign);
18196     ECD->setInitVal(InitVal);
18197 
18198     // Adjust the Expr initializer and type.
18199     if (ECD->getInitExpr() &&
18200         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
18201       ECD->setInitExpr(ImplicitCastExpr::Create(
18202           Context, NewTy, CK_IntegralCast, ECD->getInitExpr(),
18203           /*base paths*/ nullptr, VK_RValue, FPOptionsOverride()));
18204     if (getLangOpts().CPlusPlus)
18205       // C++ [dcl.enum]p4: Following the closing brace of an
18206       // enum-specifier, each enumerator has the type of its
18207       // enumeration.
18208       ECD->setType(EnumType);
18209     else
18210       ECD->setType(NewTy);
18211   }
18212 
18213   Enum->completeDefinition(BestType, BestPromotionType,
18214                            NumPositiveBits, NumNegativeBits);
18215 
18216   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
18217 
18218   if (Enum->isClosedFlag()) {
18219     for (Decl *D : Elements) {
18220       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
18221       if (!ECD) continue;  // Already issued a diagnostic.
18222 
18223       llvm::APSInt InitVal = ECD->getInitVal();
18224       if (InitVal != 0 && !InitVal.isPowerOf2() &&
18225           !IsValueInFlagEnum(Enum, InitVal, true))
18226         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
18227           << ECD << Enum;
18228     }
18229   }
18230 
18231   // Now that the enum type is defined, ensure it's not been underaligned.
18232   if (Enum->hasAttrs())
18233     CheckAlignasUnderalignment(Enum);
18234 }
18235 
18236 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
18237                                   SourceLocation StartLoc,
18238                                   SourceLocation EndLoc) {
18239   StringLiteral *AsmString = cast<StringLiteral>(expr);
18240 
18241   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
18242                                                    AsmString, StartLoc,
18243                                                    EndLoc);
18244   CurContext->addDecl(New);
18245   return New;
18246 }
18247 
18248 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
18249                                       IdentifierInfo* AliasName,
18250                                       SourceLocation PragmaLoc,
18251                                       SourceLocation NameLoc,
18252                                       SourceLocation AliasNameLoc) {
18253   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
18254                                          LookupOrdinaryName);
18255   AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
18256                            AttributeCommonInfo::AS_Pragma);
18257   AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
18258       Context, AliasName->getName(), /*LiteralLabel=*/true, Info);
18259 
18260   // If a declaration that:
18261   // 1) declares a function or a variable
18262   // 2) has external linkage
18263   // already exists, add a label attribute to it.
18264   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18265     if (isDeclExternC(PrevDecl))
18266       PrevDecl->addAttr(Attr);
18267     else
18268       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
18269           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
18270   // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
18271   } else
18272     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
18273 }
18274 
18275 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
18276                              SourceLocation PragmaLoc,
18277                              SourceLocation NameLoc) {
18278   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
18279 
18280   if (PrevDecl) {
18281     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma));
18282   } else {
18283     (void)WeakUndeclaredIdentifiers.insert(
18284       std::pair<IdentifierInfo*,WeakInfo>
18285         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
18286   }
18287 }
18288 
18289 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
18290                                 IdentifierInfo* AliasName,
18291                                 SourceLocation PragmaLoc,
18292                                 SourceLocation NameLoc,
18293                                 SourceLocation AliasNameLoc) {
18294   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
18295                                     LookupOrdinaryName);
18296   WeakInfo W = WeakInfo(Name, NameLoc);
18297 
18298   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18299     if (!PrevDecl->hasAttr<AliasAttr>())
18300       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
18301         DeclApplyPragmaWeak(TUScope, ND, W);
18302   } else {
18303     (void)WeakUndeclaredIdentifiers.insert(
18304       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
18305   }
18306 }
18307 
18308 Decl *Sema::getObjCDeclContext() const {
18309   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
18310 }
18311 
18312 Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD,
18313                                                      bool Final) {
18314   // SYCL functions can be template, so we check if they have appropriate
18315   // attribute prior to checking if it is a template.
18316   if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>())
18317     return FunctionEmissionStatus::Emitted;
18318 
18319   // Templates are emitted when they're instantiated.
18320   if (FD->isDependentContext())
18321     return FunctionEmissionStatus::TemplateDiscarded;
18322 
18323   FunctionEmissionStatus OMPES = FunctionEmissionStatus::Unknown;
18324   if (LangOpts.OpenMPIsDevice) {
18325     Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
18326         OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
18327     if (DevTy.hasValue()) {
18328       if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
18329         OMPES = FunctionEmissionStatus::OMPDiscarded;
18330       else if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost ||
18331                *DevTy == OMPDeclareTargetDeclAttr::DT_Any) {
18332         OMPES = FunctionEmissionStatus::Emitted;
18333       }
18334     }
18335   } else if (LangOpts.OpenMP) {
18336     // In OpenMP 4.5 all the functions are host functions.
18337     if (LangOpts.OpenMP <= 45) {
18338       OMPES = FunctionEmissionStatus::Emitted;
18339     } else {
18340       Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
18341           OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
18342       // In OpenMP 5.0 or above, DevTy may be changed later by
18343       // #pragma omp declare target to(*) device_type(*). Therefore DevTy
18344       // having no value does not imply host. The emission status will be
18345       // checked again at the end of compilation unit.
18346       if (DevTy.hasValue()) {
18347         if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) {
18348           OMPES = FunctionEmissionStatus::OMPDiscarded;
18349         } else if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host ||
18350                    *DevTy == OMPDeclareTargetDeclAttr::DT_Any)
18351           OMPES = FunctionEmissionStatus::Emitted;
18352       } else if (Final)
18353         OMPES = FunctionEmissionStatus::Emitted;
18354     }
18355   }
18356   if (OMPES == FunctionEmissionStatus::OMPDiscarded ||
18357       (OMPES == FunctionEmissionStatus::Emitted && !LangOpts.CUDA))
18358     return OMPES;
18359 
18360   if (LangOpts.CUDA) {
18361     // When compiling for device, host functions are never emitted.  Similarly,
18362     // when compiling for host, device and global functions are never emitted.
18363     // (Technically, we do emit a host-side stub for global functions, but this
18364     // doesn't count for our purposes here.)
18365     Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD);
18366     if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host)
18367       return FunctionEmissionStatus::CUDADiscarded;
18368     if (!LangOpts.CUDAIsDevice &&
18369         (T == Sema::CFT_Device || T == Sema::CFT_Global))
18370       return FunctionEmissionStatus::CUDADiscarded;
18371 
18372     // Check whether this function is externally visible -- if so, it's
18373     // known-emitted.
18374     //
18375     // We have to check the GVA linkage of the function's *definition* -- if we
18376     // only have a declaration, we don't know whether or not the function will
18377     // be emitted, because (say) the definition could include "inline".
18378     FunctionDecl *Def = FD->getDefinition();
18379 
18380     if (Def &&
18381         !isDiscardableGVALinkage(getASTContext().GetGVALinkageForFunction(Def))
18382         && (!LangOpts.OpenMP || OMPES == FunctionEmissionStatus::Emitted))
18383       return FunctionEmissionStatus::Emitted;
18384   }
18385 
18386   // Otherwise, the function is known-emitted if it's in our set of
18387   // known-emitted functions.
18388   return FunctionEmissionStatus::Unknown;
18389 }
18390 
18391 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
18392   // Host-side references to a __global__ function refer to the stub, so the
18393   // function itself is never emitted and therefore should not be marked.
18394   // If we have host fn calls kernel fn calls host+device, the HD function
18395   // does not get instantiated on the host. We model this by omitting at the
18396   // call to the kernel from the callgraph. This ensures that, when compiling
18397   // for host, only HD functions actually called from the host get marked as
18398   // known-emitted.
18399   return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
18400          IdentifyCUDATarget(Callee) == CFT_Global;
18401 }
18402