1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/CommentDiagnostic.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/EvaluatedExprVisitor.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36 #include "clang/Parse/ParseDiagnostic.h"
37 #include "clang/Sema/CXXFieldCollector.h"
38 #include "clang/Sema/DeclSpec.h"
39 #include "clang/Sema/DelayedDiagnostic.h"
40 #include "clang/Sema/Initialization.h"
41 #include "clang/Sema/Lookup.h"
42 #include "clang/Sema/ParsedTemplate.h"
43 #include "clang/Sema/Scope.h"
44 #include "clang/Sema/ScopeInfo.h"
45 #include "clang/Sema/Template.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/Triple.h"
48 #include <algorithm>
49 #include <cstring>
50 #include <functional>
51 using namespace clang;
52 using namespace sema;
53 
54 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
55   if (OwnedType) {
56     Decl *Group[2] = { OwnedType, Ptr };
57     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
58   }
59 
60   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
61 }
62 
63 namespace {
64 
65 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
66  public:
67   TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false,
68                        bool AllowTemplates=false)
69       : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
70         AllowClassTemplates(AllowTemplates) {
71     WantExpressionKeywords = false;
72     WantCXXNamedCasts = false;
73     WantRemainingKeywords = false;
74   }
75 
76   bool ValidateCandidate(const TypoCorrection &candidate) override {
77     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
78       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
79       bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND);
80       return (IsType || AllowedTemplate) &&
81              (AllowInvalidDecl || !ND->isInvalidDecl());
82     }
83     return !WantClassName && candidate.isKeyword();
84   }
85 
86  private:
87   bool AllowInvalidDecl;
88   bool WantClassName;
89   bool AllowClassTemplates;
90 };
91 
92 }
93 
94 /// \brief Determine whether the token kind starts a simple-type-specifier.
95 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
96   switch (Kind) {
97   // FIXME: Take into account the current language when deciding whether a
98   // token kind is a valid type specifier
99   case tok::kw_short:
100   case tok::kw_long:
101   case tok::kw___int64:
102   case tok::kw___int128:
103   case tok::kw_signed:
104   case tok::kw_unsigned:
105   case tok::kw_void:
106   case tok::kw_char:
107   case tok::kw_int:
108   case tok::kw_half:
109   case tok::kw_float:
110   case tok::kw_double:
111   case tok::kw_wchar_t:
112   case tok::kw_bool:
113   case tok::kw___underlying_type:
114     return true;
115 
116   case tok::annot_typename:
117   case tok::kw_char16_t:
118   case tok::kw_char32_t:
119   case tok::kw_typeof:
120   case tok::annot_decltype:
121   case tok::kw_decltype:
122     return getLangOpts().CPlusPlus;
123 
124   default:
125     break;
126   }
127 
128   return false;
129 }
130 
131 namespace {
132 enum class UnqualifiedTypeNameLookupResult {
133   NotFound,
134   FoundNonType,
135   FoundType
136 };
137 } // namespace
138 
139 /// \brief Tries to perform unqualified lookup of the type decls in bases for
140 /// dependent class.
141 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
142 /// type decl, \a FoundType if only type decls are found.
143 static UnqualifiedTypeNameLookupResult
144 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
145                                 SourceLocation NameLoc,
146                                 const CXXRecordDecl *RD) {
147   if (!RD->hasDefinition())
148     return UnqualifiedTypeNameLookupResult::NotFound;
149   // Look for type decls in base classes.
150   UnqualifiedTypeNameLookupResult FoundTypeDecl =
151       UnqualifiedTypeNameLookupResult::NotFound;
152   for (const auto &Base : RD->bases()) {
153     const CXXRecordDecl *BaseRD = nullptr;
154     if (auto *BaseTT = Base.getType()->getAs<TagType>())
155       BaseRD = BaseTT->getAsCXXRecordDecl();
156     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
157       // Look for type decls in dependent base classes that have known primary
158       // templates.
159       if (!TST || !TST->isDependentType())
160         continue;
161       auto *TD = TST->getTemplateName().getAsTemplateDecl();
162       if (!TD)
163         continue;
164       auto *BasePrimaryTemplate =
165           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl());
166       if (!BasePrimaryTemplate)
167         continue;
168       BaseRD = BasePrimaryTemplate;
169     }
170     if (BaseRD) {
171       for (NamedDecl *ND : BaseRD->lookup(&II)) {
172         if (!isa<TypeDecl>(ND))
173           return UnqualifiedTypeNameLookupResult::FoundNonType;
174         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
175       }
176       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
177         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
178         case UnqualifiedTypeNameLookupResult::FoundNonType:
179           return UnqualifiedTypeNameLookupResult::FoundNonType;
180         case UnqualifiedTypeNameLookupResult::FoundType:
181           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
182           break;
183         case UnqualifiedTypeNameLookupResult::NotFound:
184           break;
185         }
186       }
187     }
188   }
189 
190   return FoundTypeDecl;
191 }
192 
193 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
194                                                       const IdentifierInfo &II,
195                                                       SourceLocation NameLoc) {
196   // Lookup in the parent class template context, if any.
197   const CXXRecordDecl *RD = nullptr;
198   UnqualifiedTypeNameLookupResult FoundTypeDecl =
199       UnqualifiedTypeNameLookupResult::NotFound;
200   for (DeclContext *DC = S.CurContext;
201        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
202        DC = DC->getParent()) {
203     // Look for type decls in dependent base classes that have known primary
204     // templates.
205     RD = dyn_cast<CXXRecordDecl>(DC);
206     if (RD && RD->getDescribedClassTemplate())
207       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
208   }
209   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
210     return ParsedType();
211 
212   // We found some types in dependent base classes.  Recover as if the user
213   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
214   // lookup during template instantiation.
215   S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
216 
217   ASTContext &Context = S.Context;
218   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
219                                           cast<Type>(Context.getRecordType(RD)));
220   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
221 
222   CXXScopeSpec SS;
223   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
224 
225   TypeLocBuilder Builder;
226   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
227   DepTL.setNameLoc(NameLoc);
228   DepTL.setElaboratedKeywordLoc(SourceLocation());
229   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
230   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
231 }
232 
233 /// \brief If the identifier refers to a type name within this scope,
234 /// return the declaration of that type.
235 ///
236 /// This routine performs ordinary name lookup of the identifier II
237 /// within the given scope, with optional C++ scope specifier SS, to
238 /// determine whether the name refers to a type. If so, returns an
239 /// opaque pointer (actually a QualType) corresponding to that
240 /// type. Otherwise, returns NULL.
241 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
242                              Scope *S, CXXScopeSpec *SS,
243                              bool isClassName, bool HasTrailingDot,
244                              ParsedType ObjectTypePtr,
245                              bool IsCtorOrDtorName,
246                              bool WantNontrivialTypeSourceInfo,
247                              IdentifierInfo **CorrectedII) {
248   // Determine where we will perform name lookup.
249   DeclContext *LookupCtx = nullptr;
250   if (ObjectTypePtr) {
251     QualType ObjectType = ObjectTypePtr.get();
252     if (ObjectType->isRecordType())
253       LookupCtx = computeDeclContext(ObjectType);
254   } else if (SS && SS->isNotEmpty()) {
255     LookupCtx = computeDeclContext(*SS, false);
256 
257     if (!LookupCtx) {
258       if (isDependentScopeSpecifier(*SS)) {
259         // C++ [temp.res]p3:
260         //   A qualified-id that refers to a type and in which the
261         //   nested-name-specifier depends on a template-parameter (14.6.2)
262         //   shall be prefixed by the keyword typename to indicate that the
263         //   qualified-id denotes a type, forming an
264         //   elaborated-type-specifier (7.1.5.3).
265         //
266         // We therefore do not perform any name lookup if the result would
267         // refer to a member of an unknown specialization.
268         if (!isClassName && !IsCtorOrDtorName)
269           return ParsedType();
270 
271         // We know from the grammar that this name refers to a type,
272         // so build a dependent node to describe the type.
273         if (WantNontrivialTypeSourceInfo)
274           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
275 
276         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
277         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
278                                        II, NameLoc);
279         return ParsedType::make(T);
280       }
281 
282       return ParsedType();
283     }
284 
285     if (!LookupCtx->isDependentContext() &&
286         RequireCompleteDeclContext(*SS, LookupCtx))
287       return ParsedType();
288   }
289 
290   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
291   // lookup for class-names.
292   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
293                                       LookupOrdinaryName;
294   LookupResult Result(*this, &II, NameLoc, Kind);
295   if (LookupCtx) {
296     // Perform "qualified" name lookup into the declaration context we
297     // computed, which is either the type of the base of a member access
298     // expression or the declaration context associated with a prior
299     // nested-name-specifier.
300     LookupQualifiedName(Result, LookupCtx);
301 
302     if (ObjectTypePtr && Result.empty()) {
303       // C++ [basic.lookup.classref]p3:
304       //   If the unqualified-id is ~type-name, the type-name is looked up
305       //   in the context of the entire postfix-expression. If the type T of
306       //   the object expression is of a class type C, the type-name is also
307       //   looked up in the scope of class C. At least one of the lookups shall
308       //   find a name that refers to (possibly cv-qualified) T.
309       LookupName(Result, S);
310     }
311   } else {
312     // Perform unqualified name lookup.
313     LookupName(Result, S);
314 
315     // For unqualified lookup in a class template in MSVC mode, look into
316     // dependent base classes where the primary class template is known.
317     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
318       if (ParsedType TypeInBase =
319               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
320         return TypeInBase;
321     }
322   }
323 
324   NamedDecl *IIDecl = nullptr;
325   switch (Result.getResultKind()) {
326   case LookupResult::NotFound:
327   case LookupResult::NotFoundInCurrentInstantiation:
328     if (CorrectedII) {
329       TypoCorrection Correction = CorrectTypo(
330           Result.getLookupNameInfo(), Kind, S, SS,
331           llvm::make_unique<TypeNameValidatorCCC>(true, isClassName),
332           CTK_ErrorRecovery);
333       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
334       TemplateTy Template;
335       bool MemberOfUnknownSpecialization;
336       UnqualifiedId TemplateName;
337       TemplateName.setIdentifier(NewII, NameLoc);
338       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
339       CXXScopeSpec NewSS, *NewSSPtr = SS;
340       if (SS && NNS) {
341         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
342         NewSSPtr = &NewSS;
343       }
344       if (Correction && (NNS || NewII != &II) &&
345           // Ignore a correction to a template type as the to-be-corrected
346           // identifier is not a template (typo correction for template names
347           // is handled elsewhere).
348           !(getLangOpts().CPlusPlus && NewSSPtr &&
349             isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
350                            false, Template, MemberOfUnknownSpecialization))) {
351         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
352                                     isClassName, HasTrailingDot, ObjectTypePtr,
353                                     IsCtorOrDtorName,
354                                     WantNontrivialTypeSourceInfo);
355         if (Ty) {
356           diagnoseTypo(Correction,
357                        PDiag(diag::err_unknown_type_or_class_name_suggest)
358                          << Result.getLookupName() << isClassName);
359           if (SS && NNS)
360             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
361           *CorrectedII = NewII;
362           return Ty;
363         }
364       }
365     }
366     // If typo correction failed or was not performed, fall through
367   case LookupResult::FoundOverloaded:
368   case LookupResult::FoundUnresolvedValue:
369     Result.suppressDiagnostics();
370     return ParsedType();
371 
372   case LookupResult::Ambiguous:
373     // Recover from type-hiding ambiguities by hiding the type.  We'll
374     // do the lookup again when looking for an object, and we can
375     // diagnose the error then.  If we don't do this, then the error
376     // about hiding the type will be immediately followed by an error
377     // that only makes sense if the identifier was treated like a type.
378     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
379       Result.suppressDiagnostics();
380       return ParsedType();
381     }
382 
383     // Look to see if we have a type anywhere in the list of results.
384     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
385          Res != ResEnd; ++Res) {
386       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
387         if (!IIDecl ||
388             (*Res)->getLocation().getRawEncoding() <
389               IIDecl->getLocation().getRawEncoding())
390           IIDecl = *Res;
391       }
392     }
393 
394     if (!IIDecl) {
395       // None of the entities we found is a type, so there is no way
396       // to even assume that the result is a type. In this case, don't
397       // complain about the ambiguity. The parser will either try to
398       // perform this lookup again (e.g., as an object name), which
399       // will produce the ambiguity, or will complain that it expected
400       // a type name.
401       Result.suppressDiagnostics();
402       return ParsedType();
403     }
404 
405     // We found a type within the ambiguous lookup; diagnose the
406     // ambiguity and then return that type. This might be the right
407     // answer, or it might not be, but it suppresses any attempt to
408     // perform the name lookup again.
409     break;
410 
411   case LookupResult::Found:
412     IIDecl = Result.getFoundDecl();
413     break;
414   }
415 
416   assert(IIDecl && "Didn't find decl");
417 
418   QualType T;
419   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
420     DiagnoseUseOfDecl(IIDecl, NameLoc);
421 
422     T = Context.getTypeDeclType(TD);
423     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
424 
425     // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
426     // constructor or destructor name (in such a case, the scope specifier
427     // will be attached to the enclosing Expr or Decl node).
428     if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
429       if (WantNontrivialTypeSourceInfo) {
430         // Construct a type with type-source information.
431         TypeLocBuilder Builder;
432         Builder.pushTypeSpec(T).setNameLoc(NameLoc);
433 
434         T = getElaboratedType(ETK_None, *SS, T);
435         ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
436         ElabTL.setElaboratedKeywordLoc(SourceLocation());
437         ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
438         return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
439       } else {
440         T = getElaboratedType(ETK_None, *SS, T);
441       }
442     }
443   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
444     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
445     if (!HasTrailingDot)
446       T = Context.getObjCInterfaceType(IDecl);
447   }
448 
449   if (T.isNull()) {
450     // If it's not plausibly a type, suppress diagnostics.
451     Result.suppressDiagnostics();
452     return ParsedType();
453   }
454   return ParsedType::make(T);
455 }
456 
457 // Builds a fake NNS for the given decl context.
458 static NestedNameSpecifier *
459 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
460   for (;; DC = DC->getLookupParent()) {
461     DC = DC->getPrimaryContext();
462     auto *ND = dyn_cast<NamespaceDecl>(DC);
463     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
464       return NestedNameSpecifier::Create(Context, nullptr, ND);
465     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
466       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
467                                          RD->getTypeForDecl());
468     else if (isa<TranslationUnitDecl>(DC))
469       return NestedNameSpecifier::GlobalSpecifier(Context);
470   }
471   llvm_unreachable("something isn't in TU scope?");
472 }
473 
474 ParsedType Sema::ActOnDelayedDefaultTemplateArg(const IdentifierInfo &II,
475                                                 SourceLocation NameLoc) {
476   // Accepting an undeclared identifier as a default argument for a template
477   // type parameter is a Microsoft extension.
478   Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
479 
480   // Build a fake DependentNameType that will perform lookup into CurContext at
481   // instantiation time.  The name specifier isn't dependent, so template
482   // instantiation won't transform it.  It will retry the lookup, however.
483   NestedNameSpecifier *NNS =
484       synthesizeCurrentNestedNameSpecifier(Context, CurContext);
485   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
486 
487   // Build type location information.  We synthesized the qualifier, so we have
488   // to build a fake NestedNameSpecifierLoc.
489   NestedNameSpecifierLocBuilder NNSLocBuilder;
490   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
491   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
492 
493   TypeLocBuilder Builder;
494   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
495   DepTL.setNameLoc(NameLoc);
496   DepTL.setElaboratedKeywordLoc(SourceLocation());
497   DepTL.setQualifierLoc(QualifierLoc);
498   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
499 }
500 
501 /// isTagName() - This method is called *for error recovery purposes only*
502 /// to determine if the specified name is a valid tag name ("struct foo").  If
503 /// so, this returns the TST for the tag corresponding to it (TST_enum,
504 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
505 /// cases in C where the user forgot to specify the tag.
506 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
507   // Do a tag name lookup in this scope.
508   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
509   LookupName(R, S, false);
510   R.suppressDiagnostics();
511   if (R.getResultKind() == LookupResult::Found)
512     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
513       switch (TD->getTagKind()) {
514       case TTK_Struct: return DeclSpec::TST_struct;
515       case TTK_Interface: return DeclSpec::TST_interface;
516       case TTK_Union:  return DeclSpec::TST_union;
517       case TTK_Class:  return DeclSpec::TST_class;
518       case TTK_Enum:   return DeclSpec::TST_enum;
519       }
520     }
521 
522   return DeclSpec::TST_unspecified;
523 }
524 
525 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
526 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
527 /// then downgrade the missing typename error to a warning.
528 /// This is needed for MSVC compatibility; Example:
529 /// @code
530 /// template<class T> class A {
531 /// public:
532 ///   typedef int TYPE;
533 /// };
534 /// template<class T> class B : public A<T> {
535 /// public:
536 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
537 /// };
538 /// @endcode
539 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
540   if (CurContext->isRecord()) {
541     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
542       return true;
543 
544     const Type *Ty = SS->getScopeRep()->getAsType();
545 
546     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
547     for (const auto &Base : RD->bases())
548       if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
549         return true;
550     return S->isFunctionPrototypeScope();
551   }
552   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
553 }
554 
555 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
556                                    SourceLocation IILoc,
557                                    Scope *S,
558                                    CXXScopeSpec *SS,
559                                    ParsedType &SuggestedType,
560                                    bool AllowClassTemplates) {
561   // We don't have anything to suggest (yet).
562   SuggestedType = ParsedType();
563 
564   // There may have been a typo in the name of the type. Look up typo
565   // results, in case we have something that we can suggest.
566   if (TypoCorrection Corrected =
567           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
568                       llvm::make_unique<TypeNameValidatorCCC>(
569                           false, false, AllowClassTemplates),
570                       CTK_ErrorRecovery)) {
571     if (Corrected.isKeyword()) {
572       // We corrected to a keyword.
573       diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
574       II = Corrected.getCorrectionAsIdentifierInfo();
575     } else {
576       // We found a similarly-named type or interface; suggest that.
577       if (!SS || !SS->isSet()) {
578         diagnoseTypo(Corrected,
579                      PDiag(diag::err_unknown_typename_suggest) << II);
580       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
581         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
582         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
583                                 II->getName().equals(CorrectedStr);
584         diagnoseTypo(Corrected,
585                      PDiag(diag::err_unknown_nested_typename_suggest)
586                        << II << DC << DroppedSpecifier << SS->getRange());
587       } else {
588         llvm_unreachable("could not have corrected a typo here");
589       }
590 
591       CXXScopeSpec tmpSS;
592       if (Corrected.getCorrectionSpecifier())
593         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
594                           SourceRange(IILoc));
595       SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
596                                   IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
597                                   false, ParsedType(),
598                                   /*IsCtorOrDtorName=*/false,
599                                   /*NonTrivialTypeSourceInfo=*/true);
600     }
601     return;
602   }
603 
604   if (getLangOpts().CPlusPlus) {
605     // See if II is a class template that the user forgot to pass arguments to.
606     UnqualifiedId Name;
607     Name.setIdentifier(II, IILoc);
608     CXXScopeSpec EmptySS;
609     TemplateTy TemplateResult;
610     bool MemberOfUnknownSpecialization;
611     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
612                        Name, ParsedType(), true, TemplateResult,
613                        MemberOfUnknownSpecialization) == TNK_Type_template) {
614       TemplateName TplName = TemplateResult.get();
615       Diag(IILoc, diag::err_template_missing_args) << TplName;
616       if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
617         Diag(TplDecl->getLocation(), diag::note_template_decl_here)
618           << TplDecl->getTemplateParameters()->getSourceRange();
619       }
620       return;
621     }
622   }
623 
624   // FIXME: Should we move the logic that tries to recover from a missing tag
625   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
626 
627   if (!SS || (!SS->isSet() && !SS->isInvalid()))
628     Diag(IILoc, diag::err_unknown_typename) << II;
629   else if (DeclContext *DC = computeDeclContext(*SS, false))
630     Diag(IILoc, diag::err_typename_nested_not_found)
631       << II << DC << SS->getRange();
632   else if (isDependentScopeSpecifier(*SS)) {
633     unsigned DiagID = diag::err_typename_missing;
634     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
635       DiagID = diag::ext_typename_missing;
636 
637     Diag(SS->getRange().getBegin(), DiagID)
638       << SS->getScopeRep() << II->getName()
639       << SourceRange(SS->getRange().getBegin(), IILoc)
640       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
641     SuggestedType = ActOnTypenameType(S, SourceLocation(),
642                                       *SS, *II, IILoc).get();
643   } else {
644     assert(SS && SS->isInvalid() &&
645            "Invalid scope specifier has already been diagnosed");
646   }
647 }
648 
649 /// \brief Determine whether the given result set contains either a type name
650 /// or
651 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
652   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
653                        NextToken.is(tok::less);
654 
655   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
656     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
657       return true;
658 
659     if (CheckTemplate && isa<TemplateDecl>(*I))
660       return true;
661   }
662 
663   return false;
664 }
665 
666 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
667                                     Scope *S, CXXScopeSpec &SS,
668                                     IdentifierInfo *&Name,
669                                     SourceLocation NameLoc) {
670   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
671   SemaRef.LookupParsedName(R, S, &SS);
672   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
673     StringRef FixItTagName;
674     switch (Tag->getTagKind()) {
675       case TTK_Class:
676         FixItTagName = "class ";
677         break;
678 
679       case TTK_Enum:
680         FixItTagName = "enum ";
681         break;
682 
683       case TTK_Struct:
684         FixItTagName = "struct ";
685         break;
686 
687       case TTK_Interface:
688         FixItTagName = "__interface ";
689         break;
690 
691       case TTK_Union:
692         FixItTagName = "union ";
693         break;
694     }
695 
696     StringRef TagName = FixItTagName.drop_back();
697     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
698       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
699       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
700 
701     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
702          I != IEnd; ++I)
703       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
704         << Name << TagName;
705 
706     // Replace lookup results with just the tag decl.
707     Result.clear(Sema::LookupTagName);
708     SemaRef.LookupParsedName(Result, S, &SS);
709     return true;
710   }
711 
712   return false;
713 }
714 
715 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
716 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
717                                   QualType T, SourceLocation NameLoc) {
718   ASTContext &Context = S.Context;
719 
720   TypeLocBuilder Builder;
721   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
722 
723   T = S.getElaboratedType(ETK_None, SS, T);
724   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
725   ElabTL.setElaboratedKeywordLoc(SourceLocation());
726   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
727   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
728 }
729 
730 Sema::NameClassification
731 Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
732                    SourceLocation NameLoc, const Token &NextToken,
733                    bool IsAddressOfOperand,
734                    std::unique_ptr<CorrectionCandidateCallback> CCC) {
735   DeclarationNameInfo NameInfo(Name, NameLoc);
736   ObjCMethodDecl *CurMethod = getCurMethodDecl();
737 
738   if (NextToken.is(tok::coloncolon)) {
739     BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
740                                 QualType(), false, SS, nullptr, false);
741   }
742 
743   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
744   LookupParsedName(Result, S, &SS, !CurMethod);
745 
746   // For unqualified lookup in a class template in MSVC mode, look into
747   // dependent base classes where the primary class template is known.
748   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
749     if (ParsedType TypeInBase =
750             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
751       return TypeInBase;
752   }
753 
754   // Perform lookup for Objective-C instance variables (including automatically
755   // synthesized instance variables), if we're in an Objective-C method.
756   // FIXME: This lookup really, really needs to be folded in to the normal
757   // unqualified lookup mechanism.
758   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
759     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
760     if (E.get() || E.isInvalid())
761       return E;
762   }
763 
764   bool SecondTry = false;
765   bool IsFilteredTemplateName = false;
766 
767 Corrected:
768   switch (Result.getResultKind()) {
769   case LookupResult::NotFound:
770     // If an unqualified-id is followed by a '(', then we have a function
771     // call.
772     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
773       // In C++, this is an ADL-only call.
774       // FIXME: Reference?
775       if (getLangOpts().CPlusPlus)
776         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
777 
778       // C90 6.3.2.2:
779       //   If the expression that precedes the parenthesized argument list in a
780       //   function call consists solely of an identifier, and if no
781       //   declaration is visible for this identifier, the identifier is
782       //   implicitly declared exactly as if, in the innermost block containing
783       //   the function call, the declaration
784       //
785       //     extern int identifier ();
786       //
787       //   appeared.
788       //
789       // We also allow this in C99 as an extension.
790       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
791         Result.addDecl(D);
792         Result.resolveKind();
793         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
794       }
795     }
796 
797     // In C, we first see whether there is a tag type by the same name, in
798     // which case it's likely that the user just forget to write "enum",
799     // "struct", or "union".
800     if (!getLangOpts().CPlusPlus && !SecondTry &&
801         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
802       break;
803     }
804 
805     // Perform typo correction to determine if there is another name that is
806     // close to this name.
807     if (!SecondTry && CCC) {
808       SecondTry = true;
809       if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
810                                                  Result.getLookupKind(), S,
811                                                  &SS, std::move(CCC),
812                                                  CTK_ErrorRecovery)) {
813         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
814         unsigned QualifiedDiag = diag::err_no_member_suggest;
815 
816         NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
817         NamedDecl *UnderlyingFirstDecl
818           = FirstDecl? FirstDecl->getUnderlyingDecl() : nullptr;
819         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
820             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
821           UnqualifiedDiag = diag::err_no_template_suggest;
822           QualifiedDiag = diag::err_no_member_template_suggest;
823         } else if (UnderlyingFirstDecl &&
824                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
825                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
826                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
827           UnqualifiedDiag = diag::err_unknown_typename_suggest;
828           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
829         }
830 
831         if (SS.isEmpty()) {
832           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
833         } else {// FIXME: is this even reachable? Test it.
834           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
835           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
836                                   Name->getName().equals(CorrectedStr);
837           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
838                                     << Name << computeDeclContext(SS, false)
839                                     << DroppedSpecifier << SS.getRange());
840         }
841 
842         // Update the name, so that the caller has the new name.
843         Name = Corrected.getCorrectionAsIdentifierInfo();
844 
845         // Typo correction corrected to a keyword.
846         if (Corrected.isKeyword())
847           return Name;
848 
849         // Also update the LookupResult...
850         // FIXME: This should probably go away at some point
851         Result.clear();
852         Result.setLookupName(Corrected.getCorrection());
853         if (FirstDecl)
854           Result.addDecl(FirstDecl);
855 
856         // If we found an Objective-C instance variable, let
857         // LookupInObjCMethod build the appropriate expression to
858         // reference the ivar.
859         // FIXME: This is a gross hack.
860         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
861           Result.clear();
862           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
863           return E;
864         }
865 
866         goto Corrected;
867       }
868     }
869 
870     // We failed to correct; just fall through and let the parser deal with it.
871     Result.suppressDiagnostics();
872     return NameClassification::Unknown();
873 
874   case LookupResult::NotFoundInCurrentInstantiation: {
875     // We performed name lookup into the current instantiation, and there were
876     // dependent bases, so we treat this result the same way as any other
877     // dependent nested-name-specifier.
878 
879     // C++ [temp.res]p2:
880     //   A name used in a template declaration or definition and that is
881     //   dependent on a template-parameter is assumed not to name a type
882     //   unless the applicable name lookup finds a type name or the name is
883     //   qualified by the keyword typename.
884     //
885     // FIXME: If the next token is '<', we might want to ask the parser to
886     // perform some heroics to see if we actually have a
887     // template-argument-list, which would indicate a missing 'template'
888     // keyword here.
889     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
890                                       NameInfo, IsAddressOfOperand,
891                                       /*TemplateArgs=*/nullptr);
892   }
893 
894   case LookupResult::Found:
895   case LookupResult::FoundOverloaded:
896   case LookupResult::FoundUnresolvedValue:
897     break;
898 
899   case LookupResult::Ambiguous:
900     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
901         hasAnyAcceptableTemplateNames(Result)) {
902       // C++ [temp.local]p3:
903       //   A lookup that finds an injected-class-name (10.2) can result in an
904       //   ambiguity in certain cases (for example, if it is found in more than
905       //   one base class). If all of the injected-class-names that are found
906       //   refer to specializations of the same class template, and if the name
907       //   is followed by a template-argument-list, the reference refers to the
908       //   class template itself and not a specialization thereof, and is not
909       //   ambiguous.
910       //
911       // This filtering can make an ambiguous result into an unambiguous one,
912       // so try again after filtering out template names.
913       FilterAcceptableTemplateNames(Result);
914       if (!Result.isAmbiguous()) {
915         IsFilteredTemplateName = true;
916         break;
917       }
918     }
919 
920     // Diagnose the ambiguity and return an error.
921     return NameClassification::Error();
922   }
923 
924   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
925       (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
926     // C++ [temp.names]p3:
927     //   After name lookup (3.4) finds that a name is a template-name or that
928     //   an operator-function-id or a literal- operator-id refers to a set of
929     //   overloaded functions any member of which is a function template if
930     //   this is followed by a <, the < is always taken as the delimiter of a
931     //   template-argument-list and never as the less-than operator.
932     if (!IsFilteredTemplateName)
933       FilterAcceptableTemplateNames(Result);
934 
935     if (!Result.empty()) {
936       bool IsFunctionTemplate;
937       bool IsVarTemplate;
938       TemplateName Template;
939       if (Result.end() - Result.begin() > 1) {
940         IsFunctionTemplate = true;
941         Template = Context.getOverloadedTemplateName(Result.begin(),
942                                                      Result.end());
943       } else {
944         TemplateDecl *TD
945           = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
946         IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
947         IsVarTemplate = isa<VarTemplateDecl>(TD);
948 
949         if (SS.isSet() && !SS.isInvalid())
950           Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
951                                                     /*TemplateKeyword=*/false,
952                                                       TD);
953         else
954           Template = TemplateName(TD);
955       }
956 
957       if (IsFunctionTemplate) {
958         // Function templates always go through overload resolution, at which
959         // point we'll perform the various checks (e.g., accessibility) we need
960         // to based on which function we selected.
961         Result.suppressDiagnostics();
962 
963         return NameClassification::FunctionTemplate(Template);
964       }
965 
966       return IsVarTemplate ? NameClassification::VarTemplate(Template)
967                            : NameClassification::TypeTemplate(Template);
968     }
969   }
970 
971   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
972   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
973     DiagnoseUseOfDecl(Type, NameLoc);
974     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
975     QualType T = Context.getTypeDeclType(Type);
976     if (SS.isNotEmpty())
977       return buildNestedType(*this, SS, T, NameLoc);
978     return ParsedType::make(T);
979   }
980 
981   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
982   if (!Class) {
983     // FIXME: It's unfortunate that we don't have a Type node for handling this.
984     if (ObjCCompatibleAliasDecl *Alias =
985             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
986       Class = Alias->getClassInterface();
987   }
988 
989   if (Class) {
990     DiagnoseUseOfDecl(Class, NameLoc);
991 
992     if (NextToken.is(tok::period)) {
993       // Interface. <something> is parsed as a property reference expression.
994       // Just return "unknown" as a fall-through for now.
995       Result.suppressDiagnostics();
996       return NameClassification::Unknown();
997     }
998 
999     QualType T = Context.getObjCInterfaceType(Class);
1000     return ParsedType::make(T);
1001   }
1002 
1003   // We can have a type template here if we're classifying a template argument.
1004   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
1005     return NameClassification::TypeTemplate(
1006         TemplateName(cast<TemplateDecl>(FirstDecl)));
1007 
1008   // Check for a tag type hidden by a non-type decl in a few cases where it
1009   // seems likely a type is wanted instead of the non-type that was found.
1010   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1011   if ((NextToken.is(tok::identifier) ||
1012        (NextIsOp &&
1013         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1014       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1015     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1016     DiagnoseUseOfDecl(Type, NameLoc);
1017     QualType T = Context.getTypeDeclType(Type);
1018     if (SS.isNotEmpty())
1019       return buildNestedType(*this, SS, T, NameLoc);
1020     return ParsedType::make(T);
1021   }
1022 
1023   if (FirstDecl->isCXXClassMember())
1024     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1025                                            nullptr, S);
1026 
1027   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1028   return BuildDeclarationNameExpr(SS, Result, ADL);
1029 }
1030 
1031 // Determines the context to return to after temporarily entering a
1032 // context.  This depends in an unnecessarily complicated way on the
1033 // exact ordering of callbacks from the parser.
1034 DeclContext *Sema::getContainingDC(DeclContext *DC) {
1035 
1036   // Functions defined inline within classes aren't parsed until we've
1037   // finished parsing the top-level class, so the top-level class is
1038   // the context we'll need to return to.
1039   // A Lambda call operator whose parent is a class must not be treated
1040   // as an inline member function.  A Lambda can be used legally
1041   // either as an in-class member initializer or a default argument.  These
1042   // are parsed once the class has been marked complete and so the containing
1043   // context would be the nested class (when the lambda is defined in one);
1044   // If the class is not complete, then the lambda is being used in an
1045   // ill-formed fashion (such as to specify the width of a bit-field, or
1046   // in an array-bound) - in which case we still want to return the
1047   // lexically containing DC (which could be a nested class).
1048   if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1049     DC = DC->getLexicalParent();
1050 
1051     // A function not defined within a class will always return to its
1052     // lexical context.
1053     if (!isa<CXXRecordDecl>(DC))
1054       return DC;
1055 
1056     // A C++ inline method/friend is parsed *after* the topmost class
1057     // it was declared in is fully parsed ("complete");  the topmost
1058     // class is the context we need to return to.
1059     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1060       DC = RD;
1061 
1062     // Return the declaration context of the topmost class the inline method is
1063     // declared in.
1064     return DC;
1065   }
1066 
1067   return DC->getLexicalParent();
1068 }
1069 
1070 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1071   assert(getContainingDC(DC) == CurContext &&
1072       "The next DeclContext should be lexically contained in the current one.");
1073   CurContext = DC;
1074   S->setEntity(DC);
1075 }
1076 
1077 void Sema::PopDeclContext() {
1078   assert(CurContext && "DeclContext imbalance!");
1079 
1080   CurContext = getContainingDC(CurContext);
1081   assert(CurContext && "Popped translation unit!");
1082 }
1083 
1084 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1085                                                                     Decl *D) {
1086   // Unlike PushDeclContext, the context to which we return is not necessarily
1087   // the containing DC of TD, because the new context will be some pre-existing
1088   // TagDecl definition instead of a fresh one.
1089   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1090   CurContext = cast<TagDecl>(D)->getDefinition();
1091   assert(CurContext && "skipping definition of undefined tag");
1092   // Start lookups from the parent of the current context; we don't want to look
1093   // into the pre-existing complete definition.
1094   S->setEntity(CurContext->getLookupParent());
1095   return Result;
1096 }
1097 
1098 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1099   CurContext = static_cast<decltype(CurContext)>(Context);
1100 }
1101 
1102 /// EnterDeclaratorContext - Used when we must lookup names in the context
1103 /// of a declarator's nested name specifier.
1104 ///
1105 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1106   // C++0x [basic.lookup.unqual]p13:
1107   //   A name used in the definition of a static data member of class
1108   //   X (after the qualified-id of the static member) is looked up as
1109   //   if the name was used in a member function of X.
1110   // C++0x [basic.lookup.unqual]p14:
1111   //   If a variable member of a namespace is defined outside of the
1112   //   scope of its namespace then any name used in the definition of
1113   //   the variable member (after the declarator-id) is looked up as
1114   //   if the definition of the variable member occurred in its
1115   //   namespace.
1116   // Both of these imply that we should push a scope whose context
1117   // is the semantic context of the declaration.  We can't use
1118   // PushDeclContext here because that context is not necessarily
1119   // lexically contained in the current context.  Fortunately,
1120   // the containing scope should have the appropriate information.
1121 
1122   assert(!S->getEntity() && "scope already has entity");
1123 
1124 #ifndef NDEBUG
1125   Scope *Ancestor = S->getParent();
1126   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1127   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1128 #endif
1129 
1130   CurContext = DC;
1131   S->setEntity(DC);
1132 }
1133 
1134 void Sema::ExitDeclaratorContext(Scope *S) {
1135   assert(S->getEntity() == CurContext && "Context imbalance!");
1136 
1137   // Switch back to the lexical context.  The safety of this is
1138   // enforced by an assert in EnterDeclaratorContext.
1139   Scope *Ancestor = S->getParent();
1140   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1141   CurContext = Ancestor->getEntity();
1142 
1143   // We don't need to do anything with the scope, which is going to
1144   // disappear.
1145 }
1146 
1147 
1148 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1149   // We assume that the caller has already called
1150   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1151   FunctionDecl *FD = D->getAsFunction();
1152   if (!FD)
1153     return;
1154 
1155   // Same implementation as PushDeclContext, but enters the context
1156   // from the lexical parent, rather than the top-level class.
1157   assert(CurContext == FD->getLexicalParent() &&
1158     "The next DeclContext should be lexically contained in the current one.");
1159   CurContext = FD;
1160   S->setEntity(CurContext);
1161 
1162   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1163     ParmVarDecl *Param = FD->getParamDecl(P);
1164     // If the parameter has an identifier, then add it to the scope
1165     if (Param->getIdentifier()) {
1166       S->AddDecl(Param);
1167       IdResolver.AddDecl(Param);
1168     }
1169   }
1170 }
1171 
1172 
1173 void Sema::ActOnExitFunctionContext() {
1174   // Same implementation as PopDeclContext, but returns to the lexical parent,
1175   // rather than the top-level class.
1176   assert(CurContext && "DeclContext imbalance!");
1177   CurContext = CurContext->getLexicalParent();
1178   assert(CurContext && "Popped translation unit!");
1179 }
1180 
1181 
1182 /// \brief Determine whether we allow overloading of the function
1183 /// PrevDecl with another declaration.
1184 ///
1185 /// This routine determines whether overloading is possible, not
1186 /// whether some new function is actually an overload. It will return
1187 /// true in C++ (where we can always provide overloads) or, as an
1188 /// extension, in C when the previous function is already an
1189 /// overloaded function declaration or has the "overloadable"
1190 /// attribute.
1191 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1192                                        ASTContext &Context) {
1193   if (Context.getLangOpts().CPlusPlus)
1194     return true;
1195 
1196   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1197     return true;
1198 
1199   return (Previous.getResultKind() == LookupResult::Found
1200           && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1201 }
1202 
1203 /// Add this decl to the scope shadowed decl chains.
1204 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1205   // Move up the scope chain until we find the nearest enclosing
1206   // non-transparent context. The declaration will be introduced into this
1207   // scope.
1208   while (S->getEntity() && S->getEntity()->isTransparentContext())
1209     S = S->getParent();
1210 
1211   // Add scoped declarations into their context, so that they can be
1212   // found later. Declarations without a context won't be inserted
1213   // into any context.
1214   if (AddToContext)
1215     CurContext->addDecl(D);
1216 
1217   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1218   // are function-local declarations.
1219   if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1220       !D->getDeclContext()->getRedeclContext()->Equals(
1221         D->getLexicalDeclContext()->getRedeclContext()) &&
1222       !D->getLexicalDeclContext()->isFunctionOrMethod())
1223     return;
1224 
1225   // Template instantiations should also not be pushed into scope.
1226   if (isa<FunctionDecl>(D) &&
1227       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1228     return;
1229 
1230   // If this replaces anything in the current scope,
1231   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1232                                IEnd = IdResolver.end();
1233   for (; I != IEnd; ++I) {
1234     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1235       S->RemoveDecl(*I);
1236       IdResolver.RemoveDecl(*I);
1237 
1238       // Should only need to replace one decl.
1239       break;
1240     }
1241   }
1242 
1243   S->AddDecl(D);
1244 
1245   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1246     // Implicitly-generated labels may end up getting generated in an order that
1247     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1248     // the label at the appropriate place in the identifier chain.
1249     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1250       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1251       if (IDC == CurContext) {
1252         if (!S->isDeclScope(*I))
1253           continue;
1254       } else if (IDC->Encloses(CurContext))
1255         break;
1256     }
1257 
1258     IdResolver.InsertDeclAfter(I, D);
1259   } else {
1260     IdResolver.AddDecl(D);
1261   }
1262 }
1263 
1264 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1265   if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1266     TUScope->AddDecl(D);
1267 }
1268 
1269 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1270                          bool AllowInlineNamespace) {
1271   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1272 }
1273 
1274 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1275   DeclContext *TargetDC = DC->getPrimaryContext();
1276   do {
1277     if (DeclContext *ScopeDC = S->getEntity())
1278       if (ScopeDC->getPrimaryContext() == TargetDC)
1279         return S;
1280   } while ((S = S->getParent()));
1281 
1282   return nullptr;
1283 }
1284 
1285 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1286                                             DeclContext*,
1287                                             ASTContext&);
1288 
1289 /// Filters out lookup results that don't fall within the given scope
1290 /// as determined by isDeclInScope.
1291 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1292                                 bool ConsiderLinkage,
1293                                 bool AllowInlineNamespace) {
1294   LookupResult::Filter F = R.makeFilter();
1295   while (F.hasNext()) {
1296     NamedDecl *D = F.next();
1297 
1298     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1299       continue;
1300 
1301     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1302       continue;
1303 
1304     F.erase();
1305   }
1306 
1307   F.done();
1308 }
1309 
1310 static bool isUsingDecl(NamedDecl *D) {
1311   return isa<UsingShadowDecl>(D) ||
1312          isa<UnresolvedUsingTypenameDecl>(D) ||
1313          isa<UnresolvedUsingValueDecl>(D);
1314 }
1315 
1316 /// Removes using shadow declarations from the lookup results.
1317 static void RemoveUsingDecls(LookupResult &R) {
1318   LookupResult::Filter F = R.makeFilter();
1319   while (F.hasNext())
1320     if (isUsingDecl(F.next()))
1321       F.erase();
1322 
1323   F.done();
1324 }
1325 
1326 /// \brief Check for this common pattern:
1327 /// @code
1328 /// class S {
1329 ///   S(const S&); // DO NOT IMPLEMENT
1330 ///   void operator=(const S&); // DO NOT IMPLEMENT
1331 /// };
1332 /// @endcode
1333 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1334   // FIXME: Should check for private access too but access is set after we get
1335   // the decl here.
1336   if (D->doesThisDeclarationHaveABody())
1337     return false;
1338 
1339   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1340     return CD->isCopyConstructor();
1341   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1342     return Method->isCopyAssignmentOperator();
1343   return false;
1344 }
1345 
1346 // We need this to handle
1347 //
1348 // typedef struct {
1349 //   void *foo() { return 0; }
1350 // } A;
1351 //
1352 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1353 // for example. If 'A', foo will have external linkage. If we have '*A',
1354 // foo will have no linkage. Since we can't know until we get to the end
1355 // of the typedef, this function finds out if D might have non-external linkage.
1356 // Callers should verify at the end of the TU if it D has external linkage or
1357 // not.
1358 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1359   const DeclContext *DC = D->getDeclContext();
1360   while (!DC->isTranslationUnit()) {
1361     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1362       if (!RD->hasNameForLinkage())
1363         return true;
1364     }
1365     DC = DC->getParent();
1366   }
1367 
1368   return !D->isExternallyVisible();
1369 }
1370 
1371 // FIXME: This needs to be refactored; some other isInMainFile users want
1372 // these semantics.
1373 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1374   if (S.TUKind != TU_Complete)
1375     return false;
1376   return S.SourceMgr.isInMainFile(Loc);
1377 }
1378 
1379 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1380   assert(D);
1381 
1382   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1383     return false;
1384 
1385   // Ignore all entities declared within templates, and out-of-line definitions
1386   // of members of class templates.
1387   if (D->getDeclContext()->isDependentContext() ||
1388       D->getLexicalDeclContext()->isDependentContext())
1389     return false;
1390 
1391   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1392     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1393       return false;
1394 
1395     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1396       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1397         return false;
1398     } else {
1399       // 'static inline' functions are defined in headers; don't warn.
1400       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1401         return false;
1402     }
1403 
1404     if (FD->doesThisDeclarationHaveABody() &&
1405         Context.DeclMustBeEmitted(FD))
1406       return false;
1407   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1408     // Constants and utility variables are defined in headers with internal
1409     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1410     // like "inline".)
1411     if (!isMainFileLoc(*this, VD->getLocation()))
1412       return false;
1413 
1414     if (Context.DeclMustBeEmitted(VD))
1415       return false;
1416 
1417     if (VD->isStaticDataMember() &&
1418         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1419       return false;
1420   } else {
1421     return false;
1422   }
1423 
1424   // Only warn for unused decls internal to the translation unit.
1425   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1426   // for inline functions defined in the main source file, for instance.
1427   return mightHaveNonExternalLinkage(D);
1428 }
1429 
1430 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1431   if (!D)
1432     return;
1433 
1434   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1435     const FunctionDecl *First = FD->getFirstDecl();
1436     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1437       return; // First should already be in the vector.
1438   }
1439 
1440   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1441     const VarDecl *First = VD->getFirstDecl();
1442     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1443       return; // First should already be in the vector.
1444   }
1445 
1446   if (ShouldWarnIfUnusedFileScopedDecl(D))
1447     UnusedFileScopedDecls.push_back(D);
1448 }
1449 
1450 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1451   if (D->isInvalidDecl())
1452     return false;
1453 
1454   if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() ||
1455       D->hasAttr<ObjCPreciseLifetimeAttr>())
1456     return false;
1457 
1458   if (isa<LabelDecl>(D))
1459     return true;
1460 
1461   // Except for labels, we only care about unused decls that are local to
1462   // functions.
1463   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1464   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1465     // For dependent types, the diagnostic is deferred.
1466     WithinFunction =
1467         WithinFunction || (R->isLocalClass() && !R->isDependentType());
1468   if (!WithinFunction)
1469     return false;
1470 
1471   if (isa<TypedefNameDecl>(D))
1472     return true;
1473 
1474   // White-list anything that isn't a local variable.
1475   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1476     return false;
1477 
1478   // Types of valid local variables should be complete, so this should succeed.
1479   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1480 
1481     // White-list anything with an __attribute__((unused)) type.
1482     QualType Ty = VD->getType();
1483 
1484     // Only look at the outermost level of typedef.
1485     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1486       if (TT->getDecl()->hasAttr<UnusedAttr>())
1487         return false;
1488     }
1489 
1490     // If we failed to complete the type for some reason, or if the type is
1491     // dependent, don't diagnose the variable.
1492     if (Ty->isIncompleteType() || Ty->isDependentType())
1493       return false;
1494 
1495     if (const TagType *TT = Ty->getAs<TagType>()) {
1496       const TagDecl *Tag = TT->getDecl();
1497       if (Tag->hasAttr<UnusedAttr>())
1498         return false;
1499 
1500       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1501         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1502           return false;
1503 
1504         if (const Expr *Init = VD->getInit()) {
1505           if (const ExprWithCleanups *Cleanups =
1506                   dyn_cast<ExprWithCleanups>(Init))
1507             Init = Cleanups->getSubExpr();
1508           const CXXConstructExpr *Construct =
1509             dyn_cast<CXXConstructExpr>(Init);
1510           if (Construct && !Construct->isElidable()) {
1511             CXXConstructorDecl *CD = Construct->getConstructor();
1512             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1513               return false;
1514           }
1515         }
1516       }
1517     }
1518 
1519     // TODO: __attribute__((unused)) templates?
1520   }
1521 
1522   return true;
1523 }
1524 
1525 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1526                                      FixItHint &Hint) {
1527   if (isa<LabelDecl>(D)) {
1528     SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1529                 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1530     if (AfterColon.isInvalid())
1531       return;
1532     Hint = FixItHint::CreateRemoval(CharSourceRange::
1533                                     getCharRange(D->getLocStart(), AfterColon));
1534   }
1535   return;
1536 }
1537 
1538 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1539   if (D->getTypeForDecl()->isDependentType())
1540     return;
1541 
1542   for (auto *TmpD : D->decls()) {
1543     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1544       DiagnoseUnusedDecl(T);
1545     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1546       DiagnoseUnusedNestedTypedefs(R);
1547   }
1548 }
1549 
1550 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1551 /// unless they are marked attr(unused).
1552 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1553   if (!ShouldDiagnoseUnusedDecl(D))
1554     return;
1555 
1556   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1557     // typedefs can be referenced later on, so the diagnostics are emitted
1558     // at end-of-translation-unit.
1559     UnusedLocalTypedefNameCandidates.insert(TD);
1560     return;
1561   }
1562 
1563   FixItHint Hint;
1564   GenerateFixForUnusedDecl(D, Context, Hint);
1565 
1566   unsigned DiagID;
1567   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1568     DiagID = diag::warn_unused_exception_param;
1569   else if (isa<LabelDecl>(D))
1570     DiagID = diag::warn_unused_label;
1571   else
1572     DiagID = diag::warn_unused_variable;
1573 
1574   Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1575 }
1576 
1577 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1578   // Verify that we have no forward references left.  If so, there was a goto
1579   // or address of a label taken, but no definition of it.  Label fwd
1580   // definitions are indicated with a null substmt which is also not a resolved
1581   // MS inline assembly label name.
1582   bool Diagnose = false;
1583   if (L->isMSAsmLabel())
1584     Diagnose = !L->isResolvedMSAsmLabel();
1585   else
1586     Diagnose = L->getStmt() == nullptr;
1587   if (Diagnose)
1588     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1589 }
1590 
1591 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1592   S->mergeNRVOIntoParent();
1593 
1594   if (S->decl_empty()) return;
1595   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1596          "Scope shouldn't contain decls!");
1597 
1598   for (auto *TmpD : S->decls()) {
1599     assert(TmpD && "This decl didn't get pushed??");
1600 
1601     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1602     NamedDecl *D = cast<NamedDecl>(TmpD);
1603 
1604     if (!D->getDeclName()) continue;
1605 
1606     // Diagnose unused variables in this scope.
1607     if (!S->hasUnrecoverableErrorOccurred()) {
1608       DiagnoseUnusedDecl(D);
1609       if (const auto *RD = dyn_cast<RecordDecl>(D))
1610         DiagnoseUnusedNestedTypedefs(RD);
1611     }
1612 
1613     // If this was a forward reference to a label, verify it was defined.
1614     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1615       CheckPoppedLabel(LD, *this);
1616 
1617     // Remove this name from our lexical scope.
1618     IdResolver.RemoveDecl(D);
1619   }
1620 }
1621 
1622 /// \brief Look for an Objective-C class in the translation unit.
1623 ///
1624 /// \param Id The name of the Objective-C class we're looking for. If
1625 /// typo-correction fixes this name, the Id will be updated
1626 /// to the fixed name.
1627 ///
1628 /// \param IdLoc The location of the name in the translation unit.
1629 ///
1630 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1631 /// if there is no class with the given name.
1632 ///
1633 /// \returns The declaration of the named Objective-C class, or NULL if the
1634 /// class could not be found.
1635 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1636                                               SourceLocation IdLoc,
1637                                               bool DoTypoCorrection) {
1638   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1639   // creation from this context.
1640   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1641 
1642   if (!IDecl && DoTypoCorrection) {
1643     // Perform typo correction at the given location, but only if we
1644     // find an Objective-C class name.
1645     if (TypoCorrection C = CorrectTypo(
1646             DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
1647             llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
1648             CTK_ErrorRecovery)) {
1649       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1650       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1651       Id = IDecl->getIdentifier();
1652     }
1653   }
1654   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1655   // This routine must always return a class definition, if any.
1656   if (Def && Def->getDefinition())
1657       Def = Def->getDefinition();
1658   return Def;
1659 }
1660 
1661 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1662 /// from S, where a non-field would be declared. This routine copes
1663 /// with the difference between C and C++ scoping rules in structs and
1664 /// unions. For example, the following code is well-formed in C but
1665 /// ill-formed in C++:
1666 /// @code
1667 /// struct S6 {
1668 ///   enum { BAR } e;
1669 /// };
1670 ///
1671 /// void test_S6() {
1672 ///   struct S6 a;
1673 ///   a.e = BAR;
1674 /// }
1675 /// @endcode
1676 /// For the declaration of BAR, this routine will return a different
1677 /// scope. The scope S will be the scope of the unnamed enumeration
1678 /// within S6. In C++, this routine will return the scope associated
1679 /// with S6, because the enumeration's scope is a transparent
1680 /// context but structures can contain non-field names. In C, this
1681 /// routine will return the translation unit scope, since the
1682 /// enumeration's scope is a transparent context and structures cannot
1683 /// contain non-field names.
1684 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1685   while (((S->getFlags() & Scope::DeclScope) == 0) ||
1686          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1687          (S->isClassScope() && !getLangOpts().CPlusPlus))
1688     S = S->getParent();
1689   return S;
1690 }
1691 
1692 /// \brief Looks up the declaration of "struct objc_super" and
1693 /// saves it for later use in building builtin declaration of
1694 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1695 /// pre-existing declaration exists no action takes place.
1696 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1697                                         IdentifierInfo *II) {
1698   if (!II->isStr("objc_msgSendSuper"))
1699     return;
1700   ASTContext &Context = ThisSema.Context;
1701 
1702   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1703                       SourceLocation(), Sema::LookupTagName);
1704   ThisSema.LookupName(Result, S);
1705   if (Result.getResultKind() == LookupResult::Found)
1706     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1707       Context.setObjCSuperType(Context.getTagDeclType(TD));
1708 }
1709 
1710 static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
1711   switch (Error) {
1712   case ASTContext::GE_None:
1713     return "";
1714   case ASTContext::GE_Missing_stdio:
1715     return "stdio.h";
1716   case ASTContext::GE_Missing_setjmp:
1717     return "setjmp.h";
1718   case ASTContext::GE_Missing_ucontext:
1719     return "ucontext.h";
1720   }
1721   llvm_unreachable("unhandled error kind");
1722 }
1723 
1724 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1725 /// file scope.  lazily create a decl for it. ForRedeclaration is true
1726 /// if we're creating this built-in in anticipation of redeclaring the
1727 /// built-in.
1728 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1729                                      Scope *S, bool ForRedeclaration,
1730                                      SourceLocation Loc) {
1731   LookupPredefedObjCSuperType(*this, S, II);
1732 
1733   ASTContext::GetBuiltinTypeError Error;
1734   QualType R = Context.GetBuiltinType(ID, Error);
1735   if (Error) {
1736     if (ForRedeclaration)
1737       Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1738           << getHeaderName(Error) << Context.BuiltinInfo.getName(ID);
1739     return nullptr;
1740   }
1741 
1742   if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(ID)) {
1743     Diag(Loc, diag::ext_implicit_lib_function_decl)
1744         << Context.BuiltinInfo.getName(ID) << R;
1745     if (Context.BuiltinInfo.getHeaderName(ID) &&
1746         !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1747       Diag(Loc, diag::note_include_header_or_declare)
1748           << Context.BuiltinInfo.getHeaderName(ID)
1749           << Context.BuiltinInfo.getName(ID);
1750   }
1751 
1752   DeclContext *Parent = Context.getTranslationUnitDecl();
1753   if (getLangOpts().CPlusPlus) {
1754     LinkageSpecDecl *CLinkageDecl =
1755         LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1756                                 LinkageSpecDecl::lang_c, false);
1757     CLinkageDecl->setImplicit();
1758     Parent->addDecl(CLinkageDecl);
1759     Parent = CLinkageDecl;
1760   }
1761 
1762   FunctionDecl *New = FunctionDecl::Create(Context,
1763                                            Parent,
1764                                            Loc, Loc, II, R, /*TInfo=*/nullptr,
1765                                            SC_Extern,
1766                                            false,
1767                                            R->isFunctionProtoType());
1768   New->setImplicit();
1769 
1770   // Create Decl objects for each parameter, adding them to the
1771   // FunctionDecl.
1772   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1773     SmallVector<ParmVarDecl*, 16> Params;
1774     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1775       ParmVarDecl *parm =
1776           ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
1777                               nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
1778                               SC_None, nullptr);
1779       parm->setScopeInfo(0, i);
1780       Params.push_back(parm);
1781     }
1782     New->setParams(Params);
1783   }
1784 
1785   AddKnownFunctionAttributes(New);
1786   RegisterLocallyScopedExternCDecl(New, S);
1787 
1788   // TUScope is the translation-unit scope to insert this function into.
1789   // FIXME: This is hideous. We need to teach PushOnScopeChains to
1790   // relate Scopes to DeclContexts, and probably eliminate CurContext
1791   // entirely, but we're not there yet.
1792   DeclContext *SavedContext = CurContext;
1793   CurContext = Parent;
1794   PushOnScopeChains(New, TUScope);
1795   CurContext = SavedContext;
1796   return New;
1797 }
1798 
1799 /// Typedef declarations don't have linkage, but they still denote the same
1800 /// entity if their types are the same.
1801 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
1802 /// isSameEntity.
1803 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
1804                                                      TypedefNameDecl *Decl,
1805                                                      LookupResult &Previous) {
1806   // This is only interesting when modules are enabled.
1807   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
1808     return;
1809 
1810   // Empty sets are uninteresting.
1811   if (Previous.empty())
1812     return;
1813 
1814   LookupResult::Filter Filter = Previous.makeFilter();
1815   while (Filter.hasNext()) {
1816     NamedDecl *Old = Filter.next();
1817 
1818     // Non-hidden declarations are never ignored.
1819     if (S.isVisible(Old))
1820       continue;
1821 
1822     // Declarations of the same entity are not ignored, even if they have
1823     // different linkages.
1824     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
1825       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
1826                                 Decl->getUnderlyingType()))
1827         continue;
1828 
1829       // If both declarations give a tag declaration a typedef name for linkage
1830       // purposes, then they declare the same entity.
1831       if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
1832           Decl->getAnonDeclWithTypedefName())
1833         continue;
1834     }
1835 
1836     if (!Old->isExternallyVisible())
1837       Filter.erase();
1838   }
1839 
1840   Filter.done();
1841 }
1842 
1843 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1844   QualType OldType;
1845   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1846     OldType = OldTypedef->getUnderlyingType();
1847   else
1848     OldType = Context.getTypeDeclType(Old);
1849   QualType NewType = New->getUnderlyingType();
1850 
1851   if (NewType->isVariablyModifiedType()) {
1852     // Must not redefine a typedef with a variably-modified type.
1853     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1854     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1855       << Kind << NewType;
1856     if (Old->getLocation().isValid())
1857       Diag(Old->getLocation(), diag::note_previous_definition);
1858     New->setInvalidDecl();
1859     return true;
1860   }
1861 
1862   if (OldType != NewType &&
1863       !OldType->isDependentType() &&
1864       !NewType->isDependentType() &&
1865       !Context.hasSameType(OldType, NewType)) {
1866     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1867     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1868       << Kind << NewType << OldType;
1869     if (Old->getLocation().isValid())
1870       Diag(Old->getLocation(), diag::note_previous_definition);
1871     New->setInvalidDecl();
1872     return true;
1873   }
1874   return false;
1875 }
1876 
1877 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1878 /// same name and scope as a previous declaration 'Old'.  Figure out
1879 /// how to resolve this situation, merging decls or emitting
1880 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1881 ///
1882 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1883   // If the new decl is known invalid already, don't bother doing any
1884   // merging checks.
1885   if (New->isInvalidDecl()) return;
1886 
1887   // Allow multiple definitions for ObjC built-in typedefs.
1888   // FIXME: Verify the underlying types are equivalent!
1889   if (getLangOpts().ObjC1) {
1890     const IdentifierInfo *TypeID = New->getIdentifier();
1891     switch (TypeID->getLength()) {
1892     default: break;
1893     case 2:
1894       {
1895         if (!TypeID->isStr("id"))
1896           break;
1897         QualType T = New->getUnderlyingType();
1898         if (!T->isPointerType())
1899           break;
1900         if (!T->isVoidPointerType()) {
1901           QualType PT = T->getAs<PointerType>()->getPointeeType();
1902           if (!PT->isStructureType())
1903             break;
1904         }
1905         Context.setObjCIdRedefinitionType(T);
1906         // Install the built-in type for 'id', ignoring the current definition.
1907         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1908         return;
1909       }
1910     case 5:
1911       if (!TypeID->isStr("Class"))
1912         break;
1913       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1914       // Install the built-in type for 'Class', ignoring the current definition.
1915       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1916       return;
1917     case 3:
1918       if (!TypeID->isStr("SEL"))
1919         break;
1920       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1921       // Install the built-in type for 'SEL', ignoring the current definition.
1922       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1923       return;
1924     }
1925     // Fall through - the typedef name was not a builtin type.
1926   }
1927 
1928   // Verify the old decl was also a type.
1929   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1930   if (!Old) {
1931     Diag(New->getLocation(), diag::err_redefinition_different_kind)
1932       << New->getDeclName();
1933 
1934     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1935     if (OldD->getLocation().isValid())
1936       Diag(OldD->getLocation(), diag::note_previous_definition);
1937 
1938     return New->setInvalidDecl();
1939   }
1940 
1941   // If the old declaration is invalid, just give up here.
1942   if (Old->isInvalidDecl())
1943     return New->setInvalidDecl();
1944 
1945   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
1946     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
1947     auto *NewTag = New->getAnonDeclWithTypedefName();
1948     NamedDecl *Hidden = nullptr;
1949     if (getLangOpts().CPlusPlus && OldTag && NewTag &&
1950         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
1951         !hasVisibleDefinition(OldTag, &Hidden)) {
1952       // There is a definition of this tag, but it is not visible. Use it
1953       // instead of our tag.
1954       New->setTypeForDecl(OldTD->getTypeForDecl());
1955       if (OldTD->isModed())
1956         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
1957                                     OldTD->getUnderlyingType());
1958       else
1959         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
1960 
1961       // Make the old tag definition visible.
1962       makeMergedDefinitionVisible(Hidden, NewTag->getLocation());
1963     }
1964   }
1965 
1966   // If the typedef types are not identical, reject them in all languages and
1967   // with any extensions enabled.
1968   if (isIncompatibleTypedef(Old, New))
1969     return;
1970 
1971   // The types match.  Link up the redeclaration chain and merge attributes if
1972   // the old declaration was a typedef.
1973   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
1974     New->setPreviousDecl(Typedef);
1975     mergeDeclAttributes(New, Old);
1976   }
1977 
1978   if (getLangOpts().MicrosoftExt)
1979     return;
1980 
1981   if (getLangOpts().CPlusPlus) {
1982     // C++ [dcl.typedef]p2:
1983     //   In a given non-class scope, a typedef specifier can be used to
1984     //   redefine the name of any type declared in that scope to refer
1985     //   to the type to which it already refers.
1986     if (!isa<CXXRecordDecl>(CurContext))
1987       return;
1988 
1989     // C++0x [dcl.typedef]p4:
1990     //   In a given class scope, a typedef specifier can be used to redefine
1991     //   any class-name declared in that scope that is not also a typedef-name
1992     //   to refer to the type to which it already refers.
1993     //
1994     // This wording came in via DR424, which was a correction to the
1995     // wording in DR56, which accidentally banned code like:
1996     //
1997     //   struct S {
1998     //     typedef struct A { } A;
1999     //   };
2000     //
2001     // in the C++03 standard. We implement the C++0x semantics, which
2002     // allow the above but disallow
2003     //
2004     //   struct S {
2005     //     typedef int I;
2006     //     typedef int I;
2007     //   };
2008     //
2009     // since that was the intent of DR56.
2010     if (!isa<TypedefNameDecl>(Old))
2011       return;
2012 
2013     Diag(New->getLocation(), diag::err_redefinition)
2014       << New->getDeclName();
2015     Diag(Old->getLocation(), diag::note_previous_definition);
2016     return New->setInvalidDecl();
2017   }
2018 
2019   // Modules always permit redefinition of typedefs, as does C11.
2020   if (getLangOpts().Modules || getLangOpts().C11)
2021     return;
2022 
2023   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2024   // is normally mapped to an error, but can be controlled with
2025   // -Wtypedef-redefinition.  If either the original or the redefinition is
2026   // in a system header, don't emit this for compatibility with GCC.
2027   if (getDiagnostics().getSuppressSystemWarnings() &&
2028       (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2029        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2030     return;
2031 
2032   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2033     << New->getDeclName();
2034   Diag(Old->getLocation(), diag::note_previous_definition);
2035 }
2036 
2037 /// DeclhasAttr - returns true if decl Declaration already has the target
2038 /// attribute.
2039 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2040   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2041   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2042   for (const auto *i : D->attrs())
2043     if (i->getKind() == A->getKind()) {
2044       if (Ann) {
2045         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2046           return true;
2047         continue;
2048       }
2049       // FIXME: Don't hardcode this check
2050       if (OA && isa<OwnershipAttr>(i))
2051         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2052       return true;
2053     }
2054 
2055   return false;
2056 }
2057 
2058 static bool isAttributeTargetADefinition(Decl *D) {
2059   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2060     return VD->isThisDeclarationADefinition();
2061   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2062     return TD->isCompleteDefinition() || TD->isBeingDefined();
2063   return true;
2064 }
2065 
2066 /// Merge alignment attributes from \p Old to \p New, taking into account the
2067 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2068 ///
2069 /// \return \c true if any attributes were added to \p New.
2070 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2071   // Look for alignas attributes on Old, and pick out whichever attribute
2072   // specifies the strictest alignment requirement.
2073   AlignedAttr *OldAlignasAttr = nullptr;
2074   AlignedAttr *OldStrictestAlignAttr = nullptr;
2075   unsigned OldAlign = 0;
2076   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2077     // FIXME: We have no way of representing inherited dependent alignments
2078     // in a case like:
2079     //   template<int A, int B> struct alignas(A) X;
2080     //   template<int A, int B> struct alignas(B) X {};
2081     // For now, we just ignore any alignas attributes which are not on the
2082     // definition in such a case.
2083     if (I->isAlignmentDependent())
2084       return false;
2085 
2086     if (I->isAlignas())
2087       OldAlignasAttr = I;
2088 
2089     unsigned Align = I->getAlignment(S.Context);
2090     if (Align > OldAlign) {
2091       OldAlign = Align;
2092       OldStrictestAlignAttr = I;
2093     }
2094   }
2095 
2096   // Look for alignas attributes on New.
2097   AlignedAttr *NewAlignasAttr = nullptr;
2098   unsigned NewAlign = 0;
2099   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2100     if (I->isAlignmentDependent())
2101       return false;
2102 
2103     if (I->isAlignas())
2104       NewAlignasAttr = I;
2105 
2106     unsigned Align = I->getAlignment(S.Context);
2107     if (Align > NewAlign)
2108       NewAlign = Align;
2109   }
2110 
2111   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2112     // Both declarations have 'alignas' attributes. We require them to match.
2113     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2114     // fall short. (If two declarations both have alignas, they must both match
2115     // every definition, and so must match each other if there is a definition.)
2116 
2117     // If either declaration only contains 'alignas(0)' specifiers, then it
2118     // specifies the natural alignment for the type.
2119     if (OldAlign == 0 || NewAlign == 0) {
2120       QualType Ty;
2121       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2122         Ty = VD->getType();
2123       else
2124         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2125 
2126       if (OldAlign == 0)
2127         OldAlign = S.Context.getTypeAlign(Ty);
2128       if (NewAlign == 0)
2129         NewAlign = S.Context.getTypeAlign(Ty);
2130     }
2131 
2132     if (OldAlign != NewAlign) {
2133       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2134         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2135         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2136       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2137     }
2138   }
2139 
2140   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2141     // C++11 [dcl.align]p6:
2142     //   if any declaration of an entity has an alignment-specifier,
2143     //   every defining declaration of that entity shall specify an
2144     //   equivalent alignment.
2145     // C11 6.7.5/7:
2146     //   If the definition of an object does not have an alignment
2147     //   specifier, any other declaration of that object shall also
2148     //   have no alignment specifier.
2149     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2150       << OldAlignasAttr;
2151     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2152       << OldAlignasAttr;
2153   }
2154 
2155   bool AnyAdded = false;
2156 
2157   // Ensure we have an attribute representing the strictest alignment.
2158   if (OldAlign > NewAlign) {
2159     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2160     Clone->setInherited(true);
2161     New->addAttr(Clone);
2162     AnyAdded = true;
2163   }
2164 
2165   // Ensure we have an alignas attribute if the old declaration had one.
2166   if (OldAlignasAttr && !NewAlignasAttr &&
2167       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2168     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2169     Clone->setInherited(true);
2170     New->addAttr(Clone);
2171     AnyAdded = true;
2172   }
2173 
2174   return AnyAdded;
2175 }
2176 
2177 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2178                                const InheritableAttr *Attr,
2179                                Sema::AvailabilityMergeKind AMK) {
2180   InheritableAttr *NewAttr = nullptr;
2181   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2182   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2183     NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2184                                       AA->getIntroduced(), AA->getDeprecated(),
2185                                       AA->getObsoleted(), AA->getUnavailable(),
2186                                       AA->getMessage(), AMK,
2187                                       AttrSpellingListIndex);
2188   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2189     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2190                                     AttrSpellingListIndex);
2191   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2192     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2193                                         AttrSpellingListIndex);
2194   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2195     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2196                                    AttrSpellingListIndex);
2197   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2198     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2199                                    AttrSpellingListIndex);
2200   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2201     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2202                                 FA->getFormatIdx(), FA->getFirstArg(),
2203                                 AttrSpellingListIndex);
2204   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2205     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2206                                  AttrSpellingListIndex);
2207   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2208     NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2209                                        AttrSpellingListIndex,
2210                                        IA->getSemanticSpelling());
2211   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2212     NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2213                                       &S.Context.Idents.get(AA->getSpelling()),
2214                                       AttrSpellingListIndex);
2215   else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2216     NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2217   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2218     NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2219   else if (isa<AlignedAttr>(Attr))
2220     // AlignedAttrs are handled separately, because we need to handle all
2221     // such attributes on a declaration at the same time.
2222     NewAttr = nullptr;
2223   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2224            (AMK == Sema::AMK_Override ||
2225             AMK == Sema::AMK_ProtocolImplementation))
2226     NewAttr = nullptr;
2227   else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr))
2228     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2229 
2230   if (NewAttr) {
2231     NewAttr->setInherited(true);
2232     D->addAttr(NewAttr);
2233     return true;
2234   }
2235 
2236   return false;
2237 }
2238 
2239 static const Decl *getDefinition(const Decl *D) {
2240   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2241     return TD->getDefinition();
2242   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2243     const VarDecl *Def = VD->getDefinition();
2244     if (Def)
2245       return Def;
2246     return VD->getActingDefinition();
2247   }
2248   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2249     const FunctionDecl* Def;
2250     if (FD->isDefined(Def))
2251       return Def;
2252   }
2253   return nullptr;
2254 }
2255 
2256 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2257   for (const auto *Attribute : D->attrs())
2258     if (Attribute->getKind() == Kind)
2259       return true;
2260   return false;
2261 }
2262 
2263 /// checkNewAttributesAfterDef - If we already have a definition, check that
2264 /// there are no new attributes in this declaration.
2265 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2266   if (!New->hasAttrs())
2267     return;
2268 
2269   const Decl *Def = getDefinition(Old);
2270   if (!Def || Def == New)
2271     return;
2272 
2273   AttrVec &NewAttributes = New->getAttrs();
2274   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2275     const Attr *NewAttribute = NewAttributes[I];
2276 
2277     if (isa<AliasAttr>(NewAttribute)) {
2278       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2279         Sema::SkipBodyInfo SkipBody;
2280         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2281 
2282         // If we're skipping this definition, drop the "alias" attribute.
2283         if (SkipBody.ShouldSkip) {
2284           NewAttributes.erase(NewAttributes.begin() + I);
2285           --E;
2286           continue;
2287         }
2288       } else {
2289         VarDecl *VD = cast<VarDecl>(New);
2290         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2291                                 VarDecl::TentativeDefinition
2292                             ? diag::err_alias_after_tentative
2293                             : diag::err_redefinition;
2294         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2295         S.Diag(Def->getLocation(), diag::note_previous_definition);
2296         VD->setInvalidDecl();
2297       }
2298       ++I;
2299       continue;
2300     }
2301 
2302     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2303       // Tentative definitions are only interesting for the alias check above.
2304       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2305         ++I;
2306         continue;
2307       }
2308     }
2309 
2310     if (hasAttribute(Def, NewAttribute->getKind())) {
2311       ++I;
2312       continue; // regular attr merging will take care of validating this.
2313     }
2314 
2315     if (isa<C11NoReturnAttr>(NewAttribute)) {
2316       // C's _Noreturn is allowed to be added to a function after it is defined.
2317       ++I;
2318       continue;
2319     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2320       if (AA->isAlignas()) {
2321         // C++11 [dcl.align]p6:
2322         //   if any declaration of an entity has an alignment-specifier,
2323         //   every defining declaration of that entity shall specify an
2324         //   equivalent alignment.
2325         // C11 6.7.5/7:
2326         //   If the definition of an object does not have an alignment
2327         //   specifier, any other declaration of that object shall also
2328         //   have no alignment specifier.
2329         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2330           << AA;
2331         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2332           << AA;
2333         NewAttributes.erase(NewAttributes.begin() + I);
2334         --E;
2335         continue;
2336       }
2337     }
2338 
2339     S.Diag(NewAttribute->getLocation(),
2340            diag::warn_attribute_precede_definition);
2341     S.Diag(Def->getLocation(), diag::note_previous_definition);
2342     NewAttributes.erase(NewAttributes.begin() + I);
2343     --E;
2344   }
2345 }
2346 
2347 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2348 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2349                                AvailabilityMergeKind AMK) {
2350   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2351     UsedAttr *NewAttr = OldAttr->clone(Context);
2352     NewAttr->setInherited(true);
2353     New->addAttr(NewAttr);
2354   }
2355 
2356   if (!Old->hasAttrs() && !New->hasAttrs())
2357     return;
2358 
2359   // attributes declared post-definition are currently ignored
2360   checkNewAttributesAfterDef(*this, New, Old);
2361 
2362   if (!Old->hasAttrs())
2363     return;
2364 
2365   bool foundAny = New->hasAttrs();
2366 
2367   // Ensure that any moving of objects within the allocated map is done before
2368   // we process them.
2369   if (!foundAny) New->setAttrs(AttrVec());
2370 
2371   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2372     // Ignore deprecated/unavailable/availability attributes if requested.
2373     AvailabilityMergeKind LocalAMK = AMK_None;
2374     if (isa<DeprecatedAttr>(I) ||
2375         isa<UnavailableAttr>(I) ||
2376         isa<AvailabilityAttr>(I)) {
2377       switch (AMK) {
2378       case AMK_None:
2379         continue;
2380 
2381       case AMK_Redeclaration:
2382       case AMK_Override:
2383       case AMK_ProtocolImplementation:
2384         LocalAMK = AMK;
2385         break;
2386       }
2387     }
2388 
2389     // Already handled.
2390     if (isa<UsedAttr>(I))
2391       continue;
2392 
2393     if (mergeDeclAttribute(*this, New, I, LocalAMK))
2394       foundAny = true;
2395   }
2396 
2397   if (mergeAlignedAttrs(*this, New, Old))
2398     foundAny = true;
2399 
2400   if (!foundAny) New->dropAttrs();
2401 }
2402 
2403 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2404 /// to the new one.
2405 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2406                                      const ParmVarDecl *oldDecl,
2407                                      Sema &S) {
2408   // C++11 [dcl.attr.depend]p2:
2409   //   The first declaration of a function shall specify the
2410   //   carries_dependency attribute for its declarator-id if any declaration
2411   //   of the function specifies the carries_dependency attribute.
2412   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2413   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2414     S.Diag(CDA->getLocation(),
2415            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2416     // Find the first declaration of the parameter.
2417     // FIXME: Should we build redeclaration chains for function parameters?
2418     const FunctionDecl *FirstFD =
2419       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2420     const ParmVarDecl *FirstVD =
2421       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2422     S.Diag(FirstVD->getLocation(),
2423            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2424   }
2425 
2426   if (!oldDecl->hasAttrs())
2427     return;
2428 
2429   bool foundAny = newDecl->hasAttrs();
2430 
2431   // Ensure that any moving of objects within the allocated map is
2432   // done before we process them.
2433   if (!foundAny) newDecl->setAttrs(AttrVec());
2434 
2435   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2436     if (!DeclHasAttr(newDecl, I)) {
2437       InheritableAttr *newAttr =
2438         cast<InheritableParamAttr>(I->clone(S.Context));
2439       newAttr->setInherited(true);
2440       newDecl->addAttr(newAttr);
2441       foundAny = true;
2442     }
2443   }
2444 
2445   if (!foundAny) newDecl->dropAttrs();
2446 }
2447 
2448 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2449                                 const ParmVarDecl *OldParam,
2450                                 Sema &S) {
2451   if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2452     if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2453       if (*Oldnullability != *Newnullability) {
2454         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2455           << DiagNullabilityKind(
2456                *Newnullability,
2457                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2458                 != 0))
2459           << DiagNullabilityKind(
2460                *Oldnullability,
2461                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2462                 != 0));
2463         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2464       }
2465     } else {
2466       QualType NewT = NewParam->getType();
2467       NewT = S.Context.getAttributedType(
2468                          AttributedType::getNullabilityAttrKind(*Oldnullability),
2469                          NewT, NewT);
2470       NewParam->setType(NewT);
2471     }
2472   }
2473 }
2474 
2475 namespace {
2476 
2477 /// Used in MergeFunctionDecl to keep track of function parameters in
2478 /// C.
2479 struct GNUCompatibleParamWarning {
2480   ParmVarDecl *OldParm;
2481   ParmVarDecl *NewParm;
2482   QualType PromotedType;
2483 };
2484 
2485 }
2486 
2487 /// getSpecialMember - get the special member enum for a method.
2488 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2489   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2490     if (Ctor->isDefaultConstructor())
2491       return Sema::CXXDefaultConstructor;
2492 
2493     if (Ctor->isCopyConstructor())
2494       return Sema::CXXCopyConstructor;
2495 
2496     if (Ctor->isMoveConstructor())
2497       return Sema::CXXMoveConstructor;
2498   } else if (isa<CXXDestructorDecl>(MD)) {
2499     return Sema::CXXDestructor;
2500   } else if (MD->isCopyAssignmentOperator()) {
2501     return Sema::CXXCopyAssignment;
2502   } else if (MD->isMoveAssignmentOperator()) {
2503     return Sema::CXXMoveAssignment;
2504   }
2505 
2506   return Sema::CXXInvalid;
2507 }
2508 
2509 // Determine whether the previous declaration was a definition, implicit
2510 // declaration, or a declaration.
2511 template <typename T>
2512 static std::pair<diag::kind, SourceLocation>
2513 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2514   diag::kind PrevDiag;
2515   SourceLocation OldLocation = Old->getLocation();
2516   if (Old->isThisDeclarationADefinition())
2517     PrevDiag = diag::note_previous_definition;
2518   else if (Old->isImplicit()) {
2519     PrevDiag = diag::note_previous_implicit_declaration;
2520     if (OldLocation.isInvalid())
2521       OldLocation = New->getLocation();
2522   } else
2523     PrevDiag = diag::note_previous_declaration;
2524   return std::make_pair(PrevDiag, OldLocation);
2525 }
2526 
2527 /// canRedefineFunction - checks if a function can be redefined. Currently,
2528 /// only extern inline functions can be redefined, and even then only in
2529 /// GNU89 mode.
2530 static bool canRedefineFunction(const FunctionDecl *FD,
2531                                 const LangOptions& LangOpts) {
2532   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2533           !LangOpts.CPlusPlus &&
2534           FD->isInlineSpecified() &&
2535           FD->getStorageClass() == SC_Extern);
2536 }
2537 
2538 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2539   const AttributedType *AT = T->getAs<AttributedType>();
2540   while (AT && !AT->isCallingConv())
2541     AT = AT->getModifiedType()->getAs<AttributedType>();
2542   return AT;
2543 }
2544 
2545 template <typename T>
2546 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2547   const DeclContext *DC = Old->getDeclContext();
2548   if (DC->isRecord())
2549     return false;
2550 
2551   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2552   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2553     return true;
2554   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2555     return true;
2556   return false;
2557 }
2558 
2559 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
2560 static bool isExternC(VarTemplateDecl *) { return false; }
2561 
2562 /// \brief Check whether a redeclaration of an entity introduced by a
2563 /// using-declaration is valid, given that we know it's not an overload
2564 /// (nor a hidden tag declaration).
2565 template<typename ExpectedDecl>
2566 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
2567                                    ExpectedDecl *New) {
2568   // C++11 [basic.scope.declarative]p4:
2569   //   Given a set of declarations in a single declarative region, each of
2570   //   which specifies the same unqualified name,
2571   //   -- they shall all refer to the same entity, or all refer to functions
2572   //      and function templates; or
2573   //   -- exactly one declaration shall declare a class name or enumeration
2574   //      name that is not a typedef name and the other declarations shall all
2575   //      refer to the same variable or enumerator, or all refer to functions
2576   //      and function templates; in this case the class name or enumeration
2577   //      name is hidden (3.3.10).
2578 
2579   // C++11 [namespace.udecl]p14:
2580   //   If a function declaration in namespace scope or block scope has the
2581   //   same name and the same parameter-type-list as a function introduced
2582   //   by a using-declaration, and the declarations do not declare the same
2583   //   function, the program is ill-formed.
2584 
2585   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
2586   if (Old &&
2587       !Old->getDeclContext()->getRedeclContext()->Equals(
2588           New->getDeclContext()->getRedeclContext()) &&
2589       !(isExternC(Old) && isExternC(New)))
2590     Old = nullptr;
2591 
2592   if (!Old) {
2593     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2594     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
2595     S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2596     return true;
2597   }
2598   return false;
2599 }
2600 
2601 /// MergeFunctionDecl - We just parsed a function 'New' from
2602 /// declarator D which has the same name and scope as a previous
2603 /// declaration 'Old'.  Figure out how to resolve this situation,
2604 /// merging decls or emitting diagnostics as appropriate.
2605 ///
2606 /// In C++, New and Old must be declarations that are not
2607 /// overloaded. Use IsOverload to determine whether New and Old are
2608 /// overloaded, and to select the Old declaration that New should be
2609 /// merged with.
2610 ///
2611 /// Returns true if there was an error, false otherwise.
2612 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2613                              Scope *S, bool MergeTypeWithOld) {
2614   // Verify the old decl was also a function.
2615   FunctionDecl *Old = OldD->getAsFunction();
2616   if (!Old) {
2617     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2618       if (New->getFriendObjectKind()) {
2619         Diag(New->getLocation(), diag::err_using_decl_friend);
2620         Diag(Shadow->getTargetDecl()->getLocation(),
2621              diag::note_using_decl_target);
2622         Diag(Shadow->getUsingDecl()->getLocation(),
2623              diag::note_using_decl) << 0;
2624         return true;
2625       }
2626 
2627       // Check whether the two declarations might declare the same function.
2628       if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
2629         return true;
2630       OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
2631     } else {
2632       Diag(New->getLocation(), diag::err_redefinition_different_kind)
2633         << New->getDeclName();
2634       Diag(OldD->getLocation(), diag::note_previous_definition);
2635       return true;
2636     }
2637   }
2638 
2639   // If the old declaration is invalid, just give up here.
2640   if (Old->isInvalidDecl())
2641     return true;
2642 
2643   diag::kind PrevDiag;
2644   SourceLocation OldLocation;
2645   std::tie(PrevDiag, OldLocation) =
2646       getNoteDiagForInvalidRedeclaration(Old, New);
2647 
2648   // Don't complain about this if we're in GNU89 mode and the old function
2649   // is an extern inline function.
2650   // Don't complain about specializations. They are not supposed to have
2651   // storage classes.
2652   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2653       New->getStorageClass() == SC_Static &&
2654       Old->hasExternalFormalLinkage() &&
2655       !New->getTemplateSpecializationInfo() &&
2656       !canRedefineFunction(Old, getLangOpts())) {
2657     if (getLangOpts().MicrosoftExt) {
2658       Diag(New->getLocation(), diag::ext_static_non_static) << New;
2659       Diag(OldLocation, PrevDiag);
2660     } else {
2661       Diag(New->getLocation(), diag::err_static_non_static) << New;
2662       Diag(OldLocation, PrevDiag);
2663       return true;
2664     }
2665   }
2666 
2667 
2668   // If a function is first declared with a calling convention, but is later
2669   // declared or defined without one, all following decls assume the calling
2670   // convention of the first.
2671   //
2672   // It's OK if a function is first declared without a calling convention,
2673   // but is later declared or defined with the default calling convention.
2674   //
2675   // To test if either decl has an explicit calling convention, we look for
2676   // AttributedType sugar nodes on the type as written.  If they are missing or
2677   // were canonicalized away, we assume the calling convention was implicit.
2678   //
2679   // Note also that we DO NOT return at this point, because we still have
2680   // other tests to run.
2681   QualType OldQType = Context.getCanonicalType(Old->getType());
2682   QualType NewQType = Context.getCanonicalType(New->getType());
2683   const FunctionType *OldType = cast<FunctionType>(OldQType);
2684   const FunctionType *NewType = cast<FunctionType>(NewQType);
2685   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2686   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2687   bool RequiresAdjustment = false;
2688 
2689   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
2690     FunctionDecl *First = Old->getFirstDecl();
2691     const FunctionType *FT =
2692         First->getType().getCanonicalType()->castAs<FunctionType>();
2693     FunctionType::ExtInfo FI = FT->getExtInfo();
2694     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
2695     if (!NewCCExplicit) {
2696       // Inherit the CC from the previous declaration if it was specified
2697       // there but not here.
2698       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2699       RequiresAdjustment = true;
2700     } else {
2701       // Calling conventions aren't compatible, so complain.
2702       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
2703       Diag(New->getLocation(), diag::err_cconv_change)
2704         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2705         << !FirstCCExplicit
2706         << (!FirstCCExplicit ? "" :
2707             FunctionType::getNameForCallConv(FI.getCC()));
2708 
2709       // Put the note on the first decl, since it is the one that matters.
2710       Diag(First->getLocation(), diag::note_previous_declaration);
2711       return true;
2712     }
2713   }
2714 
2715   // FIXME: diagnose the other way around?
2716   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2717     NewTypeInfo = NewTypeInfo.withNoReturn(true);
2718     RequiresAdjustment = true;
2719   }
2720 
2721   // Merge regparm attribute.
2722   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2723       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2724     if (NewTypeInfo.getHasRegParm()) {
2725       Diag(New->getLocation(), diag::err_regparm_mismatch)
2726         << NewType->getRegParmType()
2727         << OldType->getRegParmType();
2728       Diag(OldLocation, diag::note_previous_declaration);
2729       return true;
2730     }
2731 
2732     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2733     RequiresAdjustment = true;
2734   }
2735 
2736   // Merge ns_returns_retained attribute.
2737   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2738     if (NewTypeInfo.getProducesResult()) {
2739       Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2740       Diag(OldLocation, diag::note_previous_declaration);
2741       return true;
2742     }
2743 
2744     NewTypeInfo = NewTypeInfo.withProducesResult(true);
2745     RequiresAdjustment = true;
2746   }
2747 
2748   if (RequiresAdjustment) {
2749     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
2750     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
2751     New->setType(QualType(AdjustedType, 0));
2752     NewQType = Context.getCanonicalType(New->getType());
2753     NewType = cast<FunctionType>(NewQType);
2754   }
2755 
2756   // If this redeclaration makes the function inline, we may need to add it to
2757   // UndefinedButUsed.
2758   if (!Old->isInlined() && New->isInlined() &&
2759       !New->hasAttr<GNUInlineAttr>() &&
2760       !getLangOpts().GNUInline &&
2761       Old->isUsed(false) &&
2762       !Old->isDefined() && !New->isThisDeclarationADefinition())
2763     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2764                                            SourceLocation()));
2765 
2766   // If this redeclaration makes it newly gnu_inline, we don't want to warn
2767   // about it.
2768   if (New->hasAttr<GNUInlineAttr>() &&
2769       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2770     UndefinedButUsed.erase(Old->getCanonicalDecl());
2771   }
2772 
2773   if (getLangOpts().CPlusPlus) {
2774     // (C++98 13.1p2):
2775     //   Certain function declarations cannot be overloaded:
2776     //     -- Function declarations that differ only in the return type
2777     //        cannot be overloaded.
2778 
2779     // Go back to the type source info to compare the declared return types,
2780     // per C++1y [dcl.type.auto]p13:
2781     //   Redeclarations or specializations of a function or function template
2782     //   with a declared return type that uses a placeholder type shall also
2783     //   use that placeholder, not a deduced type.
2784     QualType OldDeclaredReturnType =
2785         (Old->getTypeSourceInfo()
2786              ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2787              : OldType)->getReturnType();
2788     QualType NewDeclaredReturnType =
2789         (New->getTypeSourceInfo()
2790              ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2791              : NewType)->getReturnType();
2792     QualType ResQT;
2793     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
2794         !((NewQType->isDependentType() || OldQType->isDependentType()) &&
2795           New->isLocalExternDecl())) {
2796       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2797           OldDeclaredReturnType->isObjCObjectPointerType())
2798         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2799       if (ResQT.isNull()) {
2800         if (New->isCXXClassMember() && New->isOutOfLine())
2801           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
2802               << New << New->getReturnTypeSourceRange();
2803         else
2804           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
2805               << New->getReturnTypeSourceRange();
2806         Diag(OldLocation, PrevDiag) << Old << Old->getType()
2807                                     << Old->getReturnTypeSourceRange();
2808         return true;
2809       }
2810       else
2811         NewQType = ResQT;
2812     }
2813 
2814     QualType OldReturnType = OldType->getReturnType();
2815     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
2816     if (OldReturnType != NewReturnType) {
2817       // If this function has a deduced return type and has already been
2818       // defined, copy the deduced value from the old declaration.
2819       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
2820       if (OldAT && OldAT->isDeduced()) {
2821         New->setType(
2822             SubstAutoType(New->getType(),
2823                           OldAT->isDependentType() ? Context.DependentTy
2824                                                    : OldAT->getDeducedType()));
2825         NewQType = Context.getCanonicalType(
2826             SubstAutoType(NewQType,
2827                           OldAT->isDependentType() ? Context.DependentTy
2828                                                    : OldAT->getDeducedType()));
2829       }
2830     }
2831 
2832     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2833     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2834     if (OldMethod && NewMethod) {
2835       // Preserve triviality.
2836       NewMethod->setTrivial(OldMethod->isTrivial());
2837 
2838       // MSVC allows explicit template specialization at class scope:
2839       // 2 CXXMethodDecls referring to the same function will be injected.
2840       // We don't want a redeclaration error.
2841       bool IsClassScopeExplicitSpecialization =
2842                               OldMethod->isFunctionTemplateSpecialization() &&
2843                               NewMethod->isFunctionTemplateSpecialization();
2844       bool isFriend = NewMethod->getFriendObjectKind();
2845 
2846       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2847           !IsClassScopeExplicitSpecialization) {
2848         //    -- Member function declarations with the same name and the
2849         //       same parameter types cannot be overloaded if any of them
2850         //       is a static member function declaration.
2851         if (OldMethod->isStatic() != NewMethod->isStatic()) {
2852           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2853           Diag(OldLocation, PrevDiag) << Old << Old->getType();
2854           return true;
2855         }
2856 
2857         // C++ [class.mem]p1:
2858         //   [...] A member shall not be declared twice in the
2859         //   member-specification, except that a nested class or member
2860         //   class template can be declared and then later defined.
2861         if (ActiveTemplateInstantiations.empty()) {
2862           unsigned NewDiag;
2863           if (isa<CXXConstructorDecl>(OldMethod))
2864             NewDiag = diag::err_constructor_redeclared;
2865           else if (isa<CXXDestructorDecl>(NewMethod))
2866             NewDiag = diag::err_destructor_redeclared;
2867           else if (isa<CXXConversionDecl>(NewMethod))
2868             NewDiag = diag::err_conv_function_redeclared;
2869           else
2870             NewDiag = diag::err_member_redeclared;
2871 
2872           Diag(New->getLocation(), NewDiag);
2873         } else {
2874           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2875             << New << New->getType();
2876         }
2877         Diag(OldLocation, PrevDiag) << Old << Old->getType();
2878         return true;
2879 
2880       // Complain if this is an explicit declaration of a special
2881       // member that was initially declared implicitly.
2882       //
2883       // As an exception, it's okay to befriend such methods in order
2884       // to permit the implicit constructor/destructor/operator calls.
2885       } else if (OldMethod->isImplicit()) {
2886         if (isFriend) {
2887           NewMethod->setImplicit();
2888         } else {
2889           Diag(NewMethod->getLocation(),
2890                diag::err_definition_of_implicitly_declared_member)
2891             << New << getSpecialMember(OldMethod);
2892           return true;
2893         }
2894       } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2895         Diag(NewMethod->getLocation(),
2896              diag::err_definition_of_explicitly_defaulted_member)
2897           << getSpecialMember(OldMethod);
2898         return true;
2899       }
2900     }
2901 
2902     // C++11 [dcl.attr.noreturn]p1:
2903     //   The first declaration of a function shall specify the noreturn
2904     //   attribute if any declaration of that function specifies the noreturn
2905     //   attribute.
2906     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
2907     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
2908       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
2909       Diag(Old->getFirstDecl()->getLocation(),
2910            diag::note_noreturn_missing_first_decl);
2911     }
2912 
2913     // C++11 [dcl.attr.depend]p2:
2914     //   The first declaration of a function shall specify the
2915     //   carries_dependency attribute for its declarator-id if any declaration
2916     //   of the function specifies the carries_dependency attribute.
2917     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
2918     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
2919       Diag(CDA->getLocation(),
2920            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2921       Diag(Old->getFirstDecl()->getLocation(),
2922            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2923     }
2924 
2925     // (C++98 8.3.5p3):
2926     //   All declarations for a function shall agree exactly in both the
2927     //   return type and the parameter-type-list.
2928     // We also want to respect all the extended bits except noreturn.
2929 
2930     // noreturn should now match unless the old type info didn't have it.
2931     QualType OldQTypeForComparison = OldQType;
2932     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2933       assert(OldQType == QualType(OldType, 0));
2934       const FunctionType *OldTypeForComparison
2935         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2936       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2937       assert(OldQTypeForComparison.isCanonical());
2938     }
2939 
2940     if (haveIncompatibleLanguageLinkages(Old, New)) {
2941       // As a special case, retain the language linkage from previous
2942       // declarations of a friend function as an extension.
2943       //
2944       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
2945       // and is useful because there's otherwise no way to specify language
2946       // linkage within class scope.
2947       //
2948       // Check cautiously as the friend object kind isn't yet complete.
2949       if (New->getFriendObjectKind() != Decl::FOK_None) {
2950         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
2951         Diag(OldLocation, PrevDiag);
2952       } else {
2953         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2954         Diag(OldLocation, PrevDiag);
2955         return true;
2956       }
2957     }
2958 
2959     if (OldQTypeForComparison == NewQType)
2960       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2961 
2962     if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
2963         New->isLocalExternDecl()) {
2964       // It's OK if we couldn't merge types for a local function declaraton
2965       // if either the old or new type is dependent. We'll merge the types
2966       // when we instantiate the function.
2967       return false;
2968     }
2969 
2970     // Fall through for conflicting redeclarations and redefinitions.
2971   }
2972 
2973   // C: Function types need to be compatible, not identical. This handles
2974   // duplicate function decls like "void f(int); void f(enum X);" properly.
2975   if (!getLangOpts().CPlusPlus &&
2976       Context.typesAreCompatible(OldQType, NewQType)) {
2977     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2978     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2979     const FunctionProtoType *OldProto = nullptr;
2980     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
2981         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2982       // The old declaration provided a function prototype, but the
2983       // new declaration does not. Merge in the prototype.
2984       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2985       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
2986       NewQType =
2987           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
2988                                   OldProto->getExtProtoInfo());
2989       New->setType(NewQType);
2990       New->setHasInheritedPrototype();
2991 
2992       // Synthesize parameters with the same types.
2993       SmallVector<ParmVarDecl*, 16> Params;
2994       for (const auto &ParamType : OldProto->param_types()) {
2995         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
2996                                                  SourceLocation(), nullptr,
2997                                                  ParamType, /*TInfo=*/nullptr,
2998                                                  SC_None, nullptr);
2999         Param->setScopeInfo(0, Params.size());
3000         Param->setImplicit();
3001         Params.push_back(Param);
3002       }
3003 
3004       New->setParams(Params);
3005     }
3006 
3007     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3008   }
3009 
3010   // GNU C permits a K&R definition to follow a prototype declaration
3011   // if the declared types of the parameters in the K&R definition
3012   // match the types in the prototype declaration, even when the
3013   // promoted types of the parameters from the K&R definition differ
3014   // from the types in the prototype. GCC then keeps the types from
3015   // the prototype.
3016   //
3017   // If a variadic prototype is followed by a non-variadic K&R definition,
3018   // the K&R definition becomes variadic.  This is sort of an edge case, but
3019   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3020   // C99 6.9.1p8.
3021   if (!getLangOpts().CPlusPlus &&
3022       Old->hasPrototype() && !New->hasPrototype() &&
3023       New->getType()->getAs<FunctionProtoType>() &&
3024       Old->getNumParams() == New->getNumParams()) {
3025     SmallVector<QualType, 16> ArgTypes;
3026     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3027     const FunctionProtoType *OldProto
3028       = Old->getType()->getAs<FunctionProtoType>();
3029     const FunctionProtoType *NewProto
3030       = New->getType()->getAs<FunctionProtoType>();
3031 
3032     // Determine whether this is the GNU C extension.
3033     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3034                                                NewProto->getReturnType());
3035     bool LooseCompatible = !MergedReturn.isNull();
3036     for (unsigned Idx = 0, End = Old->getNumParams();
3037          LooseCompatible && Idx != End; ++Idx) {
3038       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3039       ParmVarDecl *NewParm = New->getParamDecl(Idx);
3040       if (Context.typesAreCompatible(OldParm->getType(),
3041                                      NewProto->getParamType(Idx))) {
3042         ArgTypes.push_back(NewParm->getType());
3043       } else if (Context.typesAreCompatible(OldParm->getType(),
3044                                             NewParm->getType(),
3045                                             /*CompareUnqualified=*/true)) {
3046         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3047                                            NewProto->getParamType(Idx) };
3048         Warnings.push_back(Warn);
3049         ArgTypes.push_back(NewParm->getType());
3050       } else
3051         LooseCompatible = false;
3052     }
3053 
3054     if (LooseCompatible) {
3055       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3056         Diag(Warnings[Warn].NewParm->getLocation(),
3057              diag::ext_param_promoted_not_compatible_with_prototype)
3058           << Warnings[Warn].PromotedType
3059           << Warnings[Warn].OldParm->getType();
3060         if (Warnings[Warn].OldParm->getLocation().isValid())
3061           Diag(Warnings[Warn].OldParm->getLocation(),
3062                diag::note_previous_declaration);
3063       }
3064 
3065       if (MergeTypeWithOld)
3066         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3067                                              OldProto->getExtProtoInfo()));
3068       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3069     }
3070 
3071     // Fall through to diagnose conflicting types.
3072   }
3073 
3074   // A function that has already been declared has been redeclared or
3075   // defined with a different type; show an appropriate diagnostic.
3076 
3077   // If the previous declaration was an implicitly-generated builtin
3078   // declaration, then at the very least we should use a specialized note.
3079   unsigned BuiltinID;
3080   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3081     // If it's actually a library-defined builtin function like 'malloc'
3082     // or 'printf', just warn about the incompatible redeclaration.
3083     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3084       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3085       Diag(OldLocation, diag::note_previous_builtin_declaration)
3086         << Old << Old->getType();
3087 
3088       // If this is a global redeclaration, just forget hereafter
3089       // about the "builtin-ness" of the function.
3090       //
3091       // Doing this for local extern declarations is problematic.  If
3092       // the builtin declaration remains visible, a second invalid
3093       // local declaration will produce a hard error; if it doesn't
3094       // remain visible, a single bogus local redeclaration (which is
3095       // actually only a warning) could break all the downstream code.
3096       if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3097         New->getIdentifier()->revertBuiltin();
3098 
3099       return false;
3100     }
3101 
3102     PrevDiag = diag::note_previous_builtin_declaration;
3103   }
3104 
3105   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3106   Diag(OldLocation, PrevDiag) << Old << Old->getType();
3107   return true;
3108 }
3109 
3110 /// \brief Completes the merge of two function declarations that are
3111 /// known to be compatible.
3112 ///
3113 /// This routine handles the merging of attributes and other
3114 /// properties of function declarations from the old declaration to
3115 /// the new declaration, once we know that New is in fact a
3116 /// redeclaration of Old.
3117 ///
3118 /// \returns false
3119 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3120                                         Scope *S, bool MergeTypeWithOld) {
3121   // Merge the attributes
3122   mergeDeclAttributes(New, Old);
3123 
3124   // Merge "pure" flag.
3125   if (Old->isPure())
3126     New->setPure();
3127 
3128   // Merge "used" flag.
3129   if (Old->getMostRecentDecl()->isUsed(false))
3130     New->setIsUsed();
3131 
3132   // Merge attributes from the parameters.  These can mismatch with K&R
3133   // declarations.
3134   if (New->getNumParams() == Old->getNumParams())
3135       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3136         ParmVarDecl *NewParam = New->getParamDecl(i);
3137         ParmVarDecl *OldParam = Old->getParamDecl(i);
3138         mergeParamDeclAttributes(NewParam, OldParam, *this);
3139         mergeParamDeclTypes(NewParam, OldParam, *this);
3140       }
3141 
3142   if (getLangOpts().CPlusPlus)
3143     return MergeCXXFunctionDecl(New, Old, S);
3144 
3145   // Merge the function types so the we get the composite types for the return
3146   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3147   // was visible.
3148   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3149   if (!Merged.isNull() && MergeTypeWithOld)
3150     New->setType(Merged);
3151 
3152   return false;
3153 }
3154 
3155 
3156 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3157                                 ObjCMethodDecl *oldMethod) {
3158 
3159   // Merge the attributes, including deprecated/unavailable
3160   AvailabilityMergeKind MergeKind =
3161     isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3162       ? AMK_ProtocolImplementation
3163       : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3164                                                        : AMK_Override;
3165 
3166   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3167 
3168   // Merge attributes from the parameters.
3169   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3170                                        oe = oldMethod->param_end();
3171   for (ObjCMethodDecl::param_iterator
3172          ni = newMethod->param_begin(), ne = newMethod->param_end();
3173        ni != ne && oi != oe; ++ni, ++oi)
3174     mergeParamDeclAttributes(*ni, *oi, *this);
3175 
3176   CheckObjCMethodOverride(newMethod, oldMethod);
3177 }
3178 
3179 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3180 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3181 /// emitting diagnostics as appropriate.
3182 ///
3183 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3184 /// to here in AddInitializerToDecl. We can't check them before the initializer
3185 /// is attached.
3186 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3187                              bool MergeTypeWithOld) {
3188   if (New->isInvalidDecl() || Old->isInvalidDecl())
3189     return;
3190 
3191   QualType MergedT;
3192   if (getLangOpts().CPlusPlus) {
3193     if (New->getType()->isUndeducedType()) {
3194       // We don't know what the new type is until the initializer is attached.
3195       return;
3196     } else if (Context.hasSameType(New->getType(), Old->getType())) {
3197       // These could still be something that needs exception specs checked.
3198       return MergeVarDeclExceptionSpecs(New, Old);
3199     }
3200     // C++ [basic.link]p10:
3201     //   [...] the types specified by all declarations referring to a given
3202     //   object or function shall be identical, except that declarations for an
3203     //   array object can specify array types that differ by the presence or
3204     //   absence of a major array bound (8.3.4).
3205     else if (Old->getType()->isIncompleteArrayType() &&
3206              New->getType()->isArrayType()) {
3207       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3208       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3209       if (Context.hasSameType(OldArray->getElementType(),
3210                               NewArray->getElementType()))
3211         MergedT = New->getType();
3212     } else if (Old->getType()->isArrayType() &&
3213                New->getType()->isIncompleteArrayType()) {
3214       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3215       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3216       if (Context.hasSameType(OldArray->getElementType(),
3217                               NewArray->getElementType()))
3218         MergedT = Old->getType();
3219     } else if (New->getType()->isObjCObjectPointerType() &&
3220                Old->getType()->isObjCObjectPointerType()) {
3221       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3222                                               Old->getType());
3223     }
3224   } else {
3225     // C 6.2.7p2:
3226     //   All declarations that refer to the same object or function shall have
3227     //   compatible type.
3228     MergedT = Context.mergeTypes(New->getType(), Old->getType());
3229   }
3230   if (MergedT.isNull()) {
3231     // It's OK if we couldn't merge types if either type is dependent, for a
3232     // block-scope variable. In other cases (static data members of class
3233     // templates, variable templates, ...), we require the types to be
3234     // equivalent.
3235     // FIXME: The C++ standard doesn't say anything about this.
3236     if ((New->getType()->isDependentType() ||
3237          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3238       // If the old type was dependent, we can't merge with it, so the new type
3239       // becomes dependent for now. We'll reproduce the original type when we
3240       // instantiate the TypeSourceInfo for the variable.
3241       if (!New->getType()->isDependentType() && MergeTypeWithOld)
3242         New->setType(Context.DependentTy);
3243       return;
3244     }
3245 
3246     // FIXME: Even if this merging succeeds, some other non-visible declaration
3247     // of this variable might have an incompatible type. For instance:
3248     //
3249     //   extern int arr[];
3250     //   void f() { extern int arr[2]; }
3251     //   void g() { extern int arr[3]; }
3252     //
3253     // Neither C nor C++ requires a diagnostic for this, but we should still try
3254     // to diagnose it.
3255     Diag(New->getLocation(), New->isThisDeclarationADefinition()
3256                                  ? diag::err_redefinition_different_type
3257                                  : diag::err_redeclaration_different_type)
3258         << New->getDeclName() << New->getType() << Old->getType();
3259 
3260     diag::kind PrevDiag;
3261     SourceLocation OldLocation;
3262     std::tie(PrevDiag, OldLocation) =
3263         getNoteDiagForInvalidRedeclaration(Old, New);
3264     Diag(OldLocation, PrevDiag);
3265     return New->setInvalidDecl();
3266   }
3267 
3268   // Don't actually update the type on the new declaration if the old
3269   // declaration was an extern declaration in a different scope.
3270   if (MergeTypeWithOld)
3271     New->setType(MergedT);
3272 }
3273 
3274 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3275                                   LookupResult &Previous) {
3276   // C11 6.2.7p4:
3277   //   For an identifier with internal or external linkage declared
3278   //   in a scope in which a prior declaration of that identifier is
3279   //   visible, if the prior declaration specifies internal or
3280   //   external linkage, the type of the identifier at the later
3281   //   declaration becomes the composite type.
3282   //
3283   // If the variable isn't visible, we do not merge with its type.
3284   if (Previous.isShadowed())
3285     return false;
3286 
3287   if (S.getLangOpts().CPlusPlus) {
3288     // C++11 [dcl.array]p3:
3289     //   If there is a preceding declaration of the entity in the same
3290     //   scope in which the bound was specified, an omitted array bound
3291     //   is taken to be the same as in that earlier declaration.
3292     return NewVD->isPreviousDeclInSameBlockScope() ||
3293            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3294             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3295   } else {
3296     // If the old declaration was function-local, don't merge with its
3297     // type unless we're in the same function.
3298     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3299            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3300   }
3301 }
3302 
3303 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
3304 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
3305 /// situation, merging decls or emitting diagnostics as appropriate.
3306 ///
3307 /// Tentative definition rules (C99 6.9.2p2) are checked by
3308 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3309 /// definitions here, since the initializer hasn't been attached.
3310 ///
3311 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3312   // If the new decl is already invalid, don't do any other checking.
3313   if (New->isInvalidDecl())
3314     return;
3315 
3316   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3317 
3318   // Verify the old decl was also a variable or variable template.
3319   VarDecl *Old = nullptr;
3320   VarTemplateDecl *OldTemplate = nullptr;
3321   if (Previous.isSingleResult()) {
3322     if (NewTemplate) {
3323       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3324       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3325 
3326       if (auto *Shadow =
3327               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3328         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
3329           return New->setInvalidDecl();
3330     } else {
3331       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3332 
3333       if (auto *Shadow =
3334               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3335         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
3336           return New->setInvalidDecl();
3337     }
3338   }
3339   if (!Old) {
3340     Diag(New->getLocation(), diag::err_redefinition_different_kind)
3341       << New->getDeclName();
3342     Diag(Previous.getRepresentativeDecl()->getLocation(),
3343          diag::note_previous_definition);
3344     return New->setInvalidDecl();
3345   }
3346 
3347   if (!shouldLinkPossiblyHiddenDecl(Old, New))
3348     return;
3349 
3350   // Ensure the template parameters are compatible.
3351   if (NewTemplate &&
3352       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3353                                       OldTemplate->getTemplateParameters(),
3354                                       /*Complain=*/true, TPL_TemplateMatch))
3355     return;
3356 
3357   // C++ [class.mem]p1:
3358   //   A member shall not be declared twice in the member-specification [...]
3359   //
3360   // Here, we need only consider static data members.
3361   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3362     Diag(New->getLocation(), diag::err_duplicate_member)
3363       << New->getIdentifier();
3364     Diag(Old->getLocation(), diag::note_previous_declaration);
3365     New->setInvalidDecl();
3366   }
3367 
3368   mergeDeclAttributes(New, Old);
3369   // Warn if an already-declared variable is made a weak_import in a subsequent
3370   // declaration
3371   if (New->hasAttr<WeakImportAttr>() &&
3372       Old->getStorageClass() == SC_None &&
3373       !Old->hasAttr<WeakImportAttr>()) {
3374     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3375     Diag(Old->getLocation(), diag::note_previous_definition);
3376     // Remove weak_import attribute on new declaration.
3377     New->dropAttr<WeakImportAttr>();
3378   }
3379 
3380   // Merge the types.
3381   VarDecl *MostRecent = Old->getMostRecentDecl();
3382   if (MostRecent != Old) {
3383     MergeVarDeclTypes(New, MostRecent,
3384                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3385     if (New->isInvalidDecl())
3386       return;
3387   }
3388 
3389   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3390   if (New->isInvalidDecl())
3391     return;
3392 
3393   diag::kind PrevDiag;
3394   SourceLocation OldLocation;
3395   std::tie(PrevDiag, OldLocation) =
3396       getNoteDiagForInvalidRedeclaration(Old, New);
3397 
3398   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3399   if (New->getStorageClass() == SC_Static &&
3400       !New->isStaticDataMember() &&
3401       Old->hasExternalFormalLinkage()) {
3402     if (getLangOpts().MicrosoftExt) {
3403       Diag(New->getLocation(), diag::ext_static_non_static)
3404           << New->getDeclName();
3405       Diag(OldLocation, PrevDiag);
3406     } else {
3407       Diag(New->getLocation(), diag::err_static_non_static)
3408           << New->getDeclName();
3409       Diag(OldLocation, PrevDiag);
3410       return New->setInvalidDecl();
3411     }
3412   }
3413   // C99 6.2.2p4:
3414   //   For an identifier declared with the storage-class specifier
3415   //   extern in a scope in which a prior declaration of that
3416   //   identifier is visible,23) if the prior declaration specifies
3417   //   internal or external linkage, the linkage of the identifier at
3418   //   the later declaration is the same as the linkage specified at
3419   //   the prior declaration. If no prior declaration is visible, or
3420   //   if the prior declaration specifies no linkage, then the
3421   //   identifier has external linkage.
3422   if (New->hasExternalStorage() && Old->hasLinkage())
3423     /* Okay */;
3424   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3425            !New->isStaticDataMember() &&
3426            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3427     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3428     Diag(OldLocation, PrevDiag);
3429     return New->setInvalidDecl();
3430   }
3431 
3432   // Check if extern is followed by non-extern and vice-versa.
3433   if (New->hasExternalStorage() &&
3434       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3435     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3436     Diag(OldLocation, PrevDiag);
3437     return New->setInvalidDecl();
3438   }
3439   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3440       !New->hasExternalStorage()) {
3441     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3442     Diag(OldLocation, PrevDiag);
3443     return New->setInvalidDecl();
3444   }
3445 
3446   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3447 
3448   // FIXME: The test for external storage here seems wrong? We still
3449   // need to check for mismatches.
3450   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3451       // Don't complain about out-of-line definitions of static members.
3452       !(Old->getLexicalDeclContext()->isRecord() &&
3453         !New->getLexicalDeclContext()->isRecord())) {
3454     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3455     Diag(OldLocation, PrevDiag);
3456     return New->setInvalidDecl();
3457   }
3458 
3459   if (New->getTLSKind() != Old->getTLSKind()) {
3460     if (!Old->getTLSKind()) {
3461       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3462       Diag(OldLocation, PrevDiag);
3463     } else if (!New->getTLSKind()) {
3464       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3465       Diag(OldLocation, PrevDiag);
3466     } else {
3467       // Do not allow redeclaration to change the variable between requiring
3468       // static and dynamic initialization.
3469       // FIXME: GCC allows this, but uses the TLS keyword on the first
3470       // declaration to determine the kind. Do we need to be compatible here?
3471       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3472         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3473       Diag(OldLocation, PrevDiag);
3474     }
3475   }
3476 
3477   // C++ doesn't have tentative definitions, so go right ahead and check here.
3478   VarDecl *Def;
3479   if (getLangOpts().CPlusPlus &&
3480       New->isThisDeclarationADefinition() == VarDecl::Definition &&
3481       (Def = Old->getDefinition())) {
3482     NamedDecl *Hidden = nullptr;
3483     if (!hasVisibleDefinition(Def, &Hidden) &&
3484         (New->getFormalLinkage() == InternalLinkage ||
3485          New->getDescribedVarTemplate() ||
3486          New->getNumTemplateParameterLists() ||
3487          New->getDeclContext()->isDependentContext())) {
3488       // The previous definition is hidden, and multiple definitions are
3489       // permitted (in separate TUs). Form another definition of it.
3490     } else {
3491       Diag(New->getLocation(), diag::err_redefinition) << New;
3492       Diag(Def->getLocation(), diag::note_previous_definition);
3493       New->setInvalidDecl();
3494       return;
3495     }
3496   }
3497 
3498   if (haveIncompatibleLanguageLinkages(Old, New)) {
3499     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3500     Diag(OldLocation, PrevDiag);
3501     New->setInvalidDecl();
3502     return;
3503   }
3504 
3505   // Merge "used" flag.
3506   if (Old->getMostRecentDecl()->isUsed(false))
3507     New->setIsUsed();
3508 
3509   // Keep a chain of previous declarations.
3510   New->setPreviousDecl(Old);
3511   if (NewTemplate)
3512     NewTemplate->setPreviousDecl(OldTemplate);
3513 
3514   // Inherit access appropriately.
3515   New->setAccess(Old->getAccess());
3516   if (NewTemplate)
3517     NewTemplate->setAccess(New->getAccess());
3518 }
3519 
3520 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3521 /// no declarator (e.g. "struct foo;") is parsed.
3522 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3523                                        DeclSpec &DS) {
3524   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3525 }
3526 
3527 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
3528 // disambiguate entities defined in different scopes.
3529 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
3530 // compatibility.
3531 // We will pick our mangling number depending on which version of MSVC is being
3532 // targeted.
3533 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
3534   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
3535              ? S->getMSCurManglingNumber()
3536              : S->getMSLastManglingNumber();
3537 }
3538 
3539 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
3540   if (!Context.getLangOpts().CPlusPlus)
3541     return;
3542 
3543   if (isa<CXXRecordDecl>(Tag->getParent())) {
3544     // If this tag is the direct child of a class, number it if
3545     // it is anonymous.
3546     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3547       return;
3548     MangleNumberingContext &MCtx =
3549         Context.getManglingNumberContext(Tag->getParent());
3550     Context.setManglingNumber(
3551         Tag, MCtx.getManglingNumber(
3552                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
3553     return;
3554   }
3555 
3556   // If this tag isn't a direct child of a class, number it if it is local.
3557   Decl *ManglingContextDecl;
3558   if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
3559           Tag->getDeclContext(), ManglingContextDecl)) {
3560     Context.setManglingNumber(
3561         Tag, MCtx->getManglingNumber(
3562                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
3563   }
3564 }
3565 
3566 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
3567                                         TypedefNameDecl *NewTD) {
3568   if (TagFromDeclSpec->isInvalidDecl())
3569     return;
3570 
3571   // Do nothing if the tag already has a name for linkage purposes.
3572   if (TagFromDeclSpec->hasNameForLinkage())
3573     return;
3574 
3575   // A well-formed anonymous tag must always be a TUK_Definition.
3576   assert(TagFromDeclSpec->isThisDeclarationADefinition());
3577 
3578   // The type must match the tag exactly;  no qualifiers allowed.
3579   if (!Context.hasSameType(NewTD->getUnderlyingType(),
3580                            Context.getTagDeclType(TagFromDeclSpec))) {
3581     if (getLangOpts().CPlusPlus)
3582       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
3583     return;
3584   }
3585 
3586   // If we've already computed linkage for the anonymous tag, then
3587   // adding a typedef name for the anonymous decl can change that
3588   // linkage, which might be a serious problem.  Diagnose this as
3589   // unsupported and ignore the typedef name.  TODO: we should
3590   // pursue this as a language defect and establish a formal rule
3591   // for how to handle it.
3592   if (TagFromDeclSpec->hasLinkageBeenComputed()) {
3593     Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
3594 
3595     SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
3596     tagLoc = getLocForEndOfToken(tagLoc);
3597 
3598     llvm::SmallString<40> textToInsert;
3599     textToInsert += ' ';
3600     textToInsert += NewTD->getIdentifier()->getName();
3601     Diag(tagLoc, diag::note_typedef_changes_linkage)
3602         << FixItHint::CreateInsertion(tagLoc, textToInsert);
3603     return;
3604   }
3605 
3606   // Otherwise, set this is the anon-decl typedef for the tag.
3607   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
3608 }
3609 
3610 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
3611   switch (T) {
3612   case DeclSpec::TST_class:
3613     return 0;
3614   case DeclSpec::TST_struct:
3615     return 1;
3616   case DeclSpec::TST_interface:
3617     return 2;
3618   case DeclSpec::TST_union:
3619     return 3;
3620   case DeclSpec::TST_enum:
3621     return 4;
3622   default:
3623     llvm_unreachable("unexpected type specifier");
3624   }
3625 }
3626 
3627 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3628 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3629 /// parameters to cope with template friend declarations.
3630 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3631                                        DeclSpec &DS,
3632                                        MultiTemplateParamsArg TemplateParams,
3633                                        bool IsExplicitInstantiation) {
3634   Decl *TagD = nullptr;
3635   TagDecl *Tag = nullptr;
3636   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3637       DS.getTypeSpecType() == DeclSpec::TST_struct ||
3638       DS.getTypeSpecType() == DeclSpec::TST_interface ||
3639       DS.getTypeSpecType() == DeclSpec::TST_union ||
3640       DS.getTypeSpecType() == DeclSpec::TST_enum) {
3641     TagD = DS.getRepAsDecl();
3642 
3643     if (!TagD) // We probably had an error
3644       return nullptr;
3645 
3646     // Note that the above type specs guarantee that the
3647     // type rep is a Decl, whereas in many of the others
3648     // it's a Type.
3649     if (isa<TagDecl>(TagD))
3650       Tag = cast<TagDecl>(TagD);
3651     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3652       Tag = CTD->getTemplatedDecl();
3653   }
3654 
3655   if (Tag) {
3656     handleTagNumbering(Tag, S);
3657     Tag->setFreeStanding();
3658     if (Tag->isInvalidDecl())
3659       return Tag;
3660   }
3661 
3662   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3663     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3664     // or incomplete types shall not be restrict-qualified."
3665     if (TypeQuals & DeclSpec::TQ_restrict)
3666       Diag(DS.getRestrictSpecLoc(),
3667            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3668            << DS.getSourceRange();
3669   }
3670 
3671   if (DS.isConstexprSpecified()) {
3672     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3673     // and definitions of functions and variables.
3674     if (Tag)
3675       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3676           << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType());
3677     else
3678       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3679     // Don't emit warnings after this error.
3680     return TagD;
3681   }
3682 
3683   if (DS.isConceptSpecified()) {
3684     // C++ Concepts TS [dcl.spec.concept]p1: A concept definition refers to
3685     // either a function concept and its definition or a variable concept and
3686     // its initializer.
3687     Diag(DS.getConceptSpecLoc(), diag::err_concept_wrong_decl_kind);
3688     return TagD;
3689   }
3690 
3691   DiagnoseFunctionSpecifiers(DS);
3692 
3693   if (DS.isFriendSpecified()) {
3694     // If we're dealing with a decl but not a TagDecl, assume that
3695     // whatever routines created it handled the friendship aspect.
3696     if (TagD && !Tag)
3697       return nullptr;
3698     return ActOnFriendTypeDecl(S, DS, TemplateParams);
3699   }
3700 
3701   const CXXScopeSpec &SS = DS.getTypeSpecScope();
3702   bool IsExplicitSpecialization =
3703     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3704   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3705       !IsExplicitInstantiation && !IsExplicitSpecialization) {
3706     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3707     // nested-name-specifier unless it is an explicit instantiation
3708     // or an explicit specialization.
3709     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3710     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3711         << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
3712     return nullptr;
3713   }
3714 
3715   // Track whether this decl-specifier declares anything.
3716   bool DeclaresAnything = true;
3717 
3718   // Handle anonymous struct definitions.
3719   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3720     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3721         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3722       if (getLangOpts().CPlusPlus ||
3723           Record->getDeclContext()->isRecord())
3724         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
3725                                            Context.getPrintingPolicy());
3726 
3727       DeclaresAnything = false;
3728     }
3729   }
3730 
3731   // C11 6.7.2.1p2:
3732   //   A struct-declaration that does not declare an anonymous structure or
3733   //   anonymous union shall contain a struct-declarator-list.
3734   //
3735   // This rule also existed in C89 and C99; the grammar for struct-declaration
3736   // did not permit a struct-declaration without a struct-declarator-list.
3737   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
3738       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3739     // Check for Microsoft C extension: anonymous struct/union member.
3740     // Handle 2 kinds of anonymous struct/union:
3741     //   struct STRUCT;
3742     //   union UNION;
3743     // and
3744     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3745     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
3746     if ((Tag && Tag->getDeclName()) ||
3747         DS.getTypeSpecType() == DeclSpec::TST_typename) {
3748       RecordDecl *Record = nullptr;
3749       if (Tag)
3750         Record = dyn_cast<RecordDecl>(Tag);
3751       else if (const RecordType *RT =
3752                    DS.getRepAsType().get()->getAsStructureType())
3753         Record = RT->getDecl();
3754       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
3755         Record = UT->getDecl();
3756 
3757       if (Record && getLangOpts().MicrosoftExt) {
3758         Diag(DS.getLocStart(), diag::ext_ms_anonymous_record)
3759           << Record->isUnion() << DS.getSourceRange();
3760         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3761       }
3762 
3763       DeclaresAnything = false;
3764     }
3765   }
3766 
3767   // Skip all the checks below if we have a type error.
3768   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3769       (TagD && TagD->isInvalidDecl()))
3770     return TagD;
3771 
3772   if (getLangOpts().CPlusPlus &&
3773       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3774     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3775       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3776           !Enum->getIdentifier() && !Enum->isInvalidDecl())
3777         DeclaresAnything = false;
3778 
3779   if (!DS.isMissingDeclaratorOk()) {
3780     // Customize diagnostic for a typedef missing a name.
3781     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3782       Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3783         << DS.getSourceRange();
3784     else
3785       DeclaresAnything = false;
3786   }
3787 
3788   if (DS.isModulePrivateSpecified() &&
3789       Tag && Tag->getDeclContext()->isFunctionOrMethod())
3790     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3791       << Tag->getTagKind()
3792       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3793 
3794   ActOnDocumentableDecl(TagD);
3795 
3796   // C 6.7/2:
3797   //   A declaration [...] shall declare at least a declarator [...], a tag,
3798   //   or the members of an enumeration.
3799   // C++ [dcl.dcl]p3:
3800   //   [If there are no declarators], and except for the declaration of an
3801   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3802   //   names into the program, or shall redeclare a name introduced by a
3803   //   previous declaration.
3804   if (!DeclaresAnything) {
3805     // In C, we allow this as a (popular) extension / bug. Don't bother
3806     // producing further diagnostics for redundant qualifiers after this.
3807     Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3808     return TagD;
3809   }
3810 
3811   // C++ [dcl.stc]p1:
3812   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3813   //   init-declarator-list of the declaration shall not be empty.
3814   // C++ [dcl.fct.spec]p1:
3815   //   If a cv-qualifier appears in a decl-specifier-seq, the
3816   //   init-declarator-list of the declaration shall not be empty.
3817   //
3818   // Spurious qualifiers here appear to be valid in C.
3819   unsigned DiagID = diag::warn_standalone_specifier;
3820   if (getLangOpts().CPlusPlus)
3821     DiagID = diag::ext_standalone_specifier;
3822 
3823   // Note that a linkage-specification sets a storage class, but
3824   // 'extern "C" struct foo;' is actually valid and not theoretically
3825   // useless.
3826   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3827     if (SCS == DeclSpec::SCS_mutable)
3828       // Since mutable is not a viable storage class specifier in C, there is
3829       // no reason to treat it as an extension. Instead, diagnose as an error.
3830       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
3831     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3832       Diag(DS.getStorageClassSpecLoc(), DiagID)
3833         << DeclSpec::getSpecifierName(SCS);
3834   }
3835 
3836   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3837     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3838       << DeclSpec::getSpecifierName(TSCS);
3839   if (DS.getTypeQualifiers()) {
3840     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3841       Diag(DS.getConstSpecLoc(), DiagID) << "const";
3842     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3843       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3844     // Restrict is covered above.
3845     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3846       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3847   }
3848 
3849   // Warn about ignored type attributes, for example:
3850   // __attribute__((aligned)) struct A;
3851   // Attributes should be placed after tag to apply to type declaration.
3852   if (!DS.getAttributes().empty()) {
3853     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3854     if (TypeSpecType == DeclSpec::TST_class ||
3855         TypeSpecType == DeclSpec::TST_struct ||
3856         TypeSpecType == DeclSpec::TST_interface ||
3857         TypeSpecType == DeclSpec::TST_union ||
3858         TypeSpecType == DeclSpec::TST_enum) {
3859       for (AttributeList* attrs = DS.getAttributes().getList(); attrs;
3860            attrs = attrs->getNext())
3861         Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3862             << attrs->getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
3863     }
3864   }
3865 
3866   return TagD;
3867 }
3868 
3869 /// We are trying to inject an anonymous member into the given scope;
3870 /// check if there's an existing declaration that can't be overloaded.
3871 ///
3872 /// \return true if this is a forbidden redeclaration
3873 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3874                                          Scope *S,
3875                                          DeclContext *Owner,
3876                                          DeclarationName Name,
3877                                          SourceLocation NameLoc,
3878                                          unsigned diagnostic) {
3879   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3880                  Sema::ForRedeclaration);
3881   if (!SemaRef.LookupName(R, S)) return false;
3882 
3883   if (R.getAsSingle<TagDecl>())
3884     return false;
3885 
3886   // Pick a representative declaration.
3887   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3888   assert(PrevDecl && "Expected a non-null Decl");
3889 
3890   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3891     return false;
3892 
3893   SemaRef.Diag(NameLoc, diagnostic) << Name;
3894   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3895 
3896   return true;
3897 }
3898 
3899 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
3900 /// anonymous struct or union AnonRecord into the owning context Owner
3901 /// and scope S. This routine will be invoked just after we realize
3902 /// that an unnamed union or struct is actually an anonymous union or
3903 /// struct, e.g.,
3904 ///
3905 /// @code
3906 /// union {
3907 ///   int i;
3908 ///   float f;
3909 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3910 ///    // f into the surrounding scope.x
3911 /// @endcode
3912 ///
3913 /// This routine is recursive, injecting the names of nested anonymous
3914 /// structs/unions into the owning context and scope as well.
3915 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3916                                          DeclContext *Owner,
3917                                          RecordDecl *AnonRecord,
3918                                          AccessSpecifier AS,
3919                                          SmallVectorImpl<NamedDecl *> &Chaining,
3920                                          bool MSAnonStruct) {
3921   unsigned diagKind
3922     = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3923                             : diag::err_anonymous_struct_member_redecl;
3924 
3925   bool Invalid = false;
3926 
3927   // Look every FieldDecl and IndirectFieldDecl with a name.
3928   for (auto *D : AnonRecord->decls()) {
3929     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
3930         cast<NamedDecl>(D)->getDeclName()) {
3931       ValueDecl *VD = cast<ValueDecl>(D);
3932       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3933                                        VD->getLocation(), diagKind)) {
3934         // C++ [class.union]p2:
3935         //   The names of the members of an anonymous union shall be
3936         //   distinct from the names of any other entity in the
3937         //   scope in which the anonymous union is declared.
3938         Invalid = true;
3939       } else {
3940         // C++ [class.union]p2:
3941         //   For the purpose of name lookup, after the anonymous union
3942         //   definition, the members of the anonymous union are
3943         //   considered to have been defined in the scope in which the
3944         //   anonymous union is declared.
3945         unsigned OldChainingSize = Chaining.size();
3946         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3947           Chaining.append(IF->chain_begin(), IF->chain_end());
3948         else
3949           Chaining.push_back(VD);
3950 
3951         assert(Chaining.size() >= 2);
3952         NamedDecl **NamedChain =
3953           new (SemaRef.Context)NamedDecl*[Chaining.size()];
3954         for (unsigned i = 0; i < Chaining.size(); i++)
3955           NamedChain[i] = Chaining[i];
3956 
3957         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
3958             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
3959             VD->getType(), NamedChain, Chaining.size());
3960 
3961         for (const auto *Attr : VD->attrs())
3962           IndirectField->addAttr(Attr->clone(SemaRef.Context));
3963 
3964         IndirectField->setAccess(AS);
3965         IndirectField->setImplicit();
3966         SemaRef.PushOnScopeChains(IndirectField, S);
3967 
3968         // That includes picking up the appropriate access specifier.
3969         if (AS != AS_none) IndirectField->setAccess(AS);
3970 
3971         Chaining.resize(OldChainingSize);
3972       }
3973     }
3974   }
3975 
3976   return Invalid;
3977 }
3978 
3979 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3980 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
3981 /// illegal input values are mapped to SC_None.
3982 static StorageClass
3983 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3984   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3985   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3986          "Parser allowed 'typedef' as storage class VarDecl.");
3987   switch (StorageClassSpec) {
3988   case DeclSpec::SCS_unspecified:    return SC_None;
3989   case DeclSpec::SCS_extern:
3990     if (DS.isExternInLinkageSpec())
3991       return SC_None;
3992     return SC_Extern;
3993   case DeclSpec::SCS_static:         return SC_Static;
3994   case DeclSpec::SCS_auto:           return SC_Auto;
3995   case DeclSpec::SCS_register:       return SC_Register;
3996   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3997     // Illegal SCSs map to None: error reporting is up to the caller.
3998   case DeclSpec::SCS_mutable:        // Fall through.
3999   case DeclSpec::SCS_typedef:        return SC_None;
4000   }
4001   llvm_unreachable("unknown storage class specifier");
4002 }
4003 
4004 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4005   assert(Record->hasInClassInitializer());
4006 
4007   for (const auto *I : Record->decls()) {
4008     const auto *FD = dyn_cast<FieldDecl>(I);
4009     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4010       FD = IFD->getAnonField();
4011     if (FD && FD->hasInClassInitializer())
4012       return FD->getLocation();
4013   }
4014 
4015   llvm_unreachable("couldn't find in-class initializer");
4016 }
4017 
4018 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4019                                       SourceLocation DefaultInitLoc) {
4020   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4021     return;
4022 
4023   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4024   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4025 }
4026 
4027 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4028                                       CXXRecordDecl *AnonUnion) {
4029   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4030     return;
4031 
4032   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4033 }
4034 
4035 /// BuildAnonymousStructOrUnion - Handle the declaration of an
4036 /// anonymous structure or union. Anonymous unions are a C++ feature
4037 /// (C++ [class.union]) and a C11 feature; anonymous structures
4038 /// are a C11 feature and GNU C++ extension.
4039 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4040                                         AccessSpecifier AS,
4041                                         RecordDecl *Record,
4042                                         const PrintingPolicy &Policy) {
4043   DeclContext *Owner = Record->getDeclContext();
4044 
4045   // Diagnose whether this anonymous struct/union is an extension.
4046   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4047     Diag(Record->getLocation(), diag::ext_anonymous_union);
4048   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4049     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4050   else if (!Record->isUnion() && !getLangOpts().C11)
4051     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4052 
4053   // C and C++ require different kinds of checks for anonymous
4054   // structs/unions.
4055   bool Invalid = false;
4056   if (getLangOpts().CPlusPlus) {
4057     const char *PrevSpec = nullptr;
4058     unsigned DiagID;
4059     if (Record->isUnion()) {
4060       // C++ [class.union]p6:
4061       //   Anonymous unions declared in a named namespace or in the
4062       //   global namespace shall be declared static.
4063       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4064           (isa<TranslationUnitDecl>(Owner) ||
4065            (isa<NamespaceDecl>(Owner) &&
4066             cast<NamespaceDecl>(Owner)->getDeclName()))) {
4067         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4068           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4069 
4070         // Recover by adding 'static'.
4071         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4072                                PrevSpec, DiagID, Policy);
4073       }
4074       // C++ [class.union]p6:
4075       //   A storage class is not allowed in a declaration of an
4076       //   anonymous union in a class scope.
4077       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4078                isa<RecordDecl>(Owner)) {
4079         Diag(DS.getStorageClassSpecLoc(),
4080              diag::err_anonymous_union_with_storage_spec)
4081           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4082 
4083         // Recover by removing the storage specifier.
4084         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
4085                                SourceLocation(),
4086                                PrevSpec, DiagID, Context.getPrintingPolicy());
4087       }
4088     }
4089 
4090     // Ignore const/volatile/restrict qualifiers.
4091     if (DS.getTypeQualifiers()) {
4092       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4093         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4094           << Record->isUnion() << "const"
4095           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4096       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4097         Diag(DS.getVolatileSpecLoc(),
4098              diag::ext_anonymous_struct_union_qualified)
4099           << Record->isUnion() << "volatile"
4100           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4101       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4102         Diag(DS.getRestrictSpecLoc(),
4103              diag::ext_anonymous_struct_union_qualified)
4104           << Record->isUnion() << "restrict"
4105           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4106       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4107         Diag(DS.getAtomicSpecLoc(),
4108              diag::ext_anonymous_struct_union_qualified)
4109           << Record->isUnion() << "_Atomic"
4110           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4111 
4112       DS.ClearTypeQualifiers();
4113     }
4114 
4115     // C++ [class.union]p2:
4116     //   The member-specification of an anonymous union shall only
4117     //   define non-static data members. [Note: nested types and
4118     //   functions cannot be declared within an anonymous union. ]
4119     for (auto *Mem : Record->decls()) {
4120       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4121         // C++ [class.union]p3:
4122         //   An anonymous union shall not have private or protected
4123         //   members (clause 11).
4124         assert(FD->getAccess() != AS_none);
4125         if (FD->getAccess() != AS_public) {
4126           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4127             << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
4128           Invalid = true;
4129         }
4130 
4131         // C++ [class.union]p1
4132         //   An object of a class with a non-trivial constructor, a non-trivial
4133         //   copy constructor, a non-trivial destructor, or a non-trivial copy
4134         //   assignment operator cannot be a member of a union, nor can an
4135         //   array of such objects.
4136         if (CheckNontrivialField(FD))
4137           Invalid = true;
4138       } else if (Mem->isImplicit()) {
4139         // Any implicit members are fine.
4140       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4141         // This is a type that showed up in an
4142         // elaborated-type-specifier inside the anonymous struct or
4143         // union, but which actually declares a type outside of the
4144         // anonymous struct or union. It's okay.
4145       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4146         if (!MemRecord->isAnonymousStructOrUnion() &&
4147             MemRecord->getDeclName()) {
4148           // Visual C++ allows type definition in anonymous struct or union.
4149           if (getLangOpts().MicrosoftExt)
4150             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4151               << (int)Record->isUnion();
4152           else {
4153             // This is a nested type declaration.
4154             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4155               << (int)Record->isUnion();
4156             Invalid = true;
4157           }
4158         } else {
4159           // This is an anonymous type definition within another anonymous type.
4160           // This is a popular extension, provided by Plan9, MSVC and GCC, but
4161           // not part of standard C++.
4162           Diag(MemRecord->getLocation(),
4163                diag::ext_anonymous_record_with_anonymous_type)
4164             << (int)Record->isUnion();
4165         }
4166       } else if (isa<AccessSpecDecl>(Mem)) {
4167         // Any access specifier is fine.
4168       } else if (isa<StaticAssertDecl>(Mem)) {
4169         // In C++1z, static_assert declarations are also fine.
4170       } else {
4171         // We have something that isn't a non-static data
4172         // member. Complain about it.
4173         unsigned DK = diag::err_anonymous_record_bad_member;
4174         if (isa<TypeDecl>(Mem))
4175           DK = diag::err_anonymous_record_with_type;
4176         else if (isa<FunctionDecl>(Mem))
4177           DK = diag::err_anonymous_record_with_function;
4178         else if (isa<VarDecl>(Mem))
4179           DK = diag::err_anonymous_record_with_static;
4180 
4181         // Visual C++ allows type definition in anonymous struct or union.
4182         if (getLangOpts().MicrosoftExt &&
4183             DK == diag::err_anonymous_record_with_type)
4184           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4185             << (int)Record->isUnion();
4186         else {
4187           Diag(Mem->getLocation(), DK)
4188               << (int)Record->isUnion();
4189           Invalid = true;
4190         }
4191       }
4192     }
4193 
4194     // C++11 [class.union]p8 (DR1460):
4195     //   At most one variant member of a union may have a
4196     //   brace-or-equal-initializer.
4197     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4198         Owner->isRecord())
4199       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4200                                 cast<CXXRecordDecl>(Record));
4201   }
4202 
4203   if (!Record->isUnion() && !Owner->isRecord()) {
4204     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4205       << (int)getLangOpts().CPlusPlus;
4206     Invalid = true;
4207   }
4208 
4209   // Mock up a declarator.
4210   Declarator Dc(DS, Declarator::MemberContext);
4211   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4212   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
4213 
4214   // Create a declaration for this anonymous struct/union.
4215   NamedDecl *Anon = nullptr;
4216   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4217     Anon = FieldDecl::Create(Context, OwningClass,
4218                              DS.getLocStart(),
4219                              Record->getLocation(),
4220                              /*IdentifierInfo=*/nullptr,
4221                              Context.getTypeDeclType(Record),
4222                              TInfo,
4223                              /*BitWidth=*/nullptr, /*Mutable=*/false,
4224                              /*InitStyle=*/ICIS_NoInit);
4225     Anon->setAccess(AS);
4226     if (getLangOpts().CPlusPlus)
4227       FieldCollector->Add(cast<FieldDecl>(Anon));
4228   } else {
4229     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4230     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4231     if (SCSpec == DeclSpec::SCS_mutable) {
4232       // mutable can only appear on non-static class members, so it's always
4233       // an error here
4234       Diag(Record->getLocation(), diag::err_mutable_nonmember);
4235       Invalid = true;
4236       SC = SC_None;
4237     }
4238 
4239     Anon = VarDecl::Create(Context, Owner,
4240                            DS.getLocStart(),
4241                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
4242                            Context.getTypeDeclType(Record),
4243                            TInfo, SC);
4244 
4245     // Default-initialize the implicit variable. This initialization will be
4246     // trivial in almost all cases, except if a union member has an in-class
4247     // initializer:
4248     //   union { int n = 0; };
4249     ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
4250   }
4251   Anon->setImplicit();
4252 
4253   // Mark this as an anonymous struct/union type.
4254   Record->setAnonymousStructOrUnion(true);
4255 
4256   // Add the anonymous struct/union object to the current
4257   // context. We'll be referencing this object when we refer to one of
4258   // its members.
4259   Owner->addDecl(Anon);
4260 
4261   // Inject the members of the anonymous struct/union into the owning
4262   // context and into the identifier resolver chain for name lookup
4263   // purposes.
4264   SmallVector<NamedDecl*, 2> Chain;
4265   Chain.push_back(Anon);
4266 
4267   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
4268                                           Chain, false))
4269     Invalid = true;
4270 
4271   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4272     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4273       Decl *ManglingContextDecl;
4274       if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4275               NewVD->getDeclContext(), ManglingContextDecl)) {
4276         Context.setManglingNumber(
4277             NewVD, MCtx->getManglingNumber(
4278                        NewVD, getMSManglingNumber(getLangOpts(), S)));
4279         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4280       }
4281     }
4282   }
4283 
4284   if (Invalid)
4285     Anon->setInvalidDecl();
4286 
4287   return Anon;
4288 }
4289 
4290 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4291 /// Microsoft C anonymous structure.
4292 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4293 /// Example:
4294 ///
4295 /// struct A { int a; };
4296 /// struct B { struct A; int b; };
4297 ///
4298 /// void foo() {
4299 ///   B var;
4300 ///   var.a = 3;
4301 /// }
4302 ///
4303 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4304                                            RecordDecl *Record) {
4305   assert(Record && "expected a record!");
4306 
4307   // Mock up a declarator.
4308   Declarator Dc(DS, Declarator::TypeNameContext);
4309   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4310   assert(TInfo && "couldn't build declarator info for anonymous struct");
4311 
4312   auto *ParentDecl = cast<RecordDecl>(CurContext);
4313   QualType RecTy = Context.getTypeDeclType(Record);
4314 
4315   // Create a declaration for this anonymous struct.
4316   NamedDecl *Anon = FieldDecl::Create(Context,
4317                              ParentDecl,
4318                              DS.getLocStart(),
4319                              DS.getLocStart(),
4320                              /*IdentifierInfo=*/nullptr,
4321                              RecTy,
4322                              TInfo,
4323                              /*BitWidth=*/nullptr, /*Mutable=*/false,
4324                              /*InitStyle=*/ICIS_NoInit);
4325   Anon->setImplicit();
4326 
4327   // Add the anonymous struct object to the current context.
4328   CurContext->addDecl(Anon);
4329 
4330   // Inject the members of the anonymous struct into the current
4331   // context and into the identifier resolver chain for name lookup
4332   // purposes.
4333   SmallVector<NamedDecl*, 2> Chain;
4334   Chain.push_back(Anon);
4335 
4336   RecordDecl *RecordDef = Record->getDefinition();
4337   if (RequireCompleteType(Anon->getLocation(), RecTy,
4338                           diag::err_field_incomplete) ||
4339       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4340                                           AS_none, Chain, true)) {
4341     Anon->setInvalidDecl();
4342     ParentDecl->setInvalidDecl();
4343   }
4344 
4345   return Anon;
4346 }
4347 
4348 /// GetNameForDeclarator - Determine the full declaration name for the
4349 /// given Declarator.
4350 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4351   return GetNameFromUnqualifiedId(D.getName());
4352 }
4353 
4354 /// \brief Retrieves the declaration name from a parsed unqualified-id.
4355 DeclarationNameInfo
4356 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4357   DeclarationNameInfo NameInfo;
4358   NameInfo.setLoc(Name.StartLocation);
4359 
4360   switch (Name.getKind()) {
4361 
4362   case UnqualifiedId::IK_ImplicitSelfParam:
4363   case UnqualifiedId::IK_Identifier:
4364     NameInfo.setName(Name.Identifier);
4365     NameInfo.setLoc(Name.StartLocation);
4366     return NameInfo;
4367 
4368   case UnqualifiedId::IK_OperatorFunctionId:
4369     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4370                                            Name.OperatorFunctionId.Operator));
4371     NameInfo.setLoc(Name.StartLocation);
4372     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4373       = Name.OperatorFunctionId.SymbolLocations[0];
4374     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4375       = Name.EndLocation.getRawEncoding();
4376     return NameInfo;
4377 
4378   case UnqualifiedId::IK_LiteralOperatorId:
4379     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4380                                                            Name.Identifier));
4381     NameInfo.setLoc(Name.StartLocation);
4382     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4383     return NameInfo;
4384 
4385   case UnqualifiedId::IK_ConversionFunctionId: {
4386     TypeSourceInfo *TInfo;
4387     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
4388     if (Ty.isNull())
4389       return DeclarationNameInfo();
4390     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
4391                                                Context.getCanonicalType(Ty)));
4392     NameInfo.setLoc(Name.StartLocation);
4393     NameInfo.setNamedTypeInfo(TInfo);
4394     return NameInfo;
4395   }
4396 
4397   case UnqualifiedId::IK_ConstructorName: {
4398     TypeSourceInfo *TInfo;
4399     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
4400     if (Ty.isNull())
4401       return DeclarationNameInfo();
4402     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4403                                               Context.getCanonicalType(Ty)));
4404     NameInfo.setLoc(Name.StartLocation);
4405     NameInfo.setNamedTypeInfo(TInfo);
4406     return NameInfo;
4407   }
4408 
4409   case UnqualifiedId::IK_ConstructorTemplateId: {
4410     // In well-formed code, we can only have a constructor
4411     // template-id that refers to the current context, so go there
4412     // to find the actual type being constructed.
4413     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
4414     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
4415       return DeclarationNameInfo();
4416 
4417     // Determine the type of the class being constructed.
4418     QualType CurClassType = Context.getTypeDeclType(CurClass);
4419 
4420     // FIXME: Check two things: that the template-id names the same type as
4421     // CurClassType, and that the template-id does not occur when the name
4422     // was qualified.
4423 
4424     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4425                                     Context.getCanonicalType(CurClassType)));
4426     NameInfo.setLoc(Name.StartLocation);
4427     // FIXME: should we retrieve TypeSourceInfo?
4428     NameInfo.setNamedTypeInfo(nullptr);
4429     return NameInfo;
4430   }
4431 
4432   case UnqualifiedId::IK_DestructorName: {
4433     TypeSourceInfo *TInfo;
4434     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
4435     if (Ty.isNull())
4436       return DeclarationNameInfo();
4437     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
4438                                               Context.getCanonicalType(Ty)));
4439     NameInfo.setLoc(Name.StartLocation);
4440     NameInfo.setNamedTypeInfo(TInfo);
4441     return NameInfo;
4442   }
4443 
4444   case UnqualifiedId::IK_TemplateId: {
4445     TemplateName TName = Name.TemplateId->Template.get();
4446     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
4447     return Context.getNameForTemplate(TName, TNameLoc);
4448   }
4449 
4450   } // switch (Name.getKind())
4451 
4452   llvm_unreachable("Unknown name kind");
4453 }
4454 
4455 static QualType getCoreType(QualType Ty) {
4456   do {
4457     if (Ty->isPointerType() || Ty->isReferenceType())
4458       Ty = Ty->getPointeeType();
4459     else if (Ty->isArrayType())
4460       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
4461     else
4462       return Ty.withoutLocalFastQualifiers();
4463   } while (true);
4464 }
4465 
4466 /// hasSimilarParameters - Determine whether the C++ functions Declaration
4467 /// and Definition have "nearly" matching parameters. This heuristic is
4468 /// used to improve diagnostics in the case where an out-of-line function
4469 /// definition doesn't match any declaration within the class or namespace.
4470 /// Also sets Params to the list of indices to the parameters that differ
4471 /// between the declaration and the definition. If hasSimilarParameters
4472 /// returns true and Params is empty, then all of the parameters match.
4473 static bool hasSimilarParameters(ASTContext &Context,
4474                                      FunctionDecl *Declaration,
4475                                      FunctionDecl *Definition,
4476                                      SmallVectorImpl<unsigned> &Params) {
4477   Params.clear();
4478   if (Declaration->param_size() != Definition->param_size())
4479     return false;
4480   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
4481     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
4482     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
4483 
4484     // The parameter types are identical
4485     if (Context.hasSameType(DefParamTy, DeclParamTy))
4486       continue;
4487 
4488     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
4489     QualType DefParamBaseTy = getCoreType(DefParamTy);
4490     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
4491     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
4492 
4493     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
4494         (DeclTyName && DeclTyName == DefTyName))
4495       Params.push_back(Idx);
4496     else  // The two parameters aren't even close
4497       return false;
4498   }
4499 
4500   return true;
4501 }
4502 
4503 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
4504 /// declarator needs to be rebuilt in the current instantiation.
4505 /// Any bits of declarator which appear before the name are valid for
4506 /// consideration here.  That's specifically the type in the decl spec
4507 /// and the base type in any member-pointer chunks.
4508 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
4509                                                     DeclarationName Name) {
4510   // The types we specifically need to rebuild are:
4511   //   - typenames, typeofs, and decltypes
4512   //   - types which will become injected class names
4513   // Of course, we also need to rebuild any type referencing such a
4514   // type.  It's safest to just say "dependent", but we call out a
4515   // few cases here.
4516 
4517   DeclSpec &DS = D.getMutableDeclSpec();
4518   switch (DS.getTypeSpecType()) {
4519   case DeclSpec::TST_typename:
4520   case DeclSpec::TST_typeofType:
4521   case DeclSpec::TST_underlyingType:
4522   case DeclSpec::TST_atomic: {
4523     // Grab the type from the parser.
4524     TypeSourceInfo *TSI = nullptr;
4525     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
4526     if (T.isNull() || !T->isDependentType()) break;
4527 
4528     // Make sure there's a type source info.  This isn't really much
4529     // of a waste; most dependent types should have type source info
4530     // attached already.
4531     if (!TSI)
4532       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
4533 
4534     // Rebuild the type in the current instantiation.
4535     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
4536     if (!TSI) return true;
4537 
4538     // Store the new type back in the decl spec.
4539     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
4540     DS.UpdateTypeRep(LocType);
4541     break;
4542   }
4543 
4544   case DeclSpec::TST_decltype:
4545   case DeclSpec::TST_typeofExpr: {
4546     Expr *E = DS.getRepAsExpr();
4547     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
4548     if (Result.isInvalid()) return true;
4549     DS.UpdateExprRep(Result.get());
4550     break;
4551   }
4552 
4553   default:
4554     // Nothing to do for these decl specs.
4555     break;
4556   }
4557 
4558   // It doesn't matter what order we do this in.
4559   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4560     DeclaratorChunk &Chunk = D.getTypeObject(I);
4561 
4562     // The only type information in the declarator which can come
4563     // before the declaration name is the base type of a member
4564     // pointer.
4565     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
4566       continue;
4567 
4568     // Rebuild the scope specifier in-place.
4569     CXXScopeSpec &SS = Chunk.Mem.Scope();
4570     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
4571       return true;
4572   }
4573 
4574   return false;
4575 }
4576 
4577 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
4578   D.setFunctionDefinitionKind(FDK_Declaration);
4579   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
4580 
4581   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
4582       Dcl && Dcl->getDeclContext()->isFileContext())
4583     Dcl->setTopLevelDeclInObjCContainer();
4584 
4585   return Dcl;
4586 }
4587 
4588 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
4589 ///   If T is the name of a class, then each of the following shall have a
4590 ///   name different from T:
4591 ///     - every static data member of class T;
4592 ///     - every member function of class T
4593 ///     - every member of class T that is itself a type;
4594 /// \returns true if the declaration name violates these rules.
4595 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
4596                                    DeclarationNameInfo NameInfo) {
4597   DeclarationName Name = NameInfo.getName();
4598 
4599   if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
4600     if (Record->getIdentifier() && Record->getDeclName() == Name) {
4601       Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
4602       return true;
4603     }
4604 
4605   return false;
4606 }
4607 
4608 /// \brief Diagnose a declaration whose declarator-id has the given
4609 /// nested-name-specifier.
4610 ///
4611 /// \param SS The nested-name-specifier of the declarator-id.
4612 ///
4613 /// \param DC The declaration context to which the nested-name-specifier
4614 /// resolves.
4615 ///
4616 /// \param Name The name of the entity being declared.
4617 ///
4618 /// \param Loc The location of the name of the entity being declared.
4619 ///
4620 /// \returns true if we cannot safely recover from this error, false otherwise.
4621 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
4622                                         DeclarationName Name,
4623                                         SourceLocation Loc) {
4624   DeclContext *Cur = CurContext;
4625   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
4626     Cur = Cur->getParent();
4627 
4628   // If the user provided a superfluous scope specifier that refers back to the
4629   // class in which the entity is already declared, diagnose and ignore it.
4630   //
4631   // class X {
4632   //   void X::f();
4633   // };
4634   //
4635   // Note, it was once ill-formed to give redundant qualification in all
4636   // contexts, but that rule was removed by DR482.
4637   if (Cur->Equals(DC)) {
4638     if (Cur->isRecord()) {
4639       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
4640                                       : diag::err_member_extra_qualification)
4641         << Name << FixItHint::CreateRemoval(SS.getRange());
4642       SS.clear();
4643     } else {
4644       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
4645     }
4646     return false;
4647   }
4648 
4649   // Check whether the qualifying scope encloses the scope of the original
4650   // declaration.
4651   if (!Cur->Encloses(DC)) {
4652     if (Cur->isRecord())
4653       Diag(Loc, diag::err_member_qualification)
4654         << Name << SS.getRange();
4655     else if (isa<TranslationUnitDecl>(DC))
4656       Diag(Loc, diag::err_invalid_declarator_global_scope)
4657         << Name << SS.getRange();
4658     else if (isa<FunctionDecl>(Cur))
4659       Diag(Loc, diag::err_invalid_declarator_in_function)
4660         << Name << SS.getRange();
4661     else if (isa<BlockDecl>(Cur))
4662       Diag(Loc, diag::err_invalid_declarator_in_block)
4663         << Name << SS.getRange();
4664     else
4665       Diag(Loc, diag::err_invalid_declarator_scope)
4666       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4667 
4668     return true;
4669   }
4670 
4671   if (Cur->isRecord()) {
4672     // Cannot qualify members within a class.
4673     Diag(Loc, diag::err_member_qualification)
4674       << Name << SS.getRange();
4675     SS.clear();
4676 
4677     // C++ constructors and destructors with incorrect scopes can break
4678     // our AST invariants by having the wrong underlying types. If
4679     // that's the case, then drop this declaration entirely.
4680     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4681          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4682         !Context.hasSameType(Name.getCXXNameType(),
4683                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4684       return true;
4685 
4686     return false;
4687   }
4688 
4689   // C++11 [dcl.meaning]p1:
4690   //   [...] "The nested-name-specifier of the qualified declarator-id shall
4691   //   not begin with a decltype-specifer"
4692   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4693   while (SpecLoc.getPrefix())
4694     SpecLoc = SpecLoc.getPrefix();
4695   if (dyn_cast_or_null<DecltypeType>(
4696         SpecLoc.getNestedNameSpecifier()->getAsType()))
4697     Diag(Loc, diag::err_decltype_in_declarator)
4698       << SpecLoc.getTypeLoc().getSourceRange();
4699 
4700   return false;
4701 }
4702 
4703 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4704                                   MultiTemplateParamsArg TemplateParamLists) {
4705   // TODO: consider using NameInfo for diagnostic.
4706   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4707   DeclarationName Name = NameInfo.getName();
4708 
4709   // All of these full declarators require an identifier.  If it doesn't have
4710   // one, the ParsedFreeStandingDeclSpec action should be used.
4711   if (!Name) {
4712     if (!D.isInvalidType())  // Reject this if we think it is valid.
4713       Diag(D.getDeclSpec().getLocStart(),
4714            diag::err_declarator_need_ident)
4715         << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4716     return nullptr;
4717   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4718     return nullptr;
4719 
4720   // The scope passed in may not be a decl scope.  Zip up the scope tree until
4721   // we find one that is.
4722   while ((S->getFlags() & Scope::DeclScope) == 0 ||
4723          (S->getFlags() & Scope::TemplateParamScope) != 0)
4724     S = S->getParent();
4725 
4726   DeclContext *DC = CurContext;
4727   if (D.getCXXScopeSpec().isInvalid())
4728     D.setInvalidType();
4729   else if (D.getCXXScopeSpec().isSet()) {
4730     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4731                                         UPPC_DeclarationQualifier))
4732       return nullptr;
4733 
4734     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4735     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4736     if (!DC || isa<EnumDecl>(DC)) {
4737       // If we could not compute the declaration context, it's because the
4738       // declaration context is dependent but does not refer to a class,
4739       // class template, or class template partial specialization. Complain
4740       // and return early, to avoid the coming semantic disaster.
4741       Diag(D.getIdentifierLoc(),
4742            diag::err_template_qualified_declarator_no_match)
4743         << D.getCXXScopeSpec().getScopeRep()
4744         << D.getCXXScopeSpec().getRange();
4745       return nullptr;
4746     }
4747     bool IsDependentContext = DC->isDependentContext();
4748 
4749     if (!IsDependentContext &&
4750         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4751       return nullptr;
4752 
4753     // If a class is incomplete, do not parse entities inside it.
4754     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4755       Diag(D.getIdentifierLoc(),
4756            diag::err_member_def_undefined_record)
4757         << Name << DC << D.getCXXScopeSpec().getRange();
4758       return nullptr;
4759     }
4760     if (!D.getDeclSpec().isFriendSpecified()) {
4761       if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4762                                       Name, D.getIdentifierLoc())) {
4763         if (DC->isRecord())
4764           return nullptr;
4765 
4766         D.setInvalidType();
4767       }
4768     }
4769 
4770     // Check whether we need to rebuild the type of the given
4771     // declaration in the current instantiation.
4772     if (EnteringContext && IsDependentContext &&
4773         TemplateParamLists.size() != 0) {
4774       ContextRAII SavedContext(*this, DC);
4775       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4776         D.setInvalidType();
4777     }
4778   }
4779 
4780   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4781   QualType R = TInfo->getType();
4782 
4783   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
4784     // If this is a typedef, we'll end up spewing multiple diagnostics.
4785     // Just return early; it's safer. If this is a function, let the
4786     // "constructor cannot have a return type" diagnostic handle it.
4787     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4788       return nullptr;
4789 
4790   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4791                                       UPPC_DeclarationType))
4792     D.setInvalidType();
4793 
4794   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4795                         ForRedeclaration);
4796 
4797   // If we're hiding internal-linkage symbols in modules from redeclaration
4798   // lookup, let name lookup know.
4799   if ((getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) &&
4800       getLangOpts().ModulesHideInternalLinkage &&
4801       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4802     Previous.setAllowHiddenInternal(false);
4803 
4804   // See if this is a redefinition of a variable in the same scope.
4805   if (!D.getCXXScopeSpec().isSet()) {
4806     bool IsLinkageLookup = false;
4807     bool CreateBuiltins = false;
4808 
4809     // If the declaration we're planning to build will be a function
4810     // or object with linkage, then look for another declaration with
4811     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4812     //
4813     // If the declaration we're planning to build will be declared with
4814     // external linkage in the translation unit, create any builtin with
4815     // the same name.
4816     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4817       /* Do nothing*/;
4818     else if (CurContext->isFunctionOrMethod() &&
4819              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
4820               R->isFunctionType())) {
4821       IsLinkageLookup = true;
4822       CreateBuiltins =
4823           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
4824     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4825                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4826       CreateBuiltins = true;
4827 
4828     if (IsLinkageLookup)
4829       Previous.clear(LookupRedeclarationWithLinkage);
4830 
4831     LookupName(Previous, S, CreateBuiltins);
4832   } else { // Something like "int foo::x;"
4833     LookupQualifiedName(Previous, DC);
4834 
4835     // C++ [dcl.meaning]p1:
4836     //   When the declarator-id is qualified, the declaration shall refer to a
4837     //  previously declared member of the class or namespace to which the
4838     //  qualifier refers (or, in the case of a namespace, of an element of the
4839     //  inline namespace set of that namespace (7.3.1)) or to a specialization
4840     //  thereof; [...]
4841     //
4842     // Note that we already checked the context above, and that we do not have
4843     // enough information to make sure that Previous contains the declaration
4844     // we want to match. For example, given:
4845     //
4846     //   class X {
4847     //     void f();
4848     //     void f(float);
4849     //   };
4850     //
4851     //   void X::f(int) { } // ill-formed
4852     //
4853     // In this case, Previous will point to the overload set
4854     // containing the two f's declared in X, but neither of them
4855     // matches.
4856 
4857     // C++ [dcl.meaning]p1:
4858     //   [...] the member shall not merely have been introduced by a
4859     //   using-declaration in the scope of the class or namespace nominated by
4860     //   the nested-name-specifier of the declarator-id.
4861     RemoveUsingDecls(Previous);
4862   }
4863 
4864   if (Previous.isSingleResult() &&
4865       Previous.getFoundDecl()->isTemplateParameter()) {
4866     // Maybe we will complain about the shadowed template parameter.
4867     if (!D.isInvalidType())
4868       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4869                                       Previous.getFoundDecl());
4870 
4871     // Just pretend that we didn't see the previous declaration.
4872     Previous.clear();
4873   }
4874 
4875   // In C++, the previous declaration we find might be a tag type
4876   // (class or enum). In this case, the new declaration will hide the
4877   // tag type. Note that this does does not apply if we're declaring a
4878   // typedef (C++ [dcl.typedef]p4).
4879   if (Previous.isSingleTagDecl() &&
4880       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4881     Previous.clear();
4882 
4883   // Check that there are no default arguments other than in the parameters
4884   // of a function declaration (C++ only).
4885   if (getLangOpts().CPlusPlus)
4886     CheckExtraCXXDefaultArguments(D);
4887 
4888   if (D.getDeclSpec().isConceptSpecified()) {
4889     // C++ Concepts TS [dcl.spec.concept]p1: The concept specifier shall be
4890     // applied only to the definition of a function template or variable
4891     // template, declared in namespace scope
4892     if (!TemplateParamLists.size()) {
4893       Diag(D.getDeclSpec().getConceptSpecLoc(),
4894            diag:: err_concept_wrong_decl_kind);
4895       return nullptr;
4896     }
4897 
4898     if (!DC->getRedeclContext()->isFileContext()) {
4899       Diag(D.getIdentifierLoc(),
4900            diag::err_concept_decls_may_only_appear_in_namespace_scope);
4901       return nullptr;
4902     }
4903   }
4904 
4905   NamedDecl *New;
4906 
4907   bool AddToScope = true;
4908   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4909     if (TemplateParamLists.size()) {
4910       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4911       return nullptr;
4912     }
4913 
4914     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4915   } else if (R->isFunctionType()) {
4916     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4917                                   TemplateParamLists,
4918                                   AddToScope);
4919   } else {
4920     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4921                                   AddToScope);
4922   }
4923 
4924   if (!New)
4925     return nullptr;
4926 
4927   // If this has an identifier and is not an invalid redeclaration or
4928   // function template specialization, add it to the scope stack.
4929   if (New->getDeclName() && AddToScope &&
4930        !(D.isRedeclaration() && New->isInvalidDecl())) {
4931     // Only make a locally-scoped extern declaration visible if it is the first
4932     // declaration of this entity. Qualified lookup for such an entity should
4933     // only find this declaration if there is no visible declaration of it.
4934     bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
4935     PushOnScopeChains(New, S, AddToContext);
4936     if (!AddToContext)
4937       CurContext->addHiddenDecl(New);
4938   }
4939 
4940   return New;
4941 }
4942 
4943 /// Helper method to turn variable array types into constant array
4944 /// types in certain situations which would otherwise be errors (for
4945 /// GCC compatibility).
4946 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4947                                                     ASTContext &Context,
4948                                                     bool &SizeIsNegative,
4949                                                     llvm::APSInt &Oversized) {
4950   // This method tries to turn a variable array into a constant
4951   // array even when the size isn't an ICE.  This is necessary
4952   // for compatibility with code that depends on gcc's buggy
4953   // constant expression folding, like struct {char x[(int)(char*)2];}
4954   SizeIsNegative = false;
4955   Oversized = 0;
4956 
4957   if (T->isDependentType())
4958     return QualType();
4959 
4960   QualifierCollector Qs;
4961   const Type *Ty = Qs.strip(T);
4962 
4963   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4964     QualType Pointee = PTy->getPointeeType();
4965     QualType FixedType =
4966         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4967                                             Oversized);
4968     if (FixedType.isNull()) return FixedType;
4969     FixedType = Context.getPointerType(FixedType);
4970     return Qs.apply(Context, FixedType);
4971   }
4972   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4973     QualType Inner = PTy->getInnerType();
4974     QualType FixedType =
4975         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4976                                             Oversized);
4977     if (FixedType.isNull()) return FixedType;
4978     FixedType = Context.getParenType(FixedType);
4979     return Qs.apply(Context, FixedType);
4980   }
4981 
4982   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4983   if (!VLATy)
4984     return QualType();
4985   // FIXME: We should probably handle this case
4986   if (VLATy->getElementType()->isVariablyModifiedType())
4987     return QualType();
4988 
4989   llvm::APSInt Res;
4990   if (!VLATy->getSizeExpr() ||
4991       !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4992     return QualType();
4993 
4994   // Check whether the array size is negative.
4995   if (Res.isSigned() && Res.isNegative()) {
4996     SizeIsNegative = true;
4997     return QualType();
4998   }
4999 
5000   // Check whether the array is too large to be addressed.
5001   unsigned ActiveSizeBits
5002     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5003                                               Res);
5004   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5005     Oversized = Res;
5006     return QualType();
5007   }
5008 
5009   return Context.getConstantArrayType(VLATy->getElementType(),
5010                                       Res, ArrayType::Normal, 0);
5011 }
5012 
5013 static void
5014 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5015   SrcTL = SrcTL.getUnqualifiedLoc();
5016   DstTL = DstTL.getUnqualifiedLoc();
5017   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5018     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5019     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5020                                       DstPTL.getPointeeLoc());
5021     DstPTL.setStarLoc(SrcPTL.getStarLoc());
5022     return;
5023   }
5024   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5025     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5026     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5027                                       DstPTL.getInnerLoc());
5028     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5029     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5030     return;
5031   }
5032   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5033   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5034   TypeLoc SrcElemTL = SrcATL.getElementLoc();
5035   TypeLoc DstElemTL = DstATL.getElementLoc();
5036   DstElemTL.initializeFullCopy(SrcElemTL);
5037   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5038   DstATL.setSizeExpr(SrcATL.getSizeExpr());
5039   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5040 }
5041 
5042 /// Helper method to turn variable array types into constant array
5043 /// types in certain situations which would otherwise be errors (for
5044 /// GCC compatibility).
5045 static TypeSourceInfo*
5046 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5047                                               ASTContext &Context,
5048                                               bool &SizeIsNegative,
5049                                               llvm::APSInt &Oversized) {
5050   QualType FixedTy
5051     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5052                                           SizeIsNegative, Oversized);
5053   if (FixedTy.isNull())
5054     return nullptr;
5055   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5056   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5057                                     FixedTInfo->getTypeLoc());
5058   return FixedTInfo;
5059 }
5060 
5061 /// \brief Register the given locally-scoped extern "C" declaration so
5062 /// that it can be found later for redeclarations. We include any extern "C"
5063 /// declaration that is not visible in the translation unit here, not just
5064 /// function-scope declarations.
5065 void
5066 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
5067   if (!getLangOpts().CPlusPlus &&
5068       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
5069     // Don't need to track declarations in the TU in C.
5070     return;
5071 
5072   // Note that we have a locally-scoped external with this name.
5073   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
5074 }
5075 
5076 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
5077   // FIXME: We can have multiple results via __attribute__((overloadable)).
5078   auto Result = Context.getExternCContextDecl()->lookup(Name);
5079   return Result.empty() ? nullptr : *Result.begin();
5080 }
5081 
5082 /// \brief Diagnose function specifiers on a declaration of an identifier that
5083 /// does not identify a function.
5084 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
5085   // FIXME: We should probably indicate the identifier in question to avoid
5086   // confusion for constructs like "inline int a(), b;"
5087   if (DS.isInlineSpecified())
5088     Diag(DS.getInlineSpecLoc(),
5089          diag::err_inline_non_function);
5090 
5091   if (DS.isVirtualSpecified())
5092     Diag(DS.getVirtualSpecLoc(),
5093          diag::err_virtual_non_function);
5094 
5095   if (DS.isExplicitSpecified())
5096     Diag(DS.getExplicitSpecLoc(),
5097          diag::err_explicit_non_function);
5098 
5099   if (DS.isNoreturnSpecified())
5100     Diag(DS.getNoreturnSpecLoc(),
5101          diag::err_noreturn_non_function);
5102 }
5103 
5104 NamedDecl*
5105 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
5106                              TypeSourceInfo *TInfo, LookupResult &Previous) {
5107   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5108   if (D.getCXXScopeSpec().isSet()) {
5109     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5110       << D.getCXXScopeSpec().getRange();
5111     D.setInvalidType();
5112     // Pretend we didn't see the scope specifier.
5113     DC = CurContext;
5114     Previous.clear();
5115   }
5116 
5117   DiagnoseFunctionSpecifiers(D.getDeclSpec());
5118 
5119   if (D.getDeclSpec().isConstexprSpecified())
5120     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5121       << 1;
5122 
5123   if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
5124     Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5125       << D.getName().getSourceRange();
5126     return nullptr;
5127   }
5128 
5129   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5130   if (!NewTD) return nullptr;
5131 
5132   // Handle attributes prior to checking for duplicates in MergeVarDecl
5133   ProcessDeclAttributes(S, NewTD, D);
5134 
5135   CheckTypedefForVariablyModifiedType(S, NewTD);
5136 
5137   bool Redeclaration = D.isRedeclaration();
5138   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5139   D.setRedeclaration(Redeclaration);
5140   return ND;
5141 }
5142 
5143 void
5144 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5145   // C99 6.7.7p2: If a typedef name specifies a variably modified type
5146   // then it shall have block scope.
5147   // Note that variably modified types must be fixed before merging the decl so
5148   // that redeclarations will match.
5149   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5150   QualType T = TInfo->getType();
5151   if (T->isVariablyModifiedType()) {
5152     getCurFunction()->setHasBranchProtectedScope();
5153 
5154     if (S->getFnParent() == nullptr) {
5155       bool SizeIsNegative;
5156       llvm::APSInt Oversized;
5157       TypeSourceInfo *FixedTInfo =
5158         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5159                                                       SizeIsNegative,
5160                                                       Oversized);
5161       if (FixedTInfo) {
5162         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5163         NewTD->setTypeSourceInfo(FixedTInfo);
5164       } else {
5165         if (SizeIsNegative)
5166           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5167         else if (T->isVariableArrayType())
5168           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5169         else if (Oversized.getBoolValue())
5170           Diag(NewTD->getLocation(), diag::err_array_too_large)
5171             << Oversized.toString(10);
5172         else
5173           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5174         NewTD->setInvalidDecl();
5175       }
5176     }
5177   }
5178 }
5179 
5180 
5181 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5182 /// declares a typedef-name, either using the 'typedef' type specifier or via
5183 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5184 NamedDecl*
5185 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5186                            LookupResult &Previous, bool &Redeclaration) {
5187   // Merge the decl with the existing one if appropriate. If the decl is
5188   // in an outer scope, it isn't the same thing.
5189   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5190                        /*AllowInlineNamespace*/false);
5191   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
5192   if (!Previous.empty()) {
5193     Redeclaration = true;
5194     MergeTypedefNameDecl(NewTD, Previous);
5195   }
5196 
5197   // If this is the C FILE type, notify the AST context.
5198   if (IdentifierInfo *II = NewTD->getIdentifier())
5199     if (!NewTD->isInvalidDecl() &&
5200         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5201       if (II->isStr("FILE"))
5202         Context.setFILEDecl(NewTD);
5203       else if (II->isStr("jmp_buf"))
5204         Context.setjmp_bufDecl(NewTD);
5205       else if (II->isStr("sigjmp_buf"))
5206         Context.setsigjmp_bufDecl(NewTD);
5207       else if (II->isStr("ucontext_t"))
5208         Context.setucontext_tDecl(NewTD);
5209     }
5210 
5211   return NewTD;
5212 }
5213 
5214 /// \brief Determines whether the given declaration is an out-of-scope
5215 /// previous declaration.
5216 ///
5217 /// This routine should be invoked when name lookup has found a
5218 /// previous declaration (PrevDecl) that is not in the scope where a
5219 /// new declaration by the same name is being introduced. If the new
5220 /// declaration occurs in a local scope, previous declarations with
5221 /// linkage may still be considered previous declarations (C99
5222 /// 6.2.2p4-5, C++ [basic.link]p6).
5223 ///
5224 /// \param PrevDecl the previous declaration found by name
5225 /// lookup
5226 ///
5227 /// \param DC the context in which the new declaration is being
5228 /// declared.
5229 ///
5230 /// \returns true if PrevDecl is an out-of-scope previous declaration
5231 /// for a new delcaration with the same name.
5232 static bool
5233 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5234                                 ASTContext &Context) {
5235   if (!PrevDecl)
5236     return false;
5237 
5238   if (!PrevDecl->hasLinkage())
5239     return false;
5240 
5241   if (Context.getLangOpts().CPlusPlus) {
5242     // C++ [basic.link]p6:
5243     //   If there is a visible declaration of an entity with linkage
5244     //   having the same name and type, ignoring entities declared
5245     //   outside the innermost enclosing namespace scope, the block
5246     //   scope declaration declares that same entity and receives the
5247     //   linkage of the previous declaration.
5248     DeclContext *OuterContext = DC->getRedeclContext();
5249     if (!OuterContext->isFunctionOrMethod())
5250       // This rule only applies to block-scope declarations.
5251       return false;
5252 
5253     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5254     if (PrevOuterContext->isRecord())
5255       // We found a member function: ignore it.
5256       return false;
5257 
5258     // Find the innermost enclosing namespace for the new and
5259     // previous declarations.
5260     OuterContext = OuterContext->getEnclosingNamespaceContext();
5261     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5262 
5263     // The previous declaration is in a different namespace, so it
5264     // isn't the same function.
5265     if (!OuterContext->Equals(PrevOuterContext))
5266       return false;
5267   }
5268 
5269   return true;
5270 }
5271 
5272 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
5273   CXXScopeSpec &SS = D.getCXXScopeSpec();
5274   if (!SS.isSet()) return;
5275   DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
5276 }
5277 
5278 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5279   QualType type = decl->getType();
5280   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5281   if (lifetime == Qualifiers::OCL_Autoreleasing) {
5282     // Various kinds of declaration aren't allowed to be __autoreleasing.
5283     unsigned kind = -1U;
5284     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5285       if (var->hasAttr<BlocksAttr>())
5286         kind = 0; // __block
5287       else if (!var->hasLocalStorage())
5288         kind = 1; // global
5289     } else if (isa<ObjCIvarDecl>(decl)) {
5290       kind = 3; // ivar
5291     } else if (isa<FieldDecl>(decl)) {
5292       kind = 2; // field
5293     }
5294 
5295     if (kind != -1U) {
5296       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5297         << kind;
5298     }
5299   } else if (lifetime == Qualifiers::OCL_None) {
5300     // Try to infer lifetime.
5301     if (!type->isObjCLifetimeType())
5302       return false;
5303 
5304     lifetime = type->getObjCARCImplicitLifetime();
5305     type = Context.getLifetimeQualifiedType(type, lifetime);
5306     decl->setType(type);
5307   }
5308 
5309   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5310     // Thread-local variables cannot have lifetime.
5311     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5312         var->getTLSKind()) {
5313       Diag(var->getLocation(), diag::err_arc_thread_ownership)
5314         << var->getType();
5315       return true;
5316     }
5317   }
5318 
5319   return false;
5320 }
5321 
5322 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5323   // Ensure that an auto decl is deduced otherwise the checks below might cache
5324   // the wrong linkage.
5325   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
5326 
5327   // 'weak' only applies to declarations with external linkage.
5328   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5329     if (!ND.isExternallyVisible()) {
5330       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5331       ND.dropAttr<WeakAttr>();
5332     }
5333   }
5334   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5335     if (ND.isExternallyVisible()) {
5336       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5337       ND.dropAttr<WeakRefAttr>();
5338       ND.dropAttr<AliasAttr>();
5339     }
5340   }
5341 
5342   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
5343     if (VD->hasInit()) {
5344       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
5345         assert(VD->isThisDeclarationADefinition() &&
5346                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
5347         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD;
5348         VD->dropAttr<AliasAttr>();
5349       }
5350     }
5351   }
5352 
5353   // 'selectany' only applies to externally visible variable declarations.
5354   // It does not apply to functions.
5355   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
5356     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
5357       S.Diag(Attr->getLocation(),
5358              diag::err_attribute_selectany_non_extern_data);
5359       ND.dropAttr<SelectAnyAttr>();
5360     }
5361   }
5362 
5363   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
5364     // dll attributes require external linkage. Static locals may have external
5365     // linkage but still cannot be explicitly imported or exported.
5366     auto *VD = dyn_cast<VarDecl>(&ND);
5367     if (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())) {
5368       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5369         << &ND << Attr;
5370       ND.setInvalidDecl();
5371     }
5372   }
5373 }
5374 
5375 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
5376                                            NamedDecl *NewDecl,
5377                                            bool IsSpecialization) {
5378   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl))
5379     OldDecl = OldTD->getTemplatedDecl();
5380   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl))
5381     NewDecl = NewTD->getTemplatedDecl();
5382 
5383   if (!OldDecl || !NewDecl)
5384     return;
5385 
5386   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
5387   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
5388   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
5389   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
5390 
5391   // dllimport and dllexport are inheritable attributes so we have to exclude
5392   // inherited attribute instances.
5393   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
5394                     (NewExportAttr && !NewExportAttr->isInherited());
5395 
5396   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
5397   // the only exception being explicit specializations.
5398   // Implicitly generated declarations are also excluded for now because there
5399   // is no other way to switch these to use dllimport or dllexport.
5400   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
5401 
5402   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
5403     // Allow with a warning for free functions and global variables.
5404     bool JustWarn = false;
5405     if (!OldDecl->isCXXClassMember()) {
5406       auto *VD = dyn_cast<VarDecl>(OldDecl);
5407       if (VD && !VD->getDescribedVarTemplate())
5408         JustWarn = true;
5409       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
5410       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
5411         JustWarn = true;
5412     }
5413 
5414     // We cannot change a declaration that's been used because IR has already
5415     // been emitted. Dllimported functions will still work though (modulo
5416     // address equality) as they can use the thunk.
5417     if (OldDecl->isUsed())
5418       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
5419         JustWarn = false;
5420 
5421     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
5422                                : diag::err_attribute_dll_redeclaration;
5423     S.Diag(NewDecl->getLocation(), DiagID)
5424         << NewDecl
5425         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
5426     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5427     if (!JustWarn) {
5428       NewDecl->setInvalidDecl();
5429       return;
5430     }
5431   }
5432 
5433   // A redeclaration is not allowed to drop a dllimport attribute, the only
5434   // exceptions being inline function definitions, local extern declarations,
5435   // and qualified friend declarations.
5436   // NB: MSVC converts such a declaration to dllexport.
5437   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
5438   if (const auto *VD = dyn_cast<VarDecl>(NewDecl))
5439     // Ignore static data because out-of-line definitions are diagnosed
5440     // separately.
5441     IsStaticDataMember = VD->isStaticDataMember();
5442   else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
5443     IsInline = FD->isInlined();
5444     IsQualifiedFriend = FD->getQualifier() &&
5445                         FD->getFriendObjectKind() == Decl::FOK_Declared;
5446   }
5447 
5448   if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember &&
5449       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
5450     S.Diag(NewDecl->getLocation(),
5451            diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5452       << NewDecl << OldImportAttr;
5453     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5454     S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
5455     OldDecl->dropAttr<DLLImportAttr>();
5456     NewDecl->dropAttr<DLLImportAttr>();
5457   } else if (IsInline && OldImportAttr &&
5458              !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5459     // In MinGW, seeing a function declared inline drops the dllimport attribute.
5460     OldDecl->dropAttr<DLLImportAttr>();
5461     NewDecl->dropAttr<DLLImportAttr>();
5462     S.Diag(NewDecl->getLocation(),
5463            diag::warn_dllimport_dropped_from_inline_function)
5464         << NewDecl << OldImportAttr;
5465   }
5466 }
5467 
5468 /// Given that we are within the definition of the given function,
5469 /// will that definition behave like C99's 'inline', where the
5470 /// definition is discarded except for optimization purposes?
5471 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
5472   // Try to avoid calling GetGVALinkageForFunction.
5473 
5474   // All cases of this require the 'inline' keyword.
5475   if (!FD->isInlined()) return false;
5476 
5477   // This is only possible in C++ with the gnu_inline attribute.
5478   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
5479     return false;
5480 
5481   // Okay, go ahead and call the relatively-more-expensive function.
5482 
5483 #ifndef NDEBUG
5484   // AST quite reasonably asserts that it's working on a function
5485   // definition.  We don't really have a way to tell it that we're
5486   // currently defining the function, so just lie to it in +Asserts
5487   // builds.  This is an awful hack.
5488   FD->setLazyBody(1);
5489 #endif
5490 
5491   bool isC99Inline =
5492       S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
5493 
5494 #ifndef NDEBUG
5495   FD->setLazyBody(0);
5496 #endif
5497 
5498   return isC99Inline;
5499 }
5500 
5501 /// Determine whether a variable is extern "C" prior to attaching
5502 /// an initializer. We can't just call isExternC() here, because that
5503 /// will also compute and cache whether the declaration is externally
5504 /// visible, which might change when we attach the initializer.
5505 ///
5506 /// This can only be used if the declaration is known to not be a
5507 /// redeclaration of an internal linkage declaration.
5508 ///
5509 /// For instance:
5510 ///
5511 ///   auto x = []{};
5512 ///
5513 /// Attaching the initializer here makes this declaration not externally
5514 /// visible, because its type has internal linkage.
5515 ///
5516 /// FIXME: This is a hack.
5517 template<typename T>
5518 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
5519   if (S.getLangOpts().CPlusPlus) {
5520     // In C++, the overloadable attribute negates the effects of extern "C".
5521     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
5522       return false;
5523 
5524     // So do CUDA's host/device attributes if overloading is enabled.
5525     if (S.getLangOpts().CUDA && S.getLangOpts().CUDATargetOverloads &&
5526         (D->template hasAttr<CUDADeviceAttr>() ||
5527          D->template hasAttr<CUDAHostAttr>()))
5528       return false;
5529   }
5530   return D->isExternC();
5531 }
5532 
5533 static bool shouldConsiderLinkage(const VarDecl *VD) {
5534   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
5535   if (DC->isFunctionOrMethod())
5536     return VD->hasExternalStorage();
5537   if (DC->isFileContext())
5538     return true;
5539   if (DC->isRecord())
5540     return false;
5541   llvm_unreachable("Unexpected context");
5542 }
5543 
5544 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
5545   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
5546   if (DC->isFileContext() || DC->isFunctionOrMethod())
5547     return true;
5548   if (DC->isRecord())
5549     return false;
5550   llvm_unreachable("Unexpected context");
5551 }
5552 
5553 static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
5554                           AttributeList::Kind Kind) {
5555   for (const AttributeList *L = AttrList; L; L = L->getNext())
5556     if (L->getKind() == Kind)
5557       return true;
5558   return false;
5559 }
5560 
5561 static bool hasParsedAttr(Scope *S, const Declarator &PD,
5562                           AttributeList::Kind Kind) {
5563   // Check decl attributes on the DeclSpec.
5564   if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
5565     return true;
5566 
5567   // Walk the declarator structure, checking decl attributes that were in a type
5568   // position to the decl itself.
5569   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
5570     if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
5571       return true;
5572   }
5573 
5574   // Finally, check attributes on the decl itself.
5575   return hasParsedAttr(S, PD.getAttributes(), Kind);
5576 }
5577 
5578 /// Adjust the \c DeclContext for a function or variable that might be a
5579 /// function-local external declaration.
5580 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
5581   if (!DC->isFunctionOrMethod())
5582     return false;
5583 
5584   // If this is a local extern function or variable declared within a function
5585   // template, don't add it into the enclosing namespace scope until it is
5586   // instantiated; it might have a dependent type right now.
5587   if (DC->isDependentContext())
5588     return true;
5589 
5590   // C++11 [basic.link]p7:
5591   //   When a block scope declaration of an entity with linkage is not found to
5592   //   refer to some other declaration, then that entity is a member of the
5593   //   innermost enclosing namespace.
5594   //
5595   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
5596   // semantically-enclosing namespace, not a lexically-enclosing one.
5597   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
5598     DC = DC->getParent();
5599   return true;
5600 }
5601 
5602 /// \brief Returns true if given declaration has external C language linkage.
5603 static bool isDeclExternC(const Decl *D) {
5604   if (const auto *FD = dyn_cast<FunctionDecl>(D))
5605     return FD->isExternC();
5606   if (const auto *VD = dyn_cast<VarDecl>(D))
5607     return VD->isExternC();
5608 
5609   llvm_unreachable("Unknown type of decl!");
5610 }
5611 
5612 NamedDecl *
5613 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5614                               TypeSourceInfo *TInfo, LookupResult &Previous,
5615                               MultiTemplateParamsArg TemplateParamLists,
5616                               bool &AddToScope) {
5617   QualType R = TInfo->getType();
5618   DeclarationName Name = GetNameForDeclarator(D).getName();
5619 
5620   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
5621   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
5622 
5623   // dllimport globals without explicit storage class are treated as extern. We
5624   // have to change the storage class this early to get the right DeclContext.
5625   if (SC == SC_None && !DC->isRecord() &&
5626       hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
5627       !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
5628     SC = SC_Extern;
5629 
5630   DeclContext *OriginalDC = DC;
5631   bool IsLocalExternDecl = SC == SC_Extern &&
5632                            adjustContextForLocalExternDecl(DC);
5633 
5634   if (getLangOpts().OpenCL) {
5635     // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
5636     QualType NR = R;
5637     while (NR->isPointerType()) {
5638       if (NR->isFunctionPointerType()) {
5639         Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable);
5640         D.setInvalidType();
5641         break;
5642       }
5643       NR = NR->getPointeeType();
5644     }
5645 
5646     if (!getOpenCLOptions().cl_khr_fp16) {
5647       // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
5648       // half array type (unless the cl_khr_fp16 extension is enabled).
5649       if (Context.getBaseElementType(R)->isHalfType()) {
5650         Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
5651         D.setInvalidType();
5652       }
5653     }
5654   }
5655 
5656   if (SCSpec == DeclSpec::SCS_mutable) {
5657     // mutable can only appear on non-static class members, so it's always
5658     // an error here
5659     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
5660     D.setInvalidType();
5661     SC = SC_None;
5662   }
5663 
5664   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
5665       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
5666                               D.getDeclSpec().getStorageClassSpecLoc())) {
5667     // In C++11, the 'register' storage class specifier is deprecated.
5668     // Suppress the warning in system macros, it's used in macros in some
5669     // popular C system headers, such as in glibc's htonl() macro.
5670     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5671          diag::warn_deprecated_register)
5672       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5673   }
5674 
5675   IdentifierInfo *II = Name.getAsIdentifierInfo();
5676   if (!II) {
5677     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
5678       << Name;
5679     return nullptr;
5680   }
5681 
5682   DiagnoseFunctionSpecifiers(D.getDeclSpec());
5683 
5684   if (!DC->isRecord() && S->getFnParent() == nullptr) {
5685     // C99 6.9p2: The storage-class specifiers auto and register shall not
5686     // appear in the declaration specifiers in an external declaration.
5687     // Global Register+Asm is a GNU extension we support.
5688     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
5689       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
5690       D.setInvalidType();
5691     }
5692   }
5693 
5694   if (getLangOpts().OpenCL) {
5695     // OpenCL v1.2 s6.9.b p4:
5696     // The sampler type cannot be used with the __local and __global address
5697     // space qualifiers.
5698     if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
5699       R.getAddressSpace() == LangAS::opencl_global)) {
5700       Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
5701     }
5702 
5703     // OpenCL 1.2 spec, p6.9 r:
5704     // The event type cannot be used to declare a program scope variable.
5705     // The event type cannot be used with the __local, __constant and __global
5706     // address space qualifiers.
5707     if (R->isEventT()) {
5708       if (S->getParent() == nullptr) {
5709         Diag(D.getLocStart(), diag::err_event_t_global_var);
5710         D.setInvalidType();
5711       }
5712 
5713       if (R.getAddressSpace()) {
5714         Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
5715         D.setInvalidType();
5716       }
5717     }
5718   }
5719 
5720   bool IsExplicitSpecialization = false;
5721   bool IsVariableTemplateSpecialization = false;
5722   bool IsPartialSpecialization = false;
5723   bool IsVariableTemplate = false;
5724   VarDecl *NewVD = nullptr;
5725   VarTemplateDecl *NewTemplate = nullptr;
5726   TemplateParameterList *TemplateParams = nullptr;
5727   if (!getLangOpts().CPlusPlus) {
5728     NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5729                             D.getIdentifierLoc(), II,
5730                             R, TInfo, SC);
5731 
5732     if (D.isInvalidType())
5733       NewVD->setInvalidDecl();
5734   } else {
5735     bool Invalid = false;
5736 
5737     if (DC->isRecord() && !CurContext->isRecord()) {
5738       // This is an out-of-line definition of a static data member.
5739       switch (SC) {
5740       case SC_None:
5741         break;
5742       case SC_Static:
5743         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5744              diag::err_static_out_of_line)
5745           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5746         break;
5747       case SC_Auto:
5748       case SC_Register:
5749       case SC_Extern:
5750         // [dcl.stc] p2: The auto or register specifiers shall be applied only
5751         // to names of variables declared in a block or to function parameters.
5752         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
5753         // of class members
5754 
5755         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5756              diag::err_storage_class_for_static_member)
5757           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5758         break;
5759       case SC_PrivateExtern:
5760         llvm_unreachable("C storage class in c++!");
5761       }
5762     }
5763 
5764     if (SC == SC_Static && CurContext->isRecord()) {
5765       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
5766         if (RD->isLocalClass())
5767           Diag(D.getIdentifierLoc(),
5768                diag::err_static_data_member_not_allowed_in_local_class)
5769             << Name << RD->getDeclName();
5770 
5771         // C++98 [class.union]p1: If a union contains a static data member,
5772         // the program is ill-formed. C++11 drops this restriction.
5773         if (RD->isUnion())
5774           Diag(D.getIdentifierLoc(),
5775                getLangOpts().CPlusPlus11
5776                  ? diag::warn_cxx98_compat_static_data_member_in_union
5777                  : diag::ext_static_data_member_in_union) << Name;
5778         // We conservatively disallow static data members in anonymous structs.
5779         else if (!RD->getDeclName())
5780           Diag(D.getIdentifierLoc(),
5781                diag::err_static_data_member_not_allowed_in_anon_struct)
5782             << Name << RD->isUnion();
5783       }
5784     }
5785 
5786     // Match up the template parameter lists with the scope specifier, then
5787     // determine whether we have a template or a template specialization.
5788     TemplateParams = MatchTemplateParametersToScopeSpecifier(
5789         D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
5790         D.getCXXScopeSpec(),
5791         D.getName().getKind() == UnqualifiedId::IK_TemplateId
5792             ? D.getName().TemplateId
5793             : nullptr,
5794         TemplateParamLists,
5795         /*never a friend*/ false, IsExplicitSpecialization, Invalid);
5796 
5797     if (TemplateParams) {
5798       if (!TemplateParams->size() &&
5799           D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5800         // There is an extraneous 'template<>' for this variable. Complain
5801         // about it, but allow the declaration of the variable.
5802         Diag(TemplateParams->getTemplateLoc(),
5803              diag::err_template_variable_noparams)
5804           << II
5805           << SourceRange(TemplateParams->getTemplateLoc(),
5806                          TemplateParams->getRAngleLoc());
5807         TemplateParams = nullptr;
5808       } else {
5809         if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5810           // This is an explicit specialization or a partial specialization.
5811           // FIXME: Check that we can declare a specialization here.
5812           IsVariableTemplateSpecialization = true;
5813           IsPartialSpecialization = TemplateParams->size() > 0;
5814         } else { // if (TemplateParams->size() > 0)
5815           // This is a template declaration.
5816           IsVariableTemplate = true;
5817 
5818           // Check that we can declare a template here.
5819           if (CheckTemplateDeclScope(S, TemplateParams))
5820             return nullptr;
5821 
5822           // Only C++1y supports variable templates (N3651).
5823           Diag(D.getIdentifierLoc(),
5824                getLangOpts().CPlusPlus14
5825                    ? diag::warn_cxx11_compat_variable_template
5826                    : diag::ext_variable_template);
5827         }
5828       }
5829     } else {
5830       assert(
5831           (Invalid || D.getName().getKind() != UnqualifiedId::IK_TemplateId) &&
5832           "should have a 'template<>' for this decl");
5833     }
5834 
5835     if (IsVariableTemplateSpecialization) {
5836       SourceLocation TemplateKWLoc =
5837           TemplateParamLists.size() > 0
5838               ? TemplateParamLists[0]->getTemplateLoc()
5839               : SourceLocation();
5840       DeclResult Res = ActOnVarTemplateSpecialization(
5841           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5842           IsPartialSpecialization);
5843       if (Res.isInvalid())
5844         return nullptr;
5845       NewVD = cast<VarDecl>(Res.get());
5846       AddToScope = false;
5847     } else
5848       NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5849                               D.getIdentifierLoc(), II, R, TInfo, SC);
5850 
5851     // If this is supposed to be a variable template, create it as such.
5852     if (IsVariableTemplate) {
5853       NewTemplate =
5854           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5855                                   TemplateParams, NewVD);
5856       NewVD->setDescribedVarTemplate(NewTemplate);
5857     }
5858 
5859     // If this decl has an auto type in need of deduction, make a note of the
5860     // Decl so we can diagnose uses of it in its own initializer.
5861     if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5862       ParsingInitForAutoVars.insert(NewVD);
5863 
5864     if (D.isInvalidType() || Invalid) {
5865       NewVD->setInvalidDecl();
5866       if (NewTemplate)
5867         NewTemplate->setInvalidDecl();
5868     }
5869 
5870     SetNestedNameSpecifier(NewVD, D);
5871 
5872     // If we have any template parameter lists that don't directly belong to
5873     // the variable (matching the scope specifier), store them.
5874     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
5875     if (TemplateParamLists.size() > VDTemplateParamLists)
5876       NewVD->setTemplateParameterListsInfo(
5877           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
5878 
5879     if (D.getDeclSpec().isConstexprSpecified())
5880       NewVD->setConstexpr(true);
5881 
5882     if (D.getDeclSpec().isConceptSpecified()) {
5883       NewVD->setConcept(true);
5884 
5885       // C++ Concepts TS [dcl.spec.concept]p2: A concept definition shall not
5886       // be declared with the thread_local, inline, friend, or constexpr
5887       // specifiers, [...]
5888       if (D.getDeclSpec().getThreadStorageClassSpec() == TSCS_thread_local) {
5889         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5890              diag::err_concept_decl_invalid_specifiers)
5891             << 0 << 0;
5892         NewVD->setInvalidDecl(true);
5893       }
5894 
5895       if (D.getDeclSpec().isConstexprSpecified()) {
5896         Diag(D.getDeclSpec().getConstexprSpecLoc(),
5897              diag::err_concept_decl_invalid_specifiers)
5898             << 0 << 3;
5899         NewVD->setInvalidDecl(true);
5900       }
5901     }
5902   }
5903 
5904   // Set the lexical context. If the declarator has a C++ scope specifier, the
5905   // lexical context will be different from the semantic context.
5906   NewVD->setLexicalDeclContext(CurContext);
5907   if (NewTemplate)
5908     NewTemplate->setLexicalDeclContext(CurContext);
5909 
5910   if (IsLocalExternDecl)
5911     NewVD->setLocalExternDecl();
5912 
5913   bool EmitTLSUnsupportedError = false;
5914   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
5915     // C++11 [dcl.stc]p4:
5916     //   When thread_local is applied to a variable of block scope the
5917     //   storage-class-specifier static is implied if it does not appear
5918     //   explicitly.
5919     // Core issue: 'static' is not implied if the variable is declared
5920     //   'extern'.
5921     if (NewVD->hasLocalStorage() &&
5922         (SCSpec != DeclSpec::SCS_unspecified ||
5923          TSCS != DeclSpec::TSCS_thread_local ||
5924          !DC->isFunctionOrMethod()))
5925       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5926            diag::err_thread_non_global)
5927         << DeclSpec::getSpecifierName(TSCS);
5928     else if (!Context.getTargetInfo().isTLSSupported()) {
5929       if (getLangOpts().CUDA) {
5930         // Postpone error emission until we've collected attributes required to
5931         // figure out whether it's a host or device variable and whether the
5932         // error should be ignored.
5933         EmitTLSUnsupportedError = true;
5934         // We still need to mark the variable as TLS so it shows up in AST with
5935         // proper storage class for other tools to use even if we're not going
5936         // to emit any code for it.
5937         NewVD->setTSCSpec(TSCS);
5938       } else
5939         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5940              diag::err_thread_unsupported);
5941     } else
5942       NewVD->setTSCSpec(TSCS);
5943   }
5944 
5945   // C99 6.7.4p3
5946   //   An inline definition of a function with external linkage shall
5947   //   not contain a definition of a modifiable object with static or
5948   //   thread storage duration...
5949   // We only apply this when the function is required to be defined
5950   // elsewhere, i.e. when the function is not 'extern inline'.  Note
5951   // that a local variable with thread storage duration still has to
5952   // be marked 'static'.  Also note that it's possible to get these
5953   // semantics in C++ using __attribute__((gnu_inline)).
5954   if (SC == SC_Static && S->getFnParent() != nullptr &&
5955       !NewVD->getType().isConstQualified()) {
5956     FunctionDecl *CurFD = getCurFunctionDecl();
5957     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
5958       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5959            diag::warn_static_local_in_extern_inline);
5960       MaybeSuggestAddingStaticToDecl(CurFD);
5961     }
5962   }
5963 
5964   if (D.getDeclSpec().isModulePrivateSpecified()) {
5965     if (IsVariableTemplateSpecialization)
5966       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5967           << (IsPartialSpecialization ? 1 : 0)
5968           << FixItHint::CreateRemoval(
5969                  D.getDeclSpec().getModulePrivateSpecLoc());
5970     else if (IsExplicitSpecialization)
5971       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5972         << 2
5973         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5974     else if (NewVD->hasLocalStorage())
5975       Diag(NewVD->getLocation(), diag::err_module_private_local)
5976         << 0 << NewVD->getDeclName()
5977         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
5978         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5979     else {
5980       NewVD->setModulePrivate();
5981       if (NewTemplate)
5982         NewTemplate->setModulePrivate();
5983     }
5984   }
5985 
5986   // Handle attributes prior to checking for duplicates in MergeVarDecl
5987   ProcessDeclAttributes(S, NewVD, D);
5988 
5989   if (getLangOpts().CUDA) {
5990     if (EmitTLSUnsupportedError && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD))
5991       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5992            diag::err_thread_unsupported);
5993     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5994     // storage [duration]."
5995     if (SC == SC_None && S->getFnParent() != nullptr &&
5996         (NewVD->hasAttr<CUDASharedAttr>() ||
5997          NewVD->hasAttr<CUDAConstantAttr>())) {
5998       NewVD->setStorageClass(SC_Static);
5999     }
6000   }
6001 
6002   // Ensure that dllimport globals without explicit storage class are treated as
6003   // extern. The storage class is set above using parsed attributes. Now we can
6004   // check the VarDecl itself.
6005   assert(!NewVD->hasAttr<DLLImportAttr>() ||
6006          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
6007          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
6008 
6009   // In auto-retain/release, infer strong retension for variables of
6010   // retainable type.
6011   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
6012     NewVD->setInvalidDecl();
6013 
6014   // Handle GNU asm-label extension (encoded as an attribute).
6015   if (Expr *E = (Expr*)D.getAsmLabel()) {
6016     // The parser guarantees this is a string.
6017     StringLiteral *SE = cast<StringLiteral>(E);
6018     StringRef Label = SE->getString();
6019     if (S->getFnParent() != nullptr) {
6020       switch (SC) {
6021       case SC_None:
6022       case SC_Auto:
6023         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
6024         break;
6025       case SC_Register:
6026         // Local Named register
6027         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
6028             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
6029           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6030         break;
6031       case SC_Static:
6032       case SC_Extern:
6033       case SC_PrivateExtern:
6034         break;
6035       }
6036     } else if (SC == SC_Register) {
6037       // Global Named register
6038       if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
6039           DeclAttrsMatchCUDAMode(getLangOpts(), NewVD))
6040         Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6041       if (!R->isIntegralType(Context) && !R->isPointerType()) {
6042         Diag(D.getLocStart(), diag::err_asm_bad_register_type);
6043         NewVD->setInvalidDecl(true);
6044       }
6045     }
6046 
6047     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
6048                                                 Context, Label, 0));
6049   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6050     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6051       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
6052     if (I != ExtnameUndeclaredIdentifiers.end()) {
6053       if (isDeclExternC(NewVD)) {
6054         NewVD->addAttr(I->second);
6055         ExtnameUndeclaredIdentifiers.erase(I);
6056       } else
6057         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
6058             << /*Variable*/1 << NewVD;
6059     }
6060   }
6061 
6062   // Diagnose shadowed variables before filtering for scope.
6063   if (D.getCXXScopeSpec().isEmpty())
6064     CheckShadow(S, NewVD, Previous);
6065 
6066   // Don't consider existing declarations that are in a different
6067   // scope and are out-of-semantic-context declarations (if the new
6068   // declaration has linkage).
6069   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
6070                        D.getCXXScopeSpec().isNotEmpty() ||
6071                        IsExplicitSpecialization ||
6072                        IsVariableTemplateSpecialization);
6073 
6074   // Check whether the previous declaration is in the same block scope. This
6075   // affects whether we merge types with it, per C++11 [dcl.array]p3.
6076   if (getLangOpts().CPlusPlus &&
6077       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
6078     NewVD->setPreviousDeclInSameBlockScope(
6079         Previous.isSingleResult() && !Previous.isShadowed() &&
6080         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
6081 
6082   if (!getLangOpts().CPlusPlus) {
6083     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6084   } else {
6085     // If this is an explicit specialization of a static data member, check it.
6086     if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
6087         CheckMemberSpecialization(NewVD, Previous))
6088       NewVD->setInvalidDecl();
6089 
6090     // Merge the decl with the existing one if appropriate.
6091     if (!Previous.empty()) {
6092       if (Previous.isSingleResult() &&
6093           isa<FieldDecl>(Previous.getFoundDecl()) &&
6094           D.getCXXScopeSpec().isSet()) {
6095         // The user tried to define a non-static data member
6096         // out-of-line (C++ [dcl.meaning]p1).
6097         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
6098           << D.getCXXScopeSpec().getRange();
6099         Previous.clear();
6100         NewVD->setInvalidDecl();
6101       }
6102     } else if (D.getCXXScopeSpec().isSet()) {
6103       // No previous declaration in the qualifying scope.
6104       Diag(D.getIdentifierLoc(), diag::err_no_member)
6105         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
6106         << D.getCXXScopeSpec().getRange();
6107       NewVD->setInvalidDecl();
6108     }
6109 
6110     if (!IsVariableTemplateSpecialization)
6111       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6112 
6113     if (NewTemplate) {
6114       VarTemplateDecl *PrevVarTemplate =
6115           NewVD->getPreviousDecl()
6116               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
6117               : nullptr;
6118 
6119       // Check the template parameter list of this declaration, possibly
6120       // merging in the template parameter list from the previous variable
6121       // template declaration.
6122       if (CheckTemplateParameterList(
6123               TemplateParams,
6124               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
6125                               : nullptr,
6126               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
6127                DC->isDependentContext())
6128                   ? TPC_ClassTemplateMember
6129                   : TPC_VarTemplate))
6130         NewVD->setInvalidDecl();
6131 
6132       // If we are providing an explicit specialization of a static variable
6133       // template, make a note of that.
6134       if (PrevVarTemplate &&
6135           PrevVarTemplate->getInstantiatedFromMemberTemplate())
6136         PrevVarTemplate->setMemberSpecialization();
6137     }
6138   }
6139 
6140   ProcessPragmaWeak(S, NewVD);
6141 
6142   // If this is the first declaration of an extern C variable, update
6143   // the map of such variables.
6144   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
6145       isIncompleteDeclExternC(*this, NewVD))
6146     RegisterLocallyScopedExternCDecl(NewVD, S);
6147 
6148   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
6149     Decl *ManglingContextDecl;
6150     if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
6151             NewVD->getDeclContext(), ManglingContextDecl)) {
6152       Context.setManglingNumber(
6153           NewVD, MCtx->getManglingNumber(
6154                      NewVD, getMSManglingNumber(getLangOpts(), S)));
6155       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
6156     }
6157   }
6158 
6159   // Special handling of variable named 'main'.
6160   if (Name.isIdentifier() && Name.getAsIdentifierInfo()->isStr("main") &&
6161       NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6162       !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
6163 
6164     // C++ [basic.start.main]p3
6165     // A program that declares a variable main at global scope is ill-formed.
6166     if (getLangOpts().CPlusPlus)
6167       Diag(D.getLocStart(), diag::err_main_global_variable);
6168 
6169     // In C, and external-linkage variable named main results in undefined
6170     // behavior.
6171     else if (NewVD->hasExternalFormalLinkage())
6172       Diag(D.getLocStart(), diag::warn_main_redefined);
6173   }
6174 
6175   if (D.isRedeclaration() && !Previous.empty()) {
6176     checkDLLAttributeRedeclaration(
6177         *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD,
6178         IsExplicitSpecialization);
6179   }
6180 
6181   if (NewTemplate) {
6182     if (NewVD->isInvalidDecl())
6183       NewTemplate->setInvalidDecl();
6184     ActOnDocumentableDecl(NewTemplate);
6185     return NewTemplate;
6186   }
6187 
6188   return NewVD;
6189 }
6190 
6191 /// \brief Diagnose variable or built-in function shadowing.  Implements
6192 /// -Wshadow.
6193 ///
6194 /// This method is called whenever a VarDecl is added to a "useful"
6195 /// scope.
6196 ///
6197 /// \param S the scope in which the shadowing name is being declared
6198 /// \param R the lookup of the name
6199 ///
6200 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
6201   // Return if warning is ignored.
6202   if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()))
6203     return;
6204 
6205   // Don't diagnose declarations at file scope.
6206   if (D->hasGlobalStorage())
6207     return;
6208 
6209   DeclContext *NewDC = D->getDeclContext();
6210 
6211   // Only diagnose if we're shadowing an unambiguous field or variable.
6212   if (R.getResultKind() != LookupResult::Found)
6213     return;
6214 
6215   NamedDecl* ShadowedDecl = R.getFoundDecl();
6216   if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
6217     return;
6218 
6219   // Fields are not shadowed by variables in C++ static methods.
6220   if (isa<FieldDecl>(ShadowedDecl))
6221     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
6222       if (MD->isStatic())
6223         return;
6224 
6225   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
6226     if (shadowedVar->isExternC()) {
6227       // For shadowing external vars, make sure that we point to the global
6228       // declaration, not a locally scoped extern declaration.
6229       for (auto I : shadowedVar->redecls())
6230         if (I->isFileVarDecl()) {
6231           ShadowedDecl = I;
6232           break;
6233         }
6234     }
6235 
6236   DeclContext *OldDC = ShadowedDecl->getDeclContext();
6237 
6238   // Only warn about certain kinds of shadowing for class members.
6239   if (NewDC && NewDC->isRecord()) {
6240     // In particular, don't warn about shadowing non-class members.
6241     if (!OldDC->isRecord())
6242       return;
6243 
6244     // TODO: should we warn about static data members shadowing
6245     // static data members from base classes?
6246 
6247     // TODO: don't diagnose for inaccessible shadowed members.
6248     // This is hard to do perfectly because we might friend the
6249     // shadowing context, but that's just a false negative.
6250   }
6251 
6252   // Determine what kind of declaration we're shadowing.
6253   unsigned Kind;
6254   if (isa<RecordDecl>(OldDC)) {
6255     if (isa<FieldDecl>(ShadowedDecl))
6256       Kind = 3; // field
6257     else
6258       Kind = 2; // static data member
6259   } else if (OldDC->isFileContext())
6260     Kind = 1; // global
6261   else
6262     Kind = 0; // local
6263 
6264   DeclarationName Name = R.getLookupName();
6265 
6266   // Emit warning and note.
6267   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
6268     return;
6269   Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
6270   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
6271 }
6272 
6273 /// \brief Check -Wshadow without the advantage of a previous lookup.
6274 void Sema::CheckShadow(Scope *S, VarDecl *D) {
6275   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
6276     return;
6277 
6278   LookupResult R(*this, D->getDeclName(), D->getLocation(),
6279                  Sema::LookupOrdinaryName, Sema::ForRedeclaration);
6280   LookupName(R, S);
6281   CheckShadow(S, D, R);
6282 }
6283 
6284 /// Check for conflict between this global or extern "C" declaration and
6285 /// previous global or extern "C" declarations. This is only used in C++.
6286 template<typename T>
6287 static bool checkGlobalOrExternCConflict(
6288     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
6289   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
6290   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
6291 
6292   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
6293     // The common case: this global doesn't conflict with any extern "C"
6294     // declaration.
6295     return false;
6296   }
6297 
6298   if (Prev) {
6299     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
6300       // Both the old and new declarations have C language linkage. This is a
6301       // redeclaration.
6302       Previous.clear();
6303       Previous.addDecl(Prev);
6304       return true;
6305     }
6306 
6307     // This is a global, non-extern "C" declaration, and there is a previous
6308     // non-global extern "C" declaration. Diagnose if this is a variable
6309     // declaration.
6310     if (!isa<VarDecl>(ND))
6311       return false;
6312   } else {
6313     // The declaration is extern "C". Check for any declaration in the
6314     // translation unit which might conflict.
6315     if (IsGlobal) {
6316       // We have already performed the lookup into the translation unit.
6317       IsGlobal = false;
6318       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6319            I != E; ++I) {
6320         if (isa<VarDecl>(*I)) {
6321           Prev = *I;
6322           break;
6323         }
6324       }
6325     } else {
6326       DeclContext::lookup_result R =
6327           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
6328       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
6329            I != E; ++I) {
6330         if (isa<VarDecl>(*I)) {
6331           Prev = *I;
6332           break;
6333         }
6334         // FIXME: If we have any other entity with this name in global scope,
6335         // the declaration is ill-formed, but that is a defect: it breaks the
6336         // 'stat' hack, for instance. Only variables can have mangled name
6337         // clashes with extern "C" declarations, so only they deserve a
6338         // diagnostic.
6339       }
6340     }
6341 
6342     if (!Prev)
6343       return false;
6344   }
6345 
6346   // Use the first declaration's location to ensure we point at something which
6347   // is lexically inside an extern "C" linkage-spec.
6348   assert(Prev && "should have found a previous declaration to diagnose");
6349   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
6350     Prev = FD->getFirstDecl();
6351   else
6352     Prev = cast<VarDecl>(Prev)->getFirstDecl();
6353 
6354   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
6355     << IsGlobal << ND;
6356   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
6357     << IsGlobal;
6358   return false;
6359 }
6360 
6361 /// Apply special rules for handling extern "C" declarations. Returns \c true
6362 /// if we have found that this is a redeclaration of some prior entity.
6363 ///
6364 /// Per C++ [dcl.link]p6:
6365 ///   Two declarations [for a function or variable] with C language linkage
6366 ///   with the same name that appear in different scopes refer to the same
6367 ///   [entity]. An entity with C language linkage shall not be declared with
6368 ///   the same name as an entity in global scope.
6369 template<typename T>
6370 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
6371                                                   LookupResult &Previous) {
6372   if (!S.getLangOpts().CPlusPlus) {
6373     // In C, when declaring a global variable, look for a corresponding 'extern'
6374     // variable declared in function scope. We don't need this in C++, because
6375     // we find local extern decls in the surrounding file-scope DeclContext.
6376     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6377       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
6378         Previous.clear();
6379         Previous.addDecl(Prev);
6380         return true;
6381       }
6382     }
6383     return false;
6384   }
6385 
6386   // A declaration in the translation unit can conflict with an extern "C"
6387   // declaration.
6388   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
6389     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
6390 
6391   // An extern "C" declaration can conflict with a declaration in the
6392   // translation unit or can be a redeclaration of an extern "C" declaration
6393   // in another scope.
6394   if (isIncompleteDeclExternC(S,ND))
6395     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
6396 
6397   // Neither global nor extern "C": nothing to do.
6398   return false;
6399 }
6400 
6401 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
6402   // If the decl is already known invalid, don't check it.
6403   if (NewVD->isInvalidDecl())
6404     return;
6405 
6406   TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
6407   QualType T = TInfo->getType();
6408 
6409   // Defer checking an 'auto' type until its initializer is attached.
6410   if (T->isUndeducedType())
6411     return;
6412 
6413   if (NewVD->hasAttrs())
6414     CheckAlignasUnderalignment(NewVD);
6415 
6416   if (T->isObjCObjectType()) {
6417     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
6418       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
6419     T = Context.getObjCObjectPointerType(T);
6420     NewVD->setType(T);
6421   }
6422 
6423   // Emit an error if an address space was applied to decl with local storage.
6424   // This includes arrays of objects with address space qualifiers, but not
6425   // automatic variables that point to other address spaces.
6426   // ISO/IEC TR 18037 S5.1.2
6427   if (!getLangOpts().OpenCL
6428       && NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
6429     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
6430     NewVD->setInvalidDecl();
6431     return;
6432   }
6433 
6434   // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
6435   // scope.
6436   if (getLangOpts().OpenCLVersion == 120 &&
6437       !getOpenCLOptions().cl_clang_storage_class_specifiers &&
6438       NewVD->isStaticLocal()) {
6439     Diag(NewVD->getLocation(), diag::err_static_function_scope);
6440     NewVD->setInvalidDecl();
6441     return;
6442   }
6443 
6444   // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
6445   // __constant address space.
6446   // OpenCL v2.0 s6.5.1 - Variables defined at program scope and static
6447   // variables inside a function can also be declared in the global
6448   // address space.
6449   if (getLangOpts().OpenCL) {
6450     if (NewVD->isFileVarDecl()) {
6451       if (!T->isSamplerT() &&
6452           !(T.getAddressSpace() == LangAS::opencl_constant ||
6453             (T.getAddressSpace() == LangAS::opencl_global &&
6454              getLangOpts().OpenCLVersion == 200))) {
6455         if (getLangOpts().OpenCLVersion == 200)
6456           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
6457               << "global or constant";
6458         else
6459           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
6460               << "constant";
6461         NewVD->setInvalidDecl();
6462         return;
6463       }
6464     } else {
6465       // OpenCL v2.0 s6.5.1 - Variables defined at program scope and static
6466       // variables inside a function can also be declared in the global
6467       // address space.
6468       if (NewVD->isStaticLocal() &&
6469           !(T.getAddressSpace() == LangAS::opencl_constant ||
6470             (T.getAddressSpace() == LangAS::opencl_global &&
6471              getLangOpts().OpenCLVersion == 200))) {
6472         if (getLangOpts().OpenCLVersion == 200)
6473           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
6474               << "global or constant";
6475         else
6476           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
6477               << "constant";
6478         NewVD->setInvalidDecl();
6479         return;
6480       }
6481       // OpenCL v1.1 s6.5.2 and s6.5.3 no local or constant variables
6482       // in functions.
6483       if (T.getAddressSpace() == LangAS::opencl_constant ||
6484           T.getAddressSpace() == LangAS::opencl_local) {
6485         FunctionDecl *FD = getCurFunctionDecl();
6486         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
6487           if (T.getAddressSpace() == LangAS::opencl_constant)
6488             Diag(NewVD->getLocation(), diag::err_opencl_non_kernel_variable)
6489                 << "constant";
6490           else
6491             Diag(NewVD->getLocation(), diag::err_opencl_non_kernel_variable)
6492                 << "local";
6493           NewVD->setInvalidDecl();
6494           return;
6495         }
6496       }
6497     }
6498   }
6499 
6500   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
6501       && !NewVD->hasAttr<BlocksAttr>()) {
6502     if (getLangOpts().getGC() != LangOptions::NonGC)
6503       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
6504     else {
6505       assert(!getLangOpts().ObjCAutoRefCount);
6506       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
6507     }
6508   }
6509 
6510   bool isVM = T->isVariablyModifiedType();
6511   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
6512       NewVD->hasAttr<BlocksAttr>())
6513     getCurFunction()->setHasBranchProtectedScope();
6514 
6515   if ((isVM && NewVD->hasLinkage()) ||
6516       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
6517     bool SizeIsNegative;
6518     llvm::APSInt Oversized;
6519     TypeSourceInfo *FixedTInfo =
6520       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6521                                                     SizeIsNegative, Oversized);
6522     if (!FixedTInfo && T->isVariableArrayType()) {
6523       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
6524       // FIXME: This won't give the correct result for
6525       // int a[10][n];
6526       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
6527 
6528       if (NewVD->isFileVarDecl())
6529         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
6530         << SizeRange;
6531       else if (NewVD->isStaticLocal())
6532         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
6533         << SizeRange;
6534       else
6535         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
6536         << SizeRange;
6537       NewVD->setInvalidDecl();
6538       return;
6539     }
6540 
6541     if (!FixedTInfo) {
6542       if (NewVD->isFileVarDecl())
6543         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
6544       else
6545         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
6546       NewVD->setInvalidDecl();
6547       return;
6548     }
6549 
6550     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
6551     NewVD->setType(FixedTInfo->getType());
6552     NewVD->setTypeSourceInfo(FixedTInfo);
6553   }
6554 
6555   if (T->isVoidType()) {
6556     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
6557     //                    of objects and functions.
6558     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
6559       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
6560         << T;
6561       NewVD->setInvalidDecl();
6562       return;
6563     }
6564   }
6565 
6566   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
6567     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
6568     NewVD->setInvalidDecl();
6569     return;
6570   }
6571 
6572   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
6573     Diag(NewVD->getLocation(), diag::err_block_on_vm);
6574     NewVD->setInvalidDecl();
6575     return;
6576   }
6577 
6578   if (NewVD->isConstexpr() && !T->isDependentType() &&
6579       RequireLiteralType(NewVD->getLocation(), T,
6580                          diag::err_constexpr_var_non_literal)) {
6581     NewVD->setInvalidDecl();
6582     return;
6583   }
6584 }
6585 
6586 /// \brief Perform semantic checking on a newly-created variable
6587 /// declaration.
6588 ///
6589 /// This routine performs all of the type-checking required for a
6590 /// variable declaration once it has been built. It is used both to
6591 /// check variables after they have been parsed and their declarators
6592 /// have been translated into a declaration, and to check variables
6593 /// that have been instantiated from a template.
6594 ///
6595 /// Sets NewVD->isInvalidDecl() if an error was encountered.
6596 ///
6597 /// Returns true if the variable declaration is a redeclaration.
6598 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
6599   CheckVariableDeclarationType(NewVD);
6600 
6601   // If the decl is already known invalid, don't check it.
6602   if (NewVD->isInvalidDecl())
6603     return false;
6604 
6605   // If we did not find anything by this name, look for a non-visible
6606   // extern "C" declaration with the same name.
6607   if (Previous.empty() &&
6608       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
6609     Previous.setShadowed();
6610 
6611   if (!Previous.empty()) {
6612     MergeVarDecl(NewVD, Previous);
6613     return true;
6614   }
6615   return false;
6616 }
6617 
6618 namespace {
6619 struct FindOverriddenMethod {
6620   Sema *S;
6621   CXXMethodDecl *Method;
6622 
6623   /// Member lookup function that determines whether a given C++
6624   /// method overrides a method in a base class, to be used with
6625   /// CXXRecordDecl::lookupInBases().
6626   bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
6627     RecordDecl *BaseRecord =
6628         Specifier->getType()->getAs<RecordType>()->getDecl();
6629 
6630     DeclarationName Name = Method->getDeclName();
6631 
6632     // FIXME: Do we care about other names here too?
6633     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6634       // We really want to find the base class destructor here.
6635       QualType T = S->Context.getTypeDeclType(BaseRecord);
6636       CanQualType CT = S->Context.getCanonicalType(T);
6637 
6638       Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
6639     }
6640 
6641     for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
6642          Path.Decls = Path.Decls.slice(1)) {
6643       NamedDecl *D = Path.Decls.front();
6644       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
6645         if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
6646           return true;
6647       }
6648     }
6649 
6650     return false;
6651   }
6652 };
6653 
6654 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
6655 } // end anonymous namespace
6656 
6657 /// \brief Report an error regarding overriding, along with any relevant
6658 /// overriden methods.
6659 ///
6660 /// \param DiagID the primary error to report.
6661 /// \param MD the overriding method.
6662 /// \param OEK which overrides to include as notes.
6663 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
6664                             OverrideErrorKind OEK = OEK_All) {
6665   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6666   for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6667                                       E = MD->end_overridden_methods();
6668        I != E; ++I) {
6669     // This check (& the OEK parameter) could be replaced by a predicate, but
6670     // without lambdas that would be overkill. This is still nicer than writing
6671     // out the diag loop 3 times.
6672     if ((OEK == OEK_All) ||
6673         (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
6674         (OEK == OEK_Deleted && (*I)->isDeleted()))
6675       S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
6676   }
6677 }
6678 
6679 /// AddOverriddenMethods - See if a method overrides any in the base classes,
6680 /// and if so, check that it's a valid override and remember it.
6681 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
6682   // Look for methods in base classes that this method might override.
6683   CXXBasePaths Paths;
6684   FindOverriddenMethod FOM;
6685   FOM.Method = MD;
6686   FOM.S = this;
6687   bool hasDeletedOverridenMethods = false;
6688   bool hasNonDeletedOverridenMethods = false;
6689   bool AddedAny = false;
6690   if (DC->lookupInBases(FOM, Paths)) {
6691     for (auto *I : Paths.found_decls()) {
6692       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
6693         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
6694         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
6695             !CheckOverridingFunctionAttributes(MD, OldMD) &&
6696             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
6697             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
6698           hasDeletedOverridenMethods |= OldMD->isDeleted();
6699           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
6700           AddedAny = true;
6701         }
6702       }
6703     }
6704   }
6705 
6706   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
6707     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
6708   }
6709   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
6710     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
6711   }
6712 
6713   return AddedAny;
6714 }
6715 
6716 namespace {
6717   // Struct for holding all of the extra arguments needed by
6718   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
6719   struct ActOnFDArgs {
6720     Scope *S;
6721     Declarator &D;
6722     MultiTemplateParamsArg TemplateParamLists;
6723     bool AddToScope;
6724   };
6725 }
6726 
6727 namespace {
6728 
6729 // Callback to only accept typo corrections that have a non-zero edit distance.
6730 // Also only accept corrections that have the same parent decl.
6731 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
6732  public:
6733   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
6734                             CXXRecordDecl *Parent)
6735       : Context(Context), OriginalFD(TypoFD),
6736         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
6737 
6738   bool ValidateCandidate(const TypoCorrection &candidate) override {
6739     if (candidate.getEditDistance() == 0)
6740       return false;
6741 
6742     SmallVector<unsigned, 1> MismatchedParams;
6743     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
6744                                           CDeclEnd = candidate.end();
6745          CDecl != CDeclEnd; ++CDecl) {
6746       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6747 
6748       if (FD && !FD->hasBody() &&
6749           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
6750         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6751           CXXRecordDecl *Parent = MD->getParent();
6752           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
6753             return true;
6754         } else if (!ExpectedParent) {
6755           return true;
6756         }
6757       }
6758     }
6759 
6760     return false;
6761   }
6762 
6763  private:
6764   ASTContext &Context;
6765   FunctionDecl *OriginalFD;
6766   CXXRecordDecl *ExpectedParent;
6767 };
6768 
6769 }
6770 
6771 /// \brief Generate diagnostics for an invalid function redeclaration.
6772 ///
6773 /// This routine handles generating the diagnostic messages for an invalid
6774 /// function redeclaration, including finding possible similar declarations
6775 /// or performing typo correction if there are no previous declarations with
6776 /// the same name.
6777 ///
6778 /// Returns a NamedDecl iff typo correction was performed and substituting in
6779 /// the new declaration name does not cause new errors.
6780 static NamedDecl *DiagnoseInvalidRedeclaration(
6781     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
6782     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
6783   DeclarationName Name = NewFD->getDeclName();
6784   DeclContext *NewDC = NewFD->getDeclContext();
6785   SmallVector<unsigned, 1> MismatchedParams;
6786   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
6787   TypoCorrection Correction;
6788   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
6789   unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
6790                                    : diag::err_member_decl_does_not_match;
6791   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
6792                     IsLocalFriend ? Sema::LookupLocalFriendName
6793                                   : Sema::LookupOrdinaryName,
6794                     Sema::ForRedeclaration);
6795 
6796   NewFD->setInvalidDecl();
6797   if (IsLocalFriend)
6798     SemaRef.LookupName(Prev, S);
6799   else
6800     SemaRef.LookupQualifiedName(Prev, NewDC);
6801   assert(!Prev.isAmbiguous() &&
6802          "Cannot have an ambiguity in previous-declaration lookup");
6803   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6804   if (!Prev.empty()) {
6805     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
6806          Func != FuncEnd; ++Func) {
6807       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
6808       if (FD &&
6809           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6810         // Add 1 to the index so that 0 can mean the mismatch didn't
6811         // involve a parameter
6812         unsigned ParamNum =
6813             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
6814         NearMatches.push_back(std::make_pair(FD, ParamNum));
6815       }
6816     }
6817   // If the qualified name lookup yielded nothing, try typo correction
6818   } else if ((Correction = SemaRef.CorrectTypo(
6819                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
6820                   &ExtraArgs.D.getCXXScopeSpec(),
6821                   llvm::make_unique<DifferentNameValidatorCCC>(
6822                       SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr),
6823                   Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
6824     // Set up everything for the call to ActOnFunctionDeclarator
6825     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
6826                               ExtraArgs.D.getIdentifierLoc());
6827     Previous.clear();
6828     Previous.setLookupName(Correction.getCorrection());
6829     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
6830                                     CDeclEnd = Correction.end();
6831          CDecl != CDeclEnd; ++CDecl) {
6832       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6833       if (FD && !FD->hasBody() &&
6834           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6835         Previous.addDecl(FD);
6836       }
6837     }
6838     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
6839 
6840     NamedDecl *Result;
6841     // Retry building the function declaration with the new previous
6842     // declarations, and with errors suppressed.
6843     {
6844       // Trap errors.
6845       Sema::SFINAETrap Trap(SemaRef);
6846 
6847       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
6848       // pieces need to verify the typo-corrected C++ declaration and hopefully
6849       // eliminate the need for the parameter pack ExtraArgs.
6850       Result = SemaRef.ActOnFunctionDeclarator(
6851           ExtraArgs.S, ExtraArgs.D,
6852           Correction.getCorrectionDecl()->getDeclContext(),
6853           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
6854           ExtraArgs.AddToScope);
6855 
6856       if (Trap.hasErrorOccurred())
6857         Result = nullptr;
6858     }
6859 
6860     if (Result) {
6861       // Determine which correction we picked.
6862       Decl *Canonical = Result->getCanonicalDecl();
6863       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6864            I != E; ++I)
6865         if ((*I)->getCanonicalDecl() == Canonical)
6866           Correction.setCorrectionDecl(*I);
6867 
6868       SemaRef.diagnoseTypo(
6869           Correction,
6870           SemaRef.PDiag(IsLocalFriend
6871                           ? diag::err_no_matching_local_friend_suggest
6872                           : diag::err_member_decl_does_not_match_suggest)
6873             << Name << NewDC << IsDefinition);
6874       return Result;
6875     }
6876 
6877     // Pretend the typo correction never occurred
6878     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
6879                               ExtraArgs.D.getIdentifierLoc());
6880     ExtraArgs.D.setRedeclaration(wasRedeclaration);
6881     Previous.clear();
6882     Previous.setLookupName(Name);
6883   }
6884 
6885   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6886       << Name << NewDC << IsDefinition << NewFD->getLocation();
6887 
6888   bool NewFDisConst = false;
6889   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6890     NewFDisConst = NewMD->isConst();
6891 
6892   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6893        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6894        NearMatch != NearMatchEnd; ++NearMatch) {
6895     FunctionDecl *FD = NearMatch->first;
6896     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6897     bool FDisConst = MD && MD->isConst();
6898     bool IsMember = MD || !IsLocalFriend;
6899 
6900     // FIXME: These notes are poorly worded for the local friend case.
6901     if (unsigned Idx = NearMatch->second) {
6902       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
6903       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
6904       if (Loc.isInvalid()) Loc = FD->getLocation();
6905       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
6906                                  : diag::note_local_decl_close_param_match)
6907         << Idx << FDParam->getType()
6908         << NewFD->getParamDecl(Idx - 1)->getType();
6909     } else if (FDisConst != NewFDisConst) {
6910       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
6911           << NewFDisConst << FD->getSourceRange().getEnd();
6912     } else
6913       SemaRef.Diag(FD->getLocation(),
6914                    IsMember ? diag::note_member_def_close_match
6915                             : diag::note_local_decl_close_match);
6916   }
6917   return nullptr;
6918 }
6919 
6920 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
6921   switch (D.getDeclSpec().getStorageClassSpec()) {
6922   default: llvm_unreachable("Unknown storage class!");
6923   case DeclSpec::SCS_auto:
6924   case DeclSpec::SCS_register:
6925   case DeclSpec::SCS_mutable:
6926     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6927                  diag::err_typecheck_sclass_func);
6928     D.setInvalidType();
6929     break;
6930   case DeclSpec::SCS_unspecified: break;
6931   case DeclSpec::SCS_extern:
6932     if (D.getDeclSpec().isExternInLinkageSpec())
6933       return SC_None;
6934     return SC_Extern;
6935   case DeclSpec::SCS_static: {
6936     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6937       // C99 6.7.1p5:
6938       //   The declaration of an identifier for a function that has
6939       //   block scope shall have no explicit storage-class specifier
6940       //   other than extern
6941       // See also (C++ [dcl.stc]p4).
6942       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6943                    diag::err_static_block_func);
6944       break;
6945     } else
6946       return SC_Static;
6947   }
6948   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
6949   }
6950 
6951   // No explicit storage class has already been returned
6952   return SC_None;
6953 }
6954 
6955 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
6956                                            DeclContext *DC, QualType &R,
6957                                            TypeSourceInfo *TInfo,
6958                                            StorageClass SC,
6959                                            bool &IsVirtualOkay) {
6960   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
6961   DeclarationName Name = NameInfo.getName();
6962 
6963   FunctionDecl *NewFD = nullptr;
6964   bool isInline = D.getDeclSpec().isInlineSpecified();
6965 
6966   if (!SemaRef.getLangOpts().CPlusPlus) {
6967     // Determine whether the function was written with a
6968     // prototype. This true when:
6969     //   - there is a prototype in the declarator, or
6970     //   - the type R of the function is some kind of typedef or other reference
6971     //     to a type name (which eventually refers to a function type).
6972     bool HasPrototype =
6973       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
6974       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
6975 
6976     NewFD = FunctionDecl::Create(SemaRef.Context, DC,
6977                                  D.getLocStart(), NameInfo, R,
6978                                  TInfo, SC, isInline,
6979                                  HasPrototype, false);
6980     if (D.isInvalidType())
6981       NewFD->setInvalidDecl();
6982 
6983     return NewFD;
6984   }
6985 
6986   bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6987   bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6988 
6989   // Check that the return type is not an abstract class type.
6990   // For record types, this is done by the AbstractClassUsageDiagnoser once
6991   // the class has been completely parsed.
6992   if (!DC->isRecord() &&
6993       SemaRef.RequireNonAbstractType(
6994           D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
6995           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
6996     D.setInvalidType();
6997 
6998   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
6999     // This is a C++ constructor declaration.
7000     assert(DC->isRecord() &&
7001            "Constructors can only be declared in a member context");
7002 
7003     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
7004     return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
7005                                       D.getLocStart(), NameInfo,
7006                                       R, TInfo, isExplicit, isInline,
7007                                       /*isImplicitlyDeclared=*/false,
7008                                       isConstexpr);
7009 
7010   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7011     // This is a C++ destructor declaration.
7012     if (DC->isRecord()) {
7013       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
7014       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
7015       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
7016                                         SemaRef.Context, Record,
7017                                         D.getLocStart(),
7018                                         NameInfo, R, TInfo, isInline,
7019                                         /*isImplicitlyDeclared=*/false);
7020 
7021       // If the class is complete, then we now create the implicit exception
7022       // specification. If the class is incomplete or dependent, we can't do
7023       // it yet.
7024       if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
7025           Record->getDefinition() && !Record->isBeingDefined() &&
7026           R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
7027         SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
7028       }
7029 
7030       IsVirtualOkay = true;
7031       return NewDD;
7032 
7033     } else {
7034       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
7035       D.setInvalidType();
7036 
7037       // Create a FunctionDecl to satisfy the function definition parsing
7038       // code path.
7039       return FunctionDecl::Create(SemaRef.Context, DC,
7040                                   D.getLocStart(),
7041                                   D.getIdentifierLoc(), Name, R, TInfo,
7042                                   SC, isInline,
7043                                   /*hasPrototype=*/true, isConstexpr);
7044     }
7045 
7046   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
7047     if (!DC->isRecord()) {
7048       SemaRef.Diag(D.getIdentifierLoc(),
7049            diag::err_conv_function_not_member);
7050       return nullptr;
7051     }
7052 
7053     SemaRef.CheckConversionDeclarator(D, R, SC);
7054     IsVirtualOkay = true;
7055     return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
7056                                      D.getLocStart(), NameInfo,
7057                                      R, TInfo, isInline, isExplicit,
7058                                      isConstexpr, SourceLocation());
7059 
7060   } else if (DC->isRecord()) {
7061     // If the name of the function is the same as the name of the record,
7062     // then this must be an invalid constructor that has a return type.
7063     // (The parser checks for a return type and makes the declarator a
7064     // constructor if it has no return type).
7065     if (Name.getAsIdentifierInfo() &&
7066         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
7067       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
7068         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
7069         << SourceRange(D.getIdentifierLoc());
7070       return nullptr;
7071     }
7072 
7073     // This is a C++ method declaration.
7074     CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
7075                                                cast<CXXRecordDecl>(DC),
7076                                                D.getLocStart(), NameInfo, R,
7077                                                TInfo, SC, isInline,
7078                                                isConstexpr, SourceLocation());
7079     IsVirtualOkay = !Ret->isStatic();
7080     return Ret;
7081   } else {
7082     bool isFriend =
7083         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
7084     if (!isFriend && SemaRef.CurContext->isRecord())
7085       return nullptr;
7086 
7087     // Determine whether the function was written with a
7088     // prototype. This true when:
7089     //   - we're in C++ (where every function has a prototype),
7090     return FunctionDecl::Create(SemaRef.Context, DC,
7091                                 D.getLocStart(),
7092                                 NameInfo, R, TInfo, SC, isInline,
7093                                 true/*HasPrototype*/, isConstexpr);
7094   }
7095 }
7096 
7097 enum OpenCLParamType {
7098   ValidKernelParam,
7099   PtrPtrKernelParam,
7100   PtrKernelParam,
7101   PrivatePtrKernelParam,
7102   InvalidKernelParam,
7103   RecordKernelParam
7104 };
7105 
7106 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
7107   if (PT->isPointerType()) {
7108     QualType PointeeType = PT->getPointeeType();
7109     if (PointeeType->isPointerType())
7110       return PtrPtrKernelParam;
7111     return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam
7112                                               : PtrKernelParam;
7113   }
7114 
7115   // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
7116   // be used as builtin types.
7117 
7118   if (PT->isImageType())
7119     return PtrKernelParam;
7120 
7121   if (PT->isBooleanType())
7122     return InvalidKernelParam;
7123 
7124   if (PT->isEventT())
7125     return InvalidKernelParam;
7126 
7127   if (PT->isHalfType())
7128     return InvalidKernelParam;
7129 
7130   if (PT->isRecordType())
7131     return RecordKernelParam;
7132 
7133   return ValidKernelParam;
7134 }
7135 
7136 static void checkIsValidOpenCLKernelParameter(
7137   Sema &S,
7138   Declarator &D,
7139   ParmVarDecl *Param,
7140   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
7141   QualType PT = Param->getType();
7142 
7143   // Cache the valid types we encounter to avoid rechecking structs that are
7144   // used again
7145   if (ValidTypes.count(PT.getTypePtr()))
7146     return;
7147 
7148   switch (getOpenCLKernelParameterType(PT)) {
7149   case PtrPtrKernelParam:
7150     // OpenCL v1.2 s6.9.a:
7151     // A kernel function argument cannot be declared as a
7152     // pointer to a pointer type.
7153     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
7154     D.setInvalidType();
7155     return;
7156 
7157   case PrivatePtrKernelParam:
7158     // OpenCL v1.2 s6.9.a:
7159     // A kernel function argument cannot be declared as a
7160     // pointer to the private address space.
7161     S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param);
7162     D.setInvalidType();
7163     return;
7164 
7165     // OpenCL v1.2 s6.9.k:
7166     // Arguments to kernel functions in a program cannot be declared with the
7167     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
7168     // uintptr_t or a struct and/or union that contain fields declared to be
7169     // one of these built-in scalar types.
7170 
7171   case InvalidKernelParam:
7172     // OpenCL v1.2 s6.8 n:
7173     // A kernel function argument cannot be declared
7174     // of event_t type.
7175     S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
7176     D.setInvalidType();
7177     return;
7178 
7179   case PtrKernelParam:
7180   case ValidKernelParam:
7181     ValidTypes.insert(PT.getTypePtr());
7182     return;
7183 
7184   case RecordKernelParam:
7185     break;
7186   }
7187 
7188   // Track nested structs we will inspect
7189   SmallVector<const Decl *, 4> VisitStack;
7190 
7191   // Track where we are in the nested structs. Items will migrate from
7192   // VisitStack to HistoryStack as we do the DFS for bad field.
7193   SmallVector<const FieldDecl *, 4> HistoryStack;
7194   HistoryStack.push_back(nullptr);
7195 
7196   const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
7197   VisitStack.push_back(PD);
7198 
7199   assert(VisitStack.back() && "First decl null?");
7200 
7201   do {
7202     const Decl *Next = VisitStack.pop_back_val();
7203     if (!Next) {
7204       assert(!HistoryStack.empty());
7205       // Found a marker, we have gone up a level
7206       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
7207         ValidTypes.insert(Hist->getType().getTypePtr());
7208 
7209       continue;
7210     }
7211 
7212     // Adds everything except the original parameter declaration (which is not a
7213     // field itself) to the history stack.
7214     const RecordDecl *RD;
7215     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
7216       HistoryStack.push_back(Field);
7217       RD = Field->getType()->castAs<RecordType>()->getDecl();
7218     } else {
7219       RD = cast<RecordDecl>(Next);
7220     }
7221 
7222     // Add a null marker so we know when we've gone back up a level
7223     VisitStack.push_back(nullptr);
7224 
7225     for (const auto *FD : RD->fields()) {
7226       QualType QT = FD->getType();
7227 
7228       if (ValidTypes.count(QT.getTypePtr()))
7229         continue;
7230 
7231       OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
7232       if (ParamType == ValidKernelParam)
7233         continue;
7234 
7235       if (ParamType == RecordKernelParam) {
7236         VisitStack.push_back(FD);
7237         continue;
7238       }
7239 
7240       // OpenCL v1.2 s6.9.p:
7241       // Arguments to kernel functions that are declared to be a struct or union
7242       // do not allow OpenCL objects to be passed as elements of the struct or
7243       // union.
7244       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
7245           ParamType == PrivatePtrKernelParam) {
7246         S.Diag(Param->getLocation(),
7247                diag::err_record_with_pointers_kernel_param)
7248           << PT->isUnionType()
7249           << PT;
7250       } else {
7251         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
7252       }
7253 
7254       S.Diag(PD->getLocation(), diag::note_within_field_of_type)
7255         << PD->getDeclName();
7256 
7257       // We have an error, now let's go back up through history and show where
7258       // the offending field came from
7259       for (ArrayRef<const FieldDecl *>::const_iterator
7260                I = HistoryStack.begin() + 1,
7261                E = HistoryStack.end();
7262            I != E; ++I) {
7263         const FieldDecl *OuterField = *I;
7264         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
7265           << OuterField->getType();
7266       }
7267 
7268       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
7269         << QT->isPointerType()
7270         << QT;
7271       D.setInvalidType();
7272       return;
7273     }
7274   } while (!VisitStack.empty());
7275 }
7276 
7277 NamedDecl*
7278 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
7279                               TypeSourceInfo *TInfo, LookupResult &Previous,
7280                               MultiTemplateParamsArg TemplateParamLists,
7281                               bool &AddToScope) {
7282   QualType R = TInfo->getType();
7283 
7284   assert(R.getTypePtr()->isFunctionType());
7285 
7286   // TODO: consider using NameInfo for diagnostic.
7287   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7288   DeclarationName Name = NameInfo.getName();
7289   StorageClass SC = getFunctionStorageClass(*this, D);
7290 
7291   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
7292     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7293          diag::err_invalid_thread)
7294       << DeclSpec::getSpecifierName(TSCS);
7295 
7296   if (D.isFirstDeclarationOfMember())
7297     adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
7298                            D.getIdentifierLoc());
7299 
7300   bool isFriend = false;
7301   FunctionTemplateDecl *FunctionTemplate = nullptr;
7302   bool isExplicitSpecialization = false;
7303   bool isFunctionTemplateSpecialization = false;
7304 
7305   bool isDependentClassScopeExplicitSpecialization = false;
7306   bool HasExplicitTemplateArgs = false;
7307   TemplateArgumentListInfo TemplateArgs;
7308 
7309   bool isVirtualOkay = false;
7310 
7311   DeclContext *OriginalDC = DC;
7312   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
7313 
7314   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
7315                                               isVirtualOkay);
7316   if (!NewFD) return nullptr;
7317 
7318   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
7319     NewFD->setTopLevelDeclInObjCContainer();
7320 
7321   // Set the lexical context. If this is a function-scope declaration, or has a
7322   // C++ scope specifier, or is the object of a friend declaration, the lexical
7323   // context will be different from the semantic context.
7324   NewFD->setLexicalDeclContext(CurContext);
7325 
7326   if (IsLocalExternDecl)
7327     NewFD->setLocalExternDecl();
7328 
7329   if (getLangOpts().CPlusPlus) {
7330     bool isInline = D.getDeclSpec().isInlineSpecified();
7331     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
7332     bool isExplicit = D.getDeclSpec().isExplicitSpecified();
7333     bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
7334     bool isConcept = D.getDeclSpec().isConceptSpecified();
7335     isFriend = D.getDeclSpec().isFriendSpecified();
7336     if (isFriend && !isInline && D.isFunctionDefinition()) {
7337       // C++ [class.friend]p5
7338       //   A function can be defined in a friend declaration of a
7339       //   class . . . . Such a function is implicitly inline.
7340       NewFD->setImplicitlyInline();
7341     }
7342 
7343     // If this is a method defined in an __interface, and is not a constructor
7344     // or an overloaded operator, then set the pure flag (isVirtual will already
7345     // return true).
7346     if (const CXXRecordDecl *Parent =
7347           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
7348       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
7349         NewFD->setPure(true);
7350 
7351       // C++ [class.union]p2
7352       //   A union can have member functions, but not virtual functions.
7353       if (isVirtual && Parent->isUnion())
7354         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
7355     }
7356 
7357     SetNestedNameSpecifier(NewFD, D);
7358     isExplicitSpecialization = false;
7359     isFunctionTemplateSpecialization = false;
7360     if (D.isInvalidType())
7361       NewFD->setInvalidDecl();
7362 
7363     // Match up the template parameter lists with the scope specifier, then
7364     // determine whether we have a template or a template specialization.
7365     bool Invalid = false;
7366     if (TemplateParameterList *TemplateParams =
7367             MatchTemplateParametersToScopeSpecifier(
7368                 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
7369                 D.getCXXScopeSpec(),
7370                 D.getName().getKind() == UnqualifiedId::IK_TemplateId
7371                     ? D.getName().TemplateId
7372                     : nullptr,
7373                 TemplateParamLists, isFriend, isExplicitSpecialization,
7374                 Invalid)) {
7375       if (TemplateParams->size() > 0) {
7376         // This is a function template
7377 
7378         // Check that we can declare a template here.
7379         if (CheckTemplateDeclScope(S, TemplateParams))
7380           NewFD->setInvalidDecl();
7381 
7382         // A destructor cannot be a template.
7383         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7384           Diag(NewFD->getLocation(), diag::err_destructor_template);
7385           NewFD->setInvalidDecl();
7386         }
7387 
7388         // If we're adding a template to a dependent context, we may need to
7389         // rebuilding some of the types used within the template parameter list,
7390         // now that we know what the current instantiation is.
7391         if (DC->isDependentContext()) {
7392           ContextRAII SavedContext(*this, DC);
7393           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
7394             Invalid = true;
7395         }
7396 
7397 
7398         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
7399                                                         NewFD->getLocation(),
7400                                                         Name, TemplateParams,
7401                                                         NewFD);
7402         FunctionTemplate->setLexicalDeclContext(CurContext);
7403         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
7404 
7405         // For source fidelity, store the other template param lists.
7406         if (TemplateParamLists.size() > 1) {
7407           NewFD->setTemplateParameterListsInfo(Context,
7408                                                TemplateParamLists.drop_back(1));
7409         }
7410       } else {
7411         // This is a function template specialization.
7412         isFunctionTemplateSpecialization = true;
7413         // For source fidelity, store all the template param lists.
7414         if (TemplateParamLists.size() > 0)
7415           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
7416 
7417         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
7418         if (isFriend) {
7419           // We want to remove the "template<>", found here.
7420           SourceRange RemoveRange = TemplateParams->getSourceRange();
7421 
7422           // If we remove the template<> and the name is not a
7423           // template-id, we're actually silently creating a problem:
7424           // the friend declaration will refer to an untemplated decl,
7425           // and clearly the user wants a template specialization.  So
7426           // we need to insert '<>' after the name.
7427           SourceLocation InsertLoc;
7428           if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7429             InsertLoc = D.getName().getSourceRange().getEnd();
7430             InsertLoc = getLocForEndOfToken(InsertLoc);
7431           }
7432 
7433           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
7434             << Name << RemoveRange
7435             << FixItHint::CreateRemoval(RemoveRange)
7436             << FixItHint::CreateInsertion(InsertLoc, "<>");
7437         }
7438       }
7439     }
7440     else {
7441       // All template param lists were matched against the scope specifier:
7442       // this is NOT (an explicit specialization of) a template.
7443       if (TemplateParamLists.size() > 0)
7444         // For source fidelity, store all the template param lists.
7445         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
7446     }
7447 
7448     if (Invalid) {
7449       NewFD->setInvalidDecl();
7450       if (FunctionTemplate)
7451         FunctionTemplate->setInvalidDecl();
7452     }
7453 
7454     // C++ [dcl.fct.spec]p5:
7455     //   The virtual specifier shall only be used in declarations of
7456     //   nonstatic class member functions that appear within a
7457     //   member-specification of a class declaration; see 10.3.
7458     //
7459     if (isVirtual && !NewFD->isInvalidDecl()) {
7460       if (!isVirtualOkay) {
7461         Diag(D.getDeclSpec().getVirtualSpecLoc(),
7462              diag::err_virtual_non_function);
7463       } else if (!CurContext->isRecord()) {
7464         // 'virtual' was specified outside of the class.
7465         Diag(D.getDeclSpec().getVirtualSpecLoc(),
7466              diag::err_virtual_out_of_class)
7467           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
7468       } else if (NewFD->getDescribedFunctionTemplate()) {
7469         // C++ [temp.mem]p3:
7470         //  A member function template shall not be virtual.
7471         Diag(D.getDeclSpec().getVirtualSpecLoc(),
7472              diag::err_virtual_member_function_template)
7473           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
7474       } else {
7475         // Okay: Add virtual to the method.
7476         NewFD->setVirtualAsWritten(true);
7477       }
7478 
7479       if (getLangOpts().CPlusPlus14 &&
7480           NewFD->getReturnType()->isUndeducedType())
7481         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
7482     }
7483 
7484     if (getLangOpts().CPlusPlus14 &&
7485         (NewFD->isDependentContext() ||
7486          (isFriend && CurContext->isDependentContext())) &&
7487         NewFD->getReturnType()->isUndeducedType()) {
7488       // If the function template is referenced directly (for instance, as a
7489       // member of the current instantiation), pretend it has a dependent type.
7490       // This is not really justified by the standard, but is the only sane
7491       // thing to do.
7492       // FIXME: For a friend function, we have not marked the function as being
7493       // a friend yet, so 'isDependentContext' on the FD doesn't work.
7494       const FunctionProtoType *FPT =
7495           NewFD->getType()->castAs<FunctionProtoType>();
7496       QualType Result =
7497           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
7498       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
7499                                              FPT->getExtProtoInfo()));
7500     }
7501 
7502     // C++ [dcl.fct.spec]p3:
7503     //  The inline specifier shall not appear on a block scope function
7504     //  declaration.
7505     if (isInline && !NewFD->isInvalidDecl()) {
7506       if (CurContext->isFunctionOrMethod()) {
7507         // 'inline' is not allowed on block scope function declaration.
7508         Diag(D.getDeclSpec().getInlineSpecLoc(),
7509              diag::err_inline_declaration_block_scope) << Name
7510           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7511       }
7512     }
7513 
7514     // C++ [dcl.fct.spec]p6:
7515     //  The explicit specifier shall be used only in the declaration of a
7516     //  constructor or conversion function within its class definition;
7517     //  see 12.3.1 and 12.3.2.
7518     if (isExplicit && !NewFD->isInvalidDecl()) {
7519       if (!CurContext->isRecord()) {
7520         // 'explicit' was specified outside of the class.
7521         Diag(D.getDeclSpec().getExplicitSpecLoc(),
7522              diag::err_explicit_out_of_class)
7523           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7524       } else if (!isa<CXXConstructorDecl>(NewFD) &&
7525                  !isa<CXXConversionDecl>(NewFD)) {
7526         // 'explicit' was specified on a function that wasn't a constructor
7527         // or conversion function.
7528         Diag(D.getDeclSpec().getExplicitSpecLoc(),
7529              diag::err_explicit_non_ctor_or_conv_function)
7530           << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7531       }
7532     }
7533 
7534     if (isConstexpr) {
7535       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
7536       // are implicitly inline.
7537       NewFD->setImplicitlyInline();
7538 
7539       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
7540       // be either constructors or to return a literal type. Therefore,
7541       // destructors cannot be declared constexpr.
7542       if (isa<CXXDestructorDecl>(NewFD))
7543         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
7544     }
7545 
7546     if (isConcept) {
7547       // C++ Concepts TS [dcl.spec.concept]p1: The concept specifier shall be
7548       // applied only to the definition of a function template [...]
7549       if (!D.isFunctionDefinition()) {
7550         Diag(D.getDeclSpec().getConceptSpecLoc(),
7551              diag::err_function_concept_not_defined);
7552         NewFD->setInvalidDecl();
7553       }
7554 
7555       // C++ Concepts TS [dcl.spec.concept]p1: [...] A function concept shall
7556       // have no exception-specification and is treated as if it were specified
7557       // with noexcept(true) (15.4). [...]
7558       if (const FunctionProtoType *FPT = R->getAs<FunctionProtoType>()) {
7559         if (FPT->hasExceptionSpec()) {
7560           SourceRange Range;
7561           if (D.isFunctionDeclarator())
7562             Range = D.getFunctionTypeInfo().getExceptionSpecRange();
7563           Diag(NewFD->getLocation(), diag::err_function_concept_exception_spec)
7564               << FixItHint::CreateRemoval(Range);
7565           NewFD->setInvalidDecl();
7566         } else {
7567           Context.adjustExceptionSpec(NewFD, EST_BasicNoexcept);
7568         }
7569       }
7570 
7571       // C++ Concepts TS [dcl.spec.concept]p2: Every concept definition is
7572       // implicity defined to be a constexpr declaration (implicitly inline)
7573       NewFD->setImplicitlyInline();
7574 
7575       // C++ Concepts TS [dcl.spec.concept]p2: A concept definition shall not
7576       // be declared with the thread_local, inline, friend, or constexpr
7577       // specifiers, [...]
7578       if (isInline) {
7579         Diag(D.getDeclSpec().getInlineSpecLoc(),
7580              diag::err_concept_decl_invalid_specifiers)
7581             << 1 << 1;
7582         NewFD->setInvalidDecl(true);
7583       }
7584 
7585       if (isFriend) {
7586         Diag(D.getDeclSpec().getFriendSpecLoc(),
7587              diag::err_concept_decl_invalid_specifiers)
7588             << 1 << 2;
7589         NewFD->setInvalidDecl(true);
7590       }
7591 
7592       if (isConstexpr) {
7593         Diag(D.getDeclSpec().getConstexprSpecLoc(),
7594              diag::err_concept_decl_invalid_specifiers)
7595             << 1 << 3;
7596         NewFD->setInvalidDecl(true);
7597       }
7598     }
7599 
7600     // If __module_private__ was specified, mark the function accordingly.
7601     if (D.getDeclSpec().isModulePrivateSpecified()) {
7602       if (isFunctionTemplateSpecialization) {
7603         SourceLocation ModulePrivateLoc
7604           = D.getDeclSpec().getModulePrivateSpecLoc();
7605         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
7606           << 0
7607           << FixItHint::CreateRemoval(ModulePrivateLoc);
7608       } else {
7609         NewFD->setModulePrivate();
7610         if (FunctionTemplate)
7611           FunctionTemplate->setModulePrivate();
7612       }
7613     }
7614 
7615     if (isFriend) {
7616       if (FunctionTemplate) {
7617         FunctionTemplate->setObjectOfFriendDecl();
7618         FunctionTemplate->setAccess(AS_public);
7619       }
7620       NewFD->setObjectOfFriendDecl();
7621       NewFD->setAccess(AS_public);
7622     }
7623 
7624     // If a function is defined as defaulted or deleted, mark it as such now.
7625     // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
7626     // definition kind to FDK_Definition.
7627     switch (D.getFunctionDefinitionKind()) {
7628       case FDK_Declaration:
7629       case FDK_Definition:
7630         break;
7631 
7632       case FDK_Defaulted:
7633         NewFD->setDefaulted();
7634         break;
7635 
7636       case FDK_Deleted:
7637         NewFD->setDeletedAsWritten();
7638         break;
7639     }
7640 
7641     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
7642         D.isFunctionDefinition()) {
7643       // C++ [class.mfct]p2:
7644       //   A member function may be defined (8.4) in its class definition, in
7645       //   which case it is an inline member function (7.1.2)
7646       NewFD->setImplicitlyInline();
7647     }
7648 
7649     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
7650         !CurContext->isRecord()) {
7651       // C++ [class.static]p1:
7652       //   A data or function member of a class may be declared static
7653       //   in a class definition, in which case it is a static member of
7654       //   the class.
7655 
7656       // Complain about the 'static' specifier if it's on an out-of-line
7657       // member function definition.
7658       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7659            diag::err_static_out_of_line)
7660         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7661     }
7662 
7663     // C++11 [except.spec]p15:
7664     //   A deallocation function with no exception-specification is treated
7665     //   as if it were specified with noexcept(true).
7666     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
7667     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
7668          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
7669         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
7670       NewFD->setType(Context.getFunctionType(
7671           FPT->getReturnType(), FPT->getParamTypes(),
7672           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
7673   }
7674 
7675   // Filter out previous declarations that don't match the scope.
7676   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
7677                        D.getCXXScopeSpec().isNotEmpty() ||
7678                        isExplicitSpecialization ||
7679                        isFunctionTemplateSpecialization);
7680 
7681   // Handle GNU asm-label extension (encoded as an attribute).
7682   if (Expr *E = (Expr*) D.getAsmLabel()) {
7683     // The parser guarantees this is a string.
7684     StringLiteral *SE = cast<StringLiteral>(E);
7685     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
7686                                                 SE->getString(), 0));
7687   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7688     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7689       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
7690     if (I != ExtnameUndeclaredIdentifiers.end()) {
7691       if (isDeclExternC(NewFD)) {
7692         NewFD->addAttr(I->second);
7693         ExtnameUndeclaredIdentifiers.erase(I);
7694       } else
7695         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
7696             << /*Variable*/0 << NewFD;
7697     }
7698   }
7699 
7700   // Copy the parameter declarations from the declarator D to the function
7701   // declaration NewFD, if they are available.  First scavenge them into Params.
7702   SmallVector<ParmVarDecl*, 16> Params;
7703   if (D.isFunctionDeclarator()) {
7704     DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7705 
7706     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
7707     // function that takes no arguments, not a function that takes a
7708     // single void argument.
7709     // We let through "const void" here because Sema::GetTypeForDeclarator
7710     // already checks for that case.
7711     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
7712       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
7713         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
7714         assert(Param->getDeclContext() != NewFD && "Was set before ?");
7715         Param->setDeclContext(NewFD);
7716         Params.push_back(Param);
7717 
7718         if (Param->isInvalidDecl())
7719           NewFD->setInvalidDecl();
7720       }
7721     }
7722 
7723   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
7724     // When we're declaring a function with a typedef, typeof, etc as in the
7725     // following example, we'll need to synthesize (unnamed)
7726     // parameters for use in the declaration.
7727     //
7728     // @code
7729     // typedef void fn(int);
7730     // fn f;
7731     // @endcode
7732 
7733     // Synthesize a parameter for each argument type.
7734     for (const auto &AI : FT->param_types()) {
7735       ParmVarDecl *Param =
7736           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
7737       Param->setScopeInfo(0, Params.size());
7738       Params.push_back(Param);
7739     }
7740   } else {
7741     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
7742            "Should not need args for typedef of non-prototype fn");
7743   }
7744 
7745   // Finally, we know we have the right number of parameters, install them.
7746   NewFD->setParams(Params);
7747 
7748   // Find all anonymous symbols defined during the declaration of this function
7749   // and add to NewFD. This lets us track decls such 'enum Y' in:
7750   //
7751   //   void f(enum Y {AA} x) {}
7752   //
7753   // which would otherwise incorrectly end up in the translation unit scope.
7754   NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
7755   DeclsInPrototypeScope.clear();
7756 
7757   if (D.getDeclSpec().isNoreturnSpecified())
7758     NewFD->addAttr(
7759         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
7760                                        Context, 0));
7761 
7762   // Functions returning a variably modified type violate C99 6.7.5.2p2
7763   // because all functions have linkage.
7764   if (!NewFD->isInvalidDecl() &&
7765       NewFD->getReturnType()->isVariablyModifiedType()) {
7766     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
7767     NewFD->setInvalidDecl();
7768   }
7769 
7770   // Apply an implicit SectionAttr if #pragma code_seg is active.
7771   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
7772       !NewFD->hasAttr<SectionAttr>()) {
7773     NewFD->addAttr(
7774         SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
7775                                     CodeSegStack.CurrentValue->getString(),
7776                                     CodeSegStack.CurrentPragmaLocation));
7777     if (UnifySection(CodeSegStack.CurrentValue->getString(),
7778                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
7779                          ASTContext::PSF_Read,
7780                      NewFD))
7781       NewFD->dropAttr<SectionAttr>();
7782   }
7783 
7784   // Handle attributes.
7785   ProcessDeclAttributes(S, NewFD, D);
7786 
7787   if (getLangOpts().OpenCL) {
7788     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
7789     // type declaration will generate a compilation error.
7790     unsigned AddressSpace = NewFD->getReturnType().getAddressSpace();
7791     if (AddressSpace == LangAS::opencl_local ||
7792         AddressSpace == LangAS::opencl_global ||
7793         AddressSpace == LangAS::opencl_constant) {
7794       Diag(NewFD->getLocation(),
7795            diag::err_opencl_return_value_with_address_space);
7796       NewFD->setInvalidDecl();
7797     }
7798   }
7799 
7800   if (!getLangOpts().CPlusPlus) {
7801     // Perform semantic checking on the function declaration.
7802     bool isExplicitSpecialization=false;
7803     if (!NewFD->isInvalidDecl() && NewFD->isMain())
7804       CheckMain(NewFD, D.getDeclSpec());
7805 
7806     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7807       CheckMSVCRTEntryPoint(NewFD);
7808 
7809     if (!NewFD->isInvalidDecl())
7810       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7811                                                   isExplicitSpecialization));
7812     else if (!Previous.empty())
7813       // Recover gracefully from an invalid redeclaration.
7814       D.setRedeclaration(true);
7815     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7816             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7817            "previous declaration set still overloaded");
7818 
7819     // Diagnose no-prototype function declarations with calling conventions that
7820     // don't support variadic calls. Only do this in C and do it after merging
7821     // possibly prototyped redeclarations.
7822     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
7823     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
7824       CallingConv CC = FT->getExtInfo().getCC();
7825       if (!supportsVariadicCall(CC)) {
7826         // Windows system headers sometimes accidentally use stdcall without
7827         // (void) parameters, so we relax this to a warning.
7828         int DiagID =
7829             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
7830         Diag(NewFD->getLocation(), DiagID)
7831             << FunctionType::getNameForCallConv(CC);
7832       }
7833     }
7834   } else {
7835     // C++11 [replacement.functions]p3:
7836     //  The program's definitions shall not be specified as inline.
7837     //
7838     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
7839     //
7840     // Suppress the diagnostic if the function is __attribute__((used)), since
7841     // that forces an external definition to be emitted.
7842     if (D.getDeclSpec().isInlineSpecified() &&
7843         NewFD->isReplaceableGlobalAllocationFunction() &&
7844         !NewFD->hasAttr<UsedAttr>())
7845       Diag(D.getDeclSpec().getInlineSpecLoc(),
7846            diag::ext_operator_new_delete_declared_inline)
7847         << NewFD->getDeclName();
7848 
7849     // If the declarator is a template-id, translate the parser's template
7850     // argument list into our AST format.
7851     if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7852       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7853       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7854       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7855       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7856                                          TemplateId->NumArgs);
7857       translateTemplateArguments(TemplateArgsPtr,
7858                                  TemplateArgs);
7859 
7860       HasExplicitTemplateArgs = true;
7861 
7862       if (NewFD->isInvalidDecl()) {
7863         HasExplicitTemplateArgs = false;
7864       } else if (FunctionTemplate) {
7865         // Function template with explicit template arguments.
7866         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
7867           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
7868 
7869         HasExplicitTemplateArgs = false;
7870       } else {
7871         assert((isFunctionTemplateSpecialization ||
7872                 D.getDeclSpec().isFriendSpecified()) &&
7873                "should have a 'template<>' for this decl");
7874         // "friend void foo<>(int);" is an implicit specialization decl.
7875         isFunctionTemplateSpecialization = true;
7876       }
7877     } else if (isFriend && isFunctionTemplateSpecialization) {
7878       // This combination is only possible in a recovery case;  the user
7879       // wrote something like:
7880       //   template <> friend void foo(int);
7881       // which we're recovering from as if the user had written:
7882       //   friend void foo<>(int);
7883       // Go ahead and fake up a template id.
7884       HasExplicitTemplateArgs = true;
7885       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
7886       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
7887     }
7888 
7889     // If it's a friend (and only if it's a friend), it's possible
7890     // that either the specialized function type or the specialized
7891     // template is dependent, and therefore matching will fail.  In
7892     // this case, don't check the specialization yet.
7893     bool InstantiationDependent = false;
7894     if (isFunctionTemplateSpecialization && isFriend &&
7895         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
7896          TemplateSpecializationType::anyDependentTemplateArguments(
7897             TemplateArgs.getArgumentArray(), TemplateArgs.size(),
7898             InstantiationDependent))) {
7899       assert(HasExplicitTemplateArgs &&
7900              "friend function specialization without template args");
7901       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
7902                                                        Previous))
7903         NewFD->setInvalidDecl();
7904     } else if (isFunctionTemplateSpecialization) {
7905       if (CurContext->isDependentContext() && CurContext->isRecord()
7906           && !isFriend) {
7907         isDependentClassScopeExplicitSpecialization = true;
7908         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
7909           diag::ext_function_specialization_in_class :
7910           diag::err_function_specialization_in_class)
7911           << NewFD->getDeclName();
7912       } else if (CheckFunctionTemplateSpecialization(NewFD,
7913                                   (HasExplicitTemplateArgs ? &TemplateArgs
7914                                                            : nullptr),
7915                                                      Previous))
7916         NewFD->setInvalidDecl();
7917 
7918       // C++ [dcl.stc]p1:
7919       //   A storage-class-specifier shall not be specified in an explicit
7920       //   specialization (14.7.3)
7921       FunctionTemplateSpecializationInfo *Info =
7922           NewFD->getTemplateSpecializationInfo();
7923       if (Info && SC != SC_None) {
7924         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
7925           Diag(NewFD->getLocation(),
7926                diag::err_explicit_specialization_inconsistent_storage_class)
7927             << SC
7928             << FixItHint::CreateRemoval(
7929                                       D.getDeclSpec().getStorageClassSpecLoc());
7930 
7931         else
7932           Diag(NewFD->getLocation(),
7933                diag::ext_explicit_specialization_storage_class)
7934             << FixItHint::CreateRemoval(
7935                                       D.getDeclSpec().getStorageClassSpecLoc());
7936       }
7937 
7938     } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
7939       if (CheckMemberSpecialization(NewFD, Previous))
7940           NewFD->setInvalidDecl();
7941     }
7942 
7943     // Perform semantic checking on the function declaration.
7944     if (!isDependentClassScopeExplicitSpecialization) {
7945       if (!NewFD->isInvalidDecl() && NewFD->isMain())
7946         CheckMain(NewFD, D.getDeclSpec());
7947 
7948       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7949         CheckMSVCRTEntryPoint(NewFD);
7950 
7951       if (!NewFD->isInvalidDecl())
7952         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7953                                                     isExplicitSpecialization));
7954       else if (!Previous.empty())
7955         // Recover gracefully from an invalid redeclaration.
7956         D.setRedeclaration(true);
7957     }
7958 
7959     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7960             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7961            "previous declaration set still overloaded");
7962 
7963     NamedDecl *PrincipalDecl = (FunctionTemplate
7964                                 ? cast<NamedDecl>(FunctionTemplate)
7965                                 : NewFD);
7966 
7967     if (isFriend && D.isRedeclaration()) {
7968       AccessSpecifier Access = AS_public;
7969       if (!NewFD->isInvalidDecl())
7970         Access = NewFD->getPreviousDecl()->getAccess();
7971 
7972       NewFD->setAccess(Access);
7973       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
7974     }
7975 
7976     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
7977         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
7978       PrincipalDecl->setNonMemberOperator();
7979 
7980     // If we have a function template, check the template parameter
7981     // list. This will check and merge default template arguments.
7982     if (FunctionTemplate) {
7983       FunctionTemplateDecl *PrevTemplate =
7984                                      FunctionTemplate->getPreviousDecl();
7985       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
7986                        PrevTemplate ? PrevTemplate->getTemplateParameters()
7987                                     : nullptr,
7988                             D.getDeclSpec().isFriendSpecified()
7989                               ? (D.isFunctionDefinition()
7990                                    ? TPC_FriendFunctionTemplateDefinition
7991                                    : TPC_FriendFunctionTemplate)
7992                               : (D.getCXXScopeSpec().isSet() &&
7993                                  DC && DC->isRecord() &&
7994                                  DC->isDependentContext())
7995                                   ? TPC_ClassTemplateMember
7996                                   : TPC_FunctionTemplate);
7997     }
7998 
7999     if (NewFD->isInvalidDecl()) {
8000       // Ignore all the rest of this.
8001     } else if (!D.isRedeclaration()) {
8002       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
8003                                        AddToScope };
8004       // Fake up an access specifier if it's supposed to be a class member.
8005       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
8006         NewFD->setAccess(AS_public);
8007 
8008       // Qualified decls generally require a previous declaration.
8009       if (D.getCXXScopeSpec().isSet()) {
8010         // ...with the major exception of templated-scope or
8011         // dependent-scope friend declarations.
8012 
8013         // TODO: we currently also suppress this check in dependent
8014         // contexts because (1) the parameter depth will be off when
8015         // matching friend templates and (2) we might actually be
8016         // selecting a friend based on a dependent factor.  But there
8017         // are situations where these conditions don't apply and we
8018         // can actually do this check immediately.
8019         if (isFriend &&
8020             (TemplateParamLists.size() ||
8021              D.getCXXScopeSpec().getScopeRep()->isDependent() ||
8022              CurContext->isDependentContext())) {
8023           // ignore these
8024         } else {
8025           // The user tried to provide an out-of-line definition for a
8026           // function that is a member of a class or namespace, but there
8027           // was no such member function declared (C++ [class.mfct]p2,
8028           // C++ [namespace.memdef]p2). For example:
8029           //
8030           // class X {
8031           //   void f() const;
8032           // };
8033           //
8034           // void X::f() { } // ill-formed
8035           //
8036           // Complain about this problem, and attempt to suggest close
8037           // matches (e.g., those that differ only in cv-qualifiers and
8038           // whether the parameter types are references).
8039 
8040           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
8041                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
8042             AddToScope = ExtraArgs.AddToScope;
8043             return Result;
8044           }
8045         }
8046 
8047         // Unqualified local friend declarations are required to resolve
8048         // to something.
8049       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
8050         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
8051                 *this, Previous, NewFD, ExtraArgs, true, S)) {
8052           AddToScope = ExtraArgs.AddToScope;
8053           return Result;
8054         }
8055       }
8056 
8057     } else if (!D.isFunctionDefinition() &&
8058                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
8059                !isFriend && !isFunctionTemplateSpecialization &&
8060                !isExplicitSpecialization) {
8061       // An out-of-line member function declaration must also be a
8062       // definition (C++ [class.mfct]p2).
8063       // Note that this is not the case for explicit specializations of
8064       // function templates or member functions of class templates, per
8065       // C++ [temp.expl.spec]p2. We also allow these declarations as an
8066       // extension for compatibility with old SWIG code which likes to
8067       // generate them.
8068       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
8069         << D.getCXXScopeSpec().getRange();
8070     }
8071   }
8072 
8073   ProcessPragmaWeak(S, NewFD);
8074   checkAttributesAfterMerging(*this, *NewFD);
8075 
8076   AddKnownFunctionAttributes(NewFD);
8077 
8078   if (NewFD->hasAttr<OverloadableAttr>() &&
8079       !NewFD->getType()->getAs<FunctionProtoType>()) {
8080     Diag(NewFD->getLocation(),
8081          diag::err_attribute_overloadable_no_prototype)
8082       << NewFD;
8083 
8084     // Turn this into a variadic function with no parameters.
8085     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
8086     FunctionProtoType::ExtProtoInfo EPI(
8087         Context.getDefaultCallingConvention(true, false));
8088     EPI.Variadic = true;
8089     EPI.ExtInfo = FT->getExtInfo();
8090 
8091     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
8092     NewFD->setType(R);
8093   }
8094 
8095   // If there's a #pragma GCC visibility in scope, and this isn't a class
8096   // member, set the visibility of this function.
8097   if (!DC->isRecord() && NewFD->isExternallyVisible())
8098     AddPushedVisibilityAttribute(NewFD);
8099 
8100   // If there's a #pragma clang arc_cf_code_audited in scope, consider
8101   // marking the function.
8102   AddCFAuditedAttribute(NewFD);
8103 
8104   // If this is a function definition, check if we have to apply optnone due to
8105   // a pragma.
8106   if(D.isFunctionDefinition())
8107     AddRangeBasedOptnone(NewFD);
8108 
8109   // If this is the first declaration of an extern C variable, update
8110   // the map of such variables.
8111   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
8112       isIncompleteDeclExternC(*this, NewFD))
8113     RegisterLocallyScopedExternCDecl(NewFD, S);
8114 
8115   // Set this FunctionDecl's range up to the right paren.
8116   NewFD->setRangeEnd(D.getSourceRange().getEnd());
8117 
8118   if (D.isRedeclaration() && !Previous.empty()) {
8119     checkDLLAttributeRedeclaration(
8120         *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD,
8121         isExplicitSpecialization || isFunctionTemplateSpecialization);
8122   }
8123 
8124   if (getLangOpts().CPlusPlus) {
8125     if (FunctionTemplate) {
8126       if (NewFD->isInvalidDecl())
8127         FunctionTemplate->setInvalidDecl();
8128       return FunctionTemplate;
8129     }
8130   }
8131 
8132   if (NewFD->hasAttr<OpenCLKernelAttr>()) {
8133     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
8134     if ((getLangOpts().OpenCLVersion >= 120)
8135         && (SC == SC_Static)) {
8136       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
8137       D.setInvalidType();
8138     }
8139 
8140     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
8141     if (!NewFD->getReturnType()->isVoidType()) {
8142       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
8143       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
8144           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
8145                                 : FixItHint());
8146       D.setInvalidType();
8147     }
8148 
8149     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
8150     for (auto Param : NewFD->params())
8151       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
8152   }
8153 
8154   MarkUnusedFileScopedDecl(NewFD);
8155 
8156   if (getLangOpts().CUDA)
8157     if (IdentifierInfo *II = NewFD->getIdentifier())
8158       if (!NewFD->isInvalidDecl() &&
8159           NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
8160         if (II->isStr("cudaConfigureCall")) {
8161           if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
8162             Diag(NewFD->getLocation(), diag::err_config_scalar_return);
8163 
8164           Context.setcudaConfigureCallDecl(NewFD);
8165         }
8166       }
8167 
8168   // Here we have an function template explicit specialization at class scope.
8169   // The actually specialization will be postponed to template instatiation
8170   // time via the ClassScopeFunctionSpecializationDecl node.
8171   if (isDependentClassScopeExplicitSpecialization) {
8172     ClassScopeFunctionSpecializationDecl *NewSpec =
8173                          ClassScopeFunctionSpecializationDecl::Create(
8174                                 Context, CurContext, SourceLocation(),
8175                                 cast<CXXMethodDecl>(NewFD),
8176                                 HasExplicitTemplateArgs, TemplateArgs);
8177     CurContext->addDecl(NewSpec);
8178     AddToScope = false;
8179   }
8180 
8181   return NewFD;
8182 }
8183 
8184 /// \brief Perform semantic checking of a new function declaration.
8185 ///
8186 /// Performs semantic analysis of the new function declaration
8187 /// NewFD. This routine performs all semantic checking that does not
8188 /// require the actual declarator involved in the declaration, and is
8189 /// used both for the declaration of functions as they are parsed
8190 /// (called via ActOnDeclarator) and for the declaration of functions
8191 /// that have been instantiated via C++ template instantiation (called
8192 /// via InstantiateDecl).
8193 ///
8194 /// \param IsExplicitSpecialization whether this new function declaration is
8195 /// an explicit specialization of the previous declaration.
8196 ///
8197 /// This sets NewFD->isInvalidDecl() to true if there was an error.
8198 ///
8199 /// \returns true if the function declaration is a redeclaration.
8200 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
8201                                     LookupResult &Previous,
8202                                     bool IsExplicitSpecialization) {
8203   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
8204          "Variably modified return types are not handled here");
8205 
8206   // Determine whether the type of this function should be merged with
8207   // a previous visible declaration. This never happens for functions in C++,
8208   // and always happens in C if the previous declaration was visible.
8209   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
8210                                !Previous.isShadowed();
8211 
8212   bool Redeclaration = false;
8213   NamedDecl *OldDecl = nullptr;
8214 
8215   // Merge or overload the declaration with an existing declaration of
8216   // the same name, if appropriate.
8217   if (!Previous.empty()) {
8218     // Determine whether NewFD is an overload of PrevDecl or
8219     // a declaration that requires merging. If it's an overload,
8220     // there's no more work to do here; we'll just add the new
8221     // function to the scope.
8222     if (!AllowOverloadingOfFunction(Previous, Context)) {
8223       NamedDecl *Candidate = Previous.getFoundDecl();
8224       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
8225         Redeclaration = true;
8226         OldDecl = Candidate;
8227       }
8228     } else {
8229       switch (CheckOverload(S, NewFD, Previous, OldDecl,
8230                             /*NewIsUsingDecl*/ false)) {
8231       case Ovl_Match:
8232         Redeclaration = true;
8233         break;
8234 
8235       case Ovl_NonFunction:
8236         Redeclaration = true;
8237         break;
8238 
8239       case Ovl_Overload:
8240         Redeclaration = false;
8241         break;
8242       }
8243 
8244       if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
8245         // If a function name is overloadable in C, then every function
8246         // with that name must be marked "overloadable".
8247         Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
8248           << Redeclaration << NewFD;
8249         NamedDecl *OverloadedDecl = nullptr;
8250         if (Redeclaration)
8251           OverloadedDecl = OldDecl;
8252         else if (!Previous.empty())
8253           OverloadedDecl = Previous.getRepresentativeDecl();
8254         if (OverloadedDecl)
8255           Diag(OverloadedDecl->getLocation(),
8256                diag::note_attribute_overloadable_prev_overload);
8257         NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
8258       }
8259     }
8260   }
8261 
8262   // Check for a previous extern "C" declaration with this name.
8263   if (!Redeclaration &&
8264       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
8265     if (!Previous.empty()) {
8266       // This is an extern "C" declaration with the same name as a previous
8267       // declaration, and thus redeclares that entity...
8268       Redeclaration = true;
8269       OldDecl = Previous.getFoundDecl();
8270       MergeTypeWithPrevious = false;
8271 
8272       // ... except in the presence of __attribute__((overloadable)).
8273       if (OldDecl->hasAttr<OverloadableAttr>()) {
8274         if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
8275           Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
8276             << Redeclaration << NewFD;
8277           Diag(Previous.getFoundDecl()->getLocation(),
8278                diag::note_attribute_overloadable_prev_overload);
8279           NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
8280         }
8281         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
8282           Redeclaration = false;
8283           OldDecl = nullptr;
8284         }
8285       }
8286     }
8287   }
8288 
8289   // C++11 [dcl.constexpr]p8:
8290   //   A constexpr specifier for a non-static member function that is not
8291   //   a constructor declares that member function to be const.
8292   //
8293   // This needs to be delayed until we know whether this is an out-of-line
8294   // definition of a static member function.
8295   //
8296   // This rule is not present in C++1y, so we produce a backwards
8297   // compatibility warning whenever it happens in C++11.
8298   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8299   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
8300       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
8301       (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
8302     CXXMethodDecl *OldMD = nullptr;
8303     if (OldDecl)
8304       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
8305     if (!OldMD || !OldMD->isStatic()) {
8306       const FunctionProtoType *FPT =
8307         MD->getType()->castAs<FunctionProtoType>();
8308       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8309       EPI.TypeQuals |= Qualifiers::Const;
8310       MD->setType(Context.getFunctionType(FPT->getReturnType(),
8311                                           FPT->getParamTypes(), EPI));
8312 
8313       // Warn that we did this, if we're not performing template instantiation.
8314       // In that case, we'll have warned already when the template was defined.
8315       if (ActiveTemplateInstantiations.empty()) {
8316         SourceLocation AddConstLoc;
8317         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
8318                 .IgnoreParens().getAs<FunctionTypeLoc>())
8319           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
8320 
8321         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
8322           << FixItHint::CreateInsertion(AddConstLoc, " const");
8323       }
8324     }
8325   }
8326 
8327   if (Redeclaration) {
8328     // NewFD and OldDecl represent declarations that need to be
8329     // merged.
8330     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
8331       NewFD->setInvalidDecl();
8332       return Redeclaration;
8333     }
8334 
8335     Previous.clear();
8336     Previous.addDecl(OldDecl);
8337 
8338     if (FunctionTemplateDecl *OldTemplateDecl
8339                                   = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
8340       NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
8341       FunctionTemplateDecl *NewTemplateDecl
8342         = NewFD->getDescribedFunctionTemplate();
8343       assert(NewTemplateDecl && "Template/non-template mismatch");
8344       if (CXXMethodDecl *Method
8345             = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
8346         Method->setAccess(OldTemplateDecl->getAccess());
8347         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
8348       }
8349 
8350       // If this is an explicit specialization of a member that is a function
8351       // template, mark it as a member specialization.
8352       if (IsExplicitSpecialization &&
8353           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
8354         NewTemplateDecl->setMemberSpecialization();
8355         assert(OldTemplateDecl->isMemberSpecialization());
8356       }
8357 
8358     } else {
8359       // This needs to happen first so that 'inline' propagates.
8360       NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
8361 
8362       if (isa<CXXMethodDecl>(NewFD))
8363         NewFD->setAccess(OldDecl->getAccess());
8364     }
8365   }
8366 
8367   // Semantic checking for this function declaration (in isolation).
8368 
8369   if (getLangOpts().CPlusPlus) {
8370     // C++-specific checks.
8371     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
8372       CheckConstructor(Constructor);
8373     } else if (CXXDestructorDecl *Destructor =
8374                 dyn_cast<CXXDestructorDecl>(NewFD)) {
8375       CXXRecordDecl *Record = Destructor->getParent();
8376       QualType ClassType = Context.getTypeDeclType(Record);
8377 
8378       // FIXME: Shouldn't we be able to perform this check even when the class
8379       // type is dependent? Both gcc and edg can handle that.
8380       if (!ClassType->isDependentType()) {
8381         DeclarationName Name
8382           = Context.DeclarationNames.getCXXDestructorName(
8383                                         Context.getCanonicalType(ClassType));
8384         if (NewFD->getDeclName() != Name) {
8385           Diag(NewFD->getLocation(), diag::err_destructor_name);
8386           NewFD->setInvalidDecl();
8387           return Redeclaration;
8388         }
8389       }
8390     } else if (CXXConversionDecl *Conversion
8391                = dyn_cast<CXXConversionDecl>(NewFD)) {
8392       ActOnConversionDeclarator(Conversion);
8393     }
8394 
8395     // Find any virtual functions that this function overrides.
8396     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
8397       if (!Method->isFunctionTemplateSpecialization() &&
8398           !Method->getDescribedFunctionTemplate() &&
8399           Method->isCanonicalDecl()) {
8400         if (AddOverriddenMethods(Method->getParent(), Method)) {
8401           // If the function was marked as "static", we have a problem.
8402           if (NewFD->getStorageClass() == SC_Static) {
8403             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
8404           }
8405         }
8406       }
8407 
8408       if (Method->isStatic())
8409         checkThisInStaticMemberFunctionType(Method);
8410     }
8411 
8412     // Extra checking for C++ overloaded operators (C++ [over.oper]).
8413     if (NewFD->isOverloadedOperator() &&
8414         CheckOverloadedOperatorDeclaration(NewFD)) {
8415       NewFD->setInvalidDecl();
8416       return Redeclaration;
8417     }
8418 
8419     // Extra checking for C++0x literal operators (C++0x [over.literal]).
8420     if (NewFD->getLiteralIdentifier() &&
8421         CheckLiteralOperatorDeclaration(NewFD)) {
8422       NewFD->setInvalidDecl();
8423       return Redeclaration;
8424     }
8425 
8426     // In C++, check default arguments now that we have merged decls. Unless
8427     // the lexical context is the class, because in this case this is done
8428     // during delayed parsing anyway.
8429     if (!CurContext->isRecord())
8430       CheckCXXDefaultArguments(NewFD);
8431 
8432     // If this function declares a builtin function, check the type of this
8433     // declaration against the expected type for the builtin.
8434     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
8435       ASTContext::GetBuiltinTypeError Error;
8436       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
8437       QualType T = Context.GetBuiltinType(BuiltinID, Error);
8438       if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
8439         // The type of this function differs from the type of the builtin,
8440         // so forget about the builtin entirely.
8441         Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
8442       }
8443     }
8444 
8445     // If this function is declared as being extern "C", then check to see if
8446     // the function returns a UDT (class, struct, or union type) that is not C
8447     // compatible, and if it does, warn the user.
8448     // But, issue any diagnostic on the first declaration only.
8449     if (Previous.empty() && NewFD->isExternC()) {
8450       QualType R = NewFD->getReturnType();
8451       if (R->isIncompleteType() && !R->isVoidType())
8452         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
8453             << NewFD << R;
8454       else if (!R.isPODType(Context) && !R->isVoidType() &&
8455                !R->isObjCObjectPointerType())
8456         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
8457     }
8458   }
8459   return Redeclaration;
8460 }
8461 
8462 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
8463   // C++11 [basic.start.main]p3:
8464   //   A program that [...] declares main to be inline, static or
8465   //   constexpr is ill-formed.
8466   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
8467   //   appear in a declaration of main.
8468   // static main is not an error under C99, but we should warn about it.
8469   // We accept _Noreturn main as an extension.
8470   if (FD->getStorageClass() == SC_Static)
8471     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
8472          ? diag::err_static_main : diag::warn_static_main)
8473       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
8474   if (FD->isInlineSpecified())
8475     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
8476       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
8477   if (DS.isNoreturnSpecified()) {
8478     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
8479     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
8480     Diag(NoreturnLoc, diag::ext_noreturn_main);
8481     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
8482       << FixItHint::CreateRemoval(NoreturnRange);
8483   }
8484   if (FD->isConstexpr()) {
8485     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
8486       << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
8487     FD->setConstexpr(false);
8488   }
8489 
8490   if (getLangOpts().OpenCL) {
8491     Diag(FD->getLocation(), diag::err_opencl_no_main)
8492         << FD->hasAttr<OpenCLKernelAttr>();
8493     FD->setInvalidDecl();
8494     return;
8495   }
8496 
8497   QualType T = FD->getType();
8498   assert(T->isFunctionType() && "function decl is not of function type");
8499   const FunctionType* FT = T->castAs<FunctionType>();
8500 
8501   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
8502     // In C with GNU extensions we allow main() to have non-integer return
8503     // type, but we should warn about the extension, and we disable the
8504     // implicit-return-zero rule.
8505 
8506     // GCC in C mode accepts qualified 'int'.
8507     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
8508       FD->setHasImplicitReturnZero(true);
8509     else {
8510       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
8511       SourceRange RTRange = FD->getReturnTypeSourceRange();
8512       if (RTRange.isValid())
8513         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
8514             << FixItHint::CreateReplacement(RTRange, "int");
8515     }
8516   } else {
8517     // In C and C++, main magically returns 0 if you fall off the end;
8518     // set the flag which tells us that.
8519     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
8520 
8521     // All the standards say that main() should return 'int'.
8522     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
8523       FD->setHasImplicitReturnZero(true);
8524     else {
8525       // Otherwise, this is just a flat-out error.
8526       SourceRange RTRange = FD->getReturnTypeSourceRange();
8527       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
8528           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
8529                                 : FixItHint());
8530       FD->setInvalidDecl(true);
8531     }
8532   }
8533 
8534   // Treat protoless main() as nullary.
8535   if (isa<FunctionNoProtoType>(FT)) return;
8536 
8537   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
8538   unsigned nparams = FTP->getNumParams();
8539   assert(FD->getNumParams() == nparams);
8540 
8541   bool HasExtraParameters = (nparams > 3);
8542 
8543   if (FTP->isVariadic()) {
8544     Diag(FD->getLocation(), diag::ext_variadic_main);
8545     // FIXME: if we had information about the location of the ellipsis, we
8546     // could add a FixIt hint to remove it as a parameter.
8547   }
8548 
8549   // Darwin passes an undocumented fourth argument of type char**.  If
8550   // other platforms start sprouting these, the logic below will start
8551   // getting shifty.
8552   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
8553     HasExtraParameters = false;
8554 
8555   if (HasExtraParameters) {
8556     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
8557     FD->setInvalidDecl(true);
8558     nparams = 3;
8559   }
8560 
8561   // FIXME: a lot of the following diagnostics would be improved
8562   // if we had some location information about types.
8563 
8564   QualType CharPP =
8565     Context.getPointerType(Context.getPointerType(Context.CharTy));
8566   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
8567 
8568   for (unsigned i = 0; i < nparams; ++i) {
8569     QualType AT = FTP->getParamType(i);
8570 
8571     bool mismatch = true;
8572 
8573     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
8574       mismatch = false;
8575     else if (Expected[i] == CharPP) {
8576       // As an extension, the following forms are okay:
8577       //   char const **
8578       //   char const * const *
8579       //   char * const *
8580 
8581       QualifierCollector qs;
8582       const PointerType* PT;
8583       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
8584           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
8585           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
8586                               Context.CharTy)) {
8587         qs.removeConst();
8588         mismatch = !qs.empty();
8589       }
8590     }
8591 
8592     if (mismatch) {
8593       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
8594       // TODO: suggest replacing given type with expected type
8595       FD->setInvalidDecl(true);
8596     }
8597   }
8598 
8599   if (nparams == 1 && !FD->isInvalidDecl()) {
8600     Diag(FD->getLocation(), diag::warn_main_one_arg);
8601   }
8602 
8603   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8604     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8605     FD->setInvalidDecl();
8606   }
8607 }
8608 
8609 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
8610   QualType T = FD->getType();
8611   assert(T->isFunctionType() && "function decl is not of function type");
8612   const FunctionType *FT = T->castAs<FunctionType>();
8613 
8614   // Set an implicit return of 'zero' if the function can return some integral,
8615   // enumeration, pointer or nullptr type.
8616   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
8617       FT->getReturnType()->isAnyPointerType() ||
8618       FT->getReturnType()->isNullPtrType())
8619     // DllMain is exempt because a return value of zero means it failed.
8620     if (FD->getName() != "DllMain")
8621       FD->setHasImplicitReturnZero(true);
8622 
8623   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8624     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8625     FD->setInvalidDecl();
8626   }
8627 }
8628 
8629 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
8630   // FIXME: Need strict checking.  In C89, we need to check for
8631   // any assignment, increment, decrement, function-calls, or
8632   // commas outside of a sizeof.  In C99, it's the same list,
8633   // except that the aforementioned are allowed in unevaluated
8634   // expressions.  Everything else falls under the
8635   // "may accept other forms of constant expressions" exception.
8636   // (We never end up here for C++, so the constant expression
8637   // rules there don't matter.)
8638   const Expr *Culprit;
8639   if (Init->isConstantInitializer(Context, false, &Culprit))
8640     return false;
8641   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
8642     << Culprit->getSourceRange();
8643   return true;
8644 }
8645 
8646 namespace {
8647   // Visits an initialization expression to see if OrigDecl is evaluated in
8648   // its own initialization and throws a warning if it does.
8649   class SelfReferenceChecker
8650       : public EvaluatedExprVisitor<SelfReferenceChecker> {
8651     Sema &S;
8652     Decl *OrigDecl;
8653     bool isRecordType;
8654     bool isPODType;
8655     bool isReferenceType;
8656 
8657     bool isInitList;
8658     llvm::SmallVector<unsigned, 4> InitFieldIndex;
8659   public:
8660     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
8661 
8662     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
8663                                                     S(S), OrigDecl(OrigDecl) {
8664       isPODType = false;
8665       isRecordType = false;
8666       isReferenceType = false;
8667       isInitList = false;
8668       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
8669         isPODType = VD->getType().isPODType(S.Context);
8670         isRecordType = VD->getType()->isRecordType();
8671         isReferenceType = VD->getType()->isReferenceType();
8672       }
8673     }
8674 
8675     // For most expressions, just call the visitor.  For initializer lists,
8676     // track the index of the field being initialized since fields are
8677     // initialized in order allowing use of previously initialized fields.
8678     void CheckExpr(Expr *E) {
8679       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
8680       if (!InitList) {
8681         Visit(E);
8682         return;
8683       }
8684 
8685       // Track and increment the index here.
8686       isInitList = true;
8687       InitFieldIndex.push_back(0);
8688       for (auto Child : InitList->children()) {
8689         CheckExpr(cast<Expr>(Child));
8690         ++InitFieldIndex.back();
8691       }
8692       InitFieldIndex.pop_back();
8693     }
8694 
8695     // Returns true if MemberExpr is checked and no futher checking is needed.
8696     // Returns false if additional checking is required.
8697     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
8698       llvm::SmallVector<FieldDecl*, 4> Fields;
8699       Expr *Base = E;
8700       bool ReferenceField = false;
8701 
8702       // Get the field memebers used.
8703       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8704         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
8705         if (!FD)
8706           return false;
8707         Fields.push_back(FD);
8708         if (FD->getType()->isReferenceType())
8709           ReferenceField = true;
8710         Base = ME->getBase()->IgnoreParenImpCasts();
8711       }
8712 
8713       // Keep checking only if the base Decl is the same.
8714       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
8715       if (!DRE || DRE->getDecl() != OrigDecl)
8716         return false;
8717 
8718       // A reference field can be bound to an unininitialized field.
8719       if (CheckReference && !ReferenceField)
8720         return true;
8721 
8722       // Convert FieldDecls to their index number.
8723       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
8724       for (const FieldDecl *I : llvm::reverse(Fields))
8725         UsedFieldIndex.push_back(I->getFieldIndex());
8726 
8727       // See if a warning is needed by checking the first difference in index
8728       // numbers.  If field being used has index less than the field being
8729       // initialized, then the use is safe.
8730       for (auto UsedIter = UsedFieldIndex.begin(),
8731                 UsedEnd = UsedFieldIndex.end(),
8732                 OrigIter = InitFieldIndex.begin(),
8733                 OrigEnd = InitFieldIndex.end();
8734            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
8735         if (*UsedIter < *OrigIter)
8736           return true;
8737         if (*UsedIter > *OrigIter)
8738           break;
8739       }
8740 
8741       // TODO: Add a different warning which will print the field names.
8742       HandleDeclRefExpr(DRE);
8743       return true;
8744     }
8745 
8746     // For most expressions, the cast is directly above the DeclRefExpr.
8747     // For conditional operators, the cast can be outside the conditional
8748     // operator if both expressions are DeclRefExpr's.
8749     void HandleValue(Expr *E) {
8750       E = E->IgnoreParens();
8751       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
8752         HandleDeclRefExpr(DRE);
8753         return;
8754       }
8755 
8756       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8757         Visit(CO->getCond());
8758         HandleValue(CO->getTrueExpr());
8759         HandleValue(CO->getFalseExpr());
8760         return;
8761       }
8762 
8763       if (BinaryConditionalOperator *BCO =
8764               dyn_cast<BinaryConditionalOperator>(E)) {
8765         Visit(BCO->getCond());
8766         HandleValue(BCO->getFalseExpr());
8767         return;
8768       }
8769 
8770       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
8771         HandleValue(OVE->getSourceExpr());
8772         return;
8773       }
8774 
8775       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
8776         if (BO->getOpcode() == BO_Comma) {
8777           Visit(BO->getLHS());
8778           HandleValue(BO->getRHS());
8779           return;
8780         }
8781       }
8782 
8783       if (isa<MemberExpr>(E)) {
8784         if (isInitList) {
8785           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
8786                                       false /*CheckReference*/))
8787             return;
8788         }
8789 
8790         Expr *Base = E->IgnoreParenImpCasts();
8791         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8792           // Check for static member variables and don't warn on them.
8793           if (!isa<FieldDecl>(ME->getMemberDecl()))
8794             return;
8795           Base = ME->getBase()->IgnoreParenImpCasts();
8796         }
8797         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
8798           HandleDeclRefExpr(DRE);
8799         return;
8800       }
8801 
8802       Visit(E);
8803     }
8804 
8805     // Reference types not handled in HandleValue are handled here since all
8806     // uses of references are bad, not just r-value uses.
8807     void VisitDeclRefExpr(DeclRefExpr *E) {
8808       if (isReferenceType)
8809         HandleDeclRefExpr(E);
8810     }
8811 
8812     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
8813       if (E->getCastKind() == CK_LValueToRValue) {
8814         HandleValue(E->getSubExpr());
8815         return;
8816       }
8817 
8818       Inherited::VisitImplicitCastExpr(E);
8819     }
8820 
8821     void VisitMemberExpr(MemberExpr *E) {
8822       if (isInitList) {
8823         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
8824           return;
8825       }
8826 
8827       // Don't warn on arrays since they can be treated as pointers.
8828       if (E->getType()->canDecayToPointerType()) return;
8829 
8830       // Warn when a non-static method call is followed by non-static member
8831       // field accesses, which is followed by a DeclRefExpr.
8832       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
8833       bool Warn = (MD && !MD->isStatic());
8834       Expr *Base = E->getBase()->IgnoreParenImpCasts();
8835       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8836         if (!isa<FieldDecl>(ME->getMemberDecl()))
8837           Warn = false;
8838         Base = ME->getBase()->IgnoreParenImpCasts();
8839       }
8840 
8841       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
8842         if (Warn)
8843           HandleDeclRefExpr(DRE);
8844         return;
8845       }
8846 
8847       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
8848       // Visit that expression.
8849       Visit(Base);
8850     }
8851 
8852     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
8853       Expr *Callee = E->getCallee();
8854 
8855       if (isa<UnresolvedLookupExpr>(Callee))
8856         return Inherited::VisitCXXOperatorCallExpr(E);
8857 
8858       Visit(Callee);
8859       for (auto Arg: E->arguments())
8860         HandleValue(Arg->IgnoreParenImpCasts());
8861     }
8862 
8863     void VisitUnaryOperator(UnaryOperator *E) {
8864       // For POD record types, addresses of its own members are well-defined.
8865       if (E->getOpcode() == UO_AddrOf && isRecordType &&
8866           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
8867         if (!isPODType)
8868           HandleValue(E->getSubExpr());
8869         return;
8870       }
8871 
8872       if (E->isIncrementDecrementOp()) {
8873         HandleValue(E->getSubExpr());
8874         return;
8875       }
8876 
8877       Inherited::VisitUnaryOperator(E);
8878     }
8879 
8880     void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
8881 
8882     void VisitCXXConstructExpr(CXXConstructExpr *E) {
8883       if (E->getConstructor()->isCopyConstructor()) {
8884         Expr *ArgExpr = E->getArg(0);
8885         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
8886           if (ILE->getNumInits() == 1)
8887             ArgExpr = ILE->getInit(0);
8888         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
8889           if (ICE->getCastKind() == CK_NoOp)
8890             ArgExpr = ICE->getSubExpr();
8891         HandleValue(ArgExpr);
8892         return;
8893       }
8894       Inherited::VisitCXXConstructExpr(E);
8895     }
8896 
8897     void VisitCallExpr(CallExpr *E) {
8898       // Treat std::move as a use.
8899       if (E->getNumArgs() == 1) {
8900         if (FunctionDecl *FD = E->getDirectCallee()) {
8901           if (FD->isInStdNamespace() && FD->getIdentifier() &&
8902               FD->getIdentifier()->isStr("move")) {
8903             HandleValue(E->getArg(0));
8904             return;
8905           }
8906         }
8907       }
8908 
8909       Inherited::VisitCallExpr(E);
8910     }
8911 
8912     void VisitBinaryOperator(BinaryOperator *E) {
8913       if (E->isCompoundAssignmentOp()) {
8914         HandleValue(E->getLHS());
8915         Visit(E->getRHS());
8916         return;
8917       }
8918 
8919       Inherited::VisitBinaryOperator(E);
8920     }
8921 
8922     // A custom visitor for BinaryConditionalOperator is needed because the
8923     // regular visitor would check the condition and true expression separately
8924     // but both point to the same place giving duplicate diagnostics.
8925     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
8926       Visit(E->getCond());
8927       Visit(E->getFalseExpr());
8928     }
8929 
8930     void HandleDeclRefExpr(DeclRefExpr *DRE) {
8931       Decl* ReferenceDecl = DRE->getDecl();
8932       if (OrigDecl != ReferenceDecl) return;
8933       unsigned diag;
8934       if (isReferenceType) {
8935         diag = diag::warn_uninit_self_reference_in_reference_init;
8936       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
8937         diag = diag::warn_static_self_reference_in_init;
8938       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
8939                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
8940                  DRE->getDecl()->getType()->isRecordType()) {
8941         diag = diag::warn_uninit_self_reference_in_init;
8942       } else {
8943         // Local variables will be handled by the CFG analysis.
8944         return;
8945       }
8946 
8947       S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
8948                             S.PDiag(diag)
8949                               << DRE->getNameInfo().getName()
8950                               << OrigDecl->getLocation()
8951                               << DRE->getSourceRange());
8952     }
8953   };
8954 
8955   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
8956   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
8957                                  bool DirectInit) {
8958     // Parameters arguments are occassionially constructed with itself,
8959     // for instance, in recursive functions.  Skip them.
8960     if (isa<ParmVarDecl>(OrigDecl))
8961       return;
8962 
8963     E = E->IgnoreParens();
8964 
8965     // Skip checking T a = a where T is not a record or reference type.
8966     // Doing so is a way to silence uninitialized warnings.
8967     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
8968       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
8969         if (ICE->getCastKind() == CK_LValueToRValue)
8970           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
8971             if (DRE->getDecl() == OrigDecl)
8972               return;
8973 
8974     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
8975   }
8976 }
8977 
8978 /// AddInitializerToDecl - Adds the initializer Init to the
8979 /// declaration dcl. If DirectInit is true, this is C++ direct
8980 /// initialization rather than copy initialization.
8981 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
8982                                 bool DirectInit, bool TypeMayContainAuto) {
8983   // If there is no declaration, there was an error parsing it.  Just ignore
8984   // the initializer.
8985   if (!RealDecl || RealDecl->isInvalidDecl()) {
8986     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
8987     return;
8988   }
8989 
8990   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
8991     // Pure-specifiers are handled in ActOnPureSpecifier.
8992     Diag(Method->getLocation(), diag::err_member_function_initialization)
8993       << Method->getDeclName() << Init->getSourceRange();
8994     Method->setInvalidDecl();
8995     return;
8996   }
8997 
8998   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8999   if (!VDecl) {
9000     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
9001     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9002     RealDecl->setInvalidDecl();
9003     return;
9004   }
9005   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
9006 
9007   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9008   if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
9009     // Attempt typo correction early so that the type of the init expression can
9010     // be deduced based on the chosen correction:if the original init contains a
9011     // TypoExpr.
9012     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
9013     if (!Res.isUsable()) {
9014       RealDecl->setInvalidDecl();
9015       return;
9016     }
9017 
9018     if (Res.get() != Init) {
9019       Init = Res.get();
9020       if (CXXDirectInit)
9021         CXXDirectInit = dyn_cast<ParenListExpr>(Init);
9022     }
9023 
9024     Expr *DeduceInit = Init;
9025     // Initializer could be a C++ direct-initializer. Deduction only works if it
9026     // contains exactly one expression.
9027     if (CXXDirectInit) {
9028       if (CXXDirectInit->getNumExprs() == 0) {
9029         // It isn't possible to write this directly, but it is possible to
9030         // end up in this situation with "auto x(some_pack...);"
9031         Diag(CXXDirectInit->getLocStart(),
9032              VDecl->isInitCapture() ? diag::err_init_capture_no_expression
9033                                     : diag::err_auto_var_init_no_expression)
9034           << VDecl->getDeclName() << VDecl->getType()
9035           << VDecl->getSourceRange();
9036         RealDecl->setInvalidDecl();
9037         return;
9038       } else if (CXXDirectInit->getNumExprs() > 1) {
9039         Diag(CXXDirectInit->getExpr(1)->getLocStart(),
9040              VDecl->isInitCapture()
9041                  ? diag::err_init_capture_multiple_expressions
9042                  : diag::err_auto_var_init_multiple_expressions)
9043           << VDecl->getDeclName() << VDecl->getType()
9044           << VDecl->getSourceRange();
9045         RealDecl->setInvalidDecl();
9046         return;
9047       } else {
9048         DeduceInit = CXXDirectInit->getExpr(0);
9049         if (isa<InitListExpr>(DeduceInit))
9050           Diag(CXXDirectInit->getLocStart(),
9051                diag::err_auto_var_init_paren_braces)
9052             << VDecl->getDeclName() << VDecl->getType()
9053             << VDecl->getSourceRange();
9054       }
9055     }
9056 
9057     // Expressions default to 'id' when we're in a debugger.
9058     bool DefaultedToAuto = false;
9059     if (getLangOpts().DebuggerCastResultToId &&
9060         Init->getType() == Context.UnknownAnyTy) {
9061       ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
9062       if (Result.isInvalid()) {
9063         VDecl->setInvalidDecl();
9064         return;
9065       }
9066       Init = Result.get();
9067       DefaultedToAuto = true;
9068     }
9069 
9070     QualType DeducedType;
9071     if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
9072             DAR_Failed)
9073       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
9074     if (DeducedType.isNull()) {
9075       RealDecl->setInvalidDecl();
9076       return;
9077     }
9078     VDecl->setType(DeducedType);
9079     assert(VDecl->isLinkageValid());
9080 
9081     // In ARC, infer lifetime.
9082     if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9083       VDecl->setInvalidDecl();
9084 
9085     // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
9086     // 'id' instead of a specific object type prevents most of our usual checks.
9087     // We only want to warn outside of template instantiations, though:
9088     // inside a template, the 'id' could have come from a parameter.
9089     if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
9090         DeducedType->isObjCIdType()) {
9091       SourceLocation Loc =
9092           VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
9093       Diag(Loc, diag::warn_auto_var_is_id)
9094         << VDecl->getDeclName() << DeduceInit->getSourceRange();
9095     }
9096 
9097     // If this is a redeclaration, check that the type we just deduced matches
9098     // the previously declared type.
9099     if (VarDecl *Old = VDecl->getPreviousDecl()) {
9100       // We never need to merge the type, because we cannot form an incomplete
9101       // array of auto, nor deduce such a type.
9102       MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false);
9103     }
9104 
9105     // Check the deduced type is valid for a variable declaration.
9106     CheckVariableDeclarationType(VDecl);
9107     if (VDecl->isInvalidDecl())
9108       return;
9109 
9110     // If all looks well, warn if this is a case that will change meaning when
9111     // we implement N3922.
9112     if (DirectInit && !CXXDirectInit && isa<InitListExpr>(Init)) {
9113       Diag(Init->getLocStart(),
9114            diag::warn_auto_var_direct_list_init)
9115         << FixItHint::CreateInsertion(Init->getLocStart(), "=");
9116     }
9117   }
9118 
9119   // dllimport cannot be used on variable definitions.
9120   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
9121     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
9122     VDecl->setInvalidDecl();
9123     return;
9124   }
9125 
9126   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
9127     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
9128     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
9129     VDecl->setInvalidDecl();
9130     return;
9131   }
9132 
9133   if (!VDecl->getType()->isDependentType()) {
9134     // A definition must end up with a complete type, which means it must be
9135     // complete with the restriction that an array type might be completed by
9136     // the initializer; note that later code assumes this restriction.
9137     QualType BaseDeclType = VDecl->getType();
9138     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
9139       BaseDeclType = Array->getElementType();
9140     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
9141                             diag::err_typecheck_decl_incomplete_type)) {
9142       RealDecl->setInvalidDecl();
9143       return;
9144     }
9145 
9146     // The variable can not have an abstract class type.
9147     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9148                                diag::err_abstract_type_in_decl,
9149                                AbstractVariableType))
9150       VDecl->setInvalidDecl();
9151   }
9152 
9153   VarDecl *Def;
9154   if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9155     NamedDecl *Hidden = nullptr;
9156     if (!hasVisibleDefinition(Def, &Hidden) &&
9157         (VDecl->getFormalLinkage() == InternalLinkage ||
9158          VDecl->getDescribedVarTemplate() ||
9159          VDecl->getNumTemplateParameterLists() ||
9160          VDecl->getDeclContext()->isDependentContext())) {
9161       // The previous definition is hidden, and multiple definitions are
9162       // permitted (in separate TUs). Form another definition of it.
9163     } else {
9164       Diag(VDecl->getLocation(), diag::err_redefinition)
9165         << VDecl->getDeclName();
9166       Diag(Def->getLocation(), diag::note_previous_definition);
9167       VDecl->setInvalidDecl();
9168       return;
9169     }
9170   }
9171 
9172   if (getLangOpts().CPlusPlus) {
9173     // C++ [class.static.data]p4
9174     //   If a static data member is of const integral or const
9175     //   enumeration type, its declaration in the class definition can
9176     //   specify a constant-initializer which shall be an integral
9177     //   constant expression (5.19). In that case, the member can appear
9178     //   in integral constant expressions. The member shall still be
9179     //   defined in a namespace scope if it is used in the program and the
9180     //   namespace scope definition shall not contain an initializer.
9181     //
9182     // We already performed a redefinition check above, but for static
9183     // data members we also need to check whether there was an in-class
9184     // declaration with an initializer.
9185     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
9186       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
9187           << VDecl->getDeclName();
9188       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
9189            diag::note_previous_initializer)
9190           << 0;
9191       return;
9192     }
9193 
9194     if (VDecl->hasLocalStorage())
9195       getCurFunction()->setHasBranchProtectedScope();
9196 
9197     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
9198       VDecl->setInvalidDecl();
9199       return;
9200     }
9201   }
9202 
9203   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
9204   // a kernel function cannot be initialized."
9205   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
9206     Diag(VDecl->getLocation(), diag::err_local_cant_init);
9207     VDecl->setInvalidDecl();
9208     return;
9209   }
9210 
9211   // Get the decls type and save a reference for later, since
9212   // CheckInitializerTypes may change it.
9213   QualType DclT = VDecl->getType(), SavT = DclT;
9214 
9215   // Expressions default to 'id' when we're in a debugger
9216   // and we are assigning it to a variable of Objective-C pointer type.
9217   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
9218       Init->getType() == Context.UnknownAnyTy) {
9219     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
9220     if (Result.isInvalid()) {
9221       VDecl->setInvalidDecl();
9222       return;
9223     }
9224     Init = Result.get();
9225   }
9226 
9227   // Perform the initialization.
9228   if (!VDecl->isInvalidDecl()) {
9229     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9230     InitializationKind Kind
9231       = DirectInit ?
9232           CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
9233                                                            Init->getLocStart(),
9234                                                            Init->getLocEnd())
9235                         : InitializationKind::CreateDirectList(
9236                                                           VDecl->getLocation())
9237                    : InitializationKind::CreateCopy(VDecl->getLocation(),
9238                                                     Init->getLocStart());
9239 
9240     MultiExprArg Args = Init;
9241     if (CXXDirectInit)
9242       Args = MultiExprArg(CXXDirectInit->getExprs(),
9243                           CXXDirectInit->getNumExprs());
9244 
9245     // Try to correct any TypoExprs in the initialization arguments.
9246     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
9247       ExprResult Res = CorrectDelayedTyposInExpr(
9248           Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
9249             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
9250             return Init.Failed() ? ExprError() : E;
9251           });
9252       if (Res.isInvalid()) {
9253         VDecl->setInvalidDecl();
9254       } else if (Res.get() != Args[Idx]) {
9255         Args[Idx] = Res.get();
9256       }
9257     }
9258     if (VDecl->isInvalidDecl())
9259       return;
9260 
9261     InitializationSequence InitSeq(*this, Entity, Kind, Args);
9262     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
9263     if (Result.isInvalid()) {
9264       VDecl->setInvalidDecl();
9265       return;
9266     }
9267 
9268     Init = Result.getAs<Expr>();
9269   }
9270 
9271   // Check for self-references within variable initializers.
9272   // Variables declared within a function/method body (except for references)
9273   // are handled by a dataflow analysis.
9274   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
9275       VDecl->getType()->isReferenceType()) {
9276     CheckSelfReference(*this, RealDecl, Init, DirectInit);
9277   }
9278 
9279   // If the type changed, it means we had an incomplete type that was
9280   // completed by the initializer. For example:
9281   //   int ary[] = { 1, 3, 5 };
9282   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
9283   if (!VDecl->isInvalidDecl() && (DclT != SavT))
9284     VDecl->setType(DclT);
9285 
9286   if (!VDecl->isInvalidDecl()) {
9287     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
9288 
9289     if (VDecl->hasAttr<BlocksAttr>())
9290       checkRetainCycles(VDecl, Init);
9291 
9292     // It is safe to assign a weak reference into a strong variable.
9293     // Although this code can still have problems:
9294     //   id x = self.weakProp;
9295     //   id y = self.weakProp;
9296     // we do not warn to warn spuriously when 'x' and 'y' are on separate
9297     // paths through the function. This should be revisited if
9298     // -Wrepeated-use-of-weak is made flow-sensitive.
9299     if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong &&
9300         !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
9301                          Init->getLocStart()))
9302         getCurFunction()->markSafeWeakUse(Init);
9303   }
9304 
9305   // The initialization is usually a full-expression.
9306   //
9307   // FIXME: If this is a braced initialization of an aggregate, it is not
9308   // an expression, and each individual field initializer is a separate
9309   // full-expression. For instance, in:
9310   //
9311   //   struct Temp { ~Temp(); };
9312   //   struct S { S(Temp); };
9313   //   struct T { S a, b; } t = { Temp(), Temp() }
9314   //
9315   // we should destroy the first Temp before constructing the second.
9316   ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
9317                                           false,
9318                                           VDecl->isConstexpr());
9319   if (Result.isInvalid()) {
9320     VDecl->setInvalidDecl();
9321     return;
9322   }
9323   Init = Result.get();
9324 
9325   // Attach the initializer to the decl.
9326   VDecl->setInit(Init);
9327 
9328   if (VDecl->isLocalVarDecl()) {
9329     // C99 6.7.8p4: All the expressions in an initializer for an object that has
9330     // static storage duration shall be constant expressions or string literals.
9331     // C++ does not have this restriction.
9332     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
9333       const Expr *Culprit;
9334       if (VDecl->getStorageClass() == SC_Static)
9335         CheckForConstantInitializer(Init, DclT);
9336       // C89 is stricter than C99 for non-static aggregate types.
9337       // C89 6.5.7p3: All the expressions [...] in an initializer list
9338       // for an object that has aggregate or union type shall be
9339       // constant expressions.
9340       else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
9341                isa<InitListExpr>(Init) &&
9342                !Init->isConstantInitializer(Context, false, &Culprit))
9343         Diag(Culprit->getExprLoc(),
9344              diag::ext_aggregate_init_not_constant)
9345           << Culprit->getSourceRange();
9346     }
9347   } else if (VDecl->isStaticDataMember() &&
9348              VDecl->getLexicalDeclContext()->isRecord()) {
9349     // This is an in-class initialization for a static data member, e.g.,
9350     //
9351     // struct S {
9352     //   static const int value = 17;
9353     // };
9354 
9355     // C++ [class.mem]p4:
9356     //   A member-declarator can contain a constant-initializer only
9357     //   if it declares a static member (9.4) of const integral or
9358     //   const enumeration type, see 9.4.2.
9359     //
9360     // C++11 [class.static.data]p3:
9361     //   If a non-volatile const static data member is of integral or
9362     //   enumeration type, its declaration in the class definition can
9363     //   specify a brace-or-equal-initializer in which every initalizer-clause
9364     //   that is an assignment-expression is a constant expression. A static
9365     //   data member of literal type can be declared in the class definition
9366     //   with the constexpr specifier; if so, its declaration shall specify a
9367     //   brace-or-equal-initializer in which every initializer-clause that is
9368     //   an assignment-expression is a constant expression.
9369 
9370     // Do nothing on dependent types.
9371     if (DclT->isDependentType()) {
9372 
9373     // Allow any 'static constexpr' members, whether or not they are of literal
9374     // type. We separately check that every constexpr variable is of literal
9375     // type.
9376     } else if (VDecl->isConstexpr()) {
9377 
9378     // Require constness.
9379     } else if (!DclT.isConstQualified()) {
9380       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
9381         << Init->getSourceRange();
9382       VDecl->setInvalidDecl();
9383 
9384     // We allow integer constant expressions in all cases.
9385     } else if (DclT->isIntegralOrEnumerationType()) {
9386       // Check whether the expression is a constant expression.
9387       SourceLocation Loc;
9388       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
9389         // In C++11, a non-constexpr const static data member with an
9390         // in-class initializer cannot be volatile.
9391         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
9392       else if (Init->isValueDependent())
9393         ; // Nothing to check.
9394       else if (Init->isIntegerConstantExpr(Context, &Loc))
9395         ; // Ok, it's an ICE!
9396       else if (Init->isEvaluatable(Context)) {
9397         // If we can constant fold the initializer through heroics, accept it,
9398         // but report this as a use of an extension for -pedantic.
9399         Diag(Loc, diag::ext_in_class_initializer_non_constant)
9400           << Init->getSourceRange();
9401       } else {
9402         // Otherwise, this is some crazy unknown case.  Report the issue at the
9403         // location provided by the isIntegerConstantExpr failed check.
9404         Diag(Loc, diag::err_in_class_initializer_non_constant)
9405           << Init->getSourceRange();
9406         VDecl->setInvalidDecl();
9407       }
9408 
9409     // We allow foldable floating-point constants as an extension.
9410     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
9411       // In C++98, this is a GNU extension. In C++11, it is not, but we support
9412       // it anyway and provide a fixit to add the 'constexpr'.
9413       if (getLangOpts().CPlusPlus11) {
9414         Diag(VDecl->getLocation(),
9415              diag::ext_in_class_initializer_float_type_cxx11)
9416             << DclT << Init->getSourceRange();
9417         Diag(VDecl->getLocStart(),
9418              diag::note_in_class_initializer_float_type_cxx11)
9419             << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
9420       } else {
9421         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
9422           << DclT << Init->getSourceRange();
9423 
9424         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
9425           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
9426             << Init->getSourceRange();
9427           VDecl->setInvalidDecl();
9428         }
9429       }
9430 
9431     // Suggest adding 'constexpr' in C++11 for literal types.
9432     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
9433       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
9434         << DclT << Init->getSourceRange()
9435         << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
9436       VDecl->setConstexpr(true);
9437 
9438     } else {
9439       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
9440         << DclT << Init->getSourceRange();
9441       VDecl->setInvalidDecl();
9442     }
9443   } else if (VDecl->isFileVarDecl()) {
9444     if (VDecl->getStorageClass() == SC_Extern &&
9445         (!getLangOpts().CPlusPlus ||
9446          !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
9447            VDecl->isExternC())) &&
9448         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
9449       Diag(VDecl->getLocation(), diag::warn_extern_init);
9450 
9451     // C99 6.7.8p4. All file scoped initializers need to be constant.
9452     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
9453       CheckForConstantInitializer(Init, DclT);
9454   }
9455 
9456   // We will represent direct-initialization similarly to copy-initialization:
9457   //    int x(1);  -as-> int x = 1;
9458   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9459   //
9460   // Clients that want to distinguish between the two forms, can check for
9461   // direct initializer using VarDecl::getInitStyle().
9462   // A major benefit is that clients that don't particularly care about which
9463   // exactly form was it (like the CodeGen) can handle both cases without
9464   // special case code.
9465 
9466   // C++ 8.5p11:
9467   // The form of initialization (using parentheses or '=') is generally
9468   // insignificant, but does matter when the entity being initialized has a
9469   // class type.
9470   if (CXXDirectInit) {
9471     assert(DirectInit && "Call-style initializer must be direct init.");
9472     VDecl->setInitStyle(VarDecl::CallInit);
9473   } else if (DirectInit) {
9474     // This must be list-initialization. No other way is direct-initialization.
9475     VDecl->setInitStyle(VarDecl::ListInit);
9476   }
9477 
9478   CheckCompleteVariableDeclaration(VDecl);
9479 }
9480 
9481 /// ActOnInitializerError - Given that there was an error parsing an
9482 /// initializer for the given declaration, try to return to some form
9483 /// of sanity.
9484 void Sema::ActOnInitializerError(Decl *D) {
9485   // Our main concern here is re-establishing invariants like "a
9486   // variable's type is either dependent or complete".
9487   if (!D || D->isInvalidDecl()) return;
9488 
9489   VarDecl *VD = dyn_cast<VarDecl>(D);
9490   if (!VD) return;
9491 
9492   // Auto types are meaningless if we can't make sense of the initializer.
9493   if (ParsingInitForAutoVars.count(D)) {
9494     D->setInvalidDecl();
9495     return;
9496   }
9497 
9498   QualType Ty = VD->getType();
9499   if (Ty->isDependentType()) return;
9500 
9501   // Require a complete type.
9502   if (RequireCompleteType(VD->getLocation(),
9503                           Context.getBaseElementType(Ty),
9504                           diag::err_typecheck_decl_incomplete_type)) {
9505     VD->setInvalidDecl();
9506     return;
9507   }
9508 
9509   // Require a non-abstract type.
9510   if (RequireNonAbstractType(VD->getLocation(), Ty,
9511                              diag::err_abstract_type_in_decl,
9512                              AbstractVariableType)) {
9513     VD->setInvalidDecl();
9514     return;
9515   }
9516 
9517   // Don't bother complaining about constructors or destructors,
9518   // though.
9519 }
9520 
9521 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
9522                                   bool TypeMayContainAuto) {
9523   // If there is no declaration, there was an error parsing it. Just ignore it.
9524   if (!RealDecl)
9525     return;
9526 
9527   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
9528     QualType Type = Var->getType();
9529 
9530     // C++11 [dcl.spec.auto]p3
9531     if (TypeMayContainAuto && Type->getContainedAutoType()) {
9532       Diag(Var->getLocation(), diag::err_auto_var_requires_init)
9533         << Var->getDeclName() << Type;
9534       Var->setInvalidDecl();
9535       return;
9536     }
9537 
9538     // C++11 [class.static.data]p3: A static data member can be declared with
9539     // the constexpr specifier; if so, its declaration shall specify
9540     // a brace-or-equal-initializer.
9541     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
9542     // the definition of a variable [...] or the declaration of a static data
9543     // member.
9544     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
9545       if (Var->isStaticDataMember())
9546         Diag(Var->getLocation(),
9547              diag::err_constexpr_static_mem_var_requires_init)
9548           << Var->getDeclName();
9549       else
9550         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
9551       Var->setInvalidDecl();
9552       return;
9553     }
9554 
9555     // C++ Concepts TS [dcl.spec.concept]p1: [...]  A variable template
9556     // definition having the concept specifier is called a variable concept. A
9557     // concept definition refers to [...] a variable concept and its initializer.
9558     if (Var->isConcept()) {
9559       Diag(Var->getLocation(), diag::err_var_concept_not_initialized);
9560       Var->setInvalidDecl();
9561       return;
9562     }
9563 
9564     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
9565     // be initialized.
9566     if (!Var->isInvalidDecl() &&
9567         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
9568         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
9569       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
9570       Var->setInvalidDecl();
9571       return;
9572     }
9573 
9574     switch (Var->isThisDeclarationADefinition()) {
9575     case VarDecl::Definition:
9576       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
9577         break;
9578 
9579       // We have an out-of-line definition of a static data member
9580       // that has an in-class initializer, so we type-check this like
9581       // a declaration.
9582       //
9583       // Fall through
9584 
9585     case VarDecl::DeclarationOnly:
9586       // It's only a declaration.
9587 
9588       // Block scope. C99 6.7p7: If an identifier for an object is
9589       // declared with no linkage (C99 6.2.2p6), the type for the
9590       // object shall be complete.
9591       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
9592           !Var->hasLinkage() && !Var->isInvalidDecl() &&
9593           RequireCompleteType(Var->getLocation(), Type,
9594                               diag::err_typecheck_decl_incomplete_type))
9595         Var->setInvalidDecl();
9596 
9597       // Make sure that the type is not abstract.
9598       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
9599           RequireNonAbstractType(Var->getLocation(), Type,
9600                                  diag::err_abstract_type_in_decl,
9601                                  AbstractVariableType))
9602         Var->setInvalidDecl();
9603       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
9604           Var->getStorageClass() == SC_PrivateExtern) {
9605         Diag(Var->getLocation(), diag::warn_private_extern);
9606         Diag(Var->getLocation(), diag::note_private_extern);
9607       }
9608 
9609       return;
9610 
9611     case VarDecl::TentativeDefinition:
9612       // File scope. C99 6.9.2p2: A declaration of an identifier for an
9613       // object that has file scope without an initializer, and without a
9614       // storage-class specifier or with the storage-class specifier "static",
9615       // constitutes a tentative definition. Note: A tentative definition with
9616       // external linkage is valid (C99 6.2.2p5).
9617       if (!Var->isInvalidDecl()) {
9618         if (const IncompleteArrayType *ArrayT
9619                                     = Context.getAsIncompleteArrayType(Type)) {
9620           if (RequireCompleteType(Var->getLocation(),
9621                                   ArrayT->getElementType(),
9622                                   diag::err_illegal_decl_array_incomplete_type))
9623             Var->setInvalidDecl();
9624         } else if (Var->getStorageClass() == SC_Static) {
9625           // C99 6.9.2p3: If the declaration of an identifier for an object is
9626           // a tentative definition and has internal linkage (C99 6.2.2p3), the
9627           // declared type shall not be an incomplete type.
9628           // NOTE: code such as the following
9629           //     static struct s;
9630           //     struct s { int a; };
9631           // is accepted by gcc. Hence here we issue a warning instead of
9632           // an error and we do not invalidate the static declaration.
9633           // NOTE: to avoid multiple warnings, only check the first declaration.
9634           if (Var->isFirstDecl())
9635             RequireCompleteType(Var->getLocation(), Type,
9636                                 diag::ext_typecheck_decl_incomplete_type);
9637         }
9638       }
9639 
9640       // Record the tentative definition; we're done.
9641       if (!Var->isInvalidDecl())
9642         TentativeDefinitions.push_back(Var);
9643       return;
9644     }
9645 
9646     // Provide a specific diagnostic for uninitialized variable
9647     // definitions with incomplete array type.
9648     if (Type->isIncompleteArrayType()) {
9649       Diag(Var->getLocation(),
9650            diag::err_typecheck_incomplete_array_needs_initializer);
9651       Var->setInvalidDecl();
9652       return;
9653     }
9654 
9655     // Provide a specific diagnostic for uninitialized variable
9656     // definitions with reference type.
9657     if (Type->isReferenceType()) {
9658       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
9659         << Var->getDeclName()
9660         << SourceRange(Var->getLocation(), Var->getLocation());
9661       Var->setInvalidDecl();
9662       return;
9663     }
9664 
9665     // Do not attempt to type-check the default initializer for a
9666     // variable with dependent type.
9667     if (Type->isDependentType())
9668       return;
9669 
9670     if (Var->isInvalidDecl())
9671       return;
9672 
9673     if (!Var->hasAttr<AliasAttr>()) {
9674       if (RequireCompleteType(Var->getLocation(),
9675                               Context.getBaseElementType(Type),
9676                               diag::err_typecheck_decl_incomplete_type)) {
9677         Var->setInvalidDecl();
9678         return;
9679       }
9680     } else {
9681       return;
9682     }
9683 
9684     // The variable can not have an abstract class type.
9685     if (RequireNonAbstractType(Var->getLocation(), Type,
9686                                diag::err_abstract_type_in_decl,
9687                                AbstractVariableType)) {
9688       Var->setInvalidDecl();
9689       return;
9690     }
9691 
9692     // Check for jumps past the implicit initializer.  C++0x
9693     // clarifies that this applies to a "variable with automatic
9694     // storage duration", not a "local variable".
9695     // C++11 [stmt.dcl]p3
9696     //   A program that jumps from a point where a variable with automatic
9697     //   storage duration is not in scope to a point where it is in scope is
9698     //   ill-formed unless the variable has scalar type, class type with a
9699     //   trivial default constructor and a trivial destructor, a cv-qualified
9700     //   version of one of these types, or an array of one of the preceding
9701     //   types and is declared without an initializer.
9702     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
9703       if (const RecordType *Record
9704             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
9705         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
9706         // Mark the function for further checking even if the looser rules of
9707         // C++11 do not require such checks, so that we can diagnose
9708         // incompatibilities with C++98.
9709         if (!CXXRecord->isPOD())
9710           getCurFunction()->setHasBranchProtectedScope();
9711       }
9712     }
9713 
9714     // C++03 [dcl.init]p9:
9715     //   If no initializer is specified for an object, and the
9716     //   object is of (possibly cv-qualified) non-POD class type (or
9717     //   array thereof), the object shall be default-initialized; if
9718     //   the object is of const-qualified type, the underlying class
9719     //   type shall have a user-declared default
9720     //   constructor. Otherwise, if no initializer is specified for
9721     //   a non- static object, the object and its subobjects, if
9722     //   any, have an indeterminate initial value); if the object
9723     //   or any of its subobjects are of const-qualified type, the
9724     //   program is ill-formed.
9725     // C++0x [dcl.init]p11:
9726     //   If no initializer is specified for an object, the object is
9727     //   default-initialized; [...].
9728     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
9729     InitializationKind Kind
9730       = InitializationKind::CreateDefault(Var->getLocation());
9731 
9732     InitializationSequence InitSeq(*this, Entity, Kind, None);
9733     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
9734     if (Init.isInvalid())
9735       Var->setInvalidDecl();
9736     else if (Init.get()) {
9737       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
9738       // This is important for template substitution.
9739       Var->setInitStyle(VarDecl::CallInit);
9740     }
9741 
9742     CheckCompleteVariableDeclaration(Var);
9743   }
9744 }
9745 
9746 void Sema::ActOnCXXForRangeDecl(Decl *D) {
9747   VarDecl *VD = dyn_cast<VarDecl>(D);
9748   if (!VD) {
9749     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
9750     D->setInvalidDecl();
9751     return;
9752   }
9753 
9754   VD->setCXXForRangeDecl(true);
9755 
9756   // for-range-declaration cannot be given a storage class specifier.
9757   int Error = -1;
9758   switch (VD->getStorageClass()) {
9759   case SC_None:
9760     break;
9761   case SC_Extern:
9762     Error = 0;
9763     break;
9764   case SC_Static:
9765     Error = 1;
9766     break;
9767   case SC_PrivateExtern:
9768     Error = 2;
9769     break;
9770   case SC_Auto:
9771     Error = 3;
9772     break;
9773   case SC_Register:
9774     Error = 4;
9775     break;
9776   }
9777   if (Error != -1) {
9778     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
9779       << VD->getDeclName() << Error;
9780     D->setInvalidDecl();
9781   }
9782 }
9783 
9784 StmtResult
9785 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
9786                                  IdentifierInfo *Ident,
9787                                  ParsedAttributes &Attrs,
9788                                  SourceLocation AttrEnd) {
9789   // C++1y [stmt.iter]p1:
9790   //   A range-based for statement of the form
9791   //      for ( for-range-identifier : for-range-initializer ) statement
9792   //   is equivalent to
9793   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
9794   DeclSpec DS(Attrs.getPool().getFactory());
9795 
9796   const char *PrevSpec;
9797   unsigned DiagID;
9798   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
9799                      getPrintingPolicy());
9800 
9801   Declarator D(DS, Declarator::ForContext);
9802   D.SetIdentifier(Ident, IdentLoc);
9803   D.takeAttributes(Attrs, AttrEnd);
9804 
9805   ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
9806   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
9807                 EmptyAttrs, IdentLoc);
9808   Decl *Var = ActOnDeclarator(S, D);
9809   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
9810   FinalizeDeclaration(Var);
9811   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
9812                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
9813 }
9814 
9815 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
9816   if (var->isInvalidDecl()) return;
9817 
9818   // In Objective-C, don't allow jumps past the implicit initialization of a
9819   // local retaining variable.
9820   if (getLangOpts().ObjC1 &&
9821       var->hasLocalStorage()) {
9822     switch (var->getType().getObjCLifetime()) {
9823     case Qualifiers::OCL_None:
9824     case Qualifiers::OCL_ExplicitNone:
9825     case Qualifiers::OCL_Autoreleasing:
9826       break;
9827 
9828     case Qualifiers::OCL_Weak:
9829     case Qualifiers::OCL_Strong:
9830       getCurFunction()->setHasBranchProtectedScope();
9831       break;
9832     }
9833   }
9834 
9835   // Warn about externally-visible variables being defined without a
9836   // prior declaration.  We only want to do this for global
9837   // declarations, but we also specifically need to avoid doing it for
9838   // class members because the linkage of an anonymous class can
9839   // change if it's later given a typedef name.
9840   if (var->isThisDeclarationADefinition() &&
9841       var->getDeclContext()->getRedeclContext()->isFileContext() &&
9842       var->isExternallyVisible() && var->hasLinkage() &&
9843       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
9844                                   var->getLocation())) {
9845     // Find a previous declaration that's not a definition.
9846     VarDecl *prev = var->getPreviousDecl();
9847     while (prev && prev->isThisDeclarationADefinition())
9848       prev = prev->getPreviousDecl();
9849 
9850     if (!prev)
9851       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
9852   }
9853 
9854   if (var->getTLSKind() == VarDecl::TLS_Static) {
9855     const Expr *Culprit;
9856     if (var->getType().isDestructedType()) {
9857       // GNU C++98 edits for __thread, [basic.start.term]p3:
9858       //   The type of an object with thread storage duration shall not
9859       //   have a non-trivial destructor.
9860       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
9861       if (getLangOpts().CPlusPlus11)
9862         Diag(var->getLocation(), diag::note_use_thread_local);
9863     } else if (getLangOpts().CPlusPlus && var->hasInit() &&
9864                !var->getInit()->isConstantInitializer(
9865                    Context, var->getType()->isReferenceType(), &Culprit)) {
9866       // GNU C++98 edits for __thread, [basic.start.init]p4:
9867       //   An object of thread storage duration shall not require dynamic
9868       //   initialization.
9869       // FIXME: Need strict checking here.
9870       Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init)
9871         << Culprit->getSourceRange();
9872       if (getLangOpts().CPlusPlus11)
9873         Diag(var->getLocation(), diag::note_use_thread_local);
9874     }
9875 
9876   }
9877 
9878   // Apply section attributes and pragmas to global variables.
9879   bool GlobalStorage = var->hasGlobalStorage();
9880   if (GlobalStorage && var->isThisDeclarationADefinition() &&
9881       ActiveTemplateInstantiations.empty()) {
9882     PragmaStack<StringLiteral *> *Stack = nullptr;
9883     int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
9884     if (var->getType().isConstQualified())
9885       Stack = &ConstSegStack;
9886     else if (!var->getInit()) {
9887       Stack = &BSSSegStack;
9888       SectionFlags |= ASTContext::PSF_Write;
9889     } else {
9890       Stack = &DataSegStack;
9891       SectionFlags |= ASTContext::PSF_Write;
9892     }
9893     if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
9894       var->addAttr(SectionAttr::CreateImplicit(
9895           Context, SectionAttr::Declspec_allocate,
9896           Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
9897     }
9898     if (const SectionAttr *SA = var->getAttr<SectionAttr>())
9899       if (UnifySection(SA->getName(), SectionFlags, var))
9900         var->dropAttr<SectionAttr>();
9901 
9902     // Apply the init_seg attribute if this has an initializer.  If the
9903     // initializer turns out to not be dynamic, we'll end up ignoring this
9904     // attribute.
9905     if (CurInitSeg && var->getInit())
9906       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
9907                                                CurInitSegLoc));
9908   }
9909 
9910   // All the following checks are C++ only.
9911   if (!getLangOpts().CPlusPlus) return;
9912 
9913   QualType type = var->getType();
9914   if (type->isDependentType()) return;
9915 
9916   // __block variables might require us to capture a copy-initializer.
9917   if (var->hasAttr<BlocksAttr>()) {
9918     // It's currently invalid to ever have a __block variable with an
9919     // array type; should we diagnose that here?
9920 
9921     // Regardless, we don't want to ignore array nesting when
9922     // constructing this copy.
9923     if (type->isStructureOrClassType()) {
9924       EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
9925       SourceLocation poi = var->getLocation();
9926       Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
9927       ExprResult result
9928         = PerformMoveOrCopyInitialization(
9929             InitializedEntity::InitializeBlock(poi, type, false),
9930             var, var->getType(), varRef, /*AllowNRVO=*/true);
9931       if (!result.isInvalid()) {
9932         result = MaybeCreateExprWithCleanups(result);
9933         Expr *init = result.getAs<Expr>();
9934         Context.setBlockVarCopyInits(var, init);
9935       }
9936     }
9937   }
9938 
9939   Expr *Init = var->getInit();
9940   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
9941   QualType baseType = Context.getBaseElementType(type);
9942 
9943   if (!var->getDeclContext()->isDependentContext() &&
9944       Init && !Init->isValueDependent()) {
9945     if (IsGlobal && !var->isConstexpr() &&
9946         !getDiagnostics().isIgnored(diag::warn_global_constructor,
9947                                     var->getLocation())) {
9948       // Warn about globals which don't have a constant initializer.  Don't
9949       // warn about globals with a non-trivial destructor because we already
9950       // warned about them.
9951       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
9952       if (!(RD && !RD->hasTrivialDestructor()) &&
9953           !Init->isConstantInitializer(Context, baseType->isReferenceType()))
9954         Diag(var->getLocation(), diag::warn_global_constructor)
9955           << Init->getSourceRange();
9956     }
9957 
9958     if (var->isConstexpr()) {
9959       SmallVector<PartialDiagnosticAt, 8> Notes;
9960       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
9961         SourceLocation DiagLoc = var->getLocation();
9962         // If the note doesn't add any useful information other than a source
9963         // location, fold it into the primary diagnostic.
9964         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
9965               diag::note_invalid_subexpr_in_const_expr) {
9966           DiagLoc = Notes[0].first;
9967           Notes.clear();
9968         }
9969         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
9970           << var << Init->getSourceRange();
9971         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9972           Diag(Notes[I].first, Notes[I].second);
9973       }
9974     } else if (var->isUsableInConstantExpressions(Context)) {
9975       // Check whether the initializer of a const variable of integral or
9976       // enumeration type is an ICE now, since we can't tell whether it was
9977       // initialized by a constant expression if we check later.
9978       var->checkInitIsICE();
9979     }
9980   }
9981 
9982   // Require the destructor.
9983   if (const RecordType *recordType = baseType->getAs<RecordType>())
9984     FinalizeVarWithDestructor(var, recordType);
9985 }
9986 
9987 /// \brief Determines if a variable's alignment is dependent.
9988 static bool hasDependentAlignment(VarDecl *VD) {
9989   if (VD->getType()->isDependentType())
9990     return true;
9991   for (auto *I : VD->specific_attrs<AlignedAttr>())
9992     if (I->isAlignmentDependent())
9993       return true;
9994   return false;
9995 }
9996 
9997 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
9998 /// any semantic actions necessary after any initializer has been attached.
9999 void
10000 Sema::FinalizeDeclaration(Decl *ThisDecl) {
10001   // Note that we are no longer parsing the initializer for this declaration.
10002   ParsingInitForAutoVars.erase(ThisDecl);
10003 
10004   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
10005   if (!VD)
10006     return;
10007 
10008   checkAttributesAfterMerging(*this, *VD);
10009 
10010   // Perform TLS alignment check here after attributes attached to the variable
10011   // which may affect the alignment have been processed. Only perform the check
10012   // if the target has a maximum TLS alignment (zero means no constraints).
10013   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
10014     // Protect the check so that it's not performed on dependent types and
10015     // dependent alignments (we can't determine the alignment in that case).
10016     if (VD->getTLSKind() && !hasDependentAlignment(VD)) {
10017       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
10018       if (Context.getDeclAlign(VD) > MaxAlignChars) {
10019         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
10020           << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
10021           << (unsigned)MaxAlignChars.getQuantity();
10022       }
10023     }
10024   }
10025 
10026   // Static locals inherit dll attributes from their function.
10027   if (VD->isStaticLocal()) {
10028     if (FunctionDecl *FD =
10029             dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
10030       if (Attr *A = getDLLAttr(FD)) {
10031         auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
10032         NewAttr->setInherited(true);
10033         VD->addAttr(NewAttr);
10034       }
10035     }
10036   }
10037 
10038   // Grab the dllimport or dllexport attribute off of the VarDecl.
10039   const InheritableAttr *DLLAttr = getDLLAttr(VD);
10040 
10041   // Imported static data members cannot be defined out-of-line.
10042   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
10043     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
10044         VD->isThisDeclarationADefinition()) {
10045       // We allow definitions of dllimport class template static data members
10046       // with a warning.
10047       CXXRecordDecl *Context =
10048         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
10049       bool IsClassTemplateMember =
10050           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
10051           Context->getDescribedClassTemplate();
10052 
10053       Diag(VD->getLocation(),
10054            IsClassTemplateMember
10055                ? diag::warn_attribute_dllimport_static_field_definition
10056                : diag::err_attribute_dllimport_static_field_definition);
10057       Diag(IA->getLocation(), diag::note_attribute);
10058       if (!IsClassTemplateMember)
10059         VD->setInvalidDecl();
10060     }
10061   }
10062 
10063   // dllimport/dllexport variables cannot be thread local, their TLS index
10064   // isn't exported with the variable.
10065   if (DLLAttr && VD->getTLSKind()) {
10066     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
10067     if (F && getDLLAttr(F)) {
10068       assert(VD->isStaticLocal());
10069       // But if this is a static local in a dlimport/dllexport function, the
10070       // function will never be inlined, which means the var would never be
10071       // imported, so having it marked import/export is safe.
10072     } else {
10073       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
10074                                                                     << DLLAttr;
10075       VD->setInvalidDecl();
10076     }
10077   }
10078 
10079   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
10080     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
10081       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
10082       VD->dropAttr<UsedAttr>();
10083     }
10084   }
10085 
10086   const DeclContext *DC = VD->getDeclContext();
10087   // If there's a #pragma GCC visibility in scope, and this isn't a class
10088   // member, set the visibility of this variable.
10089   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
10090     AddPushedVisibilityAttribute(VD);
10091 
10092   // FIXME: Warn on unused templates.
10093   if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() &&
10094       !isa<VarTemplatePartialSpecializationDecl>(VD))
10095     MarkUnusedFileScopedDecl(VD);
10096 
10097   // Now we have parsed the initializer and can update the table of magic
10098   // tag values.
10099   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
10100       !VD->getType()->isIntegralOrEnumerationType())
10101     return;
10102 
10103   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
10104     const Expr *MagicValueExpr = VD->getInit();
10105     if (!MagicValueExpr) {
10106       continue;
10107     }
10108     llvm::APSInt MagicValueInt;
10109     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
10110       Diag(I->getRange().getBegin(),
10111            diag::err_type_tag_for_datatype_not_ice)
10112         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
10113       continue;
10114     }
10115     if (MagicValueInt.getActiveBits() > 64) {
10116       Diag(I->getRange().getBegin(),
10117            diag::err_type_tag_for_datatype_too_large)
10118         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
10119       continue;
10120     }
10121     uint64_t MagicValue = MagicValueInt.getZExtValue();
10122     RegisterTypeTagForDatatype(I->getArgumentKind(),
10123                                MagicValue,
10124                                I->getMatchingCType(),
10125                                I->getLayoutCompatible(),
10126                                I->getMustBeNull());
10127   }
10128 }
10129 
10130 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
10131                                                    ArrayRef<Decl *> Group) {
10132   SmallVector<Decl*, 8> Decls;
10133 
10134   if (DS.isTypeSpecOwned())
10135     Decls.push_back(DS.getRepAsDecl());
10136 
10137   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
10138   for (unsigned i = 0, e = Group.size(); i != e; ++i)
10139     if (Decl *D = Group[i]) {
10140       if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
10141         if (!FirstDeclaratorInGroup)
10142           FirstDeclaratorInGroup = DD;
10143       Decls.push_back(D);
10144     }
10145 
10146   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
10147     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
10148       handleTagNumbering(Tag, S);
10149       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
10150           getLangOpts().CPlusPlus)
10151         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
10152     }
10153   }
10154 
10155   return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
10156 }
10157 
10158 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
10159 /// group, performing any necessary semantic checking.
10160 Sema::DeclGroupPtrTy
10161 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group,
10162                            bool TypeMayContainAuto) {
10163   // C++0x [dcl.spec.auto]p7:
10164   //   If the type deduced for the template parameter U is not the same in each
10165   //   deduction, the program is ill-formed.
10166   // FIXME: When initializer-list support is added, a distinction is needed
10167   // between the deduced type U and the deduced type which 'auto' stands for.
10168   //   auto a = 0, b = { 1, 2, 3 };
10169   // is legal because the deduced type U is 'int' in both cases.
10170   if (TypeMayContainAuto && Group.size() > 1) {
10171     QualType Deduced;
10172     CanQualType DeducedCanon;
10173     VarDecl *DeducedDecl = nullptr;
10174     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
10175       if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
10176         AutoType *AT = D->getType()->getContainedAutoType();
10177         // Don't reissue diagnostics when instantiating a template.
10178         if (AT && D->isInvalidDecl())
10179           break;
10180         QualType U = AT ? AT->getDeducedType() : QualType();
10181         if (!U.isNull()) {
10182           CanQualType UCanon = Context.getCanonicalType(U);
10183           if (Deduced.isNull()) {
10184             Deduced = U;
10185             DeducedCanon = UCanon;
10186             DeducedDecl = D;
10187           } else if (DeducedCanon != UCanon) {
10188             Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
10189                  diag::err_auto_different_deductions)
10190               << (AT->isDecltypeAuto() ? 1 : 0)
10191               << Deduced << DeducedDecl->getDeclName()
10192               << U << D->getDeclName()
10193               << DeducedDecl->getInit()->getSourceRange()
10194               << D->getInit()->getSourceRange();
10195             D->setInvalidDecl();
10196             break;
10197           }
10198         }
10199       }
10200     }
10201   }
10202 
10203   ActOnDocumentableDecls(Group);
10204 
10205   return DeclGroupPtrTy::make(
10206       DeclGroupRef::Create(Context, Group.data(), Group.size()));
10207 }
10208 
10209 void Sema::ActOnDocumentableDecl(Decl *D) {
10210   ActOnDocumentableDecls(D);
10211 }
10212 
10213 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
10214   // Don't parse the comment if Doxygen diagnostics are ignored.
10215   if (Group.empty() || !Group[0])
10216     return;
10217 
10218   if (Diags.isIgnored(diag::warn_doc_param_not_found,
10219                       Group[0]->getLocation()) &&
10220       Diags.isIgnored(diag::warn_unknown_comment_command_name,
10221                       Group[0]->getLocation()))
10222     return;
10223 
10224   if (Group.size() >= 2) {
10225     // This is a decl group.  Normally it will contain only declarations
10226     // produced from declarator list.  But in case we have any definitions or
10227     // additional declaration references:
10228     //   'typedef struct S {} S;'
10229     //   'typedef struct S *S;'
10230     //   'struct S *pS;'
10231     // FinalizeDeclaratorGroup adds these as separate declarations.
10232     Decl *MaybeTagDecl = Group[0];
10233     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
10234       Group = Group.slice(1);
10235     }
10236   }
10237 
10238   // See if there are any new comments that are not attached to a decl.
10239   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
10240   if (!Comments.empty() &&
10241       !Comments.back()->isAttached()) {
10242     // There is at least one comment that not attached to a decl.
10243     // Maybe it should be attached to one of these decls?
10244     //
10245     // Note that this way we pick up not only comments that precede the
10246     // declaration, but also comments that *follow* the declaration -- thanks to
10247     // the lookahead in the lexer: we've consumed the semicolon and looked
10248     // ahead through comments.
10249     for (unsigned i = 0, e = Group.size(); i != e; ++i)
10250       Context.getCommentForDecl(Group[i], &PP);
10251   }
10252 }
10253 
10254 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
10255 /// to introduce parameters into function prototype scope.
10256 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
10257   const DeclSpec &DS = D.getDeclSpec();
10258 
10259   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
10260 
10261   // C++03 [dcl.stc]p2 also permits 'auto'.
10262   StorageClass SC = SC_None;
10263   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
10264     SC = SC_Register;
10265   } else if (getLangOpts().CPlusPlus &&
10266              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
10267     SC = SC_Auto;
10268   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
10269     Diag(DS.getStorageClassSpecLoc(),
10270          diag::err_invalid_storage_class_in_func_decl);
10271     D.getMutableDeclSpec().ClearStorageClassSpecs();
10272   }
10273 
10274   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
10275     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
10276       << DeclSpec::getSpecifierName(TSCS);
10277   if (DS.isConstexprSpecified())
10278     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
10279       << 0;
10280 
10281   DiagnoseFunctionSpecifiers(DS);
10282 
10283   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10284   QualType parmDeclType = TInfo->getType();
10285 
10286   if (getLangOpts().CPlusPlus) {
10287     // Check that there are no default arguments inside the type of this
10288     // parameter.
10289     CheckExtraCXXDefaultArguments(D);
10290 
10291     // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
10292     if (D.getCXXScopeSpec().isSet()) {
10293       Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
10294         << D.getCXXScopeSpec().getRange();
10295       D.getCXXScopeSpec().clear();
10296     }
10297   }
10298 
10299   // Ensure we have a valid name
10300   IdentifierInfo *II = nullptr;
10301   if (D.hasName()) {
10302     II = D.getIdentifier();
10303     if (!II) {
10304       Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
10305         << GetNameForDeclarator(D).getName();
10306       D.setInvalidType(true);
10307     }
10308   }
10309 
10310   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
10311   if (II) {
10312     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
10313                    ForRedeclaration);
10314     LookupName(R, S);
10315     if (R.isSingleResult()) {
10316       NamedDecl *PrevDecl = R.getFoundDecl();
10317       if (PrevDecl->isTemplateParameter()) {
10318         // Maybe we will complain about the shadowed template parameter.
10319         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10320         // Just pretend that we didn't see the previous declaration.
10321         PrevDecl = nullptr;
10322       } else if (S->isDeclScope(PrevDecl)) {
10323         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
10324         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10325 
10326         // Recover by removing the name
10327         II = nullptr;
10328         D.SetIdentifier(nullptr, D.getIdentifierLoc());
10329         D.setInvalidType(true);
10330       }
10331     }
10332   }
10333 
10334   // Temporarily put parameter variables in the translation unit, not
10335   // the enclosing context.  This prevents them from accidentally
10336   // looking like class members in C++.
10337   ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
10338                                     D.getLocStart(),
10339                                     D.getIdentifierLoc(), II,
10340                                     parmDeclType, TInfo,
10341                                     SC);
10342 
10343   if (D.isInvalidType())
10344     New->setInvalidDecl();
10345 
10346   assert(S->isFunctionPrototypeScope());
10347   assert(S->getFunctionPrototypeDepth() >= 1);
10348   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
10349                     S->getNextFunctionPrototypeIndex());
10350 
10351   // Add the parameter declaration into this scope.
10352   S->AddDecl(New);
10353   if (II)
10354     IdResolver.AddDecl(New);
10355 
10356   ProcessDeclAttributes(S, New, D);
10357 
10358   if (D.getDeclSpec().isModulePrivateSpecified())
10359     Diag(New->getLocation(), diag::err_module_private_local)
10360       << 1 << New->getDeclName()
10361       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
10362       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
10363 
10364   if (New->hasAttr<BlocksAttr>()) {
10365     Diag(New->getLocation(), diag::err_block_on_nonlocal);
10366   }
10367   return New;
10368 }
10369 
10370 /// \brief Synthesizes a variable for a parameter arising from a
10371 /// typedef.
10372 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
10373                                               SourceLocation Loc,
10374                                               QualType T) {
10375   /* FIXME: setting StartLoc == Loc.
10376      Would it be worth to modify callers so as to provide proper source
10377      location for the unnamed parameters, embedding the parameter's type? */
10378   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
10379                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
10380                                            SC_None, nullptr);
10381   Param->setImplicit();
10382   return Param;
10383 }
10384 
10385 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
10386                                     ParmVarDecl * const *ParamEnd) {
10387   // Don't diagnose unused-parameter errors in template instantiations; we
10388   // will already have done so in the template itself.
10389   if (!ActiveTemplateInstantiations.empty())
10390     return;
10391 
10392   for (; Param != ParamEnd; ++Param) {
10393     if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
10394         !(*Param)->hasAttr<UnusedAttr>()) {
10395       Diag((*Param)->getLocation(), diag::warn_unused_parameter)
10396         << (*Param)->getDeclName();
10397     }
10398   }
10399 }
10400 
10401 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
10402                                                   ParmVarDecl * const *ParamEnd,
10403                                                   QualType ReturnTy,
10404                                                   NamedDecl *D) {
10405   if (LangOpts.NumLargeByValueCopy == 0) // No check.
10406     return;
10407 
10408   // Warn if the return value is pass-by-value and larger than the specified
10409   // threshold.
10410   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
10411     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
10412     if (Size > LangOpts.NumLargeByValueCopy)
10413       Diag(D->getLocation(), diag::warn_return_value_size)
10414           << D->getDeclName() << Size;
10415   }
10416 
10417   // Warn if any parameter is pass-by-value and larger than the specified
10418   // threshold.
10419   for (; Param != ParamEnd; ++Param) {
10420     QualType T = (*Param)->getType();
10421     if (T->isDependentType() || !T.isPODType(Context))
10422       continue;
10423     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
10424     if (Size > LangOpts.NumLargeByValueCopy)
10425       Diag((*Param)->getLocation(), diag::warn_parameter_size)
10426           << (*Param)->getDeclName() << Size;
10427   }
10428 }
10429 
10430 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
10431                                   SourceLocation NameLoc, IdentifierInfo *Name,
10432                                   QualType T, TypeSourceInfo *TSInfo,
10433                                   StorageClass SC) {
10434   // In ARC, infer a lifetime qualifier for appropriate parameter types.
10435   if (getLangOpts().ObjCAutoRefCount &&
10436       T.getObjCLifetime() == Qualifiers::OCL_None &&
10437       T->isObjCLifetimeType()) {
10438 
10439     Qualifiers::ObjCLifetime lifetime;
10440 
10441     // Special cases for arrays:
10442     //   - if it's const, use __unsafe_unretained
10443     //   - otherwise, it's an error
10444     if (T->isArrayType()) {
10445       if (!T.isConstQualified()) {
10446         DelayedDiagnostics.add(
10447             sema::DelayedDiagnostic::makeForbiddenType(
10448             NameLoc, diag::err_arc_array_param_no_ownership, T, false));
10449       }
10450       lifetime = Qualifiers::OCL_ExplicitNone;
10451     } else {
10452       lifetime = T->getObjCARCImplicitLifetime();
10453     }
10454     T = Context.getLifetimeQualifiedType(T, lifetime);
10455   }
10456 
10457   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
10458                                          Context.getAdjustedParameterType(T),
10459                                          TSInfo, SC, nullptr);
10460 
10461   // Parameters can not be abstract class types.
10462   // For record types, this is done by the AbstractClassUsageDiagnoser once
10463   // the class has been completely parsed.
10464   if (!CurContext->isRecord() &&
10465       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
10466                              AbstractParamType))
10467     New->setInvalidDecl();
10468 
10469   // Parameter declarators cannot be interface types. All ObjC objects are
10470   // passed by reference.
10471   if (T->isObjCObjectType()) {
10472     SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
10473     Diag(NameLoc,
10474          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
10475       << FixItHint::CreateInsertion(TypeEndLoc, "*");
10476     T = Context.getObjCObjectPointerType(T);
10477     New->setType(T);
10478   }
10479 
10480   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
10481   // duration shall not be qualified by an address-space qualifier."
10482   // Since all parameters have automatic store duration, they can not have
10483   // an address space.
10484   if (T.getAddressSpace() != 0) {
10485     // OpenCL allows function arguments declared to be an array of a type
10486     // to be qualified with an address space.
10487     if (!(getLangOpts().OpenCL && T->isArrayType())) {
10488       Diag(NameLoc, diag::err_arg_with_address_space);
10489       New->setInvalidDecl();
10490     }
10491   }
10492 
10493   return New;
10494 }
10495 
10496 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
10497                                            SourceLocation LocAfterDecls) {
10498   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10499 
10500   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
10501   // for a K&R function.
10502   if (!FTI.hasPrototype) {
10503     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
10504       --i;
10505       if (FTI.Params[i].Param == nullptr) {
10506         SmallString<256> Code;
10507         llvm::raw_svector_ostream(Code)
10508             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
10509         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
10510             << FTI.Params[i].Ident
10511             << FixItHint::CreateInsertion(LocAfterDecls, Code);
10512 
10513         // Implicitly declare the argument as type 'int' for lack of a better
10514         // type.
10515         AttributeFactory attrs;
10516         DeclSpec DS(attrs);
10517         const char* PrevSpec; // unused
10518         unsigned DiagID; // unused
10519         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
10520                            DiagID, Context.getPrintingPolicy());
10521         // Use the identifier location for the type source range.
10522         DS.SetRangeStart(FTI.Params[i].IdentLoc);
10523         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
10524         Declarator ParamD(DS, Declarator::KNRTypeListContext);
10525         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
10526         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
10527       }
10528     }
10529   }
10530 }
10531 
10532 Decl *
10533 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
10534                               MultiTemplateParamsArg TemplateParameterLists,
10535                               SkipBodyInfo *SkipBody) {
10536   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
10537   assert(D.isFunctionDeclarator() && "Not a function declarator!");
10538   Scope *ParentScope = FnBodyScope->getParent();
10539 
10540   D.setFunctionDefinitionKind(FDK_Definition);
10541   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
10542   return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
10543 }
10544 
10545 void Sema::ActOnFinishInlineMethodDef(CXXMethodDecl *D) {
10546   Consumer.HandleInlineMethodDefinition(D);
10547 }
10548 
10549 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
10550                              const FunctionDecl*& PossibleZeroParamPrototype) {
10551   // Don't warn about invalid declarations.
10552   if (FD->isInvalidDecl())
10553     return false;
10554 
10555   // Or declarations that aren't global.
10556   if (!FD->isGlobal())
10557     return false;
10558 
10559   // Don't warn about C++ member functions.
10560   if (isa<CXXMethodDecl>(FD))
10561     return false;
10562 
10563   // Don't warn about 'main'.
10564   if (FD->isMain())
10565     return false;
10566 
10567   // Don't warn about inline functions.
10568   if (FD->isInlined())
10569     return false;
10570 
10571   // Don't warn about function templates.
10572   if (FD->getDescribedFunctionTemplate())
10573     return false;
10574 
10575   // Don't warn about function template specializations.
10576   if (FD->isFunctionTemplateSpecialization())
10577     return false;
10578 
10579   // Don't warn for OpenCL kernels.
10580   if (FD->hasAttr<OpenCLKernelAttr>())
10581     return false;
10582 
10583   // Don't warn on explicitly deleted functions.
10584   if (FD->isDeleted())
10585     return false;
10586 
10587   bool MissingPrototype = true;
10588   for (const FunctionDecl *Prev = FD->getPreviousDecl();
10589        Prev; Prev = Prev->getPreviousDecl()) {
10590     // Ignore any declarations that occur in function or method
10591     // scope, because they aren't visible from the header.
10592     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
10593       continue;
10594 
10595     MissingPrototype = !Prev->getType()->isFunctionProtoType();
10596     if (FD->getNumParams() == 0)
10597       PossibleZeroParamPrototype = Prev;
10598     break;
10599   }
10600 
10601   return MissingPrototype;
10602 }
10603 
10604 void
10605 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
10606                                    const FunctionDecl *EffectiveDefinition,
10607                                    SkipBodyInfo *SkipBody) {
10608   // Don't complain if we're in GNU89 mode and the previous definition
10609   // was an extern inline function.
10610   const FunctionDecl *Definition = EffectiveDefinition;
10611   if (!Definition)
10612     if (!FD->isDefined(Definition))
10613       return;
10614 
10615   if (canRedefineFunction(Definition, getLangOpts()))
10616     return;
10617 
10618   // If we don't have a visible definition of the function, and it's inline or
10619   // a template, skip the new definition.
10620   if (SkipBody && !hasVisibleDefinition(Definition) &&
10621       (Definition->getFormalLinkage() == InternalLinkage ||
10622        Definition->isInlined() ||
10623        Definition->getDescribedFunctionTemplate() ||
10624        Definition->getNumTemplateParameterLists())) {
10625     SkipBody->ShouldSkip = true;
10626     if (auto *TD = Definition->getDescribedFunctionTemplate())
10627       makeMergedDefinitionVisible(TD, FD->getLocation());
10628     else
10629       makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition),
10630                                   FD->getLocation());
10631     return;
10632   }
10633 
10634   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
10635       Definition->getStorageClass() == SC_Extern)
10636     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
10637         << FD->getDeclName() << getLangOpts().CPlusPlus;
10638   else
10639     Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
10640 
10641   Diag(Definition->getLocation(), diag::note_previous_definition);
10642   FD->setInvalidDecl();
10643 }
10644 
10645 
10646 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
10647                                    Sema &S) {
10648   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
10649 
10650   LambdaScopeInfo *LSI = S.PushLambdaScope();
10651   LSI->CallOperator = CallOperator;
10652   LSI->Lambda = LambdaClass;
10653   LSI->ReturnType = CallOperator->getReturnType();
10654   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
10655 
10656   if (LCD == LCD_None)
10657     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
10658   else if (LCD == LCD_ByCopy)
10659     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
10660   else if (LCD == LCD_ByRef)
10661     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
10662   DeclarationNameInfo DNI = CallOperator->getNameInfo();
10663 
10664   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
10665   LSI->Mutable = !CallOperator->isConst();
10666 
10667   // Add the captures to the LSI so they can be noted as already
10668   // captured within tryCaptureVar.
10669   auto I = LambdaClass->field_begin();
10670   for (const auto &C : LambdaClass->captures()) {
10671     if (C.capturesVariable()) {
10672       VarDecl *VD = C.getCapturedVar();
10673       if (VD->isInitCapture())
10674         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
10675       QualType CaptureType = VD->getType();
10676       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
10677       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
10678           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
10679           /*EllipsisLoc*/C.isPackExpansion()
10680                          ? C.getEllipsisLoc() : SourceLocation(),
10681           CaptureType, /*Expr*/ nullptr);
10682 
10683     } else if (C.capturesThis()) {
10684       LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
10685                               S.getCurrentThisType(), /*Expr*/ nullptr);
10686     } else {
10687       LSI->addVLATypeCapture(C.getLocation(), I->getType());
10688     }
10689     ++I;
10690   }
10691 }
10692 
10693 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
10694                                     SkipBodyInfo *SkipBody) {
10695   // Clear the last template instantiation error context.
10696   LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
10697 
10698   if (!D)
10699     return D;
10700   FunctionDecl *FD = nullptr;
10701 
10702   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
10703     FD = FunTmpl->getTemplatedDecl();
10704   else
10705     FD = cast<FunctionDecl>(D);
10706 
10707   // See if this is a redefinition.
10708   if (!FD->isLateTemplateParsed()) {
10709     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
10710 
10711     // If we're skipping the body, we're done. Don't enter the scope.
10712     if (SkipBody && SkipBody->ShouldSkip)
10713       return D;
10714   }
10715 
10716   // If we are instantiating a generic lambda call operator, push
10717   // a LambdaScopeInfo onto the function stack.  But use the information
10718   // that's already been calculated (ActOnLambdaExpr) to prime the current
10719   // LambdaScopeInfo.
10720   // When the template operator is being specialized, the LambdaScopeInfo,
10721   // has to be properly restored so that tryCaptureVariable doesn't try
10722   // and capture any new variables. In addition when calculating potential
10723   // captures during transformation of nested lambdas, it is necessary to
10724   // have the LSI properly restored.
10725   if (isGenericLambdaCallOperatorSpecialization(FD)) {
10726     assert(ActiveTemplateInstantiations.size() &&
10727       "There should be an active template instantiation on the stack "
10728       "when instantiating a generic lambda!");
10729     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
10730   }
10731   else
10732     // Enter a new function scope
10733     PushFunctionScope();
10734 
10735   // Builtin functions cannot be defined.
10736   if (unsigned BuiltinID = FD->getBuiltinID()) {
10737     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
10738         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
10739       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
10740       FD->setInvalidDecl();
10741     }
10742   }
10743 
10744   // The return type of a function definition must be complete
10745   // (C99 6.9.1p3, C++ [dcl.fct]p6).
10746   QualType ResultType = FD->getReturnType();
10747   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
10748       !FD->isInvalidDecl() &&
10749       RequireCompleteType(FD->getLocation(), ResultType,
10750                           diag::err_func_def_incomplete_result))
10751     FD->setInvalidDecl();
10752 
10753   if (FnBodyScope)
10754     PushDeclContext(FnBodyScope, FD);
10755 
10756   // Check the validity of our function parameters
10757   CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
10758                            /*CheckParameterNames=*/true);
10759 
10760   // Introduce our parameters into the function scope
10761   for (auto Param : FD->params()) {
10762     Param->setOwningFunction(FD);
10763 
10764     // If this has an identifier, add it to the scope stack.
10765     if (Param->getIdentifier() && FnBodyScope) {
10766       CheckShadow(FnBodyScope, Param);
10767 
10768       PushOnScopeChains(Param, FnBodyScope);
10769     }
10770   }
10771 
10772   // If we had any tags defined in the function prototype,
10773   // introduce them into the function scope.
10774   if (FnBodyScope) {
10775     for (ArrayRef<NamedDecl *>::iterator
10776              I = FD->getDeclsInPrototypeScope().begin(),
10777              E = FD->getDeclsInPrototypeScope().end();
10778          I != E; ++I) {
10779       NamedDecl *D = *I;
10780 
10781       // Some of these decls (like enums) may have been pinned to the
10782       // translation unit for lack of a real context earlier. If so, remove
10783       // from the translation unit and reattach to the current context.
10784       if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
10785         // Is the decl actually in the context?
10786         for (const auto *DI : Context.getTranslationUnitDecl()->decls()) {
10787           if (DI == D) {
10788             Context.getTranslationUnitDecl()->removeDecl(D);
10789             break;
10790           }
10791         }
10792         // Either way, reassign the lexical decl context to our FunctionDecl.
10793         D->setLexicalDeclContext(CurContext);
10794       }
10795 
10796       // If the decl has a non-null name, make accessible in the current scope.
10797       if (!D->getName().empty())
10798         PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
10799 
10800       // Similarly, dive into enums and fish their constants out, making them
10801       // accessible in this scope.
10802       if (auto *ED = dyn_cast<EnumDecl>(D)) {
10803         for (auto *EI : ED->enumerators())
10804           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
10805       }
10806     }
10807   }
10808 
10809   // Ensure that the function's exception specification is instantiated.
10810   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
10811     ResolveExceptionSpec(D->getLocation(), FPT);
10812 
10813   // dllimport cannot be applied to non-inline function definitions.
10814   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
10815       !FD->isTemplateInstantiation()) {
10816     assert(!FD->hasAttr<DLLExportAttr>());
10817     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
10818     FD->setInvalidDecl();
10819     return D;
10820   }
10821   // We want to attach documentation to original Decl (which might be
10822   // a function template).
10823   ActOnDocumentableDecl(D);
10824   if (getCurLexicalContext()->isObjCContainer() &&
10825       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
10826       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
10827     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
10828 
10829   return D;
10830 }
10831 
10832 /// \brief Given the set of return statements within a function body,
10833 /// compute the variables that are subject to the named return value
10834 /// optimization.
10835 ///
10836 /// Each of the variables that is subject to the named return value
10837 /// optimization will be marked as NRVO variables in the AST, and any
10838 /// return statement that has a marked NRVO variable as its NRVO candidate can
10839 /// use the named return value optimization.
10840 ///
10841 /// This function applies a very simplistic algorithm for NRVO: if every return
10842 /// statement in the scope of a variable has the same NRVO candidate, that
10843 /// candidate is an NRVO variable.
10844 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
10845   ReturnStmt **Returns = Scope->Returns.data();
10846 
10847   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
10848     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
10849       if (!NRVOCandidate->isNRVOVariable())
10850         Returns[I]->setNRVOCandidate(nullptr);
10851     }
10852   }
10853 }
10854 
10855 bool Sema::canDelayFunctionBody(const Declarator &D) {
10856   // We can't delay parsing the body of a constexpr function template (yet).
10857   if (D.getDeclSpec().isConstexprSpecified())
10858     return false;
10859 
10860   // We can't delay parsing the body of a function template with a deduced
10861   // return type (yet).
10862   if (D.getDeclSpec().containsPlaceholderType()) {
10863     // If the placeholder introduces a non-deduced trailing return type,
10864     // we can still delay parsing it.
10865     if (D.getNumTypeObjects()) {
10866       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
10867       if (Outer.Kind == DeclaratorChunk::Function &&
10868           Outer.Fun.hasTrailingReturnType()) {
10869         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
10870         return Ty.isNull() || !Ty->isUndeducedType();
10871       }
10872     }
10873     return false;
10874   }
10875 
10876   return true;
10877 }
10878 
10879 bool Sema::canSkipFunctionBody(Decl *D) {
10880   // We cannot skip the body of a function (or function template) which is
10881   // constexpr, since we may need to evaluate its body in order to parse the
10882   // rest of the file.
10883   // We cannot skip the body of a function with an undeduced return type,
10884   // because any callers of that function need to know the type.
10885   if (const FunctionDecl *FD = D->getAsFunction())
10886     if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
10887       return false;
10888   return Consumer.shouldSkipFunctionBody(D);
10889 }
10890 
10891 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
10892   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
10893     FD->setHasSkippedBody();
10894   else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
10895     MD->setHasSkippedBody();
10896   return ActOnFinishFunctionBody(Decl, nullptr);
10897 }
10898 
10899 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
10900   return ActOnFinishFunctionBody(D, BodyArg, false);
10901 }
10902 
10903 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
10904                                     bool IsInstantiation) {
10905   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
10906 
10907   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
10908   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
10909 
10910   if (getLangOpts().Coroutines && !getCurFunction()->CoroutineStmts.empty())
10911     CheckCompletedCoroutineBody(FD, Body);
10912 
10913   if (FD) {
10914     FD->setBody(Body);
10915 
10916     if (getLangOpts().CPlusPlus14 && !FD->isInvalidDecl() && Body &&
10917         !FD->isDependentContext() && FD->getReturnType()->isUndeducedType()) {
10918       // If the function has a deduced result type but contains no 'return'
10919       // statements, the result type as written must be exactly 'auto', and
10920       // the deduced result type is 'void'.
10921       if (!FD->getReturnType()->getAs<AutoType>()) {
10922         Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
10923             << FD->getReturnType();
10924         FD->setInvalidDecl();
10925       } else {
10926         // Substitute 'void' for the 'auto' in the type.
10927         TypeLoc ResultType = getReturnTypeLoc(FD);
10928         Context.adjustDeducedFunctionResultType(
10929             FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
10930       }
10931     } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
10932       auto *LSI = getCurLambda();
10933       if (LSI->HasImplicitReturnType) {
10934         deduceClosureReturnType(*LSI);
10935 
10936         // C++11 [expr.prim.lambda]p4:
10937         //   [...] if there are no return statements in the compound-statement
10938         //   [the deduced type is] the type void
10939         QualType RetType =
10940             LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
10941 
10942         // Update the return type to the deduced type.
10943         const FunctionProtoType *Proto =
10944             FD->getType()->getAs<FunctionProtoType>();
10945         FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
10946                                             Proto->getExtProtoInfo()));
10947       }
10948     }
10949 
10950     // The only way to be included in UndefinedButUsed is if there is an
10951     // ODR use before the definition. Avoid the expensive map lookup if this
10952     // is the first declaration.
10953     if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
10954       if (!FD->isExternallyVisible())
10955         UndefinedButUsed.erase(FD);
10956       else if (FD->isInlined() &&
10957                !LangOpts.GNUInline &&
10958                (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
10959         UndefinedButUsed.erase(FD);
10960     }
10961 
10962     // If the function implicitly returns zero (like 'main') or is naked,
10963     // don't complain about missing return statements.
10964     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
10965       WP.disableCheckFallThrough();
10966 
10967     // MSVC permits the use of pure specifier (=0) on function definition,
10968     // defined at class scope, warn about this non-standard construct.
10969     if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
10970       Diag(FD->getLocation(), diag::ext_pure_function_definition);
10971 
10972     if (!FD->isInvalidDecl()) {
10973       // Don't diagnose unused parameters of defaulted or deleted functions.
10974       if (!FD->isDeleted() && !FD->isDefaulted())
10975         DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
10976       DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
10977                                              FD->getReturnType(), FD);
10978 
10979       // If this is a structor, we need a vtable.
10980       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
10981         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
10982       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
10983         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
10984 
10985       // Try to apply the named return value optimization. We have to check
10986       // if we can do this here because lambdas keep return statements around
10987       // to deduce an implicit return type.
10988       if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() &&
10989           !FD->isDependentContext())
10990         computeNRVO(Body, getCurFunction());
10991     }
10992 
10993     // GNU warning -Wmissing-prototypes:
10994     //   Warn if a global function is defined without a previous
10995     //   prototype declaration. This warning is issued even if the
10996     //   definition itself provides a prototype. The aim is to detect
10997     //   global functions that fail to be declared in header files.
10998     const FunctionDecl *PossibleZeroParamPrototype = nullptr;
10999     if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
11000       Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
11001 
11002       if (PossibleZeroParamPrototype) {
11003         // We found a declaration that is not a prototype,
11004         // but that could be a zero-parameter prototype
11005         if (TypeSourceInfo *TI =
11006                 PossibleZeroParamPrototype->getTypeSourceInfo()) {
11007           TypeLoc TL = TI->getTypeLoc();
11008           if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
11009             Diag(PossibleZeroParamPrototype->getLocation(),
11010                  diag::note_declaration_not_a_prototype)
11011                 << PossibleZeroParamPrototype
11012                 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
11013         }
11014       }
11015     }
11016 
11017     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11018       const CXXMethodDecl *KeyFunction;
11019       if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
11020           MD->isVirtual() &&
11021           (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
11022           MD == KeyFunction->getCanonicalDecl()) {
11023         // Update the key-function state if necessary for this ABI.
11024         if (FD->isInlined() &&
11025             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
11026           Context.setNonKeyFunction(MD);
11027 
11028           // If the newly-chosen key function is already defined, then we
11029           // need to mark the vtable as used retroactively.
11030           KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
11031           const FunctionDecl *Definition;
11032           if (KeyFunction && KeyFunction->isDefined(Definition))
11033             MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
11034         } else {
11035           // We just defined they key function; mark the vtable as used.
11036           MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
11037         }
11038       }
11039     }
11040 
11041     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
11042            "Function parsing confused");
11043   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
11044     assert(MD == getCurMethodDecl() && "Method parsing confused");
11045     MD->setBody(Body);
11046     if (!MD->isInvalidDecl()) {
11047       DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
11048       DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
11049                                              MD->getReturnType(), MD);
11050 
11051       if (Body)
11052         computeNRVO(Body, getCurFunction());
11053     }
11054     if (getCurFunction()->ObjCShouldCallSuper) {
11055       Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
11056         << MD->getSelector().getAsString();
11057       getCurFunction()->ObjCShouldCallSuper = false;
11058     }
11059     if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
11060       const ObjCMethodDecl *InitMethod = nullptr;
11061       bool isDesignated =
11062           MD->isDesignatedInitializerForTheInterface(&InitMethod);
11063       assert(isDesignated && InitMethod);
11064       (void)isDesignated;
11065 
11066       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
11067         auto IFace = MD->getClassInterface();
11068         if (!IFace)
11069           return false;
11070         auto SuperD = IFace->getSuperClass();
11071         if (!SuperD)
11072           return false;
11073         return SuperD->getIdentifier() ==
11074             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
11075       };
11076       // Don't issue this warning for unavailable inits or direct subclasses
11077       // of NSObject.
11078       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
11079         Diag(MD->getLocation(),
11080              diag::warn_objc_designated_init_missing_super_call);
11081         Diag(InitMethod->getLocation(),
11082              diag::note_objc_designated_init_marked_here);
11083       }
11084       getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
11085     }
11086     if (getCurFunction()->ObjCWarnForNoInitDelegation) {
11087       // Don't issue this warning for unavaialable inits.
11088       if (!MD->isUnavailable())
11089         Diag(MD->getLocation(),
11090              diag::warn_objc_secondary_init_missing_init_call);
11091       getCurFunction()->ObjCWarnForNoInitDelegation = false;
11092     }
11093   } else {
11094     return nullptr;
11095   }
11096 
11097   assert(!getCurFunction()->ObjCShouldCallSuper &&
11098          "This should only be set for ObjC methods, which should have been "
11099          "handled in the block above.");
11100 
11101   // Verify and clean out per-function state.
11102   if (Body && (!FD || !FD->isDefaulted())) {
11103     // C++ constructors that have function-try-blocks can't have return
11104     // statements in the handlers of that block. (C++ [except.handle]p14)
11105     // Verify this.
11106     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
11107       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
11108 
11109     // Verify that gotos and switch cases don't jump into scopes illegally.
11110     if (getCurFunction()->NeedsScopeChecking() &&
11111         !PP.isCodeCompletionEnabled())
11112       DiagnoseInvalidJumps(Body);
11113 
11114     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
11115       if (!Destructor->getParent()->isDependentType())
11116         CheckDestructor(Destructor);
11117 
11118       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
11119                                              Destructor->getParent());
11120     }
11121 
11122     // If any errors have occurred, clear out any temporaries that may have
11123     // been leftover. This ensures that these temporaries won't be picked up for
11124     // deletion in some later function.
11125     if (getDiagnostics().hasErrorOccurred() ||
11126         getDiagnostics().getSuppressAllDiagnostics()) {
11127       DiscardCleanupsInEvaluationContext();
11128     }
11129     if (!getDiagnostics().hasUncompilableErrorOccurred() &&
11130         !isa<FunctionTemplateDecl>(dcl)) {
11131       // Since the body is valid, issue any analysis-based warnings that are
11132       // enabled.
11133       ActivePolicy = &WP;
11134     }
11135 
11136     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
11137         (!CheckConstexprFunctionDecl(FD) ||
11138          !CheckConstexprFunctionBody(FD, Body)))
11139       FD->setInvalidDecl();
11140 
11141     if (FD && FD->hasAttr<NakedAttr>()) {
11142       for (const Stmt *S : Body->children()) {
11143         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
11144           Diag(S->getLocStart(), diag::err_non_asm_stmt_in_naked_function);
11145           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
11146           FD->setInvalidDecl();
11147           break;
11148         }
11149       }
11150     }
11151 
11152     assert(ExprCleanupObjects.size() ==
11153                ExprEvalContexts.back().NumCleanupObjects &&
11154            "Leftover temporaries in function");
11155     assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
11156     assert(MaybeODRUseExprs.empty() &&
11157            "Leftover expressions for odr-use checking");
11158   }
11159 
11160   if (!IsInstantiation)
11161     PopDeclContext();
11162 
11163   PopFunctionScopeInfo(ActivePolicy, dcl);
11164   // If any errors have occurred, clear out any temporaries that may have
11165   // been leftover. This ensures that these temporaries won't be picked up for
11166   // deletion in some later function.
11167   if (getDiagnostics().hasErrorOccurred()) {
11168     DiscardCleanupsInEvaluationContext();
11169   }
11170 
11171   return dcl;
11172 }
11173 
11174 
11175 /// When we finish delayed parsing of an attribute, we must attach it to the
11176 /// relevant Decl.
11177 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
11178                                        ParsedAttributes &Attrs) {
11179   // Always attach attributes to the underlying decl.
11180   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
11181     D = TD->getTemplatedDecl();
11182   ProcessDeclAttributeList(S, D, Attrs.getList());
11183 
11184   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
11185     if (Method->isStatic())
11186       checkThisInStaticMemberFunctionAttributes(Method);
11187 }
11188 
11189 
11190 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
11191 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
11192 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
11193                                           IdentifierInfo &II, Scope *S) {
11194   // Before we produce a declaration for an implicitly defined
11195   // function, see whether there was a locally-scoped declaration of
11196   // this name as a function or variable. If so, use that
11197   // (non-visible) declaration, and complain about it.
11198   if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
11199     Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
11200     Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
11201     return ExternCPrev;
11202   }
11203 
11204   // Extension in C99.  Legal in C90, but warn about it.
11205   unsigned diag_id;
11206   if (II.getName().startswith("__builtin_"))
11207     diag_id = diag::warn_builtin_unknown;
11208   else if (getLangOpts().C99)
11209     diag_id = diag::ext_implicit_function_decl;
11210   else
11211     diag_id = diag::warn_implicit_function_decl;
11212   Diag(Loc, diag_id) << &II;
11213 
11214   // Because typo correction is expensive, only do it if the implicit
11215   // function declaration is going to be treated as an error.
11216   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
11217     TypoCorrection Corrected;
11218     if (S &&
11219         (Corrected = CorrectTypo(
11220              DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr,
11221              llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError)))
11222       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
11223                    /*ErrorRecovery*/false);
11224   }
11225 
11226   // Set a Declarator for the implicit definition: int foo();
11227   const char *Dummy;
11228   AttributeFactory attrFactory;
11229   DeclSpec DS(attrFactory);
11230   unsigned DiagID;
11231   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
11232                                   Context.getPrintingPolicy());
11233   (void)Error; // Silence warning.
11234   assert(!Error && "Error setting up implicit decl!");
11235   SourceLocation NoLoc;
11236   Declarator D(DS, Declarator::BlockContext);
11237   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
11238                                              /*IsAmbiguous=*/false,
11239                                              /*LParenLoc=*/NoLoc,
11240                                              /*Params=*/nullptr,
11241                                              /*NumParams=*/0,
11242                                              /*EllipsisLoc=*/NoLoc,
11243                                              /*RParenLoc=*/NoLoc,
11244                                              /*TypeQuals=*/0,
11245                                              /*RefQualifierIsLvalueRef=*/true,
11246                                              /*RefQualifierLoc=*/NoLoc,
11247                                              /*ConstQualifierLoc=*/NoLoc,
11248                                              /*VolatileQualifierLoc=*/NoLoc,
11249                                              /*RestrictQualifierLoc=*/NoLoc,
11250                                              /*MutableLoc=*/NoLoc,
11251                                              EST_None,
11252                                              /*ESpecRange=*/SourceRange(),
11253                                              /*Exceptions=*/nullptr,
11254                                              /*ExceptionRanges=*/nullptr,
11255                                              /*NumExceptions=*/0,
11256                                              /*NoexceptExpr=*/nullptr,
11257                                              /*ExceptionSpecTokens=*/nullptr,
11258                                              Loc, Loc, D),
11259                 DS.getAttributes(),
11260                 SourceLocation());
11261   D.SetIdentifier(&II, Loc);
11262 
11263   // Insert this function into translation-unit scope.
11264 
11265   DeclContext *PrevDC = CurContext;
11266   CurContext = Context.getTranslationUnitDecl();
11267 
11268   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
11269   FD->setImplicit();
11270 
11271   CurContext = PrevDC;
11272 
11273   AddKnownFunctionAttributes(FD);
11274 
11275   return FD;
11276 }
11277 
11278 /// \brief Adds any function attributes that we know a priori based on
11279 /// the declaration of this function.
11280 ///
11281 /// These attributes can apply both to implicitly-declared builtins
11282 /// (like __builtin___printf_chk) or to library-declared functions
11283 /// like NSLog or printf.
11284 ///
11285 /// We need to check for duplicate attributes both here and where user-written
11286 /// attributes are applied to declarations.
11287 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
11288   if (FD->isInvalidDecl())
11289     return;
11290 
11291   // If this is a built-in function, map its builtin attributes to
11292   // actual attributes.
11293   if (unsigned BuiltinID = FD->getBuiltinID()) {
11294     // Handle printf-formatting attributes.
11295     unsigned FormatIdx;
11296     bool HasVAListArg;
11297     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
11298       if (!FD->hasAttr<FormatAttr>()) {
11299         const char *fmt = "printf";
11300         unsigned int NumParams = FD->getNumParams();
11301         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
11302             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
11303           fmt = "NSString";
11304         FD->addAttr(FormatAttr::CreateImplicit(Context,
11305                                                &Context.Idents.get(fmt),
11306                                                FormatIdx+1,
11307                                                HasVAListArg ? 0 : FormatIdx+2,
11308                                                FD->getLocation()));
11309       }
11310     }
11311     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
11312                                              HasVAListArg)) {
11313      if (!FD->hasAttr<FormatAttr>())
11314        FD->addAttr(FormatAttr::CreateImplicit(Context,
11315                                               &Context.Idents.get("scanf"),
11316                                               FormatIdx+1,
11317                                               HasVAListArg ? 0 : FormatIdx+2,
11318                                               FD->getLocation()));
11319     }
11320 
11321     // Mark const if we don't care about errno and that is the only
11322     // thing preventing the function from being const. This allows
11323     // IRgen to use LLVM intrinsics for such functions.
11324     if (!getLangOpts().MathErrno &&
11325         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
11326       if (!FD->hasAttr<ConstAttr>())
11327         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
11328     }
11329 
11330     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
11331         !FD->hasAttr<ReturnsTwiceAttr>())
11332       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
11333                                          FD->getLocation()));
11334     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
11335       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
11336     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
11337       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
11338     if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads &&
11339         Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
11340         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
11341       // Assign appropriate attribute depending on CUDA compilation
11342       // mode and the target builtin belongs to. E.g. during host
11343       // compilation, aux builtins are __device__, the rest are __host__.
11344       if (getLangOpts().CUDAIsDevice !=
11345           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
11346         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
11347       else
11348         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
11349     }
11350   }
11351 
11352   IdentifierInfo *Name = FD->getIdentifier();
11353   if (!Name)
11354     return;
11355   if ((!getLangOpts().CPlusPlus &&
11356        FD->getDeclContext()->isTranslationUnit()) ||
11357       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
11358        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
11359        LinkageSpecDecl::lang_c)) {
11360     // Okay: this could be a libc/libm/Objective-C function we know
11361     // about.
11362   } else
11363     return;
11364 
11365   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
11366     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
11367     // target-specific builtins, perhaps?
11368     if (!FD->hasAttr<FormatAttr>())
11369       FD->addAttr(FormatAttr::CreateImplicit(Context,
11370                                              &Context.Idents.get("printf"), 2,
11371                                              Name->isStr("vasprintf") ? 0 : 3,
11372                                              FD->getLocation()));
11373   }
11374 
11375   if (Name->isStr("__CFStringMakeConstantString")) {
11376     // We already have a __builtin___CFStringMakeConstantString,
11377     // but builds that use -fno-constant-cfstrings don't go through that.
11378     if (!FD->hasAttr<FormatArgAttr>())
11379       FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1,
11380                                                 FD->getLocation()));
11381   }
11382 }
11383 
11384 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
11385                                     TypeSourceInfo *TInfo) {
11386   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
11387   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
11388 
11389   if (!TInfo) {
11390     assert(D.isInvalidType() && "no declarator info for valid type");
11391     TInfo = Context.getTrivialTypeSourceInfo(T);
11392   }
11393 
11394   // Scope manipulation handled by caller.
11395   TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
11396                                            D.getLocStart(),
11397                                            D.getIdentifierLoc(),
11398                                            D.getIdentifier(),
11399                                            TInfo);
11400 
11401   // Bail out immediately if we have an invalid declaration.
11402   if (D.isInvalidType()) {
11403     NewTD->setInvalidDecl();
11404     return NewTD;
11405   }
11406 
11407   if (D.getDeclSpec().isModulePrivateSpecified()) {
11408     if (CurContext->isFunctionOrMethod())
11409       Diag(NewTD->getLocation(), diag::err_module_private_local)
11410         << 2 << NewTD->getDeclName()
11411         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
11412         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
11413     else
11414       NewTD->setModulePrivate();
11415   }
11416 
11417   // C++ [dcl.typedef]p8:
11418   //   If the typedef declaration defines an unnamed class (or
11419   //   enum), the first typedef-name declared by the declaration
11420   //   to be that class type (or enum type) is used to denote the
11421   //   class type (or enum type) for linkage purposes only.
11422   // We need to check whether the type was declared in the declaration.
11423   switch (D.getDeclSpec().getTypeSpecType()) {
11424   case TST_enum:
11425   case TST_struct:
11426   case TST_interface:
11427   case TST_union:
11428   case TST_class: {
11429     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
11430     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
11431     break;
11432   }
11433 
11434   default:
11435     break;
11436   }
11437 
11438   return NewTD;
11439 }
11440 
11441 
11442 /// \brief Check that this is a valid underlying type for an enum declaration.
11443 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
11444   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
11445   QualType T = TI->getType();
11446 
11447   if (T->isDependentType())
11448     return false;
11449 
11450   if (const BuiltinType *BT = T->getAs<BuiltinType>())
11451     if (BT->isInteger())
11452       return false;
11453 
11454   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
11455   return true;
11456 }
11457 
11458 /// Check whether this is a valid redeclaration of a previous enumeration.
11459 /// \return true if the redeclaration was invalid.
11460 bool Sema::CheckEnumRedeclaration(
11461     SourceLocation EnumLoc, bool IsScoped, QualType EnumUnderlyingTy,
11462     bool EnumUnderlyingIsImplicit, const EnumDecl *Prev) {
11463   bool IsFixed = !EnumUnderlyingTy.isNull();
11464 
11465   if (IsScoped != Prev->isScoped()) {
11466     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
11467       << Prev->isScoped();
11468     Diag(Prev->getLocation(), diag::note_previous_declaration);
11469     return true;
11470   }
11471 
11472   if (IsFixed && Prev->isFixed()) {
11473     if (!EnumUnderlyingTy->isDependentType() &&
11474         !Prev->getIntegerType()->isDependentType() &&
11475         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
11476                                         Prev->getIntegerType())) {
11477       // TODO: Highlight the underlying type of the redeclaration.
11478       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
11479         << EnumUnderlyingTy << Prev->getIntegerType();
11480       Diag(Prev->getLocation(), diag::note_previous_declaration)
11481           << Prev->getIntegerTypeRange();
11482       return true;
11483     }
11484   } else if (IsFixed && !Prev->isFixed() && EnumUnderlyingIsImplicit) {
11485     ;
11486   } else if (!IsFixed && Prev->isFixed() && !Prev->getIntegerTypeSourceInfo()) {
11487     ;
11488   } else if (IsFixed != Prev->isFixed()) {
11489     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
11490       << Prev->isFixed();
11491     Diag(Prev->getLocation(), diag::note_previous_declaration);
11492     return true;
11493   }
11494 
11495   return false;
11496 }
11497 
11498 /// \brief Get diagnostic %select index for tag kind for
11499 /// redeclaration diagnostic message.
11500 /// WARNING: Indexes apply to particular diagnostics only!
11501 ///
11502 /// \returns diagnostic %select index.
11503 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
11504   switch (Tag) {
11505   case TTK_Struct: return 0;
11506   case TTK_Interface: return 1;
11507   case TTK_Class:  return 2;
11508   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
11509   }
11510 }
11511 
11512 /// \brief Determine if tag kind is a class-key compatible with
11513 /// class for redeclaration (class, struct, or __interface).
11514 ///
11515 /// \returns true iff the tag kind is compatible.
11516 static bool isClassCompatTagKind(TagTypeKind Tag)
11517 {
11518   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
11519 }
11520 
11521 /// \brief Determine whether a tag with a given kind is acceptable
11522 /// as a redeclaration of the given tag declaration.
11523 ///
11524 /// \returns true if the new tag kind is acceptable, false otherwise.
11525 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
11526                                         TagTypeKind NewTag, bool isDefinition,
11527                                         SourceLocation NewTagLoc,
11528                                         const IdentifierInfo *Name) {
11529   // C++ [dcl.type.elab]p3:
11530   //   The class-key or enum keyword present in the
11531   //   elaborated-type-specifier shall agree in kind with the
11532   //   declaration to which the name in the elaborated-type-specifier
11533   //   refers. This rule also applies to the form of
11534   //   elaborated-type-specifier that declares a class-name or
11535   //   friend class since it can be construed as referring to the
11536   //   definition of the class. Thus, in any
11537   //   elaborated-type-specifier, the enum keyword shall be used to
11538   //   refer to an enumeration (7.2), the union class-key shall be
11539   //   used to refer to a union (clause 9), and either the class or
11540   //   struct class-key shall be used to refer to a class (clause 9)
11541   //   declared using the class or struct class-key.
11542   TagTypeKind OldTag = Previous->getTagKind();
11543   if (!isDefinition || !isClassCompatTagKind(NewTag))
11544     if (OldTag == NewTag)
11545       return true;
11546 
11547   if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
11548     // Warn about the struct/class tag mismatch.
11549     bool isTemplate = false;
11550     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
11551       isTemplate = Record->getDescribedClassTemplate();
11552 
11553     if (!ActiveTemplateInstantiations.empty()) {
11554       // In a template instantiation, do not offer fix-its for tag mismatches
11555       // since they usually mess up the template instead of fixing the problem.
11556       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
11557         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
11558         << getRedeclDiagFromTagKind(OldTag);
11559       return true;
11560     }
11561 
11562     if (isDefinition) {
11563       // On definitions, check previous tags and issue a fix-it for each
11564       // one that doesn't match the current tag.
11565       if (Previous->getDefinition()) {
11566         // Don't suggest fix-its for redefinitions.
11567         return true;
11568       }
11569 
11570       bool previousMismatch = false;
11571       for (auto I : Previous->redecls()) {
11572         if (I->getTagKind() != NewTag) {
11573           if (!previousMismatch) {
11574             previousMismatch = true;
11575             Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
11576               << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
11577               << getRedeclDiagFromTagKind(I->getTagKind());
11578           }
11579           Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
11580             << getRedeclDiagFromTagKind(NewTag)
11581             << FixItHint::CreateReplacement(I->getInnerLocStart(),
11582                  TypeWithKeyword::getTagTypeKindName(NewTag));
11583         }
11584       }
11585       return true;
11586     }
11587 
11588     // Check for a previous definition.  If current tag and definition
11589     // are same type, do nothing.  If no definition, but disagree with
11590     // with previous tag type, give a warning, but no fix-it.
11591     const TagDecl *Redecl = Previous->getDefinition() ?
11592                             Previous->getDefinition() : Previous;
11593     if (Redecl->getTagKind() == NewTag) {
11594       return true;
11595     }
11596 
11597     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
11598       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
11599       << getRedeclDiagFromTagKind(OldTag);
11600     Diag(Redecl->getLocation(), diag::note_previous_use);
11601 
11602     // If there is a previous definition, suggest a fix-it.
11603     if (Previous->getDefinition()) {
11604         Diag(NewTagLoc, diag::note_struct_class_suggestion)
11605           << getRedeclDiagFromTagKind(Redecl->getTagKind())
11606           << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
11607                TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
11608     }
11609 
11610     return true;
11611   }
11612   return false;
11613 }
11614 
11615 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
11616 /// from an outer enclosing namespace or file scope inside a friend declaration.
11617 /// This should provide the commented out code in the following snippet:
11618 ///   namespace N {
11619 ///     struct X;
11620 ///     namespace M {
11621 ///       struct Y { friend struct /*N::*/ X; };
11622 ///     }
11623 ///   }
11624 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
11625                                          SourceLocation NameLoc) {
11626   // While the decl is in a namespace, do repeated lookup of that name and see
11627   // if we get the same namespace back.  If we do not, continue until
11628   // translation unit scope, at which point we have a fully qualified NNS.
11629   SmallVector<IdentifierInfo *, 4> Namespaces;
11630   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
11631   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
11632     // This tag should be declared in a namespace, which can only be enclosed by
11633     // other namespaces.  Bail if there's an anonymous namespace in the chain.
11634     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
11635     if (!Namespace || Namespace->isAnonymousNamespace())
11636       return FixItHint();
11637     IdentifierInfo *II = Namespace->getIdentifier();
11638     Namespaces.push_back(II);
11639     NamedDecl *Lookup = SemaRef.LookupSingleName(
11640         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
11641     if (Lookup == Namespace)
11642       break;
11643   }
11644 
11645   // Once we have all the namespaces, reverse them to go outermost first, and
11646   // build an NNS.
11647   SmallString<64> Insertion;
11648   llvm::raw_svector_ostream OS(Insertion);
11649   if (DC->isTranslationUnit())
11650     OS << "::";
11651   std::reverse(Namespaces.begin(), Namespaces.end());
11652   for (auto *II : Namespaces)
11653     OS << II->getName() << "::";
11654   return FixItHint::CreateInsertion(NameLoc, Insertion);
11655 }
11656 
11657 /// \brief Determine whether a tag originally declared in context \p OldDC can
11658 /// be redeclared with an unqualfied name in \p NewDC (assuming name lookup
11659 /// found a declaration in \p OldDC as a previous decl, perhaps through a
11660 /// using-declaration).
11661 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
11662                                          DeclContext *NewDC) {
11663   OldDC = OldDC->getRedeclContext();
11664   NewDC = NewDC->getRedeclContext();
11665 
11666   if (OldDC->Equals(NewDC))
11667     return true;
11668 
11669   // In MSVC mode, we allow a redeclaration if the contexts are related (either
11670   // encloses the other).
11671   if (S.getLangOpts().MSVCCompat &&
11672       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
11673     return true;
11674 
11675   return false;
11676 }
11677 
11678 /// \brief This is invoked when we see 'struct foo' or 'struct {'.  In the
11679 /// former case, Name will be non-null.  In the later case, Name will be null.
11680 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
11681 /// reference/declaration/definition of a tag.
11682 ///
11683 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
11684 /// trailing-type-specifier) other than one in an alias-declaration.
11685 ///
11686 /// \param SkipBody If non-null, will be set to indicate if the caller should
11687 /// skip the definition of this tag and treat it as if it were a declaration.
11688 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
11689                      SourceLocation KWLoc, CXXScopeSpec &SS,
11690                      IdentifierInfo *Name, SourceLocation NameLoc,
11691                      AttributeList *Attr, AccessSpecifier AS,
11692                      SourceLocation ModulePrivateLoc,
11693                      MultiTemplateParamsArg TemplateParameterLists,
11694                      bool &OwnedDecl, bool &IsDependent,
11695                      SourceLocation ScopedEnumKWLoc,
11696                      bool ScopedEnumUsesClassTag,
11697                      TypeResult UnderlyingType,
11698                      bool IsTypeSpecifier, SkipBodyInfo *SkipBody) {
11699   // If this is not a definition, it must have a name.
11700   IdentifierInfo *OrigName = Name;
11701   assert((Name != nullptr || TUK == TUK_Definition) &&
11702          "Nameless record must be a definition!");
11703   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
11704 
11705   OwnedDecl = false;
11706   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11707   bool ScopedEnum = ScopedEnumKWLoc.isValid();
11708 
11709   // FIXME: Check explicit specializations more carefully.
11710   bool isExplicitSpecialization = false;
11711   bool Invalid = false;
11712 
11713   // We only need to do this matching if we have template parameters
11714   // or a scope specifier, which also conveniently avoids this work
11715   // for non-C++ cases.
11716   if (TemplateParameterLists.size() > 0 ||
11717       (SS.isNotEmpty() && TUK != TUK_Reference)) {
11718     if (TemplateParameterList *TemplateParams =
11719             MatchTemplateParametersToScopeSpecifier(
11720                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
11721                 TUK == TUK_Friend, isExplicitSpecialization, Invalid)) {
11722       if (Kind == TTK_Enum) {
11723         Diag(KWLoc, diag::err_enum_template);
11724         return nullptr;
11725       }
11726 
11727       if (TemplateParams->size() > 0) {
11728         // This is a declaration or definition of a class template (which may
11729         // be a member of another template).
11730 
11731         if (Invalid)
11732           return nullptr;
11733 
11734         OwnedDecl = false;
11735         DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
11736                                                SS, Name, NameLoc, Attr,
11737                                                TemplateParams, AS,
11738                                                ModulePrivateLoc,
11739                                                /*FriendLoc*/SourceLocation(),
11740                                                TemplateParameterLists.size()-1,
11741                                                TemplateParameterLists.data(),
11742                                                SkipBody);
11743         return Result.get();
11744       } else {
11745         // The "template<>" header is extraneous.
11746         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11747           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11748         isExplicitSpecialization = true;
11749       }
11750     }
11751   }
11752 
11753   // Figure out the underlying type if this a enum declaration. We need to do
11754   // this early, because it's needed to detect if this is an incompatible
11755   // redeclaration.
11756   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
11757   bool EnumUnderlyingIsImplicit = false;
11758 
11759   if (Kind == TTK_Enum) {
11760     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
11761       // No underlying type explicitly specified, or we failed to parse the
11762       // type, default to int.
11763       EnumUnderlying = Context.IntTy.getTypePtr();
11764     else if (UnderlyingType.get()) {
11765       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
11766       // integral type; any cv-qualification is ignored.
11767       TypeSourceInfo *TI = nullptr;
11768       GetTypeFromParser(UnderlyingType.get(), &TI);
11769       EnumUnderlying = TI;
11770 
11771       if (CheckEnumUnderlyingType(TI))
11772         // Recover by falling back to int.
11773         EnumUnderlying = Context.IntTy.getTypePtr();
11774 
11775       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
11776                                           UPPC_FixedUnderlyingType))
11777         EnumUnderlying = Context.IntTy.getTypePtr();
11778 
11779     } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
11780       if (getLangOpts().MSVCCompat || TUK == TUK_Definition) {
11781         // Microsoft enums are always of int type.
11782         EnumUnderlying = Context.IntTy.getTypePtr();
11783         EnumUnderlyingIsImplicit = true;
11784       }
11785     }
11786   }
11787 
11788   DeclContext *SearchDC = CurContext;
11789   DeclContext *DC = CurContext;
11790   bool isStdBadAlloc = false;
11791 
11792   RedeclarationKind Redecl = ForRedeclaration;
11793   if (TUK == TUK_Friend || TUK == TUK_Reference)
11794     Redecl = NotForRedeclaration;
11795 
11796   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
11797   if (Name && SS.isNotEmpty()) {
11798     // We have a nested-name tag ('struct foo::bar').
11799 
11800     // Check for invalid 'foo::'.
11801     if (SS.isInvalid()) {
11802       Name = nullptr;
11803       goto CreateNewDecl;
11804     }
11805 
11806     // If this is a friend or a reference to a class in a dependent
11807     // context, don't try to make a decl for it.
11808     if (TUK == TUK_Friend || TUK == TUK_Reference) {
11809       DC = computeDeclContext(SS, false);
11810       if (!DC) {
11811         IsDependent = true;
11812         return nullptr;
11813       }
11814     } else {
11815       DC = computeDeclContext(SS, true);
11816       if (!DC) {
11817         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
11818           << SS.getRange();
11819         return nullptr;
11820       }
11821     }
11822 
11823     if (RequireCompleteDeclContext(SS, DC))
11824       return nullptr;
11825 
11826     SearchDC = DC;
11827     // Look-up name inside 'foo::'.
11828     LookupQualifiedName(Previous, DC);
11829 
11830     if (Previous.isAmbiguous())
11831       return nullptr;
11832 
11833     if (Previous.empty()) {
11834       // Name lookup did not find anything. However, if the
11835       // nested-name-specifier refers to the current instantiation,
11836       // and that current instantiation has any dependent base
11837       // classes, we might find something at instantiation time: treat
11838       // this as a dependent elaborated-type-specifier.
11839       // But this only makes any sense for reference-like lookups.
11840       if (Previous.wasNotFoundInCurrentInstantiation() &&
11841           (TUK == TUK_Reference || TUK == TUK_Friend)) {
11842         IsDependent = true;
11843         return nullptr;
11844       }
11845 
11846       // A tag 'foo::bar' must already exist.
11847       Diag(NameLoc, diag::err_not_tag_in_scope)
11848         << Kind << Name << DC << SS.getRange();
11849       Name = nullptr;
11850       Invalid = true;
11851       goto CreateNewDecl;
11852     }
11853   } else if (Name) {
11854     // C++14 [class.mem]p14:
11855     //   If T is the name of a class, then each of the following shall have a
11856     //   name different from T:
11857     //    -- every member of class T that is itself a type
11858     if (TUK != TUK_Reference && TUK != TUK_Friend &&
11859         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
11860       return nullptr;
11861 
11862     // If this is a named struct, check to see if there was a previous forward
11863     // declaration or definition.
11864     // FIXME: We're looking into outer scopes here, even when we
11865     // shouldn't be. Doing so can result in ambiguities that we
11866     // shouldn't be diagnosing.
11867     LookupName(Previous, S);
11868 
11869     // When declaring or defining a tag, ignore ambiguities introduced
11870     // by types using'ed into this scope.
11871     if (Previous.isAmbiguous() &&
11872         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
11873       LookupResult::Filter F = Previous.makeFilter();
11874       while (F.hasNext()) {
11875         NamedDecl *ND = F.next();
11876         if (ND->getDeclContext()->getRedeclContext() != SearchDC)
11877           F.erase();
11878       }
11879       F.done();
11880     }
11881 
11882     // C++11 [namespace.memdef]p3:
11883     //   If the name in a friend declaration is neither qualified nor
11884     //   a template-id and the declaration is a function or an
11885     //   elaborated-type-specifier, the lookup to determine whether
11886     //   the entity has been previously declared shall not consider
11887     //   any scopes outside the innermost enclosing namespace.
11888     //
11889     // MSVC doesn't implement the above rule for types, so a friend tag
11890     // declaration may be a redeclaration of a type declared in an enclosing
11891     // scope.  They do implement this rule for friend functions.
11892     //
11893     // Does it matter that this should be by scope instead of by
11894     // semantic context?
11895     if (!Previous.empty() && TUK == TUK_Friend) {
11896       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
11897       LookupResult::Filter F = Previous.makeFilter();
11898       bool FriendSawTagOutsideEnclosingNamespace = false;
11899       while (F.hasNext()) {
11900         NamedDecl *ND = F.next();
11901         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
11902         if (DC->isFileContext() &&
11903             !EnclosingNS->Encloses(ND->getDeclContext())) {
11904           if (getLangOpts().MSVCCompat)
11905             FriendSawTagOutsideEnclosingNamespace = true;
11906           else
11907             F.erase();
11908         }
11909       }
11910       F.done();
11911 
11912       // Diagnose this MSVC extension in the easy case where lookup would have
11913       // unambiguously found something outside the enclosing namespace.
11914       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
11915         NamedDecl *ND = Previous.getFoundDecl();
11916         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
11917             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
11918       }
11919     }
11920 
11921     // Note:  there used to be some attempt at recovery here.
11922     if (Previous.isAmbiguous())
11923       return nullptr;
11924 
11925     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
11926       // FIXME: This makes sure that we ignore the contexts associated
11927       // with C structs, unions, and enums when looking for a matching
11928       // tag declaration or definition. See the similar lookup tweak
11929       // in Sema::LookupName; is there a better way to deal with this?
11930       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
11931         SearchDC = SearchDC->getParent();
11932     }
11933   }
11934 
11935   if (Previous.isSingleResult() &&
11936       Previous.getFoundDecl()->isTemplateParameter()) {
11937     // Maybe we will complain about the shadowed template parameter.
11938     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
11939     // Just pretend that we didn't see the previous declaration.
11940     Previous.clear();
11941   }
11942 
11943   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
11944       DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
11945     // This is a declaration of or a reference to "std::bad_alloc".
11946     isStdBadAlloc = true;
11947 
11948     if (Previous.empty() && StdBadAlloc) {
11949       // std::bad_alloc has been implicitly declared (but made invisible to
11950       // name lookup). Fill in this implicit declaration as the previous
11951       // declaration, so that the declarations get chained appropriately.
11952       Previous.addDecl(getStdBadAlloc());
11953     }
11954   }
11955 
11956   // If we didn't find a previous declaration, and this is a reference
11957   // (or friend reference), move to the correct scope.  In C++, we
11958   // also need to do a redeclaration lookup there, just in case
11959   // there's a shadow friend decl.
11960   if (Name && Previous.empty() &&
11961       (TUK == TUK_Reference || TUK == TUK_Friend)) {
11962     if (Invalid) goto CreateNewDecl;
11963     assert(SS.isEmpty());
11964 
11965     if (TUK == TUK_Reference) {
11966       // C++ [basic.scope.pdecl]p5:
11967       //   -- for an elaborated-type-specifier of the form
11968       //
11969       //          class-key identifier
11970       //
11971       //      if the elaborated-type-specifier is used in the
11972       //      decl-specifier-seq or parameter-declaration-clause of a
11973       //      function defined in namespace scope, the identifier is
11974       //      declared as a class-name in the namespace that contains
11975       //      the declaration; otherwise, except as a friend
11976       //      declaration, the identifier is declared in the smallest
11977       //      non-class, non-function-prototype scope that contains the
11978       //      declaration.
11979       //
11980       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
11981       // C structs and unions.
11982       //
11983       // It is an error in C++ to declare (rather than define) an enum
11984       // type, including via an elaborated type specifier.  We'll
11985       // diagnose that later; for now, declare the enum in the same
11986       // scope as we would have picked for any other tag type.
11987       //
11988       // GNU C also supports this behavior as part of its incomplete
11989       // enum types extension, while GNU C++ does not.
11990       //
11991       // Find the context where we'll be declaring the tag.
11992       // FIXME: We would like to maintain the current DeclContext as the
11993       // lexical context,
11994       while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
11995         SearchDC = SearchDC->getParent();
11996 
11997       // Find the scope where we'll be declaring the tag.
11998       while (S->isClassScope() ||
11999              (getLangOpts().CPlusPlus &&
12000               S->isFunctionPrototypeScope()) ||
12001              ((S->getFlags() & Scope::DeclScope) == 0) ||
12002              (S->getEntity() && S->getEntity()->isTransparentContext()))
12003         S = S->getParent();
12004     } else {
12005       assert(TUK == TUK_Friend);
12006       // C++ [namespace.memdef]p3:
12007       //   If a friend declaration in a non-local class first declares a
12008       //   class or function, the friend class or function is a member of
12009       //   the innermost enclosing namespace.
12010       SearchDC = SearchDC->getEnclosingNamespaceContext();
12011     }
12012 
12013     // In C++, we need to do a redeclaration lookup to properly
12014     // diagnose some problems.
12015     if (getLangOpts().CPlusPlus) {
12016       Previous.setRedeclarationKind(ForRedeclaration);
12017       LookupQualifiedName(Previous, SearchDC);
12018     }
12019   }
12020 
12021   // If we have a known previous declaration to use, then use it.
12022   if (Previous.empty() && SkipBody && SkipBody->Previous)
12023     Previous.addDecl(SkipBody->Previous);
12024 
12025   if (!Previous.empty()) {
12026     NamedDecl *PrevDecl = Previous.getFoundDecl();
12027     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
12028 
12029     // It's okay to have a tag decl in the same scope as a typedef
12030     // which hides a tag decl in the same scope.  Finding this
12031     // insanity with a redeclaration lookup can only actually happen
12032     // in C++.
12033     //
12034     // This is also okay for elaborated-type-specifiers, which is
12035     // technically forbidden by the current standard but which is
12036     // okay according to the likely resolution of an open issue;
12037     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
12038     if (getLangOpts().CPlusPlus) {
12039       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
12040         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
12041           TagDecl *Tag = TT->getDecl();
12042           if (Tag->getDeclName() == Name &&
12043               Tag->getDeclContext()->getRedeclContext()
12044                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
12045             PrevDecl = Tag;
12046             Previous.clear();
12047             Previous.addDecl(Tag);
12048             Previous.resolveKind();
12049           }
12050         }
12051       }
12052     }
12053 
12054     // If this is a redeclaration of a using shadow declaration, it must
12055     // declare a tag in the same context. In MSVC mode, we allow a
12056     // redefinition if either context is within the other.
12057     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
12058       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
12059       if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
12060           isDeclInScope(Shadow, SearchDC, S, isExplicitSpecialization) &&
12061           !(OldTag && isAcceptableTagRedeclContext(
12062                           *this, OldTag->getDeclContext(), SearchDC))) {
12063         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
12064         Diag(Shadow->getTargetDecl()->getLocation(),
12065              diag::note_using_decl_target);
12066         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
12067             << 0;
12068         // Recover by ignoring the old declaration.
12069         Previous.clear();
12070         goto CreateNewDecl;
12071       }
12072     }
12073 
12074     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
12075       // If this is a use of a previous tag, or if the tag is already declared
12076       // in the same scope (so that the definition/declaration completes or
12077       // rementions the tag), reuse the decl.
12078       if (TUK == TUK_Reference || TUK == TUK_Friend ||
12079           isDeclInScope(DirectPrevDecl, SearchDC, S,
12080                         SS.isNotEmpty() || isExplicitSpecialization)) {
12081         // Make sure that this wasn't declared as an enum and now used as a
12082         // struct or something similar.
12083         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
12084                                           TUK == TUK_Definition, KWLoc,
12085                                           Name)) {
12086           bool SafeToContinue
12087             = (PrevTagDecl->getTagKind() != TTK_Enum &&
12088                Kind != TTK_Enum);
12089           if (SafeToContinue)
12090             Diag(KWLoc, diag::err_use_with_wrong_tag)
12091               << Name
12092               << FixItHint::CreateReplacement(SourceRange(KWLoc),
12093                                               PrevTagDecl->getKindName());
12094           else
12095             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
12096           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
12097 
12098           if (SafeToContinue)
12099             Kind = PrevTagDecl->getTagKind();
12100           else {
12101             // Recover by making this an anonymous redefinition.
12102             Name = nullptr;
12103             Previous.clear();
12104             Invalid = true;
12105           }
12106         }
12107 
12108         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
12109           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
12110 
12111           // If this is an elaborated-type-specifier for a scoped enumeration,
12112           // the 'class' keyword is not necessary and not permitted.
12113           if (TUK == TUK_Reference || TUK == TUK_Friend) {
12114             if (ScopedEnum)
12115               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
12116                 << PrevEnum->isScoped()
12117                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
12118             return PrevTagDecl;
12119           }
12120 
12121           QualType EnumUnderlyingTy;
12122           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
12123             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
12124           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
12125             EnumUnderlyingTy = QualType(T, 0);
12126 
12127           // All conflicts with previous declarations are recovered by
12128           // returning the previous declaration, unless this is a definition,
12129           // in which case we want the caller to bail out.
12130           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
12131                                      ScopedEnum, EnumUnderlyingTy,
12132                                      EnumUnderlyingIsImplicit, PrevEnum))
12133             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
12134         }
12135 
12136         // C++11 [class.mem]p1:
12137         //   A member shall not be declared twice in the member-specification,
12138         //   except that a nested class or member class template can be declared
12139         //   and then later defined.
12140         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
12141             S->isDeclScope(PrevDecl)) {
12142           Diag(NameLoc, diag::ext_member_redeclared);
12143           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
12144         }
12145 
12146         if (!Invalid) {
12147           // If this is a use, just return the declaration we found, unless
12148           // we have attributes.
12149 
12150           // FIXME: In the future, return a variant or some other clue
12151           // for the consumer of this Decl to know it doesn't own it.
12152           // For our current ASTs this shouldn't be a problem, but will
12153           // need to be changed with DeclGroups.
12154           if (!Attr &&
12155               ((TUK == TUK_Reference &&
12156                 (!PrevTagDecl->getFriendObjectKind() || getLangOpts().MicrosoftExt))
12157                || TUK == TUK_Friend))
12158             return PrevTagDecl;
12159 
12160           // Diagnose attempts to redefine a tag.
12161           if (TUK == TUK_Definition) {
12162             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
12163               // If we're defining a specialization and the previous definition
12164               // is from an implicit instantiation, don't emit an error
12165               // here; we'll catch this in the general case below.
12166               bool IsExplicitSpecializationAfterInstantiation = false;
12167               if (isExplicitSpecialization) {
12168                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
12169                   IsExplicitSpecializationAfterInstantiation =
12170                     RD->getTemplateSpecializationKind() !=
12171                     TSK_ExplicitSpecialization;
12172                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
12173                   IsExplicitSpecializationAfterInstantiation =
12174                     ED->getTemplateSpecializationKind() !=
12175                     TSK_ExplicitSpecialization;
12176               }
12177 
12178               NamedDecl *Hidden = nullptr;
12179               if (SkipBody && getLangOpts().CPlusPlus &&
12180                   !hasVisibleDefinition(Def, &Hidden)) {
12181                 // There is a definition of this tag, but it is not visible. We
12182                 // explicitly make use of C++'s one definition rule here, and
12183                 // assume that this definition is identical to the hidden one
12184                 // we already have. Make the existing definition visible and
12185                 // use it in place of this one.
12186                 SkipBody->ShouldSkip = true;
12187                 makeMergedDefinitionVisible(Hidden, KWLoc);
12188                 return Def;
12189               } else if (!IsExplicitSpecializationAfterInstantiation) {
12190                 // A redeclaration in function prototype scope in C isn't
12191                 // visible elsewhere, so merely issue a warning.
12192                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
12193                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
12194                 else
12195                   Diag(NameLoc, diag::err_redefinition) << Name;
12196                 Diag(Def->getLocation(), diag::note_previous_definition);
12197                 // If this is a redefinition, recover by making this
12198                 // struct be anonymous, which will make any later
12199                 // references get the previous definition.
12200                 Name = nullptr;
12201                 Previous.clear();
12202                 Invalid = true;
12203               }
12204             } else {
12205               // If the type is currently being defined, complain
12206               // about a nested redefinition.
12207               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
12208               if (TD->isBeingDefined()) {
12209                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
12210                 Diag(PrevTagDecl->getLocation(),
12211                      diag::note_previous_definition);
12212                 Name = nullptr;
12213                 Previous.clear();
12214                 Invalid = true;
12215               }
12216             }
12217 
12218             // Okay, this is definition of a previously declared or referenced
12219             // tag. We're going to create a new Decl for it.
12220           }
12221 
12222           // Okay, we're going to make a redeclaration.  If this is some kind
12223           // of reference, make sure we build the redeclaration in the same DC
12224           // as the original, and ignore the current access specifier.
12225           if (TUK == TUK_Friend || TUK == TUK_Reference) {
12226             SearchDC = PrevTagDecl->getDeclContext();
12227             AS = AS_none;
12228           }
12229         }
12230         // If we get here we have (another) forward declaration or we
12231         // have a definition.  Just create a new decl.
12232 
12233       } else {
12234         // If we get here, this is a definition of a new tag type in a nested
12235         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
12236         // new decl/type.  We set PrevDecl to NULL so that the entities
12237         // have distinct types.
12238         Previous.clear();
12239       }
12240       // If we get here, we're going to create a new Decl. If PrevDecl
12241       // is non-NULL, it's a definition of the tag declared by
12242       // PrevDecl. If it's NULL, we have a new definition.
12243 
12244 
12245     // Otherwise, PrevDecl is not a tag, but was found with tag
12246     // lookup.  This is only actually possible in C++, where a few
12247     // things like templates still live in the tag namespace.
12248     } else {
12249       // Use a better diagnostic if an elaborated-type-specifier
12250       // found the wrong kind of type on the first
12251       // (non-redeclaration) lookup.
12252       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
12253           !Previous.isForRedeclaration()) {
12254         unsigned Kind = 0;
12255         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
12256         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
12257         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
12258         Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
12259         Diag(PrevDecl->getLocation(), diag::note_declared_at);
12260         Invalid = true;
12261 
12262       // Otherwise, only diagnose if the declaration is in scope.
12263       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
12264                                 SS.isNotEmpty() || isExplicitSpecialization)) {
12265         // do nothing
12266 
12267       // Diagnose implicit declarations introduced by elaborated types.
12268       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
12269         unsigned Kind = 0;
12270         if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
12271         else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
12272         else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
12273         Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
12274         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
12275         Invalid = true;
12276 
12277       // Otherwise it's a declaration.  Call out a particularly common
12278       // case here.
12279       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
12280         unsigned Kind = 0;
12281         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
12282         Diag(NameLoc, diag::err_tag_definition_of_typedef)
12283           << Name << Kind << TND->getUnderlyingType();
12284         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
12285         Invalid = true;
12286 
12287       // Otherwise, diagnose.
12288       } else {
12289         // The tag name clashes with something else in the target scope,
12290         // issue an error and recover by making this tag be anonymous.
12291         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
12292         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12293         Name = nullptr;
12294         Invalid = true;
12295       }
12296 
12297       // The existing declaration isn't relevant to us; we're in a
12298       // new scope, so clear out the previous declaration.
12299       Previous.clear();
12300     }
12301   }
12302 
12303 CreateNewDecl:
12304 
12305   TagDecl *PrevDecl = nullptr;
12306   if (Previous.isSingleResult())
12307     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
12308 
12309   // If there is an identifier, use the location of the identifier as the
12310   // location of the decl, otherwise use the location of the struct/union
12311   // keyword.
12312   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
12313 
12314   // Otherwise, create a new declaration. If there is a previous
12315   // declaration of the same entity, the two will be linked via
12316   // PrevDecl.
12317   TagDecl *New;
12318 
12319   bool IsForwardReference = false;
12320   if (Kind == TTK_Enum) {
12321     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
12322     // enum X { A, B, C } D;    D should chain to X.
12323     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
12324                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
12325                            ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
12326     // If this is an undefined enum, warn.
12327     if (TUK != TUK_Definition && !Invalid) {
12328       TagDecl *Def;
12329       if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
12330           cast<EnumDecl>(New)->isFixed()) {
12331         // C++0x: 7.2p2: opaque-enum-declaration.
12332         // Conflicts are diagnosed above. Do nothing.
12333       }
12334       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
12335         Diag(Loc, diag::ext_forward_ref_enum_def)
12336           << New;
12337         Diag(Def->getLocation(), diag::note_previous_definition);
12338       } else {
12339         unsigned DiagID = diag::ext_forward_ref_enum;
12340         if (getLangOpts().MSVCCompat)
12341           DiagID = diag::ext_ms_forward_ref_enum;
12342         else if (getLangOpts().CPlusPlus)
12343           DiagID = diag::err_forward_ref_enum;
12344         Diag(Loc, DiagID);
12345 
12346         // If this is a forward-declared reference to an enumeration, make a
12347         // note of it; we won't actually be introducing the declaration into
12348         // the declaration context.
12349         if (TUK == TUK_Reference)
12350           IsForwardReference = true;
12351       }
12352     }
12353 
12354     if (EnumUnderlying) {
12355       EnumDecl *ED = cast<EnumDecl>(New);
12356       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
12357         ED->setIntegerTypeSourceInfo(TI);
12358       else
12359         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
12360       ED->setPromotionType(ED->getIntegerType());
12361     }
12362 
12363   } else {
12364     // struct/union/class
12365 
12366     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
12367     // struct X { int A; } D;    D should chain to X.
12368     if (getLangOpts().CPlusPlus) {
12369       // FIXME: Look for a way to use RecordDecl for simple structs.
12370       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
12371                                   cast_or_null<CXXRecordDecl>(PrevDecl));
12372 
12373       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
12374         StdBadAlloc = cast<CXXRecordDecl>(New);
12375     } else
12376       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
12377                                cast_or_null<RecordDecl>(PrevDecl));
12378   }
12379 
12380   // C++11 [dcl.type]p3:
12381   //   A type-specifier-seq shall not define a class or enumeration [...].
12382   if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) {
12383     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
12384       << Context.getTagDeclType(New);
12385     Invalid = true;
12386   }
12387 
12388   // Maybe add qualifier info.
12389   if (SS.isNotEmpty()) {
12390     if (SS.isSet()) {
12391       // If this is either a declaration or a definition, check the
12392       // nested-name-specifier against the current context. We don't do this
12393       // for explicit specializations, because they have similar checking
12394       // (with more specific diagnostics) in the call to
12395       // CheckMemberSpecialization, below.
12396       if (!isExplicitSpecialization &&
12397           (TUK == TUK_Definition || TUK == TUK_Declaration) &&
12398           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc))
12399         Invalid = true;
12400 
12401       New->setQualifierInfo(SS.getWithLocInContext(Context));
12402       if (TemplateParameterLists.size() > 0) {
12403         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
12404       }
12405     }
12406     else
12407       Invalid = true;
12408   }
12409 
12410   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
12411     // Add alignment attributes if necessary; these attributes are checked when
12412     // the ASTContext lays out the structure.
12413     //
12414     // It is important for implementing the correct semantics that this
12415     // happen here (in act on tag decl). The #pragma pack stack is
12416     // maintained as a result of parser callbacks which can occur at
12417     // many points during the parsing of a struct declaration (because
12418     // the #pragma tokens are effectively skipped over during the
12419     // parsing of the struct).
12420     if (TUK == TUK_Definition) {
12421       AddAlignmentAttributesForRecord(RD);
12422       AddMsStructLayoutForRecord(RD);
12423     }
12424   }
12425 
12426   if (ModulePrivateLoc.isValid()) {
12427     if (isExplicitSpecialization)
12428       Diag(New->getLocation(), diag::err_module_private_specialization)
12429         << 2
12430         << FixItHint::CreateRemoval(ModulePrivateLoc);
12431     // __module_private__ does not apply to local classes. However, we only
12432     // diagnose this as an error when the declaration specifiers are
12433     // freestanding. Here, we just ignore the __module_private__.
12434     else if (!SearchDC->isFunctionOrMethod())
12435       New->setModulePrivate();
12436   }
12437 
12438   // If this is a specialization of a member class (of a class template),
12439   // check the specialization.
12440   if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
12441     Invalid = true;
12442 
12443   // If we're declaring or defining a tag in function prototype scope in C,
12444   // note that this type can only be used within the function and add it to
12445   // the list of decls to inject into the function definition scope.
12446   if ((Name || Kind == TTK_Enum) &&
12447       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
12448     if (getLangOpts().CPlusPlus) {
12449       // C++ [dcl.fct]p6:
12450       //   Types shall not be defined in return or parameter types.
12451       if (TUK == TUK_Definition && !IsTypeSpecifier) {
12452         Diag(Loc, diag::err_type_defined_in_param_type)
12453             << Name;
12454         Invalid = true;
12455       }
12456     } else {
12457       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
12458     }
12459     DeclsInPrototypeScope.push_back(New);
12460   }
12461 
12462   if (Invalid)
12463     New->setInvalidDecl();
12464 
12465   if (Attr)
12466     ProcessDeclAttributeList(S, New, Attr);
12467 
12468   // Set the lexical context. If the tag has a C++ scope specifier, the
12469   // lexical context will be different from the semantic context.
12470   New->setLexicalDeclContext(CurContext);
12471 
12472   // Mark this as a friend decl if applicable.
12473   // In Microsoft mode, a friend declaration also acts as a forward
12474   // declaration so we always pass true to setObjectOfFriendDecl to make
12475   // the tag name visible.
12476   if (TUK == TUK_Friend)
12477     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
12478 
12479   // Set the access specifier.
12480   if (!Invalid && SearchDC->isRecord())
12481     SetMemberAccessSpecifier(New, PrevDecl, AS);
12482 
12483   if (TUK == TUK_Definition)
12484     New->startDefinition();
12485 
12486   // If this has an identifier, add it to the scope stack.
12487   if (TUK == TUK_Friend) {
12488     // We might be replacing an existing declaration in the lookup tables;
12489     // if so, borrow its access specifier.
12490     if (PrevDecl)
12491       New->setAccess(PrevDecl->getAccess());
12492 
12493     DeclContext *DC = New->getDeclContext()->getRedeclContext();
12494     DC->makeDeclVisibleInContext(New);
12495     if (Name) // can be null along some error paths
12496       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
12497         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
12498   } else if (Name) {
12499     S = getNonFieldDeclScope(S);
12500     PushOnScopeChains(New, S, !IsForwardReference);
12501     if (IsForwardReference)
12502       SearchDC->makeDeclVisibleInContext(New);
12503 
12504   } else {
12505     CurContext->addDecl(New);
12506   }
12507 
12508   // If this is the C FILE type, notify the AST context.
12509   if (IdentifierInfo *II = New->getIdentifier())
12510     if (!New->isInvalidDecl() &&
12511         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
12512         II->isStr("FILE"))
12513       Context.setFILEDecl(New);
12514 
12515   if (PrevDecl)
12516     mergeDeclAttributes(New, PrevDecl);
12517 
12518   // If there's a #pragma GCC visibility in scope, set the visibility of this
12519   // record.
12520   AddPushedVisibilityAttribute(New);
12521 
12522   OwnedDecl = true;
12523   // In C++, don't return an invalid declaration. We can't recover well from
12524   // the cases where we make the type anonymous.
12525   return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New;
12526 }
12527 
12528 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
12529   AdjustDeclIfTemplate(TagD);
12530   TagDecl *Tag = cast<TagDecl>(TagD);
12531 
12532   // Enter the tag context.
12533   PushDeclContext(S, Tag);
12534 
12535   ActOnDocumentableDecl(TagD);
12536 
12537   // If there's a #pragma GCC visibility in scope, set the visibility of this
12538   // record.
12539   AddPushedVisibilityAttribute(Tag);
12540 }
12541 
12542 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
12543   assert(isa<ObjCContainerDecl>(IDecl) &&
12544          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
12545   DeclContext *OCD = cast<DeclContext>(IDecl);
12546   assert(getContainingDC(OCD) == CurContext &&
12547       "The next DeclContext should be lexically contained in the current one.");
12548   CurContext = OCD;
12549   return IDecl;
12550 }
12551 
12552 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
12553                                            SourceLocation FinalLoc,
12554                                            bool IsFinalSpelledSealed,
12555                                            SourceLocation LBraceLoc) {
12556   AdjustDeclIfTemplate(TagD);
12557   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
12558 
12559   FieldCollector->StartClass();
12560 
12561   if (!Record->getIdentifier())
12562     return;
12563 
12564   if (FinalLoc.isValid())
12565     Record->addAttr(new (Context)
12566                     FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
12567 
12568   // C++ [class]p2:
12569   //   [...] The class-name is also inserted into the scope of the
12570   //   class itself; this is known as the injected-class-name. For
12571   //   purposes of access checking, the injected-class-name is treated
12572   //   as if it were a public member name.
12573   CXXRecordDecl *InjectedClassName
12574     = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
12575                             Record->getLocStart(), Record->getLocation(),
12576                             Record->getIdentifier(),
12577                             /*PrevDecl=*/nullptr,
12578                             /*DelayTypeCreation=*/true);
12579   Context.getTypeDeclType(InjectedClassName, Record);
12580   InjectedClassName->setImplicit();
12581   InjectedClassName->setAccess(AS_public);
12582   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
12583       InjectedClassName->setDescribedClassTemplate(Template);
12584   PushOnScopeChains(InjectedClassName, S);
12585   assert(InjectedClassName->isInjectedClassName() &&
12586          "Broken injected-class-name");
12587 }
12588 
12589 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
12590                                     SourceLocation RBraceLoc) {
12591   AdjustDeclIfTemplate(TagD);
12592   TagDecl *Tag = cast<TagDecl>(TagD);
12593   Tag->setRBraceLoc(RBraceLoc);
12594 
12595   // Make sure we "complete" the definition even it is invalid.
12596   if (Tag->isBeingDefined()) {
12597     assert(Tag->isInvalidDecl() && "We should already have completed it");
12598     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
12599       RD->completeDefinition();
12600   }
12601 
12602   if (isa<CXXRecordDecl>(Tag))
12603     FieldCollector->FinishClass();
12604 
12605   // Exit this scope of this tag's definition.
12606   PopDeclContext();
12607 
12608   if (getCurLexicalContext()->isObjCContainer() &&
12609       Tag->getDeclContext()->isFileContext())
12610     Tag->setTopLevelDeclInObjCContainer();
12611 
12612   // Notify the consumer that we've defined a tag.
12613   if (!Tag->isInvalidDecl())
12614     Consumer.HandleTagDeclDefinition(Tag);
12615 }
12616 
12617 void Sema::ActOnObjCContainerFinishDefinition() {
12618   // Exit this scope of this interface definition.
12619   PopDeclContext();
12620 }
12621 
12622 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
12623   assert(DC == CurContext && "Mismatch of container contexts");
12624   OriginalLexicalContext = DC;
12625   ActOnObjCContainerFinishDefinition();
12626 }
12627 
12628 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
12629   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
12630   OriginalLexicalContext = nullptr;
12631 }
12632 
12633 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
12634   AdjustDeclIfTemplate(TagD);
12635   TagDecl *Tag = cast<TagDecl>(TagD);
12636   Tag->setInvalidDecl();
12637 
12638   // Make sure we "complete" the definition even it is invalid.
12639   if (Tag->isBeingDefined()) {
12640     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
12641       RD->completeDefinition();
12642   }
12643 
12644   // We're undoing ActOnTagStartDefinition here, not
12645   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
12646   // the FieldCollector.
12647 
12648   PopDeclContext();
12649 }
12650 
12651 // Note that FieldName may be null for anonymous bitfields.
12652 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
12653                                 IdentifierInfo *FieldName,
12654                                 QualType FieldTy, bool IsMsStruct,
12655                                 Expr *BitWidth, bool *ZeroWidth) {
12656   // Default to true; that shouldn't confuse checks for emptiness
12657   if (ZeroWidth)
12658     *ZeroWidth = true;
12659 
12660   // C99 6.7.2.1p4 - verify the field type.
12661   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
12662   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
12663     // Handle incomplete types with specific error.
12664     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
12665       return ExprError();
12666     if (FieldName)
12667       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
12668         << FieldName << FieldTy << BitWidth->getSourceRange();
12669     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
12670       << FieldTy << BitWidth->getSourceRange();
12671   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
12672                                              UPPC_BitFieldWidth))
12673     return ExprError();
12674 
12675   // If the bit-width is type- or value-dependent, don't try to check
12676   // it now.
12677   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
12678     return BitWidth;
12679 
12680   llvm::APSInt Value;
12681   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
12682   if (ICE.isInvalid())
12683     return ICE;
12684   BitWidth = ICE.get();
12685 
12686   if (Value != 0 && ZeroWidth)
12687     *ZeroWidth = false;
12688 
12689   // Zero-width bitfield is ok for anonymous field.
12690   if (Value == 0 && FieldName)
12691     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
12692 
12693   if (Value.isSigned() && Value.isNegative()) {
12694     if (FieldName)
12695       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
12696                << FieldName << Value.toString(10);
12697     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
12698       << Value.toString(10);
12699   }
12700 
12701   if (!FieldTy->isDependentType()) {
12702     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
12703     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
12704     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
12705 
12706     // Over-wide bitfields are an error in C or when using the MSVC bitfield
12707     // ABI.
12708     bool CStdConstraintViolation =
12709         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
12710     bool MSBitfieldViolation =
12711         Value.ugt(TypeStorageSize) &&
12712         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
12713     if (CStdConstraintViolation || MSBitfieldViolation) {
12714       unsigned DiagWidth =
12715           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
12716       if (FieldName)
12717         return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
12718                << FieldName << (unsigned)Value.getZExtValue()
12719                << !CStdConstraintViolation << DiagWidth;
12720 
12721       return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
12722              << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
12723              << DiagWidth;
12724     }
12725 
12726     // Warn on types where the user might conceivably expect to get all
12727     // specified bits as value bits: that's all integral types other than
12728     // 'bool'.
12729     if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
12730       if (FieldName)
12731         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
12732             << FieldName << (unsigned)Value.getZExtValue()
12733             << (unsigned)TypeWidth;
12734       else
12735         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
12736             << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
12737     }
12738   }
12739 
12740   return BitWidth;
12741 }
12742 
12743 /// ActOnField - Each field of a C struct/union is passed into this in order
12744 /// to create a FieldDecl object for it.
12745 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
12746                        Declarator &D, Expr *BitfieldWidth) {
12747   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
12748                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
12749                                /*InitStyle=*/ICIS_NoInit, AS_public);
12750   return Res;
12751 }
12752 
12753 /// HandleField - Analyze a field of a C struct or a C++ data member.
12754 ///
12755 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
12756                              SourceLocation DeclStart,
12757                              Declarator &D, Expr *BitWidth,
12758                              InClassInitStyle InitStyle,
12759                              AccessSpecifier AS) {
12760   IdentifierInfo *II = D.getIdentifier();
12761   SourceLocation Loc = DeclStart;
12762   if (II) Loc = D.getIdentifierLoc();
12763 
12764   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12765   QualType T = TInfo->getType();
12766   if (getLangOpts().CPlusPlus) {
12767     CheckExtraCXXDefaultArguments(D);
12768 
12769     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12770                                         UPPC_DataMemberType)) {
12771       D.setInvalidType();
12772       T = Context.IntTy;
12773       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12774     }
12775   }
12776 
12777   // TR 18037 does not allow fields to be declared with address spaces.
12778   if (T.getQualifiers().hasAddressSpace()) {
12779     Diag(Loc, diag::err_field_with_address_space);
12780     D.setInvalidType();
12781   }
12782 
12783   // OpenCL 1.2 spec, s6.9 r:
12784   // The event type cannot be used to declare a structure or union field.
12785   if (LangOpts.OpenCL && T->isEventT()) {
12786     Diag(Loc, diag::err_event_t_struct_field);
12787     D.setInvalidType();
12788   }
12789 
12790   DiagnoseFunctionSpecifiers(D.getDeclSpec());
12791 
12792   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12793     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12794          diag::err_invalid_thread)
12795       << DeclSpec::getSpecifierName(TSCS);
12796 
12797   // Check to see if this name was declared as a member previously
12798   NamedDecl *PrevDecl = nullptr;
12799   LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12800   LookupName(Previous, S);
12801   switch (Previous.getResultKind()) {
12802     case LookupResult::Found:
12803     case LookupResult::FoundUnresolvedValue:
12804       PrevDecl = Previous.getAsSingle<NamedDecl>();
12805       break;
12806 
12807     case LookupResult::FoundOverloaded:
12808       PrevDecl = Previous.getRepresentativeDecl();
12809       break;
12810 
12811     case LookupResult::NotFound:
12812     case LookupResult::NotFoundInCurrentInstantiation:
12813     case LookupResult::Ambiguous:
12814       break;
12815   }
12816   Previous.suppressDiagnostics();
12817 
12818   if (PrevDecl && PrevDecl->isTemplateParameter()) {
12819     // Maybe we will complain about the shadowed template parameter.
12820     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12821     // Just pretend that we didn't see the previous declaration.
12822     PrevDecl = nullptr;
12823   }
12824 
12825   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12826     PrevDecl = nullptr;
12827 
12828   bool Mutable
12829     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
12830   SourceLocation TSSL = D.getLocStart();
12831   FieldDecl *NewFD
12832     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
12833                      TSSL, AS, PrevDecl, &D);
12834 
12835   if (NewFD->isInvalidDecl())
12836     Record->setInvalidDecl();
12837 
12838   if (D.getDeclSpec().isModulePrivateSpecified())
12839     NewFD->setModulePrivate();
12840 
12841   if (NewFD->isInvalidDecl() && PrevDecl) {
12842     // Don't introduce NewFD into scope; there's already something
12843     // with the same name in the same scope.
12844   } else if (II) {
12845     PushOnScopeChains(NewFD, S);
12846   } else
12847     Record->addDecl(NewFD);
12848 
12849   return NewFD;
12850 }
12851 
12852 /// \brief Build a new FieldDecl and check its well-formedness.
12853 ///
12854 /// This routine builds a new FieldDecl given the fields name, type,
12855 /// record, etc. \p PrevDecl should refer to any previous declaration
12856 /// with the same name and in the same scope as the field to be
12857 /// created.
12858 ///
12859 /// \returns a new FieldDecl.
12860 ///
12861 /// \todo The Declarator argument is a hack. It will be removed once
12862 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
12863                                 TypeSourceInfo *TInfo,
12864                                 RecordDecl *Record, SourceLocation Loc,
12865                                 bool Mutable, Expr *BitWidth,
12866                                 InClassInitStyle InitStyle,
12867                                 SourceLocation TSSL,
12868                                 AccessSpecifier AS, NamedDecl *PrevDecl,
12869                                 Declarator *D) {
12870   IdentifierInfo *II = Name.getAsIdentifierInfo();
12871   bool InvalidDecl = false;
12872   if (D) InvalidDecl = D->isInvalidType();
12873 
12874   // If we receive a broken type, recover by assuming 'int' and
12875   // marking this declaration as invalid.
12876   if (T.isNull()) {
12877     InvalidDecl = true;
12878     T = Context.IntTy;
12879   }
12880 
12881   QualType EltTy = Context.getBaseElementType(T);
12882   if (!EltTy->isDependentType()) {
12883     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
12884       // Fields of incomplete type force their record to be invalid.
12885       Record->setInvalidDecl();
12886       InvalidDecl = true;
12887     } else {
12888       NamedDecl *Def;
12889       EltTy->isIncompleteType(&Def);
12890       if (Def && Def->isInvalidDecl()) {
12891         Record->setInvalidDecl();
12892         InvalidDecl = true;
12893       }
12894     }
12895   }
12896 
12897   // OpenCL v1.2 s6.9.c: bitfields are not supported.
12898   if (BitWidth && getLangOpts().OpenCL) {
12899     Diag(Loc, diag::err_opencl_bitfields);
12900     InvalidDecl = true;
12901   }
12902 
12903   // C99 6.7.2.1p8: A member of a structure or union may have any type other
12904   // than a variably modified type.
12905   if (!InvalidDecl && T->isVariablyModifiedType()) {
12906     bool SizeIsNegative;
12907     llvm::APSInt Oversized;
12908 
12909     TypeSourceInfo *FixedTInfo =
12910       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
12911                                                     SizeIsNegative,
12912                                                     Oversized);
12913     if (FixedTInfo) {
12914       Diag(Loc, diag::warn_illegal_constant_array_size);
12915       TInfo = FixedTInfo;
12916       T = FixedTInfo->getType();
12917     } else {
12918       if (SizeIsNegative)
12919         Diag(Loc, diag::err_typecheck_negative_array_size);
12920       else if (Oversized.getBoolValue())
12921         Diag(Loc, diag::err_array_too_large)
12922           << Oversized.toString(10);
12923       else
12924         Diag(Loc, diag::err_typecheck_field_variable_size);
12925       InvalidDecl = true;
12926     }
12927   }
12928 
12929   // Fields can not have abstract class types
12930   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
12931                                              diag::err_abstract_type_in_decl,
12932                                              AbstractFieldType))
12933     InvalidDecl = true;
12934 
12935   bool ZeroWidth = false;
12936   if (InvalidDecl)
12937     BitWidth = nullptr;
12938   // If this is declared as a bit-field, check the bit-field.
12939   if (BitWidth) {
12940     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
12941                               &ZeroWidth).get();
12942     if (!BitWidth) {
12943       InvalidDecl = true;
12944       BitWidth = nullptr;
12945       ZeroWidth = false;
12946     }
12947   }
12948 
12949   // Check that 'mutable' is consistent with the type of the declaration.
12950   if (!InvalidDecl && Mutable) {
12951     unsigned DiagID = 0;
12952     if (T->isReferenceType())
12953       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
12954                                         : diag::err_mutable_reference;
12955     else if (T.isConstQualified())
12956       DiagID = diag::err_mutable_const;
12957 
12958     if (DiagID) {
12959       SourceLocation ErrLoc = Loc;
12960       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
12961         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
12962       Diag(ErrLoc, DiagID);
12963       if (DiagID != diag::ext_mutable_reference) {
12964         Mutable = false;
12965         InvalidDecl = true;
12966       }
12967     }
12968   }
12969 
12970   // C++11 [class.union]p8 (DR1460):
12971   //   At most one variant member of a union may have a
12972   //   brace-or-equal-initializer.
12973   if (InitStyle != ICIS_NoInit)
12974     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
12975 
12976   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
12977                                        BitWidth, Mutable, InitStyle);
12978   if (InvalidDecl)
12979     NewFD->setInvalidDecl();
12980 
12981   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
12982     Diag(Loc, diag::err_duplicate_member) << II;
12983     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12984     NewFD->setInvalidDecl();
12985   }
12986 
12987   if (!InvalidDecl && getLangOpts().CPlusPlus) {
12988     if (Record->isUnion()) {
12989       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
12990         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
12991         if (RDecl->getDefinition()) {
12992           // C++ [class.union]p1: An object of a class with a non-trivial
12993           // constructor, a non-trivial copy constructor, a non-trivial
12994           // destructor, or a non-trivial copy assignment operator
12995           // cannot be a member of a union, nor can an array of such
12996           // objects.
12997           if (CheckNontrivialField(NewFD))
12998             NewFD->setInvalidDecl();
12999         }
13000       }
13001 
13002       // C++ [class.union]p1: If a union contains a member of reference type,
13003       // the program is ill-formed, except when compiling with MSVC extensions
13004       // enabled.
13005       if (EltTy->isReferenceType()) {
13006         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
13007                                     diag::ext_union_member_of_reference_type :
13008                                     diag::err_union_member_of_reference_type)
13009           << NewFD->getDeclName() << EltTy;
13010         if (!getLangOpts().MicrosoftExt)
13011           NewFD->setInvalidDecl();
13012       }
13013     }
13014   }
13015 
13016   // FIXME: We need to pass in the attributes given an AST
13017   // representation, not a parser representation.
13018   if (D) {
13019     // FIXME: The current scope is almost... but not entirely... correct here.
13020     ProcessDeclAttributes(getCurScope(), NewFD, *D);
13021 
13022     if (NewFD->hasAttrs())
13023       CheckAlignasUnderalignment(NewFD);
13024   }
13025 
13026   // In auto-retain/release, infer strong retension for fields of
13027   // retainable type.
13028   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
13029     NewFD->setInvalidDecl();
13030 
13031   if (T.isObjCGCWeak())
13032     Diag(Loc, diag::warn_attribute_weak_on_field);
13033 
13034   NewFD->setAccess(AS);
13035   return NewFD;
13036 }
13037 
13038 bool Sema::CheckNontrivialField(FieldDecl *FD) {
13039   assert(FD);
13040   assert(getLangOpts().CPlusPlus && "valid check only for C++");
13041 
13042   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
13043     return false;
13044 
13045   QualType EltTy = Context.getBaseElementType(FD->getType());
13046   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
13047     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
13048     if (RDecl->getDefinition()) {
13049       // We check for copy constructors before constructors
13050       // because otherwise we'll never get complaints about
13051       // copy constructors.
13052 
13053       CXXSpecialMember member = CXXInvalid;
13054       // We're required to check for any non-trivial constructors. Since the
13055       // implicit default constructor is suppressed if there are any
13056       // user-declared constructors, we just need to check that there is a
13057       // trivial default constructor and a trivial copy constructor. (We don't
13058       // worry about move constructors here, since this is a C++98 check.)
13059       if (RDecl->hasNonTrivialCopyConstructor())
13060         member = CXXCopyConstructor;
13061       else if (!RDecl->hasTrivialDefaultConstructor())
13062         member = CXXDefaultConstructor;
13063       else if (RDecl->hasNonTrivialCopyAssignment())
13064         member = CXXCopyAssignment;
13065       else if (RDecl->hasNonTrivialDestructor())
13066         member = CXXDestructor;
13067 
13068       if (member != CXXInvalid) {
13069         if (!getLangOpts().CPlusPlus11 &&
13070             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
13071           // Objective-C++ ARC: it is an error to have a non-trivial field of
13072           // a union. However, system headers in Objective-C programs
13073           // occasionally have Objective-C lifetime objects within unions,
13074           // and rather than cause the program to fail, we make those
13075           // members unavailable.
13076           SourceLocation Loc = FD->getLocation();
13077           if (getSourceManager().isInSystemHeader(Loc)) {
13078             if (!FD->hasAttr<UnavailableAttr>())
13079               FD->addAttr(UnavailableAttr::CreateImplicit(Context,
13080                                   "this system field has retaining ownership",
13081                                   Loc));
13082             return false;
13083           }
13084         }
13085 
13086         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
13087                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
13088                diag::err_illegal_union_or_anon_struct_member)
13089           << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
13090         DiagnoseNontrivial(RDecl, member);
13091         return !getLangOpts().CPlusPlus11;
13092       }
13093     }
13094   }
13095 
13096   return false;
13097 }
13098 
13099 /// TranslateIvarVisibility - Translate visibility from a token ID to an
13100 ///  AST enum value.
13101 static ObjCIvarDecl::AccessControl
13102 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
13103   switch (ivarVisibility) {
13104   default: llvm_unreachable("Unknown visitibility kind");
13105   case tok::objc_private: return ObjCIvarDecl::Private;
13106   case tok::objc_public: return ObjCIvarDecl::Public;
13107   case tok::objc_protected: return ObjCIvarDecl::Protected;
13108   case tok::objc_package: return ObjCIvarDecl::Package;
13109   }
13110 }
13111 
13112 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
13113 /// in order to create an IvarDecl object for it.
13114 Decl *Sema::ActOnIvar(Scope *S,
13115                                 SourceLocation DeclStart,
13116                                 Declarator &D, Expr *BitfieldWidth,
13117                                 tok::ObjCKeywordKind Visibility) {
13118 
13119   IdentifierInfo *II = D.getIdentifier();
13120   Expr *BitWidth = (Expr*)BitfieldWidth;
13121   SourceLocation Loc = DeclStart;
13122   if (II) Loc = D.getIdentifierLoc();
13123 
13124   // FIXME: Unnamed fields can be handled in various different ways, for
13125   // example, unnamed unions inject all members into the struct namespace!
13126 
13127   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13128   QualType T = TInfo->getType();
13129 
13130   if (BitWidth) {
13131     // 6.7.2.1p3, 6.7.2.1p4
13132     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
13133     if (!BitWidth)
13134       D.setInvalidType();
13135   } else {
13136     // Not a bitfield.
13137 
13138     // validate II.
13139 
13140   }
13141   if (T->isReferenceType()) {
13142     Diag(Loc, diag::err_ivar_reference_type);
13143     D.setInvalidType();
13144   }
13145   // C99 6.7.2.1p8: A member of a structure or union may have any type other
13146   // than a variably modified type.
13147   else if (T->isVariablyModifiedType()) {
13148     Diag(Loc, diag::err_typecheck_ivar_variable_size);
13149     D.setInvalidType();
13150   }
13151 
13152   // Get the visibility (access control) for this ivar.
13153   ObjCIvarDecl::AccessControl ac =
13154     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
13155                                         : ObjCIvarDecl::None;
13156   // Must set ivar's DeclContext to its enclosing interface.
13157   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
13158   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
13159     return nullptr;
13160   ObjCContainerDecl *EnclosingContext;
13161   if (ObjCImplementationDecl *IMPDecl =
13162       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
13163     if (LangOpts.ObjCRuntime.isFragile()) {
13164     // Case of ivar declared in an implementation. Context is that of its class.
13165       EnclosingContext = IMPDecl->getClassInterface();
13166       assert(EnclosingContext && "Implementation has no class interface!");
13167     }
13168     else
13169       EnclosingContext = EnclosingDecl;
13170   } else {
13171     if (ObjCCategoryDecl *CDecl =
13172         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
13173       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
13174         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
13175         return nullptr;
13176       }
13177     }
13178     EnclosingContext = EnclosingDecl;
13179   }
13180 
13181   // Construct the decl.
13182   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
13183                                              DeclStart, Loc, II, T,
13184                                              TInfo, ac, (Expr *)BitfieldWidth);
13185 
13186   if (II) {
13187     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
13188                                            ForRedeclaration);
13189     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
13190         && !isa<TagDecl>(PrevDecl)) {
13191       Diag(Loc, diag::err_duplicate_member) << II;
13192       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
13193       NewID->setInvalidDecl();
13194     }
13195   }
13196 
13197   // Process attributes attached to the ivar.
13198   ProcessDeclAttributes(S, NewID, D);
13199 
13200   if (D.isInvalidType())
13201     NewID->setInvalidDecl();
13202 
13203   // In ARC, infer 'retaining' for ivars of retainable type.
13204   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
13205     NewID->setInvalidDecl();
13206 
13207   if (D.getDeclSpec().isModulePrivateSpecified())
13208     NewID->setModulePrivate();
13209 
13210   if (II) {
13211     // FIXME: When interfaces are DeclContexts, we'll need to add
13212     // these to the interface.
13213     S->AddDecl(NewID);
13214     IdResolver.AddDecl(NewID);
13215   }
13216 
13217   if (LangOpts.ObjCRuntime.isNonFragile() &&
13218       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
13219     Diag(Loc, diag::warn_ivars_in_interface);
13220 
13221   return NewID;
13222 }
13223 
13224 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
13225 /// class and class extensions. For every class \@interface and class
13226 /// extension \@interface, if the last ivar is a bitfield of any type,
13227 /// then add an implicit `char :0` ivar to the end of that interface.
13228 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
13229                              SmallVectorImpl<Decl *> &AllIvarDecls) {
13230   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
13231     return;
13232 
13233   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
13234   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
13235 
13236   if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
13237     return;
13238   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
13239   if (!ID) {
13240     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
13241       if (!CD->IsClassExtension())
13242         return;
13243     }
13244     // No need to add this to end of @implementation.
13245     else
13246       return;
13247   }
13248   // All conditions are met. Add a new bitfield to the tail end of ivars.
13249   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
13250   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
13251 
13252   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
13253                               DeclLoc, DeclLoc, nullptr,
13254                               Context.CharTy,
13255                               Context.getTrivialTypeSourceInfo(Context.CharTy,
13256                                                                DeclLoc),
13257                               ObjCIvarDecl::Private, BW,
13258                               true);
13259   AllIvarDecls.push_back(Ivar);
13260 }
13261 
13262 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
13263                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
13264                        SourceLocation RBrac, AttributeList *Attr) {
13265   assert(EnclosingDecl && "missing record or interface decl");
13266 
13267   // If this is an Objective-C @implementation or category and we have
13268   // new fields here we should reset the layout of the interface since
13269   // it will now change.
13270   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
13271     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
13272     switch (DC->getKind()) {
13273     default: break;
13274     case Decl::ObjCCategory:
13275       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
13276       break;
13277     case Decl::ObjCImplementation:
13278       Context.
13279         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
13280       break;
13281     }
13282   }
13283 
13284   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
13285 
13286   // Start counting up the number of named members; make sure to include
13287   // members of anonymous structs and unions in the total.
13288   unsigned NumNamedMembers = 0;
13289   if (Record) {
13290     for (const auto *I : Record->decls()) {
13291       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
13292         if (IFD->getDeclName())
13293           ++NumNamedMembers;
13294     }
13295   }
13296 
13297   // Verify that all the fields are okay.
13298   SmallVector<FieldDecl*, 32> RecFields;
13299 
13300   bool ARCErrReported = false;
13301   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
13302        i != end; ++i) {
13303     FieldDecl *FD = cast<FieldDecl>(*i);
13304 
13305     // Get the type for the field.
13306     const Type *FDTy = FD->getType().getTypePtr();
13307 
13308     if (!FD->isAnonymousStructOrUnion()) {
13309       // Remember all fields written by the user.
13310       RecFields.push_back(FD);
13311     }
13312 
13313     // If the field is already invalid for some reason, don't emit more
13314     // diagnostics about it.
13315     if (FD->isInvalidDecl()) {
13316       EnclosingDecl->setInvalidDecl();
13317       continue;
13318     }
13319 
13320     // C99 6.7.2.1p2:
13321     //   A structure or union shall not contain a member with
13322     //   incomplete or function type (hence, a structure shall not
13323     //   contain an instance of itself, but may contain a pointer to
13324     //   an instance of itself), except that the last member of a
13325     //   structure with more than one named member may have incomplete
13326     //   array type; such a structure (and any union containing,
13327     //   possibly recursively, a member that is such a structure)
13328     //   shall not be a member of a structure or an element of an
13329     //   array.
13330     if (FDTy->isFunctionType()) {
13331       // Field declared as a function.
13332       Diag(FD->getLocation(), diag::err_field_declared_as_function)
13333         << FD->getDeclName();
13334       FD->setInvalidDecl();
13335       EnclosingDecl->setInvalidDecl();
13336       continue;
13337     } else if (FDTy->isIncompleteArrayType() && Record &&
13338                ((i + 1 == Fields.end() && !Record->isUnion()) ||
13339                 ((getLangOpts().MicrosoftExt ||
13340                   getLangOpts().CPlusPlus) &&
13341                  (i + 1 == Fields.end() || Record->isUnion())))) {
13342       // Flexible array member.
13343       // Microsoft and g++ is more permissive regarding flexible array.
13344       // It will accept flexible array in union and also
13345       // as the sole element of a struct/class.
13346       unsigned DiagID = 0;
13347       if (Record->isUnion())
13348         DiagID = getLangOpts().MicrosoftExt
13349                      ? diag::ext_flexible_array_union_ms
13350                      : getLangOpts().CPlusPlus
13351                            ? diag::ext_flexible_array_union_gnu
13352                            : diag::err_flexible_array_union;
13353       else if (Fields.size() == 1)
13354         DiagID = getLangOpts().MicrosoftExt
13355                      ? diag::ext_flexible_array_empty_aggregate_ms
13356                      : getLangOpts().CPlusPlus
13357                            ? diag::ext_flexible_array_empty_aggregate_gnu
13358                            : NumNamedMembers < 1
13359                                  ? diag::err_flexible_array_empty_aggregate
13360                                  : 0;
13361 
13362       if (DiagID)
13363         Diag(FD->getLocation(), DiagID) << FD->getDeclName()
13364                                         << Record->getTagKind();
13365       // While the layout of types that contain virtual bases is not specified
13366       // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
13367       // virtual bases after the derived members.  This would make a flexible
13368       // array member declared at the end of an object not adjacent to the end
13369       // of the type.
13370       if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
13371         if (RD->getNumVBases() != 0)
13372           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
13373             << FD->getDeclName() << Record->getTagKind();
13374       if (!getLangOpts().C99)
13375         Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
13376           << FD->getDeclName() << Record->getTagKind();
13377 
13378       // If the element type has a non-trivial destructor, we would not
13379       // implicitly destroy the elements, so disallow it for now.
13380       //
13381       // FIXME: GCC allows this. We should probably either implicitly delete
13382       // the destructor of the containing class, or just allow this.
13383       QualType BaseElem = Context.getBaseElementType(FD->getType());
13384       if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
13385         Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
13386           << FD->getDeclName() << FD->getType();
13387         FD->setInvalidDecl();
13388         EnclosingDecl->setInvalidDecl();
13389         continue;
13390       }
13391       // Okay, we have a legal flexible array member at the end of the struct.
13392       Record->setHasFlexibleArrayMember(true);
13393     } else if (!FDTy->isDependentType() &&
13394                RequireCompleteType(FD->getLocation(), FD->getType(),
13395                                    diag::err_field_incomplete)) {
13396       // Incomplete type
13397       FD->setInvalidDecl();
13398       EnclosingDecl->setInvalidDecl();
13399       continue;
13400     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
13401       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
13402         // A type which contains a flexible array member is considered to be a
13403         // flexible array member.
13404         Record->setHasFlexibleArrayMember(true);
13405         if (!Record->isUnion()) {
13406           // If this is a struct/class and this is not the last element, reject
13407           // it.  Note that GCC supports variable sized arrays in the middle of
13408           // structures.
13409           if (i + 1 != Fields.end())
13410             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
13411               << FD->getDeclName() << FD->getType();
13412           else {
13413             // We support flexible arrays at the end of structs in
13414             // other structs as an extension.
13415             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
13416               << FD->getDeclName();
13417           }
13418         }
13419       }
13420       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
13421           RequireNonAbstractType(FD->getLocation(), FD->getType(),
13422                                  diag::err_abstract_type_in_decl,
13423                                  AbstractIvarType)) {
13424         // Ivars can not have abstract class types
13425         FD->setInvalidDecl();
13426       }
13427       if (Record && FDTTy->getDecl()->hasObjectMember())
13428         Record->setHasObjectMember(true);
13429       if (Record && FDTTy->getDecl()->hasVolatileMember())
13430         Record->setHasVolatileMember(true);
13431     } else if (FDTy->isObjCObjectType()) {
13432       /// A field cannot be an Objective-c object
13433       Diag(FD->getLocation(), diag::err_statically_allocated_object)
13434         << FixItHint::CreateInsertion(FD->getLocation(), "*");
13435       QualType T = Context.getObjCObjectPointerType(FD->getType());
13436       FD->setType(T);
13437     } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
13438                (!getLangOpts().CPlusPlus || Record->isUnion())) {
13439       // It's an error in ARC if a field has lifetime.
13440       // We don't want to report this in a system header, though,
13441       // so we just make the field unavailable.
13442       // FIXME: that's really not sufficient; we need to make the type
13443       // itself invalid to, say, initialize or copy.
13444       QualType T = FD->getType();
13445       Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
13446       if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
13447         SourceLocation loc = FD->getLocation();
13448         if (getSourceManager().isInSystemHeader(loc)) {
13449           if (!FD->hasAttr<UnavailableAttr>()) {
13450             FD->addAttr(UnavailableAttr::CreateImplicit(Context,
13451                               "this system field has retaining ownership",
13452                               loc));
13453           }
13454         } else {
13455           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
13456             << T->isBlockPointerType() << Record->getTagKind();
13457         }
13458         ARCErrReported = true;
13459       }
13460     } else if (getLangOpts().ObjC1 &&
13461                getLangOpts().getGC() != LangOptions::NonGC &&
13462                Record && !Record->hasObjectMember()) {
13463       if (FD->getType()->isObjCObjectPointerType() ||
13464           FD->getType().isObjCGCStrong())
13465         Record->setHasObjectMember(true);
13466       else if (Context.getAsArrayType(FD->getType())) {
13467         QualType BaseType = Context.getBaseElementType(FD->getType());
13468         if (BaseType->isRecordType() &&
13469             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
13470           Record->setHasObjectMember(true);
13471         else if (BaseType->isObjCObjectPointerType() ||
13472                  BaseType.isObjCGCStrong())
13473                Record->setHasObjectMember(true);
13474       }
13475     }
13476     if (Record && FD->getType().isVolatileQualified())
13477       Record->setHasVolatileMember(true);
13478     // Keep track of the number of named members.
13479     if (FD->getIdentifier())
13480       ++NumNamedMembers;
13481   }
13482 
13483   // Okay, we successfully defined 'Record'.
13484   if (Record) {
13485     bool Completed = false;
13486     if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
13487       if (!CXXRecord->isInvalidDecl()) {
13488         // Set access bits correctly on the directly-declared conversions.
13489         for (CXXRecordDecl::conversion_iterator
13490                I = CXXRecord->conversion_begin(),
13491                E = CXXRecord->conversion_end(); I != E; ++I)
13492           I.setAccess((*I)->getAccess());
13493 
13494         if (!CXXRecord->isDependentType()) {
13495           if (CXXRecord->hasUserDeclaredDestructor()) {
13496             // Adjust user-defined destructor exception spec.
13497             if (getLangOpts().CPlusPlus11)
13498               AdjustDestructorExceptionSpec(CXXRecord,
13499                                             CXXRecord->getDestructor());
13500           }
13501 
13502           // Add any implicitly-declared members to this class.
13503           AddImplicitlyDeclaredMembersToClass(CXXRecord);
13504 
13505           // If we have virtual base classes, we may end up finding multiple
13506           // final overriders for a given virtual function. Check for this
13507           // problem now.
13508           if (CXXRecord->getNumVBases()) {
13509             CXXFinalOverriderMap FinalOverriders;
13510             CXXRecord->getFinalOverriders(FinalOverriders);
13511 
13512             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
13513                                              MEnd = FinalOverriders.end();
13514                  M != MEnd; ++M) {
13515               for (OverridingMethods::iterator SO = M->second.begin(),
13516                                             SOEnd = M->second.end();
13517                    SO != SOEnd; ++SO) {
13518                 assert(SO->second.size() > 0 &&
13519                        "Virtual function without overridding functions?");
13520                 if (SO->second.size() == 1)
13521                   continue;
13522 
13523                 // C++ [class.virtual]p2:
13524                 //   In a derived class, if a virtual member function of a base
13525                 //   class subobject has more than one final overrider the
13526                 //   program is ill-formed.
13527                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
13528                   << (const NamedDecl *)M->first << Record;
13529                 Diag(M->first->getLocation(),
13530                      diag::note_overridden_virtual_function);
13531                 for (OverridingMethods::overriding_iterator
13532                           OM = SO->second.begin(),
13533                        OMEnd = SO->second.end();
13534                      OM != OMEnd; ++OM)
13535                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
13536                     << (const NamedDecl *)M->first << OM->Method->getParent();
13537 
13538                 Record->setInvalidDecl();
13539               }
13540             }
13541             CXXRecord->completeDefinition(&FinalOverriders);
13542             Completed = true;
13543           }
13544         }
13545       }
13546     }
13547 
13548     if (!Completed)
13549       Record->completeDefinition();
13550 
13551     if (Record->hasAttrs()) {
13552       CheckAlignasUnderalignment(Record);
13553 
13554       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
13555         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
13556                                            IA->getRange(), IA->getBestCase(),
13557                                            IA->getSemanticSpelling());
13558     }
13559 
13560     // Check if the structure/union declaration is a type that can have zero
13561     // size in C. For C this is a language extension, for C++ it may cause
13562     // compatibility problems.
13563     bool CheckForZeroSize;
13564     if (!getLangOpts().CPlusPlus) {
13565       CheckForZeroSize = true;
13566     } else {
13567       // For C++ filter out types that cannot be referenced in C code.
13568       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
13569       CheckForZeroSize =
13570           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
13571           !CXXRecord->isDependentType() &&
13572           CXXRecord->isCLike();
13573     }
13574     if (CheckForZeroSize) {
13575       bool ZeroSize = true;
13576       bool IsEmpty = true;
13577       unsigned NonBitFields = 0;
13578       for (RecordDecl::field_iterator I = Record->field_begin(),
13579                                       E = Record->field_end();
13580            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
13581         IsEmpty = false;
13582         if (I->isUnnamedBitfield()) {
13583           if (I->getBitWidthValue(Context) > 0)
13584             ZeroSize = false;
13585         } else {
13586           ++NonBitFields;
13587           QualType FieldType = I->getType();
13588           if (FieldType->isIncompleteType() ||
13589               !Context.getTypeSizeInChars(FieldType).isZero())
13590             ZeroSize = false;
13591         }
13592       }
13593 
13594       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
13595       // allowed in C++, but warn if its declaration is inside
13596       // extern "C" block.
13597       if (ZeroSize) {
13598         Diag(RecLoc, getLangOpts().CPlusPlus ?
13599                          diag::warn_zero_size_struct_union_in_extern_c :
13600                          diag::warn_zero_size_struct_union_compat)
13601           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
13602       }
13603 
13604       // Structs without named members are extension in C (C99 6.7.2.1p7),
13605       // but are accepted by GCC.
13606       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
13607         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
13608                                diag::ext_no_named_members_in_struct_union)
13609           << Record->isUnion();
13610       }
13611     }
13612   } else {
13613     ObjCIvarDecl **ClsFields =
13614       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
13615     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
13616       ID->setEndOfDefinitionLoc(RBrac);
13617       // Add ivar's to class's DeclContext.
13618       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
13619         ClsFields[i]->setLexicalDeclContext(ID);
13620         ID->addDecl(ClsFields[i]);
13621       }
13622       // Must enforce the rule that ivars in the base classes may not be
13623       // duplicates.
13624       if (ID->getSuperClass())
13625         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
13626     } else if (ObjCImplementationDecl *IMPDecl =
13627                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
13628       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
13629       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
13630         // Ivar declared in @implementation never belongs to the implementation.
13631         // Only it is in implementation's lexical context.
13632         ClsFields[I]->setLexicalDeclContext(IMPDecl);
13633       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
13634       IMPDecl->setIvarLBraceLoc(LBrac);
13635       IMPDecl->setIvarRBraceLoc(RBrac);
13636     } else if (ObjCCategoryDecl *CDecl =
13637                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
13638       // case of ivars in class extension; all other cases have been
13639       // reported as errors elsewhere.
13640       // FIXME. Class extension does not have a LocEnd field.
13641       // CDecl->setLocEnd(RBrac);
13642       // Add ivar's to class extension's DeclContext.
13643       // Diagnose redeclaration of private ivars.
13644       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
13645       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
13646         if (IDecl) {
13647           if (const ObjCIvarDecl *ClsIvar =
13648               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
13649             Diag(ClsFields[i]->getLocation(),
13650                  diag::err_duplicate_ivar_declaration);
13651             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
13652             continue;
13653           }
13654           for (const auto *Ext : IDecl->known_extensions()) {
13655             if (const ObjCIvarDecl *ClsExtIvar
13656                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
13657               Diag(ClsFields[i]->getLocation(),
13658                    diag::err_duplicate_ivar_declaration);
13659               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
13660               continue;
13661             }
13662           }
13663         }
13664         ClsFields[i]->setLexicalDeclContext(CDecl);
13665         CDecl->addDecl(ClsFields[i]);
13666       }
13667       CDecl->setIvarLBraceLoc(LBrac);
13668       CDecl->setIvarRBraceLoc(RBrac);
13669     }
13670   }
13671 
13672   if (Attr)
13673     ProcessDeclAttributeList(S, Record, Attr);
13674 }
13675 
13676 /// \brief Determine whether the given integral value is representable within
13677 /// the given type T.
13678 static bool isRepresentableIntegerValue(ASTContext &Context,
13679                                         llvm::APSInt &Value,
13680                                         QualType T) {
13681   assert(T->isIntegralType(Context) && "Integral type required!");
13682   unsigned BitWidth = Context.getIntWidth(T);
13683 
13684   if (Value.isUnsigned() || Value.isNonNegative()) {
13685     if (T->isSignedIntegerOrEnumerationType())
13686       --BitWidth;
13687     return Value.getActiveBits() <= BitWidth;
13688   }
13689   return Value.getMinSignedBits() <= BitWidth;
13690 }
13691 
13692 // \brief Given an integral type, return the next larger integral type
13693 // (or a NULL type of no such type exists).
13694 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
13695   // FIXME: Int128/UInt128 support, which also needs to be introduced into
13696   // enum checking below.
13697   assert(T->isIntegralType(Context) && "Integral type required!");
13698   const unsigned NumTypes = 4;
13699   QualType SignedIntegralTypes[NumTypes] = {
13700     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
13701   };
13702   QualType UnsignedIntegralTypes[NumTypes] = {
13703     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
13704     Context.UnsignedLongLongTy
13705   };
13706 
13707   unsigned BitWidth = Context.getTypeSize(T);
13708   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
13709                                                         : UnsignedIntegralTypes;
13710   for (unsigned I = 0; I != NumTypes; ++I)
13711     if (Context.getTypeSize(Types[I]) > BitWidth)
13712       return Types[I];
13713 
13714   return QualType();
13715 }
13716 
13717 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
13718                                           EnumConstantDecl *LastEnumConst,
13719                                           SourceLocation IdLoc,
13720                                           IdentifierInfo *Id,
13721                                           Expr *Val) {
13722   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
13723   llvm::APSInt EnumVal(IntWidth);
13724   QualType EltTy;
13725 
13726   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
13727     Val = nullptr;
13728 
13729   if (Val)
13730     Val = DefaultLvalueConversion(Val).get();
13731 
13732   if (Val) {
13733     if (Enum->isDependentType() || Val->isTypeDependent())
13734       EltTy = Context.DependentTy;
13735     else {
13736       SourceLocation ExpLoc;
13737       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
13738           !getLangOpts().MSVCCompat) {
13739         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
13740         // constant-expression in the enumerator-definition shall be a converted
13741         // constant expression of the underlying type.
13742         EltTy = Enum->getIntegerType();
13743         ExprResult Converted =
13744           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
13745                                            CCEK_Enumerator);
13746         if (Converted.isInvalid())
13747           Val = nullptr;
13748         else
13749           Val = Converted.get();
13750       } else if (!Val->isValueDependent() &&
13751                  !(Val = VerifyIntegerConstantExpression(Val,
13752                                                          &EnumVal).get())) {
13753         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
13754       } else {
13755         if (Enum->isFixed()) {
13756           EltTy = Enum->getIntegerType();
13757 
13758           // In Obj-C and Microsoft mode, require the enumeration value to be
13759           // representable in the underlying type of the enumeration. In C++11,
13760           // we perform a non-narrowing conversion as part of converted constant
13761           // expression checking.
13762           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
13763             if (getLangOpts().MSVCCompat) {
13764               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
13765               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
13766             } else
13767               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
13768           } else
13769             Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
13770         } else if (getLangOpts().CPlusPlus) {
13771           // C++11 [dcl.enum]p5:
13772           //   If the underlying type is not fixed, the type of each enumerator
13773           //   is the type of its initializing value:
13774           //     - If an initializer is specified for an enumerator, the
13775           //       initializing value has the same type as the expression.
13776           EltTy = Val->getType();
13777         } else {
13778           // C99 6.7.2.2p2:
13779           //   The expression that defines the value of an enumeration constant
13780           //   shall be an integer constant expression that has a value
13781           //   representable as an int.
13782 
13783           // Complain if the value is not representable in an int.
13784           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
13785             Diag(IdLoc, diag::ext_enum_value_not_int)
13786               << EnumVal.toString(10) << Val->getSourceRange()
13787               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
13788           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
13789             // Force the type of the expression to 'int'.
13790             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
13791           }
13792           EltTy = Val->getType();
13793         }
13794       }
13795     }
13796   }
13797 
13798   if (!Val) {
13799     if (Enum->isDependentType())
13800       EltTy = Context.DependentTy;
13801     else if (!LastEnumConst) {
13802       // C++0x [dcl.enum]p5:
13803       //   If the underlying type is not fixed, the type of each enumerator
13804       //   is the type of its initializing value:
13805       //     - If no initializer is specified for the first enumerator, the
13806       //       initializing value has an unspecified integral type.
13807       //
13808       // GCC uses 'int' for its unspecified integral type, as does
13809       // C99 6.7.2.2p3.
13810       if (Enum->isFixed()) {
13811         EltTy = Enum->getIntegerType();
13812       }
13813       else {
13814         EltTy = Context.IntTy;
13815       }
13816     } else {
13817       // Assign the last value + 1.
13818       EnumVal = LastEnumConst->getInitVal();
13819       ++EnumVal;
13820       EltTy = LastEnumConst->getType();
13821 
13822       // Check for overflow on increment.
13823       if (EnumVal < LastEnumConst->getInitVal()) {
13824         // C++0x [dcl.enum]p5:
13825         //   If the underlying type is not fixed, the type of each enumerator
13826         //   is the type of its initializing value:
13827         //
13828         //     - Otherwise the type of the initializing value is the same as
13829         //       the type of the initializing value of the preceding enumerator
13830         //       unless the incremented value is not representable in that type,
13831         //       in which case the type is an unspecified integral type
13832         //       sufficient to contain the incremented value. If no such type
13833         //       exists, the program is ill-formed.
13834         QualType T = getNextLargerIntegralType(Context, EltTy);
13835         if (T.isNull() || Enum->isFixed()) {
13836           // There is no integral type larger enough to represent this
13837           // value. Complain, then allow the value to wrap around.
13838           EnumVal = LastEnumConst->getInitVal();
13839           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
13840           ++EnumVal;
13841           if (Enum->isFixed())
13842             // When the underlying type is fixed, this is ill-formed.
13843             Diag(IdLoc, diag::err_enumerator_wrapped)
13844               << EnumVal.toString(10)
13845               << EltTy;
13846           else
13847             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
13848               << EnumVal.toString(10);
13849         } else {
13850           EltTy = T;
13851         }
13852 
13853         // Retrieve the last enumerator's value, extent that type to the
13854         // type that is supposed to be large enough to represent the incremented
13855         // value, then increment.
13856         EnumVal = LastEnumConst->getInitVal();
13857         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
13858         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
13859         ++EnumVal;
13860 
13861         // If we're not in C++, diagnose the overflow of enumerator values,
13862         // which in C99 means that the enumerator value is not representable in
13863         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
13864         // permits enumerator values that are representable in some larger
13865         // integral type.
13866         if (!getLangOpts().CPlusPlus && !T.isNull())
13867           Diag(IdLoc, diag::warn_enum_value_overflow);
13868       } else if (!getLangOpts().CPlusPlus &&
13869                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
13870         // Enforce C99 6.7.2.2p2 even when we compute the next value.
13871         Diag(IdLoc, diag::ext_enum_value_not_int)
13872           << EnumVal.toString(10) << 1;
13873       }
13874     }
13875   }
13876 
13877   if (!EltTy->isDependentType()) {
13878     // Make the enumerator value match the signedness and size of the
13879     // enumerator's type.
13880     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
13881     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
13882   }
13883 
13884   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
13885                                   Val, EnumVal);
13886 }
13887 
13888 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
13889                                                 SourceLocation IILoc) {
13890   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
13891       !getLangOpts().CPlusPlus)
13892     return SkipBodyInfo();
13893 
13894   // We have an anonymous enum definition. Look up the first enumerator to
13895   // determine if we should merge the definition with an existing one and
13896   // skip the body.
13897   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
13898                                          ForRedeclaration);
13899   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
13900   NamedDecl *Hidden;
13901   if (PrevECD &&
13902       !hasVisibleDefinition(cast<NamedDecl>(PrevECD->getDeclContext()),
13903                             &Hidden)) {
13904     SkipBodyInfo Skip;
13905     Skip.Previous = Hidden;
13906     return Skip;
13907   }
13908 
13909   return SkipBodyInfo();
13910 }
13911 
13912 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
13913                               SourceLocation IdLoc, IdentifierInfo *Id,
13914                               AttributeList *Attr,
13915                               SourceLocation EqualLoc, Expr *Val) {
13916   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
13917   EnumConstantDecl *LastEnumConst =
13918     cast_or_null<EnumConstantDecl>(lastEnumConst);
13919 
13920   // The scope passed in may not be a decl scope.  Zip up the scope tree until
13921   // we find one that is.
13922   S = getNonFieldDeclScope(S);
13923 
13924   // Verify that there isn't already something declared with this name in this
13925   // scope.
13926   NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
13927                                          ForRedeclaration);
13928   if (PrevDecl && PrevDecl->isTemplateParameter()) {
13929     // Maybe we will complain about the shadowed template parameter.
13930     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
13931     // Just pretend that we didn't see the previous declaration.
13932     PrevDecl = nullptr;
13933   }
13934 
13935   if (PrevDecl) {
13936     // When in C++, we may get a TagDecl with the same name; in this case the
13937     // enum constant will 'hide' the tag.
13938     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
13939            "Received TagDecl when not in C++!");
13940     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
13941       if (isa<EnumConstantDecl>(PrevDecl))
13942         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
13943       else
13944         Diag(IdLoc, diag::err_redefinition) << Id;
13945       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
13946       return nullptr;
13947     }
13948   }
13949 
13950   // C++ [class.mem]p15:
13951   // If T is the name of a class, then each of the following shall have a name
13952   // different from T:
13953   // - every enumerator of every member of class T that is an unscoped
13954   // enumerated type
13955   if (!TheEnumDecl->isScoped())
13956     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
13957                             DeclarationNameInfo(Id, IdLoc));
13958 
13959   EnumConstantDecl *New =
13960     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
13961 
13962   if (New) {
13963     // Process attributes.
13964     if (Attr) ProcessDeclAttributeList(S, New, Attr);
13965 
13966     // Register this decl in the current scope stack.
13967     New->setAccess(TheEnumDecl->getAccess());
13968     PushOnScopeChains(New, S);
13969   }
13970 
13971   ActOnDocumentableDecl(New);
13972 
13973   return New;
13974 }
13975 
13976 // Returns true when the enum initial expression does not trigger the
13977 // duplicate enum warning.  A few common cases are exempted as follows:
13978 // Element2 = Element1
13979 // Element2 = Element1 + 1
13980 // Element2 = Element1 - 1
13981 // Where Element2 and Element1 are from the same enum.
13982 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
13983   Expr *InitExpr = ECD->getInitExpr();
13984   if (!InitExpr)
13985     return true;
13986   InitExpr = InitExpr->IgnoreImpCasts();
13987 
13988   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
13989     if (!BO->isAdditiveOp())
13990       return true;
13991     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
13992     if (!IL)
13993       return true;
13994     if (IL->getValue() != 1)
13995       return true;
13996 
13997     InitExpr = BO->getLHS();
13998   }
13999 
14000   // This checks if the elements are from the same enum.
14001   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
14002   if (!DRE)
14003     return true;
14004 
14005   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
14006   if (!EnumConstant)
14007     return true;
14008 
14009   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
14010       Enum)
14011     return true;
14012 
14013   return false;
14014 }
14015 
14016 struct DupKey {
14017   int64_t val;
14018   bool isTombstoneOrEmptyKey;
14019   DupKey(int64_t val, bool isTombstoneOrEmptyKey)
14020     : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
14021 };
14022 
14023 static DupKey GetDupKey(const llvm::APSInt& Val) {
14024   return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
14025                 false);
14026 }
14027 
14028 struct DenseMapInfoDupKey {
14029   static DupKey getEmptyKey() { return DupKey(0, true); }
14030   static DupKey getTombstoneKey() { return DupKey(1, true); }
14031   static unsigned getHashValue(const DupKey Key) {
14032     return (unsigned)(Key.val * 37);
14033   }
14034   static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
14035     return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
14036            LHS.val == RHS.val;
14037   }
14038 };
14039 
14040 // Emits a warning when an element is implicitly set a value that
14041 // a previous element has already been set to.
14042 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
14043                                         EnumDecl *Enum,
14044                                         QualType EnumType) {
14045   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
14046     return;
14047   // Avoid anonymous enums
14048   if (!Enum->getIdentifier())
14049     return;
14050 
14051   // Only check for small enums.
14052   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
14053     return;
14054 
14055   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
14056   typedef SmallVector<ECDVector *, 3> DuplicatesVector;
14057 
14058   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
14059   typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
14060           ValueToVectorMap;
14061 
14062   DuplicatesVector DupVector;
14063   ValueToVectorMap EnumMap;
14064 
14065   // Populate the EnumMap with all values represented by enum constants without
14066   // an initialier.
14067   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
14068     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
14069 
14070     // Null EnumConstantDecl means a previous diagnostic has been emitted for
14071     // this constant.  Skip this enum since it may be ill-formed.
14072     if (!ECD) {
14073       return;
14074     }
14075 
14076     if (ECD->getInitExpr())
14077       continue;
14078 
14079     DupKey Key = GetDupKey(ECD->getInitVal());
14080     DeclOrVector &Entry = EnumMap[Key];
14081 
14082     // First time encountering this value.
14083     if (Entry.isNull())
14084       Entry = ECD;
14085   }
14086 
14087   // Create vectors for any values that has duplicates.
14088   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
14089     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
14090     if (!ValidDuplicateEnum(ECD, Enum))
14091       continue;
14092 
14093     DupKey Key = GetDupKey(ECD->getInitVal());
14094 
14095     DeclOrVector& Entry = EnumMap[Key];
14096     if (Entry.isNull())
14097       continue;
14098 
14099     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
14100       // Ensure constants are different.
14101       if (D == ECD)
14102         continue;
14103 
14104       // Create new vector and push values onto it.
14105       ECDVector *Vec = new ECDVector();
14106       Vec->push_back(D);
14107       Vec->push_back(ECD);
14108 
14109       // Update entry to point to the duplicates vector.
14110       Entry = Vec;
14111 
14112       // Store the vector somewhere we can consult later for quick emission of
14113       // diagnostics.
14114       DupVector.push_back(Vec);
14115       continue;
14116     }
14117 
14118     ECDVector *Vec = Entry.get<ECDVector*>();
14119     // Make sure constants are not added more than once.
14120     if (*Vec->begin() == ECD)
14121       continue;
14122 
14123     Vec->push_back(ECD);
14124   }
14125 
14126   // Emit diagnostics.
14127   for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
14128                                   DupVectorEnd = DupVector.end();
14129        DupVectorIter != DupVectorEnd; ++DupVectorIter) {
14130     ECDVector *Vec = *DupVectorIter;
14131     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
14132 
14133     // Emit warning for one enum constant.
14134     ECDVector::iterator I = Vec->begin();
14135     S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
14136       << (*I)->getName() << (*I)->getInitVal().toString(10)
14137       << (*I)->getSourceRange();
14138     ++I;
14139 
14140     // Emit one note for each of the remaining enum constants with
14141     // the same value.
14142     for (ECDVector::iterator E = Vec->end(); I != E; ++I)
14143       S.Diag((*I)->getLocation(), diag::note_duplicate_element)
14144         << (*I)->getName() << (*I)->getInitVal().toString(10)
14145         << (*I)->getSourceRange();
14146     delete Vec;
14147   }
14148 }
14149 
14150 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
14151                              bool AllowMask) const {
14152   assert(ED->hasAttr<FlagEnumAttr>() && "looking for value in non-flag enum");
14153   assert(ED->isCompleteDefinition() && "expected enum definition");
14154 
14155   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
14156   llvm::APInt &FlagBits = R.first->second;
14157 
14158   if (R.second) {
14159     for (auto *E : ED->enumerators()) {
14160       const auto &EVal = E->getInitVal();
14161       // Only single-bit enumerators introduce new flag values.
14162       if (EVal.isPowerOf2())
14163         FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
14164     }
14165   }
14166 
14167   // A value is in a flag enum if either its bits are a subset of the enum's
14168   // flag bits (the first condition) or we are allowing masks and the same is
14169   // true of its complement (the second condition). When masks are allowed, we
14170   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
14171   //
14172   // While it's true that any value could be used as a mask, the assumption is
14173   // that a mask will have all of the insignificant bits set. Anything else is
14174   // likely a logic error.
14175   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
14176   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
14177 }
14178 
14179 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
14180                          SourceLocation RBraceLoc, Decl *EnumDeclX,
14181                          ArrayRef<Decl *> Elements,
14182                          Scope *S, AttributeList *Attr) {
14183   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
14184   QualType EnumType = Context.getTypeDeclType(Enum);
14185 
14186   if (Attr)
14187     ProcessDeclAttributeList(S, Enum, Attr);
14188 
14189   if (Enum->isDependentType()) {
14190     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
14191       EnumConstantDecl *ECD =
14192         cast_or_null<EnumConstantDecl>(Elements[i]);
14193       if (!ECD) continue;
14194 
14195       ECD->setType(EnumType);
14196     }
14197 
14198     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
14199     return;
14200   }
14201 
14202   // TODO: If the result value doesn't fit in an int, it must be a long or long
14203   // long value.  ISO C does not support this, but GCC does as an extension,
14204   // emit a warning.
14205   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
14206   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
14207   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
14208 
14209   // Verify that all the values are okay, compute the size of the values, and
14210   // reverse the list.
14211   unsigned NumNegativeBits = 0;
14212   unsigned NumPositiveBits = 0;
14213 
14214   // Keep track of whether all elements have type int.
14215   bool AllElementsInt = true;
14216 
14217   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
14218     EnumConstantDecl *ECD =
14219       cast_or_null<EnumConstantDecl>(Elements[i]);
14220     if (!ECD) continue;  // Already issued a diagnostic.
14221 
14222     const llvm::APSInt &InitVal = ECD->getInitVal();
14223 
14224     // Keep track of the size of positive and negative values.
14225     if (InitVal.isUnsigned() || InitVal.isNonNegative())
14226       NumPositiveBits = std::max(NumPositiveBits,
14227                                  (unsigned)InitVal.getActiveBits());
14228     else
14229       NumNegativeBits = std::max(NumNegativeBits,
14230                                  (unsigned)InitVal.getMinSignedBits());
14231 
14232     // Keep track of whether every enum element has type int (very commmon).
14233     if (AllElementsInt)
14234       AllElementsInt = ECD->getType() == Context.IntTy;
14235   }
14236 
14237   // Figure out the type that should be used for this enum.
14238   QualType BestType;
14239   unsigned BestWidth;
14240 
14241   // C++0x N3000 [conv.prom]p3:
14242   //   An rvalue of an unscoped enumeration type whose underlying
14243   //   type is not fixed can be converted to an rvalue of the first
14244   //   of the following types that can represent all the values of
14245   //   the enumeration: int, unsigned int, long int, unsigned long
14246   //   int, long long int, or unsigned long long int.
14247   // C99 6.4.4.3p2:
14248   //   An identifier declared as an enumeration constant has type int.
14249   // The C99 rule is modified by a gcc extension
14250   QualType BestPromotionType;
14251 
14252   bool Packed = Enum->hasAttr<PackedAttr>();
14253   // -fshort-enums is the equivalent to specifying the packed attribute on all
14254   // enum definitions.
14255   if (LangOpts.ShortEnums)
14256     Packed = true;
14257 
14258   if (Enum->isFixed()) {
14259     BestType = Enum->getIntegerType();
14260     if (BestType->isPromotableIntegerType())
14261       BestPromotionType = Context.getPromotedIntegerType(BestType);
14262     else
14263       BestPromotionType = BestType;
14264 
14265     BestWidth = Context.getIntWidth(BestType);
14266   }
14267   else if (NumNegativeBits) {
14268     // If there is a negative value, figure out the smallest integer type (of
14269     // int/long/longlong) that fits.
14270     // If it's packed, check also if it fits a char or a short.
14271     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
14272       BestType = Context.SignedCharTy;
14273       BestWidth = CharWidth;
14274     } else if (Packed && NumNegativeBits <= ShortWidth &&
14275                NumPositiveBits < ShortWidth) {
14276       BestType = Context.ShortTy;
14277       BestWidth = ShortWidth;
14278     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
14279       BestType = Context.IntTy;
14280       BestWidth = IntWidth;
14281     } else {
14282       BestWidth = Context.getTargetInfo().getLongWidth();
14283 
14284       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
14285         BestType = Context.LongTy;
14286       } else {
14287         BestWidth = Context.getTargetInfo().getLongLongWidth();
14288 
14289         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
14290           Diag(Enum->getLocation(), diag::ext_enum_too_large);
14291         BestType = Context.LongLongTy;
14292       }
14293     }
14294     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
14295   } else {
14296     // If there is no negative value, figure out the smallest type that fits
14297     // all of the enumerator values.
14298     // If it's packed, check also if it fits a char or a short.
14299     if (Packed && NumPositiveBits <= CharWidth) {
14300       BestType = Context.UnsignedCharTy;
14301       BestPromotionType = Context.IntTy;
14302       BestWidth = CharWidth;
14303     } else if (Packed && NumPositiveBits <= ShortWidth) {
14304       BestType = Context.UnsignedShortTy;
14305       BestPromotionType = Context.IntTy;
14306       BestWidth = ShortWidth;
14307     } else if (NumPositiveBits <= IntWidth) {
14308       BestType = Context.UnsignedIntTy;
14309       BestWidth = IntWidth;
14310       BestPromotionType
14311         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
14312                            ? Context.UnsignedIntTy : Context.IntTy;
14313     } else if (NumPositiveBits <=
14314                (BestWidth = Context.getTargetInfo().getLongWidth())) {
14315       BestType = Context.UnsignedLongTy;
14316       BestPromotionType
14317         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
14318                            ? Context.UnsignedLongTy : Context.LongTy;
14319     } else {
14320       BestWidth = Context.getTargetInfo().getLongLongWidth();
14321       assert(NumPositiveBits <= BestWidth &&
14322              "How could an initializer get larger than ULL?");
14323       BestType = Context.UnsignedLongLongTy;
14324       BestPromotionType
14325         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
14326                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
14327     }
14328   }
14329 
14330   // Loop over all of the enumerator constants, changing their types to match
14331   // the type of the enum if needed.
14332   for (auto *D : Elements) {
14333     auto *ECD = cast_or_null<EnumConstantDecl>(D);
14334     if (!ECD) continue;  // Already issued a diagnostic.
14335 
14336     // Standard C says the enumerators have int type, but we allow, as an
14337     // extension, the enumerators to be larger than int size.  If each
14338     // enumerator value fits in an int, type it as an int, otherwise type it the
14339     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
14340     // that X has type 'int', not 'unsigned'.
14341 
14342     // Determine whether the value fits into an int.
14343     llvm::APSInt InitVal = ECD->getInitVal();
14344 
14345     // If it fits into an integer type, force it.  Otherwise force it to match
14346     // the enum decl type.
14347     QualType NewTy;
14348     unsigned NewWidth;
14349     bool NewSign;
14350     if (!getLangOpts().CPlusPlus &&
14351         !Enum->isFixed() &&
14352         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
14353       NewTy = Context.IntTy;
14354       NewWidth = IntWidth;
14355       NewSign = true;
14356     } else if (ECD->getType() == BestType) {
14357       // Already the right type!
14358       if (getLangOpts().CPlusPlus)
14359         // C++ [dcl.enum]p4: Following the closing brace of an
14360         // enum-specifier, each enumerator has the type of its
14361         // enumeration.
14362         ECD->setType(EnumType);
14363       continue;
14364     } else {
14365       NewTy = BestType;
14366       NewWidth = BestWidth;
14367       NewSign = BestType->isSignedIntegerOrEnumerationType();
14368     }
14369 
14370     // Adjust the APSInt value.
14371     InitVal = InitVal.extOrTrunc(NewWidth);
14372     InitVal.setIsSigned(NewSign);
14373     ECD->setInitVal(InitVal);
14374 
14375     // Adjust the Expr initializer and type.
14376     if (ECD->getInitExpr() &&
14377         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
14378       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
14379                                                 CK_IntegralCast,
14380                                                 ECD->getInitExpr(),
14381                                                 /*base paths*/ nullptr,
14382                                                 VK_RValue));
14383     if (getLangOpts().CPlusPlus)
14384       // C++ [dcl.enum]p4: Following the closing brace of an
14385       // enum-specifier, each enumerator has the type of its
14386       // enumeration.
14387       ECD->setType(EnumType);
14388     else
14389       ECD->setType(NewTy);
14390   }
14391 
14392   Enum->completeDefinition(BestType, BestPromotionType,
14393                            NumPositiveBits, NumNegativeBits);
14394 
14395   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
14396 
14397   if (Enum->hasAttr<FlagEnumAttr>()) {
14398     for (Decl *D : Elements) {
14399       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
14400       if (!ECD) continue;  // Already issued a diagnostic.
14401 
14402       llvm::APSInt InitVal = ECD->getInitVal();
14403       if (InitVal != 0 && !InitVal.isPowerOf2() &&
14404           !IsValueInFlagEnum(Enum, InitVal, true))
14405         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
14406           << ECD << Enum;
14407     }
14408   }
14409 
14410   // Now that the enum type is defined, ensure it's not been underaligned.
14411   if (Enum->hasAttrs())
14412     CheckAlignasUnderalignment(Enum);
14413 }
14414 
14415 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
14416                                   SourceLocation StartLoc,
14417                                   SourceLocation EndLoc) {
14418   StringLiteral *AsmString = cast<StringLiteral>(expr);
14419 
14420   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
14421                                                    AsmString, StartLoc,
14422                                                    EndLoc);
14423   CurContext->addDecl(New);
14424   return New;
14425 }
14426 
14427 static void checkModuleImportContext(Sema &S, Module *M,
14428                                      SourceLocation ImportLoc,
14429                                      DeclContext *DC) {
14430   SourceLocation ExternCLoc;
14431 
14432   if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
14433     switch (LSD->getLanguage()) {
14434     case LinkageSpecDecl::lang_c:
14435       if (ExternCLoc.isInvalid())
14436         ExternCLoc = LSD->getLocStart();
14437       break;
14438     case LinkageSpecDecl::lang_cxx:
14439       break;
14440     }
14441     DC = LSD->getParent();
14442   }
14443 
14444   while (isa<LinkageSpecDecl>(DC))
14445     DC = DC->getParent();
14446 
14447   if (!isa<TranslationUnitDecl>(DC)) {
14448     S.Diag(ImportLoc, diag::err_module_import_not_at_top_level_fatal)
14449         << M->getFullModuleName() << DC;
14450     S.Diag(cast<Decl>(DC)->getLocStart(),
14451            diag::note_module_import_not_at_top_level) << DC;
14452   } else if (!M->IsExternC && ExternCLoc.isValid()) {
14453     S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
14454       << M->getFullModuleName();
14455     S.Diag(ExternCLoc, diag::note_module_import_in_extern_c);
14456   }
14457 }
14458 
14459 void Sema::diagnoseMisplacedModuleImport(Module *M, SourceLocation ImportLoc) {
14460   return checkModuleImportContext(*this, M, ImportLoc, CurContext);
14461 }
14462 
14463 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
14464                                    SourceLocation ImportLoc,
14465                                    ModuleIdPath Path) {
14466   Module *Mod =
14467       getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
14468                                    /*IsIncludeDirective=*/false);
14469   if (!Mod)
14470     return true;
14471 
14472   VisibleModules.setVisible(Mod, ImportLoc);
14473 
14474   checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
14475 
14476   // FIXME: we should support importing a submodule within a different submodule
14477   // of the same top-level module. Until we do, make it an error rather than
14478   // silently ignoring the import.
14479   if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule)
14480     Diag(ImportLoc, diag::err_module_self_import)
14481         << Mod->getFullModuleName() << getLangOpts().CurrentModule;
14482   else if (Mod->getTopLevelModuleName() == getLangOpts().ImplementationOfModule)
14483     Diag(ImportLoc, diag::err_module_import_in_implementation)
14484         << Mod->getFullModuleName() << getLangOpts().ImplementationOfModule;
14485 
14486   SmallVector<SourceLocation, 2> IdentifierLocs;
14487   Module *ModCheck = Mod;
14488   for (unsigned I = 0, N = Path.size(); I != N; ++I) {
14489     // If we've run out of module parents, just drop the remaining identifiers.
14490     // We need the length to be consistent.
14491     if (!ModCheck)
14492       break;
14493     ModCheck = ModCheck->Parent;
14494 
14495     IdentifierLocs.push_back(Path[I].second);
14496   }
14497 
14498   ImportDecl *Import = ImportDecl::Create(Context,
14499                                           Context.getTranslationUnitDecl(),
14500                                           AtLoc.isValid()? AtLoc : ImportLoc,
14501                                           Mod, IdentifierLocs);
14502   Context.getTranslationUnitDecl()->addDecl(Import);
14503   return Import;
14504 }
14505 
14506 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
14507   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
14508 
14509   // Determine whether we're in the #include buffer for a module. The #includes
14510   // in that buffer do not qualify as module imports; they're just an
14511   // implementation detail of us building the module.
14512   //
14513   // FIXME: Should we even get ActOnModuleInclude calls for those?
14514   bool IsInModuleIncludes =
14515       TUKind == TU_Module &&
14516       getSourceManager().isWrittenInMainFile(DirectiveLoc);
14517 
14518   // If this module import was due to an inclusion directive, create an
14519   // implicit import declaration to capture it in the AST.
14520   if (!IsInModuleIncludes) {
14521     TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
14522     ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
14523                                                      DirectiveLoc, Mod,
14524                                                      DirectiveLoc);
14525     TU->addDecl(ImportD);
14526     Consumer.HandleImplicitImportDecl(ImportD);
14527   }
14528 
14529   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
14530   VisibleModules.setVisible(Mod, DirectiveLoc);
14531 }
14532 
14533 void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
14534   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
14535 
14536   if (getLangOpts().ModulesLocalVisibility)
14537     VisibleModulesStack.push_back(std::move(VisibleModules));
14538   VisibleModules.setVisible(Mod, DirectiveLoc);
14539 }
14540 
14541 void Sema::ActOnModuleEnd(SourceLocation DirectiveLoc, Module *Mod) {
14542   checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
14543 
14544   if (getLangOpts().ModulesLocalVisibility) {
14545     VisibleModules = std::move(VisibleModulesStack.back());
14546     VisibleModulesStack.pop_back();
14547     VisibleModules.setVisible(Mod, DirectiveLoc);
14548   }
14549 }
14550 
14551 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
14552                                                       Module *Mod) {
14553   // Bail if we're not allowed to implicitly import a module here.
14554   if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery)
14555     return;
14556 
14557   // Create the implicit import declaration.
14558   TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
14559   ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
14560                                                    Loc, Mod, Loc);
14561   TU->addDecl(ImportD);
14562   Consumer.HandleImplicitImportDecl(ImportD);
14563 
14564   // Make the module visible.
14565   getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
14566   VisibleModules.setVisible(Mod, Loc);
14567 }
14568 
14569 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
14570                                       IdentifierInfo* AliasName,
14571                                       SourceLocation PragmaLoc,
14572                                       SourceLocation NameLoc,
14573                                       SourceLocation AliasNameLoc) {
14574   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
14575                                          LookupOrdinaryName);
14576   AsmLabelAttr *Attr =
14577       AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc);
14578 
14579   // If a declaration that:
14580   // 1) declares a function or a variable
14581   // 2) has external linkage
14582   // already exists, add a label attribute to it.
14583   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
14584     if (isDeclExternC(PrevDecl))
14585       PrevDecl->addAttr(Attr);
14586     else
14587       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
14588           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
14589   // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
14590   } else
14591     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
14592 }
14593 
14594 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
14595                              SourceLocation PragmaLoc,
14596                              SourceLocation NameLoc) {
14597   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
14598 
14599   if (PrevDecl) {
14600     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
14601   } else {
14602     (void)WeakUndeclaredIdentifiers.insert(
14603       std::pair<IdentifierInfo*,WeakInfo>
14604         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
14605   }
14606 }
14607 
14608 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
14609                                 IdentifierInfo* AliasName,
14610                                 SourceLocation PragmaLoc,
14611                                 SourceLocation NameLoc,
14612                                 SourceLocation AliasNameLoc) {
14613   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
14614                                     LookupOrdinaryName);
14615   WeakInfo W = WeakInfo(Name, NameLoc);
14616 
14617   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
14618     if (!PrevDecl->hasAttr<AliasAttr>())
14619       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
14620         DeclApplyPragmaWeak(TUScope, ND, W);
14621   } else {
14622     (void)WeakUndeclaredIdentifiers.insert(
14623       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
14624   }
14625 }
14626 
14627 Decl *Sema::getObjCDeclContext() const {
14628   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
14629 }
14630 
14631 AvailabilityResult Sema::getCurContextAvailability() const {
14632   const Decl *D = cast_or_null<Decl>(getCurObjCLexicalContext());
14633   if (!D)
14634     return AR_Available;
14635 
14636   // If we are within an Objective-C method, we should consult
14637   // both the availability of the method as well as the
14638   // enclosing class.  If the class is (say) deprecated,
14639   // the entire method is considered deprecated from the
14640   // purpose of checking if the current context is deprecated.
14641   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
14642     AvailabilityResult R = MD->getAvailability();
14643     if (R != AR_Available)
14644       return R;
14645     D = MD->getClassInterface();
14646   }
14647   // If we are within an Objective-c @implementation, it
14648   // gets the same availability context as the @interface.
14649   else if (const ObjCImplementationDecl *ID =
14650             dyn_cast<ObjCImplementationDecl>(D)) {
14651     D = ID->getClassInterface();
14652   }
14653   // Recover from user error.
14654   return D ? D->getAvailability() : AR_Available;
14655 }
14656