1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CommentDiagnostic.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/StmtCXX.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/PartialDiagnostic.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
31 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
32 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
33 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
34 #include "clang/Sema/CXXFieldCollector.h"
35 #include "clang/Sema/DeclSpec.h"
36 #include "clang/Sema/DelayedDiagnostic.h"
37 #include "clang/Sema/Initialization.h"
38 #include "clang/Sema/Lookup.h"
39 #include "clang/Sema/ParsedTemplate.h"
40 #include "clang/Sema/Scope.h"
41 #include "clang/Sema/ScopeInfo.h"
42 #include "clang/Sema/SemaInternal.h"
43 #include "clang/Sema/Template.h"
44 #include "llvm/ADT/SmallString.h"
45 #include "llvm/ADT/Triple.h"
46 #include <algorithm>
47 #include <cstring>
48 #include <functional>
49 
50 using namespace clang;
51 using namespace sema;
52 
53 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
54   if (OwnedType) {
55     Decl *Group[2] = { OwnedType, Ptr };
56     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
57   }
58 
59   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
60 }
61 
62 namespace {
63 
64 class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
65  public:
66    TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
67                         bool AllowTemplates = false,
68                         bool AllowNonTemplates = true)
69        : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
70          AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
71      WantExpressionKeywords = false;
72      WantCXXNamedCasts = false;
73      WantRemainingKeywords = false;
74   }
75 
76   bool ValidateCandidate(const TypoCorrection &candidate) override {
77     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
78       if (!AllowInvalidDecl && ND->isInvalidDecl())
79         return false;
80 
81       if (getAsTypeTemplateDecl(ND))
82         return AllowTemplates;
83 
84       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
85       if (!IsType)
86         return false;
87 
88       if (AllowNonTemplates)
89         return true;
90 
91       // An injected-class-name of a class template (specialization) is valid
92       // as a template or as a non-template.
93       if (AllowTemplates) {
94         auto *RD = dyn_cast<CXXRecordDecl>(ND);
95         if (!RD || !RD->isInjectedClassName())
96           return false;
97         RD = cast<CXXRecordDecl>(RD->getDeclContext());
98         return RD->getDescribedClassTemplate() ||
99                isa<ClassTemplateSpecializationDecl>(RD);
100       }
101 
102       return false;
103     }
104 
105     return !WantClassName && candidate.isKeyword();
106   }
107 
108   std::unique_ptr<CorrectionCandidateCallback> clone() override {
109     return llvm::make_unique<TypeNameValidatorCCC>(*this);
110   }
111 
112  private:
113   bool AllowInvalidDecl;
114   bool WantClassName;
115   bool AllowTemplates;
116   bool AllowNonTemplates;
117 };
118 
119 } // end anonymous namespace
120 
121 /// Determine whether the token kind starts a simple-type-specifier.
122 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
123   switch (Kind) {
124   // FIXME: Take into account the current language when deciding whether a
125   // token kind is a valid type specifier
126   case tok::kw_short:
127   case tok::kw_long:
128   case tok::kw___int64:
129   case tok::kw___int128:
130   case tok::kw_signed:
131   case tok::kw_unsigned:
132   case tok::kw_void:
133   case tok::kw_char:
134   case tok::kw_int:
135   case tok::kw_half:
136   case tok::kw_float:
137   case tok::kw_double:
138   case tok::kw__Float16:
139   case tok::kw___float128:
140   case tok::kw_wchar_t:
141   case tok::kw_bool:
142   case tok::kw___underlying_type:
143   case tok::kw___auto_type:
144     return true;
145 
146   case tok::annot_typename:
147   case tok::kw_char16_t:
148   case tok::kw_char32_t:
149   case tok::kw_typeof:
150   case tok::annot_decltype:
151   case tok::kw_decltype:
152     return getLangOpts().CPlusPlus;
153 
154   case tok::kw_char8_t:
155     return getLangOpts().Char8;
156 
157   default:
158     break;
159   }
160 
161   return false;
162 }
163 
164 namespace {
165 enum class UnqualifiedTypeNameLookupResult {
166   NotFound,
167   FoundNonType,
168   FoundType
169 };
170 } // end anonymous namespace
171 
172 /// Tries to perform unqualified lookup of the type decls in bases for
173 /// dependent class.
174 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
175 /// type decl, \a FoundType if only type decls are found.
176 static UnqualifiedTypeNameLookupResult
177 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
178                                 SourceLocation NameLoc,
179                                 const CXXRecordDecl *RD) {
180   if (!RD->hasDefinition())
181     return UnqualifiedTypeNameLookupResult::NotFound;
182   // Look for type decls in base classes.
183   UnqualifiedTypeNameLookupResult FoundTypeDecl =
184       UnqualifiedTypeNameLookupResult::NotFound;
185   for (const auto &Base : RD->bases()) {
186     const CXXRecordDecl *BaseRD = nullptr;
187     if (auto *BaseTT = Base.getType()->getAs<TagType>())
188       BaseRD = BaseTT->getAsCXXRecordDecl();
189     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
190       // Look for type decls in dependent base classes that have known primary
191       // templates.
192       if (!TST || !TST->isDependentType())
193         continue;
194       auto *TD = TST->getTemplateName().getAsTemplateDecl();
195       if (!TD)
196         continue;
197       if (auto *BasePrimaryTemplate =
198           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
199         if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
200           BaseRD = BasePrimaryTemplate;
201         else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
202           if (const ClassTemplatePartialSpecializationDecl *PS =
203                   CTD->findPartialSpecialization(Base.getType()))
204             if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
205               BaseRD = PS;
206         }
207       }
208     }
209     if (BaseRD) {
210       for (NamedDecl *ND : BaseRD->lookup(&II)) {
211         if (!isa<TypeDecl>(ND))
212           return UnqualifiedTypeNameLookupResult::FoundNonType;
213         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
214       }
215       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
216         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
217         case UnqualifiedTypeNameLookupResult::FoundNonType:
218           return UnqualifiedTypeNameLookupResult::FoundNonType;
219         case UnqualifiedTypeNameLookupResult::FoundType:
220           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
221           break;
222         case UnqualifiedTypeNameLookupResult::NotFound:
223           break;
224         }
225       }
226     }
227   }
228 
229   return FoundTypeDecl;
230 }
231 
232 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
233                                                       const IdentifierInfo &II,
234                                                       SourceLocation NameLoc) {
235   // Lookup in the parent class template context, if any.
236   const CXXRecordDecl *RD = nullptr;
237   UnqualifiedTypeNameLookupResult FoundTypeDecl =
238       UnqualifiedTypeNameLookupResult::NotFound;
239   for (DeclContext *DC = S.CurContext;
240        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
241        DC = DC->getParent()) {
242     // Look for type decls in dependent base classes that have known primary
243     // templates.
244     RD = dyn_cast<CXXRecordDecl>(DC);
245     if (RD && RD->getDescribedClassTemplate())
246       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
247   }
248   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
249     return nullptr;
250 
251   // We found some types in dependent base classes.  Recover as if the user
252   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
253   // lookup during template instantiation.
254   S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
255 
256   ASTContext &Context = S.Context;
257   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
258                                           cast<Type>(Context.getRecordType(RD)));
259   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
260 
261   CXXScopeSpec SS;
262   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
263 
264   TypeLocBuilder Builder;
265   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
266   DepTL.setNameLoc(NameLoc);
267   DepTL.setElaboratedKeywordLoc(SourceLocation());
268   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
269   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
270 }
271 
272 /// If the identifier refers to a type name within this scope,
273 /// return the declaration of that type.
274 ///
275 /// This routine performs ordinary name lookup of the identifier II
276 /// within the given scope, with optional C++ scope specifier SS, to
277 /// determine whether the name refers to a type. If so, returns an
278 /// opaque pointer (actually a QualType) corresponding to that
279 /// type. Otherwise, returns NULL.
280 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
281                              Scope *S, CXXScopeSpec *SS,
282                              bool isClassName, bool HasTrailingDot,
283                              ParsedType ObjectTypePtr,
284                              bool IsCtorOrDtorName,
285                              bool WantNontrivialTypeSourceInfo,
286                              bool IsClassTemplateDeductionContext,
287                              IdentifierInfo **CorrectedII) {
288   // FIXME: Consider allowing this outside C++1z mode as an extension.
289   bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
290                               getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
291                               !isClassName && !HasTrailingDot;
292 
293   // Determine where we will perform name lookup.
294   DeclContext *LookupCtx = nullptr;
295   if (ObjectTypePtr) {
296     QualType ObjectType = ObjectTypePtr.get();
297     if (ObjectType->isRecordType())
298       LookupCtx = computeDeclContext(ObjectType);
299   } else if (SS && SS->isNotEmpty()) {
300     LookupCtx = computeDeclContext(*SS, false);
301 
302     if (!LookupCtx) {
303       if (isDependentScopeSpecifier(*SS)) {
304         // C++ [temp.res]p3:
305         //   A qualified-id that refers to a type and in which the
306         //   nested-name-specifier depends on a template-parameter (14.6.2)
307         //   shall be prefixed by the keyword typename to indicate that the
308         //   qualified-id denotes a type, forming an
309         //   elaborated-type-specifier (7.1.5.3).
310         //
311         // We therefore do not perform any name lookup if the result would
312         // refer to a member of an unknown specialization.
313         if (!isClassName && !IsCtorOrDtorName)
314           return nullptr;
315 
316         // We know from the grammar that this name refers to a type,
317         // so build a dependent node to describe the type.
318         if (WantNontrivialTypeSourceInfo)
319           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
320 
321         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
322         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
323                                        II, NameLoc);
324         return ParsedType::make(T);
325       }
326 
327       return nullptr;
328     }
329 
330     if (!LookupCtx->isDependentContext() &&
331         RequireCompleteDeclContext(*SS, LookupCtx))
332       return nullptr;
333   }
334 
335   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
336   // lookup for class-names.
337   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
338                                       LookupOrdinaryName;
339   LookupResult Result(*this, &II, NameLoc, Kind);
340   if (LookupCtx) {
341     // Perform "qualified" name lookup into the declaration context we
342     // computed, which is either the type of the base of a member access
343     // expression or the declaration context associated with a prior
344     // nested-name-specifier.
345     LookupQualifiedName(Result, LookupCtx);
346 
347     if (ObjectTypePtr && Result.empty()) {
348       // C++ [basic.lookup.classref]p3:
349       //   If the unqualified-id is ~type-name, the type-name is looked up
350       //   in the context of the entire postfix-expression. If the type T of
351       //   the object expression is of a class type C, the type-name is also
352       //   looked up in the scope of class C. At least one of the lookups shall
353       //   find a name that refers to (possibly cv-qualified) T.
354       LookupName(Result, S);
355     }
356   } else {
357     // Perform unqualified name lookup.
358     LookupName(Result, S);
359 
360     // For unqualified lookup in a class template in MSVC mode, look into
361     // dependent base classes where the primary class template is known.
362     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
363       if (ParsedType TypeInBase =
364               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
365         return TypeInBase;
366     }
367   }
368 
369   NamedDecl *IIDecl = nullptr;
370   switch (Result.getResultKind()) {
371   case LookupResult::NotFound:
372   case LookupResult::NotFoundInCurrentInstantiation:
373     if (CorrectedII) {
374       TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
375                                AllowDeducedTemplate);
376       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
377                                               S, SS, CCC, CTK_ErrorRecovery);
378       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
379       TemplateTy Template;
380       bool MemberOfUnknownSpecialization;
381       UnqualifiedId TemplateName;
382       TemplateName.setIdentifier(NewII, NameLoc);
383       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
384       CXXScopeSpec NewSS, *NewSSPtr = SS;
385       if (SS && NNS) {
386         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
387         NewSSPtr = &NewSS;
388       }
389       if (Correction && (NNS || NewII != &II) &&
390           // Ignore a correction to a template type as the to-be-corrected
391           // identifier is not a template (typo correction for template names
392           // is handled elsewhere).
393           !(getLangOpts().CPlusPlus && NewSSPtr &&
394             isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
395                            Template, MemberOfUnknownSpecialization))) {
396         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
397                                     isClassName, HasTrailingDot, ObjectTypePtr,
398                                     IsCtorOrDtorName,
399                                     WantNontrivialTypeSourceInfo,
400                                     IsClassTemplateDeductionContext);
401         if (Ty) {
402           diagnoseTypo(Correction,
403                        PDiag(diag::err_unknown_type_or_class_name_suggest)
404                          << Result.getLookupName() << isClassName);
405           if (SS && NNS)
406             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
407           *CorrectedII = NewII;
408           return Ty;
409         }
410       }
411     }
412     // If typo correction failed or was not performed, fall through
413     LLVM_FALLTHROUGH;
414   case LookupResult::FoundOverloaded:
415   case LookupResult::FoundUnresolvedValue:
416     Result.suppressDiagnostics();
417     return nullptr;
418 
419   case LookupResult::Ambiguous:
420     // Recover from type-hiding ambiguities by hiding the type.  We'll
421     // do the lookup again when looking for an object, and we can
422     // diagnose the error then.  If we don't do this, then the error
423     // about hiding the type will be immediately followed by an error
424     // that only makes sense if the identifier was treated like a type.
425     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
426       Result.suppressDiagnostics();
427       return nullptr;
428     }
429 
430     // Look to see if we have a type anywhere in the list of results.
431     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
432          Res != ResEnd; ++Res) {
433       if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
434           (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
435         if (!IIDecl ||
436             (*Res)->getLocation().getRawEncoding() <
437               IIDecl->getLocation().getRawEncoding())
438           IIDecl = *Res;
439       }
440     }
441 
442     if (!IIDecl) {
443       // None of the entities we found is a type, so there is no way
444       // to even assume that the result is a type. In this case, don't
445       // complain about the ambiguity. The parser will either try to
446       // perform this lookup again (e.g., as an object name), which
447       // will produce the ambiguity, or will complain that it expected
448       // a type name.
449       Result.suppressDiagnostics();
450       return nullptr;
451     }
452 
453     // We found a type within the ambiguous lookup; diagnose the
454     // ambiguity and then return that type. This might be the right
455     // answer, or it might not be, but it suppresses any attempt to
456     // perform the name lookup again.
457     break;
458 
459   case LookupResult::Found:
460     IIDecl = Result.getFoundDecl();
461     break;
462   }
463 
464   assert(IIDecl && "Didn't find decl");
465 
466   QualType T;
467   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
468     // C++ [class.qual]p2: A lookup that would find the injected-class-name
469     // instead names the constructors of the class, except when naming a class.
470     // This is ill-formed when we're not actually forming a ctor or dtor name.
471     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
472     auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
473     if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
474         FoundRD->isInjectedClassName() &&
475         declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
476       Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
477           << &II << /*Type*/1;
478 
479     DiagnoseUseOfDecl(IIDecl, NameLoc);
480 
481     T = Context.getTypeDeclType(TD);
482     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
483   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
484     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
485     if (!HasTrailingDot)
486       T = Context.getObjCInterfaceType(IDecl);
487   } else if (AllowDeducedTemplate) {
488     if (auto *TD = getAsTypeTemplateDecl(IIDecl))
489       T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
490                                                        QualType(), false);
491   }
492 
493   if (T.isNull()) {
494     // If it's not plausibly a type, suppress diagnostics.
495     Result.suppressDiagnostics();
496     return nullptr;
497   }
498 
499   // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
500   // constructor or destructor name (in such a case, the scope specifier
501   // will be attached to the enclosing Expr or Decl node).
502   if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
503       !isa<ObjCInterfaceDecl>(IIDecl)) {
504     if (WantNontrivialTypeSourceInfo) {
505       // Construct a type with type-source information.
506       TypeLocBuilder Builder;
507       Builder.pushTypeSpec(T).setNameLoc(NameLoc);
508 
509       T = getElaboratedType(ETK_None, *SS, T);
510       ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
511       ElabTL.setElaboratedKeywordLoc(SourceLocation());
512       ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
513       return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
514     } else {
515       T = getElaboratedType(ETK_None, *SS, T);
516     }
517   }
518 
519   return ParsedType::make(T);
520 }
521 
522 // Builds a fake NNS for the given decl context.
523 static NestedNameSpecifier *
524 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
525   for (;; DC = DC->getLookupParent()) {
526     DC = DC->getPrimaryContext();
527     auto *ND = dyn_cast<NamespaceDecl>(DC);
528     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
529       return NestedNameSpecifier::Create(Context, nullptr, ND);
530     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
531       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
532                                          RD->getTypeForDecl());
533     else if (isa<TranslationUnitDecl>(DC))
534       return NestedNameSpecifier::GlobalSpecifier(Context);
535   }
536   llvm_unreachable("something isn't in TU scope?");
537 }
538 
539 /// Find the parent class with dependent bases of the innermost enclosing method
540 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
541 /// up allowing unqualified dependent type names at class-level, which MSVC
542 /// correctly rejects.
543 static const CXXRecordDecl *
544 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
545   for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
546     DC = DC->getPrimaryContext();
547     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
548       if (MD->getParent()->hasAnyDependentBases())
549         return MD->getParent();
550   }
551   return nullptr;
552 }
553 
554 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
555                                           SourceLocation NameLoc,
556                                           bool IsTemplateTypeArg) {
557   assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
558 
559   NestedNameSpecifier *NNS = nullptr;
560   if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
561     // If we weren't able to parse a default template argument, delay lookup
562     // until instantiation time by making a non-dependent DependentTypeName. We
563     // pretend we saw a NestedNameSpecifier referring to the current scope, and
564     // lookup is retried.
565     // FIXME: This hurts our diagnostic quality, since we get errors like "no
566     // type named 'Foo' in 'current_namespace'" when the user didn't write any
567     // name specifiers.
568     NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
569     Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
570   } else if (const CXXRecordDecl *RD =
571                  findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
572     // Build a DependentNameType that will perform lookup into RD at
573     // instantiation time.
574     NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
575                                       RD->getTypeForDecl());
576 
577     // Diagnose that this identifier was undeclared, and retry the lookup during
578     // template instantiation.
579     Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
580                                                                       << RD;
581   } else {
582     // This is not a situation that we should recover from.
583     return ParsedType();
584   }
585 
586   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
587 
588   // Build type location information.  We synthesized the qualifier, so we have
589   // to build a fake NestedNameSpecifierLoc.
590   NestedNameSpecifierLocBuilder NNSLocBuilder;
591   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
592   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
593 
594   TypeLocBuilder Builder;
595   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
596   DepTL.setNameLoc(NameLoc);
597   DepTL.setElaboratedKeywordLoc(SourceLocation());
598   DepTL.setQualifierLoc(QualifierLoc);
599   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
600 }
601 
602 /// isTagName() - This method is called *for error recovery purposes only*
603 /// to determine if the specified name is a valid tag name ("struct foo").  If
604 /// so, this returns the TST for the tag corresponding to it (TST_enum,
605 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
606 /// cases in C where the user forgot to specify the tag.
607 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
608   // Do a tag name lookup in this scope.
609   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
610   LookupName(R, S, false);
611   R.suppressDiagnostics();
612   if (R.getResultKind() == LookupResult::Found)
613     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
614       switch (TD->getTagKind()) {
615       case TTK_Struct: return DeclSpec::TST_struct;
616       case TTK_Interface: return DeclSpec::TST_interface;
617       case TTK_Union:  return DeclSpec::TST_union;
618       case TTK_Class:  return DeclSpec::TST_class;
619       case TTK_Enum:   return DeclSpec::TST_enum;
620       }
621     }
622 
623   return DeclSpec::TST_unspecified;
624 }
625 
626 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
627 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
628 /// then downgrade the missing typename error to a warning.
629 /// This is needed for MSVC compatibility; Example:
630 /// @code
631 /// template<class T> class A {
632 /// public:
633 ///   typedef int TYPE;
634 /// };
635 /// template<class T> class B : public A<T> {
636 /// public:
637 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
638 /// };
639 /// @endcode
640 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
641   if (CurContext->isRecord()) {
642     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
643       return true;
644 
645     const Type *Ty = SS->getScopeRep()->getAsType();
646 
647     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
648     for (const auto &Base : RD->bases())
649       if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
650         return true;
651     return S->isFunctionPrototypeScope();
652   }
653   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
654 }
655 
656 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
657                                    SourceLocation IILoc,
658                                    Scope *S,
659                                    CXXScopeSpec *SS,
660                                    ParsedType &SuggestedType,
661                                    bool IsTemplateName) {
662   // Don't report typename errors for editor placeholders.
663   if (II->isEditorPlaceholder())
664     return;
665   // We don't have anything to suggest (yet).
666   SuggestedType = nullptr;
667 
668   // There may have been a typo in the name of the type. Look up typo
669   // results, in case we have something that we can suggest.
670   TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
671                            /*AllowTemplates=*/IsTemplateName,
672                            /*AllowNonTemplates=*/!IsTemplateName);
673   if (TypoCorrection Corrected =
674           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
675                       CCC, CTK_ErrorRecovery)) {
676     // FIXME: Support error recovery for the template-name case.
677     bool CanRecover = !IsTemplateName;
678     if (Corrected.isKeyword()) {
679       // We corrected to a keyword.
680       diagnoseTypo(Corrected,
681                    PDiag(IsTemplateName ? diag::err_no_template_suggest
682                                         : diag::err_unknown_typename_suggest)
683                        << II);
684       II = Corrected.getCorrectionAsIdentifierInfo();
685     } else {
686       // We found a similarly-named type or interface; suggest that.
687       if (!SS || !SS->isSet()) {
688         diagnoseTypo(Corrected,
689                      PDiag(IsTemplateName ? diag::err_no_template_suggest
690                                           : diag::err_unknown_typename_suggest)
691                          << II, CanRecover);
692       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
693         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
694         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
695                                 II->getName().equals(CorrectedStr);
696         diagnoseTypo(Corrected,
697                      PDiag(IsTemplateName
698                                ? diag::err_no_member_template_suggest
699                                : diag::err_unknown_nested_typename_suggest)
700                          << II << DC << DroppedSpecifier << SS->getRange(),
701                      CanRecover);
702       } else {
703         llvm_unreachable("could not have corrected a typo here");
704       }
705 
706       if (!CanRecover)
707         return;
708 
709       CXXScopeSpec tmpSS;
710       if (Corrected.getCorrectionSpecifier())
711         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
712                           SourceRange(IILoc));
713       // FIXME: Support class template argument deduction here.
714       SuggestedType =
715           getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
716                       tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
717                       /*IsCtorOrDtorName=*/false,
718                       /*NonTrivialTypeSourceInfo=*/true);
719     }
720     return;
721   }
722 
723   if (getLangOpts().CPlusPlus && !IsTemplateName) {
724     // See if II is a class template that the user forgot to pass arguments to.
725     UnqualifiedId Name;
726     Name.setIdentifier(II, IILoc);
727     CXXScopeSpec EmptySS;
728     TemplateTy TemplateResult;
729     bool MemberOfUnknownSpecialization;
730     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
731                        Name, nullptr, true, TemplateResult,
732                        MemberOfUnknownSpecialization) == TNK_Type_template) {
733       diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
734       return;
735     }
736   }
737 
738   // FIXME: Should we move the logic that tries to recover from a missing tag
739   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
740 
741   if (!SS || (!SS->isSet() && !SS->isInvalid()))
742     Diag(IILoc, IsTemplateName ? diag::err_no_template
743                                : diag::err_unknown_typename)
744         << II;
745   else if (DeclContext *DC = computeDeclContext(*SS, false))
746     Diag(IILoc, IsTemplateName ? diag::err_no_member_template
747                                : diag::err_typename_nested_not_found)
748         << II << DC << SS->getRange();
749   else if (isDependentScopeSpecifier(*SS)) {
750     unsigned DiagID = diag::err_typename_missing;
751     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
752       DiagID = diag::ext_typename_missing;
753 
754     Diag(SS->getRange().getBegin(), DiagID)
755       << SS->getScopeRep() << II->getName()
756       << SourceRange(SS->getRange().getBegin(), IILoc)
757       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
758     SuggestedType = ActOnTypenameType(S, SourceLocation(),
759                                       *SS, *II, IILoc).get();
760   } else {
761     assert(SS && SS->isInvalid() &&
762            "Invalid scope specifier has already been diagnosed");
763   }
764 }
765 
766 /// Determine whether the given result set contains either a type name
767 /// or
768 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
769   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
770                        NextToken.is(tok::less);
771 
772   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
773     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
774       return true;
775 
776     if (CheckTemplate && isa<TemplateDecl>(*I))
777       return true;
778   }
779 
780   return false;
781 }
782 
783 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
784                                     Scope *S, CXXScopeSpec &SS,
785                                     IdentifierInfo *&Name,
786                                     SourceLocation NameLoc) {
787   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
788   SemaRef.LookupParsedName(R, S, &SS);
789   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
790     StringRef FixItTagName;
791     switch (Tag->getTagKind()) {
792       case TTK_Class:
793         FixItTagName = "class ";
794         break;
795 
796       case TTK_Enum:
797         FixItTagName = "enum ";
798         break;
799 
800       case TTK_Struct:
801         FixItTagName = "struct ";
802         break;
803 
804       case TTK_Interface:
805         FixItTagName = "__interface ";
806         break;
807 
808       case TTK_Union:
809         FixItTagName = "union ";
810         break;
811     }
812 
813     StringRef TagName = FixItTagName.drop_back();
814     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
815       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
816       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
817 
818     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
819          I != IEnd; ++I)
820       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
821         << Name << TagName;
822 
823     // Replace lookup results with just the tag decl.
824     Result.clear(Sema::LookupTagName);
825     SemaRef.LookupParsedName(Result, S, &SS);
826     return true;
827   }
828 
829   return false;
830 }
831 
832 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
833 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
834                                   QualType T, SourceLocation NameLoc) {
835   ASTContext &Context = S.Context;
836 
837   TypeLocBuilder Builder;
838   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
839 
840   T = S.getElaboratedType(ETK_None, SS, T);
841   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
842   ElabTL.setElaboratedKeywordLoc(SourceLocation());
843   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
844   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
845 }
846 
847 Sema::NameClassification
848 Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
849                    SourceLocation NameLoc, const Token &NextToken,
850                    bool IsAddressOfOperand, CorrectionCandidateCallback *CCC) {
851   DeclarationNameInfo NameInfo(Name, NameLoc);
852   ObjCMethodDecl *CurMethod = getCurMethodDecl();
853 
854   if (NextToken.is(tok::coloncolon)) {
855     NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation());
856     BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false);
857   } else if (getLangOpts().CPlusPlus && SS.isSet() &&
858              isCurrentClassName(*Name, S, &SS)) {
859     // Per [class.qual]p2, this names the constructors of SS, not the
860     // injected-class-name. We don't have a classification for that.
861     // There's not much point caching this result, since the parser
862     // will reject it later.
863     return NameClassification::Unknown();
864   }
865 
866   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
867   LookupParsedName(Result, S, &SS, !CurMethod);
868 
869   // For unqualified lookup in a class template in MSVC mode, look into
870   // dependent base classes where the primary class template is known.
871   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
872     if (ParsedType TypeInBase =
873             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
874       return TypeInBase;
875   }
876 
877   // Perform lookup for Objective-C instance variables (including automatically
878   // synthesized instance variables), if we're in an Objective-C method.
879   // FIXME: This lookup really, really needs to be folded in to the normal
880   // unqualified lookup mechanism.
881   if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
882     ExprResult E = LookupInObjCMethod(Result, S, Name, true);
883     if (E.get() || E.isInvalid())
884       return E;
885   }
886 
887   bool SecondTry = false;
888   bool IsFilteredTemplateName = false;
889 
890 Corrected:
891   switch (Result.getResultKind()) {
892   case LookupResult::NotFound:
893     // If an unqualified-id is followed by a '(', then we have a function
894     // call.
895     if (!SS.isSet() && NextToken.is(tok::l_paren)) {
896       // In C++, this is an ADL-only call.
897       // FIXME: Reference?
898       if (getLangOpts().CPlusPlus)
899         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
900 
901       // C90 6.3.2.2:
902       //   If the expression that precedes the parenthesized argument list in a
903       //   function call consists solely of an identifier, and if no
904       //   declaration is visible for this identifier, the identifier is
905       //   implicitly declared exactly as if, in the innermost block containing
906       //   the function call, the declaration
907       //
908       //     extern int identifier ();
909       //
910       //   appeared.
911       //
912       // We also allow this in C99 as an extension.
913       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
914         Result.addDecl(D);
915         Result.resolveKind();
916         return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
917       }
918     }
919 
920     if (getLangOpts().CPlusPlus2a && !SS.isSet() && NextToken.is(tok::less)) {
921       // In C++20 onwards, this could be an ADL-only call to a function
922       // template, and we're required to assume that this is a template name.
923       //
924       // FIXME: Find a way to still do typo correction in this case.
925       TemplateName Template =
926           Context.getAssumedTemplateName(NameInfo.getName());
927       return NameClassification::UndeclaredTemplate(Template);
928     }
929 
930     // In C, we first see whether there is a tag type by the same name, in
931     // which case it's likely that the user just forgot to write "enum",
932     // "struct", or "union".
933     if (!getLangOpts().CPlusPlus && !SecondTry &&
934         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
935       break;
936     }
937 
938     // Perform typo correction to determine if there is another name that is
939     // close to this name.
940     if (!SecondTry && CCC) {
941       SecondTry = true;
942       if (TypoCorrection Corrected =
943               CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
944                           &SS, *CCC, CTK_ErrorRecovery)) {
945         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
946         unsigned QualifiedDiag = diag::err_no_member_suggest;
947 
948         NamedDecl *FirstDecl = Corrected.getFoundDecl();
949         NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
950         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
951             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
952           UnqualifiedDiag = diag::err_no_template_suggest;
953           QualifiedDiag = diag::err_no_member_template_suggest;
954         } else if (UnderlyingFirstDecl &&
955                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
956                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
957                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
958           UnqualifiedDiag = diag::err_unknown_typename_suggest;
959           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
960         }
961 
962         if (SS.isEmpty()) {
963           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
964         } else {// FIXME: is this even reachable? Test it.
965           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
966           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
967                                   Name->getName().equals(CorrectedStr);
968           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
969                                     << Name << computeDeclContext(SS, false)
970                                     << DroppedSpecifier << SS.getRange());
971         }
972 
973         // Update the name, so that the caller has the new name.
974         Name = Corrected.getCorrectionAsIdentifierInfo();
975 
976         // Typo correction corrected to a keyword.
977         if (Corrected.isKeyword())
978           return Name;
979 
980         // Also update the LookupResult...
981         // FIXME: This should probably go away at some point
982         Result.clear();
983         Result.setLookupName(Corrected.getCorrection());
984         if (FirstDecl)
985           Result.addDecl(FirstDecl);
986 
987         // If we found an Objective-C instance variable, let
988         // LookupInObjCMethod build the appropriate expression to
989         // reference the ivar.
990         // FIXME: This is a gross hack.
991         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
992           Result.clear();
993           ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
994           return E;
995         }
996 
997         goto Corrected;
998       }
999     }
1000 
1001     // We failed to correct; just fall through and let the parser deal with it.
1002     Result.suppressDiagnostics();
1003     return NameClassification::Unknown();
1004 
1005   case LookupResult::NotFoundInCurrentInstantiation: {
1006     // We performed name lookup into the current instantiation, and there were
1007     // dependent bases, so we treat this result the same way as any other
1008     // dependent nested-name-specifier.
1009 
1010     // C++ [temp.res]p2:
1011     //   A name used in a template declaration or definition and that is
1012     //   dependent on a template-parameter is assumed not to name a type
1013     //   unless the applicable name lookup finds a type name or the name is
1014     //   qualified by the keyword typename.
1015     //
1016     // FIXME: If the next token is '<', we might want to ask the parser to
1017     // perform some heroics to see if we actually have a
1018     // template-argument-list, which would indicate a missing 'template'
1019     // keyword here.
1020     return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1021                                       NameInfo, IsAddressOfOperand,
1022                                       /*TemplateArgs=*/nullptr);
1023   }
1024 
1025   case LookupResult::Found:
1026   case LookupResult::FoundOverloaded:
1027   case LookupResult::FoundUnresolvedValue:
1028     break;
1029 
1030   case LookupResult::Ambiguous:
1031     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1032         hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1033                                       /*AllowDependent=*/false)) {
1034       // C++ [temp.local]p3:
1035       //   A lookup that finds an injected-class-name (10.2) can result in an
1036       //   ambiguity in certain cases (for example, if it is found in more than
1037       //   one base class). If all of the injected-class-names that are found
1038       //   refer to specializations of the same class template, and if the name
1039       //   is followed by a template-argument-list, the reference refers to the
1040       //   class template itself and not a specialization thereof, and is not
1041       //   ambiguous.
1042       //
1043       // This filtering can make an ambiguous result into an unambiguous one,
1044       // so try again after filtering out template names.
1045       FilterAcceptableTemplateNames(Result);
1046       if (!Result.isAmbiguous()) {
1047         IsFilteredTemplateName = true;
1048         break;
1049       }
1050     }
1051 
1052     // Diagnose the ambiguity and return an error.
1053     return NameClassification::Error();
1054   }
1055 
1056   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1057       (IsFilteredTemplateName ||
1058        hasAnyAcceptableTemplateNames(
1059            Result, /*AllowFunctionTemplates=*/true,
1060            /*AllowDependent=*/false,
1061            /*AllowNonTemplateFunctions*/ !SS.isSet() &&
1062                getLangOpts().CPlusPlus2a))) {
1063     // C++ [temp.names]p3:
1064     //   After name lookup (3.4) finds that a name is a template-name or that
1065     //   an operator-function-id or a literal- operator-id refers to a set of
1066     //   overloaded functions any member of which is a function template if
1067     //   this is followed by a <, the < is always taken as the delimiter of a
1068     //   template-argument-list and never as the less-than operator.
1069     // C++2a [temp.names]p2:
1070     //   A name is also considered to refer to a template if it is an
1071     //   unqualified-id followed by a < and name lookup finds either one
1072     //   or more functions or finds nothing.
1073     if (!IsFilteredTemplateName)
1074       FilterAcceptableTemplateNames(Result);
1075 
1076     bool IsFunctionTemplate;
1077     bool IsVarTemplate;
1078     TemplateName Template;
1079     if (Result.end() - Result.begin() > 1) {
1080       IsFunctionTemplate = true;
1081       Template = Context.getOverloadedTemplateName(Result.begin(),
1082                                                    Result.end());
1083     } else if (!Result.empty()) {
1084       auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1085           *Result.begin(), /*AllowFunctionTemplates=*/true,
1086           /*AllowDependent=*/false));
1087       IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1088       IsVarTemplate = isa<VarTemplateDecl>(TD);
1089 
1090       if (SS.isSet() && !SS.isInvalid())
1091         Template =
1092             Context.getQualifiedTemplateName(SS.getScopeRep(),
1093                                              /*TemplateKeyword=*/false, TD);
1094       else
1095         Template = TemplateName(TD);
1096     } else {
1097       // All results were non-template functions. This is a function template
1098       // name.
1099       IsFunctionTemplate = true;
1100       Template = Context.getAssumedTemplateName(NameInfo.getName());
1101     }
1102 
1103     if (IsFunctionTemplate) {
1104       // Function templates always go through overload resolution, at which
1105       // point we'll perform the various checks (e.g., accessibility) we need
1106       // to based on which function we selected.
1107       Result.suppressDiagnostics();
1108 
1109       return NameClassification::FunctionTemplate(Template);
1110     }
1111 
1112     return IsVarTemplate ? NameClassification::VarTemplate(Template)
1113                          : NameClassification::TypeTemplate(Template);
1114   }
1115 
1116   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1117   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1118     DiagnoseUseOfDecl(Type, NameLoc);
1119     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1120     QualType T = Context.getTypeDeclType(Type);
1121     if (SS.isNotEmpty())
1122       return buildNestedType(*this, SS, T, NameLoc);
1123     return ParsedType::make(T);
1124   }
1125 
1126   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1127   if (!Class) {
1128     // FIXME: It's unfortunate that we don't have a Type node for handling this.
1129     if (ObjCCompatibleAliasDecl *Alias =
1130             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1131       Class = Alias->getClassInterface();
1132   }
1133 
1134   if (Class) {
1135     DiagnoseUseOfDecl(Class, NameLoc);
1136 
1137     if (NextToken.is(tok::period)) {
1138       // Interface. <something> is parsed as a property reference expression.
1139       // Just return "unknown" as a fall-through for now.
1140       Result.suppressDiagnostics();
1141       return NameClassification::Unknown();
1142     }
1143 
1144     QualType T = Context.getObjCInterfaceType(Class);
1145     return ParsedType::make(T);
1146   }
1147 
1148   // We can have a type template here if we're classifying a template argument.
1149   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1150       !isa<VarTemplateDecl>(FirstDecl))
1151     return NameClassification::TypeTemplate(
1152         TemplateName(cast<TemplateDecl>(FirstDecl)));
1153 
1154   // Check for a tag type hidden by a non-type decl in a few cases where it
1155   // seems likely a type is wanted instead of the non-type that was found.
1156   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1157   if ((NextToken.is(tok::identifier) ||
1158        (NextIsOp &&
1159         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1160       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1161     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1162     DiagnoseUseOfDecl(Type, NameLoc);
1163     QualType T = Context.getTypeDeclType(Type);
1164     if (SS.isNotEmpty())
1165       return buildNestedType(*this, SS, T, NameLoc);
1166     return ParsedType::make(T);
1167   }
1168 
1169   if (FirstDecl->isCXXClassMember())
1170     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1171                                            nullptr, S);
1172 
1173   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1174   return BuildDeclarationNameExpr(SS, Result, ADL);
1175 }
1176 
1177 Sema::TemplateNameKindForDiagnostics
1178 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1179   auto *TD = Name.getAsTemplateDecl();
1180   if (!TD)
1181     return TemplateNameKindForDiagnostics::DependentTemplate;
1182   if (isa<ClassTemplateDecl>(TD))
1183     return TemplateNameKindForDiagnostics::ClassTemplate;
1184   if (isa<FunctionTemplateDecl>(TD))
1185     return TemplateNameKindForDiagnostics::FunctionTemplate;
1186   if (isa<VarTemplateDecl>(TD))
1187     return TemplateNameKindForDiagnostics::VarTemplate;
1188   if (isa<TypeAliasTemplateDecl>(TD))
1189     return TemplateNameKindForDiagnostics::AliasTemplate;
1190   if (isa<TemplateTemplateParmDecl>(TD))
1191     return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1192   return TemplateNameKindForDiagnostics::DependentTemplate;
1193 }
1194 
1195 // Determines the context to return to after temporarily entering a
1196 // context.  This depends in an unnecessarily complicated way on the
1197 // exact ordering of callbacks from the parser.
1198 DeclContext *Sema::getContainingDC(DeclContext *DC) {
1199 
1200   // Functions defined inline within classes aren't parsed until we've
1201   // finished parsing the top-level class, so the top-level class is
1202   // the context we'll need to return to.
1203   // A Lambda call operator whose parent is a class must not be treated
1204   // as an inline member function.  A Lambda can be used legally
1205   // either as an in-class member initializer or a default argument.  These
1206   // are parsed once the class has been marked complete and so the containing
1207   // context would be the nested class (when the lambda is defined in one);
1208   // If the class is not complete, then the lambda is being used in an
1209   // ill-formed fashion (such as to specify the width of a bit-field, or
1210   // in an array-bound) - in which case we still want to return the
1211   // lexically containing DC (which could be a nested class).
1212   if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1213     DC = DC->getLexicalParent();
1214 
1215     // A function not defined within a class will always return to its
1216     // lexical context.
1217     if (!isa<CXXRecordDecl>(DC))
1218       return DC;
1219 
1220     // A C++ inline method/friend is parsed *after* the topmost class
1221     // it was declared in is fully parsed ("complete");  the topmost
1222     // class is the context we need to return to.
1223     while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1224       DC = RD;
1225 
1226     // Return the declaration context of the topmost class the inline method is
1227     // declared in.
1228     return DC;
1229   }
1230 
1231   return DC->getLexicalParent();
1232 }
1233 
1234 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1235   assert(getContainingDC(DC) == CurContext &&
1236       "The next DeclContext should be lexically contained in the current one.");
1237   CurContext = DC;
1238   S->setEntity(DC);
1239 }
1240 
1241 void Sema::PopDeclContext() {
1242   assert(CurContext && "DeclContext imbalance!");
1243 
1244   CurContext = getContainingDC(CurContext);
1245   assert(CurContext && "Popped translation unit!");
1246 }
1247 
1248 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1249                                                                     Decl *D) {
1250   // Unlike PushDeclContext, the context to which we return is not necessarily
1251   // the containing DC of TD, because the new context will be some pre-existing
1252   // TagDecl definition instead of a fresh one.
1253   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1254   CurContext = cast<TagDecl>(D)->getDefinition();
1255   assert(CurContext && "skipping definition of undefined tag");
1256   // Start lookups from the parent of the current context; we don't want to look
1257   // into the pre-existing complete definition.
1258   S->setEntity(CurContext->getLookupParent());
1259   return Result;
1260 }
1261 
1262 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1263   CurContext = static_cast<decltype(CurContext)>(Context);
1264 }
1265 
1266 /// EnterDeclaratorContext - Used when we must lookup names in the context
1267 /// of a declarator's nested name specifier.
1268 ///
1269 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1270   // C++0x [basic.lookup.unqual]p13:
1271   //   A name used in the definition of a static data member of class
1272   //   X (after the qualified-id of the static member) is looked up as
1273   //   if the name was used in a member function of X.
1274   // C++0x [basic.lookup.unqual]p14:
1275   //   If a variable member of a namespace is defined outside of the
1276   //   scope of its namespace then any name used in the definition of
1277   //   the variable member (after the declarator-id) is looked up as
1278   //   if the definition of the variable member occurred in its
1279   //   namespace.
1280   // Both of these imply that we should push a scope whose context
1281   // is the semantic context of the declaration.  We can't use
1282   // PushDeclContext here because that context is not necessarily
1283   // lexically contained in the current context.  Fortunately,
1284   // the containing scope should have the appropriate information.
1285 
1286   assert(!S->getEntity() && "scope already has entity");
1287 
1288 #ifndef NDEBUG
1289   Scope *Ancestor = S->getParent();
1290   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1291   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1292 #endif
1293 
1294   CurContext = DC;
1295   S->setEntity(DC);
1296 }
1297 
1298 void Sema::ExitDeclaratorContext(Scope *S) {
1299   assert(S->getEntity() == CurContext && "Context imbalance!");
1300 
1301   // Switch back to the lexical context.  The safety of this is
1302   // enforced by an assert in EnterDeclaratorContext.
1303   Scope *Ancestor = S->getParent();
1304   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1305   CurContext = Ancestor->getEntity();
1306 
1307   // We don't need to do anything with the scope, which is going to
1308   // disappear.
1309 }
1310 
1311 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1312   // We assume that the caller has already called
1313   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1314   FunctionDecl *FD = D->getAsFunction();
1315   if (!FD)
1316     return;
1317 
1318   // Same implementation as PushDeclContext, but enters the context
1319   // from the lexical parent, rather than the top-level class.
1320   assert(CurContext == FD->getLexicalParent() &&
1321     "The next DeclContext should be lexically contained in the current one.");
1322   CurContext = FD;
1323   S->setEntity(CurContext);
1324 
1325   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1326     ParmVarDecl *Param = FD->getParamDecl(P);
1327     // If the parameter has an identifier, then add it to the scope
1328     if (Param->getIdentifier()) {
1329       S->AddDecl(Param);
1330       IdResolver.AddDecl(Param);
1331     }
1332   }
1333 }
1334 
1335 void Sema::ActOnExitFunctionContext() {
1336   // Same implementation as PopDeclContext, but returns to the lexical parent,
1337   // rather than the top-level class.
1338   assert(CurContext && "DeclContext imbalance!");
1339   CurContext = CurContext->getLexicalParent();
1340   assert(CurContext && "Popped translation unit!");
1341 }
1342 
1343 /// Determine whether we allow overloading of the function
1344 /// PrevDecl with another declaration.
1345 ///
1346 /// This routine determines whether overloading is possible, not
1347 /// whether some new function is actually an overload. It will return
1348 /// true in C++ (where we can always provide overloads) or, as an
1349 /// extension, in C when the previous function is already an
1350 /// overloaded function declaration or has the "overloadable"
1351 /// attribute.
1352 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1353                                        ASTContext &Context,
1354                                        const FunctionDecl *New) {
1355   if (Context.getLangOpts().CPlusPlus)
1356     return true;
1357 
1358   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1359     return true;
1360 
1361   return Previous.getResultKind() == LookupResult::Found &&
1362          (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1363           New->hasAttr<OverloadableAttr>());
1364 }
1365 
1366 /// Add this decl to the scope shadowed decl chains.
1367 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1368   // Move up the scope chain until we find the nearest enclosing
1369   // non-transparent context. The declaration will be introduced into this
1370   // scope.
1371   while (S->getEntity() && S->getEntity()->isTransparentContext())
1372     S = S->getParent();
1373 
1374   // Add scoped declarations into their context, so that they can be
1375   // found later. Declarations without a context won't be inserted
1376   // into any context.
1377   if (AddToContext)
1378     CurContext->addDecl(D);
1379 
1380   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1381   // are function-local declarations.
1382   if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1383       !D->getDeclContext()->getRedeclContext()->Equals(
1384         D->getLexicalDeclContext()->getRedeclContext()) &&
1385       !D->getLexicalDeclContext()->isFunctionOrMethod())
1386     return;
1387 
1388   // Template instantiations should also not be pushed into scope.
1389   if (isa<FunctionDecl>(D) &&
1390       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1391     return;
1392 
1393   // If this replaces anything in the current scope,
1394   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1395                                IEnd = IdResolver.end();
1396   for (; I != IEnd; ++I) {
1397     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1398       S->RemoveDecl(*I);
1399       IdResolver.RemoveDecl(*I);
1400 
1401       // Should only need to replace one decl.
1402       break;
1403     }
1404   }
1405 
1406   S->AddDecl(D);
1407 
1408   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1409     // Implicitly-generated labels may end up getting generated in an order that
1410     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1411     // the label at the appropriate place in the identifier chain.
1412     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1413       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1414       if (IDC == CurContext) {
1415         if (!S->isDeclScope(*I))
1416           continue;
1417       } else if (IDC->Encloses(CurContext))
1418         break;
1419     }
1420 
1421     IdResolver.InsertDeclAfter(I, D);
1422   } else {
1423     IdResolver.AddDecl(D);
1424   }
1425 }
1426 
1427 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1428                          bool AllowInlineNamespace) {
1429   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1430 }
1431 
1432 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1433   DeclContext *TargetDC = DC->getPrimaryContext();
1434   do {
1435     if (DeclContext *ScopeDC = S->getEntity())
1436       if (ScopeDC->getPrimaryContext() == TargetDC)
1437         return S;
1438   } while ((S = S->getParent()));
1439 
1440   return nullptr;
1441 }
1442 
1443 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1444                                             DeclContext*,
1445                                             ASTContext&);
1446 
1447 /// Filters out lookup results that don't fall within the given scope
1448 /// as determined by isDeclInScope.
1449 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1450                                 bool ConsiderLinkage,
1451                                 bool AllowInlineNamespace) {
1452   LookupResult::Filter F = R.makeFilter();
1453   while (F.hasNext()) {
1454     NamedDecl *D = F.next();
1455 
1456     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1457       continue;
1458 
1459     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1460       continue;
1461 
1462     F.erase();
1463   }
1464 
1465   F.done();
1466 }
1467 
1468 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1469 /// have compatible owning modules.
1470 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1471   // FIXME: The Modules TS is not clear about how friend declarations are
1472   // to be treated. It's not meaningful to have different owning modules for
1473   // linkage in redeclarations of the same entity, so for now allow the
1474   // redeclaration and change the owning modules to match.
1475   if (New->getFriendObjectKind() &&
1476       Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1477     New->setLocalOwningModule(Old->getOwningModule());
1478     makeMergedDefinitionVisible(New);
1479     return false;
1480   }
1481 
1482   Module *NewM = New->getOwningModule();
1483   Module *OldM = Old->getOwningModule();
1484 
1485   if (NewM && NewM->Kind == Module::PrivateModuleFragment)
1486     NewM = NewM->Parent;
1487   if (OldM && OldM->Kind == Module::PrivateModuleFragment)
1488     OldM = OldM->Parent;
1489 
1490   if (NewM == OldM)
1491     return false;
1492 
1493   bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1494   bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1495   if (NewIsModuleInterface || OldIsModuleInterface) {
1496     // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1497     //   if a declaration of D [...] appears in the purview of a module, all
1498     //   other such declarations shall appear in the purview of the same module
1499     Diag(New->getLocation(), diag::err_mismatched_owning_module)
1500       << New
1501       << NewIsModuleInterface
1502       << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1503       << OldIsModuleInterface
1504       << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1505     Diag(Old->getLocation(), diag::note_previous_declaration);
1506     New->setInvalidDecl();
1507     return true;
1508   }
1509 
1510   return false;
1511 }
1512 
1513 static bool isUsingDecl(NamedDecl *D) {
1514   return isa<UsingShadowDecl>(D) ||
1515          isa<UnresolvedUsingTypenameDecl>(D) ||
1516          isa<UnresolvedUsingValueDecl>(D);
1517 }
1518 
1519 /// Removes using shadow declarations from the lookup results.
1520 static void RemoveUsingDecls(LookupResult &R) {
1521   LookupResult::Filter F = R.makeFilter();
1522   while (F.hasNext())
1523     if (isUsingDecl(F.next()))
1524       F.erase();
1525 
1526   F.done();
1527 }
1528 
1529 /// Check for this common pattern:
1530 /// @code
1531 /// class S {
1532 ///   S(const S&); // DO NOT IMPLEMENT
1533 ///   void operator=(const S&); // DO NOT IMPLEMENT
1534 /// };
1535 /// @endcode
1536 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1537   // FIXME: Should check for private access too but access is set after we get
1538   // the decl here.
1539   if (D->doesThisDeclarationHaveABody())
1540     return false;
1541 
1542   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1543     return CD->isCopyConstructor();
1544   return D->isCopyAssignmentOperator();
1545 }
1546 
1547 // We need this to handle
1548 //
1549 // typedef struct {
1550 //   void *foo() { return 0; }
1551 // } A;
1552 //
1553 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1554 // for example. If 'A', foo will have external linkage. If we have '*A',
1555 // foo will have no linkage. Since we can't know until we get to the end
1556 // of the typedef, this function finds out if D might have non-external linkage.
1557 // Callers should verify at the end of the TU if it D has external linkage or
1558 // not.
1559 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1560   const DeclContext *DC = D->getDeclContext();
1561   while (!DC->isTranslationUnit()) {
1562     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1563       if (!RD->hasNameForLinkage())
1564         return true;
1565     }
1566     DC = DC->getParent();
1567   }
1568 
1569   return !D->isExternallyVisible();
1570 }
1571 
1572 // FIXME: This needs to be refactored; some other isInMainFile users want
1573 // these semantics.
1574 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1575   if (S.TUKind != TU_Complete)
1576     return false;
1577   return S.SourceMgr.isInMainFile(Loc);
1578 }
1579 
1580 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1581   assert(D);
1582 
1583   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1584     return false;
1585 
1586   // Ignore all entities declared within templates, and out-of-line definitions
1587   // of members of class templates.
1588   if (D->getDeclContext()->isDependentContext() ||
1589       D->getLexicalDeclContext()->isDependentContext())
1590     return false;
1591 
1592   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1593     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1594       return false;
1595     // A non-out-of-line declaration of a member specialization was implicitly
1596     // instantiated; it's the out-of-line declaration that we're interested in.
1597     if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1598         FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1599       return false;
1600 
1601     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1602       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1603         return false;
1604     } else {
1605       // 'static inline' functions are defined in headers; don't warn.
1606       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1607         return false;
1608     }
1609 
1610     if (FD->doesThisDeclarationHaveABody() &&
1611         Context.DeclMustBeEmitted(FD))
1612       return false;
1613   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1614     // Constants and utility variables are defined in headers with internal
1615     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1616     // like "inline".)
1617     if (!isMainFileLoc(*this, VD->getLocation()))
1618       return false;
1619 
1620     if (Context.DeclMustBeEmitted(VD))
1621       return false;
1622 
1623     if (VD->isStaticDataMember() &&
1624         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1625       return false;
1626     if (VD->isStaticDataMember() &&
1627         VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1628         VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1629       return false;
1630 
1631     if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1632       return false;
1633   } else {
1634     return false;
1635   }
1636 
1637   // Only warn for unused decls internal to the translation unit.
1638   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1639   // for inline functions defined in the main source file, for instance.
1640   return mightHaveNonExternalLinkage(D);
1641 }
1642 
1643 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1644   if (!D)
1645     return;
1646 
1647   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1648     const FunctionDecl *First = FD->getFirstDecl();
1649     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1650       return; // First should already be in the vector.
1651   }
1652 
1653   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1654     const VarDecl *First = VD->getFirstDecl();
1655     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1656       return; // First should already be in the vector.
1657   }
1658 
1659   if (ShouldWarnIfUnusedFileScopedDecl(D))
1660     UnusedFileScopedDecls.push_back(D);
1661 }
1662 
1663 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1664   if (D->isInvalidDecl())
1665     return false;
1666 
1667   bool Referenced = false;
1668   if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1669     // For a decomposition declaration, warn if none of the bindings are
1670     // referenced, instead of if the variable itself is referenced (which
1671     // it is, by the bindings' expressions).
1672     for (auto *BD : DD->bindings()) {
1673       if (BD->isReferenced()) {
1674         Referenced = true;
1675         break;
1676       }
1677     }
1678   } else if (!D->getDeclName()) {
1679     return false;
1680   } else if (D->isReferenced() || D->isUsed()) {
1681     Referenced = true;
1682   }
1683 
1684   if (Referenced || D->hasAttr<UnusedAttr>() ||
1685       D->hasAttr<ObjCPreciseLifetimeAttr>())
1686     return false;
1687 
1688   if (isa<LabelDecl>(D))
1689     return true;
1690 
1691   // Except for labels, we only care about unused decls that are local to
1692   // functions.
1693   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1694   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1695     // For dependent types, the diagnostic is deferred.
1696     WithinFunction =
1697         WithinFunction || (R->isLocalClass() && !R->isDependentType());
1698   if (!WithinFunction)
1699     return false;
1700 
1701   if (isa<TypedefNameDecl>(D))
1702     return true;
1703 
1704   // White-list anything that isn't a local variable.
1705   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1706     return false;
1707 
1708   // Types of valid local variables should be complete, so this should succeed.
1709   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1710 
1711     // White-list anything with an __attribute__((unused)) type.
1712     const auto *Ty = VD->getType().getTypePtr();
1713 
1714     // Only look at the outermost level of typedef.
1715     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1716       if (TT->getDecl()->hasAttr<UnusedAttr>())
1717         return false;
1718     }
1719 
1720     // If we failed to complete the type for some reason, or if the type is
1721     // dependent, don't diagnose the variable.
1722     if (Ty->isIncompleteType() || Ty->isDependentType())
1723       return false;
1724 
1725     // Look at the element type to ensure that the warning behaviour is
1726     // consistent for both scalars and arrays.
1727     Ty = Ty->getBaseElementTypeUnsafe();
1728 
1729     if (const TagType *TT = Ty->getAs<TagType>()) {
1730       const TagDecl *Tag = TT->getDecl();
1731       if (Tag->hasAttr<UnusedAttr>())
1732         return false;
1733 
1734       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1735         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1736           return false;
1737 
1738         if (const Expr *Init = VD->getInit()) {
1739           if (const ExprWithCleanups *Cleanups =
1740                   dyn_cast<ExprWithCleanups>(Init))
1741             Init = Cleanups->getSubExpr();
1742           const CXXConstructExpr *Construct =
1743             dyn_cast<CXXConstructExpr>(Init);
1744           if (Construct && !Construct->isElidable()) {
1745             CXXConstructorDecl *CD = Construct->getConstructor();
1746             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1747                 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1748               return false;
1749           }
1750         }
1751       }
1752     }
1753 
1754     // TODO: __attribute__((unused)) templates?
1755   }
1756 
1757   return true;
1758 }
1759 
1760 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1761                                      FixItHint &Hint) {
1762   if (isa<LabelDecl>(D)) {
1763     SourceLocation AfterColon = Lexer::findLocationAfterToken(
1764         D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1765         true);
1766     if (AfterColon.isInvalid())
1767       return;
1768     Hint = FixItHint::CreateRemoval(
1769         CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1770   }
1771 }
1772 
1773 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1774   if (D->getTypeForDecl()->isDependentType())
1775     return;
1776 
1777   for (auto *TmpD : D->decls()) {
1778     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1779       DiagnoseUnusedDecl(T);
1780     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1781       DiagnoseUnusedNestedTypedefs(R);
1782   }
1783 }
1784 
1785 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1786 /// unless they are marked attr(unused).
1787 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1788   if (!ShouldDiagnoseUnusedDecl(D))
1789     return;
1790 
1791   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1792     // typedefs can be referenced later on, so the diagnostics are emitted
1793     // at end-of-translation-unit.
1794     UnusedLocalTypedefNameCandidates.insert(TD);
1795     return;
1796   }
1797 
1798   FixItHint Hint;
1799   GenerateFixForUnusedDecl(D, Context, Hint);
1800 
1801   unsigned DiagID;
1802   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1803     DiagID = diag::warn_unused_exception_param;
1804   else if (isa<LabelDecl>(D))
1805     DiagID = diag::warn_unused_label;
1806   else
1807     DiagID = diag::warn_unused_variable;
1808 
1809   Diag(D->getLocation(), DiagID) << D << Hint;
1810 }
1811 
1812 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1813   // Verify that we have no forward references left.  If so, there was a goto
1814   // or address of a label taken, but no definition of it.  Label fwd
1815   // definitions are indicated with a null substmt which is also not a resolved
1816   // MS inline assembly label name.
1817   bool Diagnose = false;
1818   if (L->isMSAsmLabel())
1819     Diagnose = !L->isResolvedMSAsmLabel();
1820   else
1821     Diagnose = L->getStmt() == nullptr;
1822   if (Diagnose)
1823     S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1824 }
1825 
1826 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1827   S->mergeNRVOIntoParent();
1828 
1829   if (S->decl_empty()) return;
1830   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1831          "Scope shouldn't contain decls!");
1832 
1833   for (auto *TmpD : S->decls()) {
1834     assert(TmpD && "This decl didn't get pushed??");
1835 
1836     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1837     NamedDecl *D = cast<NamedDecl>(TmpD);
1838 
1839     // Diagnose unused variables in this scope.
1840     if (!S->hasUnrecoverableErrorOccurred()) {
1841       DiagnoseUnusedDecl(D);
1842       if (const auto *RD = dyn_cast<RecordDecl>(D))
1843         DiagnoseUnusedNestedTypedefs(RD);
1844     }
1845 
1846     if (!D->getDeclName()) continue;
1847 
1848     // If this was a forward reference to a label, verify it was defined.
1849     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1850       CheckPoppedLabel(LD, *this);
1851 
1852     // Remove this name from our lexical scope, and warn on it if we haven't
1853     // already.
1854     IdResolver.RemoveDecl(D);
1855     auto ShadowI = ShadowingDecls.find(D);
1856     if (ShadowI != ShadowingDecls.end()) {
1857       if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1858         Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1859             << D << FD << FD->getParent();
1860         Diag(FD->getLocation(), diag::note_previous_declaration);
1861       }
1862       ShadowingDecls.erase(ShadowI);
1863     }
1864   }
1865 }
1866 
1867 /// Look for an Objective-C class in the translation unit.
1868 ///
1869 /// \param Id The name of the Objective-C class we're looking for. If
1870 /// typo-correction fixes this name, the Id will be updated
1871 /// to the fixed name.
1872 ///
1873 /// \param IdLoc The location of the name in the translation unit.
1874 ///
1875 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1876 /// if there is no class with the given name.
1877 ///
1878 /// \returns The declaration of the named Objective-C class, or NULL if the
1879 /// class could not be found.
1880 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1881                                               SourceLocation IdLoc,
1882                                               bool DoTypoCorrection) {
1883   // The third "scope" argument is 0 since we aren't enabling lazy built-in
1884   // creation from this context.
1885   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1886 
1887   if (!IDecl && DoTypoCorrection) {
1888     // Perform typo correction at the given location, but only if we
1889     // find an Objective-C class name.
1890     DeclFilterCCC<ObjCInterfaceDecl> CCC{};
1891     if (TypoCorrection C =
1892             CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1893                         TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
1894       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1895       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1896       Id = IDecl->getIdentifier();
1897     }
1898   }
1899   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1900   // This routine must always return a class definition, if any.
1901   if (Def && Def->getDefinition())
1902       Def = Def->getDefinition();
1903   return Def;
1904 }
1905 
1906 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1907 /// from S, where a non-field would be declared. This routine copes
1908 /// with the difference between C and C++ scoping rules in structs and
1909 /// unions. For example, the following code is well-formed in C but
1910 /// ill-formed in C++:
1911 /// @code
1912 /// struct S6 {
1913 ///   enum { BAR } e;
1914 /// };
1915 ///
1916 /// void test_S6() {
1917 ///   struct S6 a;
1918 ///   a.e = BAR;
1919 /// }
1920 /// @endcode
1921 /// For the declaration of BAR, this routine will return a different
1922 /// scope. The scope S will be the scope of the unnamed enumeration
1923 /// within S6. In C++, this routine will return the scope associated
1924 /// with S6, because the enumeration's scope is a transparent
1925 /// context but structures can contain non-field names. In C, this
1926 /// routine will return the translation unit scope, since the
1927 /// enumeration's scope is a transparent context and structures cannot
1928 /// contain non-field names.
1929 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1930   while (((S->getFlags() & Scope::DeclScope) == 0) ||
1931          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1932          (S->isClassScope() && !getLangOpts().CPlusPlus))
1933     S = S->getParent();
1934   return S;
1935 }
1936 
1937 /// Looks up the declaration of "struct objc_super" and
1938 /// saves it for later use in building builtin declaration of
1939 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1940 /// pre-existing declaration exists no action takes place.
1941 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1942                                         IdentifierInfo *II) {
1943   if (!II->isStr("objc_msgSendSuper"))
1944     return;
1945   ASTContext &Context = ThisSema.Context;
1946 
1947   LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1948                       SourceLocation(), Sema::LookupTagName);
1949   ThisSema.LookupName(Result, S);
1950   if (Result.getResultKind() == LookupResult::Found)
1951     if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1952       Context.setObjCSuperType(Context.getTagDeclType(TD));
1953 }
1954 
1955 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
1956                                ASTContext::GetBuiltinTypeError Error) {
1957   switch (Error) {
1958   case ASTContext::GE_None:
1959     return "";
1960   case ASTContext::GE_Missing_type:
1961     return BuiltinInfo.getHeaderName(ID);
1962   case ASTContext::GE_Missing_stdio:
1963     return "stdio.h";
1964   case ASTContext::GE_Missing_setjmp:
1965     return "setjmp.h";
1966   case ASTContext::GE_Missing_ucontext:
1967     return "ucontext.h";
1968   }
1969   llvm_unreachable("unhandled error kind");
1970 }
1971 
1972 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1973 /// file scope.  lazily create a decl for it. ForRedeclaration is true
1974 /// if we're creating this built-in in anticipation of redeclaring the
1975 /// built-in.
1976 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1977                                      Scope *S, bool ForRedeclaration,
1978                                      SourceLocation Loc) {
1979   LookupPredefedObjCSuperType(*this, S, II);
1980 
1981   ASTContext::GetBuiltinTypeError Error;
1982   QualType R = Context.GetBuiltinType(ID, Error);
1983   if (Error) {
1984     if (ForRedeclaration)
1985       Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1986           << getHeaderName(Context.BuiltinInfo, ID, Error)
1987           << Context.BuiltinInfo.getName(ID);
1988     return nullptr;
1989   }
1990 
1991   if (!ForRedeclaration &&
1992       (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
1993        Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
1994     Diag(Loc, diag::ext_implicit_lib_function_decl)
1995         << Context.BuiltinInfo.getName(ID) << R;
1996     if (Context.BuiltinInfo.getHeaderName(ID) &&
1997         !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1998       Diag(Loc, diag::note_include_header_or_declare)
1999           << Context.BuiltinInfo.getHeaderName(ID)
2000           << Context.BuiltinInfo.getName(ID);
2001   }
2002 
2003   if (R.isNull())
2004     return nullptr;
2005 
2006   DeclContext *Parent = Context.getTranslationUnitDecl();
2007   if (getLangOpts().CPlusPlus) {
2008     LinkageSpecDecl *CLinkageDecl =
2009         LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
2010                                 LinkageSpecDecl::lang_c, false);
2011     CLinkageDecl->setImplicit();
2012     Parent->addDecl(CLinkageDecl);
2013     Parent = CLinkageDecl;
2014   }
2015 
2016   FunctionDecl *New = FunctionDecl::Create(Context,
2017                                            Parent,
2018                                            Loc, Loc, II, R, /*TInfo=*/nullptr,
2019                                            SC_Extern,
2020                                            false,
2021                                            R->isFunctionProtoType());
2022   New->setImplicit();
2023 
2024   // Create Decl objects for each parameter, adding them to the
2025   // FunctionDecl.
2026   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
2027     SmallVector<ParmVarDecl*, 16> Params;
2028     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2029       ParmVarDecl *parm =
2030           ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
2031                               nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
2032                               SC_None, nullptr);
2033       parm->setScopeInfo(0, i);
2034       Params.push_back(parm);
2035     }
2036     New->setParams(Params);
2037   }
2038 
2039   AddKnownFunctionAttributes(New);
2040   RegisterLocallyScopedExternCDecl(New, S);
2041 
2042   // TUScope is the translation-unit scope to insert this function into.
2043   // FIXME: This is hideous. We need to teach PushOnScopeChains to
2044   // relate Scopes to DeclContexts, and probably eliminate CurContext
2045   // entirely, but we're not there yet.
2046   DeclContext *SavedContext = CurContext;
2047   CurContext = Parent;
2048   PushOnScopeChains(New, TUScope);
2049   CurContext = SavedContext;
2050   return New;
2051 }
2052 
2053 /// Typedef declarations don't have linkage, but they still denote the same
2054 /// entity if their types are the same.
2055 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2056 /// isSameEntity.
2057 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2058                                                      TypedefNameDecl *Decl,
2059                                                      LookupResult &Previous) {
2060   // This is only interesting when modules are enabled.
2061   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2062     return;
2063 
2064   // Empty sets are uninteresting.
2065   if (Previous.empty())
2066     return;
2067 
2068   LookupResult::Filter Filter = Previous.makeFilter();
2069   while (Filter.hasNext()) {
2070     NamedDecl *Old = Filter.next();
2071 
2072     // Non-hidden declarations are never ignored.
2073     if (S.isVisible(Old))
2074       continue;
2075 
2076     // Declarations of the same entity are not ignored, even if they have
2077     // different linkages.
2078     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2079       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2080                                 Decl->getUnderlyingType()))
2081         continue;
2082 
2083       // If both declarations give a tag declaration a typedef name for linkage
2084       // purposes, then they declare the same entity.
2085       if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2086           Decl->getAnonDeclWithTypedefName())
2087         continue;
2088     }
2089 
2090     Filter.erase();
2091   }
2092 
2093   Filter.done();
2094 }
2095 
2096 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2097   QualType OldType;
2098   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2099     OldType = OldTypedef->getUnderlyingType();
2100   else
2101     OldType = Context.getTypeDeclType(Old);
2102   QualType NewType = New->getUnderlyingType();
2103 
2104   if (NewType->isVariablyModifiedType()) {
2105     // Must not redefine a typedef with a variably-modified type.
2106     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2107     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2108       << Kind << NewType;
2109     if (Old->getLocation().isValid())
2110       notePreviousDefinition(Old, New->getLocation());
2111     New->setInvalidDecl();
2112     return true;
2113   }
2114 
2115   if (OldType != NewType &&
2116       !OldType->isDependentType() &&
2117       !NewType->isDependentType() &&
2118       !Context.hasSameType(OldType, NewType)) {
2119     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2120     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2121       << Kind << NewType << OldType;
2122     if (Old->getLocation().isValid())
2123       notePreviousDefinition(Old, New->getLocation());
2124     New->setInvalidDecl();
2125     return true;
2126   }
2127   return false;
2128 }
2129 
2130 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2131 /// same name and scope as a previous declaration 'Old'.  Figure out
2132 /// how to resolve this situation, merging decls or emitting
2133 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2134 ///
2135 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2136                                 LookupResult &OldDecls) {
2137   // If the new decl is known invalid already, don't bother doing any
2138   // merging checks.
2139   if (New->isInvalidDecl()) return;
2140 
2141   // Allow multiple definitions for ObjC built-in typedefs.
2142   // FIXME: Verify the underlying types are equivalent!
2143   if (getLangOpts().ObjC) {
2144     const IdentifierInfo *TypeID = New->getIdentifier();
2145     switch (TypeID->getLength()) {
2146     default: break;
2147     case 2:
2148       {
2149         if (!TypeID->isStr("id"))
2150           break;
2151         QualType T = New->getUnderlyingType();
2152         if (!T->isPointerType())
2153           break;
2154         if (!T->isVoidPointerType()) {
2155           QualType PT = T->getAs<PointerType>()->getPointeeType();
2156           if (!PT->isStructureType())
2157             break;
2158         }
2159         Context.setObjCIdRedefinitionType(T);
2160         // Install the built-in type for 'id', ignoring the current definition.
2161         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2162         return;
2163       }
2164     case 5:
2165       if (!TypeID->isStr("Class"))
2166         break;
2167       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2168       // Install the built-in type for 'Class', ignoring the current definition.
2169       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2170       return;
2171     case 3:
2172       if (!TypeID->isStr("SEL"))
2173         break;
2174       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2175       // Install the built-in type for 'SEL', ignoring the current definition.
2176       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2177       return;
2178     }
2179     // Fall through - the typedef name was not a builtin type.
2180   }
2181 
2182   // Verify the old decl was also a type.
2183   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2184   if (!Old) {
2185     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2186       << New->getDeclName();
2187 
2188     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2189     if (OldD->getLocation().isValid())
2190       notePreviousDefinition(OldD, New->getLocation());
2191 
2192     return New->setInvalidDecl();
2193   }
2194 
2195   // If the old declaration is invalid, just give up here.
2196   if (Old->isInvalidDecl())
2197     return New->setInvalidDecl();
2198 
2199   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2200     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2201     auto *NewTag = New->getAnonDeclWithTypedefName();
2202     NamedDecl *Hidden = nullptr;
2203     if (OldTag && NewTag &&
2204         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2205         !hasVisibleDefinition(OldTag, &Hidden)) {
2206       // There is a definition of this tag, but it is not visible. Use it
2207       // instead of our tag.
2208       New->setTypeForDecl(OldTD->getTypeForDecl());
2209       if (OldTD->isModed())
2210         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2211                                     OldTD->getUnderlyingType());
2212       else
2213         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2214 
2215       // Make the old tag definition visible.
2216       makeMergedDefinitionVisible(Hidden);
2217 
2218       // If this was an unscoped enumeration, yank all of its enumerators
2219       // out of the scope.
2220       if (isa<EnumDecl>(NewTag)) {
2221         Scope *EnumScope = getNonFieldDeclScope(S);
2222         for (auto *D : NewTag->decls()) {
2223           auto *ED = cast<EnumConstantDecl>(D);
2224           assert(EnumScope->isDeclScope(ED));
2225           EnumScope->RemoveDecl(ED);
2226           IdResolver.RemoveDecl(ED);
2227           ED->getLexicalDeclContext()->removeDecl(ED);
2228         }
2229       }
2230     }
2231   }
2232 
2233   // If the typedef types are not identical, reject them in all languages and
2234   // with any extensions enabled.
2235   if (isIncompatibleTypedef(Old, New))
2236     return;
2237 
2238   // The types match.  Link up the redeclaration chain and merge attributes if
2239   // the old declaration was a typedef.
2240   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2241     New->setPreviousDecl(Typedef);
2242     mergeDeclAttributes(New, Old);
2243   }
2244 
2245   if (getLangOpts().MicrosoftExt)
2246     return;
2247 
2248   if (getLangOpts().CPlusPlus) {
2249     // C++ [dcl.typedef]p2:
2250     //   In a given non-class scope, a typedef specifier can be used to
2251     //   redefine the name of any type declared in that scope to refer
2252     //   to the type to which it already refers.
2253     if (!isa<CXXRecordDecl>(CurContext))
2254       return;
2255 
2256     // C++0x [dcl.typedef]p4:
2257     //   In a given class scope, a typedef specifier can be used to redefine
2258     //   any class-name declared in that scope that is not also a typedef-name
2259     //   to refer to the type to which it already refers.
2260     //
2261     // This wording came in via DR424, which was a correction to the
2262     // wording in DR56, which accidentally banned code like:
2263     //
2264     //   struct S {
2265     //     typedef struct A { } A;
2266     //   };
2267     //
2268     // in the C++03 standard. We implement the C++0x semantics, which
2269     // allow the above but disallow
2270     //
2271     //   struct S {
2272     //     typedef int I;
2273     //     typedef int I;
2274     //   };
2275     //
2276     // since that was the intent of DR56.
2277     if (!isa<TypedefNameDecl>(Old))
2278       return;
2279 
2280     Diag(New->getLocation(), diag::err_redefinition)
2281       << New->getDeclName();
2282     notePreviousDefinition(Old, New->getLocation());
2283     return New->setInvalidDecl();
2284   }
2285 
2286   // Modules always permit redefinition of typedefs, as does C11.
2287   if (getLangOpts().Modules || getLangOpts().C11)
2288     return;
2289 
2290   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2291   // is normally mapped to an error, but can be controlled with
2292   // -Wtypedef-redefinition.  If either the original or the redefinition is
2293   // in a system header, don't emit this for compatibility with GCC.
2294   if (getDiagnostics().getSuppressSystemWarnings() &&
2295       // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2296       (Old->isImplicit() ||
2297        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2298        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2299     return;
2300 
2301   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2302     << New->getDeclName();
2303   notePreviousDefinition(Old, New->getLocation());
2304 }
2305 
2306 /// DeclhasAttr - returns true if decl Declaration already has the target
2307 /// attribute.
2308 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2309   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2310   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2311   for (const auto *i : D->attrs())
2312     if (i->getKind() == A->getKind()) {
2313       if (Ann) {
2314         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2315           return true;
2316         continue;
2317       }
2318       // FIXME: Don't hardcode this check
2319       if (OA && isa<OwnershipAttr>(i))
2320         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2321       return true;
2322     }
2323 
2324   return false;
2325 }
2326 
2327 static bool isAttributeTargetADefinition(Decl *D) {
2328   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2329     return VD->isThisDeclarationADefinition();
2330   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2331     return TD->isCompleteDefinition() || TD->isBeingDefined();
2332   return true;
2333 }
2334 
2335 /// Merge alignment attributes from \p Old to \p New, taking into account the
2336 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2337 ///
2338 /// \return \c true if any attributes were added to \p New.
2339 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2340   // Look for alignas attributes on Old, and pick out whichever attribute
2341   // specifies the strictest alignment requirement.
2342   AlignedAttr *OldAlignasAttr = nullptr;
2343   AlignedAttr *OldStrictestAlignAttr = nullptr;
2344   unsigned OldAlign = 0;
2345   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2346     // FIXME: We have no way of representing inherited dependent alignments
2347     // in a case like:
2348     //   template<int A, int B> struct alignas(A) X;
2349     //   template<int A, int B> struct alignas(B) X {};
2350     // For now, we just ignore any alignas attributes which are not on the
2351     // definition in such a case.
2352     if (I->isAlignmentDependent())
2353       return false;
2354 
2355     if (I->isAlignas())
2356       OldAlignasAttr = I;
2357 
2358     unsigned Align = I->getAlignment(S.Context);
2359     if (Align > OldAlign) {
2360       OldAlign = Align;
2361       OldStrictestAlignAttr = I;
2362     }
2363   }
2364 
2365   // Look for alignas attributes on New.
2366   AlignedAttr *NewAlignasAttr = nullptr;
2367   unsigned NewAlign = 0;
2368   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2369     if (I->isAlignmentDependent())
2370       return false;
2371 
2372     if (I->isAlignas())
2373       NewAlignasAttr = I;
2374 
2375     unsigned Align = I->getAlignment(S.Context);
2376     if (Align > NewAlign)
2377       NewAlign = Align;
2378   }
2379 
2380   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2381     // Both declarations have 'alignas' attributes. We require them to match.
2382     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2383     // fall short. (If two declarations both have alignas, they must both match
2384     // every definition, and so must match each other if there is a definition.)
2385 
2386     // If either declaration only contains 'alignas(0)' specifiers, then it
2387     // specifies the natural alignment for the type.
2388     if (OldAlign == 0 || NewAlign == 0) {
2389       QualType Ty;
2390       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2391         Ty = VD->getType();
2392       else
2393         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2394 
2395       if (OldAlign == 0)
2396         OldAlign = S.Context.getTypeAlign(Ty);
2397       if (NewAlign == 0)
2398         NewAlign = S.Context.getTypeAlign(Ty);
2399     }
2400 
2401     if (OldAlign != NewAlign) {
2402       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2403         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2404         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2405       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2406     }
2407   }
2408 
2409   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2410     // C++11 [dcl.align]p6:
2411     //   if any declaration of an entity has an alignment-specifier,
2412     //   every defining declaration of that entity shall specify an
2413     //   equivalent alignment.
2414     // C11 6.7.5/7:
2415     //   If the definition of an object does not have an alignment
2416     //   specifier, any other declaration of that object shall also
2417     //   have no alignment specifier.
2418     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2419       << OldAlignasAttr;
2420     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2421       << OldAlignasAttr;
2422   }
2423 
2424   bool AnyAdded = false;
2425 
2426   // Ensure we have an attribute representing the strictest alignment.
2427   if (OldAlign > NewAlign) {
2428     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2429     Clone->setInherited(true);
2430     New->addAttr(Clone);
2431     AnyAdded = true;
2432   }
2433 
2434   // Ensure we have an alignas attribute if the old declaration had one.
2435   if (OldAlignasAttr && !NewAlignasAttr &&
2436       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2437     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2438     Clone->setInherited(true);
2439     New->addAttr(Clone);
2440     AnyAdded = true;
2441   }
2442 
2443   return AnyAdded;
2444 }
2445 
2446 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2447                                const InheritableAttr *Attr,
2448                                Sema::AvailabilityMergeKind AMK) {
2449   // This function copies an attribute Attr from a previous declaration to the
2450   // new declaration D if the new declaration doesn't itself have that attribute
2451   // yet or if that attribute allows duplicates.
2452   // If you're adding a new attribute that requires logic different from
2453   // "use explicit attribute on decl if present, else use attribute from
2454   // previous decl", for example if the attribute needs to be consistent
2455   // between redeclarations, you need to call a custom merge function here.
2456   InheritableAttr *NewAttr = nullptr;
2457   unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2458   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2459     NewAttr = S.mergeAvailabilityAttr(
2460         D, AA->getRange(), AA->getPlatform(), AA->isImplicit(),
2461         AA->getIntroduced(), AA->getDeprecated(), AA->getObsoleted(),
2462         AA->getUnavailable(), AA->getMessage(), AA->getStrict(),
2463         AA->getReplacement(), AMK, AA->getPriority(), AttrSpellingListIndex);
2464   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2465     NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2466                                     AttrSpellingListIndex);
2467   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2468     NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2469                                         AttrSpellingListIndex);
2470   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2471     NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2472                                    AttrSpellingListIndex);
2473   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2474     NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2475                                    AttrSpellingListIndex);
2476   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2477     NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2478                                 FA->getFormatIdx(), FA->getFirstArg(),
2479                                 AttrSpellingListIndex);
2480   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2481     NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2482                                  AttrSpellingListIndex);
2483   else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2484     NewAttr = S.mergeCodeSegAttr(D, CSA->getRange(), CSA->getName(),
2485                                  AttrSpellingListIndex);
2486   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2487     NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2488                                        AttrSpellingListIndex,
2489                                        IA->getSemanticSpelling());
2490   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2491     NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2492                                       &S.Context.Idents.get(AA->getSpelling()),
2493                                       AttrSpellingListIndex);
2494   else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2495            (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2496             isa<CUDAGlobalAttr>(Attr))) {
2497     // CUDA target attributes are part of function signature for
2498     // overloading purposes and must not be merged.
2499     return false;
2500   } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2501     NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2502   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2503     NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2504   else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2505     NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2506   else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2507     NewAttr = S.mergeCommonAttr(D, *CommonA);
2508   else if (isa<AlignedAttr>(Attr))
2509     // AlignedAttrs are handled separately, because we need to handle all
2510     // such attributes on a declaration at the same time.
2511     NewAttr = nullptr;
2512   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2513            (AMK == Sema::AMK_Override ||
2514             AMK == Sema::AMK_ProtocolImplementation))
2515     NewAttr = nullptr;
2516   else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2517     NewAttr = S.mergeUuidAttr(D, UA->getRange(), AttrSpellingListIndex,
2518                               UA->getGuid());
2519   else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr))
2520     NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA);
2521   else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr))
2522     NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA);
2523   else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2524     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2525 
2526   if (NewAttr) {
2527     NewAttr->setInherited(true);
2528     D->addAttr(NewAttr);
2529     if (isa<MSInheritanceAttr>(NewAttr))
2530       S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2531     return true;
2532   }
2533 
2534   return false;
2535 }
2536 
2537 static const NamedDecl *getDefinition(const Decl *D) {
2538   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2539     return TD->getDefinition();
2540   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2541     const VarDecl *Def = VD->getDefinition();
2542     if (Def)
2543       return Def;
2544     return VD->getActingDefinition();
2545   }
2546   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2547     return FD->getDefinition();
2548   return nullptr;
2549 }
2550 
2551 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2552   for (const auto *Attribute : D->attrs())
2553     if (Attribute->getKind() == Kind)
2554       return true;
2555   return false;
2556 }
2557 
2558 /// checkNewAttributesAfterDef - If we already have a definition, check that
2559 /// there are no new attributes in this declaration.
2560 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2561   if (!New->hasAttrs())
2562     return;
2563 
2564   const NamedDecl *Def = getDefinition(Old);
2565   if (!Def || Def == New)
2566     return;
2567 
2568   AttrVec &NewAttributes = New->getAttrs();
2569   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2570     const Attr *NewAttribute = NewAttributes[I];
2571 
2572     if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2573       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2574         Sema::SkipBodyInfo SkipBody;
2575         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2576 
2577         // If we're skipping this definition, drop the "alias" attribute.
2578         if (SkipBody.ShouldSkip) {
2579           NewAttributes.erase(NewAttributes.begin() + I);
2580           --E;
2581           continue;
2582         }
2583       } else {
2584         VarDecl *VD = cast<VarDecl>(New);
2585         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2586                                 VarDecl::TentativeDefinition
2587                             ? diag::err_alias_after_tentative
2588                             : diag::err_redefinition;
2589         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2590         if (Diag == diag::err_redefinition)
2591           S.notePreviousDefinition(Def, VD->getLocation());
2592         else
2593           S.Diag(Def->getLocation(), diag::note_previous_definition);
2594         VD->setInvalidDecl();
2595       }
2596       ++I;
2597       continue;
2598     }
2599 
2600     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2601       // Tentative definitions are only interesting for the alias check above.
2602       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2603         ++I;
2604         continue;
2605       }
2606     }
2607 
2608     if (hasAttribute(Def, NewAttribute->getKind())) {
2609       ++I;
2610       continue; // regular attr merging will take care of validating this.
2611     }
2612 
2613     if (isa<C11NoReturnAttr>(NewAttribute)) {
2614       // C's _Noreturn is allowed to be added to a function after it is defined.
2615       ++I;
2616       continue;
2617     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2618       if (AA->isAlignas()) {
2619         // C++11 [dcl.align]p6:
2620         //   if any declaration of an entity has an alignment-specifier,
2621         //   every defining declaration of that entity shall specify an
2622         //   equivalent alignment.
2623         // C11 6.7.5/7:
2624         //   If the definition of an object does not have an alignment
2625         //   specifier, any other declaration of that object shall also
2626         //   have no alignment specifier.
2627         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2628           << AA;
2629         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2630           << AA;
2631         NewAttributes.erase(NewAttributes.begin() + I);
2632         --E;
2633         continue;
2634       }
2635     }
2636 
2637     S.Diag(NewAttribute->getLocation(),
2638            diag::warn_attribute_precede_definition);
2639     S.Diag(Def->getLocation(), diag::note_previous_definition);
2640     NewAttributes.erase(NewAttributes.begin() + I);
2641     --E;
2642   }
2643 }
2644 
2645 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2646 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2647                                AvailabilityMergeKind AMK) {
2648   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2649     UsedAttr *NewAttr = OldAttr->clone(Context);
2650     NewAttr->setInherited(true);
2651     New->addAttr(NewAttr);
2652   }
2653 
2654   if (!Old->hasAttrs() && !New->hasAttrs())
2655     return;
2656 
2657   // Attributes declared post-definition are currently ignored.
2658   checkNewAttributesAfterDef(*this, New, Old);
2659 
2660   if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2661     if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2662       if (OldA->getLabel() != NewA->getLabel()) {
2663         // This redeclaration changes __asm__ label.
2664         Diag(New->getLocation(), diag::err_different_asm_label);
2665         Diag(OldA->getLocation(), diag::note_previous_declaration);
2666       }
2667     } else if (Old->isUsed()) {
2668       // This redeclaration adds an __asm__ label to a declaration that has
2669       // already been ODR-used.
2670       Diag(New->getLocation(), diag::err_late_asm_label_name)
2671         << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2672     }
2673   }
2674 
2675   // Re-declaration cannot add abi_tag's.
2676   if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2677     if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2678       for (const auto &NewTag : NewAbiTagAttr->tags()) {
2679         if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2680                       NewTag) == OldAbiTagAttr->tags_end()) {
2681           Diag(NewAbiTagAttr->getLocation(),
2682                diag::err_new_abi_tag_on_redeclaration)
2683               << NewTag;
2684           Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2685         }
2686       }
2687     } else {
2688       Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2689       Diag(Old->getLocation(), diag::note_previous_declaration);
2690     }
2691   }
2692 
2693   // This redeclaration adds a section attribute.
2694   if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2695     if (auto *VD = dyn_cast<VarDecl>(New)) {
2696       if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2697         Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2698         Diag(Old->getLocation(), diag::note_previous_declaration);
2699       }
2700     }
2701   }
2702 
2703   // Redeclaration adds code-seg attribute.
2704   const auto *NewCSA = New->getAttr<CodeSegAttr>();
2705   if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2706       !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2707     Diag(New->getLocation(), diag::warn_mismatched_section)
2708          << 0 /*codeseg*/;
2709     Diag(Old->getLocation(), diag::note_previous_declaration);
2710   }
2711 
2712   if (!Old->hasAttrs())
2713     return;
2714 
2715   bool foundAny = New->hasAttrs();
2716 
2717   // Ensure that any moving of objects within the allocated map is done before
2718   // we process them.
2719   if (!foundAny) New->setAttrs(AttrVec());
2720 
2721   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2722     // Ignore deprecated/unavailable/availability attributes if requested.
2723     AvailabilityMergeKind LocalAMK = AMK_None;
2724     if (isa<DeprecatedAttr>(I) ||
2725         isa<UnavailableAttr>(I) ||
2726         isa<AvailabilityAttr>(I)) {
2727       switch (AMK) {
2728       case AMK_None:
2729         continue;
2730 
2731       case AMK_Redeclaration:
2732       case AMK_Override:
2733       case AMK_ProtocolImplementation:
2734         LocalAMK = AMK;
2735         break;
2736       }
2737     }
2738 
2739     // Already handled.
2740     if (isa<UsedAttr>(I))
2741       continue;
2742 
2743     if (mergeDeclAttribute(*this, New, I, LocalAMK))
2744       foundAny = true;
2745   }
2746 
2747   if (mergeAlignedAttrs(*this, New, Old))
2748     foundAny = true;
2749 
2750   if (!foundAny) New->dropAttrs();
2751 }
2752 
2753 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2754 /// to the new one.
2755 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2756                                      const ParmVarDecl *oldDecl,
2757                                      Sema &S) {
2758   // C++11 [dcl.attr.depend]p2:
2759   //   The first declaration of a function shall specify the
2760   //   carries_dependency attribute for its declarator-id if any declaration
2761   //   of the function specifies the carries_dependency attribute.
2762   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2763   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2764     S.Diag(CDA->getLocation(),
2765            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2766     // Find the first declaration of the parameter.
2767     // FIXME: Should we build redeclaration chains for function parameters?
2768     const FunctionDecl *FirstFD =
2769       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2770     const ParmVarDecl *FirstVD =
2771       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2772     S.Diag(FirstVD->getLocation(),
2773            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2774   }
2775 
2776   if (!oldDecl->hasAttrs())
2777     return;
2778 
2779   bool foundAny = newDecl->hasAttrs();
2780 
2781   // Ensure that any moving of objects within the allocated map is
2782   // done before we process them.
2783   if (!foundAny) newDecl->setAttrs(AttrVec());
2784 
2785   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2786     if (!DeclHasAttr(newDecl, I)) {
2787       InheritableAttr *newAttr =
2788         cast<InheritableParamAttr>(I->clone(S.Context));
2789       newAttr->setInherited(true);
2790       newDecl->addAttr(newAttr);
2791       foundAny = true;
2792     }
2793   }
2794 
2795   if (!foundAny) newDecl->dropAttrs();
2796 }
2797 
2798 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2799                                 const ParmVarDecl *OldParam,
2800                                 Sema &S) {
2801   if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2802     if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2803       if (*Oldnullability != *Newnullability) {
2804         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2805           << DiagNullabilityKind(
2806                *Newnullability,
2807                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2808                 != 0))
2809           << DiagNullabilityKind(
2810                *Oldnullability,
2811                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2812                 != 0));
2813         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2814       }
2815     } else {
2816       QualType NewT = NewParam->getType();
2817       NewT = S.Context.getAttributedType(
2818                          AttributedType::getNullabilityAttrKind(*Oldnullability),
2819                          NewT, NewT);
2820       NewParam->setType(NewT);
2821     }
2822   }
2823 }
2824 
2825 namespace {
2826 
2827 /// Used in MergeFunctionDecl to keep track of function parameters in
2828 /// C.
2829 struct GNUCompatibleParamWarning {
2830   ParmVarDecl *OldParm;
2831   ParmVarDecl *NewParm;
2832   QualType PromotedType;
2833 };
2834 
2835 } // end anonymous namespace
2836 
2837 /// getSpecialMember - get the special member enum for a method.
2838 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2839   if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2840     if (Ctor->isDefaultConstructor())
2841       return Sema::CXXDefaultConstructor;
2842 
2843     if (Ctor->isCopyConstructor())
2844       return Sema::CXXCopyConstructor;
2845 
2846     if (Ctor->isMoveConstructor())
2847       return Sema::CXXMoveConstructor;
2848   } else if (isa<CXXDestructorDecl>(MD)) {
2849     return Sema::CXXDestructor;
2850   } else if (MD->isCopyAssignmentOperator()) {
2851     return Sema::CXXCopyAssignment;
2852   } else if (MD->isMoveAssignmentOperator()) {
2853     return Sema::CXXMoveAssignment;
2854   }
2855 
2856   return Sema::CXXInvalid;
2857 }
2858 
2859 // Determine whether the previous declaration was a definition, implicit
2860 // declaration, or a declaration.
2861 template <typename T>
2862 static std::pair<diag::kind, SourceLocation>
2863 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2864   diag::kind PrevDiag;
2865   SourceLocation OldLocation = Old->getLocation();
2866   if (Old->isThisDeclarationADefinition())
2867     PrevDiag = diag::note_previous_definition;
2868   else if (Old->isImplicit()) {
2869     PrevDiag = diag::note_previous_implicit_declaration;
2870     if (OldLocation.isInvalid())
2871       OldLocation = New->getLocation();
2872   } else
2873     PrevDiag = diag::note_previous_declaration;
2874   return std::make_pair(PrevDiag, OldLocation);
2875 }
2876 
2877 /// canRedefineFunction - checks if a function can be redefined. Currently,
2878 /// only extern inline functions can be redefined, and even then only in
2879 /// GNU89 mode.
2880 static bool canRedefineFunction(const FunctionDecl *FD,
2881                                 const LangOptions& LangOpts) {
2882   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2883           !LangOpts.CPlusPlus &&
2884           FD->isInlineSpecified() &&
2885           FD->getStorageClass() == SC_Extern);
2886 }
2887 
2888 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2889   const AttributedType *AT = T->getAs<AttributedType>();
2890   while (AT && !AT->isCallingConv())
2891     AT = AT->getModifiedType()->getAs<AttributedType>();
2892   return AT;
2893 }
2894 
2895 template <typename T>
2896 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2897   const DeclContext *DC = Old->getDeclContext();
2898   if (DC->isRecord())
2899     return false;
2900 
2901   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2902   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2903     return true;
2904   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2905     return true;
2906   return false;
2907 }
2908 
2909 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
2910 static bool isExternC(VarTemplateDecl *) { return false; }
2911 
2912 /// Check whether a redeclaration of an entity introduced by a
2913 /// using-declaration is valid, given that we know it's not an overload
2914 /// (nor a hidden tag declaration).
2915 template<typename ExpectedDecl>
2916 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
2917                                    ExpectedDecl *New) {
2918   // C++11 [basic.scope.declarative]p4:
2919   //   Given a set of declarations in a single declarative region, each of
2920   //   which specifies the same unqualified name,
2921   //   -- they shall all refer to the same entity, or all refer to functions
2922   //      and function templates; or
2923   //   -- exactly one declaration shall declare a class name or enumeration
2924   //      name that is not a typedef name and the other declarations shall all
2925   //      refer to the same variable or enumerator, or all refer to functions
2926   //      and function templates; in this case the class name or enumeration
2927   //      name is hidden (3.3.10).
2928 
2929   // C++11 [namespace.udecl]p14:
2930   //   If a function declaration in namespace scope or block scope has the
2931   //   same name and the same parameter-type-list as a function introduced
2932   //   by a using-declaration, and the declarations do not declare the same
2933   //   function, the program is ill-formed.
2934 
2935   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
2936   if (Old &&
2937       !Old->getDeclContext()->getRedeclContext()->Equals(
2938           New->getDeclContext()->getRedeclContext()) &&
2939       !(isExternC(Old) && isExternC(New)))
2940     Old = nullptr;
2941 
2942   if (!Old) {
2943     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2944     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
2945     S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2946     return true;
2947   }
2948   return false;
2949 }
2950 
2951 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
2952                                             const FunctionDecl *B) {
2953   assert(A->getNumParams() == B->getNumParams());
2954 
2955   auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
2956     const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
2957     const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
2958     if (AttrA == AttrB)
2959       return true;
2960     return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
2961            AttrA->isDynamic() == AttrB->isDynamic();
2962   };
2963 
2964   return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
2965 }
2966 
2967 /// If necessary, adjust the semantic declaration context for a qualified
2968 /// declaration to name the correct inline namespace within the qualifier.
2969 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
2970                                                DeclaratorDecl *OldD) {
2971   // The only case where we need to update the DeclContext is when
2972   // redeclaration lookup for a qualified name finds a declaration
2973   // in an inline namespace within the context named by the qualifier:
2974   //
2975   //   inline namespace N { int f(); }
2976   //   int ::f(); // Sema DC needs adjusting from :: to N::.
2977   //
2978   // For unqualified declarations, the semantic context *can* change
2979   // along the redeclaration chain (for local extern declarations,
2980   // extern "C" declarations, and friend declarations in particular).
2981   if (!NewD->getQualifier())
2982     return;
2983 
2984   // NewD is probably already in the right context.
2985   auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
2986   auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
2987   if (NamedDC->Equals(SemaDC))
2988     return;
2989 
2990   assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
2991           NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
2992          "unexpected context for redeclaration");
2993 
2994   auto *LexDC = NewD->getLexicalDeclContext();
2995   auto FixSemaDC = [=](NamedDecl *D) {
2996     if (!D)
2997       return;
2998     D->setDeclContext(SemaDC);
2999     D->setLexicalDeclContext(LexDC);
3000   };
3001 
3002   FixSemaDC(NewD);
3003   if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3004     FixSemaDC(FD->getDescribedFunctionTemplate());
3005   else if (auto *VD = dyn_cast<VarDecl>(NewD))
3006     FixSemaDC(VD->getDescribedVarTemplate());
3007 }
3008 
3009 /// MergeFunctionDecl - We just parsed a function 'New' from
3010 /// declarator D which has the same name and scope as a previous
3011 /// declaration 'Old'.  Figure out how to resolve this situation,
3012 /// merging decls or emitting diagnostics as appropriate.
3013 ///
3014 /// In C++, New and Old must be declarations that are not
3015 /// overloaded. Use IsOverload to determine whether New and Old are
3016 /// overloaded, and to select the Old declaration that New should be
3017 /// merged with.
3018 ///
3019 /// Returns true if there was an error, false otherwise.
3020 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
3021                              Scope *S, bool MergeTypeWithOld) {
3022   // Verify the old decl was also a function.
3023   FunctionDecl *Old = OldD->getAsFunction();
3024   if (!Old) {
3025     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3026       if (New->getFriendObjectKind()) {
3027         Diag(New->getLocation(), diag::err_using_decl_friend);
3028         Diag(Shadow->getTargetDecl()->getLocation(),
3029              diag::note_using_decl_target);
3030         Diag(Shadow->getUsingDecl()->getLocation(),
3031              diag::note_using_decl) << 0;
3032         return true;
3033       }
3034 
3035       // Check whether the two declarations might declare the same function.
3036       if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3037         return true;
3038       OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3039     } else {
3040       Diag(New->getLocation(), diag::err_redefinition_different_kind)
3041         << New->getDeclName();
3042       notePreviousDefinition(OldD, New->getLocation());
3043       return true;
3044     }
3045   }
3046 
3047   // If the old declaration is invalid, just give up here.
3048   if (Old->isInvalidDecl())
3049     return true;
3050 
3051   // Disallow redeclaration of some builtins.
3052   if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3053     Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3054     Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3055         << Old << Old->getType();
3056     return true;
3057   }
3058 
3059   diag::kind PrevDiag;
3060   SourceLocation OldLocation;
3061   std::tie(PrevDiag, OldLocation) =
3062       getNoteDiagForInvalidRedeclaration(Old, New);
3063 
3064   // Don't complain about this if we're in GNU89 mode and the old function
3065   // is an extern inline function.
3066   // Don't complain about specializations. They are not supposed to have
3067   // storage classes.
3068   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3069       New->getStorageClass() == SC_Static &&
3070       Old->hasExternalFormalLinkage() &&
3071       !New->getTemplateSpecializationInfo() &&
3072       !canRedefineFunction(Old, getLangOpts())) {
3073     if (getLangOpts().MicrosoftExt) {
3074       Diag(New->getLocation(), diag::ext_static_non_static) << New;
3075       Diag(OldLocation, PrevDiag);
3076     } else {
3077       Diag(New->getLocation(), diag::err_static_non_static) << New;
3078       Diag(OldLocation, PrevDiag);
3079       return true;
3080     }
3081   }
3082 
3083   if (New->hasAttr<InternalLinkageAttr>() &&
3084       !Old->hasAttr<InternalLinkageAttr>()) {
3085     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3086         << New->getDeclName();
3087     notePreviousDefinition(Old, New->getLocation());
3088     New->dropAttr<InternalLinkageAttr>();
3089   }
3090 
3091   if (CheckRedeclarationModuleOwnership(New, Old))
3092     return true;
3093 
3094   if (!getLangOpts().CPlusPlus) {
3095     bool OldOvl = Old->hasAttr<OverloadableAttr>();
3096     if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3097       Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3098         << New << OldOvl;
3099 
3100       // Try our best to find a decl that actually has the overloadable
3101       // attribute for the note. In most cases (e.g. programs with only one
3102       // broken declaration/definition), this won't matter.
3103       //
3104       // FIXME: We could do this if we juggled some extra state in
3105       // OverloadableAttr, rather than just removing it.
3106       const Decl *DiagOld = Old;
3107       if (OldOvl) {
3108         auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3109           const auto *A = D->getAttr<OverloadableAttr>();
3110           return A && !A->isImplicit();
3111         });
3112         // If we've implicitly added *all* of the overloadable attrs to this
3113         // chain, emitting a "previous redecl" note is pointless.
3114         DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3115       }
3116 
3117       if (DiagOld)
3118         Diag(DiagOld->getLocation(),
3119              diag::note_attribute_overloadable_prev_overload)
3120           << OldOvl;
3121 
3122       if (OldOvl)
3123         New->addAttr(OverloadableAttr::CreateImplicit(Context));
3124       else
3125         New->dropAttr<OverloadableAttr>();
3126     }
3127   }
3128 
3129   // If a function is first declared with a calling convention, but is later
3130   // declared or defined without one, all following decls assume the calling
3131   // convention of the first.
3132   //
3133   // It's OK if a function is first declared without a calling convention,
3134   // but is later declared or defined with the default calling convention.
3135   //
3136   // To test if either decl has an explicit calling convention, we look for
3137   // AttributedType sugar nodes on the type as written.  If they are missing or
3138   // were canonicalized away, we assume the calling convention was implicit.
3139   //
3140   // Note also that we DO NOT return at this point, because we still have
3141   // other tests to run.
3142   QualType OldQType = Context.getCanonicalType(Old->getType());
3143   QualType NewQType = Context.getCanonicalType(New->getType());
3144   const FunctionType *OldType = cast<FunctionType>(OldQType);
3145   const FunctionType *NewType = cast<FunctionType>(NewQType);
3146   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3147   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3148   bool RequiresAdjustment = false;
3149 
3150   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3151     FunctionDecl *First = Old->getFirstDecl();
3152     const FunctionType *FT =
3153         First->getType().getCanonicalType()->castAs<FunctionType>();
3154     FunctionType::ExtInfo FI = FT->getExtInfo();
3155     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3156     if (!NewCCExplicit) {
3157       // Inherit the CC from the previous declaration if it was specified
3158       // there but not here.
3159       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3160       RequiresAdjustment = true;
3161     } else if (New->getBuiltinID()) {
3162       // Calling Conventions on a Builtin aren't really useful and setting a
3163       // default calling convention and cdecl'ing some builtin redeclarations is
3164       // common, so warn and ignore the calling convention on the redeclaration.
3165       Diag(New->getLocation(), diag::warn_cconv_ignored)
3166           << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3167           << (int)CallingConventionIgnoredReason::BuiltinFunction;
3168       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3169       RequiresAdjustment = true;
3170     } else {
3171       // Calling conventions aren't compatible, so complain.
3172       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3173       Diag(New->getLocation(), diag::err_cconv_change)
3174         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3175         << !FirstCCExplicit
3176         << (!FirstCCExplicit ? "" :
3177             FunctionType::getNameForCallConv(FI.getCC()));
3178 
3179       // Put the note on the first decl, since it is the one that matters.
3180       Diag(First->getLocation(), diag::note_previous_declaration);
3181       return true;
3182     }
3183   }
3184 
3185   // FIXME: diagnose the other way around?
3186   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3187     NewTypeInfo = NewTypeInfo.withNoReturn(true);
3188     RequiresAdjustment = true;
3189   }
3190 
3191   // Merge regparm attribute.
3192   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3193       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3194     if (NewTypeInfo.getHasRegParm()) {
3195       Diag(New->getLocation(), diag::err_regparm_mismatch)
3196         << NewType->getRegParmType()
3197         << OldType->getRegParmType();
3198       Diag(OldLocation, diag::note_previous_declaration);
3199       return true;
3200     }
3201 
3202     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3203     RequiresAdjustment = true;
3204   }
3205 
3206   // Merge ns_returns_retained attribute.
3207   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3208     if (NewTypeInfo.getProducesResult()) {
3209       Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3210           << "'ns_returns_retained'";
3211       Diag(OldLocation, diag::note_previous_declaration);
3212       return true;
3213     }
3214 
3215     NewTypeInfo = NewTypeInfo.withProducesResult(true);
3216     RequiresAdjustment = true;
3217   }
3218 
3219   if (OldTypeInfo.getNoCallerSavedRegs() !=
3220       NewTypeInfo.getNoCallerSavedRegs()) {
3221     if (NewTypeInfo.getNoCallerSavedRegs()) {
3222       AnyX86NoCallerSavedRegistersAttr *Attr =
3223         New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3224       Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3225       Diag(OldLocation, diag::note_previous_declaration);
3226       return true;
3227     }
3228 
3229     NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3230     RequiresAdjustment = true;
3231   }
3232 
3233   if (RequiresAdjustment) {
3234     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3235     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3236     New->setType(QualType(AdjustedType, 0));
3237     NewQType = Context.getCanonicalType(New->getType());
3238     NewType = cast<FunctionType>(NewQType);
3239   }
3240 
3241   // If this redeclaration makes the function inline, we may need to add it to
3242   // UndefinedButUsed.
3243   if (!Old->isInlined() && New->isInlined() &&
3244       !New->hasAttr<GNUInlineAttr>() &&
3245       !getLangOpts().GNUInline &&
3246       Old->isUsed(false) &&
3247       !Old->isDefined() && !New->isThisDeclarationADefinition())
3248     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3249                                            SourceLocation()));
3250 
3251   // If this redeclaration makes it newly gnu_inline, we don't want to warn
3252   // about it.
3253   if (New->hasAttr<GNUInlineAttr>() &&
3254       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3255     UndefinedButUsed.erase(Old->getCanonicalDecl());
3256   }
3257 
3258   // If pass_object_size params don't match up perfectly, this isn't a valid
3259   // redeclaration.
3260   if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3261       !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3262     Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3263         << New->getDeclName();
3264     Diag(OldLocation, PrevDiag) << Old << Old->getType();
3265     return true;
3266   }
3267 
3268   if (getLangOpts().CPlusPlus) {
3269     // C++1z [over.load]p2
3270     //   Certain function declarations cannot be overloaded:
3271     //     -- Function declarations that differ only in the return type,
3272     //        the exception specification, or both cannot be overloaded.
3273 
3274     // Check the exception specifications match. This may recompute the type of
3275     // both Old and New if it resolved exception specifications, so grab the
3276     // types again after this. Because this updates the type, we do this before
3277     // any of the other checks below, which may update the "de facto" NewQType
3278     // but do not necessarily update the type of New.
3279     if (CheckEquivalentExceptionSpec(Old, New))
3280       return true;
3281     OldQType = Context.getCanonicalType(Old->getType());
3282     NewQType = Context.getCanonicalType(New->getType());
3283 
3284     // Go back to the type source info to compare the declared return types,
3285     // per C++1y [dcl.type.auto]p13:
3286     //   Redeclarations or specializations of a function or function template
3287     //   with a declared return type that uses a placeholder type shall also
3288     //   use that placeholder, not a deduced type.
3289     QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3290     QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3291     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3292         canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3293                                        OldDeclaredReturnType)) {
3294       QualType ResQT;
3295       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3296           OldDeclaredReturnType->isObjCObjectPointerType())
3297         // FIXME: This does the wrong thing for a deduced return type.
3298         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3299       if (ResQT.isNull()) {
3300         if (New->isCXXClassMember() && New->isOutOfLine())
3301           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3302               << New << New->getReturnTypeSourceRange();
3303         else
3304           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3305               << New->getReturnTypeSourceRange();
3306         Diag(OldLocation, PrevDiag) << Old << Old->getType()
3307                                     << Old->getReturnTypeSourceRange();
3308         return true;
3309       }
3310       else
3311         NewQType = ResQT;
3312     }
3313 
3314     QualType OldReturnType = OldType->getReturnType();
3315     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3316     if (OldReturnType != NewReturnType) {
3317       // If this function has a deduced return type and has already been
3318       // defined, copy the deduced value from the old declaration.
3319       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3320       if (OldAT && OldAT->isDeduced()) {
3321         New->setType(
3322             SubstAutoType(New->getType(),
3323                           OldAT->isDependentType() ? Context.DependentTy
3324                                                    : OldAT->getDeducedType()));
3325         NewQType = Context.getCanonicalType(
3326             SubstAutoType(NewQType,
3327                           OldAT->isDependentType() ? Context.DependentTy
3328                                                    : OldAT->getDeducedType()));
3329       }
3330     }
3331 
3332     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3333     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3334     if (OldMethod && NewMethod) {
3335       // Preserve triviality.
3336       NewMethod->setTrivial(OldMethod->isTrivial());
3337 
3338       // MSVC allows explicit template specialization at class scope:
3339       // 2 CXXMethodDecls referring to the same function will be injected.
3340       // We don't want a redeclaration error.
3341       bool IsClassScopeExplicitSpecialization =
3342                               OldMethod->isFunctionTemplateSpecialization() &&
3343                               NewMethod->isFunctionTemplateSpecialization();
3344       bool isFriend = NewMethod->getFriendObjectKind();
3345 
3346       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3347           !IsClassScopeExplicitSpecialization) {
3348         //    -- Member function declarations with the same name and the
3349         //       same parameter types cannot be overloaded if any of them
3350         //       is a static member function declaration.
3351         if (OldMethod->isStatic() != NewMethod->isStatic()) {
3352           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3353           Diag(OldLocation, PrevDiag) << Old << Old->getType();
3354           return true;
3355         }
3356 
3357         // C++ [class.mem]p1:
3358         //   [...] A member shall not be declared twice in the
3359         //   member-specification, except that a nested class or member
3360         //   class template can be declared and then later defined.
3361         if (!inTemplateInstantiation()) {
3362           unsigned NewDiag;
3363           if (isa<CXXConstructorDecl>(OldMethod))
3364             NewDiag = diag::err_constructor_redeclared;
3365           else if (isa<CXXDestructorDecl>(NewMethod))
3366             NewDiag = diag::err_destructor_redeclared;
3367           else if (isa<CXXConversionDecl>(NewMethod))
3368             NewDiag = diag::err_conv_function_redeclared;
3369           else
3370             NewDiag = diag::err_member_redeclared;
3371 
3372           Diag(New->getLocation(), NewDiag);
3373         } else {
3374           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3375             << New << New->getType();
3376         }
3377         Diag(OldLocation, PrevDiag) << Old << Old->getType();
3378         return true;
3379 
3380       // Complain if this is an explicit declaration of a special
3381       // member that was initially declared implicitly.
3382       //
3383       // As an exception, it's okay to befriend such methods in order
3384       // to permit the implicit constructor/destructor/operator calls.
3385       } else if (OldMethod->isImplicit()) {
3386         if (isFriend) {
3387           NewMethod->setImplicit();
3388         } else {
3389           Diag(NewMethod->getLocation(),
3390                diag::err_definition_of_implicitly_declared_member)
3391             << New << getSpecialMember(OldMethod);
3392           return true;
3393         }
3394       } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3395         Diag(NewMethod->getLocation(),
3396              diag::err_definition_of_explicitly_defaulted_member)
3397           << getSpecialMember(OldMethod);
3398         return true;
3399       }
3400     }
3401 
3402     // C++11 [dcl.attr.noreturn]p1:
3403     //   The first declaration of a function shall specify the noreturn
3404     //   attribute if any declaration of that function specifies the noreturn
3405     //   attribute.
3406     const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3407     if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3408       Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3409       Diag(Old->getFirstDecl()->getLocation(),
3410            diag::note_noreturn_missing_first_decl);
3411     }
3412 
3413     // C++11 [dcl.attr.depend]p2:
3414     //   The first declaration of a function shall specify the
3415     //   carries_dependency attribute for its declarator-id if any declaration
3416     //   of the function specifies the carries_dependency attribute.
3417     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3418     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3419       Diag(CDA->getLocation(),
3420            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3421       Diag(Old->getFirstDecl()->getLocation(),
3422            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3423     }
3424 
3425     // (C++98 8.3.5p3):
3426     //   All declarations for a function shall agree exactly in both the
3427     //   return type and the parameter-type-list.
3428     // We also want to respect all the extended bits except noreturn.
3429 
3430     // noreturn should now match unless the old type info didn't have it.
3431     QualType OldQTypeForComparison = OldQType;
3432     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3433       auto *OldType = OldQType->castAs<FunctionProtoType>();
3434       const FunctionType *OldTypeForComparison
3435         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3436       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3437       assert(OldQTypeForComparison.isCanonical());
3438     }
3439 
3440     if (haveIncompatibleLanguageLinkages(Old, New)) {
3441       // As a special case, retain the language linkage from previous
3442       // declarations of a friend function as an extension.
3443       //
3444       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3445       // and is useful because there's otherwise no way to specify language
3446       // linkage within class scope.
3447       //
3448       // Check cautiously as the friend object kind isn't yet complete.
3449       if (New->getFriendObjectKind() != Decl::FOK_None) {
3450         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3451         Diag(OldLocation, PrevDiag);
3452       } else {
3453         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3454         Diag(OldLocation, PrevDiag);
3455         return true;
3456       }
3457     }
3458 
3459     if (OldQTypeForComparison == NewQType)
3460       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3461 
3462     // If the types are imprecise (due to dependent constructs in friends or
3463     // local extern declarations), it's OK if they differ. We'll check again
3464     // during instantiation.
3465     if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3466       return false;
3467 
3468     // Fall through for conflicting redeclarations and redefinitions.
3469   }
3470 
3471   // C: Function types need to be compatible, not identical. This handles
3472   // duplicate function decls like "void f(int); void f(enum X);" properly.
3473   if (!getLangOpts().CPlusPlus &&
3474       Context.typesAreCompatible(OldQType, NewQType)) {
3475     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3476     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3477     const FunctionProtoType *OldProto = nullptr;
3478     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3479         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3480       // The old declaration provided a function prototype, but the
3481       // new declaration does not. Merge in the prototype.
3482       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
3483       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3484       NewQType =
3485           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3486                                   OldProto->getExtProtoInfo());
3487       New->setType(NewQType);
3488       New->setHasInheritedPrototype();
3489 
3490       // Synthesize parameters with the same types.
3491       SmallVector<ParmVarDecl*, 16> Params;
3492       for (const auto &ParamType : OldProto->param_types()) {
3493         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3494                                                  SourceLocation(), nullptr,
3495                                                  ParamType, /*TInfo=*/nullptr,
3496                                                  SC_None, nullptr);
3497         Param->setScopeInfo(0, Params.size());
3498         Param->setImplicit();
3499         Params.push_back(Param);
3500       }
3501 
3502       New->setParams(Params);
3503     }
3504 
3505     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3506   }
3507 
3508   // GNU C permits a K&R definition to follow a prototype declaration
3509   // if the declared types of the parameters in the K&R definition
3510   // match the types in the prototype declaration, even when the
3511   // promoted types of the parameters from the K&R definition differ
3512   // from the types in the prototype. GCC then keeps the types from
3513   // the prototype.
3514   //
3515   // If a variadic prototype is followed by a non-variadic K&R definition,
3516   // the K&R definition becomes variadic.  This is sort of an edge case, but
3517   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3518   // C99 6.9.1p8.
3519   if (!getLangOpts().CPlusPlus &&
3520       Old->hasPrototype() && !New->hasPrototype() &&
3521       New->getType()->getAs<FunctionProtoType>() &&
3522       Old->getNumParams() == New->getNumParams()) {
3523     SmallVector<QualType, 16> ArgTypes;
3524     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3525     const FunctionProtoType *OldProto
3526       = Old->getType()->getAs<FunctionProtoType>();
3527     const FunctionProtoType *NewProto
3528       = New->getType()->getAs<FunctionProtoType>();
3529 
3530     // Determine whether this is the GNU C extension.
3531     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3532                                                NewProto->getReturnType());
3533     bool LooseCompatible = !MergedReturn.isNull();
3534     for (unsigned Idx = 0, End = Old->getNumParams();
3535          LooseCompatible && Idx != End; ++Idx) {
3536       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3537       ParmVarDecl *NewParm = New->getParamDecl(Idx);
3538       if (Context.typesAreCompatible(OldParm->getType(),
3539                                      NewProto->getParamType(Idx))) {
3540         ArgTypes.push_back(NewParm->getType());
3541       } else if (Context.typesAreCompatible(OldParm->getType(),
3542                                             NewParm->getType(),
3543                                             /*CompareUnqualified=*/true)) {
3544         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3545                                            NewProto->getParamType(Idx) };
3546         Warnings.push_back(Warn);
3547         ArgTypes.push_back(NewParm->getType());
3548       } else
3549         LooseCompatible = false;
3550     }
3551 
3552     if (LooseCompatible) {
3553       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3554         Diag(Warnings[Warn].NewParm->getLocation(),
3555              diag::ext_param_promoted_not_compatible_with_prototype)
3556           << Warnings[Warn].PromotedType
3557           << Warnings[Warn].OldParm->getType();
3558         if (Warnings[Warn].OldParm->getLocation().isValid())
3559           Diag(Warnings[Warn].OldParm->getLocation(),
3560                diag::note_previous_declaration);
3561       }
3562 
3563       if (MergeTypeWithOld)
3564         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3565                                              OldProto->getExtProtoInfo()));
3566       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3567     }
3568 
3569     // Fall through to diagnose conflicting types.
3570   }
3571 
3572   // A function that has already been declared has been redeclared or
3573   // defined with a different type; show an appropriate diagnostic.
3574 
3575   // If the previous declaration was an implicitly-generated builtin
3576   // declaration, then at the very least we should use a specialized note.
3577   unsigned BuiltinID;
3578   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3579     // If it's actually a library-defined builtin function like 'malloc'
3580     // or 'printf', just warn about the incompatible redeclaration.
3581     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3582       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3583       Diag(OldLocation, diag::note_previous_builtin_declaration)
3584         << Old << Old->getType();
3585 
3586       // If this is a global redeclaration, just forget hereafter
3587       // about the "builtin-ness" of the function.
3588       //
3589       // Doing this for local extern declarations is problematic.  If
3590       // the builtin declaration remains visible, a second invalid
3591       // local declaration will produce a hard error; if it doesn't
3592       // remain visible, a single bogus local redeclaration (which is
3593       // actually only a warning) could break all the downstream code.
3594       if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3595         New->getIdentifier()->revertBuiltin();
3596 
3597       return false;
3598     }
3599 
3600     PrevDiag = diag::note_previous_builtin_declaration;
3601   }
3602 
3603   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3604   Diag(OldLocation, PrevDiag) << Old << Old->getType();
3605   return true;
3606 }
3607 
3608 /// Completes the merge of two function declarations that are
3609 /// known to be compatible.
3610 ///
3611 /// This routine handles the merging of attributes and other
3612 /// properties of function declarations from the old declaration to
3613 /// the new declaration, once we know that New is in fact a
3614 /// redeclaration of Old.
3615 ///
3616 /// \returns false
3617 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3618                                         Scope *S, bool MergeTypeWithOld) {
3619   // Merge the attributes
3620   mergeDeclAttributes(New, Old);
3621 
3622   // Merge "pure" flag.
3623   if (Old->isPure())
3624     New->setPure();
3625 
3626   // Merge "used" flag.
3627   if (Old->getMostRecentDecl()->isUsed(false))
3628     New->setIsUsed();
3629 
3630   // Merge attributes from the parameters.  These can mismatch with K&R
3631   // declarations.
3632   if (New->getNumParams() == Old->getNumParams())
3633       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3634         ParmVarDecl *NewParam = New->getParamDecl(i);
3635         ParmVarDecl *OldParam = Old->getParamDecl(i);
3636         mergeParamDeclAttributes(NewParam, OldParam, *this);
3637         mergeParamDeclTypes(NewParam, OldParam, *this);
3638       }
3639 
3640   if (getLangOpts().CPlusPlus)
3641     return MergeCXXFunctionDecl(New, Old, S);
3642 
3643   // Merge the function types so the we get the composite types for the return
3644   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3645   // was visible.
3646   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3647   if (!Merged.isNull() && MergeTypeWithOld)
3648     New->setType(Merged);
3649 
3650   return false;
3651 }
3652 
3653 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3654                                 ObjCMethodDecl *oldMethod) {
3655   // Merge the attributes, including deprecated/unavailable
3656   AvailabilityMergeKind MergeKind =
3657     isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3658       ? AMK_ProtocolImplementation
3659       : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3660                                                        : AMK_Override;
3661 
3662   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3663 
3664   // Merge attributes from the parameters.
3665   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3666                                        oe = oldMethod->param_end();
3667   for (ObjCMethodDecl::param_iterator
3668          ni = newMethod->param_begin(), ne = newMethod->param_end();
3669        ni != ne && oi != oe; ++ni, ++oi)
3670     mergeParamDeclAttributes(*ni, *oi, *this);
3671 
3672   CheckObjCMethodOverride(newMethod, oldMethod);
3673 }
3674 
3675 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3676   assert(!S.Context.hasSameType(New->getType(), Old->getType()));
3677 
3678   S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3679          ? diag::err_redefinition_different_type
3680          : diag::err_redeclaration_different_type)
3681     << New->getDeclName() << New->getType() << Old->getType();
3682 
3683   diag::kind PrevDiag;
3684   SourceLocation OldLocation;
3685   std::tie(PrevDiag, OldLocation)
3686     = getNoteDiagForInvalidRedeclaration(Old, New);
3687   S.Diag(OldLocation, PrevDiag);
3688   New->setInvalidDecl();
3689 }
3690 
3691 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3692 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3693 /// emitting diagnostics as appropriate.
3694 ///
3695 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3696 /// to here in AddInitializerToDecl. We can't check them before the initializer
3697 /// is attached.
3698 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3699                              bool MergeTypeWithOld) {
3700   if (New->isInvalidDecl() || Old->isInvalidDecl())
3701     return;
3702 
3703   QualType MergedT;
3704   if (getLangOpts().CPlusPlus) {
3705     if (New->getType()->isUndeducedType()) {
3706       // We don't know what the new type is until the initializer is attached.
3707       return;
3708     } else if (Context.hasSameType(New->getType(), Old->getType())) {
3709       // These could still be something that needs exception specs checked.
3710       return MergeVarDeclExceptionSpecs(New, Old);
3711     }
3712     // C++ [basic.link]p10:
3713     //   [...] the types specified by all declarations referring to a given
3714     //   object or function shall be identical, except that declarations for an
3715     //   array object can specify array types that differ by the presence or
3716     //   absence of a major array bound (8.3.4).
3717     else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3718       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3719       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3720 
3721       // We are merging a variable declaration New into Old. If it has an array
3722       // bound, and that bound differs from Old's bound, we should diagnose the
3723       // mismatch.
3724       if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3725         for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3726              PrevVD = PrevVD->getPreviousDecl()) {
3727           const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
3728           if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3729             continue;
3730 
3731           if (!Context.hasSameType(NewArray, PrevVDTy))
3732             return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3733         }
3734       }
3735 
3736       if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3737         if (Context.hasSameType(OldArray->getElementType(),
3738                                 NewArray->getElementType()))
3739           MergedT = New->getType();
3740       }
3741       // FIXME: Check visibility. New is hidden but has a complete type. If New
3742       // has no array bound, it should not inherit one from Old, if Old is not
3743       // visible.
3744       else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3745         if (Context.hasSameType(OldArray->getElementType(),
3746                                 NewArray->getElementType()))
3747           MergedT = Old->getType();
3748       }
3749     }
3750     else if (New->getType()->isObjCObjectPointerType() &&
3751                Old->getType()->isObjCObjectPointerType()) {
3752       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3753                                               Old->getType());
3754     }
3755   } else {
3756     // C 6.2.7p2:
3757     //   All declarations that refer to the same object or function shall have
3758     //   compatible type.
3759     MergedT = Context.mergeTypes(New->getType(), Old->getType());
3760   }
3761   if (MergedT.isNull()) {
3762     // It's OK if we couldn't merge types if either type is dependent, for a
3763     // block-scope variable. In other cases (static data members of class
3764     // templates, variable templates, ...), we require the types to be
3765     // equivalent.
3766     // FIXME: The C++ standard doesn't say anything about this.
3767     if ((New->getType()->isDependentType() ||
3768          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3769       // If the old type was dependent, we can't merge with it, so the new type
3770       // becomes dependent for now. We'll reproduce the original type when we
3771       // instantiate the TypeSourceInfo for the variable.
3772       if (!New->getType()->isDependentType() && MergeTypeWithOld)
3773         New->setType(Context.DependentTy);
3774       return;
3775     }
3776     return diagnoseVarDeclTypeMismatch(*this, New, Old);
3777   }
3778 
3779   // Don't actually update the type on the new declaration if the old
3780   // declaration was an extern declaration in a different scope.
3781   if (MergeTypeWithOld)
3782     New->setType(MergedT);
3783 }
3784 
3785 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3786                                   LookupResult &Previous) {
3787   // C11 6.2.7p4:
3788   //   For an identifier with internal or external linkage declared
3789   //   in a scope in which a prior declaration of that identifier is
3790   //   visible, if the prior declaration specifies internal or
3791   //   external linkage, the type of the identifier at the later
3792   //   declaration becomes the composite type.
3793   //
3794   // If the variable isn't visible, we do not merge with its type.
3795   if (Previous.isShadowed())
3796     return false;
3797 
3798   if (S.getLangOpts().CPlusPlus) {
3799     // C++11 [dcl.array]p3:
3800     //   If there is a preceding declaration of the entity in the same
3801     //   scope in which the bound was specified, an omitted array bound
3802     //   is taken to be the same as in that earlier declaration.
3803     return NewVD->isPreviousDeclInSameBlockScope() ||
3804            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3805             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3806   } else {
3807     // If the old declaration was function-local, don't merge with its
3808     // type unless we're in the same function.
3809     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3810            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3811   }
3812 }
3813 
3814 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
3815 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
3816 /// situation, merging decls or emitting diagnostics as appropriate.
3817 ///
3818 /// Tentative definition rules (C99 6.9.2p2) are checked by
3819 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3820 /// definitions here, since the initializer hasn't been attached.
3821 ///
3822 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3823   // If the new decl is already invalid, don't do any other checking.
3824   if (New->isInvalidDecl())
3825     return;
3826 
3827   if (!shouldLinkPossiblyHiddenDecl(Previous, New))
3828     return;
3829 
3830   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3831 
3832   // Verify the old decl was also a variable or variable template.
3833   VarDecl *Old = nullptr;
3834   VarTemplateDecl *OldTemplate = nullptr;
3835   if (Previous.isSingleResult()) {
3836     if (NewTemplate) {
3837       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3838       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3839 
3840       if (auto *Shadow =
3841               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3842         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
3843           return New->setInvalidDecl();
3844     } else {
3845       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3846 
3847       if (auto *Shadow =
3848               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3849         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
3850           return New->setInvalidDecl();
3851     }
3852   }
3853   if (!Old) {
3854     Diag(New->getLocation(), diag::err_redefinition_different_kind)
3855         << New->getDeclName();
3856     notePreviousDefinition(Previous.getRepresentativeDecl(),
3857                            New->getLocation());
3858     return New->setInvalidDecl();
3859   }
3860 
3861   // Ensure the template parameters are compatible.
3862   if (NewTemplate &&
3863       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3864                                       OldTemplate->getTemplateParameters(),
3865                                       /*Complain=*/true, TPL_TemplateMatch))
3866     return New->setInvalidDecl();
3867 
3868   // C++ [class.mem]p1:
3869   //   A member shall not be declared twice in the member-specification [...]
3870   //
3871   // Here, we need only consider static data members.
3872   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3873     Diag(New->getLocation(), diag::err_duplicate_member)
3874       << New->getIdentifier();
3875     Diag(Old->getLocation(), diag::note_previous_declaration);
3876     New->setInvalidDecl();
3877   }
3878 
3879   mergeDeclAttributes(New, Old);
3880   // Warn if an already-declared variable is made a weak_import in a subsequent
3881   // declaration
3882   if (New->hasAttr<WeakImportAttr>() &&
3883       Old->getStorageClass() == SC_None &&
3884       !Old->hasAttr<WeakImportAttr>()) {
3885     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3886     notePreviousDefinition(Old, New->getLocation());
3887     // Remove weak_import attribute on new declaration.
3888     New->dropAttr<WeakImportAttr>();
3889   }
3890 
3891   if (New->hasAttr<InternalLinkageAttr>() &&
3892       !Old->hasAttr<InternalLinkageAttr>()) {
3893     Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3894         << New->getDeclName();
3895     notePreviousDefinition(Old, New->getLocation());
3896     New->dropAttr<InternalLinkageAttr>();
3897   }
3898 
3899   // Merge the types.
3900   VarDecl *MostRecent = Old->getMostRecentDecl();
3901   if (MostRecent != Old) {
3902     MergeVarDeclTypes(New, MostRecent,
3903                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3904     if (New->isInvalidDecl())
3905       return;
3906   }
3907 
3908   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3909   if (New->isInvalidDecl())
3910     return;
3911 
3912   diag::kind PrevDiag;
3913   SourceLocation OldLocation;
3914   std::tie(PrevDiag, OldLocation) =
3915       getNoteDiagForInvalidRedeclaration(Old, New);
3916 
3917   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3918   if (New->getStorageClass() == SC_Static &&
3919       !New->isStaticDataMember() &&
3920       Old->hasExternalFormalLinkage()) {
3921     if (getLangOpts().MicrosoftExt) {
3922       Diag(New->getLocation(), diag::ext_static_non_static)
3923           << New->getDeclName();
3924       Diag(OldLocation, PrevDiag);
3925     } else {
3926       Diag(New->getLocation(), diag::err_static_non_static)
3927           << New->getDeclName();
3928       Diag(OldLocation, PrevDiag);
3929       return New->setInvalidDecl();
3930     }
3931   }
3932   // C99 6.2.2p4:
3933   //   For an identifier declared with the storage-class specifier
3934   //   extern in a scope in which a prior declaration of that
3935   //   identifier is visible,23) if the prior declaration specifies
3936   //   internal or external linkage, the linkage of the identifier at
3937   //   the later declaration is the same as the linkage specified at
3938   //   the prior declaration. If no prior declaration is visible, or
3939   //   if the prior declaration specifies no linkage, then the
3940   //   identifier has external linkage.
3941   if (New->hasExternalStorage() && Old->hasLinkage())
3942     /* Okay */;
3943   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3944            !New->isStaticDataMember() &&
3945            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3946     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3947     Diag(OldLocation, PrevDiag);
3948     return New->setInvalidDecl();
3949   }
3950 
3951   // Check if extern is followed by non-extern and vice-versa.
3952   if (New->hasExternalStorage() &&
3953       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3954     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3955     Diag(OldLocation, PrevDiag);
3956     return New->setInvalidDecl();
3957   }
3958   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3959       !New->hasExternalStorage()) {
3960     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3961     Diag(OldLocation, PrevDiag);
3962     return New->setInvalidDecl();
3963   }
3964 
3965   if (CheckRedeclarationModuleOwnership(New, Old))
3966     return;
3967 
3968   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3969 
3970   // FIXME: The test for external storage here seems wrong? We still
3971   // need to check for mismatches.
3972   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3973       // Don't complain about out-of-line definitions of static members.
3974       !(Old->getLexicalDeclContext()->isRecord() &&
3975         !New->getLexicalDeclContext()->isRecord())) {
3976     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3977     Diag(OldLocation, PrevDiag);
3978     return New->setInvalidDecl();
3979   }
3980 
3981   if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
3982     if (VarDecl *Def = Old->getDefinition()) {
3983       // C++1z [dcl.fcn.spec]p4:
3984       //   If the definition of a variable appears in a translation unit before
3985       //   its first declaration as inline, the program is ill-formed.
3986       Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
3987       Diag(Def->getLocation(), diag::note_previous_definition);
3988     }
3989   }
3990 
3991   // If this redeclaration makes the variable inline, we may need to add it to
3992   // UndefinedButUsed.
3993   if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
3994       !Old->getDefinition() && !New->isThisDeclarationADefinition())
3995     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3996                                            SourceLocation()));
3997 
3998   if (New->getTLSKind() != Old->getTLSKind()) {
3999     if (!Old->getTLSKind()) {
4000       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4001       Diag(OldLocation, PrevDiag);
4002     } else if (!New->getTLSKind()) {
4003       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4004       Diag(OldLocation, PrevDiag);
4005     } else {
4006       // Do not allow redeclaration to change the variable between requiring
4007       // static and dynamic initialization.
4008       // FIXME: GCC allows this, but uses the TLS keyword on the first
4009       // declaration to determine the kind. Do we need to be compatible here?
4010       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4011         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4012       Diag(OldLocation, PrevDiag);
4013     }
4014   }
4015 
4016   // C++ doesn't have tentative definitions, so go right ahead and check here.
4017   if (getLangOpts().CPlusPlus &&
4018       New->isThisDeclarationADefinition() == VarDecl::Definition) {
4019     if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4020         Old->getCanonicalDecl()->isConstexpr()) {
4021       // This definition won't be a definition any more once it's been merged.
4022       Diag(New->getLocation(),
4023            diag::warn_deprecated_redundant_constexpr_static_def);
4024     } else if (VarDecl *Def = Old->getDefinition()) {
4025       if (checkVarDeclRedefinition(Def, New))
4026         return;
4027     }
4028   }
4029 
4030   if (haveIncompatibleLanguageLinkages(Old, New)) {
4031     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4032     Diag(OldLocation, PrevDiag);
4033     New->setInvalidDecl();
4034     return;
4035   }
4036 
4037   // Merge "used" flag.
4038   if (Old->getMostRecentDecl()->isUsed(false))
4039     New->setIsUsed();
4040 
4041   // Keep a chain of previous declarations.
4042   New->setPreviousDecl(Old);
4043   if (NewTemplate)
4044     NewTemplate->setPreviousDecl(OldTemplate);
4045   adjustDeclContextForDeclaratorDecl(New, Old);
4046 
4047   // Inherit access appropriately.
4048   New->setAccess(Old->getAccess());
4049   if (NewTemplate)
4050     NewTemplate->setAccess(New->getAccess());
4051 
4052   if (Old->isInline())
4053     New->setImplicitlyInline();
4054 }
4055 
4056 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4057   SourceManager &SrcMgr = getSourceManager();
4058   auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4059   auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4060   auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4061   auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4062   auto &HSI = PP.getHeaderSearchInfo();
4063   StringRef HdrFilename =
4064       SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4065 
4066   auto noteFromModuleOrInclude = [&](Module *Mod,
4067                                      SourceLocation IncLoc) -> bool {
4068     // Redefinition errors with modules are common with non modular mapped
4069     // headers, example: a non-modular header H in module A that also gets
4070     // included directly in a TU. Pointing twice to the same header/definition
4071     // is confusing, try to get better diagnostics when modules is on.
4072     if (IncLoc.isValid()) {
4073       if (Mod) {
4074         Diag(IncLoc, diag::note_redefinition_modules_same_file)
4075             << HdrFilename.str() << Mod->getFullModuleName();
4076         if (!Mod->DefinitionLoc.isInvalid())
4077           Diag(Mod->DefinitionLoc, diag::note_defined_here)
4078               << Mod->getFullModuleName();
4079       } else {
4080         Diag(IncLoc, diag::note_redefinition_include_same_file)
4081             << HdrFilename.str();
4082       }
4083       return true;
4084     }
4085 
4086     return false;
4087   };
4088 
4089   // Is it the same file and same offset? Provide more information on why
4090   // this leads to a redefinition error.
4091   bool EmittedDiag = false;
4092   if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4093     SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4094     SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4095     EmittedDiag = noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4096     EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4097 
4098     // If the header has no guards, emit a note suggesting one.
4099     if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4100       Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4101 
4102     if (EmittedDiag)
4103       return;
4104   }
4105 
4106   // Redefinition coming from different files or couldn't do better above.
4107   if (Old->getLocation().isValid())
4108     Diag(Old->getLocation(), diag::note_previous_definition);
4109 }
4110 
4111 /// We've just determined that \p Old and \p New both appear to be definitions
4112 /// of the same variable. Either diagnose or fix the problem.
4113 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4114   if (!hasVisibleDefinition(Old) &&
4115       (New->getFormalLinkage() == InternalLinkage ||
4116        New->isInline() ||
4117        New->getDescribedVarTemplate() ||
4118        New->getNumTemplateParameterLists() ||
4119        New->getDeclContext()->isDependentContext())) {
4120     // The previous definition is hidden, and multiple definitions are
4121     // permitted (in separate TUs). Demote this to a declaration.
4122     New->demoteThisDefinitionToDeclaration();
4123 
4124     // Make the canonical definition visible.
4125     if (auto *OldTD = Old->getDescribedVarTemplate())
4126       makeMergedDefinitionVisible(OldTD);
4127     makeMergedDefinitionVisible(Old);
4128     return false;
4129   } else {
4130     Diag(New->getLocation(), diag::err_redefinition) << New;
4131     notePreviousDefinition(Old, New->getLocation());
4132     New->setInvalidDecl();
4133     return true;
4134   }
4135 }
4136 
4137 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4138 /// no declarator (e.g. "struct foo;") is parsed.
4139 Decl *
4140 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4141                                  RecordDecl *&AnonRecord) {
4142   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4143                                     AnonRecord);
4144 }
4145 
4146 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4147 // disambiguate entities defined in different scopes.
4148 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4149 // compatibility.
4150 // We will pick our mangling number depending on which version of MSVC is being
4151 // targeted.
4152 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4153   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4154              ? S->getMSCurManglingNumber()
4155              : S->getMSLastManglingNumber();
4156 }
4157 
4158 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4159   if (!Context.getLangOpts().CPlusPlus)
4160     return;
4161 
4162   if (isa<CXXRecordDecl>(Tag->getParent())) {
4163     // If this tag is the direct child of a class, number it if
4164     // it is anonymous.
4165     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4166       return;
4167     MangleNumberingContext &MCtx =
4168         Context.getManglingNumberContext(Tag->getParent());
4169     Context.setManglingNumber(
4170         Tag, MCtx.getManglingNumber(
4171                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4172     return;
4173   }
4174 
4175   // If this tag isn't a direct child of a class, number it if it is local.
4176   Decl *ManglingContextDecl;
4177   if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4178           Tag->getDeclContext(), ManglingContextDecl)) {
4179     Context.setManglingNumber(
4180         Tag, MCtx->getManglingNumber(
4181                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4182   }
4183 }
4184 
4185 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4186                                         TypedefNameDecl *NewTD) {
4187   if (TagFromDeclSpec->isInvalidDecl())
4188     return;
4189 
4190   // Do nothing if the tag already has a name for linkage purposes.
4191   if (TagFromDeclSpec->hasNameForLinkage())
4192     return;
4193 
4194   // A well-formed anonymous tag must always be a TUK_Definition.
4195   assert(TagFromDeclSpec->isThisDeclarationADefinition());
4196 
4197   // The type must match the tag exactly;  no qualifiers allowed.
4198   if (!Context.hasSameType(NewTD->getUnderlyingType(),
4199                            Context.getTagDeclType(TagFromDeclSpec))) {
4200     if (getLangOpts().CPlusPlus)
4201       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4202     return;
4203   }
4204 
4205   // If we've already computed linkage for the anonymous tag, then
4206   // adding a typedef name for the anonymous decl can change that
4207   // linkage, which might be a serious problem.  Diagnose this as
4208   // unsupported and ignore the typedef name.  TODO: we should
4209   // pursue this as a language defect and establish a formal rule
4210   // for how to handle it.
4211   if (TagFromDeclSpec->hasLinkageBeenComputed()) {
4212     Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
4213 
4214     SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
4215     tagLoc = getLocForEndOfToken(tagLoc);
4216 
4217     llvm::SmallString<40> textToInsert;
4218     textToInsert += ' ';
4219     textToInsert += NewTD->getIdentifier()->getName();
4220     Diag(tagLoc, diag::note_typedef_changes_linkage)
4221         << FixItHint::CreateInsertion(tagLoc, textToInsert);
4222     return;
4223   }
4224 
4225   // Otherwise, set this is the anon-decl typedef for the tag.
4226   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4227 }
4228 
4229 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4230   switch (T) {
4231   case DeclSpec::TST_class:
4232     return 0;
4233   case DeclSpec::TST_struct:
4234     return 1;
4235   case DeclSpec::TST_interface:
4236     return 2;
4237   case DeclSpec::TST_union:
4238     return 3;
4239   case DeclSpec::TST_enum:
4240     return 4;
4241   default:
4242     llvm_unreachable("unexpected type specifier");
4243   }
4244 }
4245 
4246 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4247 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4248 /// parameters to cope with template friend declarations.
4249 Decl *
4250 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4251                                  MultiTemplateParamsArg TemplateParams,
4252                                  bool IsExplicitInstantiation,
4253                                  RecordDecl *&AnonRecord) {
4254   Decl *TagD = nullptr;
4255   TagDecl *Tag = nullptr;
4256   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4257       DS.getTypeSpecType() == DeclSpec::TST_struct ||
4258       DS.getTypeSpecType() == DeclSpec::TST_interface ||
4259       DS.getTypeSpecType() == DeclSpec::TST_union ||
4260       DS.getTypeSpecType() == DeclSpec::TST_enum) {
4261     TagD = DS.getRepAsDecl();
4262 
4263     if (!TagD) // We probably had an error
4264       return nullptr;
4265 
4266     // Note that the above type specs guarantee that the
4267     // type rep is a Decl, whereas in many of the others
4268     // it's a Type.
4269     if (isa<TagDecl>(TagD))
4270       Tag = cast<TagDecl>(TagD);
4271     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4272       Tag = CTD->getTemplatedDecl();
4273   }
4274 
4275   if (Tag) {
4276     handleTagNumbering(Tag, S);
4277     Tag->setFreeStanding();
4278     if (Tag->isInvalidDecl())
4279       return Tag;
4280   }
4281 
4282   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4283     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4284     // or incomplete types shall not be restrict-qualified."
4285     if (TypeQuals & DeclSpec::TQ_restrict)
4286       Diag(DS.getRestrictSpecLoc(),
4287            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4288            << DS.getSourceRange();
4289   }
4290 
4291   if (DS.isInlineSpecified())
4292     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4293         << getLangOpts().CPlusPlus17;
4294 
4295   if (DS.hasConstexprSpecifier()) {
4296     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4297     // and definitions of functions and variables.
4298     // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
4299     // the declaration of a function or function template
4300     bool IsConsteval = DS.getConstexprSpecifier() == CSK_consteval;
4301     if (Tag)
4302       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4303           << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << IsConsteval;
4304     else
4305       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
4306           << IsConsteval;
4307     // Don't emit warnings after this error.
4308     return TagD;
4309   }
4310 
4311   DiagnoseFunctionSpecifiers(DS);
4312 
4313   if (DS.isFriendSpecified()) {
4314     // If we're dealing with a decl but not a TagDecl, assume that
4315     // whatever routines created it handled the friendship aspect.
4316     if (TagD && !Tag)
4317       return nullptr;
4318     return ActOnFriendTypeDecl(S, DS, TemplateParams);
4319   }
4320 
4321   const CXXScopeSpec &SS = DS.getTypeSpecScope();
4322   bool IsExplicitSpecialization =
4323     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4324   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4325       !IsExplicitInstantiation && !IsExplicitSpecialization &&
4326       !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4327     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4328     // nested-name-specifier unless it is an explicit instantiation
4329     // or an explicit specialization.
4330     //
4331     // FIXME: We allow class template partial specializations here too, per the
4332     // obvious intent of DR1819.
4333     //
4334     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4335     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4336         << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4337     return nullptr;
4338   }
4339 
4340   // Track whether this decl-specifier declares anything.
4341   bool DeclaresAnything = true;
4342 
4343   // Handle anonymous struct definitions.
4344   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4345     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4346         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4347       if (getLangOpts().CPlusPlus ||
4348           Record->getDeclContext()->isRecord()) {
4349         // If CurContext is a DeclContext that can contain statements,
4350         // RecursiveASTVisitor won't visit the decls that
4351         // BuildAnonymousStructOrUnion() will put into CurContext.
4352         // Also store them here so that they can be part of the
4353         // DeclStmt that gets created in this case.
4354         // FIXME: Also return the IndirectFieldDecls created by
4355         // BuildAnonymousStructOr union, for the same reason?
4356         if (CurContext->isFunctionOrMethod())
4357           AnonRecord = Record;
4358         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4359                                            Context.getPrintingPolicy());
4360       }
4361 
4362       DeclaresAnything = false;
4363     }
4364   }
4365 
4366   // C11 6.7.2.1p2:
4367   //   A struct-declaration that does not declare an anonymous structure or
4368   //   anonymous union shall contain a struct-declarator-list.
4369   //
4370   // This rule also existed in C89 and C99; the grammar for struct-declaration
4371   // did not permit a struct-declaration without a struct-declarator-list.
4372   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4373       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4374     // Check for Microsoft C extension: anonymous struct/union member.
4375     // Handle 2 kinds of anonymous struct/union:
4376     //   struct STRUCT;
4377     //   union UNION;
4378     // and
4379     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
4380     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
4381     if ((Tag && Tag->getDeclName()) ||
4382         DS.getTypeSpecType() == DeclSpec::TST_typename) {
4383       RecordDecl *Record = nullptr;
4384       if (Tag)
4385         Record = dyn_cast<RecordDecl>(Tag);
4386       else if (const RecordType *RT =
4387                    DS.getRepAsType().get()->getAsStructureType())
4388         Record = RT->getDecl();
4389       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4390         Record = UT->getDecl();
4391 
4392       if (Record && getLangOpts().MicrosoftExt) {
4393         Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4394             << Record->isUnion() << DS.getSourceRange();
4395         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4396       }
4397 
4398       DeclaresAnything = false;
4399     }
4400   }
4401 
4402   // Skip all the checks below if we have a type error.
4403   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4404       (TagD && TagD->isInvalidDecl()))
4405     return TagD;
4406 
4407   if (getLangOpts().CPlusPlus &&
4408       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4409     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4410       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4411           !Enum->getIdentifier() && !Enum->isInvalidDecl())
4412         DeclaresAnything = false;
4413 
4414   if (!DS.isMissingDeclaratorOk()) {
4415     // Customize diagnostic for a typedef missing a name.
4416     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4417       Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4418           << DS.getSourceRange();
4419     else
4420       DeclaresAnything = false;
4421   }
4422 
4423   if (DS.isModulePrivateSpecified() &&
4424       Tag && Tag->getDeclContext()->isFunctionOrMethod())
4425     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4426       << Tag->getTagKind()
4427       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4428 
4429   ActOnDocumentableDecl(TagD);
4430 
4431   // C 6.7/2:
4432   //   A declaration [...] shall declare at least a declarator [...], a tag,
4433   //   or the members of an enumeration.
4434   // C++ [dcl.dcl]p3:
4435   //   [If there are no declarators], and except for the declaration of an
4436   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
4437   //   names into the program, or shall redeclare a name introduced by a
4438   //   previous declaration.
4439   if (!DeclaresAnything) {
4440     // In C, we allow this as a (popular) extension / bug. Don't bother
4441     // producing further diagnostics for redundant qualifiers after this.
4442     Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
4443     return TagD;
4444   }
4445 
4446   // C++ [dcl.stc]p1:
4447   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4448   //   init-declarator-list of the declaration shall not be empty.
4449   // C++ [dcl.fct.spec]p1:
4450   //   If a cv-qualifier appears in a decl-specifier-seq, the
4451   //   init-declarator-list of the declaration shall not be empty.
4452   //
4453   // Spurious qualifiers here appear to be valid in C.
4454   unsigned DiagID = diag::warn_standalone_specifier;
4455   if (getLangOpts().CPlusPlus)
4456     DiagID = diag::ext_standalone_specifier;
4457 
4458   // Note that a linkage-specification sets a storage class, but
4459   // 'extern "C" struct foo;' is actually valid and not theoretically
4460   // useless.
4461   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4462     if (SCS == DeclSpec::SCS_mutable)
4463       // Since mutable is not a viable storage class specifier in C, there is
4464       // no reason to treat it as an extension. Instead, diagnose as an error.
4465       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4466     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4467       Diag(DS.getStorageClassSpecLoc(), DiagID)
4468         << DeclSpec::getSpecifierName(SCS);
4469   }
4470 
4471   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4472     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4473       << DeclSpec::getSpecifierName(TSCS);
4474   if (DS.getTypeQualifiers()) {
4475     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4476       Diag(DS.getConstSpecLoc(), DiagID) << "const";
4477     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4478       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4479     // Restrict is covered above.
4480     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4481       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4482     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4483       Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4484   }
4485 
4486   // Warn about ignored type attributes, for example:
4487   // __attribute__((aligned)) struct A;
4488   // Attributes should be placed after tag to apply to type declaration.
4489   if (!DS.getAttributes().empty()) {
4490     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4491     if (TypeSpecType == DeclSpec::TST_class ||
4492         TypeSpecType == DeclSpec::TST_struct ||
4493         TypeSpecType == DeclSpec::TST_interface ||
4494         TypeSpecType == DeclSpec::TST_union ||
4495         TypeSpecType == DeclSpec::TST_enum) {
4496       for (const ParsedAttr &AL : DS.getAttributes())
4497         Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4498             << AL.getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
4499     }
4500   }
4501 
4502   return TagD;
4503 }
4504 
4505 /// We are trying to inject an anonymous member into the given scope;
4506 /// check if there's an existing declaration that can't be overloaded.
4507 ///
4508 /// \return true if this is a forbidden redeclaration
4509 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4510                                          Scope *S,
4511                                          DeclContext *Owner,
4512                                          DeclarationName Name,
4513                                          SourceLocation NameLoc,
4514                                          bool IsUnion) {
4515   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4516                  Sema::ForVisibleRedeclaration);
4517   if (!SemaRef.LookupName(R, S)) return false;
4518 
4519   // Pick a representative declaration.
4520   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4521   assert(PrevDecl && "Expected a non-null Decl");
4522 
4523   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4524     return false;
4525 
4526   SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4527     << IsUnion << Name;
4528   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4529 
4530   return true;
4531 }
4532 
4533 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
4534 /// anonymous struct or union AnonRecord into the owning context Owner
4535 /// and scope S. This routine will be invoked just after we realize
4536 /// that an unnamed union or struct is actually an anonymous union or
4537 /// struct, e.g.,
4538 ///
4539 /// @code
4540 /// union {
4541 ///   int i;
4542 ///   float f;
4543 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4544 ///    // f into the surrounding scope.x
4545 /// @endcode
4546 ///
4547 /// This routine is recursive, injecting the names of nested anonymous
4548 /// structs/unions into the owning context and scope as well.
4549 static bool
4550 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4551                                     RecordDecl *AnonRecord, AccessSpecifier AS,
4552                                     SmallVectorImpl<NamedDecl *> &Chaining) {
4553   bool Invalid = false;
4554 
4555   // Look every FieldDecl and IndirectFieldDecl with a name.
4556   for (auto *D : AnonRecord->decls()) {
4557     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4558         cast<NamedDecl>(D)->getDeclName()) {
4559       ValueDecl *VD = cast<ValueDecl>(D);
4560       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4561                                        VD->getLocation(),
4562                                        AnonRecord->isUnion())) {
4563         // C++ [class.union]p2:
4564         //   The names of the members of an anonymous union shall be
4565         //   distinct from the names of any other entity in the
4566         //   scope in which the anonymous union is declared.
4567         Invalid = true;
4568       } else {
4569         // C++ [class.union]p2:
4570         //   For the purpose of name lookup, after the anonymous union
4571         //   definition, the members of the anonymous union are
4572         //   considered to have been defined in the scope in which the
4573         //   anonymous union is declared.
4574         unsigned OldChainingSize = Chaining.size();
4575         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4576           Chaining.append(IF->chain_begin(), IF->chain_end());
4577         else
4578           Chaining.push_back(VD);
4579 
4580         assert(Chaining.size() >= 2);
4581         NamedDecl **NamedChain =
4582           new (SemaRef.Context)NamedDecl*[Chaining.size()];
4583         for (unsigned i = 0; i < Chaining.size(); i++)
4584           NamedChain[i] = Chaining[i];
4585 
4586         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4587             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4588             VD->getType(), {NamedChain, Chaining.size()});
4589 
4590         for (const auto *Attr : VD->attrs())
4591           IndirectField->addAttr(Attr->clone(SemaRef.Context));
4592 
4593         IndirectField->setAccess(AS);
4594         IndirectField->setImplicit();
4595         SemaRef.PushOnScopeChains(IndirectField, S);
4596 
4597         // That includes picking up the appropriate access specifier.
4598         if (AS != AS_none) IndirectField->setAccess(AS);
4599 
4600         Chaining.resize(OldChainingSize);
4601       }
4602     }
4603   }
4604 
4605   return Invalid;
4606 }
4607 
4608 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4609 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
4610 /// illegal input values are mapped to SC_None.
4611 static StorageClass
4612 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4613   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4614   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
4615          "Parser allowed 'typedef' as storage class VarDecl.");
4616   switch (StorageClassSpec) {
4617   case DeclSpec::SCS_unspecified:    return SC_None;
4618   case DeclSpec::SCS_extern:
4619     if (DS.isExternInLinkageSpec())
4620       return SC_None;
4621     return SC_Extern;
4622   case DeclSpec::SCS_static:         return SC_Static;
4623   case DeclSpec::SCS_auto:           return SC_Auto;
4624   case DeclSpec::SCS_register:       return SC_Register;
4625   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4626     // Illegal SCSs map to None: error reporting is up to the caller.
4627   case DeclSpec::SCS_mutable:        // Fall through.
4628   case DeclSpec::SCS_typedef:        return SC_None;
4629   }
4630   llvm_unreachable("unknown storage class specifier");
4631 }
4632 
4633 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4634   assert(Record->hasInClassInitializer());
4635 
4636   for (const auto *I : Record->decls()) {
4637     const auto *FD = dyn_cast<FieldDecl>(I);
4638     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4639       FD = IFD->getAnonField();
4640     if (FD && FD->hasInClassInitializer())
4641       return FD->getLocation();
4642   }
4643 
4644   llvm_unreachable("couldn't find in-class initializer");
4645 }
4646 
4647 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4648                                       SourceLocation DefaultInitLoc) {
4649   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4650     return;
4651 
4652   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4653   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4654 }
4655 
4656 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4657                                       CXXRecordDecl *AnonUnion) {
4658   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4659     return;
4660 
4661   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4662 }
4663 
4664 /// BuildAnonymousStructOrUnion - Handle the declaration of an
4665 /// anonymous structure or union. Anonymous unions are a C++ feature
4666 /// (C++ [class.union]) and a C11 feature; anonymous structures
4667 /// are a C11 feature and GNU C++ extension.
4668 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4669                                         AccessSpecifier AS,
4670                                         RecordDecl *Record,
4671                                         const PrintingPolicy &Policy) {
4672   DeclContext *Owner = Record->getDeclContext();
4673 
4674   // Diagnose whether this anonymous struct/union is an extension.
4675   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4676     Diag(Record->getLocation(), diag::ext_anonymous_union);
4677   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4678     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4679   else if (!Record->isUnion() && !getLangOpts().C11)
4680     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4681 
4682   // C and C++ require different kinds of checks for anonymous
4683   // structs/unions.
4684   bool Invalid = false;
4685   if (getLangOpts().CPlusPlus) {
4686     const char *PrevSpec = nullptr;
4687     unsigned DiagID;
4688     if (Record->isUnion()) {
4689       // C++ [class.union]p6:
4690       // C++17 [class.union.anon]p2:
4691       //   Anonymous unions declared in a named namespace or in the
4692       //   global namespace shall be declared static.
4693       DeclContext *OwnerScope = Owner->getRedeclContext();
4694       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4695           (OwnerScope->isTranslationUnit() ||
4696            (OwnerScope->isNamespace() &&
4697             !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
4698         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4699           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4700 
4701         // Recover by adding 'static'.
4702         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4703                                PrevSpec, DiagID, Policy);
4704       }
4705       // C++ [class.union]p6:
4706       //   A storage class is not allowed in a declaration of an
4707       //   anonymous union in a class scope.
4708       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4709                isa<RecordDecl>(Owner)) {
4710         Diag(DS.getStorageClassSpecLoc(),
4711              diag::err_anonymous_union_with_storage_spec)
4712           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4713 
4714         // Recover by removing the storage specifier.
4715         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
4716                                SourceLocation(),
4717                                PrevSpec, DiagID, Context.getPrintingPolicy());
4718       }
4719     }
4720 
4721     // Ignore const/volatile/restrict qualifiers.
4722     if (DS.getTypeQualifiers()) {
4723       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4724         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4725           << Record->isUnion() << "const"
4726           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4727       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4728         Diag(DS.getVolatileSpecLoc(),
4729              diag::ext_anonymous_struct_union_qualified)
4730           << Record->isUnion() << "volatile"
4731           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4732       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4733         Diag(DS.getRestrictSpecLoc(),
4734              diag::ext_anonymous_struct_union_qualified)
4735           << Record->isUnion() << "restrict"
4736           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4737       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4738         Diag(DS.getAtomicSpecLoc(),
4739              diag::ext_anonymous_struct_union_qualified)
4740           << Record->isUnion() << "_Atomic"
4741           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4742       if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4743         Diag(DS.getUnalignedSpecLoc(),
4744              diag::ext_anonymous_struct_union_qualified)
4745           << Record->isUnion() << "__unaligned"
4746           << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
4747 
4748       DS.ClearTypeQualifiers();
4749     }
4750 
4751     // C++ [class.union]p2:
4752     //   The member-specification of an anonymous union shall only
4753     //   define non-static data members. [Note: nested types and
4754     //   functions cannot be declared within an anonymous union. ]
4755     for (auto *Mem : Record->decls()) {
4756       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4757         // C++ [class.union]p3:
4758         //   An anonymous union shall not have private or protected
4759         //   members (clause 11).
4760         assert(FD->getAccess() != AS_none);
4761         if (FD->getAccess() != AS_public) {
4762           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4763             << Record->isUnion() << (FD->getAccess() == AS_protected);
4764           Invalid = true;
4765         }
4766 
4767         // C++ [class.union]p1
4768         //   An object of a class with a non-trivial constructor, a non-trivial
4769         //   copy constructor, a non-trivial destructor, or a non-trivial copy
4770         //   assignment operator cannot be a member of a union, nor can an
4771         //   array of such objects.
4772         if (CheckNontrivialField(FD))
4773           Invalid = true;
4774       } else if (Mem->isImplicit()) {
4775         // Any implicit members are fine.
4776       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4777         // This is a type that showed up in an
4778         // elaborated-type-specifier inside the anonymous struct or
4779         // union, but which actually declares a type outside of the
4780         // anonymous struct or union. It's okay.
4781       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4782         if (!MemRecord->isAnonymousStructOrUnion() &&
4783             MemRecord->getDeclName()) {
4784           // Visual C++ allows type definition in anonymous struct or union.
4785           if (getLangOpts().MicrosoftExt)
4786             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4787               << Record->isUnion();
4788           else {
4789             // This is a nested type declaration.
4790             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4791               << Record->isUnion();
4792             Invalid = true;
4793           }
4794         } else {
4795           // This is an anonymous type definition within another anonymous type.
4796           // This is a popular extension, provided by Plan9, MSVC and GCC, but
4797           // not part of standard C++.
4798           Diag(MemRecord->getLocation(),
4799                diag::ext_anonymous_record_with_anonymous_type)
4800             << Record->isUnion();
4801         }
4802       } else if (isa<AccessSpecDecl>(Mem)) {
4803         // Any access specifier is fine.
4804       } else if (isa<StaticAssertDecl>(Mem)) {
4805         // In C++1z, static_assert declarations are also fine.
4806       } else {
4807         // We have something that isn't a non-static data
4808         // member. Complain about it.
4809         unsigned DK = diag::err_anonymous_record_bad_member;
4810         if (isa<TypeDecl>(Mem))
4811           DK = diag::err_anonymous_record_with_type;
4812         else if (isa<FunctionDecl>(Mem))
4813           DK = diag::err_anonymous_record_with_function;
4814         else if (isa<VarDecl>(Mem))
4815           DK = diag::err_anonymous_record_with_static;
4816 
4817         // Visual C++ allows type definition in anonymous struct or union.
4818         if (getLangOpts().MicrosoftExt &&
4819             DK == diag::err_anonymous_record_with_type)
4820           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4821             << Record->isUnion();
4822         else {
4823           Diag(Mem->getLocation(), DK) << Record->isUnion();
4824           Invalid = true;
4825         }
4826       }
4827     }
4828 
4829     // C++11 [class.union]p8 (DR1460):
4830     //   At most one variant member of a union may have a
4831     //   brace-or-equal-initializer.
4832     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4833         Owner->isRecord())
4834       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4835                                 cast<CXXRecordDecl>(Record));
4836   }
4837 
4838   if (!Record->isUnion() && !Owner->isRecord()) {
4839     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4840       << getLangOpts().CPlusPlus;
4841     Invalid = true;
4842   }
4843 
4844   // C++ [dcl.dcl]p3:
4845   //   [If there are no declarators], and except for the declaration of an
4846   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
4847   //   names into the program
4848   // C++ [class.mem]p2:
4849   //   each such member-declaration shall either declare at least one member
4850   //   name of the class or declare at least one unnamed bit-field
4851   //
4852   // For C this is an error even for a named struct, and is diagnosed elsewhere.
4853   if (getLangOpts().CPlusPlus && Record->field_empty())
4854     Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
4855 
4856   // Mock up a declarator.
4857   Declarator Dc(DS, DeclaratorContext::MemberContext);
4858   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4859   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
4860 
4861   // Create a declaration for this anonymous struct/union.
4862   NamedDecl *Anon = nullptr;
4863   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4864     Anon = FieldDecl::Create(
4865         Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
4866         /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
4867         /*BitWidth=*/nullptr, /*Mutable=*/false,
4868         /*InitStyle=*/ICIS_NoInit);
4869     Anon->setAccess(AS);
4870     if (getLangOpts().CPlusPlus)
4871       FieldCollector->Add(cast<FieldDecl>(Anon));
4872   } else {
4873     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4874     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4875     if (SCSpec == DeclSpec::SCS_mutable) {
4876       // mutable can only appear on non-static class members, so it's always
4877       // an error here
4878       Diag(Record->getLocation(), diag::err_mutable_nonmember);
4879       Invalid = true;
4880       SC = SC_None;
4881     }
4882 
4883     Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
4884                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
4885                            Context.getTypeDeclType(Record), TInfo, SC);
4886 
4887     // Default-initialize the implicit variable. This initialization will be
4888     // trivial in almost all cases, except if a union member has an in-class
4889     // initializer:
4890     //   union { int n = 0; };
4891     ActOnUninitializedDecl(Anon);
4892   }
4893   Anon->setImplicit();
4894 
4895   // Mark this as an anonymous struct/union type.
4896   Record->setAnonymousStructOrUnion(true);
4897 
4898   // Add the anonymous struct/union object to the current
4899   // context. We'll be referencing this object when we refer to one of
4900   // its members.
4901   Owner->addDecl(Anon);
4902 
4903   // Inject the members of the anonymous struct/union into the owning
4904   // context and into the identifier resolver chain for name lookup
4905   // purposes.
4906   SmallVector<NamedDecl*, 2> Chain;
4907   Chain.push_back(Anon);
4908 
4909   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
4910     Invalid = true;
4911 
4912   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4913     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4914       Decl *ManglingContextDecl;
4915       if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4916               NewVD->getDeclContext(), ManglingContextDecl)) {
4917         Context.setManglingNumber(
4918             NewVD, MCtx->getManglingNumber(
4919                        NewVD, getMSManglingNumber(getLangOpts(), S)));
4920         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4921       }
4922     }
4923   }
4924 
4925   if (Invalid)
4926     Anon->setInvalidDecl();
4927 
4928   return Anon;
4929 }
4930 
4931 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4932 /// Microsoft C anonymous structure.
4933 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4934 /// Example:
4935 ///
4936 /// struct A { int a; };
4937 /// struct B { struct A; int b; };
4938 ///
4939 /// void foo() {
4940 ///   B var;
4941 ///   var.a = 3;
4942 /// }
4943 ///
4944 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4945                                            RecordDecl *Record) {
4946   assert(Record && "expected a record!");
4947 
4948   // Mock up a declarator.
4949   Declarator Dc(DS, DeclaratorContext::TypeNameContext);
4950   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4951   assert(TInfo && "couldn't build declarator info for anonymous struct");
4952 
4953   auto *ParentDecl = cast<RecordDecl>(CurContext);
4954   QualType RecTy = Context.getTypeDeclType(Record);
4955 
4956   // Create a declaration for this anonymous struct.
4957   NamedDecl *Anon =
4958       FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
4959                         /*IdentifierInfo=*/nullptr, RecTy, TInfo,
4960                         /*BitWidth=*/nullptr, /*Mutable=*/false,
4961                         /*InitStyle=*/ICIS_NoInit);
4962   Anon->setImplicit();
4963 
4964   // Add the anonymous struct object to the current context.
4965   CurContext->addDecl(Anon);
4966 
4967   // Inject the members of the anonymous struct into the current
4968   // context and into the identifier resolver chain for name lookup
4969   // purposes.
4970   SmallVector<NamedDecl*, 2> Chain;
4971   Chain.push_back(Anon);
4972 
4973   RecordDecl *RecordDef = Record->getDefinition();
4974   if (RequireCompleteType(Anon->getLocation(), RecTy,
4975                           diag::err_field_incomplete) ||
4976       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4977                                           AS_none, Chain)) {
4978     Anon->setInvalidDecl();
4979     ParentDecl->setInvalidDecl();
4980   }
4981 
4982   return Anon;
4983 }
4984 
4985 /// GetNameForDeclarator - Determine the full declaration name for the
4986 /// given Declarator.
4987 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4988   return GetNameFromUnqualifiedId(D.getName());
4989 }
4990 
4991 /// Retrieves the declaration name from a parsed unqualified-id.
4992 DeclarationNameInfo
4993 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4994   DeclarationNameInfo NameInfo;
4995   NameInfo.setLoc(Name.StartLocation);
4996 
4997   switch (Name.getKind()) {
4998 
4999   case UnqualifiedIdKind::IK_ImplicitSelfParam:
5000   case UnqualifiedIdKind::IK_Identifier:
5001     NameInfo.setName(Name.Identifier);
5002     return NameInfo;
5003 
5004   case UnqualifiedIdKind::IK_DeductionGuideName: {
5005     // C++ [temp.deduct.guide]p3:
5006     //   The simple-template-id shall name a class template specialization.
5007     //   The template-name shall be the same identifier as the template-name
5008     //   of the simple-template-id.
5009     // These together intend to imply that the template-name shall name a
5010     // class template.
5011     // FIXME: template<typename T> struct X {};
5012     //        template<typename T> using Y = X<T>;
5013     //        Y(int) -> Y<int>;
5014     //   satisfies these rules but does not name a class template.
5015     TemplateName TN = Name.TemplateName.get().get();
5016     auto *Template = TN.getAsTemplateDecl();
5017     if (!Template || !isa<ClassTemplateDecl>(Template)) {
5018       Diag(Name.StartLocation,
5019            diag::err_deduction_guide_name_not_class_template)
5020         << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5021       if (Template)
5022         Diag(Template->getLocation(), diag::note_template_decl_here);
5023       return DeclarationNameInfo();
5024     }
5025 
5026     NameInfo.setName(
5027         Context.DeclarationNames.getCXXDeductionGuideName(Template));
5028     return NameInfo;
5029   }
5030 
5031   case UnqualifiedIdKind::IK_OperatorFunctionId:
5032     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5033                                            Name.OperatorFunctionId.Operator));
5034     NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
5035       = Name.OperatorFunctionId.SymbolLocations[0];
5036     NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
5037       = Name.EndLocation.getRawEncoding();
5038     return NameInfo;
5039 
5040   case UnqualifiedIdKind::IK_LiteralOperatorId:
5041     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5042                                                            Name.Identifier));
5043     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5044     return NameInfo;
5045 
5046   case UnqualifiedIdKind::IK_ConversionFunctionId: {
5047     TypeSourceInfo *TInfo;
5048     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5049     if (Ty.isNull())
5050       return DeclarationNameInfo();
5051     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5052                                                Context.getCanonicalType(Ty)));
5053     NameInfo.setNamedTypeInfo(TInfo);
5054     return NameInfo;
5055   }
5056 
5057   case UnqualifiedIdKind::IK_ConstructorName: {
5058     TypeSourceInfo *TInfo;
5059     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5060     if (Ty.isNull())
5061       return DeclarationNameInfo();
5062     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5063                                               Context.getCanonicalType(Ty)));
5064     NameInfo.setNamedTypeInfo(TInfo);
5065     return NameInfo;
5066   }
5067 
5068   case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5069     // In well-formed code, we can only have a constructor
5070     // template-id that refers to the current context, so go there
5071     // to find the actual type being constructed.
5072     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5073     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5074       return DeclarationNameInfo();
5075 
5076     // Determine the type of the class being constructed.
5077     QualType CurClassType = Context.getTypeDeclType(CurClass);
5078 
5079     // FIXME: Check two things: that the template-id names the same type as
5080     // CurClassType, and that the template-id does not occur when the name
5081     // was qualified.
5082 
5083     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5084                                     Context.getCanonicalType(CurClassType)));
5085     // FIXME: should we retrieve TypeSourceInfo?
5086     NameInfo.setNamedTypeInfo(nullptr);
5087     return NameInfo;
5088   }
5089 
5090   case UnqualifiedIdKind::IK_DestructorName: {
5091     TypeSourceInfo *TInfo;
5092     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5093     if (Ty.isNull())
5094       return DeclarationNameInfo();
5095     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5096                                               Context.getCanonicalType(Ty)));
5097     NameInfo.setNamedTypeInfo(TInfo);
5098     return NameInfo;
5099   }
5100 
5101   case UnqualifiedIdKind::IK_TemplateId: {
5102     TemplateName TName = Name.TemplateId->Template.get();
5103     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5104     return Context.getNameForTemplate(TName, TNameLoc);
5105   }
5106 
5107   } // switch (Name.getKind())
5108 
5109   llvm_unreachable("Unknown name kind");
5110 }
5111 
5112 static QualType getCoreType(QualType Ty) {
5113   do {
5114     if (Ty->isPointerType() || Ty->isReferenceType())
5115       Ty = Ty->getPointeeType();
5116     else if (Ty->isArrayType())
5117       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5118     else
5119       return Ty.withoutLocalFastQualifiers();
5120   } while (true);
5121 }
5122 
5123 /// hasSimilarParameters - Determine whether the C++ functions Declaration
5124 /// and Definition have "nearly" matching parameters. This heuristic is
5125 /// used to improve diagnostics in the case where an out-of-line function
5126 /// definition doesn't match any declaration within the class or namespace.
5127 /// Also sets Params to the list of indices to the parameters that differ
5128 /// between the declaration and the definition. If hasSimilarParameters
5129 /// returns true and Params is empty, then all of the parameters match.
5130 static bool hasSimilarParameters(ASTContext &Context,
5131                                      FunctionDecl *Declaration,
5132                                      FunctionDecl *Definition,
5133                                      SmallVectorImpl<unsigned> &Params) {
5134   Params.clear();
5135   if (Declaration->param_size() != Definition->param_size())
5136     return false;
5137   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5138     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5139     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5140 
5141     // The parameter types are identical
5142     if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5143       continue;
5144 
5145     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5146     QualType DefParamBaseTy = getCoreType(DefParamTy);
5147     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5148     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5149 
5150     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5151         (DeclTyName && DeclTyName == DefTyName))
5152       Params.push_back(Idx);
5153     else  // The two parameters aren't even close
5154       return false;
5155   }
5156 
5157   return true;
5158 }
5159 
5160 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5161 /// declarator needs to be rebuilt in the current instantiation.
5162 /// Any bits of declarator which appear before the name are valid for
5163 /// consideration here.  That's specifically the type in the decl spec
5164 /// and the base type in any member-pointer chunks.
5165 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5166                                                     DeclarationName Name) {
5167   // The types we specifically need to rebuild are:
5168   //   - typenames, typeofs, and decltypes
5169   //   - types which will become injected class names
5170   // Of course, we also need to rebuild any type referencing such a
5171   // type.  It's safest to just say "dependent", but we call out a
5172   // few cases here.
5173 
5174   DeclSpec &DS = D.getMutableDeclSpec();
5175   switch (DS.getTypeSpecType()) {
5176   case DeclSpec::TST_typename:
5177   case DeclSpec::TST_typeofType:
5178   case DeclSpec::TST_underlyingType:
5179   case DeclSpec::TST_atomic: {
5180     // Grab the type from the parser.
5181     TypeSourceInfo *TSI = nullptr;
5182     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5183     if (T.isNull() || !T->isDependentType()) break;
5184 
5185     // Make sure there's a type source info.  This isn't really much
5186     // of a waste; most dependent types should have type source info
5187     // attached already.
5188     if (!TSI)
5189       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5190 
5191     // Rebuild the type in the current instantiation.
5192     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5193     if (!TSI) return true;
5194 
5195     // Store the new type back in the decl spec.
5196     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5197     DS.UpdateTypeRep(LocType);
5198     break;
5199   }
5200 
5201   case DeclSpec::TST_decltype:
5202   case DeclSpec::TST_typeofExpr: {
5203     Expr *E = DS.getRepAsExpr();
5204     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5205     if (Result.isInvalid()) return true;
5206     DS.UpdateExprRep(Result.get());
5207     break;
5208   }
5209 
5210   default:
5211     // Nothing to do for these decl specs.
5212     break;
5213   }
5214 
5215   // It doesn't matter what order we do this in.
5216   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5217     DeclaratorChunk &Chunk = D.getTypeObject(I);
5218 
5219     // The only type information in the declarator which can come
5220     // before the declaration name is the base type of a member
5221     // pointer.
5222     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5223       continue;
5224 
5225     // Rebuild the scope specifier in-place.
5226     CXXScopeSpec &SS = Chunk.Mem.Scope();
5227     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5228       return true;
5229   }
5230 
5231   return false;
5232 }
5233 
5234 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5235   D.setFunctionDefinitionKind(FDK_Declaration);
5236   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5237 
5238   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5239       Dcl && Dcl->getDeclContext()->isFileContext())
5240     Dcl->setTopLevelDeclInObjCContainer();
5241 
5242   if (getLangOpts().OpenCL)
5243     setCurrentOpenCLExtensionForDecl(Dcl);
5244 
5245   return Dcl;
5246 }
5247 
5248 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5249 ///   If T is the name of a class, then each of the following shall have a
5250 ///   name different from T:
5251 ///     - every static data member of class T;
5252 ///     - every member function of class T
5253 ///     - every member of class T that is itself a type;
5254 /// \returns true if the declaration name violates these rules.
5255 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5256                                    DeclarationNameInfo NameInfo) {
5257   DeclarationName Name = NameInfo.getName();
5258 
5259   CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5260   while (Record && Record->isAnonymousStructOrUnion())
5261     Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5262   if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5263     Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5264     return true;
5265   }
5266 
5267   return false;
5268 }
5269 
5270 /// Diagnose a declaration whose declarator-id has the given
5271 /// nested-name-specifier.
5272 ///
5273 /// \param SS The nested-name-specifier of the declarator-id.
5274 ///
5275 /// \param DC The declaration context to which the nested-name-specifier
5276 /// resolves.
5277 ///
5278 /// \param Name The name of the entity being declared.
5279 ///
5280 /// \param Loc The location of the name of the entity being declared.
5281 ///
5282 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5283 /// we're declaring an explicit / partial specialization / instantiation.
5284 ///
5285 /// \returns true if we cannot safely recover from this error, false otherwise.
5286 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5287                                         DeclarationName Name,
5288                                         SourceLocation Loc, bool IsTemplateId) {
5289   DeclContext *Cur = CurContext;
5290   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5291     Cur = Cur->getParent();
5292 
5293   // If the user provided a superfluous scope specifier that refers back to the
5294   // class in which the entity is already declared, diagnose and ignore it.
5295   //
5296   // class X {
5297   //   void X::f();
5298   // };
5299   //
5300   // Note, it was once ill-formed to give redundant qualification in all
5301   // contexts, but that rule was removed by DR482.
5302   if (Cur->Equals(DC)) {
5303     if (Cur->isRecord()) {
5304       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5305                                       : diag::err_member_extra_qualification)
5306         << Name << FixItHint::CreateRemoval(SS.getRange());
5307       SS.clear();
5308     } else {
5309       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5310     }
5311     return false;
5312   }
5313 
5314   // Check whether the qualifying scope encloses the scope of the original
5315   // declaration. For a template-id, we perform the checks in
5316   // CheckTemplateSpecializationScope.
5317   if (!Cur->Encloses(DC) && !IsTemplateId) {
5318     if (Cur->isRecord())
5319       Diag(Loc, diag::err_member_qualification)
5320         << Name << SS.getRange();
5321     else if (isa<TranslationUnitDecl>(DC))
5322       Diag(Loc, diag::err_invalid_declarator_global_scope)
5323         << Name << SS.getRange();
5324     else if (isa<FunctionDecl>(Cur))
5325       Diag(Loc, diag::err_invalid_declarator_in_function)
5326         << Name << SS.getRange();
5327     else if (isa<BlockDecl>(Cur))
5328       Diag(Loc, diag::err_invalid_declarator_in_block)
5329         << Name << SS.getRange();
5330     else
5331       Diag(Loc, diag::err_invalid_declarator_scope)
5332       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5333 
5334     return true;
5335   }
5336 
5337   if (Cur->isRecord()) {
5338     // Cannot qualify members within a class.
5339     Diag(Loc, diag::err_member_qualification)
5340       << Name << SS.getRange();
5341     SS.clear();
5342 
5343     // C++ constructors and destructors with incorrect scopes can break
5344     // our AST invariants by having the wrong underlying types. If
5345     // that's the case, then drop this declaration entirely.
5346     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5347          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5348         !Context.hasSameType(Name.getCXXNameType(),
5349                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5350       return true;
5351 
5352     return false;
5353   }
5354 
5355   // C++11 [dcl.meaning]p1:
5356   //   [...] "The nested-name-specifier of the qualified declarator-id shall
5357   //   not begin with a decltype-specifer"
5358   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5359   while (SpecLoc.getPrefix())
5360     SpecLoc = SpecLoc.getPrefix();
5361   if (dyn_cast_or_null<DecltypeType>(
5362         SpecLoc.getNestedNameSpecifier()->getAsType()))
5363     Diag(Loc, diag::err_decltype_in_declarator)
5364       << SpecLoc.getTypeLoc().getSourceRange();
5365 
5366   return false;
5367 }
5368 
5369 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5370                                   MultiTemplateParamsArg TemplateParamLists) {
5371   // TODO: consider using NameInfo for diagnostic.
5372   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5373   DeclarationName Name = NameInfo.getName();
5374 
5375   // All of these full declarators require an identifier.  If it doesn't have
5376   // one, the ParsedFreeStandingDeclSpec action should be used.
5377   if (D.isDecompositionDeclarator()) {
5378     return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5379   } else if (!Name) {
5380     if (!D.isInvalidType())  // Reject this if we think it is valid.
5381       Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5382           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5383     return nullptr;
5384   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5385     return nullptr;
5386 
5387   // The scope passed in may not be a decl scope.  Zip up the scope tree until
5388   // we find one that is.
5389   while ((S->getFlags() & Scope::DeclScope) == 0 ||
5390          (S->getFlags() & Scope::TemplateParamScope) != 0)
5391     S = S->getParent();
5392 
5393   DeclContext *DC = CurContext;
5394   if (D.getCXXScopeSpec().isInvalid())
5395     D.setInvalidType();
5396   else if (D.getCXXScopeSpec().isSet()) {
5397     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5398                                         UPPC_DeclarationQualifier))
5399       return nullptr;
5400 
5401     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5402     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5403     if (!DC || isa<EnumDecl>(DC)) {
5404       // If we could not compute the declaration context, it's because the
5405       // declaration context is dependent but does not refer to a class,
5406       // class template, or class template partial specialization. Complain
5407       // and return early, to avoid the coming semantic disaster.
5408       Diag(D.getIdentifierLoc(),
5409            diag::err_template_qualified_declarator_no_match)
5410         << D.getCXXScopeSpec().getScopeRep()
5411         << D.getCXXScopeSpec().getRange();
5412       return nullptr;
5413     }
5414     bool IsDependentContext = DC->isDependentContext();
5415 
5416     if (!IsDependentContext &&
5417         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5418       return nullptr;
5419 
5420     // If a class is incomplete, do not parse entities inside it.
5421     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5422       Diag(D.getIdentifierLoc(),
5423            diag::err_member_def_undefined_record)
5424         << Name << DC << D.getCXXScopeSpec().getRange();
5425       return nullptr;
5426     }
5427     if (!D.getDeclSpec().isFriendSpecified()) {
5428       if (diagnoseQualifiedDeclaration(
5429               D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5430               D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5431         if (DC->isRecord())
5432           return nullptr;
5433 
5434         D.setInvalidType();
5435       }
5436     }
5437 
5438     // Check whether we need to rebuild the type of the given
5439     // declaration in the current instantiation.
5440     if (EnteringContext && IsDependentContext &&
5441         TemplateParamLists.size() != 0) {
5442       ContextRAII SavedContext(*this, DC);
5443       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5444         D.setInvalidType();
5445     }
5446   }
5447 
5448   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5449   QualType R = TInfo->getType();
5450 
5451   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5452                                       UPPC_DeclarationType))
5453     D.setInvalidType();
5454 
5455   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5456                         forRedeclarationInCurContext());
5457 
5458   // See if this is a redefinition of a variable in the same scope.
5459   if (!D.getCXXScopeSpec().isSet()) {
5460     bool IsLinkageLookup = false;
5461     bool CreateBuiltins = false;
5462 
5463     // If the declaration we're planning to build will be a function
5464     // or object with linkage, then look for another declaration with
5465     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5466     //
5467     // If the declaration we're planning to build will be declared with
5468     // external linkage in the translation unit, create any builtin with
5469     // the same name.
5470     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5471       /* Do nothing*/;
5472     else if (CurContext->isFunctionOrMethod() &&
5473              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5474               R->isFunctionType())) {
5475       IsLinkageLookup = true;
5476       CreateBuiltins =
5477           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5478     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5479                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5480       CreateBuiltins = true;
5481 
5482     if (IsLinkageLookup) {
5483       Previous.clear(LookupRedeclarationWithLinkage);
5484       Previous.setRedeclarationKind(ForExternalRedeclaration);
5485     }
5486 
5487     LookupName(Previous, S, CreateBuiltins);
5488   } else { // Something like "int foo::x;"
5489     LookupQualifiedName(Previous, DC);
5490 
5491     // C++ [dcl.meaning]p1:
5492     //   When the declarator-id is qualified, the declaration shall refer to a
5493     //  previously declared member of the class or namespace to which the
5494     //  qualifier refers (or, in the case of a namespace, of an element of the
5495     //  inline namespace set of that namespace (7.3.1)) or to a specialization
5496     //  thereof; [...]
5497     //
5498     // Note that we already checked the context above, and that we do not have
5499     // enough information to make sure that Previous contains the declaration
5500     // we want to match. For example, given:
5501     //
5502     //   class X {
5503     //     void f();
5504     //     void f(float);
5505     //   };
5506     //
5507     //   void X::f(int) { } // ill-formed
5508     //
5509     // In this case, Previous will point to the overload set
5510     // containing the two f's declared in X, but neither of them
5511     // matches.
5512 
5513     // C++ [dcl.meaning]p1:
5514     //   [...] the member shall not merely have been introduced by a
5515     //   using-declaration in the scope of the class or namespace nominated by
5516     //   the nested-name-specifier of the declarator-id.
5517     RemoveUsingDecls(Previous);
5518   }
5519 
5520   if (Previous.isSingleResult() &&
5521       Previous.getFoundDecl()->isTemplateParameter()) {
5522     // Maybe we will complain about the shadowed template parameter.
5523     if (!D.isInvalidType())
5524       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5525                                       Previous.getFoundDecl());
5526 
5527     // Just pretend that we didn't see the previous declaration.
5528     Previous.clear();
5529   }
5530 
5531   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5532     // Forget that the previous declaration is the injected-class-name.
5533     Previous.clear();
5534 
5535   // In C++, the previous declaration we find might be a tag type
5536   // (class or enum). In this case, the new declaration will hide the
5537   // tag type. Note that this applies to functions, function templates, and
5538   // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5539   if (Previous.isSingleTagDecl() &&
5540       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5541       (TemplateParamLists.size() == 0 || R->isFunctionType()))
5542     Previous.clear();
5543 
5544   // Check that there are no default arguments other than in the parameters
5545   // of a function declaration (C++ only).
5546   if (getLangOpts().CPlusPlus)
5547     CheckExtraCXXDefaultArguments(D);
5548 
5549   NamedDecl *New;
5550 
5551   bool AddToScope = true;
5552   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5553     if (TemplateParamLists.size()) {
5554       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5555       return nullptr;
5556     }
5557 
5558     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5559   } else if (R->isFunctionType()) {
5560     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5561                                   TemplateParamLists,
5562                                   AddToScope);
5563   } else {
5564     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5565                                   AddToScope);
5566   }
5567 
5568   if (!New)
5569     return nullptr;
5570 
5571   // If this has an identifier and is not a function template specialization,
5572   // add it to the scope stack.
5573   if (New->getDeclName() && AddToScope)
5574     PushOnScopeChains(New, S);
5575 
5576   if (isInOpenMPDeclareTargetContext())
5577     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5578 
5579   return New;
5580 }
5581 
5582 /// Helper method to turn variable array types into constant array
5583 /// types in certain situations which would otherwise be errors (for
5584 /// GCC compatibility).
5585 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5586                                                     ASTContext &Context,
5587                                                     bool &SizeIsNegative,
5588                                                     llvm::APSInt &Oversized) {
5589   // This method tries to turn a variable array into a constant
5590   // array even when the size isn't an ICE.  This is necessary
5591   // for compatibility with code that depends on gcc's buggy
5592   // constant expression folding, like struct {char x[(int)(char*)2];}
5593   SizeIsNegative = false;
5594   Oversized = 0;
5595 
5596   if (T->isDependentType())
5597     return QualType();
5598 
5599   QualifierCollector Qs;
5600   const Type *Ty = Qs.strip(T);
5601 
5602   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5603     QualType Pointee = PTy->getPointeeType();
5604     QualType FixedType =
5605         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5606                                             Oversized);
5607     if (FixedType.isNull()) return FixedType;
5608     FixedType = Context.getPointerType(FixedType);
5609     return Qs.apply(Context, FixedType);
5610   }
5611   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5612     QualType Inner = PTy->getInnerType();
5613     QualType FixedType =
5614         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5615                                             Oversized);
5616     if (FixedType.isNull()) return FixedType;
5617     FixedType = Context.getParenType(FixedType);
5618     return Qs.apply(Context, FixedType);
5619   }
5620 
5621   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5622   if (!VLATy)
5623     return QualType();
5624   // FIXME: We should probably handle this case
5625   if (VLATy->getElementType()->isVariablyModifiedType())
5626     return QualType();
5627 
5628   Expr::EvalResult Result;
5629   if (!VLATy->getSizeExpr() ||
5630       !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
5631     return QualType();
5632 
5633   llvm::APSInt Res = Result.Val.getInt();
5634 
5635   // Check whether the array size is negative.
5636   if (Res.isSigned() && Res.isNegative()) {
5637     SizeIsNegative = true;
5638     return QualType();
5639   }
5640 
5641   // Check whether the array is too large to be addressed.
5642   unsigned ActiveSizeBits
5643     = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5644                                               Res);
5645   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5646     Oversized = Res;
5647     return QualType();
5648   }
5649 
5650   return Context.getConstantArrayType(VLATy->getElementType(),
5651                                       Res, ArrayType::Normal, 0);
5652 }
5653 
5654 static void
5655 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5656   SrcTL = SrcTL.getUnqualifiedLoc();
5657   DstTL = DstTL.getUnqualifiedLoc();
5658   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5659     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5660     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5661                                       DstPTL.getPointeeLoc());
5662     DstPTL.setStarLoc(SrcPTL.getStarLoc());
5663     return;
5664   }
5665   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5666     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5667     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5668                                       DstPTL.getInnerLoc());
5669     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5670     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5671     return;
5672   }
5673   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5674   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5675   TypeLoc SrcElemTL = SrcATL.getElementLoc();
5676   TypeLoc DstElemTL = DstATL.getElementLoc();
5677   DstElemTL.initializeFullCopy(SrcElemTL);
5678   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5679   DstATL.setSizeExpr(SrcATL.getSizeExpr());
5680   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5681 }
5682 
5683 /// Helper method to turn variable array types into constant array
5684 /// types in certain situations which would otherwise be errors (for
5685 /// GCC compatibility).
5686 static TypeSourceInfo*
5687 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5688                                               ASTContext &Context,
5689                                               bool &SizeIsNegative,
5690                                               llvm::APSInt &Oversized) {
5691   QualType FixedTy
5692     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5693                                           SizeIsNegative, Oversized);
5694   if (FixedTy.isNull())
5695     return nullptr;
5696   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5697   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5698                                     FixedTInfo->getTypeLoc());
5699   return FixedTInfo;
5700 }
5701 
5702 /// Register the given locally-scoped extern "C" declaration so
5703 /// that it can be found later for redeclarations. We include any extern "C"
5704 /// declaration that is not visible in the translation unit here, not just
5705 /// function-scope declarations.
5706 void
5707 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
5708   if (!getLangOpts().CPlusPlus &&
5709       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
5710     // Don't need to track declarations in the TU in C.
5711     return;
5712 
5713   // Note that we have a locally-scoped external with this name.
5714   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
5715 }
5716 
5717 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
5718   // FIXME: We can have multiple results via __attribute__((overloadable)).
5719   auto Result = Context.getExternCContextDecl()->lookup(Name);
5720   return Result.empty() ? nullptr : *Result.begin();
5721 }
5722 
5723 /// Diagnose function specifiers on a declaration of an identifier that
5724 /// does not identify a function.
5725 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
5726   // FIXME: We should probably indicate the identifier in question to avoid
5727   // confusion for constructs like "virtual int a(), b;"
5728   if (DS.isVirtualSpecified())
5729     Diag(DS.getVirtualSpecLoc(),
5730          diag::err_virtual_non_function);
5731 
5732   if (DS.hasExplicitSpecifier())
5733     Diag(DS.getExplicitSpecLoc(),
5734          diag::err_explicit_non_function);
5735 
5736   if (DS.isNoreturnSpecified())
5737     Diag(DS.getNoreturnSpecLoc(),
5738          diag::err_noreturn_non_function);
5739 }
5740 
5741 NamedDecl*
5742 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
5743                              TypeSourceInfo *TInfo, LookupResult &Previous) {
5744   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5745   if (D.getCXXScopeSpec().isSet()) {
5746     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5747       << D.getCXXScopeSpec().getRange();
5748     D.setInvalidType();
5749     // Pretend we didn't see the scope specifier.
5750     DC = CurContext;
5751     Previous.clear();
5752   }
5753 
5754   DiagnoseFunctionSpecifiers(D.getDeclSpec());
5755 
5756   if (D.getDeclSpec().isInlineSpecified())
5757     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
5758         << getLangOpts().CPlusPlus17;
5759   if (D.getDeclSpec().hasConstexprSpecifier())
5760     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5761         << 1 << (D.getDeclSpec().getConstexprSpecifier() == CSK_consteval);
5762 
5763   if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
5764     if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
5765       Diag(D.getName().StartLocation,
5766            diag::err_deduction_guide_invalid_specifier)
5767           << "typedef";
5768     else
5769       Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5770           << D.getName().getSourceRange();
5771     return nullptr;
5772   }
5773 
5774   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5775   if (!NewTD) return nullptr;
5776 
5777   // Handle attributes prior to checking for duplicates in MergeVarDecl
5778   ProcessDeclAttributes(S, NewTD, D);
5779 
5780   CheckTypedefForVariablyModifiedType(S, NewTD);
5781 
5782   bool Redeclaration = D.isRedeclaration();
5783   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5784   D.setRedeclaration(Redeclaration);
5785   return ND;
5786 }
5787 
5788 void
5789 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5790   // C99 6.7.7p2: If a typedef name specifies a variably modified type
5791   // then it shall have block scope.
5792   // Note that variably modified types must be fixed before merging the decl so
5793   // that redeclarations will match.
5794   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5795   QualType T = TInfo->getType();
5796   if (T->isVariablyModifiedType()) {
5797     setFunctionHasBranchProtectedScope();
5798 
5799     if (S->getFnParent() == nullptr) {
5800       bool SizeIsNegative;
5801       llvm::APSInt Oversized;
5802       TypeSourceInfo *FixedTInfo =
5803         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5804                                                       SizeIsNegative,
5805                                                       Oversized);
5806       if (FixedTInfo) {
5807         Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5808         NewTD->setTypeSourceInfo(FixedTInfo);
5809       } else {
5810         if (SizeIsNegative)
5811           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5812         else if (T->isVariableArrayType())
5813           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5814         else if (Oversized.getBoolValue())
5815           Diag(NewTD->getLocation(), diag::err_array_too_large)
5816             << Oversized.toString(10);
5817         else
5818           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5819         NewTD->setInvalidDecl();
5820       }
5821     }
5822   }
5823 }
5824 
5825 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5826 /// declares a typedef-name, either using the 'typedef' type specifier or via
5827 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5828 NamedDecl*
5829 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5830                            LookupResult &Previous, bool &Redeclaration) {
5831 
5832   // Find the shadowed declaration before filtering for scope.
5833   NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
5834 
5835   // Merge the decl with the existing one if appropriate. If the decl is
5836   // in an outer scope, it isn't the same thing.
5837   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5838                        /*AllowInlineNamespace*/false);
5839   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
5840   if (!Previous.empty()) {
5841     Redeclaration = true;
5842     MergeTypedefNameDecl(S, NewTD, Previous);
5843   }
5844 
5845   if (ShadowedDecl && !Redeclaration)
5846     CheckShadow(NewTD, ShadowedDecl, Previous);
5847 
5848   // If this is the C FILE type, notify the AST context.
5849   if (IdentifierInfo *II = NewTD->getIdentifier())
5850     if (!NewTD->isInvalidDecl() &&
5851         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5852       if (II->isStr("FILE"))
5853         Context.setFILEDecl(NewTD);
5854       else if (II->isStr("jmp_buf"))
5855         Context.setjmp_bufDecl(NewTD);
5856       else if (II->isStr("sigjmp_buf"))
5857         Context.setsigjmp_bufDecl(NewTD);
5858       else if (II->isStr("ucontext_t"))
5859         Context.setucontext_tDecl(NewTD);
5860     }
5861 
5862   return NewTD;
5863 }
5864 
5865 /// Determines whether the given declaration is an out-of-scope
5866 /// previous declaration.
5867 ///
5868 /// This routine should be invoked when name lookup has found a
5869 /// previous declaration (PrevDecl) that is not in the scope where a
5870 /// new declaration by the same name is being introduced. If the new
5871 /// declaration occurs in a local scope, previous declarations with
5872 /// linkage may still be considered previous declarations (C99
5873 /// 6.2.2p4-5, C++ [basic.link]p6).
5874 ///
5875 /// \param PrevDecl the previous declaration found by name
5876 /// lookup
5877 ///
5878 /// \param DC the context in which the new declaration is being
5879 /// declared.
5880 ///
5881 /// \returns true if PrevDecl is an out-of-scope previous declaration
5882 /// for a new delcaration with the same name.
5883 static bool
5884 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5885                                 ASTContext &Context) {
5886   if (!PrevDecl)
5887     return false;
5888 
5889   if (!PrevDecl->hasLinkage())
5890     return false;
5891 
5892   if (Context.getLangOpts().CPlusPlus) {
5893     // C++ [basic.link]p6:
5894     //   If there is a visible declaration of an entity with linkage
5895     //   having the same name and type, ignoring entities declared
5896     //   outside the innermost enclosing namespace scope, the block
5897     //   scope declaration declares that same entity and receives the
5898     //   linkage of the previous declaration.
5899     DeclContext *OuterContext = DC->getRedeclContext();
5900     if (!OuterContext->isFunctionOrMethod())
5901       // This rule only applies to block-scope declarations.
5902       return false;
5903 
5904     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5905     if (PrevOuterContext->isRecord())
5906       // We found a member function: ignore it.
5907       return false;
5908 
5909     // Find the innermost enclosing namespace for the new and
5910     // previous declarations.
5911     OuterContext = OuterContext->getEnclosingNamespaceContext();
5912     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5913 
5914     // The previous declaration is in a different namespace, so it
5915     // isn't the same function.
5916     if (!OuterContext->Equals(PrevOuterContext))
5917       return false;
5918   }
5919 
5920   return true;
5921 }
5922 
5923 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
5924   CXXScopeSpec &SS = D.getCXXScopeSpec();
5925   if (!SS.isSet()) return;
5926   DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
5927 }
5928 
5929 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5930   QualType type = decl->getType();
5931   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5932   if (lifetime == Qualifiers::OCL_Autoreleasing) {
5933     // Various kinds of declaration aren't allowed to be __autoreleasing.
5934     unsigned kind = -1U;
5935     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5936       if (var->hasAttr<BlocksAttr>())
5937         kind = 0; // __block
5938       else if (!var->hasLocalStorage())
5939         kind = 1; // global
5940     } else if (isa<ObjCIvarDecl>(decl)) {
5941       kind = 3; // ivar
5942     } else if (isa<FieldDecl>(decl)) {
5943       kind = 2; // field
5944     }
5945 
5946     if (kind != -1U) {
5947       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5948         << kind;
5949     }
5950   } else if (lifetime == Qualifiers::OCL_None) {
5951     // Try to infer lifetime.
5952     if (!type->isObjCLifetimeType())
5953       return false;
5954 
5955     lifetime = type->getObjCARCImplicitLifetime();
5956     type = Context.getLifetimeQualifiedType(type, lifetime);
5957     decl->setType(type);
5958   }
5959 
5960   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5961     // Thread-local variables cannot have lifetime.
5962     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5963         var->getTLSKind()) {
5964       Diag(var->getLocation(), diag::err_arc_thread_ownership)
5965         << var->getType();
5966       return true;
5967     }
5968   }
5969 
5970   return false;
5971 }
5972 
5973 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5974   // Ensure that an auto decl is deduced otherwise the checks below might cache
5975   // the wrong linkage.
5976   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
5977 
5978   // 'weak' only applies to declarations with external linkage.
5979   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5980     if (!ND.isExternallyVisible()) {
5981       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5982       ND.dropAttr<WeakAttr>();
5983     }
5984   }
5985   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5986     if (ND.isExternallyVisible()) {
5987       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5988       ND.dropAttr<WeakRefAttr>();
5989       ND.dropAttr<AliasAttr>();
5990     }
5991   }
5992 
5993   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
5994     if (VD->hasInit()) {
5995       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
5996         assert(VD->isThisDeclarationADefinition() &&
5997                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
5998         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
5999         VD->dropAttr<AliasAttr>();
6000       }
6001     }
6002   }
6003 
6004   // 'selectany' only applies to externally visible variable declarations.
6005   // It does not apply to functions.
6006   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6007     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6008       S.Diag(Attr->getLocation(),
6009              diag::err_attribute_selectany_non_extern_data);
6010       ND.dropAttr<SelectAnyAttr>();
6011     }
6012   }
6013 
6014   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6015     auto *VD = dyn_cast<VarDecl>(&ND);
6016     bool IsAnonymousNS = false;
6017     bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6018     if (VD) {
6019       const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6020       while (NS && !IsAnonymousNS) {
6021         IsAnonymousNS = NS->isAnonymousNamespace();
6022         NS = dyn_cast<NamespaceDecl>(NS->getParent());
6023       }
6024     }
6025     // dll attributes require external linkage. Static locals may have external
6026     // linkage but still cannot be explicitly imported or exported.
6027     // In Microsoft mode, a variable defined in anonymous namespace must have
6028     // external linkage in order to be exported.
6029     bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6030     if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6031         (!AnonNSInMicrosoftMode &&
6032          (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6033       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6034         << &ND << Attr;
6035       ND.setInvalidDecl();
6036     }
6037   }
6038 
6039   // Virtual functions cannot be marked as 'notail'.
6040   if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
6041     if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
6042       if (MD->isVirtual()) {
6043         S.Diag(ND.getLocation(),
6044                diag::err_invalid_attribute_on_virtual_function)
6045             << Attr;
6046         ND.dropAttr<NotTailCalledAttr>();
6047       }
6048 
6049   // Check the attributes on the function type, if any.
6050   if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6051     // Don't declare this variable in the second operand of the for-statement;
6052     // GCC miscompiles that by ending its lifetime before evaluating the
6053     // third operand. See gcc.gnu.org/PR86769.
6054     AttributedTypeLoc ATL;
6055     for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6056          (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6057          TL = ATL.getModifiedLoc()) {
6058       // The [[lifetimebound]] attribute can be applied to the implicit object
6059       // parameter of a non-static member function (other than a ctor or dtor)
6060       // by applying it to the function type.
6061       if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6062         const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6063         if (!MD || MD->isStatic()) {
6064           S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6065               << !MD << A->getRange();
6066         } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6067           S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6068               << isa<CXXDestructorDecl>(MD) << A->getRange();
6069         }
6070       }
6071     }
6072   }
6073 }
6074 
6075 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6076                                            NamedDecl *NewDecl,
6077                                            bool IsSpecialization,
6078                                            bool IsDefinition) {
6079   if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6080     return;
6081 
6082   bool IsTemplate = false;
6083   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6084     OldDecl = OldTD->getTemplatedDecl();
6085     IsTemplate = true;
6086     if (!IsSpecialization)
6087       IsDefinition = false;
6088   }
6089   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6090     NewDecl = NewTD->getTemplatedDecl();
6091     IsTemplate = true;
6092   }
6093 
6094   if (!OldDecl || !NewDecl)
6095     return;
6096 
6097   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6098   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6099   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6100   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6101 
6102   // dllimport and dllexport are inheritable attributes so we have to exclude
6103   // inherited attribute instances.
6104   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6105                     (NewExportAttr && !NewExportAttr->isInherited());
6106 
6107   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6108   // the only exception being explicit specializations.
6109   // Implicitly generated declarations are also excluded for now because there
6110   // is no other way to switch these to use dllimport or dllexport.
6111   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6112 
6113   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6114     // Allow with a warning for free functions and global variables.
6115     bool JustWarn = false;
6116     if (!OldDecl->isCXXClassMember()) {
6117       auto *VD = dyn_cast<VarDecl>(OldDecl);
6118       if (VD && !VD->getDescribedVarTemplate())
6119         JustWarn = true;
6120       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6121       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6122         JustWarn = true;
6123     }
6124 
6125     // We cannot change a declaration that's been used because IR has already
6126     // been emitted. Dllimported functions will still work though (modulo
6127     // address equality) as they can use the thunk.
6128     if (OldDecl->isUsed())
6129       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6130         JustWarn = false;
6131 
6132     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6133                                : diag::err_attribute_dll_redeclaration;
6134     S.Diag(NewDecl->getLocation(), DiagID)
6135         << NewDecl
6136         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6137     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6138     if (!JustWarn) {
6139       NewDecl->setInvalidDecl();
6140       return;
6141     }
6142   }
6143 
6144   // A redeclaration is not allowed to drop a dllimport attribute, the only
6145   // exceptions being inline function definitions (except for function
6146   // templates), local extern declarations, qualified friend declarations or
6147   // special MSVC extension: in the last case, the declaration is treated as if
6148   // it were marked dllexport.
6149   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6150   bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6151   if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6152     // Ignore static data because out-of-line definitions are diagnosed
6153     // separately.
6154     IsStaticDataMember = VD->isStaticDataMember();
6155     IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6156                    VarDecl::DeclarationOnly;
6157   } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6158     IsInline = FD->isInlined();
6159     IsQualifiedFriend = FD->getQualifier() &&
6160                         FD->getFriendObjectKind() == Decl::FOK_Declared;
6161   }
6162 
6163   if (OldImportAttr && !HasNewAttr &&
6164       (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember &&
6165       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6166     if (IsMicrosoft && IsDefinition) {
6167       S.Diag(NewDecl->getLocation(),
6168              diag::warn_redeclaration_without_import_attribute)
6169           << NewDecl;
6170       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6171       NewDecl->dropAttr<DLLImportAttr>();
6172       NewDecl->addAttr(::new (S.Context) DLLExportAttr(
6173           NewImportAttr->getRange(), S.Context,
6174           NewImportAttr->getSpellingListIndex()));
6175     } else {
6176       S.Diag(NewDecl->getLocation(),
6177              diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6178           << NewDecl << OldImportAttr;
6179       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6180       S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6181       OldDecl->dropAttr<DLLImportAttr>();
6182       NewDecl->dropAttr<DLLImportAttr>();
6183     }
6184   } else if (IsInline && OldImportAttr && !IsMicrosoft) {
6185     // In MinGW, seeing a function declared inline drops the dllimport
6186     // attribute.
6187     OldDecl->dropAttr<DLLImportAttr>();
6188     NewDecl->dropAttr<DLLImportAttr>();
6189     S.Diag(NewDecl->getLocation(),
6190            diag::warn_dllimport_dropped_from_inline_function)
6191         << NewDecl << OldImportAttr;
6192   }
6193 
6194   // A specialization of a class template member function is processed here
6195   // since it's a redeclaration. If the parent class is dllexport, the
6196   // specialization inherits that attribute. This doesn't happen automatically
6197   // since the parent class isn't instantiated until later.
6198   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6199     if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6200         !NewImportAttr && !NewExportAttr) {
6201       if (const DLLExportAttr *ParentExportAttr =
6202               MD->getParent()->getAttr<DLLExportAttr>()) {
6203         DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6204         NewAttr->setInherited(true);
6205         NewDecl->addAttr(NewAttr);
6206       }
6207     }
6208   }
6209 }
6210 
6211 /// Given that we are within the definition of the given function,
6212 /// will that definition behave like C99's 'inline', where the
6213 /// definition is discarded except for optimization purposes?
6214 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6215   // Try to avoid calling GetGVALinkageForFunction.
6216 
6217   // All cases of this require the 'inline' keyword.
6218   if (!FD->isInlined()) return false;
6219 
6220   // This is only possible in C++ with the gnu_inline attribute.
6221   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6222     return false;
6223 
6224   // Okay, go ahead and call the relatively-more-expensive function.
6225   return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6226 }
6227 
6228 /// Determine whether a variable is extern "C" prior to attaching
6229 /// an initializer. We can't just call isExternC() here, because that
6230 /// will also compute and cache whether the declaration is externally
6231 /// visible, which might change when we attach the initializer.
6232 ///
6233 /// This can only be used if the declaration is known to not be a
6234 /// redeclaration of an internal linkage declaration.
6235 ///
6236 /// For instance:
6237 ///
6238 ///   auto x = []{};
6239 ///
6240 /// Attaching the initializer here makes this declaration not externally
6241 /// visible, because its type has internal linkage.
6242 ///
6243 /// FIXME: This is a hack.
6244 template<typename T>
6245 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6246   if (S.getLangOpts().CPlusPlus) {
6247     // In C++, the overloadable attribute negates the effects of extern "C".
6248     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6249       return false;
6250 
6251     // So do CUDA's host/device attributes.
6252     if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6253                                  D->template hasAttr<CUDAHostAttr>()))
6254       return false;
6255   }
6256   return D->isExternC();
6257 }
6258 
6259 static bool shouldConsiderLinkage(const VarDecl *VD) {
6260   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6261   if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
6262       isa<OMPDeclareMapperDecl>(DC))
6263     return VD->hasExternalStorage();
6264   if (DC->isFileContext())
6265     return true;
6266   if (DC->isRecord())
6267     return false;
6268   llvm_unreachable("Unexpected context");
6269 }
6270 
6271 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6272   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6273   if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6274       isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
6275     return true;
6276   if (DC->isRecord())
6277     return false;
6278   llvm_unreachable("Unexpected context");
6279 }
6280 
6281 static bool hasParsedAttr(Scope *S, const Declarator &PD,
6282                           ParsedAttr::Kind Kind) {
6283   // Check decl attributes on the DeclSpec.
6284   if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6285     return true;
6286 
6287   // Walk the declarator structure, checking decl attributes that were in a type
6288   // position to the decl itself.
6289   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6290     if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6291       return true;
6292   }
6293 
6294   // Finally, check attributes on the decl itself.
6295   return PD.getAttributes().hasAttribute(Kind);
6296 }
6297 
6298 /// Adjust the \c DeclContext for a function or variable that might be a
6299 /// function-local external declaration.
6300 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6301   if (!DC->isFunctionOrMethod())
6302     return false;
6303 
6304   // If this is a local extern function or variable declared within a function
6305   // template, don't add it into the enclosing namespace scope until it is
6306   // instantiated; it might have a dependent type right now.
6307   if (DC->isDependentContext())
6308     return true;
6309 
6310   // C++11 [basic.link]p7:
6311   //   When a block scope declaration of an entity with linkage is not found to
6312   //   refer to some other declaration, then that entity is a member of the
6313   //   innermost enclosing namespace.
6314   //
6315   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6316   // semantically-enclosing namespace, not a lexically-enclosing one.
6317   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6318     DC = DC->getParent();
6319   return true;
6320 }
6321 
6322 /// Returns true if given declaration has external C language linkage.
6323 static bool isDeclExternC(const Decl *D) {
6324   if (const auto *FD = dyn_cast<FunctionDecl>(D))
6325     return FD->isExternC();
6326   if (const auto *VD = dyn_cast<VarDecl>(D))
6327     return VD->isExternC();
6328 
6329   llvm_unreachable("Unknown type of decl!");
6330 }
6331 
6332 NamedDecl *Sema::ActOnVariableDeclarator(
6333     Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6334     LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6335     bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6336   QualType R = TInfo->getType();
6337   DeclarationName Name = GetNameForDeclarator(D).getName();
6338 
6339   IdentifierInfo *II = Name.getAsIdentifierInfo();
6340 
6341   if (D.isDecompositionDeclarator()) {
6342     // Take the name of the first declarator as our name for diagnostic
6343     // purposes.
6344     auto &Decomp = D.getDecompositionDeclarator();
6345     if (!Decomp.bindings().empty()) {
6346       II = Decomp.bindings()[0].Name;
6347       Name = II;
6348     }
6349   } else if (!II) {
6350     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6351     return nullptr;
6352   }
6353 
6354   if (getLangOpts().OpenCL) {
6355     // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6356     // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6357     // argument.
6358     if (R->isImageType() || R->isPipeType()) {
6359       Diag(D.getIdentifierLoc(),
6360            diag::err_opencl_type_can_only_be_used_as_function_parameter)
6361           << R;
6362       D.setInvalidType();
6363       return nullptr;
6364     }
6365 
6366     // OpenCL v1.2 s6.9.r:
6367     // The event type cannot be used to declare a program scope variable.
6368     // OpenCL v2.0 s6.9.q:
6369     // The clk_event_t and reserve_id_t types cannot be declared in program scope.
6370     if (NULL == S->getParent()) {
6371       if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6372         Diag(D.getIdentifierLoc(),
6373              diag::err_invalid_type_for_program_scope_var) << R;
6374         D.setInvalidType();
6375         return nullptr;
6376       }
6377     }
6378 
6379     // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6380     QualType NR = R;
6381     while (NR->isPointerType()) {
6382       if (NR->isFunctionPointerType()) {
6383         Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
6384         D.setInvalidType();
6385         break;
6386       }
6387       NR = NR->getPointeeType();
6388     }
6389 
6390     if (!getOpenCLOptions().isEnabled("cl_khr_fp16")) {
6391       // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6392       // half array type (unless the cl_khr_fp16 extension is enabled).
6393       if (Context.getBaseElementType(R)->isHalfType()) {
6394         Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
6395         D.setInvalidType();
6396       }
6397     }
6398 
6399     if (R->isSamplerT()) {
6400       // OpenCL v1.2 s6.9.b p4:
6401       // The sampler type cannot be used with the __local and __global address
6402       // space qualifiers.
6403       if (R.getAddressSpace() == LangAS::opencl_local ||
6404           R.getAddressSpace() == LangAS::opencl_global) {
6405         Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
6406       }
6407 
6408       // OpenCL v1.2 s6.12.14.1:
6409       // A global sampler must be declared with either the constant address
6410       // space qualifier or with the const qualifier.
6411       if (DC->isTranslationUnit() &&
6412           !(R.getAddressSpace() == LangAS::opencl_constant ||
6413           R.isConstQualified())) {
6414         Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
6415         D.setInvalidType();
6416       }
6417     }
6418 
6419     // OpenCL v1.2 s6.9.r:
6420     // The event type cannot be used with the __local, __constant and __global
6421     // address space qualifiers.
6422     if (R->isEventT()) {
6423       if (R.getAddressSpace() != LangAS::opencl_private) {
6424         Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual);
6425         D.setInvalidType();
6426       }
6427     }
6428 
6429     // OpenCL C++ 1.0 s2.9: the thread_local storage qualifier is not
6430     // supported.  OpenCL C does not support thread_local either, and
6431     // also reject all other thread storage class specifiers.
6432     DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
6433     if (TSC != TSCS_unspecified) {
6434       bool IsCXX = getLangOpts().OpenCLCPlusPlus;
6435       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6436            diag::err_opencl_unknown_type_specifier)
6437           << IsCXX << getLangOpts().getOpenCLVersionTuple().getAsString()
6438           << DeclSpec::getSpecifierName(TSC) << 1;
6439       D.setInvalidType();
6440       return nullptr;
6441     }
6442   }
6443 
6444   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6445   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6446 
6447   // dllimport globals without explicit storage class are treated as extern. We
6448   // have to change the storage class this early to get the right DeclContext.
6449   if (SC == SC_None && !DC->isRecord() &&
6450       hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6451       !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6452     SC = SC_Extern;
6453 
6454   DeclContext *OriginalDC = DC;
6455   bool IsLocalExternDecl = SC == SC_Extern &&
6456                            adjustContextForLocalExternDecl(DC);
6457 
6458   if (SCSpec == DeclSpec::SCS_mutable) {
6459     // mutable can only appear on non-static class members, so it's always
6460     // an error here
6461     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6462     D.setInvalidType();
6463     SC = SC_None;
6464   }
6465 
6466   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6467       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6468                               D.getDeclSpec().getStorageClassSpecLoc())) {
6469     // In C++11, the 'register' storage class specifier is deprecated.
6470     // Suppress the warning in system macros, it's used in macros in some
6471     // popular C system headers, such as in glibc's htonl() macro.
6472     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6473          getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6474                                    : diag::warn_deprecated_register)
6475       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6476   }
6477 
6478   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6479 
6480   if (!DC->isRecord() && S->getFnParent() == nullptr) {
6481     // C99 6.9p2: The storage-class specifiers auto and register shall not
6482     // appear in the declaration specifiers in an external declaration.
6483     // Global Register+Asm is a GNU extension we support.
6484     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6485       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6486       D.setInvalidType();
6487     }
6488   }
6489 
6490   bool IsMemberSpecialization = false;
6491   bool IsVariableTemplateSpecialization = false;
6492   bool IsPartialSpecialization = false;
6493   bool IsVariableTemplate = false;
6494   VarDecl *NewVD = nullptr;
6495   VarTemplateDecl *NewTemplate = nullptr;
6496   TemplateParameterList *TemplateParams = nullptr;
6497   if (!getLangOpts().CPlusPlus) {
6498     NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
6499                             II, R, TInfo, SC);
6500 
6501     if (R->getContainedDeducedType())
6502       ParsingInitForAutoVars.insert(NewVD);
6503 
6504     if (D.isInvalidType())
6505       NewVD->setInvalidDecl();
6506   } else {
6507     bool Invalid = false;
6508 
6509     if (DC->isRecord() && !CurContext->isRecord()) {
6510       // This is an out-of-line definition of a static data member.
6511       switch (SC) {
6512       case SC_None:
6513         break;
6514       case SC_Static:
6515         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6516              diag::err_static_out_of_line)
6517           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6518         break;
6519       case SC_Auto:
6520       case SC_Register:
6521       case SC_Extern:
6522         // [dcl.stc] p2: The auto or register specifiers shall be applied only
6523         // to names of variables declared in a block or to function parameters.
6524         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
6525         // of class members
6526 
6527         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6528              diag::err_storage_class_for_static_member)
6529           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6530         break;
6531       case SC_PrivateExtern:
6532         llvm_unreachable("C storage class in c++!");
6533       }
6534     }
6535 
6536     if (SC == SC_Static && CurContext->isRecord()) {
6537       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
6538         if (RD->isLocalClass())
6539           Diag(D.getIdentifierLoc(),
6540                diag::err_static_data_member_not_allowed_in_local_class)
6541             << Name << RD->getDeclName();
6542 
6543         // C++98 [class.union]p1: If a union contains a static data member,
6544         // the program is ill-formed. C++11 drops this restriction.
6545         if (RD->isUnion())
6546           Diag(D.getIdentifierLoc(),
6547                getLangOpts().CPlusPlus11
6548                  ? diag::warn_cxx98_compat_static_data_member_in_union
6549                  : diag::ext_static_data_member_in_union) << Name;
6550         // We conservatively disallow static data members in anonymous structs.
6551         else if (!RD->getDeclName())
6552           Diag(D.getIdentifierLoc(),
6553                diag::err_static_data_member_not_allowed_in_anon_struct)
6554             << Name << RD->isUnion();
6555       }
6556     }
6557 
6558     // Match up the template parameter lists with the scope specifier, then
6559     // determine whether we have a template or a template specialization.
6560     TemplateParams = MatchTemplateParametersToScopeSpecifier(
6561         D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
6562         D.getCXXScopeSpec(),
6563         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
6564             ? D.getName().TemplateId
6565             : nullptr,
6566         TemplateParamLists,
6567         /*never a friend*/ false, IsMemberSpecialization, Invalid);
6568 
6569     if (TemplateParams) {
6570       if (!TemplateParams->size() &&
6571           D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
6572         // There is an extraneous 'template<>' for this variable. Complain
6573         // about it, but allow the declaration of the variable.
6574         Diag(TemplateParams->getTemplateLoc(),
6575              diag::err_template_variable_noparams)
6576           << II
6577           << SourceRange(TemplateParams->getTemplateLoc(),
6578                          TemplateParams->getRAngleLoc());
6579         TemplateParams = nullptr;
6580       } else {
6581         if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
6582           // This is an explicit specialization or a partial specialization.
6583           // FIXME: Check that we can declare a specialization here.
6584           IsVariableTemplateSpecialization = true;
6585           IsPartialSpecialization = TemplateParams->size() > 0;
6586         } else { // if (TemplateParams->size() > 0)
6587           // This is a template declaration.
6588           IsVariableTemplate = true;
6589 
6590           // Check that we can declare a template here.
6591           if (CheckTemplateDeclScope(S, TemplateParams))
6592             return nullptr;
6593 
6594           // Only C++1y supports variable templates (N3651).
6595           Diag(D.getIdentifierLoc(),
6596                getLangOpts().CPlusPlus14
6597                    ? diag::warn_cxx11_compat_variable_template
6598                    : diag::ext_variable_template);
6599         }
6600       }
6601     } else {
6602       assert((Invalid ||
6603               D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
6604              "should have a 'template<>' for this decl");
6605     }
6606 
6607     if (IsVariableTemplateSpecialization) {
6608       SourceLocation TemplateKWLoc =
6609           TemplateParamLists.size() > 0
6610               ? TemplateParamLists[0]->getTemplateLoc()
6611               : SourceLocation();
6612       DeclResult Res = ActOnVarTemplateSpecialization(
6613           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
6614           IsPartialSpecialization);
6615       if (Res.isInvalid())
6616         return nullptr;
6617       NewVD = cast<VarDecl>(Res.get());
6618       AddToScope = false;
6619     } else if (D.isDecompositionDeclarator()) {
6620       NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
6621                                         D.getIdentifierLoc(), R, TInfo, SC,
6622                                         Bindings);
6623     } else
6624       NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
6625                               D.getIdentifierLoc(), II, R, TInfo, SC);
6626 
6627     // If this is supposed to be a variable template, create it as such.
6628     if (IsVariableTemplate) {
6629       NewTemplate =
6630           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
6631                                   TemplateParams, NewVD);
6632       NewVD->setDescribedVarTemplate(NewTemplate);
6633     }
6634 
6635     // If this decl has an auto type in need of deduction, make a note of the
6636     // Decl so we can diagnose uses of it in its own initializer.
6637     if (R->getContainedDeducedType())
6638       ParsingInitForAutoVars.insert(NewVD);
6639 
6640     if (D.isInvalidType() || Invalid) {
6641       NewVD->setInvalidDecl();
6642       if (NewTemplate)
6643         NewTemplate->setInvalidDecl();
6644     }
6645 
6646     SetNestedNameSpecifier(*this, NewVD, D);
6647 
6648     // If we have any template parameter lists that don't directly belong to
6649     // the variable (matching the scope specifier), store them.
6650     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
6651     if (TemplateParamLists.size() > VDTemplateParamLists)
6652       NewVD->setTemplateParameterListsInfo(
6653           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
6654 
6655     if (D.getDeclSpec().hasConstexprSpecifier()) {
6656       NewVD->setConstexpr(true);
6657       // C++1z [dcl.spec.constexpr]p1:
6658       //   A static data member declared with the constexpr specifier is
6659       //   implicitly an inline variable.
6660       if (NewVD->isStaticDataMember() && getLangOpts().CPlusPlus17)
6661         NewVD->setImplicitlyInline();
6662       if (D.getDeclSpec().getConstexprSpecifier() == CSK_consteval)
6663         Diag(D.getDeclSpec().getConstexprSpecLoc(),
6664              diag::err_constexpr_wrong_decl_kind)
6665             << /*consteval*/ 1;
6666     }
6667   }
6668 
6669   if (D.getDeclSpec().isInlineSpecified()) {
6670     if (!getLangOpts().CPlusPlus) {
6671       Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6672           << 0;
6673     } else if (CurContext->isFunctionOrMethod()) {
6674       // 'inline' is not allowed on block scope variable declaration.
6675       Diag(D.getDeclSpec().getInlineSpecLoc(),
6676            diag::err_inline_declaration_block_scope) << Name
6677         << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6678     } else {
6679       Diag(D.getDeclSpec().getInlineSpecLoc(),
6680            getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
6681                                      : diag::ext_inline_variable);
6682       NewVD->setInlineSpecified();
6683     }
6684   }
6685 
6686   // Set the lexical context. If the declarator has a C++ scope specifier, the
6687   // lexical context will be different from the semantic context.
6688   NewVD->setLexicalDeclContext(CurContext);
6689   if (NewTemplate)
6690     NewTemplate->setLexicalDeclContext(CurContext);
6691 
6692   if (IsLocalExternDecl) {
6693     if (D.isDecompositionDeclarator())
6694       for (auto *B : Bindings)
6695         B->setLocalExternDecl();
6696     else
6697       NewVD->setLocalExternDecl();
6698   }
6699 
6700   bool EmitTLSUnsupportedError = false;
6701   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
6702     // C++11 [dcl.stc]p4:
6703     //   When thread_local is applied to a variable of block scope the
6704     //   storage-class-specifier static is implied if it does not appear
6705     //   explicitly.
6706     // Core issue: 'static' is not implied if the variable is declared
6707     //   'extern'.
6708     if (NewVD->hasLocalStorage() &&
6709         (SCSpec != DeclSpec::SCS_unspecified ||
6710          TSCS != DeclSpec::TSCS_thread_local ||
6711          !DC->isFunctionOrMethod()))
6712       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6713            diag::err_thread_non_global)
6714         << DeclSpec::getSpecifierName(TSCS);
6715     else if (!Context.getTargetInfo().isTLSSupported()) {
6716       if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6717         // Postpone error emission until we've collected attributes required to
6718         // figure out whether it's a host or device variable and whether the
6719         // error should be ignored.
6720         EmitTLSUnsupportedError = true;
6721         // We still need to mark the variable as TLS so it shows up in AST with
6722         // proper storage class for other tools to use even if we're not going
6723         // to emit any code for it.
6724         NewVD->setTSCSpec(TSCS);
6725       } else
6726         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6727              diag::err_thread_unsupported);
6728     } else
6729       NewVD->setTSCSpec(TSCS);
6730   }
6731 
6732   // C99 6.7.4p3
6733   //   An inline definition of a function with external linkage shall
6734   //   not contain a definition of a modifiable object with static or
6735   //   thread storage duration...
6736   // We only apply this when the function is required to be defined
6737   // elsewhere, i.e. when the function is not 'extern inline'.  Note
6738   // that a local variable with thread storage duration still has to
6739   // be marked 'static'.  Also note that it's possible to get these
6740   // semantics in C++ using __attribute__((gnu_inline)).
6741   if (SC == SC_Static && S->getFnParent() != nullptr &&
6742       !NewVD->getType().isConstQualified()) {
6743     FunctionDecl *CurFD = getCurFunctionDecl();
6744     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
6745       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6746            diag::warn_static_local_in_extern_inline);
6747       MaybeSuggestAddingStaticToDecl(CurFD);
6748     }
6749   }
6750 
6751   if (D.getDeclSpec().isModulePrivateSpecified()) {
6752     if (IsVariableTemplateSpecialization)
6753       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6754           << (IsPartialSpecialization ? 1 : 0)
6755           << FixItHint::CreateRemoval(
6756                  D.getDeclSpec().getModulePrivateSpecLoc());
6757     else if (IsMemberSpecialization)
6758       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6759         << 2
6760         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6761     else if (NewVD->hasLocalStorage())
6762       Diag(NewVD->getLocation(), diag::err_module_private_local)
6763         << 0 << NewVD->getDeclName()
6764         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6765         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6766     else {
6767       NewVD->setModulePrivate();
6768       if (NewTemplate)
6769         NewTemplate->setModulePrivate();
6770       for (auto *B : Bindings)
6771         B->setModulePrivate();
6772     }
6773   }
6774 
6775   // Handle attributes prior to checking for duplicates in MergeVarDecl
6776   ProcessDeclAttributes(S, NewVD, D);
6777 
6778   if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6779     if (EmitTLSUnsupportedError &&
6780         ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
6781          (getLangOpts().OpenMPIsDevice &&
6782           NewVD->hasAttr<OMPDeclareTargetDeclAttr>())))
6783       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6784            diag::err_thread_unsupported);
6785     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
6786     // storage [duration]."
6787     if (SC == SC_None && S->getFnParent() != nullptr &&
6788         (NewVD->hasAttr<CUDASharedAttr>() ||
6789          NewVD->hasAttr<CUDAConstantAttr>())) {
6790       NewVD->setStorageClass(SC_Static);
6791     }
6792   }
6793 
6794   // Ensure that dllimport globals without explicit storage class are treated as
6795   // extern. The storage class is set above using parsed attributes. Now we can
6796   // check the VarDecl itself.
6797   assert(!NewVD->hasAttr<DLLImportAttr>() ||
6798          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
6799          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
6800 
6801   // In auto-retain/release, infer strong retension for variables of
6802   // retainable type.
6803   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
6804     NewVD->setInvalidDecl();
6805 
6806   // Handle GNU asm-label extension (encoded as an attribute).
6807   if (Expr *E = (Expr*)D.getAsmLabel()) {
6808     // The parser guarantees this is a string.
6809     StringLiteral *SE = cast<StringLiteral>(E);
6810     StringRef Label = SE->getString();
6811     if (S->getFnParent() != nullptr) {
6812       switch (SC) {
6813       case SC_None:
6814       case SC_Auto:
6815         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
6816         break;
6817       case SC_Register:
6818         // Local Named register
6819         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
6820             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
6821           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6822         break;
6823       case SC_Static:
6824       case SC_Extern:
6825       case SC_PrivateExtern:
6826         break;
6827       }
6828     } else if (SC == SC_Register) {
6829       // Global Named register
6830       if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
6831         const auto &TI = Context.getTargetInfo();
6832         bool HasSizeMismatch;
6833 
6834         if (!TI.isValidGCCRegisterName(Label))
6835           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6836         else if (!TI.validateGlobalRegisterVariable(Label,
6837                                                     Context.getTypeSize(R),
6838                                                     HasSizeMismatch))
6839           Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
6840         else if (HasSizeMismatch)
6841           Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
6842       }
6843 
6844       if (!R->isIntegralType(Context) && !R->isPointerType()) {
6845         Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
6846         NewVD->setInvalidDecl(true);
6847       }
6848     }
6849 
6850     NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
6851                                                 Context, Label, 0));
6852   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6853     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6854       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
6855     if (I != ExtnameUndeclaredIdentifiers.end()) {
6856       if (isDeclExternC(NewVD)) {
6857         NewVD->addAttr(I->second);
6858         ExtnameUndeclaredIdentifiers.erase(I);
6859       } else
6860         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
6861             << /*Variable*/1 << NewVD;
6862     }
6863   }
6864 
6865   // Find the shadowed declaration before filtering for scope.
6866   NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
6867                                 ? getShadowedDeclaration(NewVD, Previous)
6868                                 : nullptr;
6869 
6870   // Don't consider existing declarations that are in a different
6871   // scope and are out-of-semantic-context declarations (if the new
6872   // declaration has linkage).
6873   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
6874                        D.getCXXScopeSpec().isNotEmpty() ||
6875                        IsMemberSpecialization ||
6876                        IsVariableTemplateSpecialization);
6877 
6878   // Check whether the previous declaration is in the same block scope. This
6879   // affects whether we merge types with it, per C++11 [dcl.array]p3.
6880   if (getLangOpts().CPlusPlus &&
6881       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
6882     NewVD->setPreviousDeclInSameBlockScope(
6883         Previous.isSingleResult() && !Previous.isShadowed() &&
6884         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
6885 
6886   if (!getLangOpts().CPlusPlus) {
6887     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6888   } else {
6889     // If this is an explicit specialization of a static data member, check it.
6890     if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
6891         CheckMemberSpecialization(NewVD, Previous))
6892       NewVD->setInvalidDecl();
6893 
6894     // Merge the decl with the existing one if appropriate.
6895     if (!Previous.empty()) {
6896       if (Previous.isSingleResult() &&
6897           isa<FieldDecl>(Previous.getFoundDecl()) &&
6898           D.getCXXScopeSpec().isSet()) {
6899         // The user tried to define a non-static data member
6900         // out-of-line (C++ [dcl.meaning]p1).
6901         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
6902           << D.getCXXScopeSpec().getRange();
6903         Previous.clear();
6904         NewVD->setInvalidDecl();
6905       }
6906     } else if (D.getCXXScopeSpec().isSet()) {
6907       // No previous declaration in the qualifying scope.
6908       Diag(D.getIdentifierLoc(), diag::err_no_member)
6909         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
6910         << D.getCXXScopeSpec().getRange();
6911       NewVD->setInvalidDecl();
6912     }
6913 
6914     if (!IsVariableTemplateSpecialization)
6915       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6916 
6917     if (NewTemplate) {
6918       VarTemplateDecl *PrevVarTemplate =
6919           NewVD->getPreviousDecl()
6920               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
6921               : nullptr;
6922 
6923       // Check the template parameter list of this declaration, possibly
6924       // merging in the template parameter list from the previous variable
6925       // template declaration.
6926       if (CheckTemplateParameterList(
6927               TemplateParams,
6928               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
6929                               : nullptr,
6930               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
6931                DC->isDependentContext())
6932                   ? TPC_ClassTemplateMember
6933                   : TPC_VarTemplate))
6934         NewVD->setInvalidDecl();
6935 
6936       // If we are providing an explicit specialization of a static variable
6937       // template, make a note of that.
6938       if (PrevVarTemplate &&
6939           PrevVarTemplate->getInstantiatedFromMemberTemplate())
6940         PrevVarTemplate->setMemberSpecialization();
6941     }
6942   }
6943 
6944   // Diagnose shadowed variables iff this isn't a redeclaration.
6945   if (ShadowedDecl && !D.isRedeclaration())
6946     CheckShadow(NewVD, ShadowedDecl, Previous);
6947 
6948   ProcessPragmaWeak(S, NewVD);
6949 
6950   // If this is the first declaration of an extern C variable, update
6951   // the map of such variables.
6952   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
6953       isIncompleteDeclExternC(*this, NewVD))
6954     RegisterLocallyScopedExternCDecl(NewVD, S);
6955 
6956   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
6957     Decl *ManglingContextDecl;
6958     if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
6959             NewVD->getDeclContext(), ManglingContextDecl)) {
6960       Context.setManglingNumber(
6961           NewVD, MCtx->getManglingNumber(
6962                      NewVD, getMSManglingNumber(getLangOpts(), S)));
6963       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
6964     }
6965   }
6966 
6967   // Special handling of variable named 'main'.
6968   if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
6969       NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6970       !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
6971 
6972     // C++ [basic.start.main]p3
6973     // A program that declares a variable main at global scope is ill-formed.
6974     if (getLangOpts().CPlusPlus)
6975       Diag(D.getBeginLoc(), diag::err_main_global_variable);
6976 
6977     // In C, and external-linkage variable named main results in undefined
6978     // behavior.
6979     else if (NewVD->hasExternalFormalLinkage())
6980       Diag(D.getBeginLoc(), diag::warn_main_redefined);
6981   }
6982 
6983   if (D.isRedeclaration() && !Previous.empty()) {
6984     NamedDecl *Prev = Previous.getRepresentativeDecl();
6985     checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
6986                                    D.isFunctionDefinition());
6987   }
6988 
6989   if (NewTemplate) {
6990     if (NewVD->isInvalidDecl())
6991       NewTemplate->setInvalidDecl();
6992     ActOnDocumentableDecl(NewTemplate);
6993     return NewTemplate;
6994   }
6995 
6996   if (IsMemberSpecialization && !NewVD->isInvalidDecl())
6997     CompleteMemberSpecialization(NewVD, Previous);
6998 
6999   return NewVD;
7000 }
7001 
7002 /// Enum describing the %select options in diag::warn_decl_shadow.
7003 enum ShadowedDeclKind {
7004   SDK_Local,
7005   SDK_Global,
7006   SDK_StaticMember,
7007   SDK_Field,
7008   SDK_Typedef,
7009   SDK_Using
7010 };
7011 
7012 /// Determine what kind of declaration we're shadowing.
7013 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
7014                                                 const DeclContext *OldDC) {
7015   if (isa<TypeAliasDecl>(ShadowedDecl))
7016     return SDK_Using;
7017   else if (isa<TypedefDecl>(ShadowedDecl))
7018     return SDK_Typedef;
7019   else if (isa<RecordDecl>(OldDC))
7020     return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
7021 
7022   return OldDC->isFileContext() ? SDK_Global : SDK_Local;
7023 }
7024 
7025 /// Return the location of the capture if the given lambda captures the given
7026 /// variable \p VD, or an invalid source location otherwise.
7027 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
7028                                          const VarDecl *VD) {
7029   for (const Capture &Capture : LSI->Captures) {
7030     if (Capture.isVariableCapture() && Capture.getVariable() == VD)
7031       return Capture.getLocation();
7032   }
7033   return SourceLocation();
7034 }
7035 
7036 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
7037                                      const LookupResult &R) {
7038   // Only diagnose if we're shadowing an unambiguous field or variable.
7039   if (R.getResultKind() != LookupResult::Found)
7040     return false;
7041 
7042   // Return false if warning is ignored.
7043   return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
7044 }
7045 
7046 /// Return the declaration shadowed by the given variable \p D, or null
7047 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7048 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
7049                                         const LookupResult &R) {
7050   if (!shouldWarnIfShadowedDecl(Diags, R))
7051     return nullptr;
7052 
7053   // Don't diagnose declarations at file scope.
7054   if (D->hasGlobalStorage())
7055     return nullptr;
7056 
7057   NamedDecl *ShadowedDecl = R.getFoundDecl();
7058   return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
7059              ? ShadowedDecl
7060              : nullptr;
7061 }
7062 
7063 /// Return the declaration shadowed by the given typedef \p D, or null
7064 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7065 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
7066                                         const LookupResult &R) {
7067   // Don't warn if typedef declaration is part of a class
7068   if (D->getDeclContext()->isRecord())
7069     return nullptr;
7070 
7071   if (!shouldWarnIfShadowedDecl(Diags, R))
7072     return nullptr;
7073 
7074   NamedDecl *ShadowedDecl = R.getFoundDecl();
7075   return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7076 }
7077 
7078 /// Diagnose variable or built-in function shadowing.  Implements
7079 /// -Wshadow.
7080 ///
7081 /// This method is called whenever a VarDecl is added to a "useful"
7082 /// scope.
7083 ///
7084 /// \param ShadowedDecl the declaration that is shadowed by the given variable
7085 /// \param R the lookup of the name
7086 ///
7087 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7088                        const LookupResult &R) {
7089   DeclContext *NewDC = D->getDeclContext();
7090 
7091   if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7092     // Fields are not shadowed by variables in C++ static methods.
7093     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7094       if (MD->isStatic())
7095         return;
7096 
7097     // Fields shadowed by constructor parameters are a special case. Usually
7098     // the constructor initializes the field with the parameter.
7099     if (isa<CXXConstructorDecl>(NewDC))
7100       if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7101         // Remember that this was shadowed so we can either warn about its
7102         // modification or its existence depending on warning settings.
7103         ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7104         return;
7105       }
7106   }
7107 
7108   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7109     if (shadowedVar->isExternC()) {
7110       // For shadowing external vars, make sure that we point to the global
7111       // declaration, not a locally scoped extern declaration.
7112       for (auto I : shadowedVar->redecls())
7113         if (I->isFileVarDecl()) {
7114           ShadowedDecl = I;
7115           break;
7116         }
7117     }
7118 
7119   DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7120 
7121   unsigned WarningDiag = diag::warn_decl_shadow;
7122   SourceLocation CaptureLoc;
7123   if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7124       isa<CXXMethodDecl>(NewDC)) {
7125     if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7126       if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7127         if (RD->getLambdaCaptureDefault() == LCD_None) {
7128           // Try to avoid warnings for lambdas with an explicit capture list.
7129           const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7130           // Warn only when the lambda captures the shadowed decl explicitly.
7131           CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7132           if (CaptureLoc.isInvalid())
7133             WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7134         } else {
7135           // Remember that this was shadowed so we can avoid the warning if the
7136           // shadowed decl isn't captured and the warning settings allow it.
7137           cast<LambdaScopeInfo>(getCurFunction())
7138               ->ShadowingDecls.push_back(
7139                   {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7140           return;
7141         }
7142       }
7143 
7144       if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7145         // A variable can't shadow a local variable in an enclosing scope, if
7146         // they are separated by a non-capturing declaration context.
7147         for (DeclContext *ParentDC = NewDC;
7148              ParentDC && !ParentDC->Equals(OldDC);
7149              ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7150           // Only block literals, captured statements, and lambda expressions
7151           // can capture; other scopes don't.
7152           if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7153               !isLambdaCallOperator(ParentDC)) {
7154             return;
7155           }
7156         }
7157       }
7158     }
7159   }
7160 
7161   // Only warn about certain kinds of shadowing for class members.
7162   if (NewDC && NewDC->isRecord()) {
7163     // In particular, don't warn about shadowing non-class members.
7164     if (!OldDC->isRecord())
7165       return;
7166 
7167     // TODO: should we warn about static data members shadowing
7168     // static data members from base classes?
7169 
7170     // TODO: don't diagnose for inaccessible shadowed members.
7171     // This is hard to do perfectly because we might friend the
7172     // shadowing context, but that's just a false negative.
7173   }
7174 
7175 
7176   DeclarationName Name = R.getLookupName();
7177 
7178   // Emit warning and note.
7179   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7180     return;
7181   ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7182   Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7183   if (!CaptureLoc.isInvalid())
7184     Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7185         << Name << /*explicitly*/ 1;
7186   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7187 }
7188 
7189 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7190 /// when these variables are captured by the lambda.
7191 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7192   for (const auto &Shadow : LSI->ShadowingDecls) {
7193     const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7194     // Try to avoid the warning when the shadowed decl isn't captured.
7195     SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7196     const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7197     Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7198                                        ? diag::warn_decl_shadow_uncaptured_local
7199                                        : diag::warn_decl_shadow)
7200         << Shadow.VD->getDeclName()
7201         << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7202     if (!CaptureLoc.isInvalid())
7203       Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7204           << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7205     Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7206   }
7207 }
7208 
7209 /// Check -Wshadow without the advantage of a previous lookup.
7210 void Sema::CheckShadow(Scope *S, VarDecl *D) {
7211   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7212     return;
7213 
7214   LookupResult R(*this, D->getDeclName(), D->getLocation(),
7215                  Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7216   LookupName(R, S);
7217   if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7218     CheckShadow(D, ShadowedDecl, R);
7219 }
7220 
7221 /// Check if 'E', which is an expression that is about to be modified, refers
7222 /// to a constructor parameter that shadows a field.
7223 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7224   // Quickly ignore expressions that can't be shadowing ctor parameters.
7225   if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7226     return;
7227   E = E->IgnoreParenImpCasts();
7228   auto *DRE = dyn_cast<DeclRefExpr>(E);
7229   if (!DRE)
7230     return;
7231   const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7232   auto I = ShadowingDecls.find(D);
7233   if (I == ShadowingDecls.end())
7234     return;
7235   const NamedDecl *ShadowedDecl = I->second;
7236   const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7237   Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7238   Diag(D->getLocation(), diag::note_var_declared_here) << D;
7239   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7240 
7241   // Avoid issuing multiple warnings about the same decl.
7242   ShadowingDecls.erase(I);
7243 }
7244 
7245 /// Check for conflict between this global or extern "C" declaration and
7246 /// previous global or extern "C" declarations. This is only used in C++.
7247 template<typename T>
7248 static bool checkGlobalOrExternCConflict(
7249     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7250   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
7251   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7252 
7253   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7254     // The common case: this global doesn't conflict with any extern "C"
7255     // declaration.
7256     return false;
7257   }
7258 
7259   if (Prev) {
7260     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7261       // Both the old and new declarations have C language linkage. This is a
7262       // redeclaration.
7263       Previous.clear();
7264       Previous.addDecl(Prev);
7265       return true;
7266     }
7267 
7268     // This is a global, non-extern "C" declaration, and there is a previous
7269     // non-global extern "C" declaration. Diagnose if this is a variable
7270     // declaration.
7271     if (!isa<VarDecl>(ND))
7272       return false;
7273   } else {
7274     // The declaration is extern "C". Check for any declaration in the
7275     // translation unit which might conflict.
7276     if (IsGlobal) {
7277       // We have already performed the lookup into the translation unit.
7278       IsGlobal = false;
7279       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7280            I != E; ++I) {
7281         if (isa<VarDecl>(*I)) {
7282           Prev = *I;
7283           break;
7284         }
7285       }
7286     } else {
7287       DeclContext::lookup_result R =
7288           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7289       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7290            I != E; ++I) {
7291         if (isa<VarDecl>(*I)) {
7292           Prev = *I;
7293           break;
7294         }
7295         // FIXME: If we have any other entity with this name in global scope,
7296         // the declaration is ill-formed, but that is a defect: it breaks the
7297         // 'stat' hack, for instance. Only variables can have mangled name
7298         // clashes with extern "C" declarations, so only they deserve a
7299         // diagnostic.
7300       }
7301     }
7302 
7303     if (!Prev)
7304       return false;
7305   }
7306 
7307   // Use the first declaration's location to ensure we point at something which
7308   // is lexically inside an extern "C" linkage-spec.
7309   assert(Prev && "should have found a previous declaration to diagnose");
7310   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7311     Prev = FD->getFirstDecl();
7312   else
7313     Prev = cast<VarDecl>(Prev)->getFirstDecl();
7314 
7315   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7316     << IsGlobal << ND;
7317   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7318     << IsGlobal;
7319   return false;
7320 }
7321 
7322 /// Apply special rules for handling extern "C" declarations. Returns \c true
7323 /// if we have found that this is a redeclaration of some prior entity.
7324 ///
7325 /// Per C++ [dcl.link]p6:
7326 ///   Two declarations [for a function or variable] with C language linkage
7327 ///   with the same name that appear in different scopes refer to the same
7328 ///   [entity]. An entity with C language linkage shall not be declared with
7329 ///   the same name as an entity in global scope.
7330 template<typename T>
7331 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7332                                                   LookupResult &Previous) {
7333   if (!S.getLangOpts().CPlusPlus) {
7334     // In C, when declaring a global variable, look for a corresponding 'extern'
7335     // variable declared in function scope. We don't need this in C++, because
7336     // we find local extern decls in the surrounding file-scope DeclContext.
7337     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7338       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7339         Previous.clear();
7340         Previous.addDecl(Prev);
7341         return true;
7342       }
7343     }
7344     return false;
7345   }
7346 
7347   // A declaration in the translation unit can conflict with an extern "C"
7348   // declaration.
7349   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7350     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7351 
7352   // An extern "C" declaration can conflict with a declaration in the
7353   // translation unit or can be a redeclaration of an extern "C" declaration
7354   // in another scope.
7355   if (isIncompleteDeclExternC(S,ND))
7356     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7357 
7358   // Neither global nor extern "C": nothing to do.
7359   return false;
7360 }
7361 
7362 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7363   // If the decl is already known invalid, don't check it.
7364   if (NewVD->isInvalidDecl())
7365     return;
7366 
7367   QualType T = NewVD->getType();
7368 
7369   // Defer checking an 'auto' type until its initializer is attached.
7370   if (T->isUndeducedType())
7371     return;
7372 
7373   if (NewVD->hasAttrs())
7374     CheckAlignasUnderalignment(NewVD);
7375 
7376   if (T->isObjCObjectType()) {
7377     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7378       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7379     T = Context.getObjCObjectPointerType(T);
7380     NewVD->setType(T);
7381   }
7382 
7383   // Emit an error if an address space was applied to decl with local storage.
7384   // This includes arrays of objects with address space qualifiers, but not
7385   // automatic variables that point to other address spaces.
7386   // ISO/IEC TR 18037 S5.1.2
7387   if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7388       T.getAddressSpace() != LangAS::Default) {
7389     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7390     NewVD->setInvalidDecl();
7391     return;
7392   }
7393 
7394   // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7395   // scope.
7396   if (getLangOpts().OpenCLVersion == 120 &&
7397       !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
7398       NewVD->isStaticLocal()) {
7399     Diag(NewVD->getLocation(), diag::err_static_function_scope);
7400     NewVD->setInvalidDecl();
7401     return;
7402   }
7403 
7404   if (getLangOpts().OpenCL) {
7405     // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
7406     if (NewVD->hasAttr<BlocksAttr>()) {
7407       Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
7408       return;
7409     }
7410 
7411     if (T->isBlockPointerType()) {
7412       // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
7413       // can't use 'extern' storage class.
7414       if (!T.isConstQualified()) {
7415         Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
7416             << 0 /*const*/;
7417         NewVD->setInvalidDecl();
7418         return;
7419       }
7420       if (NewVD->hasExternalStorage()) {
7421         Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
7422         NewVD->setInvalidDecl();
7423         return;
7424       }
7425     }
7426     // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the
7427     // __constant address space.
7428     // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static
7429     // variables inside a function can also be declared in the global
7430     // address space.
7431     // OpenCL C++ v1.0 s2.5 inherits rule from OpenCL C v2.0 and allows local
7432     // address space additionally.
7433     // FIXME: Add local AS for OpenCL C++.
7434     if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
7435         NewVD->hasExternalStorage()) {
7436       if (!T->isSamplerT() &&
7437           !(T.getAddressSpace() == LangAS::opencl_constant ||
7438             (T.getAddressSpace() == LangAS::opencl_global &&
7439              (getLangOpts().OpenCLVersion == 200 ||
7440               getLangOpts().OpenCLCPlusPlus)))) {
7441         int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
7442         if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus)
7443           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7444               << Scope << "global or constant";
7445         else
7446           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7447               << Scope << "constant";
7448         NewVD->setInvalidDecl();
7449         return;
7450       }
7451     } else {
7452       if (T.getAddressSpace() == LangAS::opencl_global) {
7453         Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7454             << 1 /*is any function*/ << "global";
7455         NewVD->setInvalidDecl();
7456         return;
7457       }
7458       if (T.getAddressSpace() == LangAS::opencl_constant ||
7459           T.getAddressSpace() == LangAS::opencl_local) {
7460         FunctionDecl *FD = getCurFunctionDecl();
7461         // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
7462         // in functions.
7463         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
7464           if (T.getAddressSpace() == LangAS::opencl_constant)
7465             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7466                 << 0 /*non-kernel only*/ << "constant";
7467           else
7468             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7469                 << 0 /*non-kernel only*/ << "local";
7470           NewVD->setInvalidDecl();
7471           return;
7472         }
7473         // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
7474         // in the outermost scope of a kernel function.
7475         if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
7476           if (!getCurScope()->isFunctionScope()) {
7477             if (T.getAddressSpace() == LangAS::opencl_constant)
7478               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7479                   << "constant";
7480             else
7481               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7482                   << "local";
7483             NewVD->setInvalidDecl();
7484             return;
7485           }
7486         }
7487       } else if (T.getAddressSpace() != LangAS::opencl_private) {
7488         // Do not allow other address spaces on automatic variable.
7489         Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
7490         NewVD->setInvalidDecl();
7491         return;
7492       }
7493     }
7494   }
7495 
7496   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
7497       && !NewVD->hasAttr<BlocksAttr>()) {
7498     if (getLangOpts().getGC() != LangOptions::NonGC)
7499       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
7500     else {
7501       assert(!getLangOpts().ObjCAutoRefCount);
7502       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
7503     }
7504   }
7505 
7506   bool isVM = T->isVariablyModifiedType();
7507   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
7508       NewVD->hasAttr<BlocksAttr>())
7509     setFunctionHasBranchProtectedScope();
7510 
7511   if ((isVM && NewVD->hasLinkage()) ||
7512       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
7513     bool SizeIsNegative;
7514     llvm::APSInt Oversized;
7515     TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
7516         NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
7517     QualType FixedT;
7518     if (FixedTInfo &&  T == NewVD->getTypeSourceInfo()->getType())
7519       FixedT = FixedTInfo->getType();
7520     else if (FixedTInfo) {
7521       // Type and type-as-written are canonically different. We need to fix up
7522       // both types separately.
7523       FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
7524                                                    Oversized);
7525     }
7526     if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
7527       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
7528       // FIXME: This won't give the correct result for
7529       // int a[10][n];
7530       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
7531 
7532       if (NewVD->isFileVarDecl())
7533         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
7534         << SizeRange;
7535       else if (NewVD->isStaticLocal())
7536         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
7537         << SizeRange;
7538       else
7539         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
7540         << SizeRange;
7541       NewVD->setInvalidDecl();
7542       return;
7543     }
7544 
7545     if (!FixedTInfo) {
7546       if (NewVD->isFileVarDecl())
7547         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
7548       else
7549         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
7550       NewVD->setInvalidDecl();
7551       return;
7552     }
7553 
7554     Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
7555     NewVD->setType(FixedT);
7556     NewVD->setTypeSourceInfo(FixedTInfo);
7557   }
7558 
7559   if (T->isVoidType()) {
7560     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
7561     //                    of objects and functions.
7562     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
7563       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
7564         << T;
7565       NewVD->setInvalidDecl();
7566       return;
7567     }
7568   }
7569 
7570   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
7571     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
7572     NewVD->setInvalidDecl();
7573     return;
7574   }
7575 
7576   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
7577     Diag(NewVD->getLocation(), diag::err_block_on_vm);
7578     NewVD->setInvalidDecl();
7579     return;
7580   }
7581 
7582   if (NewVD->isConstexpr() && !T->isDependentType() &&
7583       RequireLiteralType(NewVD->getLocation(), T,
7584                          diag::err_constexpr_var_non_literal)) {
7585     NewVD->setInvalidDecl();
7586     return;
7587   }
7588 }
7589 
7590 /// Perform semantic checking on a newly-created variable
7591 /// declaration.
7592 ///
7593 /// This routine performs all of the type-checking required for a
7594 /// variable declaration once it has been built. It is used both to
7595 /// check variables after they have been parsed and their declarators
7596 /// have been translated into a declaration, and to check variables
7597 /// that have been instantiated from a template.
7598 ///
7599 /// Sets NewVD->isInvalidDecl() if an error was encountered.
7600 ///
7601 /// Returns true if the variable declaration is a redeclaration.
7602 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
7603   CheckVariableDeclarationType(NewVD);
7604 
7605   // If the decl is already known invalid, don't check it.
7606   if (NewVD->isInvalidDecl())
7607     return false;
7608 
7609   // If we did not find anything by this name, look for a non-visible
7610   // extern "C" declaration with the same name.
7611   if (Previous.empty() &&
7612       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
7613     Previous.setShadowed();
7614 
7615   if (!Previous.empty()) {
7616     MergeVarDecl(NewVD, Previous);
7617     return true;
7618   }
7619   return false;
7620 }
7621 
7622 namespace {
7623 struct FindOverriddenMethod {
7624   Sema *S;
7625   CXXMethodDecl *Method;
7626 
7627   /// Member lookup function that determines whether a given C++
7628   /// method overrides a method in a base class, to be used with
7629   /// CXXRecordDecl::lookupInBases().
7630   bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7631     RecordDecl *BaseRecord =
7632         Specifier->getType()->getAs<RecordType>()->getDecl();
7633 
7634     DeclarationName Name = Method->getDeclName();
7635 
7636     // FIXME: Do we care about other names here too?
7637     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7638       // We really want to find the base class destructor here.
7639       QualType T = S->Context.getTypeDeclType(BaseRecord);
7640       CanQualType CT = S->Context.getCanonicalType(T);
7641 
7642       Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
7643     }
7644 
7645     for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7646          Path.Decls = Path.Decls.slice(1)) {
7647       NamedDecl *D = Path.Decls.front();
7648       if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7649         if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
7650           return true;
7651       }
7652     }
7653 
7654     return false;
7655   }
7656 };
7657 
7658 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
7659 } // end anonymous namespace
7660 
7661 /// Report an error regarding overriding, along with any relevant
7662 /// overridden methods.
7663 ///
7664 /// \param DiagID the primary error to report.
7665 /// \param MD the overriding method.
7666 /// \param OEK which overrides to include as notes.
7667 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
7668                             OverrideErrorKind OEK = OEK_All) {
7669   S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
7670   for (const CXXMethodDecl *O : MD->overridden_methods()) {
7671     // This check (& the OEK parameter) could be replaced by a predicate, but
7672     // without lambdas that would be overkill. This is still nicer than writing
7673     // out the diag loop 3 times.
7674     if ((OEK == OEK_All) ||
7675         (OEK == OEK_NonDeleted && !O->isDeleted()) ||
7676         (OEK == OEK_Deleted && O->isDeleted()))
7677       S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
7678   }
7679 }
7680 
7681 /// AddOverriddenMethods - See if a method overrides any in the base classes,
7682 /// and if so, check that it's a valid override and remember it.
7683 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
7684   // Look for methods in base classes that this method might override.
7685   CXXBasePaths Paths;
7686   FindOverriddenMethod FOM;
7687   FOM.Method = MD;
7688   FOM.S = this;
7689   bool hasDeletedOverridenMethods = false;
7690   bool hasNonDeletedOverridenMethods = false;
7691   bool AddedAny = false;
7692   if (DC->lookupInBases(FOM, Paths)) {
7693     for (auto *I : Paths.found_decls()) {
7694       if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
7695         MD->addOverriddenMethod(OldMD->getCanonicalDecl());
7696         if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
7697             !CheckOverridingFunctionAttributes(MD, OldMD) &&
7698             !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
7699             !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
7700           hasDeletedOverridenMethods |= OldMD->isDeleted();
7701           hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
7702           AddedAny = true;
7703         }
7704       }
7705     }
7706   }
7707 
7708   if (hasDeletedOverridenMethods && !MD->isDeleted()) {
7709     ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
7710   }
7711   if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
7712     ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
7713   }
7714 
7715   return AddedAny;
7716 }
7717 
7718 namespace {
7719   // Struct for holding all of the extra arguments needed by
7720   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
7721   struct ActOnFDArgs {
7722     Scope *S;
7723     Declarator &D;
7724     MultiTemplateParamsArg TemplateParamLists;
7725     bool AddToScope;
7726   };
7727 } // end anonymous namespace
7728 
7729 namespace {
7730 
7731 // Callback to only accept typo corrections that have a non-zero edit distance.
7732 // Also only accept corrections that have the same parent decl.
7733 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
7734  public:
7735   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
7736                             CXXRecordDecl *Parent)
7737       : Context(Context), OriginalFD(TypoFD),
7738         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
7739 
7740   bool ValidateCandidate(const TypoCorrection &candidate) override {
7741     if (candidate.getEditDistance() == 0)
7742       return false;
7743 
7744     SmallVector<unsigned, 1> MismatchedParams;
7745     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
7746                                           CDeclEnd = candidate.end();
7747          CDecl != CDeclEnd; ++CDecl) {
7748       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7749 
7750       if (FD && !FD->hasBody() &&
7751           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
7752         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7753           CXXRecordDecl *Parent = MD->getParent();
7754           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
7755             return true;
7756         } else if (!ExpectedParent) {
7757           return true;
7758         }
7759       }
7760     }
7761 
7762     return false;
7763   }
7764 
7765   std::unique_ptr<CorrectionCandidateCallback> clone() override {
7766     return llvm::make_unique<DifferentNameValidatorCCC>(*this);
7767   }
7768 
7769  private:
7770   ASTContext &Context;
7771   FunctionDecl *OriginalFD;
7772   CXXRecordDecl *ExpectedParent;
7773 };
7774 
7775 } // end anonymous namespace
7776 
7777 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
7778   TypoCorrectedFunctionDefinitions.insert(F);
7779 }
7780 
7781 /// Generate diagnostics for an invalid function redeclaration.
7782 ///
7783 /// This routine handles generating the diagnostic messages for an invalid
7784 /// function redeclaration, including finding possible similar declarations
7785 /// or performing typo correction if there are no previous declarations with
7786 /// the same name.
7787 ///
7788 /// Returns a NamedDecl iff typo correction was performed and substituting in
7789 /// the new declaration name does not cause new errors.
7790 static NamedDecl *DiagnoseInvalidRedeclaration(
7791     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
7792     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
7793   DeclarationName Name = NewFD->getDeclName();
7794   DeclContext *NewDC = NewFD->getDeclContext();
7795   SmallVector<unsigned, 1> MismatchedParams;
7796   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
7797   TypoCorrection Correction;
7798   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
7799   unsigned DiagMsg =
7800     IsLocalFriend ? diag::err_no_matching_local_friend :
7801     NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
7802     diag::err_member_decl_does_not_match;
7803   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
7804                     IsLocalFriend ? Sema::LookupLocalFriendName
7805                                   : Sema::LookupOrdinaryName,
7806                     Sema::ForVisibleRedeclaration);
7807 
7808   NewFD->setInvalidDecl();
7809   if (IsLocalFriend)
7810     SemaRef.LookupName(Prev, S);
7811   else
7812     SemaRef.LookupQualifiedName(Prev, NewDC);
7813   assert(!Prev.isAmbiguous() &&
7814          "Cannot have an ambiguity in previous-declaration lookup");
7815   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7816   DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
7817                                 MD ? MD->getParent() : nullptr);
7818   if (!Prev.empty()) {
7819     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
7820          Func != FuncEnd; ++Func) {
7821       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
7822       if (FD &&
7823           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7824         // Add 1 to the index so that 0 can mean the mismatch didn't
7825         // involve a parameter
7826         unsigned ParamNum =
7827             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
7828         NearMatches.push_back(std::make_pair(FD, ParamNum));
7829       }
7830     }
7831   // If the qualified name lookup yielded nothing, try typo correction
7832   } else if ((Correction = SemaRef.CorrectTypo(
7833                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
7834                   &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
7835                   IsLocalFriend ? nullptr : NewDC))) {
7836     // Set up everything for the call to ActOnFunctionDeclarator
7837     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
7838                               ExtraArgs.D.getIdentifierLoc());
7839     Previous.clear();
7840     Previous.setLookupName(Correction.getCorrection());
7841     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
7842                                     CDeclEnd = Correction.end();
7843          CDecl != CDeclEnd; ++CDecl) {
7844       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7845       if (FD && !FD->hasBody() &&
7846           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7847         Previous.addDecl(FD);
7848       }
7849     }
7850     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
7851 
7852     NamedDecl *Result;
7853     // Retry building the function declaration with the new previous
7854     // declarations, and with errors suppressed.
7855     {
7856       // Trap errors.
7857       Sema::SFINAETrap Trap(SemaRef);
7858 
7859       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
7860       // pieces need to verify the typo-corrected C++ declaration and hopefully
7861       // eliminate the need for the parameter pack ExtraArgs.
7862       Result = SemaRef.ActOnFunctionDeclarator(
7863           ExtraArgs.S, ExtraArgs.D,
7864           Correction.getCorrectionDecl()->getDeclContext(),
7865           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
7866           ExtraArgs.AddToScope);
7867 
7868       if (Trap.hasErrorOccurred())
7869         Result = nullptr;
7870     }
7871 
7872     if (Result) {
7873       // Determine which correction we picked.
7874       Decl *Canonical = Result->getCanonicalDecl();
7875       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7876            I != E; ++I)
7877         if ((*I)->getCanonicalDecl() == Canonical)
7878           Correction.setCorrectionDecl(*I);
7879 
7880       // Let Sema know about the correction.
7881       SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
7882       SemaRef.diagnoseTypo(
7883           Correction,
7884           SemaRef.PDiag(IsLocalFriend
7885                           ? diag::err_no_matching_local_friend_suggest
7886                           : diag::err_member_decl_does_not_match_suggest)
7887             << Name << NewDC << IsDefinition);
7888       return Result;
7889     }
7890 
7891     // Pretend the typo correction never occurred
7892     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
7893                               ExtraArgs.D.getIdentifierLoc());
7894     ExtraArgs.D.setRedeclaration(wasRedeclaration);
7895     Previous.clear();
7896     Previous.setLookupName(Name);
7897   }
7898 
7899   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
7900       << Name << NewDC << IsDefinition << NewFD->getLocation();
7901 
7902   bool NewFDisConst = false;
7903   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
7904     NewFDisConst = NewMD->isConst();
7905 
7906   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
7907        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
7908        NearMatch != NearMatchEnd; ++NearMatch) {
7909     FunctionDecl *FD = NearMatch->first;
7910     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7911     bool FDisConst = MD && MD->isConst();
7912     bool IsMember = MD || !IsLocalFriend;
7913 
7914     // FIXME: These notes are poorly worded for the local friend case.
7915     if (unsigned Idx = NearMatch->second) {
7916       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
7917       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
7918       if (Loc.isInvalid()) Loc = FD->getLocation();
7919       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
7920                                  : diag::note_local_decl_close_param_match)
7921         << Idx << FDParam->getType()
7922         << NewFD->getParamDecl(Idx - 1)->getType();
7923     } else if (FDisConst != NewFDisConst) {
7924       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
7925           << NewFDisConst << FD->getSourceRange().getEnd();
7926     } else
7927       SemaRef.Diag(FD->getLocation(),
7928                    IsMember ? diag::note_member_def_close_match
7929                             : diag::note_local_decl_close_match);
7930   }
7931   return nullptr;
7932 }
7933 
7934 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
7935   switch (D.getDeclSpec().getStorageClassSpec()) {
7936   default: llvm_unreachable("Unknown storage class!");
7937   case DeclSpec::SCS_auto:
7938   case DeclSpec::SCS_register:
7939   case DeclSpec::SCS_mutable:
7940     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7941                  diag::err_typecheck_sclass_func);
7942     D.getMutableDeclSpec().ClearStorageClassSpecs();
7943     D.setInvalidType();
7944     break;
7945   case DeclSpec::SCS_unspecified: break;
7946   case DeclSpec::SCS_extern:
7947     if (D.getDeclSpec().isExternInLinkageSpec())
7948       return SC_None;
7949     return SC_Extern;
7950   case DeclSpec::SCS_static: {
7951     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7952       // C99 6.7.1p5:
7953       //   The declaration of an identifier for a function that has
7954       //   block scope shall have no explicit storage-class specifier
7955       //   other than extern
7956       // See also (C++ [dcl.stc]p4).
7957       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7958                    diag::err_static_block_func);
7959       break;
7960     } else
7961       return SC_Static;
7962   }
7963   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
7964   }
7965 
7966   // No explicit storage class has already been returned
7967   return SC_None;
7968 }
7969 
7970 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
7971                                            DeclContext *DC, QualType &R,
7972                                            TypeSourceInfo *TInfo,
7973                                            StorageClass SC,
7974                                            bool &IsVirtualOkay) {
7975   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
7976   DeclarationName Name = NameInfo.getName();
7977 
7978   FunctionDecl *NewFD = nullptr;
7979   bool isInline = D.getDeclSpec().isInlineSpecified();
7980 
7981   if (!SemaRef.getLangOpts().CPlusPlus) {
7982     // Determine whether the function was written with a
7983     // prototype. This true when:
7984     //   - there is a prototype in the declarator, or
7985     //   - the type R of the function is some kind of typedef or other non-
7986     //     attributed reference to a type name (which eventually refers to a
7987     //     function type).
7988     bool HasPrototype =
7989       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
7990       (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
7991 
7992     NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
7993                                  R, TInfo, SC, isInline, HasPrototype,
7994                                  CSK_unspecified);
7995     if (D.isInvalidType())
7996       NewFD->setInvalidDecl();
7997 
7998     return NewFD;
7999   }
8000 
8001   ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
8002   ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
8003   // Check that the return type is not an abstract class type.
8004   // For record types, this is done by the AbstractClassUsageDiagnoser once
8005   // the class has been completely parsed.
8006   if (!DC->isRecord() &&
8007       SemaRef.RequireNonAbstractType(
8008           D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
8009           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
8010     D.setInvalidType();
8011 
8012   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
8013     // This is a C++ constructor declaration.
8014     assert(DC->isRecord() &&
8015            "Constructors can only be declared in a member context");
8016 
8017     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
8018     return CXXConstructorDecl::Create(
8019         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8020         TInfo, ExplicitSpecifier, isInline,
8021         /*isImplicitlyDeclared=*/false, ConstexprKind);
8022 
8023   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8024     // This is a C++ destructor declaration.
8025     if (DC->isRecord()) {
8026       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
8027       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
8028       CXXDestructorDecl *NewDD =
8029           CXXDestructorDecl::Create(SemaRef.Context, Record, D.getBeginLoc(),
8030                                     NameInfo, R, TInfo, isInline,
8031                                     /*isImplicitlyDeclared=*/false);
8032 
8033       // If the destructor needs an implicit exception specification, set it
8034       // now. FIXME: It'd be nice to be able to create the right type to start
8035       // with, but the type needs to reference the destructor declaration.
8036       if (SemaRef.getLangOpts().CPlusPlus11)
8037         SemaRef.AdjustDestructorExceptionSpec(NewDD);
8038 
8039       IsVirtualOkay = true;
8040       return NewDD;
8041 
8042     } else {
8043       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
8044       D.setInvalidType();
8045 
8046       // Create a FunctionDecl to satisfy the function definition parsing
8047       // code path.
8048       return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8049                                   D.getIdentifierLoc(), Name, R, TInfo, SC,
8050                                   isInline,
8051                                   /*hasPrototype=*/true, ConstexprKind);
8052     }
8053 
8054   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
8055     if (!DC->isRecord()) {
8056       SemaRef.Diag(D.getIdentifierLoc(),
8057            diag::err_conv_function_not_member);
8058       return nullptr;
8059     }
8060 
8061     SemaRef.CheckConversionDeclarator(D, R, SC);
8062     IsVirtualOkay = true;
8063     return CXXConversionDecl::Create(
8064         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8065         TInfo, isInline, ExplicitSpecifier, ConstexprKind, SourceLocation());
8066 
8067   } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
8068     SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
8069 
8070     return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8071                                          ExplicitSpecifier, NameInfo, R, TInfo,
8072                                          D.getEndLoc());
8073   } else if (DC->isRecord()) {
8074     // If the name of the function is the same as the name of the record,
8075     // then this must be an invalid constructor that has a return type.
8076     // (The parser checks for a return type and makes the declarator a
8077     // constructor if it has no return type).
8078     if (Name.getAsIdentifierInfo() &&
8079         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8080       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8081         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8082         << SourceRange(D.getIdentifierLoc());
8083       return nullptr;
8084     }
8085 
8086     // This is a C++ method declaration.
8087     CXXMethodDecl *Ret = CXXMethodDecl::Create(
8088         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8089         TInfo, SC, isInline, ConstexprKind, SourceLocation());
8090     IsVirtualOkay = !Ret->isStatic();
8091     return Ret;
8092   } else {
8093     bool isFriend =
8094         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8095     if (!isFriend && SemaRef.CurContext->isRecord())
8096       return nullptr;
8097 
8098     // Determine whether the function was written with a
8099     // prototype. This true when:
8100     //   - we're in C++ (where every function has a prototype),
8101     return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8102                                 R, TInfo, SC, isInline, true /*HasPrototype*/,
8103                                 ConstexprKind);
8104   }
8105 }
8106 
8107 enum OpenCLParamType {
8108   ValidKernelParam,
8109   PtrPtrKernelParam,
8110   PtrKernelParam,
8111   InvalidAddrSpacePtrKernelParam,
8112   InvalidKernelParam,
8113   RecordKernelParam
8114 };
8115 
8116 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8117   // Size dependent types are just typedefs to normal integer types
8118   // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8119   // integers other than by their names.
8120   StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8121 
8122   // Remove typedefs one by one until we reach a typedef
8123   // for a size dependent type.
8124   QualType DesugaredTy = Ty;
8125   do {
8126     ArrayRef<StringRef> Names(SizeTypeNames);
8127     auto Match = llvm::find(Names, DesugaredTy.getAsString());
8128     if (Names.end() != Match)
8129       return true;
8130 
8131     Ty = DesugaredTy;
8132     DesugaredTy = Ty.getSingleStepDesugaredType(C);
8133   } while (DesugaredTy != Ty);
8134 
8135   return false;
8136 }
8137 
8138 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8139   if (PT->isPointerType()) {
8140     QualType PointeeType = PT->getPointeeType();
8141     if (PointeeType->isPointerType())
8142       return PtrPtrKernelParam;
8143     if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8144         PointeeType.getAddressSpace() == LangAS::opencl_private ||
8145         PointeeType.getAddressSpace() == LangAS::Default)
8146       return InvalidAddrSpacePtrKernelParam;
8147     return PtrKernelParam;
8148   }
8149 
8150   // OpenCL v1.2 s6.9.k:
8151   // Arguments to kernel functions in a program cannot be declared with the
8152   // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8153   // uintptr_t or a struct and/or union that contain fields declared to be one
8154   // of these built-in scalar types.
8155   if (isOpenCLSizeDependentType(S.getASTContext(), PT))
8156     return InvalidKernelParam;
8157 
8158   if (PT->isImageType())
8159     return PtrKernelParam;
8160 
8161   if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8162     return InvalidKernelParam;
8163 
8164   // OpenCL extension spec v1.2 s9.5:
8165   // This extension adds support for half scalar and vector types as built-in
8166   // types that can be used for arithmetic operations, conversions etc.
8167   if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
8168     return InvalidKernelParam;
8169 
8170   if (PT->isRecordType())
8171     return RecordKernelParam;
8172 
8173   // Look into an array argument to check if it has a forbidden type.
8174   if (PT->isArrayType()) {
8175     const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8176     // Call ourself to check an underlying type of an array. Since the
8177     // getPointeeOrArrayElementType returns an innermost type which is not an
8178     // array, this recursive call only happens once.
8179     return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8180   }
8181 
8182   return ValidKernelParam;
8183 }
8184 
8185 static void checkIsValidOpenCLKernelParameter(
8186   Sema &S,
8187   Declarator &D,
8188   ParmVarDecl *Param,
8189   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8190   QualType PT = Param->getType();
8191 
8192   // Cache the valid types we encounter to avoid rechecking structs that are
8193   // used again
8194   if (ValidTypes.count(PT.getTypePtr()))
8195     return;
8196 
8197   switch (getOpenCLKernelParameterType(S, PT)) {
8198   case PtrPtrKernelParam:
8199     // OpenCL v1.2 s6.9.a:
8200     // A kernel function argument cannot be declared as a
8201     // pointer to a pointer type.
8202     S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8203     D.setInvalidType();
8204     return;
8205 
8206   case InvalidAddrSpacePtrKernelParam:
8207     // OpenCL v1.0 s6.5:
8208     // __kernel function arguments declared to be a pointer of a type can point
8209     // to one of the following address spaces only : __global, __local or
8210     // __constant.
8211     S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8212     D.setInvalidType();
8213     return;
8214 
8215     // OpenCL v1.2 s6.9.k:
8216     // Arguments to kernel functions in a program cannot be declared with the
8217     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8218     // uintptr_t or a struct and/or union that contain fields declared to be
8219     // one of these built-in scalar types.
8220 
8221   case InvalidKernelParam:
8222     // OpenCL v1.2 s6.8 n:
8223     // A kernel function argument cannot be declared
8224     // of event_t type.
8225     // Do not diagnose half type since it is diagnosed as invalid argument
8226     // type for any function elsewhere.
8227     if (!PT->isHalfType()) {
8228       S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8229 
8230       // Explain what typedefs are involved.
8231       const TypedefType *Typedef = nullptr;
8232       while ((Typedef = PT->getAs<TypedefType>())) {
8233         SourceLocation Loc = Typedef->getDecl()->getLocation();
8234         // SourceLocation may be invalid for a built-in type.
8235         if (Loc.isValid())
8236           S.Diag(Loc, diag::note_entity_declared_at) << PT;
8237         PT = Typedef->desugar();
8238       }
8239     }
8240 
8241     D.setInvalidType();
8242     return;
8243 
8244   case PtrKernelParam:
8245   case ValidKernelParam:
8246     ValidTypes.insert(PT.getTypePtr());
8247     return;
8248 
8249   case RecordKernelParam:
8250     break;
8251   }
8252 
8253   // Track nested structs we will inspect
8254   SmallVector<const Decl *, 4> VisitStack;
8255 
8256   // Track where we are in the nested structs. Items will migrate from
8257   // VisitStack to HistoryStack as we do the DFS for bad field.
8258   SmallVector<const FieldDecl *, 4> HistoryStack;
8259   HistoryStack.push_back(nullptr);
8260 
8261   // At this point we already handled everything except of a RecordType or
8262   // an ArrayType of a RecordType.
8263   assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
8264   const RecordType *RecTy =
8265       PT->getPointeeOrArrayElementType()->getAs<RecordType>();
8266   const RecordDecl *OrigRecDecl = RecTy->getDecl();
8267 
8268   VisitStack.push_back(RecTy->getDecl());
8269   assert(VisitStack.back() && "First decl null?");
8270 
8271   do {
8272     const Decl *Next = VisitStack.pop_back_val();
8273     if (!Next) {
8274       assert(!HistoryStack.empty());
8275       // Found a marker, we have gone up a level
8276       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8277         ValidTypes.insert(Hist->getType().getTypePtr());
8278 
8279       continue;
8280     }
8281 
8282     // Adds everything except the original parameter declaration (which is not a
8283     // field itself) to the history stack.
8284     const RecordDecl *RD;
8285     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8286       HistoryStack.push_back(Field);
8287 
8288       QualType FieldTy = Field->getType();
8289       // Other field types (known to be valid or invalid) are handled while we
8290       // walk around RecordDecl::fields().
8291       assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
8292              "Unexpected type.");
8293       const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8294 
8295       RD = FieldRecTy->castAs<RecordType>()->getDecl();
8296     } else {
8297       RD = cast<RecordDecl>(Next);
8298     }
8299 
8300     // Add a null marker so we know when we've gone back up a level
8301     VisitStack.push_back(nullptr);
8302 
8303     for (const auto *FD : RD->fields()) {
8304       QualType QT = FD->getType();
8305 
8306       if (ValidTypes.count(QT.getTypePtr()))
8307         continue;
8308 
8309       OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8310       if (ParamType == ValidKernelParam)
8311         continue;
8312 
8313       if (ParamType == RecordKernelParam) {
8314         VisitStack.push_back(FD);
8315         continue;
8316       }
8317 
8318       // OpenCL v1.2 s6.9.p:
8319       // Arguments to kernel functions that are declared to be a struct or union
8320       // do not allow OpenCL objects to be passed as elements of the struct or
8321       // union.
8322       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8323           ParamType == InvalidAddrSpacePtrKernelParam) {
8324         S.Diag(Param->getLocation(),
8325                diag::err_record_with_pointers_kernel_param)
8326           << PT->isUnionType()
8327           << PT;
8328       } else {
8329         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8330       }
8331 
8332       S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8333           << OrigRecDecl->getDeclName();
8334 
8335       // We have an error, now let's go back up through history and show where
8336       // the offending field came from
8337       for (ArrayRef<const FieldDecl *>::const_iterator
8338                I = HistoryStack.begin() + 1,
8339                E = HistoryStack.end();
8340            I != E; ++I) {
8341         const FieldDecl *OuterField = *I;
8342         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8343           << OuterField->getType();
8344       }
8345 
8346       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8347         << QT->isPointerType()
8348         << QT;
8349       D.setInvalidType();
8350       return;
8351     }
8352   } while (!VisitStack.empty());
8353 }
8354 
8355 /// Find the DeclContext in which a tag is implicitly declared if we see an
8356 /// elaborated type specifier in the specified context, and lookup finds
8357 /// nothing.
8358 static DeclContext *getTagInjectionContext(DeclContext *DC) {
8359   while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8360     DC = DC->getParent();
8361   return DC;
8362 }
8363 
8364 /// Find the Scope in which a tag is implicitly declared if we see an
8365 /// elaborated type specifier in the specified context, and lookup finds
8366 /// nothing.
8367 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8368   while (S->isClassScope() ||
8369          (LangOpts.CPlusPlus &&
8370           S->isFunctionPrototypeScope()) ||
8371          ((S->getFlags() & Scope::DeclScope) == 0) ||
8372          (S->getEntity() && S->getEntity()->isTransparentContext()))
8373     S = S->getParent();
8374   return S;
8375 }
8376 
8377 NamedDecl*
8378 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
8379                               TypeSourceInfo *TInfo, LookupResult &Previous,
8380                               MultiTemplateParamsArg TemplateParamLists,
8381                               bool &AddToScope) {
8382   QualType R = TInfo->getType();
8383 
8384   assert(R->isFunctionType());
8385 
8386   // TODO: consider using NameInfo for diagnostic.
8387   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8388   DeclarationName Name = NameInfo.getName();
8389   StorageClass SC = getFunctionStorageClass(*this, D);
8390 
8391   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
8392     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8393          diag::err_invalid_thread)
8394       << DeclSpec::getSpecifierName(TSCS);
8395 
8396   if (D.isFirstDeclarationOfMember())
8397     adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
8398                            D.getIdentifierLoc());
8399 
8400   bool isFriend = false;
8401   FunctionTemplateDecl *FunctionTemplate = nullptr;
8402   bool isMemberSpecialization = false;
8403   bool isFunctionTemplateSpecialization = false;
8404 
8405   bool isDependentClassScopeExplicitSpecialization = false;
8406   bool HasExplicitTemplateArgs = false;
8407   TemplateArgumentListInfo TemplateArgs;
8408 
8409   bool isVirtualOkay = false;
8410 
8411   DeclContext *OriginalDC = DC;
8412   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
8413 
8414   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
8415                                               isVirtualOkay);
8416   if (!NewFD) return nullptr;
8417 
8418   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
8419     NewFD->setTopLevelDeclInObjCContainer();
8420 
8421   // Set the lexical context. If this is a function-scope declaration, or has a
8422   // C++ scope specifier, or is the object of a friend declaration, the lexical
8423   // context will be different from the semantic context.
8424   NewFD->setLexicalDeclContext(CurContext);
8425 
8426   if (IsLocalExternDecl)
8427     NewFD->setLocalExternDecl();
8428 
8429   if (getLangOpts().CPlusPlus) {
8430     bool isInline = D.getDeclSpec().isInlineSpecified();
8431     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8432     bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
8433     ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
8434     isFriend = D.getDeclSpec().isFriendSpecified();
8435     if (isFriend && !isInline && D.isFunctionDefinition()) {
8436       // C++ [class.friend]p5
8437       //   A function can be defined in a friend declaration of a
8438       //   class . . . . Such a function is implicitly inline.
8439       NewFD->setImplicitlyInline();
8440     }
8441 
8442     // If this is a method defined in an __interface, and is not a constructor
8443     // or an overloaded operator, then set the pure flag (isVirtual will already
8444     // return true).
8445     if (const CXXRecordDecl *Parent =
8446           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
8447       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
8448         NewFD->setPure(true);
8449 
8450       // C++ [class.union]p2
8451       //   A union can have member functions, but not virtual functions.
8452       if (isVirtual && Parent->isUnion())
8453         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
8454     }
8455 
8456     SetNestedNameSpecifier(*this, NewFD, D);
8457     isMemberSpecialization = false;
8458     isFunctionTemplateSpecialization = false;
8459     if (D.isInvalidType())
8460       NewFD->setInvalidDecl();
8461 
8462     // Match up the template parameter lists with the scope specifier, then
8463     // determine whether we have a template or a template specialization.
8464     bool Invalid = false;
8465     if (TemplateParameterList *TemplateParams =
8466             MatchTemplateParametersToScopeSpecifier(
8467                 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
8468                 D.getCXXScopeSpec(),
8469                 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
8470                     ? D.getName().TemplateId
8471                     : nullptr,
8472                 TemplateParamLists, isFriend, isMemberSpecialization,
8473                 Invalid)) {
8474       if (TemplateParams->size() > 0) {
8475         // This is a function template
8476 
8477         // Check that we can declare a template here.
8478         if (CheckTemplateDeclScope(S, TemplateParams))
8479           NewFD->setInvalidDecl();
8480 
8481         // A destructor cannot be a template.
8482         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8483           Diag(NewFD->getLocation(), diag::err_destructor_template);
8484           NewFD->setInvalidDecl();
8485         }
8486 
8487         // If we're adding a template to a dependent context, we may need to
8488         // rebuilding some of the types used within the template parameter list,
8489         // now that we know what the current instantiation is.
8490         if (DC->isDependentContext()) {
8491           ContextRAII SavedContext(*this, DC);
8492           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
8493             Invalid = true;
8494         }
8495 
8496         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
8497                                                         NewFD->getLocation(),
8498                                                         Name, TemplateParams,
8499                                                         NewFD);
8500         FunctionTemplate->setLexicalDeclContext(CurContext);
8501         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
8502 
8503         // For source fidelity, store the other template param lists.
8504         if (TemplateParamLists.size() > 1) {
8505           NewFD->setTemplateParameterListsInfo(Context,
8506                                                TemplateParamLists.drop_back(1));
8507         }
8508       } else {
8509         // This is a function template specialization.
8510         isFunctionTemplateSpecialization = true;
8511         // For source fidelity, store all the template param lists.
8512         if (TemplateParamLists.size() > 0)
8513           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8514 
8515         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
8516         if (isFriend) {
8517           // We want to remove the "template<>", found here.
8518           SourceRange RemoveRange = TemplateParams->getSourceRange();
8519 
8520           // If we remove the template<> and the name is not a
8521           // template-id, we're actually silently creating a problem:
8522           // the friend declaration will refer to an untemplated decl,
8523           // and clearly the user wants a template specialization.  So
8524           // we need to insert '<>' after the name.
8525           SourceLocation InsertLoc;
8526           if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
8527             InsertLoc = D.getName().getSourceRange().getEnd();
8528             InsertLoc = getLocForEndOfToken(InsertLoc);
8529           }
8530 
8531           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
8532             << Name << RemoveRange
8533             << FixItHint::CreateRemoval(RemoveRange)
8534             << FixItHint::CreateInsertion(InsertLoc, "<>");
8535         }
8536       }
8537     } else {
8538       // All template param lists were matched against the scope specifier:
8539       // this is NOT (an explicit specialization of) a template.
8540       if (TemplateParamLists.size() > 0)
8541         // For source fidelity, store all the template param lists.
8542         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8543     }
8544 
8545     if (Invalid) {
8546       NewFD->setInvalidDecl();
8547       if (FunctionTemplate)
8548         FunctionTemplate->setInvalidDecl();
8549     }
8550 
8551     // C++ [dcl.fct.spec]p5:
8552     //   The virtual specifier shall only be used in declarations of
8553     //   nonstatic class member functions that appear within a
8554     //   member-specification of a class declaration; see 10.3.
8555     //
8556     if (isVirtual && !NewFD->isInvalidDecl()) {
8557       if (!isVirtualOkay) {
8558         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8559              diag::err_virtual_non_function);
8560       } else if (!CurContext->isRecord()) {
8561         // 'virtual' was specified outside of the class.
8562         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8563              diag::err_virtual_out_of_class)
8564           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8565       } else if (NewFD->getDescribedFunctionTemplate()) {
8566         // C++ [temp.mem]p3:
8567         //  A member function template shall not be virtual.
8568         Diag(D.getDeclSpec().getVirtualSpecLoc(),
8569              diag::err_virtual_member_function_template)
8570           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8571       } else {
8572         // Okay: Add virtual to the method.
8573         NewFD->setVirtualAsWritten(true);
8574       }
8575 
8576       if (getLangOpts().CPlusPlus14 &&
8577           NewFD->getReturnType()->isUndeducedType())
8578         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
8579     }
8580 
8581     if (getLangOpts().CPlusPlus14 &&
8582         (NewFD->isDependentContext() ||
8583          (isFriend && CurContext->isDependentContext())) &&
8584         NewFD->getReturnType()->isUndeducedType()) {
8585       // If the function template is referenced directly (for instance, as a
8586       // member of the current instantiation), pretend it has a dependent type.
8587       // This is not really justified by the standard, but is the only sane
8588       // thing to do.
8589       // FIXME: For a friend function, we have not marked the function as being
8590       // a friend yet, so 'isDependentContext' on the FD doesn't work.
8591       const FunctionProtoType *FPT =
8592           NewFD->getType()->castAs<FunctionProtoType>();
8593       QualType Result =
8594           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
8595       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
8596                                              FPT->getExtProtoInfo()));
8597     }
8598 
8599     // C++ [dcl.fct.spec]p3:
8600     //  The inline specifier shall not appear on a block scope function
8601     //  declaration.
8602     if (isInline && !NewFD->isInvalidDecl()) {
8603       if (CurContext->isFunctionOrMethod()) {
8604         // 'inline' is not allowed on block scope function declaration.
8605         Diag(D.getDeclSpec().getInlineSpecLoc(),
8606              diag::err_inline_declaration_block_scope) << Name
8607           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
8608       }
8609     }
8610 
8611     // C++ [dcl.fct.spec]p6:
8612     //  The explicit specifier shall be used only in the declaration of a
8613     //  constructor or conversion function within its class definition;
8614     //  see 12.3.1 and 12.3.2.
8615     if (hasExplicit && !NewFD->isInvalidDecl() &&
8616         !isa<CXXDeductionGuideDecl>(NewFD)) {
8617       if (!CurContext->isRecord()) {
8618         // 'explicit' was specified outside of the class.
8619         Diag(D.getDeclSpec().getExplicitSpecLoc(),
8620              diag::err_explicit_out_of_class)
8621             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
8622       } else if (!isa<CXXConstructorDecl>(NewFD) &&
8623                  !isa<CXXConversionDecl>(NewFD)) {
8624         // 'explicit' was specified on a function that wasn't a constructor
8625         // or conversion function.
8626         Diag(D.getDeclSpec().getExplicitSpecLoc(),
8627              diag::err_explicit_non_ctor_or_conv_function)
8628             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
8629       }
8630     }
8631 
8632     if (ConstexprKind != CSK_unspecified) {
8633       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
8634       // are implicitly inline.
8635       NewFD->setImplicitlyInline();
8636 
8637       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
8638       // be either constructors or to return a literal type. Therefore,
8639       // destructors cannot be declared constexpr.
8640       if (isa<CXXDestructorDecl>(NewFD))
8641         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
8642             << (ConstexprKind == CSK_consteval);
8643     }
8644 
8645     // If __module_private__ was specified, mark the function accordingly.
8646     if (D.getDeclSpec().isModulePrivateSpecified()) {
8647       if (isFunctionTemplateSpecialization) {
8648         SourceLocation ModulePrivateLoc
8649           = D.getDeclSpec().getModulePrivateSpecLoc();
8650         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
8651           << 0
8652           << FixItHint::CreateRemoval(ModulePrivateLoc);
8653       } else {
8654         NewFD->setModulePrivate();
8655         if (FunctionTemplate)
8656           FunctionTemplate->setModulePrivate();
8657       }
8658     }
8659 
8660     if (isFriend) {
8661       if (FunctionTemplate) {
8662         FunctionTemplate->setObjectOfFriendDecl();
8663         FunctionTemplate->setAccess(AS_public);
8664       }
8665       NewFD->setObjectOfFriendDecl();
8666       NewFD->setAccess(AS_public);
8667     }
8668 
8669     // If a function is defined as defaulted or deleted, mark it as such now.
8670     // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
8671     // definition kind to FDK_Definition.
8672     switch (D.getFunctionDefinitionKind()) {
8673       case FDK_Declaration:
8674       case FDK_Definition:
8675         break;
8676 
8677       case FDK_Defaulted:
8678         NewFD->setDefaulted();
8679         break;
8680 
8681       case FDK_Deleted:
8682         NewFD->setDeletedAsWritten();
8683         break;
8684     }
8685 
8686     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
8687         D.isFunctionDefinition()) {
8688       // C++ [class.mfct]p2:
8689       //   A member function may be defined (8.4) in its class definition, in
8690       //   which case it is an inline member function (7.1.2)
8691       NewFD->setImplicitlyInline();
8692     }
8693 
8694     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
8695         !CurContext->isRecord()) {
8696       // C++ [class.static]p1:
8697       //   A data or function member of a class may be declared static
8698       //   in a class definition, in which case it is a static member of
8699       //   the class.
8700 
8701       // Complain about the 'static' specifier if it's on an out-of-line
8702       // member function definition.
8703 
8704       // MSVC permits the use of a 'static' storage specifier on an out-of-line
8705       // member function template declaration and class member template
8706       // declaration (MSVC versions before 2015), warn about this.
8707       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8708            ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
8709              cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
8710            (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
8711            ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
8712         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
8713     }
8714 
8715     // C++11 [except.spec]p15:
8716     //   A deallocation function with no exception-specification is treated
8717     //   as if it were specified with noexcept(true).
8718     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
8719     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
8720          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
8721         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
8722       NewFD->setType(Context.getFunctionType(
8723           FPT->getReturnType(), FPT->getParamTypes(),
8724           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
8725   }
8726 
8727   // Filter out previous declarations that don't match the scope.
8728   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
8729                        D.getCXXScopeSpec().isNotEmpty() ||
8730                        isMemberSpecialization ||
8731                        isFunctionTemplateSpecialization);
8732 
8733   // Handle GNU asm-label extension (encoded as an attribute).
8734   if (Expr *E = (Expr*) D.getAsmLabel()) {
8735     // The parser guarantees this is a string.
8736     StringLiteral *SE = cast<StringLiteral>(E);
8737     NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
8738                                                 SE->getString(), 0));
8739   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
8740     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
8741       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
8742     if (I != ExtnameUndeclaredIdentifiers.end()) {
8743       if (isDeclExternC(NewFD)) {
8744         NewFD->addAttr(I->second);
8745         ExtnameUndeclaredIdentifiers.erase(I);
8746       } else
8747         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
8748             << /*Variable*/0 << NewFD;
8749     }
8750   }
8751 
8752   // Copy the parameter declarations from the declarator D to the function
8753   // declaration NewFD, if they are available.  First scavenge them into Params.
8754   SmallVector<ParmVarDecl*, 16> Params;
8755   unsigned FTIIdx;
8756   if (D.isFunctionDeclarator(FTIIdx)) {
8757     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
8758 
8759     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
8760     // function that takes no arguments, not a function that takes a
8761     // single void argument.
8762     // We let through "const void" here because Sema::GetTypeForDeclarator
8763     // already checks for that case.
8764     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
8765       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
8766         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
8767         assert(Param->getDeclContext() != NewFD && "Was set before ?");
8768         Param->setDeclContext(NewFD);
8769         Params.push_back(Param);
8770 
8771         if (Param->isInvalidDecl())
8772           NewFD->setInvalidDecl();
8773       }
8774     }
8775 
8776     if (!getLangOpts().CPlusPlus) {
8777       // In C, find all the tag declarations from the prototype and move them
8778       // into the function DeclContext. Remove them from the surrounding tag
8779       // injection context of the function, which is typically but not always
8780       // the TU.
8781       DeclContext *PrototypeTagContext =
8782           getTagInjectionContext(NewFD->getLexicalDeclContext());
8783       for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
8784         auto *TD = dyn_cast<TagDecl>(NonParmDecl);
8785 
8786         // We don't want to reparent enumerators. Look at their parent enum
8787         // instead.
8788         if (!TD) {
8789           if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
8790             TD = cast<EnumDecl>(ECD->getDeclContext());
8791         }
8792         if (!TD)
8793           continue;
8794         DeclContext *TagDC = TD->getLexicalDeclContext();
8795         if (!TagDC->containsDecl(TD))
8796           continue;
8797         TagDC->removeDecl(TD);
8798         TD->setDeclContext(NewFD);
8799         NewFD->addDecl(TD);
8800 
8801         // Preserve the lexical DeclContext if it is not the surrounding tag
8802         // injection context of the FD. In this example, the semantic context of
8803         // E will be f and the lexical context will be S, while both the
8804         // semantic and lexical contexts of S will be f:
8805         //   void f(struct S { enum E { a } f; } s);
8806         if (TagDC != PrototypeTagContext)
8807           TD->setLexicalDeclContext(TagDC);
8808       }
8809     }
8810   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
8811     // When we're declaring a function with a typedef, typeof, etc as in the
8812     // following example, we'll need to synthesize (unnamed)
8813     // parameters for use in the declaration.
8814     //
8815     // @code
8816     // typedef void fn(int);
8817     // fn f;
8818     // @endcode
8819 
8820     // Synthesize a parameter for each argument type.
8821     for (const auto &AI : FT->param_types()) {
8822       ParmVarDecl *Param =
8823           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
8824       Param->setScopeInfo(0, Params.size());
8825       Params.push_back(Param);
8826     }
8827   } else {
8828     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
8829            "Should not need args for typedef of non-prototype fn");
8830   }
8831 
8832   // Finally, we know we have the right number of parameters, install them.
8833   NewFD->setParams(Params);
8834 
8835   if (D.getDeclSpec().isNoreturnSpecified())
8836     NewFD->addAttr(
8837         ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
8838                                        Context, 0));
8839 
8840   // Functions returning a variably modified type violate C99 6.7.5.2p2
8841   // because all functions have linkage.
8842   if (!NewFD->isInvalidDecl() &&
8843       NewFD->getReturnType()->isVariablyModifiedType()) {
8844     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
8845     NewFD->setInvalidDecl();
8846   }
8847 
8848   // Apply an implicit SectionAttr if '#pragma clang section text' is active
8849   if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
8850       !NewFD->hasAttr<SectionAttr>()) {
8851     NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(Context,
8852                                                  PragmaClangTextSection.SectionName,
8853                                                  PragmaClangTextSection.PragmaLocation));
8854   }
8855 
8856   // Apply an implicit SectionAttr if #pragma code_seg is active.
8857   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
8858       !NewFD->hasAttr<SectionAttr>()) {
8859     NewFD->addAttr(
8860         SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
8861                                     CodeSegStack.CurrentValue->getString(),
8862                                     CodeSegStack.CurrentPragmaLocation));
8863     if (UnifySection(CodeSegStack.CurrentValue->getString(),
8864                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
8865                          ASTContext::PSF_Read,
8866                      NewFD))
8867       NewFD->dropAttr<SectionAttr>();
8868   }
8869 
8870   // Apply an implicit CodeSegAttr from class declspec or
8871   // apply an implicit SectionAttr from #pragma code_seg if active.
8872   if (!NewFD->hasAttr<CodeSegAttr>()) {
8873     if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
8874                                                                  D.isFunctionDefinition())) {
8875       NewFD->addAttr(SAttr);
8876     }
8877   }
8878 
8879   // Handle attributes.
8880   ProcessDeclAttributes(S, NewFD, D);
8881 
8882   if (getLangOpts().OpenCL) {
8883     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
8884     // type declaration will generate a compilation error.
8885     LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
8886     if (AddressSpace != LangAS::Default) {
8887       Diag(NewFD->getLocation(),
8888            diag::err_opencl_return_value_with_address_space);
8889       NewFD->setInvalidDecl();
8890     }
8891   }
8892 
8893   if (!getLangOpts().CPlusPlus) {
8894     // Perform semantic checking on the function declaration.
8895     if (!NewFD->isInvalidDecl() && NewFD->isMain())
8896       CheckMain(NewFD, D.getDeclSpec());
8897 
8898     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8899       CheckMSVCRTEntryPoint(NewFD);
8900 
8901     if (!NewFD->isInvalidDecl())
8902       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8903                                                   isMemberSpecialization));
8904     else if (!Previous.empty())
8905       // Recover gracefully from an invalid redeclaration.
8906       D.setRedeclaration(true);
8907     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
8908             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
8909            "previous declaration set still overloaded");
8910 
8911     // Diagnose no-prototype function declarations with calling conventions that
8912     // don't support variadic calls. Only do this in C and do it after merging
8913     // possibly prototyped redeclarations.
8914     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
8915     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
8916       CallingConv CC = FT->getExtInfo().getCC();
8917       if (!supportsVariadicCall(CC)) {
8918         // Windows system headers sometimes accidentally use stdcall without
8919         // (void) parameters, so we relax this to a warning.
8920         int DiagID =
8921             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
8922         Diag(NewFD->getLocation(), DiagID)
8923             << FunctionType::getNameForCallConv(CC);
8924       }
8925     }
8926   } else {
8927     // C++11 [replacement.functions]p3:
8928     //  The program's definitions shall not be specified as inline.
8929     //
8930     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
8931     //
8932     // Suppress the diagnostic if the function is __attribute__((used)), since
8933     // that forces an external definition to be emitted.
8934     if (D.getDeclSpec().isInlineSpecified() &&
8935         NewFD->isReplaceableGlobalAllocationFunction() &&
8936         !NewFD->hasAttr<UsedAttr>())
8937       Diag(D.getDeclSpec().getInlineSpecLoc(),
8938            diag::ext_operator_new_delete_declared_inline)
8939         << NewFD->getDeclName();
8940 
8941     // If the declarator is a template-id, translate the parser's template
8942     // argument list into our AST format.
8943     if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
8944       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
8945       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
8946       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
8947       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8948                                          TemplateId->NumArgs);
8949       translateTemplateArguments(TemplateArgsPtr,
8950                                  TemplateArgs);
8951 
8952       HasExplicitTemplateArgs = true;
8953 
8954       if (NewFD->isInvalidDecl()) {
8955         HasExplicitTemplateArgs = false;
8956       } else if (FunctionTemplate) {
8957         // Function template with explicit template arguments.
8958         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
8959           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
8960 
8961         HasExplicitTemplateArgs = false;
8962       } else {
8963         assert((isFunctionTemplateSpecialization ||
8964                 D.getDeclSpec().isFriendSpecified()) &&
8965                "should have a 'template<>' for this decl");
8966         // "friend void foo<>(int);" is an implicit specialization decl.
8967         isFunctionTemplateSpecialization = true;
8968       }
8969     } else if (isFriend && isFunctionTemplateSpecialization) {
8970       // This combination is only possible in a recovery case;  the user
8971       // wrote something like:
8972       //   template <> friend void foo(int);
8973       // which we're recovering from as if the user had written:
8974       //   friend void foo<>(int);
8975       // Go ahead and fake up a template id.
8976       HasExplicitTemplateArgs = true;
8977       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
8978       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
8979     }
8980 
8981     // We do not add HD attributes to specializations here because
8982     // they may have different constexpr-ness compared to their
8983     // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
8984     // may end up with different effective targets. Instead, a
8985     // specialization inherits its target attributes from its template
8986     // in the CheckFunctionTemplateSpecialization() call below.
8987     if (getLangOpts().CUDA & !isFunctionTemplateSpecialization)
8988       maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
8989 
8990     // If it's a friend (and only if it's a friend), it's possible
8991     // that either the specialized function type or the specialized
8992     // template is dependent, and therefore matching will fail.  In
8993     // this case, don't check the specialization yet.
8994     bool InstantiationDependent = false;
8995     if (isFunctionTemplateSpecialization && isFriend &&
8996         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
8997          TemplateSpecializationType::anyDependentTemplateArguments(
8998             TemplateArgs,
8999             InstantiationDependent))) {
9000       assert(HasExplicitTemplateArgs &&
9001              "friend function specialization without template args");
9002       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
9003                                                        Previous))
9004         NewFD->setInvalidDecl();
9005     } else if (isFunctionTemplateSpecialization) {
9006       if (CurContext->isDependentContext() && CurContext->isRecord()
9007           && !isFriend) {
9008         isDependentClassScopeExplicitSpecialization = true;
9009       } else if (!NewFD->isInvalidDecl() &&
9010                  CheckFunctionTemplateSpecialization(
9011                      NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
9012                      Previous))
9013         NewFD->setInvalidDecl();
9014 
9015       // C++ [dcl.stc]p1:
9016       //   A storage-class-specifier shall not be specified in an explicit
9017       //   specialization (14.7.3)
9018       FunctionTemplateSpecializationInfo *Info =
9019           NewFD->getTemplateSpecializationInfo();
9020       if (Info && SC != SC_None) {
9021         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
9022           Diag(NewFD->getLocation(),
9023                diag::err_explicit_specialization_inconsistent_storage_class)
9024             << SC
9025             << FixItHint::CreateRemoval(
9026                                       D.getDeclSpec().getStorageClassSpecLoc());
9027 
9028         else
9029           Diag(NewFD->getLocation(),
9030                diag::ext_explicit_specialization_storage_class)
9031             << FixItHint::CreateRemoval(
9032                                       D.getDeclSpec().getStorageClassSpecLoc());
9033       }
9034     } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
9035       if (CheckMemberSpecialization(NewFD, Previous))
9036           NewFD->setInvalidDecl();
9037     }
9038 
9039     // Perform semantic checking on the function declaration.
9040     if (!isDependentClassScopeExplicitSpecialization) {
9041       if (!NewFD->isInvalidDecl() && NewFD->isMain())
9042         CheckMain(NewFD, D.getDeclSpec());
9043 
9044       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9045         CheckMSVCRTEntryPoint(NewFD);
9046 
9047       if (!NewFD->isInvalidDecl())
9048         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9049                                                     isMemberSpecialization));
9050       else if (!Previous.empty())
9051         // Recover gracefully from an invalid redeclaration.
9052         D.setRedeclaration(true);
9053     }
9054 
9055     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9056             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
9057            "previous declaration set still overloaded");
9058 
9059     NamedDecl *PrincipalDecl = (FunctionTemplate
9060                                 ? cast<NamedDecl>(FunctionTemplate)
9061                                 : NewFD);
9062 
9063     if (isFriend && NewFD->getPreviousDecl()) {
9064       AccessSpecifier Access = AS_public;
9065       if (!NewFD->isInvalidDecl())
9066         Access = NewFD->getPreviousDecl()->getAccess();
9067 
9068       NewFD->setAccess(Access);
9069       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
9070     }
9071 
9072     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
9073         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
9074       PrincipalDecl->setNonMemberOperator();
9075 
9076     // If we have a function template, check the template parameter
9077     // list. This will check and merge default template arguments.
9078     if (FunctionTemplate) {
9079       FunctionTemplateDecl *PrevTemplate =
9080                                      FunctionTemplate->getPreviousDecl();
9081       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
9082                        PrevTemplate ? PrevTemplate->getTemplateParameters()
9083                                     : nullptr,
9084                             D.getDeclSpec().isFriendSpecified()
9085                               ? (D.isFunctionDefinition()
9086                                    ? TPC_FriendFunctionTemplateDefinition
9087                                    : TPC_FriendFunctionTemplate)
9088                               : (D.getCXXScopeSpec().isSet() &&
9089                                  DC && DC->isRecord() &&
9090                                  DC->isDependentContext())
9091                                   ? TPC_ClassTemplateMember
9092                                   : TPC_FunctionTemplate);
9093     }
9094 
9095     if (NewFD->isInvalidDecl()) {
9096       // Ignore all the rest of this.
9097     } else if (!D.isRedeclaration()) {
9098       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9099                                        AddToScope };
9100       // Fake up an access specifier if it's supposed to be a class member.
9101       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9102         NewFD->setAccess(AS_public);
9103 
9104       // Qualified decls generally require a previous declaration.
9105       if (D.getCXXScopeSpec().isSet()) {
9106         // ...with the major exception of templated-scope or
9107         // dependent-scope friend declarations.
9108 
9109         // TODO: we currently also suppress this check in dependent
9110         // contexts because (1) the parameter depth will be off when
9111         // matching friend templates and (2) we might actually be
9112         // selecting a friend based on a dependent factor.  But there
9113         // are situations where these conditions don't apply and we
9114         // can actually do this check immediately.
9115         //
9116         // Unless the scope is dependent, it's always an error if qualified
9117         // redeclaration lookup found nothing at all. Diagnose that now;
9118         // nothing will diagnose that error later.
9119         if (isFriend &&
9120             (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
9121              (!Previous.empty() && CurContext->isDependentContext()))) {
9122           // ignore these
9123         } else {
9124           // The user tried to provide an out-of-line definition for a
9125           // function that is a member of a class or namespace, but there
9126           // was no such member function declared (C++ [class.mfct]p2,
9127           // C++ [namespace.memdef]p2). For example:
9128           //
9129           // class X {
9130           //   void f() const;
9131           // };
9132           //
9133           // void X::f() { } // ill-formed
9134           //
9135           // Complain about this problem, and attempt to suggest close
9136           // matches (e.g., those that differ only in cv-qualifiers and
9137           // whether the parameter types are references).
9138 
9139           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9140                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9141             AddToScope = ExtraArgs.AddToScope;
9142             return Result;
9143           }
9144         }
9145 
9146         // Unqualified local friend declarations are required to resolve
9147         // to something.
9148       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9149         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9150                 *this, Previous, NewFD, ExtraArgs, true, S)) {
9151           AddToScope = ExtraArgs.AddToScope;
9152           return Result;
9153         }
9154       }
9155     } else if (!D.isFunctionDefinition() &&
9156                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9157                !isFriend && !isFunctionTemplateSpecialization &&
9158                !isMemberSpecialization) {
9159       // An out-of-line member function declaration must also be a
9160       // definition (C++ [class.mfct]p2).
9161       // Note that this is not the case for explicit specializations of
9162       // function templates or member functions of class templates, per
9163       // C++ [temp.expl.spec]p2. We also allow these declarations as an
9164       // extension for compatibility with old SWIG code which likes to
9165       // generate them.
9166       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9167         << D.getCXXScopeSpec().getRange();
9168     }
9169   }
9170 
9171   ProcessPragmaWeak(S, NewFD);
9172   checkAttributesAfterMerging(*this, *NewFD);
9173 
9174   AddKnownFunctionAttributes(NewFD);
9175 
9176   if (NewFD->hasAttr<OverloadableAttr>() &&
9177       !NewFD->getType()->getAs<FunctionProtoType>()) {
9178     Diag(NewFD->getLocation(),
9179          diag::err_attribute_overloadable_no_prototype)
9180       << NewFD;
9181 
9182     // Turn this into a variadic function with no parameters.
9183     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9184     FunctionProtoType::ExtProtoInfo EPI(
9185         Context.getDefaultCallingConvention(true, false));
9186     EPI.Variadic = true;
9187     EPI.ExtInfo = FT->getExtInfo();
9188 
9189     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9190     NewFD->setType(R);
9191   }
9192 
9193   // If there's a #pragma GCC visibility in scope, and this isn't a class
9194   // member, set the visibility of this function.
9195   if (!DC->isRecord() && NewFD->isExternallyVisible())
9196     AddPushedVisibilityAttribute(NewFD);
9197 
9198   // If there's a #pragma clang arc_cf_code_audited in scope, consider
9199   // marking the function.
9200   AddCFAuditedAttribute(NewFD);
9201 
9202   // If this is a function definition, check if we have to apply optnone due to
9203   // a pragma.
9204   if(D.isFunctionDefinition())
9205     AddRangeBasedOptnone(NewFD);
9206 
9207   // If this is the first declaration of an extern C variable, update
9208   // the map of such variables.
9209   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9210       isIncompleteDeclExternC(*this, NewFD))
9211     RegisterLocallyScopedExternCDecl(NewFD, S);
9212 
9213   // Set this FunctionDecl's range up to the right paren.
9214   NewFD->setRangeEnd(D.getSourceRange().getEnd());
9215 
9216   if (D.isRedeclaration() && !Previous.empty()) {
9217     NamedDecl *Prev = Previous.getRepresentativeDecl();
9218     checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9219                                    isMemberSpecialization ||
9220                                        isFunctionTemplateSpecialization,
9221                                    D.isFunctionDefinition());
9222   }
9223 
9224   if (getLangOpts().CUDA) {
9225     IdentifierInfo *II = NewFD->getIdentifier();
9226     if (II && II->isStr(getCudaConfigureFuncName()) &&
9227         !NewFD->isInvalidDecl() &&
9228         NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9229       if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
9230         Diag(NewFD->getLocation(), diag::err_config_scalar_return)
9231             << getCudaConfigureFuncName();
9232       Context.setcudaConfigureCallDecl(NewFD);
9233     }
9234 
9235     // Variadic functions, other than a *declaration* of printf, are not allowed
9236     // in device-side CUDA code, unless someone passed
9237     // -fcuda-allow-variadic-functions.
9238     if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9239         (NewFD->hasAttr<CUDADeviceAttr>() ||
9240          NewFD->hasAttr<CUDAGlobalAttr>()) &&
9241         !(II && II->isStr("printf") && NewFD->isExternC() &&
9242           !D.isFunctionDefinition())) {
9243       Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9244     }
9245   }
9246 
9247   MarkUnusedFileScopedDecl(NewFD);
9248 
9249 
9250 
9251   if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
9252     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9253     if ((getLangOpts().OpenCLVersion >= 120)
9254         && (SC == SC_Static)) {
9255       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9256       D.setInvalidType();
9257     }
9258 
9259     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9260     if (!NewFD->getReturnType()->isVoidType()) {
9261       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9262       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9263           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9264                                 : FixItHint());
9265       D.setInvalidType();
9266     }
9267 
9268     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9269     for (auto Param : NewFD->parameters())
9270       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9271 
9272     if (getLangOpts().OpenCLCPlusPlus) {
9273       if (DC->isRecord()) {
9274         Diag(D.getIdentifierLoc(), diag::err_method_kernel);
9275         D.setInvalidType();
9276       }
9277       if (FunctionTemplate) {
9278         Diag(D.getIdentifierLoc(), diag::err_template_kernel);
9279         D.setInvalidType();
9280       }
9281     }
9282   }
9283 
9284   if (getLangOpts().CPlusPlus) {
9285     if (FunctionTemplate) {
9286       if (NewFD->isInvalidDecl())
9287         FunctionTemplate->setInvalidDecl();
9288       return FunctionTemplate;
9289     }
9290 
9291     if (isMemberSpecialization && !NewFD->isInvalidDecl())
9292       CompleteMemberSpecialization(NewFD, Previous);
9293   }
9294 
9295   for (const ParmVarDecl *Param : NewFD->parameters()) {
9296     QualType PT = Param->getType();
9297 
9298     // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
9299     // types.
9300     if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
9301       if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
9302         QualType ElemTy = PipeTy->getElementType();
9303           if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
9304             Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
9305             D.setInvalidType();
9306           }
9307       }
9308     }
9309   }
9310 
9311   // Here we have an function template explicit specialization at class scope.
9312   // The actual specialization will be postponed to template instatiation
9313   // time via the ClassScopeFunctionSpecializationDecl node.
9314   if (isDependentClassScopeExplicitSpecialization) {
9315     ClassScopeFunctionSpecializationDecl *NewSpec =
9316                          ClassScopeFunctionSpecializationDecl::Create(
9317                                 Context, CurContext, NewFD->getLocation(),
9318                                 cast<CXXMethodDecl>(NewFD),
9319                                 HasExplicitTemplateArgs, TemplateArgs);
9320     CurContext->addDecl(NewSpec);
9321     AddToScope = false;
9322   }
9323 
9324   // Diagnose availability attributes. Availability cannot be used on functions
9325   // that are run during load/unload.
9326   if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
9327     if (NewFD->hasAttr<ConstructorAttr>()) {
9328       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9329           << 1;
9330       NewFD->dropAttr<AvailabilityAttr>();
9331     }
9332     if (NewFD->hasAttr<DestructorAttr>()) {
9333       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9334           << 2;
9335       NewFD->dropAttr<AvailabilityAttr>();
9336     }
9337   }
9338 
9339   return NewFD;
9340 }
9341 
9342 /// Return a CodeSegAttr from a containing class.  The Microsoft docs say
9343 /// when __declspec(code_seg) "is applied to a class, all member functions of
9344 /// the class and nested classes -- this includes compiler-generated special
9345 /// member functions -- are put in the specified segment."
9346 /// The actual behavior is a little more complicated. The Microsoft compiler
9347 /// won't check outer classes if there is an active value from #pragma code_seg.
9348 /// The CodeSeg is always applied from the direct parent but only from outer
9349 /// classes when the #pragma code_seg stack is empty. See:
9350 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
9351 /// available since MS has removed the page.
9352 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
9353   const auto *Method = dyn_cast<CXXMethodDecl>(FD);
9354   if (!Method)
9355     return nullptr;
9356   const CXXRecordDecl *Parent = Method->getParent();
9357   if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9358     Attr *NewAttr = SAttr->clone(S.getASTContext());
9359     NewAttr->setImplicit(true);
9360     return NewAttr;
9361   }
9362 
9363   // The Microsoft compiler won't check outer classes for the CodeSeg
9364   // when the #pragma code_seg stack is active.
9365   if (S.CodeSegStack.CurrentValue)
9366    return nullptr;
9367 
9368   while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
9369     if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9370       Attr *NewAttr = SAttr->clone(S.getASTContext());
9371       NewAttr->setImplicit(true);
9372       return NewAttr;
9373     }
9374   }
9375   return nullptr;
9376 }
9377 
9378 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
9379 /// containing class. Otherwise it will return implicit SectionAttr if the
9380 /// function is a definition and there is an active value on CodeSegStack
9381 /// (from the current #pragma code-seg value).
9382 ///
9383 /// \param FD Function being declared.
9384 /// \param IsDefinition Whether it is a definition or just a declarartion.
9385 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
9386 ///          nullptr if no attribute should be added.
9387 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
9388                                                        bool IsDefinition) {
9389   if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
9390     return A;
9391   if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
9392       CodeSegStack.CurrentValue) {
9393     return SectionAttr::CreateImplicit(getASTContext(),
9394                                        SectionAttr::Declspec_allocate,
9395                                        CodeSegStack.CurrentValue->getString(),
9396                                        CodeSegStack.CurrentPragmaLocation);
9397   }
9398   return nullptr;
9399 }
9400 
9401 /// Determines if we can perform a correct type check for \p D as a
9402 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
9403 /// best-effort check.
9404 ///
9405 /// \param NewD The new declaration.
9406 /// \param OldD The old declaration.
9407 /// \param NewT The portion of the type of the new declaration to check.
9408 /// \param OldT The portion of the type of the old declaration to check.
9409 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
9410                                           QualType NewT, QualType OldT) {
9411   if (!NewD->getLexicalDeclContext()->isDependentContext())
9412     return true;
9413 
9414   // For dependently-typed local extern declarations and friends, we can't
9415   // perform a correct type check in general until instantiation:
9416   //
9417   //   int f();
9418   //   template<typename T> void g() { T f(); }
9419   //
9420   // (valid if g() is only instantiated with T = int).
9421   if (NewT->isDependentType() &&
9422       (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
9423     return false;
9424 
9425   // Similarly, if the previous declaration was a dependent local extern
9426   // declaration, we don't really know its type yet.
9427   if (OldT->isDependentType() && OldD->isLocalExternDecl())
9428     return false;
9429 
9430   return true;
9431 }
9432 
9433 /// Checks if the new declaration declared in dependent context must be
9434 /// put in the same redeclaration chain as the specified declaration.
9435 ///
9436 /// \param D Declaration that is checked.
9437 /// \param PrevDecl Previous declaration found with proper lookup method for the
9438 ///                 same declaration name.
9439 /// \returns True if D must be added to the redeclaration chain which PrevDecl
9440 ///          belongs to.
9441 ///
9442 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
9443   if (!D->getLexicalDeclContext()->isDependentContext())
9444     return true;
9445 
9446   // Don't chain dependent friend function definitions until instantiation, to
9447   // permit cases like
9448   //
9449   //   void func();
9450   //   template<typename T> class C1 { friend void func() {} };
9451   //   template<typename T> class C2 { friend void func() {} };
9452   //
9453   // ... which is valid if only one of C1 and C2 is ever instantiated.
9454   //
9455   // FIXME: This need only apply to function definitions. For now, we proxy
9456   // this by checking for a file-scope function. We do not want this to apply
9457   // to friend declarations nominating member functions, because that gets in
9458   // the way of access checks.
9459   if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
9460     return false;
9461 
9462   auto *VD = dyn_cast<ValueDecl>(D);
9463   auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
9464   return !VD || !PrevVD ||
9465          canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
9466                                         PrevVD->getType());
9467 }
9468 
9469 /// Check the target attribute of the function for MultiVersion
9470 /// validity.
9471 ///
9472 /// Returns true if there was an error, false otherwise.
9473 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
9474   const auto *TA = FD->getAttr<TargetAttr>();
9475   assert(TA && "MultiVersion Candidate requires a target attribute");
9476   TargetAttr::ParsedTargetAttr ParseInfo = TA->parse();
9477   const TargetInfo &TargetInfo = S.Context.getTargetInfo();
9478   enum ErrType { Feature = 0, Architecture = 1 };
9479 
9480   if (!ParseInfo.Architecture.empty() &&
9481       !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
9482     S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9483         << Architecture << ParseInfo.Architecture;
9484     return true;
9485   }
9486 
9487   for (const auto &Feat : ParseInfo.Features) {
9488     auto BareFeat = StringRef{Feat}.substr(1);
9489     if (Feat[0] == '-') {
9490       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9491           << Feature << ("no-" + BareFeat).str();
9492       return true;
9493     }
9494 
9495     if (!TargetInfo.validateCpuSupports(BareFeat) ||
9496         !TargetInfo.isValidFeatureName(BareFeat)) {
9497       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9498           << Feature << BareFeat;
9499       return true;
9500     }
9501   }
9502   return false;
9503 }
9504 
9505 static bool HasNonMultiVersionAttributes(const FunctionDecl *FD,
9506                                          MultiVersionKind MVType) {
9507   for (const Attr *A : FD->attrs()) {
9508     switch (A->getKind()) {
9509     case attr::CPUDispatch:
9510     case attr::CPUSpecific:
9511       if (MVType != MultiVersionKind::CPUDispatch &&
9512           MVType != MultiVersionKind::CPUSpecific)
9513         return true;
9514       break;
9515     case attr::Target:
9516       if (MVType != MultiVersionKind::Target)
9517         return true;
9518       break;
9519     default:
9520       return true;
9521     }
9522   }
9523   return false;
9524 }
9525 
9526 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
9527                                              const FunctionDecl *NewFD,
9528                                              bool CausesMV,
9529                                              MultiVersionKind MVType) {
9530   enum DoesntSupport {
9531     FuncTemplates = 0,
9532     VirtFuncs = 1,
9533     DeducedReturn = 2,
9534     Constructors = 3,
9535     Destructors = 4,
9536     DeletedFuncs = 5,
9537     DefaultedFuncs = 6,
9538     ConstexprFuncs = 7,
9539     ConstevalFuncs = 8,
9540   };
9541   enum Different {
9542     CallingConv = 0,
9543     ReturnType = 1,
9544     ConstexprSpec = 2,
9545     InlineSpec = 3,
9546     StorageClass = 4,
9547     Linkage = 5
9548   };
9549 
9550   bool IsCPUSpecificCPUDispatchMVType =
9551       MVType == MultiVersionKind::CPUDispatch ||
9552       MVType == MultiVersionKind::CPUSpecific;
9553 
9554   if (OldFD && !OldFD->getType()->getAs<FunctionProtoType>()) {
9555     S.Diag(OldFD->getLocation(), diag::err_multiversion_noproto);
9556     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9557     return true;
9558   }
9559 
9560   if (!NewFD->getType()->getAs<FunctionProtoType>())
9561     return S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto);
9562 
9563   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9564     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9565     if (OldFD)
9566       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9567     return true;
9568   }
9569 
9570   // For now, disallow all other attributes.  These should be opt-in, but
9571   // an analysis of all of them is a future FIXME.
9572   if (CausesMV && OldFD && HasNonMultiVersionAttributes(OldFD, MVType)) {
9573     S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs)
9574         << IsCPUSpecificCPUDispatchMVType;
9575     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9576     return true;
9577   }
9578 
9579   if (HasNonMultiVersionAttributes(NewFD, MVType))
9580     return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs)
9581            << IsCPUSpecificCPUDispatchMVType;
9582 
9583   if (NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
9584     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9585            << IsCPUSpecificCPUDispatchMVType << FuncTemplates;
9586 
9587   if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
9588     if (NewCXXFD->isVirtual())
9589       return S.Diag(NewCXXFD->getLocation(),
9590                     diag::err_multiversion_doesnt_support)
9591              << IsCPUSpecificCPUDispatchMVType << VirtFuncs;
9592 
9593     if (const auto *NewCXXCtor = dyn_cast<CXXConstructorDecl>(NewFD))
9594       return S.Diag(NewCXXCtor->getLocation(),
9595                     diag::err_multiversion_doesnt_support)
9596              << IsCPUSpecificCPUDispatchMVType << Constructors;
9597 
9598     if (const auto *NewCXXDtor = dyn_cast<CXXDestructorDecl>(NewFD))
9599       return S.Diag(NewCXXDtor->getLocation(),
9600                     diag::err_multiversion_doesnt_support)
9601              << IsCPUSpecificCPUDispatchMVType << Destructors;
9602   }
9603 
9604   if (NewFD->isDeleted())
9605     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9606            << IsCPUSpecificCPUDispatchMVType << DeletedFuncs;
9607 
9608   if (NewFD->isDefaulted())
9609     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9610            << IsCPUSpecificCPUDispatchMVType << DefaultedFuncs;
9611 
9612   if (NewFD->isConstexpr() && (MVType == MultiVersionKind::CPUDispatch ||
9613                                MVType == MultiVersionKind::CPUSpecific))
9614     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9615            << IsCPUSpecificCPUDispatchMVType
9616            << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
9617 
9618   QualType NewQType = S.getASTContext().getCanonicalType(NewFD->getType());
9619   const auto *NewType = cast<FunctionType>(NewQType);
9620   QualType NewReturnType = NewType->getReturnType();
9621 
9622   if (NewReturnType->isUndeducedType())
9623     return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9624            << IsCPUSpecificCPUDispatchMVType << DeducedReturn;
9625 
9626   // Only allow transition to MultiVersion if it hasn't been used.
9627   if (OldFD && CausesMV && OldFD->isUsed(false))
9628     return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
9629 
9630   // Ensure the return type is identical.
9631   if (OldFD) {
9632     QualType OldQType = S.getASTContext().getCanonicalType(OldFD->getType());
9633     const auto *OldType = cast<FunctionType>(OldQType);
9634     FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
9635     FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
9636 
9637     if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
9638       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9639              << CallingConv;
9640 
9641     QualType OldReturnType = OldType->getReturnType();
9642 
9643     if (OldReturnType != NewReturnType)
9644       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9645              << ReturnType;
9646 
9647     if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
9648       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9649              << ConstexprSpec;
9650 
9651     if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
9652       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9653              << InlineSpec;
9654 
9655     if (OldFD->getStorageClass() != NewFD->getStorageClass())
9656       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9657              << StorageClass;
9658 
9659     if (OldFD->isExternC() != NewFD->isExternC())
9660       return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9661              << Linkage;
9662 
9663     if (S.CheckEquivalentExceptionSpec(
9664             OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
9665             NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
9666       return true;
9667   }
9668   return false;
9669 }
9670 
9671 /// Check the validity of a multiversion function declaration that is the
9672 /// first of its kind. Also sets the multiversion'ness' of the function itself.
9673 ///
9674 /// This sets NewFD->isInvalidDecl() to true if there was an error.
9675 ///
9676 /// Returns true if there was an error, false otherwise.
9677 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
9678                                            MultiVersionKind MVType,
9679                                            const TargetAttr *TA) {
9680   assert(MVType != MultiVersionKind::None &&
9681          "Function lacks multiversion attribute");
9682 
9683   // Target only causes MV if it is default, otherwise this is a normal
9684   // function.
9685   if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
9686     return false;
9687 
9688   if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
9689     FD->setInvalidDecl();
9690     return true;
9691   }
9692 
9693   if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
9694     FD->setInvalidDecl();
9695     return true;
9696   }
9697 
9698   FD->setIsMultiVersion();
9699   return false;
9700 }
9701 
9702 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
9703   for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
9704     if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
9705       return true;
9706   }
9707 
9708   return false;
9709 }
9710 
9711 static bool CheckTargetCausesMultiVersioning(
9712     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
9713     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
9714     LookupResult &Previous) {
9715   const auto *OldTA = OldFD->getAttr<TargetAttr>();
9716   TargetAttr::ParsedTargetAttr NewParsed = NewTA->parse();
9717   // Sort order doesn't matter, it just needs to be consistent.
9718   llvm::sort(NewParsed.Features);
9719 
9720   // If the old decl is NOT MultiVersioned yet, and we don't cause that
9721   // to change, this is a simple redeclaration.
9722   if (!NewTA->isDefaultVersion() &&
9723       (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
9724     return false;
9725 
9726   // Otherwise, this decl causes MultiVersioning.
9727   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9728     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9729     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9730     NewFD->setInvalidDecl();
9731     return true;
9732   }
9733 
9734   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
9735                                        MultiVersionKind::Target)) {
9736     NewFD->setInvalidDecl();
9737     return true;
9738   }
9739 
9740   if (CheckMultiVersionValue(S, NewFD)) {
9741     NewFD->setInvalidDecl();
9742     return true;
9743   }
9744 
9745   // If this is 'default', permit the forward declaration.
9746   if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
9747     Redeclaration = true;
9748     OldDecl = OldFD;
9749     OldFD->setIsMultiVersion();
9750     NewFD->setIsMultiVersion();
9751     return false;
9752   }
9753 
9754   if (CheckMultiVersionValue(S, OldFD)) {
9755     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9756     NewFD->setInvalidDecl();
9757     return true;
9758   }
9759 
9760   TargetAttr::ParsedTargetAttr OldParsed =
9761       OldTA->parse(std::less<std::string>());
9762 
9763   if (OldParsed == NewParsed) {
9764     S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9765     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9766     NewFD->setInvalidDecl();
9767     return true;
9768   }
9769 
9770   for (const auto *FD : OldFD->redecls()) {
9771     const auto *CurTA = FD->getAttr<TargetAttr>();
9772     // We allow forward declarations before ANY multiversioning attributes, but
9773     // nothing after the fact.
9774     if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
9775         (!CurTA || CurTA->isInherited())) {
9776       S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
9777           << 0;
9778       S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9779       NewFD->setInvalidDecl();
9780       return true;
9781     }
9782   }
9783 
9784   OldFD->setIsMultiVersion();
9785   NewFD->setIsMultiVersion();
9786   Redeclaration = false;
9787   MergeTypeWithPrevious = false;
9788   OldDecl = nullptr;
9789   Previous.clear();
9790   return false;
9791 }
9792 
9793 /// Check the validity of a new function declaration being added to an existing
9794 /// multiversioned declaration collection.
9795 static bool CheckMultiVersionAdditionalDecl(
9796     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
9797     MultiVersionKind NewMVType, const TargetAttr *NewTA,
9798     const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
9799     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
9800     LookupResult &Previous) {
9801 
9802   MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
9803   // Disallow mixing of multiversioning types.
9804   if ((OldMVType == MultiVersionKind::Target &&
9805        NewMVType != MultiVersionKind::Target) ||
9806       (NewMVType == MultiVersionKind::Target &&
9807        OldMVType != MultiVersionKind::Target)) {
9808     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
9809     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9810     NewFD->setInvalidDecl();
9811     return true;
9812   }
9813 
9814   TargetAttr::ParsedTargetAttr NewParsed;
9815   if (NewTA) {
9816     NewParsed = NewTA->parse();
9817     llvm::sort(NewParsed.Features);
9818   }
9819 
9820   bool UseMemberUsingDeclRules =
9821       S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
9822 
9823   // Next, check ALL non-overloads to see if this is a redeclaration of a
9824   // previous member of the MultiVersion set.
9825   for (NamedDecl *ND : Previous) {
9826     FunctionDecl *CurFD = ND->getAsFunction();
9827     if (!CurFD)
9828       continue;
9829     if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
9830       continue;
9831 
9832     if (NewMVType == MultiVersionKind::Target) {
9833       const auto *CurTA = CurFD->getAttr<TargetAttr>();
9834       if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
9835         NewFD->setIsMultiVersion();
9836         Redeclaration = true;
9837         OldDecl = ND;
9838         return false;
9839       }
9840 
9841       TargetAttr::ParsedTargetAttr CurParsed =
9842           CurTA->parse(std::less<std::string>());
9843       if (CurParsed == NewParsed) {
9844         S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9845         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9846         NewFD->setInvalidDecl();
9847         return true;
9848       }
9849     } else {
9850       const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
9851       const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
9852       // Handle CPUDispatch/CPUSpecific versions.
9853       // Only 1 CPUDispatch function is allowed, this will make it go through
9854       // the redeclaration errors.
9855       if (NewMVType == MultiVersionKind::CPUDispatch &&
9856           CurFD->hasAttr<CPUDispatchAttr>()) {
9857         if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
9858             std::equal(
9859                 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
9860                 NewCPUDisp->cpus_begin(),
9861                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
9862                   return Cur->getName() == New->getName();
9863                 })) {
9864           NewFD->setIsMultiVersion();
9865           Redeclaration = true;
9866           OldDecl = ND;
9867           return false;
9868         }
9869 
9870         // If the declarations don't match, this is an error condition.
9871         S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
9872         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9873         NewFD->setInvalidDecl();
9874         return true;
9875       }
9876       if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
9877 
9878         if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
9879             std::equal(
9880                 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
9881                 NewCPUSpec->cpus_begin(),
9882                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
9883                   return Cur->getName() == New->getName();
9884                 })) {
9885           NewFD->setIsMultiVersion();
9886           Redeclaration = true;
9887           OldDecl = ND;
9888           return false;
9889         }
9890 
9891         // Only 1 version of CPUSpecific is allowed for each CPU.
9892         for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
9893           for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
9894             if (CurII == NewII) {
9895               S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
9896                   << NewII;
9897               S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9898               NewFD->setInvalidDecl();
9899               return true;
9900             }
9901           }
9902         }
9903       }
9904       // If the two decls aren't the same MVType, there is no possible error
9905       // condition.
9906     }
9907   }
9908 
9909   // Else, this is simply a non-redecl case.  Checking the 'value' is only
9910   // necessary in the Target case, since The CPUSpecific/Dispatch cases are
9911   // handled in the attribute adding step.
9912   if (NewMVType == MultiVersionKind::Target &&
9913       CheckMultiVersionValue(S, NewFD)) {
9914     NewFD->setInvalidDecl();
9915     return true;
9916   }
9917 
9918   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
9919                                        !OldFD->isMultiVersion(), NewMVType)) {
9920     NewFD->setInvalidDecl();
9921     return true;
9922   }
9923 
9924   // Permit forward declarations in the case where these two are compatible.
9925   if (!OldFD->isMultiVersion()) {
9926     OldFD->setIsMultiVersion();
9927     NewFD->setIsMultiVersion();
9928     Redeclaration = true;
9929     OldDecl = OldFD;
9930     return false;
9931   }
9932 
9933   NewFD->setIsMultiVersion();
9934   Redeclaration = false;
9935   MergeTypeWithPrevious = false;
9936   OldDecl = nullptr;
9937   Previous.clear();
9938   return false;
9939 }
9940 
9941 
9942 /// Check the validity of a mulitversion function declaration.
9943 /// Also sets the multiversion'ness' of the function itself.
9944 ///
9945 /// This sets NewFD->isInvalidDecl() to true if there was an error.
9946 ///
9947 /// Returns true if there was an error, false otherwise.
9948 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
9949                                       bool &Redeclaration, NamedDecl *&OldDecl,
9950                                       bool &MergeTypeWithPrevious,
9951                                       LookupResult &Previous) {
9952   const auto *NewTA = NewFD->getAttr<TargetAttr>();
9953   const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
9954   const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
9955 
9956   // Mixing Multiversioning types is prohibited.
9957   if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
9958       (NewCPUDisp && NewCPUSpec)) {
9959     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
9960     NewFD->setInvalidDecl();
9961     return true;
9962   }
9963 
9964   MultiVersionKind  MVType = NewFD->getMultiVersionKind();
9965 
9966   // Main isn't allowed to become a multiversion function, however it IS
9967   // permitted to have 'main' be marked with the 'target' optimization hint.
9968   if (NewFD->isMain()) {
9969     if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
9970         MVType == MultiVersionKind::CPUDispatch ||
9971         MVType == MultiVersionKind::CPUSpecific) {
9972       S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
9973       NewFD->setInvalidDecl();
9974       return true;
9975     }
9976     return false;
9977   }
9978 
9979   if (!OldDecl || !OldDecl->getAsFunction() ||
9980       OldDecl->getDeclContext()->getRedeclContext() !=
9981           NewFD->getDeclContext()->getRedeclContext()) {
9982     // If there's no previous declaration, AND this isn't attempting to cause
9983     // multiversioning, this isn't an error condition.
9984     if (MVType == MultiVersionKind::None)
9985       return false;
9986     return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA);
9987   }
9988 
9989   FunctionDecl *OldFD = OldDecl->getAsFunction();
9990 
9991   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
9992     return false;
9993 
9994   if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
9995     S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
9996         << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
9997     NewFD->setInvalidDecl();
9998     return true;
9999   }
10000 
10001   // Handle the target potentially causes multiversioning case.
10002   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
10003     return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
10004                                             Redeclaration, OldDecl,
10005                                             MergeTypeWithPrevious, Previous);
10006 
10007   // At this point, we have a multiversion function decl (in OldFD) AND an
10008   // appropriate attribute in the current function decl.  Resolve that these are
10009   // still compatible with previous declarations.
10010   return CheckMultiVersionAdditionalDecl(
10011       S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
10012       OldDecl, MergeTypeWithPrevious, Previous);
10013 }
10014 
10015 /// Perform semantic checking of a new function declaration.
10016 ///
10017 /// Performs semantic analysis of the new function declaration
10018 /// NewFD. This routine performs all semantic checking that does not
10019 /// require the actual declarator involved in the declaration, and is
10020 /// used both for the declaration of functions as they are parsed
10021 /// (called via ActOnDeclarator) and for the declaration of functions
10022 /// that have been instantiated via C++ template instantiation (called
10023 /// via InstantiateDecl).
10024 ///
10025 /// \param IsMemberSpecialization whether this new function declaration is
10026 /// a member specialization (that replaces any definition provided by the
10027 /// previous declaration).
10028 ///
10029 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10030 ///
10031 /// \returns true if the function declaration is a redeclaration.
10032 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
10033                                     LookupResult &Previous,
10034                                     bool IsMemberSpecialization) {
10035   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
10036          "Variably modified return types are not handled here");
10037 
10038   // Determine whether the type of this function should be merged with
10039   // a previous visible declaration. This never happens for functions in C++,
10040   // and always happens in C if the previous declaration was visible.
10041   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
10042                                !Previous.isShadowed();
10043 
10044   bool Redeclaration = false;
10045   NamedDecl *OldDecl = nullptr;
10046   bool MayNeedOverloadableChecks = false;
10047 
10048   // Merge or overload the declaration with an existing declaration of
10049   // the same name, if appropriate.
10050   if (!Previous.empty()) {
10051     // Determine whether NewFD is an overload of PrevDecl or
10052     // a declaration that requires merging. If it's an overload,
10053     // there's no more work to do here; we'll just add the new
10054     // function to the scope.
10055     if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
10056       NamedDecl *Candidate = Previous.getRepresentativeDecl();
10057       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
10058         Redeclaration = true;
10059         OldDecl = Candidate;
10060       }
10061     } else {
10062       MayNeedOverloadableChecks = true;
10063       switch (CheckOverload(S, NewFD, Previous, OldDecl,
10064                             /*NewIsUsingDecl*/ false)) {
10065       case Ovl_Match:
10066         Redeclaration = true;
10067         break;
10068 
10069       case Ovl_NonFunction:
10070         Redeclaration = true;
10071         break;
10072 
10073       case Ovl_Overload:
10074         Redeclaration = false;
10075         break;
10076       }
10077     }
10078   }
10079 
10080   // Check for a previous extern "C" declaration with this name.
10081   if (!Redeclaration &&
10082       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
10083     if (!Previous.empty()) {
10084       // This is an extern "C" declaration with the same name as a previous
10085       // declaration, and thus redeclares that entity...
10086       Redeclaration = true;
10087       OldDecl = Previous.getFoundDecl();
10088       MergeTypeWithPrevious = false;
10089 
10090       // ... except in the presence of __attribute__((overloadable)).
10091       if (OldDecl->hasAttr<OverloadableAttr>() ||
10092           NewFD->hasAttr<OverloadableAttr>()) {
10093         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
10094           MayNeedOverloadableChecks = true;
10095           Redeclaration = false;
10096           OldDecl = nullptr;
10097         }
10098       }
10099     }
10100   }
10101 
10102   if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10103                                 MergeTypeWithPrevious, Previous))
10104     return Redeclaration;
10105 
10106   // C++11 [dcl.constexpr]p8:
10107   //   A constexpr specifier for a non-static member function that is not
10108   //   a constructor declares that member function to be const.
10109   //
10110   // This needs to be delayed until we know whether this is an out-of-line
10111   // definition of a static member function.
10112   //
10113   // This rule is not present in C++1y, so we produce a backwards
10114   // compatibility warning whenever it happens in C++11.
10115   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10116   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10117       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10118       !MD->getMethodQualifiers().hasConst()) {
10119     CXXMethodDecl *OldMD = nullptr;
10120     if (OldDecl)
10121       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10122     if (!OldMD || !OldMD->isStatic()) {
10123       const FunctionProtoType *FPT =
10124         MD->getType()->castAs<FunctionProtoType>();
10125       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10126       EPI.TypeQuals.addConst();
10127       MD->setType(Context.getFunctionType(FPT->getReturnType(),
10128                                           FPT->getParamTypes(), EPI));
10129 
10130       // Warn that we did this, if we're not performing template instantiation.
10131       // In that case, we'll have warned already when the template was defined.
10132       if (!inTemplateInstantiation()) {
10133         SourceLocation AddConstLoc;
10134         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10135                 .IgnoreParens().getAs<FunctionTypeLoc>())
10136           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10137 
10138         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10139           << FixItHint::CreateInsertion(AddConstLoc, " const");
10140       }
10141     }
10142   }
10143 
10144   if (Redeclaration) {
10145     // NewFD and OldDecl represent declarations that need to be
10146     // merged.
10147     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10148       NewFD->setInvalidDecl();
10149       return Redeclaration;
10150     }
10151 
10152     Previous.clear();
10153     Previous.addDecl(OldDecl);
10154 
10155     if (FunctionTemplateDecl *OldTemplateDecl =
10156             dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10157       auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10158       FunctionTemplateDecl *NewTemplateDecl
10159         = NewFD->getDescribedFunctionTemplate();
10160       assert(NewTemplateDecl && "Template/non-template mismatch");
10161 
10162       // The call to MergeFunctionDecl above may have created some state in
10163       // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10164       // can add it as a redeclaration.
10165       NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10166 
10167       NewFD->setPreviousDeclaration(OldFD);
10168       adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10169       if (NewFD->isCXXClassMember()) {
10170         NewFD->setAccess(OldTemplateDecl->getAccess());
10171         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10172       }
10173 
10174       // If this is an explicit specialization of a member that is a function
10175       // template, mark it as a member specialization.
10176       if (IsMemberSpecialization &&
10177           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10178         NewTemplateDecl->setMemberSpecialization();
10179         assert(OldTemplateDecl->isMemberSpecialization());
10180         // Explicit specializations of a member template do not inherit deleted
10181         // status from the parent member template that they are specializing.
10182         if (OldFD->isDeleted()) {
10183           // FIXME: This assert will not hold in the presence of modules.
10184           assert(OldFD->getCanonicalDecl() == OldFD);
10185           // FIXME: We need an update record for this AST mutation.
10186           OldFD->setDeletedAsWritten(false);
10187         }
10188       }
10189 
10190     } else {
10191       if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10192         auto *OldFD = cast<FunctionDecl>(OldDecl);
10193         // This needs to happen first so that 'inline' propagates.
10194         NewFD->setPreviousDeclaration(OldFD);
10195         adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10196         if (NewFD->isCXXClassMember())
10197           NewFD->setAccess(OldFD->getAccess());
10198       }
10199     }
10200   } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10201              !NewFD->getAttr<OverloadableAttr>()) {
10202     assert((Previous.empty() ||
10203             llvm::any_of(Previous,
10204                          [](const NamedDecl *ND) {
10205                            return ND->hasAttr<OverloadableAttr>();
10206                          })) &&
10207            "Non-redecls shouldn't happen without overloadable present");
10208 
10209     auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10210       const auto *FD = dyn_cast<FunctionDecl>(ND);
10211       return FD && !FD->hasAttr<OverloadableAttr>();
10212     });
10213 
10214     if (OtherUnmarkedIter != Previous.end()) {
10215       Diag(NewFD->getLocation(),
10216            diag::err_attribute_overloadable_multiple_unmarked_overloads);
10217       Diag((*OtherUnmarkedIter)->getLocation(),
10218            diag::note_attribute_overloadable_prev_overload)
10219           << false;
10220 
10221       NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
10222     }
10223   }
10224 
10225   // Semantic checking for this function declaration (in isolation).
10226 
10227   if (getLangOpts().CPlusPlus) {
10228     // C++-specific checks.
10229     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
10230       CheckConstructor(Constructor);
10231     } else if (CXXDestructorDecl *Destructor =
10232                 dyn_cast<CXXDestructorDecl>(NewFD)) {
10233       CXXRecordDecl *Record = Destructor->getParent();
10234       QualType ClassType = Context.getTypeDeclType(Record);
10235 
10236       // FIXME: Shouldn't we be able to perform this check even when the class
10237       // type is dependent? Both gcc and edg can handle that.
10238       if (!ClassType->isDependentType()) {
10239         DeclarationName Name
10240           = Context.DeclarationNames.getCXXDestructorName(
10241                                         Context.getCanonicalType(ClassType));
10242         if (NewFD->getDeclName() != Name) {
10243           Diag(NewFD->getLocation(), diag::err_destructor_name);
10244           NewFD->setInvalidDecl();
10245           return Redeclaration;
10246         }
10247       }
10248     } else if (CXXConversionDecl *Conversion
10249                = dyn_cast<CXXConversionDecl>(NewFD)) {
10250       ActOnConversionDeclarator(Conversion);
10251     } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
10252       if (auto *TD = Guide->getDescribedFunctionTemplate())
10253         CheckDeductionGuideTemplate(TD);
10254 
10255       // A deduction guide is not on the list of entities that can be
10256       // explicitly specialized.
10257       if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
10258         Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
10259             << /*explicit specialization*/ 1;
10260     }
10261 
10262     // Find any virtual functions that this function overrides.
10263     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
10264       if (!Method->isFunctionTemplateSpecialization() &&
10265           !Method->getDescribedFunctionTemplate() &&
10266           Method->isCanonicalDecl()) {
10267         if (AddOverriddenMethods(Method->getParent(), Method)) {
10268           // If the function was marked as "static", we have a problem.
10269           if (NewFD->getStorageClass() == SC_Static) {
10270             ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
10271           }
10272         }
10273       }
10274 
10275       if (Method->isStatic())
10276         checkThisInStaticMemberFunctionType(Method);
10277     }
10278 
10279     // Extra checking for C++ overloaded operators (C++ [over.oper]).
10280     if (NewFD->isOverloadedOperator() &&
10281         CheckOverloadedOperatorDeclaration(NewFD)) {
10282       NewFD->setInvalidDecl();
10283       return Redeclaration;
10284     }
10285 
10286     // Extra checking for C++0x literal operators (C++0x [over.literal]).
10287     if (NewFD->getLiteralIdentifier() &&
10288         CheckLiteralOperatorDeclaration(NewFD)) {
10289       NewFD->setInvalidDecl();
10290       return Redeclaration;
10291     }
10292 
10293     // In C++, check default arguments now that we have merged decls. Unless
10294     // the lexical context is the class, because in this case this is done
10295     // during delayed parsing anyway.
10296     if (!CurContext->isRecord())
10297       CheckCXXDefaultArguments(NewFD);
10298 
10299     // If this function declares a builtin function, check the type of this
10300     // declaration against the expected type for the builtin.
10301     if (unsigned BuiltinID = NewFD->getBuiltinID()) {
10302       ASTContext::GetBuiltinTypeError Error;
10303       LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
10304       QualType T = Context.GetBuiltinType(BuiltinID, Error);
10305       // If the type of the builtin differs only in its exception
10306       // specification, that's OK.
10307       // FIXME: If the types do differ in this way, it would be better to
10308       // retain the 'noexcept' form of the type.
10309       if (!T.isNull() &&
10310           !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
10311                                                             NewFD->getType()))
10312         // The type of this function differs from the type of the builtin,
10313         // so forget about the builtin entirely.
10314         Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
10315     }
10316 
10317     // If this function is declared as being extern "C", then check to see if
10318     // the function returns a UDT (class, struct, or union type) that is not C
10319     // compatible, and if it does, warn the user.
10320     // But, issue any diagnostic on the first declaration only.
10321     if (Previous.empty() && NewFD->isExternC()) {
10322       QualType R = NewFD->getReturnType();
10323       if (R->isIncompleteType() && !R->isVoidType())
10324         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
10325             << NewFD << R;
10326       else if (!R.isPODType(Context) && !R->isVoidType() &&
10327                !R->isObjCObjectPointerType())
10328         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
10329     }
10330 
10331     // C++1z [dcl.fct]p6:
10332     //   [...] whether the function has a non-throwing exception-specification
10333     //   [is] part of the function type
10334     //
10335     // This results in an ABI break between C++14 and C++17 for functions whose
10336     // declared type includes an exception-specification in a parameter or
10337     // return type. (Exception specifications on the function itself are OK in
10338     // most cases, and exception specifications are not permitted in most other
10339     // contexts where they could make it into a mangling.)
10340     if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
10341       auto HasNoexcept = [&](QualType T) -> bool {
10342         // Strip off declarator chunks that could be between us and a function
10343         // type. We don't need to look far, exception specifications are very
10344         // restricted prior to C++17.
10345         if (auto *RT = T->getAs<ReferenceType>())
10346           T = RT->getPointeeType();
10347         else if (T->isAnyPointerType())
10348           T = T->getPointeeType();
10349         else if (auto *MPT = T->getAs<MemberPointerType>())
10350           T = MPT->getPointeeType();
10351         if (auto *FPT = T->getAs<FunctionProtoType>())
10352           if (FPT->isNothrow())
10353             return true;
10354         return false;
10355       };
10356 
10357       auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
10358       bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
10359       for (QualType T : FPT->param_types())
10360         AnyNoexcept |= HasNoexcept(T);
10361       if (AnyNoexcept)
10362         Diag(NewFD->getLocation(),
10363              diag::warn_cxx17_compat_exception_spec_in_signature)
10364             << NewFD;
10365     }
10366 
10367     if (!Redeclaration && LangOpts.CUDA)
10368       checkCUDATargetOverload(NewFD, Previous);
10369   }
10370   return Redeclaration;
10371 }
10372 
10373 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
10374   // C++11 [basic.start.main]p3:
10375   //   A program that [...] declares main to be inline, static or
10376   //   constexpr is ill-formed.
10377   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
10378   //   appear in a declaration of main.
10379   // static main is not an error under C99, but we should warn about it.
10380   // We accept _Noreturn main as an extension.
10381   if (FD->getStorageClass() == SC_Static)
10382     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
10383          ? diag::err_static_main : diag::warn_static_main)
10384       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
10385   if (FD->isInlineSpecified())
10386     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
10387       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
10388   if (DS.isNoreturnSpecified()) {
10389     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
10390     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
10391     Diag(NoreturnLoc, diag::ext_noreturn_main);
10392     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
10393       << FixItHint::CreateRemoval(NoreturnRange);
10394   }
10395   if (FD->isConstexpr()) {
10396     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
10397         << FD->isConsteval()
10398         << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
10399     FD->setConstexprKind(CSK_unspecified);
10400   }
10401 
10402   if (getLangOpts().OpenCL) {
10403     Diag(FD->getLocation(), diag::err_opencl_no_main)
10404         << FD->hasAttr<OpenCLKernelAttr>();
10405     FD->setInvalidDecl();
10406     return;
10407   }
10408 
10409   QualType T = FD->getType();
10410   assert(T->isFunctionType() && "function decl is not of function type");
10411   const FunctionType* FT = T->castAs<FunctionType>();
10412 
10413   // Set default calling convention for main()
10414   if (FT->getCallConv() != CC_C) {
10415     FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
10416     FD->setType(QualType(FT, 0));
10417     T = Context.getCanonicalType(FD->getType());
10418   }
10419 
10420   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
10421     // In C with GNU extensions we allow main() to have non-integer return
10422     // type, but we should warn about the extension, and we disable the
10423     // implicit-return-zero rule.
10424 
10425     // GCC in C mode accepts qualified 'int'.
10426     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
10427       FD->setHasImplicitReturnZero(true);
10428     else {
10429       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
10430       SourceRange RTRange = FD->getReturnTypeSourceRange();
10431       if (RTRange.isValid())
10432         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
10433             << FixItHint::CreateReplacement(RTRange, "int");
10434     }
10435   } else {
10436     // In C and C++, main magically returns 0 if you fall off the end;
10437     // set the flag which tells us that.
10438     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
10439 
10440     // All the standards say that main() should return 'int'.
10441     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
10442       FD->setHasImplicitReturnZero(true);
10443     else {
10444       // Otherwise, this is just a flat-out error.
10445       SourceRange RTRange = FD->getReturnTypeSourceRange();
10446       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
10447           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
10448                                 : FixItHint());
10449       FD->setInvalidDecl(true);
10450     }
10451   }
10452 
10453   // Treat protoless main() as nullary.
10454   if (isa<FunctionNoProtoType>(FT)) return;
10455 
10456   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
10457   unsigned nparams = FTP->getNumParams();
10458   assert(FD->getNumParams() == nparams);
10459 
10460   bool HasExtraParameters = (nparams > 3);
10461 
10462   if (FTP->isVariadic()) {
10463     Diag(FD->getLocation(), diag::ext_variadic_main);
10464     // FIXME: if we had information about the location of the ellipsis, we
10465     // could add a FixIt hint to remove it as a parameter.
10466   }
10467 
10468   // Darwin passes an undocumented fourth argument of type char**.  If
10469   // other platforms start sprouting these, the logic below will start
10470   // getting shifty.
10471   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
10472     HasExtraParameters = false;
10473 
10474   if (HasExtraParameters) {
10475     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
10476     FD->setInvalidDecl(true);
10477     nparams = 3;
10478   }
10479 
10480   // FIXME: a lot of the following diagnostics would be improved
10481   // if we had some location information about types.
10482 
10483   QualType CharPP =
10484     Context.getPointerType(Context.getPointerType(Context.CharTy));
10485   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
10486 
10487   for (unsigned i = 0; i < nparams; ++i) {
10488     QualType AT = FTP->getParamType(i);
10489 
10490     bool mismatch = true;
10491 
10492     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
10493       mismatch = false;
10494     else if (Expected[i] == CharPP) {
10495       // As an extension, the following forms are okay:
10496       //   char const **
10497       //   char const * const *
10498       //   char * const *
10499 
10500       QualifierCollector qs;
10501       const PointerType* PT;
10502       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
10503           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
10504           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
10505                               Context.CharTy)) {
10506         qs.removeConst();
10507         mismatch = !qs.empty();
10508       }
10509     }
10510 
10511     if (mismatch) {
10512       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
10513       // TODO: suggest replacing given type with expected type
10514       FD->setInvalidDecl(true);
10515     }
10516   }
10517 
10518   if (nparams == 1 && !FD->isInvalidDecl()) {
10519     Diag(FD->getLocation(), diag::warn_main_one_arg);
10520   }
10521 
10522   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10523     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10524     FD->setInvalidDecl();
10525   }
10526 }
10527 
10528 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
10529   QualType T = FD->getType();
10530   assert(T->isFunctionType() && "function decl is not of function type");
10531   const FunctionType *FT = T->castAs<FunctionType>();
10532 
10533   // Set an implicit return of 'zero' if the function can return some integral,
10534   // enumeration, pointer or nullptr type.
10535   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
10536       FT->getReturnType()->isAnyPointerType() ||
10537       FT->getReturnType()->isNullPtrType())
10538     // DllMain is exempt because a return value of zero means it failed.
10539     if (FD->getName() != "DllMain")
10540       FD->setHasImplicitReturnZero(true);
10541 
10542   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10543     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10544     FD->setInvalidDecl();
10545   }
10546 }
10547 
10548 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
10549   // FIXME: Need strict checking.  In C89, we need to check for
10550   // any assignment, increment, decrement, function-calls, or
10551   // commas outside of a sizeof.  In C99, it's the same list,
10552   // except that the aforementioned are allowed in unevaluated
10553   // expressions.  Everything else falls under the
10554   // "may accept other forms of constant expressions" exception.
10555   // (We never end up here for C++, so the constant expression
10556   // rules there don't matter.)
10557   const Expr *Culprit;
10558   if (Init->isConstantInitializer(Context, false, &Culprit))
10559     return false;
10560   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
10561     << Culprit->getSourceRange();
10562   return true;
10563 }
10564 
10565 namespace {
10566   // Visits an initialization expression to see if OrigDecl is evaluated in
10567   // its own initialization and throws a warning if it does.
10568   class SelfReferenceChecker
10569       : public EvaluatedExprVisitor<SelfReferenceChecker> {
10570     Sema &S;
10571     Decl *OrigDecl;
10572     bool isRecordType;
10573     bool isPODType;
10574     bool isReferenceType;
10575 
10576     bool isInitList;
10577     llvm::SmallVector<unsigned, 4> InitFieldIndex;
10578 
10579   public:
10580     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
10581 
10582     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
10583                                                     S(S), OrigDecl(OrigDecl) {
10584       isPODType = false;
10585       isRecordType = false;
10586       isReferenceType = false;
10587       isInitList = false;
10588       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
10589         isPODType = VD->getType().isPODType(S.Context);
10590         isRecordType = VD->getType()->isRecordType();
10591         isReferenceType = VD->getType()->isReferenceType();
10592       }
10593     }
10594 
10595     // For most expressions, just call the visitor.  For initializer lists,
10596     // track the index of the field being initialized since fields are
10597     // initialized in order allowing use of previously initialized fields.
10598     void CheckExpr(Expr *E) {
10599       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
10600       if (!InitList) {
10601         Visit(E);
10602         return;
10603       }
10604 
10605       // Track and increment the index here.
10606       isInitList = true;
10607       InitFieldIndex.push_back(0);
10608       for (auto Child : InitList->children()) {
10609         CheckExpr(cast<Expr>(Child));
10610         ++InitFieldIndex.back();
10611       }
10612       InitFieldIndex.pop_back();
10613     }
10614 
10615     // Returns true if MemberExpr is checked and no further checking is needed.
10616     // Returns false if additional checking is required.
10617     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
10618       llvm::SmallVector<FieldDecl*, 4> Fields;
10619       Expr *Base = E;
10620       bool ReferenceField = false;
10621 
10622       // Get the field members used.
10623       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10624         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
10625         if (!FD)
10626           return false;
10627         Fields.push_back(FD);
10628         if (FD->getType()->isReferenceType())
10629           ReferenceField = true;
10630         Base = ME->getBase()->IgnoreParenImpCasts();
10631       }
10632 
10633       // Keep checking only if the base Decl is the same.
10634       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
10635       if (!DRE || DRE->getDecl() != OrigDecl)
10636         return false;
10637 
10638       // A reference field can be bound to an unininitialized field.
10639       if (CheckReference && !ReferenceField)
10640         return true;
10641 
10642       // Convert FieldDecls to their index number.
10643       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
10644       for (const FieldDecl *I : llvm::reverse(Fields))
10645         UsedFieldIndex.push_back(I->getFieldIndex());
10646 
10647       // See if a warning is needed by checking the first difference in index
10648       // numbers.  If field being used has index less than the field being
10649       // initialized, then the use is safe.
10650       for (auto UsedIter = UsedFieldIndex.begin(),
10651                 UsedEnd = UsedFieldIndex.end(),
10652                 OrigIter = InitFieldIndex.begin(),
10653                 OrigEnd = InitFieldIndex.end();
10654            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
10655         if (*UsedIter < *OrigIter)
10656           return true;
10657         if (*UsedIter > *OrigIter)
10658           break;
10659       }
10660 
10661       // TODO: Add a different warning which will print the field names.
10662       HandleDeclRefExpr(DRE);
10663       return true;
10664     }
10665 
10666     // For most expressions, the cast is directly above the DeclRefExpr.
10667     // For conditional operators, the cast can be outside the conditional
10668     // operator if both expressions are DeclRefExpr's.
10669     void HandleValue(Expr *E) {
10670       E = E->IgnoreParens();
10671       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
10672         HandleDeclRefExpr(DRE);
10673         return;
10674       }
10675 
10676       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
10677         Visit(CO->getCond());
10678         HandleValue(CO->getTrueExpr());
10679         HandleValue(CO->getFalseExpr());
10680         return;
10681       }
10682 
10683       if (BinaryConditionalOperator *BCO =
10684               dyn_cast<BinaryConditionalOperator>(E)) {
10685         Visit(BCO->getCond());
10686         HandleValue(BCO->getFalseExpr());
10687         return;
10688       }
10689 
10690       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
10691         HandleValue(OVE->getSourceExpr());
10692         return;
10693       }
10694 
10695       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
10696         if (BO->getOpcode() == BO_Comma) {
10697           Visit(BO->getLHS());
10698           HandleValue(BO->getRHS());
10699           return;
10700         }
10701       }
10702 
10703       if (isa<MemberExpr>(E)) {
10704         if (isInitList) {
10705           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
10706                                       false /*CheckReference*/))
10707             return;
10708         }
10709 
10710         Expr *Base = E->IgnoreParenImpCasts();
10711         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10712           // Check for static member variables and don't warn on them.
10713           if (!isa<FieldDecl>(ME->getMemberDecl()))
10714             return;
10715           Base = ME->getBase()->IgnoreParenImpCasts();
10716         }
10717         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
10718           HandleDeclRefExpr(DRE);
10719         return;
10720       }
10721 
10722       Visit(E);
10723     }
10724 
10725     // Reference types not handled in HandleValue are handled here since all
10726     // uses of references are bad, not just r-value uses.
10727     void VisitDeclRefExpr(DeclRefExpr *E) {
10728       if (isReferenceType)
10729         HandleDeclRefExpr(E);
10730     }
10731 
10732     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
10733       if (E->getCastKind() == CK_LValueToRValue) {
10734         HandleValue(E->getSubExpr());
10735         return;
10736       }
10737 
10738       Inherited::VisitImplicitCastExpr(E);
10739     }
10740 
10741     void VisitMemberExpr(MemberExpr *E) {
10742       if (isInitList) {
10743         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
10744           return;
10745       }
10746 
10747       // Don't warn on arrays since they can be treated as pointers.
10748       if (E->getType()->canDecayToPointerType()) return;
10749 
10750       // Warn when a non-static method call is followed by non-static member
10751       // field accesses, which is followed by a DeclRefExpr.
10752       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
10753       bool Warn = (MD && !MD->isStatic());
10754       Expr *Base = E->getBase()->IgnoreParenImpCasts();
10755       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10756         if (!isa<FieldDecl>(ME->getMemberDecl()))
10757           Warn = false;
10758         Base = ME->getBase()->IgnoreParenImpCasts();
10759       }
10760 
10761       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
10762         if (Warn)
10763           HandleDeclRefExpr(DRE);
10764         return;
10765       }
10766 
10767       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
10768       // Visit that expression.
10769       Visit(Base);
10770     }
10771 
10772     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
10773       Expr *Callee = E->getCallee();
10774 
10775       if (isa<UnresolvedLookupExpr>(Callee))
10776         return Inherited::VisitCXXOperatorCallExpr(E);
10777 
10778       Visit(Callee);
10779       for (auto Arg: E->arguments())
10780         HandleValue(Arg->IgnoreParenImpCasts());
10781     }
10782 
10783     void VisitUnaryOperator(UnaryOperator *E) {
10784       // For POD record types, addresses of its own members are well-defined.
10785       if (E->getOpcode() == UO_AddrOf && isRecordType &&
10786           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
10787         if (!isPODType)
10788           HandleValue(E->getSubExpr());
10789         return;
10790       }
10791 
10792       if (E->isIncrementDecrementOp()) {
10793         HandleValue(E->getSubExpr());
10794         return;
10795       }
10796 
10797       Inherited::VisitUnaryOperator(E);
10798     }
10799 
10800     void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
10801 
10802     void VisitCXXConstructExpr(CXXConstructExpr *E) {
10803       if (E->getConstructor()->isCopyConstructor()) {
10804         Expr *ArgExpr = E->getArg(0);
10805         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
10806           if (ILE->getNumInits() == 1)
10807             ArgExpr = ILE->getInit(0);
10808         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
10809           if (ICE->getCastKind() == CK_NoOp)
10810             ArgExpr = ICE->getSubExpr();
10811         HandleValue(ArgExpr);
10812         return;
10813       }
10814       Inherited::VisitCXXConstructExpr(E);
10815     }
10816 
10817     void VisitCallExpr(CallExpr *E) {
10818       // Treat std::move as a use.
10819       if (E->isCallToStdMove()) {
10820         HandleValue(E->getArg(0));
10821         return;
10822       }
10823 
10824       Inherited::VisitCallExpr(E);
10825     }
10826 
10827     void VisitBinaryOperator(BinaryOperator *E) {
10828       if (E->isCompoundAssignmentOp()) {
10829         HandleValue(E->getLHS());
10830         Visit(E->getRHS());
10831         return;
10832       }
10833 
10834       Inherited::VisitBinaryOperator(E);
10835     }
10836 
10837     // A custom visitor for BinaryConditionalOperator is needed because the
10838     // regular visitor would check the condition and true expression separately
10839     // but both point to the same place giving duplicate diagnostics.
10840     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
10841       Visit(E->getCond());
10842       Visit(E->getFalseExpr());
10843     }
10844 
10845     void HandleDeclRefExpr(DeclRefExpr *DRE) {
10846       Decl* ReferenceDecl = DRE->getDecl();
10847       if (OrigDecl != ReferenceDecl) return;
10848       unsigned diag;
10849       if (isReferenceType) {
10850         diag = diag::warn_uninit_self_reference_in_reference_init;
10851       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
10852         diag = diag::warn_static_self_reference_in_init;
10853       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
10854                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
10855                  DRE->getDecl()->getType()->isRecordType()) {
10856         diag = diag::warn_uninit_self_reference_in_init;
10857       } else {
10858         // Local variables will be handled by the CFG analysis.
10859         return;
10860       }
10861 
10862       S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
10863                             S.PDiag(diag)
10864                                 << DRE->getDecl() << OrigDecl->getLocation()
10865                                 << DRE->getSourceRange());
10866     }
10867   };
10868 
10869   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
10870   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
10871                                  bool DirectInit) {
10872     // Parameters arguments are occassionially constructed with itself,
10873     // for instance, in recursive functions.  Skip them.
10874     if (isa<ParmVarDecl>(OrigDecl))
10875       return;
10876 
10877     E = E->IgnoreParens();
10878 
10879     // Skip checking T a = a where T is not a record or reference type.
10880     // Doing so is a way to silence uninitialized warnings.
10881     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
10882       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
10883         if (ICE->getCastKind() == CK_LValueToRValue)
10884           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
10885             if (DRE->getDecl() == OrigDecl)
10886               return;
10887 
10888     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
10889   }
10890 } // end anonymous namespace
10891 
10892 namespace {
10893   // Simple wrapper to add the name of a variable or (if no variable is
10894   // available) a DeclarationName into a diagnostic.
10895   struct VarDeclOrName {
10896     VarDecl *VDecl;
10897     DeclarationName Name;
10898 
10899     friend const Sema::SemaDiagnosticBuilder &
10900     operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
10901       return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
10902     }
10903   };
10904 } // end anonymous namespace
10905 
10906 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
10907                                             DeclarationName Name, QualType Type,
10908                                             TypeSourceInfo *TSI,
10909                                             SourceRange Range, bool DirectInit,
10910                                             Expr *Init) {
10911   bool IsInitCapture = !VDecl;
10912   assert((!VDecl || !VDecl->isInitCapture()) &&
10913          "init captures are expected to be deduced prior to initialization");
10914 
10915   VarDeclOrName VN{VDecl, Name};
10916 
10917   DeducedType *Deduced = Type->getContainedDeducedType();
10918   assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
10919 
10920   // C++11 [dcl.spec.auto]p3
10921   if (!Init) {
10922     assert(VDecl && "no init for init capture deduction?");
10923 
10924     // Except for class argument deduction, and then for an initializing
10925     // declaration only, i.e. no static at class scope or extern.
10926     if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
10927         VDecl->hasExternalStorage() ||
10928         VDecl->isStaticDataMember()) {
10929       Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
10930         << VDecl->getDeclName() << Type;
10931       return QualType();
10932     }
10933   }
10934 
10935   ArrayRef<Expr*> DeduceInits;
10936   if (Init)
10937     DeduceInits = Init;
10938 
10939   if (DirectInit) {
10940     if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
10941       DeduceInits = PL->exprs();
10942   }
10943 
10944   if (isa<DeducedTemplateSpecializationType>(Deduced)) {
10945     assert(VDecl && "non-auto type for init capture deduction?");
10946     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
10947     InitializationKind Kind = InitializationKind::CreateForInit(
10948         VDecl->getLocation(), DirectInit, Init);
10949     // FIXME: Initialization should not be taking a mutable list of inits.
10950     SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
10951     return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
10952                                                        InitsCopy);
10953   }
10954 
10955   if (DirectInit) {
10956     if (auto *IL = dyn_cast<InitListExpr>(Init))
10957       DeduceInits = IL->inits();
10958   }
10959 
10960   // Deduction only works if we have exactly one source expression.
10961   if (DeduceInits.empty()) {
10962     // It isn't possible to write this directly, but it is possible to
10963     // end up in this situation with "auto x(some_pack...);"
10964     Diag(Init->getBeginLoc(), IsInitCapture
10965                                   ? diag::err_init_capture_no_expression
10966                                   : diag::err_auto_var_init_no_expression)
10967         << VN << Type << Range;
10968     return QualType();
10969   }
10970 
10971   if (DeduceInits.size() > 1) {
10972     Diag(DeduceInits[1]->getBeginLoc(),
10973          IsInitCapture ? diag::err_init_capture_multiple_expressions
10974                        : diag::err_auto_var_init_multiple_expressions)
10975         << VN << Type << Range;
10976     return QualType();
10977   }
10978 
10979   Expr *DeduceInit = DeduceInits[0];
10980   if (DirectInit && isa<InitListExpr>(DeduceInit)) {
10981     Diag(Init->getBeginLoc(), IsInitCapture
10982                                   ? diag::err_init_capture_paren_braces
10983                                   : diag::err_auto_var_init_paren_braces)
10984         << isa<InitListExpr>(Init) << VN << Type << Range;
10985     return QualType();
10986   }
10987 
10988   // Expressions default to 'id' when we're in a debugger.
10989   bool DefaultedAnyToId = false;
10990   if (getLangOpts().DebuggerCastResultToId &&
10991       Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
10992     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
10993     if (Result.isInvalid()) {
10994       return QualType();
10995     }
10996     Init = Result.get();
10997     DefaultedAnyToId = true;
10998   }
10999 
11000   // C++ [dcl.decomp]p1:
11001   //   If the assignment-expression [...] has array type A and no ref-qualifier
11002   //   is present, e has type cv A
11003   if (VDecl && isa<DecompositionDecl>(VDecl) &&
11004       Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
11005       DeduceInit->getType()->isConstantArrayType())
11006     return Context.getQualifiedType(DeduceInit->getType(),
11007                                     Type.getQualifiers());
11008 
11009   QualType DeducedType;
11010   if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
11011     if (!IsInitCapture)
11012       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
11013     else if (isa<InitListExpr>(Init))
11014       Diag(Range.getBegin(),
11015            diag::err_init_capture_deduction_failure_from_init_list)
11016           << VN
11017           << (DeduceInit->getType().isNull() ? TSI->getType()
11018                                              : DeduceInit->getType())
11019           << DeduceInit->getSourceRange();
11020     else
11021       Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
11022           << VN << TSI->getType()
11023           << (DeduceInit->getType().isNull() ? TSI->getType()
11024                                              : DeduceInit->getType())
11025           << DeduceInit->getSourceRange();
11026   }
11027 
11028   // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
11029   // 'id' instead of a specific object type prevents most of our usual
11030   // checks.
11031   // We only want to warn outside of template instantiations, though:
11032   // inside a template, the 'id' could have come from a parameter.
11033   if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
11034       !DeducedType.isNull() && DeducedType->isObjCIdType()) {
11035     SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
11036     Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
11037   }
11038 
11039   return DeducedType;
11040 }
11041 
11042 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
11043                                          Expr *Init) {
11044   QualType DeducedType = deduceVarTypeFromInitializer(
11045       VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
11046       VDecl->getSourceRange(), DirectInit, Init);
11047   if (DeducedType.isNull()) {
11048     VDecl->setInvalidDecl();
11049     return true;
11050   }
11051 
11052   VDecl->setType(DeducedType);
11053   assert(VDecl->isLinkageValid());
11054 
11055   // In ARC, infer lifetime.
11056   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
11057     VDecl->setInvalidDecl();
11058 
11059   // If this is a redeclaration, check that the type we just deduced matches
11060   // the previously declared type.
11061   if (VarDecl *Old = VDecl->getPreviousDecl()) {
11062     // We never need to merge the type, because we cannot form an incomplete
11063     // array of auto, nor deduce such a type.
11064     MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
11065   }
11066 
11067   // Check the deduced type is valid for a variable declaration.
11068   CheckVariableDeclarationType(VDecl);
11069   return VDecl->isInvalidDecl();
11070 }
11071 
11072 /// AddInitializerToDecl - Adds the initializer Init to the
11073 /// declaration dcl. If DirectInit is true, this is C++ direct
11074 /// initialization rather than copy initialization.
11075 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
11076   // If there is no declaration, there was an error parsing it.  Just ignore
11077   // the initializer.
11078   if (!RealDecl || RealDecl->isInvalidDecl()) {
11079     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
11080     return;
11081   }
11082 
11083   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
11084     // Pure-specifiers are handled in ActOnPureSpecifier.
11085     Diag(Method->getLocation(), diag::err_member_function_initialization)
11086       << Method->getDeclName() << Init->getSourceRange();
11087     Method->setInvalidDecl();
11088     return;
11089   }
11090 
11091   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
11092   if (!VDecl) {
11093     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
11094     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
11095     RealDecl->setInvalidDecl();
11096     return;
11097   }
11098 
11099   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
11100   if (VDecl->getType()->isUndeducedType()) {
11101     // Attempt typo correction early so that the type of the init expression can
11102     // be deduced based on the chosen correction if the original init contains a
11103     // TypoExpr.
11104     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
11105     if (!Res.isUsable()) {
11106       RealDecl->setInvalidDecl();
11107       return;
11108     }
11109     Init = Res.get();
11110 
11111     if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
11112       return;
11113   }
11114 
11115   // dllimport cannot be used on variable definitions.
11116   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
11117     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
11118     VDecl->setInvalidDecl();
11119     return;
11120   }
11121 
11122   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
11123     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
11124     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
11125     VDecl->setInvalidDecl();
11126     return;
11127   }
11128 
11129   if (!VDecl->getType()->isDependentType()) {
11130     // A definition must end up with a complete type, which means it must be
11131     // complete with the restriction that an array type might be completed by
11132     // the initializer; note that later code assumes this restriction.
11133     QualType BaseDeclType = VDecl->getType();
11134     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
11135       BaseDeclType = Array->getElementType();
11136     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
11137                             diag::err_typecheck_decl_incomplete_type)) {
11138       RealDecl->setInvalidDecl();
11139       return;
11140     }
11141 
11142     // The variable can not have an abstract class type.
11143     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
11144                                diag::err_abstract_type_in_decl,
11145                                AbstractVariableType))
11146       VDecl->setInvalidDecl();
11147   }
11148 
11149   // If adding the initializer will turn this declaration into a definition,
11150   // and we already have a definition for this variable, diagnose or otherwise
11151   // handle the situation.
11152   VarDecl *Def;
11153   if ((Def = VDecl->getDefinition()) && Def != VDecl &&
11154       (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
11155       !VDecl->isThisDeclarationADemotedDefinition() &&
11156       checkVarDeclRedefinition(Def, VDecl))
11157     return;
11158 
11159   if (getLangOpts().CPlusPlus) {
11160     // C++ [class.static.data]p4
11161     //   If a static data member is of const integral or const
11162     //   enumeration type, its declaration in the class definition can
11163     //   specify a constant-initializer which shall be an integral
11164     //   constant expression (5.19). In that case, the member can appear
11165     //   in integral constant expressions. The member shall still be
11166     //   defined in a namespace scope if it is used in the program and the
11167     //   namespace scope definition shall not contain an initializer.
11168     //
11169     // We already performed a redefinition check above, but for static
11170     // data members we also need to check whether there was an in-class
11171     // declaration with an initializer.
11172     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
11173       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
11174           << VDecl->getDeclName();
11175       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
11176            diag::note_previous_initializer)
11177           << 0;
11178       return;
11179     }
11180 
11181     if (VDecl->hasLocalStorage())
11182       setFunctionHasBranchProtectedScope();
11183 
11184     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
11185       VDecl->setInvalidDecl();
11186       return;
11187     }
11188   }
11189 
11190   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
11191   // a kernel function cannot be initialized."
11192   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
11193     Diag(VDecl->getLocation(), diag::err_local_cant_init);
11194     VDecl->setInvalidDecl();
11195     return;
11196   }
11197 
11198   // Get the decls type and save a reference for later, since
11199   // CheckInitializerTypes may change it.
11200   QualType DclT = VDecl->getType(), SavT = DclT;
11201 
11202   // Expressions default to 'id' when we're in a debugger
11203   // and we are assigning it to a variable of Objective-C pointer type.
11204   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
11205       Init->getType() == Context.UnknownAnyTy) {
11206     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11207     if (Result.isInvalid()) {
11208       VDecl->setInvalidDecl();
11209       return;
11210     }
11211     Init = Result.get();
11212   }
11213 
11214   // Perform the initialization.
11215   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
11216   if (!VDecl->isInvalidDecl()) {
11217     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11218     InitializationKind Kind = InitializationKind::CreateForInit(
11219         VDecl->getLocation(), DirectInit, Init);
11220 
11221     MultiExprArg Args = Init;
11222     if (CXXDirectInit)
11223       Args = MultiExprArg(CXXDirectInit->getExprs(),
11224                           CXXDirectInit->getNumExprs());
11225 
11226     // Try to correct any TypoExprs in the initialization arguments.
11227     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
11228       ExprResult Res = CorrectDelayedTyposInExpr(
11229           Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
11230             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
11231             return Init.Failed() ? ExprError() : E;
11232           });
11233       if (Res.isInvalid()) {
11234         VDecl->setInvalidDecl();
11235       } else if (Res.get() != Args[Idx]) {
11236         Args[Idx] = Res.get();
11237       }
11238     }
11239     if (VDecl->isInvalidDecl())
11240       return;
11241 
11242     InitializationSequence InitSeq(*this, Entity, Kind, Args,
11243                                    /*TopLevelOfInitList=*/false,
11244                                    /*TreatUnavailableAsInvalid=*/false);
11245     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
11246     if (Result.isInvalid()) {
11247       VDecl->setInvalidDecl();
11248       return;
11249     }
11250 
11251     Init = Result.getAs<Expr>();
11252   }
11253 
11254   // Check for self-references within variable initializers.
11255   // Variables declared within a function/method body (except for references)
11256   // are handled by a dataflow analysis.
11257   if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
11258       VDecl->getType()->isReferenceType()) {
11259     CheckSelfReference(*this, RealDecl, Init, DirectInit);
11260   }
11261 
11262   // If the type changed, it means we had an incomplete type that was
11263   // completed by the initializer. For example:
11264   //   int ary[] = { 1, 3, 5 };
11265   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
11266   if (!VDecl->isInvalidDecl() && (DclT != SavT))
11267     VDecl->setType(DclT);
11268 
11269   if (!VDecl->isInvalidDecl()) {
11270     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
11271 
11272     if (VDecl->hasAttr<BlocksAttr>())
11273       checkRetainCycles(VDecl, Init);
11274 
11275     // It is safe to assign a weak reference into a strong variable.
11276     // Although this code can still have problems:
11277     //   id x = self.weakProp;
11278     //   id y = self.weakProp;
11279     // we do not warn to warn spuriously when 'x' and 'y' are on separate
11280     // paths through the function. This should be revisited if
11281     // -Wrepeated-use-of-weak is made flow-sensitive.
11282     if (FunctionScopeInfo *FSI = getCurFunction())
11283       if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
11284            VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
11285           !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
11286                            Init->getBeginLoc()))
11287         FSI->markSafeWeakUse(Init);
11288   }
11289 
11290   // The initialization is usually a full-expression.
11291   //
11292   // FIXME: If this is a braced initialization of an aggregate, it is not
11293   // an expression, and each individual field initializer is a separate
11294   // full-expression. For instance, in:
11295   //
11296   //   struct Temp { ~Temp(); };
11297   //   struct S { S(Temp); };
11298   //   struct T { S a, b; } t = { Temp(), Temp() }
11299   //
11300   // we should destroy the first Temp before constructing the second.
11301   ExprResult Result =
11302       ActOnFinishFullExpr(Init, VDecl->getLocation(),
11303                           /*DiscardedValue*/ false, VDecl->isConstexpr());
11304   if (Result.isInvalid()) {
11305     VDecl->setInvalidDecl();
11306     return;
11307   }
11308   Init = Result.get();
11309 
11310   // Attach the initializer to the decl.
11311   VDecl->setInit(Init);
11312 
11313   if (VDecl->isLocalVarDecl()) {
11314     // Don't check the initializer if the declaration is malformed.
11315     if (VDecl->isInvalidDecl()) {
11316       // do nothing
11317 
11318     // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
11319     // This is true even in OpenCL C++.
11320     } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
11321       CheckForConstantInitializer(Init, DclT);
11322 
11323     // Otherwise, C++ does not restrict the initializer.
11324     } else if (getLangOpts().CPlusPlus) {
11325       // do nothing
11326 
11327     // C99 6.7.8p4: All the expressions in an initializer for an object that has
11328     // static storage duration shall be constant expressions or string literals.
11329     } else if (VDecl->getStorageClass() == SC_Static) {
11330       CheckForConstantInitializer(Init, DclT);
11331 
11332     // C89 is stricter than C99 for aggregate initializers.
11333     // C89 6.5.7p3: All the expressions [...] in an initializer list
11334     // for an object that has aggregate or union type shall be
11335     // constant expressions.
11336     } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
11337                isa<InitListExpr>(Init)) {
11338       const Expr *Culprit;
11339       if (!Init->isConstantInitializer(Context, false, &Culprit)) {
11340         Diag(Culprit->getExprLoc(),
11341              diag::ext_aggregate_init_not_constant)
11342           << Culprit->getSourceRange();
11343       }
11344     }
11345 
11346     if (auto *E = dyn_cast<ExprWithCleanups>(Init))
11347       if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
11348         if (VDecl->hasLocalStorage())
11349           BE->getBlockDecl()->setCanAvoidCopyToHeap();
11350   } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
11351              VDecl->getLexicalDeclContext()->isRecord()) {
11352     // This is an in-class initialization for a static data member, e.g.,
11353     //
11354     // struct S {
11355     //   static const int value = 17;
11356     // };
11357 
11358     // C++ [class.mem]p4:
11359     //   A member-declarator can contain a constant-initializer only
11360     //   if it declares a static member (9.4) of const integral or
11361     //   const enumeration type, see 9.4.2.
11362     //
11363     // C++11 [class.static.data]p3:
11364     //   If a non-volatile non-inline const static data member is of integral
11365     //   or enumeration type, its declaration in the class definition can
11366     //   specify a brace-or-equal-initializer in which every initializer-clause
11367     //   that is an assignment-expression is a constant expression. A static
11368     //   data member of literal type can be declared in the class definition
11369     //   with the constexpr specifier; if so, its declaration shall specify a
11370     //   brace-or-equal-initializer in which every initializer-clause that is
11371     //   an assignment-expression is a constant expression.
11372 
11373     // Do nothing on dependent types.
11374     if (DclT->isDependentType()) {
11375 
11376     // Allow any 'static constexpr' members, whether or not they are of literal
11377     // type. We separately check that every constexpr variable is of literal
11378     // type.
11379     } else if (VDecl->isConstexpr()) {
11380 
11381     // Require constness.
11382     } else if (!DclT.isConstQualified()) {
11383       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
11384         << Init->getSourceRange();
11385       VDecl->setInvalidDecl();
11386 
11387     // We allow integer constant expressions in all cases.
11388     } else if (DclT->isIntegralOrEnumerationType()) {
11389       // Check whether the expression is a constant expression.
11390       SourceLocation Loc;
11391       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
11392         // In C++11, a non-constexpr const static data member with an
11393         // in-class initializer cannot be volatile.
11394         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
11395       else if (Init->isValueDependent())
11396         ; // Nothing to check.
11397       else if (Init->isIntegerConstantExpr(Context, &Loc))
11398         ; // Ok, it's an ICE!
11399       else if (Init->getType()->isScopedEnumeralType() &&
11400                Init->isCXX11ConstantExpr(Context))
11401         ; // Ok, it is a scoped-enum constant expression.
11402       else if (Init->isEvaluatable(Context)) {
11403         // If we can constant fold the initializer through heroics, accept it,
11404         // but report this as a use of an extension for -pedantic.
11405         Diag(Loc, diag::ext_in_class_initializer_non_constant)
11406           << Init->getSourceRange();
11407       } else {
11408         // Otherwise, this is some crazy unknown case.  Report the issue at the
11409         // location provided by the isIntegerConstantExpr failed check.
11410         Diag(Loc, diag::err_in_class_initializer_non_constant)
11411           << Init->getSourceRange();
11412         VDecl->setInvalidDecl();
11413       }
11414 
11415     // We allow foldable floating-point constants as an extension.
11416     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
11417       // In C++98, this is a GNU extension. In C++11, it is not, but we support
11418       // it anyway and provide a fixit to add the 'constexpr'.
11419       if (getLangOpts().CPlusPlus11) {
11420         Diag(VDecl->getLocation(),
11421              diag::ext_in_class_initializer_float_type_cxx11)
11422             << DclT << Init->getSourceRange();
11423         Diag(VDecl->getBeginLoc(),
11424              diag::note_in_class_initializer_float_type_cxx11)
11425             << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
11426       } else {
11427         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
11428           << DclT << Init->getSourceRange();
11429 
11430         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
11431           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
11432             << Init->getSourceRange();
11433           VDecl->setInvalidDecl();
11434         }
11435       }
11436 
11437     // Suggest adding 'constexpr' in C++11 for literal types.
11438     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
11439       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
11440           << DclT << Init->getSourceRange()
11441           << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
11442       VDecl->setConstexpr(true);
11443 
11444     } else {
11445       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
11446         << DclT << Init->getSourceRange();
11447       VDecl->setInvalidDecl();
11448     }
11449   } else if (VDecl->isFileVarDecl()) {
11450     // In C, extern is typically used to avoid tentative definitions when
11451     // declaring variables in headers, but adding an intializer makes it a
11452     // definition. This is somewhat confusing, so GCC and Clang both warn on it.
11453     // In C++, extern is often used to give implictly static const variables
11454     // external linkage, so don't warn in that case. If selectany is present,
11455     // this might be header code intended for C and C++ inclusion, so apply the
11456     // C++ rules.
11457     if (VDecl->getStorageClass() == SC_Extern &&
11458         ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
11459          !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
11460         !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
11461         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
11462       Diag(VDecl->getLocation(), diag::warn_extern_init);
11463 
11464     // In Microsoft C++ mode, a const variable defined in namespace scope has
11465     // external linkage by default if the variable is declared with
11466     // __declspec(dllexport).
11467     if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11468         getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
11469         VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
11470       VDecl->setStorageClass(SC_Extern);
11471 
11472     // C99 6.7.8p4. All file scoped initializers need to be constant.
11473     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
11474       CheckForConstantInitializer(Init, DclT);
11475   }
11476 
11477   // We will represent direct-initialization similarly to copy-initialization:
11478   //    int x(1);  -as-> int x = 1;
11479   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
11480   //
11481   // Clients that want to distinguish between the two forms, can check for
11482   // direct initializer using VarDecl::getInitStyle().
11483   // A major benefit is that clients that don't particularly care about which
11484   // exactly form was it (like the CodeGen) can handle both cases without
11485   // special case code.
11486 
11487   // C++ 8.5p11:
11488   // The form of initialization (using parentheses or '=') is generally
11489   // insignificant, but does matter when the entity being initialized has a
11490   // class type.
11491   if (CXXDirectInit) {
11492     assert(DirectInit && "Call-style initializer must be direct init.");
11493     VDecl->setInitStyle(VarDecl::CallInit);
11494   } else if (DirectInit) {
11495     // This must be list-initialization. No other way is direct-initialization.
11496     VDecl->setInitStyle(VarDecl::ListInit);
11497   }
11498 
11499   CheckCompleteVariableDeclaration(VDecl);
11500 }
11501 
11502 /// ActOnInitializerError - Given that there was an error parsing an
11503 /// initializer for the given declaration, try to return to some form
11504 /// of sanity.
11505 void Sema::ActOnInitializerError(Decl *D) {
11506   // Our main concern here is re-establishing invariants like "a
11507   // variable's type is either dependent or complete".
11508   if (!D || D->isInvalidDecl()) return;
11509 
11510   VarDecl *VD = dyn_cast<VarDecl>(D);
11511   if (!VD) return;
11512 
11513   // Bindings are not usable if we can't make sense of the initializer.
11514   if (auto *DD = dyn_cast<DecompositionDecl>(D))
11515     for (auto *BD : DD->bindings())
11516       BD->setInvalidDecl();
11517 
11518   // Auto types are meaningless if we can't make sense of the initializer.
11519   if (ParsingInitForAutoVars.count(D)) {
11520     D->setInvalidDecl();
11521     return;
11522   }
11523 
11524   QualType Ty = VD->getType();
11525   if (Ty->isDependentType()) return;
11526 
11527   // Require a complete type.
11528   if (RequireCompleteType(VD->getLocation(),
11529                           Context.getBaseElementType(Ty),
11530                           diag::err_typecheck_decl_incomplete_type)) {
11531     VD->setInvalidDecl();
11532     return;
11533   }
11534 
11535   // Require a non-abstract type.
11536   if (RequireNonAbstractType(VD->getLocation(), Ty,
11537                              diag::err_abstract_type_in_decl,
11538                              AbstractVariableType)) {
11539     VD->setInvalidDecl();
11540     return;
11541   }
11542 
11543   // Don't bother complaining about constructors or destructors,
11544   // though.
11545 }
11546 
11547 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
11548   // If there is no declaration, there was an error parsing it. Just ignore it.
11549   if (!RealDecl)
11550     return;
11551 
11552   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
11553     QualType Type = Var->getType();
11554 
11555     // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
11556     if (isa<DecompositionDecl>(RealDecl)) {
11557       Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
11558       Var->setInvalidDecl();
11559       return;
11560     }
11561 
11562     if (Type->isUndeducedType() &&
11563         DeduceVariableDeclarationType(Var, false, nullptr))
11564       return;
11565 
11566     // C++11 [class.static.data]p3: A static data member can be declared with
11567     // the constexpr specifier; if so, its declaration shall specify
11568     // a brace-or-equal-initializer.
11569     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
11570     // the definition of a variable [...] or the declaration of a static data
11571     // member.
11572     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
11573         !Var->isThisDeclarationADemotedDefinition()) {
11574       if (Var->isStaticDataMember()) {
11575         // C++1z removes the relevant rule; the in-class declaration is always
11576         // a definition there.
11577         if (!getLangOpts().CPlusPlus17) {
11578           Diag(Var->getLocation(),
11579                diag::err_constexpr_static_mem_var_requires_init)
11580             << Var->getDeclName();
11581           Var->setInvalidDecl();
11582           return;
11583         }
11584       } else {
11585         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
11586         Var->setInvalidDecl();
11587         return;
11588       }
11589     }
11590 
11591     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
11592     // be initialized.
11593     if (!Var->isInvalidDecl() &&
11594         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
11595         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
11596       Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
11597       Var->setInvalidDecl();
11598       return;
11599     }
11600 
11601     switch (Var->isThisDeclarationADefinition()) {
11602     case VarDecl::Definition:
11603       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
11604         break;
11605 
11606       // We have an out-of-line definition of a static data member
11607       // that has an in-class initializer, so we type-check this like
11608       // a declaration.
11609       //
11610       LLVM_FALLTHROUGH;
11611 
11612     case VarDecl::DeclarationOnly:
11613       // It's only a declaration.
11614 
11615       // Block scope. C99 6.7p7: If an identifier for an object is
11616       // declared with no linkage (C99 6.2.2p6), the type for the
11617       // object shall be complete.
11618       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
11619           !Var->hasLinkage() && !Var->isInvalidDecl() &&
11620           RequireCompleteType(Var->getLocation(), Type,
11621                               diag::err_typecheck_decl_incomplete_type))
11622         Var->setInvalidDecl();
11623 
11624       // Make sure that the type is not abstract.
11625       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11626           RequireNonAbstractType(Var->getLocation(), Type,
11627                                  diag::err_abstract_type_in_decl,
11628                                  AbstractVariableType))
11629         Var->setInvalidDecl();
11630       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11631           Var->getStorageClass() == SC_PrivateExtern) {
11632         Diag(Var->getLocation(), diag::warn_private_extern);
11633         Diag(Var->getLocation(), diag::note_private_extern);
11634       }
11635 
11636       return;
11637 
11638     case VarDecl::TentativeDefinition:
11639       // File scope. C99 6.9.2p2: A declaration of an identifier for an
11640       // object that has file scope without an initializer, and without a
11641       // storage-class specifier or with the storage-class specifier "static",
11642       // constitutes a tentative definition. Note: A tentative definition with
11643       // external linkage is valid (C99 6.2.2p5).
11644       if (!Var->isInvalidDecl()) {
11645         if (const IncompleteArrayType *ArrayT
11646                                     = Context.getAsIncompleteArrayType(Type)) {
11647           if (RequireCompleteType(Var->getLocation(),
11648                                   ArrayT->getElementType(),
11649                                   diag::err_illegal_decl_array_incomplete_type))
11650             Var->setInvalidDecl();
11651         } else if (Var->getStorageClass() == SC_Static) {
11652           // C99 6.9.2p3: If the declaration of an identifier for an object is
11653           // a tentative definition and has internal linkage (C99 6.2.2p3), the
11654           // declared type shall not be an incomplete type.
11655           // NOTE: code such as the following
11656           //     static struct s;
11657           //     struct s { int a; };
11658           // is accepted by gcc. Hence here we issue a warning instead of
11659           // an error and we do not invalidate the static declaration.
11660           // NOTE: to avoid multiple warnings, only check the first declaration.
11661           if (Var->isFirstDecl())
11662             RequireCompleteType(Var->getLocation(), Type,
11663                                 diag::ext_typecheck_decl_incomplete_type);
11664         }
11665       }
11666 
11667       // Record the tentative definition; we're done.
11668       if (!Var->isInvalidDecl())
11669         TentativeDefinitions.push_back(Var);
11670       return;
11671     }
11672 
11673     // Provide a specific diagnostic for uninitialized variable
11674     // definitions with incomplete array type.
11675     if (Type->isIncompleteArrayType()) {
11676       Diag(Var->getLocation(),
11677            diag::err_typecheck_incomplete_array_needs_initializer);
11678       Var->setInvalidDecl();
11679       return;
11680     }
11681 
11682     // Provide a specific diagnostic for uninitialized variable
11683     // definitions with reference type.
11684     if (Type->isReferenceType()) {
11685       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
11686         << Var->getDeclName()
11687         << SourceRange(Var->getLocation(), Var->getLocation());
11688       Var->setInvalidDecl();
11689       return;
11690     }
11691 
11692     // Do not attempt to type-check the default initializer for a
11693     // variable with dependent type.
11694     if (Type->isDependentType())
11695       return;
11696 
11697     if (Var->isInvalidDecl())
11698       return;
11699 
11700     if (!Var->hasAttr<AliasAttr>()) {
11701       if (RequireCompleteType(Var->getLocation(),
11702                               Context.getBaseElementType(Type),
11703                               diag::err_typecheck_decl_incomplete_type)) {
11704         Var->setInvalidDecl();
11705         return;
11706       }
11707     } else {
11708       return;
11709     }
11710 
11711     // The variable can not have an abstract class type.
11712     if (RequireNonAbstractType(Var->getLocation(), Type,
11713                                diag::err_abstract_type_in_decl,
11714                                AbstractVariableType)) {
11715       Var->setInvalidDecl();
11716       return;
11717     }
11718 
11719     // Check for jumps past the implicit initializer.  C++0x
11720     // clarifies that this applies to a "variable with automatic
11721     // storage duration", not a "local variable".
11722     // C++11 [stmt.dcl]p3
11723     //   A program that jumps from a point where a variable with automatic
11724     //   storage duration is not in scope to a point where it is in scope is
11725     //   ill-formed unless the variable has scalar type, class type with a
11726     //   trivial default constructor and a trivial destructor, a cv-qualified
11727     //   version of one of these types, or an array of one of the preceding
11728     //   types and is declared without an initializer.
11729     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
11730       if (const RecordType *Record
11731             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
11732         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
11733         // Mark the function (if we're in one) for further checking even if the
11734         // looser rules of C++11 do not require such checks, so that we can
11735         // diagnose incompatibilities with C++98.
11736         if (!CXXRecord->isPOD())
11737           setFunctionHasBranchProtectedScope();
11738       }
11739     }
11740     // In OpenCL, we can't initialize objects in the __local address space,
11741     // even implicitly, so don't synthesize an implicit initializer.
11742     if (getLangOpts().OpenCL &&
11743         Var->getType().getAddressSpace() == LangAS::opencl_local)
11744       return;
11745     // C++03 [dcl.init]p9:
11746     //   If no initializer is specified for an object, and the
11747     //   object is of (possibly cv-qualified) non-POD class type (or
11748     //   array thereof), the object shall be default-initialized; if
11749     //   the object is of const-qualified type, the underlying class
11750     //   type shall have a user-declared default
11751     //   constructor. Otherwise, if no initializer is specified for
11752     //   a non- static object, the object and its subobjects, if
11753     //   any, have an indeterminate initial value); if the object
11754     //   or any of its subobjects are of const-qualified type, the
11755     //   program is ill-formed.
11756     // C++0x [dcl.init]p11:
11757     //   If no initializer is specified for an object, the object is
11758     //   default-initialized; [...].
11759     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
11760     InitializationKind Kind
11761       = InitializationKind::CreateDefault(Var->getLocation());
11762 
11763     InitializationSequence InitSeq(*this, Entity, Kind, None);
11764     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
11765     if (Init.isInvalid())
11766       Var->setInvalidDecl();
11767     else if (Init.get()) {
11768       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
11769       // This is important for template substitution.
11770       Var->setInitStyle(VarDecl::CallInit);
11771     }
11772 
11773     CheckCompleteVariableDeclaration(Var);
11774   }
11775 }
11776 
11777 void Sema::ActOnCXXForRangeDecl(Decl *D) {
11778   // If there is no declaration, there was an error parsing it. Ignore it.
11779   if (!D)
11780     return;
11781 
11782   VarDecl *VD = dyn_cast<VarDecl>(D);
11783   if (!VD) {
11784     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
11785     D->setInvalidDecl();
11786     return;
11787   }
11788 
11789   VD->setCXXForRangeDecl(true);
11790 
11791   // for-range-declaration cannot be given a storage class specifier.
11792   int Error = -1;
11793   switch (VD->getStorageClass()) {
11794   case SC_None:
11795     break;
11796   case SC_Extern:
11797     Error = 0;
11798     break;
11799   case SC_Static:
11800     Error = 1;
11801     break;
11802   case SC_PrivateExtern:
11803     Error = 2;
11804     break;
11805   case SC_Auto:
11806     Error = 3;
11807     break;
11808   case SC_Register:
11809     Error = 4;
11810     break;
11811   }
11812   if (Error != -1) {
11813     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
11814       << VD->getDeclName() << Error;
11815     D->setInvalidDecl();
11816   }
11817 }
11818 
11819 StmtResult
11820 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
11821                                  IdentifierInfo *Ident,
11822                                  ParsedAttributes &Attrs,
11823                                  SourceLocation AttrEnd) {
11824   // C++1y [stmt.iter]p1:
11825   //   A range-based for statement of the form
11826   //      for ( for-range-identifier : for-range-initializer ) statement
11827   //   is equivalent to
11828   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
11829   DeclSpec DS(Attrs.getPool().getFactory());
11830 
11831   const char *PrevSpec;
11832   unsigned DiagID;
11833   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
11834                      getPrintingPolicy());
11835 
11836   Declarator D(DS, DeclaratorContext::ForContext);
11837   D.SetIdentifier(Ident, IdentLoc);
11838   D.takeAttributes(Attrs, AttrEnd);
11839 
11840   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
11841                 IdentLoc);
11842   Decl *Var = ActOnDeclarator(S, D);
11843   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
11844   FinalizeDeclaration(Var);
11845   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
11846                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
11847 }
11848 
11849 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
11850   if (var->isInvalidDecl()) return;
11851 
11852   if (getLangOpts().OpenCL) {
11853     // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
11854     // initialiser
11855     if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
11856         !var->hasInit()) {
11857       Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
11858           << 1 /*Init*/;
11859       var->setInvalidDecl();
11860       return;
11861     }
11862   }
11863 
11864   // In Objective-C, don't allow jumps past the implicit initialization of a
11865   // local retaining variable.
11866   if (getLangOpts().ObjC &&
11867       var->hasLocalStorage()) {
11868     switch (var->getType().getObjCLifetime()) {
11869     case Qualifiers::OCL_None:
11870     case Qualifiers::OCL_ExplicitNone:
11871     case Qualifiers::OCL_Autoreleasing:
11872       break;
11873 
11874     case Qualifiers::OCL_Weak:
11875     case Qualifiers::OCL_Strong:
11876       setFunctionHasBranchProtectedScope();
11877       break;
11878     }
11879   }
11880 
11881   if (var->hasLocalStorage() &&
11882       var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
11883     setFunctionHasBranchProtectedScope();
11884 
11885   // Warn about externally-visible variables being defined without a
11886   // prior declaration.  We only want to do this for global
11887   // declarations, but we also specifically need to avoid doing it for
11888   // class members because the linkage of an anonymous class can
11889   // change if it's later given a typedef name.
11890   if (var->isThisDeclarationADefinition() &&
11891       var->getDeclContext()->getRedeclContext()->isFileContext() &&
11892       var->isExternallyVisible() && var->hasLinkage() &&
11893       !var->isInline() && !var->getDescribedVarTemplate() &&
11894       !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
11895       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
11896                                   var->getLocation())) {
11897     // Find a previous declaration that's not a definition.
11898     VarDecl *prev = var->getPreviousDecl();
11899     while (prev && prev->isThisDeclarationADefinition())
11900       prev = prev->getPreviousDecl();
11901 
11902     if (!prev) {
11903       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
11904       Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
11905           << /* variable */ 0;
11906     }
11907   }
11908 
11909   // Cache the result of checking for constant initialization.
11910   Optional<bool> CacheHasConstInit;
11911   const Expr *CacheCulprit;
11912   auto checkConstInit = [&]() mutable {
11913     if (!CacheHasConstInit)
11914       CacheHasConstInit = var->getInit()->isConstantInitializer(
11915             Context, var->getType()->isReferenceType(), &CacheCulprit);
11916     return *CacheHasConstInit;
11917   };
11918 
11919   if (var->getTLSKind() == VarDecl::TLS_Static) {
11920     if (var->getType().isDestructedType()) {
11921       // GNU C++98 edits for __thread, [basic.start.term]p3:
11922       //   The type of an object with thread storage duration shall not
11923       //   have a non-trivial destructor.
11924       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
11925       if (getLangOpts().CPlusPlus11)
11926         Diag(var->getLocation(), diag::note_use_thread_local);
11927     } else if (getLangOpts().CPlusPlus && var->hasInit()) {
11928       if (!checkConstInit()) {
11929         // GNU C++98 edits for __thread, [basic.start.init]p4:
11930         //   An object of thread storage duration shall not require dynamic
11931         //   initialization.
11932         // FIXME: Need strict checking here.
11933         Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
11934           << CacheCulprit->getSourceRange();
11935         if (getLangOpts().CPlusPlus11)
11936           Diag(var->getLocation(), diag::note_use_thread_local);
11937       }
11938     }
11939   }
11940 
11941   // Apply section attributes and pragmas to global variables.
11942   bool GlobalStorage = var->hasGlobalStorage();
11943   if (GlobalStorage && var->isThisDeclarationADefinition() &&
11944       !inTemplateInstantiation()) {
11945     PragmaStack<StringLiteral *> *Stack = nullptr;
11946     int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
11947     if (var->getType().isConstQualified())
11948       Stack = &ConstSegStack;
11949     else if (!var->getInit()) {
11950       Stack = &BSSSegStack;
11951       SectionFlags |= ASTContext::PSF_Write;
11952     } else {
11953       Stack = &DataSegStack;
11954       SectionFlags |= ASTContext::PSF_Write;
11955     }
11956     if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
11957       var->addAttr(SectionAttr::CreateImplicit(
11958           Context, SectionAttr::Declspec_allocate,
11959           Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
11960     }
11961     if (const SectionAttr *SA = var->getAttr<SectionAttr>())
11962       if (UnifySection(SA->getName(), SectionFlags, var))
11963         var->dropAttr<SectionAttr>();
11964 
11965     // Apply the init_seg attribute if this has an initializer.  If the
11966     // initializer turns out to not be dynamic, we'll end up ignoring this
11967     // attribute.
11968     if (CurInitSeg && var->getInit())
11969       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
11970                                                CurInitSegLoc));
11971   }
11972 
11973   // All the following checks are C++ only.
11974   if (!getLangOpts().CPlusPlus) {
11975       // If this variable must be emitted, add it as an initializer for the
11976       // current module.
11977      if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
11978        Context.addModuleInitializer(ModuleScopes.back().Module, var);
11979      return;
11980   }
11981 
11982   if (auto *DD = dyn_cast<DecompositionDecl>(var))
11983     CheckCompleteDecompositionDeclaration(DD);
11984 
11985   QualType type = var->getType();
11986   if (type->isDependentType()) return;
11987 
11988   if (var->hasAttr<BlocksAttr>())
11989     getCurFunction()->addByrefBlockVar(var);
11990 
11991   Expr *Init = var->getInit();
11992   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
11993   QualType baseType = Context.getBaseElementType(type);
11994 
11995   if (Init && !Init->isValueDependent()) {
11996     if (var->isConstexpr()) {
11997       SmallVector<PartialDiagnosticAt, 8> Notes;
11998       if (!var->evaluateValue(Notes) || !var->isInitICE()) {
11999         SourceLocation DiagLoc = var->getLocation();
12000         // If the note doesn't add any useful information other than a source
12001         // location, fold it into the primary diagnostic.
12002         if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
12003               diag::note_invalid_subexpr_in_const_expr) {
12004           DiagLoc = Notes[0].first;
12005           Notes.clear();
12006         }
12007         Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
12008           << var << Init->getSourceRange();
12009         for (unsigned I = 0, N = Notes.size(); I != N; ++I)
12010           Diag(Notes[I].first, Notes[I].second);
12011       }
12012     } else if (var->mightBeUsableInConstantExpressions(Context)) {
12013       // Check whether the initializer of a const variable of integral or
12014       // enumeration type is an ICE now, since we can't tell whether it was
12015       // initialized by a constant expression if we check later.
12016       var->checkInitIsICE();
12017     }
12018 
12019     // Don't emit further diagnostics about constexpr globals since they
12020     // were just diagnosed.
12021     if (!var->isConstexpr() && GlobalStorage &&
12022             var->hasAttr<RequireConstantInitAttr>()) {
12023       // FIXME: Need strict checking in C++03 here.
12024       bool DiagErr = getLangOpts().CPlusPlus11
12025           ? !var->checkInitIsICE() : !checkConstInit();
12026       if (DiagErr) {
12027         auto attr = var->getAttr<RequireConstantInitAttr>();
12028         Diag(var->getLocation(), diag::err_require_constant_init_failed)
12029           << Init->getSourceRange();
12030         Diag(attr->getLocation(), diag::note_declared_required_constant_init_here)
12031           << attr->getRange();
12032         if (getLangOpts().CPlusPlus11) {
12033           APValue Value;
12034           SmallVector<PartialDiagnosticAt, 8> Notes;
12035           Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes);
12036           for (auto &it : Notes)
12037             Diag(it.first, it.second);
12038         } else {
12039           Diag(CacheCulprit->getExprLoc(),
12040                diag::note_invalid_subexpr_in_const_expr)
12041               << CacheCulprit->getSourceRange();
12042         }
12043       }
12044     }
12045     else if (!var->isConstexpr() && IsGlobal &&
12046              !getDiagnostics().isIgnored(diag::warn_global_constructor,
12047                                     var->getLocation())) {
12048       // Warn about globals which don't have a constant initializer.  Don't
12049       // warn about globals with a non-trivial destructor because we already
12050       // warned about them.
12051       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
12052       if (!(RD && !RD->hasTrivialDestructor())) {
12053         if (!checkConstInit())
12054           Diag(var->getLocation(), diag::warn_global_constructor)
12055             << Init->getSourceRange();
12056       }
12057     }
12058   }
12059 
12060   // Require the destructor.
12061   if (const RecordType *recordType = baseType->getAs<RecordType>())
12062     FinalizeVarWithDestructor(var, recordType);
12063 
12064   // If this variable must be emitted, add it as an initializer for the current
12065   // module.
12066   if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
12067     Context.addModuleInitializer(ModuleScopes.back().Module, var);
12068 }
12069 
12070 /// Determines if a variable's alignment is dependent.
12071 static bool hasDependentAlignment(VarDecl *VD) {
12072   if (VD->getType()->isDependentType())
12073     return true;
12074   for (auto *I : VD->specific_attrs<AlignedAttr>())
12075     if (I->isAlignmentDependent())
12076       return true;
12077   return false;
12078 }
12079 
12080 /// Check if VD needs to be dllexport/dllimport due to being in a
12081 /// dllexport/import function.
12082 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
12083   assert(VD->isStaticLocal());
12084 
12085   auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
12086 
12087   // Find outermost function when VD is in lambda function.
12088   while (FD && !getDLLAttr(FD) &&
12089          !FD->hasAttr<DLLExportStaticLocalAttr>() &&
12090          !FD->hasAttr<DLLImportStaticLocalAttr>()) {
12091     FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
12092   }
12093 
12094   if (!FD)
12095     return;
12096 
12097   // Static locals inherit dll attributes from their function.
12098   if (Attr *A = getDLLAttr(FD)) {
12099     auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
12100     NewAttr->setInherited(true);
12101     VD->addAttr(NewAttr);
12102   } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
12103     auto *NewAttr = ::new (getASTContext()) DLLExportAttr(A->getRange(),
12104                                                           getASTContext(),
12105                                                           A->getSpellingListIndex());
12106     NewAttr->setInherited(true);
12107     VD->addAttr(NewAttr);
12108 
12109     // Export this function to enforce exporting this static variable even
12110     // if it is not used in this compilation unit.
12111     if (!FD->hasAttr<DLLExportAttr>())
12112       FD->addAttr(NewAttr);
12113 
12114   } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
12115     auto *NewAttr = ::new (getASTContext()) DLLImportAttr(A->getRange(),
12116                                                           getASTContext(),
12117                                                           A->getSpellingListIndex());
12118     NewAttr->setInherited(true);
12119     VD->addAttr(NewAttr);
12120   }
12121 }
12122 
12123 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
12124 /// any semantic actions necessary after any initializer has been attached.
12125 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
12126   // Note that we are no longer parsing the initializer for this declaration.
12127   ParsingInitForAutoVars.erase(ThisDecl);
12128 
12129   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
12130   if (!VD)
12131     return;
12132 
12133   // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
12134   if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
12135       !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
12136     if (PragmaClangBSSSection.Valid)
12137       VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(Context,
12138                                                             PragmaClangBSSSection.SectionName,
12139                                                             PragmaClangBSSSection.PragmaLocation));
12140     if (PragmaClangDataSection.Valid)
12141       VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(Context,
12142                                                              PragmaClangDataSection.SectionName,
12143                                                              PragmaClangDataSection.PragmaLocation));
12144     if (PragmaClangRodataSection.Valid)
12145       VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(Context,
12146                                                                PragmaClangRodataSection.SectionName,
12147                                                                PragmaClangRodataSection.PragmaLocation));
12148   }
12149 
12150   if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
12151     for (auto *BD : DD->bindings()) {
12152       FinalizeDeclaration(BD);
12153     }
12154   }
12155 
12156   checkAttributesAfterMerging(*this, *VD);
12157 
12158   // Perform TLS alignment check here after attributes attached to the variable
12159   // which may affect the alignment have been processed. Only perform the check
12160   // if the target has a maximum TLS alignment (zero means no constraints).
12161   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
12162     // Protect the check so that it's not performed on dependent types and
12163     // dependent alignments (we can't determine the alignment in that case).
12164     if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
12165         !VD->isInvalidDecl()) {
12166       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
12167       if (Context.getDeclAlign(VD) > MaxAlignChars) {
12168         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
12169           << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
12170           << (unsigned)MaxAlignChars.getQuantity();
12171       }
12172     }
12173   }
12174 
12175   if (VD->isStaticLocal()) {
12176     CheckStaticLocalForDllExport(VD);
12177 
12178     if (dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
12179       // CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__
12180       // function, only __shared__ variables or variables without any device
12181       // memory qualifiers may be declared with static storage class.
12182       // Note: It is unclear how a function-scope non-const static variable
12183       // without device memory qualifier is implemented, therefore only static
12184       // const variable without device memory qualifier is allowed.
12185       [&]() {
12186         if (!getLangOpts().CUDA)
12187           return;
12188         if (VD->hasAttr<CUDASharedAttr>())
12189           return;
12190         if (VD->getType().isConstQualified() &&
12191             !(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
12192           return;
12193         if (CUDADiagIfDeviceCode(VD->getLocation(),
12194                                  diag::err_device_static_local_var)
12195             << CurrentCUDATarget())
12196           VD->setInvalidDecl();
12197       }();
12198     }
12199   }
12200 
12201   // Perform check for initializers of device-side global variables.
12202   // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
12203   // 7.5). We must also apply the same checks to all __shared__
12204   // variables whether they are local or not. CUDA also allows
12205   // constant initializers for __constant__ and __device__ variables.
12206   if (getLangOpts().CUDA)
12207     checkAllowedCUDAInitializer(VD);
12208 
12209   // Grab the dllimport or dllexport attribute off of the VarDecl.
12210   const InheritableAttr *DLLAttr = getDLLAttr(VD);
12211 
12212   // Imported static data members cannot be defined out-of-line.
12213   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
12214     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
12215         VD->isThisDeclarationADefinition()) {
12216       // We allow definitions of dllimport class template static data members
12217       // with a warning.
12218       CXXRecordDecl *Context =
12219         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
12220       bool IsClassTemplateMember =
12221           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
12222           Context->getDescribedClassTemplate();
12223 
12224       Diag(VD->getLocation(),
12225            IsClassTemplateMember
12226                ? diag::warn_attribute_dllimport_static_field_definition
12227                : diag::err_attribute_dllimport_static_field_definition);
12228       Diag(IA->getLocation(), diag::note_attribute);
12229       if (!IsClassTemplateMember)
12230         VD->setInvalidDecl();
12231     }
12232   }
12233 
12234   // dllimport/dllexport variables cannot be thread local, their TLS index
12235   // isn't exported with the variable.
12236   if (DLLAttr && VD->getTLSKind()) {
12237     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
12238     if (F && getDLLAttr(F)) {
12239       assert(VD->isStaticLocal());
12240       // But if this is a static local in a dlimport/dllexport function, the
12241       // function will never be inlined, which means the var would never be
12242       // imported, so having it marked import/export is safe.
12243     } else {
12244       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
12245                                                                     << DLLAttr;
12246       VD->setInvalidDecl();
12247     }
12248   }
12249 
12250   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
12251     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
12252       Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
12253       VD->dropAttr<UsedAttr>();
12254     }
12255   }
12256 
12257   const DeclContext *DC = VD->getDeclContext();
12258   // If there's a #pragma GCC visibility in scope, and this isn't a class
12259   // member, set the visibility of this variable.
12260   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
12261     AddPushedVisibilityAttribute(VD);
12262 
12263   // FIXME: Warn on unused var template partial specializations.
12264   if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
12265     MarkUnusedFileScopedDecl(VD);
12266 
12267   // Now we have parsed the initializer and can update the table of magic
12268   // tag values.
12269   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
12270       !VD->getType()->isIntegralOrEnumerationType())
12271     return;
12272 
12273   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
12274     const Expr *MagicValueExpr = VD->getInit();
12275     if (!MagicValueExpr) {
12276       continue;
12277     }
12278     llvm::APSInt MagicValueInt;
12279     if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
12280       Diag(I->getRange().getBegin(),
12281            diag::err_type_tag_for_datatype_not_ice)
12282         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12283       continue;
12284     }
12285     if (MagicValueInt.getActiveBits() > 64) {
12286       Diag(I->getRange().getBegin(),
12287            diag::err_type_tag_for_datatype_too_large)
12288         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12289       continue;
12290     }
12291     uint64_t MagicValue = MagicValueInt.getZExtValue();
12292     RegisterTypeTagForDatatype(I->getArgumentKind(),
12293                                MagicValue,
12294                                I->getMatchingCType(),
12295                                I->getLayoutCompatible(),
12296                                I->getMustBeNull());
12297   }
12298 }
12299 
12300 static bool hasDeducedAuto(DeclaratorDecl *DD) {
12301   auto *VD = dyn_cast<VarDecl>(DD);
12302   return VD && !VD->getType()->hasAutoForTrailingReturnType();
12303 }
12304 
12305 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
12306                                                    ArrayRef<Decl *> Group) {
12307   SmallVector<Decl*, 8> Decls;
12308 
12309   if (DS.isTypeSpecOwned())
12310     Decls.push_back(DS.getRepAsDecl());
12311 
12312   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
12313   DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
12314   bool DiagnosedMultipleDecomps = false;
12315   DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
12316   bool DiagnosedNonDeducedAuto = false;
12317 
12318   for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12319     if (Decl *D = Group[i]) {
12320       // For declarators, there are some additional syntactic-ish checks we need
12321       // to perform.
12322       if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
12323         if (!FirstDeclaratorInGroup)
12324           FirstDeclaratorInGroup = DD;
12325         if (!FirstDecompDeclaratorInGroup)
12326           FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
12327         if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
12328             !hasDeducedAuto(DD))
12329           FirstNonDeducedAutoInGroup = DD;
12330 
12331         if (FirstDeclaratorInGroup != DD) {
12332           // A decomposition declaration cannot be combined with any other
12333           // declaration in the same group.
12334           if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
12335             Diag(FirstDecompDeclaratorInGroup->getLocation(),
12336                  diag::err_decomp_decl_not_alone)
12337                 << FirstDeclaratorInGroup->getSourceRange()
12338                 << DD->getSourceRange();
12339             DiagnosedMultipleDecomps = true;
12340           }
12341 
12342           // A declarator that uses 'auto' in any way other than to declare a
12343           // variable with a deduced type cannot be combined with any other
12344           // declarator in the same group.
12345           if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
12346             Diag(FirstNonDeducedAutoInGroup->getLocation(),
12347                  diag::err_auto_non_deduced_not_alone)
12348                 << FirstNonDeducedAutoInGroup->getType()
12349                        ->hasAutoForTrailingReturnType()
12350                 << FirstDeclaratorInGroup->getSourceRange()
12351                 << DD->getSourceRange();
12352             DiagnosedNonDeducedAuto = true;
12353           }
12354         }
12355       }
12356 
12357       Decls.push_back(D);
12358     }
12359   }
12360 
12361   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
12362     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
12363       handleTagNumbering(Tag, S);
12364       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
12365           getLangOpts().CPlusPlus)
12366         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
12367     }
12368   }
12369 
12370   return BuildDeclaratorGroup(Decls);
12371 }
12372 
12373 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
12374 /// group, performing any necessary semantic checking.
12375 Sema::DeclGroupPtrTy
12376 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
12377   // C++14 [dcl.spec.auto]p7: (DR1347)
12378   //   If the type that replaces the placeholder type is not the same in each
12379   //   deduction, the program is ill-formed.
12380   if (Group.size() > 1) {
12381     QualType Deduced;
12382     VarDecl *DeducedDecl = nullptr;
12383     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12384       VarDecl *D = dyn_cast<VarDecl>(Group[i]);
12385       if (!D || D->isInvalidDecl())
12386         break;
12387       DeducedType *DT = D->getType()->getContainedDeducedType();
12388       if (!DT || DT->getDeducedType().isNull())
12389         continue;
12390       if (Deduced.isNull()) {
12391         Deduced = DT->getDeducedType();
12392         DeducedDecl = D;
12393       } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
12394         auto *AT = dyn_cast<AutoType>(DT);
12395         Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
12396              diag::err_auto_different_deductions)
12397           << (AT ? (unsigned)AT->getKeyword() : 3)
12398           << Deduced << DeducedDecl->getDeclName()
12399           << DT->getDeducedType() << D->getDeclName()
12400           << DeducedDecl->getInit()->getSourceRange()
12401           << D->getInit()->getSourceRange();
12402         D->setInvalidDecl();
12403         break;
12404       }
12405     }
12406   }
12407 
12408   ActOnDocumentableDecls(Group);
12409 
12410   return DeclGroupPtrTy::make(
12411       DeclGroupRef::Create(Context, Group.data(), Group.size()));
12412 }
12413 
12414 void Sema::ActOnDocumentableDecl(Decl *D) {
12415   ActOnDocumentableDecls(D);
12416 }
12417 
12418 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
12419   // Don't parse the comment if Doxygen diagnostics are ignored.
12420   if (Group.empty() || !Group[0])
12421     return;
12422 
12423   if (Diags.isIgnored(diag::warn_doc_param_not_found,
12424                       Group[0]->getLocation()) &&
12425       Diags.isIgnored(diag::warn_unknown_comment_command_name,
12426                       Group[0]->getLocation()))
12427     return;
12428 
12429   if (Group.size() >= 2) {
12430     // This is a decl group.  Normally it will contain only declarations
12431     // produced from declarator list.  But in case we have any definitions or
12432     // additional declaration references:
12433     //   'typedef struct S {} S;'
12434     //   'typedef struct S *S;'
12435     //   'struct S *pS;'
12436     // FinalizeDeclaratorGroup adds these as separate declarations.
12437     Decl *MaybeTagDecl = Group[0];
12438     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
12439       Group = Group.slice(1);
12440     }
12441   }
12442 
12443   // See if there are any new comments that are not attached to a decl.
12444   ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
12445   if (!Comments.empty() &&
12446       !Comments.back()->isAttached()) {
12447     // There is at least one comment that not attached to a decl.
12448     // Maybe it should be attached to one of these decls?
12449     //
12450     // Note that this way we pick up not only comments that precede the
12451     // declaration, but also comments that *follow* the declaration -- thanks to
12452     // the lookahead in the lexer: we've consumed the semicolon and looked
12453     // ahead through comments.
12454     for (unsigned i = 0, e = Group.size(); i != e; ++i)
12455       Context.getCommentForDecl(Group[i], &PP);
12456   }
12457 }
12458 
12459 /// Common checks for a parameter-declaration that should apply to both function
12460 /// parameters and non-type template parameters.
12461 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
12462   // Check that there are no default arguments inside the type of this
12463   // parameter.
12464   if (getLangOpts().CPlusPlus)
12465     CheckExtraCXXDefaultArguments(D);
12466 
12467   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
12468   if (D.getCXXScopeSpec().isSet()) {
12469     Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
12470       << D.getCXXScopeSpec().getRange();
12471   }
12472 
12473   // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
12474   // simple identifier except [...irrelevant cases...].
12475   switch (D.getName().getKind()) {
12476   case UnqualifiedIdKind::IK_Identifier:
12477     break;
12478 
12479   case UnqualifiedIdKind::IK_OperatorFunctionId:
12480   case UnqualifiedIdKind::IK_ConversionFunctionId:
12481   case UnqualifiedIdKind::IK_LiteralOperatorId:
12482   case UnqualifiedIdKind::IK_ConstructorName:
12483   case UnqualifiedIdKind::IK_DestructorName:
12484   case UnqualifiedIdKind::IK_ImplicitSelfParam:
12485   case UnqualifiedIdKind::IK_DeductionGuideName:
12486     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
12487       << GetNameForDeclarator(D).getName();
12488     break;
12489 
12490   case UnqualifiedIdKind::IK_TemplateId:
12491   case UnqualifiedIdKind::IK_ConstructorTemplateId:
12492     // GetNameForDeclarator would not produce a useful name in this case.
12493     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
12494     break;
12495   }
12496 }
12497 
12498 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
12499 /// to introduce parameters into function prototype scope.
12500 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
12501   const DeclSpec &DS = D.getDeclSpec();
12502 
12503   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
12504 
12505   // C++03 [dcl.stc]p2 also permits 'auto'.
12506   StorageClass SC = SC_None;
12507   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
12508     SC = SC_Register;
12509     // In C++11, the 'register' storage class specifier is deprecated.
12510     // In C++17, it is not allowed, but we tolerate it as an extension.
12511     if (getLangOpts().CPlusPlus11) {
12512       Diag(DS.getStorageClassSpecLoc(),
12513            getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
12514                                      : diag::warn_deprecated_register)
12515         << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
12516     }
12517   } else if (getLangOpts().CPlusPlus &&
12518              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
12519     SC = SC_Auto;
12520   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
12521     Diag(DS.getStorageClassSpecLoc(),
12522          diag::err_invalid_storage_class_in_func_decl);
12523     D.getMutableDeclSpec().ClearStorageClassSpecs();
12524   }
12525 
12526   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
12527     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
12528       << DeclSpec::getSpecifierName(TSCS);
12529   if (DS.isInlineSpecified())
12530     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
12531         << getLangOpts().CPlusPlus17;
12532   if (DS.hasConstexprSpecifier())
12533     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
12534         << 0 << (D.getDeclSpec().getConstexprSpecifier() == CSK_consteval);
12535 
12536   DiagnoseFunctionSpecifiers(DS);
12537 
12538   CheckFunctionOrTemplateParamDeclarator(S, D);
12539 
12540   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12541   QualType parmDeclType = TInfo->getType();
12542 
12543   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
12544   IdentifierInfo *II = D.getIdentifier();
12545   if (II) {
12546     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
12547                    ForVisibleRedeclaration);
12548     LookupName(R, S);
12549     if (R.isSingleResult()) {
12550       NamedDecl *PrevDecl = R.getFoundDecl();
12551       if (PrevDecl->isTemplateParameter()) {
12552         // Maybe we will complain about the shadowed template parameter.
12553         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12554         // Just pretend that we didn't see the previous declaration.
12555         PrevDecl = nullptr;
12556       } else if (S->isDeclScope(PrevDecl)) {
12557         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
12558         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12559 
12560         // Recover by removing the name
12561         II = nullptr;
12562         D.SetIdentifier(nullptr, D.getIdentifierLoc());
12563         D.setInvalidType(true);
12564       }
12565     }
12566   }
12567 
12568   // Temporarily put parameter variables in the translation unit, not
12569   // the enclosing context.  This prevents them from accidentally
12570   // looking like class members in C++.
12571   ParmVarDecl *New =
12572       CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
12573                      D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
12574 
12575   if (D.isInvalidType())
12576     New->setInvalidDecl();
12577 
12578   assert(S->isFunctionPrototypeScope());
12579   assert(S->getFunctionPrototypeDepth() >= 1);
12580   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
12581                     S->getNextFunctionPrototypeIndex());
12582 
12583   // Add the parameter declaration into this scope.
12584   S->AddDecl(New);
12585   if (II)
12586     IdResolver.AddDecl(New);
12587 
12588   ProcessDeclAttributes(S, New, D);
12589 
12590   if (D.getDeclSpec().isModulePrivateSpecified())
12591     Diag(New->getLocation(), diag::err_module_private_local)
12592       << 1 << New->getDeclName()
12593       << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
12594       << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
12595 
12596   if (New->hasAttr<BlocksAttr>()) {
12597     Diag(New->getLocation(), diag::err_block_on_nonlocal);
12598   }
12599   return New;
12600 }
12601 
12602 /// Synthesizes a variable for a parameter arising from a
12603 /// typedef.
12604 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
12605                                               SourceLocation Loc,
12606                                               QualType T) {
12607   /* FIXME: setting StartLoc == Loc.
12608      Would it be worth to modify callers so as to provide proper source
12609      location for the unnamed parameters, embedding the parameter's type? */
12610   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
12611                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
12612                                            SC_None, nullptr);
12613   Param->setImplicit();
12614   return Param;
12615 }
12616 
12617 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
12618   // Don't diagnose unused-parameter errors in template instantiations; we
12619   // will already have done so in the template itself.
12620   if (inTemplateInstantiation())
12621     return;
12622 
12623   for (const ParmVarDecl *Parameter : Parameters) {
12624     if (!Parameter->isReferenced() && Parameter->getDeclName() &&
12625         !Parameter->hasAttr<UnusedAttr>()) {
12626       Diag(Parameter->getLocation(), diag::warn_unused_parameter)
12627         << Parameter->getDeclName();
12628     }
12629   }
12630 }
12631 
12632 void Sema::DiagnoseSizeOfParametersAndReturnValue(
12633     ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
12634   if (LangOpts.NumLargeByValueCopy == 0) // No check.
12635     return;
12636 
12637   // Warn if the return value is pass-by-value and larger than the specified
12638   // threshold.
12639   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
12640     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
12641     if (Size > LangOpts.NumLargeByValueCopy)
12642       Diag(D->getLocation(), diag::warn_return_value_size)
12643           << D->getDeclName() << Size;
12644   }
12645 
12646   // Warn if any parameter is pass-by-value and larger than the specified
12647   // threshold.
12648   for (const ParmVarDecl *Parameter : Parameters) {
12649     QualType T = Parameter->getType();
12650     if (T->isDependentType() || !T.isPODType(Context))
12651       continue;
12652     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
12653     if (Size > LangOpts.NumLargeByValueCopy)
12654       Diag(Parameter->getLocation(), diag::warn_parameter_size)
12655           << Parameter->getDeclName() << Size;
12656   }
12657 }
12658 
12659 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
12660                                   SourceLocation NameLoc, IdentifierInfo *Name,
12661                                   QualType T, TypeSourceInfo *TSInfo,
12662                                   StorageClass SC) {
12663   // In ARC, infer a lifetime qualifier for appropriate parameter types.
12664   if (getLangOpts().ObjCAutoRefCount &&
12665       T.getObjCLifetime() == Qualifiers::OCL_None &&
12666       T->isObjCLifetimeType()) {
12667 
12668     Qualifiers::ObjCLifetime lifetime;
12669 
12670     // Special cases for arrays:
12671     //   - if it's const, use __unsafe_unretained
12672     //   - otherwise, it's an error
12673     if (T->isArrayType()) {
12674       if (!T.isConstQualified()) {
12675         if (DelayedDiagnostics.shouldDelayDiagnostics())
12676           DelayedDiagnostics.add(
12677               sema::DelayedDiagnostic::makeForbiddenType(
12678               NameLoc, diag::err_arc_array_param_no_ownership, T, false));
12679         else
12680           Diag(NameLoc, diag::err_arc_array_param_no_ownership)
12681               << TSInfo->getTypeLoc().getSourceRange();
12682       }
12683       lifetime = Qualifiers::OCL_ExplicitNone;
12684     } else {
12685       lifetime = T->getObjCARCImplicitLifetime();
12686     }
12687     T = Context.getLifetimeQualifiedType(T, lifetime);
12688   }
12689 
12690   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
12691                                          Context.getAdjustedParameterType(T),
12692                                          TSInfo, SC, nullptr);
12693 
12694   // Parameters can not be abstract class types.
12695   // For record types, this is done by the AbstractClassUsageDiagnoser once
12696   // the class has been completely parsed.
12697   if (!CurContext->isRecord() &&
12698       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
12699                              AbstractParamType))
12700     New->setInvalidDecl();
12701 
12702   // Parameter declarators cannot be interface types. All ObjC objects are
12703   // passed by reference.
12704   if (T->isObjCObjectType()) {
12705     SourceLocation TypeEndLoc =
12706         getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
12707     Diag(NameLoc,
12708          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
12709       << FixItHint::CreateInsertion(TypeEndLoc, "*");
12710     T = Context.getObjCObjectPointerType(T);
12711     New->setType(T);
12712   }
12713 
12714   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
12715   // duration shall not be qualified by an address-space qualifier."
12716   // Since all parameters have automatic store duration, they can not have
12717   // an address space.
12718   if (T.getAddressSpace() != LangAS::Default &&
12719       // OpenCL allows function arguments declared to be an array of a type
12720       // to be qualified with an address space.
12721       !(getLangOpts().OpenCL &&
12722         (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
12723     Diag(NameLoc, diag::err_arg_with_address_space);
12724     New->setInvalidDecl();
12725   }
12726 
12727   return New;
12728 }
12729 
12730 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
12731                                            SourceLocation LocAfterDecls) {
12732   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
12733 
12734   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
12735   // for a K&R function.
12736   if (!FTI.hasPrototype) {
12737     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
12738       --i;
12739       if (FTI.Params[i].Param == nullptr) {
12740         SmallString<256> Code;
12741         llvm::raw_svector_ostream(Code)
12742             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
12743         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
12744             << FTI.Params[i].Ident
12745             << FixItHint::CreateInsertion(LocAfterDecls, Code);
12746 
12747         // Implicitly declare the argument as type 'int' for lack of a better
12748         // type.
12749         AttributeFactory attrs;
12750         DeclSpec DS(attrs);
12751         const char* PrevSpec; // unused
12752         unsigned DiagID; // unused
12753         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
12754                            DiagID, Context.getPrintingPolicy());
12755         // Use the identifier location for the type source range.
12756         DS.SetRangeStart(FTI.Params[i].IdentLoc);
12757         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
12758         Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext);
12759         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
12760         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
12761       }
12762     }
12763   }
12764 }
12765 
12766 Decl *
12767 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
12768                               MultiTemplateParamsArg TemplateParameterLists,
12769                               SkipBodyInfo *SkipBody) {
12770   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
12771   assert(D.isFunctionDeclarator() && "Not a function declarator!");
12772   Scope *ParentScope = FnBodyScope->getParent();
12773 
12774   D.setFunctionDefinitionKind(FDK_Definition);
12775   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
12776   return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
12777 }
12778 
12779 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
12780   Consumer.HandleInlineFunctionDefinition(D);
12781 }
12782 
12783 static bool
12784 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
12785                                 const FunctionDecl *&PossiblePrototype) {
12786   // Don't warn about invalid declarations.
12787   if (FD->isInvalidDecl())
12788     return false;
12789 
12790   // Or declarations that aren't global.
12791   if (!FD->isGlobal())
12792     return false;
12793 
12794   // Don't warn about C++ member functions.
12795   if (isa<CXXMethodDecl>(FD))
12796     return false;
12797 
12798   // Don't warn about 'main'.
12799   if (FD->isMain())
12800     return false;
12801 
12802   // Don't warn about inline functions.
12803   if (FD->isInlined())
12804     return false;
12805 
12806   // Don't warn about function templates.
12807   if (FD->getDescribedFunctionTemplate())
12808     return false;
12809 
12810   // Don't warn about function template specializations.
12811   if (FD->isFunctionTemplateSpecialization())
12812     return false;
12813 
12814   // Don't warn for OpenCL kernels.
12815   if (FD->hasAttr<OpenCLKernelAttr>())
12816     return false;
12817 
12818   // Don't warn on explicitly deleted functions.
12819   if (FD->isDeleted())
12820     return false;
12821 
12822   for (const FunctionDecl *Prev = FD->getPreviousDecl();
12823        Prev; Prev = Prev->getPreviousDecl()) {
12824     // Ignore any declarations that occur in function or method
12825     // scope, because they aren't visible from the header.
12826     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
12827       continue;
12828 
12829     PossiblePrototype = Prev;
12830     return Prev->getType()->isFunctionNoProtoType();
12831   }
12832 
12833   return true;
12834 }
12835 
12836 void
12837 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
12838                                    const FunctionDecl *EffectiveDefinition,
12839                                    SkipBodyInfo *SkipBody) {
12840   const FunctionDecl *Definition = EffectiveDefinition;
12841   if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) {
12842     // If this is a friend function defined in a class template, it does not
12843     // have a body until it is used, nevertheless it is a definition, see
12844     // [temp.inst]p2:
12845     //
12846     // ... for the purpose of determining whether an instantiated redeclaration
12847     // is valid according to [basic.def.odr] and [class.mem], a declaration that
12848     // corresponds to a definition in the template is considered to be a
12849     // definition.
12850     //
12851     // The following code must produce redefinition error:
12852     //
12853     //     template<typename T> struct C20 { friend void func_20() {} };
12854     //     C20<int> c20i;
12855     //     void func_20() {}
12856     //
12857     for (auto I : FD->redecls()) {
12858       if (I != FD && !I->isInvalidDecl() &&
12859           I->getFriendObjectKind() != Decl::FOK_None) {
12860         if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) {
12861           if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
12862             // A merged copy of the same function, instantiated as a member of
12863             // the same class, is OK.
12864             if (declaresSameEntity(OrigFD, Original) &&
12865                 declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()),
12866                                    cast<Decl>(FD->getLexicalDeclContext())))
12867               continue;
12868           }
12869 
12870           if (Original->isThisDeclarationADefinition()) {
12871             Definition = I;
12872             break;
12873           }
12874         }
12875       }
12876     }
12877   }
12878 
12879   if (!Definition)
12880     // Similar to friend functions a friend function template may be a
12881     // definition and do not have a body if it is instantiated in a class
12882     // template.
12883     if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) {
12884       for (auto I : FTD->redecls()) {
12885         auto D = cast<FunctionTemplateDecl>(I);
12886         if (D != FTD) {
12887           assert(!D->isThisDeclarationADefinition() &&
12888                  "More than one definition in redeclaration chain");
12889           if (D->getFriendObjectKind() != Decl::FOK_None)
12890             if (FunctionTemplateDecl *FT =
12891                                        D->getInstantiatedFromMemberTemplate()) {
12892               if (FT->isThisDeclarationADefinition()) {
12893                 Definition = D->getTemplatedDecl();
12894                 break;
12895               }
12896             }
12897         }
12898       }
12899     }
12900 
12901   if (!Definition)
12902     return;
12903 
12904   if (canRedefineFunction(Definition, getLangOpts()))
12905     return;
12906 
12907   // Don't emit an error when this is redefinition of a typo-corrected
12908   // definition.
12909   if (TypoCorrectedFunctionDefinitions.count(Definition))
12910     return;
12911 
12912   // If we don't have a visible definition of the function, and it's inline or
12913   // a template, skip the new definition.
12914   if (SkipBody && !hasVisibleDefinition(Definition) &&
12915       (Definition->getFormalLinkage() == InternalLinkage ||
12916        Definition->isInlined() ||
12917        Definition->getDescribedFunctionTemplate() ||
12918        Definition->getNumTemplateParameterLists())) {
12919     SkipBody->ShouldSkip = true;
12920     SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
12921     if (auto *TD = Definition->getDescribedFunctionTemplate())
12922       makeMergedDefinitionVisible(TD);
12923     makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
12924     return;
12925   }
12926 
12927   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
12928       Definition->getStorageClass() == SC_Extern)
12929     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
12930         << FD->getDeclName() << getLangOpts().CPlusPlus;
12931   else
12932     Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
12933 
12934   Diag(Definition->getLocation(), diag::note_previous_definition);
12935   FD->setInvalidDecl();
12936 }
12937 
12938 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
12939                                    Sema &S) {
12940   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
12941 
12942   LambdaScopeInfo *LSI = S.PushLambdaScope();
12943   LSI->CallOperator = CallOperator;
12944   LSI->Lambda = LambdaClass;
12945   LSI->ReturnType = CallOperator->getReturnType();
12946   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
12947 
12948   if (LCD == LCD_None)
12949     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
12950   else if (LCD == LCD_ByCopy)
12951     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
12952   else if (LCD == LCD_ByRef)
12953     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
12954   DeclarationNameInfo DNI = CallOperator->getNameInfo();
12955 
12956   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
12957   LSI->Mutable = !CallOperator->isConst();
12958 
12959   // Add the captures to the LSI so they can be noted as already
12960   // captured within tryCaptureVar.
12961   auto I = LambdaClass->field_begin();
12962   for (const auto &C : LambdaClass->captures()) {
12963     if (C.capturesVariable()) {
12964       VarDecl *VD = C.getCapturedVar();
12965       if (VD->isInitCapture())
12966         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
12967       QualType CaptureType = VD->getType();
12968       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
12969       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
12970           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
12971           /*EllipsisLoc*/C.isPackExpansion()
12972                          ? C.getEllipsisLoc() : SourceLocation(),
12973           CaptureType, /*Invalid*/false);
12974 
12975     } else if (C.capturesThis()) {
12976       LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
12977                           C.getCaptureKind() == LCK_StarThis);
12978     } else {
12979       LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
12980                              I->getType());
12981     }
12982     ++I;
12983   }
12984 }
12985 
12986 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
12987                                     SkipBodyInfo *SkipBody) {
12988   if (!D) {
12989     // Parsing the function declaration failed in some way. Push on a fake scope
12990     // anyway so we can try to parse the function body.
12991     PushFunctionScope();
12992     PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
12993     return D;
12994   }
12995 
12996   FunctionDecl *FD = nullptr;
12997 
12998   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
12999     FD = FunTmpl->getTemplatedDecl();
13000   else
13001     FD = cast<FunctionDecl>(D);
13002 
13003   // Do not push if it is a lambda because one is already pushed when building
13004   // the lambda in ActOnStartOfLambdaDefinition().
13005   if (!isLambdaCallOperator(FD))
13006     PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
13007 
13008   // Check for defining attributes before the check for redefinition.
13009   if (const auto *Attr = FD->getAttr<AliasAttr>()) {
13010     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
13011     FD->dropAttr<AliasAttr>();
13012     FD->setInvalidDecl();
13013   }
13014   if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
13015     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
13016     FD->dropAttr<IFuncAttr>();
13017     FD->setInvalidDecl();
13018   }
13019 
13020   // See if this is a redefinition. If 'will have body' is already set, then
13021   // these checks were already performed when it was set.
13022   if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) {
13023     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
13024 
13025     // If we're skipping the body, we're done. Don't enter the scope.
13026     if (SkipBody && SkipBody->ShouldSkip)
13027       return D;
13028   }
13029 
13030   // Mark this function as "will have a body eventually".  This lets users to
13031   // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
13032   // this function.
13033   FD->setWillHaveBody();
13034 
13035   // If we are instantiating a generic lambda call operator, push
13036   // a LambdaScopeInfo onto the function stack.  But use the information
13037   // that's already been calculated (ActOnLambdaExpr) to prime the current
13038   // LambdaScopeInfo.
13039   // When the template operator is being specialized, the LambdaScopeInfo,
13040   // has to be properly restored so that tryCaptureVariable doesn't try
13041   // and capture any new variables. In addition when calculating potential
13042   // captures during transformation of nested lambdas, it is necessary to
13043   // have the LSI properly restored.
13044   if (isGenericLambdaCallOperatorSpecialization(FD)) {
13045     assert(inTemplateInstantiation() &&
13046            "There should be an active template instantiation on the stack "
13047            "when instantiating a generic lambda!");
13048     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
13049   } else {
13050     // Enter a new function scope
13051     PushFunctionScope();
13052   }
13053 
13054   // Builtin functions cannot be defined.
13055   if (unsigned BuiltinID = FD->getBuiltinID()) {
13056     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
13057         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
13058       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
13059       FD->setInvalidDecl();
13060     }
13061   }
13062 
13063   // The return type of a function definition must be complete
13064   // (C99 6.9.1p3, C++ [dcl.fct]p6).
13065   QualType ResultType = FD->getReturnType();
13066   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
13067       !FD->isInvalidDecl() &&
13068       RequireCompleteType(FD->getLocation(), ResultType,
13069                           diag::err_func_def_incomplete_result))
13070     FD->setInvalidDecl();
13071 
13072   if (FnBodyScope)
13073     PushDeclContext(FnBodyScope, FD);
13074 
13075   // Check the validity of our function parameters
13076   CheckParmsForFunctionDef(FD->parameters(),
13077                            /*CheckParameterNames=*/true);
13078 
13079   // Add non-parameter declarations already in the function to the current
13080   // scope.
13081   if (FnBodyScope) {
13082     for (Decl *NPD : FD->decls()) {
13083       auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
13084       if (!NonParmDecl)
13085         continue;
13086       assert(!isa<ParmVarDecl>(NonParmDecl) &&
13087              "parameters should not be in newly created FD yet");
13088 
13089       // If the decl has a name, make it accessible in the current scope.
13090       if (NonParmDecl->getDeclName())
13091         PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
13092 
13093       // Similarly, dive into enums and fish their constants out, making them
13094       // accessible in this scope.
13095       if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
13096         for (auto *EI : ED->enumerators())
13097           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
13098       }
13099     }
13100   }
13101 
13102   // Introduce our parameters into the function scope
13103   for (auto Param : FD->parameters()) {
13104     Param->setOwningFunction(FD);
13105 
13106     // If this has an identifier, add it to the scope stack.
13107     if (Param->getIdentifier() && FnBodyScope) {
13108       CheckShadow(FnBodyScope, Param);
13109 
13110       PushOnScopeChains(Param, FnBodyScope);
13111     }
13112   }
13113 
13114   // Ensure that the function's exception specification is instantiated.
13115   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
13116     ResolveExceptionSpec(D->getLocation(), FPT);
13117 
13118   // dllimport cannot be applied to non-inline function definitions.
13119   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
13120       !FD->isTemplateInstantiation()) {
13121     assert(!FD->hasAttr<DLLExportAttr>());
13122     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
13123     FD->setInvalidDecl();
13124     return D;
13125   }
13126   // We want to attach documentation to original Decl (which might be
13127   // a function template).
13128   ActOnDocumentableDecl(D);
13129   if (getCurLexicalContext()->isObjCContainer() &&
13130       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
13131       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
13132     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
13133 
13134   return D;
13135 }
13136 
13137 /// Given the set of return statements within a function body,
13138 /// compute the variables that are subject to the named return value
13139 /// optimization.
13140 ///
13141 /// Each of the variables that is subject to the named return value
13142 /// optimization will be marked as NRVO variables in the AST, and any
13143 /// return statement that has a marked NRVO variable as its NRVO candidate can
13144 /// use the named return value optimization.
13145 ///
13146 /// This function applies a very simplistic algorithm for NRVO: if every return
13147 /// statement in the scope of a variable has the same NRVO candidate, that
13148 /// candidate is an NRVO variable.
13149 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
13150   ReturnStmt **Returns = Scope->Returns.data();
13151 
13152   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
13153     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
13154       if (!NRVOCandidate->isNRVOVariable())
13155         Returns[I]->setNRVOCandidate(nullptr);
13156     }
13157   }
13158 }
13159 
13160 bool Sema::canDelayFunctionBody(const Declarator &D) {
13161   // We can't delay parsing the body of a constexpr function template (yet).
13162   if (D.getDeclSpec().hasConstexprSpecifier())
13163     return false;
13164 
13165   // We can't delay parsing the body of a function template with a deduced
13166   // return type (yet).
13167   if (D.getDeclSpec().hasAutoTypeSpec()) {
13168     // If the placeholder introduces a non-deduced trailing return type,
13169     // we can still delay parsing it.
13170     if (D.getNumTypeObjects()) {
13171       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
13172       if (Outer.Kind == DeclaratorChunk::Function &&
13173           Outer.Fun.hasTrailingReturnType()) {
13174         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
13175         return Ty.isNull() || !Ty->isUndeducedType();
13176       }
13177     }
13178     return false;
13179   }
13180 
13181   return true;
13182 }
13183 
13184 bool Sema::canSkipFunctionBody(Decl *D) {
13185   // We cannot skip the body of a function (or function template) which is
13186   // constexpr, since we may need to evaluate its body in order to parse the
13187   // rest of the file.
13188   // We cannot skip the body of a function with an undeduced return type,
13189   // because any callers of that function need to know the type.
13190   if (const FunctionDecl *FD = D->getAsFunction()) {
13191     if (FD->isConstexpr())
13192       return false;
13193     // We can't simply call Type::isUndeducedType here, because inside template
13194     // auto can be deduced to a dependent type, which is not considered
13195     // "undeduced".
13196     if (FD->getReturnType()->getContainedDeducedType())
13197       return false;
13198   }
13199   return Consumer.shouldSkipFunctionBody(D);
13200 }
13201 
13202 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
13203   if (!Decl)
13204     return nullptr;
13205   if (FunctionDecl *FD = Decl->getAsFunction())
13206     FD->setHasSkippedBody();
13207   else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
13208     MD->setHasSkippedBody();
13209   return Decl;
13210 }
13211 
13212 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
13213   return ActOnFinishFunctionBody(D, BodyArg, false);
13214 }
13215 
13216 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
13217 /// body.
13218 class ExitFunctionBodyRAII {
13219 public:
13220   ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
13221   ~ExitFunctionBodyRAII() {
13222     if (!IsLambda)
13223       S.PopExpressionEvaluationContext();
13224   }
13225 
13226 private:
13227   Sema &S;
13228   bool IsLambda = false;
13229 };
13230 
13231 static void diagnoseImplicitlyRetainedSelf(Sema &S) {
13232   llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
13233 
13234   auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
13235     if (EscapeInfo.count(BD))
13236       return EscapeInfo[BD];
13237 
13238     bool R = false;
13239     const BlockDecl *CurBD = BD;
13240 
13241     do {
13242       R = !CurBD->doesNotEscape();
13243       if (R)
13244         break;
13245       CurBD = CurBD->getParent()->getInnermostBlockDecl();
13246     } while (CurBD);
13247 
13248     return EscapeInfo[BD] = R;
13249   };
13250 
13251   // If the location where 'self' is implicitly retained is inside a escaping
13252   // block, emit a diagnostic.
13253   for (const std::pair<SourceLocation, const BlockDecl *> &P :
13254        S.ImplicitlyRetainedSelfLocs)
13255     if (IsOrNestedInEscapingBlock(P.second))
13256       S.Diag(P.first, diag::warn_implicitly_retains_self)
13257           << FixItHint::CreateInsertion(P.first, "self->");
13258 }
13259 
13260 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
13261                                     bool IsInstantiation) {
13262   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
13263 
13264   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
13265   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
13266 
13267   if (getLangOpts().Coroutines && getCurFunction()->isCoroutine())
13268     CheckCompletedCoroutineBody(FD, Body);
13269 
13270   // Do not call PopExpressionEvaluationContext() if it is a lambda because one
13271   // is already popped when finishing the lambda in BuildLambdaExpr(). This is
13272   // meant to pop the context added in ActOnStartOfFunctionDef().
13273   ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
13274 
13275   if (FD) {
13276     FD->setBody(Body);
13277     FD->setWillHaveBody(false);
13278 
13279     if (getLangOpts().CPlusPlus14) {
13280       if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
13281           FD->getReturnType()->isUndeducedType()) {
13282         // If the function has a deduced result type but contains no 'return'
13283         // statements, the result type as written must be exactly 'auto', and
13284         // the deduced result type is 'void'.
13285         if (!FD->getReturnType()->getAs<AutoType>()) {
13286           Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
13287               << FD->getReturnType();
13288           FD->setInvalidDecl();
13289         } else {
13290           // Substitute 'void' for the 'auto' in the type.
13291           TypeLoc ResultType = getReturnTypeLoc(FD);
13292           Context.adjustDeducedFunctionResultType(
13293               FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
13294         }
13295       }
13296     } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
13297       // In C++11, we don't use 'auto' deduction rules for lambda call
13298       // operators because we don't support return type deduction.
13299       auto *LSI = getCurLambda();
13300       if (LSI->HasImplicitReturnType) {
13301         deduceClosureReturnType(*LSI);
13302 
13303         // C++11 [expr.prim.lambda]p4:
13304         //   [...] if there are no return statements in the compound-statement
13305         //   [the deduced type is] the type void
13306         QualType RetType =
13307             LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
13308 
13309         // Update the return type to the deduced type.
13310         const FunctionProtoType *Proto =
13311             FD->getType()->getAs<FunctionProtoType>();
13312         FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
13313                                             Proto->getExtProtoInfo()));
13314       }
13315     }
13316 
13317     // If the function implicitly returns zero (like 'main') or is naked,
13318     // don't complain about missing return statements.
13319     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
13320       WP.disableCheckFallThrough();
13321 
13322     // MSVC permits the use of pure specifier (=0) on function definition,
13323     // defined at class scope, warn about this non-standard construct.
13324     if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
13325       Diag(FD->getLocation(), diag::ext_pure_function_definition);
13326 
13327     if (!FD->isInvalidDecl()) {
13328       // Don't diagnose unused parameters of defaulted or deleted functions.
13329       if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
13330         DiagnoseUnusedParameters(FD->parameters());
13331       DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
13332                                              FD->getReturnType(), FD);
13333 
13334       // If this is a structor, we need a vtable.
13335       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
13336         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
13337       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
13338         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
13339 
13340       // Try to apply the named return value optimization. We have to check
13341       // if we can do this here because lambdas keep return statements around
13342       // to deduce an implicit return type.
13343       if (FD->getReturnType()->isRecordType() &&
13344           (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
13345         computeNRVO(Body, getCurFunction());
13346     }
13347 
13348     // GNU warning -Wmissing-prototypes:
13349     //   Warn if a global function is defined without a previous
13350     //   prototype declaration. This warning is issued even if the
13351     //   definition itself provides a prototype. The aim is to detect
13352     //   global functions that fail to be declared in header files.
13353     const FunctionDecl *PossiblePrototype = nullptr;
13354     if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
13355       Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
13356 
13357       if (PossiblePrototype) {
13358         // We found a declaration that is not a prototype,
13359         // but that could be a zero-parameter prototype
13360         if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
13361           TypeLoc TL = TI->getTypeLoc();
13362           if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
13363             Diag(PossiblePrototype->getLocation(),
13364                  diag::note_declaration_not_a_prototype)
13365                 << (FD->getNumParams() != 0)
13366                 << (FD->getNumParams() == 0
13367                         ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void")
13368                         : FixItHint{});
13369         }
13370       } else {
13371         Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
13372             << /* function */ 1
13373             << (FD->getStorageClass() == SC_None
13374                     ? FixItHint::CreateInsertion(FD->getTypeSpecStartLoc(),
13375                                                  "static ")
13376                     : FixItHint{});
13377       }
13378 
13379       // GNU warning -Wstrict-prototypes
13380       //   Warn if K&R function is defined without a previous declaration.
13381       //   This warning is issued only if the definition itself does not provide
13382       //   a prototype. Only K&R definitions do not provide a prototype.
13383       //   An empty list in a function declarator that is part of a definition
13384       //   of that function specifies that the function has no parameters
13385       //   (C99 6.7.5.3p14)
13386       if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 &&
13387           !LangOpts.CPlusPlus) {
13388         TypeSourceInfo *TI = FD->getTypeSourceInfo();
13389         TypeLoc TL = TI->getTypeLoc();
13390         FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
13391         Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
13392       }
13393     }
13394 
13395     // Warn on CPUDispatch with an actual body.
13396     if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
13397       if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
13398         if (!CmpndBody->body_empty())
13399           Diag(CmpndBody->body_front()->getBeginLoc(),
13400                diag::warn_dispatch_body_ignored);
13401 
13402     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
13403       const CXXMethodDecl *KeyFunction;
13404       if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
13405           MD->isVirtual() &&
13406           (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
13407           MD == KeyFunction->getCanonicalDecl()) {
13408         // Update the key-function state if necessary for this ABI.
13409         if (FD->isInlined() &&
13410             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
13411           Context.setNonKeyFunction(MD);
13412 
13413           // If the newly-chosen key function is already defined, then we
13414           // need to mark the vtable as used retroactively.
13415           KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
13416           const FunctionDecl *Definition;
13417           if (KeyFunction && KeyFunction->isDefined(Definition))
13418             MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
13419         } else {
13420           // We just defined they key function; mark the vtable as used.
13421           MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
13422         }
13423       }
13424     }
13425 
13426     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
13427            "Function parsing confused");
13428   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
13429     assert(MD == getCurMethodDecl() && "Method parsing confused");
13430     MD->setBody(Body);
13431     if (!MD->isInvalidDecl()) {
13432       DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
13433                                              MD->getReturnType(), MD);
13434 
13435       if (Body)
13436         computeNRVO(Body, getCurFunction());
13437     }
13438     if (getCurFunction()->ObjCShouldCallSuper) {
13439       Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
13440           << MD->getSelector().getAsString();
13441       getCurFunction()->ObjCShouldCallSuper = false;
13442     }
13443     if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
13444       const ObjCMethodDecl *InitMethod = nullptr;
13445       bool isDesignated =
13446           MD->isDesignatedInitializerForTheInterface(&InitMethod);
13447       assert(isDesignated && InitMethod);
13448       (void)isDesignated;
13449 
13450       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
13451         auto IFace = MD->getClassInterface();
13452         if (!IFace)
13453           return false;
13454         auto SuperD = IFace->getSuperClass();
13455         if (!SuperD)
13456           return false;
13457         return SuperD->getIdentifier() ==
13458             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
13459       };
13460       // Don't issue this warning for unavailable inits or direct subclasses
13461       // of NSObject.
13462       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
13463         Diag(MD->getLocation(),
13464              diag::warn_objc_designated_init_missing_super_call);
13465         Diag(InitMethod->getLocation(),
13466              diag::note_objc_designated_init_marked_here);
13467       }
13468       getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
13469     }
13470     if (getCurFunction()->ObjCWarnForNoInitDelegation) {
13471       // Don't issue this warning for unavaialable inits.
13472       if (!MD->isUnavailable())
13473         Diag(MD->getLocation(),
13474              diag::warn_objc_secondary_init_missing_init_call);
13475       getCurFunction()->ObjCWarnForNoInitDelegation = false;
13476     }
13477 
13478     diagnoseImplicitlyRetainedSelf(*this);
13479   } else {
13480     // Parsing the function declaration failed in some way. Pop the fake scope
13481     // we pushed on.
13482     PopFunctionScopeInfo(ActivePolicy, dcl);
13483     return nullptr;
13484   }
13485 
13486   if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
13487     DiagnoseUnguardedAvailabilityViolations(dcl);
13488 
13489   assert(!getCurFunction()->ObjCShouldCallSuper &&
13490          "This should only be set for ObjC methods, which should have been "
13491          "handled in the block above.");
13492 
13493   // Verify and clean out per-function state.
13494   if (Body && (!FD || !FD->isDefaulted())) {
13495     // C++ constructors that have function-try-blocks can't have return
13496     // statements in the handlers of that block. (C++ [except.handle]p14)
13497     // Verify this.
13498     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
13499       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
13500 
13501     // Verify that gotos and switch cases don't jump into scopes illegally.
13502     if (getCurFunction()->NeedsScopeChecking() &&
13503         !PP.isCodeCompletionEnabled())
13504       DiagnoseInvalidJumps(Body);
13505 
13506     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
13507       if (!Destructor->getParent()->isDependentType())
13508         CheckDestructor(Destructor);
13509 
13510       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
13511                                              Destructor->getParent());
13512     }
13513 
13514     // If any errors have occurred, clear out any temporaries that may have
13515     // been leftover. This ensures that these temporaries won't be picked up for
13516     // deletion in some later function.
13517     if (getDiagnostics().hasErrorOccurred() ||
13518         getDiagnostics().getSuppressAllDiagnostics()) {
13519       DiscardCleanupsInEvaluationContext();
13520     }
13521     if (!getDiagnostics().hasUncompilableErrorOccurred() &&
13522         !isa<FunctionTemplateDecl>(dcl)) {
13523       // Since the body is valid, issue any analysis-based warnings that are
13524       // enabled.
13525       ActivePolicy = &WP;
13526     }
13527 
13528     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
13529         (!CheckConstexprFunctionDecl(FD) ||
13530          !CheckConstexprFunctionBody(FD, Body)))
13531       FD->setInvalidDecl();
13532 
13533     if (FD && FD->hasAttr<NakedAttr>()) {
13534       for (const Stmt *S : Body->children()) {
13535         // Allow local register variables without initializer as they don't
13536         // require prologue.
13537         bool RegisterVariables = false;
13538         if (auto *DS = dyn_cast<DeclStmt>(S)) {
13539           for (const auto *Decl : DS->decls()) {
13540             if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
13541               RegisterVariables =
13542                   Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
13543               if (!RegisterVariables)
13544                 break;
13545             }
13546           }
13547         }
13548         if (RegisterVariables)
13549           continue;
13550         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
13551           Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
13552           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
13553           FD->setInvalidDecl();
13554           break;
13555         }
13556       }
13557     }
13558 
13559     assert(ExprCleanupObjects.size() ==
13560                ExprEvalContexts.back().NumCleanupObjects &&
13561            "Leftover temporaries in function");
13562     assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
13563     assert(MaybeODRUseExprs.empty() &&
13564            "Leftover expressions for odr-use checking");
13565   }
13566 
13567   if (!IsInstantiation)
13568     PopDeclContext();
13569 
13570   PopFunctionScopeInfo(ActivePolicy, dcl);
13571   // If any errors have occurred, clear out any temporaries that may have
13572   // been leftover. This ensures that these temporaries won't be picked up for
13573   // deletion in some later function.
13574   if (getDiagnostics().hasErrorOccurred()) {
13575     DiscardCleanupsInEvaluationContext();
13576   }
13577 
13578   return dcl;
13579 }
13580 
13581 /// When we finish delayed parsing of an attribute, we must attach it to the
13582 /// relevant Decl.
13583 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
13584                                        ParsedAttributes &Attrs) {
13585   // Always attach attributes to the underlying decl.
13586   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
13587     D = TD->getTemplatedDecl();
13588   ProcessDeclAttributeList(S, D, Attrs);
13589 
13590   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
13591     if (Method->isStatic())
13592       checkThisInStaticMemberFunctionAttributes(Method);
13593 }
13594 
13595 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
13596 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
13597 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
13598                                           IdentifierInfo &II, Scope *S) {
13599   // Find the scope in which the identifier is injected and the corresponding
13600   // DeclContext.
13601   // FIXME: C89 does not say what happens if there is no enclosing block scope.
13602   // In that case, we inject the declaration into the translation unit scope
13603   // instead.
13604   Scope *BlockScope = S;
13605   while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
13606     BlockScope = BlockScope->getParent();
13607 
13608   Scope *ContextScope = BlockScope;
13609   while (!ContextScope->getEntity())
13610     ContextScope = ContextScope->getParent();
13611   ContextRAII SavedContext(*this, ContextScope->getEntity());
13612 
13613   // Before we produce a declaration for an implicitly defined
13614   // function, see whether there was a locally-scoped declaration of
13615   // this name as a function or variable. If so, use that
13616   // (non-visible) declaration, and complain about it.
13617   NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
13618   if (ExternCPrev) {
13619     // We still need to inject the function into the enclosing block scope so
13620     // that later (non-call) uses can see it.
13621     PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
13622 
13623     // C89 footnote 38:
13624     //   If in fact it is not defined as having type "function returning int",
13625     //   the behavior is undefined.
13626     if (!isa<FunctionDecl>(ExternCPrev) ||
13627         !Context.typesAreCompatible(
13628             cast<FunctionDecl>(ExternCPrev)->getType(),
13629             Context.getFunctionNoProtoType(Context.IntTy))) {
13630       Diag(Loc, diag::ext_use_out_of_scope_declaration)
13631           << ExternCPrev << !getLangOpts().C99;
13632       Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
13633       return ExternCPrev;
13634     }
13635   }
13636 
13637   // Extension in C99.  Legal in C90, but warn about it.
13638   unsigned diag_id;
13639   if (II.getName().startswith("__builtin_"))
13640     diag_id = diag::warn_builtin_unknown;
13641   // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
13642   else if (getLangOpts().OpenCL)
13643     diag_id = diag::err_opencl_implicit_function_decl;
13644   else if (getLangOpts().C99)
13645     diag_id = diag::ext_implicit_function_decl;
13646   else
13647     diag_id = diag::warn_implicit_function_decl;
13648   Diag(Loc, diag_id) << &II;
13649 
13650   // If we found a prior declaration of this function, don't bother building
13651   // another one. We've already pushed that one into scope, so there's nothing
13652   // more to do.
13653   if (ExternCPrev)
13654     return ExternCPrev;
13655 
13656   // Because typo correction is expensive, only do it if the implicit
13657   // function declaration is going to be treated as an error.
13658   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
13659     TypoCorrection Corrected;
13660     DeclFilterCCC<FunctionDecl> CCC{};
13661     if (S && (Corrected =
13662                   CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
13663                               S, nullptr, CCC, CTK_NonError)))
13664       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
13665                    /*ErrorRecovery*/false);
13666   }
13667 
13668   // Set a Declarator for the implicit definition: int foo();
13669   const char *Dummy;
13670   AttributeFactory attrFactory;
13671   DeclSpec DS(attrFactory);
13672   unsigned DiagID;
13673   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
13674                                   Context.getPrintingPolicy());
13675   (void)Error; // Silence warning.
13676   assert(!Error && "Error setting up implicit decl!");
13677   SourceLocation NoLoc;
13678   Declarator D(DS, DeclaratorContext::BlockContext);
13679   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
13680                                              /*IsAmbiguous=*/false,
13681                                              /*LParenLoc=*/NoLoc,
13682                                              /*Params=*/nullptr,
13683                                              /*NumParams=*/0,
13684                                              /*EllipsisLoc=*/NoLoc,
13685                                              /*RParenLoc=*/NoLoc,
13686                                              /*RefQualifierIsLvalueRef=*/true,
13687                                              /*RefQualifierLoc=*/NoLoc,
13688                                              /*MutableLoc=*/NoLoc, EST_None,
13689                                              /*ESpecRange=*/SourceRange(),
13690                                              /*Exceptions=*/nullptr,
13691                                              /*ExceptionRanges=*/nullptr,
13692                                              /*NumExceptions=*/0,
13693                                              /*NoexceptExpr=*/nullptr,
13694                                              /*ExceptionSpecTokens=*/nullptr,
13695                                              /*DeclsInPrototype=*/None, Loc,
13696                                              Loc, D),
13697                 std::move(DS.getAttributes()), SourceLocation());
13698   D.SetIdentifier(&II, Loc);
13699 
13700   // Insert this function into the enclosing block scope.
13701   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
13702   FD->setImplicit();
13703 
13704   AddKnownFunctionAttributes(FD);
13705 
13706   return FD;
13707 }
13708 
13709 /// Adds any function attributes that we know a priori based on
13710 /// the declaration of this function.
13711 ///
13712 /// These attributes can apply both to implicitly-declared builtins
13713 /// (like __builtin___printf_chk) or to library-declared functions
13714 /// like NSLog or printf.
13715 ///
13716 /// We need to check for duplicate attributes both here and where user-written
13717 /// attributes are applied to declarations.
13718 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
13719   if (FD->isInvalidDecl())
13720     return;
13721 
13722   // If this is a built-in function, map its builtin attributes to
13723   // actual attributes.
13724   if (unsigned BuiltinID = FD->getBuiltinID()) {
13725     // Handle printf-formatting attributes.
13726     unsigned FormatIdx;
13727     bool HasVAListArg;
13728     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
13729       if (!FD->hasAttr<FormatAttr>()) {
13730         const char *fmt = "printf";
13731         unsigned int NumParams = FD->getNumParams();
13732         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
13733             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
13734           fmt = "NSString";
13735         FD->addAttr(FormatAttr::CreateImplicit(Context,
13736                                                &Context.Idents.get(fmt),
13737                                                FormatIdx+1,
13738                                                HasVAListArg ? 0 : FormatIdx+2,
13739                                                FD->getLocation()));
13740       }
13741     }
13742     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
13743                                              HasVAListArg)) {
13744      if (!FD->hasAttr<FormatAttr>())
13745        FD->addAttr(FormatAttr::CreateImplicit(Context,
13746                                               &Context.Idents.get("scanf"),
13747                                               FormatIdx+1,
13748                                               HasVAListArg ? 0 : FormatIdx+2,
13749                                               FD->getLocation()));
13750     }
13751 
13752     // Handle automatically recognized callbacks.
13753     SmallVector<int, 4> Encoding;
13754     if (!FD->hasAttr<CallbackAttr>() &&
13755         Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
13756       FD->addAttr(CallbackAttr::CreateImplicit(
13757           Context, Encoding.data(), Encoding.size(), FD->getLocation()));
13758 
13759     // Mark const if we don't care about errno and that is the only thing
13760     // preventing the function from being const. This allows IRgen to use LLVM
13761     // intrinsics for such functions.
13762     if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
13763         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
13764       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13765 
13766     // We make "fma" on some platforms const because we know it does not set
13767     // errno in those environments even though it could set errno based on the
13768     // C standard.
13769     const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
13770     if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
13771         !FD->hasAttr<ConstAttr>()) {
13772       switch (BuiltinID) {
13773       case Builtin::BI__builtin_fma:
13774       case Builtin::BI__builtin_fmaf:
13775       case Builtin::BI__builtin_fmal:
13776       case Builtin::BIfma:
13777       case Builtin::BIfmaf:
13778       case Builtin::BIfmal:
13779         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13780         break;
13781       default:
13782         break;
13783       }
13784     }
13785 
13786     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
13787         !FD->hasAttr<ReturnsTwiceAttr>())
13788       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
13789                                          FD->getLocation()));
13790     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
13791       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
13792     if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
13793       FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
13794     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
13795       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13796     if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
13797         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
13798       // Add the appropriate attribute, depending on the CUDA compilation mode
13799       // and which target the builtin belongs to. For example, during host
13800       // compilation, aux builtins are __device__, while the rest are __host__.
13801       if (getLangOpts().CUDAIsDevice !=
13802           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
13803         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
13804       else
13805         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
13806     }
13807   }
13808 
13809   // If C++ exceptions are enabled but we are told extern "C" functions cannot
13810   // throw, add an implicit nothrow attribute to any extern "C" function we come
13811   // across.
13812   if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
13813       FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
13814     const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
13815     if (!FPT || FPT->getExceptionSpecType() == EST_None)
13816       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
13817   }
13818 
13819   IdentifierInfo *Name = FD->getIdentifier();
13820   if (!Name)
13821     return;
13822   if ((!getLangOpts().CPlusPlus &&
13823        FD->getDeclContext()->isTranslationUnit()) ||
13824       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
13825        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
13826        LinkageSpecDecl::lang_c)) {
13827     // Okay: this could be a libc/libm/Objective-C function we know
13828     // about.
13829   } else
13830     return;
13831 
13832   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
13833     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
13834     // target-specific builtins, perhaps?
13835     if (!FD->hasAttr<FormatAttr>())
13836       FD->addAttr(FormatAttr::CreateImplicit(Context,
13837                                              &Context.Idents.get("printf"), 2,
13838                                              Name->isStr("vasprintf") ? 0 : 3,
13839                                              FD->getLocation()));
13840   }
13841 
13842   if (Name->isStr("__CFStringMakeConstantString")) {
13843     // We already have a __builtin___CFStringMakeConstantString,
13844     // but builds that use -fno-constant-cfstrings don't go through that.
13845     if (!FD->hasAttr<FormatArgAttr>())
13846       FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
13847                                                 FD->getLocation()));
13848   }
13849 }
13850 
13851 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
13852                                     TypeSourceInfo *TInfo) {
13853   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
13854   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
13855 
13856   if (!TInfo) {
13857     assert(D.isInvalidType() && "no declarator info for valid type");
13858     TInfo = Context.getTrivialTypeSourceInfo(T);
13859   }
13860 
13861   // Scope manipulation handled by caller.
13862   TypedefDecl *NewTD =
13863       TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
13864                           D.getIdentifierLoc(), D.getIdentifier(), TInfo);
13865 
13866   // Bail out immediately if we have an invalid declaration.
13867   if (D.isInvalidType()) {
13868     NewTD->setInvalidDecl();
13869     return NewTD;
13870   }
13871 
13872   if (D.getDeclSpec().isModulePrivateSpecified()) {
13873     if (CurContext->isFunctionOrMethod())
13874       Diag(NewTD->getLocation(), diag::err_module_private_local)
13875         << 2 << NewTD->getDeclName()
13876         << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13877         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13878     else
13879       NewTD->setModulePrivate();
13880   }
13881 
13882   // C++ [dcl.typedef]p8:
13883   //   If the typedef declaration defines an unnamed class (or
13884   //   enum), the first typedef-name declared by the declaration
13885   //   to be that class type (or enum type) is used to denote the
13886   //   class type (or enum type) for linkage purposes only.
13887   // We need to check whether the type was declared in the declaration.
13888   switch (D.getDeclSpec().getTypeSpecType()) {
13889   case TST_enum:
13890   case TST_struct:
13891   case TST_interface:
13892   case TST_union:
13893   case TST_class: {
13894     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
13895     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
13896     break;
13897   }
13898 
13899   default:
13900     break;
13901   }
13902 
13903   return NewTD;
13904 }
13905 
13906 /// Check that this is a valid underlying type for an enum declaration.
13907 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
13908   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
13909   QualType T = TI->getType();
13910 
13911   if (T->isDependentType())
13912     return false;
13913 
13914   if (const BuiltinType *BT = T->getAs<BuiltinType>())
13915     if (BT->isInteger())
13916       return false;
13917 
13918   Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
13919   return true;
13920 }
13921 
13922 /// Check whether this is a valid redeclaration of a previous enumeration.
13923 /// \return true if the redeclaration was invalid.
13924 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
13925                                   QualType EnumUnderlyingTy, bool IsFixed,
13926                                   const EnumDecl *Prev) {
13927   if (IsScoped != Prev->isScoped()) {
13928     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
13929       << Prev->isScoped();
13930     Diag(Prev->getLocation(), diag::note_previous_declaration);
13931     return true;
13932   }
13933 
13934   if (IsFixed && Prev->isFixed()) {
13935     if (!EnumUnderlyingTy->isDependentType() &&
13936         !Prev->getIntegerType()->isDependentType() &&
13937         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
13938                                         Prev->getIntegerType())) {
13939       // TODO: Highlight the underlying type of the redeclaration.
13940       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
13941         << EnumUnderlyingTy << Prev->getIntegerType();
13942       Diag(Prev->getLocation(), diag::note_previous_declaration)
13943           << Prev->getIntegerTypeRange();
13944       return true;
13945     }
13946   } else if (IsFixed != Prev->isFixed()) {
13947     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
13948       << Prev->isFixed();
13949     Diag(Prev->getLocation(), diag::note_previous_declaration);
13950     return true;
13951   }
13952 
13953   return false;
13954 }
13955 
13956 /// Get diagnostic %select index for tag kind for
13957 /// redeclaration diagnostic message.
13958 /// WARNING: Indexes apply to particular diagnostics only!
13959 ///
13960 /// \returns diagnostic %select index.
13961 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
13962   switch (Tag) {
13963   case TTK_Struct: return 0;
13964   case TTK_Interface: return 1;
13965   case TTK_Class:  return 2;
13966   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
13967   }
13968 }
13969 
13970 /// Determine if tag kind is a class-key compatible with
13971 /// class for redeclaration (class, struct, or __interface).
13972 ///
13973 /// \returns true iff the tag kind is compatible.
13974 static bool isClassCompatTagKind(TagTypeKind Tag)
13975 {
13976   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
13977 }
13978 
13979 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
13980                                              TagTypeKind TTK) {
13981   if (isa<TypedefDecl>(PrevDecl))
13982     return NTK_Typedef;
13983   else if (isa<TypeAliasDecl>(PrevDecl))
13984     return NTK_TypeAlias;
13985   else if (isa<ClassTemplateDecl>(PrevDecl))
13986     return NTK_Template;
13987   else if (isa<TypeAliasTemplateDecl>(PrevDecl))
13988     return NTK_TypeAliasTemplate;
13989   else if (isa<TemplateTemplateParmDecl>(PrevDecl))
13990     return NTK_TemplateTemplateArgument;
13991   switch (TTK) {
13992   case TTK_Struct:
13993   case TTK_Interface:
13994   case TTK_Class:
13995     return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
13996   case TTK_Union:
13997     return NTK_NonUnion;
13998   case TTK_Enum:
13999     return NTK_NonEnum;
14000   }
14001   llvm_unreachable("invalid TTK");
14002 }
14003 
14004 /// Determine whether a tag with a given kind is acceptable
14005 /// as a redeclaration of the given tag declaration.
14006 ///
14007 /// \returns true if the new tag kind is acceptable, false otherwise.
14008 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
14009                                         TagTypeKind NewTag, bool isDefinition,
14010                                         SourceLocation NewTagLoc,
14011                                         const IdentifierInfo *Name) {
14012   // C++ [dcl.type.elab]p3:
14013   //   The class-key or enum keyword present in the
14014   //   elaborated-type-specifier shall agree in kind with the
14015   //   declaration to which the name in the elaborated-type-specifier
14016   //   refers. This rule also applies to the form of
14017   //   elaborated-type-specifier that declares a class-name or
14018   //   friend class since it can be construed as referring to the
14019   //   definition of the class. Thus, in any
14020   //   elaborated-type-specifier, the enum keyword shall be used to
14021   //   refer to an enumeration (7.2), the union class-key shall be
14022   //   used to refer to a union (clause 9), and either the class or
14023   //   struct class-key shall be used to refer to a class (clause 9)
14024   //   declared using the class or struct class-key.
14025   TagTypeKind OldTag = Previous->getTagKind();
14026   if (OldTag != NewTag &&
14027       !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
14028     return false;
14029 
14030   // Tags are compatible, but we might still want to warn on mismatched tags.
14031   // Non-class tags can't be mismatched at this point.
14032   if (!isClassCompatTagKind(NewTag))
14033     return true;
14034 
14035   // Declarations for which -Wmismatched-tags is disabled are entirely ignored
14036   // by our warning analysis. We don't want to warn about mismatches with (eg)
14037   // declarations in system headers that are designed to be specialized, but if
14038   // a user asks us to warn, we should warn if their code contains mismatched
14039   // declarations.
14040   auto IsIgnoredLoc = [&](SourceLocation Loc) {
14041     return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
14042                                       Loc);
14043   };
14044   if (IsIgnoredLoc(NewTagLoc))
14045     return true;
14046 
14047   auto IsIgnored = [&](const TagDecl *Tag) {
14048     return IsIgnoredLoc(Tag->getLocation());
14049   };
14050   while (IsIgnored(Previous)) {
14051     Previous = Previous->getPreviousDecl();
14052     if (!Previous)
14053       return true;
14054     OldTag = Previous->getTagKind();
14055   }
14056 
14057   bool isTemplate = false;
14058   if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
14059     isTemplate = Record->getDescribedClassTemplate();
14060 
14061   if (inTemplateInstantiation()) {
14062     if (OldTag != NewTag) {
14063       // In a template instantiation, do not offer fix-its for tag mismatches
14064       // since they usually mess up the template instead of fixing the problem.
14065       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
14066         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14067         << getRedeclDiagFromTagKind(OldTag);
14068       // FIXME: Note previous location?
14069     }
14070     return true;
14071   }
14072 
14073   if (isDefinition) {
14074     // On definitions, check all previous tags and issue a fix-it for each
14075     // one that doesn't match the current tag.
14076     if (Previous->getDefinition()) {
14077       // Don't suggest fix-its for redefinitions.
14078       return true;
14079     }
14080 
14081     bool previousMismatch = false;
14082     for (const TagDecl *I : Previous->redecls()) {
14083       if (I->getTagKind() != NewTag) {
14084         // Ignore previous declarations for which the warning was disabled.
14085         if (IsIgnored(I))
14086           continue;
14087 
14088         if (!previousMismatch) {
14089           previousMismatch = true;
14090           Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
14091             << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14092             << getRedeclDiagFromTagKind(I->getTagKind());
14093         }
14094         Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
14095           << getRedeclDiagFromTagKind(NewTag)
14096           << FixItHint::CreateReplacement(I->getInnerLocStart(),
14097                TypeWithKeyword::getTagTypeKindName(NewTag));
14098       }
14099     }
14100     return true;
14101   }
14102 
14103   // Identify the prevailing tag kind: this is the kind of the definition (if
14104   // there is a non-ignored definition), or otherwise the kind of the prior
14105   // (non-ignored) declaration.
14106   const TagDecl *PrevDef = Previous->getDefinition();
14107   if (PrevDef && IsIgnored(PrevDef))
14108     PrevDef = nullptr;
14109   const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
14110   if (Redecl->getTagKind() != NewTag) {
14111     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
14112       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14113       << getRedeclDiagFromTagKind(OldTag);
14114     Diag(Redecl->getLocation(), diag::note_previous_use);
14115 
14116     // If there is a previous definition, suggest a fix-it.
14117     if (PrevDef) {
14118       Diag(NewTagLoc, diag::note_struct_class_suggestion)
14119         << getRedeclDiagFromTagKind(Redecl->getTagKind())
14120         << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
14121              TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
14122     }
14123   }
14124 
14125   return true;
14126 }
14127 
14128 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
14129 /// from an outer enclosing namespace or file scope inside a friend declaration.
14130 /// This should provide the commented out code in the following snippet:
14131 ///   namespace N {
14132 ///     struct X;
14133 ///     namespace M {
14134 ///       struct Y { friend struct /*N::*/ X; };
14135 ///     }
14136 ///   }
14137 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
14138                                          SourceLocation NameLoc) {
14139   // While the decl is in a namespace, do repeated lookup of that name and see
14140   // if we get the same namespace back.  If we do not, continue until
14141   // translation unit scope, at which point we have a fully qualified NNS.
14142   SmallVector<IdentifierInfo *, 4> Namespaces;
14143   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
14144   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
14145     // This tag should be declared in a namespace, which can only be enclosed by
14146     // other namespaces.  Bail if there's an anonymous namespace in the chain.
14147     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
14148     if (!Namespace || Namespace->isAnonymousNamespace())
14149       return FixItHint();
14150     IdentifierInfo *II = Namespace->getIdentifier();
14151     Namespaces.push_back(II);
14152     NamedDecl *Lookup = SemaRef.LookupSingleName(
14153         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
14154     if (Lookup == Namespace)
14155       break;
14156   }
14157 
14158   // Once we have all the namespaces, reverse them to go outermost first, and
14159   // build an NNS.
14160   SmallString<64> Insertion;
14161   llvm::raw_svector_ostream OS(Insertion);
14162   if (DC->isTranslationUnit())
14163     OS << "::";
14164   std::reverse(Namespaces.begin(), Namespaces.end());
14165   for (auto *II : Namespaces)
14166     OS << II->getName() << "::";
14167   return FixItHint::CreateInsertion(NameLoc, Insertion);
14168 }
14169 
14170 /// Determine whether a tag originally declared in context \p OldDC can
14171 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
14172 /// found a declaration in \p OldDC as a previous decl, perhaps through a
14173 /// using-declaration).
14174 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
14175                                          DeclContext *NewDC) {
14176   OldDC = OldDC->getRedeclContext();
14177   NewDC = NewDC->getRedeclContext();
14178 
14179   if (OldDC->Equals(NewDC))
14180     return true;
14181 
14182   // In MSVC mode, we allow a redeclaration if the contexts are related (either
14183   // encloses the other).
14184   if (S.getLangOpts().MSVCCompat &&
14185       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
14186     return true;
14187 
14188   return false;
14189 }
14190 
14191 /// This is invoked when we see 'struct foo' or 'struct {'.  In the
14192 /// former case, Name will be non-null.  In the later case, Name will be null.
14193 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
14194 /// reference/declaration/definition of a tag.
14195 ///
14196 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
14197 /// trailing-type-specifier) other than one in an alias-declaration.
14198 ///
14199 /// \param SkipBody If non-null, will be set to indicate if the caller should
14200 /// skip the definition of this tag and treat it as if it were a declaration.
14201 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
14202                      SourceLocation KWLoc, CXXScopeSpec &SS,
14203                      IdentifierInfo *Name, SourceLocation NameLoc,
14204                      const ParsedAttributesView &Attrs, AccessSpecifier AS,
14205                      SourceLocation ModulePrivateLoc,
14206                      MultiTemplateParamsArg TemplateParameterLists,
14207                      bool &OwnedDecl, bool &IsDependent,
14208                      SourceLocation ScopedEnumKWLoc,
14209                      bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
14210                      bool IsTypeSpecifier, bool IsTemplateParamOrArg,
14211                      SkipBodyInfo *SkipBody) {
14212   // If this is not a definition, it must have a name.
14213   IdentifierInfo *OrigName = Name;
14214   assert((Name != nullptr || TUK == TUK_Definition) &&
14215          "Nameless record must be a definition!");
14216   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
14217 
14218   OwnedDecl = false;
14219   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
14220   bool ScopedEnum = ScopedEnumKWLoc.isValid();
14221 
14222   // FIXME: Check member specializations more carefully.
14223   bool isMemberSpecialization = false;
14224   bool Invalid = false;
14225 
14226   // We only need to do this matching if we have template parameters
14227   // or a scope specifier, which also conveniently avoids this work
14228   // for non-C++ cases.
14229   if (TemplateParameterLists.size() > 0 ||
14230       (SS.isNotEmpty() && TUK != TUK_Reference)) {
14231     if (TemplateParameterList *TemplateParams =
14232             MatchTemplateParametersToScopeSpecifier(
14233                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
14234                 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
14235       if (Kind == TTK_Enum) {
14236         Diag(KWLoc, diag::err_enum_template);
14237         return nullptr;
14238       }
14239 
14240       if (TemplateParams->size() > 0) {
14241         // This is a declaration or definition of a class template (which may
14242         // be a member of another template).
14243 
14244         if (Invalid)
14245           return nullptr;
14246 
14247         OwnedDecl = false;
14248         DeclResult Result = CheckClassTemplate(
14249             S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
14250             AS, ModulePrivateLoc,
14251             /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
14252             TemplateParameterLists.data(), SkipBody);
14253         return Result.get();
14254       } else {
14255         // The "template<>" header is extraneous.
14256         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
14257           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
14258         isMemberSpecialization = true;
14259       }
14260     }
14261   }
14262 
14263   // Figure out the underlying type if this a enum declaration. We need to do
14264   // this early, because it's needed to detect if this is an incompatible
14265   // redeclaration.
14266   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
14267   bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
14268 
14269   if (Kind == TTK_Enum) {
14270     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
14271       // No underlying type explicitly specified, or we failed to parse the
14272       // type, default to int.
14273       EnumUnderlying = Context.IntTy.getTypePtr();
14274     } else if (UnderlyingType.get()) {
14275       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
14276       // integral type; any cv-qualification is ignored.
14277       TypeSourceInfo *TI = nullptr;
14278       GetTypeFromParser(UnderlyingType.get(), &TI);
14279       EnumUnderlying = TI;
14280 
14281       if (CheckEnumUnderlyingType(TI))
14282         // Recover by falling back to int.
14283         EnumUnderlying = Context.IntTy.getTypePtr();
14284 
14285       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
14286                                           UPPC_FixedUnderlyingType))
14287         EnumUnderlying = Context.IntTy.getTypePtr();
14288 
14289     } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14290       // For MSVC ABI compatibility, unfixed enums must use an underlying type
14291       // of 'int'. However, if this is an unfixed forward declaration, don't set
14292       // the underlying type unless the user enables -fms-compatibility. This
14293       // makes unfixed forward declared enums incomplete and is more conforming.
14294       if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
14295         EnumUnderlying = Context.IntTy.getTypePtr();
14296     }
14297   }
14298 
14299   DeclContext *SearchDC = CurContext;
14300   DeclContext *DC = CurContext;
14301   bool isStdBadAlloc = false;
14302   bool isStdAlignValT = false;
14303 
14304   RedeclarationKind Redecl = forRedeclarationInCurContext();
14305   if (TUK == TUK_Friend || TUK == TUK_Reference)
14306     Redecl = NotForRedeclaration;
14307 
14308   /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
14309   /// implemented asks for structural equivalence checking, the returned decl
14310   /// here is passed back to the parser, allowing the tag body to be parsed.
14311   auto createTagFromNewDecl = [&]() -> TagDecl * {
14312     assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
14313     // If there is an identifier, use the location of the identifier as the
14314     // location of the decl, otherwise use the location of the struct/union
14315     // keyword.
14316     SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14317     TagDecl *New = nullptr;
14318 
14319     if (Kind == TTK_Enum) {
14320       New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
14321                              ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
14322       // If this is an undefined enum, bail.
14323       if (TUK != TUK_Definition && !Invalid)
14324         return nullptr;
14325       if (EnumUnderlying) {
14326         EnumDecl *ED = cast<EnumDecl>(New);
14327         if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
14328           ED->setIntegerTypeSourceInfo(TI);
14329         else
14330           ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
14331         ED->setPromotionType(ED->getIntegerType());
14332       }
14333     } else { // struct/union
14334       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14335                                nullptr);
14336     }
14337 
14338     if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
14339       // Add alignment attributes if necessary; these attributes are checked
14340       // when the ASTContext lays out the structure.
14341       //
14342       // It is important for implementing the correct semantics that this
14343       // happen here (in ActOnTag). The #pragma pack stack is
14344       // maintained as a result of parser callbacks which can occur at
14345       // many points during the parsing of a struct declaration (because
14346       // the #pragma tokens are effectively skipped over during the
14347       // parsing of the struct).
14348       if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
14349         AddAlignmentAttributesForRecord(RD);
14350         AddMsStructLayoutForRecord(RD);
14351       }
14352     }
14353     New->setLexicalDeclContext(CurContext);
14354     return New;
14355   };
14356 
14357   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
14358   if (Name && SS.isNotEmpty()) {
14359     // We have a nested-name tag ('struct foo::bar').
14360 
14361     // Check for invalid 'foo::'.
14362     if (SS.isInvalid()) {
14363       Name = nullptr;
14364       goto CreateNewDecl;
14365     }
14366 
14367     // If this is a friend or a reference to a class in a dependent
14368     // context, don't try to make a decl for it.
14369     if (TUK == TUK_Friend || TUK == TUK_Reference) {
14370       DC = computeDeclContext(SS, false);
14371       if (!DC) {
14372         IsDependent = true;
14373         return nullptr;
14374       }
14375     } else {
14376       DC = computeDeclContext(SS, true);
14377       if (!DC) {
14378         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
14379           << SS.getRange();
14380         return nullptr;
14381       }
14382     }
14383 
14384     if (RequireCompleteDeclContext(SS, DC))
14385       return nullptr;
14386 
14387     SearchDC = DC;
14388     // Look-up name inside 'foo::'.
14389     LookupQualifiedName(Previous, DC);
14390 
14391     if (Previous.isAmbiguous())
14392       return nullptr;
14393 
14394     if (Previous.empty()) {
14395       // Name lookup did not find anything. However, if the
14396       // nested-name-specifier refers to the current instantiation,
14397       // and that current instantiation has any dependent base
14398       // classes, we might find something at instantiation time: treat
14399       // this as a dependent elaborated-type-specifier.
14400       // But this only makes any sense for reference-like lookups.
14401       if (Previous.wasNotFoundInCurrentInstantiation() &&
14402           (TUK == TUK_Reference || TUK == TUK_Friend)) {
14403         IsDependent = true;
14404         return nullptr;
14405       }
14406 
14407       // A tag 'foo::bar' must already exist.
14408       Diag(NameLoc, diag::err_not_tag_in_scope)
14409         << Kind << Name << DC << SS.getRange();
14410       Name = nullptr;
14411       Invalid = true;
14412       goto CreateNewDecl;
14413     }
14414   } else if (Name) {
14415     // C++14 [class.mem]p14:
14416     //   If T is the name of a class, then each of the following shall have a
14417     //   name different from T:
14418     //    -- every member of class T that is itself a type
14419     if (TUK != TUK_Reference && TUK != TUK_Friend &&
14420         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
14421       return nullptr;
14422 
14423     // If this is a named struct, check to see if there was a previous forward
14424     // declaration or definition.
14425     // FIXME: We're looking into outer scopes here, even when we
14426     // shouldn't be. Doing so can result in ambiguities that we
14427     // shouldn't be diagnosing.
14428     LookupName(Previous, S);
14429 
14430     // When declaring or defining a tag, ignore ambiguities introduced
14431     // by types using'ed into this scope.
14432     if (Previous.isAmbiguous() &&
14433         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
14434       LookupResult::Filter F = Previous.makeFilter();
14435       while (F.hasNext()) {
14436         NamedDecl *ND = F.next();
14437         if (!ND->getDeclContext()->getRedeclContext()->Equals(
14438                 SearchDC->getRedeclContext()))
14439           F.erase();
14440       }
14441       F.done();
14442     }
14443 
14444     // C++11 [namespace.memdef]p3:
14445     //   If the name in a friend declaration is neither qualified nor
14446     //   a template-id and the declaration is a function or an
14447     //   elaborated-type-specifier, the lookup to determine whether
14448     //   the entity has been previously declared shall not consider
14449     //   any scopes outside the innermost enclosing namespace.
14450     //
14451     // MSVC doesn't implement the above rule for types, so a friend tag
14452     // declaration may be a redeclaration of a type declared in an enclosing
14453     // scope.  They do implement this rule for friend functions.
14454     //
14455     // Does it matter that this should be by scope instead of by
14456     // semantic context?
14457     if (!Previous.empty() && TUK == TUK_Friend) {
14458       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
14459       LookupResult::Filter F = Previous.makeFilter();
14460       bool FriendSawTagOutsideEnclosingNamespace = false;
14461       while (F.hasNext()) {
14462         NamedDecl *ND = F.next();
14463         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
14464         if (DC->isFileContext() &&
14465             !EnclosingNS->Encloses(ND->getDeclContext())) {
14466           if (getLangOpts().MSVCCompat)
14467             FriendSawTagOutsideEnclosingNamespace = true;
14468           else
14469             F.erase();
14470         }
14471       }
14472       F.done();
14473 
14474       // Diagnose this MSVC extension in the easy case where lookup would have
14475       // unambiguously found something outside the enclosing namespace.
14476       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
14477         NamedDecl *ND = Previous.getFoundDecl();
14478         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
14479             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
14480       }
14481     }
14482 
14483     // Note:  there used to be some attempt at recovery here.
14484     if (Previous.isAmbiguous())
14485       return nullptr;
14486 
14487     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
14488       // FIXME: This makes sure that we ignore the contexts associated
14489       // with C structs, unions, and enums when looking for a matching
14490       // tag declaration or definition. See the similar lookup tweak
14491       // in Sema::LookupName; is there a better way to deal with this?
14492       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
14493         SearchDC = SearchDC->getParent();
14494     }
14495   }
14496 
14497   if (Previous.isSingleResult() &&
14498       Previous.getFoundDecl()->isTemplateParameter()) {
14499     // Maybe we will complain about the shadowed template parameter.
14500     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
14501     // Just pretend that we didn't see the previous declaration.
14502     Previous.clear();
14503   }
14504 
14505   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
14506       DC->Equals(getStdNamespace())) {
14507     if (Name->isStr("bad_alloc")) {
14508       // This is a declaration of or a reference to "std::bad_alloc".
14509       isStdBadAlloc = true;
14510 
14511       // If std::bad_alloc has been implicitly declared (but made invisible to
14512       // name lookup), fill in this implicit declaration as the previous
14513       // declaration, so that the declarations get chained appropriately.
14514       if (Previous.empty() && StdBadAlloc)
14515         Previous.addDecl(getStdBadAlloc());
14516     } else if (Name->isStr("align_val_t")) {
14517       isStdAlignValT = true;
14518       if (Previous.empty() && StdAlignValT)
14519         Previous.addDecl(getStdAlignValT());
14520     }
14521   }
14522 
14523   // If we didn't find a previous declaration, and this is a reference
14524   // (or friend reference), move to the correct scope.  In C++, we
14525   // also need to do a redeclaration lookup there, just in case
14526   // there's a shadow friend decl.
14527   if (Name && Previous.empty() &&
14528       (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
14529     if (Invalid) goto CreateNewDecl;
14530     assert(SS.isEmpty());
14531 
14532     if (TUK == TUK_Reference || IsTemplateParamOrArg) {
14533       // C++ [basic.scope.pdecl]p5:
14534       //   -- for an elaborated-type-specifier of the form
14535       //
14536       //          class-key identifier
14537       //
14538       //      if the elaborated-type-specifier is used in the
14539       //      decl-specifier-seq or parameter-declaration-clause of a
14540       //      function defined in namespace scope, the identifier is
14541       //      declared as a class-name in the namespace that contains
14542       //      the declaration; otherwise, except as a friend
14543       //      declaration, the identifier is declared in the smallest
14544       //      non-class, non-function-prototype scope that contains the
14545       //      declaration.
14546       //
14547       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
14548       // C structs and unions.
14549       //
14550       // It is an error in C++ to declare (rather than define) an enum
14551       // type, including via an elaborated type specifier.  We'll
14552       // diagnose that later; for now, declare the enum in the same
14553       // scope as we would have picked for any other tag type.
14554       //
14555       // GNU C also supports this behavior as part of its incomplete
14556       // enum types extension, while GNU C++ does not.
14557       //
14558       // Find the context where we'll be declaring the tag.
14559       // FIXME: We would like to maintain the current DeclContext as the
14560       // lexical context,
14561       SearchDC = getTagInjectionContext(SearchDC);
14562 
14563       // Find the scope where we'll be declaring the tag.
14564       S = getTagInjectionScope(S, getLangOpts());
14565     } else {
14566       assert(TUK == TUK_Friend);
14567       // C++ [namespace.memdef]p3:
14568       //   If a friend declaration in a non-local class first declares a
14569       //   class or function, the friend class or function is a member of
14570       //   the innermost enclosing namespace.
14571       SearchDC = SearchDC->getEnclosingNamespaceContext();
14572     }
14573 
14574     // In C++, we need to do a redeclaration lookup to properly
14575     // diagnose some problems.
14576     // FIXME: redeclaration lookup is also used (with and without C++) to find a
14577     // hidden declaration so that we don't get ambiguity errors when using a
14578     // type declared by an elaborated-type-specifier.  In C that is not correct
14579     // and we should instead merge compatible types found by lookup.
14580     if (getLangOpts().CPlusPlus) {
14581       Previous.setRedeclarationKind(forRedeclarationInCurContext());
14582       LookupQualifiedName(Previous, SearchDC);
14583     } else {
14584       Previous.setRedeclarationKind(forRedeclarationInCurContext());
14585       LookupName(Previous, S);
14586     }
14587   }
14588 
14589   // If we have a known previous declaration to use, then use it.
14590   if (Previous.empty() && SkipBody && SkipBody->Previous)
14591     Previous.addDecl(SkipBody->Previous);
14592 
14593   if (!Previous.empty()) {
14594     NamedDecl *PrevDecl = Previous.getFoundDecl();
14595     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
14596 
14597     // It's okay to have a tag decl in the same scope as a typedef
14598     // which hides a tag decl in the same scope.  Finding this
14599     // insanity with a redeclaration lookup can only actually happen
14600     // in C++.
14601     //
14602     // This is also okay for elaborated-type-specifiers, which is
14603     // technically forbidden by the current standard but which is
14604     // okay according to the likely resolution of an open issue;
14605     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
14606     if (getLangOpts().CPlusPlus) {
14607       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
14608         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
14609           TagDecl *Tag = TT->getDecl();
14610           if (Tag->getDeclName() == Name &&
14611               Tag->getDeclContext()->getRedeclContext()
14612                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
14613             PrevDecl = Tag;
14614             Previous.clear();
14615             Previous.addDecl(Tag);
14616             Previous.resolveKind();
14617           }
14618         }
14619       }
14620     }
14621 
14622     // If this is a redeclaration of a using shadow declaration, it must
14623     // declare a tag in the same context. In MSVC mode, we allow a
14624     // redefinition if either context is within the other.
14625     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
14626       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
14627       if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
14628           isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
14629           !(OldTag && isAcceptableTagRedeclContext(
14630                           *this, OldTag->getDeclContext(), SearchDC))) {
14631         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
14632         Diag(Shadow->getTargetDecl()->getLocation(),
14633              diag::note_using_decl_target);
14634         Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
14635             << 0;
14636         // Recover by ignoring the old declaration.
14637         Previous.clear();
14638         goto CreateNewDecl;
14639       }
14640     }
14641 
14642     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
14643       // If this is a use of a previous tag, or if the tag is already declared
14644       // in the same scope (so that the definition/declaration completes or
14645       // rementions the tag), reuse the decl.
14646       if (TUK == TUK_Reference || TUK == TUK_Friend ||
14647           isDeclInScope(DirectPrevDecl, SearchDC, S,
14648                         SS.isNotEmpty() || isMemberSpecialization)) {
14649         // Make sure that this wasn't declared as an enum and now used as a
14650         // struct or something similar.
14651         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
14652                                           TUK == TUK_Definition, KWLoc,
14653                                           Name)) {
14654           bool SafeToContinue
14655             = (PrevTagDecl->getTagKind() != TTK_Enum &&
14656                Kind != TTK_Enum);
14657           if (SafeToContinue)
14658             Diag(KWLoc, diag::err_use_with_wrong_tag)
14659               << Name
14660               << FixItHint::CreateReplacement(SourceRange(KWLoc),
14661                                               PrevTagDecl->getKindName());
14662           else
14663             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
14664           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
14665 
14666           if (SafeToContinue)
14667             Kind = PrevTagDecl->getTagKind();
14668           else {
14669             // Recover by making this an anonymous redefinition.
14670             Name = nullptr;
14671             Previous.clear();
14672             Invalid = true;
14673           }
14674         }
14675 
14676         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
14677           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
14678 
14679           // If this is an elaborated-type-specifier for a scoped enumeration,
14680           // the 'class' keyword is not necessary and not permitted.
14681           if (TUK == TUK_Reference || TUK == TUK_Friend) {
14682             if (ScopedEnum)
14683               Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
14684                 << PrevEnum->isScoped()
14685                 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
14686             return PrevTagDecl;
14687           }
14688 
14689           QualType EnumUnderlyingTy;
14690           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
14691             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
14692           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
14693             EnumUnderlyingTy = QualType(T, 0);
14694 
14695           // All conflicts with previous declarations are recovered by
14696           // returning the previous declaration, unless this is a definition,
14697           // in which case we want the caller to bail out.
14698           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
14699                                      ScopedEnum, EnumUnderlyingTy,
14700                                      IsFixed, PrevEnum))
14701             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
14702         }
14703 
14704         // C++11 [class.mem]p1:
14705         //   A member shall not be declared twice in the member-specification,
14706         //   except that a nested class or member class template can be declared
14707         //   and then later defined.
14708         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
14709             S->isDeclScope(PrevDecl)) {
14710           Diag(NameLoc, diag::ext_member_redeclared);
14711           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
14712         }
14713 
14714         if (!Invalid) {
14715           // If this is a use, just return the declaration we found, unless
14716           // we have attributes.
14717           if (TUK == TUK_Reference || TUK == TUK_Friend) {
14718             if (!Attrs.empty()) {
14719               // FIXME: Diagnose these attributes. For now, we create a new
14720               // declaration to hold them.
14721             } else if (TUK == TUK_Reference &&
14722                        (PrevTagDecl->getFriendObjectKind() ==
14723                             Decl::FOK_Undeclared ||
14724                         PrevDecl->getOwningModule() != getCurrentModule()) &&
14725                        SS.isEmpty()) {
14726               // This declaration is a reference to an existing entity, but
14727               // has different visibility from that entity: it either makes
14728               // a friend visible or it makes a type visible in a new module.
14729               // In either case, create a new declaration. We only do this if
14730               // the declaration would have meant the same thing if no prior
14731               // declaration were found, that is, if it was found in the same
14732               // scope where we would have injected a declaration.
14733               if (!getTagInjectionContext(CurContext)->getRedeclContext()
14734                        ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
14735                 return PrevTagDecl;
14736               // This is in the injected scope, create a new declaration in
14737               // that scope.
14738               S = getTagInjectionScope(S, getLangOpts());
14739             } else {
14740               return PrevTagDecl;
14741             }
14742           }
14743 
14744           // Diagnose attempts to redefine a tag.
14745           if (TUK == TUK_Definition) {
14746             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
14747               // If we're defining a specialization and the previous definition
14748               // is from an implicit instantiation, don't emit an error
14749               // here; we'll catch this in the general case below.
14750               bool IsExplicitSpecializationAfterInstantiation = false;
14751               if (isMemberSpecialization) {
14752                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
14753                   IsExplicitSpecializationAfterInstantiation =
14754                     RD->getTemplateSpecializationKind() !=
14755                     TSK_ExplicitSpecialization;
14756                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
14757                   IsExplicitSpecializationAfterInstantiation =
14758                     ED->getTemplateSpecializationKind() !=
14759                     TSK_ExplicitSpecialization;
14760               }
14761 
14762               // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
14763               // not keep more that one definition around (merge them). However,
14764               // ensure the decl passes the structural compatibility check in
14765               // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
14766               NamedDecl *Hidden = nullptr;
14767               if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
14768                 // There is a definition of this tag, but it is not visible. We
14769                 // explicitly make use of C++'s one definition rule here, and
14770                 // assume that this definition is identical to the hidden one
14771                 // we already have. Make the existing definition visible and
14772                 // use it in place of this one.
14773                 if (!getLangOpts().CPlusPlus) {
14774                   // Postpone making the old definition visible until after we
14775                   // complete parsing the new one and do the structural
14776                   // comparison.
14777                   SkipBody->CheckSameAsPrevious = true;
14778                   SkipBody->New = createTagFromNewDecl();
14779                   SkipBody->Previous = Def;
14780                   return Def;
14781                 } else {
14782                   SkipBody->ShouldSkip = true;
14783                   SkipBody->Previous = Def;
14784                   makeMergedDefinitionVisible(Hidden);
14785                   // Carry on and handle it like a normal definition. We'll
14786                   // skip starting the definitiion later.
14787                 }
14788               } else if (!IsExplicitSpecializationAfterInstantiation) {
14789                 // A redeclaration in function prototype scope in C isn't
14790                 // visible elsewhere, so merely issue a warning.
14791                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
14792                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
14793                 else
14794                   Diag(NameLoc, diag::err_redefinition) << Name;
14795                 notePreviousDefinition(Def,
14796                                        NameLoc.isValid() ? NameLoc : KWLoc);
14797                 // If this is a redefinition, recover by making this
14798                 // struct be anonymous, which will make any later
14799                 // references get the previous definition.
14800                 Name = nullptr;
14801                 Previous.clear();
14802                 Invalid = true;
14803               }
14804             } else {
14805               // If the type is currently being defined, complain
14806               // about a nested redefinition.
14807               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
14808               if (TD->isBeingDefined()) {
14809                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
14810                 Diag(PrevTagDecl->getLocation(),
14811                      diag::note_previous_definition);
14812                 Name = nullptr;
14813                 Previous.clear();
14814                 Invalid = true;
14815               }
14816             }
14817 
14818             // Okay, this is definition of a previously declared or referenced
14819             // tag. We're going to create a new Decl for it.
14820           }
14821 
14822           // Okay, we're going to make a redeclaration.  If this is some kind
14823           // of reference, make sure we build the redeclaration in the same DC
14824           // as the original, and ignore the current access specifier.
14825           if (TUK == TUK_Friend || TUK == TUK_Reference) {
14826             SearchDC = PrevTagDecl->getDeclContext();
14827             AS = AS_none;
14828           }
14829         }
14830         // If we get here we have (another) forward declaration or we
14831         // have a definition.  Just create a new decl.
14832 
14833       } else {
14834         // If we get here, this is a definition of a new tag type in a nested
14835         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
14836         // new decl/type.  We set PrevDecl to NULL so that the entities
14837         // have distinct types.
14838         Previous.clear();
14839       }
14840       // If we get here, we're going to create a new Decl. If PrevDecl
14841       // is non-NULL, it's a definition of the tag declared by
14842       // PrevDecl. If it's NULL, we have a new definition.
14843 
14844     // Otherwise, PrevDecl is not a tag, but was found with tag
14845     // lookup.  This is only actually possible in C++, where a few
14846     // things like templates still live in the tag namespace.
14847     } else {
14848       // Use a better diagnostic if an elaborated-type-specifier
14849       // found the wrong kind of type on the first
14850       // (non-redeclaration) lookup.
14851       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
14852           !Previous.isForRedeclaration()) {
14853         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
14854         Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
14855                                                        << Kind;
14856         Diag(PrevDecl->getLocation(), diag::note_declared_at);
14857         Invalid = true;
14858 
14859       // Otherwise, only diagnose if the declaration is in scope.
14860       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
14861                                 SS.isNotEmpty() || isMemberSpecialization)) {
14862         // do nothing
14863 
14864       // Diagnose implicit declarations introduced by elaborated types.
14865       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
14866         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
14867         Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
14868         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
14869         Invalid = true;
14870 
14871       // Otherwise it's a declaration.  Call out a particularly common
14872       // case here.
14873       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
14874         unsigned Kind = 0;
14875         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
14876         Diag(NameLoc, diag::err_tag_definition_of_typedef)
14877           << Name << Kind << TND->getUnderlyingType();
14878         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
14879         Invalid = true;
14880 
14881       // Otherwise, diagnose.
14882       } else {
14883         // The tag name clashes with something else in the target scope,
14884         // issue an error and recover by making this tag be anonymous.
14885         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
14886         notePreviousDefinition(PrevDecl, NameLoc);
14887         Name = nullptr;
14888         Invalid = true;
14889       }
14890 
14891       // The existing declaration isn't relevant to us; we're in a
14892       // new scope, so clear out the previous declaration.
14893       Previous.clear();
14894     }
14895   }
14896 
14897 CreateNewDecl:
14898 
14899   TagDecl *PrevDecl = nullptr;
14900   if (Previous.isSingleResult())
14901     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
14902 
14903   // If there is an identifier, use the location of the identifier as the
14904   // location of the decl, otherwise use the location of the struct/union
14905   // keyword.
14906   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14907 
14908   // Otherwise, create a new declaration. If there is a previous
14909   // declaration of the same entity, the two will be linked via
14910   // PrevDecl.
14911   TagDecl *New;
14912 
14913   if (Kind == TTK_Enum) {
14914     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
14915     // enum X { A, B, C } D;    D should chain to X.
14916     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
14917                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
14918                            ScopedEnumUsesClassTag, IsFixed);
14919 
14920     if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
14921       StdAlignValT = cast<EnumDecl>(New);
14922 
14923     // If this is an undefined enum, warn.
14924     if (TUK != TUK_Definition && !Invalid) {
14925       TagDecl *Def;
14926       if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
14927         // C++0x: 7.2p2: opaque-enum-declaration.
14928         // Conflicts are diagnosed above. Do nothing.
14929       }
14930       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
14931         Diag(Loc, diag::ext_forward_ref_enum_def)
14932           << New;
14933         Diag(Def->getLocation(), diag::note_previous_definition);
14934       } else {
14935         unsigned DiagID = diag::ext_forward_ref_enum;
14936         if (getLangOpts().MSVCCompat)
14937           DiagID = diag::ext_ms_forward_ref_enum;
14938         else if (getLangOpts().CPlusPlus)
14939           DiagID = diag::err_forward_ref_enum;
14940         Diag(Loc, DiagID);
14941       }
14942     }
14943 
14944     if (EnumUnderlying) {
14945       EnumDecl *ED = cast<EnumDecl>(New);
14946       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
14947         ED->setIntegerTypeSourceInfo(TI);
14948       else
14949         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
14950       ED->setPromotionType(ED->getIntegerType());
14951       assert(ED->isComplete() && "enum with type should be complete");
14952     }
14953   } else {
14954     // struct/union/class
14955 
14956     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
14957     // struct X { int A; } D;    D should chain to X.
14958     if (getLangOpts().CPlusPlus) {
14959       // FIXME: Look for a way to use RecordDecl for simple structs.
14960       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14961                                   cast_or_null<CXXRecordDecl>(PrevDecl));
14962 
14963       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
14964         StdBadAlloc = cast<CXXRecordDecl>(New);
14965     } else
14966       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14967                                cast_or_null<RecordDecl>(PrevDecl));
14968   }
14969 
14970   // C++11 [dcl.type]p3:
14971   //   A type-specifier-seq shall not define a class or enumeration [...].
14972   if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
14973       TUK == TUK_Definition) {
14974     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
14975       << Context.getTagDeclType(New);
14976     Invalid = true;
14977   }
14978 
14979   if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
14980       DC->getDeclKind() == Decl::Enum) {
14981     Diag(New->getLocation(), diag::err_type_defined_in_enum)
14982       << Context.getTagDeclType(New);
14983     Invalid = true;
14984   }
14985 
14986   // Maybe add qualifier info.
14987   if (SS.isNotEmpty()) {
14988     if (SS.isSet()) {
14989       // If this is either a declaration or a definition, check the
14990       // nested-name-specifier against the current context.
14991       if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
14992           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
14993                                        isMemberSpecialization))
14994         Invalid = true;
14995 
14996       New->setQualifierInfo(SS.getWithLocInContext(Context));
14997       if (TemplateParameterLists.size() > 0) {
14998         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
14999       }
15000     }
15001     else
15002       Invalid = true;
15003   }
15004 
15005   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
15006     // Add alignment attributes if necessary; these attributes are checked when
15007     // the ASTContext lays out the structure.
15008     //
15009     // It is important for implementing the correct semantics that this
15010     // happen here (in ActOnTag). The #pragma pack stack is
15011     // maintained as a result of parser callbacks which can occur at
15012     // many points during the parsing of a struct declaration (because
15013     // the #pragma tokens are effectively skipped over during the
15014     // parsing of the struct).
15015     if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
15016       AddAlignmentAttributesForRecord(RD);
15017       AddMsStructLayoutForRecord(RD);
15018     }
15019   }
15020 
15021   if (ModulePrivateLoc.isValid()) {
15022     if (isMemberSpecialization)
15023       Diag(New->getLocation(), diag::err_module_private_specialization)
15024         << 2
15025         << FixItHint::CreateRemoval(ModulePrivateLoc);
15026     // __module_private__ does not apply to local classes. However, we only
15027     // diagnose this as an error when the declaration specifiers are
15028     // freestanding. Here, we just ignore the __module_private__.
15029     else if (!SearchDC->isFunctionOrMethod())
15030       New->setModulePrivate();
15031   }
15032 
15033   // If this is a specialization of a member class (of a class template),
15034   // check the specialization.
15035   if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
15036     Invalid = true;
15037 
15038   // If we're declaring or defining a tag in function prototype scope in C,
15039   // note that this type can only be used within the function and add it to
15040   // the list of decls to inject into the function definition scope.
15041   if ((Name || Kind == TTK_Enum) &&
15042       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
15043     if (getLangOpts().CPlusPlus) {
15044       // C++ [dcl.fct]p6:
15045       //   Types shall not be defined in return or parameter types.
15046       if (TUK == TUK_Definition && !IsTypeSpecifier) {
15047         Diag(Loc, diag::err_type_defined_in_param_type)
15048             << Name;
15049         Invalid = true;
15050       }
15051     } else if (!PrevDecl) {
15052       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
15053     }
15054   }
15055 
15056   if (Invalid)
15057     New->setInvalidDecl();
15058 
15059   // Set the lexical context. If the tag has a C++ scope specifier, the
15060   // lexical context will be different from the semantic context.
15061   New->setLexicalDeclContext(CurContext);
15062 
15063   // Mark this as a friend decl if applicable.
15064   // In Microsoft mode, a friend declaration also acts as a forward
15065   // declaration so we always pass true to setObjectOfFriendDecl to make
15066   // the tag name visible.
15067   if (TUK == TUK_Friend)
15068     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
15069 
15070   // Set the access specifier.
15071   if (!Invalid && SearchDC->isRecord())
15072     SetMemberAccessSpecifier(New, PrevDecl, AS);
15073 
15074   if (PrevDecl)
15075     CheckRedeclarationModuleOwnership(New, PrevDecl);
15076 
15077   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
15078     New->startDefinition();
15079 
15080   ProcessDeclAttributeList(S, New, Attrs);
15081   AddPragmaAttributes(S, New);
15082 
15083   // If this has an identifier, add it to the scope stack.
15084   if (TUK == TUK_Friend) {
15085     // We might be replacing an existing declaration in the lookup tables;
15086     // if so, borrow its access specifier.
15087     if (PrevDecl)
15088       New->setAccess(PrevDecl->getAccess());
15089 
15090     DeclContext *DC = New->getDeclContext()->getRedeclContext();
15091     DC->makeDeclVisibleInContext(New);
15092     if (Name) // can be null along some error paths
15093       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
15094         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
15095   } else if (Name) {
15096     S = getNonFieldDeclScope(S);
15097     PushOnScopeChains(New, S, true);
15098   } else {
15099     CurContext->addDecl(New);
15100   }
15101 
15102   // If this is the C FILE type, notify the AST context.
15103   if (IdentifierInfo *II = New->getIdentifier())
15104     if (!New->isInvalidDecl() &&
15105         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
15106         II->isStr("FILE"))
15107       Context.setFILEDecl(New);
15108 
15109   if (PrevDecl)
15110     mergeDeclAttributes(New, PrevDecl);
15111 
15112   // If there's a #pragma GCC visibility in scope, set the visibility of this
15113   // record.
15114   AddPushedVisibilityAttribute(New);
15115 
15116   if (isMemberSpecialization && !New->isInvalidDecl())
15117     CompleteMemberSpecialization(New, Previous);
15118 
15119   OwnedDecl = true;
15120   // In C++, don't return an invalid declaration. We can't recover well from
15121   // the cases where we make the type anonymous.
15122   if (Invalid && getLangOpts().CPlusPlus) {
15123     if (New->isBeingDefined())
15124       if (auto RD = dyn_cast<RecordDecl>(New))
15125         RD->completeDefinition();
15126     return nullptr;
15127   } else if (SkipBody && SkipBody->ShouldSkip) {
15128     return SkipBody->Previous;
15129   } else {
15130     return New;
15131   }
15132 }
15133 
15134 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
15135   AdjustDeclIfTemplate(TagD);
15136   TagDecl *Tag = cast<TagDecl>(TagD);
15137 
15138   // Enter the tag context.
15139   PushDeclContext(S, Tag);
15140 
15141   ActOnDocumentableDecl(TagD);
15142 
15143   // If there's a #pragma GCC visibility in scope, set the visibility of this
15144   // record.
15145   AddPushedVisibilityAttribute(Tag);
15146 }
15147 
15148 bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
15149                                     SkipBodyInfo &SkipBody) {
15150   if (!hasStructuralCompatLayout(Prev, SkipBody.New))
15151     return false;
15152 
15153   // Make the previous decl visible.
15154   makeMergedDefinitionVisible(SkipBody.Previous);
15155   return true;
15156 }
15157 
15158 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
15159   assert(isa<ObjCContainerDecl>(IDecl) &&
15160          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
15161   DeclContext *OCD = cast<DeclContext>(IDecl);
15162   assert(getContainingDC(OCD) == CurContext &&
15163       "The next DeclContext should be lexically contained in the current one.");
15164   CurContext = OCD;
15165   return IDecl;
15166 }
15167 
15168 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
15169                                            SourceLocation FinalLoc,
15170                                            bool IsFinalSpelledSealed,
15171                                            SourceLocation LBraceLoc) {
15172   AdjustDeclIfTemplate(TagD);
15173   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
15174 
15175   FieldCollector->StartClass();
15176 
15177   if (!Record->getIdentifier())
15178     return;
15179 
15180   if (FinalLoc.isValid())
15181     Record->addAttr(new (Context)
15182                     FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
15183 
15184   // C++ [class]p2:
15185   //   [...] The class-name is also inserted into the scope of the
15186   //   class itself; this is known as the injected-class-name. For
15187   //   purposes of access checking, the injected-class-name is treated
15188   //   as if it were a public member name.
15189   CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
15190       Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
15191       Record->getLocation(), Record->getIdentifier(),
15192       /*PrevDecl=*/nullptr,
15193       /*DelayTypeCreation=*/true);
15194   Context.getTypeDeclType(InjectedClassName, Record);
15195   InjectedClassName->setImplicit();
15196   InjectedClassName->setAccess(AS_public);
15197   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
15198       InjectedClassName->setDescribedClassTemplate(Template);
15199   PushOnScopeChains(InjectedClassName, S);
15200   assert(InjectedClassName->isInjectedClassName() &&
15201          "Broken injected-class-name");
15202 }
15203 
15204 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
15205                                     SourceRange BraceRange) {
15206   AdjustDeclIfTemplate(TagD);
15207   TagDecl *Tag = cast<TagDecl>(TagD);
15208   Tag->setBraceRange(BraceRange);
15209 
15210   // Make sure we "complete" the definition even it is invalid.
15211   if (Tag->isBeingDefined()) {
15212     assert(Tag->isInvalidDecl() && "We should already have completed it");
15213     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15214       RD->completeDefinition();
15215   }
15216 
15217   if (isa<CXXRecordDecl>(Tag)) {
15218     FieldCollector->FinishClass();
15219   }
15220 
15221   // Exit this scope of this tag's definition.
15222   PopDeclContext();
15223 
15224   if (getCurLexicalContext()->isObjCContainer() &&
15225       Tag->getDeclContext()->isFileContext())
15226     Tag->setTopLevelDeclInObjCContainer();
15227 
15228   // Notify the consumer that we've defined a tag.
15229   if (!Tag->isInvalidDecl())
15230     Consumer.HandleTagDeclDefinition(Tag);
15231 }
15232 
15233 void Sema::ActOnObjCContainerFinishDefinition() {
15234   // Exit this scope of this interface definition.
15235   PopDeclContext();
15236 }
15237 
15238 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
15239   assert(DC == CurContext && "Mismatch of container contexts");
15240   OriginalLexicalContext = DC;
15241   ActOnObjCContainerFinishDefinition();
15242 }
15243 
15244 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
15245   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
15246   OriginalLexicalContext = nullptr;
15247 }
15248 
15249 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
15250   AdjustDeclIfTemplate(TagD);
15251   TagDecl *Tag = cast<TagDecl>(TagD);
15252   Tag->setInvalidDecl();
15253 
15254   // Make sure we "complete" the definition even it is invalid.
15255   if (Tag->isBeingDefined()) {
15256     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15257       RD->completeDefinition();
15258   }
15259 
15260   // We're undoing ActOnTagStartDefinition here, not
15261   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
15262   // the FieldCollector.
15263 
15264   PopDeclContext();
15265 }
15266 
15267 // Note that FieldName may be null for anonymous bitfields.
15268 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
15269                                 IdentifierInfo *FieldName,
15270                                 QualType FieldTy, bool IsMsStruct,
15271                                 Expr *BitWidth, bool *ZeroWidth) {
15272   // Default to true; that shouldn't confuse checks for emptiness
15273   if (ZeroWidth)
15274     *ZeroWidth = true;
15275 
15276   // C99 6.7.2.1p4 - verify the field type.
15277   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
15278   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
15279     // Handle incomplete types with specific error.
15280     if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
15281       return ExprError();
15282     if (FieldName)
15283       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
15284         << FieldName << FieldTy << BitWidth->getSourceRange();
15285     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
15286       << FieldTy << BitWidth->getSourceRange();
15287   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
15288                                              UPPC_BitFieldWidth))
15289     return ExprError();
15290 
15291   // If the bit-width is type- or value-dependent, don't try to check
15292   // it now.
15293   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
15294     return BitWidth;
15295 
15296   llvm::APSInt Value;
15297   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
15298   if (ICE.isInvalid())
15299     return ICE;
15300   BitWidth = ICE.get();
15301 
15302   if (Value != 0 && ZeroWidth)
15303     *ZeroWidth = false;
15304 
15305   // Zero-width bitfield is ok for anonymous field.
15306   if (Value == 0 && FieldName)
15307     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
15308 
15309   if (Value.isSigned() && Value.isNegative()) {
15310     if (FieldName)
15311       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
15312                << FieldName << Value.toString(10);
15313     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
15314       << Value.toString(10);
15315   }
15316 
15317   if (!FieldTy->isDependentType()) {
15318     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
15319     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
15320     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
15321 
15322     // Over-wide bitfields are an error in C or when using the MSVC bitfield
15323     // ABI.
15324     bool CStdConstraintViolation =
15325         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
15326     bool MSBitfieldViolation =
15327         Value.ugt(TypeStorageSize) &&
15328         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
15329     if (CStdConstraintViolation || MSBitfieldViolation) {
15330       unsigned DiagWidth =
15331           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
15332       if (FieldName)
15333         return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
15334                << FieldName << (unsigned)Value.getZExtValue()
15335                << !CStdConstraintViolation << DiagWidth;
15336 
15337       return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
15338              << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
15339              << DiagWidth;
15340     }
15341 
15342     // Warn on types where the user might conceivably expect to get all
15343     // specified bits as value bits: that's all integral types other than
15344     // 'bool'.
15345     if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
15346       if (FieldName)
15347         Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
15348             << FieldName << (unsigned)Value.getZExtValue()
15349             << (unsigned)TypeWidth;
15350       else
15351         Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
15352             << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
15353     }
15354   }
15355 
15356   return BitWidth;
15357 }
15358 
15359 /// ActOnField - Each field of a C struct/union is passed into this in order
15360 /// to create a FieldDecl object for it.
15361 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
15362                        Declarator &D, Expr *BitfieldWidth) {
15363   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
15364                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
15365                                /*InitStyle=*/ICIS_NoInit, AS_public);
15366   return Res;
15367 }
15368 
15369 /// HandleField - Analyze a field of a C struct or a C++ data member.
15370 ///
15371 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
15372                              SourceLocation DeclStart,
15373                              Declarator &D, Expr *BitWidth,
15374                              InClassInitStyle InitStyle,
15375                              AccessSpecifier AS) {
15376   if (D.isDecompositionDeclarator()) {
15377     const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
15378     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
15379       << Decomp.getSourceRange();
15380     return nullptr;
15381   }
15382 
15383   IdentifierInfo *II = D.getIdentifier();
15384   SourceLocation Loc = DeclStart;
15385   if (II) Loc = D.getIdentifierLoc();
15386 
15387   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15388   QualType T = TInfo->getType();
15389   if (getLangOpts().CPlusPlus) {
15390     CheckExtraCXXDefaultArguments(D);
15391 
15392     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
15393                                         UPPC_DataMemberType)) {
15394       D.setInvalidType();
15395       T = Context.IntTy;
15396       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
15397     }
15398   }
15399 
15400   DiagnoseFunctionSpecifiers(D.getDeclSpec());
15401 
15402   if (D.getDeclSpec().isInlineSpecified())
15403     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
15404         << getLangOpts().CPlusPlus17;
15405   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
15406     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
15407          diag::err_invalid_thread)
15408       << DeclSpec::getSpecifierName(TSCS);
15409 
15410   // Check to see if this name was declared as a member previously
15411   NamedDecl *PrevDecl = nullptr;
15412   LookupResult Previous(*this, II, Loc, LookupMemberName,
15413                         ForVisibleRedeclaration);
15414   LookupName(Previous, S);
15415   switch (Previous.getResultKind()) {
15416     case LookupResult::Found:
15417     case LookupResult::FoundUnresolvedValue:
15418       PrevDecl = Previous.getAsSingle<NamedDecl>();
15419       break;
15420 
15421     case LookupResult::FoundOverloaded:
15422       PrevDecl = Previous.getRepresentativeDecl();
15423       break;
15424 
15425     case LookupResult::NotFound:
15426     case LookupResult::NotFoundInCurrentInstantiation:
15427     case LookupResult::Ambiguous:
15428       break;
15429   }
15430   Previous.suppressDiagnostics();
15431 
15432   if (PrevDecl && PrevDecl->isTemplateParameter()) {
15433     // Maybe we will complain about the shadowed template parameter.
15434     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15435     // Just pretend that we didn't see the previous declaration.
15436     PrevDecl = nullptr;
15437   }
15438 
15439   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
15440     PrevDecl = nullptr;
15441 
15442   bool Mutable
15443     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
15444   SourceLocation TSSL = D.getBeginLoc();
15445   FieldDecl *NewFD
15446     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
15447                      TSSL, AS, PrevDecl, &D);
15448 
15449   if (NewFD->isInvalidDecl())
15450     Record->setInvalidDecl();
15451 
15452   if (D.getDeclSpec().isModulePrivateSpecified())
15453     NewFD->setModulePrivate();
15454 
15455   if (NewFD->isInvalidDecl() && PrevDecl) {
15456     // Don't introduce NewFD into scope; there's already something
15457     // with the same name in the same scope.
15458   } else if (II) {
15459     PushOnScopeChains(NewFD, S);
15460   } else
15461     Record->addDecl(NewFD);
15462 
15463   return NewFD;
15464 }
15465 
15466 /// Build a new FieldDecl and check its well-formedness.
15467 ///
15468 /// This routine builds a new FieldDecl given the fields name, type,
15469 /// record, etc. \p PrevDecl should refer to any previous declaration
15470 /// with the same name and in the same scope as the field to be
15471 /// created.
15472 ///
15473 /// \returns a new FieldDecl.
15474 ///
15475 /// \todo The Declarator argument is a hack. It will be removed once
15476 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
15477                                 TypeSourceInfo *TInfo,
15478                                 RecordDecl *Record, SourceLocation Loc,
15479                                 bool Mutable, Expr *BitWidth,
15480                                 InClassInitStyle InitStyle,
15481                                 SourceLocation TSSL,
15482                                 AccessSpecifier AS, NamedDecl *PrevDecl,
15483                                 Declarator *D) {
15484   IdentifierInfo *II = Name.getAsIdentifierInfo();
15485   bool InvalidDecl = false;
15486   if (D) InvalidDecl = D->isInvalidType();
15487 
15488   // If we receive a broken type, recover by assuming 'int' and
15489   // marking this declaration as invalid.
15490   if (T.isNull()) {
15491     InvalidDecl = true;
15492     T = Context.IntTy;
15493   }
15494 
15495   QualType EltTy = Context.getBaseElementType(T);
15496   if (!EltTy->isDependentType()) {
15497     if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
15498       // Fields of incomplete type force their record to be invalid.
15499       Record->setInvalidDecl();
15500       InvalidDecl = true;
15501     } else {
15502       NamedDecl *Def;
15503       EltTy->isIncompleteType(&Def);
15504       if (Def && Def->isInvalidDecl()) {
15505         Record->setInvalidDecl();
15506         InvalidDecl = true;
15507       }
15508     }
15509   }
15510 
15511   // TR 18037 does not allow fields to be declared with address space
15512   if (T.getQualifiers().hasAddressSpace() || T->isDependentAddressSpaceType() ||
15513       T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
15514     Diag(Loc, diag::err_field_with_address_space);
15515     Record->setInvalidDecl();
15516     InvalidDecl = true;
15517   }
15518 
15519   if (LangOpts.OpenCL) {
15520     // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
15521     // used as structure or union field: image, sampler, event or block types.
15522     if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
15523         T->isBlockPointerType()) {
15524       Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
15525       Record->setInvalidDecl();
15526       InvalidDecl = true;
15527     }
15528     // OpenCL v1.2 s6.9.c: bitfields are not supported.
15529     if (BitWidth) {
15530       Diag(Loc, diag::err_opencl_bitfields);
15531       InvalidDecl = true;
15532     }
15533   }
15534 
15535   // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
15536   if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
15537       T.hasQualifiers()) {
15538     InvalidDecl = true;
15539     Diag(Loc, diag::err_anon_bitfield_qualifiers);
15540   }
15541 
15542   // C99 6.7.2.1p8: A member of a structure or union may have any type other
15543   // than a variably modified type.
15544   if (!InvalidDecl && T->isVariablyModifiedType()) {
15545     bool SizeIsNegative;
15546     llvm::APSInt Oversized;
15547 
15548     TypeSourceInfo *FixedTInfo =
15549       TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
15550                                                     SizeIsNegative,
15551                                                     Oversized);
15552     if (FixedTInfo) {
15553       Diag(Loc, diag::warn_illegal_constant_array_size);
15554       TInfo = FixedTInfo;
15555       T = FixedTInfo->getType();
15556     } else {
15557       if (SizeIsNegative)
15558         Diag(Loc, diag::err_typecheck_negative_array_size);
15559       else if (Oversized.getBoolValue())
15560         Diag(Loc, diag::err_array_too_large)
15561           << Oversized.toString(10);
15562       else
15563         Diag(Loc, diag::err_typecheck_field_variable_size);
15564       InvalidDecl = true;
15565     }
15566   }
15567 
15568   // Fields can not have abstract class types
15569   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
15570                                              diag::err_abstract_type_in_decl,
15571                                              AbstractFieldType))
15572     InvalidDecl = true;
15573 
15574   bool ZeroWidth = false;
15575   if (InvalidDecl)
15576     BitWidth = nullptr;
15577   // If this is declared as a bit-field, check the bit-field.
15578   if (BitWidth) {
15579     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
15580                               &ZeroWidth).get();
15581     if (!BitWidth) {
15582       InvalidDecl = true;
15583       BitWidth = nullptr;
15584       ZeroWidth = false;
15585     }
15586   }
15587 
15588   // Check that 'mutable' is consistent with the type of the declaration.
15589   if (!InvalidDecl && Mutable) {
15590     unsigned DiagID = 0;
15591     if (T->isReferenceType())
15592       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
15593                                         : diag::err_mutable_reference;
15594     else if (T.isConstQualified())
15595       DiagID = diag::err_mutable_const;
15596 
15597     if (DiagID) {
15598       SourceLocation ErrLoc = Loc;
15599       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
15600         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
15601       Diag(ErrLoc, DiagID);
15602       if (DiagID != diag::ext_mutable_reference) {
15603         Mutable = false;
15604         InvalidDecl = true;
15605       }
15606     }
15607   }
15608 
15609   // C++11 [class.union]p8 (DR1460):
15610   //   At most one variant member of a union may have a
15611   //   brace-or-equal-initializer.
15612   if (InitStyle != ICIS_NoInit)
15613     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
15614 
15615   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
15616                                        BitWidth, Mutable, InitStyle);
15617   if (InvalidDecl)
15618     NewFD->setInvalidDecl();
15619 
15620   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
15621     Diag(Loc, diag::err_duplicate_member) << II;
15622     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15623     NewFD->setInvalidDecl();
15624   }
15625 
15626   if (!InvalidDecl && getLangOpts().CPlusPlus) {
15627     if (Record->isUnion()) {
15628       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15629         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
15630         if (RDecl->getDefinition()) {
15631           // C++ [class.union]p1: An object of a class with a non-trivial
15632           // constructor, a non-trivial copy constructor, a non-trivial
15633           // destructor, or a non-trivial copy assignment operator
15634           // cannot be a member of a union, nor can an array of such
15635           // objects.
15636           if (CheckNontrivialField(NewFD))
15637             NewFD->setInvalidDecl();
15638         }
15639       }
15640 
15641       // C++ [class.union]p1: If a union contains a member of reference type,
15642       // the program is ill-formed, except when compiling with MSVC extensions
15643       // enabled.
15644       if (EltTy->isReferenceType()) {
15645         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
15646                                     diag::ext_union_member_of_reference_type :
15647                                     diag::err_union_member_of_reference_type)
15648           << NewFD->getDeclName() << EltTy;
15649         if (!getLangOpts().MicrosoftExt)
15650           NewFD->setInvalidDecl();
15651       }
15652     }
15653   }
15654 
15655   // FIXME: We need to pass in the attributes given an AST
15656   // representation, not a parser representation.
15657   if (D) {
15658     // FIXME: The current scope is almost... but not entirely... correct here.
15659     ProcessDeclAttributes(getCurScope(), NewFD, *D);
15660 
15661     if (NewFD->hasAttrs())
15662       CheckAlignasUnderalignment(NewFD);
15663   }
15664 
15665   // In auto-retain/release, infer strong retension for fields of
15666   // retainable type.
15667   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
15668     NewFD->setInvalidDecl();
15669 
15670   if (T.isObjCGCWeak())
15671     Diag(Loc, diag::warn_attribute_weak_on_field);
15672 
15673   NewFD->setAccess(AS);
15674   return NewFD;
15675 }
15676 
15677 bool Sema::CheckNontrivialField(FieldDecl *FD) {
15678   assert(FD);
15679   assert(getLangOpts().CPlusPlus && "valid check only for C++");
15680 
15681   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
15682     return false;
15683 
15684   QualType EltTy = Context.getBaseElementType(FD->getType());
15685   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15686     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
15687     if (RDecl->getDefinition()) {
15688       // We check for copy constructors before constructors
15689       // because otherwise we'll never get complaints about
15690       // copy constructors.
15691 
15692       CXXSpecialMember member = CXXInvalid;
15693       // We're required to check for any non-trivial constructors. Since the
15694       // implicit default constructor is suppressed if there are any
15695       // user-declared constructors, we just need to check that there is a
15696       // trivial default constructor and a trivial copy constructor. (We don't
15697       // worry about move constructors here, since this is a C++98 check.)
15698       if (RDecl->hasNonTrivialCopyConstructor())
15699         member = CXXCopyConstructor;
15700       else if (!RDecl->hasTrivialDefaultConstructor())
15701         member = CXXDefaultConstructor;
15702       else if (RDecl->hasNonTrivialCopyAssignment())
15703         member = CXXCopyAssignment;
15704       else if (RDecl->hasNonTrivialDestructor())
15705         member = CXXDestructor;
15706 
15707       if (member != CXXInvalid) {
15708         if (!getLangOpts().CPlusPlus11 &&
15709             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
15710           // Objective-C++ ARC: it is an error to have a non-trivial field of
15711           // a union. However, system headers in Objective-C programs
15712           // occasionally have Objective-C lifetime objects within unions,
15713           // and rather than cause the program to fail, we make those
15714           // members unavailable.
15715           SourceLocation Loc = FD->getLocation();
15716           if (getSourceManager().isInSystemHeader(Loc)) {
15717             if (!FD->hasAttr<UnavailableAttr>())
15718               FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
15719                             UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
15720             return false;
15721           }
15722         }
15723 
15724         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
15725                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
15726                diag::err_illegal_union_or_anon_struct_member)
15727           << FD->getParent()->isUnion() << FD->getDeclName() << member;
15728         DiagnoseNontrivial(RDecl, member);
15729         return !getLangOpts().CPlusPlus11;
15730       }
15731     }
15732   }
15733 
15734   return false;
15735 }
15736 
15737 /// TranslateIvarVisibility - Translate visibility from a token ID to an
15738 ///  AST enum value.
15739 static ObjCIvarDecl::AccessControl
15740 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
15741   switch (ivarVisibility) {
15742   default: llvm_unreachable("Unknown visitibility kind");
15743   case tok::objc_private: return ObjCIvarDecl::Private;
15744   case tok::objc_public: return ObjCIvarDecl::Public;
15745   case tok::objc_protected: return ObjCIvarDecl::Protected;
15746   case tok::objc_package: return ObjCIvarDecl::Package;
15747   }
15748 }
15749 
15750 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
15751 /// in order to create an IvarDecl object for it.
15752 Decl *Sema::ActOnIvar(Scope *S,
15753                                 SourceLocation DeclStart,
15754                                 Declarator &D, Expr *BitfieldWidth,
15755                                 tok::ObjCKeywordKind Visibility) {
15756 
15757   IdentifierInfo *II = D.getIdentifier();
15758   Expr *BitWidth = (Expr*)BitfieldWidth;
15759   SourceLocation Loc = DeclStart;
15760   if (II) Loc = D.getIdentifierLoc();
15761 
15762   // FIXME: Unnamed fields can be handled in various different ways, for
15763   // example, unnamed unions inject all members into the struct namespace!
15764 
15765   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15766   QualType T = TInfo->getType();
15767 
15768   if (BitWidth) {
15769     // 6.7.2.1p3, 6.7.2.1p4
15770     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
15771     if (!BitWidth)
15772       D.setInvalidType();
15773   } else {
15774     // Not a bitfield.
15775 
15776     // validate II.
15777 
15778   }
15779   if (T->isReferenceType()) {
15780     Diag(Loc, diag::err_ivar_reference_type);
15781     D.setInvalidType();
15782   }
15783   // C99 6.7.2.1p8: A member of a structure or union may have any type other
15784   // than a variably modified type.
15785   else if (T->isVariablyModifiedType()) {
15786     Diag(Loc, diag::err_typecheck_ivar_variable_size);
15787     D.setInvalidType();
15788   }
15789 
15790   // Get the visibility (access control) for this ivar.
15791   ObjCIvarDecl::AccessControl ac =
15792     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
15793                                         : ObjCIvarDecl::None;
15794   // Must set ivar's DeclContext to its enclosing interface.
15795   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
15796   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
15797     return nullptr;
15798   ObjCContainerDecl *EnclosingContext;
15799   if (ObjCImplementationDecl *IMPDecl =
15800       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
15801     if (LangOpts.ObjCRuntime.isFragile()) {
15802     // Case of ivar declared in an implementation. Context is that of its class.
15803       EnclosingContext = IMPDecl->getClassInterface();
15804       assert(EnclosingContext && "Implementation has no class interface!");
15805     }
15806     else
15807       EnclosingContext = EnclosingDecl;
15808   } else {
15809     if (ObjCCategoryDecl *CDecl =
15810         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
15811       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
15812         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
15813         return nullptr;
15814       }
15815     }
15816     EnclosingContext = EnclosingDecl;
15817   }
15818 
15819   // Construct the decl.
15820   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
15821                                              DeclStart, Loc, II, T,
15822                                              TInfo, ac, (Expr *)BitfieldWidth);
15823 
15824   if (II) {
15825     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
15826                                            ForVisibleRedeclaration);
15827     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
15828         && !isa<TagDecl>(PrevDecl)) {
15829       Diag(Loc, diag::err_duplicate_member) << II;
15830       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15831       NewID->setInvalidDecl();
15832     }
15833   }
15834 
15835   // Process attributes attached to the ivar.
15836   ProcessDeclAttributes(S, NewID, D);
15837 
15838   if (D.isInvalidType())
15839     NewID->setInvalidDecl();
15840 
15841   // In ARC, infer 'retaining' for ivars of retainable type.
15842   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
15843     NewID->setInvalidDecl();
15844 
15845   if (D.getDeclSpec().isModulePrivateSpecified())
15846     NewID->setModulePrivate();
15847 
15848   if (II) {
15849     // FIXME: When interfaces are DeclContexts, we'll need to add
15850     // these to the interface.
15851     S->AddDecl(NewID);
15852     IdResolver.AddDecl(NewID);
15853   }
15854 
15855   if (LangOpts.ObjCRuntime.isNonFragile() &&
15856       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
15857     Diag(Loc, diag::warn_ivars_in_interface);
15858 
15859   return NewID;
15860 }
15861 
15862 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
15863 /// class and class extensions. For every class \@interface and class
15864 /// extension \@interface, if the last ivar is a bitfield of any type,
15865 /// then add an implicit `char :0` ivar to the end of that interface.
15866 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
15867                              SmallVectorImpl<Decl *> &AllIvarDecls) {
15868   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
15869     return;
15870 
15871   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
15872   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
15873 
15874   if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
15875     return;
15876   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
15877   if (!ID) {
15878     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
15879       if (!CD->IsClassExtension())
15880         return;
15881     }
15882     // No need to add this to end of @implementation.
15883     else
15884       return;
15885   }
15886   // All conditions are met. Add a new bitfield to the tail end of ivars.
15887   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
15888   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
15889 
15890   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
15891                               DeclLoc, DeclLoc, nullptr,
15892                               Context.CharTy,
15893                               Context.getTrivialTypeSourceInfo(Context.CharTy,
15894                                                                DeclLoc),
15895                               ObjCIvarDecl::Private, BW,
15896                               true);
15897   AllIvarDecls.push_back(Ivar);
15898 }
15899 
15900 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
15901                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
15902                        SourceLocation RBrac,
15903                        const ParsedAttributesView &Attrs) {
15904   assert(EnclosingDecl && "missing record or interface decl");
15905 
15906   // If this is an Objective-C @implementation or category and we have
15907   // new fields here we should reset the layout of the interface since
15908   // it will now change.
15909   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
15910     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
15911     switch (DC->getKind()) {
15912     default: break;
15913     case Decl::ObjCCategory:
15914       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
15915       break;
15916     case Decl::ObjCImplementation:
15917       Context.
15918         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
15919       break;
15920     }
15921   }
15922 
15923   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
15924   CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
15925 
15926   // Start counting up the number of named members; make sure to include
15927   // members of anonymous structs and unions in the total.
15928   unsigned NumNamedMembers = 0;
15929   if (Record) {
15930     for (const auto *I : Record->decls()) {
15931       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
15932         if (IFD->getDeclName())
15933           ++NumNamedMembers;
15934     }
15935   }
15936 
15937   // Verify that all the fields are okay.
15938   SmallVector<FieldDecl*, 32> RecFields;
15939 
15940   bool ObjCFieldLifetimeErrReported = false;
15941   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
15942        i != end; ++i) {
15943     FieldDecl *FD = cast<FieldDecl>(*i);
15944 
15945     // Get the type for the field.
15946     const Type *FDTy = FD->getType().getTypePtr();
15947 
15948     if (!FD->isAnonymousStructOrUnion()) {
15949       // Remember all fields written by the user.
15950       RecFields.push_back(FD);
15951     }
15952 
15953     // If the field is already invalid for some reason, don't emit more
15954     // diagnostics about it.
15955     if (FD->isInvalidDecl()) {
15956       EnclosingDecl->setInvalidDecl();
15957       continue;
15958     }
15959 
15960     // C99 6.7.2.1p2:
15961     //   A structure or union shall not contain a member with
15962     //   incomplete or function type (hence, a structure shall not
15963     //   contain an instance of itself, but may contain a pointer to
15964     //   an instance of itself), except that the last member of a
15965     //   structure with more than one named member may have incomplete
15966     //   array type; such a structure (and any union containing,
15967     //   possibly recursively, a member that is such a structure)
15968     //   shall not be a member of a structure or an element of an
15969     //   array.
15970     bool IsLastField = (i + 1 == Fields.end());
15971     if (FDTy->isFunctionType()) {
15972       // Field declared as a function.
15973       Diag(FD->getLocation(), diag::err_field_declared_as_function)
15974         << FD->getDeclName();
15975       FD->setInvalidDecl();
15976       EnclosingDecl->setInvalidDecl();
15977       continue;
15978     } else if (FDTy->isIncompleteArrayType() &&
15979                (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
15980       if (Record) {
15981         // Flexible array member.
15982         // Microsoft and g++ is more permissive regarding flexible array.
15983         // It will accept flexible array in union and also
15984         // as the sole element of a struct/class.
15985         unsigned DiagID = 0;
15986         if (!Record->isUnion() && !IsLastField) {
15987           Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
15988             << FD->getDeclName() << FD->getType() << Record->getTagKind();
15989           Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
15990           FD->setInvalidDecl();
15991           EnclosingDecl->setInvalidDecl();
15992           continue;
15993         } else if (Record->isUnion())
15994           DiagID = getLangOpts().MicrosoftExt
15995                        ? diag::ext_flexible_array_union_ms
15996                        : getLangOpts().CPlusPlus
15997                              ? diag::ext_flexible_array_union_gnu
15998                              : diag::err_flexible_array_union;
15999         else if (NumNamedMembers < 1)
16000           DiagID = getLangOpts().MicrosoftExt
16001                        ? diag::ext_flexible_array_empty_aggregate_ms
16002                        : getLangOpts().CPlusPlus
16003                              ? diag::ext_flexible_array_empty_aggregate_gnu
16004                              : diag::err_flexible_array_empty_aggregate;
16005 
16006         if (DiagID)
16007           Diag(FD->getLocation(), DiagID) << FD->getDeclName()
16008                                           << Record->getTagKind();
16009         // While the layout of types that contain virtual bases is not specified
16010         // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
16011         // virtual bases after the derived members.  This would make a flexible
16012         // array member declared at the end of an object not adjacent to the end
16013         // of the type.
16014         if (CXXRecord && CXXRecord->getNumVBases() != 0)
16015           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
16016               << FD->getDeclName() << Record->getTagKind();
16017         if (!getLangOpts().C99)
16018           Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
16019             << FD->getDeclName() << Record->getTagKind();
16020 
16021         // If the element type has a non-trivial destructor, we would not
16022         // implicitly destroy the elements, so disallow it for now.
16023         //
16024         // FIXME: GCC allows this. We should probably either implicitly delete
16025         // the destructor of the containing class, or just allow this.
16026         QualType BaseElem = Context.getBaseElementType(FD->getType());
16027         if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
16028           Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
16029             << FD->getDeclName() << FD->getType();
16030           FD->setInvalidDecl();
16031           EnclosingDecl->setInvalidDecl();
16032           continue;
16033         }
16034         // Okay, we have a legal flexible array member at the end of the struct.
16035         Record->setHasFlexibleArrayMember(true);
16036       } else {
16037         // In ObjCContainerDecl ivars with incomplete array type are accepted,
16038         // unless they are followed by another ivar. That check is done
16039         // elsewhere, after synthesized ivars are known.
16040       }
16041     } else if (!FDTy->isDependentType() &&
16042                RequireCompleteType(FD->getLocation(), FD->getType(),
16043                                    diag::err_field_incomplete)) {
16044       // Incomplete type
16045       FD->setInvalidDecl();
16046       EnclosingDecl->setInvalidDecl();
16047       continue;
16048     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
16049       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
16050         // A type which contains a flexible array member is considered to be a
16051         // flexible array member.
16052         Record->setHasFlexibleArrayMember(true);
16053         if (!Record->isUnion()) {
16054           // If this is a struct/class and this is not the last element, reject
16055           // it.  Note that GCC supports variable sized arrays in the middle of
16056           // structures.
16057           if (!IsLastField)
16058             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
16059               << FD->getDeclName() << FD->getType();
16060           else {
16061             // We support flexible arrays at the end of structs in
16062             // other structs as an extension.
16063             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
16064               << FD->getDeclName();
16065           }
16066         }
16067       }
16068       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
16069           RequireNonAbstractType(FD->getLocation(), FD->getType(),
16070                                  diag::err_abstract_type_in_decl,
16071                                  AbstractIvarType)) {
16072         // Ivars can not have abstract class types
16073         FD->setInvalidDecl();
16074       }
16075       if (Record && FDTTy->getDecl()->hasObjectMember())
16076         Record->setHasObjectMember(true);
16077       if (Record && FDTTy->getDecl()->hasVolatileMember())
16078         Record->setHasVolatileMember(true);
16079       if (Record && Record->isUnion() &&
16080           FD->getType().isNonTrivialPrimitiveCType(Context))
16081         Diag(FD->getLocation(),
16082              diag::err_nontrivial_primitive_type_in_union);
16083     } else if (FDTy->isObjCObjectType()) {
16084       /// A field cannot be an Objective-c object
16085       Diag(FD->getLocation(), diag::err_statically_allocated_object)
16086         << FixItHint::CreateInsertion(FD->getLocation(), "*");
16087       QualType T = Context.getObjCObjectPointerType(FD->getType());
16088       FD->setType(T);
16089     } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
16090                Record && !ObjCFieldLifetimeErrReported && Record->isUnion() &&
16091                !getLangOpts().CPlusPlus) {
16092       // It's an error in ARC or Weak if a field has lifetime.
16093       // We don't want to report this in a system header, though,
16094       // so we just make the field unavailable.
16095       // FIXME: that's really not sufficient; we need to make the type
16096       // itself invalid to, say, initialize or copy.
16097       QualType T = FD->getType();
16098       if (T.hasNonTrivialObjCLifetime()) {
16099         SourceLocation loc = FD->getLocation();
16100         if (getSourceManager().isInSystemHeader(loc)) {
16101           if (!FD->hasAttr<UnavailableAttr>()) {
16102             FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
16103                           UnavailableAttr::IR_ARCFieldWithOwnership, loc));
16104           }
16105         } else {
16106           Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
16107             << T->isBlockPointerType() << Record->getTagKind();
16108         }
16109         ObjCFieldLifetimeErrReported = true;
16110       }
16111     } else if (getLangOpts().ObjC &&
16112                getLangOpts().getGC() != LangOptions::NonGC &&
16113                Record && !Record->hasObjectMember()) {
16114       if (FD->getType()->isObjCObjectPointerType() ||
16115           FD->getType().isObjCGCStrong())
16116         Record->setHasObjectMember(true);
16117       else if (Context.getAsArrayType(FD->getType())) {
16118         QualType BaseType = Context.getBaseElementType(FD->getType());
16119         if (BaseType->isRecordType() &&
16120             BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
16121           Record->setHasObjectMember(true);
16122         else if (BaseType->isObjCObjectPointerType() ||
16123                  BaseType.isObjCGCStrong())
16124                Record->setHasObjectMember(true);
16125       }
16126     }
16127 
16128     if (Record && !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>()) {
16129       QualType FT = FD->getType();
16130       if (FT.isNonTrivialToPrimitiveDefaultInitialize())
16131         Record->setNonTrivialToPrimitiveDefaultInitialize(true);
16132       QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
16133       if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial)
16134         Record->setNonTrivialToPrimitiveCopy(true);
16135       if (FT.isDestructedType()) {
16136         Record->setNonTrivialToPrimitiveDestroy(true);
16137         Record->setParamDestroyedInCallee(true);
16138       }
16139 
16140       if (const auto *RT = FT->getAs<RecordType>()) {
16141         if (RT->getDecl()->getArgPassingRestrictions() ==
16142             RecordDecl::APK_CanNeverPassInRegs)
16143           Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
16144       } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
16145         Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
16146     }
16147 
16148     if (Record && FD->getType().isVolatileQualified())
16149       Record->setHasVolatileMember(true);
16150     // Keep track of the number of named members.
16151     if (FD->getIdentifier())
16152       ++NumNamedMembers;
16153   }
16154 
16155   // Okay, we successfully defined 'Record'.
16156   if (Record) {
16157     bool Completed = false;
16158     if (CXXRecord) {
16159       if (!CXXRecord->isInvalidDecl()) {
16160         // Set access bits correctly on the directly-declared conversions.
16161         for (CXXRecordDecl::conversion_iterator
16162                I = CXXRecord->conversion_begin(),
16163                E = CXXRecord->conversion_end(); I != E; ++I)
16164           I.setAccess((*I)->getAccess());
16165       }
16166 
16167       if (!CXXRecord->isDependentType()) {
16168         // Add any implicitly-declared members to this class.
16169         AddImplicitlyDeclaredMembersToClass(CXXRecord);
16170 
16171         if (!CXXRecord->isInvalidDecl()) {
16172           // If we have virtual base classes, we may end up finding multiple
16173           // final overriders for a given virtual function. Check for this
16174           // problem now.
16175           if (CXXRecord->getNumVBases()) {
16176             CXXFinalOverriderMap FinalOverriders;
16177             CXXRecord->getFinalOverriders(FinalOverriders);
16178 
16179             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
16180                                              MEnd = FinalOverriders.end();
16181                  M != MEnd; ++M) {
16182               for (OverridingMethods::iterator SO = M->second.begin(),
16183                                             SOEnd = M->second.end();
16184                    SO != SOEnd; ++SO) {
16185                 assert(SO->second.size() > 0 &&
16186                        "Virtual function without overriding functions?");
16187                 if (SO->second.size() == 1)
16188                   continue;
16189 
16190                 // C++ [class.virtual]p2:
16191                 //   In a derived class, if a virtual member function of a base
16192                 //   class subobject has more than one final overrider the
16193                 //   program is ill-formed.
16194                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
16195                   << (const NamedDecl *)M->first << Record;
16196                 Diag(M->first->getLocation(),
16197                      diag::note_overridden_virtual_function);
16198                 for (OverridingMethods::overriding_iterator
16199                           OM = SO->second.begin(),
16200                        OMEnd = SO->second.end();
16201                      OM != OMEnd; ++OM)
16202                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
16203                     << (const NamedDecl *)M->first << OM->Method->getParent();
16204 
16205                 Record->setInvalidDecl();
16206               }
16207             }
16208             CXXRecord->completeDefinition(&FinalOverriders);
16209             Completed = true;
16210           }
16211         }
16212       }
16213     }
16214 
16215     if (!Completed)
16216       Record->completeDefinition();
16217 
16218     // Handle attributes before checking the layout.
16219     ProcessDeclAttributeList(S, Record, Attrs);
16220 
16221     // We may have deferred checking for a deleted destructor. Check now.
16222     if (CXXRecord) {
16223       auto *Dtor = CXXRecord->getDestructor();
16224       if (Dtor && Dtor->isImplicit() &&
16225           ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
16226         CXXRecord->setImplicitDestructorIsDeleted();
16227         SetDeclDeleted(Dtor, CXXRecord->getLocation());
16228       }
16229     }
16230 
16231     if (Record->hasAttrs()) {
16232       CheckAlignasUnderalignment(Record);
16233 
16234       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
16235         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
16236                                            IA->getRange(), IA->getBestCase(),
16237                                            IA->getSemanticSpelling());
16238     }
16239 
16240     // Check if the structure/union declaration is a type that can have zero
16241     // size in C. For C this is a language extension, for C++ it may cause
16242     // compatibility problems.
16243     bool CheckForZeroSize;
16244     if (!getLangOpts().CPlusPlus) {
16245       CheckForZeroSize = true;
16246     } else {
16247       // For C++ filter out types that cannot be referenced in C code.
16248       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
16249       CheckForZeroSize =
16250           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
16251           !CXXRecord->isDependentType() &&
16252           CXXRecord->isCLike();
16253     }
16254     if (CheckForZeroSize) {
16255       bool ZeroSize = true;
16256       bool IsEmpty = true;
16257       unsigned NonBitFields = 0;
16258       for (RecordDecl::field_iterator I = Record->field_begin(),
16259                                       E = Record->field_end();
16260            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
16261         IsEmpty = false;
16262         if (I->isUnnamedBitfield()) {
16263           if (!I->isZeroLengthBitField(Context))
16264             ZeroSize = false;
16265         } else {
16266           ++NonBitFields;
16267           QualType FieldType = I->getType();
16268           if (FieldType->isIncompleteType() ||
16269               !Context.getTypeSizeInChars(FieldType).isZero())
16270             ZeroSize = false;
16271         }
16272       }
16273 
16274       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
16275       // allowed in C++, but warn if its declaration is inside
16276       // extern "C" block.
16277       if (ZeroSize) {
16278         Diag(RecLoc, getLangOpts().CPlusPlus ?
16279                          diag::warn_zero_size_struct_union_in_extern_c :
16280                          diag::warn_zero_size_struct_union_compat)
16281           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
16282       }
16283 
16284       // Structs without named members are extension in C (C99 6.7.2.1p7),
16285       // but are accepted by GCC.
16286       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
16287         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
16288                                diag::ext_no_named_members_in_struct_union)
16289           << Record->isUnion();
16290       }
16291     }
16292   } else {
16293     ObjCIvarDecl **ClsFields =
16294       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
16295     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
16296       ID->setEndOfDefinitionLoc(RBrac);
16297       // Add ivar's to class's DeclContext.
16298       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16299         ClsFields[i]->setLexicalDeclContext(ID);
16300         ID->addDecl(ClsFields[i]);
16301       }
16302       // Must enforce the rule that ivars in the base classes may not be
16303       // duplicates.
16304       if (ID->getSuperClass())
16305         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
16306     } else if (ObjCImplementationDecl *IMPDecl =
16307                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16308       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
16309       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
16310         // Ivar declared in @implementation never belongs to the implementation.
16311         // Only it is in implementation's lexical context.
16312         ClsFields[I]->setLexicalDeclContext(IMPDecl);
16313       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
16314       IMPDecl->setIvarLBraceLoc(LBrac);
16315       IMPDecl->setIvarRBraceLoc(RBrac);
16316     } else if (ObjCCategoryDecl *CDecl =
16317                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16318       // case of ivars in class extension; all other cases have been
16319       // reported as errors elsewhere.
16320       // FIXME. Class extension does not have a LocEnd field.
16321       // CDecl->setLocEnd(RBrac);
16322       // Add ivar's to class extension's DeclContext.
16323       // Diagnose redeclaration of private ivars.
16324       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
16325       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16326         if (IDecl) {
16327           if (const ObjCIvarDecl *ClsIvar =
16328               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
16329             Diag(ClsFields[i]->getLocation(),
16330                  diag::err_duplicate_ivar_declaration);
16331             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
16332             continue;
16333           }
16334           for (const auto *Ext : IDecl->known_extensions()) {
16335             if (const ObjCIvarDecl *ClsExtIvar
16336                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
16337               Diag(ClsFields[i]->getLocation(),
16338                    diag::err_duplicate_ivar_declaration);
16339               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
16340               continue;
16341             }
16342           }
16343         }
16344         ClsFields[i]->setLexicalDeclContext(CDecl);
16345         CDecl->addDecl(ClsFields[i]);
16346       }
16347       CDecl->setIvarLBraceLoc(LBrac);
16348       CDecl->setIvarRBraceLoc(RBrac);
16349     }
16350   }
16351 }
16352 
16353 /// Determine whether the given integral value is representable within
16354 /// the given type T.
16355 static bool isRepresentableIntegerValue(ASTContext &Context,
16356                                         llvm::APSInt &Value,
16357                                         QualType T) {
16358   assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
16359          "Integral type required!");
16360   unsigned BitWidth = Context.getIntWidth(T);
16361 
16362   if (Value.isUnsigned() || Value.isNonNegative()) {
16363     if (T->isSignedIntegerOrEnumerationType())
16364       --BitWidth;
16365     return Value.getActiveBits() <= BitWidth;
16366   }
16367   return Value.getMinSignedBits() <= BitWidth;
16368 }
16369 
16370 // Given an integral type, return the next larger integral type
16371 // (or a NULL type of no such type exists).
16372 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
16373   // FIXME: Int128/UInt128 support, which also needs to be introduced into
16374   // enum checking below.
16375   assert((T->isIntegralType(Context) ||
16376          T->isEnumeralType()) && "Integral type required!");
16377   const unsigned NumTypes = 4;
16378   QualType SignedIntegralTypes[NumTypes] = {
16379     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
16380   };
16381   QualType UnsignedIntegralTypes[NumTypes] = {
16382     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
16383     Context.UnsignedLongLongTy
16384   };
16385 
16386   unsigned BitWidth = Context.getTypeSize(T);
16387   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
16388                                                         : UnsignedIntegralTypes;
16389   for (unsigned I = 0; I != NumTypes; ++I)
16390     if (Context.getTypeSize(Types[I]) > BitWidth)
16391       return Types[I];
16392 
16393   return QualType();
16394 }
16395 
16396 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
16397                                           EnumConstantDecl *LastEnumConst,
16398                                           SourceLocation IdLoc,
16399                                           IdentifierInfo *Id,
16400                                           Expr *Val) {
16401   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
16402   llvm::APSInt EnumVal(IntWidth);
16403   QualType EltTy;
16404 
16405   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
16406     Val = nullptr;
16407 
16408   if (Val)
16409     Val = DefaultLvalueConversion(Val).get();
16410 
16411   if (Val) {
16412     if (Enum->isDependentType() || Val->isTypeDependent())
16413       EltTy = Context.DependentTy;
16414     else {
16415       if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
16416           !getLangOpts().MSVCCompat) {
16417         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
16418         // constant-expression in the enumerator-definition shall be a converted
16419         // constant expression of the underlying type.
16420         EltTy = Enum->getIntegerType();
16421         ExprResult Converted =
16422           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
16423                                            CCEK_Enumerator);
16424         if (Converted.isInvalid())
16425           Val = nullptr;
16426         else
16427           Val = Converted.get();
16428       } else if (!Val->isValueDependent() &&
16429                  !(Val = VerifyIntegerConstantExpression(Val,
16430                                                          &EnumVal).get())) {
16431         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
16432       } else {
16433         if (Enum->isComplete()) {
16434           EltTy = Enum->getIntegerType();
16435 
16436           // In Obj-C and Microsoft mode, require the enumeration value to be
16437           // representable in the underlying type of the enumeration. In C++11,
16438           // we perform a non-narrowing conversion as part of converted constant
16439           // expression checking.
16440           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
16441             if (getLangOpts().MSVCCompat) {
16442               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
16443               Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
16444             } else
16445               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
16446           } else
16447             Val = ImpCastExprToType(Val, EltTy,
16448                                     EltTy->isBooleanType() ?
16449                                     CK_IntegralToBoolean : CK_IntegralCast)
16450                     .get();
16451         } else if (getLangOpts().CPlusPlus) {
16452           // C++11 [dcl.enum]p5:
16453           //   If the underlying type is not fixed, the type of each enumerator
16454           //   is the type of its initializing value:
16455           //     - If an initializer is specified for an enumerator, the
16456           //       initializing value has the same type as the expression.
16457           EltTy = Val->getType();
16458         } else {
16459           // C99 6.7.2.2p2:
16460           //   The expression that defines the value of an enumeration constant
16461           //   shall be an integer constant expression that has a value
16462           //   representable as an int.
16463 
16464           // Complain if the value is not representable in an int.
16465           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
16466             Diag(IdLoc, diag::ext_enum_value_not_int)
16467               << EnumVal.toString(10) << Val->getSourceRange()
16468               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
16469           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
16470             // Force the type of the expression to 'int'.
16471             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
16472           }
16473           EltTy = Val->getType();
16474         }
16475       }
16476     }
16477   }
16478 
16479   if (!Val) {
16480     if (Enum->isDependentType())
16481       EltTy = Context.DependentTy;
16482     else if (!LastEnumConst) {
16483       // C++0x [dcl.enum]p5:
16484       //   If the underlying type is not fixed, the type of each enumerator
16485       //   is the type of its initializing value:
16486       //     - If no initializer is specified for the first enumerator, the
16487       //       initializing value has an unspecified integral type.
16488       //
16489       // GCC uses 'int' for its unspecified integral type, as does
16490       // C99 6.7.2.2p3.
16491       if (Enum->isFixed()) {
16492         EltTy = Enum->getIntegerType();
16493       }
16494       else {
16495         EltTy = Context.IntTy;
16496       }
16497     } else {
16498       // Assign the last value + 1.
16499       EnumVal = LastEnumConst->getInitVal();
16500       ++EnumVal;
16501       EltTy = LastEnumConst->getType();
16502 
16503       // Check for overflow on increment.
16504       if (EnumVal < LastEnumConst->getInitVal()) {
16505         // C++0x [dcl.enum]p5:
16506         //   If the underlying type is not fixed, the type of each enumerator
16507         //   is the type of its initializing value:
16508         //
16509         //     - Otherwise the type of the initializing value is the same as
16510         //       the type of the initializing value of the preceding enumerator
16511         //       unless the incremented value is not representable in that type,
16512         //       in which case the type is an unspecified integral type
16513         //       sufficient to contain the incremented value. If no such type
16514         //       exists, the program is ill-formed.
16515         QualType T = getNextLargerIntegralType(Context, EltTy);
16516         if (T.isNull() || Enum->isFixed()) {
16517           // There is no integral type larger enough to represent this
16518           // value. Complain, then allow the value to wrap around.
16519           EnumVal = LastEnumConst->getInitVal();
16520           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
16521           ++EnumVal;
16522           if (Enum->isFixed())
16523             // When the underlying type is fixed, this is ill-formed.
16524             Diag(IdLoc, diag::err_enumerator_wrapped)
16525               << EnumVal.toString(10)
16526               << EltTy;
16527           else
16528             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
16529               << EnumVal.toString(10);
16530         } else {
16531           EltTy = T;
16532         }
16533 
16534         // Retrieve the last enumerator's value, extent that type to the
16535         // type that is supposed to be large enough to represent the incremented
16536         // value, then increment.
16537         EnumVal = LastEnumConst->getInitVal();
16538         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
16539         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
16540         ++EnumVal;
16541 
16542         // If we're not in C++, diagnose the overflow of enumerator values,
16543         // which in C99 means that the enumerator value is not representable in
16544         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
16545         // permits enumerator values that are representable in some larger
16546         // integral type.
16547         if (!getLangOpts().CPlusPlus && !T.isNull())
16548           Diag(IdLoc, diag::warn_enum_value_overflow);
16549       } else if (!getLangOpts().CPlusPlus &&
16550                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
16551         // Enforce C99 6.7.2.2p2 even when we compute the next value.
16552         Diag(IdLoc, diag::ext_enum_value_not_int)
16553           << EnumVal.toString(10) << 1;
16554       }
16555     }
16556   }
16557 
16558   if (!EltTy->isDependentType()) {
16559     // Make the enumerator value match the signedness and size of the
16560     // enumerator's type.
16561     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
16562     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
16563   }
16564 
16565   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
16566                                   Val, EnumVal);
16567 }
16568 
16569 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
16570                                                 SourceLocation IILoc) {
16571   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
16572       !getLangOpts().CPlusPlus)
16573     return SkipBodyInfo();
16574 
16575   // We have an anonymous enum definition. Look up the first enumerator to
16576   // determine if we should merge the definition with an existing one and
16577   // skip the body.
16578   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
16579                                          forRedeclarationInCurContext());
16580   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
16581   if (!PrevECD)
16582     return SkipBodyInfo();
16583 
16584   EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
16585   NamedDecl *Hidden;
16586   if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
16587     SkipBodyInfo Skip;
16588     Skip.Previous = Hidden;
16589     return Skip;
16590   }
16591 
16592   return SkipBodyInfo();
16593 }
16594 
16595 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
16596                               SourceLocation IdLoc, IdentifierInfo *Id,
16597                               const ParsedAttributesView &Attrs,
16598                               SourceLocation EqualLoc, Expr *Val) {
16599   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
16600   EnumConstantDecl *LastEnumConst =
16601     cast_or_null<EnumConstantDecl>(lastEnumConst);
16602 
16603   // The scope passed in may not be a decl scope.  Zip up the scope tree until
16604   // we find one that is.
16605   S = getNonFieldDeclScope(S);
16606 
16607   // Verify that there isn't already something declared with this name in this
16608   // scope.
16609   LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
16610   LookupName(R, S);
16611   NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
16612 
16613   if (PrevDecl && PrevDecl->isTemplateParameter()) {
16614     // Maybe we will complain about the shadowed template parameter.
16615     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
16616     // Just pretend that we didn't see the previous declaration.
16617     PrevDecl = nullptr;
16618   }
16619 
16620   // C++ [class.mem]p15:
16621   // If T is the name of a class, then each of the following shall have a name
16622   // different from T:
16623   // - every enumerator of every member of class T that is an unscoped
16624   // enumerated type
16625   if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
16626     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
16627                             DeclarationNameInfo(Id, IdLoc));
16628 
16629   EnumConstantDecl *New =
16630     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
16631   if (!New)
16632     return nullptr;
16633 
16634   if (PrevDecl) {
16635     if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
16636       // Check for other kinds of shadowing not already handled.
16637       CheckShadow(New, PrevDecl, R);
16638     }
16639 
16640     // When in C++, we may get a TagDecl with the same name; in this case the
16641     // enum constant will 'hide' the tag.
16642     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
16643            "Received TagDecl when not in C++!");
16644     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
16645       if (isa<EnumConstantDecl>(PrevDecl))
16646         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
16647       else
16648         Diag(IdLoc, diag::err_redefinition) << Id;
16649       notePreviousDefinition(PrevDecl, IdLoc);
16650       return nullptr;
16651     }
16652   }
16653 
16654   // Process attributes.
16655   ProcessDeclAttributeList(S, New, Attrs);
16656   AddPragmaAttributes(S, New);
16657 
16658   // Register this decl in the current scope stack.
16659   New->setAccess(TheEnumDecl->getAccess());
16660   PushOnScopeChains(New, S);
16661 
16662   ActOnDocumentableDecl(New);
16663 
16664   return New;
16665 }
16666 
16667 // Returns true when the enum initial expression does not trigger the
16668 // duplicate enum warning.  A few common cases are exempted as follows:
16669 // Element2 = Element1
16670 // Element2 = Element1 + 1
16671 // Element2 = Element1 - 1
16672 // Where Element2 and Element1 are from the same enum.
16673 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
16674   Expr *InitExpr = ECD->getInitExpr();
16675   if (!InitExpr)
16676     return true;
16677   InitExpr = InitExpr->IgnoreImpCasts();
16678 
16679   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
16680     if (!BO->isAdditiveOp())
16681       return true;
16682     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
16683     if (!IL)
16684       return true;
16685     if (IL->getValue() != 1)
16686       return true;
16687 
16688     InitExpr = BO->getLHS();
16689   }
16690 
16691   // This checks if the elements are from the same enum.
16692   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
16693   if (!DRE)
16694     return true;
16695 
16696   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
16697   if (!EnumConstant)
16698     return true;
16699 
16700   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
16701       Enum)
16702     return true;
16703 
16704   return false;
16705 }
16706 
16707 // Emits a warning when an element is implicitly set a value that
16708 // a previous element has already been set to.
16709 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
16710                                         EnumDecl *Enum, QualType EnumType) {
16711   // Avoid anonymous enums
16712   if (!Enum->getIdentifier())
16713     return;
16714 
16715   // Only check for small enums.
16716   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
16717     return;
16718 
16719   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
16720     return;
16721 
16722   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
16723   typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
16724 
16725   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
16726   typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
16727 
16728   // Use int64_t as a key to avoid needing special handling for DenseMap keys.
16729   auto EnumConstantToKey = [](const EnumConstantDecl *D) {
16730     llvm::APSInt Val = D->getInitVal();
16731     return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
16732   };
16733 
16734   DuplicatesVector DupVector;
16735   ValueToVectorMap EnumMap;
16736 
16737   // Populate the EnumMap with all values represented by enum constants without
16738   // an initializer.
16739   for (auto *Element : Elements) {
16740     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
16741 
16742     // Null EnumConstantDecl means a previous diagnostic has been emitted for
16743     // this constant.  Skip this enum since it may be ill-formed.
16744     if (!ECD) {
16745       return;
16746     }
16747 
16748     // Constants with initalizers are handled in the next loop.
16749     if (ECD->getInitExpr())
16750       continue;
16751 
16752     // Duplicate values are handled in the next loop.
16753     EnumMap.insert({EnumConstantToKey(ECD), ECD});
16754   }
16755 
16756   if (EnumMap.size() == 0)
16757     return;
16758 
16759   // Create vectors for any values that has duplicates.
16760   for (auto *Element : Elements) {
16761     // The last loop returned if any constant was null.
16762     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
16763     if (!ValidDuplicateEnum(ECD, Enum))
16764       continue;
16765 
16766     auto Iter = EnumMap.find(EnumConstantToKey(ECD));
16767     if (Iter == EnumMap.end())
16768       continue;
16769 
16770     DeclOrVector& Entry = Iter->second;
16771     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
16772       // Ensure constants are different.
16773       if (D == ECD)
16774         continue;
16775 
16776       // Create new vector and push values onto it.
16777       auto Vec = llvm::make_unique<ECDVector>();
16778       Vec->push_back(D);
16779       Vec->push_back(ECD);
16780 
16781       // Update entry to point to the duplicates vector.
16782       Entry = Vec.get();
16783 
16784       // Store the vector somewhere we can consult later for quick emission of
16785       // diagnostics.
16786       DupVector.emplace_back(std::move(Vec));
16787       continue;
16788     }
16789 
16790     ECDVector *Vec = Entry.get<ECDVector*>();
16791     // Make sure constants are not added more than once.
16792     if (*Vec->begin() == ECD)
16793       continue;
16794 
16795     Vec->push_back(ECD);
16796   }
16797 
16798   // Emit diagnostics.
16799   for (const auto &Vec : DupVector) {
16800     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
16801 
16802     // Emit warning for one enum constant.
16803     auto *FirstECD = Vec->front();
16804     S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
16805       << FirstECD << FirstECD->getInitVal().toString(10)
16806       << FirstECD->getSourceRange();
16807 
16808     // Emit one note for each of the remaining enum constants with
16809     // the same value.
16810     for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
16811       S.Diag(ECD->getLocation(), diag::note_duplicate_element)
16812         << ECD << ECD->getInitVal().toString(10)
16813         << ECD->getSourceRange();
16814   }
16815 }
16816 
16817 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
16818                              bool AllowMask) const {
16819   assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
16820   assert(ED->isCompleteDefinition() && "expected enum definition");
16821 
16822   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
16823   llvm::APInt &FlagBits = R.first->second;
16824 
16825   if (R.second) {
16826     for (auto *E : ED->enumerators()) {
16827       const auto &EVal = E->getInitVal();
16828       // Only single-bit enumerators introduce new flag values.
16829       if (EVal.isPowerOf2())
16830         FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
16831     }
16832   }
16833 
16834   // A value is in a flag enum if either its bits are a subset of the enum's
16835   // flag bits (the first condition) or we are allowing masks and the same is
16836   // true of its complement (the second condition). When masks are allowed, we
16837   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
16838   //
16839   // While it's true that any value could be used as a mask, the assumption is
16840   // that a mask will have all of the insignificant bits set. Anything else is
16841   // likely a logic error.
16842   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
16843   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
16844 }
16845 
16846 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
16847                          Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
16848                          const ParsedAttributesView &Attrs) {
16849   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
16850   QualType EnumType = Context.getTypeDeclType(Enum);
16851 
16852   ProcessDeclAttributeList(S, Enum, Attrs);
16853 
16854   if (Enum->isDependentType()) {
16855     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
16856       EnumConstantDecl *ECD =
16857         cast_or_null<EnumConstantDecl>(Elements[i]);
16858       if (!ECD) continue;
16859 
16860       ECD->setType(EnumType);
16861     }
16862 
16863     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
16864     return;
16865   }
16866 
16867   // TODO: If the result value doesn't fit in an int, it must be a long or long
16868   // long value.  ISO C does not support this, but GCC does as an extension,
16869   // emit a warning.
16870   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
16871   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
16872   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
16873 
16874   // Verify that all the values are okay, compute the size of the values, and
16875   // reverse the list.
16876   unsigned NumNegativeBits = 0;
16877   unsigned NumPositiveBits = 0;
16878 
16879   // Keep track of whether all elements have type int.
16880   bool AllElementsInt = true;
16881 
16882   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
16883     EnumConstantDecl *ECD =
16884       cast_or_null<EnumConstantDecl>(Elements[i]);
16885     if (!ECD) continue;  // Already issued a diagnostic.
16886 
16887     const llvm::APSInt &InitVal = ECD->getInitVal();
16888 
16889     // Keep track of the size of positive and negative values.
16890     if (InitVal.isUnsigned() || InitVal.isNonNegative())
16891       NumPositiveBits = std::max(NumPositiveBits,
16892                                  (unsigned)InitVal.getActiveBits());
16893     else
16894       NumNegativeBits = std::max(NumNegativeBits,
16895                                  (unsigned)InitVal.getMinSignedBits());
16896 
16897     // Keep track of whether every enum element has type int (very common).
16898     if (AllElementsInt)
16899       AllElementsInt = ECD->getType() == Context.IntTy;
16900   }
16901 
16902   // Figure out the type that should be used for this enum.
16903   QualType BestType;
16904   unsigned BestWidth;
16905 
16906   // C++0x N3000 [conv.prom]p3:
16907   //   An rvalue of an unscoped enumeration type whose underlying
16908   //   type is not fixed can be converted to an rvalue of the first
16909   //   of the following types that can represent all the values of
16910   //   the enumeration: int, unsigned int, long int, unsigned long
16911   //   int, long long int, or unsigned long long int.
16912   // C99 6.4.4.3p2:
16913   //   An identifier declared as an enumeration constant has type int.
16914   // The C99 rule is modified by a gcc extension
16915   QualType BestPromotionType;
16916 
16917   bool Packed = Enum->hasAttr<PackedAttr>();
16918   // -fshort-enums is the equivalent to specifying the packed attribute on all
16919   // enum definitions.
16920   if (LangOpts.ShortEnums)
16921     Packed = true;
16922 
16923   // If the enum already has a type because it is fixed or dictated by the
16924   // target, promote that type instead of analyzing the enumerators.
16925   if (Enum->isComplete()) {
16926     BestType = Enum->getIntegerType();
16927     if (BestType->isPromotableIntegerType())
16928       BestPromotionType = Context.getPromotedIntegerType(BestType);
16929     else
16930       BestPromotionType = BestType;
16931 
16932     BestWidth = Context.getIntWidth(BestType);
16933   }
16934   else if (NumNegativeBits) {
16935     // If there is a negative value, figure out the smallest integer type (of
16936     // int/long/longlong) that fits.
16937     // If it's packed, check also if it fits a char or a short.
16938     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
16939       BestType = Context.SignedCharTy;
16940       BestWidth = CharWidth;
16941     } else if (Packed && NumNegativeBits <= ShortWidth &&
16942                NumPositiveBits < ShortWidth) {
16943       BestType = Context.ShortTy;
16944       BestWidth = ShortWidth;
16945     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
16946       BestType = Context.IntTy;
16947       BestWidth = IntWidth;
16948     } else {
16949       BestWidth = Context.getTargetInfo().getLongWidth();
16950 
16951       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
16952         BestType = Context.LongTy;
16953       } else {
16954         BestWidth = Context.getTargetInfo().getLongLongWidth();
16955 
16956         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
16957           Diag(Enum->getLocation(), diag::ext_enum_too_large);
16958         BestType = Context.LongLongTy;
16959       }
16960     }
16961     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
16962   } else {
16963     // If there is no negative value, figure out the smallest type that fits
16964     // all of the enumerator values.
16965     // If it's packed, check also if it fits a char or a short.
16966     if (Packed && NumPositiveBits <= CharWidth) {
16967       BestType = Context.UnsignedCharTy;
16968       BestPromotionType = Context.IntTy;
16969       BestWidth = CharWidth;
16970     } else if (Packed && NumPositiveBits <= ShortWidth) {
16971       BestType = Context.UnsignedShortTy;
16972       BestPromotionType = Context.IntTy;
16973       BestWidth = ShortWidth;
16974     } else if (NumPositiveBits <= IntWidth) {
16975       BestType = Context.UnsignedIntTy;
16976       BestWidth = IntWidth;
16977       BestPromotionType
16978         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16979                            ? Context.UnsignedIntTy : Context.IntTy;
16980     } else if (NumPositiveBits <=
16981                (BestWidth = Context.getTargetInfo().getLongWidth())) {
16982       BestType = Context.UnsignedLongTy;
16983       BestPromotionType
16984         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16985                            ? Context.UnsignedLongTy : Context.LongTy;
16986     } else {
16987       BestWidth = Context.getTargetInfo().getLongLongWidth();
16988       assert(NumPositiveBits <= BestWidth &&
16989              "How could an initializer get larger than ULL?");
16990       BestType = Context.UnsignedLongLongTy;
16991       BestPromotionType
16992         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16993                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
16994     }
16995   }
16996 
16997   // Loop over all of the enumerator constants, changing their types to match
16998   // the type of the enum if needed.
16999   for (auto *D : Elements) {
17000     auto *ECD = cast_or_null<EnumConstantDecl>(D);
17001     if (!ECD) continue;  // Already issued a diagnostic.
17002 
17003     // Standard C says the enumerators have int type, but we allow, as an
17004     // extension, the enumerators to be larger than int size.  If each
17005     // enumerator value fits in an int, type it as an int, otherwise type it the
17006     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
17007     // that X has type 'int', not 'unsigned'.
17008 
17009     // Determine whether the value fits into an int.
17010     llvm::APSInt InitVal = ECD->getInitVal();
17011 
17012     // If it fits into an integer type, force it.  Otherwise force it to match
17013     // the enum decl type.
17014     QualType NewTy;
17015     unsigned NewWidth;
17016     bool NewSign;
17017     if (!getLangOpts().CPlusPlus &&
17018         !Enum->isFixed() &&
17019         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
17020       NewTy = Context.IntTy;
17021       NewWidth = IntWidth;
17022       NewSign = true;
17023     } else if (ECD->getType() == BestType) {
17024       // Already the right type!
17025       if (getLangOpts().CPlusPlus)
17026         // C++ [dcl.enum]p4: Following the closing brace of an
17027         // enum-specifier, each enumerator has the type of its
17028         // enumeration.
17029         ECD->setType(EnumType);
17030       continue;
17031     } else {
17032       NewTy = BestType;
17033       NewWidth = BestWidth;
17034       NewSign = BestType->isSignedIntegerOrEnumerationType();
17035     }
17036 
17037     // Adjust the APSInt value.
17038     InitVal = InitVal.extOrTrunc(NewWidth);
17039     InitVal.setIsSigned(NewSign);
17040     ECD->setInitVal(InitVal);
17041 
17042     // Adjust the Expr initializer and type.
17043     if (ECD->getInitExpr() &&
17044         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
17045       ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
17046                                                 CK_IntegralCast,
17047                                                 ECD->getInitExpr(),
17048                                                 /*base paths*/ nullptr,
17049                                                 VK_RValue));
17050     if (getLangOpts().CPlusPlus)
17051       // C++ [dcl.enum]p4: Following the closing brace of an
17052       // enum-specifier, each enumerator has the type of its
17053       // enumeration.
17054       ECD->setType(EnumType);
17055     else
17056       ECD->setType(NewTy);
17057   }
17058 
17059   Enum->completeDefinition(BestType, BestPromotionType,
17060                            NumPositiveBits, NumNegativeBits);
17061 
17062   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
17063 
17064   if (Enum->isClosedFlag()) {
17065     for (Decl *D : Elements) {
17066       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
17067       if (!ECD) continue;  // Already issued a diagnostic.
17068 
17069       llvm::APSInt InitVal = ECD->getInitVal();
17070       if (InitVal != 0 && !InitVal.isPowerOf2() &&
17071           !IsValueInFlagEnum(Enum, InitVal, true))
17072         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
17073           << ECD << Enum;
17074     }
17075   }
17076 
17077   // Now that the enum type is defined, ensure it's not been underaligned.
17078   if (Enum->hasAttrs())
17079     CheckAlignasUnderalignment(Enum);
17080 }
17081 
17082 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
17083                                   SourceLocation StartLoc,
17084                                   SourceLocation EndLoc) {
17085   StringLiteral *AsmString = cast<StringLiteral>(expr);
17086 
17087   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
17088                                                    AsmString, StartLoc,
17089                                                    EndLoc);
17090   CurContext->addDecl(New);
17091   return New;
17092 }
17093 
17094 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
17095                                       IdentifierInfo* AliasName,
17096                                       SourceLocation PragmaLoc,
17097                                       SourceLocation NameLoc,
17098                                       SourceLocation AliasNameLoc) {
17099   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
17100                                          LookupOrdinaryName);
17101   AsmLabelAttr *Attr =
17102       AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc);
17103 
17104   // If a declaration that:
17105   // 1) declares a function or a variable
17106   // 2) has external linkage
17107   // already exists, add a label attribute to it.
17108   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17109     if (isDeclExternC(PrevDecl))
17110       PrevDecl->addAttr(Attr);
17111     else
17112       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
17113           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
17114   // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
17115   } else
17116     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
17117 }
17118 
17119 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
17120                              SourceLocation PragmaLoc,
17121                              SourceLocation NameLoc) {
17122   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
17123 
17124   if (PrevDecl) {
17125     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
17126   } else {
17127     (void)WeakUndeclaredIdentifiers.insert(
17128       std::pair<IdentifierInfo*,WeakInfo>
17129         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
17130   }
17131 }
17132 
17133 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
17134                                 IdentifierInfo* AliasName,
17135                                 SourceLocation PragmaLoc,
17136                                 SourceLocation NameLoc,
17137                                 SourceLocation AliasNameLoc) {
17138   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
17139                                     LookupOrdinaryName);
17140   WeakInfo W = WeakInfo(Name, NameLoc);
17141 
17142   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17143     if (!PrevDecl->hasAttr<AliasAttr>())
17144       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
17145         DeclApplyPragmaWeak(TUScope, ND, W);
17146   } else {
17147     (void)WeakUndeclaredIdentifiers.insert(
17148       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
17149   }
17150 }
17151 
17152 Decl *Sema::getObjCDeclContext() const {
17153   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
17154 }
17155