1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TypeLocBuilder.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/CommentDiagnostic.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/EvaluatedExprVisitor.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
32 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
33 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
34 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
35 #include "clang/Sema/CXXFieldCollector.h"
36 #include "clang/Sema/DeclSpec.h"
37 #include "clang/Sema/DelayedDiagnostic.h"
38 #include "clang/Sema/Initialization.h"
39 #include "clang/Sema/Lookup.h"
40 #include "clang/Sema/ParsedTemplate.h"
41 #include "clang/Sema/Scope.h"
42 #include "clang/Sema/ScopeInfo.h"
43 #include "clang/Sema/SemaInternal.h"
44 #include "clang/Sema/Template.h"
45 #include "llvm/ADT/SmallString.h"
46 #include "llvm/ADT/Triple.h"
47 #include <algorithm>
48 #include <cstring>
49 #include <functional>
50 
51 using namespace clang;
52 using namespace sema;
53 
54 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
55   if (OwnedType) {
56     Decl *Group[2] = { OwnedType, Ptr };
57     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
58   }
59 
60   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
61 }
62 
63 namespace {
64 
65 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
66  public:
67    TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
68                         bool AllowTemplates = false,
69                         bool AllowNonTemplates = true)
70        : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
71          AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
72      WantExpressionKeywords = false;
73      WantCXXNamedCasts = false;
74      WantRemainingKeywords = false;
75   }
76 
77   bool ValidateCandidate(const TypoCorrection &candidate) override {
78     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
79       if (!AllowInvalidDecl && ND->isInvalidDecl())
80         return false;
81 
82       if (getAsTypeTemplateDecl(ND))
83         return AllowTemplates;
84 
85       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
86       if (!IsType)
87         return false;
88 
89       if (AllowNonTemplates)
90         return true;
91 
92       // An injected-class-name of a class template (specialization) is valid
93       // as a template or as a non-template.
94       if (AllowTemplates) {
95         auto *RD = dyn_cast<CXXRecordDecl>(ND);
96         if (!RD || !RD->isInjectedClassName())
97           return false;
98         RD = cast<CXXRecordDecl>(RD->getDeclContext());
99         return RD->getDescribedClassTemplate() ||
100                isa<ClassTemplateSpecializationDecl>(RD);
101       }
102 
103       return false;
104     }
105 
106     return !WantClassName && candidate.isKeyword();
107   }
108 
109  private:
110   bool AllowInvalidDecl;
111   bool WantClassName;
112   bool AllowTemplates;
113   bool AllowNonTemplates;
114 };
115 
116 } // end anonymous namespace
117 
118 /// \brief Determine whether the token kind starts a simple-type-specifier.
119 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
120   switch (Kind) {
121   // FIXME: Take into account the current language when deciding whether a
122   // token kind is a valid type specifier
123   case tok::kw_short:
124   case tok::kw_long:
125   case tok::kw___int64:
126   case tok::kw___int128:
127   case tok::kw_signed:
128   case tok::kw_unsigned:
129   case tok::kw_void:
130   case tok::kw_char:
131   case tok::kw_int:
132   case tok::kw_half:
133   case tok::kw_float:
134   case tok::kw_double:
135   case tok::kw__Float16:
136   case tok::kw___float128:
137   case tok::kw_wchar_t:
138   case tok::kw_bool:
139   case tok::kw___underlying_type:
140   case tok::kw___auto_type:
141     return true;
142 
143   case tok::annot_typename:
144   case tok::kw_char16_t:
145   case tok::kw_char32_t:
146   case tok::kw_typeof:
147   case tok::annot_decltype:
148   case tok::kw_decltype:
149     return getLangOpts().CPlusPlus;
150 
151   default:
152     break;
153   }
154 
155   return false;
156 }
157 
158 namespace {
159 enum class UnqualifiedTypeNameLookupResult {
160   NotFound,
161   FoundNonType,
162   FoundType
163 };
164 } // end anonymous namespace
165 
166 /// \brief Tries to perform unqualified lookup of the type decls in bases for
167 /// dependent class.
168 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
169 /// type decl, \a FoundType if only type decls are found.
170 static UnqualifiedTypeNameLookupResult
171 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
172                                 SourceLocation NameLoc,
173                                 const CXXRecordDecl *RD) {
174   if (!RD->hasDefinition())
175     return UnqualifiedTypeNameLookupResult::NotFound;
176   // Look for type decls in base classes.
177   UnqualifiedTypeNameLookupResult FoundTypeDecl =
178       UnqualifiedTypeNameLookupResult::NotFound;
179   for (const auto &Base : RD->bases()) {
180     const CXXRecordDecl *BaseRD = nullptr;
181     if (auto *BaseTT = Base.getType()->getAs<TagType>())
182       BaseRD = BaseTT->getAsCXXRecordDecl();
183     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
184       // Look for type decls in dependent base classes that have known primary
185       // templates.
186       if (!TST || !TST->isDependentType())
187         continue;
188       auto *TD = TST->getTemplateName().getAsTemplateDecl();
189       if (!TD)
190         continue;
191       if (auto *BasePrimaryTemplate =
192           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
193         if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
194           BaseRD = BasePrimaryTemplate;
195         else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
196           if (const ClassTemplatePartialSpecializationDecl *PS =
197                   CTD->findPartialSpecialization(Base.getType()))
198             if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
199               BaseRD = PS;
200         }
201       }
202     }
203     if (BaseRD) {
204       for (NamedDecl *ND : BaseRD->lookup(&II)) {
205         if (!isa<TypeDecl>(ND))
206           return UnqualifiedTypeNameLookupResult::FoundNonType;
207         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
208       }
209       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
210         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
211         case UnqualifiedTypeNameLookupResult::FoundNonType:
212           return UnqualifiedTypeNameLookupResult::FoundNonType;
213         case UnqualifiedTypeNameLookupResult::FoundType:
214           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
215           break;
216         case UnqualifiedTypeNameLookupResult::NotFound:
217           break;
218         }
219       }
220     }
221   }
222 
223   return FoundTypeDecl;
224 }
225 
226 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
227                                                       const IdentifierInfo &II,
228                                                       SourceLocation NameLoc) {
229   // Lookup in the parent class template context, if any.
230   const CXXRecordDecl *RD = nullptr;
231   UnqualifiedTypeNameLookupResult FoundTypeDecl =
232       UnqualifiedTypeNameLookupResult::NotFound;
233   for (DeclContext *DC = S.CurContext;
234        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
235        DC = DC->getParent()) {
236     // Look for type decls in dependent base classes that have known primary
237     // templates.
238     RD = dyn_cast<CXXRecordDecl>(DC);
239     if (RD && RD->getDescribedClassTemplate())
240       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
241   }
242   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
243     return nullptr;
244 
245   // We found some types in dependent base classes.  Recover as if the user
246   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
247   // lookup during template instantiation.
248   S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
249 
250   ASTContext &Context = S.Context;
251   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
252                                           cast<Type>(Context.getRecordType(RD)));
253   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
254 
255   CXXScopeSpec SS;
256   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
257 
258   TypeLocBuilder Builder;
259   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
260   DepTL.setNameLoc(NameLoc);
261   DepTL.setElaboratedKeywordLoc(SourceLocation());
262   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
263   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
264 }
265 
266 /// \brief If the identifier refers to a type name within this scope,
267 /// return the declaration of that type.
268 ///
269 /// This routine performs ordinary name lookup of the identifier II
270 /// within the given scope, with optional C++ scope specifier SS, to
271 /// determine whether the name refers to a type. If so, returns an
272 /// opaque pointer (actually a QualType) corresponding to that
273 /// type. Otherwise, returns NULL.
274 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
275                              Scope *S, CXXScopeSpec *SS,
276                              bool isClassName, bool HasTrailingDot,
277                              ParsedType ObjectTypePtr,
278                              bool IsCtorOrDtorName,
279                              bool WantNontrivialTypeSourceInfo,
280                              bool IsClassTemplateDeductionContext,
281                              IdentifierInfo **CorrectedII) {
282   // FIXME: Consider allowing this outside C++1z mode as an extension.
283   bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
284                               getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
285                               !isClassName && !HasTrailingDot;
286 
287   // Determine where we will perform name lookup.
288   DeclContext *LookupCtx = nullptr;
289   if (ObjectTypePtr) {
290     QualType ObjectType = ObjectTypePtr.get();
291     if (ObjectType->isRecordType())
292       LookupCtx = computeDeclContext(ObjectType);
293   } else if (SS && SS->isNotEmpty()) {
294     LookupCtx = computeDeclContext(*SS, false);
295 
296     if (!LookupCtx) {
297       if (isDependentScopeSpecifier(*SS)) {
298         // C++ [temp.res]p3:
299         //   A qualified-id that refers to a type and in which the
300         //   nested-name-specifier depends on a template-parameter (14.6.2)
301         //   shall be prefixed by the keyword typename to indicate that the
302         //   qualified-id denotes a type, forming an
303         //   elaborated-type-specifier (7.1.5.3).
304         //
305         // We therefore do not perform any name lookup if the result would
306         // refer to a member of an unknown specialization.
307         if (!isClassName && !IsCtorOrDtorName)
308           return nullptr;
309 
310         // We know from the grammar that this name refers to a type,
311         // so build a dependent node to describe the type.
312         if (WantNontrivialTypeSourceInfo)
313           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
314 
315         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
316         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
317                                        II, NameLoc);
318         return ParsedType::make(T);
319       }
320 
321       return nullptr;
322     }
323 
324     if (!LookupCtx->isDependentContext() &&
325         RequireCompleteDeclContext(*SS, LookupCtx))
326       return nullptr;
327   }
328 
329   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
330   // lookup for class-names.
331   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
332                                       LookupOrdinaryName;
333   LookupResult Result(*this, &II, NameLoc, Kind);
334   if (LookupCtx) {
335     // Perform "qualified" name lookup into the declaration context we
336     // computed, which is either the type of the base of a member access
337     // expression or the declaration context associated with a prior
338     // nested-name-specifier.
339     LookupQualifiedName(Result, LookupCtx);
340 
341     if (ObjectTypePtr && Result.empty()) {
342       // C++ [basic.lookup.classref]p3:
343       //   If the unqualified-id is ~type-name, the type-name is looked up
344       //   in the context of the entire postfix-expression. If the type T of
345       //   the object expression is of a class type C, the type-name is also
346       //   looked up in the scope of class C. At least one of the lookups shall
347       //   find a name that refers to (possibly cv-qualified) T.
348       LookupName(Result, S);
349     }
350   } else {
351     // Perform unqualified name lookup.
352     LookupName(Result, S);
353 
354     // For unqualified lookup in a class template in MSVC mode, look into
355     // dependent base classes where the primary class template is known.
356     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
357       if (ParsedType TypeInBase =
358               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
359         return TypeInBase;
360     }
361   }
362 
363   NamedDecl *IIDecl = nullptr;
364   switch (Result.getResultKind()) {
365   case LookupResult::NotFound:
366   case LookupResult::NotFoundInCurrentInstantiation:
367     if (CorrectedII) {
368       TypoCorrection Correction =
369           CorrectTypo(Result.getLookupNameInfo(), Kind, S, SS,
370                       llvm::make_unique<TypeNameValidatorCCC>(
371                           true, isClassName, AllowDeducedTemplate),
372                       CTK_ErrorRecovery);
373       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
374       TemplateTy Template;
375       bool MemberOfUnknownSpecialization;
376       UnqualifiedId TemplateName;
377       TemplateName.setIdentifier(NewII, NameLoc);
378       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
379       CXXScopeSpec NewSS, *NewSSPtr = SS;
380       if (SS && NNS) {
381         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
382         NewSSPtr = &NewSS;
383       }
384       if (Correction && (NNS || NewII != &II) &&
385           // Ignore a correction to a template type as the to-be-corrected
386           // identifier is not a template (typo correction for template names
387           // is handled elsewhere).
388           !(getLangOpts().CPlusPlus && NewSSPtr &&
389             isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
390                            Template, MemberOfUnknownSpecialization))) {
391         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
392                                     isClassName, HasTrailingDot, ObjectTypePtr,
393                                     IsCtorOrDtorName,
394                                     WantNontrivialTypeSourceInfo,
395                                     IsClassTemplateDeductionContext);
396         if (Ty) {
397           diagnoseTypo(Correction,
398                        PDiag(diag::err_unknown_type_or_class_name_suggest)
399                          << Result.getLookupName() << isClassName);
400           if (SS && NNS)
401             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
402           *CorrectedII = NewII;
403           return Ty;
404         }
405       }
406     }
407     // If typo correction failed or was not performed, fall through
408     LLVM_FALLTHROUGH;
409   case LookupResult::FoundOverloaded:
410   case LookupResult::FoundUnresolvedValue:
411     Result.suppressDiagnostics();
412     return nullptr;
413 
414   case LookupResult::Ambiguous:
415     // Recover from type-hiding ambiguities by hiding the type.  We'll
416     // do the lookup again when looking for an object, and we can
417     // diagnose the error then.  If we don't do this, then the error
418     // about hiding the type will be immediately followed by an error
419     // that only makes sense if the identifier was treated like a type.
420     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
421       Result.suppressDiagnostics();
422       return nullptr;
423     }
424 
425     // Look to see if we have a type anywhere in the list of results.
426     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
427          Res != ResEnd; ++Res) {
428       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
429           (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
430         if (!IIDecl ||
431             (*Res)->getLocation().getRawEncoding() <
432               IIDecl->getLocation().getRawEncoding())
433           IIDecl = *Res;
434       }
435     }
436 
437     if (!IIDecl) {
438       // None of the entities we found is a type, so there is no way
439       // to even assume that the result is a type. In this case, don't
440       // complain about the ambiguity. The parser will either try to
441       // perform this lookup again (e.g., as an object name), which
442       // will produce the ambiguity, or will complain that it expected
443       // a type name.
444       Result.suppressDiagnostics();
445       return nullptr;
446     }
447 
448     // We found a type within the ambiguous lookup; diagnose the
449     // ambiguity and then return that type. This might be the right
450     // answer, or it might not be, but it suppresses any attempt to
451     // perform the name lookup again.
452     break;
453 
454   case LookupResult::Found:
455     IIDecl = Result.getFoundDecl();
456     break;
457   }
458 
459   assert(IIDecl && "Didn't find decl");
460 
461   QualType T;
462   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
463     // C++ [class.qual]p2: A lookup that would find the injected-class-name
464     // instead names the constructors of the class, except when naming a class.
465     // This is ill-formed when we're not actually forming a ctor or dtor name.
466     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
467     auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
468     if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
469         FoundRD->isInjectedClassName() &&
470         declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
471       Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
472           << &II << /*Type*/1;
473 
474     DiagnoseUseOfDecl(IIDecl, NameLoc);
475 
476     T = Context.getTypeDeclType(TD);
477     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
478   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
479     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
480     if (!HasTrailingDot)
481       T = Context.getObjCInterfaceType(IDecl);
482   } else if (AllowDeducedTemplate) {
483     if (auto *TD = getAsTypeTemplateDecl(IIDecl))
484       T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
485                                                        QualType(), false);
486   }
487 
488   if (T.isNull()) {
489     // If it's not plausibly a type, suppress diagnostics.
490     Result.suppressDiagnostics();
491     return nullptr;
492   }
493 
494   // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
495   // constructor or destructor name (in such a case, the scope specifier
496   // will be attached to the enclosing Expr or Decl node).
497   if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
498       !isa<ObjCInterfaceDecl>(IIDecl)) {
499     if (WantNontrivialTypeSourceInfo) {
500       // Construct a type with type-source information.
501       TypeLocBuilder Builder;
502       Builder.pushTypeSpec(T).setNameLoc(NameLoc);
503 
504       T = getElaboratedType(ETK_None, *SS, T);
505       ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
506       ElabTL.setElaboratedKeywordLoc(SourceLocation());
507       ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
508       return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
509     } else {
510       T = getElaboratedType(ETK_None, *SS, T);
511     }
512   }
513 
514   return ParsedType::make(T);
515 }
516 
517 // Builds a fake NNS for the given decl context.
518 static NestedNameSpecifier *
519 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
520   for (;; DC = DC->getLookupParent()) {
521     DC = DC->getPrimaryContext();
522     auto *ND = dyn_cast<NamespaceDecl>(DC);
523     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
524       return NestedNameSpecifier::Create(Context, nullptr, ND);
525     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
526       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
527                                          RD->getTypeForDecl());
528     else if (isa<TranslationUnitDecl>(DC))
529       return NestedNameSpecifier::GlobalSpecifier(Context);
530   }
531   llvm_unreachable("something isn't in TU scope?");
532 }
533 
534 /// Find the parent class with dependent bases of the innermost enclosing method
535 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
536 /// up allowing unqualified dependent type names at class-level, which MSVC
537 /// correctly rejects.
538 static const CXXRecordDecl *
539 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
540   for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
541     DC = DC->getPrimaryContext();
542     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
543       if (MD->getParent()->hasAnyDependentBases())
544         return MD->getParent();
545   }
546   return nullptr;
547 }
548 
549 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
550                                           SourceLocation NameLoc,
551                                           bool IsTemplateTypeArg) {
552   assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
553 
554   NestedNameSpecifier *NNS = nullptr;
555   if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
556     // If we weren't able to parse a default template argument, delay lookup
557     // until instantiation time by making a non-dependent DependentTypeName. We
558     // pretend we saw a NestedNameSpecifier referring to the current scope, and
559     // lookup is retried.
560     // FIXME: This hurts our diagnostic quality, since we get errors like "no
561     // type named 'Foo' in 'current_namespace'" when the user didn't write any
562     // name specifiers.
563     NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
564     Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
565   } else if (const CXXRecordDecl *RD =
566                  findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
567     // Build a DependentNameType that will perform lookup into RD at
568     // instantiation time.
569     NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
570                                       RD->getTypeForDecl());
571 
572     // Diagnose that this identifier was undeclared, and retry the lookup during
573     // template instantiation.
574     Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
575                                                                       << RD;
576   } else {
577     // This is not a situation that we should recover from.
578     return ParsedType();
579   }
580 
581   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
582 
583   // Build type location information.  We synthesized the qualifier, so we have
584   // to build a fake NestedNameSpecifierLoc.
585   NestedNameSpecifierLocBuilder NNSLocBuilder;
586   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
587   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
588 
589   TypeLocBuilder Builder;
590   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
591   DepTL.setNameLoc(NameLoc);
592   DepTL.setElaboratedKeywordLoc(SourceLocation());
593   DepTL.setQualifierLoc(QualifierLoc);
594   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
595 }
596 
597 /// isTagName() - This method is called *for error recovery purposes only*
598 /// to determine if the specified name is a valid tag name ("struct foo").  If
599 /// so, this returns the TST for the tag corresponding to it (TST_enum,
600 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
601 /// cases in C where the user forgot to specify the tag.
602 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
603   // Do a tag name lookup in this scope.
604   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
605   LookupName(R, S, false);
606   R.suppressDiagnostics();
607   if (R.getResultKind() == LookupResult::Found)
608     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
609       switch (TD->getTagKind()) {
610       case TTK_Struct: return DeclSpec::TST_struct;
611       case TTK_Interface: return DeclSpec::TST_interface;
612       case TTK_Union:  return DeclSpec::TST_union;
613       case TTK_Class:  return DeclSpec::TST_class;
614       case TTK_Enum:   return DeclSpec::TST_enum;
615       }
616     }
617 
618   return DeclSpec::TST_unspecified;
619 }
620 
621 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
622 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
623 /// then downgrade the missing typename error to a warning.
624 /// This is needed for MSVC compatibility; Example:
625 /// @code
626 /// template<class T> class A {
627 /// public:
628 ///   typedef int TYPE;
629 /// };
630 /// template<class T> class B : public A<T> {
631 /// public:
632 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
633 /// };
634 /// @endcode
635 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
636   if (CurContext->isRecord()) {
637     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
638       return true;
639 
640     const Type *Ty = SS->getScopeRep()->getAsType();
641 
642     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
643     for (const auto &Base : RD->bases())
644       if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
645         return true;
646     return S->isFunctionPrototypeScope();
647   }
648   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
649 }
650 
651 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
652                                    SourceLocation IILoc,
653                                    Scope *S,
654                                    CXXScopeSpec *SS,
655                                    ParsedType &SuggestedType,
656                                    bool IsTemplateName) {
657   // Don't report typename errors for editor placeholders.
658   if (II->isEditorPlaceholder())
659     return;
660   // We don't have anything to suggest (yet).
661   SuggestedType = nullptr;
662 
663   // There may have been a typo in the name of the type. Look up typo
664   // results, in case we have something that we can suggest.
665   if (TypoCorrection Corrected =
666           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
667                       llvm::make_unique<TypeNameValidatorCCC>(
668                           false, false, IsTemplateName, !IsTemplateName),
669                       CTK_ErrorRecovery)) {
670     // FIXME: Support error recovery for the template-name case.
671     bool CanRecover = !IsTemplateName;
672     if (Corrected.isKeyword()) {
673       // We corrected to a keyword.
674       diagnoseTypo(Corrected,
675                    PDiag(IsTemplateName ? diag::err_no_template_suggest
676                                         : diag::err_unknown_typename_suggest)
677                        << II);
678       II = Corrected.getCorrectionAsIdentifierInfo();
679     } else {
680       // We found a similarly-named type or interface; suggest that.
681       if (!SS || !SS->isSet()) {
682         diagnoseTypo(Corrected,
683                      PDiag(IsTemplateName ? diag::err_no_template_suggest
684                                           : diag::err_unknown_typename_suggest)
685                          << II, CanRecover);
686       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
687         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
688         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
689                                 II->getName().equals(CorrectedStr);
690         diagnoseTypo(Corrected,
691                      PDiag(IsTemplateName
692                                ? diag::err_no_member_template_suggest
693                                : diag::err_unknown_nested_typename_suggest)
694                          << II << DC << DroppedSpecifier << SS->getRange(),
695                      CanRecover);
696       } else {
697         llvm_unreachable("could not have corrected a typo here");
698       }
699 
700       if (!CanRecover)
701         return;
702 
703       CXXScopeSpec tmpSS;
704       if (Corrected.getCorrectionSpecifier())
705         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
706                           SourceRange(IILoc));
707       // FIXME: Support class template argument deduction here.
708       SuggestedType =
709           getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
710                       tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
711                       /*IsCtorOrDtorName=*/false,
712                       /*NonTrivialTypeSourceInfo=*/true);
713     }
714     return;
715   }
716 
717   if (getLangOpts().CPlusPlus && !IsTemplateName) {
718     // See if II is a class template that the user forgot to pass arguments to.
719     UnqualifiedId Name;
720     Name.setIdentifier(II, IILoc);
721     CXXScopeSpec EmptySS;
722     TemplateTy TemplateResult;
723     bool MemberOfUnknownSpecialization;
724     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
725                        Name, nullptr, true, TemplateResult,
726                        MemberOfUnknownSpecialization) == TNK_Type_template) {
727       TemplateName TplName = TemplateResult.get();
728       Diag(IILoc, diag::err_template_missing_args)
729         << (int)getTemplateNameKindForDiagnostics(TplName) << TplName;
730       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
731         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
732           << TplDecl->getTemplateParameters()->getSourceRange();
733       }
734       return;
735     }
736   }
737 
738   // FIXME: Should we move the logic that tries to recover from a missing tag
739   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
740 
741   if (!SS || (!SS->isSet() && !SS->isInvalid()))
742     Diag(IILoc, IsTemplateName ? diag::err_no_template
743                                : diag::err_unknown_typename)
744         << II;
745   else if (DeclContext *DC = computeDeclContext(*SS, false))
746     Diag(IILoc, IsTemplateName ? diag::err_no_member_template
747                                : diag::err_typename_nested_not_found)
748         << II << DC << SS->getRange();
749   else if (isDependentScopeSpecifier(*SS)) {
750     unsigned DiagID = diag::err_typename_missing;
751     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
752       DiagID = diag::ext_typename_missing;
753 
754     Diag(SS->getRange().getBegin(), DiagID)
755       << SS->getScopeRep() << II->getName()
756       << SourceRange(SS->getRange().getBegin(), IILoc)
757       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
758     SuggestedType = ActOnTypenameType(S, SourceLocation(),
759                                       *SS, *II, IILoc).get();
760   } else {
761     assert(SS && SS->isInvalid() &&
762            "Invalid scope specifier has already been diagnosed");
763   }
764 }
765 
766 /// \brief Determine whether the given result set contains either a type name
767 /// or
768 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
769   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
770                        NextToken.is(tok::less);
771 
772   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
773     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
774       return true;
775 
776     if (CheckTemplate && isa<TemplateDecl>(*I))
777       return true;
778   }
779 
780   return false;
781 }
782 
783 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
784                                     Scope *S, CXXScopeSpec &SS,
785                                     IdentifierInfo *&Name,
786                                     SourceLocation NameLoc) {
787   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
788   SemaRef.LookupParsedName(R, S, &SS);
789   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
790     StringRef FixItTagName;
791     switch (Tag->getTagKind()) {
792       case TTK_Class:
793         FixItTagName = "class ";
794         break;
795 
796       case TTK_Enum:
797         FixItTagName = "enum ";
798         break;
799 
800       case TTK_Struct:
801         FixItTagName = "struct ";
802         break;
803 
804       case TTK_Interface:
805         FixItTagName = "__interface ";
806         break;
807 
808       case TTK_Union:
809         FixItTagName = "union ";
810         break;
811     }
812 
813     StringRef TagName = FixItTagName.drop_back();
814     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
815       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
816       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
817 
818     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
819          I != IEnd; ++I)
820       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
821         << Name << TagName;
822 
823     // Replace lookup results with just the tag decl.
824     Result.clear(Sema::LookupTagName);
825     SemaRef.LookupParsedName(Result, S, &SS);
826     return true;
827   }
828 
829   return false;
830 }
831 
832 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
833 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
834                                   QualType T, SourceLocation NameLoc) {
835   ASTContext &Context = S.Context;
836 
837   TypeLocBuilder Builder;
838   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
839 
840   T = S.getElaboratedType(ETK_None, SS, T);
841   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
842   ElabTL.setElaboratedKeywordLoc(SourceLocation());
843   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
844   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
845 }
846 
847 Sema::NameClassification
848 Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
849                    SourceLocation NameLoc, const Token &NextToken,
850                    bool IsAddressOfOperand,
851                    std::unique_ptr<CorrectionCandidateCallback> CCC) {
852   DeclarationNameInfo NameInfo(Name, NameLoc);
853   ObjCMethodDecl *CurMethod = getCurMethodDecl();
854 
855   if (NextToken.is(tok::coloncolon)) {
856     NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation());
857     BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false);
858   } else if (getLangOpts().CPlusPlus && SS.isSet() &&
859              isCurrentClassName(*Name, S, &SS)) {
860     // Per [class.qual]p2, this names the constructors of SS, not the
861     // injected-class-name. We don't have a classification for that.
862     // There's not much point caching this result, since the parser
863     // will reject it later.
864     return NameClassification::Unknown();
865   }
866 
867   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
868   LookupParsedName(Result, S, &SS, !CurMethod);
869 
870   // For unqualified lookup in a class template in MSVC mode, look into
871   // dependent base classes where the primary class template is known.
872   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
873     if (ParsedType TypeInBase =
874             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
875       return TypeInBase;
876   }
877 
878   // Perform lookup for Objective-C instance variables (including automatically
879   // synthesized instance variables), if we're in an Objective-C method.
880   // FIXME: This lookup really, really needs to be folded in to the normal
881   // unqualified lookup mechanism.
882   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
883     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
884     if (E.get() || E.isInvalid())
885       return E;
886   }
887 
888   bool SecondTry = false;
889   bool IsFilteredTemplateName = false;
890 
891 Corrected:
892   switch (Result.getResultKind()) {
893   case LookupResult::NotFound:
894     // If an unqualified-id is followed by a '(', then we have a function
895     // call.
896     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
897       // In C++, this is an ADL-only call.
898       // FIXME: Reference?
899       if (getLangOpts().CPlusPlus)
900         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
901 
902       // C90 6.3.2.2:
903       //   If the expression that precedes the parenthesized argument list in a
904       //   function call consists solely of an identifier, and if no
905       //   declaration is visible for this identifier, the identifier is
906       //   implicitly declared exactly as if, in the innermost block containing
907       //   the function call, the declaration
908       //
909       //     extern int identifier ();
910       //
911       //   appeared.
912       //
913       // We also allow this in C99 as an extension.
914       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
915         Result.addDecl(D);
916         Result.resolveKind();
917         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
918       }
919     }
920 
921     // In C, we first see whether there is a tag type by the same name, in
922     // which case it's likely that the user just forgot to write "enum",
923     // "struct", or "union".
924     if (!getLangOpts().CPlusPlus && !SecondTry &&
925         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
926       break;
927     }
928 
929     // Perform typo correction to determine if there is another name that is
930     // close to this name.
931     if (!SecondTry && CCC) {
932       SecondTry = true;
933       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
934                                                  Result.getLookupKind(), S,
935                                                  &SS, std::move(CCC),
936                                                  CTK_ErrorRecovery)) {
937         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
938         unsigned QualifiedDiag = diag::err_no_member_suggest;
939 
940         NamedDecl *FirstDecl = Corrected.getFoundDecl();
941         NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
942         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
943             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
944           UnqualifiedDiag = diag::err_no_template_suggest;
945           QualifiedDiag = diag::err_no_member_template_suggest;
946         } else if (UnderlyingFirstDecl &&
947                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
948                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
949                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
950           UnqualifiedDiag = diag::err_unknown_typename_suggest;
951           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
952         }
953 
954         if (SS.isEmpty()) {
955           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
956         } else {// FIXME: is this even reachable? Test it.
957           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
958           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
959                                   Name->getName().equals(CorrectedStr);
960           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
961                                     << Name << computeDeclContext(SS, false)
962                                     << DroppedSpecifier << SS.getRange());
963         }
964 
965         // Update the name, so that the caller has the new name.
966         Name = Corrected.getCorrectionAsIdentifierInfo();
967 
968         // Typo correction corrected to a keyword.
969         if (Corrected.isKeyword())
970           return Name;
971 
972         // Also update the LookupResult...
973         // FIXME: This should probably go away at some point
974         Result.clear();
975         Result.setLookupName(Corrected.getCorrection());
976         if (FirstDecl)
977           Result.addDecl(FirstDecl);
978 
979         // If we found an Objective-C instance variable, let
980         // LookupInObjCMethod build the appropriate expression to
981         // reference the ivar.
982         // FIXME: This is a gross hack.
983         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
984           Result.clear();
985           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
986           return E;
987         }
988 
989         goto Corrected;
990       }
991     }
992 
993     // We failed to correct; just fall through and let the parser deal with it.
994     Result.suppressDiagnostics();
995     return NameClassification::Unknown();
996 
997   case LookupResult::NotFoundInCurrentInstantiation: {
998     // We performed name lookup into the current instantiation, and there were
999     // dependent bases, so we treat this result the same way as any other
1000     // dependent nested-name-specifier.
1001 
1002     // C++ [temp.res]p2:
1003     //   A name used in a template declaration or definition and that is
1004     //   dependent on a template-parameter is assumed not to name a type
1005     //   unless the applicable name lookup finds a type name or the name is
1006     //   qualified by the keyword typename.
1007     //
1008     // FIXME: If the next token is '<', we might want to ask the parser to
1009     // perform some heroics to see if we actually have a
1010     // template-argument-list, which would indicate a missing 'template'
1011     // keyword here.
1012     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1013                                       NameInfo, IsAddressOfOperand,
1014                                       /*TemplateArgs=*/nullptr);
1015   }
1016 
1017   case LookupResult::Found:
1018   case LookupResult::FoundOverloaded:
1019   case LookupResult::FoundUnresolvedValue:
1020     break;
1021 
1022   case LookupResult::Ambiguous:
1023     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1024         hasAnyAcceptableTemplateNames(Result)) {
1025       // C++ [temp.local]p3:
1026       //   A lookup that finds an injected-class-name (10.2) can result in an
1027       //   ambiguity in certain cases (for example, if it is found in more than
1028       //   one base class). If all of the injected-class-names that are found
1029       //   refer to specializations of the same class template, and if the name
1030       //   is followed by a template-argument-list, the reference refers to the
1031       //   class template itself and not a specialization thereof, and is not
1032       //   ambiguous.
1033       //
1034       // This filtering can make an ambiguous result into an unambiguous one,
1035       // so try again after filtering out template names.
1036       FilterAcceptableTemplateNames(Result);
1037       if (!Result.isAmbiguous()) {
1038         IsFilteredTemplateName = true;
1039         break;
1040       }
1041     }
1042 
1043     // Diagnose the ambiguity and return an error.
1044     return NameClassification::Error();
1045   }
1046 
1047   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1048       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
1049     // C++ [temp.names]p3:
1050     //   After name lookup (3.4) finds that a name is a template-name or that
1051     //   an operator-function-id or a literal- operator-id refers to a set of
1052     //   overloaded functions any member of which is a function template if
1053     //   this is followed by a <, the < is always taken as the delimiter of a
1054     //   template-argument-list and never as the less-than operator.
1055     if (!IsFilteredTemplateName)
1056       FilterAcceptableTemplateNames(Result);
1057 
1058     if (!Result.empty()) {
1059       bool IsFunctionTemplate;
1060       bool IsVarTemplate;
1061       TemplateName Template;
1062       if (Result.end() - Result.begin() > 1) {
1063         IsFunctionTemplate = true;
1064         Template = Context.getOverloadedTemplateName(Result.begin(),
1065                                                      Result.end());
1066       } else {
1067         TemplateDecl *TD
1068           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
1069         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1070         IsVarTemplate = isa<VarTemplateDecl>(TD);
1071 
1072         if (SS.isSet() && !SS.isInvalid())
1073           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
1074                                                     /*TemplateKeyword=*/false,
1075                                                       TD);
1076         else
1077           Template = TemplateName(TD);
1078       }
1079 
1080       if (IsFunctionTemplate) {
1081         // Function templates always go through overload resolution, at which
1082         // point we'll perform the various checks (e.g., accessibility) we need
1083         // to based on which function we selected.
1084         Result.suppressDiagnostics();
1085 
1086         return NameClassification::FunctionTemplate(Template);
1087       }
1088 
1089       return IsVarTemplate ? NameClassification::VarTemplate(Template)
1090                            : NameClassification::TypeTemplate(Template);
1091     }
1092   }
1093 
1094   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1095   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1096     DiagnoseUseOfDecl(Type, NameLoc);
1097     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1098     QualType T = Context.getTypeDeclType(Type);
1099     if (SS.isNotEmpty())
1100       return buildNestedType(*this, SS, T, NameLoc);
1101     return ParsedType::make(T);
1102   }
1103 
1104   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1105   if (!Class) {
1106     // FIXME: It's unfortunate that we don't have a Type node for handling this.
1107     if (ObjCCompatibleAliasDecl *Alias =
1108             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1109       Class = Alias->getClassInterface();
1110   }
1111 
1112   if (Class) {
1113     DiagnoseUseOfDecl(Class, NameLoc);
1114 
1115     if (NextToken.is(tok::period)) {
1116       // Interface. <something> is parsed as a property reference expression.
1117       // Just return "unknown" as a fall-through for now.
1118       Result.suppressDiagnostics();
1119       return NameClassification::Unknown();
1120     }
1121 
1122     QualType T = Context.getObjCInterfaceType(Class);
1123     return ParsedType::make(T);
1124   }
1125 
1126   // We can have a type template here if we're classifying a template argument.
1127   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1128       !isa<VarTemplateDecl>(FirstDecl))
1129     return NameClassification::TypeTemplate(
1130         TemplateName(cast<TemplateDecl>(FirstDecl)));
1131 
1132   // Check for a tag type hidden by a non-type decl in a few cases where it
1133   // seems likely a type is wanted instead of the non-type that was found.
1134   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1135   if ((NextToken.is(tok::identifier) ||
1136        (NextIsOp &&
1137         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1138       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1139     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1140     DiagnoseUseOfDecl(Type, NameLoc);
1141     QualType T = Context.getTypeDeclType(Type);
1142     if (SS.isNotEmpty())
1143       return buildNestedType(*this, SS, T, NameLoc);
1144     return ParsedType::make(T);
1145   }
1146 
1147   if (FirstDecl->isCXXClassMember())
1148     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1149                                            nullptr, S);
1150 
1151   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1152   return BuildDeclarationNameExpr(SS, Result, ADL);
1153 }
1154 
1155 Sema::TemplateNameKindForDiagnostics
1156 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1157   auto *TD = Name.getAsTemplateDecl();
1158   if (!TD)
1159     return TemplateNameKindForDiagnostics::DependentTemplate;
1160   if (isa<ClassTemplateDecl>(TD))
1161     return TemplateNameKindForDiagnostics::ClassTemplate;
1162   if (isa<FunctionTemplateDecl>(TD))
1163     return TemplateNameKindForDiagnostics::FunctionTemplate;
1164   if (isa<VarTemplateDecl>(TD))
1165     return TemplateNameKindForDiagnostics::VarTemplate;
1166   if (isa<TypeAliasTemplateDecl>(TD))
1167     return TemplateNameKindForDiagnostics::AliasTemplate;
1168   if (isa<TemplateTemplateParmDecl>(TD))
1169     return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1170   return TemplateNameKindForDiagnostics::DependentTemplate;
1171 }
1172 
1173 // Determines the context to return to after temporarily entering a
1174 // context.  This depends in an unnecessarily complicated way on the
1175 // exact ordering of callbacks from the parser.
1176 DeclContext *Sema::getContainingDC(DeclContext *DC) {
1177 
1178   // Functions defined inline within classes aren't parsed until we've
1179   // finished parsing the top-level class, so the top-level class is
1180   // the context we'll need to return to.
1181   // A Lambda call operator whose parent is a class must not be treated
1182   // as an inline member function.  A Lambda can be used legally
1183   // either as an in-class member initializer or a default argument.  These
1184   // are parsed once the class has been marked complete and so the containing
1185   // context would be the nested class (when the lambda is defined in one);
1186   // If the class is not complete, then the lambda is being used in an
1187   // ill-formed fashion (such as to specify the width of a bit-field, or
1188   // in an array-bound) - in which case we still want to return the
1189   // lexically containing DC (which could be a nested class).
1190   if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1191     DC = DC->getLexicalParent();
1192 
1193     // A function not defined within a class will always return to its
1194     // lexical context.
1195     if (!isa<CXXRecordDecl>(DC))
1196       return DC;
1197 
1198     // A C++ inline method/friend is parsed *after* the topmost class
1199     // it was declared in is fully parsed ("complete");  the topmost
1200     // class is the context we need to return to.
1201     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1202       DC = RD;
1203 
1204     // Return the declaration context of the topmost class the inline method is
1205     // declared in.
1206     return DC;
1207   }
1208 
1209   return DC->getLexicalParent();
1210 }
1211 
1212 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1213   assert(getContainingDC(DC) == CurContext &&
1214       "The next DeclContext should be lexically contained in the current one.");
1215   CurContext = DC;
1216   S->setEntity(DC);
1217 }
1218 
1219 void Sema::PopDeclContext() {
1220   assert(CurContext && "DeclContext imbalance!");
1221 
1222   CurContext = getContainingDC(CurContext);
1223   assert(CurContext && "Popped translation unit!");
1224 }
1225 
1226 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1227                                                                     Decl *D) {
1228   // Unlike PushDeclContext, the context to which we return is not necessarily
1229   // the containing DC of TD, because the new context will be some pre-existing
1230   // TagDecl definition instead of a fresh one.
1231   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1232   CurContext = cast<TagDecl>(D)->getDefinition();
1233   assert(CurContext && "skipping definition of undefined tag");
1234   // Start lookups from the parent of the current context; we don't want to look
1235   // into the pre-existing complete definition.
1236   S->setEntity(CurContext->getLookupParent());
1237   return Result;
1238 }
1239 
1240 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1241   CurContext = static_cast<decltype(CurContext)>(Context);
1242 }
1243 
1244 /// EnterDeclaratorContext - Used when we must lookup names in the context
1245 /// of a declarator's nested name specifier.
1246 ///
1247 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1248   // C++0x [basic.lookup.unqual]p13:
1249   //   A name used in the definition of a static data member of class
1250   //   X (after the qualified-id of the static member) is looked up as
1251   //   if the name was used in a member function of X.
1252   // C++0x [basic.lookup.unqual]p14:
1253   //   If a variable member of a namespace is defined outside of the
1254   //   scope of its namespace then any name used in the definition of
1255   //   the variable member (after the declarator-id) is looked up as
1256   //   if the definition of the variable member occurred in its
1257   //   namespace.
1258   // Both of these imply that we should push a scope whose context
1259   // is the semantic context of the declaration.  We can't use
1260   // PushDeclContext here because that context is not necessarily
1261   // lexically contained in the current context.  Fortunately,
1262   // the containing scope should have the appropriate information.
1263 
1264   assert(!S->getEntity() && "scope already has entity");
1265 
1266 #ifndef NDEBUG
1267   Scope *Ancestor = S->getParent();
1268   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1269   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1270 #endif
1271 
1272   CurContext = DC;
1273   S->setEntity(DC);
1274 }
1275 
1276 void Sema::ExitDeclaratorContext(Scope *S) {
1277   assert(S->getEntity() == CurContext && "Context imbalance!");
1278 
1279   // Switch back to the lexical context.  The safety of this is
1280   // enforced by an assert in EnterDeclaratorContext.
1281   Scope *Ancestor = S->getParent();
1282   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1283   CurContext = Ancestor->getEntity();
1284 
1285   // We don't need to do anything with the scope, which is going to
1286   // disappear.
1287 }
1288 
1289 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1290   // We assume that the caller has already called
1291   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1292   FunctionDecl *FD = D->getAsFunction();
1293   if (!FD)
1294     return;
1295 
1296   // Same implementation as PushDeclContext, but enters the context
1297   // from the lexical parent, rather than the top-level class.
1298   assert(CurContext == FD->getLexicalParent() &&
1299     "The next DeclContext should be lexically contained in the current one.");
1300   CurContext = FD;
1301   S->setEntity(CurContext);
1302 
1303   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1304     ParmVarDecl *Param = FD->getParamDecl(P);
1305     // If the parameter has an identifier, then add it to the scope
1306     if (Param->getIdentifier()) {
1307       S->AddDecl(Param);
1308       IdResolver.AddDecl(Param);
1309     }
1310   }
1311 }
1312 
1313 void Sema::ActOnExitFunctionContext() {
1314   // Same implementation as PopDeclContext, but returns to the lexical parent,
1315   // rather than the top-level class.
1316   assert(CurContext && "DeclContext imbalance!");
1317   CurContext = CurContext->getLexicalParent();
1318   assert(CurContext && "Popped translation unit!");
1319 }
1320 
1321 /// \brief Determine whether we allow overloading of the function
1322 /// PrevDecl with another declaration.
1323 ///
1324 /// This routine determines whether overloading is possible, not
1325 /// whether some new function is actually an overload. It will return
1326 /// true in C++ (where we can always provide overloads) or, as an
1327 /// extension, in C when the previous function is already an
1328 /// overloaded function declaration or has the "overloadable"
1329 /// attribute.
1330 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1331                                        ASTContext &Context,
1332                                        const FunctionDecl *New) {
1333   if (Context.getLangOpts().CPlusPlus)
1334     return true;
1335 
1336   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1337     return true;
1338 
1339   return Previous.getResultKind() == LookupResult::Found &&
1340          (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1341           New->hasAttr<OverloadableAttr>());
1342 }
1343 
1344 /// Add this decl to the scope shadowed decl chains.
1345 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1346   // Move up the scope chain until we find the nearest enclosing
1347   // non-transparent context. The declaration will be introduced into this
1348   // scope.
1349   while (S->getEntity() && S->getEntity()->isTransparentContext())
1350     S = S->getParent();
1351 
1352   // Add scoped declarations into their context, so that they can be
1353   // found later. Declarations without a context won't be inserted
1354   // into any context.
1355   if (AddToContext)
1356     CurContext->addDecl(D);
1357 
1358   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1359   // are function-local declarations.
1360   if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1361       !D->getDeclContext()->getRedeclContext()->Equals(
1362         D->getLexicalDeclContext()->getRedeclContext()) &&
1363       !D->getLexicalDeclContext()->isFunctionOrMethod())
1364     return;
1365 
1366   // Template instantiations should also not be pushed into scope.
1367   if (isa<FunctionDecl>(D) &&
1368       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1369     return;
1370 
1371   // If this replaces anything in the current scope,
1372   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1373                                IEnd = IdResolver.end();
1374   for (; I != IEnd; ++I) {
1375     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1376       S->RemoveDecl(*I);
1377       IdResolver.RemoveDecl(*I);
1378 
1379       // Should only need to replace one decl.
1380       break;
1381     }
1382   }
1383 
1384   S->AddDecl(D);
1385 
1386   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1387     // Implicitly-generated labels may end up getting generated in an order that
1388     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1389     // the label at the appropriate place in the identifier chain.
1390     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1391       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1392       if (IDC == CurContext) {
1393         if (!S->isDeclScope(*I))
1394           continue;
1395       } else if (IDC->Encloses(CurContext))
1396         break;
1397     }
1398 
1399     IdResolver.InsertDeclAfter(I, D);
1400   } else {
1401     IdResolver.AddDecl(D);
1402   }
1403 }
1404 
1405 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1406   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1407     TUScope->AddDecl(D);
1408 }
1409 
1410 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1411                          bool AllowInlineNamespace) {
1412   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1413 }
1414 
1415 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1416   DeclContext *TargetDC = DC->getPrimaryContext();
1417   do {
1418     if (DeclContext *ScopeDC = S->getEntity())
1419       if (ScopeDC->getPrimaryContext() == TargetDC)
1420         return S;
1421   } while ((S = S->getParent()));
1422 
1423   return nullptr;
1424 }
1425 
1426 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1427                                             DeclContext*,
1428                                             ASTContext&);
1429 
1430 /// Filters out lookup results that don't fall within the given scope
1431 /// as determined by isDeclInScope.
1432 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1433                                 bool ConsiderLinkage,
1434                                 bool AllowInlineNamespace) {
1435   LookupResult::Filter F = R.makeFilter();
1436   while (F.hasNext()) {
1437     NamedDecl *D = F.next();
1438 
1439     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1440       continue;
1441 
1442     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1443       continue;
1444 
1445     F.erase();
1446   }
1447 
1448   F.done();
1449 }
1450 
1451 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1452 /// have compatible owning modules.
1453 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1454   // FIXME: The Modules TS is not clear about how friend declarations are
1455   // to be treated. It's not meaningful to have different owning modules for
1456   // linkage in redeclarations of the same entity, so for now allow the
1457   // redeclaration and change the owning modules to match.
1458   if (New->getFriendObjectKind() &&
1459       Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1460     New->setLocalOwningModule(Old->getOwningModule());
1461     makeMergedDefinitionVisible(New);
1462     return false;
1463   }
1464 
1465   Module *NewM = New->getOwningModule();
1466   Module *OldM = Old->getOwningModule();
1467   if (NewM == OldM)
1468     return false;
1469 
1470   // FIXME: Check proclaimed-ownership-declarations here too.
1471   bool NewIsModuleInterface = NewM && NewM->Kind == Module::ModuleInterfaceUnit;
1472   bool OldIsModuleInterface = OldM && OldM->Kind == Module::ModuleInterfaceUnit;
1473   if (NewIsModuleInterface || OldIsModuleInterface) {
1474     // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1475     //   if a declaration of D [...] appears in the purview of a module, all
1476     //   other such declarations shall appear in the purview of the same module
1477     Diag(New->getLocation(), diag::err_mismatched_owning_module)
1478       << New
1479       << NewIsModuleInterface
1480       << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1481       << OldIsModuleInterface
1482       << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1483     Diag(Old->getLocation(), diag::note_previous_declaration);
1484     New->setInvalidDecl();
1485     return true;
1486   }
1487 
1488   return false;
1489 }
1490 
1491 static bool isUsingDecl(NamedDecl *D) {
1492   return isa<UsingShadowDecl>(D) ||
1493          isa<UnresolvedUsingTypenameDecl>(D) ||
1494          isa<UnresolvedUsingValueDecl>(D);
1495 }
1496 
1497 /// Removes using shadow declarations from the lookup results.
1498 static void RemoveUsingDecls(LookupResult &R) {
1499   LookupResult::Filter F = R.makeFilter();
1500   while (F.hasNext())
1501     if (isUsingDecl(F.next()))
1502       F.erase();
1503 
1504   F.done();
1505 }
1506 
1507 /// \brief Check for this common pattern:
1508 /// @code
1509 /// class S {
1510 ///   S(const S&); // DO NOT IMPLEMENT
1511 ///   void operator=(const S&); // DO NOT IMPLEMENT
1512 /// };
1513 /// @endcode
1514 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1515   // FIXME: Should check for private access too but access is set after we get
1516   // the decl here.
1517   if (D->doesThisDeclarationHaveABody())
1518     return false;
1519 
1520   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1521     return CD->isCopyConstructor();
1522   return D->isCopyAssignmentOperator();
1523 }
1524 
1525 // We need this to handle
1526 //
1527 // typedef struct {
1528 //   void *foo() { return 0; }
1529 // } A;
1530 //
1531 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1532 // for example. If 'A', foo will have external linkage. If we have '*A',
1533 // foo will have no linkage. Since we can't know until we get to the end
1534 // of the typedef, this function finds out if D might have non-external linkage.
1535 // Callers should verify at the end of the TU if it D has external linkage or
1536 // not.
1537 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1538   const DeclContext *DC = D->getDeclContext();
1539   while (!DC->isTranslationUnit()) {
1540     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1541       if (!RD->hasNameForLinkage())
1542         return true;
1543     }
1544     DC = DC->getParent();
1545   }
1546 
1547   return !D->isExternallyVisible();
1548 }
1549 
1550 // FIXME: This needs to be refactored; some other isInMainFile users want
1551 // these semantics.
1552 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1553   if (S.TUKind != TU_Complete)
1554     return false;
1555   return S.SourceMgr.isInMainFile(Loc);
1556 }
1557 
1558 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1559   assert(D);
1560 
1561   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1562     return false;
1563 
1564   // Ignore all entities declared within templates, and out-of-line definitions
1565   // of members of class templates.
1566   if (D->getDeclContext()->isDependentContext() ||
1567       D->getLexicalDeclContext()->isDependentContext())
1568     return false;
1569 
1570   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1571     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1572       return false;
1573     // A non-out-of-line declaration of a member specialization was implicitly
1574     // instantiated; it's the out-of-line declaration that we're interested in.
1575     if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1576         FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1577       return false;
1578 
1579     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1580       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1581         return false;
1582     } else {
1583       // 'static inline' functions are defined in headers; don't warn.
1584       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1585         return false;
1586     }
1587 
1588     if (FD->doesThisDeclarationHaveABody() &&
1589         Context.DeclMustBeEmitted(FD))
1590       return false;
1591   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1592     // Constants and utility variables are defined in headers with internal
1593     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1594     // like "inline".)
1595     if (!isMainFileLoc(*this, VD->getLocation()))
1596       return false;
1597 
1598     if (Context.DeclMustBeEmitted(VD))
1599       return false;
1600 
1601     if (VD->isStaticDataMember() &&
1602         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1603       return false;
1604     if (VD->isStaticDataMember() &&
1605         VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1606         VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1607       return false;
1608 
1609     if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1610       return false;
1611   } else {
1612     return false;
1613   }
1614 
1615   // Only warn for unused decls internal to the translation unit.
1616   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1617   // for inline functions defined in the main source file, for instance.
1618   return mightHaveNonExternalLinkage(D);
1619 }
1620 
1621 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1622   if (!D)
1623     return;
1624 
1625   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1626     const FunctionDecl *First = FD->getFirstDecl();
1627     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1628       return; // First should already be in the vector.
1629   }
1630 
1631   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1632     const VarDecl *First = VD->getFirstDecl();
1633     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1634       return; // First should already be in the vector.
1635   }
1636 
1637   if (ShouldWarnIfUnusedFileScopedDecl(D))
1638     UnusedFileScopedDecls.push_back(D);
1639 }
1640 
1641 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1642   if (D->isInvalidDecl())
1643     return false;
1644 
1645   bool Referenced = false;
1646   if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1647     // For a decomposition declaration, warn if none of the bindings are
1648     // referenced, instead of if the variable itself is referenced (which
1649     // it is, by the bindings' expressions).
1650     for (auto *BD : DD->bindings()) {
1651       if (BD->isReferenced()) {
1652         Referenced = true;
1653         break;
1654       }
1655     }
1656   } else if (!D->getDeclName()) {
1657     return false;
1658   } else if (D->isReferenced() || D->isUsed()) {
1659     Referenced = true;
1660   }
1661 
1662   if (Referenced || D->hasAttr<UnusedAttr>() ||
1663       D->hasAttr<ObjCPreciseLifetimeAttr>())
1664     return false;
1665 
1666   if (isa<LabelDecl>(D))
1667     return true;
1668 
1669   // Except for labels, we only care about unused decls that are local to
1670   // functions.
1671   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1672   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1673     // For dependent types, the diagnostic is deferred.
1674     WithinFunction =
1675         WithinFunction || (R->isLocalClass() && !R->isDependentType());
1676   if (!WithinFunction)
1677     return false;
1678 
1679   if (isa<TypedefNameDecl>(D))
1680     return true;
1681 
1682   // White-list anything that isn't a local variable.
1683   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1684     return false;
1685 
1686   // Types of valid local variables should be complete, so this should succeed.
1687   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1688 
1689     // White-list anything with an __attribute__((unused)) type.
1690     const auto *Ty = VD->getType().getTypePtr();
1691 
1692     // Only look at the outermost level of typedef.
1693     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1694       if (TT->getDecl()->hasAttr<UnusedAttr>())
1695         return false;
1696     }
1697 
1698     // If we failed to complete the type for some reason, or if the type is
1699     // dependent, don't diagnose the variable.
1700     if (Ty->isIncompleteType() || Ty->isDependentType())
1701       return false;
1702 
1703     // Look at the element type to ensure that the warning behaviour is
1704     // consistent for both scalars and arrays.
1705     Ty = Ty->getBaseElementTypeUnsafe();
1706 
1707     if (const TagType *TT = Ty->getAs<TagType>()) {
1708       const TagDecl *Tag = TT->getDecl();
1709       if (Tag->hasAttr<UnusedAttr>())
1710         return false;
1711 
1712       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1713         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1714           return false;
1715 
1716         if (const Expr *Init = VD->getInit()) {
1717           if (const ExprWithCleanups *Cleanups =
1718                   dyn_cast<ExprWithCleanups>(Init))
1719             Init = Cleanups->getSubExpr();
1720           const CXXConstructExpr *Construct =
1721             dyn_cast<CXXConstructExpr>(Init);
1722           if (Construct && !Construct->isElidable()) {
1723             CXXConstructorDecl *CD = Construct->getConstructor();
1724             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1725                 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1726               return false;
1727           }
1728         }
1729       }
1730     }
1731 
1732     // TODO: __attribute__((unused)) templates?
1733   }
1734 
1735   return true;
1736 }
1737 
1738 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1739                                      FixItHint &Hint) {
1740   if (isa<LabelDecl>(D)) {
1741     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1742                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1743     if (AfterColon.isInvalid())
1744       return;
1745     Hint = FixItHint::CreateRemoval(CharSourceRange::
1746                                     getCharRange(D->getLocStart(), AfterColon));
1747   }
1748 }
1749 
1750 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1751   if (D->getTypeForDecl()->isDependentType())
1752     return;
1753 
1754   for (auto *TmpD : D->decls()) {
1755     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1756       DiagnoseUnusedDecl(T);
1757     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1758       DiagnoseUnusedNestedTypedefs(R);
1759   }
1760 }
1761 
1762 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1763 /// unless they are marked attr(unused).
1764 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1765   if (!ShouldDiagnoseUnusedDecl(D))
1766     return;
1767 
1768   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1769     // typedefs can be referenced later on, so the diagnostics are emitted
1770     // at end-of-translation-unit.
1771     UnusedLocalTypedefNameCandidates.insert(TD);
1772     return;
1773   }
1774 
1775   FixItHint Hint;
1776   GenerateFixForUnusedDecl(D, Context, Hint);
1777 
1778   unsigned DiagID;
1779   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1780     DiagID = diag::warn_unused_exception_param;
1781   else if (isa<LabelDecl>(D))
1782     DiagID = diag::warn_unused_label;
1783   else
1784     DiagID = diag::warn_unused_variable;
1785 
1786   Diag(D->getLocation(), DiagID) << D << Hint;
1787 }
1788 
1789 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1790   // Verify that we have no forward references left.  If so, there was a goto
1791   // or address of a label taken, but no definition of it.  Label fwd
1792   // definitions are indicated with a null substmt which is also not a resolved
1793   // MS inline assembly label name.
1794   bool Diagnose = false;
1795   if (L->isMSAsmLabel())
1796     Diagnose = !L->isResolvedMSAsmLabel();
1797   else
1798     Diagnose = L->getStmt() == nullptr;
1799   if (Diagnose)
1800     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1801 }
1802 
1803 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1804   S->mergeNRVOIntoParent();
1805 
1806   if (S->decl_empty()) return;
1807   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1808          "Scope shouldn't contain decls!");
1809 
1810   for (auto *TmpD : S->decls()) {
1811     assert(TmpD && "This decl didn't get pushed??");
1812 
1813     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1814     NamedDecl *D = cast<NamedDecl>(TmpD);
1815 
1816     // Diagnose unused variables in this scope.
1817     if (!S->hasUnrecoverableErrorOccurred()) {
1818       DiagnoseUnusedDecl(D);
1819       if (const auto *RD = dyn_cast<RecordDecl>(D))
1820         DiagnoseUnusedNestedTypedefs(RD);
1821     }
1822 
1823     if (!D->getDeclName()) continue;
1824 
1825     // If this was a forward reference to a label, verify it was defined.
1826     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1827       CheckPoppedLabel(LD, *this);
1828 
1829     // Remove this name from our lexical scope, and warn on it if we haven't
1830     // already.
1831     IdResolver.RemoveDecl(D);
1832     auto ShadowI = ShadowingDecls.find(D);
1833     if (ShadowI != ShadowingDecls.end()) {
1834       if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1835         Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1836             << D << FD << FD->getParent();
1837         Diag(FD->getLocation(), diag::note_previous_declaration);
1838       }
1839       ShadowingDecls.erase(ShadowI);
1840     }
1841   }
1842 }
1843 
1844 /// \brief Look for an Objective-C class in the translation unit.
1845 ///
1846 /// \param Id The name of the Objective-C class we're looking for. If
1847 /// typo-correction fixes this name, the Id will be updated
1848 /// to the fixed name.
1849 ///
1850 /// \param IdLoc The location of the name in the translation unit.
1851 ///
1852 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1853 /// if there is no class with the given name.
1854 ///
1855 /// \returns The declaration of the named Objective-C class, or NULL if the
1856 /// class could not be found.
1857 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1858                                               SourceLocation IdLoc,
1859                                               bool DoTypoCorrection) {
1860   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1861   // creation from this context.
1862   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1863 
1864   if (!IDecl && DoTypoCorrection) {
1865     // Perform typo correction at the given location, but only if we
1866     // find an Objective-C class name.
1867     if (TypoCorrection C = CorrectTypo(
1868             DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
1869             llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
1870             CTK_ErrorRecovery)) {
1871       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1872       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1873       Id = IDecl->getIdentifier();
1874     }
1875   }
1876   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1877   // This routine must always return a class definition, if any.
1878   if (Def && Def->getDefinition())
1879       Def = Def->getDefinition();
1880   return Def;
1881 }
1882 
1883 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1884 /// from S, where a non-field would be declared. This routine copes
1885 /// with the difference between C and C++ scoping rules in structs and
1886 /// unions. For example, the following code is well-formed in C but
1887 /// ill-formed in C++:
1888 /// @code
1889 /// struct S6 {
1890 ///   enum { BAR } e;
1891 /// };
1892 ///
1893 /// void test_S6() {
1894 ///   struct S6 a;
1895 ///   a.e = BAR;
1896 /// }
1897 /// @endcode
1898 /// For the declaration of BAR, this routine will return a different
1899 /// scope. The scope S will be the scope of the unnamed enumeration
1900 /// within S6. In C++, this routine will return the scope associated
1901 /// with S6, because the enumeration's scope is a transparent
1902 /// context but structures can contain non-field names. In C, this
1903 /// routine will return the translation unit scope, since the
1904 /// enumeration's scope is a transparent context and structures cannot
1905 /// contain non-field names.
1906 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1907   while (((S->getFlags() & Scope::DeclScope) == 0) ||
1908          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1909          (S->isClassScope() && !getLangOpts().CPlusPlus))
1910     S = S->getParent();
1911   return S;
1912 }
1913 
1914 /// \brief Looks up the declaration of "struct objc_super" and
1915 /// saves it for later use in building builtin declaration of
1916 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1917 /// pre-existing declaration exists no action takes place.
1918 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1919                                         IdentifierInfo *II) {
1920   if (!II->isStr("objc_msgSendSuper"))
1921     return;
1922   ASTContext &Context = ThisSema.Context;
1923 
1924   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1925                       SourceLocation(), Sema::LookupTagName);
1926   ThisSema.LookupName(Result, S);
1927   if (Result.getResultKind() == LookupResult::Found)
1928     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1929       Context.setObjCSuperType(Context.getTagDeclType(TD));
1930 }
1931 
1932 static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
1933   switch (Error) {
1934   case ASTContext::GE_None:
1935     return "";
1936   case ASTContext::GE_Missing_stdio:
1937     return "stdio.h";
1938   case ASTContext::GE_Missing_setjmp:
1939     return "setjmp.h";
1940   case ASTContext::GE_Missing_ucontext:
1941     return "ucontext.h";
1942   }
1943   llvm_unreachable("unhandled error kind");
1944 }
1945 
1946 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1947 /// file scope.  lazily create a decl for it. ForRedeclaration is true
1948 /// if we're creating this built-in in anticipation of redeclaring the
1949 /// built-in.
1950 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1951                                      Scope *S, bool ForRedeclaration,
1952                                      SourceLocation Loc) {
1953   LookupPredefedObjCSuperType(*this, S, II);
1954 
1955   ASTContext::GetBuiltinTypeError Error;
1956   QualType R = Context.GetBuiltinType(ID, Error);
1957   if (Error) {
1958     if (ForRedeclaration)
1959       Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1960           << getHeaderName(Error) << Context.BuiltinInfo.getName(ID);
1961     return nullptr;
1962   }
1963 
1964   if (!ForRedeclaration &&
1965       (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
1966        Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
1967     Diag(Loc, diag::ext_implicit_lib_function_decl)
1968         << Context.BuiltinInfo.getName(ID) << R;
1969     if (Context.BuiltinInfo.getHeaderName(ID) &&
1970         !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1971       Diag(Loc, diag::note_include_header_or_declare)
1972           << Context.BuiltinInfo.getHeaderName(ID)
1973           << Context.BuiltinInfo.getName(ID);
1974   }
1975 
1976   if (R.isNull())
1977     return nullptr;
1978 
1979   DeclContext *Parent = Context.getTranslationUnitDecl();
1980   if (getLangOpts().CPlusPlus) {
1981     LinkageSpecDecl *CLinkageDecl =
1982         LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1983                                 LinkageSpecDecl::lang_c, false);
1984     CLinkageDecl->setImplicit();
1985     Parent->addDecl(CLinkageDecl);
1986     Parent = CLinkageDecl;
1987   }
1988 
1989   FunctionDecl *New = FunctionDecl::Create(Context,
1990                                            Parent,
1991                                            Loc, Loc, II, R, /*TInfo=*/nullptr,
1992                                            SC_Extern,
1993                                            false,
1994                                            R->isFunctionProtoType());
1995   New->setImplicit();
1996 
1997   // Create Decl objects for each parameter, adding them to the
1998   // FunctionDecl.
1999   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
2000     SmallVector<ParmVarDecl*, 16> Params;
2001     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2002       ParmVarDecl *parm =
2003           ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
2004                               nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
2005                               SC_None, nullptr);
2006       parm->setScopeInfo(0, i);
2007       Params.push_back(parm);
2008     }
2009     New->setParams(Params);
2010   }
2011 
2012   AddKnownFunctionAttributes(New);
2013   RegisterLocallyScopedExternCDecl(New, S);
2014 
2015   // TUScope is the translation-unit scope to insert this function into.
2016   // FIXME: This is hideous. We need to teach PushOnScopeChains to
2017   // relate Scopes to DeclContexts, and probably eliminate CurContext
2018   // entirely, but we're not there yet.
2019   DeclContext *SavedContext = CurContext;
2020   CurContext = Parent;
2021   PushOnScopeChains(New, TUScope);
2022   CurContext = SavedContext;
2023   return New;
2024 }
2025 
2026 /// Typedef declarations don't have linkage, but they still denote the same
2027 /// entity if their types are the same.
2028 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2029 /// isSameEntity.
2030 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2031                                                      TypedefNameDecl *Decl,
2032                                                      LookupResult &Previous) {
2033   // This is only interesting when modules are enabled.
2034   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2035     return;
2036 
2037   // Empty sets are uninteresting.
2038   if (Previous.empty())
2039     return;
2040 
2041   LookupResult::Filter Filter = Previous.makeFilter();
2042   while (Filter.hasNext()) {
2043     NamedDecl *Old = Filter.next();
2044 
2045     // Non-hidden declarations are never ignored.
2046     if (S.isVisible(Old))
2047       continue;
2048 
2049     // Declarations of the same entity are not ignored, even if they have
2050     // different linkages.
2051     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2052       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2053                                 Decl->getUnderlyingType()))
2054         continue;
2055 
2056       // If both declarations give a tag declaration a typedef name for linkage
2057       // purposes, then they declare the same entity.
2058       if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2059           Decl->getAnonDeclWithTypedefName())
2060         continue;
2061     }
2062 
2063     Filter.erase();
2064   }
2065 
2066   Filter.done();
2067 }
2068 
2069 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2070   QualType OldType;
2071   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2072     OldType = OldTypedef->getUnderlyingType();
2073   else
2074     OldType = Context.getTypeDeclType(Old);
2075   QualType NewType = New->getUnderlyingType();
2076 
2077   if (NewType->isVariablyModifiedType()) {
2078     // Must not redefine a typedef with a variably-modified type.
2079     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2080     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2081       << Kind << NewType;
2082     if (Old->getLocation().isValid())
2083       notePreviousDefinition(Old, New->getLocation());
2084     New->setInvalidDecl();
2085     return true;
2086   }
2087 
2088   if (OldType != NewType &&
2089       !OldType->isDependentType() &&
2090       !NewType->isDependentType() &&
2091       !Context.hasSameType(OldType, NewType)) {
2092     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2093     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2094       << Kind << NewType << OldType;
2095     if (Old->getLocation().isValid())
2096       notePreviousDefinition(Old, New->getLocation());
2097     New->setInvalidDecl();
2098     return true;
2099   }
2100   return false;
2101 }
2102 
2103 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2104 /// same name and scope as a previous declaration 'Old'.  Figure out
2105 /// how to resolve this situation, merging decls or emitting
2106 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2107 ///
2108 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2109                                 LookupResult &OldDecls) {
2110   // If the new decl is known invalid already, don't bother doing any
2111   // merging checks.
2112   if (New->isInvalidDecl()) return;
2113 
2114   // Allow multiple definitions for ObjC built-in typedefs.
2115   // FIXME: Verify the underlying types are equivalent!
2116   if (getLangOpts().ObjC1) {
2117     const IdentifierInfo *TypeID = New->getIdentifier();
2118     switch (TypeID->getLength()) {
2119     default: break;
2120     case 2:
2121       {
2122         if (!TypeID->isStr("id"))
2123           break;
2124         QualType T = New->getUnderlyingType();
2125         if (!T->isPointerType())
2126           break;
2127         if (!T->isVoidPointerType()) {
2128           QualType PT = T->getAs<PointerType>()->getPointeeType();
2129           if (!PT->isStructureType())
2130             break;
2131         }
2132         Context.setObjCIdRedefinitionType(T);
2133         // Install the built-in type for 'id', ignoring the current definition.
2134         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2135         return;
2136       }
2137     case 5:
2138       if (!TypeID->isStr("Class"))
2139         break;
2140       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2141       // Install the built-in type for 'Class', ignoring the current definition.
2142       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2143       return;
2144     case 3:
2145       if (!TypeID->isStr("SEL"))
2146         break;
2147       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2148       // Install the built-in type for 'SEL', ignoring the current definition.
2149       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2150       return;
2151     }
2152     // Fall through - the typedef name was not a builtin type.
2153   }
2154 
2155   // Verify the old decl was also a type.
2156   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2157   if (!Old) {
2158     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2159       << New->getDeclName();
2160 
2161     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2162     if (OldD->getLocation().isValid())
2163       notePreviousDefinition(OldD, New->getLocation());
2164 
2165     return New->setInvalidDecl();
2166   }
2167 
2168   // If the old declaration is invalid, just give up here.
2169   if (Old->isInvalidDecl())
2170     return New->setInvalidDecl();
2171 
2172   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2173     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2174     auto *NewTag = New->getAnonDeclWithTypedefName();
2175     NamedDecl *Hidden = nullptr;
2176     if (OldTag && NewTag &&
2177         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2178         !hasVisibleDefinition(OldTag, &Hidden)) {
2179       // There is a definition of this tag, but it is not visible. Use it
2180       // instead of our tag.
2181       New->setTypeForDecl(OldTD->getTypeForDecl());
2182       if (OldTD->isModed())
2183         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2184                                     OldTD->getUnderlyingType());
2185       else
2186         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2187 
2188       // Make the old tag definition visible.
2189       makeMergedDefinitionVisible(Hidden);
2190 
2191       // If this was an unscoped enumeration, yank all of its enumerators
2192       // out of the scope.
2193       if (isa<EnumDecl>(NewTag)) {
2194         Scope *EnumScope = getNonFieldDeclScope(S);
2195         for (auto *D : NewTag->decls()) {
2196           auto *ED = cast<EnumConstantDecl>(D);
2197           assert(EnumScope->isDeclScope(ED));
2198           EnumScope->RemoveDecl(ED);
2199           IdResolver.RemoveDecl(ED);
2200           ED->getLexicalDeclContext()->removeDecl(ED);
2201         }
2202       }
2203     }
2204   }
2205 
2206   // If the typedef types are not identical, reject them in all languages and
2207   // with any extensions enabled.
2208   if (isIncompatibleTypedef(Old, New))
2209     return;
2210 
2211   // The types match.  Link up the redeclaration chain and merge attributes if
2212   // the old declaration was a typedef.
2213   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2214     New->setPreviousDecl(Typedef);
2215     mergeDeclAttributes(New, Old);
2216   }
2217 
2218   if (getLangOpts().MicrosoftExt)
2219     return;
2220 
2221   if (getLangOpts().CPlusPlus) {
2222     // C++ [dcl.typedef]p2:
2223     //   In a given non-class scope, a typedef specifier can be used to
2224     //   redefine the name of any type declared in that scope to refer
2225     //   to the type to which it already refers.
2226     if (!isa<CXXRecordDecl>(CurContext))
2227       return;
2228 
2229     // C++0x [dcl.typedef]p4:
2230     //   In a given class scope, a typedef specifier can be used to redefine
2231     //   any class-name declared in that scope that is not also a typedef-name
2232     //   to refer to the type to which it already refers.
2233     //
2234     // This wording came in via DR424, which was a correction to the
2235     // wording in DR56, which accidentally banned code like:
2236     //
2237     //   struct S {
2238     //     typedef struct A { } A;
2239     //   };
2240     //
2241     // in the C++03 standard. We implement the C++0x semantics, which
2242     // allow the above but disallow
2243     //
2244     //   struct S {
2245     //     typedef int I;
2246     //     typedef int I;
2247     //   };
2248     //
2249     // since that was the intent of DR56.
2250     if (!isa<TypedefNameDecl>(Old))
2251       return;
2252 
2253     Diag(New->getLocation(), diag::err_redefinition)
2254       << New->getDeclName();
2255     notePreviousDefinition(Old, New->getLocation());
2256     return New->setInvalidDecl();
2257   }
2258 
2259   // Modules always permit redefinition of typedefs, as does C11.
2260   if (getLangOpts().Modules || getLangOpts().C11)
2261     return;
2262 
2263   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2264   // is normally mapped to an error, but can be controlled with
2265   // -Wtypedef-redefinition.  If either the original or the redefinition is
2266   // in a system header, don't emit this for compatibility with GCC.
2267   if (getDiagnostics().getSuppressSystemWarnings() &&
2268       // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2269       (Old->isImplicit() ||
2270        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2271        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2272     return;
2273 
2274   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2275     << New->getDeclName();
2276   notePreviousDefinition(Old, New->getLocation());
2277 }
2278 
2279 /// DeclhasAttr - returns true if decl Declaration already has the target
2280 /// attribute.
2281 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2282   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2283   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2284   for (const auto *i : D->attrs())
2285     if (i->getKind() == A->getKind()) {
2286       if (Ann) {
2287         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2288           return true;
2289         continue;
2290       }
2291       // FIXME: Don't hardcode this check
2292       if (OA && isa<OwnershipAttr>(i))
2293         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2294       return true;
2295     }
2296 
2297   return false;
2298 }
2299 
2300 static bool isAttributeTargetADefinition(Decl *D) {
2301   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2302     return VD->isThisDeclarationADefinition();
2303   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2304     return TD->isCompleteDefinition() || TD->isBeingDefined();
2305   return true;
2306 }
2307 
2308 /// Merge alignment attributes from \p Old to \p New, taking into account the
2309 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2310 ///
2311 /// \return \c true if any attributes were added to \p New.
2312 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2313   // Look for alignas attributes on Old, and pick out whichever attribute
2314   // specifies the strictest alignment requirement.
2315   AlignedAttr *OldAlignasAttr = nullptr;
2316   AlignedAttr *OldStrictestAlignAttr = nullptr;
2317   unsigned OldAlign = 0;
2318   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2319     // FIXME: We have no way of representing inherited dependent alignments
2320     // in a case like:
2321     //   template<int A, int B> struct alignas(A) X;
2322     //   template<int A, int B> struct alignas(B) X {};
2323     // For now, we just ignore any alignas attributes which are not on the
2324     // definition in such a case.
2325     if (I->isAlignmentDependent())
2326       return false;
2327 
2328     if (I->isAlignas())
2329       OldAlignasAttr = I;
2330 
2331     unsigned Align = I->getAlignment(S.Context);
2332     if (Align > OldAlign) {
2333       OldAlign = Align;
2334       OldStrictestAlignAttr = I;
2335     }
2336   }
2337 
2338   // Look for alignas attributes on New.
2339   AlignedAttr *NewAlignasAttr = nullptr;
2340   unsigned NewAlign = 0;
2341   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2342     if (I->isAlignmentDependent())
2343       return false;
2344 
2345     if (I->isAlignas())
2346       NewAlignasAttr = I;
2347 
2348     unsigned Align = I->getAlignment(S.Context);
2349     if (Align > NewAlign)
2350       NewAlign = Align;
2351   }
2352 
2353   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2354     // Both declarations have 'alignas' attributes. We require them to match.
2355     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2356     // fall short. (If two declarations both have alignas, they must both match
2357     // every definition, and so must match each other if there is a definition.)
2358 
2359     // If either declaration only contains 'alignas(0)' specifiers, then it
2360     // specifies the natural alignment for the type.
2361     if (OldAlign == 0 || NewAlign == 0) {
2362       QualType Ty;
2363       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2364         Ty = VD->getType();
2365       else
2366         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2367 
2368       if (OldAlign == 0)
2369         OldAlign = S.Context.getTypeAlign(Ty);
2370       if (NewAlign == 0)
2371         NewAlign = S.Context.getTypeAlign(Ty);
2372     }
2373 
2374     if (OldAlign != NewAlign) {
2375       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2376         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2377         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2378       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2379     }
2380   }
2381 
2382   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2383     // C++11 [dcl.align]p6:
2384     //   if any declaration of an entity has an alignment-specifier,
2385     //   every defining declaration of that entity shall specify an
2386     //   equivalent alignment.
2387     // C11 6.7.5/7:
2388     //   If the definition of an object does not have an alignment
2389     //   specifier, any other declaration of that object shall also
2390     //   have no alignment specifier.
2391     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2392       << OldAlignasAttr;
2393     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2394       << OldAlignasAttr;
2395   }
2396 
2397   bool AnyAdded = false;
2398 
2399   // Ensure we have an attribute representing the strictest alignment.
2400   if (OldAlign > NewAlign) {
2401     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2402     Clone->setInherited(true);
2403     New->addAttr(Clone);
2404     AnyAdded = true;
2405   }
2406 
2407   // Ensure we have an alignas attribute if the old declaration had one.
2408   if (OldAlignasAttr && !NewAlignasAttr &&
2409       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2410     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2411     Clone->setInherited(true);
2412     New->addAttr(Clone);
2413     AnyAdded = true;
2414   }
2415 
2416   return AnyAdded;
2417 }
2418 
2419 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2420                                const InheritableAttr *Attr,
2421                                Sema::AvailabilityMergeKind AMK) {
2422   // This function copies an attribute Attr from a previous declaration to the
2423   // new declaration D if the new declaration doesn't itself have that attribute
2424   // yet or if that attribute allows duplicates.
2425   // If you're adding a new attribute that requires logic different from
2426   // "use explicit attribute on decl if present, else use attribute from
2427   // previous decl", for example if the attribute needs to be consistent
2428   // between redeclarations, you need to call a custom merge function here.
2429   InheritableAttr *NewAttr = nullptr;
2430   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2431   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2432     NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2433                                       AA->isImplicit(), AA->getIntroduced(),
2434                                       AA->getDeprecated(),
2435                                       AA->getObsoleted(), AA->getUnavailable(),
2436                                       AA->getMessage(), AA->getStrict(),
2437                                       AA->getReplacement(), AMK,
2438                                       AttrSpellingListIndex);
2439   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2440     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2441                                     AttrSpellingListIndex);
2442   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2443     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2444                                         AttrSpellingListIndex);
2445   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2446     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2447                                    AttrSpellingListIndex);
2448   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2449     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2450                                    AttrSpellingListIndex);
2451   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2452     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2453                                 FA->getFormatIdx(), FA->getFirstArg(),
2454                                 AttrSpellingListIndex);
2455   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2456     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2457                                  AttrSpellingListIndex);
2458   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2459     NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2460                                        AttrSpellingListIndex,
2461                                        IA->getSemanticSpelling());
2462   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2463     NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2464                                       &S.Context.Idents.get(AA->getSpelling()),
2465                                       AttrSpellingListIndex);
2466   else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2467            (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2468             isa<CUDAGlobalAttr>(Attr))) {
2469     // CUDA target attributes are part of function signature for
2470     // overloading purposes and must not be merged.
2471     return false;
2472   } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2473     NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2474   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2475     NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2476   else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2477     NewAttr = S.mergeInternalLinkageAttr(
2478         D, InternalLinkageA->getRange(),
2479         &S.Context.Idents.get(InternalLinkageA->getSpelling()),
2480         AttrSpellingListIndex);
2481   else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2482     NewAttr = S.mergeCommonAttr(D, CommonA->getRange(),
2483                                 &S.Context.Idents.get(CommonA->getSpelling()),
2484                                 AttrSpellingListIndex);
2485   else if (isa<AlignedAttr>(Attr))
2486     // AlignedAttrs are handled separately, because we need to handle all
2487     // such attributes on a declaration at the same time.
2488     NewAttr = nullptr;
2489   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2490            (AMK == Sema::AMK_Override ||
2491             AMK == Sema::AMK_ProtocolImplementation))
2492     NewAttr = nullptr;
2493   else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2494     NewAttr = S.mergeUuidAttr(D, UA->getRange(), AttrSpellingListIndex,
2495                               UA->getGuid());
2496   else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2497     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2498 
2499   if (NewAttr) {
2500     NewAttr->setInherited(true);
2501     D->addAttr(NewAttr);
2502     if (isa<MSInheritanceAttr>(NewAttr))
2503       S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2504     return true;
2505   }
2506 
2507   return false;
2508 }
2509 
2510 static const NamedDecl *getDefinition(const Decl *D) {
2511   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2512     return TD->getDefinition();
2513   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2514     const VarDecl *Def = VD->getDefinition();
2515     if (Def)
2516       return Def;
2517     return VD->getActingDefinition();
2518   }
2519   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2520     return FD->getDefinition();
2521   return nullptr;
2522 }
2523 
2524 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2525   for (const auto *Attribute : D->attrs())
2526     if (Attribute->getKind() == Kind)
2527       return true;
2528   return false;
2529 }
2530 
2531 /// checkNewAttributesAfterDef - If we already have a definition, check that
2532 /// there are no new attributes in this declaration.
2533 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2534   if (!New->hasAttrs())
2535     return;
2536 
2537   const NamedDecl *Def = getDefinition(Old);
2538   if (!Def || Def == New)
2539     return;
2540 
2541   AttrVec &NewAttributes = New->getAttrs();
2542   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2543     const Attr *NewAttribute = NewAttributes[I];
2544 
2545     if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2546       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2547         Sema::SkipBodyInfo SkipBody;
2548         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2549 
2550         // If we're skipping this definition, drop the "alias" attribute.
2551         if (SkipBody.ShouldSkip) {
2552           NewAttributes.erase(NewAttributes.begin() + I);
2553           --E;
2554           continue;
2555         }
2556       } else {
2557         VarDecl *VD = cast<VarDecl>(New);
2558         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2559                                 VarDecl::TentativeDefinition
2560                             ? diag::err_alias_after_tentative
2561                             : diag::err_redefinition;
2562         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2563         if (Diag == diag::err_redefinition)
2564           S.notePreviousDefinition(Def, VD->getLocation());
2565         else
2566           S.Diag(Def->getLocation(), diag::note_previous_definition);
2567         VD->setInvalidDecl();
2568       }
2569       ++I;
2570       continue;
2571     }
2572 
2573     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2574       // Tentative definitions are only interesting for the alias check above.
2575       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2576         ++I;
2577         continue;
2578       }
2579     }
2580 
2581     if (hasAttribute(Def, NewAttribute->getKind())) {
2582       ++I;
2583       continue; // regular attr merging will take care of validating this.
2584     }
2585 
2586     if (isa<C11NoReturnAttr>(NewAttribute)) {
2587       // C's _Noreturn is allowed to be added to a function after it is defined.
2588       ++I;
2589       continue;
2590     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2591       if (AA->isAlignas()) {
2592         // C++11 [dcl.align]p6:
2593         //   if any declaration of an entity has an alignment-specifier,
2594         //   every defining declaration of that entity shall specify an
2595         //   equivalent alignment.
2596         // C11 6.7.5/7:
2597         //   If the definition of an object does not have an alignment
2598         //   specifier, any other declaration of that object shall also
2599         //   have no alignment specifier.
2600         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2601           << AA;
2602         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2603           << AA;
2604         NewAttributes.erase(NewAttributes.begin() + I);
2605         --E;
2606         continue;
2607       }
2608     }
2609 
2610     S.Diag(NewAttribute->getLocation(),
2611            diag::warn_attribute_precede_definition);
2612     S.Diag(Def->getLocation(), diag::note_previous_definition);
2613     NewAttributes.erase(NewAttributes.begin() + I);
2614     --E;
2615   }
2616 }
2617 
2618 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2619 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2620                                AvailabilityMergeKind AMK) {
2621   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2622     UsedAttr *NewAttr = OldAttr->clone(Context);
2623     NewAttr->setInherited(true);
2624     New->addAttr(NewAttr);
2625   }
2626 
2627   if (!Old->hasAttrs() && !New->hasAttrs())
2628     return;
2629 
2630   // Attributes declared post-definition are currently ignored.
2631   checkNewAttributesAfterDef(*this, New, Old);
2632 
2633   if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2634     if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2635       if (OldA->getLabel() != NewA->getLabel()) {
2636         // This redeclaration changes __asm__ label.
2637         Diag(New->getLocation(), diag::err_different_asm_label);
2638         Diag(OldA->getLocation(), diag::note_previous_declaration);
2639       }
2640     } else if (Old->isUsed()) {
2641       // This redeclaration adds an __asm__ label to a declaration that has
2642       // already been ODR-used.
2643       Diag(New->getLocation(), diag::err_late_asm_label_name)
2644         << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2645     }
2646   }
2647 
2648   // Re-declaration cannot add abi_tag's.
2649   if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2650     if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2651       for (const auto &NewTag : NewAbiTagAttr->tags()) {
2652         if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2653                       NewTag) == OldAbiTagAttr->tags_end()) {
2654           Diag(NewAbiTagAttr->getLocation(),
2655                diag::err_new_abi_tag_on_redeclaration)
2656               << NewTag;
2657           Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2658         }
2659       }
2660     } else {
2661       Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2662       Diag(Old->getLocation(), diag::note_previous_declaration);
2663     }
2664   }
2665 
2666   // This redeclaration adds a section attribute.
2667   if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2668     if (auto *VD = dyn_cast<VarDecl>(New)) {
2669       if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2670         Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2671         Diag(Old->getLocation(), diag::note_previous_declaration);
2672       }
2673     }
2674   }
2675 
2676   if (!Old->hasAttrs())
2677     return;
2678 
2679   bool foundAny = New->hasAttrs();
2680 
2681   // Ensure that any moving of objects within the allocated map is done before
2682   // we process them.
2683   if (!foundAny) New->setAttrs(AttrVec());
2684 
2685   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2686     // Ignore deprecated/unavailable/availability attributes if requested.
2687     AvailabilityMergeKind LocalAMK = AMK_None;
2688     if (isa<DeprecatedAttr>(I) ||
2689         isa<UnavailableAttr>(I) ||
2690         isa<AvailabilityAttr>(I)) {
2691       switch (AMK) {
2692       case AMK_None:
2693         continue;
2694 
2695       case AMK_Redeclaration:
2696       case AMK_Override:
2697       case AMK_ProtocolImplementation:
2698         LocalAMK = AMK;
2699         break;
2700       }
2701     }
2702 
2703     // Already handled.
2704     if (isa<UsedAttr>(I))
2705       continue;
2706 
2707     if (mergeDeclAttribute(*this, New, I, LocalAMK))
2708       foundAny = true;
2709   }
2710 
2711   if (mergeAlignedAttrs(*this, New, Old))
2712     foundAny = true;
2713 
2714   if (!foundAny) New->dropAttrs();
2715 }
2716 
2717 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2718 /// to the new one.
2719 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2720                                      const ParmVarDecl *oldDecl,
2721                                      Sema &S) {
2722   // C++11 [dcl.attr.depend]p2:
2723   //   The first declaration of a function shall specify the
2724   //   carries_dependency attribute for its declarator-id if any declaration
2725   //   of the function specifies the carries_dependency attribute.
2726   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2727   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2728     S.Diag(CDA->getLocation(),
2729            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2730     // Find the first declaration of the parameter.
2731     // FIXME: Should we build redeclaration chains for function parameters?
2732     const FunctionDecl *FirstFD =
2733       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2734     const ParmVarDecl *FirstVD =
2735       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2736     S.Diag(FirstVD->getLocation(),
2737            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2738   }
2739 
2740   if (!oldDecl->hasAttrs())
2741     return;
2742 
2743   bool foundAny = newDecl->hasAttrs();
2744 
2745   // Ensure that any moving of objects within the allocated map is
2746   // done before we process them.
2747   if (!foundAny) newDecl->setAttrs(AttrVec());
2748 
2749   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2750     if (!DeclHasAttr(newDecl, I)) {
2751       InheritableAttr *newAttr =
2752         cast<InheritableParamAttr>(I->clone(S.Context));
2753       newAttr->setInherited(true);
2754       newDecl->addAttr(newAttr);
2755       foundAny = true;
2756     }
2757   }
2758 
2759   if (!foundAny) newDecl->dropAttrs();
2760 }
2761 
2762 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2763                                 const ParmVarDecl *OldParam,
2764                                 Sema &S) {
2765   if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2766     if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2767       if (*Oldnullability != *Newnullability) {
2768         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2769           << DiagNullabilityKind(
2770                *Newnullability,
2771                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2772                 != 0))
2773           << DiagNullabilityKind(
2774                *Oldnullability,
2775                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2776                 != 0));
2777         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2778       }
2779     } else {
2780       QualType NewT = NewParam->getType();
2781       NewT = S.Context.getAttributedType(
2782                          AttributedType::getNullabilityAttrKind(*Oldnullability),
2783                          NewT, NewT);
2784       NewParam->setType(NewT);
2785     }
2786   }
2787 }
2788 
2789 namespace {
2790 
2791 /// Used in MergeFunctionDecl to keep track of function parameters in
2792 /// C.
2793 struct GNUCompatibleParamWarning {
2794   ParmVarDecl *OldParm;
2795   ParmVarDecl *NewParm;
2796   QualType PromotedType;
2797 };
2798 
2799 } // end anonymous namespace
2800 
2801 /// getSpecialMember - get the special member enum for a method.
2802 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2803   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2804     if (Ctor->isDefaultConstructor())
2805       return Sema::CXXDefaultConstructor;
2806 
2807     if (Ctor->isCopyConstructor())
2808       return Sema::CXXCopyConstructor;
2809 
2810     if (Ctor->isMoveConstructor())
2811       return Sema::CXXMoveConstructor;
2812   } else if (isa<CXXDestructorDecl>(MD)) {
2813     return Sema::CXXDestructor;
2814   } else if (MD->isCopyAssignmentOperator()) {
2815     return Sema::CXXCopyAssignment;
2816   } else if (MD->isMoveAssignmentOperator()) {
2817     return Sema::CXXMoveAssignment;
2818   }
2819 
2820   return Sema::CXXInvalid;
2821 }
2822 
2823 // Determine whether the previous declaration was a definition, implicit
2824 // declaration, or a declaration.
2825 template <typename T>
2826 static std::pair<diag::kind, SourceLocation>
2827 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2828   diag::kind PrevDiag;
2829   SourceLocation OldLocation = Old->getLocation();
2830   if (Old->isThisDeclarationADefinition())
2831     PrevDiag = diag::note_previous_definition;
2832   else if (Old->isImplicit()) {
2833     PrevDiag = diag::note_previous_implicit_declaration;
2834     if (OldLocation.isInvalid())
2835       OldLocation = New->getLocation();
2836   } else
2837     PrevDiag = diag::note_previous_declaration;
2838   return std::make_pair(PrevDiag, OldLocation);
2839 }
2840 
2841 /// canRedefineFunction - checks if a function can be redefined. Currently,
2842 /// only extern inline functions can be redefined, and even then only in
2843 /// GNU89 mode.
2844 static bool canRedefineFunction(const FunctionDecl *FD,
2845                                 const LangOptions& LangOpts) {
2846   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2847           !LangOpts.CPlusPlus &&
2848           FD->isInlineSpecified() &&
2849           FD->getStorageClass() == SC_Extern);
2850 }
2851 
2852 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2853   const AttributedType *AT = T->getAs<AttributedType>();
2854   while (AT && !AT->isCallingConv())
2855     AT = AT->getModifiedType()->getAs<AttributedType>();
2856   return AT;
2857 }
2858 
2859 template <typename T>
2860 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2861   const DeclContext *DC = Old->getDeclContext();
2862   if (DC->isRecord())
2863     return false;
2864 
2865   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2866   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2867     return true;
2868   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2869     return true;
2870   return false;
2871 }
2872 
2873 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
2874 static bool isExternC(VarTemplateDecl *) { return false; }
2875 
2876 /// \brief Check whether a redeclaration of an entity introduced by a
2877 /// using-declaration is valid, given that we know it's not an overload
2878 /// (nor a hidden tag declaration).
2879 template<typename ExpectedDecl>
2880 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
2881                                    ExpectedDecl *New) {
2882   // C++11 [basic.scope.declarative]p4:
2883   //   Given a set of declarations in a single declarative region, each of
2884   //   which specifies the same unqualified name,
2885   //   -- they shall all refer to the same entity, or all refer to functions
2886   //      and function templates; or
2887   //   -- exactly one declaration shall declare a class name or enumeration
2888   //      name that is not a typedef name and the other declarations shall all
2889   //      refer to the same variable or enumerator, or all refer to functions
2890   //      and function templates; in this case the class name or enumeration
2891   //      name is hidden (3.3.10).
2892 
2893   // C++11 [namespace.udecl]p14:
2894   //   If a function declaration in namespace scope or block scope has the
2895   //   same name and the same parameter-type-list as a function introduced
2896   //   by a using-declaration, and the declarations do not declare the same
2897   //   function, the program is ill-formed.
2898 
2899   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
2900   if (Old &&
2901       !Old->getDeclContext()->getRedeclContext()->Equals(
2902           New->getDeclContext()->getRedeclContext()) &&
2903       !(isExternC(Old) && isExternC(New)))
2904     Old = nullptr;
2905 
2906   if (!Old) {
2907     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2908     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
2909     S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2910     return true;
2911   }
2912   return false;
2913 }
2914 
2915 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
2916                                             const FunctionDecl *B) {
2917   assert(A->getNumParams() == B->getNumParams());
2918 
2919   auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
2920     const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
2921     const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
2922     if (AttrA == AttrB)
2923       return true;
2924     return AttrA && AttrB && AttrA->getType() == AttrB->getType();
2925   };
2926 
2927   return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
2928 }
2929 
2930 /// If necessary, adjust the semantic declaration context for a qualified
2931 /// declaration to name the correct inline namespace within the qualifier.
2932 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
2933                                                DeclaratorDecl *OldD) {
2934   // The only case where we need to update the DeclContext is when
2935   // redeclaration lookup for a qualified name finds a declaration
2936   // in an inline namespace within the context named by the qualifier:
2937   //
2938   //   inline namespace N { int f(); }
2939   //   int ::f(); // Sema DC needs adjusting from :: to N::.
2940   //
2941   // For unqualified declarations, the semantic context *can* change
2942   // along the redeclaration chain (for local extern declarations,
2943   // extern "C" declarations, and friend declarations in particular).
2944   if (!NewD->getQualifier())
2945     return;
2946 
2947   // NewD is probably already in the right context.
2948   auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
2949   auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
2950   if (NamedDC->Equals(SemaDC))
2951     return;
2952 
2953   assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
2954           NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
2955          "unexpected context for redeclaration");
2956 
2957   auto *LexDC = NewD->getLexicalDeclContext();
2958   auto FixSemaDC = [=](NamedDecl *D) {
2959     if (!D)
2960       return;
2961     D->setDeclContext(SemaDC);
2962     D->setLexicalDeclContext(LexDC);
2963   };
2964 
2965   FixSemaDC(NewD);
2966   if (auto *FD = dyn_cast<FunctionDecl>(NewD))
2967     FixSemaDC(FD->getDescribedFunctionTemplate());
2968   else if (auto *VD = dyn_cast<VarDecl>(NewD))
2969     FixSemaDC(VD->getDescribedVarTemplate());
2970 }
2971 
2972 /// MergeFunctionDecl - We just parsed a function 'New' from
2973 /// declarator D which has the same name and scope as a previous
2974 /// declaration 'Old'.  Figure out how to resolve this situation,
2975 /// merging decls or emitting diagnostics as appropriate.
2976 ///
2977 /// In C++, New and Old must be declarations that are not
2978 /// overloaded. Use IsOverload to determine whether New and Old are
2979 /// overloaded, and to select the Old declaration that New should be
2980 /// merged with.
2981 ///
2982 /// Returns true if there was an error, false otherwise.
2983 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2984                              Scope *S, bool MergeTypeWithOld) {
2985   // Verify the old decl was also a function.
2986   FunctionDecl *Old = OldD->getAsFunction();
2987   if (!Old) {
2988     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2989       if (New->getFriendObjectKind()) {
2990         Diag(New->getLocation(), diag::err_using_decl_friend);
2991         Diag(Shadow->getTargetDecl()->getLocation(),
2992              diag::note_using_decl_target);
2993         Diag(Shadow->getUsingDecl()->getLocation(),
2994              diag::note_using_decl) << 0;
2995         return true;
2996       }
2997 
2998       // Check whether the two declarations might declare the same function.
2999       if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3000         return true;
3001       OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3002     } else {
3003       Diag(New->getLocation(), diag::err_redefinition_different_kind)
3004         << New->getDeclName();
3005       notePreviousDefinition(OldD, New->getLocation());
3006       return true;
3007     }
3008   }
3009 
3010   // If the old declaration is invalid, just give up here.
3011   if (Old->isInvalidDecl())
3012     return true;
3013 
3014   diag::kind PrevDiag;
3015   SourceLocation OldLocation;
3016   std::tie(PrevDiag, OldLocation) =
3017       getNoteDiagForInvalidRedeclaration(Old, New);
3018 
3019   // Don't complain about this if we're in GNU89 mode and the old function
3020   // is an extern inline function.
3021   // Don't complain about specializations. They are not supposed to have
3022   // storage classes.
3023   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3024       New->getStorageClass() == SC_Static &&
3025       Old->hasExternalFormalLinkage() &&
3026       !New->getTemplateSpecializationInfo() &&
3027       !canRedefineFunction(Old, getLangOpts())) {
3028     if (getLangOpts().MicrosoftExt) {
3029       Diag(New->getLocation(), diag::ext_static_non_static) << New;
3030       Diag(OldLocation, PrevDiag);
3031     } else {
3032       Diag(New->getLocation(), diag::err_static_non_static) << New;
3033       Diag(OldLocation, PrevDiag);
3034       return true;
3035     }
3036   }
3037 
3038   if (New->hasAttr<InternalLinkageAttr>() &&
3039       !Old->hasAttr<InternalLinkageAttr>()) {
3040     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3041         << New->getDeclName();
3042     notePreviousDefinition(Old, New->getLocation());
3043     New->dropAttr<InternalLinkageAttr>();
3044   }
3045 
3046   if (CheckRedeclarationModuleOwnership(New, Old))
3047     return true;
3048 
3049   if (!getLangOpts().CPlusPlus) {
3050     bool OldOvl = Old->hasAttr<OverloadableAttr>();
3051     if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3052       Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3053         << New << OldOvl;
3054 
3055       // Try our best to find a decl that actually has the overloadable
3056       // attribute for the note. In most cases (e.g. programs with only one
3057       // broken declaration/definition), this won't matter.
3058       //
3059       // FIXME: We could do this if we juggled some extra state in
3060       // OverloadableAttr, rather than just removing it.
3061       const Decl *DiagOld = Old;
3062       if (OldOvl) {
3063         auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3064           const auto *A = D->getAttr<OverloadableAttr>();
3065           return A && !A->isImplicit();
3066         });
3067         // If we've implicitly added *all* of the overloadable attrs to this
3068         // chain, emitting a "previous redecl" note is pointless.
3069         DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3070       }
3071 
3072       if (DiagOld)
3073         Diag(DiagOld->getLocation(),
3074              diag::note_attribute_overloadable_prev_overload)
3075           << OldOvl;
3076 
3077       if (OldOvl)
3078         New->addAttr(OverloadableAttr::CreateImplicit(Context));
3079       else
3080         New->dropAttr<OverloadableAttr>();
3081     }
3082   }
3083 
3084   // If a function is first declared with a calling convention, but is later
3085   // declared or defined without one, all following decls assume the calling
3086   // convention of the first.
3087   //
3088   // It's OK if a function is first declared without a calling convention,
3089   // but is later declared or defined with the default calling convention.
3090   //
3091   // To test if either decl has an explicit calling convention, we look for
3092   // AttributedType sugar nodes on the type as written.  If they are missing or
3093   // were canonicalized away, we assume the calling convention was implicit.
3094   //
3095   // Note also that we DO NOT return at this point, because we still have
3096   // other tests to run.
3097   QualType OldQType = Context.getCanonicalType(Old->getType());
3098   QualType NewQType = Context.getCanonicalType(New->getType());
3099   const FunctionType *OldType = cast<FunctionType>(OldQType);
3100   const FunctionType *NewType = cast<FunctionType>(NewQType);
3101   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3102   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3103   bool RequiresAdjustment = false;
3104 
3105   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3106     FunctionDecl *First = Old->getFirstDecl();
3107     const FunctionType *FT =
3108         First->getType().getCanonicalType()->castAs<FunctionType>();
3109     FunctionType::ExtInfo FI = FT->getExtInfo();
3110     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3111     if (!NewCCExplicit) {
3112       // Inherit the CC from the previous declaration if it was specified
3113       // there but not here.
3114       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3115       RequiresAdjustment = true;
3116     } else {
3117       // Calling conventions aren't compatible, so complain.
3118       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3119       Diag(New->getLocation(), diag::err_cconv_change)
3120         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3121         << !FirstCCExplicit
3122         << (!FirstCCExplicit ? "" :
3123             FunctionType::getNameForCallConv(FI.getCC()));
3124 
3125       // Put the note on the first decl, since it is the one that matters.
3126       Diag(First->getLocation(), diag::note_previous_declaration);
3127       return true;
3128     }
3129   }
3130 
3131   // FIXME: diagnose the other way around?
3132   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3133     NewTypeInfo = NewTypeInfo.withNoReturn(true);
3134     RequiresAdjustment = true;
3135   }
3136 
3137   // Merge regparm attribute.
3138   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3139       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3140     if (NewTypeInfo.getHasRegParm()) {
3141       Diag(New->getLocation(), diag::err_regparm_mismatch)
3142         << NewType->getRegParmType()
3143         << OldType->getRegParmType();
3144       Diag(OldLocation, diag::note_previous_declaration);
3145       return true;
3146     }
3147 
3148     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3149     RequiresAdjustment = true;
3150   }
3151 
3152   // Merge ns_returns_retained attribute.
3153   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3154     if (NewTypeInfo.getProducesResult()) {
3155       Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3156           << "'ns_returns_retained'";
3157       Diag(OldLocation, diag::note_previous_declaration);
3158       return true;
3159     }
3160 
3161     NewTypeInfo = NewTypeInfo.withProducesResult(true);
3162     RequiresAdjustment = true;
3163   }
3164 
3165   if (OldTypeInfo.getNoCallerSavedRegs() !=
3166       NewTypeInfo.getNoCallerSavedRegs()) {
3167     if (NewTypeInfo.getNoCallerSavedRegs()) {
3168       AnyX86NoCallerSavedRegistersAttr *Attr =
3169         New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3170       Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3171       Diag(OldLocation, diag::note_previous_declaration);
3172       return true;
3173     }
3174 
3175     NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3176     RequiresAdjustment = true;
3177   }
3178 
3179   if (RequiresAdjustment) {
3180     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3181     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3182     New->setType(QualType(AdjustedType, 0));
3183     NewQType = Context.getCanonicalType(New->getType());
3184     NewType = cast<FunctionType>(NewQType);
3185   }
3186 
3187   // If this redeclaration makes the function inline, we may need to add it to
3188   // UndefinedButUsed.
3189   if (!Old->isInlined() && New->isInlined() &&
3190       !New->hasAttr<GNUInlineAttr>() &&
3191       !getLangOpts().GNUInline &&
3192       Old->isUsed(false) &&
3193       !Old->isDefined() && !New->isThisDeclarationADefinition())
3194     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3195                                            SourceLocation()));
3196 
3197   // If this redeclaration makes it newly gnu_inline, we don't want to warn
3198   // about it.
3199   if (New->hasAttr<GNUInlineAttr>() &&
3200       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3201     UndefinedButUsed.erase(Old->getCanonicalDecl());
3202   }
3203 
3204   // If pass_object_size params don't match up perfectly, this isn't a valid
3205   // redeclaration.
3206   if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3207       !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3208     Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3209         << New->getDeclName();
3210     Diag(OldLocation, PrevDiag) << Old << Old->getType();
3211     return true;
3212   }
3213 
3214   if (getLangOpts().CPlusPlus) {
3215     // C++1z [over.load]p2
3216     //   Certain function declarations cannot be overloaded:
3217     //     -- Function declarations that differ only in the return type,
3218     //        the exception specification, or both cannot be overloaded.
3219 
3220     // Check the exception specifications match. This may recompute the type of
3221     // both Old and New if it resolved exception specifications, so grab the
3222     // types again after this. Because this updates the type, we do this before
3223     // any of the other checks below, which may update the "de facto" NewQType
3224     // but do not necessarily update the type of New.
3225     if (CheckEquivalentExceptionSpec(Old, New))
3226       return true;
3227     OldQType = Context.getCanonicalType(Old->getType());
3228     NewQType = Context.getCanonicalType(New->getType());
3229 
3230     // Go back to the type source info to compare the declared return types,
3231     // per C++1y [dcl.type.auto]p13:
3232     //   Redeclarations or specializations of a function or function template
3233     //   with a declared return type that uses a placeholder type shall also
3234     //   use that placeholder, not a deduced type.
3235     QualType OldDeclaredReturnType =
3236         (Old->getTypeSourceInfo()
3237              ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
3238              : OldType)->getReturnType();
3239     QualType NewDeclaredReturnType =
3240         (New->getTypeSourceInfo()
3241              ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
3242              : NewType)->getReturnType();
3243     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3244         !((NewQType->isDependentType() || OldQType->isDependentType()) &&
3245           New->isLocalExternDecl())) {
3246       QualType ResQT;
3247       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3248           OldDeclaredReturnType->isObjCObjectPointerType())
3249         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3250       if (ResQT.isNull()) {
3251         if (New->isCXXClassMember() && New->isOutOfLine())
3252           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3253               << New << New->getReturnTypeSourceRange();
3254         else
3255           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3256               << New->getReturnTypeSourceRange();
3257         Diag(OldLocation, PrevDiag) << Old << Old->getType()
3258                                     << Old->getReturnTypeSourceRange();
3259         return true;
3260       }
3261       else
3262         NewQType = ResQT;
3263     }
3264 
3265     QualType OldReturnType = OldType->getReturnType();
3266     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3267     if (OldReturnType != NewReturnType) {
3268       // If this function has a deduced return type and has already been
3269       // defined, copy the deduced value from the old declaration.
3270       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3271       if (OldAT && OldAT->isDeduced()) {
3272         New->setType(
3273             SubstAutoType(New->getType(),
3274                           OldAT->isDependentType() ? Context.DependentTy
3275                                                    : OldAT->getDeducedType()));
3276         NewQType = Context.getCanonicalType(
3277             SubstAutoType(NewQType,
3278                           OldAT->isDependentType() ? Context.DependentTy
3279                                                    : OldAT->getDeducedType()));
3280       }
3281     }
3282 
3283     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3284     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3285     if (OldMethod && NewMethod) {
3286       // Preserve triviality.
3287       NewMethod->setTrivial(OldMethod->isTrivial());
3288 
3289       // MSVC allows explicit template specialization at class scope:
3290       // 2 CXXMethodDecls referring to the same function will be injected.
3291       // We don't want a redeclaration error.
3292       bool IsClassScopeExplicitSpecialization =
3293                               OldMethod->isFunctionTemplateSpecialization() &&
3294                               NewMethod->isFunctionTemplateSpecialization();
3295       bool isFriend = NewMethod->getFriendObjectKind();
3296 
3297       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3298           !IsClassScopeExplicitSpecialization) {
3299         //    -- Member function declarations with the same name and the
3300         //       same parameter types cannot be overloaded if any of them
3301         //       is a static member function declaration.
3302         if (OldMethod->isStatic() != NewMethod->isStatic()) {
3303           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3304           Diag(OldLocation, PrevDiag) << Old << Old->getType();
3305           return true;
3306         }
3307 
3308         // C++ [class.mem]p1:
3309         //   [...] A member shall not be declared twice in the
3310         //   member-specification, except that a nested class or member
3311         //   class template can be declared and then later defined.
3312         if (!inTemplateInstantiation()) {
3313           unsigned NewDiag;
3314           if (isa<CXXConstructorDecl>(OldMethod))
3315             NewDiag = diag::err_constructor_redeclared;
3316           else if (isa<CXXDestructorDecl>(NewMethod))
3317             NewDiag = diag::err_destructor_redeclared;
3318           else if (isa<CXXConversionDecl>(NewMethod))
3319             NewDiag = diag::err_conv_function_redeclared;
3320           else
3321             NewDiag = diag::err_member_redeclared;
3322 
3323           Diag(New->getLocation(), NewDiag);
3324         } else {
3325           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3326             << New << New->getType();
3327         }
3328         Diag(OldLocation, PrevDiag) << Old << Old->getType();
3329         return true;
3330 
3331       // Complain if this is an explicit declaration of a special
3332       // member that was initially declared implicitly.
3333       //
3334       // As an exception, it's okay to befriend such methods in order
3335       // to permit the implicit constructor/destructor/operator calls.
3336       } else if (OldMethod->isImplicit()) {
3337         if (isFriend) {
3338           NewMethod->setImplicit();
3339         } else {
3340           Diag(NewMethod->getLocation(),
3341                diag::err_definition_of_implicitly_declared_member)
3342             << New << getSpecialMember(OldMethod);
3343           return true;
3344         }
3345       } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3346         Diag(NewMethod->getLocation(),
3347              diag::err_definition_of_explicitly_defaulted_member)
3348           << getSpecialMember(OldMethod);
3349         return true;
3350       }
3351     }
3352 
3353     // C++11 [dcl.attr.noreturn]p1:
3354     //   The first declaration of a function shall specify the noreturn
3355     //   attribute if any declaration of that function specifies the noreturn
3356     //   attribute.
3357     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3358     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3359       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3360       Diag(Old->getFirstDecl()->getLocation(),
3361            diag::note_noreturn_missing_first_decl);
3362     }
3363 
3364     // C++11 [dcl.attr.depend]p2:
3365     //   The first declaration of a function shall specify the
3366     //   carries_dependency attribute for its declarator-id if any declaration
3367     //   of the function specifies the carries_dependency attribute.
3368     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3369     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3370       Diag(CDA->getLocation(),
3371            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3372       Diag(Old->getFirstDecl()->getLocation(),
3373            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3374     }
3375 
3376     // (C++98 8.3.5p3):
3377     //   All declarations for a function shall agree exactly in both the
3378     //   return type and the parameter-type-list.
3379     // We also want to respect all the extended bits except noreturn.
3380 
3381     // noreturn should now match unless the old type info didn't have it.
3382     QualType OldQTypeForComparison = OldQType;
3383     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3384       auto *OldType = OldQType->castAs<FunctionProtoType>();
3385       const FunctionType *OldTypeForComparison
3386         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3387       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3388       assert(OldQTypeForComparison.isCanonical());
3389     }
3390 
3391     if (haveIncompatibleLanguageLinkages(Old, New)) {
3392       // As a special case, retain the language linkage from previous
3393       // declarations of a friend function as an extension.
3394       //
3395       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3396       // and is useful because there's otherwise no way to specify language
3397       // linkage within class scope.
3398       //
3399       // Check cautiously as the friend object kind isn't yet complete.
3400       if (New->getFriendObjectKind() != Decl::FOK_None) {
3401         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3402         Diag(OldLocation, PrevDiag);
3403       } else {
3404         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3405         Diag(OldLocation, PrevDiag);
3406         return true;
3407       }
3408     }
3409 
3410     if (OldQTypeForComparison == NewQType)
3411       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3412 
3413     if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
3414         New->isLocalExternDecl()) {
3415       // It's OK if we couldn't merge types for a local function declaraton
3416       // if either the old or new type is dependent. We'll merge the types
3417       // when we instantiate the function.
3418       return false;
3419     }
3420 
3421     // Fall through for conflicting redeclarations and redefinitions.
3422   }
3423 
3424   // C: Function types need to be compatible, not identical. This handles
3425   // duplicate function decls like "void f(int); void f(enum X);" properly.
3426   if (!getLangOpts().CPlusPlus &&
3427       Context.typesAreCompatible(OldQType, NewQType)) {
3428     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3429     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3430     const FunctionProtoType *OldProto = nullptr;
3431     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3432         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3433       // The old declaration provided a function prototype, but the
3434       // new declaration does not. Merge in the prototype.
3435       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
3436       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3437       NewQType =
3438           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3439                                   OldProto->getExtProtoInfo());
3440       New->setType(NewQType);
3441       New->setHasInheritedPrototype();
3442 
3443       // Synthesize parameters with the same types.
3444       SmallVector<ParmVarDecl*, 16> Params;
3445       for (const auto &ParamType : OldProto->param_types()) {
3446         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3447                                                  SourceLocation(), nullptr,
3448                                                  ParamType, /*TInfo=*/nullptr,
3449                                                  SC_None, nullptr);
3450         Param->setScopeInfo(0, Params.size());
3451         Param->setImplicit();
3452         Params.push_back(Param);
3453       }
3454 
3455       New->setParams(Params);
3456     }
3457 
3458     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3459   }
3460 
3461   // GNU C permits a K&R definition to follow a prototype declaration
3462   // if the declared types of the parameters in the K&R definition
3463   // match the types in the prototype declaration, even when the
3464   // promoted types of the parameters from the K&R definition differ
3465   // from the types in the prototype. GCC then keeps the types from
3466   // the prototype.
3467   //
3468   // If a variadic prototype is followed by a non-variadic K&R definition,
3469   // the K&R definition becomes variadic.  This is sort of an edge case, but
3470   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3471   // C99 6.9.1p8.
3472   if (!getLangOpts().CPlusPlus &&
3473       Old->hasPrototype() && !New->hasPrototype() &&
3474       New->getType()->getAs<FunctionProtoType>() &&
3475       Old->getNumParams() == New->getNumParams()) {
3476     SmallVector<QualType, 16> ArgTypes;
3477     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3478     const FunctionProtoType *OldProto
3479       = Old->getType()->getAs<FunctionProtoType>();
3480     const FunctionProtoType *NewProto
3481       = New->getType()->getAs<FunctionProtoType>();
3482 
3483     // Determine whether this is the GNU C extension.
3484     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3485                                                NewProto->getReturnType());
3486     bool LooseCompatible = !MergedReturn.isNull();
3487     for (unsigned Idx = 0, End = Old->getNumParams();
3488          LooseCompatible && Idx != End; ++Idx) {
3489       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3490       ParmVarDecl *NewParm = New->getParamDecl(Idx);
3491       if (Context.typesAreCompatible(OldParm->getType(),
3492                                      NewProto->getParamType(Idx))) {
3493         ArgTypes.push_back(NewParm->getType());
3494       } else if (Context.typesAreCompatible(OldParm->getType(),
3495                                             NewParm->getType(),
3496                                             /*CompareUnqualified=*/true)) {
3497         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3498                                            NewProto->getParamType(Idx) };
3499         Warnings.push_back(Warn);
3500         ArgTypes.push_back(NewParm->getType());
3501       } else
3502         LooseCompatible = false;
3503     }
3504 
3505     if (LooseCompatible) {
3506       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3507         Diag(Warnings[Warn].NewParm->getLocation(),
3508              diag::ext_param_promoted_not_compatible_with_prototype)
3509           << Warnings[Warn].PromotedType
3510           << Warnings[Warn].OldParm->getType();
3511         if (Warnings[Warn].OldParm->getLocation().isValid())
3512           Diag(Warnings[Warn].OldParm->getLocation(),
3513                diag::note_previous_declaration);
3514       }
3515 
3516       if (MergeTypeWithOld)
3517         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3518                                              OldProto->getExtProtoInfo()));
3519       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3520     }
3521 
3522     // Fall through to diagnose conflicting types.
3523   }
3524 
3525   // A function that has already been declared has been redeclared or
3526   // defined with a different type; show an appropriate diagnostic.
3527 
3528   // If the previous declaration was an implicitly-generated builtin
3529   // declaration, then at the very least we should use a specialized note.
3530   unsigned BuiltinID;
3531   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3532     // If it's actually a library-defined builtin function like 'malloc'
3533     // or 'printf', just warn about the incompatible redeclaration.
3534     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3535       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3536       Diag(OldLocation, diag::note_previous_builtin_declaration)
3537         << Old << Old->getType();
3538 
3539       // If this is a global redeclaration, just forget hereafter
3540       // about the "builtin-ness" of the function.
3541       //
3542       // Doing this for local extern declarations is problematic.  If
3543       // the builtin declaration remains visible, a second invalid
3544       // local declaration will produce a hard error; if it doesn't
3545       // remain visible, a single bogus local redeclaration (which is
3546       // actually only a warning) could break all the downstream code.
3547       if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3548         New->getIdentifier()->revertBuiltin();
3549 
3550       return false;
3551     }
3552 
3553     PrevDiag = diag::note_previous_builtin_declaration;
3554   }
3555 
3556   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3557   Diag(OldLocation, PrevDiag) << Old << Old->getType();
3558   return true;
3559 }
3560 
3561 /// \brief Completes the merge of two function declarations that are
3562 /// known to be compatible.
3563 ///
3564 /// This routine handles the merging of attributes and other
3565 /// properties of function declarations from the old declaration to
3566 /// the new declaration, once we know that New is in fact a
3567 /// redeclaration of Old.
3568 ///
3569 /// \returns false
3570 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3571                                         Scope *S, bool MergeTypeWithOld) {
3572   // Merge the attributes
3573   mergeDeclAttributes(New, Old);
3574 
3575   // Merge "pure" flag.
3576   if (Old->isPure())
3577     New->setPure();
3578 
3579   // Merge "used" flag.
3580   if (Old->getMostRecentDecl()->isUsed(false))
3581     New->setIsUsed();
3582 
3583   // Merge attributes from the parameters.  These can mismatch with K&R
3584   // declarations.
3585   if (New->getNumParams() == Old->getNumParams())
3586       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3587         ParmVarDecl *NewParam = New->getParamDecl(i);
3588         ParmVarDecl *OldParam = Old->getParamDecl(i);
3589         mergeParamDeclAttributes(NewParam, OldParam, *this);
3590         mergeParamDeclTypes(NewParam, OldParam, *this);
3591       }
3592 
3593   if (getLangOpts().CPlusPlus)
3594     return MergeCXXFunctionDecl(New, Old, S);
3595 
3596   // Merge the function types so the we get the composite types for the return
3597   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3598   // was visible.
3599   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3600   if (!Merged.isNull() && MergeTypeWithOld)
3601     New->setType(Merged);
3602 
3603   return false;
3604 }
3605 
3606 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3607                                 ObjCMethodDecl *oldMethod) {
3608   // Merge the attributes, including deprecated/unavailable
3609   AvailabilityMergeKind MergeKind =
3610     isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3611       ? AMK_ProtocolImplementation
3612       : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3613                                                        : AMK_Override;
3614 
3615   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3616 
3617   // Merge attributes from the parameters.
3618   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3619                                        oe = oldMethod->param_end();
3620   for (ObjCMethodDecl::param_iterator
3621          ni = newMethod->param_begin(), ne = newMethod->param_end();
3622        ni != ne && oi != oe; ++ni, ++oi)
3623     mergeParamDeclAttributes(*ni, *oi, *this);
3624 
3625   CheckObjCMethodOverride(newMethod, oldMethod);
3626 }
3627 
3628 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3629   assert(!S.Context.hasSameType(New->getType(), Old->getType()));
3630 
3631   S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3632          ? diag::err_redefinition_different_type
3633          : diag::err_redeclaration_different_type)
3634     << New->getDeclName() << New->getType() << Old->getType();
3635 
3636   diag::kind PrevDiag;
3637   SourceLocation OldLocation;
3638   std::tie(PrevDiag, OldLocation)
3639     = getNoteDiagForInvalidRedeclaration(Old, New);
3640   S.Diag(OldLocation, PrevDiag);
3641   New->setInvalidDecl();
3642 }
3643 
3644 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3645 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3646 /// emitting diagnostics as appropriate.
3647 ///
3648 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3649 /// to here in AddInitializerToDecl. We can't check them before the initializer
3650 /// is attached.
3651 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3652                              bool MergeTypeWithOld) {
3653   if (New->isInvalidDecl() || Old->isInvalidDecl())
3654     return;
3655 
3656   QualType MergedT;
3657   if (getLangOpts().CPlusPlus) {
3658     if (New->getType()->isUndeducedType()) {
3659       // We don't know what the new type is until the initializer is attached.
3660       return;
3661     } else if (Context.hasSameType(New->getType(), Old->getType())) {
3662       // These could still be something that needs exception specs checked.
3663       return MergeVarDeclExceptionSpecs(New, Old);
3664     }
3665     // C++ [basic.link]p10:
3666     //   [...] the types specified by all declarations referring to a given
3667     //   object or function shall be identical, except that declarations for an
3668     //   array object can specify array types that differ by the presence or
3669     //   absence of a major array bound (8.3.4).
3670     else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3671       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3672       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3673 
3674       // We are merging a variable declaration New into Old. If it has an array
3675       // bound, and that bound differs from Old's bound, we should diagnose the
3676       // mismatch.
3677       if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3678         for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3679              PrevVD = PrevVD->getPreviousDecl()) {
3680           const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
3681           if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3682             continue;
3683 
3684           if (!Context.hasSameType(NewArray, PrevVDTy))
3685             return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3686         }
3687       }
3688 
3689       if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3690         if (Context.hasSameType(OldArray->getElementType(),
3691                                 NewArray->getElementType()))
3692           MergedT = New->getType();
3693       }
3694       // FIXME: Check visibility. New is hidden but has a complete type. If New
3695       // has no array bound, it should not inherit one from Old, if Old is not
3696       // visible.
3697       else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3698         if (Context.hasSameType(OldArray->getElementType(),
3699                                 NewArray->getElementType()))
3700           MergedT = Old->getType();
3701       }
3702     }
3703     else if (New->getType()->isObjCObjectPointerType() &&
3704                Old->getType()->isObjCObjectPointerType()) {
3705       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3706                                               Old->getType());
3707     }
3708   } else {
3709     // C 6.2.7p2:
3710     //   All declarations that refer to the same object or function shall have
3711     //   compatible type.
3712     MergedT = Context.mergeTypes(New->getType(), Old->getType());
3713   }
3714   if (MergedT.isNull()) {
3715     // It's OK if we couldn't merge types if either type is dependent, for a
3716     // block-scope variable. In other cases (static data members of class
3717     // templates, variable templates, ...), we require the types to be
3718     // equivalent.
3719     // FIXME: The C++ standard doesn't say anything about this.
3720     if ((New->getType()->isDependentType() ||
3721          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3722       // If the old type was dependent, we can't merge with it, so the new type
3723       // becomes dependent for now. We'll reproduce the original type when we
3724       // instantiate the TypeSourceInfo for the variable.
3725       if (!New->getType()->isDependentType() && MergeTypeWithOld)
3726         New->setType(Context.DependentTy);
3727       return;
3728     }
3729     return diagnoseVarDeclTypeMismatch(*this, New, Old);
3730   }
3731 
3732   // Don't actually update the type on the new declaration if the old
3733   // declaration was an extern declaration in a different scope.
3734   if (MergeTypeWithOld)
3735     New->setType(MergedT);
3736 }
3737 
3738 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3739                                   LookupResult &Previous) {
3740   // C11 6.2.7p4:
3741   //   For an identifier with internal or external linkage declared
3742   //   in a scope in which a prior declaration of that identifier is
3743   //   visible, if the prior declaration specifies internal or
3744   //   external linkage, the type of the identifier at the later
3745   //   declaration becomes the composite type.
3746   //
3747   // If the variable isn't visible, we do not merge with its type.
3748   if (Previous.isShadowed())
3749     return false;
3750 
3751   if (S.getLangOpts().CPlusPlus) {
3752     // C++11 [dcl.array]p3:
3753     //   If there is a preceding declaration of the entity in the same
3754     //   scope in which the bound was specified, an omitted array bound
3755     //   is taken to be the same as in that earlier declaration.
3756     return NewVD->isPreviousDeclInSameBlockScope() ||
3757            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3758             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3759   } else {
3760     // If the old declaration was function-local, don't merge with its
3761     // type unless we're in the same function.
3762     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3763            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3764   }
3765 }
3766 
3767 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
3768 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
3769 /// situation, merging decls or emitting diagnostics as appropriate.
3770 ///
3771 /// Tentative definition rules (C99 6.9.2p2) are checked by
3772 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3773 /// definitions here, since the initializer hasn't been attached.
3774 ///
3775 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3776   // If the new decl is already invalid, don't do any other checking.
3777   if (New->isInvalidDecl())
3778     return;
3779 
3780   if (!shouldLinkPossiblyHiddenDecl(Previous, New))
3781     return;
3782 
3783   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3784 
3785   // Verify the old decl was also a variable or variable template.
3786   VarDecl *Old = nullptr;
3787   VarTemplateDecl *OldTemplate = nullptr;
3788   if (Previous.isSingleResult()) {
3789     if (NewTemplate) {
3790       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3791       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3792 
3793       if (auto *Shadow =
3794               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3795         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
3796           return New->setInvalidDecl();
3797     } else {
3798       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3799 
3800       if (auto *Shadow =
3801               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3802         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
3803           return New->setInvalidDecl();
3804     }
3805   }
3806   if (!Old) {
3807     Diag(New->getLocation(), diag::err_redefinition_different_kind)
3808         << New->getDeclName();
3809     notePreviousDefinition(Previous.getRepresentativeDecl(),
3810                            New->getLocation());
3811     return New->setInvalidDecl();
3812   }
3813 
3814   // Ensure the template parameters are compatible.
3815   if (NewTemplate &&
3816       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3817                                       OldTemplate->getTemplateParameters(),
3818                                       /*Complain=*/true, TPL_TemplateMatch))
3819     return New->setInvalidDecl();
3820 
3821   // C++ [class.mem]p1:
3822   //   A member shall not be declared twice in the member-specification [...]
3823   //
3824   // Here, we need only consider static data members.
3825   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3826     Diag(New->getLocation(), diag::err_duplicate_member)
3827       << New->getIdentifier();
3828     Diag(Old->getLocation(), diag::note_previous_declaration);
3829     New->setInvalidDecl();
3830   }
3831 
3832   mergeDeclAttributes(New, Old);
3833   // Warn if an already-declared variable is made a weak_import in a subsequent
3834   // declaration
3835   if (New->hasAttr<WeakImportAttr>() &&
3836       Old->getStorageClass() == SC_None &&
3837       !Old->hasAttr<WeakImportAttr>()) {
3838     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3839     notePreviousDefinition(Old, New->getLocation());
3840     // Remove weak_import attribute on new declaration.
3841     New->dropAttr<WeakImportAttr>();
3842   }
3843 
3844   if (New->hasAttr<InternalLinkageAttr>() &&
3845       !Old->hasAttr<InternalLinkageAttr>()) {
3846     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3847         << New->getDeclName();
3848     notePreviousDefinition(Old, New->getLocation());
3849     New->dropAttr<InternalLinkageAttr>();
3850   }
3851 
3852   // Merge the types.
3853   VarDecl *MostRecent = Old->getMostRecentDecl();
3854   if (MostRecent != Old) {
3855     MergeVarDeclTypes(New, MostRecent,
3856                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3857     if (New->isInvalidDecl())
3858       return;
3859   }
3860 
3861   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3862   if (New->isInvalidDecl())
3863     return;
3864 
3865   diag::kind PrevDiag;
3866   SourceLocation OldLocation;
3867   std::tie(PrevDiag, OldLocation) =
3868       getNoteDiagForInvalidRedeclaration(Old, New);
3869 
3870   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3871   if (New->getStorageClass() == SC_Static &&
3872       !New->isStaticDataMember() &&
3873       Old->hasExternalFormalLinkage()) {
3874     if (getLangOpts().MicrosoftExt) {
3875       Diag(New->getLocation(), diag::ext_static_non_static)
3876           << New->getDeclName();
3877       Diag(OldLocation, PrevDiag);
3878     } else {
3879       Diag(New->getLocation(), diag::err_static_non_static)
3880           << New->getDeclName();
3881       Diag(OldLocation, PrevDiag);
3882       return New->setInvalidDecl();
3883     }
3884   }
3885   // C99 6.2.2p4:
3886   //   For an identifier declared with the storage-class specifier
3887   //   extern in a scope in which a prior declaration of that
3888   //   identifier is visible,23) if the prior declaration specifies
3889   //   internal or external linkage, the linkage of the identifier at
3890   //   the later declaration is the same as the linkage specified at
3891   //   the prior declaration. If no prior declaration is visible, or
3892   //   if the prior declaration specifies no linkage, then the
3893   //   identifier has external linkage.
3894   if (New->hasExternalStorage() && Old->hasLinkage())
3895     /* Okay */;
3896   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3897            !New->isStaticDataMember() &&
3898            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3899     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3900     Diag(OldLocation, PrevDiag);
3901     return New->setInvalidDecl();
3902   }
3903 
3904   // Check if extern is followed by non-extern and vice-versa.
3905   if (New->hasExternalStorage() &&
3906       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3907     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3908     Diag(OldLocation, PrevDiag);
3909     return New->setInvalidDecl();
3910   }
3911   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3912       !New->hasExternalStorage()) {
3913     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3914     Diag(OldLocation, PrevDiag);
3915     return New->setInvalidDecl();
3916   }
3917 
3918   if (CheckRedeclarationModuleOwnership(New, Old))
3919     return;
3920 
3921   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3922 
3923   // FIXME: The test for external storage here seems wrong? We still
3924   // need to check for mismatches.
3925   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3926       // Don't complain about out-of-line definitions of static members.
3927       !(Old->getLexicalDeclContext()->isRecord() &&
3928         !New->getLexicalDeclContext()->isRecord())) {
3929     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3930     Diag(OldLocation, PrevDiag);
3931     return New->setInvalidDecl();
3932   }
3933 
3934   if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
3935     if (VarDecl *Def = Old->getDefinition()) {
3936       // C++1z [dcl.fcn.spec]p4:
3937       //   If the definition of a variable appears in a translation unit before
3938       //   its first declaration as inline, the program is ill-formed.
3939       Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
3940       Diag(Def->getLocation(), diag::note_previous_definition);
3941     }
3942   }
3943 
3944   // If this redeclaration makes the variable inline, we may need to add it to
3945   // UndefinedButUsed.
3946   if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
3947       !Old->getDefinition() && !New->isThisDeclarationADefinition())
3948     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3949                                            SourceLocation()));
3950 
3951   if (New->getTLSKind() != Old->getTLSKind()) {
3952     if (!Old->getTLSKind()) {
3953       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3954       Diag(OldLocation, PrevDiag);
3955     } else if (!New->getTLSKind()) {
3956       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3957       Diag(OldLocation, PrevDiag);
3958     } else {
3959       // Do not allow redeclaration to change the variable between requiring
3960       // static and dynamic initialization.
3961       // FIXME: GCC allows this, but uses the TLS keyword on the first
3962       // declaration to determine the kind. Do we need to be compatible here?
3963       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3964         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3965       Diag(OldLocation, PrevDiag);
3966     }
3967   }
3968 
3969   // C++ doesn't have tentative definitions, so go right ahead and check here.
3970   if (getLangOpts().CPlusPlus &&
3971       New->isThisDeclarationADefinition() == VarDecl::Definition) {
3972     if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
3973         Old->getCanonicalDecl()->isConstexpr()) {
3974       // This definition won't be a definition any more once it's been merged.
3975       Diag(New->getLocation(),
3976            diag::warn_deprecated_redundant_constexpr_static_def);
3977     } else if (VarDecl *Def = Old->getDefinition()) {
3978       if (checkVarDeclRedefinition(Def, New))
3979         return;
3980     }
3981   }
3982 
3983   if (haveIncompatibleLanguageLinkages(Old, New)) {
3984     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3985     Diag(OldLocation, PrevDiag);
3986     New->setInvalidDecl();
3987     return;
3988   }
3989 
3990   // Merge "used" flag.
3991   if (Old->getMostRecentDecl()->isUsed(false))
3992     New->setIsUsed();
3993 
3994   // Keep a chain of previous declarations.
3995   New->setPreviousDecl(Old);
3996   if (NewTemplate)
3997     NewTemplate->setPreviousDecl(OldTemplate);
3998   adjustDeclContextForDeclaratorDecl(New, Old);
3999 
4000   // Inherit access appropriately.
4001   New->setAccess(Old->getAccess());
4002   if (NewTemplate)
4003     NewTemplate->setAccess(New->getAccess());
4004 
4005   if (Old->isInline())
4006     New->setImplicitlyInline();
4007 }
4008 
4009 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4010   SourceManager &SrcMgr = getSourceManager();
4011   auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4012   auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4013   auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4014   auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4015   auto &HSI = PP.getHeaderSearchInfo();
4016   StringRef HdrFilename =
4017       SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4018 
4019   auto noteFromModuleOrInclude = [&](Module *Mod,
4020                                      SourceLocation IncLoc) -> bool {
4021     // Redefinition errors with modules are common with non modular mapped
4022     // headers, example: a non-modular header H in module A that also gets
4023     // included directly in a TU. Pointing twice to the same header/definition
4024     // is confusing, try to get better diagnostics when modules is on.
4025     if (IncLoc.isValid()) {
4026       if (Mod) {
4027         Diag(IncLoc, diag::note_redefinition_modules_same_file)
4028             << HdrFilename.str() << Mod->getFullModuleName();
4029         if (!Mod->DefinitionLoc.isInvalid())
4030           Diag(Mod->DefinitionLoc, diag::note_defined_here)
4031               << Mod->getFullModuleName();
4032       } else {
4033         Diag(IncLoc, diag::note_redefinition_include_same_file)
4034             << HdrFilename.str();
4035       }
4036       return true;
4037     }
4038 
4039     return false;
4040   };
4041 
4042   // Is it the same file and same offset? Provide more information on why
4043   // this leads to a redefinition error.
4044   bool EmittedDiag = false;
4045   if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4046     SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4047     SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4048     EmittedDiag = noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4049     EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4050 
4051     // If the header has no guards, emit a note suggesting one.
4052     if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4053       Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4054 
4055     if (EmittedDiag)
4056       return;
4057   }
4058 
4059   // Redefinition coming from different files or couldn't do better above.
4060   if (Old->getLocation().isValid())
4061     Diag(Old->getLocation(), diag::note_previous_definition);
4062 }
4063 
4064 /// We've just determined that \p Old and \p New both appear to be definitions
4065 /// of the same variable. Either diagnose or fix the problem.
4066 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4067   if (!hasVisibleDefinition(Old) &&
4068       (New->getFormalLinkage() == InternalLinkage ||
4069        New->isInline() ||
4070        New->getDescribedVarTemplate() ||
4071        New->getNumTemplateParameterLists() ||
4072        New->getDeclContext()->isDependentContext())) {
4073     // The previous definition is hidden, and multiple definitions are
4074     // permitted (in separate TUs). Demote this to a declaration.
4075     New->demoteThisDefinitionToDeclaration();
4076 
4077     // Make the canonical definition visible.
4078     if (auto *OldTD = Old->getDescribedVarTemplate())
4079       makeMergedDefinitionVisible(OldTD);
4080     makeMergedDefinitionVisible(Old);
4081     return false;
4082   } else {
4083     Diag(New->getLocation(), diag::err_redefinition) << New;
4084     notePreviousDefinition(Old, New->getLocation());
4085     New->setInvalidDecl();
4086     return true;
4087   }
4088 }
4089 
4090 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4091 /// no declarator (e.g. "struct foo;") is parsed.
4092 Decl *
4093 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4094                                  RecordDecl *&AnonRecord) {
4095   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4096                                     AnonRecord);
4097 }
4098 
4099 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4100 // disambiguate entities defined in different scopes.
4101 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4102 // compatibility.
4103 // We will pick our mangling number depending on which version of MSVC is being
4104 // targeted.
4105 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4106   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4107              ? S->getMSCurManglingNumber()
4108              : S->getMSLastManglingNumber();
4109 }
4110 
4111 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4112   if (!Context.getLangOpts().CPlusPlus)
4113     return;
4114 
4115   if (isa<CXXRecordDecl>(Tag->getParent())) {
4116     // If this tag is the direct child of a class, number it if
4117     // it is anonymous.
4118     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4119       return;
4120     MangleNumberingContext &MCtx =
4121         Context.getManglingNumberContext(Tag->getParent());
4122     Context.setManglingNumber(
4123         Tag, MCtx.getManglingNumber(
4124                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4125     return;
4126   }
4127 
4128   // If this tag isn't a direct child of a class, number it if it is local.
4129   Decl *ManglingContextDecl;
4130   if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4131           Tag->getDeclContext(), ManglingContextDecl)) {
4132     Context.setManglingNumber(
4133         Tag, MCtx->getManglingNumber(
4134                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4135   }
4136 }
4137 
4138 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4139                                         TypedefNameDecl *NewTD) {
4140   if (TagFromDeclSpec->isInvalidDecl())
4141     return;
4142 
4143   // Do nothing if the tag already has a name for linkage purposes.
4144   if (TagFromDeclSpec->hasNameForLinkage())
4145     return;
4146 
4147   // A well-formed anonymous tag must always be a TUK_Definition.
4148   assert(TagFromDeclSpec->isThisDeclarationADefinition());
4149 
4150   // The type must match the tag exactly;  no qualifiers allowed.
4151   if (!Context.hasSameType(NewTD->getUnderlyingType(),
4152                            Context.getTagDeclType(TagFromDeclSpec))) {
4153     if (getLangOpts().CPlusPlus)
4154       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4155     return;
4156   }
4157 
4158   // If we've already computed linkage for the anonymous tag, then
4159   // adding a typedef name for the anonymous decl can change that
4160   // linkage, which might be a serious problem.  Diagnose this as
4161   // unsupported and ignore the typedef name.  TODO: we should
4162   // pursue this as a language defect and establish a formal rule
4163   // for how to handle it.
4164   if (TagFromDeclSpec->hasLinkageBeenComputed()) {
4165     Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
4166 
4167     SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
4168     tagLoc = getLocForEndOfToken(tagLoc);
4169 
4170     llvm::SmallString<40> textToInsert;
4171     textToInsert += ' ';
4172     textToInsert += NewTD->getIdentifier()->getName();
4173     Diag(tagLoc, diag::note_typedef_changes_linkage)
4174         << FixItHint::CreateInsertion(tagLoc, textToInsert);
4175     return;
4176   }
4177 
4178   // Otherwise, set this is the anon-decl typedef for the tag.
4179   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4180 }
4181 
4182 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4183   switch (T) {
4184   case DeclSpec::TST_class:
4185     return 0;
4186   case DeclSpec::TST_struct:
4187     return 1;
4188   case DeclSpec::TST_interface:
4189     return 2;
4190   case DeclSpec::TST_union:
4191     return 3;
4192   case DeclSpec::TST_enum:
4193     return 4;
4194   default:
4195     llvm_unreachable("unexpected type specifier");
4196   }
4197 }
4198 
4199 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4200 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4201 /// parameters to cope with template friend declarations.
4202 Decl *
4203 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4204                                  MultiTemplateParamsArg TemplateParams,
4205                                  bool IsExplicitInstantiation,
4206                                  RecordDecl *&AnonRecord) {
4207   Decl *TagD = nullptr;
4208   TagDecl *Tag = nullptr;
4209   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4210       DS.getTypeSpecType() == DeclSpec::TST_struct ||
4211       DS.getTypeSpecType() == DeclSpec::TST_interface ||
4212       DS.getTypeSpecType() == DeclSpec::TST_union ||
4213       DS.getTypeSpecType() == DeclSpec::TST_enum) {
4214     TagD = DS.getRepAsDecl();
4215 
4216     if (!TagD) // We probably had an error
4217       return nullptr;
4218 
4219     // Note that the above type specs guarantee that the
4220     // type rep is a Decl, whereas in many of the others
4221     // it's a Type.
4222     if (isa<TagDecl>(TagD))
4223       Tag = cast<TagDecl>(TagD);
4224     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4225       Tag = CTD->getTemplatedDecl();
4226   }
4227 
4228   if (Tag) {
4229     handleTagNumbering(Tag, S);
4230     Tag->setFreeStanding();
4231     if (Tag->isInvalidDecl())
4232       return Tag;
4233   }
4234 
4235   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4236     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4237     // or incomplete types shall not be restrict-qualified."
4238     if (TypeQuals & DeclSpec::TQ_restrict)
4239       Diag(DS.getRestrictSpecLoc(),
4240            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4241            << DS.getSourceRange();
4242   }
4243 
4244   if (DS.isInlineSpecified())
4245     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4246         << getLangOpts().CPlusPlus17;
4247 
4248   if (DS.isConstexprSpecified()) {
4249     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4250     // and definitions of functions and variables.
4251     if (Tag)
4252       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4253           << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType());
4254     else
4255       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
4256     // Don't emit warnings after this error.
4257     return TagD;
4258   }
4259 
4260   DiagnoseFunctionSpecifiers(DS);
4261 
4262   if (DS.isFriendSpecified()) {
4263     // If we're dealing with a decl but not a TagDecl, assume that
4264     // whatever routines created it handled the friendship aspect.
4265     if (TagD && !Tag)
4266       return nullptr;
4267     return ActOnFriendTypeDecl(S, DS, TemplateParams);
4268   }
4269 
4270   const CXXScopeSpec &SS = DS.getTypeSpecScope();
4271   bool IsExplicitSpecialization =
4272     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4273   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4274       !IsExplicitInstantiation && !IsExplicitSpecialization &&
4275       !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4276     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4277     // nested-name-specifier unless it is an explicit instantiation
4278     // or an explicit specialization.
4279     //
4280     // FIXME: We allow class template partial specializations here too, per the
4281     // obvious intent of DR1819.
4282     //
4283     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4284     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4285         << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4286     return nullptr;
4287   }
4288 
4289   // Track whether this decl-specifier declares anything.
4290   bool DeclaresAnything = true;
4291 
4292   // Handle anonymous struct definitions.
4293   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4294     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4295         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4296       if (getLangOpts().CPlusPlus ||
4297           Record->getDeclContext()->isRecord()) {
4298         // If CurContext is a DeclContext that can contain statements,
4299         // RecursiveASTVisitor won't visit the decls that
4300         // BuildAnonymousStructOrUnion() will put into CurContext.
4301         // Also store them here so that they can be part of the
4302         // DeclStmt that gets created in this case.
4303         // FIXME: Also return the IndirectFieldDecls created by
4304         // BuildAnonymousStructOr union, for the same reason?
4305         if (CurContext->isFunctionOrMethod())
4306           AnonRecord = Record;
4307         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4308                                            Context.getPrintingPolicy());
4309       }
4310 
4311       DeclaresAnything = false;
4312     }
4313   }
4314 
4315   // C11 6.7.2.1p2:
4316   //   A struct-declaration that does not declare an anonymous structure or
4317   //   anonymous union shall contain a struct-declarator-list.
4318   //
4319   // This rule also existed in C89 and C99; the grammar for struct-declaration
4320   // did not permit a struct-declaration without a struct-declarator-list.
4321   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4322       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4323     // Check for Microsoft C extension: anonymous struct/union member.
4324     // Handle 2 kinds of anonymous struct/union:
4325     //   struct STRUCT;
4326     //   union UNION;
4327     // and
4328     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
4329     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
4330     if ((Tag && Tag->getDeclName()) ||
4331         DS.getTypeSpecType() == DeclSpec::TST_typename) {
4332       RecordDecl *Record = nullptr;
4333       if (Tag)
4334         Record = dyn_cast<RecordDecl>(Tag);
4335       else if (const RecordType *RT =
4336                    DS.getRepAsType().get()->getAsStructureType())
4337         Record = RT->getDecl();
4338       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4339         Record = UT->getDecl();
4340 
4341       if (Record && getLangOpts().MicrosoftExt) {
4342         Diag(DS.getLocStart(), diag::ext_ms_anonymous_record)
4343           << Record->isUnion() << DS.getSourceRange();
4344         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4345       }
4346 
4347       DeclaresAnything = false;
4348     }
4349   }
4350 
4351   // Skip all the checks below if we have a type error.
4352   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4353       (TagD && TagD->isInvalidDecl()))
4354     return TagD;
4355 
4356   if (getLangOpts().CPlusPlus &&
4357       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4358     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4359       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4360           !Enum->getIdentifier() && !Enum->isInvalidDecl())
4361         DeclaresAnything = false;
4362 
4363   if (!DS.isMissingDeclaratorOk()) {
4364     // Customize diagnostic for a typedef missing a name.
4365     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4366       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
4367         << DS.getSourceRange();
4368     else
4369       DeclaresAnything = false;
4370   }
4371 
4372   if (DS.isModulePrivateSpecified() &&
4373       Tag && Tag->getDeclContext()->isFunctionOrMethod())
4374     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4375       << Tag->getTagKind()
4376       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4377 
4378   ActOnDocumentableDecl(TagD);
4379 
4380   // C 6.7/2:
4381   //   A declaration [...] shall declare at least a declarator [...], a tag,
4382   //   or the members of an enumeration.
4383   // C++ [dcl.dcl]p3:
4384   //   [If there are no declarators], and except for the declaration of an
4385   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
4386   //   names into the program, or shall redeclare a name introduced by a
4387   //   previous declaration.
4388   if (!DeclaresAnything) {
4389     // In C, we allow this as a (popular) extension / bug. Don't bother
4390     // producing further diagnostics for redundant qualifiers after this.
4391     Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
4392     return TagD;
4393   }
4394 
4395   // C++ [dcl.stc]p1:
4396   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4397   //   init-declarator-list of the declaration shall not be empty.
4398   // C++ [dcl.fct.spec]p1:
4399   //   If a cv-qualifier appears in a decl-specifier-seq, the
4400   //   init-declarator-list of the declaration shall not be empty.
4401   //
4402   // Spurious qualifiers here appear to be valid in C.
4403   unsigned DiagID = diag::warn_standalone_specifier;
4404   if (getLangOpts().CPlusPlus)
4405     DiagID = diag::ext_standalone_specifier;
4406 
4407   // Note that a linkage-specification sets a storage class, but
4408   // 'extern "C" struct foo;' is actually valid and not theoretically
4409   // useless.
4410   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4411     if (SCS == DeclSpec::SCS_mutable)
4412       // Since mutable is not a viable storage class specifier in C, there is
4413       // no reason to treat it as an extension. Instead, diagnose as an error.
4414       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4415     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4416       Diag(DS.getStorageClassSpecLoc(), DiagID)
4417         << DeclSpec::getSpecifierName(SCS);
4418   }
4419 
4420   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4421     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4422       << DeclSpec::getSpecifierName(TSCS);
4423   if (DS.getTypeQualifiers()) {
4424     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4425       Diag(DS.getConstSpecLoc(), DiagID) << "const";
4426     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4427       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4428     // Restrict is covered above.
4429     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4430       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4431     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4432       Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4433   }
4434 
4435   // Warn about ignored type attributes, for example:
4436   // __attribute__((aligned)) struct A;
4437   // Attributes should be placed after tag to apply to type declaration.
4438   if (!DS.getAttributes().empty()) {
4439     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4440     if (TypeSpecType == DeclSpec::TST_class ||
4441         TypeSpecType == DeclSpec::TST_struct ||
4442         TypeSpecType == DeclSpec::TST_interface ||
4443         TypeSpecType == DeclSpec::TST_union ||
4444         TypeSpecType == DeclSpec::TST_enum) {
4445       for (AttributeList* attrs = DS.getAttributes().getList(); attrs;
4446            attrs = attrs->getNext())
4447         Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
4448             << attrs->getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
4449     }
4450   }
4451 
4452   return TagD;
4453 }
4454 
4455 /// We are trying to inject an anonymous member into the given scope;
4456 /// check if there's an existing declaration that can't be overloaded.
4457 ///
4458 /// \return true if this is a forbidden redeclaration
4459 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4460                                          Scope *S,
4461                                          DeclContext *Owner,
4462                                          DeclarationName Name,
4463                                          SourceLocation NameLoc,
4464                                          bool IsUnion) {
4465   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4466                  Sema::ForVisibleRedeclaration);
4467   if (!SemaRef.LookupName(R, S)) return false;
4468 
4469   // Pick a representative declaration.
4470   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4471   assert(PrevDecl && "Expected a non-null Decl");
4472 
4473   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4474     return false;
4475 
4476   SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4477     << IsUnion << Name;
4478   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4479 
4480   return true;
4481 }
4482 
4483 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
4484 /// anonymous struct or union AnonRecord into the owning context Owner
4485 /// and scope S. This routine will be invoked just after we realize
4486 /// that an unnamed union or struct is actually an anonymous union or
4487 /// struct, e.g.,
4488 ///
4489 /// @code
4490 /// union {
4491 ///   int i;
4492 ///   float f;
4493 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4494 ///    // f into the surrounding scope.x
4495 /// @endcode
4496 ///
4497 /// This routine is recursive, injecting the names of nested anonymous
4498 /// structs/unions into the owning context and scope as well.
4499 static bool
4500 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4501                                     RecordDecl *AnonRecord, AccessSpecifier AS,
4502                                     SmallVectorImpl<NamedDecl *> &Chaining) {
4503   bool Invalid = false;
4504 
4505   // Look every FieldDecl and IndirectFieldDecl with a name.
4506   for (auto *D : AnonRecord->decls()) {
4507     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4508         cast<NamedDecl>(D)->getDeclName()) {
4509       ValueDecl *VD = cast<ValueDecl>(D);
4510       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4511                                        VD->getLocation(),
4512                                        AnonRecord->isUnion())) {
4513         // C++ [class.union]p2:
4514         //   The names of the members of an anonymous union shall be
4515         //   distinct from the names of any other entity in the
4516         //   scope in which the anonymous union is declared.
4517         Invalid = true;
4518       } else {
4519         // C++ [class.union]p2:
4520         //   For the purpose of name lookup, after the anonymous union
4521         //   definition, the members of the anonymous union are
4522         //   considered to have been defined in the scope in which the
4523         //   anonymous union is declared.
4524         unsigned OldChainingSize = Chaining.size();
4525         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4526           Chaining.append(IF->chain_begin(), IF->chain_end());
4527         else
4528           Chaining.push_back(VD);
4529 
4530         assert(Chaining.size() >= 2);
4531         NamedDecl **NamedChain =
4532           new (SemaRef.Context)NamedDecl*[Chaining.size()];
4533         for (unsigned i = 0; i < Chaining.size(); i++)
4534           NamedChain[i] = Chaining[i];
4535 
4536         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4537             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4538             VD->getType(), {NamedChain, Chaining.size()});
4539 
4540         for (const auto *Attr : VD->attrs())
4541           IndirectField->addAttr(Attr->clone(SemaRef.Context));
4542 
4543         IndirectField->setAccess(AS);
4544         IndirectField->setImplicit();
4545         SemaRef.PushOnScopeChains(IndirectField, S);
4546 
4547         // That includes picking up the appropriate access specifier.
4548         if (AS != AS_none) IndirectField->setAccess(AS);
4549 
4550         Chaining.resize(OldChainingSize);
4551       }
4552     }
4553   }
4554 
4555   return Invalid;
4556 }
4557 
4558 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4559 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
4560 /// illegal input values are mapped to SC_None.
4561 static StorageClass
4562 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4563   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4564   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
4565          "Parser allowed 'typedef' as storage class VarDecl.");
4566   switch (StorageClassSpec) {
4567   case DeclSpec::SCS_unspecified:    return SC_None;
4568   case DeclSpec::SCS_extern:
4569     if (DS.isExternInLinkageSpec())
4570       return SC_None;
4571     return SC_Extern;
4572   case DeclSpec::SCS_static:         return SC_Static;
4573   case DeclSpec::SCS_auto:           return SC_Auto;
4574   case DeclSpec::SCS_register:       return SC_Register;
4575   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4576     // Illegal SCSs map to None: error reporting is up to the caller.
4577   case DeclSpec::SCS_mutable:        // Fall through.
4578   case DeclSpec::SCS_typedef:        return SC_None;
4579   }
4580   llvm_unreachable("unknown storage class specifier");
4581 }
4582 
4583 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4584   assert(Record->hasInClassInitializer());
4585 
4586   for (const auto *I : Record->decls()) {
4587     const auto *FD = dyn_cast<FieldDecl>(I);
4588     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4589       FD = IFD->getAnonField();
4590     if (FD && FD->hasInClassInitializer())
4591       return FD->getLocation();
4592   }
4593 
4594   llvm_unreachable("couldn't find in-class initializer");
4595 }
4596 
4597 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4598                                       SourceLocation DefaultInitLoc) {
4599   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4600     return;
4601 
4602   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4603   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4604 }
4605 
4606 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4607                                       CXXRecordDecl *AnonUnion) {
4608   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4609     return;
4610 
4611   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4612 }
4613 
4614 /// BuildAnonymousStructOrUnion - Handle the declaration of an
4615 /// anonymous structure or union. Anonymous unions are a C++ feature
4616 /// (C++ [class.union]) and a C11 feature; anonymous structures
4617 /// are a C11 feature and GNU C++ extension.
4618 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4619                                         AccessSpecifier AS,
4620                                         RecordDecl *Record,
4621                                         const PrintingPolicy &Policy) {
4622   DeclContext *Owner = Record->getDeclContext();
4623 
4624   // Diagnose whether this anonymous struct/union is an extension.
4625   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4626     Diag(Record->getLocation(), diag::ext_anonymous_union);
4627   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4628     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4629   else if (!Record->isUnion() && !getLangOpts().C11)
4630     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4631 
4632   // C and C++ require different kinds of checks for anonymous
4633   // structs/unions.
4634   bool Invalid = false;
4635   if (getLangOpts().CPlusPlus) {
4636     const char *PrevSpec = nullptr;
4637     unsigned DiagID;
4638     if (Record->isUnion()) {
4639       // C++ [class.union]p6:
4640       //   Anonymous unions declared in a named namespace or in the
4641       //   global namespace shall be declared static.
4642       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4643           (isa<TranslationUnitDecl>(Owner) ||
4644            (isa<NamespaceDecl>(Owner) &&
4645             cast<NamespaceDecl>(Owner)->getDeclName()))) {
4646         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4647           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4648 
4649         // Recover by adding 'static'.
4650         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4651                                PrevSpec, DiagID, Policy);
4652       }
4653       // C++ [class.union]p6:
4654       //   A storage class is not allowed in a declaration of an
4655       //   anonymous union in a class scope.
4656       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4657                isa<RecordDecl>(Owner)) {
4658         Diag(DS.getStorageClassSpecLoc(),
4659              diag::err_anonymous_union_with_storage_spec)
4660           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4661 
4662         // Recover by removing the storage specifier.
4663         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
4664                                SourceLocation(),
4665                                PrevSpec, DiagID, Context.getPrintingPolicy());
4666       }
4667     }
4668 
4669     // Ignore const/volatile/restrict qualifiers.
4670     if (DS.getTypeQualifiers()) {
4671       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4672         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4673           << Record->isUnion() << "const"
4674           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4675       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4676         Diag(DS.getVolatileSpecLoc(),
4677              diag::ext_anonymous_struct_union_qualified)
4678           << Record->isUnion() << "volatile"
4679           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4680       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4681         Diag(DS.getRestrictSpecLoc(),
4682              diag::ext_anonymous_struct_union_qualified)
4683           << Record->isUnion() << "restrict"
4684           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4685       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4686         Diag(DS.getAtomicSpecLoc(),
4687              diag::ext_anonymous_struct_union_qualified)
4688           << Record->isUnion() << "_Atomic"
4689           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4690       if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4691         Diag(DS.getUnalignedSpecLoc(),
4692              diag::ext_anonymous_struct_union_qualified)
4693           << Record->isUnion() << "__unaligned"
4694           << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
4695 
4696       DS.ClearTypeQualifiers();
4697     }
4698 
4699     // C++ [class.union]p2:
4700     //   The member-specification of an anonymous union shall only
4701     //   define non-static data members. [Note: nested types and
4702     //   functions cannot be declared within an anonymous union. ]
4703     for (auto *Mem : Record->decls()) {
4704       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4705         // C++ [class.union]p3:
4706         //   An anonymous union shall not have private or protected
4707         //   members (clause 11).
4708         assert(FD->getAccess() != AS_none);
4709         if (FD->getAccess() != AS_public) {
4710           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4711             << Record->isUnion() << (FD->getAccess() == AS_protected);
4712           Invalid = true;
4713         }
4714 
4715         // C++ [class.union]p1
4716         //   An object of a class with a non-trivial constructor, a non-trivial
4717         //   copy constructor, a non-trivial destructor, or a non-trivial copy
4718         //   assignment operator cannot be a member of a union, nor can an
4719         //   array of such objects.
4720         if (CheckNontrivialField(FD))
4721           Invalid = true;
4722       } else if (Mem->isImplicit()) {
4723         // Any implicit members are fine.
4724       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4725         // This is a type that showed up in an
4726         // elaborated-type-specifier inside the anonymous struct or
4727         // union, but which actually declares a type outside of the
4728         // anonymous struct or union. It's okay.
4729       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4730         if (!MemRecord->isAnonymousStructOrUnion() &&
4731             MemRecord->getDeclName()) {
4732           // Visual C++ allows type definition in anonymous struct or union.
4733           if (getLangOpts().MicrosoftExt)
4734             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4735               << Record->isUnion();
4736           else {
4737             // This is a nested type declaration.
4738             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4739               << Record->isUnion();
4740             Invalid = true;
4741           }
4742         } else {
4743           // This is an anonymous type definition within another anonymous type.
4744           // This is a popular extension, provided by Plan9, MSVC and GCC, but
4745           // not part of standard C++.
4746           Diag(MemRecord->getLocation(),
4747                diag::ext_anonymous_record_with_anonymous_type)
4748             << Record->isUnion();
4749         }
4750       } else if (isa<AccessSpecDecl>(Mem)) {
4751         // Any access specifier is fine.
4752       } else if (isa<StaticAssertDecl>(Mem)) {
4753         // In C++1z, static_assert declarations are also fine.
4754       } else {
4755         // We have something that isn't a non-static data
4756         // member. Complain about it.
4757         unsigned DK = diag::err_anonymous_record_bad_member;
4758         if (isa<TypeDecl>(Mem))
4759           DK = diag::err_anonymous_record_with_type;
4760         else if (isa<FunctionDecl>(Mem))
4761           DK = diag::err_anonymous_record_with_function;
4762         else if (isa<VarDecl>(Mem))
4763           DK = diag::err_anonymous_record_with_static;
4764 
4765         // Visual C++ allows type definition in anonymous struct or union.
4766         if (getLangOpts().MicrosoftExt &&
4767             DK == diag::err_anonymous_record_with_type)
4768           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4769             << Record->isUnion();
4770         else {
4771           Diag(Mem->getLocation(), DK) << Record->isUnion();
4772           Invalid = true;
4773         }
4774       }
4775     }
4776 
4777     // C++11 [class.union]p8 (DR1460):
4778     //   At most one variant member of a union may have a
4779     //   brace-or-equal-initializer.
4780     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4781         Owner->isRecord())
4782       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4783                                 cast<CXXRecordDecl>(Record));
4784   }
4785 
4786   if (!Record->isUnion() && !Owner->isRecord()) {
4787     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4788       << getLangOpts().CPlusPlus;
4789     Invalid = true;
4790   }
4791 
4792   // Mock up a declarator.
4793   Declarator Dc(DS, DeclaratorContext::MemberContext);
4794   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4795   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
4796 
4797   // Create a declaration for this anonymous struct/union.
4798   NamedDecl *Anon = nullptr;
4799   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4800     Anon = FieldDecl::Create(Context, OwningClass,
4801                              DS.getLocStart(),
4802                              Record->getLocation(),
4803                              /*IdentifierInfo=*/nullptr,
4804                              Context.getTypeDeclType(Record),
4805                              TInfo,
4806                              /*BitWidth=*/nullptr, /*Mutable=*/false,
4807                              /*InitStyle=*/ICIS_NoInit);
4808     Anon->setAccess(AS);
4809     if (getLangOpts().CPlusPlus)
4810       FieldCollector->Add(cast<FieldDecl>(Anon));
4811   } else {
4812     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4813     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4814     if (SCSpec == DeclSpec::SCS_mutable) {
4815       // mutable can only appear on non-static class members, so it's always
4816       // an error here
4817       Diag(Record->getLocation(), diag::err_mutable_nonmember);
4818       Invalid = true;
4819       SC = SC_None;
4820     }
4821 
4822     Anon = VarDecl::Create(Context, Owner,
4823                            DS.getLocStart(),
4824                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
4825                            Context.getTypeDeclType(Record),
4826                            TInfo, SC);
4827 
4828     // Default-initialize the implicit variable. This initialization will be
4829     // trivial in almost all cases, except if a union member has an in-class
4830     // initializer:
4831     //   union { int n = 0; };
4832     ActOnUninitializedDecl(Anon);
4833   }
4834   Anon->setImplicit();
4835 
4836   // Mark this as an anonymous struct/union type.
4837   Record->setAnonymousStructOrUnion(true);
4838 
4839   // Add the anonymous struct/union object to the current
4840   // context. We'll be referencing this object when we refer to one of
4841   // its members.
4842   Owner->addDecl(Anon);
4843 
4844   // Inject the members of the anonymous struct/union into the owning
4845   // context and into the identifier resolver chain for name lookup
4846   // purposes.
4847   SmallVector<NamedDecl*, 2> Chain;
4848   Chain.push_back(Anon);
4849 
4850   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
4851     Invalid = true;
4852 
4853   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4854     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4855       Decl *ManglingContextDecl;
4856       if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4857               NewVD->getDeclContext(), ManglingContextDecl)) {
4858         Context.setManglingNumber(
4859             NewVD, MCtx->getManglingNumber(
4860                        NewVD, getMSManglingNumber(getLangOpts(), S)));
4861         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4862       }
4863     }
4864   }
4865 
4866   if (Invalid)
4867     Anon->setInvalidDecl();
4868 
4869   return Anon;
4870 }
4871 
4872 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4873 /// Microsoft C anonymous structure.
4874 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4875 /// Example:
4876 ///
4877 /// struct A { int a; };
4878 /// struct B { struct A; int b; };
4879 ///
4880 /// void foo() {
4881 ///   B var;
4882 ///   var.a = 3;
4883 /// }
4884 ///
4885 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4886                                            RecordDecl *Record) {
4887   assert(Record && "expected a record!");
4888 
4889   // Mock up a declarator.
4890   Declarator Dc(DS, DeclaratorContext::TypeNameContext);
4891   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4892   assert(TInfo && "couldn't build declarator info for anonymous struct");
4893 
4894   auto *ParentDecl = cast<RecordDecl>(CurContext);
4895   QualType RecTy = Context.getTypeDeclType(Record);
4896 
4897   // Create a declaration for this anonymous struct.
4898   NamedDecl *Anon = FieldDecl::Create(Context,
4899                              ParentDecl,
4900                              DS.getLocStart(),
4901                              DS.getLocStart(),
4902                              /*IdentifierInfo=*/nullptr,
4903                              RecTy,
4904                              TInfo,
4905                              /*BitWidth=*/nullptr, /*Mutable=*/false,
4906                              /*InitStyle=*/ICIS_NoInit);
4907   Anon->setImplicit();
4908 
4909   // Add the anonymous struct object to the current context.
4910   CurContext->addDecl(Anon);
4911 
4912   // Inject the members of the anonymous struct into the current
4913   // context and into the identifier resolver chain for name lookup
4914   // purposes.
4915   SmallVector<NamedDecl*, 2> Chain;
4916   Chain.push_back(Anon);
4917 
4918   RecordDecl *RecordDef = Record->getDefinition();
4919   if (RequireCompleteType(Anon->getLocation(), RecTy,
4920                           diag::err_field_incomplete) ||
4921       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4922                                           AS_none, Chain)) {
4923     Anon->setInvalidDecl();
4924     ParentDecl->setInvalidDecl();
4925   }
4926 
4927   return Anon;
4928 }
4929 
4930 /// GetNameForDeclarator - Determine the full declaration name for the
4931 /// given Declarator.
4932 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4933   return GetNameFromUnqualifiedId(D.getName());
4934 }
4935 
4936 /// \brief Retrieves the declaration name from a parsed unqualified-id.
4937 DeclarationNameInfo
4938 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4939   DeclarationNameInfo NameInfo;
4940   NameInfo.setLoc(Name.StartLocation);
4941 
4942   switch (Name.getKind()) {
4943 
4944   case UnqualifiedIdKind::IK_ImplicitSelfParam:
4945   case UnqualifiedIdKind::IK_Identifier:
4946     NameInfo.setName(Name.Identifier);
4947     NameInfo.setLoc(Name.StartLocation);
4948     return NameInfo;
4949 
4950   case UnqualifiedIdKind::IK_DeductionGuideName: {
4951     // C++ [temp.deduct.guide]p3:
4952     //   The simple-template-id shall name a class template specialization.
4953     //   The template-name shall be the same identifier as the template-name
4954     //   of the simple-template-id.
4955     // These together intend to imply that the template-name shall name a
4956     // class template.
4957     // FIXME: template<typename T> struct X {};
4958     //        template<typename T> using Y = X<T>;
4959     //        Y(int) -> Y<int>;
4960     //   satisfies these rules but does not name a class template.
4961     TemplateName TN = Name.TemplateName.get().get();
4962     auto *Template = TN.getAsTemplateDecl();
4963     if (!Template || !isa<ClassTemplateDecl>(Template)) {
4964       Diag(Name.StartLocation,
4965            diag::err_deduction_guide_name_not_class_template)
4966         << (int)getTemplateNameKindForDiagnostics(TN) << TN;
4967       if (Template)
4968         Diag(Template->getLocation(), diag::note_template_decl_here);
4969       return DeclarationNameInfo();
4970     }
4971 
4972     NameInfo.setName(
4973         Context.DeclarationNames.getCXXDeductionGuideName(Template));
4974     NameInfo.setLoc(Name.StartLocation);
4975     return NameInfo;
4976   }
4977 
4978   case UnqualifiedIdKind::IK_OperatorFunctionId:
4979     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4980                                            Name.OperatorFunctionId.Operator));
4981     NameInfo.setLoc(Name.StartLocation);
4982     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4983       = Name.OperatorFunctionId.SymbolLocations[0];
4984     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4985       = Name.EndLocation.getRawEncoding();
4986     return NameInfo;
4987 
4988   case UnqualifiedIdKind::IK_LiteralOperatorId:
4989     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4990                                                            Name.Identifier));
4991     NameInfo.setLoc(Name.StartLocation);
4992     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4993     return NameInfo;
4994 
4995   case UnqualifiedIdKind::IK_ConversionFunctionId: {
4996     TypeSourceInfo *TInfo;
4997     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
4998     if (Ty.isNull())
4999       return DeclarationNameInfo();
5000     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5001                                                Context.getCanonicalType(Ty)));
5002     NameInfo.setLoc(Name.StartLocation);
5003     NameInfo.setNamedTypeInfo(TInfo);
5004     return NameInfo;
5005   }
5006 
5007   case UnqualifiedIdKind::IK_ConstructorName: {
5008     TypeSourceInfo *TInfo;
5009     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5010     if (Ty.isNull())
5011       return DeclarationNameInfo();
5012     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5013                                               Context.getCanonicalType(Ty)));
5014     NameInfo.setLoc(Name.StartLocation);
5015     NameInfo.setNamedTypeInfo(TInfo);
5016     return NameInfo;
5017   }
5018 
5019   case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5020     // In well-formed code, we can only have a constructor
5021     // template-id that refers to the current context, so go there
5022     // to find the actual type being constructed.
5023     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5024     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5025       return DeclarationNameInfo();
5026 
5027     // Determine the type of the class being constructed.
5028     QualType CurClassType = Context.getTypeDeclType(CurClass);
5029 
5030     // FIXME: Check two things: that the template-id names the same type as
5031     // CurClassType, and that the template-id does not occur when the name
5032     // was qualified.
5033 
5034     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5035                                     Context.getCanonicalType(CurClassType)));
5036     NameInfo.setLoc(Name.StartLocation);
5037     // FIXME: should we retrieve TypeSourceInfo?
5038     NameInfo.setNamedTypeInfo(nullptr);
5039     return NameInfo;
5040   }
5041 
5042   case UnqualifiedIdKind::IK_DestructorName: {
5043     TypeSourceInfo *TInfo;
5044     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5045     if (Ty.isNull())
5046       return DeclarationNameInfo();
5047     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5048                                               Context.getCanonicalType(Ty)));
5049     NameInfo.setLoc(Name.StartLocation);
5050     NameInfo.setNamedTypeInfo(TInfo);
5051     return NameInfo;
5052   }
5053 
5054   case UnqualifiedIdKind::IK_TemplateId: {
5055     TemplateName TName = Name.TemplateId->Template.get();
5056     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5057     return Context.getNameForTemplate(TName, TNameLoc);
5058   }
5059 
5060   } // switch (Name.getKind())
5061 
5062   llvm_unreachable("Unknown name kind");
5063 }
5064 
5065 static QualType getCoreType(QualType Ty) {
5066   do {
5067     if (Ty->isPointerType() || Ty->isReferenceType())
5068       Ty = Ty->getPointeeType();
5069     else if (Ty->isArrayType())
5070       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5071     else
5072       return Ty.withoutLocalFastQualifiers();
5073   } while (true);
5074 }
5075 
5076 /// hasSimilarParameters - Determine whether the C++ functions Declaration
5077 /// and Definition have "nearly" matching parameters. This heuristic is
5078 /// used to improve diagnostics in the case where an out-of-line function
5079 /// definition doesn't match any declaration within the class or namespace.
5080 /// Also sets Params to the list of indices to the parameters that differ
5081 /// between the declaration and the definition. If hasSimilarParameters
5082 /// returns true and Params is empty, then all of the parameters match.
5083 static bool hasSimilarParameters(ASTContext &Context,
5084                                      FunctionDecl *Declaration,
5085                                      FunctionDecl *Definition,
5086                                      SmallVectorImpl<unsigned> &Params) {
5087   Params.clear();
5088   if (Declaration->param_size() != Definition->param_size())
5089     return false;
5090   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5091     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5092     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5093 
5094     // The parameter types are identical
5095     if (Context.hasSameType(DefParamTy, DeclParamTy))
5096       continue;
5097 
5098     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5099     QualType DefParamBaseTy = getCoreType(DefParamTy);
5100     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5101     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5102 
5103     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5104         (DeclTyName && DeclTyName == DefTyName))
5105       Params.push_back(Idx);
5106     else  // The two parameters aren't even close
5107       return false;
5108   }
5109 
5110   return true;
5111 }
5112 
5113 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5114 /// declarator needs to be rebuilt in the current instantiation.
5115 /// Any bits of declarator which appear before the name are valid for
5116 /// consideration here.  That's specifically the type in the decl spec
5117 /// and the base type in any member-pointer chunks.
5118 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5119                                                     DeclarationName Name) {
5120   // The types we specifically need to rebuild are:
5121   //   - typenames, typeofs, and decltypes
5122   //   - types which will become injected class names
5123   // Of course, we also need to rebuild any type referencing such a
5124   // type.  It's safest to just say "dependent", but we call out a
5125   // few cases here.
5126 
5127   DeclSpec &DS = D.getMutableDeclSpec();
5128   switch (DS.getTypeSpecType()) {
5129   case DeclSpec::TST_typename:
5130   case DeclSpec::TST_typeofType:
5131   case DeclSpec::TST_underlyingType:
5132   case DeclSpec::TST_atomic: {
5133     // Grab the type from the parser.
5134     TypeSourceInfo *TSI = nullptr;
5135     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5136     if (T.isNull() || !T->isDependentType()) break;
5137 
5138     // Make sure there's a type source info.  This isn't really much
5139     // of a waste; most dependent types should have type source info
5140     // attached already.
5141     if (!TSI)
5142       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5143 
5144     // Rebuild the type in the current instantiation.
5145     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5146     if (!TSI) return true;
5147 
5148     // Store the new type back in the decl spec.
5149     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5150     DS.UpdateTypeRep(LocType);
5151     break;
5152   }
5153 
5154   case DeclSpec::TST_decltype:
5155   case DeclSpec::TST_typeofExpr: {
5156     Expr *E = DS.getRepAsExpr();
5157     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5158     if (Result.isInvalid()) return true;
5159     DS.UpdateExprRep(Result.get());
5160     break;
5161   }
5162 
5163   default:
5164     // Nothing to do for these decl specs.
5165     break;
5166   }
5167 
5168   // It doesn't matter what order we do this in.
5169   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5170     DeclaratorChunk &Chunk = D.getTypeObject(I);
5171 
5172     // The only type information in the declarator which can come
5173     // before the declaration name is the base type of a member
5174     // pointer.
5175     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5176       continue;
5177 
5178     // Rebuild the scope specifier in-place.
5179     CXXScopeSpec &SS = Chunk.Mem.Scope();
5180     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5181       return true;
5182   }
5183 
5184   return false;
5185 }
5186 
5187 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5188   D.setFunctionDefinitionKind(FDK_Declaration);
5189   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5190 
5191   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5192       Dcl && Dcl->getDeclContext()->isFileContext())
5193     Dcl->setTopLevelDeclInObjCContainer();
5194 
5195   if (getLangOpts().OpenCL)
5196     setCurrentOpenCLExtensionForDecl(Dcl);
5197 
5198   return Dcl;
5199 }
5200 
5201 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5202 ///   If T is the name of a class, then each of the following shall have a
5203 ///   name different from T:
5204 ///     - every static data member of class T;
5205 ///     - every member function of class T
5206 ///     - every member of class T that is itself a type;
5207 /// \returns true if the declaration name violates these rules.
5208 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5209                                    DeclarationNameInfo NameInfo) {
5210   DeclarationName Name = NameInfo.getName();
5211 
5212   CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5213   while (Record && Record->isAnonymousStructOrUnion())
5214     Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5215   if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5216     Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5217     return true;
5218   }
5219 
5220   return false;
5221 }
5222 
5223 /// \brief Diagnose a declaration whose declarator-id has the given
5224 /// nested-name-specifier.
5225 ///
5226 /// \param SS The nested-name-specifier of the declarator-id.
5227 ///
5228 /// \param DC The declaration context to which the nested-name-specifier
5229 /// resolves.
5230 ///
5231 /// \param Name The name of the entity being declared.
5232 ///
5233 /// \param Loc The location of the name of the entity being declared.
5234 ///
5235 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5236 /// we're declaring an explicit / partial specialization / instantiation.
5237 ///
5238 /// \returns true if we cannot safely recover from this error, false otherwise.
5239 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5240                                         DeclarationName Name,
5241                                         SourceLocation Loc, bool IsTemplateId) {
5242   DeclContext *Cur = CurContext;
5243   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5244     Cur = Cur->getParent();
5245 
5246   // If the user provided a superfluous scope specifier that refers back to the
5247   // class in which the entity is already declared, diagnose and ignore it.
5248   //
5249   // class X {
5250   //   void X::f();
5251   // };
5252   //
5253   // Note, it was once ill-formed to give redundant qualification in all
5254   // contexts, but that rule was removed by DR482.
5255   if (Cur->Equals(DC)) {
5256     if (Cur->isRecord()) {
5257       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5258                                       : diag::err_member_extra_qualification)
5259         << Name << FixItHint::CreateRemoval(SS.getRange());
5260       SS.clear();
5261     } else {
5262       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5263     }
5264     return false;
5265   }
5266 
5267   // Check whether the qualifying scope encloses the scope of the original
5268   // declaration. For a template-id, we perform the checks in
5269   // CheckTemplateSpecializationScope.
5270   if (!Cur->Encloses(DC) && !IsTemplateId) {
5271     if (Cur->isRecord())
5272       Diag(Loc, diag::err_member_qualification)
5273         << Name << SS.getRange();
5274     else if (isa<TranslationUnitDecl>(DC))
5275       Diag(Loc, diag::err_invalid_declarator_global_scope)
5276         << Name << SS.getRange();
5277     else if (isa<FunctionDecl>(Cur))
5278       Diag(Loc, diag::err_invalid_declarator_in_function)
5279         << Name << SS.getRange();
5280     else if (isa<BlockDecl>(Cur))
5281       Diag(Loc, diag::err_invalid_declarator_in_block)
5282         << Name << SS.getRange();
5283     else
5284       Diag(Loc, diag::err_invalid_declarator_scope)
5285       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5286 
5287     return true;
5288   }
5289 
5290   if (Cur->isRecord()) {
5291     // Cannot qualify members within a class.
5292     Diag(Loc, diag::err_member_qualification)
5293       << Name << SS.getRange();
5294     SS.clear();
5295 
5296     // C++ constructors and destructors with incorrect scopes can break
5297     // our AST invariants by having the wrong underlying types. If
5298     // that's the case, then drop this declaration entirely.
5299     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5300          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5301         !Context.hasSameType(Name.getCXXNameType(),
5302                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5303       return true;
5304 
5305     return false;
5306   }
5307 
5308   // C++11 [dcl.meaning]p1:
5309   //   [...] "The nested-name-specifier of the qualified declarator-id shall
5310   //   not begin with a decltype-specifer"
5311   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5312   while (SpecLoc.getPrefix())
5313     SpecLoc = SpecLoc.getPrefix();
5314   if (dyn_cast_or_null<DecltypeType>(
5315         SpecLoc.getNestedNameSpecifier()->getAsType()))
5316     Diag(Loc, diag::err_decltype_in_declarator)
5317       << SpecLoc.getTypeLoc().getSourceRange();
5318 
5319   return false;
5320 }
5321 
5322 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5323                                   MultiTemplateParamsArg TemplateParamLists) {
5324   // TODO: consider using NameInfo for diagnostic.
5325   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5326   DeclarationName Name = NameInfo.getName();
5327 
5328   // All of these full declarators require an identifier.  If it doesn't have
5329   // one, the ParsedFreeStandingDeclSpec action should be used.
5330   if (D.isDecompositionDeclarator()) {
5331     return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5332   } else if (!Name) {
5333     if (!D.isInvalidType())  // Reject this if we think it is valid.
5334       Diag(D.getDeclSpec().getLocStart(),
5335            diag::err_declarator_need_ident)
5336         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5337     return nullptr;
5338   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5339     return nullptr;
5340 
5341   // The scope passed in may not be a decl scope.  Zip up the scope tree until
5342   // we find one that is.
5343   while ((S->getFlags() & Scope::DeclScope) == 0 ||
5344          (S->getFlags() & Scope::TemplateParamScope) != 0)
5345     S = S->getParent();
5346 
5347   DeclContext *DC = CurContext;
5348   if (D.getCXXScopeSpec().isInvalid())
5349     D.setInvalidType();
5350   else if (D.getCXXScopeSpec().isSet()) {
5351     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5352                                         UPPC_DeclarationQualifier))
5353       return nullptr;
5354 
5355     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5356     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5357     if (!DC || isa<EnumDecl>(DC)) {
5358       // If we could not compute the declaration context, it's because the
5359       // declaration context is dependent but does not refer to a class,
5360       // class template, or class template partial specialization. Complain
5361       // and return early, to avoid the coming semantic disaster.
5362       Diag(D.getIdentifierLoc(),
5363            diag::err_template_qualified_declarator_no_match)
5364         << D.getCXXScopeSpec().getScopeRep()
5365         << D.getCXXScopeSpec().getRange();
5366       return nullptr;
5367     }
5368     bool IsDependentContext = DC->isDependentContext();
5369 
5370     if (!IsDependentContext &&
5371         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5372       return nullptr;
5373 
5374     // If a class is incomplete, do not parse entities inside it.
5375     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5376       Diag(D.getIdentifierLoc(),
5377            diag::err_member_def_undefined_record)
5378         << Name << DC << D.getCXXScopeSpec().getRange();
5379       return nullptr;
5380     }
5381     if (!D.getDeclSpec().isFriendSpecified()) {
5382       if (diagnoseQualifiedDeclaration(
5383               D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5384               D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5385         if (DC->isRecord())
5386           return nullptr;
5387 
5388         D.setInvalidType();
5389       }
5390     }
5391 
5392     // Check whether we need to rebuild the type of the given
5393     // declaration in the current instantiation.
5394     if (EnteringContext && IsDependentContext &&
5395         TemplateParamLists.size() != 0) {
5396       ContextRAII SavedContext(*this, DC);
5397       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5398         D.setInvalidType();
5399     }
5400   }
5401 
5402   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5403   QualType R = TInfo->getType();
5404 
5405   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5406                                       UPPC_DeclarationType))
5407     D.setInvalidType();
5408 
5409   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5410                         forRedeclarationInCurContext());
5411 
5412   // See if this is a redefinition of a variable in the same scope.
5413   if (!D.getCXXScopeSpec().isSet()) {
5414     bool IsLinkageLookup = false;
5415     bool CreateBuiltins = false;
5416 
5417     // If the declaration we're planning to build will be a function
5418     // or object with linkage, then look for another declaration with
5419     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5420     //
5421     // If the declaration we're planning to build will be declared with
5422     // external linkage in the translation unit, create any builtin with
5423     // the same name.
5424     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5425       /* Do nothing*/;
5426     else if (CurContext->isFunctionOrMethod() &&
5427              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5428               R->isFunctionType())) {
5429       IsLinkageLookup = true;
5430       CreateBuiltins =
5431           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5432     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5433                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5434       CreateBuiltins = true;
5435 
5436     if (IsLinkageLookup) {
5437       Previous.clear(LookupRedeclarationWithLinkage);
5438       Previous.setRedeclarationKind(ForExternalRedeclaration);
5439     }
5440 
5441     LookupName(Previous, S, CreateBuiltins);
5442   } else { // Something like "int foo::x;"
5443     LookupQualifiedName(Previous, DC);
5444 
5445     // C++ [dcl.meaning]p1:
5446     //   When the declarator-id is qualified, the declaration shall refer to a
5447     //  previously declared member of the class or namespace to which the
5448     //  qualifier refers (or, in the case of a namespace, of an element of the
5449     //  inline namespace set of that namespace (7.3.1)) or to a specialization
5450     //  thereof; [...]
5451     //
5452     // Note that we already checked the context above, and that we do not have
5453     // enough information to make sure that Previous contains the declaration
5454     // we want to match. For example, given:
5455     //
5456     //   class X {
5457     //     void f();
5458     //     void f(float);
5459     //   };
5460     //
5461     //   void X::f(int) { } // ill-formed
5462     //
5463     // In this case, Previous will point to the overload set
5464     // containing the two f's declared in X, but neither of them
5465     // matches.
5466 
5467     // C++ [dcl.meaning]p1:
5468     //   [...] the member shall not merely have been introduced by a
5469     //   using-declaration in the scope of the class or namespace nominated by
5470     //   the nested-name-specifier of the declarator-id.
5471     RemoveUsingDecls(Previous);
5472   }
5473 
5474   if (Previous.isSingleResult() &&
5475       Previous.getFoundDecl()->isTemplateParameter()) {
5476     // Maybe we will complain about the shadowed template parameter.
5477     if (!D.isInvalidType())
5478       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5479                                       Previous.getFoundDecl());
5480 
5481     // Just pretend that we didn't see the previous declaration.
5482     Previous.clear();
5483   }
5484 
5485   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5486     // Forget that the previous declaration is the injected-class-name.
5487     Previous.clear();
5488 
5489   // In C++, the previous declaration we find might be a tag type
5490   // (class or enum). In this case, the new declaration will hide the
5491   // tag type. Note that this applies to functions, function templates, and
5492   // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5493   if (Previous.isSingleTagDecl() &&
5494       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5495       (TemplateParamLists.size() == 0 || R->isFunctionType()))
5496     Previous.clear();
5497 
5498   // Check that there are no default arguments other than in the parameters
5499   // of a function declaration (C++ only).
5500   if (getLangOpts().CPlusPlus)
5501     CheckExtraCXXDefaultArguments(D);
5502 
5503   NamedDecl *New;
5504 
5505   bool AddToScope = true;
5506   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5507     if (TemplateParamLists.size()) {
5508       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5509       return nullptr;
5510     }
5511 
5512     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5513   } else if (R->isFunctionType()) {
5514     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5515                                   TemplateParamLists,
5516                                   AddToScope);
5517   } else {
5518     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5519                                   AddToScope);
5520   }
5521 
5522   if (!New)
5523     return nullptr;
5524 
5525   // If this has an identifier and is not a function template specialization,
5526   // add it to the scope stack.
5527   if (New->getDeclName() && AddToScope) {
5528     // Only make a locally-scoped extern declaration visible if it is the first
5529     // declaration of this entity. Qualified lookup for such an entity should
5530     // only find this declaration if there is no visible declaration of it.
5531     bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
5532     PushOnScopeChains(New, S, AddToContext);
5533     if (!AddToContext)
5534       CurContext->addHiddenDecl(New);
5535   }
5536 
5537   if (isInOpenMPDeclareTargetContext())
5538     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5539 
5540   return New;
5541 }
5542 
5543 /// Helper method to turn variable array types into constant array
5544 /// types in certain situations which would otherwise be errors (for
5545 /// GCC compatibility).
5546 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5547                                                     ASTContext &Context,
5548                                                     bool &SizeIsNegative,
5549                                                     llvm::APSInt &Oversized) {
5550   // This method tries to turn a variable array into a constant
5551   // array even when the size isn't an ICE.  This is necessary
5552   // for compatibility with code that depends on gcc's buggy
5553   // constant expression folding, like struct {char x[(int)(char*)2];}
5554   SizeIsNegative = false;
5555   Oversized = 0;
5556 
5557   if (T->isDependentType())
5558     return QualType();
5559 
5560   QualifierCollector Qs;
5561   const Type *Ty = Qs.strip(T);
5562 
5563   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5564     QualType Pointee = PTy->getPointeeType();
5565     QualType FixedType =
5566         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5567                                             Oversized);
5568     if (FixedType.isNull()) return FixedType;
5569     FixedType = Context.getPointerType(FixedType);
5570     return Qs.apply(Context, FixedType);
5571   }
5572   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5573     QualType Inner = PTy->getInnerType();
5574     QualType FixedType =
5575         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5576                                             Oversized);
5577     if (FixedType.isNull()) return FixedType;
5578     FixedType = Context.getParenType(FixedType);
5579     return Qs.apply(Context, FixedType);
5580   }
5581 
5582   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5583   if (!VLATy)
5584     return QualType();
5585   // FIXME: We should probably handle this case
5586   if (VLATy->getElementType()->isVariablyModifiedType())
5587     return QualType();
5588 
5589   llvm::APSInt Res;
5590   if (!VLATy->getSizeExpr() ||
5591       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
5592     return QualType();
5593 
5594   // Check whether the array size is negative.
5595   if (Res.isSigned() && Res.isNegative()) {
5596     SizeIsNegative = true;
5597     return QualType();
5598   }
5599 
5600   // Check whether the array is too large to be addressed.
5601   unsigned ActiveSizeBits
5602     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5603                                               Res);
5604   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5605     Oversized = Res;
5606     return QualType();
5607   }
5608 
5609   return Context.getConstantArrayType(VLATy->getElementType(),
5610                                       Res, ArrayType::Normal, 0);
5611 }
5612 
5613 static void
5614 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5615   SrcTL = SrcTL.getUnqualifiedLoc();
5616   DstTL = DstTL.getUnqualifiedLoc();
5617   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5618     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5619     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5620                                       DstPTL.getPointeeLoc());
5621     DstPTL.setStarLoc(SrcPTL.getStarLoc());
5622     return;
5623   }
5624   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5625     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5626     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5627                                       DstPTL.getInnerLoc());
5628     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5629     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5630     return;
5631   }
5632   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5633   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5634   TypeLoc SrcElemTL = SrcATL.getElementLoc();
5635   TypeLoc DstElemTL = DstATL.getElementLoc();
5636   DstElemTL.initializeFullCopy(SrcElemTL);
5637   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5638   DstATL.setSizeExpr(SrcATL.getSizeExpr());
5639   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5640 }
5641 
5642 /// Helper method to turn variable array types into constant array
5643 /// types in certain situations which would otherwise be errors (for
5644 /// GCC compatibility).
5645 static TypeSourceInfo*
5646 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5647                                               ASTContext &Context,
5648                                               bool &SizeIsNegative,
5649                                               llvm::APSInt &Oversized) {
5650   QualType FixedTy
5651     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5652                                           SizeIsNegative, Oversized);
5653   if (FixedTy.isNull())
5654     return nullptr;
5655   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5656   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5657                                     FixedTInfo->getTypeLoc());
5658   return FixedTInfo;
5659 }
5660 
5661 /// \brief Register the given locally-scoped extern "C" declaration so
5662 /// that it can be found later for redeclarations. We include any extern "C"
5663 /// declaration that is not visible in the translation unit here, not just
5664 /// function-scope declarations.
5665 void
5666 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
5667   if (!getLangOpts().CPlusPlus &&
5668       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
5669     // Don't need to track declarations in the TU in C.
5670     return;
5671 
5672   // Note that we have a locally-scoped external with this name.
5673   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
5674 }
5675 
5676 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
5677   // FIXME: We can have multiple results via __attribute__((overloadable)).
5678   auto Result = Context.getExternCContextDecl()->lookup(Name);
5679   return Result.empty() ? nullptr : *Result.begin();
5680 }
5681 
5682 /// \brief Diagnose function specifiers on a declaration of an identifier that
5683 /// does not identify a function.
5684 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
5685   // FIXME: We should probably indicate the identifier in question to avoid
5686   // confusion for constructs like "virtual int a(), b;"
5687   if (DS.isVirtualSpecified())
5688     Diag(DS.getVirtualSpecLoc(),
5689          diag::err_virtual_non_function);
5690 
5691   if (DS.isExplicitSpecified())
5692     Diag(DS.getExplicitSpecLoc(),
5693          diag::err_explicit_non_function);
5694 
5695   if (DS.isNoreturnSpecified())
5696     Diag(DS.getNoreturnSpecLoc(),
5697          diag::err_noreturn_non_function);
5698 }
5699 
5700 NamedDecl*
5701 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
5702                              TypeSourceInfo *TInfo, LookupResult &Previous) {
5703   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5704   if (D.getCXXScopeSpec().isSet()) {
5705     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5706       << D.getCXXScopeSpec().getRange();
5707     D.setInvalidType();
5708     // Pretend we didn't see the scope specifier.
5709     DC = CurContext;
5710     Previous.clear();
5711   }
5712 
5713   DiagnoseFunctionSpecifiers(D.getDeclSpec());
5714 
5715   if (D.getDeclSpec().isInlineSpecified())
5716     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
5717         << getLangOpts().CPlusPlus17;
5718   if (D.getDeclSpec().isConstexprSpecified())
5719     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5720       << 1;
5721 
5722   if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
5723     if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
5724       Diag(D.getName().StartLocation,
5725            diag::err_deduction_guide_invalid_specifier)
5726           << "typedef";
5727     else
5728       Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5729           << D.getName().getSourceRange();
5730     return nullptr;
5731   }
5732 
5733   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5734   if (!NewTD) return nullptr;
5735 
5736   // Handle attributes prior to checking for duplicates in MergeVarDecl
5737   ProcessDeclAttributes(S, NewTD, D);
5738 
5739   CheckTypedefForVariablyModifiedType(S, NewTD);
5740 
5741   bool Redeclaration = D.isRedeclaration();
5742   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5743   D.setRedeclaration(Redeclaration);
5744   return ND;
5745 }
5746 
5747 void
5748 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5749   // C99 6.7.7p2: If a typedef name specifies a variably modified type
5750   // then it shall have block scope.
5751   // Note that variably modified types must be fixed before merging the decl so
5752   // that redeclarations will match.
5753   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5754   QualType T = TInfo->getType();
5755   if (T->isVariablyModifiedType()) {
5756     setFunctionHasBranchProtectedScope();
5757 
5758     if (S->getFnParent() == nullptr) {
5759       bool SizeIsNegative;
5760       llvm::APSInt Oversized;
5761       TypeSourceInfo *FixedTInfo =
5762         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5763                                                       SizeIsNegative,
5764                                                       Oversized);
5765       if (FixedTInfo) {
5766         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5767         NewTD->setTypeSourceInfo(FixedTInfo);
5768       } else {
5769         if (SizeIsNegative)
5770           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5771         else if (T->isVariableArrayType())
5772           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5773         else if (Oversized.getBoolValue())
5774           Diag(NewTD->getLocation(), diag::err_array_too_large)
5775             << Oversized.toString(10);
5776         else
5777           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5778         NewTD->setInvalidDecl();
5779       }
5780     }
5781   }
5782 }
5783 
5784 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5785 /// declares a typedef-name, either using the 'typedef' type specifier or via
5786 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5787 NamedDecl*
5788 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5789                            LookupResult &Previous, bool &Redeclaration) {
5790 
5791   // Find the shadowed declaration before filtering for scope.
5792   NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
5793 
5794   // Merge the decl with the existing one if appropriate. If the decl is
5795   // in an outer scope, it isn't the same thing.
5796   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5797                        /*AllowInlineNamespace*/false);
5798   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
5799   if (!Previous.empty()) {
5800     Redeclaration = true;
5801     MergeTypedefNameDecl(S, NewTD, Previous);
5802   }
5803 
5804   if (ShadowedDecl && !Redeclaration)
5805     CheckShadow(NewTD, ShadowedDecl, Previous);
5806 
5807   // If this is the C FILE type, notify the AST context.
5808   if (IdentifierInfo *II = NewTD->getIdentifier())
5809     if (!NewTD->isInvalidDecl() &&
5810         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5811       if (II->isStr("FILE"))
5812         Context.setFILEDecl(NewTD);
5813       else if (II->isStr("jmp_buf"))
5814         Context.setjmp_bufDecl(NewTD);
5815       else if (II->isStr("sigjmp_buf"))
5816         Context.setsigjmp_bufDecl(NewTD);
5817       else if (II->isStr("ucontext_t"))
5818         Context.setucontext_tDecl(NewTD);
5819     }
5820 
5821   return NewTD;
5822 }
5823 
5824 /// \brief Determines whether the given declaration is an out-of-scope
5825 /// previous declaration.
5826 ///
5827 /// This routine should be invoked when name lookup has found a
5828 /// previous declaration (PrevDecl) that is not in the scope where a
5829 /// new declaration by the same name is being introduced. If the new
5830 /// declaration occurs in a local scope, previous declarations with
5831 /// linkage may still be considered previous declarations (C99
5832 /// 6.2.2p4-5, C++ [basic.link]p6).
5833 ///
5834 /// \param PrevDecl the previous declaration found by name
5835 /// lookup
5836 ///
5837 /// \param DC the context in which the new declaration is being
5838 /// declared.
5839 ///
5840 /// \returns true if PrevDecl is an out-of-scope previous declaration
5841 /// for a new delcaration with the same name.
5842 static bool
5843 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5844                                 ASTContext &Context) {
5845   if (!PrevDecl)
5846     return false;
5847 
5848   if (!PrevDecl->hasLinkage())
5849     return false;
5850 
5851   if (Context.getLangOpts().CPlusPlus) {
5852     // C++ [basic.link]p6:
5853     //   If there is a visible declaration of an entity with linkage
5854     //   having the same name and type, ignoring entities declared
5855     //   outside the innermost enclosing namespace scope, the block
5856     //   scope declaration declares that same entity and receives the
5857     //   linkage of the previous declaration.
5858     DeclContext *OuterContext = DC->getRedeclContext();
5859     if (!OuterContext->isFunctionOrMethod())
5860       // This rule only applies to block-scope declarations.
5861       return false;
5862 
5863     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5864     if (PrevOuterContext->isRecord())
5865       // We found a member function: ignore it.
5866       return false;
5867 
5868     // Find the innermost enclosing namespace for the new and
5869     // previous declarations.
5870     OuterContext = OuterContext->getEnclosingNamespaceContext();
5871     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5872 
5873     // The previous declaration is in a different namespace, so it
5874     // isn't the same function.
5875     if (!OuterContext->Equals(PrevOuterContext))
5876       return false;
5877   }
5878 
5879   return true;
5880 }
5881 
5882 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
5883   CXXScopeSpec &SS = D.getCXXScopeSpec();
5884   if (!SS.isSet()) return;
5885   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
5886 }
5887 
5888 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5889   QualType type = decl->getType();
5890   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5891   if (lifetime == Qualifiers::OCL_Autoreleasing) {
5892     // Various kinds of declaration aren't allowed to be __autoreleasing.
5893     unsigned kind = -1U;
5894     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5895       if (var->hasAttr<BlocksAttr>())
5896         kind = 0; // __block
5897       else if (!var->hasLocalStorage())
5898         kind = 1; // global
5899     } else if (isa<ObjCIvarDecl>(decl)) {
5900       kind = 3; // ivar
5901     } else if (isa<FieldDecl>(decl)) {
5902       kind = 2; // field
5903     }
5904 
5905     if (kind != -1U) {
5906       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5907         << kind;
5908     }
5909   } else if (lifetime == Qualifiers::OCL_None) {
5910     // Try to infer lifetime.
5911     if (!type->isObjCLifetimeType())
5912       return false;
5913 
5914     lifetime = type->getObjCARCImplicitLifetime();
5915     type = Context.getLifetimeQualifiedType(type, lifetime);
5916     decl->setType(type);
5917   }
5918 
5919   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5920     // Thread-local variables cannot have lifetime.
5921     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5922         var->getTLSKind()) {
5923       Diag(var->getLocation(), diag::err_arc_thread_ownership)
5924         << var->getType();
5925       return true;
5926     }
5927   }
5928 
5929   return false;
5930 }
5931 
5932 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5933   // Ensure that an auto decl is deduced otherwise the checks below might cache
5934   // the wrong linkage.
5935   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
5936 
5937   // 'weak' only applies to declarations with external linkage.
5938   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5939     if (!ND.isExternallyVisible()) {
5940       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5941       ND.dropAttr<WeakAttr>();
5942     }
5943   }
5944   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5945     if (ND.isExternallyVisible()) {
5946       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5947       ND.dropAttr<WeakRefAttr>();
5948       ND.dropAttr<AliasAttr>();
5949     }
5950   }
5951 
5952   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
5953     if (VD->hasInit()) {
5954       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
5955         assert(VD->isThisDeclarationADefinition() &&
5956                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
5957         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
5958         VD->dropAttr<AliasAttr>();
5959       }
5960     }
5961   }
5962 
5963   // 'selectany' only applies to externally visible variable declarations.
5964   // It does not apply to functions.
5965   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
5966     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
5967       S.Diag(Attr->getLocation(),
5968              diag::err_attribute_selectany_non_extern_data);
5969       ND.dropAttr<SelectAnyAttr>();
5970     }
5971   }
5972 
5973   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
5974     // dll attributes require external linkage. Static locals may have external
5975     // linkage but still cannot be explicitly imported or exported.
5976     auto *VD = dyn_cast<VarDecl>(&ND);
5977     if (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())) {
5978       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5979         << &ND << Attr;
5980       ND.setInvalidDecl();
5981     }
5982   }
5983 
5984   // Virtual functions cannot be marked as 'notail'.
5985   if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
5986     if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
5987       if (MD->isVirtual()) {
5988         S.Diag(ND.getLocation(),
5989                diag::err_invalid_attribute_on_virtual_function)
5990             << Attr;
5991         ND.dropAttr<NotTailCalledAttr>();
5992       }
5993 }
5994 
5995 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
5996                                            NamedDecl *NewDecl,
5997                                            bool IsSpecialization,
5998                                            bool IsDefinition) {
5999   if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6000     return;
6001 
6002   bool IsTemplate = false;
6003   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6004     OldDecl = OldTD->getTemplatedDecl();
6005     IsTemplate = true;
6006     if (!IsSpecialization)
6007       IsDefinition = false;
6008   }
6009   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6010     NewDecl = NewTD->getTemplatedDecl();
6011     IsTemplate = true;
6012   }
6013 
6014   if (!OldDecl || !NewDecl)
6015     return;
6016 
6017   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6018   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6019   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6020   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6021 
6022   // dllimport and dllexport are inheritable attributes so we have to exclude
6023   // inherited attribute instances.
6024   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6025                     (NewExportAttr && !NewExportAttr->isInherited());
6026 
6027   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6028   // the only exception being explicit specializations.
6029   // Implicitly generated declarations are also excluded for now because there
6030   // is no other way to switch these to use dllimport or dllexport.
6031   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6032 
6033   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6034     // Allow with a warning for free functions and global variables.
6035     bool JustWarn = false;
6036     if (!OldDecl->isCXXClassMember()) {
6037       auto *VD = dyn_cast<VarDecl>(OldDecl);
6038       if (VD && !VD->getDescribedVarTemplate())
6039         JustWarn = true;
6040       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6041       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6042         JustWarn = true;
6043     }
6044 
6045     // We cannot change a declaration that's been used because IR has already
6046     // been emitted. Dllimported functions will still work though (modulo
6047     // address equality) as they can use the thunk.
6048     if (OldDecl->isUsed())
6049       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6050         JustWarn = false;
6051 
6052     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6053                                : diag::err_attribute_dll_redeclaration;
6054     S.Diag(NewDecl->getLocation(), DiagID)
6055         << NewDecl
6056         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6057     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6058     if (!JustWarn) {
6059       NewDecl->setInvalidDecl();
6060       return;
6061     }
6062   }
6063 
6064   // A redeclaration is not allowed to drop a dllimport attribute, the only
6065   // exceptions being inline function definitions (except for function
6066   // templates), local extern declarations, qualified friend declarations or
6067   // special MSVC extension: in the last case, the declaration is treated as if
6068   // it were marked dllexport.
6069   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6070   bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6071   if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6072     // Ignore static data because out-of-line definitions are diagnosed
6073     // separately.
6074     IsStaticDataMember = VD->isStaticDataMember();
6075     IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6076                    VarDecl::DeclarationOnly;
6077   } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6078     IsInline = FD->isInlined();
6079     IsQualifiedFriend = FD->getQualifier() &&
6080                         FD->getFriendObjectKind() == Decl::FOK_Declared;
6081   }
6082 
6083   if (OldImportAttr && !HasNewAttr &&
6084       (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember &&
6085       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6086     if (IsMicrosoft && IsDefinition) {
6087       S.Diag(NewDecl->getLocation(),
6088              diag::warn_redeclaration_without_import_attribute)
6089           << NewDecl;
6090       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6091       NewDecl->dropAttr<DLLImportAttr>();
6092       NewDecl->addAttr(::new (S.Context) DLLExportAttr(
6093           NewImportAttr->getRange(), S.Context,
6094           NewImportAttr->getSpellingListIndex()));
6095     } else {
6096       S.Diag(NewDecl->getLocation(),
6097              diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6098           << NewDecl << OldImportAttr;
6099       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6100       S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6101       OldDecl->dropAttr<DLLImportAttr>();
6102       NewDecl->dropAttr<DLLImportAttr>();
6103     }
6104   } else if (IsInline && OldImportAttr && !IsMicrosoft) {
6105     // In MinGW, seeing a function declared inline drops the dllimport
6106     // attribute.
6107     OldDecl->dropAttr<DLLImportAttr>();
6108     NewDecl->dropAttr<DLLImportAttr>();
6109     S.Diag(NewDecl->getLocation(),
6110            diag::warn_dllimport_dropped_from_inline_function)
6111         << NewDecl << OldImportAttr;
6112   }
6113 
6114   // A specialization of a class template member function is processed here
6115   // since it's a redeclaration. If the parent class is dllexport, the
6116   // specialization inherits that attribute. This doesn't happen automatically
6117   // since the parent class isn't instantiated until later.
6118   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6119     if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6120         !NewImportAttr && !NewExportAttr) {
6121       if (const DLLExportAttr *ParentExportAttr =
6122               MD->getParent()->getAttr<DLLExportAttr>()) {
6123         DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6124         NewAttr->setInherited(true);
6125         NewDecl->addAttr(NewAttr);
6126       }
6127     }
6128   }
6129 }
6130 
6131 /// Given that we are within the definition of the given function,
6132 /// will that definition behave like C99's 'inline', where the
6133 /// definition is discarded except for optimization purposes?
6134 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6135   // Try to avoid calling GetGVALinkageForFunction.
6136 
6137   // All cases of this require the 'inline' keyword.
6138   if (!FD->isInlined()) return false;
6139 
6140   // This is only possible in C++ with the gnu_inline attribute.
6141   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6142     return false;
6143 
6144   // Okay, go ahead and call the relatively-more-expensive function.
6145   return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6146 }
6147 
6148 /// Determine whether a variable is extern "C" prior to attaching
6149 /// an initializer. We can't just call isExternC() here, because that
6150 /// will also compute and cache whether the declaration is externally
6151 /// visible, which might change when we attach the initializer.
6152 ///
6153 /// This can only be used if the declaration is known to not be a
6154 /// redeclaration of an internal linkage declaration.
6155 ///
6156 /// For instance:
6157 ///
6158 ///   auto x = []{};
6159 ///
6160 /// Attaching the initializer here makes this declaration not externally
6161 /// visible, because its type has internal linkage.
6162 ///
6163 /// FIXME: This is a hack.
6164 template<typename T>
6165 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6166   if (S.getLangOpts().CPlusPlus) {
6167     // In C++, the overloadable attribute negates the effects of extern "C".
6168     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6169       return false;
6170 
6171     // So do CUDA's host/device attributes.
6172     if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6173                                  D->template hasAttr<CUDAHostAttr>()))
6174       return false;
6175   }
6176   return D->isExternC();
6177 }
6178 
6179 static bool shouldConsiderLinkage(const VarDecl *VD) {
6180   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6181   if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC))
6182     return VD->hasExternalStorage();
6183   if (DC->isFileContext())
6184     return true;
6185   if (DC->isRecord())
6186     return false;
6187   llvm_unreachable("Unexpected context");
6188 }
6189 
6190 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6191   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6192   if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6193       isa<OMPDeclareReductionDecl>(DC))
6194     return true;
6195   if (DC->isRecord())
6196     return false;
6197   llvm_unreachable("Unexpected context");
6198 }
6199 
6200 static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
6201                           AttributeList::Kind Kind) {
6202   for (const AttributeList *L = AttrList; L; L = L->getNext())
6203     if (L->getKind() == Kind)
6204       return true;
6205   return false;
6206 }
6207 
6208 static bool hasParsedAttr(Scope *S, const Declarator &PD,
6209                           AttributeList::Kind Kind) {
6210   // Check decl attributes on the DeclSpec.
6211   if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
6212     return true;
6213 
6214   // Walk the declarator structure, checking decl attributes that were in a type
6215   // position to the decl itself.
6216   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6217     if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
6218       return true;
6219   }
6220 
6221   // Finally, check attributes on the decl itself.
6222   return hasParsedAttr(S, PD.getAttributes(), Kind);
6223 }
6224 
6225 /// Adjust the \c DeclContext for a function or variable that might be a
6226 /// function-local external declaration.
6227 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6228   if (!DC->isFunctionOrMethod())
6229     return false;
6230 
6231   // If this is a local extern function or variable declared within a function
6232   // template, don't add it into the enclosing namespace scope until it is
6233   // instantiated; it might have a dependent type right now.
6234   if (DC->isDependentContext())
6235     return true;
6236 
6237   // C++11 [basic.link]p7:
6238   //   When a block scope declaration of an entity with linkage is not found to
6239   //   refer to some other declaration, then that entity is a member of the
6240   //   innermost enclosing namespace.
6241   //
6242   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6243   // semantically-enclosing namespace, not a lexically-enclosing one.
6244   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6245     DC = DC->getParent();
6246   return true;
6247 }
6248 
6249 /// \brief Returns true if given declaration has external C language linkage.
6250 static bool isDeclExternC(const Decl *D) {
6251   if (const auto *FD = dyn_cast<FunctionDecl>(D))
6252     return FD->isExternC();
6253   if (const auto *VD = dyn_cast<VarDecl>(D))
6254     return VD->isExternC();
6255 
6256   llvm_unreachable("Unknown type of decl!");
6257 }
6258 
6259 NamedDecl *Sema::ActOnVariableDeclarator(
6260     Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6261     LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6262     bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6263   QualType R = TInfo->getType();
6264   DeclarationName Name = GetNameForDeclarator(D).getName();
6265 
6266   IdentifierInfo *II = Name.getAsIdentifierInfo();
6267 
6268   if (D.isDecompositionDeclarator()) {
6269     // Take the name of the first declarator as our name for diagnostic
6270     // purposes.
6271     auto &Decomp = D.getDecompositionDeclarator();
6272     if (!Decomp.bindings().empty()) {
6273       II = Decomp.bindings()[0].Name;
6274       Name = II;
6275     }
6276   } else if (!II) {
6277     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6278     return nullptr;
6279   }
6280 
6281   if (getLangOpts().OpenCL) {
6282     // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6283     // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6284     // argument.
6285     if (R->isImageType() || R->isPipeType()) {
6286       Diag(D.getIdentifierLoc(),
6287            diag::err_opencl_type_can_only_be_used_as_function_parameter)
6288           << R;
6289       D.setInvalidType();
6290       return nullptr;
6291     }
6292 
6293     // OpenCL v1.2 s6.9.r:
6294     // The event type cannot be used to declare a program scope variable.
6295     // OpenCL v2.0 s6.9.q:
6296     // The clk_event_t and reserve_id_t types cannot be declared in program scope.
6297     if (NULL == S->getParent()) {
6298       if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6299         Diag(D.getIdentifierLoc(),
6300              diag::err_invalid_type_for_program_scope_var) << R;
6301         D.setInvalidType();
6302         return nullptr;
6303       }
6304     }
6305 
6306     // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6307     QualType NR = R;
6308     while (NR->isPointerType()) {
6309       if (NR->isFunctionPointerType()) {
6310         Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
6311         D.setInvalidType();
6312         break;
6313       }
6314       NR = NR->getPointeeType();
6315     }
6316 
6317     if (!getOpenCLOptions().isEnabled("cl_khr_fp16")) {
6318       // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6319       // half array type (unless the cl_khr_fp16 extension is enabled).
6320       if (Context.getBaseElementType(R)->isHalfType()) {
6321         Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
6322         D.setInvalidType();
6323       }
6324     }
6325 
6326     if (R->isSamplerT()) {
6327       // OpenCL v1.2 s6.9.b p4:
6328       // The sampler type cannot be used with the __local and __global address
6329       // space qualifiers.
6330       if (R.getAddressSpace() == LangAS::opencl_local ||
6331           R.getAddressSpace() == LangAS::opencl_global) {
6332         Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
6333       }
6334 
6335       // OpenCL v1.2 s6.12.14.1:
6336       // A global sampler must be declared with either the constant address
6337       // space qualifier or with the const qualifier.
6338       if (DC->isTranslationUnit() &&
6339           !(R.getAddressSpace() == LangAS::opencl_constant ||
6340           R.isConstQualified())) {
6341         Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
6342         D.setInvalidType();
6343       }
6344     }
6345 
6346     // OpenCL v1.2 s6.9.r:
6347     // The event type cannot be used with the __local, __constant and __global
6348     // address space qualifiers.
6349     if (R->isEventT()) {
6350       if (R.getAddressSpace() != LangAS::opencl_private) {
6351         Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
6352         D.setInvalidType();
6353       }
6354     }
6355   }
6356 
6357   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6358   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6359 
6360   // dllimport globals without explicit storage class are treated as extern. We
6361   // have to change the storage class this early to get the right DeclContext.
6362   if (SC == SC_None && !DC->isRecord() &&
6363       hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
6364       !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
6365     SC = SC_Extern;
6366 
6367   DeclContext *OriginalDC = DC;
6368   bool IsLocalExternDecl = SC == SC_Extern &&
6369                            adjustContextForLocalExternDecl(DC);
6370 
6371   if (SCSpec == DeclSpec::SCS_mutable) {
6372     // mutable can only appear on non-static class members, so it's always
6373     // an error here
6374     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6375     D.setInvalidType();
6376     SC = SC_None;
6377   }
6378 
6379   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6380       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6381                               D.getDeclSpec().getStorageClassSpecLoc())) {
6382     // In C++11, the 'register' storage class specifier is deprecated.
6383     // Suppress the warning in system macros, it's used in macros in some
6384     // popular C system headers, such as in glibc's htonl() macro.
6385     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6386          getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6387                                    : diag::warn_deprecated_register)
6388       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6389   }
6390 
6391   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6392 
6393   if (!DC->isRecord() && S->getFnParent() == nullptr) {
6394     // C99 6.9p2: The storage-class specifiers auto and register shall not
6395     // appear in the declaration specifiers in an external declaration.
6396     // Global Register+Asm is a GNU extension we support.
6397     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6398       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6399       D.setInvalidType();
6400     }
6401   }
6402 
6403   bool IsMemberSpecialization = false;
6404   bool IsVariableTemplateSpecialization = false;
6405   bool IsPartialSpecialization = false;
6406   bool IsVariableTemplate = false;
6407   VarDecl *NewVD = nullptr;
6408   VarTemplateDecl *NewTemplate = nullptr;
6409   TemplateParameterList *TemplateParams = nullptr;
6410   if (!getLangOpts().CPlusPlus) {
6411     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
6412                             D.getIdentifierLoc(), II,
6413                             R, TInfo, SC);
6414 
6415     if (R->getContainedDeducedType())
6416       ParsingInitForAutoVars.insert(NewVD);
6417 
6418     if (D.isInvalidType())
6419       NewVD->setInvalidDecl();
6420   } else {
6421     bool Invalid = false;
6422 
6423     if (DC->isRecord() && !CurContext->isRecord()) {
6424       // This is an out-of-line definition of a static data member.
6425       switch (SC) {
6426       case SC_None:
6427         break;
6428       case SC_Static:
6429         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6430              diag::err_static_out_of_line)
6431           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6432         break;
6433       case SC_Auto:
6434       case SC_Register:
6435       case SC_Extern:
6436         // [dcl.stc] p2: The auto or register specifiers shall be applied only
6437         // to names of variables declared in a block or to function parameters.
6438         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
6439         // of class members
6440 
6441         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6442              diag::err_storage_class_for_static_member)
6443           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6444         break;
6445       case SC_PrivateExtern:
6446         llvm_unreachable("C storage class in c++!");
6447       }
6448     }
6449 
6450     if (SC == SC_Static && CurContext->isRecord()) {
6451       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
6452         if (RD->isLocalClass())
6453           Diag(D.getIdentifierLoc(),
6454                diag::err_static_data_member_not_allowed_in_local_class)
6455             << Name << RD->getDeclName();
6456 
6457         // C++98 [class.union]p1: If a union contains a static data member,
6458         // the program is ill-formed. C++11 drops this restriction.
6459         if (RD->isUnion())
6460           Diag(D.getIdentifierLoc(),
6461                getLangOpts().CPlusPlus11
6462                  ? diag::warn_cxx98_compat_static_data_member_in_union
6463                  : diag::ext_static_data_member_in_union) << Name;
6464         // We conservatively disallow static data members in anonymous structs.
6465         else if (!RD->getDeclName())
6466           Diag(D.getIdentifierLoc(),
6467                diag::err_static_data_member_not_allowed_in_anon_struct)
6468             << Name << RD->isUnion();
6469       }
6470     }
6471 
6472     // Match up the template parameter lists with the scope specifier, then
6473     // determine whether we have a template or a template specialization.
6474     TemplateParams = MatchTemplateParametersToScopeSpecifier(
6475         D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
6476         D.getCXXScopeSpec(),
6477         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
6478             ? D.getName().TemplateId
6479             : nullptr,
6480         TemplateParamLists,
6481         /*never a friend*/ false, IsMemberSpecialization, Invalid);
6482 
6483     if (TemplateParams) {
6484       if (!TemplateParams->size() &&
6485           D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
6486         // There is an extraneous 'template<>' for this variable. Complain
6487         // about it, but allow the declaration of the variable.
6488         Diag(TemplateParams->getTemplateLoc(),
6489              diag::err_template_variable_noparams)
6490           << II
6491           << SourceRange(TemplateParams->getTemplateLoc(),
6492                          TemplateParams->getRAngleLoc());
6493         TemplateParams = nullptr;
6494       } else {
6495         if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
6496           // This is an explicit specialization or a partial specialization.
6497           // FIXME: Check that we can declare a specialization here.
6498           IsVariableTemplateSpecialization = true;
6499           IsPartialSpecialization = TemplateParams->size() > 0;
6500         } else { // if (TemplateParams->size() > 0)
6501           // This is a template declaration.
6502           IsVariableTemplate = true;
6503 
6504           // Check that we can declare a template here.
6505           if (CheckTemplateDeclScope(S, TemplateParams))
6506             return nullptr;
6507 
6508           // Only C++1y supports variable templates (N3651).
6509           Diag(D.getIdentifierLoc(),
6510                getLangOpts().CPlusPlus14
6511                    ? diag::warn_cxx11_compat_variable_template
6512                    : diag::ext_variable_template);
6513         }
6514       }
6515     } else {
6516       assert((Invalid ||
6517               D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
6518              "should have a 'template<>' for this decl");
6519     }
6520 
6521     if (IsVariableTemplateSpecialization) {
6522       SourceLocation TemplateKWLoc =
6523           TemplateParamLists.size() > 0
6524               ? TemplateParamLists[0]->getTemplateLoc()
6525               : SourceLocation();
6526       DeclResult Res = ActOnVarTemplateSpecialization(
6527           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
6528           IsPartialSpecialization);
6529       if (Res.isInvalid())
6530         return nullptr;
6531       NewVD = cast<VarDecl>(Res.get());
6532       AddToScope = false;
6533     } else if (D.isDecompositionDeclarator()) {
6534       NewVD = DecompositionDecl::Create(Context, DC, D.getLocStart(),
6535                                         D.getIdentifierLoc(), R, TInfo, SC,
6536                                         Bindings);
6537     } else
6538       NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
6539                               D.getIdentifierLoc(), II, R, TInfo, SC);
6540 
6541     // If this is supposed to be a variable template, create it as such.
6542     if (IsVariableTemplate) {
6543       NewTemplate =
6544           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
6545                                   TemplateParams, NewVD);
6546       NewVD->setDescribedVarTemplate(NewTemplate);
6547     }
6548 
6549     // If this decl has an auto type in need of deduction, make a note of the
6550     // Decl so we can diagnose uses of it in its own initializer.
6551     if (R->getContainedDeducedType())
6552       ParsingInitForAutoVars.insert(NewVD);
6553 
6554     if (D.isInvalidType() || Invalid) {
6555       NewVD->setInvalidDecl();
6556       if (NewTemplate)
6557         NewTemplate->setInvalidDecl();
6558     }
6559 
6560     SetNestedNameSpecifier(NewVD, D);
6561 
6562     // If we have any template parameter lists that don't directly belong to
6563     // the variable (matching the scope specifier), store them.
6564     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
6565     if (TemplateParamLists.size() > VDTemplateParamLists)
6566       NewVD->setTemplateParameterListsInfo(
6567           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
6568 
6569     if (D.getDeclSpec().isConstexprSpecified()) {
6570       NewVD->setConstexpr(true);
6571       // C++1z [dcl.spec.constexpr]p1:
6572       //   A static data member declared with the constexpr specifier is
6573       //   implicitly an inline variable.
6574       if (NewVD->isStaticDataMember() && getLangOpts().CPlusPlus17)
6575         NewVD->setImplicitlyInline();
6576     }
6577   }
6578 
6579   if (D.getDeclSpec().isInlineSpecified()) {
6580     if (!getLangOpts().CPlusPlus) {
6581       Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6582           << 0;
6583     } else if (CurContext->isFunctionOrMethod()) {
6584       // 'inline' is not allowed on block scope variable declaration.
6585       Diag(D.getDeclSpec().getInlineSpecLoc(),
6586            diag::err_inline_declaration_block_scope) << Name
6587         << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6588     } else {
6589       Diag(D.getDeclSpec().getInlineSpecLoc(),
6590            getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
6591                                      : diag::ext_inline_variable);
6592       NewVD->setInlineSpecified();
6593     }
6594   }
6595 
6596   // Set the lexical context. If the declarator has a C++ scope specifier, the
6597   // lexical context will be different from the semantic context.
6598   NewVD->setLexicalDeclContext(CurContext);
6599   if (NewTemplate)
6600     NewTemplate->setLexicalDeclContext(CurContext);
6601 
6602   if (IsLocalExternDecl) {
6603     if (D.isDecompositionDeclarator())
6604       for (auto *B : Bindings)
6605         B->setLocalExternDecl();
6606     else
6607       NewVD->setLocalExternDecl();
6608   }
6609 
6610   bool EmitTLSUnsupportedError = false;
6611   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
6612     // C++11 [dcl.stc]p4:
6613     //   When thread_local is applied to a variable of block scope the
6614     //   storage-class-specifier static is implied if it does not appear
6615     //   explicitly.
6616     // Core issue: 'static' is not implied if the variable is declared
6617     //   'extern'.
6618     if (NewVD->hasLocalStorage() &&
6619         (SCSpec != DeclSpec::SCS_unspecified ||
6620          TSCS != DeclSpec::TSCS_thread_local ||
6621          !DC->isFunctionOrMethod()))
6622       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6623            diag::err_thread_non_global)
6624         << DeclSpec::getSpecifierName(TSCS);
6625     else if (!Context.getTargetInfo().isTLSSupported()) {
6626       if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6627         // Postpone error emission until we've collected attributes required to
6628         // figure out whether it's a host or device variable and whether the
6629         // error should be ignored.
6630         EmitTLSUnsupportedError = true;
6631         // We still need to mark the variable as TLS so it shows up in AST with
6632         // proper storage class for other tools to use even if we're not going
6633         // to emit any code for it.
6634         NewVD->setTSCSpec(TSCS);
6635       } else
6636         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6637              diag::err_thread_unsupported);
6638     } else
6639       NewVD->setTSCSpec(TSCS);
6640   }
6641 
6642   // C99 6.7.4p3
6643   //   An inline definition of a function with external linkage shall
6644   //   not contain a definition of a modifiable object with static or
6645   //   thread storage duration...
6646   // We only apply this when the function is required to be defined
6647   // elsewhere, i.e. when the function is not 'extern inline'.  Note
6648   // that a local variable with thread storage duration still has to
6649   // be marked 'static'.  Also note that it's possible to get these
6650   // semantics in C++ using __attribute__((gnu_inline)).
6651   if (SC == SC_Static && S->getFnParent() != nullptr &&
6652       !NewVD->getType().isConstQualified()) {
6653     FunctionDecl *CurFD = getCurFunctionDecl();
6654     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
6655       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6656            diag::warn_static_local_in_extern_inline);
6657       MaybeSuggestAddingStaticToDecl(CurFD);
6658     }
6659   }
6660 
6661   if (D.getDeclSpec().isModulePrivateSpecified()) {
6662     if (IsVariableTemplateSpecialization)
6663       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6664           << (IsPartialSpecialization ? 1 : 0)
6665           << FixItHint::CreateRemoval(
6666                  D.getDeclSpec().getModulePrivateSpecLoc());
6667     else if (IsMemberSpecialization)
6668       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6669         << 2
6670         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6671     else if (NewVD->hasLocalStorage())
6672       Diag(NewVD->getLocation(), diag::err_module_private_local)
6673         << 0 << NewVD->getDeclName()
6674         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6675         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6676     else {
6677       NewVD->setModulePrivate();
6678       if (NewTemplate)
6679         NewTemplate->setModulePrivate();
6680       for (auto *B : Bindings)
6681         B->setModulePrivate();
6682     }
6683   }
6684 
6685   // Handle attributes prior to checking for duplicates in MergeVarDecl
6686   ProcessDeclAttributes(S, NewVD, D);
6687 
6688   if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6689     if (EmitTLSUnsupportedError &&
6690         ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
6691          (getLangOpts().OpenMPIsDevice &&
6692           NewVD->hasAttr<OMPDeclareTargetDeclAttr>())))
6693       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6694            diag::err_thread_unsupported);
6695     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
6696     // storage [duration]."
6697     if (SC == SC_None && S->getFnParent() != nullptr &&
6698         (NewVD->hasAttr<CUDASharedAttr>() ||
6699          NewVD->hasAttr<CUDAConstantAttr>())) {
6700       NewVD->setStorageClass(SC_Static);
6701     }
6702   }
6703 
6704   // Ensure that dllimport globals without explicit storage class are treated as
6705   // extern. The storage class is set above using parsed attributes. Now we can
6706   // check the VarDecl itself.
6707   assert(!NewVD->hasAttr<DLLImportAttr>() ||
6708          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
6709          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
6710 
6711   // In auto-retain/release, infer strong retension for variables of
6712   // retainable type.
6713   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
6714     NewVD->setInvalidDecl();
6715 
6716   // Handle GNU asm-label extension (encoded as an attribute).
6717   if (Expr *E = (Expr*)D.getAsmLabel()) {
6718     // The parser guarantees this is a string.
6719     StringLiteral *SE = cast<StringLiteral>(E);
6720     StringRef Label = SE->getString();
6721     if (S->getFnParent() != nullptr) {
6722       switch (SC) {
6723       case SC_None:
6724       case SC_Auto:
6725         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
6726         break;
6727       case SC_Register:
6728         // Local Named register
6729         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
6730             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
6731           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6732         break;
6733       case SC_Static:
6734       case SC_Extern:
6735       case SC_PrivateExtern:
6736         break;
6737       }
6738     } else if (SC == SC_Register) {
6739       // Global Named register
6740       if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
6741         const auto &TI = Context.getTargetInfo();
6742         bool HasSizeMismatch;
6743 
6744         if (!TI.isValidGCCRegisterName(Label))
6745           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6746         else if (!TI.validateGlobalRegisterVariable(Label,
6747                                                     Context.getTypeSize(R),
6748                                                     HasSizeMismatch))
6749           Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
6750         else if (HasSizeMismatch)
6751           Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
6752       }
6753 
6754       if (!R->isIntegralType(Context) && !R->isPointerType()) {
6755         Diag(D.getLocStart(), diag::err_asm_bad_register_type);
6756         NewVD->setInvalidDecl(true);
6757       }
6758     }
6759 
6760     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
6761                                                 Context, Label, 0));
6762   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6763     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6764       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
6765     if (I != ExtnameUndeclaredIdentifiers.end()) {
6766       if (isDeclExternC(NewVD)) {
6767         NewVD->addAttr(I->second);
6768         ExtnameUndeclaredIdentifiers.erase(I);
6769       } else
6770         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
6771             << /*Variable*/1 << NewVD;
6772     }
6773   }
6774 
6775   // Find the shadowed declaration before filtering for scope.
6776   NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
6777                                 ? getShadowedDeclaration(NewVD, Previous)
6778                                 : nullptr;
6779 
6780   // Don't consider existing declarations that are in a different
6781   // scope and are out-of-semantic-context declarations (if the new
6782   // declaration has linkage).
6783   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
6784                        D.getCXXScopeSpec().isNotEmpty() ||
6785                        IsMemberSpecialization ||
6786                        IsVariableTemplateSpecialization);
6787 
6788   // Check whether the previous declaration is in the same block scope. This
6789   // affects whether we merge types with it, per C++11 [dcl.array]p3.
6790   if (getLangOpts().CPlusPlus &&
6791       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
6792     NewVD->setPreviousDeclInSameBlockScope(
6793         Previous.isSingleResult() && !Previous.isShadowed() &&
6794         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
6795 
6796   if (!getLangOpts().CPlusPlus) {
6797     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6798   } else {
6799     // If this is an explicit specialization of a static data member, check it.
6800     if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
6801         CheckMemberSpecialization(NewVD, Previous))
6802       NewVD->setInvalidDecl();
6803 
6804     // Merge the decl with the existing one if appropriate.
6805     if (!Previous.empty()) {
6806       if (Previous.isSingleResult() &&
6807           isa<FieldDecl>(Previous.getFoundDecl()) &&
6808           D.getCXXScopeSpec().isSet()) {
6809         // The user tried to define a non-static data member
6810         // out-of-line (C++ [dcl.meaning]p1).
6811         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
6812           << D.getCXXScopeSpec().getRange();
6813         Previous.clear();
6814         NewVD->setInvalidDecl();
6815       }
6816     } else if (D.getCXXScopeSpec().isSet()) {
6817       // No previous declaration in the qualifying scope.
6818       Diag(D.getIdentifierLoc(), diag::err_no_member)
6819         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
6820         << D.getCXXScopeSpec().getRange();
6821       NewVD->setInvalidDecl();
6822     }
6823 
6824     if (!IsVariableTemplateSpecialization)
6825       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6826 
6827     if (NewTemplate) {
6828       VarTemplateDecl *PrevVarTemplate =
6829           NewVD->getPreviousDecl()
6830               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
6831               : nullptr;
6832 
6833       // Check the template parameter list of this declaration, possibly
6834       // merging in the template parameter list from the previous variable
6835       // template declaration.
6836       if (CheckTemplateParameterList(
6837               TemplateParams,
6838               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
6839                               : nullptr,
6840               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
6841                DC->isDependentContext())
6842                   ? TPC_ClassTemplateMember
6843                   : TPC_VarTemplate))
6844         NewVD->setInvalidDecl();
6845 
6846       // If we are providing an explicit specialization of a static variable
6847       // template, make a note of that.
6848       if (PrevVarTemplate &&
6849           PrevVarTemplate->getInstantiatedFromMemberTemplate())
6850         PrevVarTemplate->setMemberSpecialization();
6851     }
6852   }
6853 
6854   // Diagnose shadowed variables iff this isn't a redeclaration.
6855   if (ShadowedDecl && !D.isRedeclaration())
6856     CheckShadow(NewVD, ShadowedDecl, Previous);
6857 
6858   ProcessPragmaWeak(S, NewVD);
6859 
6860   // If this is the first declaration of an extern C variable, update
6861   // the map of such variables.
6862   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
6863       isIncompleteDeclExternC(*this, NewVD))
6864     RegisterLocallyScopedExternCDecl(NewVD, S);
6865 
6866   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
6867     Decl *ManglingContextDecl;
6868     if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
6869             NewVD->getDeclContext(), ManglingContextDecl)) {
6870       Context.setManglingNumber(
6871           NewVD, MCtx->getManglingNumber(
6872                      NewVD, getMSManglingNumber(getLangOpts(), S)));
6873       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
6874     }
6875   }
6876 
6877   // Special handling of variable named 'main'.
6878   if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
6879       NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6880       !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
6881 
6882     // C++ [basic.start.main]p3
6883     // A program that declares a variable main at global scope is ill-formed.
6884     if (getLangOpts().CPlusPlus)
6885       Diag(D.getLocStart(), diag::err_main_global_variable);
6886 
6887     // In C, and external-linkage variable named main results in undefined
6888     // behavior.
6889     else if (NewVD->hasExternalFormalLinkage())
6890       Diag(D.getLocStart(), diag::warn_main_redefined);
6891   }
6892 
6893   if (D.isRedeclaration() && !Previous.empty()) {
6894     NamedDecl *Prev = Previous.getRepresentativeDecl();
6895     checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
6896                                    D.isFunctionDefinition());
6897   }
6898 
6899   if (NewTemplate) {
6900     if (NewVD->isInvalidDecl())
6901       NewTemplate->setInvalidDecl();
6902     ActOnDocumentableDecl(NewTemplate);
6903     return NewTemplate;
6904   }
6905 
6906   if (IsMemberSpecialization && !NewVD->isInvalidDecl())
6907     CompleteMemberSpecialization(NewVD, Previous);
6908 
6909   return NewVD;
6910 }
6911 
6912 /// Enum describing the %select options in diag::warn_decl_shadow.
6913 enum ShadowedDeclKind {
6914   SDK_Local,
6915   SDK_Global,
6916   SDK_StaticMember,
6917   SDK_Field,
6918   SDK_Typedef,
6919   SDK_Using
6920 };
6921 
6922 /// Determine what kind of declaration we're shadowing.
6923 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
6924                                                 const DeclContext *OldDC) {
6925   if (isa<TypeAliasDecl>(ShadowedDecl))
6926     return SDK_Using;
6927   else if (isa<TypedefDecl>(ShadowedDecl))
6928     return SDK_Typedef;
6929   else if (isa<RecordDecl>(OldDC))
6930     return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
6931 
6932   return OldDC->isFileContext() ? SDK_Global : SDK_Local;
6933 }
6934 
6935 /// Return the location of the capture if the given lambda captures the given
6936 /// variable \p VD, or an invalid source location otherwise.
6937 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
6938                                          const VarDecl *VD) {
6939   for (const Capture &Capture : LSI->Captures) {
6940     if (Capture.isVariableCapture() && Capture.getVariable() == VD)
6941       return Capture.getLocation();
6942   }
6943   return SourceLocation();
6944 }
6945 
6946 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
6947                                      const LookupResult &R) {
6948   // Only diagnose if we're shadowing an unambiguous field or variable.
6949   if (R.getResultKind() != LookupResult::Found)
6950     return false;
6951 
6952   // Return false if warning is ignored.
6953   return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
6954 }
6955 
6956 /// \brief Return the declaration shadowed by the given variable \p D, or null
6957 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
6958 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
6959                                         const LookupResult &R) {
6960   if (!shouldWarnIfShadowedDecl(Diags, R))
6961     return nullptr;
6962 
6963   // Don't diagnose declarations at file scope.
6964   if (D->hasGlobalStorage())
6965     return nullptr;
6966 
6967   NamedDecl *ShadowedDecl = R.getFoundDecl();
6968   return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
6969              ? ShadowedDecl
6970              : nullptr;
6971 }
6972 
6973 /// \brief Return the declaration shadowed by the given typedef \p D, or null
6974 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
6975 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
6976                                         const LookupResult &R) {
6977   // Don't warn if typedef declaration is part of a class
6978   if (D->getDeclContext()->isRecord())
6979     return nullptr;
6980 
6981   if (!shouldWarnIfShadowedDecl(Diags, R))
6982     return nullptr;
6983 
6984   NamedDecl *ShadowedDecl = R.getFoundDecl();
6985   return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
6986 }
6987 
6988 /// \brief Diagnose variable or built-in function shadowing.  Implements
6989 /// -Wshadow.
6990 ///
6991 /// This method is called whenever a VarDecl is added to a "useful"
6992 /// scope.
6993 ///
6994 /// \param ShadowedDecl the declaration that is shadowed by the given variable
6995 /// \param R the lookup of the name
6996 ///
6997 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
6998                        const LookupResult &R) {
6999   DeclContext *NewDC = D->getDeclContext();
7000 
7001   if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7002     // Fields are not shadowed by variables in C++ static methods.
7003     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7004       if (MD->isStatic())
7005         return;
7006 
7007     // Fields shadowed by constructor parameters are a special case. Usually
7008     // the constructor initializes the field with the parameter.
7009     if (isa<CXXConstructorDecl>(NewDC))
7010       if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7011         // Remember that this was shadowed so we can either warn about its
7012         // modification or its existence depending on warning settings.
7013         ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7014         return;
7015       }
7016   }
7017 
7018   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7019     if (shadowedVar->isExternC()) {
7020       // For shadowing external vars, make sure that we point to the global
7021       // declaration, not a locally scoped extern declaration.
7022       for (auto I : shadowedVar->redecls())
7023         if (I->isFileVarDecl()) {
7024           ShadowedDecl = I;
7025           break;
7026         }
7027     }
7028 
7029   DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7030 
7031   unsigned WarningDiag = diag::warn_decl_shadow;
7032   SourceLocation CaptureLoc;
7033   if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7034       isa<CXXMethodDecl>(NewDC)) {
7035     if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7036       if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7037         if (RD->getLambdaCaptureDefault() == LCD_None) {
7038           // Try to avoid warnings for lambdas with an explicit capture list.
7039           const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7040           // Warn only when the lambda captures the shadowed decl explicitly.
7041           CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7042           if (CaptureLoc.isInvalid())
7043             WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7044         } else {
7045           // Remember that this was shadowed so we can avoid the warning if the
7046           // shadowed decl isn't captured and the warning settings allow it.
7047           cast<LambdaScopeInfo>(getCurFunction())
7048               ->ShadowingDecls.push_back(
7049                   {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7050           return;
7051         }
7052       }
7053 
7054       if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7055         // A variable can't shadow a local variable in an enclosing scope, if
7056         // they are separated by a non-capturing declaration context.
7057         for (DeclContext *ParentDC = NewDC;
7058              ParentDC && !ParentDC->Equals(OldDC);
7059              ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7060           // Only block literals, captured statements, and lambda expressions
7061           // can capture; other scopes don't.
7062           if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7063               !isLambdaCallOperator(ParentDC)) {
7064             return;
7065           }
7066         }
7067       }
7068     }
7069   }
7070 
7071   // Only warn about certain kinds of shadowing for class members.
7072   if (NewDC && NewDC->isRecord()) {
7073     // In particular, don't warn about shadowing non-class members.
7074     if (!OldDC->isRecord())
7075       return;
7076 
7077     // TODO: should we warn about static data members shadowing
7078     // static data members from base classes?
7079 
7080     // TODO: don't diagnose for inaccessible shadowed members.
7081     // This is hard to do perfectly because we might friend the
7082     // shadowing context, but that's just a false negative.
7083   }
7084 
7085 
7086   DeclarationName Name = R.getLookupName();
7087 
7088   // Emit warning and note.
7089   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7090     return;
7091   ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7092   Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7093   if (!CaptureLoc.isInvalid())
7094     Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7095         << Name << /*explicitly*/ 1;
7096   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7097 }
7098 
7099 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7100 /// when these variables are captured by the lambda.
7101 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7102   for (const auto &Shadow : LSI->ShadowingDecls) {
7103     const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7104     // Try to avoid the warning when the shadowed decl isn't captured.
7105     SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7106     const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7107     Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7108                                        ? diag::warn_decl_shadow_uncaptured_local
7109                                        : diag::warn_decl_shadow)
7110         << Shadow.VD->getDeclName()
7111         << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7112     if (!CaptureLoc.isInvalid())
7113       Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7114           << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7115     Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7116   }
7117 }
7118 
7119 /// \brief Check -Wshadow without the advantage of a previous lookup.
7120 void Sema::CheckShadow(Scope *S, VarDecl *D) {
7121   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7122     return;
7123 
7124   LookupResult R(*this, D->getDeclName(), D->getLocation(),
7125                  Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7126   LookupName(R, S);
7127   if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7128     CheckShadow(D, ShadowedDecl, R);
7129 }
7130 
7131 /// Check if 'E', which is an expression that is about to be modified, refers
7132 /// to a constructor parameter that shadows a field.
7133 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7134   // Quickly ignore expressions that can't be shadowing ctor parameters.
7135   if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7136     return;
7137   E = E->IgnoreParenImpCasts();
7138   auto *DRE = dyn_cast<DeclRefExpr>(E);
7139   if (!DRE)
7140     return;
7141   const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7142   auto I = ShadowingDecls.find(D);
7143   if (I == ShadowingDecls.end())
7144     return;
7145   const NamedDecl *ShadowedDecl = I->second;
7146   const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7147   Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7148   Diag(D->getLocation(), diag::note_var_declared_here) << D;
7149   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7150 
7151   // Avoid issuing multiple warnings about the same decl.
7152   ShadowingDecls.erase(I);
7153 }
7154 
7155 /// Check for conflict between this global or extern "C" declaration and
7156 /// previous global or extern "C" declarations. This is only used in C++.
7157 template<typename T>
7158 static bool checkGlobalOrExternCConflict(
7159     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7160   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
7161   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7162 
7163   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7164     // The common case: this global doesn't conflict with any extern "C"
7165     // declaration.
7166     return false;
7167   }
7168 
7169   if (Prev) {
7170     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7171       // Both the old and new declarations have C language linkage. This is a
7172       // redeclaration.
7173       Previous.clear();
7174       Previous.addDecl(Prev);
7175       return true;
7176     }
7177 
7178     // This is a global, non-extern "C" declaration, and there is a previous
7179     // non-global extern "C" declaration. Diagnose if this is a variable
7180     // declaration.
7181     if (!isa<VarDecl>(ND))
7182       return false;
7183   } else {
7184     // The declaration is extern "C". Check for any declaration in the
7185     // translation unit which might conflict.
7186     if (IsGlobal) {
7187       // We have already performed the lookup into the translation unit.
7188       IsGlobal = false;
7189       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7190            I != E; ++I) {
7191         if (isa<VarDecl>(*I)) {
7192           Prev = *I;
7193           break;
7194         }
7195       }
7196     } else {
7197       DeclContext::lookup_result R =
7198           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7199       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7200            I != E; ++I) {
7201         if (isa<VarDecl>(*I)) {
7202           Prev = *I;
7203           break;
7204         }
7205         // FIXME: If we have any other entity with this name in global scope,
7206         // the declaration is ill-formed, but that is a defect: it breaks the
7207         // 'stat' hack, for instance. Only variables can have mangled name
7208         // clashes with extern "C" declarations, so only they deserve a
7209         // diagnostic.
7210       }
7211     }
7212 
7213     if (!Prev)
7214       return false;
7215   }
7216 
7217   // Use the first declaration's location to ensure we point at something which
7218   // is lexically inside an extern "C" linkage-spec.
7219   assert(Prev && "should have found a previous declaration to diagnose");
7220   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7221     Prev = FD->getFirstDecl();
7222   else
7223     Prev = cast<VarDecl>(Prev)->getFirstDecl();
7224 
7225   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7226     << IsGlobal << ND;
7227   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7228     << IsGlobal;
7229   return false;
7230 }
7231 
7232 /// Apply special rules for handling extern "C" declarations. Returns \c true
7233 /// if we have found that this is a redeclaration of some prior entity.
7234 ///
7235 /// Per C++ [dcl.link]p6:
7236 ///   Two declarations [for a function or variable] with C language linkage
7237 ///   with the same name that appear in different scopes refer to the same
7238 ///   [entity]. An entity with C language linkage shall not be declared with
7239 ///   the same name as an entity in global scope.
7240 template<typename T>
7241 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7242                                                   LookupResult &Previous) {
7243   if (!S.getLangOpts().CPlusPlus) {
7244     // In C, when declaring a global variable, look for a corresponding 'extern'
7245     // variable declared in function scope. We don't need this in C++, because
7246     // we find local extern decls in the surrounding file-scope DeclContext.
7247     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7248       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7249         Previous.clear();
7250         Previous.addDecl(Prev);
7251         return true;
7252       }
7253     }
7254     return false;
7255   }
7256 
7257   // A declaration in the translation unit can conflict with an extern "C"
7258   // declaration.
7259   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7260     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7261 
7262   // An extern "C" declaration can conflict with a declaration in the
7263   // translation unit or can be a redeclaration of an extern "C" declaration
7264   // in another scope.
7265   if (isIncompleteDeclExternC(S,ND))
7266     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7267 
7268   // Neither global nor extern "C": nothing to do.
7269   return false;
7270 }
7271 
7272 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7273   // If the decl is already known invalid, don't check it.
7274   if (NewVD->isInvalidDecl())
7275     return;
7276 
7277   TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
7278   QualType T = TInfo->getType();
7279 
7280   // Defer checking an 'auto' type until its initializer is attached.
7281   if (T->isUndeducedType())
7282     return;
7283 
7284   if (NewVD->hasAttrs())
7285     CheckAlignasUnderalignment(NewVD);
7286 
7287   if (T->isObjCObjectType()) {
7288     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7289       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7290     T = Context.getObjCObjectPointerType(T);
7291     NewVD->setType(T);
7292   }
7293 
7294   // Emit an error if an address space was applied to decl with local storage.
7295   // This includes arrays of objects with address space qualifiers, but not
7296   // automatic variables that point to other address spaces.
7297   // ISO/IEC TR 18037 S5.1.2
7298   if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7299       T.getAddressSpace() != LangAS::Default) {
7300     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7301     NewVD->setInvalidDecl();
7302     return;
7303   }
7304 
7305   // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7306   // scope.
7307   if (getLangOpts().OpenCLVersion == 120 &&
7308       !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
7309       NewVD->isStaticLocal()) {
7310     Diag(NewVD->getLocation(), diag::err_static_function_scope);
7311     NewVD->setInvalidDecl();
7312     return;
7313   }
7314 
7315   if (getLangOpts().OpenCL) {
7316     // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
7317     if (NewVD->hasAttr<BlocksAttr>()) {
7318       Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
7319       return;
7320     }
7321 
7322     if (T->isBlockPointerType()) {
7323       // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
7324       // can't use 'extern' storage class.
7325       if (!T.isConstQualified()) {
7326         Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
7327             << 0 /*const*/;
7328         NewVD->setInvalidDecl();
7329         return;
7330       }
7331       if (NewVD->hasExternalStorage()) {
7332         Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
7333         NewVD->setInvalidDecl();
7334         return;
7335       }
7336     }
7337     // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
7338     // __constant address space.
7339     // OpenCL v2.0 s6.5.1 - Variables defined at program scope and static
7340     // variables inside a function can also be declared in the global
7341     // address space.
7342     if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
7343         NewVD->hasExternalStorage()) {
7344       if (!T->isSamplerT() &&
7345           !(T.getAddressSpace() == LangAS::opencl_constant ||
7346             (T.getAddressSpace() == LangAS::opencl_global &&
7347              getLangOpts().OpenCLVersion == 200))) {
7348         int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
7349         if (getLangOpts().OpenCLVersion == 200)
7350           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7351               << Scope << "global or constant";
7352         else
7353           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7354               << Scope << "constant";
7355         NewVD->setInvalidDecl();
7356         return;
7357       }
7358     } else {
7359       if (T.getAddressSpace() == LangAS::opencl_global) {
7360         Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7361             << 1 /*is any function*/ << "global";
7362         NewVD->setInvalidDecl();
7363         return;
7364       }
7365       if (T.getAddressSpace() == LangAS::opencl_constant ||
7366           T.getAddressSpace() == LangAS::opencl_local) {
7367         FunctionDecl *FD = getCurFunctionDecl();
7368         // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
7369         // in functions.
7370         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
7371           if (T.getAddressSpace() == LangAS::opencl_constant)
7372             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7373                 << 0 /*non-kernel only*/ << "constant";
7374           else
7375             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7376                 << 0 /*non-kernel only*/ << "local";
7377           NewVD->setInvalidDecl();
7378           return;
7379         }
7380         // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
7381         // in the outermost scope of a kernel function.
7382         if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
7383           if (!getCurScope()->isFunctionScope()) {
7384             if (T.getAddressSpace() == LangAS::opencl_constant)
7385               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7386                   << "constant";
7387             else
7388               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7389                   << "local";
7390             NewVD->setInvalidDecl();
7391             return;
7392           }
7393         }
7394       } else if (T.getAddressSpace() != LangAS::opencl_private) {
7395         // Do not allow other address spaces on automatic variable.
7396         Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
7397         NewVD->setInvalidDecl();
7398         return;
7399       }
7400     }
7401   }
7402 
7403   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
7404       && !NewVD->hasAttr<BlocksAttr>()) {
7405     if (getLangOpts().getGC() != LangOptions::NonGC)
7406       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
7407     else {
7408       assert(!getLangOpts().ObjCAutoRefCount);
7409       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
7410     }
7411   }
7412 
7413   bool isVM = T->isVariablyModifiedType();
7414   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
7415       NewVD->hasAttr<BlocksAttr>())
7416     setFunctionHasBranchProtectedScope();
7417 
7418   if ((isVM && NewVD->hasLinkage()) ||
7419       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
7420     bool SizeIsNegative;
7421     llvm::APSInt Oversized;
7422     TypeSourceInfo *FixedTInfo =
7423       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
7424                                                     SizeIsNegative, Oversized);
7425     if (!FixedTInfo && T->isVariableArrayType()) {
7426       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
7427       // FIXME: This won't give the correct result for
7428       // int a[10][n];
7429       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
7430 
7431       if (NewVD->isFileVarDecl())
7432         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
7433         << SizeRange;
7434       else if (NewVD->isStaticLocal())
7435         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
7436         << SizeRange;
7437       else
7438         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
7439         << SizeRange;
7440       NewVD->setInvalidDecl();
7441       return;
7442     }
7443 
7444     if (!FixedTInfo) {
7445       if (NewVD->isFileVarDecl())
7446         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
7447       else
7448         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
7449       NewVD->setInvalidDecl();
7450       return;
7451     }
7452 
7453     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
7454     NewVD->setType(FixedTInfo->getType());
7455     NewVD->setTypeSourceInfo(FixedTInfo);
7456   }
7457 
7458   if (T->isVoidType()) {
7459     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
7460     //                    of objects and functions.
7461     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
7462       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
7463         << T;
7464       NewVD->setInvalidDecl();
7465       return;
7466     }
7467   }
7468 
7469   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
7470     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
7471     NewVD->setInvalidDecl();
7472     return;
7473   }
7474 
7475   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
7476     Diag(NewVD->getLocation(), diag::err_block_on_vm);
7477     NewVD->setInvalidDecl();
7478     return;
7479   }
7480 
7481   if (NewVD->isConstexpr() && !T->isDependentType() &&
7482       RequireLiteralType(NewVD->getLocation(), T,
7483                          diag::err_constexpr_var_non_literal)) {
7484     NewVD->setInvalidDecl();
7485     return;
7486   }
7487 }
7488 
7489 /// \brief Perform semantic checking on a newly-created variable
7490 /// declaration.
7491 ///
7492 /// This routine performs all of the type-checking required for a
7493 /// variable declaration once it has been built. It is used both to
7494 /// check variables after they have been parsed and their declarators
7495 /// have been translated into a declaration, and to check variables
7496 /// that have been instantiated from a template.
7497 ///
7498 /// Sets NewVD->isInvalidDecl() if an error was encountered.
7499 ///
7500 /// Returns true if the variable declaration is a redeclaration.
7501 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
7502   CheckVariableDeclarationType(NewVD);
7503 
7504   // If the decl is already known invalid, don't check it.
7505   if (NewVD->isInvalidDecl())
7506     return false;
7507 
7508   // If we did not find anything by this name, look for a non-visible
7509   // extern "C" declaration with the same name.
7510   if (Previous.empty() &&
7511       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
7512     Previous.setShadowed();
7513 
7514   if (!Previous.empty()) {
7515     MergeVarDecl(NewVD, Previous);
7516     return true;
7517   }
7518   return false;
7519 }
7520 
7521 namespace {
7522 struct FindOverriddenMethod {
7523   Sema *S;
7524   CXXMethodDecl *Method;
7525 
7526   /// Member lookup function that determines whether a given C++
7527   /// method overrides a method in a base class, to be used with
7528   /// CXXRecordDecl::lookupInBases().
7529   bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7530     RecordDecl *BaseRecord =
7531         Specifier->getType()->getAs<RecordType>()->getDecl();
7532 
7533     DeclarationName Name = Method->getDeclName();
7534 
7535     // FIXME: Do we care about other names here too?
7536     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7537       // We really want to find the base class destructor here.
7538       QualType T = S->Context.getTypeDeclType(BaseRecord);
7539       CanQualType CT = S->Context.getCanonicalType(T);
7540 
7541       Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
7542     }
7543 
7544     for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7545          Path.Decls = Path.Decls.slice(1)) {
7546       NamedDecl *D = Path.Decls.front();
7547       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7548         if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
7549           return true;
7550       }
7551     }
7552 
7553     return false;
7554   }
7555 };
7556 
7557 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
7558 } // end anonymous namespace
7559 
7560 /// \brief Report an error regarding overriding, along with any relevant
7561 /// overridden methods.
7562 ///
7563 /// \param DiagID the primary error to report.
7564 /// \param MD the overriding method.
7565 /// \param OEK which overrides to include as notes.
7566 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
7567                             OverrideErrorKind OEK = OEK_All) {
7568   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
7569   for (const CXXMethodDecl *O : MD->overridden_methods()) {
7570     // This check (& the OEK parameter) could be replaced by a predicate, but
7571     // without lambdas that would be overkill. This is still nicer than writing
7572     // out the diag loop 3 times.
7573     if ((OEK == OEK_All) ||
7574         (OEK == OEK_NonDeleted && !O->isDeleted()) ||
7575         (OEK == OEK_Deleted && O->isDeleted()))
7576       S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
7577   }
7578 }
7579 
7580 /// AddOverriddenMethods - See if a method overrides any in the base classes,
7581 /// and if so, check that it's a valid override and remember it.
7582 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
7583   // Look for methods in base classes that this method might override.
7584   CXXBasePaths Paths;
7585   FindOverriddenMethod FOM;
7586   FOM.Method = MD;
7587   FOM.S = this;
7588   bool hasDeletedOverridenMethods = false;
7589   bool hasNonDeletedOverridenMethods = false;
7590   bool AddedAny = false;
7591   if (DC->lookupInBases(FOM, Paths)) {
7592     for (auto *I : Paths.found_decls()) {
7593       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
7594         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
7595         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
7596             !CheckOverridingFunctionAttributes(MD, OldMD) &&
7597             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
7598             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
7599           hasDeletedOverridenMethods |= OldMD->isDeleted();
7600           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
7601           AddedAny = true;
7602         }
7603       }
7604     }
7605   }
7606 
7607   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
7608     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
7609   }
7610   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
7611     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
7612   }
7613 
7614   return AddedAny;
7615 }
7616 
7617 namespace {
7618   // Struct for holding all of the extra arguments needed by
7619   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
7620   struct ActOnFDArgs {
7621     Scope *S;
7622     Declarator &D;
7623     MultiTemplateParamsArg TemplateParamLists;
7624     bool AddToScope;
7625   };
7626 } // end anonymous namespace
7627 
7628 namespace {
7629 
7630 // Callback to only accept typo corrections that have a non-zero edit distance.
7631 // Also only accept corrections that have the same parent decl.
7632 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
7633  public:
7634   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
7635                             CXXRecordDecl *Parent)
7636       : Context(Context), OriginalFD(TypoFD),
7637         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
7638 
7639   bool ValidateCandidate(const TypoCorrection &candidate) override {
7640     if (candidate.getEditDistance() == 0)
7641       return false;
7642 
7643     SmallVector<unsigned, 1> MismatchedParams;
7644     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
7645                                           CDeclEnd = candidate.end();
7646          CDecl != CDeclEnd; ++CDecl) {
7647       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7648 
7649       if (FD && !FD->hasBody() &&
7650           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
7651         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7652           CXXRecordDecl *Parent = MD->getParent();
7653           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
7654             return true;
7655         } else if (!ExpectedParent) {
7656           return true;
7657         }
7658       }
7659     }
7660 
7661     return false;
7662   }
7663 
7664  private:
7665   ASTContext &Context;
7666   FunctionDecl *OriginalFD;
7667   CXXRecordDecl *ExpectedParent;
7668 };
7669 
7670 } // end anonymous namespace
7671 
7672 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
7673   TypoCorrectedFunctionDefinitions.insert(F);
7674 }
7675 
7676 /// \brief Generate diagnostics for an invalid function redeclaration.
7677 ///
7678 /// This routine handles generating the diagnostic messages for an invalid
7679 /// function redeclaration, including finding possible similar declarations
7680 /// or performing typo correction if there are no previous declarations with
7681 /// the same name.
7682 ///
7683 /// Returns a NamedDecl iff typo correction was performed and substituting in
7684 /// the new declaration name does not cause new errors.
7685 static NamedDecl *DiagnoseInvalidRedeclaration(
7686     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
7687     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
7688   DeclarationName Name = NewFD->getDeclName();
7689   DeclContext *NewDC = NewFD->getDeclContext();
7690   SmallVector<unsigned, 1> MismatchedParams;
7691   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
7692   TypoCorrection Correction;
7693   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
7694   unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
7695                                    : diag::err_member_decl_does_not_match;
7696   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
7697                     IsLocalFriend ? Sema::LookupLocalFriendName
7698                                   : Sema::LookupOrdinaryName,
7699                     Sema::ForVisibleRedeclaration);
7700 
7701   NewFD->setInvalidDecl();
7702   if (IsLocalFriend)
7703     SemaRef.LookupName(Prev, S);
7704   else
7705     SemaRef.LookupQualifiedName(Prev, NewDC);
7706   assert(!Prev.isAmbiguous() &&
7707          "Cannot have an ambiguity in previous-declaration lookup");
7708   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7709   if (!Prev.empty()) {
7710     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
7711          Func != FuncEnd; ++Func) {
7712       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
7713       if (FD &&
7714           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7715         // Add 1 to the index so that 0 can mean the mismatch didn't
7716         // involve a parameter
7717         unsigned ParamNum =
7718             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
7719         NearMatches.push_back(std::make_pair(FD, ParamNum));
7720       }
7721     }
7722   // If the qualified name lookup yielded nothing, try typo correction
7723   } else if ((Correction = SemaRef.CorrectTypo(
7724                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
7725                   &ExtraArgs.D.getCXXScopeSpec(),
7726                   llvm::make_unique<DifferentNameValidatorCCC>(
7727                       SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr),
7728                   Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
7729     // Set up everything for the call to ActOnFunctionDeclarator
7730     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
7731                               ExtraArgs.D.getIdentifierLoc());
7732     Previous.clear();
7733     Previous.setLookupName(Correction.getCorrection());
7734     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
7735                                     CDeclEnd = Correction.end();
7736          CDecl != CDeclEnd; ++CDecl) {
7737       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7738       if (FD && !FD->hasBody() &&
7739           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7740         Previous.addDecl(FD);
7741       }
7742     }
7743     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
7744 
7745     NamedDecl *Result;
7746     // Retry building the function declaration with the new previous
7747     // declarations, and with errors suppressed.
7748     {
7749       // Trap errors.
7750       Sema::SFINAETrap Trap(SemaRef);
7751 
7752       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
7753       // pieces need to verify the typo-corrected C++ declaration and hopefully
7754       // eliminate the need for the parameter pack ExtraArgs.
7755       Result = SemaRef.ActOnFunctionDeclarator(
7756           ExtraArgs.S, ExtraArgs.D,
7757           Correction.getCorrectionDecl()->getDeclContext(),
7758           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
7759           ExtraArgs.AddToScope);
7760 
7761       if (Trap.hasErrorOccurred())
7762         Result = nullptr;
7763     }
7764 
7765     if (Result) {
7766       // Determine which correction we picked.
7767       Decl *Canonical = Result->getCanonicalDecl();
7768       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7769            I != E; ++I)
7770         if ((*I)->getCanonicalDecl() == Canonical)
7771           Correction.setCorrectionDecl(*I);
7772 
7773       // Let Sema know about the correction.
7774       SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
7775       SemaRef.diagnoseTypo(
7776           Correction,
7777           SemaRef.PDiag(IsLocalFriend
7778                           ? diag::err_no_matching_local_friend_suggest
7779                           : diag::err_member_decl_does_not_match_suggest)
7780             << Name << NewDC << IsDefinition);
7781       return Result;
7782     }
7783 
7784     // Pretend the typo correction never occurred
7785     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
7786                               ExtraArgs.D.getIdentifierLoc());
7787     ExtraArgs.D.setRedeclaration(wasRedeclaration);
7788     Previous.clear();
7789     Previous.setLookupName(Name);
7790   }
7791 
7792   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
7793       << Name << NewDC << IsDefinition << NewFD->getLocation();
7794 
7795   bool NewFDisConst = false;
7796   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
7797     NewFDisConst = NewMD->isConst();
7798 
7799   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
7800        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
7801        NearMatch != NearMatchEnd; ++NearMatch) {
7802     FunctionDecl *FD = NearMatch->first;
7803     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7804     bool FDisConst = MD && MD->isConst();
7805     bool IsMember = MD || !IsLocalFriend;
7806 
7807     // FIXME: These notes are poorly worded for the local friend case.
7808     if (unsigned Idx = NearMatch->second) {
7809       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
7810       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
7811       if (Loc.isInvalid()) Loc = FD->getLocation();
7812       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
7813                                  : diag::note_local_decl_close_param_match)
7814         << Idx << FDParam->getType()
7815         << NewFD->getParamDecl(Idx - 1)->getType();
7816     } else if (FDisConst != NewFDisConst) {
7817       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
7818           << NewFDisConst << FD->getSourceRange().getEnd();
7819     } else
7820       SemaRef.Diag(FD->getLocation(),
7821                    IsMember ? diag::note_member_def_close_match
7822                             : diag::note_local_decl_close_match);
7823   }
7824   return nullptr;
7825 }
7826 
7827 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
7828   switch (D.getDeclSpec().getStorageClassSpec()) {
7829   default: llvm_unreachable("Unknown storage class!");
7830   case DeclSpec::SCS_auto:
7831   case DeclSpec::SCS_register:
7832   case DeclSpec::SCS_mutable:
7833     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7834                  diag::err_typecheck_sclass_func);
7835     D.getMutableDeclSpec().ClearStorageClassSpecs();
7836     D.setInvalidType();
7837     break;
7838   case DeclSpec::SCS_unspecified: break;
7839   case DeclSpec::SCS_extern:
7840     if (D.getDeclSpec().isExternInLinkageSpec())
7841       return SC_None;
7842     return SC_Extern;
7843   case DeclSpec::SCS_static: {
7844     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7845       // C99 6.7.1p5:
7846       //   The declaration of an identifier for a function that has
7847       //   block scope shall have no explicit storage-class specifier
7848       //   other than extern
7849       // See also (C++ [dcl.stc]p4).
7850       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7851                    diag::err_static_block_func);
7852       break;
7853     } else
7854       return SC_Static;
7855   }
7856   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
7857   }
7858 
7859   // No explicit storage class has already been returned
7860   return SC_None;
7861 }
7862 
7863 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
7864                                            DeclContext *DC, QualType &R,
7865                                            TypeSourceInfo *TInfo,
7866                                            StorageClass SC,
7867                                            bool &IsVirtualOkay) {
7868   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
7869   DeclarationName Name = NameInfo.getName();
7870 
7871   FunctionDecl *NewFD = nullptr;
7872   bool isInline = D.getDeclSpec().isInlineSpecified();
7873 
7874   if (!SemaRef.getLangOpts().CPlusPlus) {
7875     // Determine whether the function was written with a
7876     // prototype. This true when:
7877     //   - there is a prototype in the declarator, or
7878     //   - the type R of the function is some kind of typedef or other non-
7879     //     attributed reference to a type name (which eventually refers to a
7880     //     function type).
7881     bool HasPrototype =
7882       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
7883       (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
7884 
7885     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
7886                                  D.getLocStart(), NameInfo, R,
7887                                  TInfo, SC, isInline,
7888                                  HasPrototype, false);
7889     if (D.isInvalidType())
7890       NewFD->setInvalidDecl();
7891 
7892     return NewFD;
7893   }
7894 
7895   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
7896   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
7897 
7898   // Check that the return type is not an abstract class type.
7899   // For record types, this is done by the AbstractClassUsageDiagnoser once
7900   // the class has been completely parsed.
7901   if (!DC->isRecord() &&
7902       SemaRef.RequireNonAbstractType(
7903           D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
7904           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
7905     D.setInvalidType();
7906 
7907   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
7908     // This is a C++ constructor declaration.
7909     assert(DC->isRecord() &&
7910            "Constructors can only be declared in a member context");
7911 
7912     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
7913     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
7914                                       D.getLocStart(), NameInfo,
7915                                       R, TInfo, isExplicit, isInline,
7916                                       /*isImplicitlyDeclared=*/false,
7917                                       isConstexpr);
7918 
7919   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7920     // This is a C++ destructor declaration.
7921     if (DC->isRecord()) {
7922       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
7923       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
7924       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
7925                                         SemaRef.Context, Record,
7926                                         D.getLocStart(),
7927                                         NameInfo, R, TInfo, isInline,
7928                                         /*isImplicitlyDeclared=*/false);
7929 
7930       // If the class is complete, then we now create the implicit exception
7931       // specification. If the class is incomplete or dependent, we can't do
7932       // it yet.
7933       if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
7934           Record->getDefinition() && !Record->isBeingDefined() &&
7935           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
7936         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
7937       }
7938 
7939       IsVirtualOkay = true;
7940       return NewDD;
7941 
7942     } else {
7943       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
7944       D.setInvalidType();
7945 
7946       // Create a FunctionDecl to satisfy the function definition parsing
7947       // code path.
7948       return FunctionDecl::Create(SemaRef.Context, DC,
7949                                   D.getLocStart(),
7950                                   D.getIdentifierLoc(), Name, R, TInfo,
7951                                   SC, isInline,
7952                                   /*hasPrototype=*/true, isConstexpr);
7953     }
7954 
7955   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
7956     if (!DC->isRecord()) {
7957       SemaRef.Diag(D.getIdentifierLoc(),
7958            diag::err_conv_function_not_member);
7959       return nullptr;
7960     }
7961 
7962     SemaRef.CheckConversionDeclarator(D, R, SC);
7963     IsVirtualOkay = true;
7964     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
7965                                      D.getLocStart(), NameInfo,
7966                                      R, TInfo, isInline, isExplicit,
7967                                      isConstexpr, SourceLocation());
7968 
7969   } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
7970     SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
7971 
7972     return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getLocStart(),
7973                                          isExplicit, NameInfo, R, TInfo,
7974                                          D.getLocEnd());
7975   } else if (DC->isRecord()) {
7976     // If the name of the function is the same as the name of the record,
7977     // then this must be an invalid constructor that has a return type.
7978     // (The parser checks for a return type and makes the declarator a
7979     // constructor if it has no return type).
7980     if (Name.getAsIdentifierInfo() &&
7981         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
7982       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
7983         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
7984         << SourceRange(D.getIdentifierLoc());
7985       return nullptr;
7986     }
7987 
7988     // This is a C++ method declaration.
7989     CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
7990                                                cast<CXXRecordDecl>(DC),
7991                                                D.getLocStart(), NameInfo, R,
7992                                                TInfo, SC, isInline,
7993                                                isConstexpr, SourceLocation());
7994     IsVirtualOkay = !Ret->isStatic();
7995     return Ret;
7996   } else {
7997     bool isFriend =
7998         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
7999     if (!isFriend && SemaRef.CurContext->isRecord())
8000       return nullptr;
8001 
8002     // Determine whether the function was written with a
8003     // prototype. This true when:
8004     //   - we're in C++ (where every function has a prototype),
8005     return FunctionDecl::Create(SemaRef.Context, DC,
8006                                 D.getLocStart(),
8007                                 NameInfo, R, TInfo, SC, isInline,
8008                                 true/*HasPrototype*/, isConstexpr);
8009   }
8010 }
8011 
8012 enum OpenCLParamType {
8013   ValidKernelParam,
8014   PtrPtrKernelParam,
8015   PtrKernelParam,
8016   InvalidAddrSpacePtrKernelParam,
8017   InvalidKernelParam,
8018   RecordKernelParam
8019 };
8020 
8021 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8022   if (PT->isPointerType()) {
8023     QualType PointeeType = PT->getPointeeType();
8024     if (PointeeType->isPointerType())
8025       return PtrPtrKernelParam;
8026     if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8027         PointeeType.getAddressSpace() == LangAS::opencl_private ||
8028         PointeeType.getAddressSpace() == LangAS::Default)
8029       return InvalidAddrSpacePtrKernelParam;
8030     return PtrKernelParam;
8031   }
8032 
8033   // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
8034   // be used as builtin types.
8035 
8036   if (PT->isImageType())
8037     return PtrKernelParam;
8038 
8039   if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8040     return InvalidKernelParam;
8041 
8042   // OpenCL extension spec v1.2 s9.5:
8043   // This extension adds support for half scalar and vector types as built-in
8044   // types that can be used for arithmetic operations, conversions etc.
8045   if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
8046     return InvalidKernelParam;
8047 
8048   if (PT->isRecordType())
8049     return RecordKernelParam;
8050 
8051   return ValidKernelParam;
8052 }
8053 
8054 static void checkIsValidOpenCLKernelParameter(
8055   Sema &S,
8056   Declarator &D,
8057   ParmVarDecl *Param,
8058   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8059   QualType PT = Param->getType();
8060 
8061   // Cache the valid types we encounter to avoid rechecking structs that are
8062   // used again
8063   if (ValidTypes.count(PT.getTypePtr()))
8064     return;
8065 
8066   switch (getOpenCLKernelParameterType(S, PT)) {
8067   case PtrPtrKernelParam:
8068     // OpenCL v1.2 s6.9.a:
8069     // A kernel function argument cannot be declared as a
8070     // pointer to a pointer type.
8071     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8072     D.setInvalidType();
8073     return;
8074 
8075   case InvalidAddrSpacePtrKernelParam:
8076     // OpenCL v1.0 s6.5:
8077     // __kernel function arguments declared to be a pointer of a type can point
8078     // to one of the following address spaces only : __global, __local or
8079     // __constant.
8080     S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8081     D.setInvalidType();
8082     return;
8083 
8084     // OpenCL v1.2 s6.9.k:
8085     // Arguments to kernel functions in a program cannot be declared with the
8086     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8087     // uintptr_t or a struct and/or union that contain fields declared to be
8088     // one of these built-in scalar types.
8089 
8090   case InvalidKernelParam:
8091     // OpenCL v1.2 s6.8 n:
8092     // A kernel function argument cannot be declared
8093     // of event_t type.
8094     // Do not diagnose half type since it is diagnosed as invalid argument
8095     // type for any function elsewhere.
8096     if (!PT->isHalfType())
8097       S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8098     D.setInvalidType();
8099     return;
8100 
8101   case PtrKernelParam:
8102   case ValidKernelParam:
8103     ValidTypes.insert(PT.getTypePtr());
8104     return;
8105 
8106   case RecordKernelParam:
8107     break;
8108   }
8109 
8110   // Track nested structs we will inspect
8111   SmallVector<const Decl *, 4> VisitStack;
8112 
8113   // Track where we are in the nested structs. Items will migrate from
8114   // VisitStack to HistoryStack as we do the DFS for bad field.
8115   SmallVector<const FieldDecl *, 4> HistoryStack;
8116   HistoryStack.push_back(nullptr);
8117 
8118   const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
8119   VisitStack.push_back(PD);
8120 
8121   assert(VisitStack.back() && "First decl null?");
8122 
8123   do {
8124     const Decl *Next = VisitStack.pop_back_val();
8125     if (!Next) {
8126       assert(!HistoryStack.empty());
8127       // Found a marker, we have gone up a level
8128       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8129         ValidTypes.insert(Hist->getType().getTypePtr());
8130 
8131       continue;
8132     }
8133 
8134     // Adds everything except the original parameter declaration (which is not a
8135     // field itself) to the history stack.
8136     const RecordDecl *RD;
8137     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8138       HistoryStack.push_back(Field);
8139       RD = Field->getType()->castAs<RecordType>()->getDecl();
8140     } else {
8141       RD = cast<RecordDecl>(Next);
8142     }
8143 
8144     // Add a null marker so we know when we've gone back up a level
8145     VisitStack.push_back(nullptr);
8146 
8147     for (const auto *FD : RD->fields()) {
8148       QualType QT = FD->getType();
8149 
8150       if (ValidTypes.count(QT.getTypePtr()))
8151         continue;
8152 
8153       OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8154       if (ParamType == ValidKernelParam)
8155         continue;
8156 
8157       if (ParamType == RecordKernelParam) {
8158         VisitStack.push_back(FD);
8159         continue;
8160       }
8161 
8162       // OpenCL v1.2 s6.9.p:
8163       // Arguments to kernel functions that are declared to be a struct or union
8164       // do not allow OpenCL objects to be passed as elements of the struct or
8165       // union.
8166       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8167           ParamType == InvalidAddrSpacePtrKernelParam) {
8168         S.Diag(Param->getLocation(),
8169                diag::err_record_with_pointers_kernel_param)
8170           << PT->isUnionType()
8171           << PT;
8172       } else {
8173         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8174       }
8175 
8176       S.Diag(PD->getLocation(), diag::note_within_field_of_type)
8177         << PD->getDeclName();
8178 
8179       // We have an error, now let's go back up through history and show where
8180       // the offending field came from
8181       for (ArrayRef<const FieldDecl *>::const_iterator
8182                I = HistoryStack.begin() + 1,
8183                E = HistoryStack.end();
8184            I != E; ++I) {
8185         const FieldDecl *OuterField = *I;
8186         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8187           << OuterField->getType();
8188       }
8189 
8190       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8191         << QT->isPointerType()
8192         << QT;
8193       D.setInvalidType();
8194       return;
8195     }
8196   } while (!VisitStack.empty());
8197 }
8198 
8199 /// Find the DeclContext in which a tag is implicitly declared if we see an
8200 /// elaborated type specifier in the specified context, and lookup finds
8201 /// nothing.
8202 static DeclContext *getTagInjectionContext(DeclContext *DC) {
8203   while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8204     DC = DC->getParent();
8205   return DC;
8206 }
8207 
8208 /// Find the Scope in which a tag is implicitly declared if we see an
8209 /// elaborated type specifier in the specified context, and lookup finds
8210 /// nothing.
8211 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8212   while (S->isClassScope() ||
8213          (LangOpts.CPlusPlus &&
8214           S->isFunctionPrototypeScope()) ||
8215          ((S->getFlags() & Scope::DeclScope) == 0) ||
8216          (S->getEntity() && S->getEntity()->isTransparentContext()))
8217     S = S->getParent();
8218   return S;
8219 }
8220 
8221 NamedDecl*
8222 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
8223                               TypeSourceInfo *TInfo, LookupResult &Previous,
8224                               MultiTemplateParamsArg TemplateParamLists,
8225                               bool &AddToScope) {
8226   QualType R = TInfo->getType();
8227 
8228   assert(R.getTypePtr()->isFunctionType());
8229 
8230   // TODO: consider using NameInfo for diagnostic.
8231   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8232   DeclarationName Name = NameInfo.getName();
8233   StorageClass SC = getFunctionStorageClass(*this, D);
8234 
8235   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
8236     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8237          diag::err_invalid_thread)
8238       << DeclSpec::getSpecifierName(TSCS);
8239 
8240   if (D.isFirstDeclarationOfMember())
8241     adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
8242                            D.getIdentifierLoc());
8243 
8244   bool isFriend = false;
8245   FunctionTemplateDecl *FunctionTemplate = nullptr;
8246   bool isMemberSpecialization = false;
8247   bool isFunctionTemplateSpecialization = false;
8248 
8249   bool isDependentClassScopeExplicitSpecialization = false;
8250   bool HasExplicitTemplateArgs = false;
8251   TemplateArgumentListInfo TemplateArgs;
8252 
8253   bool isVirtualOkay = false;
8254 
8255   DeclContext *OriginalDC = DC;
8256   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
8257 
8258   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
8259                                               isVirtualOkay);
8260   if (!NewFD) return nullptr;
8261 
8262   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
8263     NewFD->setTopLevelDeclInObjCContainer();
8264 
8265   // Set the lexical context. If this is a function-scope declaration, or has a
8266   // C++ scope specifier, or is the object of a friend declaration, the lexical
8267   // context will be different from the semantic context.
8268   NewFD->setLexicalDeclContext(CurContext);
8269 
8270   if (IsLocalExternDecl)
8271     NewFD->setLocalExternDecl();
8272 
8273   if (getLangOpts().CPlusPlus) {
8274     bool isInline = D.getDeclSpec().isInlineSpecified();
8275     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8276     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
8277     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
8278     isFriend = D.getDeclSpec().isFriendSpecified();
8279     if (isFriend && !isInline && D.isFunctionDefinition()) {
8280       // C++ [class.friend]p5
8281       //   A function can be defined in a friend declaration of a
8282       //   class . . . . Such a function is implicitly inline.
8283       NewFD->setImplicitlyInline();
8284     }
8285 
8286     // If this is a method defined in an __interface, and is not a constructor
8287     // or an overloaded operator, then set the pure flag (isVirtual will already
8288     // return true).
8289     if (const CXXRecordDecl *Parent =
8290           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
8291       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
8292         NewFD->setPure(true);
8293 
8294       // C++ [class.union]p2
8295       //   A union can have member functions, but not virtual functions.
8296       if (isVirtual && Parent->isUnion())
8297         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
8298     }
8299 
8300     SetNestedNameSpecifier(NewFD, D);
8301     isMemberSpecialization = false;
8302     isFunctionTemplateSpecialization = false;
8303     if (D.isInvalidType())
8304       NewFD->setInvalidDecl();
8305 
8306     // Match up the template parameter lists with the scope specifier, then
8307     // determine whether we have a template or a template specialization.
8308     bool Invalid = false;
8309     if (TemplateParameterList *TemplateParams =
8310             MatchTemplateParametersToScopeSpecifier(
8311                 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
8312                 D.getCXXScopeSpec(),
8313                 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
8314                     ? D.getName().TemplateId
8315                     : nullptr,
8316                 TemplateParamLists, isFriend, isMemberSpecialization,
8317                 Invalid)) {
8318       if (TemplateParams->size() > 0) {
8319         // This is a function template
8320 
8321         // Check that we can declare a template here.
8322         if (CheckTemplateDeclScope(S, TemplateParams))
8323           NewFD->setInvalidDecl();
8324 
8325         // A destructor cannot be a template.
8326         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8327           Diag(NewFD->getLocation(), diag::err_destructor_template);
8328           NewFD->setInvalidDecl();
8329         }
8330 
8331         // If we're adding a template to a dependent context, we may need to
8332         // rebuilding some of the types used within the template parameter list,
8333         // now that we know what the current instantiation is.
8334         if (DC->isDependentContext()) {
8335           ContextRAII SavedContext(*this, DC);
8336           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
8337             Invalid = true;
8338         }
8339 
8340         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
8341                                                         NewFD->getLocation(),
8342                                                         Name, TemplateParams,
8343                                                         NewFD);
8344         FunctionTemplate->setLexicalDeclContext(CurContext);
8345         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
8346 
8347         // For source fidelity, store the other template param lists.
8348         if (TemplateParamLists.size() > 1) {
8349           NewFD->setTemplateParameterListsInfo(Context,
8350                                                TemplateParamLists.drop_back(1));
8351         }
8352       } else {
8353         // This is a function template specialization.
8354         isFunctionTemplateSpecialization = true;
8355         // For source fidelity, store all the template param lists.
8356         if (TemplateParamLists.size() > 0)
8357           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8358 
8359         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
8360         if (isFriend) {
8361           // We want to remove the "template<>", found here.
8362           SourceRange RemoveRange = TemplateParams->getSourceRange();
8363 
8364           // If we remove the template<> and the name is not a
8365           // template-id, we're actually silently creating a problem:
8366           // the friend declaration will refer to an untemplated decl,
8367           // and clearly the user wants a template specialization.  So
8368           // we need to insert '<>' after the name.
8369           SourceLocation InsertLoc;
8370           if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
8371             InsertLoc = D.getName().getSourceRange().getEnd();
8372             InsertLoc = getLocForEndOfToken(InsertLoc);
8373           }
8374 
8375           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
8376             << Name << RemoveRange
8377             << FixItHint::CreateRemoval(RemoveRange)
8378             << FixItHint::CreateInsertion(InsertLoc, "<>");
8379         }
8380       }
8381     }
8382     else {
8383       // All template param lists were matched against the scope specifier:
8384       // this is NOT (an explicit specialization of) a template.
8385       if (TemplateParamLists.size() > 0)
8386         // For source fidelity, store all the template param lists.
8387         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8388     }
8389 
8390     if (Invalid) {
8391       NewFD->setInvalidDecl();
8392       if (FunctionTemplate)
8393         FunctionTemplate->setInvalidDecl();
8394     }
8395 
8396     // C++ [dcl.fct.spec]p5:
8397     //   The virtual specifier shall only be used in declarations of
8398     //   nonstatic class member functions that appear within a
8399     //   member-specification of a class declaration; see 10.3.
8400     //
8401     if (isVirtual && !NewFD->isInvalidDecl()) {
8402       if (!isVirtualOkay) {
8403         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8404              diag::err_virtual_non_function);
8405       } else if (!CurContext->isRecord()) {
8406         // 'virtual' was specified outside of the class.
8407         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8408              diag::err_virtual_out_of_class)
8409           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8410       } else if (NewFD->getDescribedFunctionTemplate()) {
8411         // C++ [temp.mem]p3:
8412         //  A member function template shall not be virtual.
8413         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8414              diag::err_virtual_member_function_template)
8415           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8416       } else {
8417         // Okay: Add virtual to the method.
8418         NewFD->setVirtualAsWritten(true);
8419       }
8420 
8421       if (getLangOpts().CPlusPlus14 &&
8422           NewFD->getReturnType()->isUndeducedType())
8423         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
8424     }
8425 
8426     if (getLangOpts().CPlusPlus14 &&
8427         (NewFD->isDependentContext() ||
8428          (isFriend && CurContext->isDependentContext())) &&
8429         NewFD->getReturnType()->isUndeducedType()) {
8430       // If the function template is referenced directly (for instance, as a
8431       // member of the current instantiation), pretend it has a dependent type.
8432       // This is not really justified by the standard, but is the only sane
8433       // thing to do.
8434       // FIXME: For a friend function, we have not marked the function as being
8435       // a friend yet, so 'isDependentContext' on the FD doesn't work.
8436       const FunctionProtoType *FPT =
8437           NewFD->getType()->castAs<FunctionProtoType>();
8438       QualType Result =
8439           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
8440       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
8441                                              FPT->getExtProtoInfo()));
8442     }
8443 
8444     // C++ [dcl.fct.spec]p3:
8445     //  The inline specifier shall not appear on a block scope function
8446     //  declaration.
8447     if (isInline && !NewFD->isInvalidDecl()) {
8448       if (CurContext->isFunctionOrMethod()) {
8449         // 'inline' is not allowed on block scope function declaration.
8450         Diag(D.getDeclSpec().getInlineSpecLoc(),
8451              diag::err_inline_declaration_block_scope) << Name
8452           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
8453       }
8454     }
8455 
8456     // C++ [dcl.fct.spec]p6:
8457     //  The explicit specifier shall be used only in the declaration of a
8458     //  constructor or conversion function within its class definition;
8459     //  see 12.3.1 and 12.3.2.
8460     if (isExplicit && !NewFD->isInvalidDecl() &&
8461         !isa<CXXDeductionGuideDecl>(NewFD)) {
8462       if (!CurContext->isRecord()) {
8463         // 'explicit' was specified outside of the class.
8464         Diag(D.getDeclSpec().getExplicitSpecLoc(),
8465              diag::err_explicit_out_of_class)
8466           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
8467       } else if (!isa<CXXConstructorDecl>(NewFD) &&
8468                  !isa<CXXConversionDecl>(NewFD)) {
8469         // 'explicit' was specified on a function that wasn't a constructor
8470         // or conversion function.
8471         Diag(D.getDeclSpec().getExplicitSpecLoc(),
8472              diag::err_explicit_non_ctor_or_conv_function)
8473           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
8474       }
8475     }
8476 
8477     if (isConstexpr) {
8478       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
8479       // are implicitly inline.
8480       NewFD->setImplicitlyInline();
8481 
8482       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
8483       // be either constructors or to return a literal type. Therefore,
8484       // destructors cannot be declared constexpr.
8485       if (isa<CXXDestructorDecl>(NewFD))
8486         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
8487     }
8488 
8489     // If __module_private__ was specified, mark the function accordingly.
8490     if (D.getDeclSpec().isModulePrivateSpecified()) {
8491       if (isFunctionTemplateSpecialization) {
8492         SourceLocation ModulePrivateLoc
8493           = D.getDeclSpec().getModulePrivateSpecLoc();
8494         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
8495           << 0
8496           << FixItHint::CreateRemoval(ModulePrivateLoc);
8497       } else {
8498         NewFD->setModulePrivate();
8499         if (FunctionTemplate)
8500           FunctionTemplate->setModulePrivate();
8501       }
8502     }
8503 
8504     if (isFriend) {
8505       if (FunctionTemplate) {
8506         FunctionTemplate->setObjectOfFriendDecl();
8507         FunctionTemplate->setAccess(AS_public);
8508       }
8509       NewFD->setObjectOfFriendDecl();
8510       NewFD->setAccess(AS_public);
8511     }
8512 
8513     // If a function is defined as defaulted or deleted, mark it as such now.
8514     // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
8515     // definition kind to FDK_Definition.
8516     switch (D.getFunctionDefinitionKind()) {
8517       case FDK_Declaration:
8518       case FDK_Definition:
8519         break;
8520 
8521       case FDK_Defaulted:
8522         NewFD->setDefaulted();
8523         break;
8524 
8525       case FDK_Deleted:
8526         NewFD->setDeletedAsWritten();
8527         break;
8528     }
8529 
8530     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
8531         D.isFunctionDefinition()) {
8532       // C++ [class.mfct]p2:
8533       //   A member function may be defined (8.4) in its class definition, in
8534       //   which case it is an inline member function (7.1.2)
8535       NewFD->setImplicitlyInline();
8536     }
8537 
8538     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
8539         !CurContext->isRecord()) {
8540       // C++ [class.static]p1:
8541       //   A data or function member of a class may be declared static
8542       //   in a class definition, in which case it is a static member of
8543       //   the class.
8544 
8545       // Complain about the 'static' specifier if it's on an out-of-line
8546       // member function definition.
8547       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8548            diag::err_static_out_of_line)
8549         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
8550     }
8551 
8552     // C++11 [except.spec]p15:
8553     //   A deallocation function with no exception-specification is treated
8554     //   as if it were specified with noexcept(true).
8555     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
8556     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
8557          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
8558         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
8559       NewFD->setType(Context.getFunctionType(
8560           FPT->getReturnType(), FPT->getParamTypes(),
8561           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
8562   }
8563 
8564   // Filter out previous declarations that don't match the scope.
8565   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
8566                        D.getCXXScopeSpec().isNotEmpty() ||
8567                        isMemberSpecialization ||
8568                        isFunctionTemplateSpecialization);
8569 
8570   // Handle GNU asm-label extension (encoded as an attribute).
8571   if (Expr *E = (Expr*) D.getAsmLabel()) {
8572     // The parser guarantees this is a string.
8573     StringLiteral *SE = cast<StringLiteral>(E);
8574     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
8575                                                 SE->getString(), 0));
8576   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
8577     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
8578       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
8579     if (I != ExtnameUndeclaredIdentifiers.end()) {
8580       if (isDeclExternC(NewFD)) {
8581         NewFD->addAttr(I->second);
8582         ExtnameUndeclaredIdentifiers.erase(I);
8583       } else
8584         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
8585             << /*Variable*/0 << NewFD;
8586     }
8587   }
8588 
8589   // Copy the parameter declarations from the declarator D to the function
8590   // declaration NewFD, if they are available.  First scavenge them into Params.
8591   SmallVector<ParmVarDecl*, 16> Params;
8592   unsigned FTIIdx;
8593   if (D.isFunctionDeclarator(FTIIdx)) {
8594     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
8595 
8596     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
8597     // function that takes no arguments, not a function that takes a
8598     // single void argument.
8599     // We let through "const void" here because Sema::GetTypeForDeclarator
8600     // already checks for that case.
8601     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
8602       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
8603         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
8604         assert(Param->getDeclContext() != NewFD && "Was set before ?");
8605         Param->setDeclContext(NewFD);
8606         Params.push_back(Param);
8607 
8608         if (Param->isInvalidDecl())
8609           NewFD->setInvalidDecl();
8610       }
8611     }
8612 
8613     if (!getLangOpts().CPlusPlus) {
8614       // In C, find all the tag declarations from the prototype and move them
8615       // into the function DeclContext. Remove them from the surrounding tag
8616       // injection context of the function, which is typically but not always
8617       // the TU.
8618       DeclContext *PrototypeTagContext =
8619           getTagInjectionContext(NewFD->getLexicalDeclContext());
8620       for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
8621         auto *TD = dyn_cast<TagDecl>(NonParmDecl);
8622 
8623         // We don't want to reparent enumerators. Look at their parent enum
8624         // instead.
8625         if (!TD) {
8626           if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
8627             TD = cast<EnumDecl>(ECD->getDeclContext());
8628         }
8629         if (!TD)
8630           continue;
8631         DeclContext *TagDC = TD->getLexicalDeclContext();
8632         if (!TagDC->containsDecl(TD))
8633           continue;
8634         TagDC->removeDecl(TD);
8635         TD->setDeclContext(NewFD);
8636         NewFD->addDecl(TD);
8637 
8638         // Preserve the lexical DeclContext if it is not the surrounding tag
8639         // injection context of the FD. In this example, the semantic context of
8640         // E will be f and the lexical context will be S, while both the
8641         // semantic and lexical contexts of S will be f:
8642         //   void f(struct S { enum E { a } f; } s);
8643         if (TagDC != PrototypeTagContext)
8644           TD->setLexicalDeclContext(TagDC);
8645       }
8646     }
8647   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
8648     // When we're declaring a function with a typedef, typeof, etc as in the
8649     // following example, we'll need to synthesize (unnamed)
8650     // parameters for use in the declaration.
8651     //
8652     // @code
8653     // typedef void fn(int);
8654     // fn f;
8655     // @endcode
8656 
8657     // Synthesize a parameter for each argument type.
8658     for (const auto &AI : FT->param_types()) {
8659       ParmVarDecl *Param =
8660           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
8661       Param->setScopeInfo(0, Params.size());
8662       Params.push_back(Param);
8663     }
8664   } else {
8665     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
8666            "Should not need args for typedef of non-prototype fn");
8667   }
8668 
8669   // Finally, we know we have the right number of parameters, install them.
8670   NewFD->setParams(Params);
8671 
8672   if (D.getDeclSpec().isNoreturnSpecified())
8673     NewFD->addAttr(
8674         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
8675                                        Context, 0));
8676 
8677   // Functions returning a variably modified type violate C99 6.7.5.2p2
8678   // because all functions have linkage.
8679   if (!NewFD->isInvalidDecl() &&
8680       NewFD->getReturnType()->isVariablyModifiedType()) {
8681     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
8682     NewFD->setInvalidDecl();
8683   }
8684 
8685   // Apply an implicit SectionAttr if '#pragma clang section text' is active
8686   if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
8687       !NewFD->hasAttr<SectionAttr>()) {
8688     NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(Context,
8689                                                  PragmaClangTextSection.SectionName,
8690                                                  PragmaClangTextSection.PragmaLocation));
8691   }
8692 
8693   // Apply an implicit SectionAttr if #pragma code_seg is active.
8694   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
8695       !NewFD->hasAttr<SectionAttr>()) {
8696     NewFD->addAttr(
8697         SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
8698                                     CodeSegStack.CurrentValue->getString(),
8699                                     CodeSegStack.CurrentPragmaLocation));
8700     if (UnifySection(CodeSegStack.CurrentValue->getString(),
8701                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
8702                          ASTContext::PSF_Read,
8703                      NewFD))
8704       NewFD->dropAttr<SectionAttr>();
8705   }
8706 
8707   // Handle attributes.
8708   ProcessDeclAttributes(S, NewFD, D);
8709 
8710   if (getLangOpts().OpenCL) {
8711     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
8712     // type declaration will generate a compilation error.
8713     LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
8714     if (AddressSpace != LangAS::Default) {
8715       Diag(NewFD->getLocation(),
8716            diag::err_opencl_return_value_with_address_space);
8717       NewFD->setInvalidDecl();
8718     }
8719   }
8720 
8721   if (!getLangOpts().CPlusPlus) {
8722     // Perform semantic checking on the function declaration.
8723     if (!NewFD->isInvalidDecl() && NewFD->isMain())
8724       CheckMain(NewFD, D.getDeclSpec());
8725 
8726     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8727       CheckMSVCRTEntryPoint(NewFD);
8728 
8729     if (!NewFD->isInvalidDecl())
8730       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8731                                                   isMemberSpecialization));
8732     else if (!Previous.empty())
8733       // Recover gracefully from an invalid redeclaration.
8734       D.setRedeclaration(true);
8735     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
8736             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
8737            "previous declaration set still overloaded");
8738 
8739     // Diagnose no-prototype function declarations with calling conventions that
8740     // don't support variadic calls. Only do this in C and do it after merging
8741     // possibly prototyped redeclarations.
8742     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
8743     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
8744       CallingConv CC = FT->getExtInfo().getCC();
8745       if (!supportsVariadicCall(CC)) {
8746         // Windows system headers sometimes accidentally use stdcall without
8747         // (void) parameters, so we relax this to a warning.
8748         int DiagID =
8749             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
8750         Diag(NewFD->getLocation(), DiagID)
8751             << FunctionType::getNameForCallConv(CC);
8752       }
8753     }
8754   } else {
8755     // C++11 [replacement.functions]p3:
8756     //  The program's definitions shall not be specified as inline.
8757     //
8758     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
8759     //
8760     // Suppress the diagnostic if the function is __attribute__((used)), since
8761     // that forces an external definition to be emitted.
8762     if (D.getDeclSpec().isInlineSpecified() &&
8763         NewFD->isReplaceableGlobalAllocationFunction() &&
8764         !NewFD->hasAttr<UsedAttr>())
8765       Diag(D.getDeclSpec().getInlineSpecLoc(),
8766            diag::ext_operator_new_delete_declared_inline)
8767         << NewFD->getDeclName();
8768 
8769     // If the declarator is a template-id, translate the parser's template
8770     // argument list into our AST format.
8771     if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
8772       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
8773       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
8774       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
8775       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8776                                          TemplateId->NumArgs);
8777       translateTemplateArguments(TemplateArgsPtr,
8778                                  TemplateArgs);
8779 
8780       HasExplicitTemplateArgs = true;
8781 
8782       if (NewFD->isInvalidDecl()) {
8783         HasExplicitTemplateArgs = false;
8784       } else if (FunctionTemplate) {
8785         // Function template with explicit template arguments.
8786         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
8787           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
8788 
8789         HasExplicitTemplateArgs = false;
8790       } else {
8791         assert((isFunctionTemplateSpecialization ||
8792                 D.getDeclSpec().isFriendSpecified()) &&
8793                "should have a 'template<>' for this decl");
8794         // "friend void foo<>(int);" is an implicit specialization decl.
8795         isFunctionTemplateSpecialization = true;
8796       }
8797     } else if (isFriend && isFunctionTemplateSpecialization) {
8798       // This combination is only possible in a recovery case;  the user
8799       // wrote something like:
8800       //   template <> friend void foo(int);
8801       // which we're recovering from as if the user had written:
8802       //   friend void foo<>(int);
8803       // Go ahead and fake up a template id.
8804       HasExplicitTemplateArgs = true;
8805       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
8806       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
8807     }
8808 
8809     // We do not add HD attributes to specializations here because
8810     // they may have different constexpr-ness compared to their
8811     // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
8812     // may end up with different effective targets. Instead, a
8813     // specialization inherits its target attributes from its template
8814     // in the CheckFunctionTemplateSpecialization() call below.
8815     if (getLangOpts().CUDA & !isFunctionTemplateSpecialization)
8816       maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
8817 
8818     // If it's a friend (and only if it's a friend), it's possible
8819     // that either the specialized function type or the specialized
8820     // template is dependent, and therefore matching will fail.  In
8821     // this case, don't check the specialization yet.
8822     bool InstantiationDependent = false;
8823     if (isFunctionTemplateSpecialization && isFriend &&
8824         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
8825          TemplateSpecializationType::anyDependentTemplateArguments(
8826             TemplateArgs,
8827             InstantiationDependent))) {
8828       assert(HasExplicitTemplateArgs &&
8829              "friend function specialization without template args");
8830       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
8831                                                        Previous))
8832         NewFD->setInvalidDecl();
8833     } else if (isFunctionTemplateSpecialization) {
8834       if (CurContext->isDependentContext() && CurContext->isRecord()
8835           && !isFriend) {
8836         isDependentClassScopeExplicitSpecialization = true;
8837       } else if (!NewFD->isInvalidDecl() &&
8838                  CheckFunctionTemplateSpecialization(
8839                      NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
8840                      Previous))
8841         NewFD->setInvalidDecl();
8842 
8843       // C++ [dcl.stc]p1:
8844       //   A storage-class-specifier shall not be specified in an explicit
8845       //   specialization (14.7.3)
8846       FunctionTemplateSpecializationInfo *Info =
8847           NewFD->getTemplateSpecializationInfo();
8848       if (Info && SC != SC_None) {
8849         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
8850           Diag(NewFD->getLocation(),
8851                diag::err_explicit_specialization_inconsistent_storage_class)
8852             << SC
8853             << FixItHint::CreateRemoval(
8854                                       D.getDeclSpec().getStorageClassSpecLoc());
8855 
8856         else
8857           Diag(NewFD->getLocation(),
8858                diag::ext_explicit_specialization_storage_class)
8859             << FixItHint::CreateRemoval(
8860                                       D.getDeclSpec().getStorageClassSpecLoc());
8861       }
8862     } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
8863       if (CheckMemberSpecialization(NewFD, Previous))
8864           NewFD->setInvalidDecl();
8865     }
8866 
8867     // Perform semantic checking on the function declaration.
8868     if (!isDependentClassScopeExplicitSpecialization) {
8869       if (!NewFD->isInvalidDecl() && NewFD->isMain())
8870         CheckMain(NewFD, D.getDeclSpec());
8871 
8872       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8873         CheckMSVCRTEntryPoint(NewFD);
8874 
8875       if (!NewFD->isInvalidDecl())
8876         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8877                                                     isMemberSpecialization));
8878       else if (!Previous.empty())
8879         // Recover gracefully from an invalid redeclaration.
8880         D.setRedeclaration(true);
8881     }
8882 
8883     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
8884             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
8885            "previous declaration set still overloaded");
8886 
8887     NamedDecl *PrincipalDecl = (FunctionTemplate
8888                                 ? cast<NamedDecl>(FunctionTemplate)
8889                                 : NewFD);
8890 
8891     if (isFriend && NewFD->getPreviousDecl()) {
8892       AccessSpecifier Access = AS_public;
8893       if (!NewFD->isInvalidDecl())
8894         Access = NewFD->getPreviousDecl()->getAccess();
8895 
8896       NewFD->setAccess(Access);
8897       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
8898     }
8899 
8900     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
8901         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
8902       PrincipalDecl->setNonMemberOperator();
8903 
8904     // If we have a function template, check the template parameter
8905     // list. This will check and merge default template arguments.
8906     if (FunctionTemplate) {
8907       FunctionTemplateDecl *PrevTemplate =
8908                                      FunctionTemplate->getPreviousDecl();
8909       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
8910                        PrevTemplate ? PrevTemplate->getTemplateParameters()
8911                                     : nullptr,
8912                             D.getDeclSpec().isFriendSpecified()
8913                               ? (D.isFunctionDefinition()
8914                                    ? TPC_FriendFunctionTemplateDefinition
8915                                    : TPC_FriendFunctionTemplate)
8916                               : (D.getCXXScopeSpec().isSet() &&
8917                                  DC && DC->isRecord() &&
8918                                  DC->isDependentContext())
8919                                   ? TPC_ClassTemplateMember
8920                                   : TPC_FunctionTemplate);
8921     }
8922 
8923     if (NewFD->isInvalidDecl()) {
8924       // Ignore all the rest of this.
8925     } else if (!D.isRedeclaration()) {
8926       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
8927                                        AddToScope };
8928       // Fake up an access specifier if it's supposed to be a class member.
8929       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
8930         NewFD->setAccess(AS_public);
8931 
8932       // Qualified decls generally require a previous declaration.
8933       if (D.getCXXScopeSpec().isSet()) {
8934         // ...with the major exception of templated-scope or
8935         // dependent-scope friend declarations.
8936 
8937         // TODO: we currently also suppress this check in dependent
8938         // contexts because (1) the parameter depth will be off when
8939         // matching friend templates and (2) we might actually be
8940         // selecting a friend based on a dependent factor.  But there
8941         // are situations where these conditions don't apply and we
8942         // can actually do this check immediately.
8943         if (isFriend &&
8944             (TemplateParamLists.size() ||
8945              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
8946              CurContext->isDependentContext())) {
8947           // ignore these
8948         } else {
8949           // The user tried to provide an out-of-line definition for a
8950           // function that is a member of a class or namespace, but there
8951           // was no such member function declared (C++ [class.mfct]p2,
8952           // C++ [namespace.memdef]p2). For example:
8953           //
8954           // class X {
8955           //   void f() const;
8956           // };
8957           //
8958           // void X::f() { } // ill-formed
8959           //
8960           // Complain about this problem, and attempt to suggest close
8961           // matches (e.g., those that differ only in cv-qualifiers and
8962           // whether the parameter types are references).
8963 
8964           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
8965                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
8966             AddToScope = ExtraArgs.AddToScope;
8967             return Result;
8968           }
8969         }
8970 
8971         // Unqualified local friend declarations are required to resolve
8972         // to something.
8973       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
8974         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
8975                 *this, Previous, NewFD, ExtraArgs, true, S)) {
8976           AddToScope = ExtraArgs.AddToScope;
8977           return Result;
8978         }
8979       }
8980     } else if (!D.isFunctionDefinition() &&
8981                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
8982                !isFriend && !isFunctionTemplateSpecialization &&
8983                !isMemberSpecialization) {
8984       // An out-of-line member function declaration must also be a
8985       // definition (C++ [class.mfct]p2).
8986       // Note that this is not the case for explicit specializations of
8987       // function templates or member functions of class templates, per
8988       // C++ [temp.expl.spec]p2. We also allow these declarations as an
8989       // extension for compatibility with old SWIG code which likes to
8990       // generate them.
8991       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
8992         << D.getCXXScopeSpec().getRange();
8993     }
8994   }
8995 
8996   ProcessPragmaWeak(S, NewFD);
8997   checkAttributesAfterMerging(*this, *NewFD);
8998 
8999   AddKnownFunctionAttributes(NewFD);
9000 
9001   if (NewFD->hasAttr<OverloadableAttr>() &&
9002       !NewFD->getType()->getAs<FunctionProtoType>()) {
9003     Diag(NewFD->getLocation(),
9004          diag::err_attribute_overloadable_no_prototype)
9005       << NewFD;
9006 
9007     // Turn this into a variadic function with no parameters.
9008     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9009     FunctionProtoType::ExtProtoInfo EPI(
9010         Context.getDefaultCallingConvention(true, false));
9011     EPI.Variadic = true;
9012     EPI.ExtInfo = FT->getExtInfo();
9013 
9014     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9015     NewFD->setType(R);
9016   }
9017 
9018   // If there's a #pragma GCC visibility in scope, and this isn't a class
9019   // member, set the visibility of this function.
9020   if (!DC->isRecord() && NewFD->isExternallyVisible())
9021     AddPushedVisibilityAttribute(NewFD);
9022 
9023   // If there's a #pragma clang arc_cf_code_audited in scope, consider
9024   // marking the function.
9025   AddCFAuditedAttribute(NewFD);
9026 
9027   // If this is a function definition, check if we have to apply optnone due to
9028   // a pragma.
9029   if(D.isFunctionDefinition())
9030     AddRangeBasedOptnone(NewFD);
9031 
9032   // If this is the first declaration of an extern C variable, update
9033   // the map of such variables.
9034   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9035       isIncompleteDeclExternC(*this, NewFD))
9036     RegisterLocallyScopedExternCDecl(NewFD, S);
9037 
9038   // Set this FunctionDecl's range up to the right paren.
9039   NewFD->setRangeEnd(D.getSourceRange().getEnd());
9040 
9041   if (D.isRedeclaration() && !Previous.empty()) {
9042     NamedDecl *Prev = Previous.getRepresentativeDecl();
9043     checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9044                                    isMemberSpecialization ||
9045                                        isFunctionTemplateSpecialization,
9046                                    D.isFunctionDefinition());
9047   }
9048 
9049   if (getLangOpts().CUDA) {
9050     IdentifierInfo *II = NewFD->getIdentifier();
9051     if (II && II->isStr("cudaConfigureCall") && !NewFD->isInvalidDecl() &&
9052         NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9053       if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
9054         Diag(NewFD->getLocation(), diag::err_config_scalar_return);
9055 
9056       Context.setcudaConfigureCallDecl(NewFD);
9057     }
9058 
9059     // Variadic functions, other than a *declaration* of printf, are not allowed
9060     // in device-side CUDA code, unless someone passed
9061     // -fcuda-allow-variadic-functions.
9062     if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9063         (NewFD->hasAttr<CUDADeviceAttr>() ||
9064          NewFD->hasAttr<CUDAGlobalAttr>()) &&
9065         !(II && II->isStr("printf") && NewFD->isExternC() &&
9066           !D.isFunctionDefinition())) {
9067       Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9068     }
9069   }
9070 
9071   MarkUnusedFileScopedDecl(NewFD);
9072 
9073   if (getLangOpts().CPlusPlus) {
9074     if (FunctionTemplate) {
9075       if (NewFD->isInvalidDecl())
9076         FunctionTemplate->setInvalidDecl();
9077       return FunctionTemplate;
9078     }
9079 
9080     if (isMemberSpecialization && !NewFD->isInvalidDecl())
9081       CompleteMemberSpecialization(NewFD, Previous);
9082   }
9083 
9084   if (NewFD->hasAttr<OpenCLKernelAttr>()) {
9085     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9086     if ((getLangOpts().OpenCLVersion >= 120)
9087         && (SC == SC_Static)) {
9088       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9089       D.setInvalidType();
9090     }
9091 
9092     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9093     if (!NewFD->getReturnType()->isVoidType()) {
9094       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9095       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9096           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9097                                 : FixItHint());
9098       D.setInvalidType();
9099     }
9100 
9101     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9102     for (auto Param : NewFD->parameters())
9103       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9104   }
9105   for (const ParmVarDecl *Param : NewFD->parameters()) {
9106     QualType PT = Param->getType();
9107 
9108     // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
9109     // types.
9110     if (getLangOpts().OpenCLVersion >= 200) {
9111       if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
9112         QualType ElemTy = PipeTy->getElementType();
9113           if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
9114             Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
9115             D.setInvalidType();
9116           }
9117       }
9118     }
9119   }
9120 
9121   // Here we have an function template explicit specialization at class scope.
9122   // The actual specialization will be postponed to template instatiation
9123   // time via the ClassScopeFunctionSpecializationDecl node.
9124   if (isDependentClassScopeExplicitSpecialization) {
9125     ClassScopeFunctionSpecializationDecl *NewSpec =
9126                          ClassScopeFunctionSpecializationDecl::Create(
9127                                 Context, CurContext, NewFD->getLocation(),
9128                                 cast<CXXMethodDecl>(NewFD),
9129                                 HasExplicitTemplateArgs, TemplateArgs);
9130     CurContext->addDecl(NewSpec);
9131     AddToScope = false;
9132   }
9133 
9134   return NewFD;
9135 }
9136 
9137 /// \brief Checks if the new declaration declared in dependent context must be
9138 /// put in the same redeclaration chain as the specified declaration.
9139 ///
9140 /// \param D Declaration that is checked.
9141 /// \param PrevDecl Previous declaration found with proper lookup method for the
9142 ///                 same declaration name.
9143 /// \returns True if D must be added to the redeclaration chain which PrevDecl
9144 ///          belongs to.
9145 ///
9146 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
9147   // Any declarations should be put into redeclaration chains except for
9148   // friend declaration in a dependent context that names a function in
9149   // namespace scope.
9150   //
9151   // This allows to compile code like:
9152   //
9153   //       void func();
9154   //       template<typename T> class C1 { friend void func() { } };
9155   //       template<typename T> class C2 { friend void func() { } };
9156   //
9157   // This code snippet is a valid code unless both templates are instantiated.
9158   return !(D->getLexicalDeclContext()->isDependentContext() &&
9159            D->getDeclContext()->isFileContext() &&
9160            D->getFriendObjectKind() != Decl::FOK_None);
9161 }
9162 
9163 /// \brief Check the target attribute of the function for MultiVersion
9164 /// validity.
9165 ///
9166 /// Returns true if there was an error, false otherwise.
9167 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
9168   const auto *TA = FD->getAttr<TargetAttr>();
9169   assert(TA && "MultiVersion Candidate requires a target attribute");
9170   TargetAttr::ParsedTargetAttr ParseInfo = TA->parse();
9171   const TargetInfo &TargetInfo = S.Context.getTargetInfo();
9172   enum ErrType { Feature = 0, Architecture = 1 };
9173 
9174   if (!ParseInfo.Architecture.empty() &&
9175       !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
9176     S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9177         << Architecture << ParseInfo.Architecture;
9178     return true;
9179   }
9180 
9181   for (const auto &Feat : ParseInfo.Features) {
9182     auto BareFeat = StringRef{Feat}.substr(1);
9183     if (Feat[0] == '-') {
9184       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9185           << Feature << ("no-" + BareFeat).str();
9186       return true;
9187     }
9188 
9189     if (!TargetInfo.validateCpuSupports(BareFeat) ||
9190         !TargetInfo.isValidFeatureName(BareFeat)) {
9191       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9192           << Feature << BareFeat;
9193       return true;
9194     }
9195   }
9196   return false;
9197 }
9198 
9199 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
9200                                              const FunctionDecl *NewFD,
9201                                              bool CausesMV) {
9202   enum DoesntSupport {
9203     FuncTemplates = 0,
9204     VirtFuncs = 1,
9205     DeducedReturn = 2,
9206     Constructors = 3,
9207     Destructors = 4,
9208     DeletedFuncs = 5,
9209     DefaultedFuncs = 6
9210   };
9211   enum Different {
9212     CallingConv = 0,
9213     ReturnType = 1,
9214     ConstexprSpec = 2,
9215     InlineSpec = 3,
9216     StorageClass = 4,
9217     Linkage = 5
9218   };
9219 
9220   // For now, disallow all other attributes.  These should be opt-in, but
9221   // an analysis of all of them is a future FIXME.
9222   if (CausesMV && OldFD &&
9223       std::distance(OldFD->attr_begin(), OldFD->attr_end()) != 1) {
9224     S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs);
9225     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9226     return true;
9227   }
9228 
9229   if (std::distance(NewFD->attr_begin(), NewFD->attr_end()) != 1)
9230     return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs);
9231 
9232   if (NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
9233     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9234            << FuncTemplates;
9235 
9236   if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
9237     if (NewCXXFD->isVirtual())
9238       return S.Diag(NewCXXFD->getLocation(),
9239                     diag::err_multiversion_doesnt_support)
9240              << VirtFuncs;
9241 
9242     if (const auto *NewCXXCtor = dyn_cast<CXXConstructorDecl>(NewFD))
9243       return S.Diag(NewCXXCtor->getLocation(),
9244                     diag::err_multiversion_doesnt_support)
9245              << Constructors;
9246 
9247     if (const auto *NewCXXDtor = dyn_cast<CXXDestructorDecl>(NewFD))
9248       return S.Diag(NewCXXDtor->getLocation(),
9249                     diag::err_multiversion_doesnt_support)
9250              << Destructors;
9251   }
9252 
9253   if (NewFD->isDeleted())
9254     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9255            << DeletedFuncs;
9256 
9257   if (NewFD->isDefaulted())
9258     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9259            << DefaultedFuncs;
9260 
9261   QualType NewQType = S.getASTContext().getCanonicalType(NewFD->getType());
9262   const auto *NewType = cast<FunctionType>(NewQType);
9263   QualType NewReturnType = NewType->getReturnType();
9264 
9265   if (NewReturnType->isUndeducedType())
9266     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9267            << DeducedReturn;
9268 
9269   // Only allow transition to MultiVersion if it hasn't been used.
9270   if (OldFD && CausesMV && OldFD->isUsed(false))
9271     return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
9272 
9273   // Ensure the return type is identical.
9274   if (OldFD) {
9275     QualType OldQType = S.getASTContext().getCanonicalType(OldFD->getType());
9276     const auto *OldType = cast<FunctionType>(OldQType);
9277     FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
9278     FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
9279 
9280     if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
9281       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9282              << CallingConv;
9283 
9284     QualType OldReturnType = OldType->getReturnType();
9285 
9286     if (OldReturnType != NewReturnType)
9287       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9288              << ReturnType;
9289 
9290     if (OldFD->isConstexpr() != NewFD->isConstexpr())
9291       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9292              << ConstexprSpec;
9293 
9294     if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
9295       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9296              << InlineSpec;
9297 
9298     if (OldFD->getStorageClass() != NewFD->getStorageClass())
9299       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9300              << StorageClass;
9301 
9302     if (OldFD->isExternC() != NewFD->isExternC())
9303       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9304              << Linkage;
9305 
9306     if (S.CheckEquivalentExceptionSpec(
9307             OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
9308             NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
9309       return true;
9310   }
9311   return false;
9312 }
9313 
9314 /// \brief Check the validity of a mulitversion function declaration.
9315 /// Also sets the multiversion'ness' of the function itself.
9316 ///
9317 /// This sets NewFD->isInvalidDecl() to true if there was an error.
9318 ///
9319 /// Returns true if there was an error, false otherwise.
9320 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
9321                                       bool &Redeclaration, NamedDecl *&OldDecl,
9322                                       bool &MergeTypeWithPrevious,
9323                                       LookupResult &Previous) {
9324   const auto *NewTA = NewFD->getAttr<TargetAttr>();
9325   if (NewFD->isMain()) {
9326     if (NewTA && NewTA->isDefaultVersion()) {
9327       S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
9328       NewFD->setInvalidDecl();
9329       return true;
9330     }
9331     return false;
9332   }
9333 
9334   // If there is no matching previous decl, only 'default' can
9335   // cause MultiVersioning.
9336   if (!OldDecl) {
9337     if (NewTA && NewTA->isDefaultVersion()) {
9338       if (!NewFD->getType()->getAs<FunctionProtoType>()) {
9339         S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto);
9340         NewFD->setInvalidDecl();
9341         return true;
9342       }
9343       if (CheckMultiVersionAdditionalRules(S, nullptr, NewFD, true)) {
9344         NewFD->setInvalidDecl();
9345         return true;
9346       }
9347       if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9348         S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9349         NewFD->setInvalidDecl();
9350         return true;
9351       }
9352 
9353       NewFD->setIsMultiVersion();
9354     }
9355     return false;
9356   }
9357 
9358   if (OldDecl->getDeclContext()->getRedeclContext() !=
9359       NewFD->getDeclContext()->getRedeclContext())
9360     return false;
9361 
9362   FunctionDecl *OldFD = OldDecl->getAsFunction();
9363   // Unresolved 'using' statements (the other way OldDecl can be not a function)
9364   // likely cannot cause a problem here.
9365   if (!OldFD)
9366     return false;
9367 
9368   if (!OldFD->isMultiVersion() && !NewTA)
9369     return false;
9370 
9371   if (OldFD->isMultiVersion() && !NewTA) {
9372     S.Diag(NewFD->getLocation(), diag::err_target_required_in_redecl);
9373     NewFD->setInvalidDecl();
9374     return true;
9375   }
9376 
9377   TargetAttr::ParsedTargetAttr NewParsed = NewTA->parse();
9378   // Sort order doesn't matter, it just needs to be consistent.
9379   llvm::sort(NewParsed.Features.begin(), NewParsed.Features.end());
9380 
9381   const auto *OldTA = OldFD->getAttr<TargetAttr>();
9382   if (!OldFD->isMultiVersion()) {
9383     // If the old decl is NOT MultiVersioned yet, and we don't cause that
9384     // to change, this is a simple redeclaration.
9385     if (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())
9386       return false;
9387 
9388     // Otherwise, this decl causes MultiVersioning.
9389     if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9390       S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9391       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9392       NewFD->setInvalidDecl();
9393       return true;
9394     }
9395 
9396     if (!OldFD->getType()->getAs<FunctionProtoType>()) {
9397       S.Diag(OldFD->getLocation(), diag::err_multiversion_noproto);
9398       S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9399       NewFD->setInvalidDecl();
9400       return true;
9401     }
9402 
9403     if (CheckMultiVersionValue(S, NewFD)) {
9404       NewFD->setInvalidDecl();
9405       return true;
9406     }
9407 
9408     if (CheckMultiVersionValue(S, OldFD)) {
9409       S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9410       NewFD->setInvalidDecl();
9411       return true;
9412     }
9413 
9414     TargetAttr::ParsedTargetAttr OldParsed =
9415         OldTA->parse(std::less<std::string>());
9416 
9417     if (OldParsed == NewParsed) {
9418       S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9419       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9420       NewFD->setInvalidDecl();
9421       return true;
9422     }
9423 
9424     for (const auto *FD : OldFD->redecls()) {
9425       const auto *CurTA = FD->getAttr<TargetAttr>();
9426       if (!CurTA || CurTA->isInherited()) {
9427         S.Diag(FD->getLocation(), diag::err_target_required_in_redecl);
9428         S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9429         NewFD->setInvalidDecl();
9430         return true;
9431       }
9432     }
9433 
9434     if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true)) {
9435       NewFD->setInvalidDecl();
9436       return true;
9437     }
9438 
9439     OldFD->setIsMultiVersion();
9440     NewFD->setIsMultiVersion();
9441     Redeclaration = false;
9442     MergeTypeWithPrevious = false;
9443     OldDecl = nullptr;
9444     Previous.clear();
9445     return false;
9446   }
9447 
9448   bool UseMemberUsingDeclRules =
9449       S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
9450 
9451   // Next, check ALL non-overloads to see if this is a redeclaration of a
9452   // previous member of the MultiVersion set.
9453   for (NamedDecl *ND : Previous) {
9454     FunctionDecl *CurFD = ND->getAsFunction();
9455     if (!CurFD)
9456       continue;
9457     if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
9458       continue;
9459 
9460     const auto *CurTA = CurFD->getAttr<TargetAttr>();
9461     if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
9462       NewFD->setIsMultiVersion();
9463       Redeclaration = true;
9464       OldDecl = ND;
9465       return false;
9466     }
9467 
9468     TargetAttr::ParsedTargetAttr CurParsed =
9469         CurTA->parse(std::less<std::string>());
9470 
9471     if (CurParsed == NewParsed) {
9472       S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9473       S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9474       NewFD->setInvalidDecl();
9475       return true;
9476     }
9477   }
9478 
9479   // Else, this is simply a non-redecl case.
9480   if (CheckMultiVersionValue(S, NewFD)) {
9481     NewFD->setInvalidDecl();
9482     return true;
9483   }
9484 
9485   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, false)) {
9486     NewFD->setInvalidDecl();
9487     return true;
9488   }
9489 
9490   NewFD->setIsMultiVersion();
9491   Redeclaration = false;
9492   MergeTypeWithPrevious = false;
9493   OldDecl = nullptr;
9494   Previous.clear();
9495   return false;
9496 }
9497 
9498 /// \brief Perform semantic checking of a new function declaration.
9499 ///
9500 /// Performs semantic analysis of the new function declaration
9501 /// NewFD. This routine performs all semantic checking that does not
9502 /// require the actual declarator involved in the declaration, and is
9503 /// used both for the declaration of functions as they are parsed
9504 /// (called via ActOnDeclarator) and for the declaration of functions
9505 /// that have been instantiated via C++ template instantiation (called
9506 /// via InstantiateDecl).
9507 ///
9508 /// \param IsMemberSpecialization whether this new function declaration is
9509 /// a member specialization (that replaces any definition provided by the
9510 /// previous declaration).
9511 ///
9512 /// This sets NewFD->isInvalidDecl() to true if there was an error.
9513 ///
9514 /// \returns true if the function declaration is a redeclaration.
9515 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
9516                                     LookupResult &Previous,
9517                                     bool IsMemberSpecialization) {
9518   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
9519          "Variably modified return types are not handled here");
9520 
9521   // Determine whether the type of this function should be merged with
9522   // a previous visible declaration. This never happens for functions in C++,
9523   // and always happens in C if the previous declaration was visible.
9524   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
9525                                !Previous.isShadowed();
9526 
9527   bool Redeclaration = false;
9528   NamedDecl *OldDecl = nullptr;
9529   bool MayNeedOverloadableChecks = false;
9530 
9531   // Merge or overload the declaration with an existing declaration of
9532   // the same name, if appropriate.
9533   if (!Previous.empty()) {
9534     // Determine whether NewFD is an overload of PrevDecl or
9535     // a declaration that requires merging. If it's an overload,
9536     // there's no more work to do here; we'll just add the new
9537     // function to the scope.
9538     if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
9539       NamedDecl *Candidate = Previous.getRepresentativeDecl();
9540       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
9541         Redeclaration = true;
9542         OldDecl = Candidate;
9543       }
9544     } else {
9545       MayNeedOverloadableChecks = true;
9546       switch (CheckOverload(S, NewFD, Previous, OldDecl,
9547                             /*NewIsUsingDecl*/ false)) {
9548       case Ovl_Match:
9549         Redeclaration = true;
9550         break;
9551 
9552       case Ovl_NonFunction:
9553         Redeclaration = true;
9554         break;
9555 
9556       case Ovl_Overload:
9557         Redeclaration = false;
9558         break;
9559       }
9560     }
9561   }
9562 
9563   // Check for a previous extern "C" declaration with this name.
9564   if (!Redeclaration &&
9565       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
9566     if (!Previous.empty()) {
9567       // This is an extern "C" declaration with the same name as a previous
9568       // declaration, and thus redeclares that entity...
9569       Redeclaration = true;
9570       OldDecl = Previous.getFoundDecl();
9571       MergeTypeWithPrevious = false;
9572 
9573       // ... except in the presence of __attribute__((overloadable)).
9574       if (OldDecl->hasAttr<OverloadableAttr>() ||
9575           NewFD->hasAttr<OverloadableAttr>()) {
9576         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
9577           MayNeedOverloadableChecks = true;
9578           Redeclaration = false;
9579           OldDecl = nullptr;
9580         }
9581       }
9582     }
9583   }
9584 
9585   if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
9586                                 MergeTypeWithPrevious, Previous))
9587     return Redeclaration;
9588 
9589   // C++11 [dcl.constexpr]p8:
9590   //   A constexpr specifier for a non-static member function that is not
9591   //   a constructor declares that member function to be const.
9592   //
9593   // This needs to be delayed until we know whether this is an out-of-line
9594   // definition of a static member function.
9595   //
9596   // This rule is not present in C++1y, so we produce a backwards
9597   // compatibility warning whenever it happens in C++11.
9598   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
9599   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
9600       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
9601       (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
9602     CXXMethodDecl *OldMD = nullptr;
9603     if (OldDecl)
9604       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
9605     if (!OldMD || !OldMD->isStatic()) {
9606       const FunctionProtoType *FPT =
9607         MD->getType()->castAs<FunctionProtoType>();
9608       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9609       EPI.TypeQuals |= Qualifiers::Const;
9610       MD->setType(Context.getFunctionType(FPT->getReturnType(),
9611                                           FPT->getParamTypes(), EPI));
9612 
9613       // Warn that we did this, if we're not performing template instantiation.
9614       // In that case, we'll have warned already when the template was defined.
9615       if (!inTemplateInstantiation()) {
9616         SourceLocation AddConstLoc;
9617         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
9618                 .IgnoreParens().getAs<FunctionTypeLoc>())
9619           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
9620 
9621         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
9622           << FixItHint::CreateInsertion(AddConstLoc, " const");
9623       }
9624     }
9625   }
9626 
9627   if (Redeclaration) {
9628     // NewFD and OldDecl represent declarations that need to be
9629     // merged.
9630     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
9631       NewFD->setInvalidDecl();
9632       return Redeclaration;
9633     }
9634 
9635     Previous.clear();
9636     Previous.addDecl(OldDecl);
9637 
9638     if (FunctionTemplateDecl *OldTemplateDecl =
9639             dyn_cast<FunctionTemplateDecl>(OldDecl)) {
9640       auto *OldFD = OldTemplateDecl->getTemplatedDecl();
9641       NewFD->setPreviousDeclaration(OldFD);
9642       adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
9643       FunctionTemplateDecl *NewTemplateDecl
9644         = NewFD->getDescribedFunctionTemplate();
9645       assert(NewTemplateDecl && "Template/non-template mismatch");
9646       if (NewFD->isCXXClassMember()) {
9647         NewFD->setAccess(OldTemplateDecl->getAccess());
9648         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
9649       }
9650 
9651       // If this is an explicit specialization of a member that is a function
9652       // template, mark it as a member specialization.
9653       if (IsMemberSpecialization &&
9654           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
9655         NewTemplateDecl->setMemberSpecialization();
9656         assert(OldTemplateDecl->isMemberSpecialization());
9657         // Explicit specializations of a member template do not inherit deleted
9658         // status from the parent member template that they are specializing.
9659         if (OldFD->isDeleted()) {
9660           // FIXME: This assert will not hold in the presence of modules.
9661           assert(OldFD->getCanonicalDecl() == OldFD);
9662           // FIXME: We need an update record for this AST mutation.
9663           OldFD->setDeletedAsWritten(false);
9664         }
9665       }
9666 
9667     } else {
9668       if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
9669         auto *OldFD = cast<FunctionDecl>(OldDecl);
9670         // This needs to happen first so that 'inline' propagates.
9671         NewFD->setPreviousDeclaration(OldFD);
9672         adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
9673         if (NewFD->isCXXClassMember())
9674           NewFD->setAccess(OldFD->getAccess());
9675       }
9676     }
9677   } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
9678              !NewFD->getAttr<OverloadableAttr>()) {
9679     assert((Previous.empty() ||
9680             llvm::any_of(Previous,
9681                          [](const NamedDecl *ND) {
9682                            return ND->hasAttr<OverloadableAttr>();
9683                          })) &&
9684            "Non-redecls shouldn't happen without overloadable present");
9685 
9686     auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
9687       const auto *FD = dyn_cast<FunctionDecl>(ND);
9688       return FD && !FD->hasAttr<OverloadableAttr>();
9689     });
9690 
9691     if (OtherUnmarkedIter != Previous.end()) {
9692       Diag(NewFD->getLocation(),
9693            diag::err_attribute_overloadable_multiple_unmarked_overloads);
9694       Diag((*OtherUnmarkedIter)->getLocation(),
9695            diag::note_attribute_overloadable_prev_overload)
9696           << false;
9697 
9698       NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
9699     }
9700   }
9701 
9702   // Semantic checking for this function declaration (in isolation).
9703 
9704   if (getLangOpts().CPlusPlus) {
9705     // C++-specific checks.
9706     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
9707       CheckConstructor(Constructor);
9708     } else if (CXXDestructorDecl *Destructor =
9709                 dyn_cast<CXXDestructorDecl>(NewFD)) {
9710       CXXRecordDecl *Record = Destructor->getParent();
9711       QualType ClassType = Context.getTypeDeclType(Record);
9712 
9713       // FIXME: Shouldn't we be able to perform this check even when the class
9714       // type is dependent? Both gcc and edg can handle that.
9715       if (!ClassType->isDependentType()) {
9716         DeclarationName Name
9717           = Context.DeclarationNames.getCXXDestructorName(
9718                                         Context.getCanonicalType(ClassType));
9719         if (NewFD->getDeclName() != Name) {
9720           Diag(NewFD->getLocation(), diag::err_destructor_name);
9721           NewFD->setInvalidDecl();
9722           return Redeclaration;
9723         }
9724       }
9725     } else if (CXXConversionDecl *Conversion
9726                = dyn_cast<CXXConversionDecl>(NewFD)) {
9727       ActOnConversionDeclarator(Conversion);
9728     } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
9729       if (auto *TD = Guide->getDescribedFunctionTemplate())
9730         CheckDeductionGuideTemplate(TD);
9731 
9732       // A deduction guide is not on the list of entities that can be
9733       // explicitly specialized.
9734       if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
9735         Diag(Guide->getLocStart(), diag::err_deduction_guide_specialized)
9736             << /*explicit specialization*/ 1;
9737     }
9738 
9739     // Find any virtual functions that this function overrides.
9740     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
9741       if (!Method->isFunctionTemplateSpecialization() &&
9742           !Method->getDescribedFunctionTemplate() &&
9743           Method->isCanonicalDecl()) {
9744         if (AddOverriddenMethods(Method->getParent(), Method)) {
9745           // If the function was marked as "static", we have a problem.
9746           if (NewFD->getStorageClass() == SC_Static) {
9747             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
9748           }
9749         }
9750       }
9751 
9752       if (Method->isStatic())
9753         checkThisInStaticMemberFunctionType(Method);
9754     }
9755 
9756     // Extra checking for C++ overloaded operators (C++ [over.oper]).
9757     if (NewFD->isOverloadedOperator() &&
9758         CheckOverloadedOperatorDeclaration(NewFD)) {
9759       NewFD->setInvalidDecl();
9760       return Redeclaration;
9761     }
9762 
9763     // Extra checking for C++0x literal operators (C++0x [over.literal]).
9764     if (NewFD->getLiteralIdentifier() &&
9765         CheckLiteralOperatorDeclaration(NewFD)) {
9766       NewFD->setInvalidDecl();
9767       return Redeclaration;
9768     }
9769 
9770     // In C++, check default arguments now that we have merged decls. Unless
9771     // the lexical context is the class, because in this case this is done
9772     // during delayed parsing anyway.
9773     if (!CurContext->isRecord())
9774       CheckCXXDefaultArguments(NewFD);
9775 
9776     // If this function declares a builtin function, check the type of this
9777     // declaration against the expected type for the builtin.
9778     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
9779       ASTContext::GetBuiltinTypeError Error;
9780       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
9781       QualType T = Context.GetBuiltinType(BuiltinID, Error);
9782       // If the type of the builtin differs only in its exception
9783       // specification, that's OK.
9784       // FIXME: If the types do differ in this way, it would be better to
9785       // retain the 'noexcept' form of the type.
9786       if (!T.isNull() &&
9787           !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
9788                                                             NewFD->getType()))
9789         // The type of this function differs from the type of the builtin,
9790         // so forget about the builtin entirely.
9791         Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
9792     }
9793 
9794     // If this function is declared as being extern "C", then check to see if
9795     // the function returns a UDT (class, struct, or union type) that is not C
9796     // compatible, and if it does, warn the user.
9797     // But, issue any diagnostic on the first declaration only.
9798     if (Previous.empty() && NewFD->isExternC()) {
9799       QualType R = NewFD->getReturnType();
9800       if (R->isIncompleteType() && !R->isVoidType())
9801         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
9802             << NewFD << R;
9803       else if (!R.isPODType(Context) && !R->isVoidType() &&
9804                !R->isObjCObjectPointerType())
9805         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
9806     }
9807 
9808     // C++1z [dcl.fct]p6:
9809     //   [...] whether the function has a non-throwing exception-specification
9810     //   [is] part of the function type
9811     //
9812     // This results in an ABI break between C++14 and C++17 for functions whose
9813     // declared type includes an exception-specification in a parameter or
9814     // return type. (Exception specifications on the function itself are OK in
9815     // most cases, and exception specifications are not permitted in most other
9816     // contexts where they could make it into a mangling.)
9817     if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
9818       auto HasNoexcept = [&](QualType T) -> bool {
9819         // Strip off declarator chunks that could be between us and a function
9820         // type. We don't need to look far, exception specifications are very
9821         // restricted prior to C++17.
9822         if (auto *RT = T->getAs<ReferenceType>())
9823           T = RT->getPointeeType();
9824         else if (T->isAnyPointerType())
9825           T = T->getPointeeType();
9826         else if (auto *MPT = T->getAs<MemberPointerType>())
9827           T = MPT->getPointeeType();
9828         if (auto *FPT = T->getAs<FunctionProtoType>())
9829           if (FPT->isNothrow(Context))
9830             return true;
9831         return false;
9832       };
9833 
9834       auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
9835       bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
9836       for (QualType T : FPT->param_types())
9837         AnyNoexcept |= HasNoexcept(T);
9838       if (AnyNoexcept)
9839         Diag(NewFD->getLocation(),
9840              diag::warn_cxx17_compat_exception_spec_in_signature)
9841             << NewFD;
9842     }
9843 
9844     if (!Redeclaration && LangOpts.CUDA)
9845       checkCUDATargetOverload(NewFD, Previous);
9846   }
9847   return Redeclaration;
9848 }
9849 
9850 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
9851   // C++11 [basic.start.main]p3:
9852   //   A program that [...] declares main to be inline, static or
9853   //   constexpr is ill-formed.
9854   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
9855   //   appear in a declaration of main.
9856   // static main is not an error under C99, but we should warn about it.
9857   // We accept _Noreturn main as an extension.
9858   if (FD->getStorageClass() == SC_Static)
9859     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
9860          ? diag::err_static_main : diag::warn_static_main)
9861       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
9862   if (FD->isInlineSpecified())
9863     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
9864       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
9865   if (DS.isNoreturnSpecified()) {
9866     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
9867     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
9868     Diag(NoreturnLoc, diag::ext_noreturn_main);
9869     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
9870       << FixItHint::CreateRemoval(NoreturnRange);
9871   }
9872   if (FD->isConstexpr()) {
9873     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
9874       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
9875     FD->setConstexpr(false);
9876   }
9877 
9878   if (getLangOpts().OpenCL) {
9879     Diag(FD->getLocation(), diag::err_opencl_no_main)
9880         << FD->hasAttr<OpenCLKernelAttr>();
9881     FD->setInvalidDecl();
9882     return;
9883   }
9884 
9885   QualType T = FD->getType();
9886   assert(T->isFunctionType() && "function decl is not of function type");
9887   const FunctionType* FT = T->castAs<FunctionType>();
9888 
9889   // Set default calling convention for main()
9890   if (FT->getCallConv() != CC_C) {
9891     FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
9892     FD->setType(QualType(FT, 0));
9893     T = Context.getCanonicalType(FD->getType());
9894   }
9895 
9896   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
9897     // In C with GNU extensions we allow main() to have non-integer return
9898     // type, but we should warn about the extension, and we disable the
9899     // implicit-return-zero rule.
9900 
9901     // GCC in C mode accepts qualified 'int'.
9902     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
9903       FD->setHasImplicitReturnZero(true);
9904     else {
9905       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
9906       SourceRange RTRange = FD->getReturnTypeSourceRange();
9907       if (RTRange.isValid())
9908         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
9909             << FixItHint::CreateReplacement(RTRange, "int");
9910     }
9911   } else {
9912     // In C and C++, main magically returns 0 if you fall off the end;
9913     // set the flag which tells us that.
9914     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
9915 
9916     // All the standards say that main() should return 'int'.
9917     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
9918       FD->setHasImplicitReturnZero(true);
9919     else {
9920       // Otherwise, this is just a flat-out error.
9921       SourceRange RTRange = FD->getReturnTypeSourceRange();
9922       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
9923           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
9924                                 : FixItHint());
9925       FD->setInvalidDecl(true);
9926     }
9927   }
9928 
9929   // Treat protoless main() as nullary.
9930   if (isa<FunctionNoProtoType>(FT)) return;
9931 
9932   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
9933   unsigned nparams = FTP->getNumParams();
9934   assert(FD->getNumParams() == nparams);
9935 
9936   bool HasExtraParameters = (nparams > 3);
9937 
9938   if (FTP->isVariadic()) {
9939     Diag(FD->getLocation(), diag::ext_variadic_main);
9940     // FIXME: if we had information about the location of the ellipsis, we
9941     // could add a FixIt hint to remove it as a parameter.
9942   }
9943 
9944   // Darwin passes an undocumented fourth argument of type char**.  If
9945   // other platforms start sprouting these, the logic below will start
9946   // getting shifty.
9947   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
9948     HasExtraParameters = false;
9949 
9950   if (HasExtraParameters) {
9951     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
9952     FD->setInvalidDecl(true);
9953     nparams = 3;
9954   }
9955 
9956   // FIXME: a lot of the following diagnostics would be improved
9957   // if we had some location information about types.
9958 
9959   QualType CharPP =
9960     Context.getPointerType(Context.getPointerType(Context.CharTy));
9961   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
9962 
9963   for (unsigned i = 0; i < nparams; ++i) {
9964     QualType AT = FTP->getParamType(i);
9965 
9966     bool mismatch = true;
9967 
9968     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
9969       mismatch = false;
9970     else if (Expected[i] == CharPP) {
9971       // As an extension, the following forms are okay:
9972       //   char const **
9973       //   char const * const *
9974       //   char * const *
9975 
9976       QualifierCollector qs;
9977       const PointerType* PT;
9978       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
9979           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
9980           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
9981                               Context.CharTy)) {
9982         qs.removeConst();
9983         mismatch = !qs.empty();
9984       }
9985     }
9986 
9987     if (mismatch) {
9988       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
9989       // TODO: suggest replacing given type with expected type
9990       FD->setInvalidDecl(true);
9991     }
9992   }
9993 
9994   if (nparams == 1 && !FD->isInvalidDecl()) {
9995     Diag(FD->getLocation(), diag::warn_main_one_arg);
9996   }
9997 
9998   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
9999     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10000     FD->setInvalidDecl();
10001   }
10002 }
10003 
10004 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
10005   QualType T = FD->getType();
10006   assert(T->isFunctionType() && "function decl is not of function type");
10007   const FunctionType *FT = T->castAs<FunctionType>();
10008 
10009   // Set an implicit return of 'zero' if the function can return some integral,
10010   // enumeration, pointer or nullptr type.
10011   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
10012       FT->getReturnType()->isAnyPointerType() ||
10013       FT->getReturnType()->isNullPtrType())
10014     // DllMain is exempt because a return value of zero means it failed.
10015     if (FD->getName() != "DllMain")
10016       FD->setHasImplicitReturnZero(true);
10017 
10018   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10019     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10020     FD->setInvalidDecl();
10021   }
10022 }
10023 
10024 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
10025   // FIXME: Need strict checking.  In C89, we need to check for
10026   // any assignment, increment, decrement, function-calls, or
10027   // commas outside of a sizeof.  In C99, it's the same list,
10028   // except that the aforementioned are allowed in unevaluated
10029   // expressions.  Everything else falls under the
10030   // "may accept other forms of constant expressions" exception.
10031   // (We never end up here for C++, so the constant expression
10032   // rules there don't matter.)
10033   const Expr *Culprit;
10034   if (Init->isConstantInitializer(Context, false, &Culprit))
10035     return false;
10036   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
10037     << Culprit->getSourceRange();
10038   return true;
10039 }
10040 
10041 namespace {
10042   // Visits an initialization expression to see if OrigDecl is evaluated in
10043   // its own initialization and throws a warning if it does.
10044   class SelfReferenceChecker
10045       : public EvaluatedExprVisitor<SelfReferenceChecker> {
10046     Sema &S;
10047     Decl *OrigDecl;
10048     bool isRecordType;
10049     bool isPODType;
10050     bool isReferenceType;
10051 
10052     bool isInitList;
10053     llvm::SmallVector<unsigned, 4> InitFieldIndex;
10054 
10055   public:
10056     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
10057 
10058     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
10059                                                     S(S), OrigDecl(OrigDecl) {
10060       isPODType = false;
10061       isRecordType = false;
10062       isReferenceType = false;
10063       isInitList = false;
10064       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
10065         isPODType = VD->getType().isPODType(S.Context);
10066         isRecordType = VD->getType()->isRecordType();
10067         isReferenceType = VD->getType()->isReferenceType();
10068       }
10069     }
10070 
10071     // For most expressions, just call the visitor.  For initializer lists,
10072     // track the index of the field being initialized since fields are
10073     // initialized in order allowing use of previously initialized fields.
10074     void CheckExpr(Expr *E) {
10075       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
10076       if (!InitList) {
10077         Visit(E);
10078         return;
10079       }
10080 
10081       // Track and increment the index here.
10082       isInitList = true;
10083       InitFieldIndex.push_back(0);
10084       for (auto Child : InitList->children()) {
10085         CheckExpr(cast<Expr>(Child));
10086         ++InitFieldIndex.back();
10087       }
10088       InitFieldIndex.pop_back();
10089     }
10090 
10091     // Returns true if MemberExpr is checked and no further checking is needed.
10092     // Returns false if additional checking is required.
10093     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
10094       llvm::SmallVector<FieldDecl*, 4> Fields;
10095       Expr *Base = E;
10096       bool ReferenceField = false;
10097 
10098       // Get the field memebers used.
10099       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10100         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
10101         if (!FD)
10102           return false;
10103         Fields.push_back(FD);
10104         if (FD->getType()->isReferenceType())
10105           ReferenceField = true;
10106         Base = ME->getBase()->IgnoreParenImpCasts();
10107       }
10108 
10109       // Keep checking only if the base Decl is the same.
10110       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
10111       if (!DRE || DRE->getDecl() != OrigDecl)
10112         return false;
10113 
10114       // A reference field can be bound to an unininitialized field.
10115       if (CheckReference && !ReferenceField)
10116         return true;
10117 
10118       // Convert FieldDecls to their index number.
10119       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
10120       for (const FieldDecl *I : llvm::reverse(Fields))
10121         UsedFieldIndex.push_back(I->getFieldIndex());
10122 
10123       // See if a warning is needed by checking the first difference in index
10124       // numbers.  If field being used has index less than the field being
10125       // initialized, then the use is safe.
10126       for (auto UsedIter = UsedFieldIndex.begin(),
10127                 UsedEnd = UsedFieldIndex.end(),
10128                 OrigIter = InitFieldIndex.begin(),
10129                 OrigEnd = InitFieldIndex.end();
10130            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
10131         if (*UsedIter < *OrigIter)
10132           return true;
10133         if (*UsedIter > *OrigIter)
10134           break;
10135       }
10136 
10137       // TODO: Add a different warning which will print the field names.
10138       HandleDeclRefExpr(DRE);
10139       return true;
10140     }
10141 
10142     // For most expressions, the cast is directly above the DeclRefExpr.
10143     // For conditional operators, the cast can be outside the conditional
10144     // operator if both expressions are DeclRefExpr's.
10145     void HandleValue(Expr *E) {
10146       E = E->IgnoreParens();
10147       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
10148         HandleDeclRefExpr(DRE);
10149         return;
10150       }
10151 
10152       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
10153         Visit(CO->getCond());
10154         HandleValue(CO->getTrueExpr());
10155         HandleValue(CO->getFalseExpr());
10156         return;
10157       }
10158 
10159       if (BinaryConditionalOperator *BCO =
10160               dyn_cast<BinaryConditionalOperator>(E)) {
10161         Visit(BCO->getCond());
10162         HandleValue(BCO->getFalseExpr());
10163         return;
10164       }
10165 
10166       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
10167         HandleValue(OVE->getSourceExpr());
10168         return;
10169       }
10170 
10171       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
10172         if (BO->getOpcode() == BO_Comma) {
10173           Visit(BO->getLHS());
10174           HandleValue(BO->getRHS());
10175           return;
10176         }
10177       }
10178 
10179       if (isa<MemberExpr>(E)) {
10180         if (isInitList) {
10181           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
10182                                       false /*CheckReference*/))
10183             return;
10184         }
10185 
10186         Expr *Base = E->IgnoreParenImpCasts();
10187         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10188           // Check for static member variables and don't warn on them.
10189           if (!isa<FieldDecl>(ME->getMemberDecl()))
10190             return;
10191           Base = ME->getBase()->IgnoreParenImpCasts();
10192         }
10193         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
10194           HandleDeclRefExpr(DRE);
10195         return;
10196       }
10197 
10198       Visit(E);
10199     }
10200 
10201     // Reference types not handled in HandleValue are handled here since all
10202     // uses of references are bad, not just r-value uses.
10203     void VisitDeclRefExpr(DeclRefExpr *E) {
10204       if (isReferenceType)
10205         HandleDeclRefExpr(E);
10206     }
10207 
10208     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
10209       if (E->getCastKind() == CK_LValueToRValue) {
10210         HandleValue(E->getSubExpr());
10211         return;
10212       }
10213 
10214       Inherited::VisitImplicitCastExpr(E);
10215     }
10216 
10217     void VisitMemberExpr(MemberExpr *E) {
10218       if (isInitList) {
10219         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
10220           return;
10221       }
10222 
10223       // Don't warn on arrays since they can be treated as pointers.
10224       if (E->getType()->canDecayToPointerType()) return;
10225 
10226       // Warn when a non-static method call is followed by non-static member
10227       // field accesses, which is followed by a DeclRefExpr.
10228       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
10229       bool Warn = (MD && !MD->isStatic());
10230       Expr *Base = E->getBase()->IgnoreParenImpCasts();
10231       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10232         if (!isa<FieldDecl>(ME->getMemberDecl()))
10233           Warn = false;
10234         Base = ME->getBase()->IgnoreParenImpCasts();
10235       }
10236 
10237       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
10238         if (Warn)
10239           HandleDeclRefExpr(DRE);
10240         return;
10241       }
10242 
10243       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
10244       // Visit that expression.
10245       Visit(Base);
10246     }
10247 
10248     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
10249       Expr *Callee = E->getCallee();
10250 
10251       if (isa<UnresolvedLookupExpr>(Callee))
10252         return Inherited::VisitCXXOperatorCallExpr(E);
10253 
10254       Visit(Callee);
10255       for (auto Arg: E->arguments())
10256         HandleValue(Arg->IgnoreParenImpCasts());
10257     }
10258 
10259     void VisitUnaryOperator(UnaryOperator *E) {
10260       // For POD record types, addresses of its own members are well-defined.
10261       if (E->getOpcode() == UO_AddrOf && isRecordType &&
10262           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
10263         if (!isPODType)
10264           HandleValue(E->getSubExpr());
10265         return;
10266       }
10267 
10268       if (E->isIncrementDecrementOp()) {
10269         HandleValue(E->getSubExpr());
10270         return;
10271       }
10272 
10273       Inherited::VisitUnaryOperator(E);
10274     }
10275 
10276     void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
10277 
10278     void VisitCXXConstructExpr(CXXConstructExpr *E) {
10279       if (E->getConstructor()->isCopyConstructor()) {
10280         Expr *ArgExpr = E->getArg(0);
10281         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
10282           if (ILE->getNumInits() == 1)
10283             ArgExpr = ILE->getInit(0);
10284         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
10285           if (ICE->getCastKind() == CK_NoOp)
10286             ArgExpr = ICE->getSubExpr();
10287         HandleValue(ArgExpr);
10288         return;
10289       }
10290       Inherited::VisitCXXConstructExpr(E);
10291     }
10292 
10293     void VisitCallExpr(CallExpr *E) {
10294       // Treat std::move as a use.
10295       if (E->isCallToStdMove()) {
10296         HandleValue(E->getArg(0));
10297         return;
10298       }
10299 
10300       Inherited::VisitCallExpr(E);
10301     }
10302 
10303     void VisitBinaryOperator(BinaryOperator *E) {
10304       if (E->isCompoundAssignmentOp()) {
10305         HandleValue(E->getLHS());
10306         Visit(E->getRHS());
10307         return;
10308       }
10309 
10310       Inherited::VisitBinaryOperator(E);
10311     }
10312 
10313     // A custom visitor for BinaryConditionalOperator is needed because the
10314     // regular visitor would check the condition and true expression separately
10315     // but both point to the same place giving duplicate diagnostics.
10316     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
10317       Visit(E->getCond());
10318       Visit(E->getFalseExpr());
10319     }
10320 
10321     void HandleDeclRefExpr(DeclRefExpr *DRE) {
10322       Decl* ReferenceDecl = DRE->getDecl();
10323       if (OrigDecl != ReferenceDecl) return;
10324       unsigned diag;
10325       if (isReferenceType) {
10326         diag = diag::warn_uninit_self_reference_in_reference_init;
10327       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
10328         diag = diag::warn_static_self_reference_in_init;
10329       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
10330                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
10331                  DRE->getDecl()->getType()->isRecordType()) {
10332         diag = diag::warn_uninit_self_reference_in_init;
10333       } else {
10334         // Local variables will be handled by the CFG analysis.
10335         return;
10336       }
10337 
10338       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
10339                             S.PDiag(diag)
10340                               << DRE->getDecl()
10341                               << OrigDecl->getLocation()
10342                               << DRE->getSourceRange());
10343     }
10344   };
10345 
10346   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
10347   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
10348                                  bool DirectInit) {
10349     // Parameters arguments are occassionially constructed with itself,
10350     // for instance, in recursive functions.  Skip them.
10351     if (isa<ParmVarDecl>(OrigDecl))
10352       return;
10353 
10354     E = E->IgnoreParens();
10355 
10356     // Skip checking T a = a where T is not a record or reference type.
10357     // Doing so is a way to silence uninitialized warnings.
10358     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
10359       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
10360         if (ICE->getCastKind() == CK_LValueToRValue)
10361           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
10362             if (DRE->getDecl() == OrigDecl)
10363               return;
10364 
10365     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
10366   }
10367 } // end anonymous namespace
10368 
10369 namespace {
10370   // Simple wrapper to add the name of a variable or (if no variable is
10371   // available) a DeclarationName into a diagnostic.
10372   struct VarDeclOrName {
10373     VarDecl *VDecl;
10374     DeclarationName Name;
10375 
10376     friend const Sema::SemaDiagnosticBuilder &
10377     operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
10378       return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
10379     }
10380   };
10381 } // end anonymous namespace
10382 
10383 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
10384                                             DeclarationName Name, QualType Type,
10385                                             TypeSourceInfo *TSI,
10386                                             SourceRange Range, bool DirectInit,
10387                                             Expr *Init) {
10388   bool IsInitCapture = !VDecl;
10389   assert((!VDecl || !VDecl->isInitCapture()) &&
10390          "init captures are expected to be deduced prior to initialization");
10391 
10392   VarDeclOrName VN{VDecl, Name};
10393 
10394   DeducedType *Deduced = Type->getContainedDeducedType();
10395   assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
10396 
10397   // C++11 [dcl.spec.auto]p3
10398   if (!Init) {
10399     assert(VDecl && "no init for init capture deduction?");
10400 
10401     // Except for class argument deduction, and then for an initializing
10402     // declaration only, i.e. no static at class scope or extern.
10403     if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
10404         VDecl->hasExternalStorage() ||
10405         VDecl->isStaticDataMember()) {
10406       Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
10407         << VDecl->getDeclName() << Type;
10408       return QualType();
10409     }
10410   }
10411 
10412   ArrayRef<Expr*> DeduceInits;
10413   if (Init)
10414     DeduceInits = Init;
10415 
10416   if (DirectInit) {
10417     if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
10418       DeduceInits = PL->exprs();
10419   }
10420 
10421   if (isa<DeducedTemplateSpecializationType>(Deduced)) {
10422     assert(VDecl && "non-auto type for init capture deduction?");
10423     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
10424     InitializationKind Kind = InitializationKind::CreateForInit(
10425         VDecl->getLocation(), DirectInit, Init);
10426     // FIXME: Initialization should not be taking a mutable list of inits.
10427     SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
10428     return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
10429                                                        InitsCopy);
10430   }
10431 
10432   if (DirectInit) {
10433     if (auto *IL = dyn_cast<InitListExpr>(Init))
10434       DeduceInits = IL->inits();
10435   }
10436 
10437   // Deduction only works if we have exactly one source expression.
10438   if (DeduceInits.empty()) {
10439     // It isn't possible to write this directly, but it is possible to
10440     // end up in this situation with "auto x(some_pack...);"
10441     Diag(Init->getLocStart(), IsInitCapture
10442                                   ? diag::err_init_capture_no_expression
10443                                   : diag::err_auto_var_init_no_expression)
10444         << VN << Type << Range;
10445     return QualType();
10446   }
10447 
10448   if (DeduceInits.size() > 1) {
10449     Diag(DeduceInits[1]->getLocStart(),
10450          IsInitCapture ? diag::err_init_capture_multiple_expressions
10451                        : diag::err_auto_var_init_multiple_expressions)
10452         << VN << Type << Range;
10453     return QualType();
10454   }
10455 
10456   Expr *DeduceInit = DeduceInits[0];
10457   if (DirectInit && isa<InitListExpr>(DeduceInit)) {
10458     Diag(Init->getLocStart(), IsInitCapture
10459                                   ? diag::err_init_capture_paren_braces
10460                                   : diag::err_auto_var_init_paren_braces)
10461         << isa<InitListExpr>(Init) << VN << Type << Range;
10462     return QualType();
10463   }
10464 
10465   // Expressions default to 'id' when we're in a debugger.
10466   bool DefaultedAnyToId = false;
10467   if (getLangOpts().DebuggerCastResultToId &&
10468       Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
10469     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
10470     if (Result.isInvalid()) {
10471       return QualType();
10472     }
10473     Init = Result.get();
10474     DefaultedAnyToId = true;
10475   }
10476 
10477   // C++ [dcl.decomp]p1:
10478   //   If the assignment-expression [...] has array type A and no ref-qualifier
10479   //   is present, e has type cv A
10480   if (VDecl && isa<DecompositionDecl>(VDecl) &&
10481       Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
10482       DeduceInit->getType()->isConstantArrayType())
10483     return Context.getQualifiedType(DeduceInit->getType(),
10484                                     Type.getQualifiers());
10485 
10486   QualType DeducedType;
10487   if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
10488     if (!IsInitCapture)
10489       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
10490     else if (isa<InitListExpr>(Init))
10491       Diag(Range.getBegin(),
10492            diag::err_init_capture_deduction_failure_from_init_list)
10493           << VN
10494           << (DeduceInit->getType().isNull() ? TSI->getType()
10495                                              : DeduceInit->getType())
10496           << DeduceInit->getSourceRange();
10497     else
10498       Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
10499           << VN << TSI->getType()
10500           << (DeduceInit->getType().isNull() ? TSI->getType()
10501                                              : DeduceInit->getType())
10502           << DeduceInit->getSourceRange();
10503   }
10504 
10505   // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
10506   // 'id' instead of a specific object type prevents most of our usual
10507   // checks.
10508   // We only want to warn outside of template instantiations, though:
10509   // inside a template, the 'id' could have come from a parameter.
10510   if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
10511       !DeducedType.isNull() && DeducedType->isObjCIdType()) {
10512     SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
10513     Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
10514   }
10515 
10516   return DeducedType;
10517 }
10518 
10519 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
10520                                          Expr *Init) {
10521   QualType DeducedType = deduceVarTypeFromInitializer(
10522       VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
10523       VDecl->getSourceRange(), DirectInit, Init);
10524   if (DeducedType.isNull()) {
10525     VDecl->setInvalidDecl();
10526     return true;
10527   }
10528 
10529   VDecl->setType(DeducedType);
10530   assert(VDecl->isLinkageValid());
10531 
10532   // In ARC, infer lifetime.
10533   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
10534     VDecl->setInvalidDecl();
10535 
10536   // If this is a redeclaration, check that the type we just deduced matches
10537   // the previously declared type.
10538   if (VarDecl *Old = VDecl->getPreviousDecl()) {
10539     // We never need to merge the type, because we cannot form an incomplete
10540     // array of auto, nor deduce such a type.
10541     MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
10542   }
10543 
10544   // Check the deduced type is valid for a variable declaration.
10545   CheckVariableDeclarationType(VDecl);
10546   return VDecl->isInvalidDecl();
10547 }
10548 
10549 /// AddInitializerToDecl - Adds the initializer Init to the
10550 /// declaration dcl. If DirectInit is true, this is C++ direct
10551 /// initialization rather than copy initialization.
10552 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
10553   // If there is no declaration, there was an error parsing it.  Just ignore
10554   // the initializer.
10555   if (!RealDecl || RealDecl->isInvalidDecl()) {
10556     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
10557     return;
10558   }
10559 
10560   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
10561     // Pure-specifiers are handled in ActOnPureSpecifier.
10562     Diag(Method->getLocation(), diag::err_member_function_initialization)
10563       << Method->getDeclName() << Init->getSourceRange();
10564     Method->setInvalidDecl();
10565     return;
10566   }
10567 
10568   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
10569   if (!VDecl) {
10570     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
10571     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
10572     RealDecl->setInvalidDecl();
10573     return;
10574   }
10575 
10576   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
10577   if (VDecl->getType()->isUndeducedType()) {
10578     // Attempt typo correction early so that the type of the init expression can
10579     // be deduced based on the chosen correction if the original init contains a
10580     // TypoExpr.
10581     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
10582     if (!Res.isUsable()) {
10583       RealDecl->setInvalidDecl();
10584       return;
10585     }
10586     Init = Res.get();
10587 
10588     if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
10589       return;
10590   }
10591 
10592   // dllimport cannot be used on variable definitions.
10593   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
10594     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
10595     VDecl->setInvalidDecl();
10596     return;
10597   }
10598 
10599   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
10600     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
10601     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
10602     VDecl->setInvalidDecl();
10603     return;
10604   }
10605 
10606   if (!VDecl->getType()->isDependentType()) {
10607     // A definition must end up with a complete type, which means it must be
10608     // complete with the restriction that an array type might be completed by
10609     // the initializer; note that later code assumes this restriction.
10610     QualType BaseDeclType = VDecl->getType();
10611     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
10612       BaseDeclType = Array->getElementType();
10613     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
10614                             diag::err_typecheck_decl_incomplete_type)) {
10615       RealDecl->setInvalidDecl();
10616       return;
10617     }
10618 
10619     // The variable can not have an abstract class type.
10620     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
10621                                diag::err_abstract_type_in_decl,
10622                                AbstractVariableType))
10623       VDecl->setInvalidDecl();
10624   }
10625 
10626   // If adding the initializer will turn this declaration into a definition,
10627   // and we already have a definition for this variable, diagnose or otherwise
10628   // handle the situation.
10629   VarDecl *Def;
10630   if ((Def = VDecl->getDefinition()) && Def != VDecl &&
10631       (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
10632       !VDecl->isThisDeclarationADemotedDefinition() &&
10633       checkVarDeclRedefinition(Def, VDecl))
10634     return;
10635 
10636   if (getLangOpts().CPlusPlus) {
10637     // C++ [class.static.data]p4
10638     //   If a static data member is of const integral or const
10639     //   enumeration type, its declaration in the class definition can
10640     //   specify a constant-initializer which shall be an integral
10641     //   constant expression (5.19). In that case, the member can appear
10642     //   in integral constant expressions. The member shall still be
10643     //   defined in a namespace scope if it is used in the program and the
10644     //   namespace scope definition shall not contain an initializer.
10645     //
10646     // We already performed a redefinition check above, but for static
10647     // data members we also need to check whether there was an in-class
10648     // declaration with an initializer.
10649     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
10650       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
10651           << VDecl->getDeclName();
10652       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
10653            diag::note_previous_initializer)
10654           << 0;
10655       return;
10656     }
10657 
10658     if (VDecl->hasLocalStorage())
10659       setFunctionHasBranchProtectedScope();
10660 
10661     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
10662       VDecl->setInvalidDecl();
10663       return;
10664     }
10665   }
10666 
10667   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
10668   // a kernel function cannot be initialized."
10669   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
10670     Diag(VDecl->getLocation(), diag::err_local_cant_init);
10671     VDecl->setInvalidDecl();
10672     return;
10673   }
10674 
10675   // Get the decls type and save a reference for later, since
10676   // CheckInitializerTypes may change it.
10677   QualType DclT = VDecl->getType(), SavT = DclT;
10678 
10679   // Expressions default to 'id' when we're in a debugger
10680   // and we are assigning it to a variable of Objective-C pointer type.
10681   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
10682       Init->getType() == Context.UnknownAnyTy) {
10683     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
10684     if (Result.isInvalid()) {
10685       VDecl->setInvalidDecl();
10686       return;
10687     }
10688     Init = Result.get();
10689   }
10690 
10691   // Perform the initialization.
10692   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
10693   if (!VDecl->isInvalidDecl()) {
10694     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
10695     InitializationKind Kind = InitializationKind::CreateForInit(
10696         VDecl->getLocation(), DirectInit, Init);
10697 
10698     MultiExprArg Args = Init;
10699     if (CXXDirectInit)
10700       Args = MultiExprArg(CXXDirectInit->getExprs(),
10701                           CXXDirectInit->getNumExprs());
10702 
10703     // Try to correct any TypoExprs in the initialization arguments.
10704     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
10705       ExprResult Res = CorrectDelayedTyposInExpr(
10706           Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
10707             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
10708             return Init.Failed() ? ExprError() : E;
10709           });
10710       if (Res.isInvalid()) {
10711         VDecl->setInvalidDecl();
10712       } else if (Res.get() != Args[Idx]) {
10713         Args[Idx] = Res.get();
10714       }
10715     }
10716     if (VDecl->isInvalidDecl())
10717       return;
10718 
10719     InitializationSequence InitSeq(*this, Entity, Kind, Args,
10720                                    /*TopLevelOfInitList=*/false,
10721                                    /*TreatUnavailableAsInvalid=*/false);
10722     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
10723     if (Result.isInvalid()) {
10724       VDecl->setInvalidDecl();
10725       return;
10726     }
10727 
10728     Init = Result.getAs<Expr>();
10729   }
10730 
10731   // Check for self-references within variable initializers.
10732   // Variables declared within a function/method body (except for references)
10733   // are handled by a dataflow analysis.
10734   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
10735       VDecl->getType()->isReferenceType()) {
10736     CheckSelfReference(*this, RealDecl, Init, DirectInit);
10737   }
10738 
10739   // If the type changed, it means we had an incomplete type that was
10740   // completed by the initializer. For example:
10741   //   int ary[] = { 1, 3, 5 };
10742   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
10743   if (!VDecl->isInvalidDecl() && (DclT != SavT))
10744     VDecl->setType(DclT);
10745 
10746   if (!VDecl->isInvalidDecl()) {
10747     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
10748 
10749     if (VDecl->hasAttr<BlocksAttr>())
10750       checkRetainCycles(VDecl, Init);
10751 
10752     // It is safe to assign a weak reference into a strong variable.
10753     // Although this code can still have problems:
10754     //   id x = self.weakProp;
10755     //   id y = self.weakProp;
10756     // we do not warn to warn spuriously when 'x' and 'y' are on separate
10757     // paths through the function. This should be revisited if
10758     // -Wrepeated-use-of-weak is made flow-sensitive.
10759     if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
10760          VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
10761         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
10762                          Init->getLocStart()))
10763       getCurFunction()->markSafeWeakUse(Init);
10764   }
10765 
10766   // The initialization is usually a full-expression.
10767   //
10768   // FIXME: If this is a braced initialization of an aggregate, it is not
10769   // an expression, and each individual field initializer is a separate
10770   // full-expression. For instance, in:
10771   //
10772   //   struct Temp { ~Temp(); };
10773   //   struct S { S(Temp); };
10774   //   struct T { S a, b; } t = { Temp(), Temp() }
10775   //
10776   // we should destroy the first Temp before constructing the second.
10777   ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
10778                                           false,
10779                                           VDecl->isConstexpr());
10780   if (Result.isInvalid()) {
10781     VDecl->setInvalidDecl();
10782     return;
10783   }
10784   Init = Result.get();
10785 
10786   // Attach the initializer to the decl.
10787   VDecl->setInit(Init);
10788 
10789   if (VDecl->isLocalVarDecl()) {
10790     // Don't check the initializer if the declaration is malformed.
10791     if (VDecl->isInvalidDecl()) {
10792       // do nothing
10793 
10794     // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
10795     // This is true even in OpenCL C++.
10796     } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
10797       CheckForConstantInitializer(Init, DclT);
10798 
10799     // Otherwise, C++ does not restrict the initializer.
10800     } else if (getLangOpts().CPlusPlus) {
10801       // do nothing
10802 
10803     // C99 6.7.8p4: All the expressions in an initializer for an object that has
10804     // static storage duration shall be constant expressions or string literals.
10805     } else if (VDecl->getStorageClass() == SC_Static) {
10806       CheckForConstantInitializer(Init, DclT);
10807 
10808     // C89 is stricter than C99 for aggregate initializers.
10809     // C89 6.5.7p3: All the expressions [...] in an initializer list
10810     // for an object that has aggregate or union type shall be
10811     // constant expressions.
10812     } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
10813                isa<InitListExpr>(Init)) {
10814       const Expr *Culprit;
10815       if (!Init->isConstantInitializer(Context, false, &Culprit)) {
10816         Diag(Culprit->getExprLoc(),
10817              diag::ext_aggregate_init_not_constant)
10818           << Culprit->getSourceRange();
10819       }
10820     }
10821   } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
10822              VDecl->getLexicalDeclContext()->isRecord()) {
10823     // This is an in-class initialization for a static data member, e.g.,
10824     //
10825     // struct S {
10826     //   static const int value = 17;
10827     // };
10828 
10829     // C++ [class.mem]p4:
10830     //   A member-declarator can contain a constant-initializer only
10831     //   if it declares a static member (9.4) of const integral or
10832     //   const enumeration type, see 9.4.2.
10833     //
10834     // C++11 [class.static.data]p3:
10835     //   If a non-volatile non-inline const static data member is of integral
10836     //   or enumeration type, its declaration in the class definition can
10837     //   specify a brace-or-equal-initializer in which every initializer-clause
10838     //   that is an assignment-expression is a constant expression. A static
10839     //   data member of literal type can be declared in the class definition
10840     //   with the constexpr specifier; if so, its declaration shall specify a
10841     //   brace-or-equal-initializer in which every initializer-clause that is
10842     //   an assignment-expression is a constant expression.
10843 
10844     // Do nothing on dependent types.
10845     if (DclT->isDependentType()) {
10846 
10847     // Allow any 'static constexpr' members, whether or not they are of literal
10848     // type. We separately check that every constexpr variable is of literal
10849     // type.
10850     } else if (VDecl->isConstexpr()) {
10851 
10852     // Require constness.
10853     } else if (!DclT.isConstQualified()) {
10854       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
10855         << Init->getSourceRange();
10856       VDecl->setInvalidDecl();
10857 
10858     // We allow integer constant expressions in all cases.
10859     } else if (DclT->isIntegralOrEnumerationType()) {
10860       // Check whether the expression is a constant expression.
10861       SourceLocation Loc;
10862       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
10863         // In C++11, a non-constexpr const static data member with an
10864         // in-class initializer cannot be volatile.
10865         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
10866       else if (Init->isValueDependent())
10867         ; // Nothing to check.
10868       else if (Init->isIntegerConstantExpr(Context, &Loc))
10869         ; // Ok, it's an ICE!
10870       else if (Init->isEvaluatable(Context)) {
10871         // If we can constant fold the initializer through heroics, accept it,
10872         // but report this as a use of an extension for -pedantic.
10873         Diag(Loc, diag::ext_in_class_initializer_non_constant)
10874           << Init->getSourceRange();
10875       } else {
10876         // Otherwise, this is some crazy unknown case.  Report the issue at the
10877         // location provided by the isIntegerConstantExpr failed check.
10878         Diag(Loc, diag::err_in_class_initializer_non_constant)
10879           << Init->getSourceRange();
10880         VDecl->setInvalidDecl();
10881       }
10882 
10883     // We allow foldable floating-point constants as an extension.
10884     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
10885       // In C++98, this is a GNU extension. In C++11, it is not, but we support
10886       // it anyway and provide a fixit to add the 'constexpr'.
10887       if (getLangOpts().CPlusPlus11) {
10888         Diag(VDecl->getLocation(),
10889              diag::ext_in_class_initializer_float_type_cxx11)
10890             << DclT << Init->getSourceRange();
10891         Diag(VDecl->getLocStart(),
10892              diag::note_in_class_initializer_float_type_cxx11)
10893             << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
10894       } else {
10895         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
10896           << DclT << Init->getSourceRange();
10897 
10898         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
10899           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
10900             << Init->getSourceRange();
10901           VDecl->setInvalidDecl();
10902         }
10903       }
10904 
10905     // Suggest adding 'constexpr' in C++11 for literal types.
10906     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
10907       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
10908         << DclT << Init->getSourceRange()
10909         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
10910       VDecl->setConstexpr(true);
10911 
10912     } else {
10913       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
10914         << DclT << Init->getSourceRange();
10915       VDecl->setInvalidDecl();
10916     }
10917   } else if (VDecl->isFileVarDecl()) {
10918     // In C, extern is typically used to avoid tentative definitions when
10919     // declaring variables in headers, but adding an intializer makes it a
10920     // definition. This is somewhat confusing, so GCC and Clang both warn on it.
10921     // In C++, extern is often used to give implictly static const variables
10922     // external linkage, so don't warn in that case. If selectany is present,
10923     // this might be header code intended for C and C++ inclusion, so apply the
10924     // C++ rules.
10925     if (VDecl->getStorageClass() == SC_Extern &&
10926         ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
10927          !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
10928         !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
10929         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
10930       Diag(VDecl->getLocation(), diag::warn_extern_init);
10931 
10932     // C99 6.7.8p4. All file scoped initializers need to be constant.
10933     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
10934       CheckForConstantInitializer(Init, DclT);
10935   }
10936 
10937   // We will represent direct-initialization similarly to copy-initialization:
10938   //    int x(1);  -as-> int x = 1;
10939   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
10940   //
10941   // Clients that want to distinguish between the two forms, can check for
10942   // direct initializer using VarDecl::getInitStyle().
10943   // A major benefit is that clients that don't particularly care about which
10944   // exactly form was it (like the CodeGen) can handle both cases without
10945   // special case code.
10946 
10947   // C++ 8.5p11:
10948   // The form of initialization (using parentheses or '=') is generally
10949   // insignificant, but does matter when the entity being initialized has a
10950   // class type.
10951   if (CXXDirectInit) {
10952     assert(DirectInit && "Call-style initializer must be direct init.");
10953     VDecl->setInitStyle(VarDecl::CallInit);
10954   } else if (DirectInit) {
10955     // This must be list-initialization. No other way is direct-initialization.
10956     VDecl->setInitStyle(VarDecl::ListInit);
10957   }
10958 
10959   CheckCompleteVariableDeclaration(VDecl);
10960 }
10961 
10962 /// ActOnInitializerError - Given that there was an error parsing an
10963 /// initializer for the given declaration, try to return to some form
10964 /// of sanity.
10965 void Sema::ActOnInitializerError(Decl *D) {
10966   // Our main concern here is re-establishing invariants like "a
10967   // variable's type is either dependent or complete".
10968   if (!D || D->isInvalidDecl()) return;
10969 
10970   VarDecl *VD = dyn_cast<VarDecl>(D);
10971   if (!VD) return;
10972 
10973   // Bindings are not usable if we can't make sense of the initializer.
10974   if (auto *DD = dyn_cast<DecompositionDecl>(D))
10975     for (auto *BD : DD->bindings())
10976       BD->setInvalidDecl();
10977 
10978   // Auto types are meaningless if we can't make sense of the initializer.
10979   if (ParsingInitForAutoVars.count(D)) {
10980     D->setInvalidDecl();
10981     return;
10982   }
10983 
10984   QualType Ty = VD->getType();
10985   if (Ty->isDependentType()) return;
10986 
10987   // Require a complete type.
10988   if (RequireCompleteType(VD->getLocation(),
10989                           Context.getBaseElementType(Ty),
10990                           diag::err_typecheck_decl_incomplete_type)) {
10991     VD->setInvalidDecl();
10992     return;
10993   }
10994 
10995   // Require a non-abstract type.
10996   if (RequireNonAbstractType(VD->getLocation(), Ty,
10997                              diag::err_abstract_type_in_decl,
10998                              AbstractVariableType)) {
10999     VD->setInvalidDecl();
11000     return;
11001   }
11002 
11003   // Don't bother complaining about constructors or destructors,
11004   // though.
11005 }
11006 
11007 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
11008   // If there is no declaration, there was an error parsing it. Just ignore it.
11009   if (!RealDecl)
11010     return;
11011 
11012   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
11013     QualType Type = Var->getType();
11014 
11015     // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
11016     if (isa<DecompositionDecl>(RealDecl)) {
11017       Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
11018       Var->setInvalidDecl();
11019       return;
11020     }
11021 
11022     if (Type->isUndeducedType() &&
11023         DeduceVariableDeclarationType(Var, false, nullptr))
11024       return;
11025 
11026     // C++11 [class.static.data]p3: A static data member can be declared with
11027     // the constexpr specifier; if so, its declaration shall specify
11028     // a brace-or-equal-initializer.
11029     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
11030     // the definition of a variable [...] or the declaration of a static data
11031     // member.
11032     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
11033         !Var->isThisDeclarationADemotedDefinition()) {
11034       if (Var->isStaticDataMember()) {
11035         // C++1z removes the relevant rule; the in-class declaration is always
11036         // a definition there.
11037         if (!getLangOpts().CPlusPlus17) {
11038           Diag(Var->getLocation(),
11039                diag::err_constexpr_static_mem_var_requires_init)
11040             << Var->getDeclName();
11041           Var->setInvalidDecl();
11042           return;
11043         }
11044       } else {
11045         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
11046         Var->setInvalidDecl();
11047         return;
11048       }
11049     }
11050 
11051     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
11052     // be initialized.
11053     if (!Var->isInvalidDecl() &&
11054         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
11055         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
11056       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
11057       Var->setInvalidDecl();
11058       return;
11059     }
11060 
11061     switch (Var->isThisDeclarationADefinition()) {
11062     case VarDecl::Definition:
11063       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
11064         break;
11065 
11066       // We have an out-of-line definition of a static data member
11067       // that has an in-class initializer, so we type-check this like
11068       // a declaration.
11069       //
11070       LLVM_FALLTHROUGH;
11071 
11072     case VarDecl::DeclarationOnly:
11073       // It's only a declaration.
11074 
11075       // Block scope. C99 6.7p7: If an identifier for an object is
11076       // declared with no linkage (C99 6.2.2p6), the type for the
11077       // object shall be complete.
11078       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
11079           !Var->hasLinkage() && !Var->isInvalidDecl() &&
11080           RequireCompleteType(Var->getLocation(), Type,
11081                               diag::err_typecheck_decl_incomplete_type))
11082         Var->setInvalidDecl();
11083 
11084       // Make sure that the type is not abstract.
11085       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11086           RequireNonAbstractType(Var->getLocation(), Type,
11087                                  diag::err_abstract_type_in_decl,
11088                                  AbstractVariableType))
11089         Var->setInvalidDecl();
11090       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11091           Var->getStorageClass() == SC_PrivateExtern) {
11092         Diag(Var->getLocation(), diag::warn_private_extern);
11093         Diag(Var->getLocation(), diag::note_private_extern);
11094       }
11095 
11096       return;
11097 
11098     case VarDecl::TentativeDefinition:
11099       // File scope. C99 6.9.2p2: A declaration of an identifier for an
11100       // object that has file scope without an initializer, and without a
11101       // storage-class specifier or with the storage-class specifier "static",
11102       // constitutes a tentative definition. Note: A tentative definition with
11103       // external linkage is valid (C99 6.2.2p5).
11104       if (!Var->isInvalidDecl()) {
11105         if (const IncompleteArrayType *ArrayT
11106                                     = Context.getAsIncompleteArrayType(Type)) {
11107           if (RequireCompleteType(Var->getLocation(),
11108                                   ArrayT->getElementType(),
11109                                   diag::err_illegal_decl_array_incomplete_type))
11110             Var->setInvalidDecl();
11111         } else if (Var->getStorageClass() == SC_Static) {
11112           // C99 6.9.2p3: If the declaration of an identifier for an object is
11113           // a tentative definition and has internal linkage (C99 6.2.2p3), the
11114           // declared type shall not be an incomplete type.
11115           // NOTE: code such as the following
11116           //     static struct s;
11117           //     struct s { int a; };
11118           // is accepted by gcc. Hence here we issue a warning instead of
11119           // an error and we do not invalidate the static declaration.
11120           // NOTE: to avoid multiple warnings, only check the first declaration.
11121           if (Var->isFirstDecl())
11122             RequireCompleteType(Var->getLocation(), Type,
11123                                 diag::ext_typecheck_decl_incomplete_type);
11124         }
11125       }
11126 
11127       // Record the tentative definition; we're done.
11128       if (!Var->isInvalidDecl())
11129         TentativeDefinitions.push_back(Var);
11130       return;
11131     }
11132 
11133     // Provide a specific diagnostic for uninitialized variable
11134     // definitions with incomplete array type.
11135     if (Type->isIncompleteArrayType()) {
11136       Diag(Var->getLocation(),
11137            diag::err_typecheck_incomplete_array_needs_initializer);
11138       Var->setInvalidDecl();
11139       return;
11140     }
11141 
11142     // Provide a specific diagnostic for uninitialized variable
11143     // definitions with reference type.
11144     if (Type->isReferenceType()) {
11145       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
11146         << Var->getDeclName()
11147         << SourceRange(Var->getLocation(), Var->getLocation());
11148       Var->setInvalidDecl();
11149       return;
11150     }
11151 
11152     // Do not attempt to type-check the default initializer for a
11153     // variable with dependent type.
11154     if (Type->isDependentType())
11155       return;
11156 
11157     if (Var->isInvalidDecl())
11158       return;
11159 
11160     if (!Var->hasAttr<AliasAttr>()) {
11161       if (RequireCompleteType(Var->getLocation(),
11162                               Context.getBaseElementType(Type),
11163                               diag::err_typecheck_decl_incomplete_type)) {
11164         Var->setInvalidDecl();
11165         return;
11166       }
11167     } else {
11168       return;
11169     }
11170 
11171     // The variable can not have an abstract class type.
11172     if (RequireNonAbstractType(Var->getLocation(), Type,
11173                                diag::err_abstract_type_in_decl,
11174                                AbstractVariableType)) {
11175       Var->setInvalidDecl();
11176       return;
11177     }
11178 
11179     // Check for jumps past the implicit initializer.  C++0x
11180     // clarifies that this applies to a "variable with automatic
11181     // storage duration", not a "local variable".
11182     // C++11 [stmt.dcl]p3
11183     //   A program that jumps from a point where a variable with automatic
11184     //   storage duration is not in scope to a point where it is in scope is
11185     //   ill-formed unless the variable has scalar type, class type with a
11186     //   trivial default constructor and a trivial destructor, a cv-qualified
11187     //   version of one of these types, or an array of one of the preceding
11188     //   types and is declared without an initializer.
11189     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
11190       if (const RecordType *Record
11191             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
11192         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
11193         // Mark the function (if we're in one) for further checking even if the
11194         // looser rules of C++11 do not require such checks, so that we can
11195         // diagnose incompatibilities with C++98.
11196         if (!CXXRecord->isPOD())
11197           setFunctionHasBranchProtectedScope();
11198       }
11199     }
11200 
11201     // C++03 [dcl.init]p9:
11202     //   If no initializer is specified for an object, and the
11203     //   object is of (possibly cv-qualified) non-POD class type (or
11204     //   array thereof), the object shall be default-initialized; if
11205     //   the object is of const-qualified type, the underlying class
11206     //   type shall have a user-declared default
11207     //   constructor. Otherwise, if no initializer is specified for
11208     //   a non- static object, the object and its subobjects, if
11209     //   any, have an indeterminate initial value); if the object
11210     //   or any of its subobjects are of const-qualified type, the
11211     //   program is ill-formed.
11212     // C++0x [dcl.init]p11:
11213     //   If no initializer is specified for an object, the object is
11214     //   default-initialized; [...].
11215     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
11216     InitializationKind Kind
11217       = InitializationKind::CreateDefault(Var->getLocation());
11218 
11219     InitializationSequence InitSeq(*this, Entity, Kind, None);
11220     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
11221     if (Init.isInvalid())
11222       Var->setInvalidDecl();
11223     else if (Init.get()) {
11224       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
11225       // This is important for template substitution.
11226       Var->setInitStyle(VarDecl::CallInit);
11227     }
11228 
11229     CheckCompleteVariableDeclaration(Var);
11230   }
11231 }
11232 
11233 void Sema::ActOnCXXForRangeDecl(Decl *D) {
11234   // If there is no declaration, there was an error parsing it. Ignore it.
11235   if (!D)
11236     return;
11237 
11238   VarDecl *VD = dyn_cast<VarDecl>(D);
11239   if (!VD) {
11240     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
11241     D->setInvalidDecl();
11242     return;
11243   }
11244 
11245   VD->setCXXForRangeDecl(true);
11246 
11247   // for-range-declaration cannot be given a storage class specifier.
11248   int Error = -1;
11249   switch (VD->getStorageClass()) {
11250   case SC_None:
11251     break;
11252   case SC_Extern:
11253     Error = 0;
11254     break;
11255   case SC_Static:
11256     Error = 1;
11257     break;
11258   case SC_PrivateExtern:
11259     Error = 2;
11260     break;
11261   case SC_Auto:
11262     Error = 3;
11263     break;
11264   case SC_Register:
11265     Error = 4;
11266     break;
11267   }
11268   if (Error != -1) {
11269     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
11270       << VD->getDeclName() << Error;
11271     D->setInvalidDecl();
11272   }
11273 }
11274 
11275 StmtResult
11276 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
11277                                  IdentifierInfo *Ident,
11278                                  ParsedAttributes &Attrs,
11279                                  SourceLocation AttrEnd) {
11280   // C++1y [stmt.iter]p1:
11281   //   A range-based for statement of the form
11282   //      for ( for-range-identifier : for-range-initializer ) statement
11283   //   is equivalent to
11284   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
11285   DeclSpec DS(Attrs.getPool().getFactory());
11286 
11287   const char *PrevSpec;
11288   unsigned DiagID;
11289   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
11290                      getPrintingPolicy());
11291 
11292   Declarator D(DS, DeclaratorContext::ForContext);
11293   D.SetIdentifier(Ident, IdentLoc);
11294   D.takeAttributes(Attrs, AttrEnd);
11295 
11296   ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
11297   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
11298                 EmptyAttrs, IdentLoc);
11299   Decl *Var = ActOnDeclarator(S, D);
11300   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
11301   FinalizeDeclaration(Var);
11302   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
11303                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
11304 }
11305 
11306 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
11307   if (var->isInvalidDecl()) return;
11308 
11309   if (getLangOpts().OpenCL) {
11310     // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
11311     // initialiser
11312     if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
11313         !var->hasInit()) {
11314       Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
11315           << 1 /*Init*/;
11316       var->setInvalidDecl();
11317       return;
11318     }
11319   }
11320 
11321   // In Objective-C, don't allow jumps past the implicit initialization of a
11322   // local retaining variable.
11323   if (getLangOpts().ObjC1 &&
11324       var->hasLocalStorage()) {
11325     switch (var->getType().getObjCLifetime()) {
11326     case Qualifiers::OCL_None:
11327     case Qualifiers::OCL_ExplicitNone:
11328     case Qualifiers::OCL_Autoreleasing:
11329       break;
11330 
11331     case Qualifiers::OCL_Weak:
11332     case Qualifiers::OCL_Strong:
11333       setFunctionHasBranchProtectedScope();
11334       break;
11335     }
11336   }
11337 
11338   if (var->hasLocalStorage() &&
11339       var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
11340     setFunctionHasBranchProtectedScope();
11341 
11342   // Warn about externally-visible variables being defined without a
11343   // prior declaration.  We only want to do this for global
11344   // declarations, but we also specifically need to avoid doing it for
11345   // class members because the linkage of an anonymous class can
11346   // change if it's later given a typedef name.
11347   if (var->isThisDeclarationADefinition() &&
11348       var->getDeclContext()->getRedeclContext()->isFileContext() &&
11349       var->isExternallyVisible() && var->hasLinkage() &&
11350       !var->isInline() && !var->getDescribedVarTemplate() &&
11351       !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
11352       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
11353                                   var->getLocation())) {
11354     // Find a previous declaration that's not a definition.
11355     VarDecl *prev = var->getPreviousDecl();
11356     while (prev && prev->isThisDeclarationADefinition())
11357       prev = prev->getPreviousDecl();
11358 
11359     if (!prev)
11360       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
11361   }
11362 
11363   // Cache the result of checking for constant initialization.
11364   Optional<bool> CacheHasConstInit;
11365   const Expr *CacheCulprit;
11366   auto checkConstInit = [&]() mutable {
11367     if (!CacheHasConstInit)
11368       CacheHasConstInit = var->getInit()->isConstantInitializer(
11369             Context, var->getType()->isReferenceType(), &CacheCulprit);
11370     return *CacheHasConstInit;
11371   };
11372 
11373   if (var->getTLSKind() == VarDecl::TLS_Static) {
11374     if (var->getType().isDestructedType()) {
11375       // GNU C++98 edits for __thread, [basic.start.term]p3:
11376       //   The type of an object with thread storage duration shall not
11377       //   have a non-trivial destructor.
11378       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
11379       if (getLangOpts().CPlusPlus11)
11380         Diag(var->getLocation(), diag::note_use_thread_local);
11381     } else if (getLangOpts().CPlusPlus && var->hasInit()) {
11382       if (!checkConstInit()) {
11383         // GNU C++98 edits for __thread, [basic.start.init]p4:
11384         //   An object of thread storage duration shall not require dynamic
11385         //   initialization.
11386         // FIXME: Need strict checking here.
11387         Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
11388           << CacheCulprit->getSourceRange();
11389         if (getLangOpts().CPlusPlus11)
11390           Diag(var->getLocation(), diag::note_use_thread_local);
11391       }
11392     }
11393   }
11394 
11395   // Apply section attributes and pragmas to global variables.
11396   bool GlobalStorage = var->hasGlobalStorage();
11397   if (GlobalStorage && var->isThisDeclarationADefinition() &&
11398       !inTemplateInstantiation()) {
11399     PragmaStack<StringLiteral *> *Stack = nullptr;
11400     int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
11401     if (var->getType().isConstQualified())
11402       Stack = &ConstSegStack;
11403     else if (!var->getInit()) {
11404       Stack = &BSSSegStack;
11405       SectionFlags |= ASTContext::PSF_Write;
11406     } else {
11407       Stack = &DataSegStack;
11408       SectionFlags |= ASTContext::PSF_Write;
11409     }
11410     if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
11411       var->addAttr(SectionAttr::CreateImplicit(
11412           Context, SectionAttr::Declspec_allocate,
11413           Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
11414     }
11415     if (const SectionAttr *SA = var->getAttr<SectionAttr>())
11416       if (UnifySection(SA->getName(), SectionFlags, var))
11417         var->dropAttr<SectionAttr>();
11418 
11419     // Apply the init_seg attribute if this has an initializer.  If the
11420     // initializer turns out to not be dynamic, we'll end up ignoring this
11421     // attribute.
11422     if (CurInitSeg && var->getInit())
11423       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
11424                                                CurInitSegLoc));
11425   }
11426 
11427   // All the following checks are C++ only.
11428   if (!getLangOpts().CPlusPlus) {
11429       // If this variable must be emitted, add it as an initializer for the
11430       // current module.
11431      if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
11432        Context.addModuleInitializer(ModuleScopes.back().Module, var);
11433      return;
11434   }
11435 
11436   if (auto *DD = dyn_cast<DecompositionDecl>(var))
11437     CheckCompleteDecompositionDeclaration(DD);
11438 
11439   QualType type = var->getType();
11440   if (type->isDependentType()) return;
11441 
11442   // __block variables might require us to capture a copy-initializer.
11443   if (var->hasAttr<BlocksAttr>()) {
11444     // It's currently invalid to ever have a __block variable with an
11445     // array type; should we diagnose that here?
11446 
11447     // Regardless, we don't want to ignore array nesting when
11448     // constructing this copy.
11449     if (type->isStructureOrClassType()) {
11450       EnterExpressionEvaluationContext scope(
11451           *this, ExpressionEvaluationContext::PotentiallyEvaluated);
11452       SourceLocation poi = var->getLocation();
11453       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
11454       ExprResult result
11455         = PerformMoveOrCopyInitialization(
11456             InitializedEntity::InitializeBlock(poi, type, false),
11457             var, var->getType(), varRef, /*AllowNRVO=*/true);
11458       if (!result.isInvalid()) {
11459         result = MaybeCreateExprWithCleanups(result);
11460         Expr *init = result.getAs<Expr>();
11461         Context.setBlockVarCopyInits(var, init);
11462       }
11463     }
11464   }
11465 
11466   Expr *Init = var->getInit();
11467   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
11468   QualType baseType = Context.getBaseElementType(type);
11469 
11470   if (Init && !Init->isValueDependent()) {
11471     if (var->isConstexpr()) {
11472       SmallVector<PartialDiagnosticAt, 8> Notes;
11473       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
11474         SourceLocation DiagLoc = var->getLocation();
11475         // If the note doesn't add any useful information other than a source
11476         // location, fold it into the primary diagnostic.
11477         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
11478               diag::note_invalid_subexpr_in_const_expr) {
11479           DiagLoc = Notes[0].first;
11480           Notes.clear();
11481         }
11482         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
11483           << var << Init->getSourceRange();
11484         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
11485           Diag(Notes[I].first, Notes[I].second);
11486       }
11487     } else if (var->isUsableInConstantExpressions(Context)) {
11488       // Check whether the initializer of a const variable of integral or
11489       // enumeration type is an ICE now, since we can't tell whether it was
11490       // initialized by a constant expression if we check later.
11491       var->checkInitIsICE();
11492     }
11493 
11494     // Don't emit further diagnostics about constexpr globals since they
11495     // were just diagnosed.
11496     if (!var->isConstexpr() && GlobalStorage &&
11497             var->hasAttr<RequireConstantInitAttr>()) {
11498       // FIXME: Need strict checking in C++03 here.
11499       bool DiagErr = getLangOpts().CPlusPlus11
11500           ? !var->checkInitIsICE() : !checkConstInit();
11501       if (DiagErr) {
11502         auto attr = var->getAttr<RequireConstantInitAttr>();
11503         Diag(var->getLocation(), diag::err_require_constant_init_failed)
11504           << Init->getSourceRange();
11505         Diag(attr->getLocation(), diag::note_declared_required_constant_init_here)
11506           << attr->getRange();
11507         if (getLangOpts().CPlusPlus11) {
11508           APValue Value;
11509           SmallVector<PartialDiagnosticAt, 8> Notes;
11510           Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes);
11511           for (auto &it : Notes)
11512             Diag(it.first, it.second);
11513         } else {
11514           Diag(CacheCulprit->getExprLoc(),
11515                diag::note_invalid_subexpr_in_const_expr)
11516               << CacheCulprit->getSourceRange();
11517         }
11518       }
11519     }
11520     else if (!var->isConstexpr() && IsGlobal &&
11521              !getDiagnostics().isIgnored(diag::warn_global_constructor,
11522                                     var->getLocation())) {
11523       // Warn about globals which don't have a constant initializer.  Don't
11524       // warn about globals with a non-trivial destructor because we already
11525       // warned about them.
11526       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
11527       if (!(RD && !RD->hasTrivialDestructor())) {
11528         if (!checkConstInit())
11529           Diag(var->getLocation(), diag::warn_global_constructor)
11530             << Init->getSourceRange();
11531       }
11532     }
11533   }
11534 
11535   // Require the destructor.
11536   if (const RecordType *recordType = baseType->getAs<RecordType>())
11537     FinalizeVarWithDestructor(var, recordType);
11538 
11539   // If this variable must be emitted, add it as an initializer for the current
11540   // module.
11541   if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
11542     Context.addModuleInitializer(ModuleScopes.back().Module, var);
11543 }
11544 
11545 /// \brief Determines if a variable's alignment is dependent.
11546 static bool hasDependentAlignment(VarDecl *VD) {
11547   if (VD->getType()->isDependentType())
11548     return true;
11549   for (auto *I : VD->specific_attrs<AlignedAttr>())
11550     if (I->isAlignmentDependent())
11551       return true;
11552   return false;
11553 }
11554 
11555 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
11556 /// any semantic actions necessary after any initializer has been attached.
11557 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
11558   // Note that we are no longer parsing the initializer for this declaration.
11559   ParsingInitForAutoVars.erase(ThisDecl);
11560 
11561   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
11562   if (!VD)
11563     return;
11564 
11565   // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
11566   if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
11567       !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
11568     if (PragmaClangBSSSection.Valid)
11569       VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(Context,
11570                                                             PragmaClangBSSSection.SectionName,
11571                                                             PragmaClangBSSSection.PragmaLocation));
11572     if (PragmaClangDataSection.Valid)
11573       VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(Context,
11574                                                              PragmaClangDataSection.SectionName,
11575                                                              PragmaClangDataSection.PragmaLocation));
11576     if (PragmaClangRodataSection.Valid)
11577       VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(Context,
11578                                                                PragmaClangRodataSection.SectionName,
11579                                                                PragmaClangRodataSection.PragmaLocation));
11580   }
11581 
11582   if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
11583     for (auto *BD : DD->bindings()) {
11584       FinalizeDeclaration(BD);
11585     }
11586   }
11587 
11588   checkAttributesAfterMerging(*this, *VD);
11589 
11590   // Perform TLS alignment check here after attributes attached to the variable
11591   // which may affect the alignment have been processed. Only perform the check
11592   // if the target has a maximum TLS alignment (zero means no constraints).
11593   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
11594     // Protect the check so that it's not performed on dependent types and
11595     // dependent alignments (we can't determine the alignment in that case).
11596     if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
11597         !VD->isInvalidDecl()) {
11598       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
11599       if (Context.getDeclAlign(VD) > MaxAlignChars) {
11600         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
11601           << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
11602           << (unsigned)MaxAlignChars.getQuantity();
11603       }
11604     }
11605   }
11606 
11607   if (VD->isStaticLocal()) {
11608     if (FunctionDecl *FD =
11609             dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
11610       // Static locals inherit dll attributes from their function.
11611       if (Attr *A = getDLLAttr(FD)) {
11612         auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
11613         NewAttr->setInherited(true);
11614         VD->addAttr(NewAttr);
11615       }
11616       // CUDA E.2.9.4: Within the body of a __device__ or __global__
11617       // function, only __shared__ variables may be declared with
11618       // static storage class.
11619       if (getLangOpts().CUDA && !VD->hasAttr<CUDASharedAttr>() &&
11620           CUDADiagIfDeviceCode(VD->getLocation(),
11621                                diag::err_device_static_local_var)
11622               << CurrentCUDATarget())
11623         VD->setInvalidDecl();
11624     }
11625   }
11626 
11627   // Perform check for initializers of device-side global variables.
11628   // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
11629   // 7.5). We must also apply the same checks to all __shared__
11630   // variables whether they are local or not. CUDA also allows
11631   // constant initializers for __constant__ and __device__ variables.
11632   if (getLangOpts().CUDA) {
11633     const Expr *Init = VD->getInit();
11634     if (Init && VD->hasGlobalStorage()) {
11635       if (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>() ||
11636           VD->hasAttr<CUDASharedAttr>()) {
11637         assert(!VD->isStaticLocal() || VD->hasAttr<CUDASharedAttr>());
11638         bool AllowedInit = false;
11639         if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init))
11640           AllowedInit =
11641               isEmptyCudaConstructor(VD->getLocation(), CE->getConstructor());
11642         // We'll allow constant initializers even if it's a non-empty
11643         // constructor according to CUDA rules. This deviates from NVCC,
11644         // but allows us to handle things like constexpr constructors.
11645         if (!AllowedInit &&
11646             (VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
11647           AllowedInit = VD->getInit()->isConstantInitializer(
11648               Context, VD->getType()->isReferenceType());
11649 
11650         // Also make sure that destructor, if there is one, is empty.
11651         if (AllowedInit)
11652           if (CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl())
11653             AllowedInit =
11654                 isEmptyCudaDestructor(VD->getLocation(), RD->getDestructor());
11655 
11656         if (!AllowedInit) {
11657           Diag(VD->getLocation(), VD->hasAttr<CUDASharedAttr>()
11658                                       ? diag::err_shared_var_init
11659                                       : diag::err_dynamic_var_init)
11660               << Init->getSourceRange();
11661           VD->setInvalidDecl();
11662         }
11663       } else {
11664         // This is a host-side global variable.  Check that the initializer is
11665         // callable from the host side.
11666         const FunctionDecl *InitFn = nullptr;
11667         if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Init)) {
11668           InitFn = CE->getConstructor();
11669         } else if (const CallExpr *CE = dyn_cast<CallExpr>(Init)) {
11670           InitFn = CE->getDirectCallee();
11671         }
11672         if (InitFn) {
11673           CUDAFunctionTarget InitFnTarget = IdentifyCUDATarget(InitFn);
11674           if (InitFnTarget != CFT_Host && InitFnTarget != CFT_HostDevice) {
11675             Diag(VD->getLocation(), diag::err_ref_bad_target_global_initializer)
11676                 << InitFnTarget << InitFn;
11677             Diag(InitFn->getLocation(), diag::note_previous_decl) << InitFn;
11678             VD->setInvalidDecl();
11679           }
11680         }
11681       }
11682     }
11683   }
11684 
11685   // Grab the dllimport or dllexport attribute off of the VarDecl.
11686   const InheritableAttr *DLLAttr = getDLLAttr(VD);
11687 
11688   // Imported static data members cannot be defined out-of-line.
11689   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
11690     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
11691         VD->isThisDeclarationADefinition()) {
11692       // We allow definitions of dllimport class template static data members
11693       // with a warning.
11694       CXXRecordDecl *Context =
11695         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
11696       bool IsClassTemplateMember =
11697           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
11698           Context->getDescribedClassTemplate();
11699 
11700       Diag(VD->getLocation(),
11701            IsClassTemplateMember
11702                ? diag::warn_attribute_dllimport_static_field_definition
11703                : diag::err_attribute_dllimport_static_field_definition);
11704       Diag(IA->getLocation(), diag::note_attribute);
11705       if (!IsClassTemplateMember)
11706         VD->setInvalidDecl();
11707     }
11708   }
11709 
11710   // dllimport/dllexport variables cannot be thread local, their TLS index
11711   // isn't exported with the variable.
11712   if (DLLAttr && VD->getTLSKind()) {
11713     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
11714     if (F && getDLLAttr(F)) {
11715       assert(VD->isStaticLocal());
11716       // But if this is a static local in a dlimport/dllexport function, the
11717       // function will never be inlined, which means the var would never be
11718       // imported, so having it marked import/export is safe.
11719     } else {
11720       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
11721                                                                     << DLLAttr;
11722       VD->setInvalidDecl();
11723     }
11724   }
11725 
11726   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
11727     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
11728       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
11729       VD->dropAttr<UsedAttr>();
11730     }
11731   }
11732 
11733   const DeclContext *DC = VD->getDeclContext();
11734   // If there's a #pragma GCC visibility in scope, and this isn't a class
11735   // member, set the visibility of this variable.
11736   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
11737     AddPushedVisibilityAttribute(VD);
11738 
11739   // FIXME: Warn on unused var template partial specializations.
11740   if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
11741     MarkUnusedFileScopedDecl(VD);
11742 
11743   // Now we have parsed the initializer and can update the table of magic
11744   // tag values.
11745   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
11746       !VD->getType()->isIntegralOrEnumerationType())
11747     return;
11748 
11749   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
11750     const Expr *MagicValueExpr = VD->getInit();
11751     if (!MagicValueExpr) {
11752       continue;
11753     }
11754     llvm::APSInt MagicValueInt;
11755     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
11756       Diag(I->getRange().getBegin(),
11757            diag::err_type_tag_for_datatype_not_ice)
11758         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
11759       continue;
11760     }
11761     if (MagicValueInt.getActiveBits() > 64) {
11762       Diag(I->getRange().getBegin(),
11763            diag::err_type_tag_for_datatype_too_large)
11764         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
11765       continue;
11766     }
11767     uint64_t MagicValue = MagicValueInt.getZExtValue();
11768     RegisterTypeTagForDatatype(I->getArgumentKind(),
11769                                MagicValue,
11770                                I->getMatchingCType(),
11771                                I->getLayoutCompatible(),
11772                                I->getMustBeNull());
11773   }
11774 }
11775 
11776 static bool hasDeducedAuto(DeclaratorDecl *DD) {
11777   auto *VD = dyn_cast<VarDecl>(DD);
11778   return VD && !VD->getType()->hasAutoForTrailingReturnType();
11779 }
11780 
11781 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
11782                                                    ArrayRef<Decl *> Group) {
11783   SmallVector<Decl*, 8> Decls;
11784 
11785   if (DS.isTypeSpecOwned())
11786     Decls.push_back(DS.getRepAsDecl());
11787 
11788   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
11789   DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
11790   bool DiagnosedMultipleDecomps = false;
11791   DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
11792   bool DiagnosedNonDeducedAuto = false;
11793 
11794   for (unsigned i = 0, e = Group.size(); i != e; ++i) {
11795     if (Decl *D = Group[i]) {
11796       // For declarators, there are some additional syntactic-ish checks we need
11797       // to perform.
11798       if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
11799         if (!FirstDeclaratorInGroup)
11800           FirstDeclaratorInGroup = DD;
11801         if (!FirstDecompDeclaratorInGroup)
11802           FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
11803         if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
11804             !hasDeducedAuto(DD))
11805           FirstNonDeducedAutoInGroup = DD;
11806 
11807         if (FirstDeclaratorInGroup != DD) {
11808           // A decomposition declaration cannot be combined with any other
11809           // declaration in the same group.
11810           if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
11811             Diag(FirstDecompDeclaratorInGroup->getLocation(),
11812                  diag::err_decomp_decl_not_alone)
11813                 << FirstDeclaratorInGroup->getSourceRange()
11814                 << DD->getSourceRange();
11815             DiagnosedMultipleDecomps = true;
11816           }
11817 
11818           // A declarator that uses 'auto' in any way other than to declare a
11819           // variable with a deduced type cannot be combined with any other
11820           // declarator in the same group.
11821           if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
11822             Diag(FirstNonDeducedAutoInGroup->getLocation(),
11823                  diag::err_auto_non_deduced_not_alone)
11824                 << FirstNonDeducedAutoInGroup->getType()
11825                        ->hasAutoForTrailingReturnType()
11826                 << FirstDeclaratorInGroup->getSourceRange()
11827                 << DD->getSourceRange();
11828             DiagnosedNonDeducedAuto = true;
11829           }
11830         }
11831       }
11832 
11833       Decls.push_back(D);
11834     }
11835   }
11836 
11837   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
11838     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
11839       handleTagNumbering(Tag, S);
11840       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
11841           getLangOpts().CPlusPlus)
11842         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
11843     }
11844   }
11845 
11846   return BuildDeclaratorGroup(Decls);
11847 }
11848 
11849 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
11850 /// group, performing any necessary semantic checking.
11851 Sema::DeclGroupPtrTy
11852 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
11853   // C++14 [dcl.spec.auto]p7: (DR1347)
11854   //   If the type that replaces the placeholder type is not the same in each
11855   //   deduction, the program is ill-formed.
11856   if (Group.size() > 1) {
11857     QualType Deduced;
11858     VarDecl *DeducedDecl = nullptr;
11859     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
11860       VarDecl *D = dyn_cast<VarDecl>(Group[i]);
11861       if (!D || D->isInvalidDecl())
11862         break;
11863       DeducedType *DT = D->getType()->getContainedDeducedType();
11864       if (!DT || DT->getDeducedType().isNull())
11865         continue;
11866       if (Deduced.isNull()) {
11867         Deduced = DT->getDeducedType();
11868         DeducedDecl = D;
11869       } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
11870         auto *AT = dyn_cast<AutoType>(DT);
11871         Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
11872              diag::err_auto_different_deductions)
11873           << (AT ? (unsigned)AT->getKeyword() : 3)
11874           << Deduced << DeducedDecl->getDeclName()
11875           << DT->getDeducedType() << D->getDeclName()
11876           << DeducedDecl->getInit()->getSourceRange()
11877           << D->getInit()->getSourceRange();
11878         D->setInvalidDecl();
11879         break;
11880       }
11881     }
11882   }
11883 
11884   ActOnDocumentableDecls(Group);
11885 
11886   return DeclGroupPtrTy::make(
11887       DeclGroupRef::Create(Context, Group.data(), Group.size()));
11888 }
11889 
11890 void Sema::ActOnDocumentableDecl(Decl *D) {
11891   ActOnDocumentableDecls(D);
11892 }
11893 
11894 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
11895   // Don't parse the comment if Doxygen diagnostics are ignored.
11896   if (Group.empty() || !Group[0])
11897     return;
11898 
11899   if (Diags.isIgnored(diag::warn_doc_param_not_found,
11900                       Group[0]->getLocation()) &&
11901       Diags.isIgnored(diag::warn_unknown_comment_command_name,
11902                       Group[0]->getLocation()))
11903     return;
11904 
11905   if (Group.size() >= 2) {
11906     // This is a decl group.  Normally it will contain only declarations
11907     // produced from declarator list.  But in case we have any definitions or
11908     // additional declaration references:
11909     //   'typedef struct S {} S;'
11910     //   'typedef struct S *S;'
11911     //   'struct S *pS;'
11912     // FinalizeDeclaratorGroup adds these as separate declarations.
11913     Decl *MaybeTagDecl = Group[0];
11914     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
11915       Group = Group.slice(1);
11916     }
11917   }
11918 
11919   // See if there are any new comments that are not attached to a decl.
11920   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
11921   if (!Comments.empty() &&
11922       !Comments.back()->isAttached()) {
11923     // There is at least one comment that not attached to a decl.
11924     // Maybe it should be attached to one of these decls?
11925     //
11926     // Note that this way we pick up not only comments that precede the
11927     // declaration, but also comments that *follow* the declaration -- thanks to
11928     // the lookahead in the lexer: we've consumed the semicolon and looked
11929     // ahead through comments.
11930     for (unsigned i = 0, e = Group.size(); i != e; ++i)
11931       Context.getCommentForDecl(Group[i], &PP);
11932   }
11933 }
11934 
11935 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
11936 /// to introduce parameters into function prototype scope.
11937 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
11938   const DeclSpec &DS = D.getDeclSpec();
11939 
11940   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
11941 
11942   // C++03 [dcl.stc]p2 also permits 'auto'.
11943   StorageClass SC = SC_None;
11944   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
11945     SC = SC_Register;
11946     // In C++11, the 'register' storage class specifier is deprecated.
11947     // In C++17, it is not allowed, but we tolerate it as an extension.
11948     if (getLangOpts().CPlusPlus11) {
11949       Diag(DS.getStorageClassSpecLoc(),
11950            getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
11951                                      : diag::warn_deprecated_register)
11952         << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
11953     }
11954   } else if (getLangOpts().CPlusPlus &&
11955              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
11956     SC = SC_Auto;
11957   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
11958     Diag(DS.getStorageClassSpecLoc(),
11959          diag::err_invalid_storage_class_in_func_decl);
11960     D.getMutableDeclSpec().ClearStorageClassSpecs();
11961   }
11962 
11963   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
11964     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
11965       << DeclSpec::getSpecifierName(TSCS);
11966   if (DS.isInlineSpecified())
11967     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
11968         << getLangOpts().CPlusPlus17;
11969   if (DS.isConstexprSpecified())
11970     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
11971       << 0;
11972 
11973   DiagnoseFunctionSpecifiers(DS);
11974 
11975   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11976   QualType parmDeclType = TInfo->getType();
11977 
11978   if (getLangOpts().CPlusPlus) {
11979     // Check that there are no default arguments inside the type of this
11980     // parameter.
11981     CheckExtraCXXDefaultArguments(D);
11982 
11983     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
11984     if (D.getCXXScopeSpec().isSet()) {
11985       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
11986         << D.getCXXScopeSpec().getRange();
11987       D.getCXXScopeSpec().clear();
11988     }
11989   }
11990 
11991   // Ensure we have a valid name
11992   IdentifierInfo *II = nullptr;
11993   if (D.hasName()) {
11994     II = D.getIdentifier();
11995     if (!II) {
11996       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
11997         << GetNameForDeclarator(D).getName();
11998       D.setInvalidType(true);
11999     }
12000   }
12001 
12002   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
12003   if (II) {
12004     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
12005                    ForVisibleRedeclaration);
12006     LookupName(R, S);
12007     if (R.isSingleResult()) {
12008       NamedDecl *PrevDecl = R.getFoundDecl();
12009       if (PrevDecl->isTemplateParameter()) {
12010         // Maybe we will complain about the shadowed template parameter.
12011         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12012         // Just pretend that we didn't see the previous declaration.
12013         PrevDecl = nullptr;
12014       } else if (S->isDeclScope(PrevDecl)) {
12015         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
12016         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12017 
12018         // Recover by removing the name
12019         II = nullptr;
12020         D.SetIdentifier(nullptr, D.getIdentifierLoc());
12021         D.setInvalidType(true);
12022       }
12023     }
12024   }
12025 
12026   // Temporarily put parameter variables in the translation unit, not
12027   // the enclosing context.  This prevents them from accidentally
12028   // looking like class members in C++.
12029   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
12030                                     D.getLocStart(),
12031                                     D.getIdentifierLoc(), II,
12032                                     parmDeclType, TInfo,
12033                                     SC);
12034 
12035   if (D.isInvalidType())
12036     New->setInvalidDecl();
12037 
12038   assert(S->isFunctionPrototypeScope());
12039   assert(S->getFunctionPrototypeDepth() >= 1);
12040   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
12041                     S->getNextFunctionPrototypeIndex());
12042 
12043   // Add the parameter declaration into this scope.
12044   S->AddDecl(New);
12045   if (II)
12046     IdResolver.AddDecl(New);
12047 
12048   ProcessDeclAttributes(S, New, D);
12049 
12050   if (D.getDeclSpec().isModulePrivateSpecified())
12051     Diag(New->getLocation(), diag::err_module_private_local)
12052       << 1 << New->getDeclName()
12053       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
12054       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
12055 
12056   if (New->hasAttr<BlocksAttr>()) {
12057     Diag(New->getLocation(), diag::err_block_on_nonlocal);
12058   }
12059   return New;
12060 }
12061 
12062 /// \brief Synthesizes a variable for a parameter arising from a
12063 /// typedef.
12064 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
12065                                               SourceLocation Loc,
12066                                               QualType T) {
12067   /* FIXME: setting StartLoc == Loc.
12068      Would it be worth to modify callers so as to provide proper source
12069      location for the unnamed parameters, embedding the parameter's type? */
12070   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
12071                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
12072                                            SC_None, nullptr);
12073   Param->setImplicit();
12074   return Param;
12075 }
12076 
12077 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
12078   // Don't diagnose unused-parameter errors in template instantiations; we
12079   // will already have done so in the template itself.
12080   if (inTemplateInstantiation())
12081     return;
12082 
12083   for (const ParmVarDecl *Parameter : Parameters) {
12084     if (!Parameter->isReferenced() && Parameter->getDeclName() &&
12085         !Parameter->hasAttr<UnusedAttr>()) {
12086       Diag(Parameter->getLocation(), diag::warn_unused_parameter)
12087         << Parameter->getDeclName();
12088     }
12089   }
12090 }
12091 
12092 void Sema::DiagnoseSizeOfParametersAndReturnValue(
12093     ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
12094   if (LangOpts.NumLargeByValueCopy == 0) // No check.
12095     return;
12096 
12097   // Warn if the return value is pass-by-value and larger than the specified
12098   // threshold.
12099   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
12100     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
12101     if (Size > LangOpts.NumLargeByValueCopy)
12102       Diag(D->getLocation(), diag::warn_return_value_size)
12103           << D->getDeclName() << Size;
12104   }
12105 
12106   // Warn if any parameter is pass-by-value and larger than the specified
12107   // threshold.
12108   for (const ParmVarDecl *Parameter : Parameters) {
12109     QualType T = Parameter->getType();
12110     if (T->isDependentType() || !T.isPODType(Context))
12111       continue;
12112     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
12113     if (Size > LangOpts.NumLargeByValueCopy)
12114       Diag(Parameter->getLocation(), diag::warn_parameter_size)
12115           << Parameter->getDeclName() << Size;
12116   }
12117 }
12118 
12119 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
12120                                   SourceLocation NameLoc, IdentifierInfo *Name,
12121                                   QualType T, TypeSourceInfo *TSInfo,
12122                                   StorageClass SC) {
12123   // In ARC, infer a lifetime qualifier for appropriate parameter types.
12124   if (getLangOpts().ObjCAutoRefCount &&
12125       T.getObjCLifetime() == Qualifiers::OCL_None &&
12126       T->isObjCLifetimeType()) {
12127 
12128     Qualifiers::ObjCLifetime lifetime;
12129 
12130     // Special cases for arrays:
12131     //   - if it's const, use __unsafe_unretained
12132     //   - otherwise, it's an error
12133     if (T->isArrayType()) {
12134       if (!T.isConstQualified()) {
12135         DelayedDiagnostics.add(
12136             sema::DelayedDiagnostic::makeForbiddenType(
12137             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
12138       }
12139       lifetime = Qualifiers::OCL_ExplicitNone;
12140     } else {
12141       lifetime = T->getObjCARCImplicitLifetime();
12142     }
12143     T = Context.getLifetimeQualifiedType(T, lifetime);
12144   }
12145 
12146   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
12147                                          Context.getAdjustedParameterType(T),
12148                                          TSInfo, SC, nullptr);
12149 
12150   // Parameters can not be abstract class types.
12151   // For record types, this is done by the AbstractClassUsageDiagnoser once
12152   // the class has been completely parsed.
12153   if (!CurContext->isRecord() &&
12154       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
12155                              AbstractParamType))
12156     New->setInvalidDecl();
12157 
12158   // Parameter declarators cannot be interface types. All ObjC objects are
12159   // passed by reference.
12160   if (T->isObjCObjectType()) {
12161     SourceLocation TypeEndLoc =
12162         getLocForEndOfToken(TSInfo->getTypeLoc().getLocEnd());
12163     Diag(NameLoc,
12164          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
12165       << FixItHint::CreateInsertion(TypeEndLoc, "*");
12166     T = Context.getObjCObjectPointerType(T);
12167     New->setType(T);
12168   }
12169 
12170   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
12171   // duration shall not be qualified by an address-space qualifier."
12172   // Since all parameters have automatic store duration, they can not have
12173   // an address space.
12174   if (T.getAddressSpace() != LangAS::Default &&
12175       // OpenCL allows function arguments declared to be an array of a type
12176       // to be qualified with an address space.
12177       !(getLangOpts().OpenCL &&
12178         (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
12179     Diag(NameLoc, diag::err_arg_with_address_space);
12180     New->setInvalidDecl();
12181   }
12182 
12183   return New;
12184 }
12185 
12186 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
12187                                            SourceLocation LocAfterDecls) {
12188   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
12189 
12190   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
12191   // for a K&R function.
12192   if (!FTI.hasPrototype) {
12193     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
12194       --i;
12195       if (FTI.Params[i].Param == nullptr) {
12196         SmallString<256> Code;
12197         llvm::raw_svector_ostream(Code)
12198             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
12199         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
12200             << FTI.Params[i].Ident
12201             << FixItHint::CreateInsertion(LocAfterDecls, Code);
12202 
12203         // Implicitly declare the argument as type 'int' for lack of a better
12204         // type.
12205         AttributeFactory attrs;
12206         DeclSpec DS(attrs);
12207         const char* PrevSpec; // unused
12208         unsigned DiagID; // unused
12209         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
12210                            DiagID, Context.getPrintingPolicy());
12211         // Use the identifier location for the type source range.
12212         DS.SetRangeStart(FTI.Params[i].IdentLoc);
12213         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
12214         Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext);
12215         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
12216         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
12217       }
12218     }
12219   }
12220 }
12221 
12222 Decl *
12223 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
12224                               MultiTemplateParamsArg TemplateParameterLists,
12225                               SkipBodyInfo *SkipBody) {
12226   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
12227   assert(D.isFunctionDeclarator() && "Not a function declarator!");
12228   Scope *ParentScope = FnBodyScope->getParent();
12229 
12230   D.setFunctionDefinitionKind(FDK_Definition);
12231   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
12232   return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
12233 }
12234 
12235 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
12236   Consumer.HandleInlineFunctionDefinition(D);
12237 }
12238 
12239 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
12240                              const FunctionDecl*& PossibleZeroParamPrototype) {
12241   // Don't warn about invalid declarations.
12242   if (FD->isInvalidDecl())
12243     return false;
12244 
12245   // Or declarations that aren't global.
12246   if (!FD->isGlobal())
12247     return false;
12248 
12249   // Don't warn about C++ member functions.
12250   if (isa<CXXMethodDecl>(FD))
12251     return false;
12252 
12253   // Don't warn about 'main'.
12254   if (FD->isMain())
12255     return false;
12256 
12257   // Don't warn about inline functions.
12258   if (FD->isInlined())
12259     return false;
12260 
12261   // Don't warn about function templates.
12262   if (FD->getDescribedFunctionTemplate())
12263     return false;
12264 
12265   // Don't warn about function template specializations.
12266   if (FD->isFunctionTemplateSpecialization())
12267     return false;
12268 
12269   // Don't warn for OpenCL kernels.
12270   if (FD->hasAttr<OpenCLKernelAttr>())
12271     return false;
12272 
12273   // Don't warn on explicitly deleted functions.
12274   if (FD->isDeleted())
12275     return false;
12276 
12277   bool MissingPrototype = true;
12278   for (const FunctionDecl *Prev = FD->getPreviousDecl();
12279        Prev; Prev = Prev->getPreviousDecl()) {
12280     // Ignore any declarations that occur in function or method
12281     // scope, because they aren't visible from the header.
12282     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
12283       continue;
12284 
12285     MissingPrototype = !Prev->getType()->isFunctionProtoType();
12286     if (FD->getNumParams() == 0)
12287       PossibleZeroParamPrototype = Prev;
12288     break;
12289   }
12290 
12291   return MissingPrototype;
12292 }
12293 
12294 void
12295 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
12296                                    const FunctionDecl *EffectiveDefinition,
12297                                    SkipBodyInfo *SkipBody) {
12298   const FunctionDecl *Definition = EffectiveDefinition;
12299   if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) {
12300     // If this is a friend function defined in a class template, it does not
12301     // have a body until it is used, nevertheless it is a definition, see
12302     // [temp.inst]p2:
12303     //
12304     // ... for the purpose of determining whether an instantiated redeclaration
12305     // is valid according to [basic.def.odr] and [class.mem], a declaration that
12306     // corresponds to a definition in the template is considered to be a
12307     // definition.
12308     //
12309     // The following code must produce redefinition error:
12310     //
12311     //     template<typename T> struct C20 { friend void func_20() {} };
12312     //     C20<int> c20i;
12313     //     void func_20() {}
12314     //
12315     for (auto I : FD->redecls()) {
12316       if (I != FD && !I->isInvalidDecl() &&
12317           I->getFriendObjectKind() != Decl::FOK_None) {
12318         if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) {
12319           if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
12320             // A merged copy of the same function, instantiated as a member of
12321             // the same class, is OK.
12322             if (declaresSameEntity(OrigFD, Original) &&
12323                 declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()),
12324                                    cast<Decl>(FD->getLexicalDeclContext())))
12325               continue;
12326           }
12327 
12328           if (Original->isThisDeclarationADefinition()) {
12329             Definition = I;
12330             break;
12331           }
12332         }
12333       }
12334     }
12335   }
12336   if (!Definition)
12337     return;
12338 
12339   if (canRedefineFunction(Definition, getLangOpts()))
12340     return;
12341 
12342   // Don't emit an error when this is redefinition of a typo-corrected
12343   // definition.
12344   if (TypoCorrectedFunctionDefinitions.count(Definition))
12345     return;
12346 
12347   // If we don't have a visible definition of the function, and it's inline or
12348   // a template, skip the new definition.
12349   if (SkipBody && !hasVisibleDefinition(Definition) &&
12350       (Definition->getFormalLinkage() == InternalLinkage ||
12351        Definition->isInlined() ||
12352        Definition->getDescribedFunctionTemplate() ||
12353        Definition->getNumTemplateParameterLists())) {
12354     SkipBody->ShouldSkip = true;
12355     if (auto *TD = Definition->getDescribedFunctionTemplate())
12356       makeMergedDefinitionVisible(TD);
12357     makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
12358     return;
12359   }
12360 
12361   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
12362       Definition->getStorageClass() == SC_Extern)
12363     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
12364         << FD->getDeclName() << getLangOpts().CPlusPlus;
12365   else
12366     Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
12367 
12368   Diag(Definition->getLocation(), diag::note_previous_definition);
12369   FD->setInvalidDecl();
12370 }
12371 
12372 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
12373                                    Sema &S) {
12374   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
12375 
12376   LambdaScopeInfo *LSI = S.PushLambdaScope();
12377   LSI->CallOperator = CallOperator;
12378   LSI->Lambda = LambdaClass;
12379   LSI->ReturnType = CallOperator->getReturnType();
12380   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
12381 
12382   if (LCD == LCD_None)
12383     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
12384   else if (LCD == LCD_ByCopy)
12385     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
12386   else if (LCD == LCD_ByRef)
12387     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
12388   DeclarationNameInfo DNI = CallOperator->getNameInfo();
12389 
12390   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
12391   LSI->Mutable = !CallOperator->isConst();
12392 
12393   // Add the captures to the LSI so they can be noted as already
12394   // captured within tryCaptureVar.
12395   auto I = LambdaClass->field_begin();
12396   for (const auto &C : LambdaClass->captures()) {
12397     if (C.capturesVariable()) {
12398       VarDecl *VD = C.getCapturedVar();
12399       if (VD->isInitCapture())
12400         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
12401       QualType CaptureType = VD->getType();
12402       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
12403       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
12404           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
12405           /*EllipsisLoc*/C.isPackExpansion()
12406                          ? C.getEllipsisLoc() : SourceLocation(),
12407           CaptureType, /*Expr*/ nullptr);
12408 
12409     } else if (C.capturesThis()) {
12410       LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
12411                               /*Expr*/ nullptr,
12412                               C.getCaptureKind() == LCK_StarThis);
12413     } else {
12414       LSI->addVLATypeCapture(C.getLocation(), I->getType());
12415     }
12416     ++I;
12417   }
12418 }
12419 
12420 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
12421                                     SkipBodyInfo *SkipBody) {
12422   if (!D) {
12423     // Parsing the function declaration failed in some way. Push on a fake scope
12424     // anyway so we can try to parse the function body.
12425     PushFunctionScope();
12426     return D;
12427   }
12428 
12429   FunctionDecl *FD = nullptr;
12430 
12431   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
12432     FD = FunTmpl->getTemplatedDecl();
12433   else
12434     FD = cast<FunctionDecl>(D);
12435 
12436   // Check for defining attributes before the check for redefinition.
12437   if (const auto *Attr = FD->getAttr<AliasAttr>()) {
12438     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
12439     FD->dropAttr<AliasAttr>();
12440     FD->setInvalidDecl();
12441   }
12442   if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
12443     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
12444     FD->dropAttr<IFuncAttr>();
12445     FD->setInvalidDecl();
12446   }
12447 
12448   // See if this is a redefinition. If 'will have body' is already set, then
12449   // these checks were already performed when it was set.
12450   if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) {
12451     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
12452 
12453     // If we're skipping the body, we're done. Don't enter the scope.
12454     if (SkipBody && SkipBody->ShouldSkip)
12455       return D;
12456   }
12457 
12458   // Mark this function as "will have a body eventually".  This lets users to
12459   // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
12460   // this function.
12461   FD->setWillHaveBody();
12462 
12463   // If we are instantiating a generic lambda call operator, push
12464   // a LambdaScopeInfo onto the function stack.  But use the information
12465   // that's already been calculated (ActOnLambdaExpr) to prime the current
12466   // LambdaScopeInfo.
12467   // When the template operator is being specialized, the LambdaScopeInfo,
12468   // has to be properly restored so that tryCaptureVariable doesn't try
12469   // and capture any new variables. In addition when calculating potential
12470   // captures during transformation of nested lambdas, it is necessary to
12471   // have the LSI properly restored.
12472   if (isGenericLambdaCallOperatorSpecialization(FD)) {
12473     assert(inTemplateInstantiation() &&
12474            "There should be an active template instantiation on the stack "
12475            "when instantiating a generic lambda!");
12476     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
12477   } else {
12478     // Enter a new function scope
12479     PushFunctionScope();
12480   }
12481 
12482   // Builtin functions cannot be defined.
12483   if (unsigned BuiltinID = FD->getBuiltinID()) {
12484     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
12485         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
12486       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
12487       FD->setInvalidDecl();
12488     }
12489   }
12490 
12491   // The return type of a function definition must be complete
12492   // (C99 6.9.1p3, C++ [dcl.fct]p6).
12493   QualType ResultType = FD->getReturnType();
12494   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
12495       !FD->isInvalidDecl() &&
12496       RequireCompleteType(FD->getLocation(), ResultType,
12497                           diag::err_func_def_incomplete_result))
12498     FD->setInvalidDecl();
12499 
12500   if (FnBodyScope)
12501     PushDeclContext(FnBodyScope, FD);
12502 
12503   // Check the validity of our function parameters
12504   CheckParmsForFunctionDef(FD->parameters(),
12505                            /*CheckParameterNames=*/true);
12506 
12507   // Add non-parameter declarations already in the function to the current
12508   // scope.
12509   if (FnBodyScope) {
12510     for (Decl *NPD : FD->decls()) {
12511       auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
12512       if (!NonParmDecl)
12513         continue;
12514       assert(!isa<ParmVarDecl>(NonParmDecl) &&
12515              "parameters should not be in newly created FD yet");
12516 
12517       // If the decl has a name, make it accessible in the current scope.
12518       if (NonParmDecl->getDeclName())
12519         PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
12520 
12521       // Similarly, dive into enums and fish their constants out, making them
12522       // accessible in this scope.
12523       if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
12524         for (auto *EI : ED->enumerators())
12525           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
12526       }
12527     }
12528   }
12529 
12530   // Introduce our parameters into the function scope
12531   for (auto Param : FD->parameters()) {
12532     Param->setOwningFunction(FD);
12533 
12534     // If this has an identifier, add it to the scope stack.
12535     if (Param->getIdentifier() && FnBodyScope) {
12536       CheckShadow(FnBodyScope, Param);
12537 
12538       PushOnScopeChains(Param, FnBodyScope);
12539     }
12540   }
12541 
12542   // Ensure that the function's exception specification is instantiated.
12543   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
12544     ResolveExceptionSpec(D->getLocation(), FPT);
12545 
12546   // dllimport cannot be applied to non-inline function definitions.
12547   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
12548       !FD->isTemplateInstantiation()) {
12549     assert(!FD->hasAttr<DLLExportAttr>());
12550     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
12551     FD->setInvalidDecl();
12552     return D;
12553   }
12554   // We want to attach documentation to original Decl (which might be
12555   // a function template).
12556   ActOnDocumentableDecl(D);
12557   if (getCurLexicalContext()->isObjCContainer() &&
12558       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
12559       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
12560     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
12561 
12562   return D;
12563 }
12564 
12565 /// \brief Given the set of return statements within a function body,
12566 /// compute the variables that are subject to the named return value
12567 /// optimization.
12568 ///
12569 /// Each of the variables that is subject to the named return value
12570 /// optimization will be marked as NRVO variables in the AST, and any
12571 /// return statement that has a marked NRVO variable as its NRVO candidate can
12572 /// use the named return value optimization.
12573 ///
12574 /// This function applies a very simplistic algorithm for NRVO: if every return
12575 /// statement in the scope of a variable has the same NRVO candidate, that
12576 /// candidate is an NRVO variable.
12577 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
12578   ReturnStmt **Returns = Scope->Returns.data();
12579 
12580   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
12581     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
12582       if (!NRVOCandidate->isNRVOVariable())
12583         Returns[I]->setNRVOCandidate(nullptr);
12584     }
12585   }
12586 }
12587 
12588 bool Sema::canDelayFunctionBody(const Declarator &D) {
12589   // We can't delay parsing the body of a constexpr function template (yet).
12590   if (D.getDeclSpec().isConstexprSpecified())
12591     return false;
12592 
12593   // We can't delay parsing the body of a function template with a deduced
12594   // return type (yet).
12595   if (D.getDeclSpec().hasAutoTypeSpec()) {
12596     // If the placeholder introduces a non-deduced trailing return type,
12597     // we can still delay parsing it.
12598     if (D.getNumTypeObjects()) {
12599       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
12600       if (Outer.Kind == DeclaratorChunk::Function &&
12601           Outer.Fun.hasTrailingReturnType()) {
12602         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
12603         return Ty.isNull() || !Ty->isUndeducedType();
12604       }
12605     }
12606     return false;
12607   }
12608 
12609   return true;
12610 }
12611 
12612 bool Sema::canSkipFunctionBody(Decl *D) {
12613   // We cannot skip the body of a function (or function template) which is
12614   // constexpr, since we may need to evaluate its body in order to parse the
12615   // rest of the file.
12616   // We cannot skip the body of a function with an undeduced return type,
12617   // because any callers of that function need to know the type.
12618   if (const FunctionDecl *FD = D->getAsFunction())
12619     if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
12620       return false;
12621   return Consumer.shouldSkipFunctionBody(D);
12622 }
12623 
12624 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
12625   if (!Decl)
12626     return nullptr;
12627   if (FunctionDecl *FD = Decl->getAsFunction())
12628     FD->setHasSkippedBody();
12629   else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
12630     MD->setHasSkippedBody();
12631   return Decl;
12632 }
12633 
12634 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
12635   return ActOnFinishFunctionBody(D, BodyArg, false);
12636 }
12637 
12638 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
12639                                     bool IsInstantiation) {
12640   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
12641 
12642   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
12643   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
12644 
12645   if (getLangOpts().CoroutinesTS && getCurFunction()->isCoroutine())
12646     CheckCompletedCoroutineBody(FD, Body);
12647 
12648   if (FD) {
12649     FD->setBody(Body);
12650     FD->setWillHaveBody(false);
12651 
12652     if (getLangOpts().CPlusPlus14) {
12653       if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
12654           FD->getReturnType()->isUndeducedType()) {
12655         // If the function has a deduced result type but contains no 'return'
12656         // statements, the result type as written must be exactly 'auto', and
12657         // the deduced result type is 'void'.
12658         if (!FD->getReturnType()->getAs<AutoType>()) {
12659           Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
12660               << FD->getReturnType();
12661           FD->setInvalidDecl();
12662         } else {
12663           // Substitute 'void' for the 'auto' in the type.
12664           TypeLoc ResultType = getReturnTypeLoc(FD);
12665           Context.adjustDeducedFunctionResultType(
12666               FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
12667         }
12668       }
12669     } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
12670       // In C++11, we don't use 'auto' deduction rules for lambda call
12671       // operators because we don't support return type deduction.
12672       auto *LSI = getCurLambda();
12673       if (LSI->HasImplicitReturnType) {
12674         deduceClosureReturnType(*LSI);
12675 
12676         // C++11 [expr.prim.lambda]p4:
12677         //   [...] if there are no return statements in the compound-statement
12678         //   [the deduced type is] the type void
12679         QualType RetType =
12680             LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
12681 
12682         // Update the return type to the deduced type.
12683         const FunctionProtoType *Proto =
12684             FD->getType()->getAs<FunctionProtoType>();
12685         FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
12686                                             Proto->getExtProtoInfo()));
12687       }
12688     }
12689 
12690     // If the function implicitly returns zero (like 'main') or is naked,
12691     // don't complain about missing return statements.
12692     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
12693       WP.disableCheckFallThrough();
12694 
12695     // MSVC permits the use of pure specifier (=0) on function definition,
12696     // defined at class scope, warn about this non-standard construct.
12697     if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
12698       Diag(FD->getLocation(), diag::ext_pure_function_definition);
12699 
12700     if (!FD->isInvalidDecl()) {
12701       // Don't diagnose unused parameters of defaulted or deleted functions.
12702       if (!FD->isDeleted() && !FD->isDefaulted())
12703         DiagnoseUnusedParameters(FD->parameters());
12704       DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
12705                                              FD->getReturnType(), FD);
12706 
12707       // If this is a structor, we need a vtable.
12708       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
12709         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
12710       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
12711         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
12712 
12713       // Try to apply the named return value optimization. We have to check
12714       // if we can do this here because lambdas keep return statements around
12715       // to deduce an implicit return type.
12716       if (FD->getReturnType()->isRecordType() &&
12717           (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
12718         computeNRVO(Body, getCurFunction());
12719     }
12720 
12721     // GNU warning -Wmissing-prototypes:
12722     //   Warn if a global function is defined without a previous
12723     //   prototype declaration. This warning is issued even if the
12724     //   definition itself provides a prototype. The aim is to detect
12725     //   global functions that fail to be declared in header files.
12726     const FunctionDecl *PossibleZeroParamPrototype = nullptr;
12727     if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
12728       Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
12729 
12730       if (PossibleZeroParamPrototype) {
12731         // We found a declaration that is not a prototype,
12732         // but that could be a zero-parameter prototype
12733         if (TypeSourceInfo *TI =
12734                 PossibleZeroParamPrototype->getTypeSourceInfo()) {
12735           TypeLoc TL = TI->getTypeLoc();
12736           if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
12737             Diag(PossibleZeroParamPrototype->getLocation(),
12738                  diag::note_declaration_not_a_prototype)
12739                 << PossibleZeroParamPrototype
12740                 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
12741         }
12742       }
12743 
12744       // GNU warning -Wstrict-prototypes
12745       //   Warn if K&R function is defined without a previous declaration.
12746       //   This warning is issued only if the definition itself does not provide
12747       //   a prototype. Only K&R definitions do not provide a prototype.
12748       //   An empty list in a function declarator that is part of a definition
12749       //   of that function specifies that the function has no parameters
12750       //   (C99 6.7.5.3p14)
12751       if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 &&
12752           !LangOpts.CPlusPlus) {
12753         TypeSourceInfo *TI = FD->getTypeSourceInfo();
12754         TypeLoc TL = TI->getTypeLoc();
12755         FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
12756         Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
12757       }
12758     }
12759 
12760     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
12761       const CXXMethodDecl *KeyFunction;
12762       if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
12763           MD->isVirtual() &&
12764           (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
12765           MD == KeyFunction->getCanonicalDecl()) {
12766         // Update the key-function state if necessary for this ABI.
12767         if (FD->isInlined() &&
12768             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
12769           Context.setNonKeyFunction(MD);
12770 
12771           // If the newly-chosen key function is already defined, then we
12772           // need to mark the vtable as used retroactively.
12773           KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
12774           const FunctionDecl *Definition;
12775           if (KeyFunction && KeyFunction->isDefined(Definition))
12776             MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
12777         } else {
12778           // We just defined they key function; mark the vtable as used.
12779           MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
12780         }
12781       }
12782     }
12783 
12784     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
12785            "Function parsing confused");
12786   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
12787     assert(MD == getCurMethodDecl() && "Method parsing confused");
12788     MD->setBody(Body);
12789     if (!MD->isInvalidDecl()) {
12790       DiagnoseUnusedParameters(MD->parameters());
12791       DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
12792                                              MD->getReturnType(), MD);
12793 
12794       if (Body)
12795         computeNRVO(Body, getCurFunction());
12796     }
12797     if (getCurFunction()->ObjCShouldCallSuper) {
12798       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
12799         << MD->getSelector().getAsString();
12800       getCurFunction()->ObjCShouldCallSuper = false;
12801     }
12802     if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
12803       const ObjCMethodDecl *InitMethod = nullptr;
12804       bool isDesignated =
12805           MD->isDesignatedInitializerForTheInterface(&InitMethod);
12806       assert(isDesignated && InitMethod);
12807       (void)isDesignated;
12808 
12809       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
12810         auto IFace = MD->getClassInterface();
12811         if (!IFace)
12812           return false;
12813         auto SuperD = IFace->getSuperClass();
12814         if (!SuperD)
12815           return false;
12816         return SuperD->getIdentifier() ==
12817             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
12818       };
12819       // Don't issue this warning for unavailable inits or direct subclasses
12820       // of NSObject.
12821       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
12822         Diag(MD->getLocation(),
12823              diag::warn_objc_designated_init_missing_super_call);
12824         Diag(InitMethod->getLocation(),
12825              diag::note_objc_designated_init_marked_here);
12826       }
12827       getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
12828     }
12829     if (getCurFunction()->ObjCWarnForNoInitDelegation) {
12830       // Don't issue this warning for unavaialable inits.
12831       if (!MD->isUnavailable())
12832         Diag(MD->getLocation(),
12833              diag::warn_objc_secondary_init_missing_init_call);
12834       getCurFunction()->ObjCWarnForNoInitDelegation = false;
12835     }
12836   } else {
12837     // Parsing the function declaration failed in some way. Pop the fake scope
12838     // we pushed on.
12839     PopFunctionScopeInfo(ActivePolicy, dcl);
12840     return nullptr;
12841   }
12842 
12843   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
12844     DiagnoseUnguardedAvailabilityViolations(dcl);
12845 
12846   assert(!getCurFunction()->ObjCShouldCallSuper &&
12847          "This should only be set for ObjC methods, which should have been "
12848          "handled in the block above.");
12849 
12850   // Verify and clean out per-function state.
12851   if (Body && (!FD || !FD->isDefaulted())) {
12852     // C++ constructors that have function-try-blocks can't have return
12853     // statements in the handlers of that block. (C++ [except.handle]p14)
12854     // Verify this.
12855     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
12856       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
12857 
12858     // Verify that gotos and switch cases don't jump into scopes illegally.
12859     if (getCurFunction()->NeedsScopeChecking() &&
12860         !PP.isCodeCompletionEnabled())
12861       DiagnoseInvalidJumps(Body);
12862 
12863     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
12864       if (!Destructor->getParent()->isDependentType())
12865         CheckDestructor(Destructor);
12866 
12867       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
12868                                              Destructor->getParent());
12869     }
12870 
12871     // If any errors have occurred, clear out any temporaries that may have
12872     // been leftover. This ensures that these temporaries won't be picked up for
12873     // deletion in some later function.
12874     if (getDiagnostics().hasErrorOccurred() ||
12875         getDiagnostics().getSuppressAllDiagnostics()) {
12876       DiscardCleanupsInEvaluationContext();
12877     }
12878     if (!getDiagnostics().hasUncompilableErrorOccurred() &&
12879         !isa<FunctionTemplateDecl>(dcl)) {
12880       // Since the body is valid, issue any analysis-based warnings that are
12881       // enabled.
12882       ActivePolicy = &WP;
12883     }
12884 
12885     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
12886         (!CheckConstexprFunctionDecl(FD) ||
12887          !CheckConstexprFunctionBody(FD, Body)))
12888       FD->setInvalidDecl();
12889 
12890     if (FD && FD->hasAttr<NakedAttr>()) {
12891       for (const Stmt *S : Body->children()) {
12892         // Allow local register variables without initializer as they don't
12893         // require prologue.
12894         bool RegisterVariables = false;
12895         if (auto *DS = dyn_cast<DeclStmt>(S)) {
12896           for (const auto *Decl : DS->decls()) {
12897             if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
12898               RegisterVariables =
12899                   Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
12900               if (!RegisterVariables)
12901                 break;
12902             }
12903           }
12904         }
12905         if (RegisterVariables)
12906           continue;
12907         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
12908           Diag(S->getLocStart(), diag::err_non_asm_stmt_in_naked_function);
12909           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
12910           FD->setInvalidDecl();
12911           break;
12912         }
12913       }
12914     }
12915 
12916     assert(ExprCleanupObjects.size() ==
12917                ExprEvalContexts.back().NumCleanupObjects &&
12918            "Leftover temporaries in function");
12919     assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
12920     assert(MaybeODRUseExprs.empty() &&
12921            "Leftover expressions for odr-use checking");
12922   }
12923 
12924   if (!IsInstantiation)
12925     PopDeclContext();
12926 
12927   PopFunctionScopeInfo(ActivePolicy, dcl);
12928   // If any errors have occurred, clear out any temporaries that may have
12929   // been leftover. This ensures that these temporaries won't be picked up for
12930   // deletion in some later function.
12931   if (getDiagnostics().hasErrorOccurred()) {
12932     DiscardCleanupsInEvaluationContext();
12933   }
12934 
12935   return dcl;
12936 }
12937 
12938 /// When we finish delayed parsing of an attribute, we must attach it to the
12939 /// relevant Decl.
12940 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
12941                                        ParsedAttributes &Attrs) {
12942   // Always attach attributes to the underlying decl.
12943   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
12944     D = TD->getTemplatedDecl();
12945   ProcessDeclAttributeList(S, D, Attrs.getList());
12946 
12947   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
12948     if (Method->isStatic())
12949       checkThisInStaticMemberFunctionAttributes(Method);
12950 }
12951 
12952 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
12953 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
12954 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
12955                                           IdentifierInfo &II, Scope *S) {
12956   // Find the scope in which the identifier is injected and the corresponding
12957   // DeclContext.
12958   // FIXME: C89 does not say what happens if there is no enclosing block scope.
12959   // In that case, we inject the declaration into the translation unit scope
12960   // instead.
12961   Scope *BlockScope = S;
12962   while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
12963     BlockScope = BlockScope->getParent();
12964 
12965   Scope *ContextScope = BlockScope;
12966   while (!ContextScope->getEntity())
12967     ContextScope = ContextScope->getParent();
12968   ContextRAII SavedContext(*this, ContextScope->getEntity());
12969 
12970   // Before we produce a declaration for an implicitly defined
12971   // function, see whether there was a locally-scoped declaration of
12972   // this name as a function or variable. If so, use that
12973   // (non-visible) declaration, and complain about it.
12974   NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
12975   if (ExternCPrev) {
12976     // We still need to inject the function into the enclosing block scope so
12977     // that later (non-call) uses can see it.
12978     PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
12979 
12980     // C89 footnote 38:
12981     //   If in fact it is not defined as having type "function returning int",
12982     //   the behavior is undefined.
12983     if (!isa<FunctionDecl>(ExternCPrev) ||
12984         !Context.typesAreCompatible(
12985             cast<FunctionDecl>(ExternCPrev)->getType(),
12986             Context.getFunctionNoProtoType(Context.IntTy))) {
12987       Diag(Loc, diag::ext_use_out_of_scope_declaration)
12988           << ExternCPrev << !getLangOpts().C99;
12989       Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
12990       return ExternCPrev;
12991     }
12992   }
12993 
12994   // Extension in C99.  Legal in C90, but warn about it.
12995   // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
12996   unsigned diag_id;
12997   if (II.getName().startswith("__builtin_"))
12998     diag_id = diag::warn_builtin_unknown;
12999   else if (getLangOpts().C99 || getLangOpts().OpenCL)
13000     diag_id = diag::ext_implicit_function_decl;
13001   else
13002     diag_id = diag::warn_implicit_function_decl;
13003   Diag(Loc, diag_id) << &II << getLangOpts().OpenCL;
13004 
13005   // If we found a prior declaration of this function, don't bother building
13006   // another one. We've already pushed that one into scope, so there's nothing
13007   // more to do.
13008   if (ExternCPrev)
13009     return ExternCPrev;
13010 
13011   // Because typo correction is expensive, only do it if the implicit
13012   // function declaration is going to be treated as an error.
13013   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
13014     TypoCorrection Corrected;
13015     if (S &&
13016         (Corrected = CorrectTypo(
13017              DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr,
13018              llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError)))
13019       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
13020                    /*ErrorRecovery*/false);
13021   }
13022 
13023   // Set a Declarator for the implicit definition: int foo();
13024   const char *Dummy;
13025   AttributeFactory attrFactory;
13026   DeclSpec DS(attrFactory);
13027   unsigned DiagID;
13028   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
13029                                   Context.getPrintingPolicy());
13030   (void)Error; // Silence warning.
13031   assert(!Error && "Error setting up implicit decl!");
13032   SourceLocation NoLoc;
13033   Declarator D(DS, DeclaratorContext::BlockContext);
13034   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
13035                                              /*IsAmbiguous=*/false,
13036                                              /*LParenLoc=*/NoLoc,
13037                                              /*Params=*/nullptr,
13038                                              /*NumParams=*/0,
13039                                              /*EllipsisLoc=*/NoLoc,
13040                                              /*RParenLoc=*/NoLoc,
13041                                              /*TypeQuals=*/0,
13042                                              /*RefQualifierIsLvalueRef=*/true,
13043                                              /*RefQualifierLoc=*/NoLoc,
13044                                              /*ConstQualifierLoc=*/NoLoc,
13045                                              /*VolatileQualifierLoc=*/NoLoc,
13046                                              /*RestrictQualifierLoc=*/NoLoc,
13047                                              /*MutableLoc=*/NoLoc,
13048                                              EST_None,
13049                                              /*ESpecRange=*/SourceRange(),
13050                                              /*Exceptions=*/nullptr,
13051                                              /*ExceptionRanges=*/nullptr,
13052                                              /*NumExceptions=*/0,
13053                                              /*NoexceptExpr=*/nullptr,
13054                                              /*ExceptionSpecTokens=*/nullptr,
13055                                              /*DeclsInPrototype=*/None,
13056                                              Loc, Loc, D),
13057                 DS.getAttributes(),
13058                 SourceLocation());
13059   D.SetIdentifier(&II, Loc);
13060 
13061   // Insert this function into the enclosing block scope.
13062   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
13063   FD->setImplicit();
13064 
13065   AddKnownFunctionAttributes(FD);
13066 
13067   return FD;
13068 }
13069 
13070 /// \brief Adds any function attributes that we know a priori based on
13071 /// the declaration of this function.
13072 ///
13073 /// These attributes can apply both to implicitly-declared builtins
13074 /// (like __builtin___printf_chk) or to library-declared functions
13075 /// like NSLog or printf.
13076 ///
13077 /// We need to check for duplicate attributes both here and where user-written
13078 /// attributes are applied to declarations.
13079 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
13080   if (FD->isInvalidDecl())
13081     return;
13082 
13083   // If this is a built-in function, map its builtin attributes to
13084   // actual attributes.
13085   if (unsigned BuiltinID = FD->getBuiltinID()) {
13086     // Handle printf-formatting attributes.
13087     unsigned FormatIdx;
13088     bool HasVAListArg;
13089     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
13090       if (!FD->hasAttr<FormatAttr>()) {
13091         const char *fmt = "printf";
13092         unsigned int NumParams = FD->getNumParams();
13093         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
13094             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
13095           fmt = "NSString";
13096         FD->addAttr(FormatAttr::CreateImplicit(Context,
13097                                                &Context.Idents.get(fmt),
13098                                                FormatIdx+1,
13099                                                HasVAListArg ? 0 : FormatIdx+2,
13100                                                FD->getLocation()));
13101       }
13102     }
13103     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
13104                                              HasVAListArg)) {
13105      if (!FD->hasAttr<FormatAttr>())
13106        FD->addAttr(FormatAttr::CreateImplicit(Context,
13107                                               &Context.Idents.get("scanf"),
13108                                               FormatIdx+1,
13109                                               HasVAListArg ? 0 : FormatIdx+2,
13110                                               FD->getLocation()));
13111     }
13112 
13113     // Mark const if we don't care about errno and that is the only thing
13114     // preventing the function from being const. This allows IRgen to use LLVM
13115     // intrinsics for such functions.
13116     if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
13117         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
13118       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13119 
13120     // We make "fma" on some platforms const because we know it does not set
13121     // errno in those environments even though it could set errno based on the
13122     // C standard.
13123     const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
13124     if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
13125         !FD->hasAttr<ConstAttr>()) {
13126       switch (BuiltinID) {
13127       case Builtin::BI__builtin_fma:
13128       case Builtin::BI__builtin_fmaf:
13129       case Builtin::BI__builtin_fmal:
13130       case Builtin::BIfma:
13131       case Builtin::BIfmaf:
13132       case Builtin::BIfmal:
13133         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13134         break;
13135       default:
13136         break;
13137       }
13138     }
13139 
13140     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
13141         !FD->hasAttr<ReturnsTwiceAttr>())
13142       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
13143                                          FD->getLocation()));
13144     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
13145       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
13146     if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
13147       FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
13148     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
13149       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13150     if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
13151         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
13152       // Add the appropriate attribute, depending on the CUDA compilation mode
13153       // and which target the builtin belongs to. For example, during host
13154       // compilation, aux builtins are __device__, while the rest are __host__.
13155       if (getLangOpts().CUDAIsDevice !=
13156           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
13157         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
13158       else
13159         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
13160     }
13161   }
13162 
13163   // If C++ exceptions are enabled but we are told extern "C" functions cannot
13164   // throw, add an implicit nothrow attribute to any extern "C" function we come
13165   // across.
13166   if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
13167       FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
13168     const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
13169     if (!FPT || FPT->getExceptionSpecType() == EST_None)
13170       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
13171   }
13172 
13173   IdentifierInfo *Name = FD->getIdentifier();
13174   if (!Name)
13175     return;
13176   if ((!getLangOpts().CPlusPlus &&
13177        FD->getDeclContext()->isTranslationUnit()) ||
13178       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
13179        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
13180        LinkageSpecDecl::lang_c)) {
13181     // Okay: this could be a libc/libm/Objective-C function we know
13182     // about.
13183   } else
13184     return;
13185 
13186   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
13187     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
13188     // target-specific builtins, perhaps?
13189     if (!FD->hasAttr<FormatAttr>())
13190       FD->addAttr(FormatAttr::CreateImplicit(Context,
13191                                              &Context.Idents.get("printf"), 2,
13192                                              Name->isStr("vasprintf") ? 0 : 3,
13193                                              FD->getLocation()));
13194   }
13195 
13196   if (Name->isStr("__CFStringMakeConstantString")) {
13197     // We already have a __builtin___CFStringMakeConstantString,
13198     // but builds that use -fno-constant-cfstrings don't go through that.
13199     if (!FD->hasAttr<FormatArgAttr>())
13200       FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
13201                                                 FD->getLocation()));
13202   }
13203 }
13204 
13205 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
13206                                     TypeSourceInfo *TInfo) {
13207   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
13208   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
13209 
13210   if (!TInfo) {
13211     assert(D.isInvalidType() && "no declarator info for valid type");
13212     TInfo = Context.getTrivialTypeSourceInfo(T);
13213   }
13214 
13215   // Scope manipulation handled by caller.
13216   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
13217                                            D.getLocStart(),
13218                                            D.getIdentifierLoc(),
13219                                            D.getIdentifier(),
13220                                            TInfo);
13221 
13222   // Bail out immediately if we have an invalid declaration.
13223   if (D.isInvalidType()) {
13224     NewTD->setInvalidDecl();
13225     return NewTD;
13226   }
13227 
13228   if (D.getDeclSpec().isModulePrivateSpecified()) {
13229     if (CurContext->isFunctionOrMethod())
13230       Diag(NewTD->getLocation(), diag::err_module_private_local)
13231         << 2 << NewTD->getDeclName()
13232         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13233         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13234     else
13235       NewTD->setModulePrivate();
13236   }
13237 
13238   // C++ [dcl.typedef]p8:
13239   //   If the typedef declaration defines an unnamed class (or
13240   //   enum), the first typedef-name declared by the declaration
13241   //   to be that class type (or enum type) is used to denote the
13242   //   class type (or enum type) for linkage purposes only.
13243   // We need to check whether the type was declared in the declaration.
13244   switch (D.getDeclSpec().getTypeSpecType()) {
13245   case TST_enum:
13246   case TST_struct:
13247   case TST_interface:
13248   case TST_union:
13249   case TST_class: {
13250     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
13251     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
13252     break;
13253   }
13254 
13255   default:
13256     break;
13257   }
13258 
13259   return NewTD;
13260 }
13261 
13262 /// \brief Check that this is a valid underlying type for an enum declaration.
13263 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
13264   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
13265   QualType T = TI->getType();
13266 
13267   if (T->isDependentType())
13268     return false;
13269 
13270   if (const BuiltinType *BT = T->getAs<BuiltinType>())
13271     if (BT->isInteger())
13272       return false;
13273 
13274   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
13275   return true;
13276 }
13277 
13278 /// Check whether this is a valid redeclaration of a previous enumeration.
13279 /// \return true if the redeclaration was invalid.
13280 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
13281                                   QualType EnumUnderlyingTy, bool IsFixed,
13282                                   const EnumDecl *Prev) {
13283   if (IsScoped != Prev->isScoped()) {
13284     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
13285       << Prev->isScoped();
13286     Diag(Prev->getLocation(), diag::note_previous_declaration);
13287     return true;
13288   }
13289 
13290   if (IsFixed && Prev->isFixed()) {
13291     if (!EnumUnderlyingTy->isDependentType() &&
13292         !Prev->getIntegerType()->isDependentType() &&
13293         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
13294                                         Prev->getIntegerType())) {
13295       // TODO: Highlight the underlying type of the redeclaration.
13296       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
13297         << EnumUnderlyingTy << Prev->getIntegerType();
13298       Diag(Prev->getLocation(), diag::note_previous_declaration)
13299           << Prev->getIntegerTypeRange();
13300       return true;
13301     }
13302   } else if (IsFixed != Prev->isFixed()) {
13303     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
13304       << Prev->isFixed();
13305     Diag(Prev->getLocation(), diag::note_previous_declaration);
13306     return true;
13307   }
13308 
13309   return false;
13310 }
13311 
13312 /// \brief Get diagnostic %select index for tag kind for
13313 /// redeclaration diagnostic message.
13314 /// WARNING: Indexes apply to particular diagnostics only!
13315 ///
13316 /// \returns diagnostic %select index.
13317 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
13318   switch (Tag) {
13319   case TTK_Struct: return 0;
13320   case TTK_Interface: return 1;
13321   case TTK_Class:  return 2;
13322   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
13323   }
13324 }
13325 
13326 /// \brief Determine if tag kind is a class-key compatible with
13327 /// class for redeclaration (class, struct, or __interface).
13328 ///
13329 /// \returns true iff the tag kind is compatible.
13330 static bool isClassCompatTagKind(TagTypeKind Tag)
13331 {
13332   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
13333 }
13334 
13335 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
13336                                              TagTypeKind TTK) {
13337   if (isa<TypedefDecl>(PrevDecl))
13338     return NTK_Typedef;
13339   else if (isa<TypeAliasDecl>(PrevDecl))
13340     return NTK_TypeAlias;
13341   else if (isa<ClassTemplateDecl>(PrevDecl))
13342     return NTK_Template;
13343   else if (isa<TypeAliasTemplateDecl>(PrevDecl))
13344     return NTK_TypeAliasTemplate;
13345   else if (isa<TemplateTemplateParmDecl>(PrevDecl))
13346     return NTK_TemplateTemplateArgument;
13347   switch (TTK) {
13348   case TTK_Struct:
13349   case TTK_Interface:
13350   case TTK_Class:
13351     return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
13352   case TTK_Union:
13353     return NTK_NonUnion;
13354   case TTK_Enum:
13355     return NTK_NonEnum;
13356   }
13357   llvm_unreachable("invalid TTK");
13358 }
13359 
13360 /// \brief Determine whether a tag with a given kind is acceptable
13361 /// as a redeclaration of the given tag declaration.
13362 ///
13363 /// \returns true if the new tag kind is acceptable, false otherwise.
13364 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
13365                                         TagTypeKind NewTag, bool isDefinition,
13366                                         SourceLocation NewTagLoc,
13367                                         const IdentifierInfo *Name) {
13368   // C++ [dcl.type.elab]p3:
13369   //   The class-key or enum keyword present in the
13370   //   elaborated-type-specifier shall agree in kind with the
13371   //   declaration to which the name in the elaborated-type-specifier
13372   //   refers. This rule also applies to the form of
13373   //   elaborated-type-specifier that declares a class-name or
13374   //   friend class since it can be construed as referring to the
13375   //   definition of the class. Thus, in any
13376   //   elaborated-type-specifier, the enum keyword shall be used to
13377   //   refer to an enumeration (7.2), the union class-key shall be
13378   //   used to refer to a union (clause 9), and either the class or
13379   //   struct class-key shall be used to refer to a class (clause 9)
13380   //   declared using the class or struct class-key.
13381   TagTypeKind OldTag = Previous->getTagKind();
13382   if (!isDefinition || !isClassCompatTagKind(NewTag))
13383     if (OldTag == NewTag)
13384       return true;
13385 
13386   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
13387     // Warn about the struct/class tag mismatch.
13388     bool isTemplate = false;
13389     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
13390       isTemplate = Record->getDescribedClassTemplate();
13391 
13392     if (inTemplateInstantiation()) {
13393       // In a template instantiation, do not offer fix-its for tag mismatches
13394       // since they usually mess up the template instead of fixing the problem.
13395       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
13396         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
13397         << getRedeclDiagFromTagKind(OldTag);
13398       return true;
13399     }
13400 
13401     if (isDefinition) {
13402       // On definitions, check previous tags and issue a fix-it for each
13403       // one that doesn't match the current tag.
13404       if (Previous->getDefinition()) {
13405         // Don't suggest fix-its for redefinitions.
13406         return true;
13407       }
13408 
13409       bool previousMismatch = false;
13410       for (auto I : Previous->redecls()) {
13411         if (I->getTagKind() != NewTag) {
13412           if (!previousMismatch) {
13413             previousMismatch = true;
13414             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
13415               << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
13416               << getRedeclDiagFromTagKind(I->getTagKind());
13417           }
13418           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
13419             << getRedeclDiagFromTagKind(NewTag)
13420             << FixItHint::CreateReplacement(I->getInnerLocStart(),
13421                  TypeWithKeyword::getTagTypeKindName(NewTag));
13422         }
13423       }
13424       return true;
13425     }
13426 
13427     // Check for a previous definition.  If current tag and definition
13428     // are same type, do nothing.  If no definition, but disagree with
13429     // with previous tag type, give a warning, but no fix-it.
13430     const TagDecl *Redecl = Previous->getDefinition() ?
13431                             Previous->getDefinition() : Previous;
13432     if (Redecl->getTagKind() == NewTag) {
13433       return true;
13434     }
13435 
13436     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
13437       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
13438       << getRedeclDiagFromTagKind(OldTag);
13439     Diag(Redecl->getLocation(), diag::note_previous_use);
13440 
13441     // If there is a previous definition, suggest a fix-it.
13442     if (Previous->getDefinition()) {
13443         Diag(NewTagLoc, diag::note_struct_class_suggestion)
13444           << getRedeclDiagFromTagKind(Redecl->getTagKind())
13445           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
13446                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
13447     }
13448 
13449     return true;
13450   }
13451   return false;
13452 }
13453 
13454 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
13455 /// from an outer enclosing namespace or file scope inside a friend declaration.
13456 /// This should provide the commented out code in the following snippet:
13457 ///   namespace N {
13458 ///     struct X;
13459 ///     namespace M {
13460 ///       struct Y { friend struct /*N::*/ X; };
13461 ///     }
13462 ///   }
13463 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
13464                                          SourceLocation NameLoc) {
13465   // While the decl is in a namespace, do repeated lookup of that name and see
13466   // if we get the same namespace back.  If we do not, continue until
13467   // translation unit scope, at which point we have a fully qualified NNS.
13468   SmallVector<IdentifierInfo *, 4> Namespaces;
13469   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
13470   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
13471     // This tag should be declared in a namespace, which can only be enclosed by
13472     // other namespaces.  Bail if there's an anonymous namespace in the chain.
13473     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
13474     if (!Namespace || Namespace->isAnonymousNamespace())
13475       return FixItHint();
13476     IdentifierInfo *II = Namespace->getIdentifier();
13477     Namespaces.push_back(II);
13478     NamedDecl *Lookup = SemaRef.LookupSingleName(
13479         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
13480     if (Lookup == Namespace)
13481       break;
13482   }
13483 
13484   // Once we have all the namespaces, reverse them to go outermost first, and
13485   // build an NNS.
13486   SmallString<64> Insertion;
13487   llvm::raw_svector_ostream OS(Insertion);
13488   if (DC->isTranslationUnit())
13489     OS << "::";
13490   std::reverse(Namespaces.begin(), Namespaces.end());
13491   for (auto *II : Namespaces)
13492     OS << II->getName() << "::";
13493   return FixItHint::CreateInsertion(NameLoc, Insertion);
13494 }
13495 
13496 /// \brief Determine whether a tag originally declared in context \p OldDC can
13497 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
13498 /// found a declaration in \p OldDC as a previous decl, perhaps through a
13499 /// using-declaration).
13500 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
13501                                          DeclContext *NewDC) {
13502   OldDC = OldDC->getRedeclContext();
13503   NewDC = NewDC->getRedeclContext();
13504 
13505   if (OldDC->Equals(NewDC))
13506     return true;
13507 
13508   // In MSVC mode, we allow a redeclaration if the contexts are related (either
13509   // encloses the other).
13510   if (S.getLangOpts().MSVCCompat &&
13511       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
13512     return true;
13513 
13514   return false;
13515 }
13516 
13517 /// \brief This is invoked when we see 'struct foo' or 'struct {'.  In the
13518 /// former case, Name will be non-null.  In the later case, Name will be null.
13519 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
13520 /// reference/declaration/definition of a tag.
13521 ///
13522 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
13523 /// trailing-type-specifier) other than one in an alias-declaration.
13524 ///
13525 /// \param SkipBody If non-null, will be set to indicate if the caller should
13526 /// skip the definition of this tag and treat it as if it were a declaration.
13527 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
13528                      SourceLocation KWLoc, CXXScopeSpec &SS,
13529                      IdentifierInfo *Name, SourceLocation NameLoc,
13530                      AttributeList *Attr, AccessSpecifier AS,
13531                      SourceLocation ModulePrivateLoc,
13532                      MultiTemplateParamsArg TemplateParameterLists,
13533                      bool &OwnedDecl, bool &IsDependent,
13534                      SourceLocation ScopedEnumKWLoc,
13535                      bool ScopedEnumUsesClassTag,
13536                      TypeResult UnderlyingType,
13537                      bool IsTypeSpecifier, bool IsTemplateParamOrArg,
13538                      SkipBodyInfo *SkipBody) {
13539   // If this is not a definition, it must have a name.
13540   IdentifierInfo *OrigName = Name;
13541   assert((Name != nullptr || TUK == TUK_Definition) &&
13542          "Nameless record must be a definition!");
13543   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
13544 
13545   OwnedDecl = false;
13546   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
13547   bool ScopedEnum = ScopedEnumKWLoc.isValid();
13548 
13549   // FIXME: Check member specializations more carefully.
13550   bool isMemberSpecialization = false;
13551   bool Invalid = false;
13552 
13553   // We only need to do this matching if we have template parameters
13554   // or a scope specifier, which also conveniently avoids this work
13555   // for non-C++ cases.
13556   if (TemplateParameterLists.size() > 0 ||
13557       (SS.isNotEmpty() && TUK != TUK_Reference)) {
13558     if (TemplateParameterList *TemplateParams =
13559             MatchTemplateParametersToScopeSpecifier(
13560                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
13561                 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
13562       if (Kind == TTK_Enum) {
13563         Diag(KWLoc, diag::err_enum_template);
13564         return nullptr;
13565       }
13566 
13567       if (TemplateParams->size() > 0) {
13568         // This is a declaration or definition of a class template (which may
13569         // be a member of another template).
13570 
13571         if (Invalid)
13572           return nullptr;
13573 
13574         OwnedDecl = false;
13575         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
13576                                                SS, Name, NameLoc, Attr,
13577                                                TemplateParams, AS,
13578                                                ModulePrivateLoc,
13579                                                /*FriendLoc*/SourceLocation(),
13580                                                TemplateParameterLists.size()-1,
13581                                                TemplateParameterLists.data(),
13582                                                SkipBody);
13583         return Result.get();
13584       } else {
13585         // The "template<>" header is extraneous.
13586         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
13587           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
13588         isMemberSpecialization = true;
13589       }
13590     }
13591   }
13592 
13593   // Figure out the underlying type if this a enum declaration. We need to do
13594   // this early, because it's needed to detect if this is an incompatible
13595   // redeclaration.
13596   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
13597   bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
13598 
13599   if (Kind == TTK_Enum) {
13600     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
13601       // No underlying type explicitly specified, or we failed to parse the
13602       // type, default to int.
13603       EnumUnderlying = Context.IntTy.getTypePtr();
13604     } else if (UnderlyingType.get()) {
13605       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
13606       // integral type; any cv-qualification is ignored.
13607       TypeSourceInfo *TI = nullptr;
13608       GetTypeFromParser(UnderlyingType.get(), &TI);
13609       EnumUnderlying = TI;
13610 
13611       if (CheckEnumUnderlyingType(TI))
13612         // Recover by falling back to int.
13613         EnumUnderlying = Context.IntTy.getTypePtr();
13614 
13615       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
13616                                           UPPC_FixedUnderlyingType))
13617         EnumUnderlying = Context.IntTy.getTypePtr();
13618 
13619     } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
13620       // For MSVC ABI compatibility, unfixed enums must use an underlying type
13621       // of 'int'. However, if this is an unfixed forward declaration, don't set
13622       // the underlying type unless the user enables -fms-compatibility. This
13623       // makes unfixed forward declared enums incomplete and is more conforming.
13624       if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
13625         EnumUnderlying = Context.IntTy.getTypePtr();
13626     }
13627   }
13628 
13629   DeclContext *SearchDC = CurContext;
13630   DeclContext *DC = CurContext;
13631   bool isStdBadAlloc = false;
13632   bool isStdAlignValT = false;
13633 
13634   RedeclarationKind Redecl = forRedeclarationInCurContext();
13635   if (TUK == TUK_Friend || TUK == TUK_Reference)
13636     Redecl = NotForRedeclaration;
13637 
13638   /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
13639   /// implemented asks for structural equivalence checking, the returned decl
13640   /// here is passed back to the parser, allowing the tag body to be parsed.
13641   auto createTagFromNewDecl = [&]() -> TagDecl * {
13642     assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
13643     // If there is an identifier, use the location of the identifier as the
13644     // location of the decl, otherwise use the location of the struct/union
13645     // keyword.
13646     SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
13647     TagDecl *New = nullptr;
13648 
13649     if (Kind == TTK_Enum) {
13650       New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
13651                              ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
13652       // If this is an undefined enum, bail.
13653       if (TUK != TUK_Definition && !Invalid)
13654         return nullptr;
13655       if (EnumUnderlying) {
13656         EnumDecl *ED = cast<EnumDecl>(New);
13657         if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
13658           ED->setIntegerTypeSourceInfo(TI);
13659         else
13660           ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
13661         ED->setPromotionType(ED->getIntegerType());
13662       }
13663     } else { // struct/union
13664       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
13665                                nullptr);
13666     }
13667 
13668     if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
13669       // Add alignment attributes if necessary; these attributes are checked
13670       // when the ASTContext lays out the structure.
13671       //
13672       // It is important for implementing the correct semantics that this
13673       // happen here (in ActOnTag). The #pragma pack stack is
13674       // maintained as a result of parser callbacks which can occur at
13675       // many points during the parsing of a struct declaration (because
13676       // the #pragma tokens are effectively skipped over during the
13677       // parsing of the struct).
13678       if (TUK == TUK_Definition) {
13679         AddAlignmentAttributesForRecord(RD);
13680         AddMsStructLayoutForRecord(RD);
13681       }
13682     }
13683     New->setLexicalDeclContext(CurContext);
13684     return New;
13685   };
13686 
13687   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
13688   if (Name && SS.isNotEmpty()) {
13689     // We have a nested-name tag ('struct foo::bar').
13690 
13691     // Check for invalid 'foo::'.
13692     if (SS.isInvalid()) {
13693       Name = nullptr;
13694       goto CreateNewDecl;
13695     }
13696 
13697     // If this is a friend or a reference to a class in a dependent
13698     // context, don't try to make a decl for it.
13699     if (TUK == TUK_Friend || TUK == TUK_Reference) {
13700       DC = computeDeclContext(SS, false);
13701       if (!DC) {
13702         IsDependent = true;
13703         return nullptr;
13704       }
13705     } else {
13706       DC = computeDeclContext(SS, true);
13707       if (!DC) {
13708         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
13709           << SS.getRange();
13710         return nullptr;
13711       }
13712     }
13713 
13714     if (RequireCompleteDeclContext(SS, DC))
13715       return nullptr;
13716 
13717     SearchDC = DC;
13718     // Look-up name inside 'foo::'.
13719     LookupQualifiedName(Previous, DC);
13720 
13721     if (Previous.isAmbiguous())
13722       return nullptr;
13723 
13724     if (Previous.empty()) {
13725       // Name lookup did not find anything. However, if the
13726       // nested-name-specifier refers to the current instantiation,
13727       // and that current instantiation has any dependent base
13728       // classes, we might find something at instantiation time: treat
13729       // this as a dependent elaborated-type-specifier.
13730       // But this only makes any sense for reference-like lookups.
13731       if (Previous.wasNotFoundInCurrentInstantiation() &&
13732           (TUK == TUK_Reference || TUK == TUK_Friend)) {
13733         IsDependent = true;
13734         return nullptr;
13735       }
13736 
13737       // A tag 'foo::bar' must already exist.
13738       Diag(NameLoc, diag::err_not_tag_in_scope)
13739         << Kind << Name << DC << SS.getRange();
13740       Name = nullptr;
13741       Invalid = true;
13742       goto CreateNewDecl;
13743     }
13744   } else if (Name) {
13745     // C++14 [class.mem]p14:
13746     //   If T is the name of a class, then each of the following shall have a
13747     //   name different from T:
13748     //    -- every member of class T that is itself a type
13749     if (TUK != TUK_Reference && TUK != TUK_Friend &&
13750         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
13751       return nullptr;
13752 
13753     // If this is a named struct, check to see if there was a previous forward
13754     // declaration or definition.
13755     // FIXME: We're looking into outer scopes here, even when we
13756     // shouldn't be. Doing so can result in ambiguities that we
13757     // shouldn't be diagnosing.
13758     LookupName(Previous, S);
13759 
13760     // When declaring or defining a tag, ignore ambiguities introduced
13761     // by types using'ed into this scope.
13762     if (Previous.isAmbiguous() &&
13763         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
13764       LookupResult::Filter F = Previous.makeFilter();
13765       while (F.hasNext()) {
13766         NamedDecl *ND = F.next();
13767         if (!ND->getDeclContext()->getRedeclContext()->Equals(
13768                 SearchDC->getRedeclContext()))
13769           F.erase();
13770       }
13771       F.done();
13772     }
13773 
13774     // C++11 [namespace.memdef]p3:
13775     //   If the name in a friend declaration is neither qualified nor
13776     //   a template-id and the declaration is a function or an
13777     //   elaborated-type-specifier, the lookup to determine whether
13778     //   the entity has been previously declared shall not consider
13779     //   any scopes outside the innermost enclosing namespace.
13780     //
13781     // MSVC doesn't implement the above rule for types, so a friend tag
13782     // declaration may be a redeclaration of a type declared in an enclosing
13783     // scope.  They do implement this rule for friend functions.
13784     //
13785     // Does it matter that this should be by scope instead of by
13786     // semantic context?
13787     if (!Previous.empty() && TUK == TUK_Friend) {
13788       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
13789       LookupResult::Filter F = Previous.makeFilter();
13790       bool FriendSawTagOutsideEnclosingNamespace = false;
13791       while (F.hasNext()) {
13792         NamedDecl *ND = F.next();
13793         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
13794         if (DC->isFileContext() &&
13795             !EnclosingNS->Encloses(ND->getDeclContext())) {
13796           if (getLangOpts().MSVCCompat)
13797             FriendSawTagOutsideEnclosingNamespace = true;
13798           else
13799             F.erase();
13800         }
13801       }
13802       F.done();
13803 
13804       // Diagnose this MSVC extension in the easy case where lookup would have
13805       // unambiguously found something outside the enclosing namespace.
13806       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
13807         NamedDecl *ND = Previous.getFoundDecl();
13808         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
13809             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
13810       }
13811     }
13812 
13813     // Note:  there used to be some attempt at recovery here.
13814     if (Previous.isAmbiguous())
13815       return nullptr;
13816 
13817     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
13818       // FIXME: This makes sure that we ignore the contexts associated
13819       // with C structs, unions, and enums when looking for a matching
13820       // tag declaration or definition. See the similar lookup tweak
13821       // in Sema::LookupName; is there a better way to deal with this?
13822       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
13823         SearchDC = SearchDC->getParent();
13824     }
13825   }
13826 
13827   if (Previous.isSingleResult() &&
13828       Previous.getFoundDecl()->isTemplateParameter()) {
13829     // Maybe we will complain about the shadowed template parameter.
13830     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
13831     // Just pretend that we didn't see the previous declaration.
13832     Previous.clear();
13833   }
13834 
13835   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
13836       DC->Equals(getStdNamespace())) {
13837     if (Name->isStr("bad_alloc")) {
13838       // This is a declaration of or a reference to "std::bad_alloc".
13839       isStdBadAlloc = true;
13840 
13841       // If std::bad_alloc has been implicitly declared (but made invisible to
13842       // name lookup), fill in this implicit declaration as the previous
13843       // declaration, so that the declarations get chained appropriately.
13844       if (Previous.empty() && StdBadAlloc)
13845         Previous.addDecl(getStdBadAlloc());
13846     } else if (Name->isStr("align_val_t")) {
13847       isStdAlignValT = true;
13848       if (Previous.empty() && StdAlignValT)
13849         Previous.addDecl(getStdAlignValT());
13850     }
13851   }
13852 
13853   // If we didn't find a previous declaration, and this is a reference
13854   // (or friend reference), move to the correct scope.  In C++, we
13855   // also need to do a redeclaration lookup there, just in case
13856   // there's a shadow friend decl.
13857   if (Name && Previous.empty() &&
13858       (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
13859     if (Invalid) goto CreateNewDecl;
13860     assert(SS.isEmpty());
13861 
13862     if (TUK == TUK_Reference || IsTemplateParamOrArg) {
13863       // C++ [basic.scope.pdecl]p5:
13864       //   -- for an elaborated-type-specifier of the form
13865       //
13866       //          class-key identifier
13867       //
13868       //      if the elaborated-type-specifier is used in the
13869       //      decl-specifier-seq or parameter-declaration-clause of a
13870       //      function defined in namespace scope, the identifier is
13871       //      declared as a class-name in the namespace that contains
13872       //      the declaration; otherwise, except as a friend
13873       //      declaration, the identifier is declared in the smallest
13874       //      non-class, non-function-prototype scope that contains the
13875       //      declaration.
13876       //
13877       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
13878       // C structs and unions.
13879       //
13880       // It is an error in C++ to declare (rather than define) an enum
13881       // type, including via an elaborated type specifier.  We'll
13882       // diagnose that later; for now, declare the enum in the same
13883       // scope as we would have picked for any other tag type.
13884       //
13885       // GNU C also supports this behavior as part of its incomplete
13886       // enum types extension, while GNU C++ does not.
13887       //
13888       // Find the context where we'll be declaring the tag.
13889       // FIXME: We would like to maintain the current DeclContext as the
13890       // lexical context,
13891       SearchDC = getTagInjectionContext(SearchDC);
13892 
13893       // Find the scope where we'll be declaring the tag.
13894       S = getTagInjectionScope(S, getLangOpts());
13895     } else {
13896       assert(TUK == TUK_Friend);
13897       // C++ [namespace.memdef]p3:
13898       //   If a friend declaration in a non-local class first declares a
13899       //   class or function, the friend class or function is a member of
13900       //   the innermost enclosing namespace.
13901       SearchDC = SearchDC->getEnclosingNamespaceContext();
13902     }
13903 
13904     // In C++, we need to do a redeclaration lookup to properly
13905     // diagnose some problems.
13906     // FIXME: redeclaration lookup is also used (with and without C++) to find a
13907     // hidden declaration so that we don't get ambiguity errors when using a
13908     // type declared by an elaborated-type-specifier.  In C that is not correct
13909     // and we should instead merge compatible types found by lookup.
13910     if (getLangOpts().CPlusPlus) {
13911       Previous.setRedeclarationKind(forRedeclarationInCurContext());
13912       LookupQualifiedName(Previous, SearchDC);
13913     } else {
13914       Previous.setRedeclarationKind(forRedeclarationInCurContext());
13915       LookupName(Previous, S);
13916     }
13917   }
13918 
13919   // If we have a known previous declaration to use, then use it.
13920   if (Previous.empty() && SkipBody && SkipBody->Previous)
13921     Previous.addDecl(SkipBody->Previous);
13922 
13923   if (!Previous.empty()) {
13924     NamedDecl *PrevDecl = Previous.getFoundDecl();
13925     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
13926 
13927     // It's okay to have a tag decl in the same scope as a typedef
13928     // which hides a tag decl in the same scope.  Finding this
13929     // insanity with a redeclaration lookup can only actually happen
13930     // in C++.
13931     //
13932     // This is also okay for elaborated-type-specifiers, which is
13933     // technically forbidden by the current standard but which is
13934     // okay according to the likely resolution of an open issue;
13935     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
13936     if (getLangOpts().CPlusPlus) {
13937       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
13938         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
13939           TagDecl *Tag = TT->getDecl();
13940           if (Tag->getDeclName() == Name &&
13941               Tag->getDeclContext()->getRedeclContext()
13942                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
13943             PrevDecl = Tag;
13944             Previous.clear();
13945             Previous.addDecl(Tag);
13946             Previous.resolveKind();
13947           }
13948         }
13949       }
13950     }
13951 
13952     // If this is a redeclaration of a using shadow declaration, it must
13953     // declare a tag in the same context. In MSVC mode, we allow a
13954     // redefinition if either context is within the other.
13955     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
13956       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
13957       if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
13958           isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
13959           !(OldTag && isAcceptableTagRedeclContext(
13960                           *this, OldTag->getDeclContext(), SearchDC))) {
13961         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
13962         Diag(Shadow->getTargetDecl()->getLocation(),
13963              diag::note_using_decl_target);
13964         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
13965             << 0;
13966         // Recover by ignoring the old declaration.
13967         Previous.clear();
13968         goto CreateNewDecl;
13969       }
13970     }
13971 
13972     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
13973       // If this is a use of a previous tag, or if the tag is already declared
13974       // in the same scope (so that the definition/declaration completes or
13975       // rementions the tag), reuse the decl.
13976       if (TUK == TUK_Reference || TUK == TUK_Friend ||
13977           isDeclInScope(DirectPrevDecl, SearchDC, S,
13978                         SS.isNotEmpty() || isMemberSpecialization)) {
13979         // Make sure that this wasn't declared as an enum and now used as a
13980         // struct or something similar.
13981         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
13982                                           TUK == TUK_Definition, KWLoc,
13983                                           Name)) {
13984           bool SafeToContinue
13985             = (PrevTagDecl->getTagKind() != TTK_Enum &&
13986                Kind != TTK_Enum);
13987           if (SafeToContinue)
13988             Diag(KWLoc, diag::err_use_with_wrong_tag)
13989               << Name
13990               << FixItHint::CreateReplacement(SourceRange(KWLoc),
13991                                               PrevTagDecl->getKindName());
13992           else
13993             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
13994           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
13995 
13996           if (SafeToContinue)
13997             Kind = PrevTagDecl->getTagKind();
13998           else {
13999             // Recover by making this an anonymous redefinition.
14000             Name = nullptr;
14001             Previous.clear();
14002             Invalid = true;
14003           }
14004         }
14005 
14006         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
14007           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
14008 
14009           // If this is an elaborated-type-specifier for a scoped enumeration,
14010           // the 'class' keyword is not necessary and not permitted.
14011           if (TUK == TUK_Reference || TUK == TUK_Friend) {
14012             if (ScopedEnum)
14013               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
14014                 << PrevEnum->isScoped()
14015                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
14016             return PrevTagDecl;
14017           }
14018 
14019           QualType EnumUnderlyingTy;
14020           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
14021             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
14022           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
14023             EnumUnderlyingTy = QualType(T, 0);
14024 
14025           // All conflicts with previous declarations are recovered by
14026           // returning the previous declaration, unless this is a definition,
14027           // in which case we want the caller to bail out.
14028           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
14029                                      ScopedEnum, EnumUnderlyingTy,
14030                                      IsFixed, PrevEnum))
14031             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
14032         }
14033 
14034         // C++11 [class.mem]p1:
14035         //   A member shall not be declared twice in the member-specification,
14036         //   except that a nested class or member class template can be declared
14037         //   and then later defined.
14038         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
14039             S->isDeclScope(PrevDecl)) {
14040           Diag(NameLoc, diag::ext_member_redeclared);
14041           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
14042         }
14043 
14044         if (!Invalid) {
14045           // If this is a use, just return the declaration we found, unless
14046           // we have attributes.
14047           if (TUK == TUK_Reference || TUK == TUK_Friend) {
14048             if (Attr) {
14049               // FIXME: Diagnose these attributes. For now, we create a new
14050               // declaration to hold them.
14051             } else if (TUK == TUK_Reference &&
14052                        (PrevTagDecl->getFriendObjectKind() ==
14053                             Decl::FOK_Undeclared ||
14054                         PrevDecl->getOwningModule() != getCurrentModule()) &&
14055                        SS.isEmpty()) {
14056               // This declaration is a reference to an existing entity, but
14057               // has different visibility from that entity: it either makes
14058               // a friend visible or it makes a type visible in a new module.
14059               // In either case, create a new declaration. We only do this if
14060               // the declaration would have meant the same thing if no prior
14061               // declaration were found, that is, if it was found in the same
14062               // scope where we would have injected a declaration.
14063               if (!getTagInjectionContext(CurContext)->getRedeclContext()
14064                        ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
14065                 return PrevTagDecl;
14066               // This is in the injected scope, create a new declaration in
14067               // that scope.
14068               S = getTagInjectionScope(S, getLangOpts());
14069             } else {
14070               return PrevTagDecl;
14071             }
14072           }
14073 
14074           // Diagnose attempts to redefine a tag.
14075           if (TUK == TUK_Definition) {
14076             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
14077               // If we're defining a specialization and the previous definition
14078               // is from an implicit instantiation, don't emit an error
14079               // here; we'll catch this in the general case below.
14080               bool IsExplicitSpecializationAfterInstantiation = false;
14081               if (isMemberSpecialization) {
14082                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
14083                   IsExplicitSpecializationAfterInstantiation =
14084                     RD->getTemplateSpecializationKind() !=
14085                     TSK_ExplicitSpecialization;
14086                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
14087                   IsExplicitSpecializationAfterInstantiation =
14088                     ED->getTemplateSpecializationKind() !=
14089                     TSK_ExplicitSpecialization;
14090               }
14091 
14092               // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
14093               // not keep more that one definition around (merge them). However,
14094               // ensure the decl passes the structural compatibility check in
14095               // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
14096               NamedDecl *Hidden = nullptr;
14097               if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
14098                 // There is a definition of this tag, but it is not visible. We
14099                 // explicitly make use of C++'s one definition rule here, and
14100                 // assume that this definition is identical to the hidden one
14101                 // we already have. Make the existing definition visible and
14102                 // use it in place of this one.
14103                 if (!getLangOpts().CPlusPlus) {
14104                   // Postpone making the old definition visible until after we
14105                   // complete parsing the new one and do the structural
14106                   // comparison.
14107                   SkipBody->CheckSameAsPrevious = true;
14108                   SkipBody->New = createTagFromNewDecl();
14109                   SkipBody->Previous = Hidden;
14110                 } else {
14111                   SkipBody->ShouldSkip = true;
14112                   makeMergedDefinitionVisible(Hidden);
14113                 }
14114                 return Def;
14115               } else if (!IsExplicitSpecializationAfterInstantiation) {
14116                 // A redeclaration in function prototype scope in C isn't
14117                 // visible elsewhere, so merely issue a warning.
14118                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
14119                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
14120                 else
14121                   Diag(NameLoc, diag::err_redefinition) << Name;
14122                 notePreviousDefinition(Def,
14123                                        NameLoc.isValid() ? NameLoc : KWLoc);
14124                 // If this is a redefinition, recover by making this
14125                 // struct be anonymous, which will make any later
14126                 // references get the previous definition.
14127                 Name = nullptr;
14128                 Previous.clear();
14129                 Invalid = true;
14130               }
14131             } else {
14132               // If the type is currently being defined, complain
14133               // about a nested redefinition.
14134               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
14135               if (TD->isBeingDefined()) {
14136                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
14137                 Diag(PrevTagDecl->getLocation(),
14138                      diag::note_previous_definition);
14139                 Name = nullptr;
14140                 Previous.clear();
14141                 Invalid = true;
14142               }
14143             }
14144 
14145             // Okay, this is definition of a previously declared or referenced
14146             // tag. We're going to create a new Decl for it.
14147           }
14148 
14149           // Okay, we're going to make a redeclaration.  If this is some kind
14150           // of reference, make sure we build the redeclaration in the same DC
14151           // as the original, and ignore the current access specifier.
14152           if (TUK == TUK_Friend || TUK == TUK_Reference) {
14153             SearchDC = PrevTagDecl->getDeclContext();
14154             AS = AS_none;
14155           }
14156         }
14157         // If we get here we have (another) forward declaration or we
14158         // have a definition.  Just create a new decl.
14159 
14160       } else {
14161         // If we get here, this is a definition of a new tag type in a nested
14162         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
14163         // new decl/type.  We set PrevDecl to NULL so that the entities
14164         // have distinct types.
14165         Previous.clear();
14166       }
14167       // If we get here, we're going to create a new Decl. If PrevDecl
14168       // is non-NULL, it's a definition of the tag declared by
14169       // PrevDecl. If it's NULL, we have a new definition.
14170 
14171     // Otherwise, PrevDecl is not a tag, but was found with tag
14172     // lookup.  This is only actually possible in C++, where a few
14173     // things like templates still live in the tag namespace.
14174     } else {
14175       // Use a better diagnostic if an elaborated-type-specifier
14176       // found the wrong kind of type on the first
14177       // (non-redeclaration) lookup.
14178       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
14179           !Previous.isForRedeclaration()) {
14180         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
14181         Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
14182                                                        << Kind;
14183         Diag(PrevDecl->getLocation(), diag::note_declared_at);
14184         Invalid = true;
14185 
14186       // Otherwise, only diagnose if the declaration is in scope.
14187       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
14188                                 SS.isNotEmpty() || isMemberSpecialization)) {
14189         // do nothing
14190 
14191       // Diagnose implicit declarations introduced by elaborated types.
14192       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
14193         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
14194         Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
14195         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
14196         Invalid = true;
14197 
14198       // Otherwise it's a declaration.  Call out a particularly common
14199       // case here.
14200       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
14201         unsigned Kind = 0;
14202         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
14203         Diag(NameLoc, diag::err_tag_definition_of_typedef)
14204           << Name << Kind << TND->getUnderlyingType();
14205         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
14206         Invalid = true;
14207 
14208       // Otherwise, diagnose.
14209       } else {
14210         // The tag name clashes with something else in the target scope,
14211         // issue an error and recover by making this tag be anonymous.
14212         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
14213         notePreviousDefinition(PrevDecl, NameLoc);
14214         Name = nullptr;
14215         Invalid = true;
14216       }
14217 
14218       // The existing declaration isn't relevant to us; we're in a
14219       // new scope, so clear out the previous declaration.
14220       Previous.clear();
14221     }
14222   }
14223 
14224 CreateNewDecl:
14225 
14226   TagDecl *PrevDecl = nullptr;
14227   if (Previous.isSingleResult())
14228     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
14229 
14230   // If there is an identifier, use the location of the identifier as the
14231   // location of the decl, otherwise use the location of the struct/union
14232   // keyword.
14233   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14234 
14235   // Otherwise, create a new declaration. If there is a previous
14236   // declaration of the same entity, the two will be linked via
14237   // PrevDecl.
14238   TagDecl *New;
14239 
14240   bool IsForwardReference = false;
14241   if (Kind == TTK_Enum) {
14242     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
14243     // enum X { A, B, C } D;    D should chain to X.
14244     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
14245                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
14246                            ScopedEnumUsesClassTag, IsFixed);
14247 
14248     if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
14249       StdAlignValT = cast<EnumDecl>(New);
14250 
14251     // If this is an undefined enum, warn.
14252     if (TUK != TUK_Definition && !Invalid) {
14253       TagDecl *Def;
14254       if (IsFixed && (getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
14255           cast<EnumDecl>(New)->isFixed()) {
14256         // C++0x: 7.2p2: opaque-enum-declaration.
14257         // Conflicts are diagnosed above. Do nothing.
14258       }
14259       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
14260         Diag(Loc, diag::ext_forward_ref_enum_def)
14261           << New;
14262         Diag(Def->getLocation(), diag::note_previous_definition);
14263       } else {
14264         unsigned DiagID = diag::ext_forward_ref_enum;
14265         if (getLangOpts().MSVCCompat)
14266           DiagID = diag::ext_ms_forward_ref_enum;
14267         else if (getLangOpts().CPlusPlus)
14268           DiagID = diag::err_forward_ref_enum;
14269         Diag(Loc, DiagID);
14270 
14271         // If this is a forward-declared reference to an enumeration, make a
14272         // note of it; we won't actually be introducing the declaration into
14273         // the declaration context.
14274         if (TUK == TUK_Reference)
14275           IsForwardReference = true;
14276       }
14277     }
14278 
14279     if (EnumUnderlying) {
14280       EnumDecl *ED = cast<EnumDecl>(New);
14281       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
14282         ED->setIntegerTypeSourceInfo(TI);
14283       else
14284         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
14285       ED->setPromotionType(ED->getIntegerType());
14286       assert(ED->isComplete() && "enum with type should be complete");
14287     }
14288   } else {
14289     // struct/union/class
14290 
14291     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
14292     // struct X { int A; } D;    D should chain to X.
14293     if (getLangOpts().CPlusPlus) {
14294       // FIXME: Look for a way to use RecordDecl for simple structs.
14295       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14296                                   cast_or_null<CXXRecordDecl>(PrevDecl));
14297 
14298       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
14299         StdBadAlloc = cast<CXXRecordDecl>(New);
14300     } else
14301       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14302                                cast_or_null<RecordDecl>(PrevDecl));
14303   }
14304 
14305   // C++11 [dcl.type]p3:
14306   //   A type-specifier-seq shall not define a class or enumeration [...].
14307   if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
14308       TUK == TUK_Definition) {
14309     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
14310       << Context.getTagDeclType(New);
14311     Invalid = true;
14312   }
14313 
14314   if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
14315       DC->getDeclKind() == Decl::Enum) {
14316     Diag(New->getLocation(), diag::err_type_defined_in_enum)
14317       << Context.getTagDeclType(New);
14318     Invalid = true;
14319   }
14320 
14321   // Maybe add qualifier info.
14322   if (SS.isNotEmpty()) {
14323     if (SS.isSet()) {
14324       // If this is either a declaration or a definition, check the
14325       // nested-name-specifier against the current context.
14326       if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
14327           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
14328                                        isMemberSpecialization))
14329         Invalid = true;
14330 
14331       New->setQualifierInfo(SS.getWithLocInContext(Context));
14332       if (TemplateParameterLists.size() > 0) {
14333         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
14334       }
14335     }
14336     else
14337       Invalid = true;
14338   }
14339 
14340   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
14341     // Add alignment attributes if necessary; these attributes are checked when
14342     // the ASTContext lays out the structure.
14343     //
14344     // It is important for implementing the correct semantics that this
14345     // happen here (in ActOnTag). The #pragma pack stack is
14346     // maintained as a result of parser callbacks which can occur at
14347     // many points during the parsing of a struct declaration (because
14348     // the #pragma tokens are effectively skipped over during the
14349     // parsing of the struct).
14350     if (TUK == TUK_Definition) {
14351       AddAlignmentAttributesForRecord(RD);
14352       AddMsStructLayoutForRecord(RD);
14353     }
14354   }
14355 
14356   if (ModulePrivateLoc.isValid()) {
14357     if (isMemberSpecialization)
14358       Diag(New->getLocation(), diag::err_module_private_specialization)
14359         << 2
14360         << FixItHint::CreateRemoval(ModulePrivateLoc);
14361     // __module_private__ does not apply to local classes. However, we only
14362     // diagnose this as an error when the declaration specifiers are
14363     // freestanding. Here, we just ignore the __module_private__.
14364     else if (!SearchDC->isFunctionOrMethod())
14365       New->setModulePrivate();
14366   }
14367 
14368   // If this is a specialization of a member class (of a class template),
14369   // check the specialization.
14370   if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
14371     Invalid = true;
14372 
14373   // If we're declaring or defining a tag in function prototype scope in C,
14374   // note that this type can only be used within the function and add it to
14375   // the list of decls to inject into the function definition scope.
14376   if ((Name || Kind == TTK_Enum) &&
14377       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
14378     if (getLangOpts().CPlusPlus) {
14379       // C++ [dcl.fct]p6:
14380       //   Types shall not be defined in return or parameter types.
14381       if (TUK == TUK_Definition && !IsTypeSpecifier) {
14382         Diag(Loc, diag::err_type_defined_in_param_type)
14383             << Name;
14384         Invalid = true;
14385       }
14386     } else if (!PrevDecl) {
14387       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
14388     }
14389   }
14390 
14391   if (Invalid)
14392     New->setInvalidDecl();
14393 
14394   // Set the lexical context. If the tag has a C++ scope specifier, the
14395   // lexical context will be different from the semantic context.
14396   New->setLexicalDeclContext(CurContext);
14397 
14398   // Mark this as a friend decl if applicable.
14399   // In Microsoft mode, a friend declaration also acts as a forward
14400   // declaration so we always pass true to setObjectOfFriendDecl to make
14401   // the tag name visible.
14402   if (TUK == TUK_Friend)
14403     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
14404 
14405   // Set the access specifier.
14406   if (!Invalid && SearchDC->isRecord())
14407     SetMemberAccessSpecifier(New, PrevDecl, AS);
14408 
14409   if (PrevDecl)
14410     CheckRedeclarationModuleOwnership(New, PrevDecl);
14411 
14412   if (TUK == TUK_Definition)
14413     New->startDefinition();
14414 
14415   if (Attr)
14416     ProcessDeclAttributeList(S, New, Attr);
14417   AddPragmaAttributes(S, New);
14418 
14419   // If this has an identifier, add it to the scope stack.
14420   if (TUK == TUK_Friend) {
14421     // We might be replacing an existing declaration in the lookup tables;
14422     // if so, borrow its access specifier.
14423     if (PrevDecl)
14424       New->setAccess(PrevDecl->getAccess());
14425 
14426     DeclContext *DC = New->getDeclContext()->getRedeclContext();
14427     DC->makeDeclVisibleInContext(New);
14428     if (Name) // can be null along some error paths
14429       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
14430         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
14431   } else if (Name) {
14432     S = getNonFieldDeclScope(S);
14433     PushOnScopeChains(New, S, !IsForwardReference);
14434     if (IsForwardReference)
14435       SearchDC->makeDeclVisibleInContext(New);
14436   } else {
14437     CurContext->addDecl(New);
14438   }
14439 
14440   // If this is the C FILE type, notify the AST context.
14441   if (IdentifierInfo *II = New->getIdentifier())
14442     if (!New->isInvalidDecl() &&
14443         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
14444         II->isStr("FILE"))
14445       Context.setFILEDecl(New);
14446 
14447   if (PrevDecl)
14448     mergeDeclAttributes(New, PrevDecl);
14449 
14450   // If there's a #pragma GCC visibility in scope, set the visibility of this
14451   // record.
14452   AddPushedVisibilityAttribute(New);
14453 
14454   if (isMemberSpecialization && !New->isInvalidDecl())
14455     CompleteMemberSpecialization(New, Previous);
14456 
14457   OwnedDecl = true;
14458   // In C++, don't return an invalid declaration. We can't recover well from
14459   // the cases where we make the type anonymous.
14460   if (Invalid && getLangOpts().CPlusPlus) {
14461     if (New->isBeingDefined())
14462       if (auto RD = dyn_cast<RecordDecl>(New))
14463         RD->completeDefinition();
14464     return nullptr;
14465   } else {
14466     return New;
14467   }
14468 }
14469 
14470 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
14471   AdjustDeclIfTemplate(TagD);
14472   TagDecl *Tag = cast<TagDecl>(TagD);
14473 
14474   // Enter the tag context.
14475   PushDeclContext(S, Tag);
14476 
14477   ActOnDocumentableDecl(TagD);
14478 
14479   // If there's a #pragma GCC visibility in scope, set the visibility of this
14480   // record.
14481   AddPushedVisibilityAttribute(Tag);
14482 }
14483 
14484 bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
14485                                     SkipBodyInfo &SkipBody) {
14486   if (!hasStructuralCompatLayout(Prev, SkipBody.New))
14487     return false;
14488 
14489   // Make the previous decl visible.
14490   makeMergedDefinitionVisible(SkipBody.Previous);
14491   return true;
14492 }
14493 
14494 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
14495   assert(isa<ObjCContainerDecl>(IDecl) &&
14496          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
14497   DeclContext *OCD = cast<DeclContext>(IDecl);
14498   assert(getContainingDC(OCD) == CurContext &&
14499       "The next DeclContext should be lexically contained in the current one.");
14500   CurContext = OCD;
14501   return IDecl;
14502 }
14503 
14504 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
14505                                            SourceLocation FinalLoc,
14506                                            bool IsFinalSpelledSealed,
14507                                            SourceLocation LBraceLoc) {
14508   AdjustDeclIfTemplate(TagD);
14509   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
14510 
14511   FieldCollector->StartClass();
14512 
14513   if (!Record->getIdentifier())
14514     return;
14515 
14516   if (FinalLoc.isValid())
14517     Record->addAttr(new (Context)
14518                     FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
14519 
14520   // C++ [class]p2:
14521   //   [...] The class-name is also inserted into the scope of the
14522   //   class itself; this is known as the injected-class-name. For
14523   //   purposes of access checking, the injected-class-name is treated
14524   //   as if it were a public member name.
14525   CXXRecordDecl *InjectedClassName
14526     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
14527                             Record->getLocStart(), Record->getLocation(),
14528                             Record->getIdentifier(),
14529                             /*PrevDecl=*/nullptr,
14530                             /*DelayTypeCreation=*/true);
14531   Context.getTypeDeclType(InjectedClassName, Record);
14532   InjectedClassName->setImplicit();
14533   InjectedClassName->setAccess(AS_public);
14534   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
14535       InjectedClassName->setDescribedClassTemplate(Template);
14536   PushOnScopeChains(InjectedClassName, S);
14537   assert(InjectedClassName->isInjectedClassName() &&
14538          "Broken injected-class-name");
14539 }
14540 
14541 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
14542                                     SourceRange BraceRange) {
14543   AdjustDeclIfTemplate(TagD);
14544   TagDecl *Tag = cast<TagDecl>(TagD);
14545   Tag->setBraceRange(BraceRange);
14546 
14547   // Make sure we "complete" the definition even it is invalid.
14548   if (Tag->isBeingDefined()) {
14549     assert(Tag->isInvalidDecl() && "We should already have completed it");
14550     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
14551       RD->completeDefinition();
14552   }
14553 
14554   if (isa<CXXRecordDecl>(Tag)) {
14555     FieldCollector->FinishClass();
14556   }
14557 
14558   // Exit this scope of this tag's definition.
14559   PopDeclContext();
14560 
14561   if (getCurLexicalContext()->isObjCContainer() &&
14562       Tag->getDeclContext()->isFileContext())
14563     Tag->setTopLevelDeclInObjCContainer();
14564 
14565   // Notify the consumer that we've defined a tag.
14566   if (!Tag->isInvalidDecl())
14567     Consumer.HandleTagDeclDefinition(Tag);
14568 }
14569 
14570 void Sema::ActOnObjCContainerFinishDefinition() {
14571   // Exit this scope of this interface definition.
14572   PopDeclContext();
14573 }
14574 
14575 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
14576   assert(DC == CurContext && "Mismatch of container contexts");
14577   OriginalLexicalContext = DC;
14578   ActOnObjCContainerFinishDefinition();
14579 }
14580 
14581 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
14582   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
14583   OriginalLexicalContext = nullptr;
14584 }
14585 
14586 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
14587   AdjustDeclIfTemplate(TagD);
14588   TagDecl *Tag = cast<TagDecl>(TagD);
14589   Tag->setInvalidDecl();
14590 
14591   // Make sure we "complete" the definition even it is invalid.
14592   if (Tag->isBeingDefined()) {
14593     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
14594       RD->completeDefinition();
14595   }
14596 
14597   // We're undoing ActOnTagStartDefinition here, not
14598   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
14599   // the FieldCollector.
14600 
14601   PopDeclContext();
14602 }
14603 
14604 // Note that FieldName may be null for anonymous bitfields.
14605 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
14606                                 IdentifierInfo *FieldName,
14607                                 QualType FieldTy, bool IsMsStruct,
14608                                 Expr *BitWidth, bool *ZeroWidth) {
14609   // Default to true; that shouldn't confuse checks for emptiness
14610   if (ZeroWidth)
14611     *ZeroWidth = true;
14612 
14613   // C99 6.7.2.1p4 - verify the field type.
14614   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
14615   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
14616     // Handle incomplete types with specific error.
14617     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
14618       return ExprError();
14619     if (FieldName)
14620       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
14621         << FieldName << FieldTy << BitWidth->getSourceRange();
14622     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
14623       << FieldTy << BitWidth->getSourceRange();
14624   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
14625                                              UPPC_BitFieldWidth))
14626     return ExprError();
14627 
14628   // If the bit-width is type- or value-dependent, don't try to check
14629   // it now.
14630   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
14631     return BitWidth;
14632 
14633   llvm::APSInt Value;
14634   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
14635   if (ICE.isInvalid())
14636     return ICE;
14637   BitWidth = ICE.get();
14638 
14639   if (Value != 0 && ZeroWidth)
14640     *ZeroWidth = false;
14641 
14642   // Zero-width bitfield is ok for anonymous field.
14643   if (Value == 0 && FieldName)
14644     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
14645 
14646   if (Value.isSigned() && Value.isNegative()) {
14647     if (FieldName)
14648       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
14649                << FieldName << Value.toString(10);
14650     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
14651       << Value.toString(10);
14652   }
14653 
14654   if (!FieldTy->isDependentType()) {
14655     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
14656     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
14657     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
14658 
14659     // Over-wide bitfields are an error in C or when using the MSVC bitfield
14660     // ABI.
14661     bool CStdConstraintViolation =
14662         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
14663     bool MSBitfieldViolation =
14664         Value.ugt(TypeStorageSize) &&
14665         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
14666     if (CStdConstraintViolation || MSBitfieldViolation) {
14667       unsigned DiagWidth =
14668           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
14669       if (FieldName)
14670         return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
14671                << FieldName << (unsigned)Value.getZExtValue()
14672                << !CStdConstraintViolation << DiagWidth;
14673 
14674       return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
14675              << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
14676              << DiagWidth;
14677     }
14678 
14679     // Warn on types where the user might conceivably expect to get all
14680     // specified bits as value bits: that's all integral types other than
14681     // 'bool'.
14682     if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
14683       if (FieldName)
14684         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
14685             << FieldName << (unsigned)Value.getZExtValue()
14686             << (unsigned)TypeWidth;
14687       else
14688         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
14689             << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
14690     }
14691   }
14692 
14693   return BitWidth;
14694 }
14695 
14696 /// ActOnField - Each field of a C struct/union is passed into this in order
14697 /// to create a FieldDecl object for it.
14698 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
14699                        Declarator &D, Expr *BitfieldWidth) {
14700   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
14701                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
14702                                /*InitStyle=*/ICIS_NoInit, AS_public);
14703   return Res;
14704 }
14705 
14706 /// HandleField - Analyze a field of a C struct or a C++ data member.
14707 ///
14708 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
14709                              SourceLocation DeclStart,
14710                              Declarator &D, Expr *BitWidth,
14711                              InClassInitStyle InitStyle,
14712                              AccessSpecifier AS) {
14713   if (D.isDecompositionDeclarator()) {
14714     const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
14715     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
14716       << Decomp.getSourceRange();
14717     return nullptr;
14718   }
14719 
14720   IdentifierInfo *II = D.getIdentifier();
14721   SourceLocation Loc = DeclStart;
14722   if (II) Loc = D.getIdentifierLoc();
14723 
14724   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
14725   QualType T = TInfo->getType();
14726   if (getLangOpts().CPlusPlus) {
14727     CheckExtraCXXDefaultArguments(D);
14728 
14729     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
14730                                         UPPC_DataMemberType)) {
14731       D.setInvalidType();
14732       T = Context.IntTy;
14733       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
14734     }
14735   }
14736 
14737   // TR 18037 does not allow fields to be declared with address spaces.
14738   if (T.getQualifiers().hasAddressSpace() ||
14739       T->isDependentAddressSpaceType() ||
14740       T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
14741     Diag(Loc, diag::err_field_with_address_space);
14742     D.setInvalidType();
14743   }
14744 
14745   // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
14746   // used as structure or union field: image, sampler, event or block types.
14747   if (LangOpts.OpenCL && (T->isEventT() || T->isImageType() ||
14748                           T->isSamplerT() || T->isBlockPointerType())) {
14749     Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
14750     D.setInvalidType();
14751   }
14752 
14753   DiagnoseFunctionSpecifiers(D.getDeclSpec());
14754 
14755   if (D.getDeclSpec().isInlineSpecified())
14756     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
14757         << getLangOpts().CPlusPlus17;
14758   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
14759     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
14760          diag::err_invalid_thread)
14761       << DeclSpec::getSpecifierName(TSCS);
14762 
14763   // Check to see if this name was declared as a member previously
14764   NamedDecl *PrevDecl = nullptr;
14765   LookupResult Previous(*this, II, Loc, LookupMemberName,
14766                         ForVisibleRedeclaration);
14767   LookupName(Previous, S);
14768   switch (Previous.getResultKind()) {
14769     case LookupResult::Found:
14770     case LookupResult::FoundUnresolvedValue:
14771       PrevDecl = Previous.getAsSingle<NamedDecl>();
14772       break;
14773 
14774     case LookupResult::FoundOverloaded:
14775       PrevDecl = Previous.getRepresentativeDecl();
14776       break;
14777 
14778     case LookupResult::NotFound:
14779     case LookupResult::NotFoundInCurrentInstantiation:
14780     case LookupResult::Ambiguous:
14781       break;
14782   }
14783   Previous.suppressDiagnostics();
14784 
14785   if (PrevDecl && PrevDecl->isTemplateParameter()) {
14786     // Maybe we will complain about the shadowed template parameter.
14787     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
14788     // Just pretend that we didn't see the previous declaration.
14789     PrevDecl = nullptr;
14790   }
14791 
14792   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
14793     PrevDecl = nullptr;
14794 
14795   bool Mutable
14796     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
14797   SourceLocation TSSL = D.getLocStart();
14798   FieldDecl *NewFD
14799     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
14800                      TSSL, AS, PrevDecl, &D);
14801 
14802   if (NewFD->isInvalidDecl())
14803     Record->setInvalidDecl();
14804 
14805   if (D.getDeclSpec().isModulePrivateSpecified())
14806     NewFD->setModulePrivate();
14807 
14808   if (NewFD->isInvalidDecl() && PrevDecl) {
14809     // Don't introduce NewFD into scope; there's already something
14810     // with the same name in the same scope.
14811   } else if (II) {
14812     PushOnScopeChains(NewFD, S);
14813   } else
14814     Record->addDecl(NewFD);
14815 
14816   return NewFD;
14817 }
14818 
14819 /// \brief Build a new FieldDecl and check its well-formedness.
14820 ///
14821 /// This routine builds a new FieldDecl given the fields name, type,
14822 /// record, etc. \p PrevDecl should refer to any previous declaration
14823 /// with the same name and in the same scope as the field to be
14824 /// created.
14825 ///
14826 /// \returns a new FieldDecl.
14827 ///
14828 /// \todo The Declarator argument is a hack. It will be removed once
14829 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
14830                                 TypeSourceInfo *TInfo,
14831                                 RecordDecl *Record, SourceLocation Loc,
14832                                 bool Mutable, Expr *BitWidth,
14833                                 InClassInitStyle InitStyle,
14834                                 SourceLocation TSSL,
14835                                 AccessSpecifier AS, NamedDecl *PrevDecl,
14836                                 Declarator *D) {
14837   IdentifierInfo *II = Name.getAsIdentifierInfo();
14838   bool InvalidDecl = false;
14839   if (D) InvalidDecl = D->isInvalidType();
14840 
14841   // If we receive a broken type, recover by assuming 'int' and
14842   // marking this declaration as invalid.
14843   if (T.isNull()) {
14844     InvalidDecl = true;
14845     T = Context.IntTy;
14846   }
14847 
14848   QualType EltTy = Context.getBaseElementType(T);
14849   if (!EltTy->isDependentType()) {
14850     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
14851       // Fields of incomplete type force their record to be invalid.
14852       Record->setInvalidDecl();
14853       InvalidDecl = true;
14854     } else {
14855       NamedDecl *Def;
14856       EltTy->isIncompleteType(&Def);
14857       if (Def && Def->isInvalidDecl()) {
14858         Record->setInvalidDecl();
14859         InvalidDecl = true;
14860       }
14861     }
14862   }
14863 
14864   // OpenCL v1.2 s6.9.c: bitfields are not supported.
14865   if (BitWidth && getLangOpts().OpenCL) {
14866     Diag(Loc, diag::err_opencl_bitfields);
14867     InvalidDecl = true;
14868   }
14869 
14870   // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
14871   if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
14872       T.hasQualifiers()) {
14873     InvalidDecl = true;
14874     Diag(Loc, diag::err_anon_bitfield_qualifiers);
14875   }
14876 
14877   // C99 6.7.2.1p8: A member of a structure or union may have any type other
14878   // than a variably modified type.
14879   if (!InvalidDecl && T->isVariablyModifiedType()) {
14880     bool SizeIsNegative;
14881     llvm::APSInt Oversized;
14882 
14883     TypeSourceInfo *FixedTInfo =
14884       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
14885                                                     SizeIsNegative,
14886                                                     Oversized);
14887     if (FixedTInfo) {
14888       Diag(Loc, diag::warn_illegal_constant_array_size);
14889       TInfo = FixedTInfo;
14890       T = FixedTInfo->getType();
14891     } else {
14892       if (SizeIsNegative)
14893         Diag(Loc, diag::err_typecheck_negative_array_size);
14894       else if (Oversized.getBoolValue())
14895         Diag(Loc, diag::err_array_too_large)
14896           << Oversized.toString(10);
14897       else
14898         Diag(Loc, diag::err_typecheck_field_variable_size);
14899       InvalidDecl = true;
14900     }
14901   }
14902 
14903   // Fields can not have abstract class types
14904   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
14905                                              diag::err_abstract_type_in_decl,
14906                                              AbstractFieldType))
14907     InvalidDecl = true;
14908 
14909   bool ZeroWidth = false;
14910   if (InvalidDecl)
14911     BitWidth = nullptr;
14912   // If this is declared as a bit-field, check the bit-field.
14913   if (BitWidth) {
14914     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
14915                               &ZeroWidth).get();
14916     if (!BitWidth) {
14917       InvalidDecl = true;
14918       BitWidth = nullptr;
14919       ZeroWidth = false;
14920     }
14921   }
14922 
14923   // Check that 'mutable' is consistent with the type of the declaration.
14924   if (!InvalidDecl && Mutable) {
14925     unsigned DiagID = 0;
14926     if (T->isReferenceType())
14927       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
14928                                         : diag::err_mutable_reference;
14929     else if (T.isConstQualified())
14930       DiagID = diag::err_mutable_const;
14931 
14932     if (DiagID) {
14933       SourceLocation ErrLoc = Loc;
14934       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
14935         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
14936       Diag(ErrLoc, DiagID);
14937       if (DiagID != diag::ext_mutable_reference) {
14938         Mutable = false;
14939         InvalidDecl = true;
14940       }
14941     }
14942   }
14943 
14944   // C++11 [class.union]p8 (DR1460):
14945   //   At most one variant member of a union may have a
14946   //   brace-or-equal-initializer.
14947   if (InitStyle != ICIS_NoInit)
14948     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
14949 
14950   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
14951                                        BitWidth, Mutable, InitStyle);
14952   if (InvalidDecl)
14953     NewFD->setInvalidDecl();
14954 
14955   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
14956     Diag(Loc, diag::err_duplicate_member) << II;
14957     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
14958     NewFD->setInvalidDecl();
14959   }
14960 
14961   if (!InvalidDecl && getLangOpts().CPlusPlus) {
14962     if (Record->isUnion()) {
14963       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
14964         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
14965         if (RDecl->getDefinition()) {
14966           // C++ [class.union]p1: An object of a class with a non-trivial
14967           // constructor, a non-trivial copy constructor, a non-trivial
14968           // destructor, or a non-trivial copy assignment operator
14969           // cannot be a member of a union, nor can an array of such
14970           // objects.
14971           if (CheckNontrivialField(NewFD))
14972             NewFD->setInvalidDecl();
14973         }
14974       }
14975 
14976       // C++ [class.union]p1: If a union contains a member of reference type,
14977       // the program is ill-formed, except when compiling with MSVC extensions
14978       // enabled.
14979       if (EltTy->isReferenceType()) {
14980         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
14981                                     diag::ext_union_member_of_reference_type :
14982                                     diag::err_union_member_of_reference_type)
14983           << NewFD->getDeclName() << EltTy;
14984         if (!getLangOpts().MicrosoftExt)
14985           NewFD->setInvalidDecl();
14986       }
14987     }
14988   }
14989 
14990   // FIXME: We need to pass in the attributes given an AST
14991   // representation, not a parser representation.
14992   if (D) {
14993     // FIXME: The current scope is almost... but not entirely... correct here.
14994     ProcessDeclAttributes(getCurScope(), NewFD, *D);
14995 
14996     if (NewFD->hasAttrs())
14997       CheckAlignasUnderalignment(NewFD);
14998   }
14999 
15000   // In auto-retain/release, infer strong retension for fields of
15001   // retainable type.
15002   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
15003     NewFD->setInvalidDecl();
15004 
15005   if (T.isObjCGCWeak())
15006     Diag(Loc, diag::warn_attribute_weak_on_field);
15007 
15008   NewFD->setAccess(AS);
15009   return NewFD;
15010 }
15011 
15012 bool Sema::CheckNontrivialField(FieldDecl *FD) {
15013   assert(FD);
15014   assert(getLangOpts().CPlusPlus && "valid check only for C++");
15015 
15016   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
15017     return false;
15018 
15019   QualType EltTy = Context.getBaseElementType(FD->getType());
15020   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15021     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
15022     if (RDecl->getDefinition()) {
15023       // We check for copy constructors before constructors
15024       // because otherwise we'll never get complaints about
15025       // copy constructors.
15026 
15027       CXXSpecialMember member = CXXInvalid;
15028       // We're required to check for any non-trivial constructors. Since the
15029       // implicit default constructor is suppressed if there are any
15030       // user-declared constructors, we just need to check that there is a
15031       // trivial default constructor and a trivial copy constructor. (We don't
15032       // worry about move constructors here, since this is a C++98 check.)
15033       if (RDecl->hasNonTrivialCopyConstructor())
15034         member = CXXCopyConstructor;
15035       else if (!RDecl->hasTrivialDefaultConstructor())
15036         member = CXXDefaultConstructor;
15037       else if (RDecl->hasNonTrivialCopyAssignment())
15038         member = CXXCopyAssignment;
15039       else if (RDecl->hasNonTrivialDestructor())
15040         member = CXXDestructor;
15041 
15042       if (member != CXXInvalid) {
15043         if (!getLangOpts().CPlusPlus11 &&
15044             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
15045           // Objective-C++ ARC: it is an error to have a non-trivial field of
15046           // a union. However, system headers in Objective-C programs
15047           // occasionally have Objective-C lifetime objects within unions,
15048           // and rather than cause the program to fail, we make those
15049           // members unavailable.
15050           SourceLocation Loc = FD->getLocation();
15051           if (getSourceManager().isInSystemHeader(Loc)) {
15052             if (!FD->hasAttr<UnavailableAttr>())
15053               FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
15054                             UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
15055             return false;
15056           }
15057         }
15058 
15059         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
15060                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
15061                diag::err_illegal_union_or_anon_struct_member)
15062           << FD->getParent()->isUnion() << FD->getDeclName() << member;
15063         DiagnoseNontrivial(RDecl, member);
15064         return !getLangOpts().CPlusPlus11;
15065       }
15066     }
15067   }
15068 
15069   return false;
15070 }
15071 
15072 /// TranslateIvarVisibility - Translate visibility from a token ID to an
15073 ///  AST enum value.
15074 static ObjCIvarDecl::AccessControl
15075 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
15076   switch (ivarVisibility) {
15077   default: llvm_unreachable("Unknown visitibility kind");
15078   case tok::objc_private: return ObjCIvarDecl::Private;
15079   case tok::objc_public: return ObjCIvarDecl::Public;
15080   case tok::objc_protected: return ObjCIvarDecl::Protected;
15081   case tok::objc_package: return ObjCIvarDecl::Package;
15082   }
15083 }
15084 
15085 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
15086 /// in order to create an IvarDecl object for it.
15087 Decl *Sema::ActOnIvar(Scope *S,
15088                                 SourceLocation DeclStart,
15089                                 Declarator &D, Expr *BitfieldWidth,
15090                                 tok::ObjCKeywordKind Visibility) {
15091 
15092   IdentifierInfo *II = D.getIdentifier();
15093   Expr *BitWidth = (Expr*)BitfieldWidth;
15094   SourceLocation Loc = DeclStart;
15095   if (II) Loc = D.getIdentifierLoc();
15096 
15097   // FIXME: Unnamed fields can be handled in various different ways, for
15098   // example, unnamed unions inject all members into the struct namespace!
15099 
15100   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15101   QualType T = TInfo->getType();
15102 
15103   if (BitWidth) {
15104     // 6.7.2.1p3, 6.7.2.1p4
15105     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
15106     if (!BitWidth)
15107       D.setInvalidType();
15108   } else {
15109     // Not a bitfield.
15110 
15111     // validate II.
15112 
15113   }
15114   if (T->isReferenceType()) {
15115     Diag(Loc, diag::err_ivar_reference_type);
15116     D.setInvalidType();
15117   }
15118   // C99 6.7.2.1p8: A member of a structure or union may have any type other
15119   // than a variably modified type.
15120   else if (T->isVariablyModifiedType()) {
15121     Diag(Loc, diag::err_typecheck_ivar_variable_size);
15122     D.setInvalidType();
15123   }
15124 
15125   // Get the visibility (access control) for this ivar.
15126   ObjCIvarDecl::AccessControl ac =
15127     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
15128                                         : ObjCIvarDecl::None;
15129   // Must set ivar's DeclContext to its enclosing interface.
15130   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
15131   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
15132     return nullptr;
15133   ObjCContainerDecl *EnclosingContext;
15134   if (ObjCImplementationDecl *IMPDecl =
15135       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
15136     if (LangOpts.ObjCRuntime.isFragile()) {
15137     // Case of ivar declared in an implementation. Context is that of its class.
15138       EnclosingContext = IMPDecl->getClassInterface();
15139       assert(EnclosingContext && "Implementation has no class interface!");
15140     }
15141     else
15142       EnclosingContext = EnclosingDecl;
15143   } else {
15144     if (ObjCCategoryDecl *CDecl =
15145         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
15146       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
15147         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
15148         return nullptr;
15149       }
15150     }
15151     EnclosingContext = EnclosingDecl;
15152   }
15153 
15154   // Construct the decl.
15155   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
15156                                              DeclStart, Loc, II, T,
15157                                              TInfo, ac, (Expr *)BitfieldWidth);
15158 
15159   if (II) {
15160     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
15161                                            ForVisibleRedeclaration);
15162     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
15163         && !isa<TagDecl>(PrevDecl)) {
15164       Diag(Loc, diag::err_duplicate_member) << II;
15165       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15166       NewID->setInvalidDecl();
15167     }
15168   }
15169 
15170   // Process attributes attached to the ivar.
15171   ProcessDeclAttributes(S, NewID, D);
15172 
15173   if (D.isInvalidType())
15174     NewID->setInvalidDecl();
15175 
15176   // In ARC, infer 'retaining' for ivars of retainable type.
15177   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
15178     NewID->setInvalidDecl();
15179 
15180   if (D.getDeclSpec().isModulePrivateSpecified())
15181     NewID->setModulePrivate();
15182 
15183   if (II) {
15184     // FIXME: When interfaces are DeclContexts, we'll need to add
15185     // these to the interface.
15186     S->AddDecl(NewID);
15187     IdResolver.AddDecl(NewID);
15188   }
15189 
15190   if (LangOpts.ObjCRuntime.isNonFragile() &&
15191       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
15192     Diag(Loc, diag::warn_ivars_in_interface);
15193 
15194   return NewID;
15195 }
15196 
15197 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
15198 /// class and class extensions. For every class \@interface and class
15199 /// extension \@interface, if the last ivar is a bitfield of any type,
15200 /// then add an implicit `char :0` ivar to the end of that interface.
15201 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
15202                              SmallVectorImpl<Decl *> &AllIvarDecls) {
15203   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
15204     return;
15205 
15206   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
15207   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
15208 
15209   if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
15210     return;
15211   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
15212   if (!ID) {
15213     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
15214       if (!CD->IsClassExtension())
15215         return;
15216     }
15217     // No need to add this to end of @implementation.
15218     else
15219       return;
15220   }
15221   // All conditions are met. Add a new bitfield to the tail end of ivars.
15222   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
15223   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
15224 
15225   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
15226                               DeclLoc, DeclLoc, nullptr,
15227                               Context.CharTy,
15228                               Context.getTrivialTypeSourceInfo(Context.CharTy,
15229                                                                DeclLoc),
15230                               ObjCIvarDecl::Private, BW,
15231                               true);
15232   AllIvarDecls.push_back(Ivar);
15233 }
15234 
15235 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
15236                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
15237                        SourceLocation RBrac, AttributeList *Attr) {
15238   assert(EnclosingDecl && "missing record or interface decl");
15239 
15240   // If this is an Objective-C @implementation or category and we have
15241   // new fields here we should reset the layout of the interface since
15242   // it will now change.
15243   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
15244     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
15245     switch (DC->getKind()) {
15246     default: break;
15247     case Decl::ObjCCategory:
15248       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
15249       break;
15250     case Decl::ObjCImplementation:
15251       Context.
15252         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
15253       break;
15254     }
15255   }
15256 
15257   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
15258 
15259   // Start counting up the number of named members; make sure to include
15260   // members of anonymous structs and unions in the total.
15261   unsigned NumNamedMembers = 0;
15262   if (Record) {
15263     for (const auto *I : Record->decls()) {
15264       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
15265         if (IFD->getDeclName())
15266           ++NumNamedMembers;
15267     }
15268   }
15269 
15270   // Verify that all the fields are okay.
15271   SmallVector<FieldDecl*, 32> RecFields;
15272 
15273   bool ObjCFieldLifetimeErrReported = false;
15274   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
15275        i != end; ++i) {
15276     FieldDecl *FD = cast<FieldDecl>(*i);
15277 
15278     // Get the type for the field.
15279     const Type *FDTy = FD->getType().getTypePtr();
15280 
15281     if (!FD->isAnonymousStructOrUnion()) {
15282       // Remember all fields written by the user.
15283       RecFields.push_back(FD);
15284     }
15285 
15286     // If the field is already invalid for some reason, don't emit more
15287     // diagnostics about it.
15288     if (FD->isInvalidDecl()) {
15289       EnclosingDecl->setInvalidDecl();
15290       continue;
15291     }
15292 
15293     // C99 6.7.2.1p2:
15294     //   A structure or union shall not contain a member with
15295     //   incomplete or function type (hence, a structure shall not
15296     //   contain an instance of itself, but may contain a pointer to
15297     //   an instance of itself), except that the last member of a
15298     //   structure with more than one named member may have incomplete
15299     //   array type; such a structure (and any union containing,
15300     //   possibly recursively, a member that is such a structure)
15301     //   shall not be a member of a structure or an element of an
15302     //   array.
15303     bool IsLastField = (i + 1 == Fields.end());
15304     if (FDTy->isFunctionType()) {
15305       // Field declared as a function.
15306       Diag(FD->getLocation(), diag::err_field_declared_as_function)
15307         << FD->getDeclName();
15308       FD->setInvalidDecl();
15309       EnclosingDecl->setInvalidDecl();
15310       continue;
15311     } else if (FDTy->isIncompleteArrayType() &&
15312                (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
15313       if (Record) {
15314         // Flexible array member.
15315         // Microsoft and g++ is more permissive regarding flexible array.
15316         // It will accept flexible array in union and also
15317         // as the sole element of a struct/class.
15318         unsigned DiagID = 0;
15319         if (!Record->isUnion() && !IsLastField) {
15320           Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
15321             << FD->getDeclName() << FD->getType() << Record->getTagKind();
15322           Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
15323           FD->setInvalidDecl();
15324           EnclosingDecl->setInvalidDecl();
15325           continue;
15326         } else if (Record->isUnion())
15327           DiagID = getLangOpts().MicrosoftExt
15328                        ? diag::ext_flexible_array_union_ms
15329                        : getLangOpts().CPlusPlus
15330                              ? diag::ext_flexible_array_union_gnu
15331                              : diag::err_flexible_array_union;
15332         else if (NumNamedMembers < 1)
15333           DiagID = getLangOpts().MicrosoftExt
15334                        ? diag::ext_flexible_array_empty_aggregate_ms
15335                        : getLangOpts().CPlusPlus
15336                              ? diag::ext_flexible_array_empty_aggregate_gnu
15337                              : diag::err_flexible_array_empty_aggregate;
15338 
15339         if (DiagID)
15340           Diag(FD->getLocation(), DiagID) << FD->getDeclName()
15341                                           << Record->getTagKind();
15342         // While the layout of types that contain virtual bases is not specified
15343         // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
15344         // virtual bases after the derived members.  This would make a flexible
15345         // array member declared at the end of an object not adjacent to the end
15346         // of the type.
15347         if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
15348           if (RD->getNumVBases() != 0)
15349             Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
15350               << FD->getDeclName() << Record->getTagKind();
15351         if (!getLangOpts().C99)
15352           Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
15353             << FD->getDeclName() << Record->getTagKind();
15354 
15355         // If the element type has a non-trivial destructor, we would not
15356         // implicitly destroy the elements, so disallow it for now.
15357         //
15358         // FIXME: GCC allows this. We should probably either implicitly delete
15359         // the destructor of the containing class, or just allow this.
15360         QualType BaseElem = Context.getBaseElementType(FD->getType());
15361         if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
15362           Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
15363             << FD->getDeclName() << FD->getType();
15364           FD->setInvalidDecl();
15365           EnclosingDecl->setInvalidDecl();
15366           continue;
15367         }
15368         // Okay, we have a legal flexible array member at the end of the struct.
15369         Record->setHasFlexibleArrayMember(true);
15370       } else {
15371         // In ObjCContainerDecl ivars with incomplete array type are accepted,
15372         // unless they are followed by another ivar. That check is done
15373         // elsewhere, after synthesized ivars are known.
15374       }
15375     } else if (!FDTy->isDependentType() &&
15376                RequireCompleteType(FD->getLocation(), FD->getType(),
15377                                    diag::err_field_incomplete)) {
15378       // Incomplete type
15379       FD->setInvalidDecl();
15380       EnclosingDecl->setInvalidDecl();
15381       continue;
15382     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
15383       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
15384         // A type which contains a flexible array member is considered to be a
15385         // flexible array member.
15386         Record->setHasFlexibleArrayMember(true);
15387         if (!Record->isUnion()) {
15388           // If this is a struct/class and this is not the last element, reject
15389           // it.  Note that GCC supports variable sized arrays in the middle of
15390           // structures.
15391           if (!IsLastField)
15392             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
15393               << FD->getDeclName() << FD->getType();
15394           else {
15395             // We support flexible arrays at the end of structs in
15396             // other structs as an extension.
15397             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
15398               << FD->getDeclName();
15399           }
15400         }
15401       }
15402       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
15403           RequireNonAbstractType(FD->getLocation(), FD->getType(),
15404                                  diag::err_abstract_type_in_decl,
15405                                  AbstractIvarType)) {
15406         // Ivars can not have abstract class types
15407         FD->setInvalidDecl();
15408       }
15409       if (Record && FDTTy->getDecl()->hasObjectMember())
15410         Record->setHasObjectMember(true);
15411       if (Record && FDTTy->getDecl()->hasVolatileMember())
15412         Record->setHasVolatileMember(true);
15413     } else if (FDTy->isObjCObjectType()) {
15414       /// A field cannot be an Objective-c object
15415       Diag(FD->getLocation(), diag::err_statically_allocated_object)
15416         << FixItHint::CreateInsertion(FD->getLocation(), "*");
15417       QualType T = Context.getObjCObjectPointerType(FD->getType());
15418       FD->setType(T);
15419     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
15420                Record && !ObjCFieldLifetimeErrReported && Record->isUnion()) {
15421       // It's an error in ARC or Weak if a field has lifetime.
15422       // We don't want to report this in a system header, though,
15423       // so we just make the field unavailable.
15424       // FIXME: that's really not sufficient; we need to make the type
15425       // itself invalid to, say, initialize or copy.
15426       QualType T = FD->getType();
15427       if (T.hasNonTrivialObjCLifetime()) {
15428         SourceLocation loc = FD->getLocation();
15429         if (getSourceManager().isInSystemHeader(loc)) {
15430           if (!FD->hasAttr<UnavailableAttr>()) {
15431             FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
15432                           UnavailableAttr::IR_ARCFieldWithOwnership, loc));
15433           }
15434         } else {
15435           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
15436             << T->isBlockPointerType() << Record->getTagKind();
15437         }
15438         ObjCFieldLifetimeErrReported = true;
15439       }
15440     } else if (getLangOpts().ObjC1 &&
15441                getLangOpts().getGC() != LangOptions::NonGC &&
15442                Record && !Record->hasObjectMember()) {
15443       if (FD->getType()->isObjCObjectPointerType() ||
15444           FD->getType().isObjCGCStrong())
15445         Record->setHasObjectMember(true);
15446       else if (Context.getAsArrayType(FD->getType())) {
15447         QualType BaseType = Context.getBaseElementType(FD->getType());
15448         if (BaseType->isRecordType() &&
15449             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
15450           Record->setHasObjectMember(true);
15451         else if (BaseType->isObjCObjectPointerType() ||
15452                  BaseType.isObjCGCStrong())
15453                Record->setHasObjectMember(true);
15454       }
15455     }
15456 
15457     if (Record && !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>()) {
15458       QualType FT = FD->getType();
15459       if (FT.isNonTrivialToPrimitiveDefaultInitialize())
15460         Record->setNonTrivialToPrimitiveDefaultInitialize(true);
15461       QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
15462       if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial)
15463         Record->setNonTrivialToPrimitiveCopy(true);
15464       if (FT.isDestructedType()) {
15465         Record->setNonTrivialToPrimitiveDestroy(true);
15466         Record->setParamDestroyedInCallee(true);
15467       }
15468 
15469       if (const auto *RT = FT->getAs<RecordType>()) {
15470         if (RT->getDecl()->getArgPassingRestrictions() ==
15471             RecordDecl::APK_CanNeverPassInRegs)
15472           Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
15473       } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
15474         Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
15475     }
15476 
15477     if (Record && FD->getType().isVolatileQualified())
15478       Record->setHasVolatileMember(true);
15479     // Keep track of the number of named members.
15480     if (FD->getIdentifier())
15481       ++NumNamedMembers;
15482   }
15483 
15484   // Okay, we successfully defined 'Record'.
15485   if (Record) {
15486     bool Completed = false;
15487     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
15488       if (!CXXRecord->isInvalidDecl()) {
15489         // Set access bits correctly on the directly-declared conversions.
15490         for (CXXRecordDecl::conversion_iterator
15491                I = CXXRecord->conversion_begin(),
15492                E = CXXRecord->conversion_end(); I != E; ++I)
15493           I.setAccess((*I)->getAccess());
15494       }
15495 
15496       if (!CXXRecord->isDependentType()) {
15497         if (CXXRecord->hasUserDeclaredDestructor()) {
15498           // Adjust user-defined destructor exception spec.
15499           if (getLangOpts().CPlusPlus11)
15500             AdjustDestructorExceptionSpec(CXXRecord,
15501                                           CXXRecord->getDestructor());
15502         }
15503 
15504         // Add any implicitly-declared members to this class.
15505         AddImplicitlyDeclaredMembersToClass(CXXRecord);
15506 
15507         if (!CXXRecord->isInvalidDecl()) {
15508           // If we have virtual base classes, we may end up finding multiple
15509           // final overriders for a given virtual function. Check for this
15510           // problem now.
15511           if (CXXRecord->getNumVBases()) {
15512             CXXFinalOverriderMap FinalOverriders;
15513             CXXRecord->getFinalOverriders(FinalOverriders);
15514 
15515             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
15516                                              MEnd = FinalOverriders.end();
15517                  M != MEnd; ++M) {
15518               for (OverridingMethods::iterator SO = M->second.begin(),
15519                                             SOEnd = M->second.end();
15520                    SO != SOEnd; ++SO) {
15521                 assert(SO->second.size() > 0 &&
15522                        "Virtual function without overriding functions?");
15523                 if (SO->second.size() == 1)
15524                   continue;
15525 
15526                 // C++ [class.virtual]p2:
15527                 //   In a derived class, if a virtual member function of a base
15528                 //   class subobject has more than one final overrider the
15529                 //   program is ill-formed.
15530                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
15531                   << (const NamedDecl *)M->first << Record;
15532                 Diag(M->first->getLocation(),
15533                      diag::note_overridden_virtual_function);
15534                 for (OverridingMethods::overriding_iterator
15535                           OM = SO->second.begin(),
15536                        OMEnd = SO->second.end();
15537                      OM != OMEnd; ++OM)
15538                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
15539                     << (const NamedDecl *)M->first << OM->Method->getParent();
15540 
15541                 Record->setInvalidDecl();
15542               }
15543             }
15544             CXXRecord->completeDefinition(&FinalOverriders);
15545             Completed = true;
15546           }
15547         }
15548       }
15549     }
15550 
15551     if (!Completed)
15552       Record->completeDefinition();
15553 
15554     // We may have deferred checking for a deleted destructor. Check now.
15555     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
15556       auto *Dtor = CXXRecord->getDestructor();
15557       if (Dtor && Dtor->isImplicit() &&
15558           ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
15559         CXXRecord->setImplicitDestructorIsDeleted();
15560         SetDeclDeleted(Dtor, CXXRecord->getLocation());
15561       }
15562     }
15563 
15564     if (Record->hasAttrs()) {
15565       CheckAlignasUnderalignment(Record);
15566 
15567       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
15568         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
15569                                            IA->getRange(), IA->getBestCase(),
15570                                            IA->getSemanticSpelling());
15571     }
15572 
15573     // Check if the structure/union declaration is a type that can have zero
15574     // size in C. For C this is a language extension, for C++ it may cause
15575     // compatibility problems.
15576     bool CheckForZeroSize;
15577     if (!getLangOpts().CPlusPlus) {
15578       CheckForZeroSize = true;
15579     } else {
15580       // For C++ filter out types that cannot be referenced in C code.
15581       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
15582       CheckForZeroSize =
15583           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
15584           !CXXRecord->isDependentType() &&
15585           CXXRecord->isCLike();
15586     }
15587     if (CheckForZeroSize) {
15588       bool ZeroSize = true;
15589       bool IsEmpty = true;
15590       unsigned NonBitFields = 0;
15591       for (RecordDecl::field_iterator I = Record->field_begin(),
15592                                       E = Record->field_end();
15593            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
15594         IsEmpty = false;
15595         if (I->isUnnamedBitfield()) {
15596           if (!I->isZeroLengthBitField(Context))
15597             ZeroSize = false;
15598         } else {
15599           ++NonBitFields;
15600           QualType FieldType = I->getType();
15601           if (FieldType->isIncompleteType() ||
15602               !Context.getTypeSizeInChars(FieldType).isZero())
15603             ZeroSize = false;
15604         }
15605       }
15606 
15607       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
15608       // allowed in C++, but warn if its declaration is inside
15609       // extern "C" block.
15610       if (ZeroSize) {
15611         Diag(RecLoc, getLangOpts().CPlusPlus ?
15612                          diag::warn_zero_size_struct_union_in_extern_c :
15613                          diag::warn_zero_size_struct_union_compat)
15614           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
15615       }
15616 
15617       // Structs without named members are extension in C (C99 6.7.2.1p7),
15618       // but are accepted by GCC.
15619       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
15620         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
15621                                diag::ext_no_named_members_in_struct_union)
15622           << Record->isUnion();
15623       }
15624     }
15625   } else {
15626     ObjCIvarDecl **ClsFields =
15627       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
15628     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
15629       ID->setEndOfDefinitionLoc(RBrac);
15630       // Add ivar's to class's DeclContext.
15631       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
15632         ClsFields[i]->setLexicalDeclContext(ID);
15633         ID->addDecl(ClsFields[i]);
15634       }
15635       // Must enforce the rule that ivars in the base classes may not be
15636       // duplicates.
15637       if (ID->getSuperClass())
15638         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
15639     } else if (ObjCImplementationDecl *IMPDecl =
15640                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
15641       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
15642       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
15643         // Ivar declared in @implementation never belongs to the implementation.
15644         // Only it is in implementation's lexical context.
15645         ClsFields[I]->setLexicalDeclContext(IMPDecl);
15646       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
15647       IMPDecl->setIvarLBraceLoc(LBrac);
15648       IMPDecl->setIvarRBraceLoc(RBrac);
15649     } else if (ObjCCategoryDecl *CDecl =
15650                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
15651       // case of ivars in class extension; all other cases have been
15652       // reported as errors elsewhere.
15653       // FIXME. Class extension does not have a LocEnd field.
15654       // CDecl->setLocEnd(RBrac);
15655       // Add ivar's to class extension's DeclContext.
15656       // Diagnose redeclaration of private ivars.
15657       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
15658       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
15659         if (IDecl) {
15660           if (const ObjCIvarDecl *ClsIvar =
15661               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
15662             Diag(ClsFields[i]->getLocation(),
15663                  diag::err_duplicate_ivar_declaration);
15664             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
15665             continue;
15666           }
15667           for (const auto *Ext : IDecl->known_extensions()) {
15668             if (const ObjCIvarDecl *ClsExtIvar
15669                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
15670               Diag(ClsFields[i]->getLocation(),
15671                    diag::err_duplicate_ivar_declaration);
15672               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
15673               continue;
15674             }
15675           }
15676         }
15677         ClsFields[i]->setLexicalDeclContext(CDecl);
15678         CDecl->addDecl(ClsFields[i]);
15679       }
15680       CDecl->setIvarLBraceLoc(LBrac);
15681       CDecl->setIvarRBraceLoc(RBrac);
15682     }
15683   }
15684 
15685   if (Attr)
15686     ProcessDeclAttributeList(S, Record, Attr);
15687 }
15688 
15689 /// \brief Determine whether the given integral value is representable within
15690 /// the given type T.
15691 static bool isRepresentableIntegerValue(ASTContext &Context,
15692                                         llvm::APSInt &Value,
15693                                         QualType T) {
15694   assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
15695          "Integral type required!");
15696   unsigned BitWidth = Context.getIntWidth(T);
15697 
15698   if (Value.isUnsigned() || Value.isNonNegative()) {
15699     if (T->isSignedIntegerOrEnumerationType())
15700       --BitWidth;
15701     return Value.getActiveBits() <= BitWidth;
15702   }
15703   return Value.getMinSignedBits() <= BitWidth;
15704 }
15705 
15706 // \brief Given an integral type, return the next larger integral type
15707 // (or a NULL type of no such type exists).
15708 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
15709   // FIXME: Int128/UInt128 support, which also needs to be introduced into
15710   // enum checking below.
15711   assert((T->isIntegralType(Context) ||
15712          T->isEnumeralType()) && "Integral type required!");
15713   const unsigned NumTypes = 4;
15714   QualType SignedIntegralTypes[NumTypes] = {
15715     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
15716   };
15717   QualType UnsignedIntegralTypes[NumTypes] = {
15718     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
15719     Context.UnsignedLongLongTy
15720   };
15721 
15722   unsigned BitWidth = Context.getTypeSize(T);
15723   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
15724                                                         : UnsignedIntegralTypes;
15725   for (unsigned I = 0; I != NumTypes; ++I)
15726     if (Context.getTypeSize(Types[I]) > BitWidth)
15727       return Types[I];
15728 
15729   return QualType();
15730 }
15731 
15732 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
15733                                           EnumConstantDecl *LastEnumConst,
15734                                           SourceLocation IdLoc,
15735                                           IdentifierInfo *Id,
15736                                           Expr *Val) {
15737   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
15738   llvm::APSInt EnumVal(IntWidth);
15739   QualType EltTy;
15740 
15741   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
15742     Val = nullptr;
15743 
15744   if (Val)
15745     Val = DefaultLvalueConversion(Val).get();
15746 
15747   if (Val) {
15748     if (Enum->isDependentType() || Val->isTypeDependent())
15749       EltTy = Context.DependentTy;
15750     else {
15751       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
15752           !getLangOpts().MSVCCompat) {
15753         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
15754         // constant-expression in the enumerator-definition shall be a converted
15755         // constant expression of the underlying type.
15756         EltTy = Enum->getIntegerType();
15757         ExprResult Converted =
15758           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
15759                                            CCEK_Enumerator);
15760         if (Converted.isInvalid())
15761           Val = nullptr;
15762         else
15763           Val = Converted.get();
15764       } else if (!Val->isValueDependent() &&
15765                  !(Val = VerifyIntegerConstantExpression(Val,
15766                                                          &EnumVal).get())) {
15767         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
15768       } else {
15769         if (Enum->isComplete()) {
15770           EltTy = Enum->getIntegerType();
15771 
15772           // In Obj-C and Microsoft mode, require the enumeration value to be
15773           // representable in the underlying type of the enumeration. In C++11,
15774           // we perform a non-narrowing conversion as part of converted constant
15775           // expression checking.
15776           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
15777             if (getLangOpts().MSVCCompat) {
15778               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
15779               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
15780             } else
15781               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
15782           } else
15783             Val = ImpCastExprToType(Val, EltTy,
15784                                     EltTy->isBooleanType() ?
15785                                     CK_IntegralToBoolean : CK_IntegralCast)
15786                     .get();
15787         } else if (getLangOpts().CPlusPlus) {
15788           // C++11 [dcl.enum]p5:
15789           //   If the underlying type is not fixed, the type of each enumerator
15790           //   is the type of its initializing value:
15791           //     - If an initializer is specified for an enumerator, the
15792           //       initializing value has the same type as the expression.
15793           EltTy = Val->getType();
15794         } else {
15795           // C99 6.7.2.2p2:
15796           //   The expression that defines the value of an enumeration constant
15797           //   shall be an integer constant expression that has a value
15798           //   representable as an int.
15799 
15800           // Complain if the value is not representable in an int.
15801           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
15802             Diag(IdLoc, diag::ext_enum_value_not_int)
15803               << EnumVal.toString(10) << Val->getSourceRange()
15804               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
15805           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
15806             // Force the type of the expression to 'int'.
15807             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
15808           }
15809           EltTy = Val->getType();
15810         }
15811       }
15812     }
15813   }
15814 
15815   if (!Val) {
15816     if (Enum->isDependentType())
15817       EltTy = Context.DependentTy;
15818     else if (!LastEnumConst) {
15819       // C++0x [dcl.enum]p5:
15820       //   If the underlying type is not fixed, the type of each enumerator
15821       //   is the type of its initializing value:
15822       //     - If no initializer is specified for the first enumerator, the
15823       //       initializing value has an unspecified integral type.
15824       //
15825       // GCC uses 'int' for its unspecified integral type, as does
15826       // C99 6.7.2.2p3.
15827       if (Enum->isFixed()) {
15828         EltTy = Enum->getIntegerType();
15829       }
15830       else {
15831         EltTy = Context.IntTy;
15832       }
15833     } else {
15834       // Assign the last value + 1.
15835       EnumVal = LastEnumConst->getInitVal();
15836       ++EnumVal;
15837       EltTy = LastEnumConst->getType();
15838 
15839       // Check for overflow on increment.
15840       if (EnumVal < LastEnumConst->getInitVal()) {
15841         // C++0x [dcl.enum]p5:
15842         //   If the underlying type is not fixed, the type of each enumerator
15843         //   is the type of its initializing value:
15844         //
15845         //     - Otherwise the type of the initializing value is the same as
15846         //       the type of the initializing value of the preceding enumerator
15847         //       unless the incremented value is not representable in that type,
15848         //       in which case the type is an unspecified integral type
15849         //       sufficient to contain the incremented value. If no such type
15850         //       exists, the program is ill-formed.
15851         QualType T = getNextLargerIntegralType(Context, EltTy);
15852         if (T.isNull() || Enum->isFixed()) {
15853           // There is no integral type larger enough to represent this
15854           // value. Complain, then allow the value to wrap around.
15855           EnumVal = LastEnumConst->getInitVal();
15856           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
15857           ++EnumVal;
15858           if (Enum->isFixed())
15859             // When the underlying type is fixed, this is ill-formed.
15860             Diag(IdLoc, diag::err_enumerator_wrapped)
15861               << EnumVal.toString(10)
15862               << EltTy;
15863           else
15864             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
15865               << EnumVal.toString(10);
15866         } else {
15867           EltTy = T;
15868         }
15869 
15870         // Retrieve the last enumerator's value, extent that type to the
15871         // type that is supposed to be large enough to represent the incremented
15872         // value, then increment.
15873         EnumVal = LastEnumConst->getInitVal();
15874         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
15875         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
15876         ++EnumVal;
15877 
15878         // If we're not in C++, diagnose the overflow of enumerator values,
15879         // which in C99 means that the enumerator value is not representable in
15880         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
15881         // permits enumerator values that are representable in some larger
15882         // integral type.
15883         if (!getLangOpts().CPlusPlus && !T.isNull())
15884           Diag(IdLoc, diag::warn_enum_value_overflow);
15885       } else if (!getLangOpts().CPlusPlus &&
15886                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
15887         // Enforce C99 6.7.2.2p2 even when we compute the next value.
15888         Diag(IdLoc, diag::ext_enum_value_not_int)
15889           << EnumVal.toString(10) << 1;
15890       }
15891     }
15892   }
15893 
15894   if (!EltTy->isDependentType()) {
15895     // Make the enumerator value match the signedness and size of the
15896     // enumerator's type.
15897     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
15898     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
15899   }
15900 
15901   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
15902                                   Val, EnumVal);
15903 }
15904 
15905 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
15906                                                 SourceLocation IILoc) {
15907   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
15908       !getLangOpts().CPlusPlus)
15909     return SkipBodyInfo();
15910 
15911   // We have an anonymous enum definition. Look up the first enumerator to
15912   // determine if we should merge the definition with an existing one and
15913   // skip the body.
15914   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
15915                                          forRedeclarationInCurContext());
15916   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
15917   if (!PrevECD)
15918     return SkipBodyInfo();
15919 
15920   EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
15921   NamedDecl *Hidden;
15922   if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
15923     SkipBodyInfo Skip;
15924     Skip.Previous = Hidden;
15925     return Skip;
15926   }
15927 
15928   return SkipBodyInfo();
15929 }
15930 
15931 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
15932                               SourceLocation IdLoc, IdentifierInfo *Id,
15933                               AttributeList *Attr,
15934                               SourceLocation EqualLoc, Expr *Val) {
15935   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
15936   EnumConstantDecl *LastEnumConst =
15937     cast_or_null<EnumConstantDecl>(lastEnumConst);
15938 
15939   // The scope passed in may not be a decl scope.  Zip up the scope tree until
15940   // we find one that is.
15941   S = getNonFieldDeclScope(S);
15942 
15943   // Verify that there isn't already something declared with this name in this
15944   // scope.
15945   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
15946                                          ForVisibleRedeclaration);
15947   if (PrevDecl && PrevDecl->isTemplateParameter()) {
15948     // Maybe we will complain about the shadowed template parameter.
15949     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
15950     // Just pretend that we didn't see the previous declaration.
15951     PrevDecl = nullptr;
15952   }
15953 
15954   // C++ [class.mem]p15:
15955   // If T is the name of a class, then each of the following shall have a name
15956   // different from T:
15957   // - every enumerator of every member of class T that is an unscoped
15958   // enumerated type
15959   if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
15960     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
15961                             DeclarationNameInfo(Id, IdLoc));
15962 
15963   EnumConstantDecl *New =
15964     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
15965   if (!New)
15966     return nullptr;
15967 
15968   if (PrevDecl) {
15969     // When in C++, we may get a TagDecl with the same name; in this case the
15970     // enum constant will 'hide' the tag.
15971     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
15972            "Received TagDecl when not in C++!");
15973     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
15974       if (isa<EnumConstantDecl>(PrevDecl))
15975         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
15976       else
15977         Diag(IdLoc, diag::err_redefinition) << Id;
15978       notePreviousDefinition(PrevDecl, IdLoc);
15979       return nullptr;
15980     }
15981   }
15982 
15983   // Process attributes.
15984   if (Attr) ProcessDeclAttributeList(S, New, Attr);
15985   AddPragmaAttributes(S, New);
15986 
15987   // Register this decl in the current scope stack.
15988   New->setAccess(TheEnumDecl->getAccess());
15989   PushOnScopeChains(New, S);
15990 
15991   ActOnDocumentableDecl(New);
15992 
15993   return New;
15994 }
15995 
15996 // Returns true when the enum initial expression does not trigger the
15997 // duplicate enum warning.  A few common cases are exempted as follows:
15998 // Element2 = Element1
15999 // Element2 = Element1 + 1
16000 // Element2 = Element1 - 1
16001 // Where Element2 and Element1 are from the same enum.
16002 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
16003   Expr *InitExpr = ECD->getInitExpr();
16004   if (!InitExpr)
16005     return true;
16006   InitExpr = InitExpr->IgnoreImpCasts();
16007 
16008   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
16009     if (!BO->isAdditiveOp())
16010       return true;
16011     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
16012     if (!IL)
16013       return true;
16014     if (IL->getValue() != 1)
16015       return true;
16016 
16017     InitExpr = BO->getLHS();
16018   }
16019 
16020   // This checks if the elements are from the same enum.
16021   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
16022   if (!DRE)
16023     return true;
16024 
16025   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
16026   if (!EnumConstant)
16027     return true;
16028 
16029   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
16030       Enum)
16031     return true;
16032 
16033   return false;
16034 }
16035 
16036 // Emits a warning when an element is implicitly set a value that
16037 // a previous element has already been set to.
16038 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
16039                                         EnumDecl *Enum, QualType EnumType) {
16040   // Avoid anonymous enums
16041   if (!Enum->getIdentifier())
16042     return;
16043 
16044   // Only check for small enums.
16045   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
16046     return;
16047 
16048   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
16049     return;
16050 
16051   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
16052   typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
16053 
16054   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
16055   typedef llvm::DenseMap<int64_t, DeclOrVector> ValueToVectorMap;
16056 
16057   // Use int64_t as a key to avoid needing special handling for DenseMap keys.
16058   auto EnumConstantToKey = [](const EnumConstantDecl *D) {
16059     llvm::APSInt Val = D->getInitVal();
16060     return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
16061   };
16062 
16063   DuplicatesVector DupVector;
16064   ValueToVectorMap EnumMap;
16065 
16066   // Populate the EnumMap with all values represented by enum constants without
16067   // an initializer.
16068   for (auto *Element : Elements) {
16069     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
16070 
16071     // Null EnumConstantDecl means a previous diagnostic has been emitted for
16072     // this constant.  Skip this enum since it may be ill-formed.
16073     if (!ECD) {
16074       return;
16075     }
16076 
16077     // Constants with initalizers are handled in the next loop.
16078     if (ECD->getInitExpr())
16079       continue;
16080 
16081     // Duplicate values are handled in the next loop.
16082     EnumMap.insert({EnumConstantToKey(ECD), ECD});
16083   }
16084 
16085   if (EnumMap.size() == 0)
16086     return;
16087 
16088   // Create vectors for any values that has duplicates.
16089   for (auto *Element : Elements) {
16090     // The last loop returned if any constant was null.
16091     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
16092     if (!ValidDuplicateEnum(ECD, Enum))
16093       continue;
16094 
16095     auto Iter = EnumMap.find(EnumConstantToKey(ECD));
16096     if (Iter == EnumMap.end())
16097       continue;
16098 
16099     DeclOrVector& Entry = Iter->second;
16100     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
16101       // Ensure constants are different.
16102       if (D == ECD)
16103         continue;
16104 
16105       // Create new vector and push values onto it.
16106       auto Vec = llvm::make_unique<ECDVector>();
16107       Vec->push_back(D);
16108       Vec->push_back(ECD);
16109 
16110       // Update entry to point to the duplicates vector.
16111       Entry = Vec.get();
16112 
16113       // Store the vector somewhere we can consult later for quick emission of
16114       // diagnostics.
16115       DupVector.emplace_back(std::move(Vec));
16116       continue;
16117     }
16118 
16119     ECDVector *Vec = Entry.get<ECDVector*>();
16120     // Make sure constants are not added more than once.
16121     if (*Vec->begin() == ECD)
16122       continue;
16123 
16124     Vec->push_back(ECD);
16125   }
16126 
16127   // Emit diagnostics.
16128   for (const auto &Vec : DupVector) {
16129     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
16130 
16131     // Emit warning for one enum constant.
16132     auto *FirstECD = Vec->front();
16133     S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
16134       << FirstECD << FirstECD->getInitVal().toString(10)
16135       << FirstECD->getSourceRange();
16136 
16137     // Emit one note for each of the remaining enum constants with
16138     // the same value.
16139     for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
16140       S.Diag(ECD->getLocation(), diag::note_duplicate_element)
16141         << ECD << ECD->getInitVal().toString(10)
16142         << ECD->getSourceRange();
16143   }
16144 }
16145 
16146 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
16147                              bool AllowMask) const {
16148   assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
16149   assert(ED->isCompleteDefinition() && "expected enum definition");
16150 
16151   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
16152   llvm::APInt &FlagBits = R.first->second;
16153 
16154   if (R.second) {
16155     for (auto *E : ED->enumerators()) {
16156       const auto &EVal = E->getInitVal();
16157       // Only single-bit enumerators introduce new flag values.
16158       if (EVal.isPowerOf2())
16159         FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
16160     }
16161   }
16162 
16163   // A value is in a flag enum if either its bits are a subset of the enum's
16164   // flag bits (the first condition) or we are allowing masks and the same is
16165   // true of its complement (the second condition). When masks are allowed, we
16166   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
16167   //
16168   // While it's true that any value could be used as a mask, the assumption is
16169   // that a mask will have all of the insignificant bits set. Anything else is
16170   // likely a logic error.
16171   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
16172   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
16173 }
16174 
16175 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
16176                          Decl *EnumDeclX,
16177                          ArrayRef<Decl *> Elements,
16178                          Scope *S, AttributeList *Attr) {
16179   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
16180   QualType EnumType = Context.getTypeDeclType(Enum);
16181 
16182   if (Attr)
16183     ProcessDeclAttributeList(S, Enum, Attr);
16184 
16185   if (Enum->isDependentType()) {
16186     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
16187       EnumConstantDecl *ECD =
16188         cast_or_null<EnumConstantDecl>(Elements[i]);
16189       if (!ECD) continue;
16190 
16191       ECD->setType(EnumType);
16192     }
16193 
16194     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
16195     return;
16196   }
16197 
16198   // TODO: If the result value doesn't fit in an int, it must be a long or long
16199   // long value.  ISO C does not support this, but GCC does as an extension,
16200   // emit a warning.
16201   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
16202   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
16203   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
16204 
16205   // Verify that all the values are okay, compute the size of the values, and
16206   // reverse the list.
16207   unsigned NumNegativeBits = 0;
16208   unsigned NumPositiveBits = 0;
16209 
16210   // Keep track of whether all elements have type int.
16211   bool AllElementsInt = true;
16212 
16213   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
16214     EnumConstantDecl *ECD =
16215       cast_or_null<EnumConstantDecl>(Elements[i]);
16216     if (!ECD) continue;  // Already issued a diagnostic.
16217 
16218     const llvm::APSInt &InitVal = ECD->getInitVal();
16219 
16220     // Keep track of the size of positive and negative values.
16221     if (InitVal.isUnsigned() || InitVal.isNonNegative())
16222       NumPositiveBits = std::max(NumPositiveBits,
16223                                  (unsigned)InitVal.getActiveBits());
16224     else
16225       NumNegativeBits = std::max(NumNegativeBits,
16226                                  (unsigned)InitVal.getMinSignedBits());
16227 
16228     // Keep track of whether every enum element has type int (very commmon).
16229     if (AllElementsInt)
16230       AllElementsInt = ECD->getType() == Context.IntTy;
16231   }
16232 
16233   // Figure out the type that should be used for this enum.
16234   QualType BestType;
16235   unsigned BestWidth;
16236 
16237   // C++0x N3000 [conv.prom]p3:
16238   //   An rvalue of an unscoped enumeration type whose underlying
16239   //   type is not fixed can be converted to an rvalue of the first
16240   //   of the following types that can represent all the values of
16241   //   the enumeration: int, unsigned int, long int, unsigned long
16242   //   int, long long int, or unsigned long long int.
16243   // C99 6.4.4.3p2:
16244   //   An identifier declared as an enumeration constant has type int.
16245   // The C99 rule is modified by a gcc extension
16246   QualType BestPromotionType;
16247 
16248   bool Packed = Enum->hasAttr<PackedAttr>();
16249   // -fshort-enums is the equivalent to specifying the packed attribute on all
16250   // enum definitions.
16251   if (LangOpts.ShortEnums)
16252     Packed = true;
16253 
16254   // If the enum already has a type because it is fixed or dictated by the
16255   // target, promote that type instead of analyzing the enumerators.
16256   if (Enum->isComplete()) {
16257     BestType = Enum->getIntegerType();
16258     if (BestType->isPromotableIntegerType())
16259       BestPromotionType = Context.getPromotedIntegerType(BestType);
16260     else
16261       BestPromotionType = BestType;
16262 
16263     BestWidth = Context.getIntWidth(BestType);
16264   }
16265   else if (NumNegativeBits) {
16266     // If there is a negative value, figure out the smallest integer type (of
16267     // int/long/longlong) that fits.
16268     // If it's packed, check also if it fits a char or a short.
16269     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
16270       BestType = Context.SignedCharTy;
16271       BestWidth = CharWidth;
16272     } else if (Packed && NumNegativeBits <= ShortWidth &&
16273                NumPositiveBits < ShortWidth) {
16274       BestType = Context.ShortTy;
16275       BestWidth = ShortWidth;
16276     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
16277       BestType = Context.IntTy;
16278       BestWidth = IntWidth;
16279     } else {
16280       BestWidth = Context.getTargetInfo().getLongWidth();
16281 
16282       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
16283         BestType = Context.LongTy;
16284       } else {
16285         BestWidth = Context.getTargetInfo().getLongLongWidth();
16286 
16287         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
16288           Diag(Enum->getLocation(), diag::ext_enum_too_large);
16289         BestType = Context.LongLongTy;
16290       }
16291     }
16292     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
16293   } else {
16294     // If there is no negative value, figure out the smallest type that fits
16295     // all of the enumerator values.
16296     // If it's packed, check also if it fits a char or a short.
16297     if (Packed && NumPositiveBits <= CharWidth) {
16298       BestType = Context.UnsignedCharTy;
16299       BestPromotionType = Context.IntTy;
16300       BestWidth = CharWidth;
16301     } else if (Packed && NumPositiveBits <= ShortWidth) {
16302       BestType = Context.UnsignedShortTy;
16303       BestPromotionType = Context.IntTy;
16304       BestWidth = ShortWidth;
16305     } else if (NumPositiveBits <= IntWidth) {
16306       BestType = Context.UnsignedIntTy;
16307       BestWidth = IntWidth;
16308       BestPromotionType
16309         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16310                            ? Context.UnsignedIntTy : Context.IntTy;
16311     } else if (NumPositiveBits <=
16312                (BestWidth = Context.getTargetInfo().getLongWidth())) {
16313       BestType = Context.UnsignedLongTy;
16314       BestPromotionType
16315         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16316                            ? Context.UnsignedLongTy : Context.LongTy;
16317     } else {
16318       BestWidth = Context.getTargetInfo().getLongLongWidth();
16319       assert(NumPositiveBits <= BestWidth &&
16320              "How could an initializer get larger than ULL?");
16321       BestType = Context.UnsignedLongLongTy;
16322       BestPromotionType
16323         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16324                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
16325     }
16326   }
16327 
16328   // Loop over all of the enumerator constants, changing their types to match
16329   // the type of the enum if needed.
16330   for (auto *D : Elements) {
16331     auto *ECD = cast_or_null<EnumConstantDecl>(D);
16332     if (!ECD) continue;  // Already issued a diagnostic.
16333 
16334     // Standard C says the enumerators have int type, but we allow, as an
16335     // extension, the enumerators to be larger than int size.  If each
16336     // enumerator value fits in an int, type it as an int, otherwise type it the
16337     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
16338     // that X has type 'int', not 'unsigned'.
16339 
16340     // Determine whether the value fits into an int.
16341     llvm::APSInt InitVal = ECD->getInitVal();
16342 
16343     // If it fits into an integer type, force it.  Otherwise force it to match
16344     // the enum decl type.
16345     QualType NewTy;
16346     unsigned NewWidth;
16347     bool NewSign;
16348     if (!getLangOpts().CPlusPlus &&
16349         !Enum->isFixed() &&
16350         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
16351       NewTy = Context.IntTy;
16352       NewWidth = IntWidth;
16353       NewSign = true;
16354     } else if (ECD->getType() == BestType) {
16355       // Already the right type!
16356       if (getLangOpts().CPlusPlus)
16357         // C++ [dcl.enum]p4: Following the closing brace of an
16358         // enum-specifier, each enumerator has the type of its
16359         // enumeration.
16360         ECD->setType(EnumType);
16361       continue;
16362     } else {
16363       NewTy = BestType;
16364       NewWidth = BestWidth;
16365       NewSign = BestType->isSignedIntegerOrEnumerationType();
16366     }
16367 
16368     // Adjust the APSInt value.
16369     InitVal = InitVal.extOrTrunc(NewWidth);
16370     InitVal.setIsSigned(NewSign);
16371     ECD->setInitVal(InitVal);
16372 
16373     // Adjust the Expr initializer and type.
16374     if (ECD->getInitExpr() &&
16375         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
16376       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
16377                                                 CK_IntegralCast,
16378                                                 ECD->getInitExpr(),
16379                                                 /*base paths*/ nullptr,
16380                                                 VK_RValue));
16381     if (getLangOpts().CPlusPlus)
16382       // C++ [dcl.enum]p4: Following the closing brace of an
16383       // enum-specifier, each enumerator has the type of its
16384       // enumeration.
16385       ECD->setType(EnumType);
16386     else
16387       ECD->setType(NewTy);
16388   }
16389 
16390   Enum->completeDefinition(BestType, BestPromotionType,
16391                            NumPositiveBits, NumNegativeBits);
16392 
16393   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
16394 
16395   if (Enum->isClosedFlag()) {
16396     for (Decl *D : Elements) {
16397       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
16398       if (!ECD) continue;  // Already issued a diagnostic.
16399 
16400       llvm::APSInt InitVal = ECD->getInitVal();
16401       if (InitVal != 0 && !InitVal.isPowerOf2() &&
16402           !IsValueInFlagEnum(Enum, InitVal, true))
16403         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
16404           << ECD << Enum;
16405     }
16406   }
16407 
16408   // Now that the enum type is defined, ensure it's not been underaligned.
16409   if (Enum->hasAttrs())
16410     CheckAlignasUnderalignment(Enum);
16411 }
16412 
16413 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
16414                                   SourceLocation StartLoc,
16415                                   SourceLocation EndLoc) {
16416   StringLiteral *AsmString = cast<StringLiteral>(expr);
16417 
16418   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
16419                                                    AsmString, StartLoc,
16420                                                    EndLoc);
16421   CurContext->addDecl(New);
16422   return New;
16423 }
16424 
16425 static void checkModuleImportContext(Sema &S, Module *M,
16426                                      SourceLocation ImportLoc, DeclContext *DC,
16427                                      bool FromInclude = false) {
16428   SourceLocation ExternCLoc;
16429 
16430   if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
16431     switch (LSD->getLanguage()) {
16432     case LinkageSpecDecl::lang_c:
16433       if (ExternCLoc.isInvalid())
16434         ExternCLoc = LSD->getLocStart();
16435       break;
16436     case LinkageSpecDecl::lang_cxx:
16437       break;
16438     }
16439     DC = LSD->getParent();
16440   }
16441 
16442   while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC))
16443     DC = DC->getParent();
16444 
16445   if (!isa<TranslationUnitDecl>(DC)) {
16446     S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
16447                           ? diag::ext_module_import_not_at_top_level_noop
16448                           : diag::err_module_import_not_at_top_level_fatal)
16449         << M->getFullModuleName() << DC;
16450     S.Diag(cast<Decl>(DC)->getLocStart(),
16451            diag::note_module_import_not_at_top_level) << DC;
16452   } else if (!M->IsExternC && ExternCLoc.isValid()) {
16453     S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
16454       << M->getFullModuleName();
16455     S.Diag(ExternCLoc, diag::note_extern_c_begins_here);
16456   }
16457 }
16458 
16459 Sema::DeclGroupPtrTy Sema::ActOnModuleDecl(SourceLocation StartLoc,
16460                                            SourceLocation ModuleLoc,
16461                                            ModuleDeclKind MDK,
16462                                            ModuleIdPath Path) {
16463   assert(getLangOpts().ModulesTS &&
16464          "should only have module decl in modules TS");
16465 
16466   // A module implementation unit requires that we are not compiling a module
16467   // of any kind. A module interface unit requires that we are not compiling a
16468   // module map.
16469   switch (getLangOpts().getCompilingModule()) {
16470   case LangOptions::CMK_None:
16471     // It's OK to compile a module interface as a normal translation unit.
16472     break;
16473 
16474   case LangOptions::CMK_ModuleInterface:
16475     if (MDK != ModuleDeclKind::Implementation)
16476       break;
16477 
16478     // We were asked to compile a module interface unit but this is a module
16479     // implementation unit. That indicates the 'export' is missing.
16480     Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch)
16481       << FixItHint::CreateInsertion(ModuleLoc, "export ");
16482     MDK = ModuleDeclKind::Interface;
16483     break;
16484 
16485   case LangOptions::CMK_ModuleMap:
16486     Diag(ModuleLoc, diag::err_module_decl_in_module_map_module);
16487     return nullptr;
16488   }
16489 
16490   assert(ModuleScopes.size() == 1 && "expected to be at global module scope");
16491 
16492   // FIXME: Most of this work should be done by the preprocessor rather than
16493   // here, in order to support macro import.
16494 
16495   // Only one module-declaration is permitted per source file.
16496   if (ModuleScopes.back().Module->Kind == Module::ModuleInterfaceUnit) {
16497     Diag(ModuleLoc, diag::err_module_redeclaration);
16498     Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module),
16499          diag::note_prev_module_declaration);
16500     return nullptr;
16501   }
16502 
16503   // Flatten the dots in a module name. Unlike Clang's hierarchical module map
16504   // modules, the dots here are just another character that can appear in a
16505   // module name.
16506   std::string ModuleName;
16507   for (auto &Piece : Path) {
16508     if (!ModuleName.empty())
16509       ModuleName += ".";
16510     ModuleName += Piece.first->getName();
16511   }
16512 
16513   // If a module name was explicitly specified on the command line, it must be
16514   // correct.
16515   if (!getLangOpts().CurrentModule.empty() &&
16516       getLangOpts().CurrentModule != ModuleName) {
16517     Diag(Path.front().second, diag::err_current_module_name_mismatch)
16518         << SourceRange(Path.front().second, Path.back().second)
16519         << getLangOpts().CurrentModule;
16520     return nullptr;
16521   }
16522   const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
16523 
16524   auto &Map = PP.getHeaderSearchInfo().getModuleMap();
16525   Module *Mod;
16526 
16527   switch (MDK) {
16528   case ModuleDeclKind::Interface: {
16529     // We can't have parsed or imported a definition of this module or parsed a
16530     // module map defining it already.
16531     if (auto *M = Map.findModule(ModuleName)) {
16532       Diag(Path[0].second, diag::err_module_redefinition) << ModuleName;
16533       if (M->DefinitionLoc.isValid())
16534         Diag(M->DefinitionLoc, diag::note_prev_module_definition);
16535       else if (const auto *FE = M->getASTFile())
16536         Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file)
16537             << FE->getName();
16538       Mod = M;
16539       break;
16540     }
16541 
16542     // Create a Module for the module that we're defining.
16543     Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
16544                                            ModuleScopes.front().Module);
16545     assert(Mod && "module creation should not fail");
16546     break;
16547   }
16548 
16549   case ModuleDeclKind::Partition:
16550     // FIXME: Check we are in a submodule of the named module.
16551     return nullptr;
16552 
16553   case ModuleDeclKind::Implementation:
16554     std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc(
16555         PP.getIdentifierInfo(ModuleName), Path[0].second);
16556     Mod = getModuleLoader().loadModule(ModuleLoc, Path, Module::AllVisible,
16557                                        /*IsIncludeDirective=*/false);
16558     if (!Mod) {
16559       Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName;
16560       // Create an empty module interface unit for error recovery.
16561       Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
16562                                              ModuleScopes.front().Module);
16563     }
16564     break;
16565   }
16566 
16567   // Switch from the global module to the named module.
16568   ModuleScopes.back().Module = Mod;
16569   ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation;
16570   VisibleModules.setVisible(Mod, ModuleLoc);
16571 
16572   // From now on, we have an owning module for all declarations we see.
16573   // However, those declarations are module-private unless explicitly
16574   // exported.
16575   auto *TU = Context.getTranslationUnitDecl();
16576   TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate);
16577   TU->setLocalOwningModule(Mod);
16578 
16579   // FIXME: Create a ModuleDecl.
16580   return nullptr;
16581 }
16582 
16583 DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
16584                                    SourceLocation ImportLoc,
16585                                    ModuleIdPath Path) {
16586   Module *Mod =
16587       getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
16588                                    /*IsIncludeDirective=*/false);
16589   if (!Mod)
16590     return true;
16591 
16592   VisibleModules.setVisible(Mod, ImportLoc);
16593 
16594   checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
16595 
16596   // FIXME: we should support importing a submodule within a different submodule
16597   // of the same top-level module. Until we do, make it an error rather than
16598   // silently ignoring the import.
16599   // Import-from-implementation is valid in the Modules TS. FIXME: Should we
16600   // warn on a redundant import of the current module?
16601   if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule &&
16602       (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS))
16603     Diag(ImportLoc, getLangOpts().isCompilingModule()
16604                         ? diag::err_module_self_import
16605                         : diag::err_module_import_in_implementation)
16606         << Mod->getFullModuleName() << getLangOpts().CurrentModule;
16607 
16608   SmallVector<SourceLocation, 2> IdentifierLocs;
16609   Module *ModCheck = Mod;
16610   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
16611     // If we've run out of module parents, just drop the remaining identifiers.
16612     // We need the length to be consistent.
16613     if (!ModCheck)
16614       break;
16615     ModCheck = ModCheck->Parent;
16616 
16617     IdentifierLocs.push_back(Path[I].second);
16618   }
16619 
16620   ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc,
16621                                           Mod, IdentifierLocs);
16622   if (!ModuleScopes.empty())
16623     Context.addModuleInitializer(ModuleScopes.back().Module, Import);
16624   CurContext->addDecl(Import);
16625 
16626   // Re-export the module if needed.
16627   if (Import->isExported() &&
16628       !ModuleScopes.empty() && ModuleScopes.back().ModuleInterface)
16629     getCurrentModule()->Exports.emplace_back(Mod, false);
16630 
16631   return Import;
16632 }
16633 
16634 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
16635   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
16636   BuildModuleInclude(DirectiveLoc, Mod);
16637 }
16638 
16639 void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
16640   // Determine whether we're in the #include buffer for a module. The #includes
16641   // in that buffer do not qualify as module imports; they're just an
16642   // implementation detail of us building the module.
16643   //
16644   // FIXME: Should we even get ActOnModuleInclude calls for those?
16645   bool IsInModuleIncludes =
16646       TUKind == TU_Module &&
16647       getSourceManager().isWrittenInMainFile(DirectiveLoc);
16648 
16649   bool ShouldAddImport = !IsInModuleIncludes;
16650 
16651   // If this module import was due to an inclusion directive, create an
16652   // implicit import declaration to capture it in the AST.
16653   if (ShouldAddImport) {
16654     TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
16655     ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
16656                                                      DirectiveLoc, Mod,
16657                                                      DirectiveLoc);
16658     if (!ModuleScopes.empty())
16659       Context.addModuleInitializer(ModuleScopes.back().Module, ImportD);
16660     TU->addDecl(ImportD);
16661     Consumer.HandleImplicitImportDecl(ImportD);
16662   }
16663 
16664   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
16665   VisibleModules.setVisible(Mod, DirectiveLoc);
16666 }
16667 
16668 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
16669   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
16670 
16671   ModuleScopes.push_back({});
16672   ModuleScopes.back().Module = Mod;
16673   if (getLangOpts().ModulesLocalVisibility)
16674     ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
16675 
16676   VisibleModules.setVisible(Mod, DirectiveLoc);
16677 
16678   // The enclosing context is now part of this module.
16679   // FIXME: Consider creating a child DeclContext to hold the entities
16680   // lexically within the module.
16681   if (getLangOpts().trackLocalOwningModule()) {
16682     for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
16683       cast<Decl>(DC)->setModuleOwnershipKind(
16684           getLangOpts().ModulesLocalVisibility
16685               ? Decl::ModuleOwnershipKind::VisibleWhenImported
16686               : Decl::ModuleOwnershipKind::Visible);
16687       cast<Decl>(DC)->setLocalOwningModule(Mod);
16688     }
16689   }
16690 }
16691 
16692 void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) {
16693   if (getLangOpts().ModulesLocalVisibility) {
16694     VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules);
16695     // Leaving a module hides namespace names, so our visible namespace cache
16696     // is now out of date.
16697     VisibleNamespaceCache.clear();
16698   }
16699 
16700   assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod &&
16701          "left the wrong module scope");
16702   ModuleScopes.pop_back();
16703 
16704   // We got to the end of processing a local module. Create an
16705   // ImportDecl as we would for an imported module.
16706   FileID File = getSourceManager().getFileID(EomLoc);
16707   SourceLocation DirectiveLoc;
16708   if (EomLoc == getSourceManager().getLocForEndOfFile(File)) {
16709     // We reached the end of a #included module header. Use the #include loc.
16710     assert(File != getSourceManager().getMainFileID() &&
16711            "end of submodule in main source file");
16712     DirectiveLoc = getSourceManager().getIncludeLoc(File);
16713   } else {
16714     // We reached an EOM pragma. Use the pragma location.
16715     DirectiveLoc = EomLoc;
16716   }
16717   BuildModuleInclude(DirectiveLoc, Mod);
16718 
16719   // Any further declarations are in whatever module we returned to.
16720   if (getLangOpts().trackLocalOwningModule()) {
16721     // The parser guarantees that this is the same context that we entered
16722     // the module within.
16723     for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
16724       cast<Decl>(DC)->setLocalOwningModule(getCurrentModule());
16725       if (!getCurrentModule())
16726         cast<Decl>(DC)->setModuleOwnershipKind(
16727             Decl::ModuleOwnershipKind::Unowned);
16728     }
16729   }
16730 }
16731 
16732 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
16733                                                       Module *Mod) {
16734   // Bail if we're not allowed to implicitly import a module here.
16735   if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery ||
16736       VisibleModules.isVisible(Mod))
16737     return;
16738 
16739   // Create the implicit import declaration.
16740   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
16741   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
16742                                                    Loc, Mod, Loc);
16743   TU->addDecl(ImportD);
16744   Consumer.HandleImplicitImportDecl(ImportD);
16745 
16746   // Make the module visible.
16747   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
16748   VisibleModules.setVisible(Mod, Loc);
16749 }
16750 
16751 /// We have parsed the start of an export declaration, including the '{'
16752 /// (if present).
16753 Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
16754                                  SourceLocation LBraceLoc) {
16755   ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc);
16756 
16757   // C++ Modules TS draft:
16758   //   An export-declaration shall appear in the purview of a module other than
16759   //   the global module.
16760   if (ModuleScopes.empty() || !ModuleScopes.back().ModuleInterface)
16761     Diag(ExportLoc, diag::err_export_not_in_module_interface);
16762 
16763   //   An export-declaration [...] shall not contain more than one
16764   //   export keyword.
16765   //
16766   // The intent here is that an export-declaration cannot appear within another
16767   // export-declaration.
16768   if (D->isExported())
16769     Diag(ExportLoc, diag::err_export_within_export);
16770 
16771   CurContext->addDecl(D);
16772   PushDeclContext(S, D);
16773   D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
16774   return D;
16775 }
16776 
16777 /// Complete the definition of an export declaration.
16778 Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) {
16779   auto *ED = cast<ExportDecl>(D);
16780   if (RBraceLoc.isValid())
16781     ED->setRBraceLoc(RBraceLoc);
16782 
16783   // FIXME: Diagnose export of internal-linkage declaration (including
16784   // anonymous namespace).
16785 
16786   PopDeclContext();
16787   return D;
16788 }
16789 
16790 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
16791                                       IdentifierInfo* AliasName,
16792                                       SourceLocation PragmaLoc,
16793                                       SourceLocation NameLoc,
16794                                       SourceLocation AliasNameLoc) {
16795   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
16796                                          LookupOrdinaryName);
16797   AsmLabelAttr *Attr =
16798       AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc);
16799 
16800   // If a declaration that:
16801   // 1) declares a function or a variable
16802   // 2) has external linkage
16803   // already exists, add a label attribute to it.
16804   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
16805     if (isDeclExternC(PrevDecl))
16806       PrevDecl->addAttr(Attr);
16807     else
16808       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
16809           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
16810   // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
16811   } else
16812     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
16813 }
16814 
16815 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
16816                              SourceLocation PragmaLoc,
16817                              SourceLocation NameLoc) {
16818   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
16819 
16820   if (PrevDecl) {
16821     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
16822   } else {
16823     (void)WeakUndeclaredIdentifiers.insert(
16824       std::pair<IdentifierInfo*,WeakInfo>
16825         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
16826   }
16827 }
16828 
16829 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
16830                                 IdentifierInfo* AliasName,
16831                                 SourceLocation PragmaLoc,
16832                                 SourceLocation NameLoc,
16833                                 SourceLocation AliasNameLoc) {
16834   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
16835                                     LookupOrdinaryName);
16836   WeakInfo W = WeakInfo(Name, NameLoc);
16837 
16838   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
16839     if (!PrevDecl->hasAttr<AliasAttr>())
16840       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
16841         DeclApplyPragmaWeak(TUScope, ND, W);
16842   } else {
16843     (void)WeakUndeclaredIdentifiers.insert(
16844       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
16845   }
16846 }
16847 
16848 Decl *Sema::getObjCDeclContext() const {
16849   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
16850 }
16851