1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements semantic analysis for declarations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "TypeLocBuilder.h"
14 #include "clang/AST/ASTConsumer.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/CommentDiagnostic.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/EvaluatedExprVisitor.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/NonTrivialTypeVisitor.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36 #include "clang/Sema/CXXFieldCollector.h"
37 #include "clang/Sema/DeclSpec.h"
38 #include "clang/Sema/DelayedDiagnostic.h"
39 #include "clang/Sema/Initialization.h"
40 #include "clang/Sema/Lookup.h"
41 #include "clang/Sema/ParsedTemplate.h"
42 #include "clang/Sema/Scope.h"
43 #include "clang/Sema/ScopeInfo.h"
44 #include "clang/Sema/SemaInternal.h"
45 #include "clang/Sema/Template.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/Triple.h"
48 #include <algorithm>
49 #include <cstring>
50 #include <functional>
51 #include <unordered_map>
52 
53 using namespace clang;
54 using namespace sema;
55 
56 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
57   if (OwnedType) {
58     Decl *Group[2] = { OwnedType, Ptr };
59     return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
60   }
61 
62   return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
63 }
64 
65 namespace {
66 
67 class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
68  public:
69    TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
70                         bool AllowTemplates = false,
71                         bool AllowNonTemplates = true)
72        : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
73          AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
74      WantExpressionKeywords = false;
75      WantCXXNamedCasts = false;
76      WantRemainingKeywords = false;
77   }
78 
79   bool ValidateCandidate(const TypoCorrection &candidate) override {
80     if (NamedDecl *ND = candidate.getCorrectionDecl()) {
81       if (!AllowInvalidDecl && ND->isInvalidDecl())
82         return false;
83 
84       if (getAsTypeTemplateDecl(ND))
85         return AllowTemplates;
86 
87       bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
88       if (!IsType)
89         return false;
90 
91       if (AllowNonTemplates)
92         return true;
93 
94       // An injected-class-name of a class template (specialization) is valid
95       // as a template or as a non-template.
96       if (AllowTemplates) {
97         auto *RD = dyn_cast<CXXRecordDecl>(ND);
98         if (!RD || !RD->isInjectedClassName())
99           return false;
100         RD = cast<CXXRecordDecl>(RD->getDeclContext());
101         return RD->getDescribedClassTemplate() ||
102                isa<ClassTemplateSpecializationDecl>(RD);
103       }
104 
105       return false;
106     }
107 
108     return !WantClassName && candidate.isKeyword();
109   }
110 
111   std::unique_ptr<CorrectionCandidateCallback> clone() override {
112     return std::make_unique<TypeNameValidatorCCC>(*this);
113   }
114 
115  private:
116   bool AllowInvalidDecl;
117   bool WantClassName;
118   bool AllowTemplates;
119   bool AllowNonTemplates;
120 };
121 
122 } // end anonymous namespace
123 
124 /// Determine whether the token kind starts a simple-type-specifier.
125 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
126   switch (Kind) {
127   // FIXME: Take into account the current language when deciding whether a
128   // token kind is a valid type specifier
129   case tok::kw_short:
130   case tok::kw_long:
131   case tok::kw___int64:
132   case tok::kw___int128:
133   case tok::kw_signed:
134   case tok::kw_unsigned:
135   case tok::kw_void:
136   case tok::kw_char:
137   case tok::kw_int:
138   case tok::kw_half:
139   case tok::kw_float:
140   case tok::kw_double:
141   case tok::kw___bf16:
142   case tok::kw__Float16:
143   case tok::kw___float128:
144   case tok::kw___ibm128:
145   case tok::kw_wchar_t:
146   case tok::kw_bool:
147   case tok::kw___underlying_type:
148   case tok::kw___auto_type:
149     return true;
150 
151   case tok::annot_typename:
152   case tok::kw_char16_t:
153   case tok::kw_char32_t:
154   case tok::kw_typeof:
155   case tok::annot_decltype:
156   case tok::kw_decltype:
157     return getLangOpts().CPlusPlus;
158 
159   case tok::kw_char8_t:
160     return getLangOpts().Char8;
161 
162   default:
163     break;
164   }
165 
166   return false;
167 }
168 
169 namespace {
170 enum class UnqualifiedTypeNameLookupResult {
171   NotFound,
172   FoundNonType,
173   FoundType
174 };
175 } // end anonymous namespace
176 
177 /// Tries to perform unqualified lookup of the type decls in bases for
178 /// dependent class.
179 /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
180 /// type decl, \a FoundType if only type decls are found.
181 static UnqualifiedTypeNameLookupResult
182 lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
183                                 SourceLocation NameLoc,
184                                 const CXXRecordDecl *RD) {
185   if (!RD->hasDefinition())
186     return UnqualifiedTypeNameLookupResult::NotFound;
187   // Look for type decls in base classes.
188   UnqualifiedTypeNameLookupResult FoundTypeDecl =
189       UnqualifiedTypeNameLookupResult::NotFound;
190   for (const auto &Base : RD->bases()) {
191     const CXXRecordDecl *BaseRD = nullptr;
192     if (auto *BaseTT = Base.getType()->getAs<TagType>())
193       BaseRD = BaseTT->getAsCXXRecordDecl();
194     else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
195       // Look for type decls in dependent base classes that have known primary
196       // templates.
197       if (!TST || !TST->isDependentType())
198         continue;
199       auto *TD = TST->getTemplateName().getAsTemplateDecl();
200       if (!TD)
201         continue;
202       if (auto *BasePrimaryTemplate =
203           dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
204         if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
205           BaseRD = BasePrimaryTemplate;
206         else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
207           if (const ClassTemplatePartialSpecializationDecl *PS =
208                   CTD->findPartialSpecialization(Base.getType()))
209             if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
210               BaseRD = PS;
211         }
212       }
213     }
214     if (BaseRD) {
215       for (NamedDecl *ND : BaseRD->lookup(&II)) {
216         if (!isa<TypeDecl>(ND))
217           return UnqualifiedTypeNameLookupResult::FoundNonType;
218         FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
219       }
220       if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
221         switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
222         case UnqualifiedTypeNameLookupResult::FoundNonType:
223           return UnqualifiedTypeNameLookupResult::FoundNonType;
224         case UnqualifiedTypeNameLookupResult::FoundType:
225           FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
226           break;
227         case UnqualifiedTypeNameLookupResult::NotFound:
228           break;
229         }
230       }
231     }
232   }
233 
234   return FoundTypeDecl;
235 }
236 
237 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
238                                                       const IdentifierInfo &II,
239                                                       SourceLocation NameLoc) {
240   // Lookup in the parent class template context, if any.
241   const CXXRecordDecl *RD = nullptr;
242   UnqualifiedTypeNameLookupResult FoundTypeDecl =
243       UnqualifiedTypeNameLookupResult::NotFound;
244   for (DeclContext *DC = S.CurContext;
245        DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
246        DC = DC->getParent()) {
247     // Look for type decls in dependent base classes that have known primary
248     // templates.
249     RD = dyn_cast<CXXRecordDecl>(DC);
250     if (RD && RD->getDescribedClassTemplate())
251       FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
252   }
253   if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
254     return nullptr;
255 
256   // We found some types in dependent base classes.  Recover as if the user
257   // wrote 'typename MyClass::II' instead of 'II'.  We'll fully resolve the
258   // lookup during template instantiation.
259   S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II;
260 
261   ASTContext &Context = S.Context;
262   auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
263                                           cast<Type>(Context.getRecordType(RD)));
264   QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
265 
266   CXXScopeSpec SS;
267   SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
268 
269   TypeLocBuilder Builder;
270   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
271   DepTL.setNameLoc(NameLoc);
272   DepTL.setElaboratedKeywordLoc(SourceLocation());
273   DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
274   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
275 }
276 
277 /// If the identifier refers to a type name within this scope,
278 /// return the declaration of that type.
279 ///
280 /// This routine performs ordinary name lookup of the identifier II
281 /// within the given scope, with optional C++ scope specifier SS, to
282 /// determine whether the name refers to a type. If so, returns an
283 /// opaque pointer (actually a QualType) corresponding to that
284 /// type. Otherwise, returns NULL.
285 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
286                              Scope *S, CXXScopeSpec *SS,
287                              bool isClassName, bool HasTrailingDot,
288                              ParsedType ObjectTypePtr,
289                              bool IsCtorOrDtorName,
290                              bool WantNontrivialTypeSourceInfo,
291                              bool IsClassTemplateDeductionContext,
292                              IdentifierInfo **CorrectedII) {
293   // FIXME: Consider allowing this outside C++1z mode as an extension.
294   bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
295                               getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
296                               !isClassName && !HasTrailingDot;
297 
298   // Determine where we will perform name lookup.
299   DeclContext *LookupCtx = nullptr;
300   if (ObjectTypePtr) {
301     QualType ObjectType = ObjectTypePtr.get();
302     if (ObjectType->isRecordType())
303       LookupCtx = computeDeclContext(ObjectType);
304   } else if (SS && SS->isNotEmpty()) {
305     LookupCtx = computeDeclContext(*SS, false);
306 
307     if (!LookupCtx) {
308       if (isDependentScopeSpecifier(*SS)) {
309         // C++ [temp.res]p3:
310         //   A qualified-id that refers to a type and in which the
311         //   nested-name-specifier depends on a template-parameter (14.6.2)
312         //   shall be prefixed by the keyword typename to indicate that the
313         //   qualified-id denotes a type, forming an
314         //   elaborated-type-specifier (7.1.5.3).
315         //
316         // We therefore do not perform any name lookup if the result would
317         // refer to a member of an unknown specialization.
318         if (!isClassName && !IsCtorOrDtorName)
319           return nullptr;
320 
321         // We know from the grammar that this name refers to a type,
322         // so build a dependent node to describe the type.
323         if (WantNontrivialTypeSourceInfo)
324           return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
325 
326         NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
327         QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
328                                        II, NameLoc);
329         return ParsedType::make(T);
330       }
331 
332       return nullptr;
333     }
334 
335     if (!LookupCtx->isDependentContext() &&
336         RequireCompleteDeclContext(*SS, LookupCtx))
337       return nullptr;
338   }
339 
340   // FIXME: LookupNestedNameSpecifierName isn't the right kind of
341   // lookup for class-names.
342   LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
343                                       LookupOrdinaryName;
344   LookupResult Result(*this, &II, NameLoc, Kind);
345   if (LookupCtx) {
346     // Perform "qualified" name lookup into the declaration context we
347     // computed, which is either the type of the base of a member access
348     // expression or the declaration context associated with a prior
349     // nested-name-specifier.
350     LookupQualifiedName(Result, LookupCtx);
351 
352     if (ObjectTypePtr && Result.empty()) {
353       // C++ [basic.lookup.classref]p3:
354       //   If the unqualified-id is ~type-name, the type-name is looked up
355       //   in the context of the entire postfix-expression. If the type T of
356       //   the object expression is of a class type C, the type-name is also
357       //   looked up in the scope of class C. At least one of the lookups shall
358       //   find a name that refers to (possibly cv-qualified) T.
359       LookupName(Result, S);
360     }
361   } else {
362     // Perform unqualified name lookup.
363     LookupName(Result, S);
364 
365     // For unqualified lookup in a class template in MSVC mode, look into
366     // dependent base classes where the primary class template is known.
367     if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
368       if (ParsedType TypeInBase =
369               recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
370         return TypeInBase;
371     }
372   }
373 
374   NamedDecl *IIDecl = nullptr;
375   switch (Result.getResultKind()) {
376   case LookupResult::NotFound:
377   case LookupResult::NotFoundInCurrentInstantiation:
378     if (CorrectedII) {
379       TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
380                                AllowDeducedTemplate);
381       TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
382                                               S, SS, CCC, CTK_ErrorRecovery);
383       IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
384       TemplateTy Template;
385       bool MemberOfUnknownSpecialization;
386       UnqualifiedId TemplateName;
387       TemplateName.setIdentifier(NewII, NameLoc);
388       NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
389       CXXScopeSpec NewSS, *NewSSPtr = SS;
390       if (SS && NNS) {
391         NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
392         NewSSPtr = &NewSS;
393       }
394       if (Correction && (NNS || NewII != &II) &&
395           // Ignore a correction to a template type as the to-be-corrected
396           // identifier is not a template (typo correction for template names
397           // is handled elsewhere).
398           !(getLangOpts().CPlusPlus && NewSSPtr &&
399             isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
400                            Template, MemberOfUnknownSpecialization))) {
401         ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
402                                     isClassName, HasTrailingDot, ObjectTypePtr,
403                                     IsCtorOrDtorName,
404                                     WantNontrivialTypeSourceInfo,
405                                     IsClassTemplateDeductionContext);
406         if (Ty) {
407           diagnoseTypo(Correction,
408                        PDiag(diag::err_unknown_type_or_class_name_suggest)
409                          << Result.getLookupName() << isClassName);
410           if (SS && NNS)
411             SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
412           *CorrectedII = NewII;
413           return Ty;
414         }
415       }
416     }
417     // If typo correction failed or was not performed, fall through
418     LLVM_FALLTHROUGH;
419   case LookupResult::FoundOverloaded:
420   case LookupResult::FoundUnresolvedValue:
421     Result.suppressDiagnostics();
422     return nullptr;
423 
424   case LookupResult::Ambiguous:
425     // Recover from type-hiding ambiguities by hiding the type.  We'll
426     // do the lookup again when looking for an object, and we can
427     // diagnose the error then.  If we don't do this, then the error
428     // about hiding the type will be immediately followed by an error
429     // that only makes sense if the identifier was treated like a type.
430     if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
431       Result.suppressDiagnostics();
432       return nullptr;
433     }
434 
435     // Look to see if we have a type anywhere in the list of results.
436     for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
437          Res != ResEnd; ++Res) {
438       NamedDecl *RealRes = (*Res)->getUnderlyingDecl();
439       if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>(
440               RealRes) ||
441           (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) {
442         if (!IIDecl ||
443             // Make the selection of the recovery decl deterministic.
444             RealRes->getLocation() < IIDecl->getLocation())
445           IIDecl = RealRes;
446       }
447     }
448 
449     if (!IIDecl) {
450       // None of the entities we found is a type, so there is no way
451       // to even assume that the result is a type. In this case, don't
452       // complain about the ambiguity. The parser will either try to
453       // perform this lookup again (e.g., as an object name), which
454       // will produce the ambiguity, or will complain that it expected
455       // a type name.
456       Result.suppressDiagnostics();
457       return nullptr;
458     }
459 
460     // We found a type within the ambiguous lookup; diagnose the
461     // ambiguity and then return that type. This might be the right
462     // answer, or it might not be, but it suppresses any attempt to
463     // perform the name lookup again.
464     break;
465 
466   case LookupResult::Found:
467     IIDecl = Result.getFoundDecl();
468     break;
469   }
470 
471   assert(IIDecl && "Didn't find decl");
472 
473   QualType T;
474   if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
475     // C++ [class.qual]p2: A lookup that would find the injected-class-name
476     // instead names the constructors of the class, except when naming a class.
477     // This is ill-formed when we're not actually forming a ctor or dtor name.
478     auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
479     auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
480     if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
481         FoundRD->isInjectedClassName() &&
482         declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
483       Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
484           << &II << /*Type*/1;
485 
486     DiagnoseUseOfDecl(IIDecl, NameLoc);
487 
488     T = Context.getTypeDeclType(TD);
489     MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
490   } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
491     (void)DiagnoseUseOfDecl(IDecl, NameLoc);
492     if (!HasTrailingDot)
493       T = Context.getObjCInterfaceType(IDecl);
494   } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(IIDecl)) {
495     (void)DiagnoseUseOfDecl(UD, NameLoc);
496     // Recover with 'int'
497     T = Context.IntTy;
498   } else if (AllowDeducedTemplate) {
499     if (auto *TD = getAsTypeTemplateDecl(IIDecl))
500       T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
501                                                        QualType(), false);
502   }
503 
504   if (T.isNull()) {
505     // If it's not plausibly a type, suppress diagnostics.
506     Result.suppressDiagnostics();
507     return nullptr;
508   }
509 
510   // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
511   // constructor or destructor name (in such a case, the scope specifier
512   // will be attached to the enclosing Expr or Decl node).
513   if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
514       !isa<ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>(IIDecl)) {
515     if (WantNontrivialTypeSourceInfo) {
516       // Construct a type with type-source information.
517       TypeLocBuilder Builder;
518       Builder.pushTypeSpec(T).setNameLoc(NameLoc);
519 
520       T = getElaboratedType(ETK_None, *SS, T);
521       ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
522       ElabTL.setElaboratedKeywordLoc(SourceLocation());
523       ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
524       return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
525     } else {
526       T = getElaboratedType(ETK_None, *SS, T);
527     }
528   }
529 
530   return ParsedType::make(T);
531 }
532 
533 // Builds a fake NNS for the given decl context.
534 static NestedNameSpecifier *
535 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
536   for (;; DC = DC->getLookupParent()) {
537     DC = DC->getPrimaryContext();
538     auto *ND = dyn_cast<NamespaceDecl>(DC);
539     if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
540       return NestedNameSpecifier::Create(Context, nullptr, ND);
541     else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
542       return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
543                                          RD->getTypeForDecl());
544     else if (isa<TranslationUnitDecl>(DC))
545       return NestedNameSpecifier::GlobalSpecifier(Context);
546   }
547   llvm_unreachable("something isn't in TU scope?");
548 }
549 
550 /// Find the parent class with dependent bases of the innermost enclosing method
551 /// context. Do not look for enclosing CXXRecordDecls directly, or we will end
552 /// up allowing unqualified dependent type names at class-level, which MSVC
553 /// correctly rejects.
554 static const CXXRecordDecl *
555 findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
556   for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
557     DC = DC->getPrimaryContext();
558     if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
559       if (MD->getParent()->hasAnyDependentBases())
560         return MD->getParent();
561   }
562   return nullptr;
563 }
564 
565 ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
566                                           SourceLocation NameLoc,
567                                           bool IsTemplateTypeArg) {
568   assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode");
569 
570   NestedNameSpecifier *NNS = nullptr;
571   if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
572     // If we weren't able to parse a default template argument, delay lookup
573     // until instantiation time by making a non-dependent DependentTypeName. We
574     // pretend we saw a NestedNameSpecifier referring to the current scope, and
575     // lookup is retried.
576     // FIXME: This hurts our diagnostic quality, since we get errors like "no
577     // type named 'Foo' in 'current_namespace'" when the user didn't write any
578     // name specifiers.
579     NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
580     Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
581   } else if (const CXXRecordDecl *RD =
582                  findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
583     // Build a DependentNameType that will perform lookup into RD at
584     // instantiation time.
585     NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
586                                       RD->getTypeForDecl());
587 
588     // Diagnose that this identifier was undeclared, and retry the lookup during
589     // template instantiation.
590     Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
591                                                                       << RD;
592   } else {
593     // This is not a situation that we should recover from.
594     return ParsedType();
595   }
596 
597   QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
598 
599   // Build type location information.  We synthesized the qualifier, so we have
600   // to build a fake NestedNameSpecifierLoc.
601   NestedNameSpecifierLocBuilder NNSLocBuilder;
602   NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
603   NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
604 
605   TypeLocBuilder Builder;
606   DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
607   DepTL.setNameLoc(NameLoc);
608   DepTL.setElaboratedKeywordLoc(SourceLocation());
609   DepTL.setQualifierLoc(QualifierLoc);
610   return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
611 }
612 
613 /// isTagName() - This method is called *for error recovery purposes only*
614 /// to determine if the specified name is a valid tag name ("struct foo").  If
615 /// so, this returns the TST for the tag corresponding to it (TST_enum,
616 /// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
617 /// cases in C where the user forgot to specify the tag.
618 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
619   // Do a tag name lookup in this scope.
620   LookupResult R(*this, &II, SourceLocation(), LookupTagName);
621   LookupName(R, S, false);
622   R.suppressDiagnostics();
623   if (R.getResultKind() == LookupResult::Found)
624     if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
625       switch (TD->getTagKind()) {
626       case TTK_Struct: return DeclSpec::TST_struct;
627       case TTK_Interface: return DeclSpec::TST_interface;
628       case TTK_Union:  return DeclSpec::TST_union;
629       case TTK_Class:  return DeclSpec::TST_class;
630       case TTK_Enum:   return DeclSpec::TST_enum;
631       }
632     }
633 
634   return DeclSpec::TST_unspecified;
635 }
636 
637 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
638 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
639 /// then downgrade the missing typename error to a warning.
640 /// This is needed for MSVC compatibility; Example:
641 /// @code
642 /// template<class T> class A {
643 /// public:
644 ///   typedef int TYPE;
645 /// };
646 /// template<class T> class B : public A<T> {
647 /// public:
648 ///   A<T>::TYPE a; // no typename required because A<T> is a base class.
649 /// };
650 /// @endcode
651 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
652   if (CurContext->isRecord()) {
653     if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
654       return true;
655 
656     const Type *Ty = SS->getScopeRep()->getAsType();
657 
658     CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
659     for (const auto &Base : RD->bases())
660       if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
661         return true;
662     return S->isFunctionPrototypeScope();
663   }
664   return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
665 }
666 
667 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
668                                    SourceLocation IILoc,
669                                    Scope *S,
670                                    CXXScopeSpec *SS,
671                                    ParsedType &SuggestedType,
672                                    bool IsTemplateName) {
673   // Don't report typename errors for editor placeholders.
674   if (II->isEditorPlaceholder())
675     return;
676   // We don't have anything to suggest (yet).
677   SuggestedType = nullptr;
678 
679   // There may have been a typo in the name of the type. Look up typo
680   // results, in case we have something that we can suggest.
681   TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
682                            /*AllowTemplates=*/IsTemplateName,
683                            /*AllowNonTemplates=*/!IsTemplateName);
684   if (TypoCorrection Corrected =
685           CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
686                       CCC, CTK_ErrorRecovery)) {
687     // FIXME: Support error recovery for the template-name case.
688     bool CanRecover = !IsTemplateName;
689     if (Corrected.isKeyword()) {
690       // We corrected to a keyword.
691       diagnoseTypo(Corrected,
692                    PDiag(IsTemplateName ? diag::err_no_template_suggest
693                                         : diag::err_unknown_typename_suggest)
694                        << II);
695       II = Corrected.getCorrectionAsIdentifierInfo();
696     } else {
697       // We found a similarly-named type or interface; suggest that.
698       if (!SS || !SS->isSet()) {
699         diagnoseTypo(Corrected,
700                      PDiag(IsTemplateName ? diag::err_no_template_suggest
701                                           : diag::err_unknown_typename_suggest)
702                          << II, CanRecover);
703       } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
704         std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
705         bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
706                                 II->getName().equals(CorrectedStr);
707         diagnoseTypo(Corrected,
708                      PDiag(IsTemplateName
709                                ? diag::err_no_member_template_suggest
710                                : diag::err_unknown_nested_typename_suggest)
711                          << II << DC << DroppedSpecifier << SS->getRange(),
712                      CanRecover);
713       } else {
714         llvm_unreachable("could not have corrected a typo here");
715       }
716 
717       if (!CanRecover)
718         return;
719 
720       CXXScopeSpec tmpSS;
721       if (Corrected.getCorrectionSpecifier())
722         tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
723                           SourceRange(IILoc));
724       // FIXME: Support class template argument deduction here.
725       SuggestedType =
726           getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
727                       tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
728                       /*IsCtorOrDtorName=*/false,
729                       /*WantNontrivialTypeSourceInfo=*/true);
730     }
731     return;
732   }
733 
734   if (getLangOpts().CPlusPlus && !IsTemplateName) {
735     // See if II is a class template that the user forgot to pass arguments to.
736     UnqualifiedId Name;
737     Name.setIdentifier(II, IILoc);
738     CXXScopeSpec EmptySS;
739     TemplateTy TemplateResult;
740     bool MemberOfUnknownSpecialization;
741     if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
742                        Name, nullptr, true, TemplateResult,
743                        MemberOfUnknownSpecialization) == TNK_Type_template) {
744       diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
745       return;
746     }
747   }
748 
749   // FIXME: Should we move the logic that tries to recover from a missing tag
750   // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
751 
752   if (!SS || (!SS->isSet() && !SS->isInvalid()))
753     Diag(IILoc, IsTemplateName ? diag::err_no_template
754                                : diag::err_unknown_typename)
755         << II;
756   else if (DeclContext *DC = computeDeclContext(*SS, false))
757     Diag(IILoc, IsTemplateName ? diag::err_no_member_template
758                                : diag::err_typename_nested_not_found)
759         << II << DC << SS->getRange();
760   else if (SS->isValid() && SS->getScopeRep()->containsErrors()) {
761     SuggestedType =
762         ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get();
763   } else if (isDependentScopeSpecifier(*SS)) {
764     unsigned DiagID = diag::err_typename_missing;
765     if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
766       DiagID = diag::ext_typename_missing;
767 
768     Diag(SS->getRange().getBegin(), DiagID)
769       << SS->getScopeRep() << II->getName()
770       << SourceRange(SS->getRange().getBegin(), IILoc)
771       << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
772     SuggestedType = ActOnTypenameType(S, SourceLocation(),
773                                       *SS, *II, IILoc).get();
774   } else {
775     assert(SS && SS->isInvalid() &&
776            "Invalid scope specifier has already been diagnosed");
777   }
778 }
779 
780 /// Determine whether the given result set contains either a type name
781 /// or
782 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
783   bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
784                        NextToken.is(tok::less);
785 
786   for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
787     if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
788       return true;
789 
790     if (CheckTemplate && isa<TemplateDecl>(*I))
791       return true;
792   }
793 
794   return false;
795 }
796 
797 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
798                                     Scope *S, CXXScopeSpec &SS,
799                                     IdentifierInfo *&Name,
800                                     SourceLocation NameLoc) {
801   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
802   SemaRef.LookupParsedName(R, S, &SS);
803   if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
804     StringRef FixItTagName;
805     switch (Tag->getTagKind()) {
806       case TTK_Class:
807         FixItTagName = "class ";
808         break;
809 
810       case TTK_Enum:
811         FixItTagName = "enum ";
812         break;
813 
814       case TTK_Struct:
815         FixItTagName = "struct ";
816         break;
817 
818       case TTK_Interface:
819         FixItTagName = "__interface ";
820         break;
821 
822       case TTK_Union:
823         FixItTagName = "union ";
824         break;
825     }
826 
827     StringRef TagName = FixItTagName.drop_back();
828     SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
829       << Name << TagName << SemaRef.getLangOpts().CPlusPlus
830       << FixItHint::CreateInsertion(NameLoc, FixItTagName);
831 
832     for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
833          I != IEnd; ++I)
834       SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
835         << Name << TagName;
836 
837     // Replace lookup results with just the tag decl.
838     Result.clear(Sema::LookupTagName);
839     SemaRef.LookupParsedName(Result, S, &SS);
840     return true;
841   }
842 
843   return false;
844 }
845 
846 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
847 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
848                                   QualType T, SourceLocation NameLoc) {
849   ASTContext &Context = S.Context;
850 
851   TypeLocBuilder Builder;
852   Builder.pushTypeSpec(T).setNameLoc(NameLoc);
853 
854   T = S.getElaboratedType(ETK_None, SS, T);
855   ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
856   ElabTL.setElaboratedKeywordLoc(SourceLocation());
857   ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
858   return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
859 }
860 
861 Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
862                                             IdentifierInfo *&Name,
863                                             SourceLocation NameLoc,
864                                             const Token &NextToken,
865                                             CorrectionCandidateCallback *CCC) {
866   DeclarationNameInfo NameInfo(Name, NameLoc);
867   ObjCMethodDecl *CurMethod = getCurMethodDecl();
868 
869   assert(NextToken.isNot(tok::coloncolon) &&
870          "parse nested name specifiers before calling ClassifyName");
871   if (getLangOpts().CPlusPlus && SS.isSet() &&
872       isCurrentClassName(*Name, S, &SS)) {
873     // Per [class.qual]p2, this names the constructors of SS, not the
874     // injected-class-name. We don't have a classification for that.
875     // There's not much point caching this result, since the parser
876     // will reject it later.
877     return NameClassification::Unknown();
878   }
879 
880   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
881   LookupParsedName(Result, S, &SS, !CurMethod);
882 
883   if (SS.isInvalid())
884     return NameClassification::Error();
885 
886   // For unqualified lookup in a class template in MSVC mode, look into
887   // dependent base classes where the primary class template is known.
888   if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
889     if (ParsedType TypeInBase =
890             recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
891       return TypeInBase;
892   }
893 
894   // Perform lookup for Objective-C instance variables (including automatically
895   // synthesized instance variables), if we're in an Objective-C method.
896   // FIXME: This lookup really, really needs to be folded in to the normal
897   // unqualified lookup mechanism.
898   if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
899     DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
900     if (Ivar.isInvalid())
901       return NameClassification::Error();
902     if (Ivar.isUsable())
903       return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
904 
905     // We defer builtin creation until after ivar lookup inside ObjC methods.
906     if (Result.empty())
907       LookupBuiltin(Result);
908   }
909 
910   bool SecondTry = false;
911   bool IsFilteredTemplateName = false;
912 
913 Corrected:
914   switch (Result.getResultKind()) {
915   case LookupResult::NotFound:
916     // If an unqualified-id is followed by a '(', then we have a function
917     // call.
918     if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
919       // In C++, this is an ADL-only call.
920       // FIXME: Reference?
921       if (getLangOpts().CPlusPlus)
922         return NameClassification::UndeclaredNonType();
923 
924       // C90 6.3.2.2:
925       //   If the expression that precedes the parenthesized argument list in a
926       //   function call consists solely of an identifier, and if no
927       //   declaration is visible for this identifier, the identifier is
928       //   implicitly declared exactly as if, in the innermost block containing
929       //   the function call, the declaration
930       //
931       //     extern int identifier ();
932       //
933       //   appeared.
934       //
935       // We also allow this in C99 as an extension.
936       if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
937         return NameClassification::NonType(D);
938     }
939 
940     if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) {
941       // In C++20 onwards, this could be an ADL-only call to a function
942       // template, and we're required to assume that this is a template name.
943       //
944       // FIXME: Find a way to still do typo correction in this case.
945       TemplateName Template =
946           Context.getAssumedTemplateName(NameInfo.getName());
947       return NameClassification::UndeclaredTemplate(Template);
948     }
949 
950     // In C, we first see whether there is a tag type by the same name, in
951     // which case it's likely that the user just forgot to write "enum",
952     // "struct", or "union".
953     if (!getLangOpts().CPlusPlus && !SecondTry &&
954         isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
955       break;
956     }
957 
958     // Perform typo correction to determine if there is another name that is
959     // close to this name.
960     if (!SecondTry && CCC) {
961       SecondTry = true;
962       if (TypoCorrection Corrected =
963               CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
964                           &SS, *CCC, CTK_ErrorRecovery)) {
965         unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
966         unsigned QualifiedDiag = diag::err_no_member_suggest;
967 
968         NamedDecl *FirstDecl = Corrected.getFoundDecl();
969         NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
970         if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
971             UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
972           UnqualifiedDiag = diag::err_no_template_suggest;
973           QualifiedDiag = diag::err_no_member_template_suggest;
974         } else if (UnderlyingFirstDecl &&
975                    (isa<TypeDecl>(UnderlyingFirstDecl) ||
976                     isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
977                     isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
978           UnqualifiedDiag = diag::err_unknown_typename_suggest;
979           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
980         }
981 
982         if (SS.isEmpty()) {
983           diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
984         } else {// FIXME: is this even reachable? Test it.
985           std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
986           bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
987                                   Name->getName().equals(CorrectedStr);
988           diagnoseTypo(Corrected, PDiag(QualifiedDiag)
989                                     << Name << computeDeclContext(SS, false)
990                                     << DroppedSpecifier << SS.getRange());
991         }
992 
993         // Update the name, so that the caller has the new name.
994         Name = Corrected.getCorrectionAsIdentifierInfo();
995 
996         // Typo correction corrected to a keyword.
997         if (Corrected.isKeyword())
998           return Name;
999 
1000         // Also update the LookupResult...
1001         // FIXME: This should probably go away at some point
1002         Result.clear();
1003         Result.setLookupName(Corrected.getCorrection());
1004         if (FirstDecl)
1005           Result.addDecl(FirstDecl);
1006 
1007         // If we found an Objective-C instance variable, let
1008         // LookupInObjCMethod build the appropriate expression to
1009         // reference the ivar.
1010         // FIXME: This is a gross hack.
1011         if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1012           DeclResult R =
1013               LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1014           if (R.isInvalid())
1015             return NameClassification::Error();
1016           if (R.isUsable())
1017             return NameClassification::NonType(Ivar);
1018         }
1019 
1020         goto Corrected;
1021       }
1022     }
1023 
1024     // We failed to correct; just fall through and let the parser deal with it.
1025     Result.suppressDiagnostics();
1026     return NameClassification::Unknown();
1027 
1028   case LookupResult::NotFoundInCurrentInstantiation: {
1029     // We performed name lookup into the current instantiation, and there were
1030     // dependent bases, so we treat this result the same way as any other
1031     // dependent nested-name-specifier.
1032 
1033     // C++ [temp.res]p2:
1034     //   A name used in a template declaration or definition and that is
1035     //   dependent on a template-parameter is assumed not to name a type
1036     //   unless the applicable name lookup finds a type name or the name is
1037     //   qualified by the keyword typename.
1038     //
1039     // FIXME: If the next token is '<', we might want to ask the parser to
1040     // perform some heroics to see if we actually have a
1041     // template-argument-list, which would indicate a missing 'template'
1042     // keyword here.
1043     return NameClassification::DependentNonType();
1044   }
1045 
1046   case LookupResult::Found:
1047   case LookupResult::FoundOverloaded:
1048   case LookupResult::FoundUnresolvedValue:
1049     break;
1050 
1051   case LookupResult::Ambiguous:
1052     if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1053         hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1054                                       /*AllowDependent=*/false)) {
1055       // C++ [temp.local]p3:
1056       //   A lookup that finds an injected-class-name (10.2) can result in an
1057       //   ambiguity in certain cases (for example, if it is found in more than
1058       //   one base class). If all of the injected-class-names that are found
1059       //   refer to specializations of the same class template, and if the name
1060       //   is followed by a template-argument-list, the reference refers to the
1061       //   class template itself and not a specialization thereof, and is not
1062       //   ambiguous.
1063       //
1064       // This filtering can make an ambiguous result into an unambiguous one,
1065       // so try again after filtering out template names.
1066       FilterAcceptableTemplateNames(Result);
1067       if (!Result.isAmbiguous()) {
1068         IsFilteredTemplateName = true;
1069         break;
1070       }
1071     }
1072 
1073     // Diagnose the ambiguity and return an error.
1074     return NameClassification::Error();
1075   }
1076 
1077   if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1078       (IsFilteredTemplateName ||
1079        hasAnyAcceptableTemplateNames(
1080            Result, /*AllowFunctionTemplates=*/true,
1081            /*AllowDependent=*/false,
1082            /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1083                getLangOpts().CPlusPlus20))) {
1084     // C++ [temp.names]p3:
1085     //   After name lookup (3.4) finds that a name is a template-name or that
1086     //   an operator-function-id or a literal- operator-id refers to a set of
1087     //   overloaded functions any member of which is a function template if
1088     //   this is followed by a <, the < is always taken as the delimiter of a
1089     //   template-argument-list and never as the less-than operator.
1090     // C++2a [temp.names]p2:
1091     //   A name is also considered to refer to a template if it is an
1092     //   unqualified-id followed by a < and name lookup finds either one
1093     //   or more functions or finds nothing.
1094     if (!IsFilteredTemplateName)
1095       FilterAcceptableTemplateNames(Result);
1096 
1097     bool IsFunctionTemplate;
1098     bool IsVarTemplate;
1099     TemplateName Template;
1100     if (Result.end() - Result.begin() > 1) {
1101       IsFunctionTemplate = true;
1102       Template = Context.getOverloadedTemplateName(Result.begin(),
1103                                                    Result.end());
1104     } else if (!Result.empty()) {
1105       auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1106           *Result.begin(), /*AllowFunctionTemplates=*/true,
1107           /*AllowDependent=*/false));
1108       IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1109       IsVarTemplate = isa<VarTemplateDecl>(TD);
1110 
1111       if (SS.isNotEmpty())
1112         Template =
1113             Context.getQualifiedTemplateName(SS.getScopeRep(),
1114                                              /*TemplateKeyword=*/false, TD);
1115       else
1116         Template = TemplateName(TD);
1117     } else {
1118       // All results were non-template functions. This is a function template
1119       // name.
1120       IsFunctionTemplate = true;
1121       Template = Context.getAssumedTemplateName(NameInfo.getName());
1122     }
1123 
1124     if (IsFunctionTemplate) {
1125       // Function templates always go through overload resolution, at which
1126       // point we'll perform the various checks (e.g., accessibility) we need
1127       // to based on which function we selected.
1128       Result.suppressDiagnostics();
1129 
1130       return NameClassification::FunctionTemplate(Template);
1131     }
1132 
1133     return IsVarTemplate ? NameClassification::VarTemplate(Template)
1134                          : NameClassification::TypeTemplate(Template);
1135   }
1136 
1137   NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1138   if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1139     DiagnoseUseOfDecl(Type, NameLoc);
1140     MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1141     QualType T = Context.getTypeDeclType(Type);
1142     if (SS.isNotEmpty())
1143       return buildNestedType(*this, SS, T, NameLoc);
1144     return ParsedType::make(T);
1145   }
1146 
1147   ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1148   if (!Class) {
1149     // FIXME: It's unfortunate that we don't have a Type node for handling this.
1150     if (ObjCCompatibleAliasDecl *Alias =
1151             dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1152       Class = Alias->getClassInterface();
1153   }
1154 
1155   if (Class) {
1156     DiagnoseUseOfDecl(Class, NameLoc);
1157 
1158     if (NextToken.is(tok::period)) {
1159       // Interface. <something> is parsed as a property reference expression.
1160       // Just return "unknown" as a fall-through for now.
1161       Result.suppressDiagnostics();
1162       return NameClassification::Unknown();
1163     }
1164 
1165     QualType T = Context.getObjCInterfaceType(Class);
1166     return ParsedType::make(T);
1167   }
1168 
1169   if (isa<ConceptDecl>(FirstDecl))
1170     return NameClassification::Concept(
1171         TemplateName(cast<TemplateDecl>(FirstDecl)));
1172 
1173   if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(FirstDecl)) {
1174     (void)DiagnoseUseOfDecl(EmptyD, NameLoc);
1175     return NameClassification::Error();
1176   }
1177 
1178   // We can have a type template here if we're classifying a template argument.
1179   if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1180       !isa<VarTemplateDecl>(FirstDecl))
1181     return NameClassification::TypeTemplate(
1182         TemplateName(cast<TemplateDecl>(FirstDecl)));
1183 
1184   // Check for a tag type hidden by a non-type decl in a few cases where it
1185   // seems likely a type is wanted instead of the non-type that was found.
1186   bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1187   if ((NextToken.is(tok::identifier) ||
1188        (NextIsOp &&
1189         FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1190       isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1191     TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1192     DiagnoseUseOfDecl(Type, NameLoc);
1193     QualType T = Context.getTypeDeclType(Type);
1194     if (SS.isNotEmpty())
1195       return buildNestedType(*this, SS, T, NameLoc);
1196     return ParsedType::make(T);
1197   }
1198 
1199   // If we already know which single declaration is referenced, just annotate
1200   // that declaration directly. Defer resolving even non-overloaded class
1201   // member accesses, as we need to defer certain access checks until we know
1202   // the context.
1203   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1204   if (Result.isSingleResult() && !ADL && !FirstDecl->isCXXClassMember())
1205     return NameClassification::NonType(Result.getRepresentativeDecl());
1206 
1207   // Otherwise, this is an overload set that we will need to resolve later.
1208   Result.suppressDiagnostics();
1209   return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1210       Context, Result.getNamingClass(), SS.getWithLocInContext(Context),
1211       Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(),
1212       Result.begin(), Result.end()));
1213 }
1214 
1215 ExprResult
1216 Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1217                                              SourceLocation NameLoc) {
1218   assert(getLangOpts().CPlusPlus && "ADL-only call in C?");
1219   CXXScopeSpec SS;
1220   LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1221   return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1222 }
1223 
1224 ExprResult
1225 Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1226                                             IdentifierInfo *Name,
1227                                             SourceLocation NameLoc,
1228                                             bool IsAddressOfOperand) {
1229   DeclarationNameInfo NameInfo(Name, NameLoc);
1230   return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1231                                     NameInfo, IsAddressOfOperand,
1232                                     /*TemplateArgs=*/nullptr);
1233 }
1234 
1235 ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1236                                               NamedDecl *Found,
1237                                               SourceLocation NameLoc,
1238                                               const Token &NextToken) {
1239   if (getCurMethodDecl() && SS.isEmpty())
1240     if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1241       return BuildIvarRefExpr(S, NameLoc, Ivar);
1242 
1243   // Reconstruct the lookup result.
1244   LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1245   Result.addDecl(Found);
1246   Result.resolveKind();
1247 
1248   bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1249   return BuildDeclarationNameExpr(SS, Result, ADL);
1250 }
1251 
1252 ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) {
1253   // For an implicit class member access, transform the result into a member
1254   // access expression if necessary.
1255   auto *ULE = cast<UnresolvedLookupExpr>(E);
1256   if ((*ULE->decls_begin())->isCXXClassMember()) {
1257     CXXScopeSpec SS;
1258     SS.Adopt(ULE->getQualifierLoc());
1259 
1260     // Reconstruct the lookup result.
1261     LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(),
1262                         LookupOrdinaryName);
1263     Result.setNamingClass(ULE->getNamingClass());
1264     for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I)
1265       Result.addDecl(*I, I.getAccess());
1266     Result.resolveKind();
1267     return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1268                                            nullptr, S);
1269   }
1270 
1271   // Otherwise, this is already in the form we needed, and no further checks
1272   // are necessary.
1273   return ULE;
1274 }
1275 
1276 Sema::TemplateNameKindForDiagnostics
1277 Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1278   auto *TD = Name.getAsTemplateDecl();
1279   if (!TD)
1280     return TemplateNameKindForDiagnostics::DependentTemplate;
1281   if (isa<ClassTemplateDecl>(TD))
1282     return TemplateNameKindForDiagnostics::ClassTemplate;
1283   if (isa<FunctionTemplateDecl>(TD))
1284     return TemplateNameKindForDiagnostics::FunctionTemplate;
1285   if (isa<VarTemplateDecl>(TD))
1286     return TemplateNameKindForDiagnostics::VarTemplate;
1287   if (isa<TypeAliasTemplateDecl>(TD))
1288     return TemplateNameKindForDiagnostics::AliasTemplate;
1289   if (isa<TemplateTemplateParmDecl>(TD))
1290     return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1291   if (isa<ConceptDecl>(TD))
1292     return TemplateNameKindForDiagnostics::Concept;
1293   return TemplateNameKindForDiagnostics::DependentTemplate;
1294 }
1295 
1296 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1297   assert(DC->getLexicalParent() == CurContext &&
1298       "The next DeclContext should be lexically contained in the current one.");
1299   CurContext = DC;
1300   S->setEntity(DC);
1301 }
1302 
1303 void Sema::PopDeclContext() {
1304   assert(CurContext && "DeclContext imbalance!");
1305 
1306   CurContext = CurContext->getLexicalParent();
1307   assert(CurContext && "Popped translation unit!");
1308 }
1309 
1310 Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1311                                                                     Decl *D) {
1312   // Unlike PushDeclContext, the context to which we return is not necessarily
1313   // the containing DC of TD, because the new context will be some pre-existing
1314   // TagDecl definition instead of a fresh one.
1315   auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1316   CurContext = cast<TagDecl>(D)->getDefinition();
1317   assert(CurContext && "skipping definition of undefined tag");
1318   // Start lookups from the parent of the current context; we don't want to look
1319   // into the pre-existing complete definition.
1320   S->setEntity(CurContext->getLookupParent());
1321   return Result;
1322 }
1323 
1324 void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1325   CurContext = static_cast<decltype(CurContext)>(Context);
1326 }
1327 
1328 /// EnterDeclaratorContext - Used when we must lookup names in the context
1329 /// of a declarator's nested name specifier.
1330 ///
1331 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1332   // C++0x [basic.lookup.unqual]p13:
1333   //   A name used in the definition of a static data member of class
1334   //   X (after the qualified-id of the static member) is looked up as
1335   //   if the name was used in a member function of X.
1336   // C++0x [basic.lookup.unqual]p14:
1337   //   If a variable member of a namespace is defined outside of the
1338   //   scope of its namespace then any name used in the definition of
1339   //   the variable member (after the declarator-id) is looked up as
1340   //   if the definition of the variable member occurred in its
1341   //   namespace.
1342   // Both of these imply that we should push a scope whose context
1343   // is the semantic context of the declaration.  We can't use
1344   // PushDeclContext here because that context is not necessarily
1345   // lexically contained in the current context.  Fortunately,
1346   // the containing scope should have the appropriate information.
1347 
1348   assert(!S->getEntity() && "scope already has entity");
1349 
1350 #ifndef NDEBUG
1351   Scope *Ancestor = S->getParent();
1352   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1353   assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1354 #endif
1355 
1356   CurContext = DC;
1357   S->setEntity(DC);
1358 
1359   if (S->getParent()->isTemplateParamScope()) {
1360     // Also set the corresponding entities for all immediately-enclosing
1361     // template parameter scopes.
1362     EnterTemplatedContext(S->getParent(), DC);
1363   }
1364 }
1365 
1366 void Sema::ExitDeclaratorContext(Scope *S) {
1367   assert(S->getEntity() == CurContext && "Context imbalance!");
1368 
1369   // Switch back to the lexical context.  The safety of this is
1370   // enforced by an assert in EnterDeclaratorContext.
1371   Scope *Ancestor = S->getParent();
1372   while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1373   CurContext = Ancestor->getEntity();
1374 
1375   // We don't need to do anything with the scope, which is going to
1376   // disappear.
1377 }
1378 
1379 void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) {
1380   assert(S->isTemplateParamScope() &&
1381          "expected to be initializing a template parameter scope");
1382 
1383   // C++20 [temp.local]p7:
1384   //   In the definition of a member of a class template that appears outside
1385   //   of the class template definition, the name of a member of the class
1386   //   template hides the name of a template-parameter of any enclosing class
1387   //   templates (but not a template-parameter of the member if the member is a
1388   //   class or function template).
1389   // C++20 [temp.local]p9:
1390   //   In the definition of a class template or in the definition of a member
1391   //   of such a template that appears outside of the template definition, for
1392   //   each non-dependent base class (13.8.2.1), if the name of the base class
1393   //   or the name of a member of the base class is the same as the name of a
1394   //   template-parameter, the base class name or member name hides the
1395   //   template-parameter name (6.4.10).
1396   //
1397   // This means that a template parameter scope should be searched immediately
1398   // after searching the DeclContext for which it is a template parameter
1399   // scope. For example, for
1400   //   template<typename T> template<typename U> template<typename V>
1401   //     void N::A<T>::B<U>::f(...)
1402   // we search V then B<U> (and base classes) then U then A<T> (and base
1403   // classes) then T then N then ::.
1404   unsigned ScopeDepth = getTemplateDepth(S);
1405   for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) {
1406     DeclContext *SearchDCAfterScope = DC;
1407     for (; DC; DC = DC->getLookupParent()) {
1408       if (const TemplateParameterList *TPL =
1409               cast<Decl>(DC)->getDescribedTemplateParams()) {
1410         unsigned DCDepth = TPL->getDepth() + 1;
1411         if (DCDepth > ScopeDepth)
1412           continue;
1413         if (ScopeDepth == DCDepth)
1414           SearchDCAfterScope = DC = DC->getLookupParent();
1415         break;
1416       }
1417     }
1418     S->setLookupEntity(SearchDCAfterScope);
1419   }
1420 }
1421 
1422 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1423   // We assume that the caller has already called
1424   // ActOnReenterTemplateScope so getTemplatedDecl() works.
1425   FunctionDecl *FD = D->getAsFunction();
1426   if (!FD)
1427     return;
1428 
1429   // Same implementation as PushDeclContext, but enters the context
1430   // from the lexical parent, rather than the top-level class.
1431   assert(CurContext == FD->getLexicalParent() &&
1432     "The next DeclContext should be lexically contained in the current one.");
1433   CurContext = FD;
1434   S->setEntity(CurContext);
1435 
1436   for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1437     ParmVarDecl *Param = FD->getParamDecl(P);
1438     // If the parameter has an identifier, then add it to the scope
1439     if (Param->getIdentifier()) {
1440       S->AddDecl(Param);
1441       IdResolver.AddDecl(Param);
1442     }
1443   }
1444 }
1445 
1446 void Sema::ActOnExitFunctionContext() {
1447   // Same implementation as PopDeclContext, but returns to the lexical parent,
1448   // rather than the top-level class.
1449   assert(CurContext && "DeclContext imbalance!");
1450   CurContext = CurContext->getLexicalParent();
1451   assert(CurContext && "Popped translation unit!");
1452 }
1453 
1454 /// Determine whether we allow overloading of the function
1455 /// PrevDecl with another declaration.
1456 ///
1457 /// This routine determines whether overloading is possible, not
1458 /// whether some new function is actually an overload. It will return
1459 /// true in C++ (where we can always provide overloads) or, as an
1460 /// extension, in C when the previous function is already an
1461 /// overloaded function declaration or has the "overloadable"
1462 /// attribute.
1463 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1464                                        ASTContext &Context,
1465                                        const FunctionDecl *New) {
1466   if (Context.getLangOpts().CPlusPlus)
1467     return true;
1468 
1469   if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1470     return true;
1471 
1472   return Previous.getResultKind() == LookupResult::Found &&
1473          (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1474           New->hasAttr<OverloadableAttr>());
1475 }
1476 
1477 /// Add this decl to the scope shadowed decl chains.
1478 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1479   // Move up the scope chain until we find the nearest enclosing
1480   // non-transparent context. The declaration will be introduced into this
1481   // scope.
1482   while (S->getEntity() && S->getEntity()->isTransparentContext())
1483     S = S->getParent();
1484 
1485   // Add scoped declarations into their context, so that they can be
1486   // found later. Declarations without a context won't be inserted
1487   // into any context.
1488   if (AddToContext)
1489     CurContext->addDecl(D);
1490 
1491   // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1492   // are function-local declarations.
1493   if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent())
1494     return;
1495 
1496   // Template instantiations should also not be pushed into scope.
1497   if (isa<FunctionDecl>(D) &&
1498       cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1499     return;
1500 
1501   // If this replaces anything in the current scope,
1502   IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1503                                IEnd = IdResolver.end();
1504   for (; I != IEnd; ++I) {
1505     if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1506       S->RemoveDecl(*I);
1507       IdResolver.RemoveDecl(*I);
1508 
1509       // Should only need to replace one decl.
1510       break;
1511     }
1512   }
1513 
1514   S->AddDecl(D);
1515 
1516   if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1517     // Implicitly-generated labels may end up getting generated in an order that
1518     // isn't strictly lexical, which breaks name lookup. Be careful to insert
1519     // the label at the appropriate place in the identifier chain.
1520     for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1521       DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1522       if (IDC == CurContext) {
1523         if (!S->isDeclScope(*I))
1524           continue;
1525       } else if (IDC->Encloses(CurContext))
1526         break;
1527     }
1528 
1529     IdResolver.InsertDeclAfter(I, D);
1530   } else {
1531     IdResolver.AddDecl(D);
1532   }
1533   warnOnReservedIdentifier(D);
1534 }
1535 
1536 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1537                          bool AllowInlineNamespace) {
1538   return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1539 }
1540 
1541 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1542   DeclContext *TargetDC = DC->getPrimaryContext();
1543   do {
1544     if (DeclContext *ScopeDC = S->getEntity())
1545       if (ScopeDC->getPrimaryContext() == TargetDC)
1546         return S;
1547   } while ((S = S->getParent()));
1548 
1549   return nullptr;
1550 }
1551 
1552 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1553                                             DeclContext*,
1554                                             ASTContext&);
1555 
1556 /// Filters out lookup results that don't fall within the given scope
1557 /// as determined by isDeclInScope.
1558 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1559                                 bool ConsiderLinkage,
1560                                 bool AllowInlineNamespace) {
1561   LookupResult::Filter F = R.makeFilter();
1562   while (F.hasNext()) {
1563     NamedDecl *D = F.next();
1564 
1565     if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1566       continue;
1567 
1568     if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1569       continue;
1570 
1571     F.erase();
1572   }
1573 
1574   F.done();
1575 }
1576 
1577 /// We've determined that \p New is a redeclaration of \p Old. Check that they
1578 /// have compatible owning modules.
1579 bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1580   // FIXME: The Modules TS is not clear about how friend declarations are
1581   // to be treated. It's not meaningful to have different owning modules for
1582   // linkage in redeclarations of the same entity, so for now allow the
1583   // redeclaration and change the owning modules to match.
1584   if (New->getFriendObjectKind() &&
1585       Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1586     New->setLocalOwningModule(Old->getOwningModule());
1587     makeMergedDefinitionVisible(New);
1588     return false;
1589   }
1590 
1591   Module *NewM = New->getOwningModule();
1592   Module *OldM = Old->getOwningModule();
1593 
1594   if (NewM && NewM->Kind == Module::PrivateModuleFragment)
1595     NewM = NewM->Parent;
1596   if (OldM && OldM->Kind == Module::PrivateModuleFragment)
1597     OldM = OldM->Parent;
1598 
1599   if (NewM == OldM)
1600     return false;
1601 
1602   bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1603   bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1604   if (NewIsModuleInterface || OldIsModuleInterface) {
1605     // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1606     //   if a declaration of D [...] appears in the purview of a module, all
1607     //   other such declarations shall appear in the purview of the same module
1608     Diag(New->getLocation(), diag::err_mismatched_owning_module)
1609       << New
1610       << NewIsModuleInterface
1611       << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1612       << OldIsModuleInterface
1613       << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1614     Diag(Old->getLocation(), diag::note_previous_declaration);
1615     New->setInvalidDecl();
1616     return true;
1617   }
1618 
1619   return false;
1620 }
1621 
1622 static bool isUsingDecl(NamedDecl *D) {
1623   return isa<UsingShadowDecl>(D) ||
1624          isa<UnresolvedUsingTypenameDecl>(D) ||
1625          isa<UnresolvedUsingValueDecl>(D);
1626 }
1627 
1628 /// Removes using shadow declarations from the lookup results.
1629 static void RemoveUsingDecls(LookupResult &R) {
1630   LookupResult::Filter F = R.makeFilter();
1631   while (F.hasNext())
1632     if (isUsingDecl(F.next()))
1633       F.erase();
1634 
1635   F.done();
1636 }
1637 
1638 /// Check for this common pattern:
1639 /// @code
1640 /// class S {
1641 ///   S(const S&); // DO NOT IMPLEMENT
1642 ///   void operator=(const S&); // DO NOT IMPLEMENT
1643 /// };
1644 /// @endcode
1645 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1646   // FIXME: Should check for private access too but access is set after we get
1647   // the decl here.
1648   if (D->doesThisDeclarationHaveABody())
1649     return false;
1650 
1651   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1652     return CD->isCopyConstructor();
1653   return D->isCopyAssignmentOperator();
1654 }
1655 
1656 // We need this to handle
1657 //
1658 // typedef struct {
1659 //   void *foo() { return 0; }
1660 // } A;
1661 //
1662 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1663 // for example. If 'A', foo will have external linkage. If we have '*A',
1664 // foo will have no linkage. Since we can't know until we get to the end
1665 // of the typedef, this function finds out if D might have non-external linkage.
1666 // Callers should verify at the end of the TU if it D has external linkage or
1667 // not.
1668 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1669   const DeclContext *DC = D->getDeclContext();
1670   while (!DC->isTranslationUnit()) {
1671     if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1672       if (!RD->hasNameForLinkage())
1673         return true;
1674     }
1675     DC = DC->getParent();
1676   }
1677 
1678   return !D->isExternallyVisible();
1679 }
1680 
1681 // FIXME: This needs to be refactored; some other isInMainFile users want
1682 // these semantics.
1683 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1684   if (S.TUKind != TU_Complete)
1685     return false;
1686   return S.SourceMgr.isInMainFile(Loc);
1687 }
1688 
1689 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1690   assert(D);
1691 
1692   if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1693     return false;
1694 
1695   // Ignore all entities declared within templates, and out-of-line definitions
1696   // of members of class templates.
1697   if (D->getDeclContext()->isDependentContext() ||
1698       D->getLexicalDeclContext()->isDependentContext())
1699     return false;
1700 
1701   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1702     if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1703       return false;
1704     // A non-out-of-line declaration of a member specialization was implicitly
1705     // instantiated; it's the out-of-line declaration that we're interested in.
1706     if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1707         FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1708       return false;
1709 
1710     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1711       if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1712         return false;
1713     } else {
1714       // 'static inline' functions are defined in headers; don't warn.
1715       if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1716         return false;
1717     }
1718 
1719     if (FD->doesThisDeclarationHaveABody() &&
1720         Context.DeclMustBeEmitted(FD))
1721       return false;
1722   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1723     // Constants and utility variables are defined in headers with internal
1724     // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1725     // like "inline".)
1726     if (!isMainFileLoc(*this, VD->getLocation()))
1727       return false;
1728 
1729     if (Context.DeclMustBeEmitted(VD))
1730       return false;
1731 
1732     if (VD->isStaticDataMember() &&
1733         VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1734       return false;
1735     if (VD->isStaticDataMember() &&
1736         VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1737         VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1738       return false;
1739 
1740     if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1741       return false;
1742   } else {
1743     return false;
1744   }
1745 
1746   // Only warn for unused decls internal to the translation unit.
1747   // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1748   // for inline functions defined in the main source file, for instance.
1749   return mightHaveNonExternalLinkage(D);
1750 }
1751 
1752 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1753   if (!D)
1754     return;
1755 
1756   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1757     const FunctionDecl *First = FD->getFirstDecl();
1758     if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1759       return; // First should already be in the vector.
1760   }
1761 
1762   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1763     const VarDecl *First = VD->getFirstDecl();
1764     if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1765       return; // First should already be in the vector.
1766   }
1767 
1768   if (ShouldWarnIfUnusedFileScopedDecl(D))
1769     UnusedFileScopedDecls.push_back(D);
1770 }
1771 
1772 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1773   if (D->isInvalidDecl())
1774     return false;
1775 
1776   if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1777     // For a decomposition declaration, warn if none of the bindings are
1778     // referenced, instead of if the variable itself is referenced (which
1779     // it is, by the bindings' expressions).
1780     for (auto *BD : DD->bindings())
1781       if (BD->isReferenced())
1782         return false;
1783   } else if (!D->getDeclName()) {
1784     return false;
1785   } else if (D->isReferenced() || D->isUsed()) {
1786     return false;
1787   }
1788 
1789   if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>())
1790     return false;
1791 
1792   if (isa<LabelDecl>(D))
1793     return true;
1794 
1795   // Except for labels, we only care about unused decls that are local to
1796   // functions.
1797   bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1798   if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1799     // For dependent types, the diagnostic is deferred.
1800     WithinFunction =
1801         WithinFunction || (R->isLocalClass() && !R->isDependentType());
1802   if (!WithinFunction)
1803     return false;
1804 
1805   if (isa<TypedefNameDecl>(D))
1806     return true;
1807 
1808   // White-list anything that isn't a local variable.
1809   if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1810     return false;
1811 
1812   // Types of valid local variables should be complete, so this should succeed.
1813   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1814 
1815     // White-list anything with an __attribute__((unused)) type.
1816     const auto *Ty = VD->getType().getTypePtr();
1817 
1818     // Only look at the outermost level of typedef.
1819     if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1820       if (TT->getDecl()->hasAttr<UnusedAttr>())
1821         return false;
1822     }
1823 
1824     // If we failed to complete the type for some reason, or if the type is
1825     // dependent, don't diagnose the variable.
1826     if (Ty->isIncompleteType() || Ty->isDependentType())
1827       return false;
1828 
1829     // Look at the element type to ensure that the warning behaviour is
1830     // consistent for both scalars and arrays.
1831     Ty = Ty->getBaseElementTypeUnsafe();
1832 
1833     if (const TagType *TT = Ty->getAs<TagType>()) {
1834       const TagDecl *Tag = TT->getDecl();
1835       if (Tag->hasAttr<UnusedAttr>())
1836         return false;
1837 
1838       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1839         if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1840           return false;
1841 
1842         if (const Expr *Init = VD->getInit()) {
1843           if (const ExprWithCleanups *Cleanups =
1844                   dyn_cast<ExprWithCleanups>(Init))
1845             Init = Cleanups->getSubExpr();
1846           const CXXConstructExpr *Construct =
1847             dyn_cast<CXXConstructExpr>(Init);
1848           if (Construct && !Construct->isElidable()) {
1849             CXXConstructorDecl *CD = Construct->getConstructor();
1850             if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1851                 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1852               return false;
1853           }
1854 
1855           // Suppress the warning if we don't know how this is constructed, and
1856           // it could possibly be non-trivial constructor.
1857           if (Init->isTypeDependent())
1858             for (const CXXConstructorDecl *Ctor : RD->ctors())
1859               if (!Ctor->isTrivial())
1860                 return false;
1861         }
1862       }
1863     }
1864 
1865     // TODO: __attribute__((unused)) templates?
1866   }
1867 
1868   return true;
1869 }
1870 
1871 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1872                                      FixItHint &Hint) {
1873   if (isa<LabelDecl>(D)) {
1874     SourceLocation AfterColon = Lexer::findLocationAfterToken(
1875         D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1876         true);
1877     if (AfterColon.isInvalid())
1878       return;
1879     Hint = FixItHint::CreateRemoval(
1880         CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1881   }
1882 }
1883 
1884 void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1885   if (D->getTypeForDecl()->isDependentType())
1886     return;
1887 
1888   for (auto *TmpD : D->decls()) {
1889     if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1890       DiagnoseUnusedDecl(T);
1891     else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1892       DiagnoseUnusedNestedTypedefs(R);
1893   }
1894 }
1895 
1896 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1897 /// unless they are marked attr(unused).
1898 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1899   if (!ShouldDiagnoseUnusedDecl(D))
1900     return;
1901 
1902   if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1903     // typedefs can be referenced later on, so the diagnostics are emitted
1904     // at end-of-translation-unit.
1905     UnusedLocalTypedefNameCandidates.insert(TD);
1906     return;
1907   }
1908 
1909   FixItHint Hint;
1910   GenerateFixForUnusedDecl(D, Context, Hint);
1911 
1912   unsigned DiagID;
1913   if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1914     DiagID = diag::warn_unused_exception_param;
1915   else if (isa<LabelDecl>(D))
1916     DiagID = diag::warn_unused_label;
1917   else
1918     DiagID = diag::warn_unused_variable;
1919 
1920   Diag(D->getLocation(), DiagID) << D << Hint;
1921 }
1922 
1923 void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD) {
1924   // If it's not referenced, it can't be set. If it has the Cleanup attribute,
1925   // it's not really unused.
1926   if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<UnusedAttr>() ||
1927       VD->hasAttr<CleanupAttr>())
1928     return;
1929 
1930   const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe();
1931 
1932   if (Ty->isReferenceType() || Ty->isDependentType())
1933     return;
1934 
1935   if (const TagType *TT = Ty->getAs<TagType>()) {
1936     const TagDecl *Tag = TT->getDecl();
1937     if (Tag->hasAttr<UnusedAttr>())
1938       return;
1939     // In C++, don't warn for record types that don't have WarnUnusedAttr, to
1940     // mimic gcc's behavior.
1941     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1942       if (!RD->hasAttr<WarnUnusedAttr>())
1943         return;
1944     }
1945   }
1946 
1947   auto iter = RefsMinusAssignments.find(VD);
1948   if (iter == RefsMinusAssignments.end())
1949     return;
1950 
1951   assert(iter->getSecond() >= 0 &&
1952          "Found a negative number of references to a VarDecl");
1953   if (iter->getSecond() != 0)
1954     return;
1955   unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter
1956                                          : diag::warn_unused_but_set_variable;
1957   Diag(VD->getLocation(), DiagID) << VD;
1958 }
1959 
1960 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1961   // Verify that we have no forward references left.  If so, there was a goto
1962   // or address of a label taken, but no definition of it.  Label fwd
1963   // definitions are indicated with a null substmt which is also not a resolved
1964   // MS inline assembly label name.
1965   bool Diagnose = false;
1966   if (L->isMSAsmLabel())
1967     Diagnose = !L->isResolvedMSAsmLabel();
1968   else
1969     Diagnose = L->getStmt() == nullptr;
1970   if (Diagnose)
1971     S.Diag(L->getLocation(), diag::err_undeclared_label_use) << L;
1972 }
1973 
1974 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1975   S->mergeNRVOIntoParent();
1976 
1977   if (S->decl_empty()) return;
1978   assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1979          "Scope shouldn't contain decls!");
1980 
1981   for (auto *TmpD : S->decls()) {
1982     assert(TmpD && "This decl didn't get pushed??");
1983 
1984     assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1985     NamedDecl *D = cast<NamedDecl>(TmpD);
1986 
1987     // Diagnose unused variables in this scope.
1988     if (!S->hasUnrecoverableErrorOccurred()) {
1989       DiagnoseUnusedDecl(D);
1990       if (const auto *RD = dyn_cast<RecordDecl>(D))
1991         DiagnoseUnusedNestedTypedefs(RD);
1992       if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
1993         DiagnoseUnusedButSetDecl(VD);
1994         RefsMinusAssignments.erase(VD);
1995       }
1996     }
1997 
1998     if (!D->getDeclName()) continue;
1999 
2000     // If this was a forward reference to a label, verify it was defined.
2001     if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
2002       CheckPoppedLabel(LD, *this);
2003 
2004     // Remove this name from our lexical scope, and warn on it if we haven't
2005     // already.
2006     IdResolver.RemoveDecl(D);
2007     auto ShadowI = ShadowingDecls.find(D);
2008     if (ShadowI != ShadowingDecls.end()) {
2009       if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
2010         Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
2011             << D << FD << FD->getParent();
2012         Diag(FD->getLocation(), diag::note_previous_declaration);
2013       }
2014       ShadowingDecls.erase(ShadowI);
2015     }
2016   }
2017 }
2018 
2019 /// Look for an Objective-C class in the translation unit.
2020 ///
2021 /// \param Id The name of the Objective-C class we're looking for. If
2022 /// typo-correction fixes this name, the Id will be updated
2023 /// to the fixed name.
2024 ///
2025 /// \param IdLoc The location of the name in the translation unit.
2026 ///
2027 /// \param DoTypoCorrection If true, this routine will attempt typo correction
2028 /// if there is no class with the given name.
2029 ///
2030 /// \returns The declaration of the named Objective-C class, or NULL if the
2031 /// class could not be found.
2032 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
2033                                               SourceLocation IdLoc,
2034                                               bool DoTypoCorrection) {
2035   // The third "scope" argument is 0 since we aren't enabling lazy built-in
2036   // creation from this context.
2037   NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
2038 
2039   if (!IDecl && DoTypoCorrection) {
2040     // Perform typo correction at the given location, but only if we
2041     // find an Objective-C class name.
2042     DeclFilterCCC<ObjCInterfaceDecl> CCC{};
2043     if (TypoCorrection C =
2044             CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
2045                         TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
2046       diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
2047       IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
2048       Id = IDecl->getIdentifier();
2049     }
2050   }
2051   ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
2052   // This routine must always return a class definition, if any.
2053   if (Def && Def->getDefinition())
2054       Def = Def->getDefinition();
2055   return Def;
2056 }
2057 
2058 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
2059 /// from S, where a non-field would be declared. This routine copes
2060 /// with the difference between C and C++ scoping rules in structs and
2061 /// unions. For example, the following code is well-formed in C but
2062 /// ill-formed in C++:
2063 /// @code
2064 /// struct S6 {
2065 ///   enum { BAR } e;
2066 /// };
2067 ///
2068 /// void test_S6() {
2069 ///   struct S6 a;
2070 ///   a.e = BAR;
2071 /// }
2072 /// @endcode
2073 /// For the declaration of BAR, this routine will return a different
2074 /// scope. The scope S will be the scope of the unnamed enumeration
2075 /// within S6. In C++, this routine will return the scope associated
2076 /// with S6, because the enumeration's scope is a transparent
2077 /// context but structures can contain non-field names. In C, this
2078 /// routine will return the translation unit scope, since the
2079 /// enumeration's scope is a transparent context and structures cannot
2080 /// contain non-field names.
2081 Scope *Sema::getNonFieldDeclScope(Scope *S) {
2082   while (((S->getFlags() & Scope::DeclScope) == 0) ||
2083          (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2084          (S->isClassScope() && !getLangOpts().CPlusPlus))
2085     S = S->getParent();
2086   return S;
2087 }
2088 
2089 static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2090                                ASTContext::GetBuiltinTypeError Error) {
2091   switch (Error) {
2092   case ASTContext::GE_None:
2093     return "";
2094   case ASTContext::GE_Missing_type:
2095     return BuiltinInfo.getHeaderName(ID);
2096   case ASTContext::GE_Missing_stdio:
2097     return "stdio.h";
2098   case ASTContext::GE_Missing_setjmp:
2099     return "setjmp.h";
2100   case ASTContext::GE_Missing_ucontext:
2101     return "ucontext.h";
2102   }
2103   llvm_unreachable("unhandled error kind");
2104 }
2105 
2106 FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type,
2107                                   unsigned ID, SourceLocation Loc) {
2108   DeclContext *Parent = Context.getTranslationUnitDecl();
2109 
2110   if (getLangOpts().CPlusPlus) {
2111     LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create(
2112         Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false);
2113     CLinkageDecl->setImplicit();
2114     Parent->addDecl(CLinkageDecl);
2115     Parent = CLinkageDecl;
2116   }
2117 
2118   FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type,
2119                                            /*TInfo=*/nullptr, SC_Extern,
2120                                            getCurFPFeatures().isFPConstrained(),
2121                                            false, Type->isFunctionProtoType());
2122   New->setImplicit();
2123   New->addAttr(BuiltinAttr::CreateImplicit(Context, ID));
2124 
2125   // Create Decl objects for each parameter, adding them to the
2126   // FunctionDecl.
2127   if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) {
2128     SmallVector<ParmVarDecl *, 16> Params;
2129     for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2130       ParmVarDecl *parm = ParmVarDecl::Create(
2131           Context, New, SourceLocation(), SourceLocation(), nullptr,
2132           FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr);
2133       parm->setScopeInfo(0, i);
2134       Params.push_back(parm);
2135     }
2136     New->setParams(Params);
2137   }
2138 
2139   AddKnownFunctionAttributes(New);
2140   return New;
2141 }
2142 
2143 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2144 /// file scope.  lazily create a decl for it. ForRedeclaration is true
2145 /// if we're creating this built-in in anticipation of redeclaring the
2146 /// built-in.
2147 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2148                                      Scope *S, bool ForRedeclaration,
2149                                      SourceLocation Loc) {
2150   LookupNecessaryTypesForBuiltin(S, ID);
2151 
2152   ASTContext::GetBuiltinTypeError Error;
2153   QualType R = Context.GetBuiltinType(ID, Error);
2154   if (Error) {
2155     if (!ForRedeclaration)
2156       return nullptr;
2157 
2158     // If we have a builtin without an associated type we should not emit a
2159     // warning when we were not able to find a type for it.
2160     if (Error == ASTContext::GE_Missing_type ||
2161         Context.BuiltinInfo.allowTypeMismatch(ID))
2162       return nullptr;
2163 
2164     // If we could not find a type for setjmp it is because the jmp_buf type was
2165     // not defined prior to the setjmp declaration.
2166     if (Error == ASTContext::GE_Missing_setjmp) {
2167       Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2168           << Context.BuiltinInfo.getName(ID);
2169       return nullptr;
2170     }
2171 
2172     // Generally, we emit a warning that the declaration requires the
2173     // appropriate header.
2174     Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2175         << getHeaderName(Context.BuiltinInfo, ID, Error)
2176         << Context.BuiltinInfo.getName(ID);
2177     return nullptr;
2178   }
2179 
2180   if (!ForRedeclaration &&
2181       (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2182        Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2183     Diag(Loc, diag::ext_implicit_lib_function_decl)
2184         << Context.BuiltinInfo.getName(ID) << R;
2185     if (const char *Header = Context.BuiltinInfo.getHeaderName(ID))
2186       Diag(Loc, diag::note_include_header_or_declare)
2187           << Header << Context.BuiltinInfo.getName(ID);
2188   }
2189 
2190   if (R.isNull())
2191     return nullptr;
2192 
2193   FunctionDecl *New = CreateBuiltin(II, R, ID, Loc);
2194   RegisterLocallyScopedExternCDecl(New, S);
2195 
2196   // TUScope is the translation-unit scope to insert this function into.
2197   // FIXME: This is hideous. We need to teach PushOnScopeChains to
2198   // relate Scopes to DeclContexts, and probably eliminate CurContext
2199   // entirely, but we're not there yet.
2200   DeclContext *SavedContext = CurContext;
2201   CurContext = New->getDeclContext();
2202   PushOnScopeChains(New, TUScope);
2203   CurContext = SavedContext;
2204   return New;
2205 }
2206 
2207 /// Typedef declarations don't have linkage, but they still denote the same
2208 /// entity if their types are the same.
2209 /// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2210 /// isSameEntity.
2211 static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2212                                                      TypedefNameDecl *Decl,
2213                                                      LookupResult &Previous) {
2214   // This is only interesting when modules are enabled.
2215   if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2216     return;
2217 
2218   // Empty sets are uninteresting.
2219   if (Previous.empty())
2220     return;
2221 
2222   LookupResult::Filter Filter = Previous.makeFilter();
2223   while (Filter.hasNext()) {
2224     NamedDecl *Old = Filter.next();
2225 
2226     // Non-hidden declarations are never ignored.
2227     if (S.isVisible(Old))
2228       continue;
2229 
2230     // Declarations of the same entity are not ignored, even if they have
2231     // different linkages.
2232     if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2233       if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2234                                 Decl->getUnderlyingType()))
2235         continue;
2236 
2237       // If both declarations give a tag declaration a typedef name for linkage
2238       // purposes, then they declare the same entity.
2239       if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2240           Decl->getAnonDeclWithTypedefName())
2241         continue;
2242     }
2243 
2244     Filter.erase();
2245   }
2246 
2247   Filter.done();
2248 }
2249 
2250 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2251   QualType OldType;
2252   if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2253     OldType = OldTypedef->getUnderlyingType();
2254   else
2255     OldType = Context.getTypeDeclType(Old);
2256   QualType NewType = New->getUnderlyingType();
2257 
2258   if (NewType->isVariablyModifiedType()) {
2259     // Must not redefine a typedef with a variably-modified type.
2260     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2261     Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2262       << Kind << NewType;
2263     if (Old->getLocation().isValid())
2264       notePreviousDefinition(Old, New->getLocation());
2265     New->setInvalidDecl();
2266     return true;
2267   }
2268 
2269   if (OldType != NewType &&
2270       !OldType->isDependentType() &&
2271       !NewType->isDependentType() &&
2272       !Context.hasSameType(OldType, NewType)) {
2273     int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2274     Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2275       << Kind << NewType << OldType;
2276     if (Old->getLocation().isValid())
2277       notePreviousDefinition(Old, New->getLocation());
2278     New->setInvalidDecl();
2279     return true;
2280   }
2281   return false;
2282 }
2283 
2284 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2285 /// same name and scope as a previous declaration 'Old'.  Figure out
2286 /// how to resolve this situation, merging decls or emitting
2287 /// diagnostics as appropriate. If there was an error, set New to be invalid.
2288 ///
2289 void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2290                                 LookupResult &OldDecls) {
2291   // If the new decl is known invalid already, don't bother doing any
2292   // merging checks.
2293   if (New->isInvalidDecl()) return;
2294 
2295   // Allow multiple definitions for ObjC built-in typedefs.
2296   // FIXME: Verify the underlying types are equivalent!
2297   if (getLangOpts().ObjC) {
2298     const IdentifierInfo *TypeID = New->getIdentifier();
2299     switch (TypeID->getLength()) {
2300     default: break;
2301     case 2:
2302       {
2303         if (!TypeID->isStr("id"))
2304           break;
2305         QualType T = New->getUnderlyingType();
2306         if (!T->isPointerType())
2307           break;
2308         if (!T->isVoidPointerType()) {
2309           QualType PT = T->castAs<PointerType>()->getPointeeType();
2310           if (!PT->isStructureType())
2311             break;
2312         }
2313         Context.setObjCIdRedefinitionType(T);
2314         // Install the built-in type for 'id', ignoring the current definition.
2315         New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2316         return;
2317       }
2318     case 5:
2319       if (!TypeID->isStr("Class"))
2320         break;
2321       Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2322       // Install the built-in type for 'Class', ignoring the current definition.
2323       New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2324       return;
2325     case 3:
2326       if (!TypeID->isStr("SEL"))
2327         break;
2328       Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2329       // Install the built-in type for 'SEL', ignoring the current definition.
2330       New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2331       return;
2332     }
2333     // Fall through - the typedef name was not a builtin type.
2334   }
2335 
2336   // Verify the old decl was also a type.
2337   TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2338   if (!Old) {
2339     Diag(New->getLocation(), diag::err_redefinition_different_kind)
2340       << New->getDeclName();
2341 
2342     NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2343     if (OldD->getLocation().isValid())
2344       notePreviousDefinition(OldD, New->getLocation());
2345 
2346     return New->setInvalidDecl();
2347   }
2348 
2349   // If the old declaration is invalid, just give up here.
2350   if (Old->isInvalidDecl())
2351     return New->setInvalidDecl();
2352 
2353   if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2354     auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2355     auto *NewTag = New->getAnonDeclWithTypedefName();
2356     NamedDecl *Hidden = nullptr;
2357     if (OldTag && NewTag &&
2358         OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2359         !hasVisibleDefinition(OldTag, &Hidden)) {
2360       // There is a definition of this tag, but it is not visible. Use it
2361       // instead of our tag.
2362       New->setTypeForDecl(OldTD->getTypeForDecl());
2363       if (OldTD->isModed())
2364         New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2365                                     OldTD->getUnderlyingType());
2366       else
2367         New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2368 
2369       // Make the old tag definition visible.
2370       makeMergedDefinitionVisible(Hidden);
2371 
2372       // If this was an unscoped enumeration, yank all of its enumerators
2373       // out of the scope.
2374       if (isa<EnumDecl>(NewTag)) {
2375         Scope *EnumScope = getNonFieldDeclScope(S);
2376         for (auto *D : NewTag->decls()) {
2377           auto *ED = cast<EnumConstantDecl>(D);
2378           assert(EnumScope->isDeclScope(ED));
2379           EnumScope->RemoveDecl(ED);
2380           IdResolver.RemoveDecl(ED);
2381           ED->getLexicalDeclContext()->removeDecl(ED);
2382         }
2383       }
2384     }
2385   }
2386 
2387   // If the typedef types are not identical, reject them in all languages and
2388   // with any extensions enabled.
2389   if (isIncompatibleTypedef(Old, New))
2390     return;
2391 
2392   // The types match.  Link up the redeclaration chain and merge attributes if
2393   // the old declaration was a typedef.
2394   if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2395     New->setPreviousDecl(Typedef);
2396     mergeDeclAttributes(New, Old);
2397   }
2398 
2399   if (getLangOpts().MicrosoftExt)
2400     return;
2401 
2402   if (getLangOpts().CPlusPlus) {
2403     // C++ [dcl.typedef]p2:
2404     //   In a given non-class scope, a typedef specifier can be used to
2405     //   redefine the name of any type declared in that scope to refer
2406     //   to the type to which it already refers.
2407     if (!isa<CXXRecordDecl>(CurContext))
2408       return;
2409 
2410     // C++0x [dcl.typedef]p4:
2411     //   In a given class scope, a typedef specifier can be used to redefine
2412     //   any class-name declared in that scope that is not also a typedef-name
2413     //   to refer to the type to which it already refers.
2414     //
2415     // This wording came in via DR424, which was a correction to the
2416     // wording in DR56, which accidentally banned code like:
2417     //
2418     //   struct S {
2419     //     typedef struct A { } A;
2420     //   };
2421     //
2422     // in the C++03 standard. We implement the C++0x semantics, which
2423     // allow the above but disallow
2424     //
2425     //   struct S {
2426     //     typedef int I;
2427     //     typedef int I;
2428     //   };
2429     //
2430     // since that was the intent of DR56.
2431     if (!isa<TypedefNameDecl>(Old))
2432       return;
2433 
2434     Diag(New->getLocation(), diag::err_redefinition)
2435       << New->getDeclName();
2436     notePreviousDefinition(Old, New->getLocation());
2437     return New->setInvalidDecl();
2438   }
2439 
2440   // Modules always permit redefinition of typedefs, as does C11.
2441   if (getLangOpts().Modules || getLangOpts().C11)
2442     return;
2443 
2444   // If we have a redefinition of a typedef in C, emit a warning.  This warning
2445   // is normally mapped to an error, but can be controlled with
2446   // -Wtypedef-redefinition.  If either the original or the redefinition is
2447   // in a system header, don't emit this for compatibility with GCC.
2448   if (getDiagnostics().getSuppressSystemWarnings() &&
2449       // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2450       (Old->isImplicit() ||
2451        Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2452        Context.getSourceManager().isInSystemHeader(New->getLocation())))
2453     return;
2454 
2455   Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2456     << New->getDeclName();
2457   notePreviousDefinition(Old, New->getLocation());
2458 }
2459 
2460 /// DeclhasAttr - returns true if decl Declaration already has the target
2461 /// attribute.
2462 static bool DeclHasAttr(const Decl *D, const Attr *A) {
2463   const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2464   const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2465   for (const auto *i : D->attrs())
2466     if (i->getKind() == A->getKind()) {
2467       if (Ann) {
2468         if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2469           return true;
2470         continue;
2471       }
2472       // FIXME: Don't hardcode this check
2473       if (OA && isa<OwnershipAttr>(i))
2474         return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2475       return true;
2476     }
2477 
2478   return false;
2479 }
2480 
2481 static bool isAttributeTargetADefinition(Decl *D) {
2482   if (VarDecl *VD = dyn_cast<VarDecl>(D))
2483     return VD->isThisDeclarationADefinition();
2484   if (TagDecl *TD = dyn_cast<TagDecl>(D))
2485     return TD->isCompleteDefinition() || TD->isBeingDefined();
2486   return true;
2487 }
2488 
2489 /// Merge alignment attributes from \p Old to \p New, taking into account the
2490 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2491 ///
2492 /// \return \c true if any attributes were added to \p New.
2493 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2494   // Look for alignas attributes on Old, and pick out whichever attribute
2495   // specifies the strictest alignment requirement.
2496   AlignedAttr *OldAlignasAttr = nullptr;
2497   AlignedAttr *OldStrictestAlignAttr = nullptr;
2498   unsigned OldAlign = 0;
2499   for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2500     // FIXME: We have no way of representing inherited dependent alignments
2501     // in a case like:
2502     //   template<int A, int B> struct alignas(A) X;
2503     //   template<int A, int B> struct alignas(B) X {};
2504     // For now, we just ignore any alignas attributes which are not on the
2505     // definition in such a case.
2506     if (I->isAlignmentDependent())
2507       return false;
2508 
2509     if (I->isAlignas())
2510       OldAlignasAttr = I;
2511 
2512     unsigned Align = I->getAlignment(S.Context);
2513     if (Align > OldAlign) {
2514       OldAlign = Align;
2515       OldStrictestAlignAttr = I;
2516     }
2517   }
2518 
2519   // Look for alignas attributes on New.
2520   AlignedAttr *NewAlignasAttr = nullptr;
2521   unsigned NewAlign = 0;
2522   for (auto *I : New->specific_attrs<AlignedAttr>()) {
2523     if (I->isAlignmentDependent())
2524       return false;
2525 
2526     if (I->isAlignas())
2527       NewAlignasAttr = I;
2528 
2529     unsigned Align = I->getAlignment(S.Context);
2530     if (Align > NewAlign)
2531       NewAlign = Align;
2532   }
2533 
2534   if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2535     // Both declarations have 'alignas' attributes. We require them to match.
2536     // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2537     // fall short. (If two declarations both have alignas, they must both match
2538     // every definition, and so must match each other if there is a definition.)
2539 
2540     // If either declaration only contains 'alignas(0)' specifiers, then it
2541     // specifies the natural alignment for the type.
2542     if (OldAlign == 0 || NewAlign == 0) {
2543       QualType Ty;
2544       if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2545         Ty = VD->getType();
2546       else
2547         Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2548 
2549       if (OldAlign == 0)
2550         OldAlign = S.Context.getTypeAlign(Ty);
2551       if (NewAlign == 0)
2552         NewAlign = S.Context.getTypeAlign(Ty);
2553     }
2554 
2555     if (OldAlign != NewAlign) {
2556       S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2557         << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2558         << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2559       S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2560     }
2561   }
2562 
2563   if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2564     // C++11 [dcl.align]p6:
2565     //   if any declaration of an entity has an alignment-specifier,
2566     //   every defining declaration of that entity shall specify an
2567     //   equivalent alignment.
2568     // C11 6.7.5/7:
2569     //   If the definition of an object does not have an alignment
2570     //   specifier, any other declaration of that object shall also
2571     //   have no alignment specifier.
2572     S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2573       << OldAlignasAttr;
2574     S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2575       << OldAlignasAttr;
2576   }
2577 
2578   bool AnyAdded = false;
2579 
2580   // Ensure we have an attribute representing the strictest alignment.
2581   if (OldAlign > NewAlign) {
2582     AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2583     Clone->setInherited(true);
2584     New->addAttr(Clone);
2585     AnyAdded = true;
2586   }
2587 
2588   // Ensure we have an alignas attribute if the old declaration had one.
2589   if (OldAlignasAttr && !NewAlignasAttr &&
2590       !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2591     AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2592     Clone->setInherited(true);
2593     New->addAttr(Clone);
2594     AnyAdded = true;
2595   }
2596 
2597   return AnyAdded;
2598 }
2599 
2600 #define WANT_DECL_MERGE_LOGIC
2601 #include "clang/Sema/AttrParsedAttrImpl.inc"
2602 #undef WANT_DECL_MERGE_LOGIC
2603 
2604 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2605                                const InheritableAttr *Attr,
2606                                Sema::AvailabilityMergeKind AMK) {
2607   // Diagnose any mutual exclusions between the attribute that we want to add
2608   // and attributes that already exist on the declaration.
2609   if (!DiagnoseMutualExclusions(S, D, Attr))
2610     return false;
2611 
2612   // This function copies an attribute Attr from a previous declaration to the
2613   // new declaration D if the new declaration doesn't itself have that attribute
2614   // yet or if that attribute allows duplicates.
2615   // If you're adding a new attribute that requires logic different from
2616   // "use explicit attribute on decl if present, else use attribute from
2617   // previous decl", for example if the attribute needs to be consistent
2618   // between redeclarations, you need to call a custom merge function here.
2619   InheritableAttr *NewAttr = nullptr;
2620   if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2621     NewAttr = S.mergeAvailabilityAttr(
2622         D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2623         AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2624         AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2625         AA->getPriority());
2626   else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2627     NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2628   else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2629     NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2630   else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2631     NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2632   else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2633     NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2634   else if (const auto *EA = dyn_cast<ErrorAttr>(Attr))
2635     NewAttr = S.mergeErrorAttr(D, *EA, EA->getUserDiagnostic());
2636   else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2637     NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2638                                 FA->getFirstArg());
2639   else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2640     NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2641   else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2642     NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2643   else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2644     NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2645                                        IA->getInheritanceModel());
2646   else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2647     NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2648                                       &S.Context.Idents.get(AA->getSpelling()));
2649   else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2650            (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2651             isa<CUDAGlobalAttr>(Attr))) {
2652     // CUDA target attributes are part of function signature for
2653     // overloading purposes and must not be merged.
2654     return false;
2655   } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2656     NewAttr = S.mergeMinSizeAttr(D, *MA);
2657   else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr))
2658     NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName());
2659   else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2660     NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2661   else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2662     NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2663   else if (isa<AlignedAttr>(Attr))
2664     // AlignedAttrs are handled separately, because we need to handle all
2665     // such attributes on a declaration at the same time.
2666     NewAttr = nullptr;
2667   else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2668            (AMK == Sema::AMK_Override ||
2669             AMK == Sema::AMK_ProtocolImplementation ||
2670             AMK == Sema::AMK_OptionalProtocolImplementation))
2671     NewAttr = nullptr;
2672   else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2673     NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl());
2674   else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr))
2675     NewAttr = S.mergeImportModuleAttr(D, *IMA);
2676   else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr))
2677     NewAttr = S.mergeImportNameAttr(D, *INA);
2678   else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr))
2679     NewAttr = S.mergeEnforceTCBAttr(D, *TCBA);
2680   else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr))
2681     NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA);
2682   else if (const auto *BTFA = dyn_cast<BTFTagAttr>(Attr))
2683     NewAttr = S.mergeBTFTagAttr(D, *BTFA);
2684   else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2685     NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2686 
2687   if (NewAttr) {
2688     NewAttr->setInherited(true);
2689     D->addAttr(NewAttr);
2690     if (isa<MSInheritanceAttr>(NewAttr))
2691       S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2692     return true;
2693   }
2694 
2695   return false;
2696 }
2697 
2698 static const NamedDecl *getDefinition(const Decl *D) {
2699   if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2700     return TD->getDefinition();
2701   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2702     const VarDecl *Def = VD->getDefinition();
2703     if (Def)
2704       return Def;
2705     return VD->getActingDefinition();
2706   }
2707   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2708     const FunctionDecl *Def = nullptr;
2709     if (FD->isDefined(Def, true))
2710       return Def;
2711   }
2712   return nullptr;
2713 }
2714 
2715 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2716   for (const auto *Attribute : D->attrs())
2717     if (Attribute->getKind() == Kind)
2718       return true;
2719   return false;
2720 }
2721 
2722 /// checkNewAttributesAfterDef - If we already have a definition, check that
2723 /// there are no new attributes in this declaration.
2724 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2725   if (!New->hasAttrs())
2726     return;
2727 
2728   const NamedDecl *Def = getDefinition(Old);
2729   if (!Def || Def == New)
2730     return;
2731 
2732   AttrVec &NewAttributes = New->getAttrs();
2733   for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2734     const Attr *NewAttribute = NewAttributes[I];
2735 
2736     if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2737       if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2738         Sema::SkipBodyInfo SkipBody;
2739         S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2740 
2741         // If we're skipping this definition, drop the "alias" attribute.
2742         if (SkipBody.ShouldSkip) {
2743           NewAttributes.erase(NewAttributes.begin() + I);
2744           --E;
2745           continue;
2746         }
2747       } else {
2748         VarDecl *VD = cast<VarDecl>(New);
2749         unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2750                                 VarDecl::TentativeDefinition
2751                             ? diag::err_alias_after_tentative
2752                             : diag::err_redefinition;
2753         S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2754         if (Diag == diag::err_redefinition)
2755           S.notePreviousDefinition(Def, VD->getLocation());
2756         else
2757           S.Diag(Def->getLocation(), diag::note_previous_definition);
2758         VD->setInvalidDecl();
2759       }
2760       ++I;
2761       continue;
2762     }
2763 
2764     if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2765       // Tentative definitions are only interesting for the alias check above.
2766       if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2767         ++I;
2768         continue;
2769       }
2770     }
2771 
2772     if (hasAttribute(Def, NewAttribute->getKind())) {
2773       ++I;
2774       continue; // regular attr merging will take care of validating this.
2775     }
2776 
2777     if (isa<C11NoReturnAttr>(NewAttribute)) {
2778       // C's _Noreturn is allowed to be added to a function after it is defined.
2779       ++I;
2780       continue;
2781     } else if (isa<UuidAttr>(NewAttribute)) {
2782       // msvc will allow a subsequent definition to add an uuid to a class
2783       ++I;
2784       continue;
2785     } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2786       if (AA->isAlignas()) {
2787         // C++11 [dcl.align]p6:
2788         //   if any declaration of an entity has an alignment-specifier,
2789         //   every defining declaration of that entity shall specify an
2790         //   equivalent alignment.
2791         // C11 6.7.5/7:
2792         //   If the definition of an object does not have an alignment
2793         //   specifier, any other declaration of that object shall also
2794         //   have no alignment specifier.
2795         S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2796           << AA;
2797         S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2798           << AA;
2799         NewAttributes.erase(NewAttributes.begin() + I);
2800         --E;
2801         continue;
2802       }
2803     } else if (isa<LoaderUninitializedAttr>(NewAttribute)) {
2804       // If there is a C definition followed by a redeclaration with this
2805       // attribute then there are two different definitions. In C++, prefer the
2806       // standard diagnostics.
2807       if (!S.getLangOpts().CPlusPlus) {
2808         S.Diag(NewAttribute->getLocation(),
2809                diag::err_loader_uninitialized_redeclaration);
2810         S.Diag(Def->getLocation(), diag::note_previous_definition);
2811         NewAttributes.erase(NewAttributes.begin() + I);
2812         --E;
2813         continue;
2814       }
2815     } else if (isa<SelectAnyAttr>(NewAttribute) &&
2816                cast<VarDecl>(New)->isInline() &&
2817                !cast<VarDecl>(New)->isInlineSpecified()) {
2818       // Don't warn about applying selectany to implicitly inline variables.
2819       // Older compilers and language modes would require the use of selectany
2820       // to make such variables inline, and it would have no effect if we
2821       // honored it.
2822       ++I;
2823       continue;
2824     } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) {
2825       // We allow to add OMP[Begin]DeclareVariantAttr to be added to
2826       // declarations after defintions.
2827       ++I;
2828       continue;
2829     }
2830 
2831     S.Diag(NewAttribute->getLocation(),
2832            diag::warn_attribute_precede_definition);
2833     S.Diag(Def->getLocation(), diag::note_previous_definition);
2834     NewAttributes.erase(NewAttributes.begin() + I);
2835     --E;
2836   }
2837 }
2838 
2839 static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
2840                                      const ConstInitAttr *CIAttr,
2841                                      bool AttrBeforeInit) {
2842   SourceLocation InsertLoc = InitDecl->getInnerLocStart();
2843 
2844   // Figure out a good way to write this specifier on the old declaration.
2845   // FIXME: We should just use the spelling of CIAttr, but we don't preserve
2846   // enough of the attribute list spelling information to extract that without
2847   // heroics.
2848   std::string SuitableSpelling;
2849   if (S.getLangOpts().CPlusPlus20)
2850     SuitableSpelling = std::string(
2851         S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit}));
2852   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2853     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2854         InsertLoc, {tok::l_square, tok::l_square,
2855                     S.PP.getIdentifierInfo("clang"), tok::coloncolon,
2856                     S.PP.getIdentifierInfo("require_constant_initialization"),
2857                     tok::r_square, tok::r_square}));
2858   if (SuitableSpelling.empty())
2859     SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2860         InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren,
2861                     S.PP.getIdentifierInfo("require_constant_initialization"),
2862                     tok::r_paren, tok::r_paren}));
2863   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20)
2864     SuitableSpelling = "constinit";
2865   if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2866     SuitableSpelling = "[[clang::require_constant_initialization]]";
2867   if (SuitableSpelling.empty())
2868     SuitableSpelling = "__attribute__((require_constant_initialization))";
2869   SuitableSpelling += " ";
2870 
2871   if (AttrBeforeInit) {
2872     // extern constinit int a;
2873     // int a = 0; // error (missing 'constinit'), accepted as extension
2874     assert(CIAttr->isConstinit() && "should not diagnose this for attribute");
2875     S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
2876         << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2877     S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
2878   } else {
2879     // int a = 0;
2880     // constinit extern int a; // error (missing 'constinit')
2881     S.Diag(CIAttr->getLocation(),
2882            CIAttr->isConstinit() ? diag::err_constinit_added_too_late
2883                                  : diag::warn_require_const_init_added_too_late)
2884         << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
2885     S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
2886         << CIAttr->isConstinit()
2887         << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2888   }
2889 }
2890 
2891 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2892 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2893                                AvailabilityMergeKind AMK) {
2894   if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2895     UsedAttr *NewAttr = OldAttr->clone(Context);
2896     NewAttr->setInherited(true);
2897     New->addAttr(NewAttr);
2898   }
2899   if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) {
2900     RetainAttr *NewAttr = OldAttr->clone(Context);
2901     NewAttr->setInherited(true);
2902     New->addAttr(NewAttr);
2903   }
2904 
2905   if (!Old->hasAttrs() && !New->hasAttrs())
2906     return;
2907 
2908   // [dcl.constinit]p1:
2909   //   If the [constinit] specifier is applied to any declaration of a
2910   //   variable, it shall be applied to the initializing declaration.
2911   const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
2912   const auto *NewConstInit = New->getAttr<ConstInitAttr>();
2913   if (bool(OldConstInit) != bool(NewConstInit)) {
2914     const auto *OldVD = cast<VarDecl>(Old);
2915     auto *NewVD = cast<VarDecl>(New);
2916 
2917     // Find the initializing declaration. Note that we might not have linked
2918     // the new declaration into the redeclaration chain yet.
2919     const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
2920     if (!InitDecl &&
2921         (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
2922       InitDecl = NewVD;
2923 
2924     if (InitDecl == NewVD) {
2925       // This is the initializing declaration. If it would inherit 'constinit',
2926       // that's ill-formed. (Note that we do not apply this to the attribute
2927       // form).
2928       if (OldConstInit && OldConstInit->isConstinit())
2929         diagnoseMissingConstinit(*this, NewVD, OldConstInit,
2930                                  /*AttrBeforeInit=*/true);
2931     } else if (NewConstInit) {
2932       // This is the first time we've been told that this declaration should
2933       // have a constant initializer. If we already saw the initializing
2934       // declaration, this is too late.
2935       if (InitDecl && InitDecl != NewVD) {
2936         diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
2937                                  /*AttrBeforeInit=*/false);
2938         NewVD->dropAttr<ConstInitAttr>();
2939       }
2940     }
2941   }
2942 
2943   // Attributes declared post-definition are currently ignored.
2944   checkNewAttributesAfterDef(*this, New, Old);
2945 
2946   if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2947     if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2948       if (!OldA->isEquivalent(NewA)) {
2949         // This redeclaration changes __asm__ label.
2950         Diag(New->getLocation(), diag::err_different_asm_label);
2951         Diag(OldA->getLocation(), diag::note_previous_declaration);
2952       }
2953     } else if (Old->isUsed()) {
2954       // This redeclaration adds an __asm__ label to a declaration that has
2955       // already been ODR-used.
2956       Diag(New->getLocation(), diag::err_late_asm_label_name)
2957         << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2958     }
2959   }
2960 
2961   // Re-declaration cannot add abi_tag's.
2962   if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2963     if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2964       for (const auto &NewTag : NewAbiTagAttr->tags()) {
2965         if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2966                       NewTag) == OldAbiTagAttr->tags_end()) {
2967           Diag(NewAbiTagAttr->getLocation(),
2968                diag::err_new_abi_tag_on_redeclaration)
2969               << NewTag;
2970           Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2971         }
2972       }
2973     } else {
2974       Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2975       Diag(Old->getLocation(), diag::note_previous_declaration);
2976     }
2977   }
2978 
2979   // This redeclaration adds a section attribute.
2980   if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2981     if (auto *VD = dyn_cast<VarDecl>(New)) {
2982       if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2983         Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2984         Diag(Old->getLocation(), diag::note_previous_declaration);
2985       }
2986     }
2987   }
2988 
2989   // Redeclaration adds code-seg attribute.
2990   const auto *NewCSA = New->getAttr<CodeSegAttr>();
2991   if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2992       !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2993     Diag(New->getLocation(), diag::warn_mismatched_section)
2994          << 0 /*codeseg*/;
2995     Diag(Old->getLocation(), diag::note_previous_declaration);
2996   }
2997 
2998   if (!Old->hasAttrs())
2999     return;
3000 
3001   bool foundAny = New->hasAttrs();
3002 
3003   // Ensure that any moving of objects within the allocated map is done before
3004   // we process them.
3005   if (!foundAny) New->setAttrs(AttrVec());
3006 
3007   for (auto *I : Old->specific_attrs<InheritableAttr>()) {
3008     // Ignore deprecated/unavailable/availability attributes if requested.
3009     AvailabilityMergeKind LocalAMK = AMK_None;
3010     if (isa<DeprecatedAttr>(I) ||
3011         isa<UnavailableAttr>(I) ||
3012         isa<AvailabilityAttr>(I)) {
3013       switch (AMK) {
3014       case AMK_None:
3015         continue;
3016 
3017       case AMK_Redeclaration:
3018       case AMK_Override:
3019       case AMK_ProtocolImplementation:
3020       case AMK_OptionalProtocolImplementation:
3021         LocalAMK = AMK;
3022         break;
3023       }
3024     }
3025 
3026     // Already handled.
3027     if (isa<UsedAttr>(I) || isa<RetainAttr>(I))
3028       continue;
3029 
3030     if (mergeDeclAttribute(*this, New, I, LocalAMK))
3031       foundAny = true;
3032   }
3033 
3034   if (mergeAlignedAttrs(*this, New, Old))
3035     foundAny = true;
3036 
3037   if (!foundAny) New->dropAttrs();
3038 }
3039 
3040 /// mergeParamDeclAttributes - Copy attributes from the old parameter
3041 /// to the new one.
3042 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
3043                                      const ParmVarDecl *oldDecl,
3044                                      Sema &S) {
3045   // C++11 [dcl.attr.depend]p2:
3046   //   The first declaration of a function shall specify the
3047   //   carries_dependency attribute for its declarator-id if any declaration
3048   //   of the function specifies the carries_dependency attribute.
3049   const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
3050   if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
3051     S.Diag(CDA->getLocation(),
3052            diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
3053     // Find the first declaration of the parameter.
3054     // FIXME: Should we build redeclaration chains for function parameters?
3055     const FunctionDecl *FirstFD =
3056       cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
3057     const ParmVarDecl *FirstVD =
3058       FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
3059     S.Diag(FirstVD->getLocation(),
3060            diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
3061   }
3062 
3063   if (!oldDecl->hasAttrs())
3064     return;
3065 
3066   bool foundAny = newDecl->hasAttrs();
3067 
3068   // Ensure that any moving of objects within the allocated map is
3069   // done before we process them.
3070   if (!foundAny) newDecl->setAttrs(AttrVec());
3071 
3072   for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
3073     if (!DeclHasAttr(newDecl, I)) {
3074       InheritableAttr *newAttr =
3075         cast<InheritableParamAttr>(I->clone(S.Context));
3076       newAttr->setInherited(true);
3077       newDecl->addAttr(newAttr);
3078       foundAny = true;
3079     }
3080   }
3081 
3082   if (!foundAny) newDecl->dropAttrs();
3083 }
3084 
3085 static void mergeParamDeclTypes(ParmVarDecl *NewParam,
3086                                 const ParmVarDecl *OldParam,
3087                                 Sema &S) {
3088   if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
3089     if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
3090       if (*Oldnullability != *Newnullability) {
3091         S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
3092           << DiagNullabilityKind(
3093                *Newnullability,
3094                ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3095                 != 0))
3096           << DiagNullabilityKind(
3097                *Oldnullability,
3098                ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3099                 != 0));
3100         S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
3101       }
3102     } else {
3103       QualType NewT = NewParam->getType();
3104       NewT = S.Context.getAttributedType(
3105                          AttributedType::getNullabilityAttrKind(*Oldnullability),
3106                          NewT, NewT);
3107       NewParam->setType(NewT);
3108     }
3109   }
3110 }
3111 
3112 namespace {
3113 
3114 /// Used in MergeFunctionDecl to keep track of function parameters in
3115 /// C.
3116 struct GNUCompatibleParamWarning {
3117   ParmVarDecl *OldParm;
3118   ParmVarDecl *NewParm;
3119   QualType PromotedType;
3120 };
3121 
3122 } // end anonymous namespace
3123 
3124 // Determine whether the previous declaration was a definition, implicit
3125 // declaration, or a declaration.
3126 template <typename T>
3127 static std::pair<diag::kind, SourceLocation>
3128 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3129   diag::kind PrevDiag;
3130   SourceLocation OldLocation = Old->getLocation();
3131   if (Old->isThisDeclarationADefinition())
3132     PrevDiag = diag::note_previous_definition;
3133   else if (Old->isImplicit()) {
3134     PrevDiag = diag::note_previous_implicit_declaration;
3135     if (OldLocation.isInvalid())
3136       OldLocation = New->getLocation();
3137   } else
3138     PrevDiag = diag::note_previous_declaration;
3139   return std::make_pair(PrevDiag, OldLocation);
3140 }
3141 
3142 /// canRedefineFunction - checks if a function can be redefined. Currently,
3143 /// only extern inline functions can be redefined, and even then only in
3144 /// GNU89 mode.
3145 static bool canRedefineFunction(const FunctionDecl *FD,
3146                                 const LangOptions& LangOpts) {
3147   return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3148           !LangOpts.CPlusPlus &&
3149           FD->isInlineSpecified() &&
3150           FD->getStorageClass() == SC_Extern);
3151 }
3152 
3153 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3154   const AttributedType *AT = T->getAs<AttributedType>();
3155   while (AT && !AT->isCallingConv())
3156     AT = AT->getModifiedType()->getAs<AttributedType>();
3157   return AT;
3158 }
3159 
3160 template <typename T>
3161 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3162   const DeclContext *DC = Old->getDeclContext();
3163   if (DC->isRecord())
3164     return false;
3165 
3166   LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3167   if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3168     return true;
3169   if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3170     return true;
3171   return false;
3172 }
3173 
3174 template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
3175 static bool isExternC(VarTemplateDecl *) { return false; }
3176 static bool isExternC(FunctionTemplateDecl *) { return false; }
3177 
3178 /// Check whether a redeclaration of an entity introduced by a
3179 /// using-declaration is valid, given that we know it's not an overload
3180 /// (nor a hidden tag declaration).
3181 template<typename ExpectedDecl>
3182 static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3183                                    ExpectedDecl *New) {
3184   // C++11 [basic.scope.declarative]p4:
3185   //   Given a set of declarations in a single declarative region, each of
3186   //   which specifies the same unqualified name,
3187   //   -- they shall all refer to the same entity, or all refer to functions
3188   //      and function templates; or
3189   //   -- exactly one declaration shall declare a class name or enumeration
3190   //      name that is not a typedef name and the other declarations shall all
3191   //      refer to the same variable or enumerator, or all refer to functions
3192   //      and function templates; in this case the class name or enumeration
3193   //      name is hidden (3.3.10).
3194 
3195   // C++11 [namespace.udecl]p14:
3196   //   If a function declaration in namespace scope or block scope has the
3197   //   same name and the same parameter-type-list as a function introduced
3198   //   by a using-declaration, and the declarations do not declare the same
3199   //   function, the program is ill-formed.
3200 
3201   auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3202   if (Old &&
3203       !Old->getDeclContext()->getRedeclContext()->Equals(
3204           New->getDeclContext()->getRedeclContext()) &&
3205       !(isExternC(Old) && isExternC(New)))
3206     Old = nullptr;
3207 
3208   if (!Old) {
3209     S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3210     S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3211     S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
3212     return true;
3213   }
3214   return false;
3215 }
3216 
3217 static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3218                                             const FunctionDecl *B) {
3219   assert(A->getNumParams() == B->getNumParams());
3220 
3221   auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3222     const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3223     const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3224     if (AttrA == AttrB)
3225       return true;
3226     return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3227            AttrA->isDynamic() == AttrB->isDynamic();
3228   };
3229 
3230   return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3231 }
3232 
3233 /// If necessary, adjust the semantic declaration context for a qualified
3234 /// declaration to name the correct inline namespace within the qualifier.
3235 static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3236                                                DeclaratorDecl *OldD) {
3237   // The only case where we need to update the DeclContext is when
3238   // redeclaration lookup for a qualified name finds a declaration
3239   // in an inline namespace within the context named by the qualifier:
3240   //
3241   //   inline namespace N { int f(); }
3242   //   int ::f(); // Sema DC needs adjusting from :: to N::.
3243   //
3244   // For unqualified declarations, the semantic context *can* change
3245   // along the redeclaration chain (for local extern declarations,
3246   // extern "C" declarations, and friend declarations in particular).
3247   if (!NewD->getQualifier())
3248     return;
3249 
3250   // NewD is probably already in the right context.
3251   auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3252   auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3253   if (NamedDC->Equals(SemaDC))
3254     return;
3255 
3256   assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||
3257           NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&
3258          "unexpected context for redeclaration");
3259 
3260   auto *LexDC = NewD->getLexicalDeclContext();
3261   auto FixSemaDC = [=](NamedDecl *D) {
3262     if (!D)
3263       return;
3264     D->setDeclContext(SemaDC);
3265     D->setLexicalDeclContext(LexDC);
3266   };
3267 
3268   FixSemaDC(NewD);
3269   if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3270     FixSemaDC(FD->getDescribedFunctionTemplate());
3271   else if (auto *VD = dyn_cast<VarDecl>(NewD))
3272     FixSemaDC(VD->getDescribedVarTemplate());
3273 }
3274 
3275 /// MergeFunctionDecl - We just parsed a function 'New' from
3276 /// declarator D which has the same name and scope as a previous
3277 /// declaration 'Old'.  Figure out how to resolve this situation,
3278 /// merging decls or emitting diagnostics as appropriate.
3279 ///
3280 /// In C++, New and Old must be declarations that are not
3281 /// overloaded. Use IsOverload to determine whether New and Old are
3282 /// overloaded, and to select the Old declaration that New should be
3283 /// merged with.
3284 ///
3285 /// Returns true if there was an error, false otherwise.
3286 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
3287                              Scope *S, bool MergeTypeWithOld) {
3288   // Verify the old decl was also a function.
3289   FunctionDecl *Old = OldD->getAsFunction();
3290   if (!Old) {
3291     if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3292       if (New->getFriendObjectKind()) {
3293         Diag(New->getLocation(), diag::err_using_decl_friend);
3294         Diag(Shadow->getTargetDecl()->getLocation(),
3295              diag::note_using_decl_target);
3296         Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
3297             << 0;
3298         return true;
3299       }
3300 
3301       // Check whether the two declarations might declare the same function or
3302       // function template.
3303       if (FunctionTemplateDecl *NewTemplate =
3304               New->getDescribedFunctionTemplate()) {
3305         if (checkUsingShadowRedecl<FunctionTemplateDecl>(*this, Shadow,
3306                                                          NewTemplate))
3307           return true;
3308         OldD = Old = cast<FunctionTemplateDecl>(Shadow->getTargetDecl())
3309                          ->getAsFunction();
3310       } else {
3311         if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3312           return true;
3313         OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3314       }
3315     } else {
3316       Diag(New->getLocation(), diag::err_redefinition_different_kind)
3317         << New->getDeclName();
3318       notePreviousDefinition(OldD, New->getLocation());
3319       return true;
3320     }
3321   }
3322 
3323   // If the old declaration was found in an inline namespace and the new
3324   // declaration was qualified, update the DeclContext to match.
3325   adjustDeclContextForDeclaratorDecl(New, Old);
3326 
3327   // If the old declaration is invalid, just give up here.
3328   if (Old->isInvalidDecl())
3329     return true;
3330 
3331   // Disallow redeclaration of some builtins.
3332   if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3333     Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3334     Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3335         << Old << Old->getType();
3336     return true;
3337   }
3338 
3339   diag::kind PrevDiag;
3340   SourceLocation OldLocation;
3341   std::tie(PrevDiag, OldLocation) =
3342       getNoteDiagForInvalidRedeclaration(Old, New);
3343 
3344   // Don't complain about this if we're in GNU89 mode and the old function
3345   // is an extern inline function.
3346   // Don't complain about specializations. They are not supposed to have
3347   // storage classes.
3348   if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3349       New->getStorageClass() == SC_Static &&
3350       Old->hasExternalFormalLinkage() &&
3351       !New->getTemplateSpecializationInfo() &&
3352       !canRedefineFunction(Old, getLangOpts())) {
3353     if (getLangOpts().MicrosoftExt) {
3354       Diag(New->getLocation(), diag::ext_static_non_static) << New;
3355       Diag(OldLocation, PrevDiag);
3356     } else {
3357       Diag(New->getLocation(), diag::err_static_non_static) << New;
3358       Diag(OldLocation, PrevDiag);
3359       return true;
3360     }
3361   }
3362 
3363   if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
3364     if (!Old->hasAttr<InternalLinkageAttr>()) {
3365       Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
3366           << ILA;
3367       Diag(Old->getLocation(), diag::note_previous_declaration);
3368       New->dropAttr<InternalLinkageAttr>();
3369     }
3370 
3371   if (auto *EA = New->getAttr<ErrorAttr>()) {
3372     if (!Old->hasAttr<ErrorAttr>()) {
3373       Diag(EA->getLocation(), diag::err_attribute_missing_on_first_decl) << EA;
3374       Diag(Old->getLocation(), diag::note_previous_declaration);
3375       New->dropAttr<ErrorAttr>();
3376     }
3377   }
3378 
3379   if (CheckRedeclarationModuleOwnership(New, Old))
3380     return true;
3381 
3382   if (!getLangOpts().CPlusPlus) {
3383     bool OldOvl = Old->hasAttr<OverloadableAttr>();
3384     if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3385       Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3386         << New << OldOvl;
3387 
3388       // Try our best to find a decl that actually has the overloadable
3389       // attribute for the note. In most cases (e.g. programs with only one
3390       // broken declaration/definition), this won't matter.
3391       //
3392       // FIXME: We could do this if we juggled some extra state in
3393       // OverloadableAttr, rather than just removing it.
3394       const Decl *DiagOld = Old;
3395       if (OldOvl) {
3396         auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3397           const auto *A = D->getAttr<OverloadableAttr>();
3398           return A && !A->isImplicit();
3399         });
3400         // If we've implicitly added *all* of the overloadable attrs to this
3401         // chain, emitting a "previous redecl" note is pointless.
3402         DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3403       }
3404 
3405       if (DiagOld)
3406         Diag(DiagOld->getLocation(),
3407              diag::note_attribute_overloadable_prev_overload)
3408           << OldOvl;
3409 
3410       if (OldOvl)
3411         New->addAttr(OverloadableAttr::CreateImplicit(Context));
3412       else
3413         New->dropAttr<OverloadableAttr>();
3414     }
3415   }
3416 
3417   // If a function is first declared with a calling convention, but is later
3418   // declared or defined without one, all following decls assume the calling
3419   // convention of the first.
3420   //
3421   // It's OK if a function is first declared without a calling convention,
3422   // but is later declared or defined with the default calling convention.
3423   //
3424   // To test if either decl has an explicit calling convention, we look for
3425   // AttributedType sugar nodes on the type as written.  If they are missing or
3426   // were canonicalized away, we assume the calling convention was implicit.
3427   //
3428   // Note also that we DO NOT return at this point, because we still have
3429   // other tests to run.
3430   QualType OldQType = Context.getCanonicalType(Old->getType());
3431   QualType NewQType = Context.getCanonicalType(New->getType());
3432   const FunctionType *OldType = cast<FunctionType>(OldQType);
3433   const FunctionType *NewType = cast<FunctionType>(NewQType);
3434   FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3435   FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3436   bool RequiresAdjustment = false;
3437 
3438   if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3439     FunctionDecl *First = Old->getFirstDecl();
3440     const FunctionType *FT =
3441         First->getType().getCanonicalType()->castAs<FunctionType>();
3442     FunctionType::ExtInfo FI = FT->getExtInfo();
3443     bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3444     if (!NewCCExplicit) {
3445       // Inherit the CC from the previous declaration if it was specified
3446       // there but not here.
3447       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3448       RequiresAdjustment = true;
3449     } else if (Old->getBuiltinID()) {
3450       // Builtin attribute isn't propagated to the new one yet at this point,
3451       // so we check if the old one is a builtin.
3452 
3453       // Calling Conventions on a Builtin aren't really useful and setting a
3454       // default calling convention and cdecl'ing some builtin redeclarations is
3455       // common, so warn and ignore the calling convention on the redeclaration.
3456       Diag(New->getLocation(), diag::warn_cconv_unsupported)
3457           << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3458           << (int)CallingConventionIgnoredReason::BuiltinFunction;
3459       NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3460       RequiresAdjustment = true;
3461     } else {
3462       // Calling conventions aren't compatible, so complain.
3463       bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3464       Diag(New->getLocation(), diag::err_cconv_change)
3465         << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3466         << !FirstCCExplicit
3467         << (!FirstCCExplicit ? "" :
3468             FunctionType::getNameForCallConv(FI.getCC()));
3469 
3470       // Put the note on the first decl, since it is the one that matters.
3471       Diag(First->getLocation(), diag::note_previous_declaration);
3472       return true;
3473     }
3474   }
3475 
3476   // FIXME: diagnose the other way around?
3477   if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3478     NewTypeInfo = NewTypeInfo.withNoReturn(true);
3479     RequiresAdjustment = true;
3480   }
3481 
3482   // Merge regparm attribute.
3483   if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3484       OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3485     if (NewTypeInfo.getHasRegParm()) {
3486       Diag(New->getLocation(), diag::err_regparm_mismatch)
3487         << NewType->getRegParmType()
3488         << OldType->getRegParmType();
3489       Diag(OldLocation, diag::note_previous_declaration);
3490       return true;
3491     }
3492 
3493     NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3494     RequiresAdjustment = true;
3495   }
3496 
3497   // Merge ns_returns_retained attribute.
3498   if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3499     if (NewTypeInfo.getProducesResult()) {
3500       Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3501           << "'ns_returns_retained'";
3502       Diag(OldLocation, diag::note_previous_declaration);
3503       return true;
3504     }
3505 
3506     NewTypeInfo = NewTypeInfo.withProducesResult(true);
3507     RequiresAdjustment = true;
3508   }
3509 
3510   if (OldTypeInfo.getNoCallerSavedRegs() !=
3511       NewTypeInfo.getNoCallerSavedRegs()) {
3512     if (NewTypeInfo.getNoCallerSavedRegs()) {
3513       AnyX86NoCallerSavedRegistersAttr *Attr =
3514         New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3515       Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3516       Diag(OldLocation, diag::note_previous_declaration);
3517       return true;
3518     }
3519 
3520     NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3521     RequiresAdjustment = true;
3522   }
3523 
3524   if (RequiresAdjustment) {
3525     const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3526     AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3527     New->setType(QualType(AdjustedType, 0));
3528     NewQType = Context.getCanonicalType(New->getType());
3529   }
3530 
3531   // If this redeclaration makes the function inline, we may need to add it to
3532   // UndefinedButUsed.
3533   if (!Old->isInlined() && New->isInlined() &&
3534       !New->hasAttr<GNUInlineAttr>() &&
3535       !getLangOpts().GNUInline &&
3536       Old->isUsed(false) &&
3537       !Old->isDefined() && !New->isThisDeclarationADefinition())
3538     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3539                                            SourceLocation()));
3540 
3541   // If this redeclaration makes it newly gnu_inline, we don't want to warn
3542   // about it.
3543   if (New->hasAttr<GNUInlineAttr>() &&
3544       Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3545     UndefinedButUsed.erase(Old->getCanonicalDecl());
3546   }
3547 
3548   // If pass_object_size params don't match up perfectly, this isn't a valid
3549   // redeclaration.
3550   if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3551       !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3552     Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3553         << New->getDeclName();
3554     Diag(OldLocation, PrevDiag) << Old << Old->getType();
3555     return true;
3556   }
3557 
3558   if (getLangOpts().CPlusPlus) {
3559     // C++1z [over.load]p2
3560     //   Certain function declarations cannot be overloaded:
3561     //     -- Function declarations that differ only in the return type,
3562     //        the exception specification, or both cannot be overloaded.
3563 
3564     // Check the exception specifications match. This may recompute the type of
3565     // both Old and New if it resolved exception specifications, so grab the
3566     // types again after this. Because this updates the type, we do this before
3567     // any of the other checks below, which may update the "de facto" NewQType
3568     // but do not necessarily update the type of New.
3569     if (CheckEquivalentExceptionSpec(Old, New))
3570       return true;
3571     OldQType = Context.getCanonicalType(Old->getType());
3572     NewQType = Context.getCanonicalType(New->getType());
3573 
3574     // Go back to the type source info to compare the declared return types,
3575     // per C++1y [dcl.type.auto]p13:
3576     //   Redeclarations or specializations of a function or function template
3577     //   with a declared return type that uses a placeholder type shall also
3578     //   use that placeholder, not a deduced type.
3579     QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3580     QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3581     if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3582         canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3583                                        OldDeclaredReturnType)) {
3584       QualType ResQT;
3585       if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3586           OldDeclaredReturnType->isObjCObjectPointerType())
3587         // FIXME: This does the wrong thing for a deduced return type.
3588         ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3589       if (ResQT.isNull()) {
3590         if (New->isCXXClassMember() && New->isOutOfLine())
3591           Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3592               << New << New->getReturnTypeSourceRange();
3593         else
3594           Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3595               << New->getReturnTypeSourceRange();
3596         Diag(OldLocation, PrevDiag) << Old << Old->getType()
3597                                     << Old->getReturnTypeSourceRange();
3598         return true;
3599       }
3600       else
3601         NewQType = ResQT;
3602     }
3603 
3604     QualType OldReturnType = OldType->getReturnType();
3605     QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3606     if (OldReturnType != NewReturnType) {
3607       // If this function has a deduced return type and has already been
3608       // defined, copy the deduced value from the old declaration.
3609       AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3610       if (OldAT && OldAT->isDeduced()) {
3611         New->setType(
3612             SubstAutoType(New->getType(),
3613                           OldAT->isDependentType() ? Context.DependentTy
3614                                                    : OldAT->getDeducedType()));
3615         NewQType = Context.getCanonicalType(
3616             SubstAutoType(NewQType,
3617                           OldAT->isDependentType() ? Context.DependentTy
3618                                                    : OldAT->getDeducedType()));
3619       }
3620     }
3621 
3622     const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3623     CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3624     if (OldMethod && NewMethod) {
3625       // Preserve triviality.
3626       NewMethod->setTrivial(OldMethod->isTrivial());
3627 
3628       // MSVC allows explicit template specialization at class scope:
3629       // 2 CXXMethodDecls referring to the same function will be injected.
3630       // We don't want a redeclaration error.
3631       bool IsClassScopeExplicitSpecialization =
3632                               OldMethod->isFunctionTemplateSpecialization() &&
3633                               NewMethod->isFunctionTemplateSpecialization();
3634       bool isFriend = NewMethod->getFriendObjectKind();
3635 
3636       if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3637           !IsClassScopeExplicitSpecialization) {
3638         //    -- Member function declarations with the same name and the
3639         //       same parameter types cannot be overloaded if any of them
3640         //       is a static member function declaration.
3641         if (OldMethod->isStatic() != NewMethod->isStatic()) {
3642           Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3643           Diag(OldLocation, PrevDiag) << Old << Old->getType();
3644           return true;
3645         }
3646 
3647         // C++ [class.mem]p1:
3648         //   [...] A member shall not be declared twice in the
3649         //   member-specification, except that a nested class or member
3650         //   class template can be declared and then later defined.
3651         if (!inTemplateInstantiation()) {
3652           unsigned NewDiag;
3653           if (isa<CXXConstructorDecl>(OldMethod))
3654             NewDiag = diag::err_constructor_redeclared;
3655           else if (isa<CXXDestructorDecl>(NewMethod))
3656             NewDiag = diag::err_destructor_redeclared;
3657           else if (isa<CXXConversionDecl>(NewMethod))
3658             NewDiag = diag::err_conv_function_redeclared;
3659           else
3660             NewDiag = diag::err_member_redeclared;
3661 
3662           Diag(New->getLocation(), NewDiag);
3663         } else {
3664           Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3665             << New << New->getType();
3666         }
3667         Diag(OldLocation, PrevDiag) << Old << Old->getType();
3668         return true;
3669 
3670       // Complain if this is an explicit declaration of a special
3671       // member that was initially declared implicitly.
3672       //
3673       // As an exception, it's okay to befriend such methods in order
3674       // to permit the implicit constructor/destructor/operator calls.
3675       } else if (OldMethod->isImplicit()) {
3676         if (isFriend) {
3677           NewMethod->setImplicit();
3678         } else {
3679           Diag(NewMethod->getLocation(),
3680                diag::err_definition_of_implicitly_declared_member)
3681             << New << getSpecialMember(OldMethod);
3682           return true;
3683         }
3684       } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3685         Diag(NewMethod->getLocation(),
3686              diag::err_definition_of_explicitly_defaulted_member)
3687           << getSpecialMember(OldMethod);
3688         return true;
3689       }
3690     }
3691 
3692     // C++11 [dcl.attr.noreturn]p1:
3693     //   The first declaration of a function shall specify the noreturn
3694     //   attribute if any declaration of that function specifies the noreturn
3695     //   attribute.
3696     if (const auto *NRA = New->getAttr<CXX11NoReturnAttr>())
3697       if (!Old->hasAttr<CXX11NoReturnAttr>()) {
3698         Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl)
3699             << NRA;
3700         Diag(Old->getLocation(), diag::note_previous_declaration);
3701       }
3702 
3703     // C++11 [dcl.attr.depend]p2:
3704     //   The first declaration of a function shall specify the
3705     //   carries_dependency attribute for its declarator-id if any declaration
3706     //   of the function specifies the carries_dependency attribute.
3707     const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3708     if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3709       Diag(CDA->getLocation(),
3710            diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3711       Diag(Old->getFirstDecl()->getLocation(),
3712            diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3713     }
3714 
3715     // (C++98 8.3.5p3):
3716     //   All declarations for a function shall agree exactly in both the
3717     //   return type and the parameter-type-list.
3718     // We also want to respect all the extended bits except noreturn.
3719 
3720     // noreturn should now match unless the old type info didn't have it.
3721     QualType OldQTypeForComparison = OldQType;
3722     if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3723       auto *OldType = OldQType->castAs<FunctionProtoType>();
3724       const FunctionType *OldTypeForComparison
3725         = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3726       OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3727       assert(OldQTypeForComparison.isCanonical());
3728     }
3729 
3730     if (haveIncompatibleLanguageLinkages(Old, New)) {
3731       // As a special case, retain the language linkage from previous
3732       // declarations of a friend function as an extension.
3733       //
3734       // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3735       // and is useful because there's otherwise no way to specify language
3736       // linkage within class scope.
3737       //
3738       // Check cautiously as the friend object kind isn't yet complete.
3739       if (New->getFriendObjectKind() != Decl::FOK_None) {
3740         Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3741         Diag(OldLocation, PrevDiag);
3742       } else {
3743         Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3744         Diag(OldLocation, PrevDiag);
3745         return true;
3746       }
3747     }
3748 
3749     // If the function types are compatible, merge the declarations. Ignore the
3750     // exception specifier because it was already checked above in
3751     // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
3752     // about incompatible types under -fms-compatibility.
3753     if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
3754                                                          NewQType))
3755       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3756 
3757     // If the types are imprecise (due to dependent constructs in friends or
3758     // local extern declarations), it's OK if they differ. We'll check again
3759     // during instantiation.
3760     if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3761       return false;
3762 
3763     // Fall through for conflicting redeclarations and redefinitions.
3764   }
3765 
3766   // C: Function types need to be compatible, not identical. This handles
3767   // duplicate function decls like "void f(int); void f(enum X);" properly.
3768   if (!getLangOpts().CPlusPlus &&
3769       Context.typesAreCompatible(OldQType, NewQType)) {
3770     const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3771     const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3772     const FunctionProtoType *OldProto = nullptr;
3773     if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3774         (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3775       // The old declaration provided a function prototype, but the
3776       // new declaration does not. Merge in the prototype.
3777       assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
3778       SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3779       NewQType =
3780           Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3781                                   OldProto->getExtProtoInfo());
3782       New->setType(NewQType);
3783       New->setHasInheritedPrototype();
3784 
3785       // Synthesize parameters with the same types.
3786       SmallVector<ParmVarDecl*, 16> Params;
3787       for (const auto &ParamType : OldProto->param_types()) {
3788         ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3789                                                  SourceLocation(), nullptr,
3790                                                  ParamType, /*TInfo=*/nullptr,
3791                                                  SC_None, nullptr);
3792         Param->setScopeInfo(0, Params.size());
3793         Param->setImplicit();
3794         Params.push_back(Param);
3795       }
3796 
3797       New->setParams(Params);
3798     }
3799 
3800     return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3801   }
3802 
3803   // Check if the function types are compatible when pointer size address
3804   // spaces are ignored.
3805   if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
3806     return false;
3807 
3808   // GNU C permits a K&R definition to follow a prototype declaration
3809   // if the declared types of the parameters in the K&R definition
3810   // match the types in the prototype declaration, even when the
3811   // promoted types of the parameters from the K&R definition differ
3812   // from the types in the prototype. GCC then keeps the types from
3813   // the prototype.
3814   //
3815   // If a variadic prototype is followed by a non-variadic K&R definition,
3816   // the K&R definition becomes variadic.  This is sort of an edge case, but
3817   // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3818   // C99 6.9.1p8.
3819   if (!getLangOpts().CPlusPlus &&
3820       Old->hasPrototype() && !New->hasPrototype() &&
3821       New->getType()->getAs<FunctionProtoType>() &&
3822       Old->getNumParams() == New->getNumParams()) {
3823     SmallVector<QualType, 16> ArgTypes;
3824     SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3825     const FunctionProtoType *OldProto
3826       = Old->getType()->getAs<FunctionProtoType>();
3827     const FunctionProtoType *NewProto
3828       = New->getType()->getAs<FunctionProtoType>();
3829 
3830     // Determine whether this is the GNU C extension.
3831     QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3832                                                NewProto->getReturnType());
3833     bool LooseCompatible = !MergedReturn.isNull();
3834     for (unsigned Idx = 0, End = Old->getNumParams();
3835          LooseCompatible && Idx != End; ++Idx) {
3836       ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3837       ParmVarDecl *NewParm = New->getParamDecl(Idx);
3838       if (Context.typesAreCompatible(OldParm->getType(),
3839                                      NewProto->getParamType(Idx))) {
3840         ArgTypes.push_back(NewParm->getType());
3841       } else if (Context.typesAreCompatible(OldParm->getType(),
3842                                             NewParm->getType(),
3843                                             /*CompareUnqualified=*/true)) {
3844         GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3845                                            NewProto->getParamType(Idx) };
3846         Warnings.push_back(Warn);
3847         ArgTypes.push_back(NewParm->getType());
3848       } else
3849         LooseCompatible = false;
3850     }
3851 
3852     if (LooseCompatible) {
3853       for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3854         Diag(Warnings[Warn].NewParm->getLocation(),
3855              diag::ext_param_promoted_not_compatible_with_prototype)
3856           << Warnings[Warn].PromotedType
3857           << Warnings[Warn].OldParm->getType();
3858         if (Warnings[Warn].OldParm->getLocation().isValid())
3859           Diag(Warnings[Warn].OldParm->getLocation(),
3860                diag::note_previous_declaration);
3861       }
3862 
3863       if (MergeTypeWithOld)
3864         New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3865                                              OldProto->getExtProtoInfo()));
3866       return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3867     }
3868 
3869     // Fall through to diagnose conflicting types.
3870   }
3871 
3872   // A function that has already been declared has been redeclared or
3873   // defined with a different type; show an appropriate diagnostic.
3874 
3875   // If the previous declaration was an implicitly-generated builtin
3876   // declaration, then at the very least we should use a specialized note.
3877   unsigned BuiltinID;
3878   if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3879     // If it's actually a library-defined builtin function like 'malloc'
3880     // or 'printf', just warn about the incompatible redeclaration.
3881     if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3882       Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3883       Diag(OldLocation, diag::note_previous_builtin_declaration)
3884         << Old << Old->getType();
3885       return false;
3886     }
3887 
3888     PrevDiag = diag::note_previous_builtin_declaration;
3889   }
3890 
3891   Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3892   Diag(OldLocation, PrevDiag) << Old << Old->getType();
3893   return true;
3894 }
3895 
3896 /// Completes the merge of two function declarations that are
3897 /// known to be compatible.
3898 ///
3899 /// This routine handles the merging of attributes and other
3900 /// properties of function declarations from the old declaration to
3901 /// the new declaration, once we know that New is in fact a
3902 /// redeclaration of Old.
3903 ///
3904 /// \returns false
3905 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3906                                         Scope *S, bool MergeTypeWithOld) {
3907   // Merge the attributes
3908   mergeDeclAttributes(New, Old);
3909 
3910   // Merge "pure" flag.
3911   if (Old->isPure())
3912     New->setPure();
3913 
3914   // Merge "used" flag.
3915   if (Old->getMostRecentDecl()->isUsed(false))
3916     New->setIsUsed();
3917 
3918   // Merge attributes from the parameters.  These can mismatch with K&R
3919   // declarations.
3920   if (New->getNumParams() == Old->getNumParams())
3921       for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3922         ParmVarDecl *NewParam = New->getParamDecl(i);
3923         ParmVarDecl *OldParam = Old->getParamDecl(i);
3924         mergeParamDeclAttributes(NewParam, OldParam, *this);
3925         mergeParamDeclTypes(NewParam, OldParam, *this);
3926       }
3927 
3928   if (getLangOpts().CPlusPlus)
3929     return MergeCXXFunctionDecl(New, Old, S);
3930 
3931   // Merge the function types so the we get the composite types for the return
3932   // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3933   // was visible.
3934   QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3935   if (!Merged.isNull() && MergeTypeWithOld)
3936     New->setType(Merged);
3937 
3938   return false;
3939 }
3940 
3941 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3942                                 ObjCMethodDecl *oldMethod) {
3943   // Merge the attributes, including deprecated/unavailable
3944   AvailabilityMergeKind MergeKind =
3945       isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3946           ? (oldMethod->isOptional() ? AMK_OptionalProtocolImplementation
3947                                      : AMK_ProtocolImplementation)
3948           : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3949                                                            : AMK_Override;
3950 
3951   mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3952 
3953   // Merge attributes from the parameters.
3954   ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3955                                        oe = oldMethod->param_end();
3956   for (ObjCMethodDecl::param_iterator
3957          ni = newMethod->param_begin(), ne = newMethod->param_end();
3958        ni != ne && oi != oe; ++ni, ++oi)
3959     mergeParamDeclAttributes(*ni, *oi, *this);
3960 
3961   CheckObjCMethodOverride(newMethod, oldMethod);
3962 }
3963 
3964 static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3965   assert(!S.Context.hasSameType(New->getType(), Old->getType()));
3966 
3967   S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3968          ? diag::err_redefinition_different_type
3969          : diag::err_redeclaration_different_type)
3970     << New->getDeclName() << New->getType() << Old->getType();
3971 
3972   diag::kind PrevDiag;
3973   SourceLocation OldLocation;
3974   std::tie(PrevDiag, OldLocation)
3975     = getNoteDiagForInvalidRedeclaration(Old, New);
3976   S.Diag(OldLocation, PrevDiag);
3977   New->setInvalidDecl();
3978 }
3979 
3980 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3981 /// scope as a previous declaration 'Old'.  Figure out how to merge their types,
3982 /// emitting diagnostics as appropriate.
3983 ///
3984 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3985 /// to here in AddInitializerToDecl. We can't check them before the initializer
3986 /// is attached.
3987 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3988                              bool MergeTypeWithOld) {
3989   if (New->isInvalidDecl() || Old->isInvalidDecl())
3990     return;
3991 
3992   QualType MergedT;
3993   if (getLangOpts().CPlusPlus) {
3994     if (New->getType()->isUndeducedType()) {
3995       // We don't know what the new type is until the initializer is attached.
3996       return;
3997     } else if (Context.hasSameType(New->getType(), Old->getType())) {
3998       // These could still be something that needs exception specs checked.
3999       return MergeVarDeclExceptionSpecs(New, Old);
4000     }
4001     // C++ [basic.link]p10:
4002     //   [...] the types specified by all declarations referring to a given
4003     //   object or function shall be identical, except that declarations for an
4004     //   array object can specify array types that differ by the presence or
4005     //   absence of a major array bound (8.3.4).
4006     else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
4007       const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
4008       const ArrayType *NewArray = Context.getAsArrayType(New->getType());
4009 
4010       // We are merging a variable declaration New into Old. If it has an array
4011       // bound, and that bound differs from Old's bound, we should diagnose the
4012       // mismatch.
4013       if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
4014         for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
4015              PrevVD = PrevVD->getPreviousDecl()) {
4016           QualType PrevVDTy = PrevVD->getType();
4017           if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
4018             continue;
4019 
4020           if (!Context.hasSameType(New->getType(), PrevVDTy))
4021             return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
4022         }
4023       }
4024 
4025       if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
4026         if (Context.hasSameType(OldArray->getElementType(),
4027                                 NewArray->getElementType()))
4028           MergedT = New->getType();
4029       }
4030       // FIXME: Check visibility. New is hidden but has a complete type. If New
4031       // has no array bound, it should not inherit one from Old, if Old is not
4032       // visible.
4033       else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
4034         if (Context.hasSameType(OldArray->getElementType(),
4035                                 NewArray->getElementType()))
4036           MergedT = Old->getType();
4037       }
4038     }
4039     else if (New->getType()->isObjCObjectPointerType() &&
4040                Old->getType()->isObjCObjectPointerType()) {
4041       MergedT = Context.mergeObjCGCQualifiers(New->getType(),
4042                                               Old->getType());
4043     }
4044   } else {
4045     // C 6.2.7p2:
4046     //   All declarations that refer to the same object or function shall have
4047     //   compatible type.
4048     MergedT = Context.mergeTypes(New->getType(), Old->getType());
4049   }
4050   if (MergedT.isNull()) {
4051     // It's OK if we couldn't merge types if either type is dependent, for a
4052     // block-scope variable. In other cases (static data members of class
4053     // templates, variable templates, ...), we require the types to be
4054     // equivalent.
4055     // FIXME: The C++ standard doesn't say anything about this.
4056     if ((New->getType()->isDependentType() ||
4057          Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
4058       // If the old type was dependent, we can't merge with it, so the new type
4059       // becomes dependent for now. We'll reproduce the original type when we
4060       // instantiate the TypeSourceInfo for the variable.
4061       if (!New->getType()->isDependentType() && MergeTypeWithOld)
4062         New->setType(Context.DependentTy);
4063       return;
4064     }
4065     return diagnoseVarDeclTypeMismatch(*this, New, Old);
4066   }
4067 
4068   // Don't actually update the type on the new declaration if the old
4069   // declaration was an extern declaration in a different scope.
4070   if (MergeTypeWithOld)
4071     New->setType(MergedT);
4072 }
4073 
4074 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
4075                                   LookupResult &Previous) {
4076   // C11 6.2.7p4:
4077   //   For an identifier with internal or external linkage declared
4078   //   in a scope in which a prior declaration of that identifier is
4079   //   visible, if the prior declaration specifies internal or
4080   //   external linkage, the type of the identifier at the later
4081   //   declaration becomes the composite type.
4082   //
4083   // If the variable isn't visible, we do not merge with its type.
4084   if (Previous.isShadowed())
4085     return false;
4086 
4087   if (S.getLangOpts().CPlusPlus) {
4088     // C++11 [dcl.array]p3:
4089     //   If there is a preceding declaration of the entity in the same
4090     //   scope in which the bound was specified, an omitted array bound
4091     //   is taken to be the same as in that earlier declaration.
4092     return NewVD->isPreviousDeclInSameBlockScope() ||
4093            (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
4094             !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
4095   } else {
4096     // If the old declaration was function-local, don't merge with its
4097     // type unless we're in the same function.
4098     return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
4099            OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
4100   }
4101 }
4102 
4103 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
4104 /// and scope as a previous declaration 'Old'.  Figure out how to resolve this
4105 /// situation, merging decls or emitting diagnostics as appropriate.
4106 ///
4107 /// Tentative definition rules (C99 6.9.2p2) are checked by
4108 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4109 /// definitions here, since the initializer hasn't been attached.
4110 ///
4111 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
4112   // If the new decl is already invalid, don't do any other checking.
4113   if (New->isInvalidDecl())
4114     return;
4115 
4116   if (!shouldLinkPossiblyHiddenDecl(Previous, New))
4117     return;
4118 
4119   VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
4120 
4121   // Verify the old decl was also a variable or variable template.
4122   VarDecl *Old = nullptr;
4123   VarTemplateDecl *OldTemplate = nullptr;
4124   if (Previous.isSingleResult()) {
4125     if (NewTemplate) {
4126       OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4127       Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4128 
4129       if (auto *Shadow =
4130               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4131         if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4132           return New->setInvalidDecl();
4133     } else {
4134       Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4135 
4136       if (auto *Shadow =
4137               dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4138         if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4139           return New->setInvalidDecl();
4140     }
4141   }
4142   if (!Old) {
4143     Diag(New->getLocation(), diag::err_redefinition_different_kind)
4144         << New->getDeclName();
4145     notePreviousDefinition(Previous.getRepresentativeDecl(),
4146                            New->getLocation());
4147     return New->setInvalidDecl();
4148   }
4149 
4150   // If the old declaration was found in an inline namespace and the new
4151   // declaration was qualified, update the DeclContext to match.
4152   adjustDeclContextForDeclaratorDecl(New, Old);
4153 
4154   // Ensure the template parameters are compatible.
4155   if (NewTemplate &&
4156       !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4157                                       OldTemplate->getTemplateParameters(),
4158                                       /*Complain=*/true, TPL_TemplateMatch))
4159     return New->setInvalidDecl();
4160 
4161   // C++ [class.mem]p1:
4162   //   A member shall not be declared twice in the member-specification [...]
4163   //
4164   // Here, we need only consider static data members.
4165   if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4166     Diag(New->getLocation(), diag::err_duplicate_member)
4167       << New->getIdentifier();
4168     Diag(Old->getLocation(), diag::note_previous_declaration);
4169     New->setInvalidDecl();
4170   }
4171 
4172   mergeDeclAttributes(New, Old);
4173   // Warn if an already-declared variable is made a weak_import in a subsequent
4174   // declaration
4175   if (New->hasAttr<WeakImportAttr>() &&
4176       Old->getStorageClass() == SC_None &&
4177       !Old->hasAttr<WeakImportAttr>()) {
4178     Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4179     Diag(Old->getLocation(), diag::note_previous_declaration);
4180     // Remove weak_import attribute on new declaration.
4181     New->dropAttr<WeakImportAttr>();
4182   }
4183 
4184   if (const auto *ILA = New->getAttr<InternalLinkageAttr>())
4185     if (!Old->hasAttr<InternalLinkageAttr>()) {
4186       Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl)
4187           << ILA;
4188       Diag(Old->getLocation(), diag::note_previous_declaration);
4189       New->dropAttr<InternalLinkageAttr>();
4190     }
4191 
4192   // Merge the types.
4193   VarDecl *MostRecent = Old->getMostRecentDecl();
4194   if (MostRecent != Old) {
4195     MergeVarDeclTypes(New, MostRecent,
4196                       mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4197     if (New->isInvalidDecl())
4198       return;
4199   }
4200 
4201   MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4202   if (New->isInvalidDecl())
4203     return;
4204 
4205   diag::kind PrevDiag;
4206   SourceLocation OldLocation;
4207   std::tie(PrevDiag, OldLocation) =
4208       getNoteDiagForInvalidRedeclaration(Old, New);
4209 
4210   // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4211   if (New->getStorageClass() == SC_Static &&
4212       !New->isStaticDataMember() &&
4213       Old->hasExternalFormalLinkage()) {
4214     if (getLangOpts().MicrosoftExt) {
4215       Diag(New->getLocation(), diag::ext_static_non_static)
4216           << New->getDeclName();
4217       Diag(OldLocation, PrevDiag);
4218     } else {
4219       Diag(New->getLocation(), diag::err_static_non_static)
4220           << New->getDeclName();
4221       Diag(OldLocation, PrevDiag);
4222       return New->setInvalidDecl();
4223     }
4224   }
4225   // C99 6.2.2p4:
4226   //   For an identifier declared with the storage-class specifier
4227   //   extern in a scope in which a prior declaration of that
4228   //   identifier is visible,23) if the prior declaration specifies
4229   //   internal or external linkage, the linkage of the identifier at
4230   //   the later declaration is the same as the linkage specified at
4231   //   the prior declaration. If no prior declaration is visible, or
4232   //   if the prior declaration specifies no linkage, then the
4233   //   identifier has external linkage.
4234   if (New->hasExternalStorage() && Old->hasLinkage())
4235     /* Okay */;
4236   else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4237            !New->isStaticDataMember() &&
4238            Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4239     Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4240     Diag(OldLocation, PrevDiag);
4241     return New->setInvalidDecl();
4242   }
4243 
4244   // Check if extern is followed by non-extern and vice-versa.
4245   if (New->hasExternalStorage() &&
4246       !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4247     Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4248     Diag(OldLocation, PrevDiag);
4249     return New->setInvalidDecl();
4250   }
4251   if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4252       !New->hasExternalStorage()) {
4253     Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4254     Diag(OldLocation, PrevDiag);
4255     return New->setInvalidDecl();
4256   }
4257 
4258   if (CheckRedeclarationModuleOwnership(New, Old))
4259     return;
4260 
4261   // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4262 
4263   // FIXME: The test for external storage here seems wrong? We still
4264   // need to check for mismatches.
4265   if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4266       // Don't complain about out-of-line definitions of static members.
4267       !(Old->getLexicalDeclContext()->isRecord() &&
4268         !New->getLexicalDeclContext()->isRecord())) {
4269     Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4270     Diag(OldLocation, PrevDiag);
4271     return New->setInvalidDecl();
4272   }
4273 
4274   if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4275     if (VarDecl *Def = Old->getDefinition()) {
4276       // C++1z [dcl.fcn.spec]p4:
4277       //   If the definition of a variable appears in a translation unit before
4278       //   its first declaration as inline, the program is ill-formed.
4279       Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4280       Diag(Def->getLocation(), diag::note_previous_definition);
4281     }
4282   }
4283 
4284   // If this redeclaration makes the variable inline, we may need to add it to
4285   // UndefinedButUsed.
4286   if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4287       !Old->getDefinition() && !New->isThisDeclarationADefinition())
4288     UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4289                                            SourceLocation()));
4290 
4291   if (New->getTLSKind() != Old->getTLSKind()) {
4292     if (!Old->getTLSKind()) {
4293       Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4294       Diag(OldLocation, PrevDiag);
4295     } else if (!New->getTLSKind()) {
4296       Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4297       Diag(OldLocation, PrevDiag);
4298     } else {
4299       // Do not allow redeclaration to change the variable between requiring
4300       // static and dynamic initialization.
4301       // FIXME: GCC allows this, but uses the TLS keyword on the first
4302       // declaration to determine the kind. Do we need to be compatible here?
4303       Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4304         << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4305       Diag(OldLocation, PrevDiag);
4306     }
4307   }
4308 
4309   // C++ doesn't have tentative definitions, so go right ahead and check here.
4310   if (getLangOpts().CPlusPlus &&
4311       New->isThisDeclarationADefinition() == VarDecl::Definition) {
4312     if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4313         Old->getCanonicalDecl()->isConstexpr()) {
4314       // This definition won't be a definition any more once it's been merged.
4315       Diag(New->getLocation(),
4316            diag::warn_deprecated_redundant_constexpr_static_def);
4317     } else if (VarDecl *Def = Old->getDefinition()) {
4318       if (checkVarDeclRedefinition(Def, New))
4319         return;
4320     }
4321   }
4322 
4323   if (haveIncompatibleLanguageLinkages(Old, New)) {
4324     Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4325     Diag(OldLocation, PrevDiag);
4326     New->setInvalidDecl();
4327     return;
4328   }
4329 
4330   // Merge "used" flag.
4331   if (Old->getMostRecentDecl()->isUsed(false))
4332     New->setIsUsed();
4333 
4334   // Keep a chain of previous declarations.
4335   New->setPreviousDecl(Old);
4336   if (NewTemplate)
4337     NewTemplate->setPreviousDecl(OldTemplate);
4338 
4339   // Inherit access appropriately.
4340   New->setAccess(Old->getAccess());
4341   if (NewTemplate)
4342     NewTemplate->setAccess(New->getAccess());
4343 
4344   if (Old->isInline())
4345     New->setImplicitlyInline();
4346 }
4347 
4348 void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4349   SourceManager &SrcMgr = getSourceManager();
4350   auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4351   auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4352   auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4353   auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4354   auto &HSI = PP.getHeaderSearchInfo();
4355   StringRef HdrFilename =
4356       SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4357 
4358   auto noteFromModuleOrInclude = [&](Module *Mod,
4359                                      SourceLocation IncLoc) -> bool {
4360     // Redefinition errors with modules are common with non modular mapped
4361     // headers, example: a non-modular header H in module A that also gets
4362     // included directly in a TU. Pointing twice to the same header/definition
4363     // is confusing, try to get better diagnostics when modules is on.
4364     if (IncLoc.isValid()) {
4365       if (Mod) {
4366         Diag(IncLoc, diag::note_redefinition_modules_same_file)
4367             << HdrFilename.str() << Mod->getFullModuleName();
4368         if (!Mod->DefinitionLoc.isInvalid())
4369           Diag(Mod->DefinitionLoc, diag::note_defined_here)
4370               << Mod->getFullModuleName();
4371       } else {
4372         Diag(IncLoc, diag::note_redefinition_include_same_file)
4373             << HdrFilename.str();
4374       }
4375       return true;
4376     }
4377 
4378     return false;
4379   };
4380 
4381   // Is it the same file and same offset? Provide more information on why
4382   // this leads to a redefinition error.
4383   if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4384     SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4385     SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4386     bool EmittedDiag =
4387         noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4388     EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4389 
4390     // If the header has no guards, emit a note suggesting one.
4391     if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4392       Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4393 
4394     if (EmittedDiag)
4395       return;
4396   }
4397 
4398   // Redefinition coming from different files or couldn't do better above.
4399   if (Old->getLocation().isValid())
4400     Diag(Old->getLocation(), diag::note_previous_definition);
4401 }
4402 
4403 /// We've just determined that \p Old and \p New both appear to be definitions
4404 /// of the same variable. Either diagnose or fix the problem.
4405 bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4406   if (!hasVisibleDefinition(Old) &&
4407       (New->getFormalLinkage() == InternalLinkage ||
4408        New->isInline() ||
4409        New->getDescribedVarTemplate() ||
4410        New->getNumTemplateParameterLists() ||
4411        New->getDeclContext()->isDependentContext())) {
4412     // The previous definition is hidden, and multiple definitions are
4413     // permitted (in separate TUs). Demote this to a declaration.
4414     New->demoteThisDefinitionToDeclaration();
4415 
4416     // Make the canonical definition visible.
4417     if (auto *OldTD = Old->getDescribedVarTemplate())
4418       makeMergedDefinitionVisible(OldTD);
4419     makeMergedDefinitionVisible(Old);
4420     return false;
4421   } else {
4422     Diag(New->getLocation(), diag::err_redefinition) << New;
4423     notePreviousDefinition(Old, New->getLocation());
4424     New->setInvalidDecl();
4425     return true;
4426   }
4427 }
4428 
4429 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4430 /// no declarator (e.g. "struct foo;") is parsed.
4431 Decl *
4432 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4433                                  RecordDecl *&AnonRecord) {
4434   return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4435                                     AnonRecord);
4436 }
4437 
4438 // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4439 // disambiguate entities defined in different scopes.
4440 // While the VS2015 ABI fixes potential miscompiles, it is also breaks
4441 // compatibility.
4442 // We will pick our mangling number depending on which version of MSVC is being
4443 // targeted.
4444 static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4445   return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4446              ? S->getMSCurManglingNumber()
4447              : S->getMSLastManglingNumber();
4448 }
4449 
4450 void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4451   if (!Context.getLangOpts().CPlusPlus)
4452     return;
4453 
4454   if (isa<CXXRecordDecl>(Tag->getParent())) {
4455     // If this tag is the direct child of a class, number it if
4456     // it is anonymous.
4457     if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4458       return;
4459     MangleNumberingContext &MCtx =
4460         Context.getManglingNumberContext(Tag->getParent());
4461     Context.setManglingNumber(
4462         Tag, MCtx.getManglingNumber(
4463                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4464     return;
4465   }
4466 
4467   // If this tag isn't a direct child of a class, number it if it is local.
4468   MangleNumberingContext *MCtx;
4469   Decl *ManglingContextDecl;
4470   std::tie(MCtx, ManglingContextDecl) =
4471       getCurrentMangleNumberContext(Tag->getDeclContext());
4472   if (MCtx) {
4473     Context.setManglingNumber(
4474         Tag, MCtx->getManglingNumber(
4475                  Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4476   }
4477 }
4478 
4479 namespace {
4480 struct NonCLikeKind {
4481   enum {
4482     None,
4483     BaseClass,
4484     DefaultMemberInit,
4485     Lambda,
4486     Friend,
4487     OtherMember,
4488     Invalid,
4489   } Kind = None;
4490   SourceRange Range;
4491 
4492   explicit operator bool() { return Kind != None; }
4493 };
4494 }
4495 
4496 /// Determine whether a class is C-like, according to the rules of C++
4497 /// [dcl.typedef] for anonymous classes with typedef names for linkage.
4498 static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) {
4499   if (RD->isInvalidDecl())
4500     return {NonCLikeKind::Invalid, {}};
4501 
4502   // C++ [dcl.typedef]p9: [P1766R1]
4503   //   An unnamed class with a typedef name for linkage purposes shall not
4504   //
4505   //    -- have any base classes
4506   if (RD->getNumBases())
4507     return {NonCLikeKind::BaseClass,
4508             SourceRange(RD->bases_begin()->getBeginLoc(),
4509                         RD->bases_end()[-1].getEndLoc())};
4510   bool Invalid = false;
4511   for (Decl *D : RD->decls()) {
4512     // Don't complain about things we already diagnosed.
4513     if (D->isInvalidDecl()) {
4514       Invalid = true;
4515       continue;
4516     }
4517 
4518     //  -- have any [...] default member initializers
4519     if (auto *FD = dyn_cast<FieldDecl>(D)) {
4520       if (FD->hasInClassInitializer()) {
4521         auto *Init = FD->getInClassInitializer();
4522         return {NonCLikeKind::DefaultMemberInit,
4523                 Init ? Init->getSourceRange() : D->getSourceRange()};
4524       }
4525       continue;
4526     }
4527 
4528     // FIXME: We don't allow friend declarations. This violates the wording of
4529     // P1766, but not the intent.
4530     if (isa<FriendDecl>(D))
4531       return {NonCLikeKind::Friend, D->getSourceRange()};
4532 
4533     //  -- declare any members other than non-static data members, member
4534     //     enumerations, or member classes,
4535     if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) ||
4536         isa<EnumDecl>(D))
4537       continue;
4538     auto *MemberRD = dyn_cast<CXXRecordDecl>(D);
4539     if (!MemberRD) {
4540       if (D->isImplicit())
4541         continue;
4542       return {NonCLikeKind::OtherMember, D->getSourceRange()};
4543     }
4544 
4545     //  -- contain a lambda-expression,
4546     if (MemberRD->isLambda())
4547       return {NonCLikeKind::Lambda, MemberRD->getSourceRange()};
4548 
4549     //  and all member classes shall also satisfy these requirements
4550     //  (recursively).
4551     if (MemberRD->isThisDeclarationADefinition()) {
4552       if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD))
4553         return Kind;
4554     }
4555   }
4556 
4557   return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}};
4558 }
4559 
4560 void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4561                                         TypedefNameDecl *NewTD) {
4562   if (TagFromDeclSpec->isInvalidDecl())
4563     return;
4564 
4565   // Do nothing if the tag already has a name for linkage purposes.
4566   if (TagFromDeclSpec->hasNameForLinkage())
4567     return;
4568 
4569   // A well-formed anonymous tag must always be a TUK_Definition.
4570   assert(TagFromDeclSpec->isThisDeclarationADefinition());
4571 
4572   // The type must match the tag exactly;  no qualifiers allowed.
4573   if (!Context.hasSameType(NewTD->getUnderlyingType(),
4574                            Context.getTagDeclType(TagFromDeclSpec))) {
4575     if (getLangOpts().CPlusPlus)
4576       Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4577     return;
4578   }
4579 
4580   // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
4581   //   An unnamed class with a typedef name for linkage purposes shall [be
4582   //   C-like].
4583   //
4584   // FIXME: Also diagnose if we've already computed the linkage. That ideally
4585   // shouldn't happen, but there are constructs that the language rule doesn't
4586   // disallow for which we can't reasonably avoid computing linkage early.
4587   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec);
4588   NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD)
4589                              : NonCLikeKind();
4590   bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed();
4591   if (NonCLike || ChangesLinkage) {
4592     if (NonCLike.Kind == NonCLikeKind::Invalid)
4593       return;
4594 
4595     unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef;
4596     if (ChangesLinkage) {
4597       // If the linkage changes, we can't accept this as an extension.
4598       if (NonCLike.Kind == NonCLikeKind::None)
4599         DiagID = diag::err_typedef_changes_linkage;
4600       else
4601         DiagID = diag::err_non_c_like_anon_struct_in_typedef;
4602     }
4603 
4604     SourceLocation FixitLoc =
4605         getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart());
4606     llvm::SmallString<40> TextToInsert;
4607     TextToInsert += ' ';
4608     TextToInsert += NewTD->getIdentifier()->getName();
4609 
4610     Diag(FixitLoc, DiagID)
4611       << isa<TypeAliasDecl>(NewTD)
4612       << FixItHint::CreateInsertion(FixitLoc, TextToInsert);
4613     if (NonCLike.Kind != NonCLikeKind::None) {
4614       Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct)
4615         << NonCLike.Kind - 1 << NonCLike.Range;
4616     }
4617     Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here)
4618       << NewTD << isa<TypeAliasDecl>(NewTD);
4619 
4620     if (ChangesLinkage)
4621       return;
4622   }
4623 
4624   // Otherwise, set this as the anon-decl typedef for the tag.
4625   TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4626 }
4627 
4628 static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4629   switch (T) {
4630   case DeclSpec::TST_class:
4631     return 0;
4632   case DeclSpec::TST_struct:
4633     return 1;
4634   case DeclSpec::TST_interface:
4635     return 2;
4636   case DeclSpec::TST_union:
4637     return 3;
4638   case DeclSpec::TST_enum:
4639     return 4;
4640   default:
4641     llvm_unreachable("unexpected type specifier");
4642   }
4643 }
4644 
4645 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4646 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4647 /// parameters to cope with template friend declarations.
4648 Decl *
4649 Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4650                                  MultiTemplateParamsArg TemplateParams,
4651                                  bool IsExplicitInstantiation,
4652                                  RecordDecl *&AnonRecord) {
4653   Decl *TagD = nullptr;
4654   TagDecl *Tag = nullptr;
4655   if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4656       DS.getTypeSpecType() == DeclSpec::TST_struct ||
4657       DS.getTypeSpecType() == DeclSpec::TST_interface ||
4658       DS.getTypeSpecType() == DeclSpec::TST_union ||
4659       DS.getTypeSpecType() == DeclSpec::TST_enum) {
4660     TagD = DS.getRepAsDecl();
4661 
4662     if (!TagD) // We probably had an error
4663       return nullptr;
4664 
4665     // Note that the above type specs guarantee that the
4666     // type rep is a Decl, whereas in many of the others
4667     // it's a Type.
4668     if (isa<TagDecl>(TagD))
4669       Tag = cast<TagDecl>(TagD);
4670     else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4671       Tag = CTD->getTemplatedDecl();
4672   }
4673 
4674   if (Tag) {
4675     handleTagNumbering(Tag, S);
4676     Tag->setFreeStanding();
4677     if (Tag->isInvalidDecl())
4678       return Tag;
4679   }
4680 
4681   if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4682     // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4683     // or incomplete types shall not be restrict-qualified."
4684     if (TypeQuals & DeclSpec::TQ_restrict)
4685       Diag(DS.getRestrictSpecLoc(),
4686            diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4687            << DS.getSourceRange();
4688   }
4689 
4690   if (DS.isInlineSpecified())
4691     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4692         << getLangOpts().CPlusPlus17;
4693 
4694   if (DS.hasConstexprSpecifier()) {
4695     // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4696     // and definitions of functions and variables.
4697     // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
4698     // the declaration of a function or function template
4699     if (Tag)
4700       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4701           << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType())
4702           << static_cast<int>(DS.getConstexprSpecifier());
4703     else
4704       Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
4705           << static_cast<int>(DS.getConstexprSpecifier());
4706     // Don't emit warnings after this error.
4707     return TagD;
4708   }
4709 
4710   DiagnoseFunctionSpecifiers(DS);
4711 
4712   if (DS.isFriendSpecified()) {
4713     // If we're dealing with a decl but not a TagDecl, assume that
4714     // whatever routines created it handled the friendship aspect.
4715     if (TagD && !Tag)
4716       return nullptr;
4717     return ActOnFriendTypeDecl(S, DS, TemplateParams);
4718   }
4719 
4720   const CXXScopeSpec &SS = DS.getTypeSpecScope();
4721   bool IsExplicitSpecialization =
4722     !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4723   if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4724       !IsExplicitInstantiation && !IsExplicitSpecialization &&
4725       !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4726     // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4727     // nested-name-specifier unless it is an explicit instantiation
4728     // or an explicit specialization.
4729     //
4730     // FIXME: We allow class template partial specializations here too, per the
4731     // obvious intent of DR1819.
4732     //
4733     // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4734     Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4735         << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4736     return nullptr;
4737   }
4738 
4739   // Track whether this decl-specifier declares anything.
4740   bool DeclaresAnything = true;
4741 
4742   // Handle anonymous struct definitions.
4743   if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4744     if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4745         DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4746       if (getLangOpts().CPlusPlus ||
4747           Record->getDeclContext()->isRecord()) {
4748         // If CurContext is a DeclContext that can contain statements,
4749         // RecursiveASTVisitor won't visit the decls that
4750         // BuildAnonymousStructOrUnion() will put into CurContext.
4751         // Also store them here so that they can be part of the
4752         // DeclStmt that gets created in this case.
4753         // FIXME: Also return the IndirectFieldDecls created by
4754         // BuildAnonymousStructOr union, for the same reason?
4755         if (CurContext->isFunctionOrMethod())
4756           AnonRecord = Record;
4757         return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4758                                            Context.getPrintingPolicy());
4759       }
4760 
4761       DeclaresAnything = false;
4762     }
4763   }
4764 
4765   // C11 6.7.2.1p2:
4766   //   A struct-declaration that does not declare an anonymous structure or
4767   //   anonymous union shall contain a struct-declarator-list.
4768   //
4769   // This rule also existed in C89 and C99; the grammar for struct-declaration
4770   // did not permit a struct-declaration without a struct-declarator-list.
4771   if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4772       DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4773     // Check for Microsoft C extension: anonymous struct/union member.
4774     // Handle 2 kinds of anonymous struct/union:
4775     //   struct STRUCT;
4776     //   union UNION;
4777     // and
4778     //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
4779     //   UNION_TYPE;   <- where UNION_TYPE is a typedef union.
4780     if ((Tag && Tag->getDeclName()) ||
4781         DS.getTypeSpecType() == DeclSpec::TST_typename) {
4782       RecordDecl *Record = nullptr;
4783       if (Tag)
4784         Record = dyn_cast<RecordDecl>(Tag);
4785       else if (const RecordType *RT =
4786                    DS.getRepAsType().get()->getAsStructureType())
4787         Record = RT->getDecl();
4788       else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4789         Record = UT->getDecl();
4790 
4791       if (Record && getLangOpts().MicrosoftExt) {
4792         Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4793             << Record->isUnion() << DS.getSourceRange();
4794         return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4795       }
4796 
4797       DeclaresAnything = false;
4798     }
4799   }
4800 
4801   // Skip all the checks below if we have a type error.
4802   if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4803       (TagD && TagD->isInvalidDecl()))
4804     return TagD;
4805 
4806   if (getLangOpts().CPlusPlus &&
4807       DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4808     if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4809       if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4810           !Enum->getIdentifier() && !Enum->isInvalidDecl())
4811         DeclaresAnything = false;
4812 
4813   if (!DS.isMissingDeclaratorOk()) {
4814     // Customize diagnostic for a typedef missing a name.
4815     if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4816       Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4817           << DS.getSourceRange();
4818     else
4819       DeclaresAnything = false;
4820   }
4821 
4822   if (DS.isModulePrivateSpecified() &&
4823       Tag && Tag->getDeclContext()->isFunctionOrMethod())
4824     Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4825       << Tag->getTagKind()
4826       << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4827 
4828   ActOnDocumentableDecl(TagD);
4829 
4830   // C 6.7/2:
4831   //   A declaration [...] shall declare at least a declarator [...], a tag,
4832   //   or the members of an enumeration.
4833   // C++ [dcl.dcl]p3:
4834   //   [If there are no declarators], and except for the declaration of an
4835   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
4836   //   names into the program, or shall redeclare a name introduced by a
4837   //   previous declaration.
4838   if (!DeclaresAnything) {
4839     // In C, we allow this as a (popular) extension / bug. Don't bother
4840     // producing further diagnostics for redundant qualifiers after this.
4841     Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty())
4842                                ? diag::err_no_declarators
4843                                : diag::ext_no_declarators)
4844         << DS.getSourceRange();
4845     return TagD;
4846   }
4847 
4848   // C++ [dcl.stc]p1:
4849   //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4850   //   init-declarator-list of the declaration shall not be empty.
4851   // C++ [dcl.fct.spec]p1:
4852   //   If a cv-qualifier appears in a decl-specifier-seq, the
4853   //   init-declarator-list of the declaration shall not be empty.
4854   //
4855   // Spurious qualifiers here appear to be valid in C.
4856   unsigned DiagID = diag::warn_standalone_specifier;
4857   if (getLangOpts().CPlusPlus)
4858     DiagID = diag::ext_standalone_specifier;
4859 
4860   // Note that a linkage-specification sets a storage class, but
4861   // 'extern "C" struct foo;' is actually valid and not theoretically
4862   // useless.
4863   if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4864     if (SCS == DeclSpec::SCS_mutable)
4865       // Since mutable is not a viable storage class specifier in C, there is
4866       // no reason to treat it as an extension. Instead, diagnose as an error.
4867       Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4868     else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4869       Diag(DS.getStorageClassSpecLoc(), DiagID)
4870         << DeclSpec::getSpecifierName(SCS);
4871   }
4872 
4873   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4874     Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4875       << DeclSpec::getSpecifierName(TSCS);
4876   if (DS.getTypeQualifiers()) {
4877     if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4878       Diag(DS.getConstSpecLoc(), DiagID) << "const";
4879     if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4880       Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4881     // Restrict is covered above.
4882     if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4883       Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4884     if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4885       Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4886   }
4887 
4888   // Warn about ignored type attributes, for example:
4889   // __attribute__((aligned)) struct A;
4890   // Attributes should be placed after tag to apply to type declaration.
4891   if (!DS.getAttributes().empty()) {
4892     DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4893     if (TypeSpecType == DeclSpec::TST_class ||
4894         TypeSpecType == DeclSpec::TST_struct ||
4895         TypeSpecType == DeclSpec::TST_interface ||
4896         TypeSpecType == DeclSpec::TST_union ||
4897         TypeSpecType == DeclSpec::TST_enum) {
4898       for (const ParsedAttr &AL : DS.getAttributes())
4899         Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4900             << AL << GetDiagnosticTypeSpecifierID(TypeSpecType);
4901     }
4902   }
4903 
4904   return TagD;
4905 }
4906 
4907 /// We are trying to inject an anonymous member into the given scope;
4908 /// check if there's an existing declaration that can't be overloaded.
4909 ///
4910 /// \return true if this is a forbidden redeclaration
4911 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4912                                          Scope *S,
4913                                          DeclContext *Owner,
4914                                          DeclarationName Name,
4915                                          SourceLocation NameLoc,
4916                                          bool IsUnion) {
4917   LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4918                  Sema::ForVisibleRedeclaration);
4919   if (!SemaRef.LookupName(R, S)) return false;
4920 
4921   // Pick a representative declaration.
4922   NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4923   assert(PrevDecl && "Expected a non-null Decl");
4924 
4925   if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4926     return false;
4927 
4928   SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4929     << IsUnion << Name;
4930   SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4931 
4932   return true;
4933 }
4934 
4935 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
4936 /// anonymous struct or union AnonRecord into the owning context Owner
4937 /// and scope S. This routine will be invoked just after we realize
4938 /// that an unnamed union or struct is actually an anonymous union or
4939 /// struct, e.g.,
4940 ///
4941 /// @code
4942 /// union {
4943 ///   int i;
4944 ///   float f;
4945 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4946 ///    // f into the surrounding scope.x
4947 /// @endcode
4948 ///
4949 /// This routine is recursive, injecting the names of nested anonymous
4950 /// structs/unions into the owning context and scope as well.
4951 static bool
4952 InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4953                                     RecordDecl *AnonRecord, AccessSpecifier AS,
4954                                     SmallVectorImpl<NamedDecl *> &Chaining) {
4955   bool Invalid = false;
4956 
4957   // Look every FieldDecl and IndirectFieldDecl with a name.
4958   for (auto *D : AnonRecord->decls()) {
4959     if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4960         cast<NamedDecl>(D)->getDeclName()) {
4961       ValueDecl *VD = cast<ValueDecl>(D);
4962       if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4963                                        VD->getLocation(),
4964                                        AnonRecord->isUnion())) {
4965         // C++ [class.union]p2:
4966         //   The names of the members of an anonymous union shall be
4967         //   distinct from the names of any other entity in the
4968         //   scope in which the anonymous union is declared.
4969         Invalid = true;
4970       } else {
4971         // C++ [class.union]p2:
4972         //   For the purpose of name lookup, after the anonymous union
4973         //   definition, the members of the anonymous union are
4974         //   considered to have been defined in the scope in which the
4975         //   anonymous union is declared.
4976         unsigned OldChainingSize = Chaining.size();
4977         if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4978           Chaining.append(IF->chain_begin(), IF->chain_end());
4979         else
4980           Chaining.push_back(VD);
4981 
4982         assert(Chaining.size() >= 2);
4983         NamedDecl **NamedChain =
4984           new (SemaRef.Context)NamedDecl*[Chaining.size()];
4985         for (unsigned i = 0; i < Chaining.size(); i++)
4986           NamedChain[i] = Chaining[i];
4987 
4988         IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4989             SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4990             VD->getType(), {NamedChain, Chaining.size()});
4991 
4992         for (const auto *Attr : VD->attrs())
4993           IndirectField->addAttr(Attr->clone(SemaRef.Context));
4994 
4995         IndirectField->setAccess(AS);
4996         IndirectField->setImplicit();
4997         SemaRef.PushOnScopeChains(IndirectField, S);
4998 
4999         // That includes picking up the appropriate access specifier.
5000         if (AS != AS_none) IndirectField->setAccess(AS);
5001 
5002         Chaining.resize(OldChainingSize);
5003       }
5004     }
5005   }
5006 
5007   return Invalid;
5008 }
5009 
5010 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
5011 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
5012 /// illegal input values are mapped to SC_None.
5013 static StorageClass
5014 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
5015   DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
5016   assert(StorageClassSpec != DeclSpec::SCS_typedef &&
5017          "Parser allowed 'typedef' as storage class VarDecl.");
5018   switch (StorageClassSpec) {
5019   case DeclSpec::SCS_unspecified:    return SC_None;
5020   case DeclSpec::SCS_extern:
5021     if (DS.isExternInLinkageSpec())
5022       return SC_None;
5023     return SC_Extern;
5024   case DeclSpec::SCS_static:         return SC_Static;
5025   case DeclSpec::SCS_auto:           return SC_Auto;
5026   case DeclSpec::SCS_register:       return SC_Register;
5027   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5028     // Illegal SCSs map to None: error reporting is up to the caller.
5029   case DeclSpec::SCS_mutable:        // Fall through.
5030   case DeclSpec::SCS_typedef:        return SC_None;
5031   }
5032   llvm_unreachable("unknown storage class specifier");
5033 }
5034 
5035 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
5036   assert(Record->hasInClassInitializer());
5037 
5038   for (const auto *I : Record->decls()) {
5039     const auto *FD = dyn_cast<FieldDecl>(I);
5040     if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
5041       FD = IFD->getAnonField();
5042     if (FD && FD->hasInClassInitializer())
5043       return FD->getLocation();
5044   }
5045 
5046   llvm_unreachable("couldn't find in-class initializer");
5047 }
5048 
5049 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5050                                       SourceLocation DefaultInitLoc) {
5051   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5052     return;
5053 
5054   S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
5055   S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
5056 }
5057 
5058 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
5059                                       CXXRecordDecl *AnonUnion) {
5060   if (!Parent->isUnion() || !Parent->hasInClassInitializer())
5061     return;
5062 
5063   checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
5064 }
5065 
5066 /// BuildAnonymousStructOrUnion - Handle the declaration of an
5067 /// anonymous structure or union. Anonymous unions are a C++ feature
5068 /// (C++ [class.union]) and a C11 feature; anonymous structures
5069 /// are a C11 feature and GNU C++ extension.
5070 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
5071                                         AccessSpecifier AS,
5072                                         RecordDecl *Record,
5073                                         const PrintingPolicy &Policy) {
5074   DeclContext *Owner = Record->getDeclContext();
5075 
5076   // Diagnose whether this anonymous struct/union is an extension.
5077   if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
5078     Diag(Record->getLocation(), diag::ext_anonymous_union);
5079   else if (!Record->isUnion() && getLangOpts().CPlusPlus)
5080     Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
5081   else if (!Record->isUnion() && !getLangOpts().C11)
5082     Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
5083 
5084   // C and C++ require different kinds of checks for anonymous
5085   // structs/unions.
5086   bool Invalid = false;
5087   if (getLangOpts().CPlusPlus) {
5088     const char *PrevSpec = nullptr;
5089     if (Record->isUnion()) {
5090       // C++ [class.union]p6:
5091       // C++17 [class.union.anon]p2:
5092       //   Anonymous unions declared in a named namespace or in the
5093       //   global namespace shall be declared static.
5094       unsigned DiagID;
5095       DeclContext *OwnerScope = Owner->getRedeclContext();
5096       if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
5097           (OwnerScope->isTranslationUnit() ||
5098            (OwnerScope->isNamespace() &&
5099             !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
5100         Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
5101           << FixItHint::CreateInsertion(Record->getLocation(), "static ");
5102 
5103         // Recover by adding 'static'.
5104         DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
5105                                PrevSpec, DiagID, Policy);
5106       }
5107       // C++ [class.union]p6:
5108       //   A storage class is not allowed in a declaration of an
5109       //   anonymous union in a class scope.
5110       else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
5111                isa<RecordDecl>(Owner)) {
5112         Diag(DS.getStorageClassSpecLoc(),
5113              diag::err_anonymous_union_with_storage_spec)
5114           << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5115 
5116         // Recover by removing the storage specifier.
5117         DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
5118                                SourceLocation(),
5119                                PrevSpec, DiagID, Context.getPrintingPolicy());
5120       }
5121     }
5122 
5123     // Ignore const/volatile/restrict qualifiers.
5124     if (DS.getTypeQualifiers()) {
5125       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5126         Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
5127           << Record->isUnion() << "const"
5128           << FixItHint::CreateRemoval(DS.getConstSpecLoc());
5129       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5130         Diag(DS.getVolatileSpecLoc(),
5131              diag::ext_anonymous_struct_union_qualified)
5132           << Record->isUnion() << "volatile"
5133           << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
5134       if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
5135         Diag(DS.getRestrictSpecLoc(),
5136              diag::ext_anonymous_struct_union_qualified)
5137           << Record->isUnion() << "restrict"
5138           << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
5139       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5140         Diag(DS.getAtomicSpecLoc(),
5141              diag::ext_anonymous_struct_union_qualified)
5142           << Record->isUnion() << "_Atomic"
5143           << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
5144       if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5145         Diag(DS.getUnalignedSpecLoc(),
5146              diag::ext_anonymous_struct_union_qualified)
5147           << Record->isUnion() << "__unaligned"
5148           << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
5149 
5150       DS.ClearTypeQualifiers();
5151     }
5152 
5153     // C++ [class.union]p2:
5154     //   The member-specification of an anonymous union shall only
5155     //   define non-static data members. [Note: nested types and
5156     //   functions cannot be declared within an anonymous union. ]
5157     for (auto *Mem : Record->decls()) {
5158       // Ignore invalid declarations; we already diagnosed them.
5159       if (Mem->isInvalidDecl())
5160         continue;
5161 
5162       if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
5163         // C++ [class.union]p3:
5164         //   An anonymous union shall not have private or protected
5165         //   members (clause 11).
5166         assert(FD->getAccess() != AS_none);
5167         if (FD->getAccess() != AS_public) {
5168           Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
5169             << Record->isUnion() << (FD->getAccess() == AS_protected);
5170           Invalid = true;
5171         }
5172 
5173         // C++ [class.union]p1
5174         //   An object of a class with a non-trivial constructor, a non-trivial
5175         //   copy constructor, a non-trivial destructor, or a non-trivial copy
5176         //   assignment operator cannot be a member of a union, nor can an
5177         //   array of such objects.
5178         if (CheckNontrivialField(FD))
5179           Invalid = true;
5180       } else if (Mem->isImplicit()) {
5181         // Any implicit members are fine.
5182       } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
5183         // This is a type that showed up in an
5184         // elaborated-type-specifier inside the anonymous struct or
5185         // union, but which actually declares a type outside of the
5186         // anonymous struct or union. It's okay.
5187       } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
5188         if (!MemRecord->isAnonymousStructOrUnion() &&
5189             MemRecord->getDeclName()) {
5190           // Visual C++ allows type definition in anonymous struct or union.
5191           if (getLangOpts().MicrosoftExt)
5192             Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
5193               << Record->isUnion();
5194           else {
5195             // This is a nested type declaration.
5196             Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
5197               << Record->isUnion();
5198             Invalid = true;
5199           }
5200         } else {
5201           // This is an anonymous type definition within another anonymous type.
5202           // This is a popular extension, provided by Plan9, MSVC and GCC, but
5203           // not part of standard C++.
5204           Diag(MemRecord->getLocation(),
5205                diag::ext_anonymous_record_with_anonymous_type)
5206             << Record->isUnion();
5207         }
5208       } else if (isa<AccessSpecDecl>(Mem)) {
5209         // Any access specifier is fine.
5210       } else if (isa<StaticAssertDecl>(Mem)) {
5211         // In C++1z, static_assert declarations are also fine.
5212       } else {
5213         // We have something that isn't a non-static data
5214         // member. Complain about it.
5215         unsigned DK = diag::err_anonymous_record_bad_member;
5216         if (isa<TypeDecl>(Mem))
5217           DK = diag::err_anonymous_record_with_type;
5218         else if (isa<FunctionDecl>(Mem))
5219           DK = diag::err_anonymous_record_with_function;
5220         else if (isa<VarDecl>(Mem))
5221           DK = diag::err_anonymous_record_with_static;
5222 
5223         // Visual C++ allows type definition in anonymous struct or union.
5224         if (getLangOpts().MicrosoftExt &&
5225             DK == diag::err_anonymous_record_with_type)
5226           Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
5227             << Record->isUnion();
5228         else {
5229           Diag(Mem->getLocation(), DK) << Record->isUnion();
5230           Invalid = true;
5231         }
5232       }
5233     }
5234 
5235     // C++11 [class.union]p8 (DR1460):
5236     //   At most one variant member of a union may have a
5237     //   brace-or-equal-initializer.
5238     if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5239         Owner->isRecord())
5240       checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5241                                 cast<CXXRecordDecl>(Record));
5242   }
5243 
5244   if (!Record->isUnion() && !Owner->isRecord()) {
5245     Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5246       << getLangOpts().CPlusPlus;
5247     Invalid = true;
5248   }
5249 
5250   // C++ [dcl.dcl]p3:
5251   //   [If there are no declarators], and except for the declaration of an
5252   //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
5253   //   names into the program
5254   // C++ [class.mem]p2:
5255   //   each such member-declaration shall either declare at least one member
5256   //   name of the class or declare at least one unnamed bit-field
5257   //
5258   // For C this is an error even for a named struct, and is diagnosed elsewhere.
5259   if (getLangOpts().CPlusPlus && Record->field_empty())
5260     Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5261 
5262   // Mock up a declarator.
5263   Declarator Dc(DS, DeclaratorContext::Member);
5264   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5265   assert(TInfo && "couldn't build declarator info for anonymous struct/union");
5266 
5267   // Create a declaration for this anonymous struct/union.
5268   NamedDecl *Anon = nullptr;
5269   if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5270     Anon = FieldDecl::Create(
5271         Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5272         /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5273         /*BitWidth=*/nullptr, /*Mutable=*/false,
5274         /*InitStyle=*/ICIS_NoInit);
5275     Anon->setAccess(AS);
5276     ProcessDeclAttributes(S, Anon, Dc);
5277 
5278     if (getLangOpts().CPlusPlus)
5279       FieldCollector->Add(cast<FieldDecl>(Anon));
5280   } else {
5281     DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5282     StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5283     if (SCSpec == DeclSpec::SCS_mutable) {
5284       // mutable can only appear on non-static class members, so it's always
5285       // an error here
5286       Diag(Record->getLocation(), diag::err_mutable_nonmember);
5287       Invalid = true;
5288       SC = SC_None;
5289     }
5290 
5291     assert(DS.getAttributes().empty() && "No attribute expected");
5292     Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5293                            Record->getLocation(), /*IdentifierInfo=*/nullptr,
5294                            Context.getTypeDeclType(Record), TInfo, SC);
5295 
5296     // Default-initialize the implicit variable. This initialization will be
5297     // trivial in almost all cases, except if a union member has an in-class
5298     // initializer:
5299     //   union { int n = 0; };
5300     if (!Invalid)
5301       ActOnUninitializedDecl(Anon);
5302   }
5303   Anon->setImplicit();
5304 
5305   // Mark this as an anonymous struct/union type.
5306   Record->setAnonymousStructOrUnion(true);
5307 
5308   // Add the anonymous struct/union object to the current
5309   // context. We'll be referencing this object when we refer to one of
5310   // its members.
5311   Owner->addDecl(Anon);
5312 
5313   // Inject the members of the anonymous struct/union into the owning
5314   // context and into the identifier resolver chain for name lookup
5315   // purposes.
5316   SmallVector<NamedDecl*, 2> Chain;
5317   Chain.push_back(Anon);
5318 
5319   if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
5320     Invalid = true;
5321 
5322   if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5323     if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5324       MangleNumberingContext *MCtx;
5325       Decl *ManglingContextDecl;
5326       std::tie(MCtx, ManglingContextDecl) =
5327           getCurrentMangleNumberContext(NewVD->getDeclContext());
5328       if (MCtx) {
5329         Context.setManglingNumber(
5330             NewVD, MCtx->getManglingNumber(
5331                        NewVD, getMSManglingNumber(getLangOpts(), S)));
5332         Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5333       }
5334     }
5335   }
5336 
5337   if (Invalid)
5338     Anon->setInvalidDecl();
5339 
5340   return Anon;
5341 }
5342 
5343 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5344 /// Microsoft C anonymous structure.
5345 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5346 /// Example:
5347 ///
5348 /// struct A { int a; };
5349 /// struct B { struct A; int b; };
5350 ///
5351 /// void foo() {
5352 ///   B var;
5353 ///   var.a = 3;
5354 /// }
5355 ///
5356 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5357                                            RecordDecl *Record) {
5358   assert(Record && "expected a record!");
5359 
5360   // Mock up a declarator.
5361   Declarator Dc(DS, DeclaratorContext::TypeName);
5362   TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5363   assert(TInfo && "couldn't build declarator info for anonymous struct");
5364 
5365   auto *ParentDecl = cast<RecordDecl>(CurContext);
5366   QualType RecTy = Context.getTypeDeclType(Record);
5367 
5368   // Create a declaration for this anonymous struct.
5369   NamedDecl *Anon =
5370       FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5371                         /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5372                         /*BitWidth=*/nullptr, /*Mutable=*/false,
5373                         /*InitStyle=*/ICIS_NoInit);
5374   Anon->setImplicit();
5375 
5376   // Add the anonymous struct object to the current context.
5377   CurContext->addDecl(Anon);
5378 
5379   // Inject the members of the anonymous struct into the current
5380   // context and into the identifier resolver chain for name lookup
5381   // purposes.
5382   SmallVector<NamedDecl*, 2> Chain;
5383   Chain.push_back(Anon);
5384 
5385   RecordDecl *RecordDef = Record->getDefinition();
5386   if (RequireCompleteSizedType(Anon->getLocation(), RecTy,
5387                                diag::err_field_incomplete_or_sizeless) ||
5388       InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
5389                                           AS_none, Chain)) {
5390     Anon->setInvalidDecl();
5391     ParentDecl->setInvalidDecl();
5392   }
5393 
5394   return Anon;
5395 }
5396 
5397 /// GetNameForDeclarator - Determine the full declaration name for the
5398 /// given Declarator.
5399 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5400   return GetNameFromUnqualifiedId(D.getName());
5401 }
5402 
5403 /// Retrieves the declaration name from a parsed unqualified-id.
5404 DeclarationNameInfo
5405 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5406   DeclarationNameInfo NameInfo;
5407   NameInfo.setLoc(Name.StartLocation);
5408 
5409   switch (Name.getKind()) {
5410 
5411   case UnqualifiedIdKind::IK_ImplicitSelfParam:
5412   case UnqualifiedIdKind::IK_Identifier:
5413     NameInfo.setName(Name.Identifier);
5414     return NameInfo;
5415 
5416   case UnqualifiedIdKind::IK_DeductionGuideName: {
5417     // C++ [temp.deduct.guide]p3:
5418     //   The simple-template-id shall name a class template specialization.
5419     //   The template-name shall be the same identifier as the template-name
5420     //   of the simple-template-id.
5421     // These together intend to imply that the template-name shall name a
5422     // class template.
5423     // FIXME: template<typename T> struct X {};
5424     //        template<typename T> using Y = X<T>;
5425     //        Y(int) -> Y<int>;
5426     //   satisfies these rules but does not name a class template.
5427     TemplateName TN = Name.TemplateName.get().get();
5428     auto *Template = TN.getAsTemplateDecl();
5429     if (!Template || !isa<ClassTemplateDecl>(Template)) {
5430       Diag(Name.StartLocation,
5431            diag::err_deduction_guide_name_not_class_template)
5432         << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5433       if (Template)
5434         Diag(Template->getLocation(), diag::note_template_decl_here);
5435       return DeclarationNameInfo();
5436     }
5437 
5438     NameInfo.setName(
5439         Context.DeclarationNames.getCXXDeductionGuideName(Template));
5440     return NameInfo;
5441   }
5442 
5443   case UnqualifiedIdKind::IK_OperatorFunctionId:
5444     NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5445                                            Name.OperatorFunctionId.Operator));
5446     NameInfo.setCXXOperatorNameRange(SourceRange(
5447         Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation));
5448     return NameInfo;
5449 
5450   case UnqualifiedIdKind::IK_LiteralOperatorId:
5451     NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5452                                                            Name.Identifier));
5453     NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5454     return NameInfo;
5455 
5456   case UnqualifiedIdKind::IK_ConversionFunctionId: {
5457     TypeSourceInfo *TInfo;
5458     QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5459     if (Ty.isNull())
5460       return DeclarationNameInfo();
5461     NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5462                                                Context.getCanonicalType(Ty)));
5463     NameInfo.setNamedTypeInfo(TInfo);
5464     return NameInfo;
5465   }
5466 
5467   case UnqualifiedIdKind::IK_ConstructorName: {
5468     TypeSourceInfo *TInfo;
5469     QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5470     if (Ty.isNull())
5471       return DeclarationNameInfo();
5472     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5473                                               Context.getCanonicalType(Ty)));
5474     NameInfo.setNamedTypeInfo(TInfo);
5475     return NameInfo;
5476   }
5477 
5478   case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5479     // In well-formed code, we can only have a constructor
5480     // template-id that refers to the current context, so go there
5481     // to find the actual type being constructed.
5482     CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5483     if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5484       return DeclarationNameInfo();
5485 
5486     // Determine the type of the class being constructed.
5487     QualType CurClassType = Context.getTypeDeclType(CurClass);
5488 
5489     // FIXME: Check two things: that the template-id names the same type as
5490     // CurClassType, and that the template-id does not occur when the name
5491     // was qualified.
5492 
5493     NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5494                                     Context.getCanonicalType(CurClassType)));
5495     // FIXME: should we retrieve TypeSourceInfo?
5496     NameInfo.setNamedTypeInfo(nullptr);
5497     return NameInfo;
5498   }
5499 
5500   case UnqualifiedIdKind::IK_DestructorName: {
5501     TypeSourceInfo *TInfo;
5502     QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5503     if (Ty.isNull())
5504       return DeclarationNameInfo();
5505     NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5506                                               Context.getCanonicalType(Ty)));
5507     NameInfo.setNamedTypeInfo(TInfo);
5508     return NameInfo;
5509   }
5510 
5511   case UnqualifiedIdKind::IK_TemplateId: {
5512     TemplateName TName = Name.TemplateId->Template.get();
5513     SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5514     return Context.getNameForTemplate(TName, TNameLoc);
5515   }
5516 
5517   } // switch (Name.getKind())
5518 
5519   llvm_unreachable("Unknown name kind");
5520 }
5521 
5522 static QualType getCoreType(QualType Ty) {
5523   do {
5524     if (Ty->isPointerType() || Ty->isReferenceType())
5525       Ty = Ty->getPointeeType();
5526     else if (Ty->isArrayType())
5527       Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5528     else
5529       return Ty.withoutLocalFastQualifiers();
5530   } while (true);
5531 }
5532 
5533 /// hasSimilarParameters - Determine whether the C++ functions Declaration
5534 /// and Definition have "nearly" matching parameters. This heuristic is
5535 /// used to improve diagnostics in the case where an out-of-line function
5536 /// definition doesn't match any declaration within the class or namespace.
5537 /// Also sets Params to the list of indices to the parameters that differ
5538 /// between the declaration and the definition. If hasSimilarParameters
5539 /// returns true and Params is empty, then all of the parameters match.
5540 static bool hasSimilarParameters(ASTContext &Context,
5541                                      FunctionDecl *Declaration,
5542                                      FunctionDecl *Definition,
5543                                      SmallVectorImpl<unsigned> &Params) {
5544   Params.clear();
5545   if (Declaration->param_size() != Definition->param_size())
5546     return false;
5547   for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5548     QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5549     QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5550 
5551     // The parameter types are identical
5552     if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5553       continue;
5554 
5555     QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5556     QualType DefParamBaseTy = getCoreType(DefParamTy);
5557     const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5558     const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5559 
5560     if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5561         (DeclTyName && DeclTyName == DefTyName))
5562       Params.push_back(Idx);
5563     else  // The two parameters aren't even close
5564       return false;
5565   }
5566 
5567   return true;
5568 }
5569 
5570 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5571 /// declarator needs to be rebuilt in the current instantiation.
5572 /// Any bits of declarator which appear before the name are valid for
5573 /// consideration here.  That's specifically the type in the decl spec
5574 /// and the base type in any member-pointer chunks.
5575 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5576                                                     DeclarationName Name) {
5577   // The types we specifically need to rebuild are:
5578   //   - typenames, typeofs, and decltypes
5579   //   - types which will become injected class names
5580   // Of course, we also need to rebuild any type referencing such a
5581   // type.  It's safest to just say "dependent", but we call out a
5582   // few cases here.
5583 
5584   DeclSpec &DS = D.getMutableDeclSpec();
5585   switch (DS.getTypeSpecType()) {
5586   case DeclSpec::TST_typename:
5587   case DeclSpec::TST_typeofType:
5588   case DeclSpec::TST_underlyingType:
5589   case DeclSpec::TST_atomic: {
5590     // Grab the type from the parser.
5591     TypeSourceInfo *TSI = nullptr;
5592     QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5593     if (T.isNull() || !T->isInstantiationDependentType()) break;
5594 
5595     // Make sure there's a type source info.  This isn't really much
5596     // of a waste; most dependent types should have type source info
5597     // attached already.
5598     if (!TSI)
5599       TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5600 
5601     // Rebuild the type in the current instantiation.
5602     TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5603     if (!TSI) return true;
5604 
5605     // Store the new type back in the decl spec.
5606     ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5607     DS.UpdateTypeRep(LocType);
5608     break;
5609   }
5610 
5611   case DeclSpec::TST_decltype:
5612   case DeclSpec::TST_typeofExpr: {
5613     Expr *E = DS.getRepAsExpr();
5614     ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5615     if (Result.isInvalid()) return true;
5616     DS.UpdateExprRep(Result.get());
5617     break;
5618   }
5619 
5620   default:
5621     // Nothing to do for these decl specs.
5622     break;
5623   }
5624 
5625   // It doesn't matter what order we do this in.
5626   for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5627     DeclaratorChunk &Chunk = D.getTypeObject(I);
5628 
5629     // The only type information in the declarator which can come
5630     // before the declaration name is the base type of a member
5631     // pointer.
5632     if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5633       continue;
5634 
5635     // Rebuild the scope specifier in-place.
5636     CXXScopeSpec &SS = Chunk.Mem.Scope();
5637     if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5638       return true;
5639   }
5640 
5641   return false;
5642 }
5643 
5644 void Sema::warnOnReservedIdentifier(const NamedDecl *D) {
5645   // Avoid warning twice on the same identifier, and don't warn on redeclaration
5646   // of system decl.
5647   if (D->getPreviousDecl() || D->isImplicit())
5648     return;
5649   ReservedIdentifierStatus Status = D->isReserved(getLangOpts());
5650   if (Status != ReservedIdentifierStatus::NotReserved &&
5651       !Context.getSourceManager().isInSystemHeader(D->getLocation()))
5652     Diag(D->getLocation(), diag::warn_reserved_extern_symbol)
5653         << D << static_cast<int>(Status);
5654 }
5655 
5656 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5657   D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
5658   Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5659 
5660   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5661       Dcl && Dcl->getDeclContext()->isFileContext())
5662     Dcl->setTopLevelDeclInObjCContainer();
5663 
5664   return Dcl;
5665 }
5666 
5667 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5668 ///   If T is the name of a class, then each of the following shall have a
5669 ///   name different from T:
5670 ///     - every static data member of class T;
5671 ///     - every member function of class T
5672 ///     - every member of class T that is itself a type;
5673 /// \returns true if the declaration name violates these rules.
5674 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5675                                    DeclarationNameInfo NameInfo) {
5676   DeclarationName Name = NameInfo.getName();
5677 
5678   CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5679   while (Record && Record->isAnonymousStructOrUnion())
5680     Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5681   if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5682     Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5683     return true;
5684   }
5685 
5686   return false;
5687 }
5688 
5689 /// Diagnose a declaration whose declarator-id has the given
5690 /// nested-name-specifier.
5691 ///
5692 /// \param SS The nested-name-specifier of the declarator-id.
5693 ///
5694 /// \param DC The declaration context to which the nested-name-specifier
5695 /// resolves.
5696 ///
5697 /// \param Name The name of the entity being declared.
5698 ///
5699 /// \param Loc The location of the name of the entity being declared.
5700 ///
5701 /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5702 /// we're declaring an explicit / partial specialization / instantiation.
5703 ///
5704 /// \returns true if we cannot safely recover from this error, false otherwise.
5705 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5706                                         DeclarationName Name,
5707                                         SourceLocation Loc, bool IsTemplateId) {
5708   DeclContext *Cur = CurContext;
5709   while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5710     Cur = Cur->getParent();
5711 
5712   // If the user provided a superfluous scope specifier that refers back to the
5713   // class in which the entity is already declared, diagnose and ignore it.
5714   //
5715   // class X {
5716   //   void X::f();
5717   // };
5718   //
5719   // Note, it was once ill-formed to give redundant qualification in all
5720   // contexts, but that rule was removed by DR482.
5721   if (Cur->Equals(DC)) {
5722     if (Cur->isRecord()) {
5723       Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5724                                       : diag::err_member_extra_qualification)
5725         << Name << FixItHint::CreateRemoval(SS.getRange());
5726       SS.clear();
5727     } else {
5728       Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5729     }
5730     return false;
5731   }
5732 
5733   // Check whether the qualifying scope encloses the scope of the original
5734   // declaration. For a template-id, we perform the checks in
5735   // CheckTemplateSpecializationScope.
5736   if (!Cur->Encloses(DC) && !IsTemplateId) {
5737     if (Cur->isRecord())
5738       Diag(Loc, diag::err_member_qualification)
5739         << Name << SS.getRange();
5740     else if (isa<TranslationUnitDecl>(DC))
5741       Diag(Loc, diag::err_invalid_declarator_global_scope)
5742         << Name << SS.getRange();
5743     else if (isa<FunctionDecl>(Cur))
5744       Diag(Loc, diag::err_invalid_declarator_in_function)
5745         << Name << SS.getRange();
5746     else if (isa<BlockDecl>(Cur))
5747       Diag(Loc, diag::err_invalid_declarator_in_block)
5748         << Name << SS.getRange();
5749     else
5750       Diag(Loc, diag::err_invalid_declarator_scope)
5751       << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5752 
5753     return true;
5754   }
5755 
5756   if (Cur->isRecord()) {
5757     // Cannot qualify members within a class.
5758     Diag(Loc, diag::err_member_qualification)
5759       << Name << SS.getRange();
5760     SS.clear();
5761 
5762     // C++ constructors and destructors with incorrect scopes can break
5763     // our AST invariants by having the wrong underlying types. If
5764     // that's the case, then drop this declaration entirely.
5765     if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5766          Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5767         !Context.hasSameType(Name.getCXXNameType(),
5768                              Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5769       return true;
5770 
5771     return false;
5772   }
5773 
5774   // C++11 [dcl.meaning]p1:
5775   //   [...] "The nested-name-specifier of the qualified declarator-id shall
5776   //   not begin with a decltype-specifer"
5777   NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5778   while (SpecLoc.getPrefix())
5779     SpecLoc = SpecLoc.getPrefix();
5780   if (dyn_cast_or_null<DecltypeType>(
5781         SpecLoc.getNestedNameSpecifier()->getAsType()))
5782     Diag(Loc, diag::err_decltype_in_declarator)
5783       << SpecLoc.getTypeLoc().getSourceRange();
5784 
5785   return false;
5786 }
5787 
5788 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5789                                   MultiTemplateParamsArg TemplateParamLists) {
5790   // TODO: consider using NameInfo for diagnostic.
5791   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5792   DeclarationName Name = NameInfo.getName();
5793 
5794   // All of these full declarators require an identifier.  If it doesn't have
5795   // one, the ParsedFreeStandingDeclSpec action should be used.
5796   if (D.isDecompositionDeclarator()) {
5797     return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5798   } else if (!Name) {
5799     if (!D.isInvalidType())  // Reject this if we think it is valid.
5800       Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5801           << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5802     return nullptr;
5803   } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5804     return nullptr;
5805 
5806   // The scope passed in may not be a decl scope.  Zip up the scope tree until
5807   // we find one that is.
5808   while ((S->getFlags() & Scope::DeclScope) == 0 ||
5809          (S->getFlags() & Scope::TemplateParamScope) != 0)
5810     S = S->getParent();
5811 
5812   DeclContext *DC = CurContext;
5813   if (D.getCXXScopeSpec().isInvalid())
5814     D.setInvalidType();
5815   else if (D.getCXXScopeSpec().isSet()) {
5816     if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5817                                         UPPC_DeclarationQualifier))
5818       return nullptr;
5819 
5820     bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5821     DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5822     if (!DC || isa<EnumDecl>(DC)) {
5823       // If we could not compute the declaration context, it's because the
5824       // declaration context is dependent but does not refer to a class,
5825       // class template, or class template partial specialization. Complain
5826       // and return early, to avoid the coming semantic disaster.
5827       Diag(D.getIdentifierLoc(),
5828            diag::err_template_qualified_declarator_no_match)
5829         << D.getCXXScopeSpec().getScopeRep()
5830         << D.getCXXScopeSpec().getRange();
5831       return nullptr;
5832     }
5833     bool IsDependentContext = DC->isDependentContext();
5834 
5835     if (!IsDependentContext &&
5836         RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5837       return nullptr;
5838 
5839     // If a class is incomplete, do not parse entities inside it.
5840     if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5841       Diag(D.getIdentifierLoc(),
5842            diag::err_member_def_undefined_record)
5843         << Name << DC << D.getCXXScopeSpec().getRange();
5844       return nullptr;
5845     }
5846     if (!D.getDeclSpec().isFriendSpecified()) {
5847       if (diagnoseQualifiedDeclaration(
5848               D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5849               D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5850         if (DC->isRecord())
5851           return nullptr;
5852 
5853         D.setInvalidType();
5854       }
5855     }
5856 
5857     // Check whether we need to rebuild the type of the given
5858     // declaration in the current instantiation.
5859     if (EnteringContext && IsDependentContext &&
5860         TemplateParamLists.size() != 0) {
5861       ContextRAII SavedContext(*this, DC);
5862       if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5863         D.setInvalidType();
5864     }
5865   }
5866 
5867   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5868   QualType R = TInfo->getType();
5869 
5870   if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5871                                       UPPC_DeclarationType))
5872     D.setInvalidType();
5873 
5874   LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5875                         forRedeclarationInCurContext());
5876 
5877   // See if this is a redefinition of a variable in the same scope.
5878   if (!D.getCXXScopeSpec().isSet()) {
5879     bool IsLinkageLookup = false;
5880     bool CreateBuiltins = false;
5881 
5882     // If the declaration we're planning to build will be a function
5883     // or object with linkage, then look for another declaration with
5884     // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5885     //
5886     // If the declaration we're planning to build will be declared with
5887     // external linkage in the translation unit, create any builtin with
5888     // the same name.
5889     if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5890       /* Do nothing*/;
5891     else if (CurContext->isFunctionOrMethod() &&
5892              (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5893               R->isFunctionType())) {
5894       IsLinkageLookup = true;
5895       CreateBuiltins =
5896           CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5897     } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5898                D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5899       CreateBuiltins = true;
5900 
5901     if (IsLinkageLookup) {
5902       Previous.clear(LookupRedeclarationWithLinkage);
5903       Previous.setRedeclarationKind(ForExternalRedeclaration);
5904     }
5905 
5906     LookupName(Previous, S, CreateBuiltins);
5907   } else { // Something like "int foo::x;"
5908     LookupQualifiedName(Previous, DC);
5909 
5910     // C++ [dcl.meaning]p1:
5911     //   When the declarator-id is qualified, the declaration shall refer to a
5912     //  previously declared member of the class or namespace to which the
5913     //  qualifier refers (or, in the case of a namespace, of an element of the
5914     //  inline namespace set of that namespace (7.3.1)) or to a specialization
5915     //  thereof; [...]
5916     //
5917     // Note that we already checked the context above, and that we do not have
5918     // enough information to make sure that Previous contains the declaration
5919     // we want to match. For example, given:
5920     //
5921     //   class X {
5922     //     void f();
5923     //     void f(float);
5924     //   };
5925     //
5926     //   void X::f(int) { } // ill-formed
5927     //
5928     // In this case, Previous will point to the overload set
5929     // containing the two f's declared in X, but neither of them
5930     // matches.
5931 
5932     // C++ [dcl.meaning]p1:
5933     //   [...] the member shall not merely have been introduced by a
5934     //   using-declaration in the scope of the class or namespace nominated by
5935     //   the nested-name-specifier of the declarator-id.
5936     RemoveUsingDecls(Previous);
5937   }
5938 
5939   if (Previous.isSingleResult() &&
5940       Previous.getFoundDecl()->isTemplateParameter()) {
5941     // Maybe we will complain about the shadowed template parameter.
5942     if (!D.isInvalidType())
5943       DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5944                                       Previous.getFoundDecl());
5945 
5946     // Just pretend that we didn't see the previous declaration.
5947     Previous.clear();
5948   }
5949 
5950   if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5951     // Forget that the previous declaration is the injected-class-name.
5952     Previous.clear();
5953 
5954   // In C++, the previous declaration we find might be a tag type
5955   // (class or enum). In this case, the new declaration will hide the
5956   // tag type. Note that this applies to functions, function templates, and
5957   // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5958   if (Previous.isSingleTagDecl() &&
5959       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5960       (TemplateParamLists.size() == 0 || R->isFunctionType()))
5961     Previous.clear();
5962 
5963   // Check that there are no default arguments other than in the parameters
5964   // of a function declaration (C++ only).
5965   if (getLangOpts().CPlusPlus)
5966     CheckExtraCXXDefaultArguments(D);
5967 
5968   NamedDecl *New;
5969 
5970   bool AddToScope = true;
5971   if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5972     if (TemplateParamLists.size()) {
5973       Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5974       return nullptr;
5975     }
5976 
5977     New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5978   } else if (R->isFunctionType()) {
5979     New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5980                                   TemplateParamLists,
5981                                   AddToScope);
5982   } else {
5983     New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5984                                   AddToScope);
5985   }
5986 
5987   if (!New)
5988     return nullptr;
5989 
5990   // If this has an identifier and is not a function template specialization,
5991   // add it to the scope stack.
5992   if (New->getDeclName() && AddToScope)
5993     PushOnScopeChains(New, S);
5994 
5995   if (isInOpenMPDeclareTargetContext())
5996     checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5997 
5998   return New;
5999 }
6000 
6001 /// Helper method to turn variable array types into constant array
6002 /// types in certain situations which would otherwise be errors (for
6003 /// GCC compatibility).
6004 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
6005                                                     ASTContext &Context,
6006                                                     bool &SizeIsNegative,
6007                                                     llvm::APSInt &Oversized) {
6008   // This method tries to turn a variable array into a constant
6009   // array even when the size isn't an ICE.  This is necessary
6010   // for compatibility with code that depends on gcc's buggy
6011   // constant expression folding, like struct {char x[(int)(char*)2];}
6012   SizeIsNegative = false;
6013   Oversized = 0;
6014 
6015   if (T->isDependentType())
6016     return QualType();
6017 
6018   QualifierCollector Qs;
6019   const Type *Ty = Qs.strip(T);
6020 
6021   if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
6022     QualType Pointee = PTy->getPointeeType();
6023     QualType FixedType =
6024         TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
6025                                             Oversized);
6026     if (FixedType.isNull()) return FixedType;
6027     FixedType = Context.getPointerType(FixedType);
6028     return Qs.apply(Context, FixedType);
6029   }
6030   if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
6031     QualType Inner = PTy->getInnerType();
6032     QualType FixedType =
6033         TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
6034                                             Oversized);
6035     if (FixedType.isNull()) return FixedType;
6036     FixedType = Context.getParenType(FixedType);
6037     return Qs.apply(Context, FixedType);
6038   }
6039 
6040   const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
6041   if (!VLATy)
6042     return QualType();
6043 
6044   QualType ElemTy = VLATy->getElementType();
6045   if (ElemTy->isVariablyModifiedType()) {
6046     ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context,
6047                                                  SizeIsNegative, Oversized);
6048     if (ElemTy.isNull())
6049       return QualType();
6050   }
6051 
6052   Expr::EvalResult Result;
6053   if (!VLATy->getSizeExpr() ||
6054       !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
6055     return QualType();
6056 
6057   llvm::APSInt Res = Result.Val.getInt();
6058 
6059   // Check whether the array size is negative.
6060   if (Res.isSigned() && Res.isNegative()) {
6061     SizeIsNegative = true;
6062     return QualType();
6063   }
6064 
6065   // Check whether the array is too large to be addressed.
6066   unsigned ActiveSizeBits =
6067       (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() &&
6068        !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType())
6069           ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res)
6070           : Res.getActiveBits();
6071   if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
6072     Oversized = Res;
6073     return QualType();
6074   }
6075 
6076   QualType FoldedArrayType = Context.getConstantArrayType(
6077       ElemTy, Res, VLATy->getSizeExpr(), ArrayType::Normal, 0);
6078   return Qs.apply(Context, FoldedArrayType);
6079 }
6080 
6081 static void
6082 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
6083   SrcTL = SrcTL.getUnqualifiedLoc();
6084   DstTL = DstTL.getUnqualifiedLoc();
6085   if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
6086     PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
6087     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
6088                                       DstPTL.getPointeeLoc());
6089     DstPTL.setStarLoc(SrcPTL.getStarLoc());
6090     return;
6091   }
6092   if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
6093     ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
6094     FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
6095                                       DstPTL.getInnerLoc());
6096     DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
6097     DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
6098     return;
6099   }
6100   ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
6101   ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
6102   TypeLoc SrcElemTL = SrcATL.getElementLoc();
6103   TypeLoc DstElemTL = DstATL.getElementLoc();
6104   if (VariableArrayTypeLoc SrcElemATL =
6105           SrcElemTL.getAs<VariableArrayTypeLoc>()) {
6106     ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>();
6107     FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL);
6108   } else {
6109     DstElemTL.initializeFullCopy(SrcElemTL);
6110   }
6111   DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
6112   DstATL.setSizeExpr(SrcATL.getSizeExpr());
6113   DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
6114 }
6115 
6116 /// Helper method to turn variable array types into constant array
6117 /// types in certain situations which would otherwise be errors (for
6118 /// GCC compatibility).
6119 static TypeSourceInfo*
6120 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
6121                                               ASTContext &Context,
6122                                               bool &SizeIsNegative,
6123                                               llvm::APSInt &Oversized) {
6124   QualType FixedTy
6125     = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
6126                                           SizeIsNegative, Oversized);
6127   if (FixedTy.isNull())
6128     return nullptr;
6129   TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
6130   FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
6131                                     FixedTInfo->getTypeLoc());
6132   return FixedTInfo;
6133 }
6134 
6135 /// Attempt to fold a variable-sized type to a constant-sized type, returning
6136 /// true if we were successful.
6137 bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo,
6138                                            QualType &T, SourceLocation Loc,
6139                                            unsigned FailedFoldDiagID) {
6140   bool SizeIsNegative;
6141   llvm::APSInt Oversized;
6142   TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
6143       TInfo, Context, SizeIsNegative, Oversized);
6144   if (FixedTInfo) {
6145     Diag(Loc, diag::ext_vla_folded_to_constant);
6146     TInfo = FixedTInfo;
6147     T = FixedTInfo->getType();
6148     return true;
6149   }
6150 
6151   if (SizeIsNegative)
6152     Diag(Loc, diag::err_typecheck_negative_array_size);
6153   else if (Oversized.getBoolValue())
6154     Diag(Loc, diag::err_array_too_large) << toString(Oversized, 10);
6155   else if (FailedFoldDiagID)
6156     Diag(Loc, FailedFoldDiagID);
6157   return false;
6158 }
6159 
6160 /// Register the given locally-scoped extern "C" declaration so
6161 /// that it can be found later for redeclarations. We include any extern "C"
6162 /// declaration that is not visible in the translation unit here, not just
6163 /// function-scope declarations.
6164 void
6165 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
6166   if (!getLangOpts().CPlusPlus &&
6167       ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6168     // Don't need to track declarations in the TU in C.
6169     return;
6170 
6171   // Note that we have a locally-scoped external with this name.
6172   Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
6173 }
6174 
6175 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
6176   // FIXME: We can have multiple results via __attribute__((overloadable)).
6177   auto Result = Context.getExternCContextDecl()->lookup(Name);
6178   return Result.empty() ? nullptr : *Result.begin();
6179 }
6180 
6181 /// Diagnose function specifiers on a declaration of an identifier that
6182 /// does not identify a function.
6183 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
6184   // FIXME: We should probably indicate the identifier in question to avoid
6185   // confusion for constructs like "virtual int a(), b;"
6186   if (DS.isVirtualSpecified())
6187     Diag(DS.getVirtualSpecLoc(),
6188          diag::err_virtual_non_function);
6189 
6190   if (DS.hasExplicitSpecifier())
6191     Diag(DS.getExplicitSpecLoc(),
6192          diag::err_explicit_non_function);
6193 
6194   if (DS.isNoreturnSpecified())
6195     Diag(DS.getNoreturnSpecLoc(),
6196          diag::err_noreturn_non_function);
6197 }
6198 
6199 NamedDecl*
6200 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
6201                              TypeSourceInfo *TInfo, LookupResult &Previous) {
6202   // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6203   if (D.getCXXScopeSpec().isSet()) {
6204     Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
6205       << D.getCXXScopeSpec().getRange();
6206     D.setInvalidType();
6207     // Pretend we didn't see the scope specifier.
6208     DC = CurContext;
6209     Previous.clear();
6210   }
6211 
6212   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6213 
6214   if (D.getDeclSpec().isInlineSpecified())
6215     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6216         << getLangOpts().CPlusPlus17;
6217   if (D.getDeclSpec().hasConstexprSpecifier())
6218     Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6219         << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
6220 
6221   if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
6222     if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
6223       Diag(D.getName().StartLocation,
6224            diag::err_deduction_guide_invalid_specifier)
6225           << "typedef";
6226     else
6227       Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
6228           << D.getName().getSourceRange();
6229     return nullptr;
6230   }
6231 
6232   TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
6233   if (!NewTD) return nullptr;
6234 
6235   // Handle attributes prior to checking for duplicates in MergeVarDecl
6236   ProcessDeclAttributes(S, NewTD, D);
6237 
6238   CheckTypedefForVariablyModifiedType(S, NewTD);
6239 
6240   bool Redeclaration = D.isRedeclaration();
6241   NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
6242   D.setRedeclaration(Redeclaration);
6243   return ND;
6244 }
6245 
6246 void
6247 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
6248   // C99 6.7.7p2: If a typedef name specifies a variably modified type
6249   // then it shall have block scope.
6250   // Note that variably modified types must be fixed before merging the decl so
6251   // that redeclarations will match.
6252   TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
6253   QualType T = TInfo->getType();
6254   if (T->isVariablyModifiedType()) {
6255     setFunctionHasBranchProtectedScope();
6256 
6257     if (S->getFnParent() == nullptr) {
6258       bool SizeIsNegative;
6259       llvm::APSInt Oversized;
6260       TypeSourceInfo *FixedTInfo =
6261         TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6262                                                       SizeIsNegative,
6263                                                       Oversized);
6264       if (FixedTInfo) {
6265         Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant);
6266         NewTD->setTypeSourceInfo(FixedTInfo);
6267       } else {
6268         if (SizeIsNegative)
6269           Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
6270         else if (T->isVariableArrayType())
6271           Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
6272         else if (Oversized.getBoolValue())
6273           Diag(NewTD->getLocation(), diag::err_array_too_large)
6274             << toString(Oversized, 10);
6275         else
6276           Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
6277         NewTD->setInvalidDecl();
6278       }
6279     }
6280   }
6281 }
6282 
6283 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6284 /// declares a typedef-name, either using the 'typedef' type specifier or via
6285 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6286 NamedDecl*
6287 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
6288                            LookupResult &Previous, bool &Redeclaration) {
6289 
6290   // Find the shadowed declaration before filtering for scope.
6291   NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
6292 
6293   // Merge the decl with the existing one if appropriate. If the decl is
6294   // in an outer scope, it isn't the same thing.
6295   FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
6296                        /*AllowInlineNamespace*/false);
6297   filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
6298   if (!Previous.empty()) {
6299     Redeclaration = true;
6300     MergeTypedefNameDecl(S, NewTD, Previous);
6301   } else {
6302     inferGslPointerAttribute(NewTD);
6303   }
6304 
6305   if (ShadowedDecl && !Redeclaration)
6306     CheckShadow(NewTD, ShadowedDecl, Previous);
6307 
6308   // If this is the C FILE type, notify the AST context.
6309   if (IdentifierInfo *II = NewTD->getIdentifier())
6310     if (!NewTD->isInvalidDecl() &&
6311         NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6312       if (II->isStr("FILE"))
6313         Context.setFILEDecl(NewTD);
6314       else if (II->isStr("jmp_buf"))
6315         Context.setjmp_bufDecl(NewTD);
6316       else if (II->isStr("sigjmp_buf"))
6317         Context.setsigjmp_bufDecl(NewTD);
6318       else if (II->isStr("ucontext_t"))
6319         Context.setucontext_tDecl(NewTD);
6320     }
6321 
6322   return NewTD;
6323 }
6324 
6325 /// Determines whether the given declaration is an out-of-scope
6326 /// previous declaration.
6327 ///
6328 /// This routine should be invoked when name lookup has found a
6329 /// previous declaration (PrevDecl) that is not in the scope where a
6330 /// new declaration by the same name is being introduced. If the new
6331 /// declaration occurs in a local scope, previous declarations with
6332 /// linkage may still be considered previous declarations (C99
6333 /// 6.2.2p4-5, C++ [basic.link]p6).
6334 ///
6335 /// \param PrevDecl the previous declaration found by name
6336 /// lookup
6337 ///
6338 /// \param DC the context in which the new declaration is being
6339 /// declared.
6340 ///
6341 /// \returns true if PrevDecl is an out-of-scope previous declaration
6342 /// for a new delcaration with the same name.
6343 static bool
6344 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
6345                                 ASTContext &Context) {
6346   if (!PrevDecl)
6347     return false;
6348 
6349   if (!PrevDecl->hasLinkage())
6350     return false;
6351 
6352   if (Context.getLangOpts().CPlusPlus) {
6353     // C++ [basic.link]p6:
6354     //   If there is a visible declaration of an entity with linkage
6355     //   having the same name and type, ignoring entities declared
6356     //   outside the innermost enclosing namespace scope, the block
6357     //   scope declaration declares that same entity and receives the
6358     //   linkage of the previous declaration.
6359     DeclContext *OuterContext = DC->getRedeclContext();
6360     if (!OuterContext->isFunctionOrMethod())
6361       // This rule only applies to block-scope declarations.
6362       return false;
6363 
6364     DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6365     if (PrevOuterContext->isRecord())
6366       // We found a member function: ignore it.
6367       return false;
6368 
6369     // Find the innermost enclosing namespace for the new and
6370     // previous declarations.
6371     OuterContext = OuterContext->getEnclosingNamespaceContext();
6372     PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6373 
6374     // The previous declaration is in a different namespace, so it
6375     // isn't the same function.
6376     if (!OuterContext->Equals(PrevOuterContext))
6377       return false;
6378   }
6379 
6380   return true;
6381 }
6382 
6383 static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6384   CXXScopeSpec &SS = D.getCXXScopeSpec();
6385   if (!SS.isSet()) return;
6386   DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6387 }
6388 
6389 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
6390   QualType type = decl->getType();
6391   Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
6392   if (lifetime == Qualifiers::OCL_Autoreleasing) {
6393     // Various kinds of declaration aren't allowed to be __autoreleasing.
6394     unsigned kind = -1U;
6395     if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6396       if (var->hasAttr<BlocksAttr>())
6397         kind = 0; // __block
6398       else if (!var->hasLocalStorage())
6399         kind = 1; // global
6400     } else if (isa<ObjCIvarDecl>(decl)) {
6401       kind = 3; // ivar
6402     } else if (isa<FieldDecl>(decl)) {
6403       kind = 2; // field
6404     }
6405 
6406     if (kind != -1U) {
6407       Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
6408         << kind;
6409     }
6410   } else if (lifetime == Qualifiers::OCL_None) {
6411     // Try to infer lifetime.
6412     if (!type->isObjCLifetimeType())
6413       return false;
6414 
6415     lifetime = type->getObjCARCImplicitLifetime();
6416     type = Context.getLifetimeQualifiedType(type, lifetime);
6417     decl->setType(type);
6418   }
6419 
6420   if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6421     // Thread-local variables cannot have lifetime.
6422     if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
6423         var->getTLSKind()) {
6424       Diag(var->getLocation(), diag::err_arc_thread_ownership)
6425         << var->getType();
6426       return true;
6427     }
6428   }
6429 
6430   return false;
6431 }
6432 
6433 void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
6434   if (Decl->getType().hasAddressSpace())
6435     return;
6436   if (Decl->getType()->isDependentType())
6437     return;
6438   if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
6439     QualType Type = Var->getType();
6440     if (Type->isSamplerT() || Type->isVoidType())
6441       return;
6442     LangAS ImplAS = LangAS::opencl_private;
6443     // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the
6444     // __opencl_c_program_scope_global_variables feature, the address space
6445     // for a variable at program scope or a static or extern variable inside
6446     // a function are inferred to be __global.
6447     if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) &&
6448         Var->hasGlobalStorage())
6449       ImplAS = LangAS::opencl_global;
6450     // If the original type from a decayed type is an array type and that array
6451     // type has no address space yet, deduce it now.
6452     if (auto DT = dyn_cast<DecayedType>(Type)) {
6453       auto OrigTy = DT->getOriginalType();
6454       if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
6455         // Add the address space to the original array type and then propagate
6456         // that to the element type through `getAsArrayType`.
6457         OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
6458         OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
6459         // Re-generate the decayed type.
6460         Type = Context.getDecayedType(OrigTy);
6461       }
6462     }
6463     Type = Context.getAddrSpaceQualType(Type, ImplAS);
6464     // Apply any qualifiers (including address space) from the array type to
6465     // the element type. This implements C99 6.7.3p8: "If the specification of
6466     // an array type includes any type qualifiers, the element type is so
6467     // qualified, not the array type."
6468     if (Type->isArrayType())
6469       Type = QualType(Context.getAsArrayType(Type), 0);
6470     Decl->setType(Type);
6471   }
6472 }
6473 
6474 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
6475   // Ensure that an auto decl is deduced otherwise the checks below might cache
6476   // the wrong linkage.
6477   assert(S.ParsingInitForAutoVars.count(&ND) == 0);
6478 
6479   // 'weak' only applies to declarations with external linkage.
6480   if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
6481     if (!ND.isExternallyVisible()) {
6482       S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
6483       ND.dropAttr<WeakAttr>();
6484     }
6485   }
6486   if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
6487     if (ND.isExternallyVisible()) {
6488       S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
6489       ND.dropAttr<WeakRefAttr>();
6490       ND.dropAttr<AliasAttr>();
6491     }
6492   }
6493 
6494   if (auto *VD = dyn_cast<VarDecl>(&ND)) {
6495     if (VD->hasInit()) {
6496       if (const auto *Attr = VD->getAttr<AliasAttr>()) {
6497         assert(VD->isThisDeclarationADefinition() &&
6498                !VD->isExternallyVisible() && "Broken AliasAttr handled late!");
6499         S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
6500         VD->dropAttr<AliasAttr>();
6501       }
6502     }
6503   }
6504 
6505   // 'selectany' only applies to externally visible variable declarations.
6506   // It does not apply to functions.
6507   if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6508     if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6509       S.Diag(Attr->getLocation(),
6510              diag::err_attribute_selectany_non_extern_data);
6511       ND.dropAttr<SelectAnyAttr>();
6512     }
6513   }
6514 
6515   if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6516     auto *VD = dyn_cast<VarDecl>(&ND);
6517     bool IsAnonymousNS = false;
6518     bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6519     if (VD) {
6520       const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6521       while (NS && !IsAnonymousNS) {
6522         IsAnonymousNS = NS->isAnonymousNamespace();
6523         NS = dyn_cast<NamespaceDecl>(NS->getParent());
6524       }
6525     }
6526     // dll attributes require external linkage. Static locals may have external
6527     // linkage but still cannot be explicitly imported or exported.
6528     // In Microsoft mode, a variable defined in anonymous namespace must have
6529     // external linkage in order to be exported.
6530     bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6531     if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6532         (!AnonNSInMicrosoftMode &&
6533          (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6534       S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6535         << &ND << Attr;
6536       ND.setInvalidDecl();
6537     }
6538   }
6539 
6540   // Check the attributes on the function type, if any.
6541   if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6542     // Don't declare this variable in the second operand of the for-statement;
6543     // GCC miscompiles that by ending its lifetime before evaluating the
6544     // third operand. See gcc.gnu.org/PR86769.
6545     AttributedTypeLoc ATL;
6546     for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6547          (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6548          TL = ATL.getModifiedLoc()) {
6549       // The [[lifetimebound]] attribute can be applied to the implicit object
6550       // parameter of a non-static member function (other than a ctor or dtor)
6551       // by applying it to the function type.
6552       if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6553         const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6554         if (!MD || MD->isStatic()) {
6555           S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6556               << !MD << A->getRange();
6557         } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6558           S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6559               << isa<CXXDestructorDecl>(MD) << A->getRange();
6560         }
6561       }
6562     }
6563   }
6564 }
6565 
6566 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6567                                            NamedDecl *NewDecl,
6568                                            bool IsSpecialization,
6569                                            bool IsDefinition) {
6570   if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6571     return;
6572 
6573   bool IsTemplate = false;
6574   if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6575     OldDecl = OldTD->getTemplatedDecl();
6576     IsTemplate = true;
6577     if (!IsSpecialization)
6578       IsDefinition = false;
6579   }
6580   if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6581     NewDecl = NewTD->getTemplatedDecl();
6582     IsTemplate = true;
6583   }
6584 
6585   if (!OldDecl || !NewDecl)
6586     return;
6587 
6588   const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6589   const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6590   const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6591   const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6592 
6593   // dllimport and dllexport are inheritable attributes so we have to exclude
6594   // inherited attribute instances.
6595   bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6596                     (NewExportAttr && !NewExportAttr->isInherited());
6597 
6598   // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6599   // the only exception being explicit specializations.
6600   // Implicitly generated declarations are also excluded for now because there
6601   // is no other way to switch these to use dllimport or dllexport.
6602   bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6603 
6604   if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6605     // Allow with a warning for free functions and global variables.
6606     bool JustWarn = false;
6607     if (!OldDecl->isCXXClassMember()) {
6608       auto *VD = dyn_cast<VarDecl>(OldDecl);
6609       if (VD && !VD->getDescribedVarTemplate())
6610         JustWarn = true;
6611       auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6612       if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6613         JustWarn = true;
6614     }
6615 
6616     // We cannot change a declaration that's been used because IR has already
6617     // been emitted. Dllimported functions will still work though (modulo
6618     // address equality) as they can use the thunk.
6619     if (OldDecl->isUsed())
6620       if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6621         JustWarn = false;
6622 
6623     unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6624                                : diag::err_attribute_dll_redeclaration;
6625     S.Diag(NewDecl->getLocation(), DiagID)
6626         << NewDecl
6627         << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6628     S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6629     if (!JustWarn) {
6630       NewDecl->setInvalidDecl();
6631       return;
6632     }
6633   }
6634 
6635   // A redeclaration is not allowed to drop a dllimport attribute, the only
6636   // exceptions being inline function definitions (except for function
6637   // templates), local extern declarations, qualified friend declarations or
6638   // special MSVC extension: in the last case, the declaration is treated as if
6639   // it were marked dllexport.
6640   bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6641   bool IsMicrosoftABI  = S.Context.getTargetInfo().shouldDLLImportComdatSymbols();
6642   if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6643     // Ignore static data because out-of-line definitions are diagnosed
6644     // separately.
6645     IsStaticDataMember = VD->isStaticDataMember();
6646     IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6647                    VarDecl::DeclarationOnly;
6648   } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6649     IsInline = FD->isInlined();
6650     IsQualifiedFriend = FD->getQualifier() &&
6651                         FD->getFriendObjectKind() == Decl::FOK_Declared;
6652   }
6653 
6654   if (OldImportAttr && !HasNewAttr &&
6655       (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember &&
6656       !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6657     if (IsMicrosoftABI && IsDefinition) {
6658       S.Diag(NewDecl->getLocation(),
6659              diag::warn_redeclaration_without_import_attribute)
6660           << NewDecl;
6661       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6662       NewDecl->dropAttr<DLLImportAttr>();
6663       NewDecl->addAttr(
6664           DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange()));
6665     } else {
6666       S.Diag(NewDecl->getLocation(),
6667              diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6668           << NewDecl << OldImportAttr;
6669       S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6670       S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6671       OldDecl->dropAttr<DLLImportAttr>();
6672       NewDecl->dropAttr<DLLImportAttr>();
6673     }
6674   } else if (IsInline && OldImportAttr && !IsMicrosoftABI) {
6675     // In MinGW, seeing a function declared inline drops the dllimport
6676     // attribute.
6677     OldDecl->dropAttr<DLLImportAttr>();
6678     NewDecl->dropAttr<DLLImportAttr>();
6679     S.Diag(NewDecl->getLocation(),
6680            diag::warn_dllimport_dropped_from_inline_function)
6681         << NewDecl << OldImportAttr;
6682   }
6683 
6684   // A specialization of a class template member function is processed here
6685   // since it's a redeclaration. If the parent class is dllexport, the
6686   // specialization inherits that attribute. This doesn't happen automatically
6687   // since the parent class isn't instantiated until later.
6688   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6689     if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6690         !NewImportAttr && !NewExportAttr) {
6691       if (const DLLExportAttr *ParentExportAttr =
6692               MD->getParent()->getAttr<DLLExportAttr>()) {
6693         DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6694         NewAttr->setInherited(true);
6695         NewDecl->addAttr(NewAttr);
6696       }
6697     }
6698   }
6699 }
6700 
6701 /// Given that we are within the definition of the given function,
6702 /// will that definition behave like C99's 'inline', where the
6703 /// definition is discarded except for optimization purposes?
6704 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6705   // Try to avoid calling GetGVALinkageForFunction.
6706 
6707   // All cases of this require the 'inline' keyword.
6708   if (!FD->isInlined()) return false;
6709 
6710   // This is only possible in C++ with the gnu_inline attribute.
6711   if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6712     return false;
6713 
6714   // Okay, go ahead and call the relatively-more-expensive function.
6715   return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6716 }
6717 
6718 /// Determine whether a variable is extern "C" prior to attaching
6719 /// an initializer. We can't just call isExternC() here, because that
6720 /// will also compute and cache whether the declaration is externally
6721 /// visible, which might change when we attach the initializer.
6722 ///
6723 /// This can only be used if the declaration is known to not be a
6724 /// redeclaration of an internal linkage declaration.
6725 ///
6726 /// For instance:
6727 ///
6728 ///   auto x = []{};
6729 ///
6730 /// Attaching the initializer here makes this declaration not externally
6731 /// visible, because its type has internal linkage.
6732 ///
6733 /// FIXME: This is a hack.
6734 template<typename T>
6735 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6736   if (S.getLangOpts().CPlusPlus) {
6737     // In C++, the overloadable attribute negates the effects of extern "C".
6738     if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6739       return false;
6740 
6741     // So do CUDA's host/device attributes.
6742     if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6743                                  D->template hasAttr<CUDAHostAttr>()))
6744       return false;
6745   }
6746   return D->isExternC();
6747 }
6748 
6749 static bool shouldConsiderLinkage(const VarDecl *VD) {
6750   const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6751   if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
6752       isa<OMPDeclareMapperDecl>(DC))
6753     return VD->hasExternalStorage();
6754   if (DC->isFileContext())
6755     return true;
6756   if (DC->isRecord())
6757     return false;
6758   if (isa<RequiresExprBodyDecl>(DC))
6759     return false;
6760   llvm_unreachable("Unexpected context");
6761 }
6762 
6763 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6764   const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6765   if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6766       isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
6767     return true;
6768   if (DC->isRecord())
6769     return false;
6770   llvm_unreachable("Unexpected context");
6771 }
6772 
6773 static bool hasParsedAttr(Scope *S, const Declarator &PD,
6774                           ParsedAttr::Kind Kind) {
6775   // Check decl attributes on the DeclSpec.
6776   if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6777     return true;
6778 
6779   // Walk the declarator structure, checking decl attributes that were in a type
6780   // position to the decl itself.
6781   for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6782     if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6783       return true;
6784   }
6785 
6786   // Finally, check attributes on the decl itself.
6787   return PD.getAttributes().hasAttribute(Kind);
6788 }
6789 
6790 /// Adjust the \c DeclContext for a function or variable that might be a
6791 /// function-local external declaration.
6792 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6793   if (!DC->isFunctionOrMethod())
6794     return false;
6795 
6796   // If this is a local extern function or variable declared within a function
6797   // template, don't add it into the enclosing namespace scope until it is
6798   // instantiated; it might have a dependent type right now.
6799   if (DC->isDependentContext())
6800     return true;
6801 
6802   // C++11 [basic.link]p7:
6803   //   When a block scope declaration of an entity with linkage is not found to
6804   //   refer to some other declaration, then that entity is a member of the
6805   //   innermost enclosing namespace.
6806   //
6807   // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6808   // semantically-enclosing namespace, not a lexically-enclosing one.
6809   while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6810     DC = DC->getParent();
6811   return true;
6812 }
6813 
6814 /// Returns true if given declaration has external C language linkage.
6815 static bool isDeclExternC(const Decl *D) {
6816   if (const auto *FD = dyn_cast<FunctionDecl>(D))
6817     return FD->isExternC();
6818   if (const auto *VD = dyn_cast<VarDecl>(D))
6819     return VD->isExternC();
6820 
6821   llvm_unreachable("Unknown type of decl!");
6822 }
6823 
6824 /// Returns true if there hasn't been any invalid type diagnosed.
6825 static bool diagnoseOpenCLTypes(Sema &Se, VarDecl *NewVD) {
6826   DeclContext *DC = NewVD->getDeclContext();
6827   QualType R = NewVD->getType();
6828 
6829   // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6830   // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6831   // argument.
6832   if (R->isImageType() || R->isPipeType()) {
6833     Se.Diag(NewVD->getLocation(),
6834             diag::err_opencl_type_can_only_be_used_as_function_parameter)
6835         << R;
6836     NewVD->setInvalidDecl();
6837     return false;
6838   }
6839 
6840   // OpenCL v1.2 s6.9.r:
6841   // The event type cannot be used to declare a program scope variable.
6842   // OpenCL v2.0 s6.9.q:
6843   // The clk_event_t and reserve_id_t types cannot be declared in program
6844   // scope.
6845   if (NewVD->hasGlobalStorage() && !NewVD->isStaticLocal()) {
6846     if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6847       Se.Diag(NewVD->getLocation(),
6848               diag::err_invalid_type_for_program_scope_var)
6849           << R;
6850       NewVD->setInvalidDecl();
6851       return false;
6852     }
6853   }
6854 
6855   // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6856   if (!Se.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers",
6857                                                Se.getLangOpts())) {
6858     QualType NR = R.getCanonicalType();
6859     while (NR->isPointerType() || NR->isMemberFunctionPointerType() ||
6860            NR->isReferenceType()) {
6861       if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType() ||
6862           NR->isFunctionReferenceType()) {
6863         Se.Diag(NewVD->getLocation(), diag::err_opencl_function_pointer)
6864             << NR->isReferenceType();
6865         NewVD->setInvalidDecl();
6866         return false;
6867       }
6868       NR = NR->getPointeeType();
6869     }
6870   }
6871 
6872   if (!Se.getOpenCLOptions().isAvailableOption("cl_khr_fp16",
6873                                                Se.getLangOpts())) {
6874     // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6875     // half array type (unless the cl_khr_fp16 extension is enabled).
6876     if (Se.Context.getBaseElementType(R)->isHalfType()) {
6877       Se.Diag(NewVD->getLocation(), diag::err_opencl_half_declaration) << R;
6878       NewVD->setInvalidDecl();
6879       return false;
6880     }
6881   }
6882 
6883   // OpenCL v1.2 s6.9.r:
6884   // The event type cannot be used with the __local, __constant and __global
6885   // address space qualifiers.
6886   if (R->isEventT()) {
6887     if (R.getAddressSpace() != LangAS::opencl_private) {
6888       Se.Diag(NewVD->getBeginLoc(), diag::err_event_t_addr_space_qual);
6889       NewVD->setInvalidDecl();
6890       return false;
6891     }
6892   }
6893 
6894   if (R->isSamplerT()) {
6895     // OpenCL v1.2 s6.9.b p4:
6896     // The sampler type cannot be used with the __local and __global address
6897     // space qualifiers.
6898     if (R.getAddressSpace() == LangAS::opencl_local ||
6899         R.getAddressSpace() == LangAS::opencl_global) {
6900       Se.Diag(NewVD->getLocation(), diag::err_wrong_sampler_addressspace);
6901       NewVD->setInvalidDecl();
6902     }
6903 
6904     // OpenCL v1.2 s6.12.14.1:
6905     // A global sampler must be declared with either the constant address
6906     // space qualifier or with the const qualifier.
6907     if (DC->isTranslationUnit() &&
6908         !(R.getAddressSpace() == LangAS::opencl_constant ||
6909           R.isConstQualified())) {
6910       Se.Diag(NewVD->getLocation(), diag::err_opencl_nonconst_global_sampler);
6911       NewVD->setInvalidDecl();
6912     }
6913     if (NewVD->isInvalidDecl())
6914       return false;
6915   }
6916 
6917   return true;
6918 }
6919 
6920 template <typename AttrTy>
6921 static void copyAttrFromTypedefToDecl(Sema &S, Decl *D, const TypedefType *TT) {
6922   const TypedefNameDecl *TND = TT->getDecl();
6923   if (const auto *Attribute = TND->getAttr<AttrTy>()) {
6924     AttrTy *Clone = Attribute->clone(S.Context);
6925     Clone->setInherited(true);
6926     D->addAttr(Clone);
6927   }
6928 }
6929 
6930 NamedDecl *Sema::ActOnVariableDeclarator(
6931     Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6932     LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6933     bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6934   QualType R = TInfo->getType();
6935   DeclarationName Name = GetNameForDeclarator(D).getName();
6936 
6937   IdentifierInfo *II = Name.getAsIdentifierInfo();
6938 
6939   if (D.isDecompositionDeclarator()) {
6940     // Take the name of the first declarator as our name for diagnostic
6941     // purposes.
6942     auto &Decomp = D.getDecompositionDeclarator();
6943     if (!Decomp.bindings().empty()) {
6944       II = Decomp.bindings()[0].Name;
6945       Name = II;
6946     }
6947   } else if (!II) {
6948     Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6949     return nullptr;
6950   }
6951 
6952 
6953   DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6954   StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6955 
6956   // dllimport globals without explicit storage class are treated as extern. We
6957   // have to change the storage class this early to get the right DeclContext.
6958   if (SC == SC_None && !DC->isRecord() &&
6959       hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6960       !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6961     SC = SC_Extern;
6962 
6963   DeclContext *OriginalDC = DC;
6964   bool IsLocalExternDecl = SC == SC_Extern &&
6965                            adjustContextForLocalExternDecl(DC);
6966 
6967   if (SCSpec == DeclSpec::SCS_mutable) {
6968     // mutable can only appear on non-static class members, so it's always
6969     // an error here
6970     Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6971     D.setInvalidType();
6972     SC = SC_None;
6973   }
6974 
6975   if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6976       !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6977                               D.getDeclSpec().getStorageClassSpecLoc())) {
6978     // In C++11, the 'register' storage class specifier is deprecated.
6979     // Suppress the warning in system macros, it's used in macros in some
6980     // popular C system headers, such as in glibc's htonl() macro.
6981     Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6982          getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6983                                    : diag::warn_deprecated_register)
6984       << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6985   }
6986 
6987   DiagnoseFunctionSpecifiers(D.getDeclSpec());
6988 
6989   if (!DC->isRecord() && S->getFnParent() == nullptr) {
6990     // C99 6.9p2: The storage-class specifiers auto and register shall not
6991     // appear in the declaration specifiers in an external declaration.
6992     // Global Register+Asm is a GNU extension we support.
6993     if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6994       Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6995       D.setInvalidType();
6996     }
6997   }
6998 
6999   // If this variable has a VLA type and an initializer, try to
7000   // fold to a constant-sized type. This is otherwise invalid.
7001   if (D.hasInitializer() && R->isVariableArrayType())
7002     tryToFixVariablyModifiedVarType(TInfo, R, D.getIdentifierLoc(),
7003                                     /*DiagID=*/0);
7004 
7005   bool IsMemberSpecialization = false;
7006   bool IsVariableTemplateSpecialization = false;
7007   bool IsPartialSpecialization = false;
7008   bool IsVariableTemplate = false;
7009   VarDecl *NewVD = nullptr;
7010   VarTemplateDecl *NewTemplate = nullptr;
7011   TemplateParameterList *TemplateParams = nullptr;
7012   if (!getLangOpts().CPlusPlus) {
7013     NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
7014                             II, R, TInfo, SC);
7015 
7016     if (R->getContainedDeducedType())
7017       ParsingInitForAutoVars.insert(NewVD);
7018 
7019     if (D.isInvalidType())
7020       NewVD->setInvalidDecl();
7021 
7022     if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
7023         NewVD->hasLocalStorage())
7024       checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
7025                             NTCUC_AutoVar, NTCUK_Destruct);
7026   } else {
7027     bool Invalid = false;
7028 
7029     if (DC->isRecord() && !CurContext->isRecord()) {
7030       // This is an out-of-line definition of a static data member.
7031       switch (SC) {
7032       case SC_None:
7033         break;
7034       case SC_Static:
7035         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7036              diag::err_static_out_of_line)
7037           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7038         break;
7039       case SC_Auto:
7040       case SC_Register:
7041       case SC_Extern:
7042         // [dcl.stc] p2: The auto or register specifiers shall be applied only
7043         // to names of variables declared in a block or to function parameters.
7044         // [dcl.stc] p6: The extern specifier cannot be used in the declaration
7045         // of class members
7046 
7047         Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7048              diag::err_storage_class_for_static_member)
7049           << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7050         break;
7051       case SC_PrivateExtern:
7052         llvm_unreachable("C storage class in c++!");
7053       }
7054     }
7055 
7056     if (SC == SC_Static && CurContext->isRecord()) {
7057       if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
7058         // Walk up the enclosing DeclContexts to check for any that are
7059         // incompatible with static data members.
7060         const DeclContext *FunctionOrMethod = nullptr;
7061         const CXXRecordDecl *AnonStruct = nullptr;
7062         for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) {
7063           if (Ctxt->isFunctionOrMethod()) {
7064             FunctionOrMethod = Ctxt;
7065             break;
7066           }
7067           const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt);
7068           if (ParentDecl && !ParentDecl->getDeclName()) {
7069             AnonStruct = ParentDecl;
7070             break;
7071           }
7072         }
7073         if (FunctionOrMethod) {
7074           // C++ [class.static.data]p5: A local class shall not have static data
7075           // members.
7076           Diag(D.getIdentifierLoc(),
7077                diag::err_static_data_member_not_allowed_in_local_class)
7078             << Name << RD->getDeclName() << RD->getTagKind();
7079         } else if (AnonStruct) {
7080           // C++ [class.static.data]p4: Unnamed classes and classes contained
7081           // directly or indirectly within unnamed classes shall not contain
7082           // static data members.
7083           Diag(D.getIdentifierLoc(),
7084                diag::err_static_data_member_not_allowed_in_anon_struct)
7085             << Name << AnonStruct->getTagKind();
7086           Invalid = true;
7087         } else if (RD->isUnion()) {
7088           // C++98 [class.union]p1: If a union contains a static data member,
7089           // the program is ill-formed. C++11 drops this restriction.
7090           Diag(D.getIdentifierLoc(),
7091                getLangOpts().CPlusPlus11
7092                  ? diag::warn_cxx98_compat_static_data_member_in_union
7093                  : diag::ext_static_data_member_in_union) << Name;
7094         }
7095       }
7096     }
7097 
7098     // Match up the template parameter lists with the scope specifier, then
7099     // determine whether we have a template or a template specialization.
7100     bool InvalidScope = false;
7101     TemplateParams = MatchTemplateParametersToScopeSpecifier(
7102         D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
7103         D.getCXXScopeSpec(),
7104         D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
7105             ? D.getName().TemplateId
7106             : nullptr,
7107         TemplateParamLists,
7108         /*never a friend*/ false, IsMemberSpecialization, InvalidScope);
7109     Invalid |= InvalidScope;
7110 
7111     if (TemplateParams) {
7112       if (!TemplateParams->size() &&
7113           D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
7114         // There is an extraneous 'template<>' for this variable. Complain
7115         // about it, but allow the declaration of the variable.
7116         Diag(TemplateParams->getTemplateLoc(),
7117              diag::err_template_variable_noparams)
7118           << II
7119           << SourceRange(TemplateParams->getTemplateLoc(),
7120                          TemplateParams->getRAngleLoc());
7121         TemplateParams = nullptr;
7122       } else {
7123         // Check that we can declare a template here.
7124         if (CheckTemplateDeclScope(S, TemplateParams))
7125           return nullptr;
7126 
7127         if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
7128           // This is an explicit specialization or a partial specialization.
7129           IsVariableTemplateSpecialization = true;
7130           IsPartialSpecialization = TemplateParams->size() > 0;
7131         } else { // if (TemplateParams->size() > 0)
7132           // This is a template declaration.
7133           IsVariableTemplate = true;
7134 
7135           // Only C++1y supports variable templates (N3651).
7136           Diag(D.getIdentifierLoc(),
7137                getLangOpts().CPlusPlus14
7138                    ? diag::warn_cxx11_compat_variable_template
7139                    : diag::ext_variable_template);
7140         }
7141       }
7142     } else {
7143       // Check that we can declare a member specialization here.
7144       if (!TemplateParamLists.empty() && IsMemberSpecialization &&
7145           CheckTemplateDeclScope(S, TemplateParamLists.back()))
7146         return nullptr;
7147       assert((Invalid ||
7148               D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&
7149              "should have a 'template<>' for this decl");
7150     }
7151 
7152     if (IsVariableTemplateSpecialization) {
7153       SourceLocation TemplateKWLoc =
7154           TemplateParamLists.size() > 0
7155               ? TemplateParamLists[0]->getTemplateLoc()
7156               : SourceLocation();
7157       DeclResult Res = ActOnVarTemplateSpecialization(
7158           S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
7159           IsPartialSpecialization);
7160       if (Res.isInvalid())
7161         return nullptr;
7162       NewVD = cast<VarDecl>(Res.get());
7163       AddToScope = false;
7164     } else if (D.isDecompositionDeclarator()) {
7165       NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
7166                                         D.getIdentifierLoc(), R, TInfo, SC,
7167                                         Bindings);
7168     } else
7169       NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
7170                               D.getIdentifierLoc(), II, R, TInfo, SC);
7171 
7172     // If this is supposed to be a variable template, create it as such.
7173     if (IsVariableTemplate) {
7174       NewTemplate =
7175           VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
7176                                   TemplateParams, NewVD);
7177       NewVD->setDescribedVarTemplate(NewTemplate);
7178     }
7179 
7180     // If this decl has an auto type in need of deduction, make a note of the
7181     // Decl so we can diagnose uses of it in its own initializer.
7182     if (R->getContainedDeducedType())
7183       ParsingInitForAutoVars.insert(NewVD);
7184 
7185     if (D.isInvalidType() || Invalid) {
7186       NewVD->setInvalidDecl();
7187       if (NewTemplate)
7188         NewTemplate->setInvalidDecl();
7189     }
7190 
7191     SetNestedNameSpecifier(*this, NewVD, D);
7192 
7193     // If we have any template parameter lists that don't directly belong to
7194     // the variable (matching the scope specifier), store them.
7195     unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
7196     if (TemplateParamLists.size() > VDTemplateParamLists)
7197       NewVD->setTemplateParameterListsInfo(
7198           Context, TemplateParamLists.drop_back(VDTemplateParamLists));
7199   }
7200 
7201   if (D.getDeclSpec().isInlineSpecified()) {
7202     if (!getLangOpts().CPlusPlus) {
7203       Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
7204           << 0;
7205     } else if (CurContext->isFunctionOrMethod()) {
7206       // 'inline' is not allowed on block scope variable declaration.
7207       Diag(D.getDeclSpec().getInlineSpecLoc(),
7208            diag::err_inline_declaration_block_scope) << Name
7209         << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7210     } else {
7211       Diag(D.getDeclSpec().getInlineSpecLoc(),
7212            getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
7213                                      : diag::ext_inline_variable);
7214       NewVD->setInlineSpecified();
7215     }
7216   }
7217 
7218   // Set the lexical context. If the declarator has a C++ scope specifier, the
7219   // lexical context will be different from the semantic context.
7220   NewVD->setLexicalDeclContext(CurContext);
7221   if (NewTemplate)
7222     NewTemplate->setLexicalDeclContext(CurContext);
7223 
7224   if (IsLocalExternDecl) {
7225     if (D.isDecompositionDeclarator())
7226       for (auto *B : Bindings)
7227         B->setLocalExternDecl();
7228     else
7229       NewVD->setLocalExternDecl();
7230   }
7231 
7232   bool EmitTLSUnsupportedError = false;
7233   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
7234     // C++11 [dcl.stc]p4:
7235     //   When thread_local is applied to a variable of block scope the
7236     //   storage-class-specifier static is implied if it does not appear
7237     //   explicitly.
7238     // Core issue: 'static' is not implied if the variable is declared
7239     //   'extern'.
7240     if (NewVD->hasLocalStorage() &&
7241         (SCSpec != DeclSpec::SCS_unspecified ||
7242          TSCS != DeclSpec::TSCS_thread_local ||
7243          !DC->isFunctionOrMethod()))
7244       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7245            diag::err_thread_non_global)
7246         << DeclSpec::getSpecifierName(TSCS);
7247     else if (!Context.getTargetInfo().isTLSSupported()) {
7248       if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7249           getLangOpts().SYCLIsDevice) {
7250         // Postpone error emission until we've collected attributes required to
7251         // figure out whether it's a host or device variable and whether the
7252         // error should be ignored.
7253         EmitTLSUnsupportedError = true;
7254         // We still need to mark the variable as TLS so it shows up in AST with
7255         // proper storage class for other tools to use even if we're not going
7256         // to emit any code for it.
7257         NewVD->setTSCSpec(TSCS);
7258       } else
7259         Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7260              diag::err_thread_unsupported);
7261     } else
7262       NewVD->setTSCSpec(TSCS);
7263   }
7264 
7265   switch (D.getDeclSpec().getConstexprSpecifier()) {
7266   case ConstexprSpecKind::Unspecified:
7267     break;
7268 
7269   case ConstexprSpecKind::Consteval:
7270     Diag(D.getDeclSpec().getConstexprSpecLoc(),
7271          diag::err_constexpr_wrong_decl_kind)
7272         << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
7273     LLVM_FALLTHROUGH;
7274 
7275   case ConstexprSpecKind::Constexpr:
7276     NewVD->setConstexpr(true);
7277     // C++1z [dcl.spec.constexpr]p1:
7278     //   A static data member declared with the constexpr specifier is
7279     //   implicitly an inline variable.
7280     if (NewVD->isStaticDataMember() &&
7281         (getLangOpts().CPlusPlus17 ||
7282          Context.getTargetInfo().getCXXABI().isMicrosoft()))
7283       NewVD->setImplicitlyInline();
7284     break;
7285 
7286   case ConstexprSpecKind::Constinit:
7287     if (!NewVD->hasGlobalStorage())
7288       Diag(D.getDeclSpec().getConstexprSpecLoc(),
7289            diag::err_constinit_local_variable);
7290     else
7291       NewVD->addAttr(ConstInitAttr::Create(
7292           Context, D.getDeclSpec().getConstexprSpecLoc(),
7293           AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit));
7294     break;
7295   }
7296 
7297   // C99 6.7.4p3
7298   //   An inline definition of a function with external linkage shall
7299   //   not contain a definition of a modifiable object with static or
7300   //   thread storage duration...
7301   // We only apply this when the function is required to be defined
7302   // elsewhere, i.e. when the function is not 'extern inline'.  Note
7303   // that a local variable with thread storage duration still has to
7304   // be marked 'static'.  Also note that it's possible to get these
7305   // semantics in C++ using __attribute__((gnu_inline)).
7306   if (SC == SC_Static && S->getFnParent() != nullptr &&
7307       !NewVD->getType().isConstQualified()) {
7308     FunctionDecl *CurFD = getCurFunctionDecl();
7309     if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
7310       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7311            diag::warn_static_local_in_extern_inline);
7312       MaybeSuggestAddingStaticToDecl(CurFD);
7313     }
7314   }
7315 
7316   if (D.getDeclSpec().isModulePrivateSpecified()) {
7317     if (IsVariableTemplateSpecialization)
7318       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7319           << (IsPartialSpecialization ? 1 : 0)
7320           << FixItHint::CreateRemoval(
7321                  D.getDeclSpec().getModulePrivateSpecLoc());
7322     else if (IsMemberSpecialization)
7323       Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7324         << 2
7325         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7326     else if (NewVD->hasLocalStorage())
7327       Diag(NewVD->getLocation(), diag::err_module_private_local)
7328           << 0 << NewVD
7329           << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7330           << FixItHint::CreateRemoval(
7331                  D.getDeclSpec().getModulePrivateSpecLoc());
7332     else {
7333       NewVD->setModulePrivate();
7334       if (NewTemplate)
7335         NewTemplate->setModulePrivate();
7336       for (auto *B : Bindings)
7337         B->setModulePrivate();
7338     }
7339   }
7340 
7341   if (getLangOpts().OpenCL) {
7342     deduceOpenCLAddressSpace(NewVD);
7343 
7344     DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
7345     if (TSC != TSCS_unspecified) {
7346       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7347            diag::err_opencl_unknown_type_specifier)
7348           << getLangOpts().getOpenCLVersionString()
7349           << DeclSpec::getSpecifierName(TSC) << 1;
7350       NewVD->setInvalidDecl();
7351     }
7352   }
7353 
7354   // Handle attributes prior to checking for duplicates in MergeVarDecl
7355   ProcessDeclAttributes(S, NewVD, D);
7356 
7357   // FIXME: This is probably the wrong location to be doing this and we should
7358   // probably be doing this for more attributes (especially for function
7359   // pointer attributes such as format, warn_unused_result, etc.). Ideally
7360   // the code to copy attributes would be generated by TableGen.
7361   if (R->isFunctionPointerType())
7362     if (const auto *TT = R->getAs<TypedefType>())
7363       copyAttrFromTypedefToDecl<AllocSizeAttr>(*this, NewVD, TT);
7364 
7365   if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7366       getLangOpts().SYCLIsDevice) {
7367     if (EmitTLSUnsupportedError &&
7368         ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
7369          (getLangOpts().OpenMPIsDevice &&
7370           OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
7371       Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7372            diag::err_thread_unsupported);
7373 
7374     if (EmitTLSUnsupportedError &&
7375         (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)))
7376       targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported);
7377     // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
7378     // storage [duration]."
7379     if (SC == SC_None && S->getFnParent() != nullptr &&
7380         (NewVD->hasAttr<CUDASharedAttr>() ||
7381          NewVD->hasAttr<CUDAConstantAttr>())) {
7382       NewVD->setStorageClass(SC_Static);
7383     }
7384   }
7385 
7386   // Ensure that dllimport globals without explicit storage class are treated as
7387   // extern. The storage class is set above using parsed attributes. Now we can
7388   // check the VarDecl itself.
7389   assert(!NewVD->hasAttr<DLLImportAttr>() ||
7390          NewVD->getAttr<DLLImportAttr>()->isInherited() ||
7391          NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
7392 
7393   // In auto-retain/release, infer strong retension for variables of
7394   // retainable type.
7395   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
7396     NewVD->setInvalidDecl();
7397 
7398   // Handle GNU asm-label extension (encoded as an attribute).
7399   if (Expr *E = (Expr*)D.getAsmLabel()) {
7400     // The parser guarantees this is a string.
7401     StringLiteral *SE = cast<StringLiteral>(E);
7402     StringRef Label = SE->getString();
7403     if (S->getFnParent() != nullptr) {
7404       switch (SC) {
7405       case SC_None:
7406       case SC_Auto:
7407         Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
7408         break;
7409       case SC_Register:
7410         // Local Named register
7411         if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
7412             DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
7413           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7414         break;
7415       case SC_Static:
7416       case SC_Extern:
7417       case SC_PrivateExtern:
7418         break;
7419       }
7420     } else if (SC == SC_Register) {
7421       // Global Named register
7422       if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
7423         const auto &TI = Context.getTargetInfo();
7424         bool HasSizeMismatch;
7425 
7426         if (!TI.isValidGCCRegisterName(Label))
7427           Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7428         else if (!TI.validateGlobalRegisterVariable(Label,
7429                                                     Context.getTypeSize(R),
7430                                                     HasSizeMismatch))
7431           Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
7432         else if (HasSizeMismatch)
7433           Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
7434       }
7435 
7436       if (!R->isIntegralType(Context) && !R->isPointerType()) {
7437         Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
7438         NewVD->setInvalidDecl(true);
7439       }
7440     }
7441 
7442     NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
7443                                         /*IsLiteralLabel=*/true,
7444                                         SE->getStrTokenLoc(0)));
7445   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7446     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7447       ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
7448     if (I != ExtnameUndeclaredIdentifiers.end()) {
7449       if (isDeclExternC(NewVD)) {
7450         NewVD->addAttr(I->second);
7451         ExtnameUndeclaredIdentifiers.erase(I);
7452       } else
7453         Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
7454             << /*Variable*/1 << NewVD;
7455     }
7456   }
7457 
7458   // Find the shadowed declaration before filtering for scope.
7459   NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
7460                                 ? getShadowedDeclaration(NewVD, Previous)
7461                                 : nullptr;
7462 
7463   // Don't consider existing declarations that are in a different
7464   // scope and are out-of-semantic-context declarations (if the new
7465   // declaration has linkage).
7466   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
7467                        D.getCXXScopeSpec().isNotEmpty() ||
7468                        IsMemberSpecialization ||
7469                        IsVariableTemplateSpecialization);
7470 
7471   // Check whether the previous declaration is in the same block scope. This
7472   // affects whether we merge types with it, per C++11 [dcl.array]p3.
7473   if (getLangOpts().CPlusPlus &&
7474       NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
7475     NewVD->setPreviousDeclInSameBlockScope(
7476         Previous.isSingleResult() && !Previous.isShadowed() &&
7477         isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
7478 
7479   if (!getLangOpts().CPlusPlus) {
7480     D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7481   } else {
7482     // If this is an explicit specialization of a static data member, check it.
7483     if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
7484         CheckMemberSpecialization(NewVD, Previous))
7485       NewVD->setInvalidDecl();
7486 
7487     // Merge the decl with the existing one if appropriate.
7488     if (!Previous.empty()) {
7489       if (Previous.isSingleResult() &&
7490           isa<FieldDecl>(Previous.getFoundDecl()) &&
7491           D.getCXXScopeSpec().isSet()) {
7492         // The user tried to define a non-static data member
7493         // out-of-line (C++ [dcl.meaning]p1).
7494         Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
7495           << D.getCXXScopeSpec().getRange();
7496         Previous.clear();
7497         NewVD->setInvalidDecl();
7498       }
7499     } else if (D.getCXXScopeSpec().isSet()) {
7500       // No previous declaration in the qualifying scope.
7501       Diag(D.getIdentifierLoc(), diag::err_no_member)
7502         << Name << computeDeclContext(D.getCXXScopeSpec(), true)
7503         << D.getCXXScopeSpec().getRange();
7504       NewVD->setInvalidDecl();
7505     }
7506 
7507     if (!IsVariableTemplateSpecialization)
7508       D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7509 
7510     if (NewTemplate) {
7511       VarTemplateDecl *PrevVarTemplate =
7512           NewVD->getPreviousDecl()
7513               ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
7514               : nullptr;
7515 
7516       // Check the template parameter list of this declaration, possibly
7517       // merging in the template parameter list from the previous variable
7518       // template declaration.
7519       if (CheckTemplateParameterList(
7520               TemplateParams,
7521               PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
7522                               : nullptr,
7523               (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
7524                DC->isDependentContext())
7525                   ? TPC_ClassTemplateMember
7526                   : TPC_VarTemplate))
7527         NewVD->setInvalidDecl();
7528 
7529       // If we are providing an explicit specialization of a static variable
7530       // template, make a note of that.
7531       if (PrevVarTemplate &&
7532           PrevVarTemplate->getInstantiatedFromMemberTemplate())
7533         PrevVarTemplate->setMemberSpecialization();
7534     }
7535   }
7536 
7537   // Diagnose shadowed variables iff this isn't a redeclaration.
7538   if (ShadowedDecl && !D.isRedeclaration())
7539     CheckShadow(NewVD, ShadowedDecl, Previous);
7540 
7541   ProcessPragmaWeak(S, NewVD);
7542 
7543   // If this is the first declaration of an extern C variable, update
7544   // the map of such variables.
7545   if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
7546       isIncompleteDeclExternC(*this, NewVD))
7547     RegisterLocallyScopedExternCDecl(NewVD, S);
7548 
7549   if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
7550     MangleNumberingContext *MCtx;
7551     Decl *ManglingContextDecl;
7552     std::tie(MCtx, ManglingContextDecl) =
7553         getCurrentMangleNumberContext(NewVD->getDeclContext());
7554     if (MCtx) {
7555       Context.setManglingNumber(
7556           NewVD, MCtx->getManglingNumber(
7557                      NewVD, getMSManglingNumber(getLangOpts(), S)));
7558       Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
7559     }
7560   }
7561 
7562   // Special handling of variable named 'main'.
7563   if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
7564       NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7565       !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
7566 
7567     // C++ [basic.start.main]p3
7568     // A program that declares a variable main at global scope is ill-formed.
7569     if (getLangOpts().CPlusPlus)
7570       Diag(D.getBeginLoc(), diag::err_main_global_variable);
7571 
7572     // In C, and external-linkage variable named main results in undefined
7573     // behavior.
7574     else if (NewVD->hasExternalFormalLinkage())
7575       Diag(D.getBeginLoc(), diag::warn_main_redefined);
7576   }
7577 
7578   if (D.isRedeclaration() && !Previous.empty()) {
7579     NamedDecl *Prev = Previous.getRepresentativeDecl();
7580     checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
7581                                    D.isFunctionDefinition());
7582   }
7583 
7584   if (NewTemplate) {
7585     if (NewVD->isInvalidDecl())
7586       NewTemplate->setInvalidDecl();
7587     ActOnDocumentableDecl(NewTemplate);
7588     return NewTemplate;
7589   }
7590 
7591   if (IsMemberSpecialization && !NewVD->isInvalidDecl())
7592     CompleteMemberSpecialization(NewVD, Previous);
7593 
7594   return NewVD;
7595 }
7596 
7597 /// Enum describing the %select options in diag::warn_decl_shadow.
7598 enum ShadowedDeclKind {
7599   SDK_Local,
7600   SDK_Global,
7601   SDK_StaticMember,
7602   SDK_Field,
7603   SDK_Typedef,
7604   SDK_Using,
7605   SDK_StructuredBinding
7606 };
7607 
7608 /// Determine what kind of declaration we're shadowing.
7609 static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
7610                                                 const DeclContext *OldDC) {
7611   if (isa<TypeAliasDecl>(ShadowedDecl))
7612     return SDK_Using;
7613   else if (isa<TypedefDecl>(ShadowedDecl))
7614     return SDK_Typedef;
7615   else if (isa<BindingDecl>(ShadowedDecl))
7616     return SDK_StructuredBinding;
7617   else if (isa<RecordDecl>(OldDC))
7618     return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
7619 
7620   return OldDC->isFileContext() ? SDK_Global : SDK_Local;
7621 }
7622 
7623 /// Return the location of the capture if the given lambda captures the given
7624 /// variable \p VD, or an invalid source location otherwise.
7625 static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
7626                                          const VarDecl *VD) {
7627   for (const Capture &Capture : LSI->Captures) {
7628     if (Capture.isVariableCapture() && Capture.getVariable() == VD)
7629       return Capture.getLocation();
7630   }
7631   return SourceLocation();
7632 }
7633 
7634 static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
7635                                      const LookupResult &R) {
7636   // Only diagnose if we're shadowing an unambiguous field or variable.
7637   if (R.getResultKind() != LookupResult::Found)
7638     return false;
7639 
7640   // Return false if warning is ignored.
7641   return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
7642 }
7643 
7644 /// Return the declaration shadowed by the given variable \p D, or null
7645 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7646 NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
7647                                         const LookupResult &R) {
7648   if (!shouldWarnIfShadowedDecl(Diags, R))
7649     return nullptr;
7650 
7651   // Don't diagnose declarations at file scope.
7652   if (D->hasGlobalStorage())
7653     return nullptr;
7654 
7655   NamedDecl *ShadowedDecl = R.getFoundDecl();
7656   return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
7657                                                             : nullptr;
7658 }
7659 
7660 /// Return the declaration shadowed by the given typedef \p D, or null
7661 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7662 NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
7663                                         const LookupResult &R) {
7664   // Don't warn if typedef declaration is part of a class
7665   if (D->getDeclContext()->isRecord())
7666     return nullptr;
7667 
7668   if (!shouldWarnIfShadowedDecl(Diags, R))
7669     return nullptr;
7670 
7671   NamedDecl *ShadowedDecl = R.getFoundDecl();
7672   return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7673 }
7674 
7675 /// Return the declaration shadowed by the given variable \p D, or null
7676 /// if it doesn't shadow any declaration or shadowing warnings are disabled.
7677 NamedDecl *Sema::getShadowedDeclaration(const BindingDecl *D,
7678                                         const LookupResult &R) {
7679   if (!shouldWarnIfShadowedDecl(Diags, R))
7680     return nullptr;
7681 
7682   NamedDecl *ShadowedDecl = R.getFoundDecl();
7683   return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl
7684                                                             : nullptr;
7685 }
7686 
7687 /// Diagnose variable or built-in function shadowing.  Implements
7688 /// -Wshadow.
7689 ///
7690 /// This method is called whenever a VarDecl is added to a "useful"
7691 /// scope.
7692 ///
7693 /// \param ShadowedDecl the declaration that is shadowed by the given variable
7694 /// \param R the lookup of the name
7695 ///
7696 void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7697                        const LookupResult &R) {
7698   DeclContext *NewDC = D->getDeclContext();
7699 
7700   if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7701     // Fields are not shadowed by variables in C++ static methods.
7702     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7703       if (MD->isStatic())
7704         return;
7705 
7706     // Fields shadowed by constructor parameters are a special case. Usually
7707     // the constructor initializes the field with the parameter.
7708     if (isa<CXXConstructorDecl>(NewDC))
7709       if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7710         // Remember that this was shadowed so we can either warn about its
7711         // modification or its existence depending on warning settings.
7712         ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7713         return;
7714       }
7715   }
7716 
7717   if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7718     if (shadowedVar->isExternC()) {
7719       // For shadowing external vars, make sure that we point to the global
7720       // declaration, not a locally scoped extern declaration.
7721       for (auto I : shadowedVar->redecls())
7722         if (I->isFileVarDecl()) {
7723           ShadowedDecl = I;
7724           break;
7725         }
7726     }
7727 
7728   DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7729 
7730   unsigned WarningDiag = diag::warn_decl_shadow;
7731   SourceLocation CaptureLoc;
7732   if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7733       isa<CXXMethodDecl>(NewDC)) {
7734     if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7735       if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7736         if (RD->getLambdaCaptureDefault() == LCD_None) {
7737           // Try to avoid warnings for lambdas with an explicit capture list.
7738           const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7739           // Warn only when the lambda captures the shadowed decl explicitly.
7740           CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7741           if (CaptureLoc.isInvalid())
7742             WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7743         } else {
7744           // Remember that this was shadowed so we can avoid the warning if the
7745           // shadowed decl isn't captured and the warning settings allow it.
7746           cast<LambdaScopeInfo>(getCurFunction())
7747               ->ShadowingDecls.push_back(
7748                   {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7749           return;
7750         }
7751       }
7752 
7753       if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7754         // A variable can't shadow a local variable in an enclosing scope, if
7755         // they are separated by a non-capturing declaration context.
7756         for (DeclContext *ParentDC = NewDC;
7757              ParentDC && !ParentDC->Equals(OldDC);
7758              ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7759           // Only block literals, captured statements, and lambda expressions
7760           // can capture; other scopes don't.
7761           if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7762               !isLambdaCallOperator(ParentDC)) {
7763             return;
7764           }
7765         }
7766       }
7767     }
7768   }
7769 
7770   // Only warn about certain kinds of shadowing for class members.
7771   if (NewDC && NewDC->isRecord()) {
7772     // In particular, don't warn about shadowing non-class members.
7773     if (!OldDC->isRecord())
7774       return;
7775 
7776     // TODO: should we warn about static data members shadowing
7777     // static data members from base classes?
7778 
7779     // TODO: don't diagnose for inaccessible shadowed members.
7780     // This is hard to do perfectly because we might friend the
7781     // shadowing context, but that's just a false negative.
7782   }
7783 
7784 
7785   DeclarationName Name = R.getLookupName();
7786 
7787   // Emit warning and note.
7788   if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7789     return;
7790   ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7791   Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7792   if (!CaptureLoc.isInvalid())
7793     Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7794         << Name << /*explicitly*/ 1;
7795   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7796 }
7797 
7798 /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7799 /// when these variables are captured by the lambda.
7800 void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7801   for (const auto &Shadow : LSI->ShadowingDecls) {
7802     const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7803     // Try to avoid the warning when the shadowed decl isn't captured.
7804     SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7805     const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7806     Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7807                                        ? diag::warn_decl_shadow_uncaptured_local
7808                                        : diag::warn_decl_shadow)
7809         << Shadow.VD->getDeclName()
7810         << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7811     if (!CaptureLoc.isInvalid())
7812       Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7813           << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7814     Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7815   }
7816 }
7817 
7818 /// Check -Wshadow without the advantage of a previous lookup.
7819 void Sema::CheckShadow(Scope *S, VarDecl *D) {
7820   if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7821     return;
7822 
7823   LookupResult R(*this, D->getDeclName(), D->getLocation(),
7824                  Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7825   LookupName(R, S);
7826   if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7827     CheckShadow(D, ShadowedDecl, R);
7828 }
7829 
7830 /// Check if 'E', which is an expression that is about to be modified, refers
7831 /// to a constructor parameter that shadows a field.
7832 void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7833   // Quickly ignore expressions that can't be shadowing ctor parameters.
7834   if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7835     return;
7836   E = E->IgnoreParenImpCasts();
7837   auto *DRE = dyn_cast<DeclRefExpr>(E);
7838   if (!DRE)
7839     return;
7840   const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7841   auto I = ShadowingDecls.find(D);
7842   if (I == ShadowingDecls.end())
7843     return;
7844   const NamedDecl *ShadowedDecl = I->second;
7845   const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7846   Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7847   Diag(D->getLocation(), diag::note_var_declared_here) << D;
7848   Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7849 
7850   // Avoid issuing multiple warnings about the same decl.
7851   ShadowingDecls.erase(I);
7852 }
7853 
7854 /// Check for conflict between this global or extern "C" declaration and
7855 /// previous global or extern "C" declarations. This is only used in C++.
7856 template<typename T>
7857 static bool checkGlobalOrExternCConflict(
7858     Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7859   assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
7860   NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7861 
7862   if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7863     // The common case: this global doesn't conflict with any extern "C"
7864     // declaration.
7865     return false;
7866   }
7867 
7868   if (Prev) {
7869     if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7870       // Both the old and new declarations have C language linkage. This is a
7871       // redeclaration.
7872       Previous.clear();
7873       Previous.addDecl(Prev);
7874       return true;
7875     }
7876 
7877     // This is a global, non-extern "C" declaration, and there is a previous
7878     // non-global extern "C" declaration. Diagnose if this is a variable
7879     // declaration.
7880     if (!isa<VarDecl>(ND))
7881       return false;
7882   } else {
7883     // The declaration is extern "C". Check for any declaration in the
7884     // translation unit which might conflict.
7885     if (IsGlobal) {
7886       // We have already performed the lookup into the translation unit.
7887       IsGlobal = false;
7888       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7889            I != E; ++I) {
7890         if (isa<VarDecl>(*I)) {
7891           Prev = *I;
7892           break;
7893         }
7894       }
7895     } else {
7896       DeclContext::lookup_result R =
7897           S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7898       for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7899            I != E; ++I) {
7900         if (isa<VarDecl>(*I)) {
7901           Prev = *I;
7902           break;
7903         }
7904         // FIXME: If we have any other entity with this name in global scope,
7905         // the declaration is ill-formed, but that is a defect: it breaks the
7906         // 'stat' hack, for instance. Only variables can have mangled name
7907         // clashes with extern "C" declarations, so only they deserve a
7908         // diagnostic.
7909       }
7910     }
7911 
7912     if (!Prev)
7913       return false;
7914   }
7915 
7916   // Use the first declaration's location to ensure we point at something which
7917   // is lexically inside an extern "C" linkage-spec.
7918   assert(Prev && "should have found a previous declaration to diagnose");
7919   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7920     Prev = FD->getFirstDecl();
7921   else
7922     Prev = cast<VarDecl>(Prev)->getFirstDecl();
7923 
7924   S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7925     << IsGlobal << ND;
7926   S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7927     << IsGlobal;
7928   return false;
7929 }
7930 
7931 /// Apply special rules for handling extern "C" declarations. Returns \c true
7932 /// if we have found that this is a redeclaration of some prior entity.
7933 ///
7934 /// Per C++ [dcl.link]p6:
7935 ///   Two declarations [for a function or variable] with C language linkage
7936 ///   with the same name that appear in different scopes refer to the same
7937 ///   [entity]. An entity with C language linkage shall not be declared with
7938 ///   the same name as an entity in global scope.
7939 template<typename T>
7940 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7941                                                   LookupResult &Previous) {
7942   if (!S.getLangOpts().CPlusPlus) {
7943     // In C, when declaring a global variable, look for a corresponding 'extern'
7944     // variable declared in function scope. We don't need this in C++, because
7945     // we find local extern decls in the surrounding file-scope DeclContext.
7946     if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7947       if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7948         Previous.clear();
7949         Previous.addDecl(Prev);
7950         return true;
7951       }
7952     }
7953     return false;
7954   }
7955 
7956   // A declaration in the translation unit can conflict with an extern "C"
7957   // declaration.
7958   if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7959     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7960 
7961   // An extern "C" declaration can conflict with a declaration in the
7962   // translation unit or can be a redeclaration of an extern "C" declaration
7963   // in another scope.
7964   if (isIncompleteDeclExternC(S,ND))
7965     return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7966 
7967   // Neither global nor extern "C": nothing to do.
7968   return false;
7969 }
7970 
7971 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7972   // If the decl is already known invalid, don't check it.
7973   if (NewVD->isInvalidDecl())
7974     return;
7975 
7976   QualType T = NewVD->getType();
7977 
7978   // Defer checking an 'auto' type until its initializer is attached.
7979   if (T->isUndeducedType())
7980     return;
7981 
7982   if (NewVD->hasAttrs())
7983     CheckAlignasUnderalignment(NewVD);
7984 
7985   if (T->isObjCObjectType()) {
7986     Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7987       << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7988     T = Context.getObjCObjectPointerType(T);
7989     NewVD->setType(T);
7990   }
7991 
7992   // Emit an error if an address space was applied to decl with local storage.
7993   // This includes arrays of objects with address space qualifiers, but not
7994   // automatic variables that point to other address spaces.
7995   // ISO/IEC TR 18037 S5.1.2
7996   if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7997       T.getAddressSpace() != LangAS::Default) {
7998     Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7999     NewVD->setInvalidDecl();
8000     return;
8001   }
8002 
8003   // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
8004   // scope.
8005   if (getLangOpts().OpenCLVersion == 120 &&
8006       !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers",
8007                                             getLangOpts()) &&
8008       NewVD->isStaticLocal()) {
8009     Diag(NewVD->getLocation(), diag::err_static_function_scope);
8010     NewVD->setInvalidDecl();
8011     return;
8012   }
8013 
8014   if (getLangOpts().OpenCL) {
8015     if (!diagnoseOpenCLTypes(*this, NewVD))
8016       return;
8017 
8018     // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
8019     if (NewVD->hasAttr<BlocksAttr>()) {
8020       Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
8021       return;
8022     }
8023 
8024     if (T->isBlockPointerType()) {
8025       // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
8026       // can't use 'extern' storage class.
8027       if (!T.isConstQualified()) {
8028         Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
8029             << 0 /*const*/;
8030         NewVD->setInvalidDecl();
8031         return;
8032       }
8033       if (NewVD->hasExternalStorage()) {
8034         Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
8035         NewVD->setInvalidDecl();
8036         return;
8037       }
8038     }
8039 
8040     // FIXME: Adding local AS in C++ for OpenCL might make sense.
8041     if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
8042         NewVD->hasExternalStorage()) {
8043       if (!T->isSamplerT() && !T->isDependentType() &&
8044           !(T.getAddressSpace() == LangAS::opencl_constant ||
8045             (T.getAddressSpace() == LangAS::opencl_global &&
8046              getOpenCLOptions().areProgramScopeVariablesSupported(
8047                  getLangOpts())))) {
8048         int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
8049         if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()))
8050           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8051               << Scope << "global or constant";
8052         else
8053           Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
8054               << Scope << "constant";
8055         NewVD->setInvalidDecl();
8056         return;
8057       }
8058     } else {
8059       if (T.getAddressSpace() == LangAS::opencl_global) {
8060         Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8061             << 1 /*is any function*/ << "global";
8062         NewVD->setInvalidDecl();
8063         return;
8064       }
8065       if (T.getAddressSpace() == LangAS::opencl_constant ||
8066           T.getAddressSpace() == LangAS::opencl_local) {
8067         FunctionDecl *FD = getCurFunctionDecl();
8068         // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
8069         // in functions.
8070         if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
8071           if (T.getAddressSpace() == LangAS::opencl_constant)
8072             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8073                 << 0 /*non-kernel only*/ << "constant";
8074           else
8075             Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
8076                 << 0 /*non-kernel only*/ << "local";
8077           NewVD->setInvalidDecl();
8078           return;
8079         }
8080         // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
8081         // in the outermost scope of a kernel function.
8082         if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
8083           if (!getCurScope()->isFunctionScope()) {
8084             if (T.getAddressSpace() == LangAS::opencl_constant)
8085               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8086                   << "constant";
8087             else
8088               Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
8089                   << "local";
8090             NewVD->setInvalidDecl();
8091             return;
8092           }
8093         }
8094       } else if (T.getAddressSpace() != LangAS::opencl_private &&
8095                  // If we are parsing a template we didn't deduce an addr
8096                  // space yet.
8097                  T.getAddressSpace() != LangAS::Default) {
8098         // Do not allow other address spaces on automatic variable.
8099         Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
8100         NewVD->setInvalidDecl();
8101         return;
8102       }
8103     }
8104   }
8105 
8106   if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
8107       && !NewVD->hasAttr<BlocksAttr>()) {
8108     if (getLangOpts().getGC() != LangOptions::NonGC)
8109       Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
8110     else {
8111       assert(!getLangOpts().ObjCAutoRefCount);
8112       Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
8113     }
8114   }
8115 
8116   bool isVM = T->isVariablyModifiedType();
8117   if (isVM || NewVD->hasAttr<CleanupAttr>() ||
8118       NewVD->hasAttr<BlocksAttr>())
8119     setFunctionHasBranchProtectedScope();
8120 
8121   if ((isVM && NewVD->hasLinkage()) ||
8122       (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
8123     bool SizeIsNegative;
8124     llvm::APSInt Oversized;
8125     TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
8126         NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
8127     QualType FixedT;
8128     if (FixedTInfo &&  T == NewVD->getTypeSourceInfo()->getType())
8129       FixedT = FixedTInfo->getType();
8130     else if (FixedTInfo) {
8131       // Type and type-as-written are canonically different. We need to fix up
8132       // both types separately.
8133       FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
8134                                                    Oversized);
8135     }
8136     if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
8137       const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
8138       // FIXME: This won't give the correct result for
8139       // int a[10][n];
8140       SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
8141 
8142       if (NewVD->isFileVarDecl())
8143         Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
8144         << SizeRange;
8145       else if (NewVD->isStaticLocal())
8146         Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
8147         << SizeRange;
8148       else
8149         Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
8150         << SizeRange;
8151       NewVD->setInvalidDecl();
8152       return;
8153     }
8154 
8155     if (!FixedTInfo) {
8156       if (NewVD->isFileVarDecl())
8157         Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
8158       else
8159         Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
8160       NewVD->setInvalidDecl();
8161       return;
8162     }
8163 
8164     Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant);
8165     NewVD->setType(FixedT);
8166     NewVD->setTypeSourceInfo(FixedTInfo);
8167   }
8168 
8169   if (T->isVoidType()) {
8170     // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8171     //                    of objects and functions.
8172     if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
8173       Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
8174         << T;
8175       NewVD->setInvalidDecl();
8176       return;
8177     }
8178   }
8179 
8180   if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
8181     Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
8182     NewVD->setInvalidDecl();
8183     return;
8184   }
8185 
8186   if (!NewVD->hasLocalStorage() && T->isSizelessType()) {
8187     Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T;
8188     NewVD->setInvalidDecl();
8189     return;
8190   }
8191 
8192   if (isVM && NewVD->hasAttr<BlocksAttr>()) {
8193     Diag(NewVD->getLocation(), diag::err_block_on_vm);
8194     NewVD->setInvalidDecl();
8195     return;
8196   }
8197 
8198   if (NewVD->isConstexpr() && !T->isDependentType() &&
8199       RequireLiteralType(NewVD->getLocation(), T,
8200                          diag::err_constexpr_var_non_literal)) {
8201     NewVD->setInvalidDecl();
8202     return;
8203   }
8204 
8205   // PPC MMA non-pointer types are not allowed as non-local variable types.
8206   if (Context.getTargetInfo().getTriple().isPPC64() &&
8207       !NewVD->isLocalVarDecl() &&
8208       CheckPPCMMAType(T, NewVD->getLocation())) {
8209     NewVD->setInvalidDecl();
8210     return;
8211   }
8212 }
8213 
8214 /// Perform semantic checking on a newly-created variable
8215 /// declaration.
8216 ///
8217 /// This routine performs all of the type-checking required for a
8218 /// variable declaration once it has been built. It is used both to
8219 /// check variables after they have been parsed and their declarators
8220 /// have been translated into a declaration, and to check variables
8221 /// that have been instantiated from a template.
8222 ///
8223 /// Sets NewVD->isInvalidDecl() if an error was encountered.
8224 ///
8225 /// Returns true if the variable declaration is a redeclaration.
8226 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
8227   CheckVariableDeclarationType(NewVD);
8228 
8229   // If the decl is already known invalid, don't check it.
8230   if (NewVD->isInvalidDecl())
8231     return false;
8232 
8233   // If we did not find anything by this name, look for a non-visible
8234   // extern "C" declaration with the same name.
8235   if (Previous.empty() &&
8236       checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
8237     Previous.setShadowed();
8238 
8239   if (!Previous.empty()) {
8240     MergeVarDecl(NewVD, Previous);
8241     return true;
8242   }
8243   return false;
8244 }
8245 
8246 /// AddOverriddenMethods - See if a method overrides any in the base classes,
8247 /// and if so, check that it's a valid override and remember it.
8248 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
8249   llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden;
8250 
8251   // Look for methods in base classes that this method might override.
8252   CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8253                      /*DetectVirtual=*/false);
8254   auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
8255     CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
8256     DeclarationName Name = MD->getDeclName();
8257 
8258     if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8259       // We really want to find the base class destructor here.
8260       QualType T = Context.getTypeDeclType(BaseRecord);
8261       CanQualType CT = Context.getCanonicalType(T);
8262       Name = Context.DeclarationNames.getCXXDestructorName(CT);
8263     }
8264 
8265     for (NamedDecl *BaseND : BaseRecord->lookup(Name)) {
8266       CXXMethodDecl *BaseMD =
8267           dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl());
8268       if (!BaseMD || !BaseMD->isVirtual() ||
8269           IsOverload(MD, BaseMD, /*UseMemberUsingDeclRules=*/false,
8270                      /*ConsiderCudaAttrs=*/true,
8271                      // C++2a [class.virtual]p2 does not consider requires
8272                      // clauses when overriding.
8273                      /*ConsiderRequiresClauses=*/false))
8274         continue;
8275 
8276       if (Overridden.insert(BaseMD).second) {
8277         MD->addOverriddenMethod(BaseMD);
8278         CheckOverridingFunctionReturnType(MD, BaseMD);
8279         CheckOverridingFunctionAttributes(MD, BaseMD);
8280         CheckOverridingFunctionExceptionSpec(MD, BaseMD);
8281         CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD);
8282       }
8283 
8284       // A method can only override one function from each base class. We
8285       // don't track indirectly overridden methods from bases of bases.
8286       return true;
8287     }
8288 
8289     return false;
8290   };
8291 
8292   DC->lookupInBases(VisitBase, Paths);
8293   return !Overridden.empty();
8294 }
8295 
8296 namespace {
8297   // Struct for holding all of the extra arguments needed by
8298   // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
8299   struct ActOnFDArgs {
8300     Scope *S;
8301     Declarator &D;
8302     MultiTemplateParamsArg TemplateParamLists;
8303     bool AddToScope;
8304   };
8305 } // end anonymous namespace
8306 
8307 namespace {
8308 
8309 // Callback to only accept typo corrections that have a non-zero edit distance.
8310 // Also only accept corrections that have the same parent decl.
8311 class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
8312  public:
8313   DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
8314                             CXXRecordDecl *Parent)
8315       : Context(Context), OriginalFD(TypoFD),
8316         ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
8317 
8318   bool ValidateCandidate(const TypoCorrection &candidate) override {
8319     if (candidate.getEditDistance() == 0)
8320       return false;
8321 
8322     SmallVector<unsigned, 1> MismatchedParams;
8323     for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
8324                                           CDeclEnd = candidate.end();
8325          CDecl != CDeclEnd; ++CDecl) {
8326       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8327 
8328       if (FD && !FD->hasBody() &&
8329           hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
8330         if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8331           CXXRecordDecl *Parent = MD->getParent();
8332           if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
8333             return true;
8334         } else if (!ExpectedParent) {
8335           return true;
8336         }
8337       }
8338     }
8339 
8340     return false;
8341   }
8342 
8343   std::unique_ptr<CorrectionCandidateCallback> clone() override {
8344     return std::make_unique<DifferentNameValidatorCCC>(*this);
8345   }
8346 
8347  private:
8348   ASTContext &Context;
8349   FunctionDecl *OriginalFD;
8350   CXXRecordDecl *ExpectedParent;
8351 };
8352 
8353 } // end anonymous namespace
8354 
8355 void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
8356   TypoCorrectedFunctionDefinitions.insert(F);
8357 }
8358 
8359 /// Generate diagnostics for an invalid function redeclaration.
8360 ///
8361 /// This routine handles generating the diagnostic messages for an invalid
8362 /// function redeclaration, including finding possible similar declarations
8363 /// or performing typo correction if there are no previous declarations with
8364 /// the same name.
8365 ///
8366 /// Returns a NamedDecl iff typo correction was performed and substituting in
8367 /// the new declaration name does not cause new errors.
8368 static NamedDecl *DiagnoseInvalidRedeclaration(
8369     Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
8370     ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
8371   DeclarationName Name = NewFD->getDeclName();
8372   DeclContext *NewDC = NewFD->getDeclContext();
8373   SmallVector<unsigned, 1> MismatchedParams;
8374   SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
8375   TypoCorrection Correction;
8376   bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
8377   unsigned DiagMsg =
8378     IsLocalFriend ? diag::err_no_matching_local_friend :
8379     NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
8380     diag::err_member_decl_does_not_match;
8381   LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
8382                     IsLocalFriend ? Sema::LookupLocalFriendName
8383                                   : Sema::LookupOrdinaryName,
8384                     Sema::ForVisibleRedeclaration);
8385 
8386   NewFD->setInvalidDecl();
8387   if (IsLocalFriend)
8388     SemaRef.LookupName(Prev, S);
8389   else
8390     SemaRef.LookupQualifiedName(Prev, NewDC);
8391   assert(!Prev.isAmbiguous() &&
8392          "Cannot have an ambiguity in previous-declaration lookup");
8393   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8394   DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
8395                                 MD ? MD->getParent() : nullptr);
8396   if (!Prev.empty()) {
8397     for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
8398          Func != FuncEnd; ++Func) {
8399       FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
8400       if (FD &&
8401           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8402         // Add 1 to the index so that 0 can mean the mismatch didn't
8403         // involve a parameter
8404         unsigned ParamNum =
8405             MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
8406         NearMatches.push_back(std::make_pair(FD, ParamNum));
8407       }
8408     }
8409   // If the qualified name lookup yielded nothing, try typo correction
8410   } else if ((Correction = SemaRef.CorrectTypo(
8411                   Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
8412                   &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
8413                   IsLocalFriend ? nullptr : NewDC))) {
8414     // Set up everything for the call to ActOnFunctionDeclarator
8415     ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
8416                               ExtraArgs.D.getIdentifierLoc());
8417     Previous.clear();
8418     Previous.setLookupName(Correction.getCorrection());
8419     for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
8420                                     CDeclEnd = Correction.end();
8421          CDecl != CDeclEnd; ++CDecl) {
8422       FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8423       if (FD && !FD->hasBody() &&
8424           hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8425         Previous.addDecl(FD);
8426       }
8427     }
8428     bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
8429 
8430     NamedDecl *Result;
8431     // Retry building the function declaration with the new previous
8432     // declarations, and with errors suppressed.
8433     {
8434       // Trap errors.
8435       Sema::SFINAETrap Trap(SemaRef);
8436 
8437       // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
8438       // pieces need to verify the typo-corrected C++ declaration and hopefully
8439       // eliminate the need for the parameter pack ExtraArgs.
8440       Result = SemaRef.ActOnFunctionDeclarator(
8441           ExtraArgs.S, ExtraArgs.D,
8442           Correction.getCorrectionDecl()->getDeclContext(),
8443           NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
8444           ExtraArgs.AddToScope);
8445 
8446       if (Trap.hasErrorOccurred())
8447         Result = nullptr;
8448     }
8449 
8450     if (Result) {
8451       // Determine which correction we picked.
8452       Decl *Canonical = Result->getCanonicalDecl();
8453       for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8454            I != E; ++I)
8455         if ((*I)->getCanonicalDecl() == Canonical)
8456           Correction.setCorrectionDecl(*I);
8457 
8458       // Let Sema know about the correction.
8459       SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
8460       SemaRef.diagnoseTypo(
8461           Correction,
8462           SemaRef.PDiag(IsLocalFriend
8463                           ? diag::err_no_matching_local_friend_suggest
8464                           : diag::err_member_decl_does_not_match_suggest)
8465             << Name << NewDC << IsDefinition);
8466       return Result;
8467     }
8468 
8469     // Pretend the typo correction never occurred
8470     ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
8471                               ExtraArgs.D.getIdentifierLoc());
8472     ExtraArgs.D.setRedeclaration(wasRedeclaration);
8473     Previous.clear();
8474     Previous.setLookupName(Name);
8475   }
8476 
8477   SemaRef.Diag(NewFD->getLocation(), DiagMsg)
8478       << Name << NewDC << IsDefinition << NewFD->getLocation();
8479 
8480   bool NewFDisConst = false;
8481   if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
8482     NewFDisConst = NewMD->isConst();
8483 
8484   for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
8485        NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
8486        NearMatch != NearMatchEnd; ++NearMatch) {
8487     FunctionDecl *FD = NearMatch->first;
8488     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8489     bool FDisConst = MD && MD->isConst();
8490     bool IsMember = MD || !IsLocalFriend;
8491 
8492     // FIXME: These notes are poorly worded for the local friend case.
8493     if (unsigned Idx = NearMatch->second) {
8494       ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
8495       SourceLocation Loc = FDParam->getTypeSpecStartLoc();
8496       if (Loc.isInvalid()) Loc = FD->getLocation();
8497       SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
8498                                  : diag::note_local_decl_close_param_match)
8499         << Idx << FDParam->getType()
8500         << NewFD->getParamDecl(Idx - 1)->getType();
8501     } else if (FDisConst != NewFDisConst) {
8502       SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
8503           << NewFDisConst << FD->getSourceRange().getEnd();
8504     } else
8505       SemaRef.Diag(FD->getLocation(),
8506                    IsMember ? diag::note_member_def_close_match
8507                             : diag::note_local_decl_close_match);
8508   }
8509   return nullptr;
8510 }
8511 
8512 static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
8513   switch (D.getDeclSpec().getStorageClassSpec()) {
8514   default: llvm_unreachable("Unknown storage class!");
8515   case DeclSpec::SCS_auto:
8516   case DeclSpec::SCS_register:
8517   case DeclSpec::SCS_mutable:
8518     SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8519                  diag::err_typecheck_sclass_func);
8520     D.getMutableDeclSpec().ClearStorageClassSpecs();
8521     D.setInvalidType();
8522     break;
8523   case DeclSpec::SCS_unspecified: break;
8524   case DeclSpec::SCS_extern:
8525     if (D.getDeclSpec().isExternInLinkageSpec())
8526       return SC_None;
8527     return SC_Extern;
8528   case DeclSpec::SCS_static: {
8529     if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8530       // C99 6.7.1p5:
8531       //   The declaration of an identifier for a function that has
8532       //   block scope shall have no explicit storage-class specifier
8533       //   other than extern
8534       // See also (C++ [dcl.stc]p4).
8535       SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8536                    diag::err_static_block_func);
8537       break;
8538     } else
8539       return SC_Static;
8540   }
8541   case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
8542   }
8543 
8544   // No explicit storage class has already been returned
8545   return SC_None;
8546 }
8547 
8548 static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
8549                                            DeclContext *DC, QualType &R,
8550                                            TypeSourceInfo *TInfo,
8551                                            StorageClass SC,
8552                                            bool &IsVirtualOkay) {
8553   DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
8554   DeclarationName Name = NameInfo.getName();
8555 
8556   FunctionDecl *NewFD = nullptr;
8557   bool isInline = D.getDeclSpec().isInlineSpecified();
8558 
8559   if (!SemaRef.getLangOpts().CPlusPlus) {
8560     // Determine whether the function was written with a
8561     // prototype. This true when:
8562     //   - there is a prototype in the declarator, or
8563     //   - the type R of the function is some kind of typedef or other non-
8564     //     attributed reference to a type name (which eventually refers to a
8565     //     function type).
8566     bool HasPrototype =
8567       (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
8568       (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
8569 
8570     NewFD = FunctionDecl::Create(
8571         SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
8572         SemaRef.getCurFPFeatures().isFPConstrained(), isInline, HasPrototype,
8573         ConstexprSpecKind::Unspecified,
8574         /*TrailingRequiresClause=*/nullptr);
8575     if (D.isInvalidType())
8576       NewFD->setInvalidDecl();
8577 
8578     return NewFD;
8579   }
8580 
8581   ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
8582 
8583   ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
8584   if (ConstexprKind == ConstexprSpecKind::Constinit) {
8585     SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
8586                  diag::err_constexpr_wrong_decl_kind)
8587         << static_cast<int>(ConstexprKind);
8588     ConstexprKind = ConstexprSpecKind::Unspecified;
8589     D.getMutableDeclSpec().ClearConstexprSpec();
8590   }
8591   Expr *TrailingRequiresClause = D.getTrailingRequiresClause();
8592 
8593   // Check that the return type is not an abstract class type.
8594   // For record types, this is done by the AbstractClassUsageDiagnoser once
8595   // the class has been completely parsed.
8596   if (!DC->isRecord() &&
8597       SemaRef.RequireNonAbstractType(
8598           D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(),
8599           diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
8600     D.setInvalidType();
8601 
8602   if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
8603     // This is a C++ constructor declaration.
8604     assert(DC->isRecord() &&
8605            "Constructors can only be declared in a member context");
8606 
8607     R = SemaRef.CheckConstructorDeclarator(D, R, SC);
8608     return CXXConstructorDecl::Create(
8609         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8610         TInfo, ExplicitSpecifier, SemaRef.getCurFPFeatures().isFPConstrained(),
8611         isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
8612         InheritedConstructor(), TrailingRequiresClause);
8613 
8614   } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8615     // This is a C++ destructor declaration.
8616     if (DC->isRecord()) {
8617       R = SemaRef.CheckDestructorDeclarator(D, R, SC);
8618       CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
8619       CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
8620           SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
8621           SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8622           /*isImplicitlyDeclared=*/false, ConstexprKind,
8623           TrailingRequiresClause);
8624 
8625       // If the destructor needs an implicit exception specification, set it
8626       // now. FIXME: It'd be nice to be able to create the right type to start
8627       // with, but the type needs to reference the destructor declaration.
8628       if (SemaRef.getLangOpts().CPlusPlus11)
8629         SemaRef.AdjustDestructorExceptionSpec(NewDD);
8630 
8631       IsVirtualOkay = true;
8632       return NewDD;
8633 
8634     } else {
8635       SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
8636       D.setInvalidType();
8637 
8638       // Create a FunctionDecl to satisfy the function definition parsing
8639       // code path.
8640       return FunctionDecl::Create(
8641           SemaRef.Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), Name, R,
8642           TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8643           /*hasPrototype=*/true, ConstexprKind, TrailingRequiresClause);
8644     }
8645 
8646   } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
8647     if (!DC->isRecord()) {
8648       SemaRef.Diag(D.getIdentifierLoc(),
8649            diag::err_conv_function_not_member);
8650       return nullptr;
8651     }
8652 
8653     SemaRef.CheckConversionDeclarator(D, R, SC);
8654     if (D.isInvalidType())
8655       return nullptr;
8656 
8657     IsVirtualOkay = true;
8658     return CXXConversionDecl::Create(
8659         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8660         TInfo, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8661         ExplicitSpecifier, ConstexprKind, SourceLocation(),
8662         TrailingRequiresClause);
8663 
8664   } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
8665     if (TrailingRequiresClause)
8666       SemaRef.Diag(TrailingRequiresClause->getBeginLoc(),
8667                    diag::err_trailing_requires_clause_on_deduction_guide)
8668           << TrailingRequiresClause->getSourceRange();
8669     SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
8670 
8671     return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8672                                          ExplicitSpecifier, NameInfo, R, TInfo,
8673                                          D.getEndLoc());
8674   } else if (DC->isRecord()) {
8675     // If the name of the function is the same as the name of the record,
8676     // then this must be an invalid constructor that has a return type.
8677     // (The parser checks for a return type and makes the declarator a
8678     // constructor if it has no return type).
8679     if (Name.getAsIdentifierInfo() &&
8680         Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8681       SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8682         << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8683         << SourceRange(D.getIdentifierLoc());
8684       return nullptr;
8685     }
8686 
8687     // This is a C++ method declaration.
8688     CXXMethodDecl *Ret = CXXMethodDecl::Create(
8689         SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8690         TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8691         ConstexprKind, SourceLocation(), TrailingRequiresClause);
8692     IsVirtualOkay = !Ret->isStatic();
8693     return Ret;
8694   } else {
8695     bool isFriend =
8696         SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8697     if (!isFriend && SemaRef.CurContext->isRecord())
8698       return nullptr;
8699 
8700     // Determine whether the function was written with a
8701     // prototype. This true when:
8702     //   - we're in C++ (where every function has a prototype),
8703     return FunctionDecl::Create(
8704         SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC,
8705         SemaRef.getCurFPFeatures().isFPConstrained(), isInline,
8706         true /*HasPrototype*/, ConstexprKind, TrailingRequiresClause);
8707   }
8708 }
8709 
8710 enum OpenCLParamType {
8711   ValidKernelParam,
8712   PtrPtrKernelParam,
8713   PtrKernelParam,
8714   InvalidAddrSpacePtrKernelParam,
8715   InvalidKernelParam,
8716   RecordKernelParam
8717 };
8718 
8719 static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8720   // Size dependent types are just typedefs to normal integer types
8721   // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8722   // integers other than by their names.
8723   StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8724 
8725   // Remove typedefs one by one until we reach a typedef
8726   // for a size dependent type.
8727   QualType DesugaredTy = Ty;
8728   do {
8729     ArrayRef<StringRef> Names(SizeTypeNames);
8730     auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
8731     if (Names.end() != Match)
8732       return true;
8733 
8734     Ty = DesugaredTy;
8735     DesugaredTy = Ty.getSingleStepDesugaredType(C);
8736   } while (DesugaredTy != Ty);
8737 
8738   return false;
8739 }
8740 
8741 static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8742   if (PT->isDependentType())
8743     return InvalidKernelParam;
8744 
8745   if (PT->isPointerType() || PT->isReferenceType()) {
8746     QualType PointeeType = PT->getPointeeType();
8747     if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8748         PointeeType.getAddressSpace() == LangAS::opencl_private ||
8749         PointeeType.getAddressSpace() == LangAS::Default)
8750       return InvalidAddrSpacePtrKernelParam;
8751 
8752     if (PointeeType->isPointerType()) {
8753       // This is a pointer to pointer parameter.
8754       // Recursively check inner type.
8755       OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType);
8756       if (ParamKind == InvalidAddrSpacePtrKernelParam ||
8757           ParamKind == InvalidKernelParam)
8758         return ParamKind;
8759 
8760       return PtrPtrKernelParam;
8761     }
8762 
8763     // C++ for OpenCL v1.0 s2.4:
8764     // Moreover the types used in parameters of the kernel functions must be:
8765     // Standard layout types for pointer parameters. The same applies to
8766     // reference if an implementation supports them in kernel parameters.
8767     if (S.getLangOpts().OpenCLCPlusPlus &&
8768         !S.getOpenCLOptions().isAvailableOption(
8769             "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) &&
8770         !PointeeType->isAtomicType() && !PointeeType->isVoidType() &&
8771         !PointeeType->isStandardLayoutType())
8772       return InvalidKernelParam;
8773 
8774     return PtrKernelParam;
8775   }
8776 
8777   // OpenCL v1.2 s6.9.k:
8778   // Arguments to kernel functions in a program cannot be declared with the
8779   // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8780   // uintptr_t or a struct and/or union that contain fields declared to be one
8781   // of these built-in scalar types.
8782   if (isOpenCLSizeDependentType(S.getASTContext(), PT))
8783     return InvalidKernelParam;
8784 
8785   if (PT->isImageType())
8786     return PtrKernelParam;
8787 
8788   if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8789     return InvalidKernelParam;
8790 
8791   // OpenCL extension spec v1.2 s9.5:
8792   // This extension adds support for half scalar and vector types as built-in
8793   // types that can be used for arithmetic operations, conversions etc.
8794   if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S.getLangOpts()) &&
8795       PT->isHalfType())
8796     return InvalidKernelParam;
8797 
8798   // Look into an array argument to check if it has a forbidden type.
8799   if (PT->isArrayType()) {
8800     const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8801     // Call ourself to check an underlying type of an array. Since the
8802     // getPointeeOrArrayElementType returns an innermost type which is not an
8803     // array, this recursive call only happens once.
8804     return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8805   }
8806 
8807   // C++ for OpenCL v1.0 s2.4:
8808   // Moreover the types used in parameters of the kernel functions must be:
8809   // Trivial and standard-layout types C++17 [basic.types] (plain old data
8810   // types) for parameters passed by value;
8811   if (S.getLangOpts().OpenCLCPlusPlus &&
8812       !S.getOpenCLOptions().isAvailableOption(
8813           "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) &&
8814       !PT->isOpenCLSpecificType() && !PT.isPODType(S.Context))
8815     return InvalidKernelParam;
8816 
8817   if (PT->isRecordType())
8818     return RecordKernelParam;
8819 
8820   return ValidKernelParam;
8821 }
8822 
8823 static void checkIsValidOpenCLKernelParameter(
8824   Sema &S,
8825   Declarator &D,
8826   ParmVarDecl *Param,
8827   llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8828   QualType PT = Param->getType();
8829 
8830   // Cache the valid types we encounter to avoid rechecking structs that are
8831   // used again
8832   if (ValidTypes.count(PT.getTypePtr()))
8833     return;
8834 
8835   switch (getOpenCLKernelParameterType(S, PT)) {
8836   case PtrPtrKernelParam:
8837     // OpenCL v3.0 s6.11.a:
8838     // A kernel function argument cannot be declared as a pointer to a pointer
8839     // type. [...] This restriction only applies to OpenCL C 1.2 or below.
8840     if (S.getLangOpts().getOpenCLCompatibleVersion() <= 120) {
8841       S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8842       D.setInvalidType();
8843       return;
8844     }
8845 
8846     ValidTypes.insert(PT.getTypePtr());
8847     return;
8848 
8849   case InvalidAddrSpacePtrKernelParam:
8850     // OpenCL v1.0 s6.5:
8851     // __kernel function arguments declared to be a pointer of a type can point
8852     // to one of the following address spaces only : __global, __local or
8853     // __constant.
8854     S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8855     D.setInvalidType();
8856     return;
8857 
8858     // OpenCL v1.2 s6.9.k:
8859     // Arguments to kernel functions in a program cannot be declared with the
8860     // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8861     // uintptr_t or a struct and/or union that contain fields declared to be
8862     // one of these built-in scalar types.
8863 
8864   case InvalidKernelParam:
8865     // OpenCL v1.2 s6.8 n:
8866     // A kernel function argument cannot be declared
8867     // of event_t type.
8868     // Do not diagnose half type since it is diagnosed as invalid argument
8869     // type for any function elsewhere.
8870     if (!PT->isHalfType()) {
8871       S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8872 
8873       // Explain what typedefs are involved.
8874       const TypedefType *Typedef = nullptr;
8875       while ((Typedef = PT->getAs<TypedefType>())) {
8876         SourceLocation Loc = Typedef->getDecl()->getLocation();
8877         // SourceLocation may be invalid for a built-in type.
8878         if (Loc.isValid())
8879           S.Diag(Loc, diag::note_entity_declared_at) << PT;
8880         PT = Typedef->desugar();
8881       }
8882     }
8883 
8884     D.setInvalidType();
8885     return;
8886 
8887   case PtrKernelParam:
8888   case ValidKernelParam:
8889     ValidTypes.insert(PT.getTypePtr());
8890     return;
8891 
8892   case RecordKernelParam:
8893     break;
8894   }
8895 
8896   // Track nested structs we will inspect
8897   SmallVector<const Decl *, 4> VisitStack;
8898 
8899   // Track where we are in the nested structs. Items will migrate from
8900   // VisitStack to HistoryStack as we do the DFS for bad field.
8901   SmallVector<const FieldDecl *, 4> HistoryStack;
8902   HistoryStack.push_back(nullptr);
8903 
8904   // At this point we already handled everything except of a RecordType or
8905   // an ArrayType of a RecordType.
8906   assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.");
8907   const RecordType *RecTy =
8908       PT->getPointeeOrArrayElementType()->getAs<RecordType>();
8909   const RecordDecl *OrigRecDecl = RecTy->getDecl();
8910 
8911   VisitStack.push_back(RecTy->getDecl());
8912   assert(VisitStack.back() && "First decl null?");
8913 
8914   do {
8915     const Decl *Next = VisitStack.pop_back_val();
8916     if (!Next) {
8917       assert(!HistoryStack.empty());
8918       // Found a marker, we have gone up a level
8919       if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8920         ValidTypes.insert(Hist->getType().getTypePtr());
8921 
8922       continue;
8923     }
8924 
8925     // Adds everything except the original parameter declaration (which is not a
8926     // field itself) to the history stack.
8927     const RecordDecl *RD;
8928     if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8929       HistoryStack.push_back(Field);
8930 
8931       QualType FieldTy = Field->getType();
8932       // Other field types (known to be valid or invalid) are handled while we
8933       // walk around RecordDecl::fields().
8934       assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
8935              "Unexpected type.");
8936       const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8937 
8938       RD = FieldRecTy->castAs<RecordType>()->getDecl();
8939     } else {
8940       RD = cast<RecordDecl>(Next);
8941     }
8942 
8943     // Add a null marker so we know when we've gone back up a level
8944     VisitStack.push_back(nullptr);
8945 
8946     for (const auto *FD : RD->fields()) {
8947       QualType QT = FD->getType();
8948 
8949       if (ValidTypes.count(QT.getTypePtr()))
8950         continue;
8951 
8952       OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8953       if (ParamType == ValidKernelParam)
8954         continue;
8955 
8956       if (ParamType == RecordKernelParam) {
8957         VisitStack.push_back(FD);
8958         continue;
8959       }
8960 
8961       // OpenCL v1.2 s6.9.p:
8962       // Arguments to kernel functions that are declared to be a struct or union
8963       // do not allow OpenCL objects to be passed as elements of the struct or
8964       // union.
8965       if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8966           ParamType == InvalidAddrSpacePtrKernelParam) {
8967         S.Diag(Param->getLocation(),
8968                diag::err_record_with_pointers_kernel_param)
8969           << PT->isUnionType()
8970           << PT;
8971       } else {
8972         S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8973       }
8974 
8975       S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8976           << OrigRecDecl->getDeclName();
8977 
8978       // We have an error, now let's go back up through history and show where
8979       // the offending field came from
8980       for (ArrayRef<const FieldDecl *>::const_iterator
8981                I = HistoryStack.begin() + 1,
8982                E = HistoryStack.end();
8983            I != E; ++I) {
8984         const FieldDecl *OuterField = *I;
8985         S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8986           << OuterField->getType();
8987       }
8988 
8989       S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8990         << QT->isPointerType()
8991         << QT;
8992       D.setInvalidType();
8993       return;
8994     }
8995   } while (!VisitStack.empty());
8996 }
8997 
8998 /// Find the DeclContext in which a tag is implicitly declared if we see an
8999 /// elaborated type specifier in the specified context, and lookup finds
9000 /// nothing.
9001 static DeclContext *getTagInjectionContext(DeclContext *DC) {
9002   while (!DC->isFileContext() && !DC->isFunctionOrMethod())
9003     DC = DC->getParent();
9004   return DC;
9005 }
9006 
9007 /// Find the Scope in which a tag is implicitly declared if we see an
9008 /// elaborated type specifier in the specified context, and lookup finds
9009 /// nothing.
9010 static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
9011   while (S->isClassScope() ||
9012          (LangOpts.CPlusPlus &&
9013           S->isFunctionPrototypeScope()) ||
9014          ((S->getFlags() & Scope::DeclScope) == 0) ||
9015          (S->getEntity() && S->getEntity()->isTransparentContext()))
9016     S = S->getParent();
9017   return S;
9018 }
9019 
9020 NamedDecl*
9021 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
9022                               TypeSourceInfo *TInfo, LookupResult &Previous,
9023                               MultiTemplateParamsArg TemplateParamListsRef,
9024                               bool &AddToScope) {
9025   QualType R = TInfo->getType();
9026 
9027   assert(R->isFunctionType());
9028   if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr())
9029     Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call);
9030 
9031   SmallVector<TemplateParameterList *, 4> TemplateParamLists;
9032   for (TemplateParameterList *TPL : TemplateParamListsRef)
9033     TemplateParamLists.push_back(TPL);
9034   if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
9035     if (!TemplateParamLists.empty() &&
9036         Invented->getDepth() == TemplateParamLists.back()->getDepth())
9037       TemplateParamLists.back() = Invented;
9038     else
9039       TemplateParamLists.push_back(Invented);
9040   }
9041 
9042   // TODO: consider using NameInfo for diagnostic.
9043   DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9044   DeclarationName Name = NameInfo.getName();
9045   StorageClass SC = getFunctionStorageClass(*this, D);
9046 
9047   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
9048     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
9049          diag::err_invalid_thread)
9050       << DeclSpec::getSpecifierName(TSCS);
9051 
9052   if (D.isFirstDeclarationOfMember())
9053     adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
9054                            D.getIdentifierLoc());
9055 
9056   bool isFriend = false;
9057   FunctionTemplateDecl *FunctionTemplate = nullptr;
9058   bool isMemberSpecialization = false;
9059   bool isFunctionTemplateSpecialization = false;
9060 
9061   bool isDependentClassScopeExplicitSpecialization = false;
9062   bool HasExplicitTemplateArgs = false;
9063   TemplateArgumentListInfo TemplateArgs;
9064 
9065   bool isVirtualOkay = false;
9066 
9067   DeclContext *OriginalDC = DC;
9068   bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
9069 
9070   FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
9071                                               isVirtualOkay);
9072   if (!NewFD) return nullptr;
9073 
9074   if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
9075     NewFD->setTopLevelDeclInObjCContainer();
9076 
9077   // Set the lexical context. If this is a function-scope declaration, or has a
9078   // C++ scope specifier, or is the object of a friend declaration, the lexical
9079   // context will be different from the semantic context.
9080   NewFD->setLexicalDeclContext(CurContext);
9081 
9082   if (IsLocalExternDecl)
9083     NewFD->setLocalExternDecl();
9084 
9085   if (getLangOpts().CPlusPlus) {
9086     bool isInline = D.getDeclSpec().isInlineSpecified();
9087     bool isVirtual = D.getDeclSpec().isVirtualSpecified();
9088     bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
9089     isFriend = D.getDeclSpec().isFriendSpecified();
9090     if (isFriend && !isInline && D.isFunctionDefinition()) {
9091       // C++ [class.friend]p5
9092       //   A function can be defined in a friend declaration of a
9093       //   class . . . . Such a function is implicitly inline.
9094       NewFD->setImplicitlyInline();
9095     }
9096 
9097     // If this is a method defined in an __interface, and is not a constructor
9098     // or an overloaded operator, then set the pure flag (isVirtual will already
9099     // return true).
9100     if (const CXXRecordDecl *Parent =
9101           dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
9102       if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
9103         NewFD->setPure(true);
9104 
9105       // C++ [class.union]p2
9106       //   A union can have member functions, but not virtual functions.
9107       if (isVirtual && Parent->isUnion())
9108         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
9109     }
9110 
9111     SetNestedNameSpecifier(*this, NewFD, D);
9112     isMemberSpecialization = false;
9113     isFunctionTemplateSpecialization = false;
9114     if (D.isInvalidType())
9115       NewFD->setInvalidDecl();
9116 
9117     // Match up the template parameter lists with the scope specifier, then
9118     // determine whether we have a template or a template specialization.
9119     bool Invalid = false;
9120     TemplateParameterList *TemplateParams =
9121         MatchTemplateParametersToScopeSpecifier(
9122             D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
9123             D.getCXXScopeSpec(),
9124             D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
9125                 ? D.getName().TemplateId
9126                 : nullptr,
9127             TemplateParamLists, isFriend, isMemberSpecialization,
9128             Invalid);
9129     if (TemplateParams) {
9130       // Check that we can declare a template here.
9131       if (CheckTemplateDeclScope(S, TemplateParams))
9132         NewFD->setInvalidDecl();
9133 
9134       if (TemplateParams->size() > 0) {
9135         // This is a function template
9136 
9137         // A destructor cannot be a template.
9138         if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
9139           Diag(NewFD->getLocation(), diag::err_destructor_template);
9140           NewFD->setInvalidDecl();
9141         }
9142 
9143         // If we're adding a template to a dependent context, we may need to
9144         // rebuilding some of the types used within the template parameter list,
9145         // now that we know what the current instantiation is.
9146         if (DC->isDependentContext()) {
9147           ContextRAII SavedContext(*this, DC);
9148           if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
9149             Invalid = true;
9150         }
9151 
9152         FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
9153                                                         NewFD->getLocation(),
9154                                                         Name, TemplateParams,
9155                                                         NewFD);
9156         FunctionTemplate->setLexicalDeclContext(CurContext);
9157         NewFD->setDescribedFunctionTemplate(FunctionTemplate);
9158 
9159         // For source fidelity, store the other template param lists.
9160         if (TemplateParamLists.size() > 1) {
9161           NewFD->setTemplateParameterListsInfo(Context,
9162               ArrayRef<TemplateParameterList *>(TemplateParamLists)
9163                   .drop_back(1));
9164         }
9165       } else {
9166         // This is a function template specialization.
9167         isFunctionTemplateSpecialization = true;
9168         // For source fidelity, store all the template param lists.
9169         if (TemplateParamLists.size() > 0)
9170           NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9171 
9172         // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9173         if (isFriend) {
9174           // We want to remove the "template<>", found here.
9175           SourceRange RemoveRange = TemplateParams->getSourceRange();
9176 
9177           // If we remove the template<> and the name is not a
9178           // template-id, we're actually silently creating a problem:
9179           // the friend declaration will refer to an untemplated decl,
9180           // and clearly the user wants a template specialization.  So
9181           // we need to insert '<>' after the name.
9182           SourceLocation InsertLoc;
9183           if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9184             InsertLoc = D.getName().getSourceRange().getEnd();
9185             InsertLoc = getLocForEndOfToken(InsertLoc);
9186           }
9187 
9188           Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
9189             << Name << RemoveRange
9190             << FixItHint::CreateRemoval(RemoveRange)
9191             << FixItHint::CreateInsertion(InsertLoc, "<>");
9192         }
9193       }
9194     } else {
9195       // Check that we can declare a template here.
9196       if (!TemplateParamLists.empty() && isMemberSpecialization &&
9197           CheckTemplateDeclScope(S, TemplateParamLists.back()))
9198         NewFD->setInvalidDecl();
9199 
9200       // All template param lists were matched against the scope specifier:
9201       // this is NOT (an explicit specialization of) a template.
9202       if (TemplateParamLists.size() > 0)
9203         // For source fidelity, store all the template param lists.
9204         NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9205     }
9206 
9207     if (Invalid) {
9208       NewFD->setInvalidDecl();
9209       if (FunctionTemplate)
9210         FunctionTemplate->setInvalidDecl();
9211     }
9212 
9213     // C++ [dcl.fct.spec]p5:
9214     //   The virtual specifier shall only be used in declarations of
9215     //   nonstatic class member functions that appear within a
9216     //   member-specification of a class declaration; see 10.3.
9217     //
9218     if (isVirtual && !NewFD->isInvalidDecl()) {
9219       if (!isVirtualOkay) {
9220         Diag(D.getDeclSpec().getVirtualSpecLoc(),
9221              diag::err_virtual_non_function);
9222       } else if (!CurContext->isRecord()) {
9223         // 'virtual' was specified outside of the class.
9224         Diag(D.getDeclSpec().getVirtualSpecLoc(),
9225              diag::err_virtual_out_of_class)
9226           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9227       } else if (NewFD->getDescribedFunctionTemplate()) {
9228         // C++ [temp.mem]p3:
9229         //  A member function template shall not be virtual.
9230         Diag(D.getDeclSpec().getVirtualSpecLoc(),
9231              diag::err_virtual_member_function_template)
9232           << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9233       } else {
9234         // Okay: Add virtual to the method.
9235         NewFD->setVirtualAsWritten(true);
9236       }
9237 
9238       if (getLangOpts().CPlusPlus14 &&
9239           NewFD->getReturnType()->isUndeducedType())
9240         Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
9241     }
9242 
9243     if (getLangOpts().CPlusPlus14 &&
9244         (NewFD->isDependentContext() ||
9245          (isFriend && CurContext->isDependentContext())) &&
9246         NewFD->getReturnType()->isUndeducedType()) {
9247       // If the function template is referenced directly (for instance, as a
9248       // member of the current instantiation), pretend it has a dependent type.
9249       // This is not really justified by the standard, but is the only sane
9250       // thing to do.
9251       // FIXME: For a friend function, we have not marked the function as being
9252       // a friend yet, so 'isDependentContext' on the FD doesn't work.
9253       const FunctionProtoType *FPT =
9254           NewFD->getType()->castAs<FunctionProtoType>();
9255       QualType Result =
9256           SubstAutoType(FPT->getReturnType(), Context.DependentTy);
9257       NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
9258                                              FPT->getExtProtoInfo()));
9259     }
9260 
9261     // C++ [dcl.fct.spec]p3:
9262     //  The inline specifier shall not appear on a block scope function
9263     //  declaration.
9264     if (isInline && !NewFD->isInvalidDecl()) {
9265       if (CurContext->isFunctionOrMethod()) {
9266         // 'inline' is not allowed on block scope function declaration.
9267         Diag(D.getDeclSpec().getInlineSpecLoc(),
9268              diag::err_inline_declaration_block_scope) << Name
9269           << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9270       }
9271     }
9272 
9273     // C++ [dcl.fct.spec]p6:
9274     //  The explicit specifier shall be used only in the declaration of a
9275     //  constructor or conversion function within its class definition;
9276     //  see 12.3.1 and 12.3.2.
9277     if (hasExplicit && !NewFD->isInvalidDecl() &&
9278         !isa<CXXDeductionGuideDecl>(NewFD)) {
9279       if (!CurContext->isRecord()) {
9280         // 'explicit' was specified outside of the class.
9281         Diag(D.getDeclSpec().getExplicitSpecLoc(),
9282              diag::err_explicit_out_of_class)
9283             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9284       } else if (!isa<CXXConstructorDecl>(NewFD) &&
9285                  !isa<CXXConversionDecl>(NewFD)) {
9286         // 'explicit' was specified on a function that wasn't a constructor
9287         // or conversion function.
9288         Diag(D.getDeclSpec().getExplicitSpecLoc(),
9289              diag::err_explicit_non_ctor_or_conv_function)
9290             << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9291       }
9292     }
9293 
9294     ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
9295     if (ConstexprKind != ConstexprSpecKind::Unspecified) {
9296       // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
9297       // are implicitly inline.
9298       NewFD->setImplicitlyInline();
9299 
9300       // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
9301       // be either constructors or to return a literal type. Therefore,
9302       // destructors cannot be declared constexpr.
9303       if (isa<CXXDestructorDecl>(NewFD) &&
9304           (!getLangOpts().CPlusPlus20 ||
9305            ConstexprKind == ConstexprSpecKind::Consteval)) {
9306         Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
9307             << static_cast<int>(ConstexprKind);
9308         NewFD->setConstexprKind(getLangOpts().CPlusPlus20
9309                                     ? ConstexprSpecKind::Unspecified
9310                                     : ConstexprSpecKind::Constexpr);
9311       }
9312       // C++20 [dcl.constexpr]p2: An allocation function, or a
9313       // deallocation function shall not be declared with the consteval
9314       // specifier.
9315       if (ConstexprKind == ConstexprSpecKind::Consteval &&
9316           (NewFD->getOverloadedOperator() == OO_New ||
9317            NewFD->getOverloadedOperator() == OO_Array_New ||
9318            NewFD->getOverloadedOperator() == OO_Delete ||
9319            NewFD->getOverloadedOperator() == OO_Array_Delete)) {
9320         Diag(D.getDeclSpec().getConstexprSpecLoc(),
9321              diag::err_invalid_consteval_decl_kind)
9322             << NewFD;
9323         NewFD->setConstexprKind(ConstexprSpecKind::Constexpr);
9324       }
9325     }
9326 
9327     // If __module_private__ was specified, mark the function accordingly.
9328     if (D.getDeclSpec().isModulePrivateSpecified()) {
9329       if (isFunctionTemplateSpecialization) {
9330         SourceLocation ModulePrivateLoc
9331           = D.getDeclSpec().getModulePrivateSpecLoc();
9332         Diag(ModulePrivateLoc, diag::err_module_private_specialization)
9333           << 0
9334           << FixItHint::CreateRemoval(ModulePrivateLoc);
9335       } else {
9336         NewFD->setModulePrivate();
9337         if (FunctionTemplate)
9338           FunctionTemplate->setModulePrivate();
9339       }
9340     }
9341 
9342     if (isFriend) {
9343       if (FunctionTemplate) {
9344         FunctionTemplate->setObjectOfFriendDecl();
9345         FunctionTemplate->setAccess(AS_public);
9346       }
9347       NewFD->setObjectOfFriendDecl();
9348       NewFD->setAccess(AS_public);
9349     }
9350 
9351     // If a function is defined as defaulted or deleted, mark it as such now.
9352     // We'll do the relevant checks on defaulted / deleted functions later.
9353     switch (D.getFunctionDefinitionKind()) {
9354     case FunctionDefinitionKind::Declaration:
9355     case FunctionDefinitionKind::Definition:
9356       break;
9357 
9358     case FunctionDefinitionKind::Defaulted:
9359       NewFD->setDefaulted();
9360       break;
9361 
9362     case FunctionDefinitionKind::Deleted:
9363       NewFD->setDeletedAsWritten();
9364       break;
9365     }
9366 
9367     if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
9368         D.isFunctionDefinition()) {
9369       // C++ [class.mfct]p2:
9370       //   A member function may be defined (8.4) in its class definition, in
9371       //   which case it is an inline member function (7.1.2)
9372       NewFD->setImplicitlyInline();
9373     }
9374 
9375     if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
9376         !CurContext->isRecord()) {
9377       // C++ [class.static]p1:
9378       //   A data or function member of a class may be declared static
9379       //   in a class definition, in which case it is a static member of
9380       //   the class.
9381 
9382       // Complain about the 'static' specifier if it's on an out-of-line
9383       // member function definition.
9384 
9385       // MSVC permits the use of a 'static' storage specifier on an out-of-line
9386       // member function template declaration and class member template
9387       // declaration (MSVC versions before 2015), warn about this.
9388       Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9389            ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
9390              cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
9391            (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
9392            ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
9393         << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9394     }
9395 
9396     // C++11 [except.spec]p15:
9397     //   A deallocation function with no exception-specification is treated
9398     //   as if it were specified with noexcept(true).
9399     const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
9400     if ((Name.getCXXOverloadedOperator() == OO_Delete ||
9401          Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
9402         getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
9403       NewFD->setType(Context.getFunctionType(
9404           FPT->getReturnType(), FPT->getParamTypes(),
9405           FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
9406   }
9407 
9408   // Filter out previous declarations that don't match the scope.
9409   FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
9410                        D.getCXXScopeSpec().isNotEmpty() ||
9411                        isMemberSpecialization ||
9412                        isFunctionTemplateSpecialization);
9413 
9414   // Handle GNU asm-label extension (encoded as an attribute).
9415   if (Expr *E = (Expr*) D.getAsmLabel()) {
9416     // The parser guarantees this is a string.
9417     StringLiteral *SE = cast<StringLiteral>(E);
9418     NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
9419                                         /*IsLiteralLabel=*/true,
9420                                         SE->getStrTokenLoc(0)));
9421   } else if (!ExtnameUndeclaredIdentifiers.empty()) {
9422     llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
9423       ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
9424     if (I != ExtnameUndeclaredIdentifiers.end()) {
9425       if (isDeclExternC(NewFD)) {
9426         NewFD->addAttr(I->second);
9427         ExtnameUndeclaredIdentifiers.erase(I);
9428       } else
9429         Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
9430             << /*Variable*/0 << NewFD;
9431     }
9432   }
9433 
9434   // Copy the parameter declarations from the declarator D to the function
9435   // declaration NewFD, if they are available.  First scavenge them into Params.
9436   SmallVector<ParmVarDecl*, 16> Params;
9437   unsigned FTIIdx;
9438   if (D.isFunctionDeclarator(FTIIdx)) {
9439     DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
9440 
9441     // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
9442     // function that takes no arguments, not a function that takes a
9443     // single void argument.
9444     // We let through "const void" here because Sema::GetTypeForDeclarator
9445     // already checks for that case.
9446     if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
9447       for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
9448         ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
9449         assert(Param->getDeclContext() != NewFD && "Was set before ?");
9450         Param->setDeclContext(NewFD);
9451         Params.push_back(Param);
9452 
9453         if (Param->isInvalidDecl())
9454           NewFD->setInvalidDecl();
9455       }
9456     }
9457 
9458     if (!getLangOpts().CPlusPlus) {
9459       // In C, find all the tag declarations from the prototype and move them
9460       // into the function DeclContext. Remove them from the surrounding tag
9461       // injection context of the function, which is typically but not always
9462       // the TU.
9463       DeclContext *PrototypeTagContext =
9464           getTagInjectionContext(NewFD->getLexicalDeclContext());
9465       for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
9466         auto *TD = dyn_cast<TagDecl>(NonParmDecl);
9467 
9468         // We don't want to reparent enumerators. Look at their parent enum
9469         // instead.
9470         if (!TD) {
9471           if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
9472             TD = cast<EnumDecl>(ECD->getDeclContext());
9473         }
9474         if (!TD)
9475           continue;
9476         DeclContext *TagDC = TD->getLexicalDeclContext();
9477         if (!TagDC->containsDecl(TD))
9478           continue;
9479         TagDC->removeDecl(TD);
9480         TD->setDeclContext(NewFD);
9481         NewFD->addDecl(TD);
9482 
9483         // Preserve the lexical DeclContext if it is not the surrounding tag
9484         // injection context of the FD. In this example, the semantic context of
9485         // E will be f and the lexical context will be S, while both the
9486         // semantic and lexical contexts of S will be f:
9487         //   void f(struct S { enum E { a } f; } s);
9488         if (TagDC != PrototypeTagContext)
9489           TD->setLexicalDeclContext(TagDC);
9490       }
9491     }
9492   } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
9493     // When we're declaring a function with a typedef, typeof, etc as in the
9494     // following example, we'll need to synthesize (unnamed)
9495     // parameters for use in the declaration.
9496     //
9497     // @code
9498     // typedef void fn(int);
9499     // fn f;
9500     // @endcode
9501 
9502     // Synthesize a parameter for each argument type.
9503     for (const auto &AI : FT->param_types()) {
9504       ParmVarDecl *Param =
9505           BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
9506       Param->setScopeInfo(0, Params.size());
9507       Params.push_back(Param);
9508     }
9509   } else {
9510     assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
9511            "Should not need args for typedef of non-prototype fn");
9512   }
9513 
9514   // Finally, we know we have the right number of parameters, install them.
9515   NewFD->setParams(Params);
9516 
9517   if (D.getDeclSpec().isNoreturnSpecified())
9518     NewFD->addAttr(C11NoReturnAttr::Create(Context,
9519                                            D.getDeclSpec().getNoreturnSpecLoc(),
9520                                            AttributeCommonInfo::AS_Keyword));
9521 
9522   // Functions returning a variably modified type violate C99 6.7.5.2p2
9523   // because all functions have linkage.
9524   if (!NewFD->isInvalidDecl() &&
9525       NewFD->getReturnType()->isVariablyModifiedType()) {
9526     Diag(NewFD->getLocation(), diag::err_vm_func_decl);
9527     NewFD->setInvalidDecl();
9528   }
9529 
9530   // Apply an implicit SectionAttr if '#pragma clang section text' is active
9531   if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
9532       !NewFD->hasAttr<SectionAttr>())
9533     NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
9534         Context, PragmaClangTextSection.SectionName,
9535         PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma));
9536 
9537   // Apply an implicit SectionAttr if #pragma code_seg is active.
9538   if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
9539       !NewFD->hasAttr<SectionAttr>()) {
9540     NewFD->addAttr(SectionAttr::CreateImplicit(
9541         Context, CodeSegStack.CurrentValue->getString(),
9542         CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9543         SectionAttr::Declspec_allocate));
9544     if (UnifySection(CodeSegStack.CurrentValue->getString(),
9545                      ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
9546                          ASTContext::PSF_Read,
9547                      NewFD))
9548       NewFD->dropAttr<SectionAttr>();
9549   }
9550 
9551   // Apply an implicit CodeSegAttr from class declspec or
9552   // apply an implicit SectionAttr from #pragma code_seg if active.
9553   if (!NewFD->hasAttr<CodeSegAttr>()) {
9554     if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
9555                                                                  D.isFunctionDefinition())) {
9556       NewFD->addAttr(SAttr);
9557     }
9558   }
9559 
9560   // Handle attributes.
9561   ProcessDeclAttributes(S, NewFD, D);
9562 
9563   if (getLangOpts().OpenCL) {
9564     // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
9565     // type declaration will generate a compilation error.
9566     LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
9567     if (AddressSpace != LangAS::Default) {
9568       Diag(NewFD->getLocation(),
9569            diag::err_opencl_return_value_with_address_space);
9570       NewFD->setInvalidDecl();
9571     }
9572   }
9573 
9574   if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice))
9575     checkDeviceDecl(NewFD, D.getBeginLoc());
9576 
9577   if (!getLangOpts().CPlusPlus) {
9578     // Perform semantic checking on the function declaration.
9579     if (!NewFD->isInvalidDecl() && NewFD->isMain())
9580       CheckMain(NewFD, D.getDeclSpec());
9581 
9582     if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9583       CheckMSVCRTEntryPoint(NewFD);
9584 
9585     if (!NewFD->isInvalidDecl())
9586       D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9587                                                   isMemberSpecialization));
9588     else if (!Previous.empty())
9589       // Recover gracefully from an invalid redeclaration.
9590       D.setRedeclaration(true);
9591     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9592             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
9593            "previous declaration set still overloaded");
9594 
9595     // Diagnose no-prototype function declarations with calling conventions that
9596     // don't support variadic calls. Only do this in C and do it after merging
9597     // possibly prototyped redeclarations.
9598     const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
9599     if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
9600       CallingConv CC = FT->getExtInfo().getCC();
9601       if (!supportsVariadicCall(CC)) {
9602         // Windows system headers sometimes accidentally use stdcall without
9603         // (void) parameters, so we relax this to a warning.
9604         int DiagID =
9605             CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
9606         Diag(NewFD->getLocation(), DiagID)
9607             << FunctionType::getNameForCallConv(CC);
9608       }
9609     }
9610 
9611    if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
9612        NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
9613      checkNonTrivialCUnion(NewFD->getReturnType(),
9614                            NewFD->getReturnTypeSourceRange().getBegin(),
9615                            NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
9616   } else {
9617     // C++11 [replacement.functions]p3:
9618     //  The program's definitions shall not be specified as inline.
9619     //
9620     // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
9621     //
9622     // Suppress the diagnostic if the function is __attribute__((used)), since
9623     // that forces an external definition to be emitted.
9624     if (D.getDeclSpec().isInlineSpecified() &&
9625         NewFD->isReplaceableGlobalAllocationFunction() &&
9626         !NewFD->hasAttr<UsedAttr>())
9627       Diag(D.getDeclSpec().getInlineSpecLoc(),
9628            diag::ext_operator_new_delete_declared_inline)
9629         << NewFD->getDeclName();
9630 
9631     // If the declarator is a template-id, translate the parser's template
9632     // argument list into our AST format.
9633     if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
9634       TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
9635       TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
9636       TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
9637       ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
9638                                          TemplateId->NumArgs);
9639       translateTemplateArguments(TemplateArgsPtr,
9640                                  TemplateArgs);
9641 
9642       HasExplicitTemplateArgs = true;
9643 
9644       if (NewFD->isInvalidDecl()) {
9645         HasExplicitTemplateArgs = false;
9646       } else if (FunctionTemplate) {
9647         // Function template with explicit template arguments.
9648         Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
9649           << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
9650 
9651         HasExplicitTemplateArgs = false;
9652       } else {
9653         assert((isFunctionTemplateSpecialization ||
9654                 D.getDeclSpec().isFriendSpecified()) &&
9655                "should have a 'template<>' for this decl");
9656         // "friend void foo<>(int);" is an implicit specialization decl.
9657         isFunctionTemplateSpecialization = true;
9658       }
9659     } else if (isFriend && isFunctionTemplateSpecialization) {
9660       // This combination is only possible in a recovery case;  the user
9661       // wrote something like:
9662       //   template <> friend void foo(int);
9663       // which we're recovering from as if the user had written:
9664       //   friend void foo<>(int);
9665       // Go ahead and fake up a template id.
9666       HasExplicitTemplateArgs = true;
9667       TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
9668       TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
9669     }
9670 
9671     // We do not add HD attributes to specializations here because
9672     // they may have different constexpr-ness compared to their
9673     // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
9674     // may end up with different effective targets. Instead, a
9675     // specialization inherits its target attributes from its template
9676     // in the CheckFunctionTemplateSpecialization() call below.
9677     if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
9678       maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
9679 
9680     // If it's a friend (and only if it's a friend), it's possible
9681     // that either the specialized function type or the specialized
9682     // template is dependent, and therefore matching will fail.  In
9683     // this case, don't check the specialization yet.
9684     if (isFunctionTemplateSpecialization && isFriend &&
9685         (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
9686          TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
9687              TemplateArgs.arguments()))) {
9688       assert(HasExplicitTemplateArgs &&
9689              "friend function specialization without template args");
9690       if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
9691                                                        Previous))
9692         NewFD->setInvalidDecl();
9693     } else if (isFunctionTemplateSpecialization) {
9694       if (CurContext->isDependentContext() && CurContext->isRecord()
9695           && !isFriend) {
9696         isDependentClassScopeExplicitSpecialization = true;
9697       } else if (!NewFD->isInvalidDecl() &&
9698                  CheckFunctionTemplateSpecialization(
9699                      NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
9700                      Previous))
9701         NewFD->setInvalidDecl();
9702 
9703       // C++ [dcl.stc]p1:
9704       //   A storage-class-specifier shall not be specified in an explicit
9705       //   specialization (14.7.3)
9706       FunctionTemplateSpecializationInfo *Info =
9707           NewFD->getTemplateSpecializationInfo();
9708       if (Info && SC != SC_None) {
9709         if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
9710           Diag(NewFD->getLocation(),
9711                diag::err_explicit_specialization_inconsistent_storage_class)
9712             << SC
9713             << FixItHint::CreateRemoval(
9714                                       D.getDeclSpec().getStorageClassSpecLoc());
9715 
9716         else
9717           Diag(NewFD->getLocation(),
9718                diag::ext_explicit_specialization_storage_class)
9719             << FixItHint::CreateRemoval(
9720                                       D.getDeclSpec().getStorageClassSpecLoc());
9721       }
9722     } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
9723       if (CheckMemberSpecialization(NewFD, Previous))
9724           NewFD->setInvalidDecl();
9725     }
9726 
9727     // Perform semantic checking on the function declaration.
9728     if (!isDependentClassScopeExplicitSpecialization) {
9729       if (!NewFD->isInvalidDecl() && NewFD->isMain())
9730         CheckMain(NewFD, D.getDeclSpec());
9731 
9732       if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9733         CheckMSVCRTEntryPoint(NewFD);
9734 
9735       if (!NewFD->isInvalidDecl())
9736         D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9737                                                     isMemberSpecialization));
9738       else if (!Previous.empty())
9739         // Recover gracefully from an invalid redeclaration.
9740         D.setRedeclaration(true);
9741     }
9742 
9743     assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
9744             Previous.getResultKind() != LookupResult::FoundOverloaded) &&
9745            "previous declaration set still overloaded");
9746 
9747     NamedDecl *PrincipalDecl = (FunctionTemplate
9748                                 ? cast<NamedDecl>(FunctionTemplate)
9749                                 : NewFD);
9750 
9751     if (isFriend && NewFD->getPreviousDecl()) {
9752       AccessSpecifier Access = AS_public;
9753       if (!NewFD->isInvalidDecl())
9754         Access = NewFD->getPreviousDecl()->getAccess();
9755 
9756       NewFD->setAccess(Access);
9757       if (FunctionTemplate) FunctionTemplate->setAccess(Access);
9758     }
9759 
9760     if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
9761         PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
9762       PrincipalDecl->setNonMemberOperator();
9763 
9764     // If we have a function template, check the template parameter
9765     // list. This will check and merge default template arguments.
9766     if (FunctionTemplate) {
9767       FunctionTemplateDecl *PrevTemplate =
9768                                      FunctionTemplate->getPreviousDecl();
9769       CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
9770                        PrevTemplate ? PrevTemplate->getTemplateParameters()
9771                                     : nullptr,
9772                             D.getDeclSpec().isFriendSpecified()
9773                               ? (D.isFunctionDefinition()
9774                                    ? TPC_FriendFunctionTemplateDefinition
9775                                    : TPC_FriendFunctionTemplate)
9776                               : (D.getCXXScopeSpec().isSet() &&
9777                                  DC && DC->isRecord() &&
9778                                  DC->isDependentContext())
9779                                   ? TPC_ClassTemplateMember
9780                                   : TPC_FunctionTemplate);
9781     }
9782 
9783     if (NewFD->isInvalidDecl()) {
9784       // Ignore all the rest of this.
9785     } else if (!D.isRedeclaration()) {
9786       struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9787                                        AddToScope };
9788       // Fake up an access specifier if it's supposed to be a class member.
9789       if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9790         NewFD->setAccess(AS_public);
9791 
9792       // Qualified decls generally require a previous declaration.
9793       if (D.getCXXScopeSpec().isSet()) {
9794         // ...with the major exception of templated-scope or
9795         // dependent-scope friend declarations.
9796 
9797         // TODO: we currently also suppress this check in dependent
9798         // contexts because (1) the parameter depth will be off when
9799         // matching friend templates and (2) we might actually be
9800         // selecting a friend based on a dependent factor.  But there
9801         // are situations where these conditions don't apply and we
9802         // can actually do this check immediately.
9803         //
9804         // Unless the scope is dependent, it's always an error if qualified
9805         // redeclaration lookup found nothing at all. Diagnose that now;
9806         // nothing will diagnose that error later.
9807         if (isFriend &&
9808             (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
9809              (!Previous.empty() && CurContext->isDependentContext()))) {
9810           // ignore these
9811         } else if (NewFD->isCPUDispatchMultiVersion() ||
9812                    NewFD->isCPUSpecificMultiVersion()) {
9813           // ignore this, we allow the redeclaration behavior here to create new
9814           // versions of the function.
9815         } else {
9816           // The user tried to provide an out-of-line definition for a
9817           // function that is a member of a class or namespace, but there
9818           // was no such member function declared (C++ [class.mfct]p2,
9819           // C++ [namespace.memdef]p2). For example:
9820           //
9821           // class X {
9822           //   void f() const;
9823           // };
9824           //
9825           // void X::f() { } // ill-formed
9826           //
9827           // Complain about this problem, and attempt to suggest close
9828           // matches (e.g., those that differ only in cv-qualifiers and
9829           // whether the parameter types are references).
9830 
9831           if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9832                   *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9833             AddToScope = ExtraArgs.AddToScope;
9834             return Result;
9835           }
9836         }
9837 
9838         // Unqualified local friend declarations are required to resolve
9839         // to something.
9840       } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9841         if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9842                 *this, Previous, NewFD, ExtraArgs, true, S)) {
9843           AddToScope = ExtraArgs.AddToScope;
9844           return Result;
9845         }
9846       }
9847     } else if (!D.isFunctionDefinition() &&
9848                isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9849                !isFriend && !isFunctionTemplateSpecialization &&
9850                !isMemberSpecialization) {
9851       // An out-of-line member function declaration must also be a
9852       // definition (C++ [class.mfct]p2).
9853       // Note that this is not the case for explicit specializations of
9854       // function templates or member functions of class templates, per
9855       // C++ [temp.expl.spec]p2. We also allow these declarations as an
9856       // extension for compatibility with old SWIG code which likes to
9857       // generate them.
9858       Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9859         << D.getCXXScopeSpec().getRange();
9860     }
9861   }
9862 
9863   // If this is the first declaration of a library builtin function, add
9864   // attributes as appropriate.
9865   if (!D.isRedeclaration() &&
9866       NewFD->getDeclContext()->getRedeclContext()->isFileContext()) {
9867     if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) {
9868       if (unsigned BuiltinID = II->getBuiltinID()) {
9869         if (NewFD->getLanguageLinkage() == CLanguageLinkage) {
9870           // Validate the type matches unless this builtin is specified as
9871           // matching regardless of its declared type.
9872           if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) {
9873             NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9874           } else {
9875             ASTContext::GetBuiltinTypeError Error;
9876             LookupNecessaryTypesForBuiltin(S, BuiltinID);
9877             QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error);
9878 
9879             if (!Error && !BuiltinType.isNull() &&
9880                 Context.hasSameFunctionTypeIgnoringExceptionSpec(
9881                     NewFD->getType(), BuiltinType))
9882               NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9883           }
9884         } else if (BuiltinID == Builtin::BI__GetExceptionInfo &&
9885                    Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9886           // FIXME: We should consider this a builtin only in the std namespace.
9887           NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9888         }
9889       }
9890     }
9891   }
9892 
9893   ProcessPragmaWeak(S, NewFD);
9894   checkAttributesAfterMerging(*this, *NewFD);
9895 
9896   AddKnownFunctionAttributes(NewFD);
9897 
9898   if (NewFD->hasAttr<OverloadableAttr>() &&
9899       !NewFD->getType()->getAs<FunctionProtoType>()) {
9900     Diag(NewFD->getLocation(),
9901          diag::err_attribute_overloadable_no_prototype)
9902       << NewFD;
9903 
9904     // Turn this into a variadic function with no parameters.
9905     const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9906     FunctionProtoType::ExtProtoInfo EPI(
9907         Context.getDefaultCallingConvention(true, false));
9908     EPI.Variadic = true;
9909     EPI.ExtInfo = FT->getExtInfo();
9910 
9911     QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9912     NewFD->setType(R);
9913   }
9914 
9915   // If there's a #pragma GCC visibility in scope, and this isn't a class
9916   // member, set the visibility of this function.
9917   if (!DC->isRecord() && NewFD->isExternallyVisible())
9918     AddPushedVisibilityAttribute(NewFD);
9919 
9920   // If there's a #pragma clang arc_cf_code_audited in scope, consider
9921   // marking the function.
9922   AddCFAuditedAttribute(NewFD);
9923 
9924   // If this is a function definition, check if we have to apply optnone due to
9925   // a pragma.
9926   if(D.isFunctionDefinition())
9927     AddRangeBasedOptnone(NewFD);
9928 
9929   // If this is the first declaration of an extern C variable, update
9930   // the map of such variables.
9931   if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9932       isIncompleteDeclExternC(*this, NewFD))
9933     RegisterLocallyScopedExternCDecl(NewFD, S);
9934 
9935   // Set this FunctionDecl's range up to the right paren.
9936   NewFD->setRangeEnd(D.getSourceRange().getEnd());
9937 
9938   if (D.isRedeclaration() && !Previous.empty()) {
9939     NamedDecl *Prev = Previous.getRepresentativeDecl();
9940     checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9941                                    isMemberSpecialization ||
9942                                        isFunctionTemplateSpecialization,
9943                                    D.isFunctionDefinition());
9944   }
9945 
9946   if (getLangOpts().CUDA) {
9947     IdentifierInfo *II = NewFD->getIdentifier();
9948     if (II && II->isStr(getCudaConfigureFuncName()) &&
9949         !NewFD->isInvalidDecl() &&
9950         NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9951       if (!R->castAs<FunctionType>()->getReturnType()->isScalarType())
9952         Diag(NewFD->getLocation(), diag::err_config_scalar_return)
9953             << getCudaConfigureFuncName();
9954       Context.setcudaConfigureCallDecl(NewFD);
9955     }
9956 
9957     // Variadic functions, other than a *declaration* of printf, are not allowed
9958     // in device-side CUDA code, unless someone passed
9959     // -fcuda-allow-variadic-functions.
9960     if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9961         (NewFD->hasAttr<CUDADeviceAttr>() ||
9962          NewFD->hasAttr<CUDAGlobalAttr>()) &&
9963         !(II && II->isStr("printf") && NewFD->isExternC() &&
9964           !D.isFunctionDefinition())) {
9965       Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9966     }
9967   }
9968 
9969   MarkUnusedFileScopedDecl(NewFD);
9970 
9971 
9972 
9973   if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
9974     // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9975     if (SC == SC_Static) {
9976       Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9977       D.setInvalidType();
9978     }
9979 
9980     // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9981     if (!NewFD->getReturnType()->isVoidType()) {
9982       SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9983       Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9984           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9985                                 : FixItHint());
9986       D.setInvalidType();
9987     }
9988 
9989     llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9990     for (auto Param : NewFD->parameters())
9991       checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9992 
9993     if (getLangOpts().OpenCLCPlusPlus) {
9994       if (DC->isRecord()) {
9995         Diag(D.getIdentifierLoc(), diag::err_method_kernel);
9996         D.setInvalidType();
9997       }
9998       if (FunctionTemplate) {
9999         Diag(D.getIdentifierLoc(), diag::err_template_kernel);
10000         D.setInvalidType();
10001       }
10002     }
10003   }
10004 
10005   if (getLangOpts().CPlusPlus) {
10006     if (FunctionTemplate) {
10007       if (NewFD->isInvalidDecl())
10008         FunctionTemplate->setInvalidDecl();
10009       return FunctionTemplate;
10010     }
10011 
10012     if (isMemberSpecialization && !NewFD->isInvalidDecl())
10013       CompleteMemberSpecialization(NewFD, Previous);
10014   }
10015 
10016   for (const ParmVarDecl *Param : NewFD->parameters()) {
10017     QualType PT = Param->getType();
10018 
10019     // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
10020     // types.
10021     if (getLangOpts().getOpenCLCompatibleVersion() >= 200) {
10022       if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
10023         QualType ElemTy = PipeTy->getElementType();
10024           if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
10025             Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
10026             D.setInvalidType();
10027           }
10028       }
10029     }
10030   }
10031 
10032   // Here we have an function template explicit specialization at class scope.
10033   // The actual specialization will be postponed to template instatiation
10034   // time via the ClassScopeFunctionSpecializationDecl node.
10035   if (isDependentClassScopeExplicitSpecialization) {
10036     ClassScopeFunctionSpecializationDecl *NewSpec =
10037                          ClassScopeFunctionSpecializationDecl::Create(
10038                                 Context, CurContext, NewFD->getLocation(),
10039                                 cast<CXXMethodDecl>(NewFD),
10040                                 HasExplicitTemplateArgs, TemplateArgs);
10041     CurContext->addDecl(NewSpec);
10042     AddToScope = false;
10043   }
10044 
10045   // Diagnose availability attributes. Availability cannot be used on functions
10046   // that are run during load/unload.
10047   if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
10048     if (NewFD->hasAttr<ConstructorAttr>()) {
10049       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10050           << 1;
10051       NewFD->dropAttr<AvailabilityAttr>();
10052     }
10053     if (NewFD->hasAttr<DestructorAttr>()) {
10054       Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
10055           << 2;
10056       NewFD->dropAttr<AvailabilityAttr>();
10057     }
10058   }
10059 
10060   // Diagnose no_builtin attribute on function declaration that are not a
10061   // definition.
10062   // FIXME: We should really be doing this in
10063   // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
10064   // the FunctionDecl and at this point of the code
10065   // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
10066   // because Sema::ActOnStartOfFunctionDef has not been called yet.
10067   if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
10068     switch (D.getFunctionDefinitionKind()) {
10069     case FunctionDefinitionKind::Defaulted:
10070     case FunctionDefinitionKind::Deleted:
10071       Diag(NBA->getLocation(),
10072            diag::err_attribute_no_builtin_on_defaulted_deleted_function)
10073           << NBA->getSpelling();
10074       break;
10075     case FunctionDefinitionKind::Declaration:
10076       Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
10077           << NBA->getSpelling();
10078       break;
10079     case FunctionDefinitionKind::Definition:
10080       break;
10081     }
10082 
10083   return NewFD;
10084 }
10085 
10086 /// Return a CodeSegAttr from a containing class.  The Microsoft docs say
10087 /// when __declspec(code_seg) "is applied to a class, all member functions of
10088 /// the class and nested classes -- this includes compiler-generated special
10089 /// member functions -- are put in the specified segment."
10090 /// The actual behavior is a little more complicated. The Microsoft compiler
10091 /// won't check outer classes if there is an active value from #pragma code_seg.
10092 /// The CodeSeg is always applied from the direct parent but only from outer
10093 /// classes when the #pragma code_seg stack is empty. See:
10094 /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
10095 /// available since MS has removed the page.
10096 static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
10097   const auto *Method = dyn_cast<CXXMethodDecl>(FD);
10098   if (!Method)
10099     return nullptr;
10100   const CXXRecordDecl *Parent = Method->getParent();
10101   if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10102     Attr *NewAttr = SAttr->clone(S.getASTContext());
10103     NewAttr->setImplicit(true);
10104     return NewAttr;
10105   }
10106 
10107   // The Microsoft compiler won't check outer classes for the CodeSeg
10108   // when the #pragma code_seg stack is active.
10109   if (S.CodeSegStack.CurrentValue)
10110    return nullptr;
10111 
10112   while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
10113     if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
10114       Attr *NewAttr = SAttr->clone(S.getASTContext());
10115       NewAttr->setImplicit(true);
10116       return NewAttr;
10117     }
10118   }
10119   return nullptr;
10120 }
10121 
10122 /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
10123 /// containing class. Otherwise it will return implicit SectionAttr if the
10124 /// function is a definition and there is an active value on CodeSegStack
10125 /// (from the current #pragma code-seg value).
10126 ///
10127 /// \param FD Function being declared.
10128 /// \param IsDefinition Whether it is a definition or just a declarartion.
10129 /// \returns A CodeSegAttr or SectionAttr to apply to the function or
10130 ///          nullptr if no attribute should be added.
10131 Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
10132                                                        bool IsDefinition) {
10133   if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
10134     return A;
10135   if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
10136       CodeSegStack.CurrentValue)
10137     return SectionAttr::CreateImplicit(
10138         getASTContext(), CodeSegStack.CurrentValue->getString(),
10139         CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
10140         SectionAttr::Declspec_allocate);
10141   return nullptr;
10142 }
10143 
10144 /// Determines if we can perform a correct type check for \p D as a
10145 /// redeclaration of \p PrevDecl. If not, we can generally still perform a
10146 /// best-effort check.
10147 ///
10148 /// \param NewD The new declaration.
10149 /// \param OldD The old declaration.
10150 /// \param NewT The portion of the type of the new declaration to check.
10151 /// \param OldT The portion of the type of the old declaration to check.
10152 bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
10153                                           QualType NewT, QualType OldT) {
10154   if (!NewD->getLexicalDeclContext()->isDependentContext())
10155     return true;
10156 
10157   // For dependently-typed local extern declarations and friends, we can't
10158   // perform a correct type check in general until instantiation:
10159   //
10160   //   int f();
10161   //   template<typename T> void g() { T f(); }
10162   //
10163   // (valid if g() is only instantiated with T = int).
10164   if (NewT->isDependentType() &&
10165       (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
10166     return false;
10167 
10168   // Similarly, if the previous declaration was a dependent local extern
10169   // declaration, we don't really know its type yet.
10170   if (OldT->isDependentType() && OldD->isLocalExternDecl())
10171     return false;
10172 
10173   return true;
10174 }
10175 
10176 /// Checks if the new declaration declared in dependent context must be
10177 /// put in the same redeclaration chain as the specified declaration.
10178 ///
10179 /// \param D Declaration that is checked.
10180 /// \param PrevDecl Previous declaration found with proper lookup method for the
10181 ///                 same declaration name.
10182 /// \returns True if D must be added to the redeclaration chain which PrevDecl
10183 ///          belongs to.
10184 ///
10185 bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
10186   if (!D->getLexicalDeclContext()->isDependentContext())
10187     return true;
10188 
10189   // Don't chain dependent friend function definitions until instantiation, to
10190   // permit cases like
10191   //
10192   //   void func();
10193   //   template<typename T> class C1 { friend void func() {} };
10194   //   template<typename T> class C2 { friend void func() {} };
10195   //
10196   // ... which is valid if only one of C1 and C2 is ever instantiated.
10197   //
10198   // FIXME: This need only apply to function definitions. For now, we proxy
10199   // this by checking for a file-scope function. We do not want this to apply
10200   // to friend declarations nominating member functions, because that gets in
10201   // the way of access checks.
10202   if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
10203     return false;
10204 
10205   auto *VD = dyn_cast<ValueDecl>(D);
10206   auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
10207   return !VD || !PrevVD ||
10208          canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
10209                                         PrevVD->getType());
10210 }
10211 
10212 /// Check the target attribute of the function for MultiVersion
10213 /// validity.
10214 ///
10215 /// Returns true if there was an error, false otherwise.
10216 static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
10217   const auto *TA = FD->getAttr<TargetAttr>();
10218   assert(TA && "MultiVersion Candidate requires a target attribute");
10219   ParsedTargetAttr ParseInfo = TA->parse();
10220   const TargetInfo &TargetInfo = S.Context.getTargetInfo();
10221   enum ErrType { Feature = 0, Architecture = 1 };
10222 
10223   if (!ParseInfo.Architecture.empty() &&
10224       !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
10225     S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10226         << Architecture << ParseInfo.Architecture;
10227     return true;
10228   }
10229 
10230   for (const auto &Feat : ParseInfo.Features) {
10231     auto BareFeat = StringRef{Feat}.substr(1);
10232     if (Feat[0] == '-') {
10233       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10234           << Feature << ("no-" + BareFeat).str();
10235       return true;
10236     }
10237 
10238     if (!TargetInfo.validateCpuSupports(BareFeat) ||
10239         !TargetInfo.isValidFeatureName(BareFeat)) {
10240       S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10241           << Feature << BareFeat;
10242       return true;
10243     }
10244   }
10245   return false;
10246 }
10247 
10248 // Provide a white-list of attributes that are allowed to be combined with
10249 // multiversion functions.
10250 static bool AttrCompatibleWithMultiVersion(attr::Kind Kind,
10251                                            MultiVersionKind MVType) {
10252   // Note: this list/diagnosis must match the list in
10253   // checkMultiversionAttributesAllSame.
10254   switch (Kind) {
10255   default:
10256     return false;
10257   case attr::Used:
10258     return MVType == MultiVersionKind::Target;
10259   case attr::NonNull:
10260   case attr::NoThrow:
10261     return true;
10262   }
10263 }
10264 
10265 static bool checkNonMultiVersionCompatAttributes(Sema &S,
10266                                                  const FunctionDecl *FD,
10267                                                  const FunctionDecl *CausedFD,
10268                                                  MultiVersionKind MVType) {
10269   bool IsCPUSpecificCPUDispatchMVType =
10270       MVType == MultiVersionKind::CPUDispatch ||
10271       MVType == MultiVersionKind::CPUSpecific;
10272   const auto Diagnose = [FD, CausedFD, IsCPUSpecificCPUDispatchMVType](
10273                             Sema &S, const Attr *A) {
10274     S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr)
10275         << IsCPUSpecificCPUDispatchMVType << A;
10276     if (CausedFD)
10277       S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here);
10278     return true;
10279   };
10280 
10281   for (const Attr *A : FD->attrs()) {
10282     switch (A->getKind()) {
10283     case attr::CPUDispatch:
10284     case attr::CPUSpecific:
10285       if (MVType != MultiVersionKind::CPUDispatch &&
10286           MVType != MultiVersionKind::CPUSpecific)
10287         return Diagnose(S, A);
10288       break;
10289     case attr::Target:
10290       if (MVType != MultiVersionKind::Target)
10291         return Diagnose(S, A);
10292       break;
10293     default:
10294       if (!AttrCompatibleWithMultiVersion(A->getKind(), MVType))
10295         return Diagnose(S, A);
10296       break;
10297     }
10298   }
10299   return false;
10300 }
10301 
10302 bool Sema::areMultiversionVariantFunctionsCompatible(
10303     const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10304     const PartialDiagnostic &NoProtoDiagID,
10305     const PartialDiagnosticAt &NoteCausedDiagIDAt,
10306     const PartialDiagnosticAt &NoSupportDiagIDAt,
10307     const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10308     bool ConstexprSupported, bool CLinkageMayDiffer) {
10309   enum DoesntSupport {
10310     FuncTemplates = 0,
10311     VirtFuncs = 1,
10312     DeducedReturn = 2,
10313     Constructors = 3,
10314     Destructors = 4,
10315     DeletedFuncs = 5,
10316     DefaultedFuncs = 6,
10317     ConstexprFuncs = 7,
10318     ConstevalFuncs = 8,
10319   };
10320   enum Different {
10321     CallingConv = 0,
10322     ReturnType = 1,
10323     ConstexprSpec = 2,
10324     InlineSpec = 3,
10325     Linkage = 4,
10326     LanguageLinkage = 5,
10327   };
10328 
10329   if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
10330       !OldFD->getType()->getAs<FunctionProtoType>()) {
10331     Diag(OldFD->getLocation(), NoProtoDiagID);
10332     Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
10333     return true;
10334   }
10335 
10336   if (NoProtoDiagID.getDiagID() != 0 &&
10337       !NewFD->getType()->getAs<FunctionProtoType>())
10338     return Diag(NewFD->getLocation(), NoProtoDiagID);
10339 
10340   if (!TemplatesSupported &&
10341       NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10342     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10343            << FuncTemplates;
10344 
10345   if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
10346     if (NewCXXFD->isVirtual())
10347       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10348              << VirtFuncs;
10349 
10350     if (isa<CXXConstructorDecl>(NewCXXFD))
10351       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10352              << Constructors;
10353 
10354     if (isa<CXXDestructorDecl>(NewCXXFD))
10355       return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10356              << Destructors;
10357   }
10358 
10359   if (NewFD->isDeleted())
10360     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10361            << DeletedFuncs;
10362 
10363   if (NewFD->isDefaulted())
10364     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10365            << DefaultedFuncs;
10366 
10367   if (!ConstexprSupported && NewFD->isConstexpr())
10368     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10369            << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
10370 
10371   QualType NewQType = Context.getCanonicalType(NewFD->getType());
10372   const auto *NewType = cast<FunctionType>(NewQType);
10373   QualType NewReturnType = NewType->getReturnType();
10374 
10375   if (NewReturnType->isUndeducedType())
10376     return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10377            << DeducedReturn;
10378 
10379   // Ensure the return type is identical.
10380   if (OldFD) {
10381     QualType OldQType = Context.getCanonicalType(OldFD->getType());
10382     const auto *OldType = cast<FunctionType>(OldQType);
10383     FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
10384     FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
10385 
10386     if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
10387       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
10388 
10389     QualType OldReturnType = OldType->getReturnType();
10390 
10391     if (OldReturnType != NewReturnType)
10392       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
10393 
10394     if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
10395       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
10396 
10397     if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
10398       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
10399 
10400     if (OldFD->getFormalLinkage() != NewFD->getFormalLinkage())
10401       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
10402 
10403     if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
10404       return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << LanguageLinkage;
10405 
10406     if (CheckEquivalentExceptionSpec(
10407             OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
10408             NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
10409       return true;
10410   }
10411   return false;
10412 }
10413 
10414 static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
10415                                              const FunctionDecl *NewFD,
10416                                              bool CausesMV,
10417                                              MultiVersionKind MVType) {
10418   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10419     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10420     if (OldFD)
10421       S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10422     return true;
10423   }
10424 
10425   bool IsCPUSpecificCPUDispatchMVType =
10426       MVType == MultiVersionKind::CPUDispatch ||
10427       MVType == MultiVersionKind::CPUSpecific;
10428 
10429   if (CausesMV && OldFD &&
10430       checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVType))
10431     return true;
10432 
10433   if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVType))
10434     return true;
10435 
10436   // Only allow transition to MultiVersion if it hasn't been used.
10437   if (OldFD && CausesMV && OldFD->isUsed(false))
10438     return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
10439 
10440   return S.areMultiversionVariantFunctionsCompatible(
10441       OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
10442       PartialDiagnosticAt(NewFD->getLocation(),
10443                           S.PDiag(diag::note_multiversioning_caused_here)),
10444       PartialDiagnosticAt(NewFD->getLocation(),
10445                           S.PDiag(diag::err_multiversion_doesnt_support)
10446                               << IsCPUSpecificCPUDispatchMVType),
10447       PartialDiagnosticAt(NewFD->getLocation(),
10448                           S.PDiag(diag::err_multiversion_diff)),
10449       /*TemplatesSupported=*/false,
10450       /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVType,
10451       /*CLinkageMayDiffer=*/false);
10452 }
10453 
10454 /// Check the validity of a multiversion function declaration that is the
10455 /// first of its kind. Also sets the multiversion'ness' of the function itself.
10456 ///
10457 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10458 ///
10459 /// Returns true if there was an error, false otherwise.
10460 static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
10461                                            MultiVersionKind MVType,
10462                                            const TargetAttr *TA) {
10463   assert(MVType != MultiVersionKind::None &&
10464          "Function lacks multiversion attribute");
10465 
10466   // Target only causes MV if it is default, otherwise this is a normal
10467   // function.
10468   if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
10469     return false;
10470 
10471   if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
10472     FD->setInvalidDecl();
10473     return true;
10474   }
10475 
10476   if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
10477     FD->setInvalidDecl();
10478     return true;
10479   }
10480 
10481   FD->setIsMultiVersion();
10482   return false;
10483 }
10484 
10485 static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
10486   for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
10487     if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
10488       return true;
10489   }
10490 
10491   return false;
10492 }
10493 
10494 static bool CheckTargetCausesMultiVersioning(
10495     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
10496     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10497     LookupResult &Previous) {
10498   const auto *OldTA = OldFD->getAttr<TargetAttr>();
10499   ParsedTargetAttr NewParsed = NewTA->parse();
10500   // Sort order doesn't matter, it just needs to be consistent.
10501   llvm::sort(NewParsed.Features);
10502 
10503   // If the old decl is NOT MultiVersioned yet, and we don't cause that
10504   // to change, this is a simple redeclaration.
10505   if (!NewTA->isDefaultVersion() &&
10506       (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
10507     return false;
10508 
10509   // Otherwise, this decl causes MultiVersioning.
10510   if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10511     S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10512     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10513     NewFD->setInvalidDecl();
10514     return true;
10515   }
10516 
10517   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
10518                                        MultiVersionKind::Target)) {
10519     NewFD->setInvalidDecl();
10520     return true;
10521   }
10522 
10523   if (CheckMultiVersionValue(S, NewFD)) {
10524     NewFD->setInvalidDecl();
10525     return true;
10526   }
10527 
10528   // If this is 'default', permit the forward declaration.
10529   if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
10530     Redeclaration = true;
10531     OldDecl = OldFD;
10532     OldFD->setIsMultiVersion();
10533     NewFD->setIsMultiVersion();
10534     return false;
10535   }
10536 
10537   if (CheckMultiVersionValue(S, OldFD)) {
10538     S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10539     NewFD->setInvalidDecl();
10540     return true;
10541   }
10542 
10543   ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>());
10544 
10545   if (OldParsed == NewParsed) {
10546     S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10547     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10548     NewFD->setInvalidDecl();
10549     return true;
10550   }
10551 
10552   for (const auto *FD : OldFD->redecls()) {
10553     const auto *CurTA = FD->getAttr<TargetAttr>();
10554     // We allow forward declarations before ANY multiversioning attributes, but
10555     // nothing after the fact.
10556     if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
10557         (!CurTA || CurTA->isInherited())) {
10558       S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
10559           << 0;
10560       S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10561       NewFD->setInvalidDecl();
10562       return true;
10563     }
10564   }
10565 
10566   OldFD->setIsMultiVersion();
10567   NewFD->setIsMultiVersion();
10568   Redeclaration = false;
10569   MergeTypeWithPrevious = false;
10570   OldDecl = nullptr;
10571   Previous.clear();
10572   return false;
10573 }
10574 
10575 /// Check the validity of a new function declaration being added to an existing
10576 /// multiversioned declaration collection.
10577 static bool CheckMultiVersionAdditionalDecl(
10578     Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
10579     MultiVersionKind NewMVType, const TargetAttr *NewTA,
10580     const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
10581     bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10582     LookupResult &Previous) {
10583 
10584   MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
10585   // Disallow mixing of multiversioning types.
10586   if ((OldMVType == MultiVersionKind::Target &&
10587        NewMVType != MultiVersionKind::Target) ||
10588       (NewMVType == MultiVersionKind::Target &&
10589        OldMVType != MultiVersionKind::Target)) {
10590     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10591     S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10592     NewFD->setInvalidDecl();
10593     return true;
10594   }
10595 
10596   ParsedTargetAttr NewParsed;
10597   if (NewTA) {
10598     NewParsed = NewTA->parse();
10599     llvm::sort(NewParsed.Features);
10600   }
10601 
10602   bool UseMemberUsingDeclRules =
10603       S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
10604 
10605   // Next, check ALL non-overloads to see if this is a redeclaration of a
10606   // previous member of the MultiVersion set.
10607   for (NamedDecl *ND : Previous) {
10608     FunctionDecl *CurFD = ND->getAsFunction();
10609     if (!CurFD)
10610       continue;
10611     if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
10612       continue;
10613 
10614     if (NewMVType == MultiVersionKind::Target) {
10615       const auto *CurTA = CurFD->getAttr<TargetAttr>();
10616       if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
10617         NewFD->setIsMultiVersion();
10618         Redeclaration = true;
10619         OldDecl = ND;
10620         return false;
10621       }
10622 
10623       ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>());
10624       if (CurParsed == NewParsed) {
10625         S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10626         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10627         NewFD->setInvalidDecl();
10628         return true;
10629       }
10630     } else {
10631       const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
10632       const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
10633       // Handle CPUDispatch/CPUSpecific versions.
10634       // Only 1 CPUDispatch function is allowed, this will make it go through
10635       // the redeclaration errors.
10636       if (NewMVType == MultiVersionKind::CPUDispatch &&
10637           CurFD->hasAttr<CPUDispatchAttr>()) {
10638         if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
10639             std::equal(
10640                 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
10641                 NewCPUDisp->cpus_begin(),
10642                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10643                   return Cur->getName() == New->getName();
10644                 })) {
10645           NewFD->setIsMultiVersion();
10646           Redeclaration = true;
10647           OldDecl = ND;
10648           return false;
10649         }
10650 
10651         // If the declarations don't match, this is an error condition.
10652         S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
10653         S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10654         NewFD->setInvalidDecl();
10655         return true;
10656       }
10657       if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
10658 
10659         if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
10660             std::equal(
10661                 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
10662                 NewCPUSpec->cpus_begin(),
10663                 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10664                   return Cur->getName() == New->getName();
10665                 })) {
10666           NewFD->setIsMultiVersion();
10667           Redeclaration = true;
10668           OldDecl = ND;
10669           return false;
10670         }
10671 
10672         // Only 1 version of CPUSpecific is allowed for each CPU.
10673         for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
10674           for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
10675             if (CurII == NewII) {
10676               S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
10677                   << NewII;
10678               S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10679               NewFD->setInvalidDecl();
10680               return true;
10681             }
10682           }
10683         }
10684       }
10685       // If the two decls aren't the same MVType, there is no possible error
10686       // condition.
10687     }
10688   }
10689 
10690   // Else, this is simply a non-redecl case.  Checking the 'value' is only
10691   // necessary in the Target case, since The CPUSpecific/Dispatch cases are
10692   // handled in the attribute adding step.
10693   if (NewMVType == MultiVersionKind::Target &&
10694       CheckMultiVersionValue(S, NewFD)) {
10695     NewFD->setInvalidDecl();
10696     return true;
10697   }
10698 
10699   if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
10700                                        !OldFD->isMultiVersion(), NewMVType)) {
10701     NewFD->setInvalidDecl();
10702     return true;
10703   }
10704 
10705   // Permit forward declarations in the case where these two are compatible.
10706   if (!OldFD->isMultiVersion()) {
10707     OldFD->setIsMultiVersion();
10708     NewFD->setIsMultiVersion();
10709     Redeclaration = true;
10710     OldDecl = OldFD;
10711     return false;
10712   }
10713 
10714   NewFD->setIsMultiVersion();
10715   Redeclaration = false;
10716   MergeTypeWithPrevious = false;
10717   OldDecl = nullptr;
10718   Previous.clear();
10719   return false;
10720 }
10721 
10722 
10723 /// Check the validity of a mulitversion function declaration.
10724 /// Also sets the multiversion'ness' of the function itself.
10725 ///
10726 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10727 ///
10728 /// Returns true if there was an error, false otherwise.
10729 static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
10730                                       bool &Redeclaration, NamedDecl *&OldDecl,
10731                                       bool &MergeTypeWithPrevious,
10732                                       LookupResult &Previous) {
10733   const auto *NewTA = NewFD->getAttr<TargetAttr>();
10734   const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
10735   const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
10736 
10737   // Mixing Multiversioning types is prohibited.
10738   if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
10739       (NewCPUDisp && NewCPUSpec)) {
10740     S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10741     NewFD->setInvalidDecl();
10742     return true;
10743   }
10744 
10745   MultiVersionKind  MVType = NewFD->getMultiVersionKind();
10746 
10747   // Main isn't allowed to become a multiversion function, however it IS
10748   // permitted to have 'main' be marked with the 'target' optimization hint.
10749   if (NewFD->isMain()) {
10750     if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
10751         MVType == MultiVersionKind::CPUDispatch ||
10752         MVType == MultiVersionKind::CPUSpecific) {
10753       S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
10754       NewFD->setInvalidDecl();
10755       return true;
10756     }
10757     return false;
10758   }
10759 
10760   if (!OldDecl || !OldDecl->getAsFunction() ||
10761       OldDecl->getDeclContext()->getRedeclContext() !=
10762           NewFD->getDeclContext()->getRedeclContext()) {
10763     // If there's no previous declaration, AND this isn't attempting to cause
10764     // multiversioning, this isn't an error condition.
10765     if (MVType == MultiVersionKind::None)
10766       return false;
10767     return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA);
10768   }
10769 
10770   FunctionDecl *OldFD = OldDecl->getAsFunction();
10771 
10772   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
10773     return false;
10774 
10775   if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
10776     S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
10777         << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
10778     NewFD->setInvalidDecl();
10779     return true;
10780   }
10781 
10782   // Handle the target potentially causes multiversioning case.
10783   if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
10784     return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
10785                                             Redeclaration, OldDecl,
10786                                             MergeTypeWithPrevious, Previous);
10787 
10788   // At this point, we have a multiversion function decl (in OldFD) AND an
10789   // appropriate attribute in the current function decl.  Resolve that these are
10790   // still compatible with previous declarations.
10791   return CheckMultiVersionAdditionalDecl(
10792       S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
10793       OldDecl, MergeTypeWithPrevious, Previous);
10794 }
10795 
10796 /// Perform semantic checking of a new function declaration.
10797 ///
10798 /// Performs semantic analysis of the new function declaration
10799 /// NewFD. This routine performs all semantic checking that does not
10800 /// require the actual declarator involved in the declaration, and is
10801 /// used both for the declaration of functions as they are parsed
10802 /// (called via ActOnDeclarator) and for the declaration of functions
10803 /// that have been instantiated via C++ template instantiation (called
10804 /// via InstantiateDecl).
10805 ///
10806 /// \param IsMemberSpecialization whether this new function declaration is
10807 /// a member specialization (that replaces any definition provided by the
10808 /// previous declaration).
10809 ///
10810 /// This sets NewFD->isInvalidDecl() to true if there was an error.
10811 ///
10812 /// \returns true if the function declaration is a redeclaration.
10813 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
10814                                     LookupResult &Previous,
10815                                     bool IsMemberSpecialization) {
10816   assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
10817          "Variably modified return types are not handled here");
10818 
10819   // Determine whether the type of this function should be merged with
10820   // a previous visible declaration. This never happens for functions in C++,
10821   // and always happens in C if the previous declaration was visible.
10822   bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
10823                                !Previous.isShadowed();
10824 
10825   bool Redeclaration = false;
10826   NamedDecl *OldDecl = nullptr;
10827   bool MayNeedOverloadableChecks = false;
10828 
10829   // Merge or overload the declaration with an existing declaration of
10830   // the same name, if appropriate.
10831   if (!Previous.empty()) {
10832     // Determine whether NewFD is an overload of PrevDecl or
10833     // a declaration that requires merging. If it's an overload,
10834     // there's no more work to do here; we'll just add the new
10835     // function to the scope.
10836     if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
10837       NamedDecl *Candidate = Previous.getRepresentativeDecl();
10838       if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
10839         Redeclaration = true;
10840         OldDecl = Candidate;
10841       }
10842     } else {
10843       MayNeedOverloadableChecks = true;
10844       switch (CheckOverload(S, NewFD, Previous, OldDecl,
10845                             /*NewIsUsingDecl*/ false)) {
10846       case Ovl_Match:
10847         Redeclaration = true;
10848         break;
10849 
10850       case Ovl_NonFunction:
10851         Redeclaration = true;
10852         break;
10853 
10854       case Ovl_Overload:
10855         Redeclaration = false;
10856         break;
10857       }
10858     }
10859   }
10860 
10861   // Check for a previous extern "C" declaration with this name.
10862   if (!Redeclaration &&
10863       checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
10864     if (!Previous.empty()) {
10865       // This is an extern "C" declaration with the same name as a previous
10866       // declaration, and thus redeclares that entity...
10867       Redeclaration = true;
10868       OldDecl = Previous.getFoundDecl();
10869       MergeTypeWithPrevious = false;
10870 
10871       // ... except in the presence of __attribute__((overloadable)).
10872       if (OldDecl->hasAttr<OverloadableAttr>() ||
10873           NewFD->hasAttr<OverloadableAttr>()) {
10874         if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
10875           MayNeedOverloadableChecks = true;
10876           Redeclaration = false;
10877           OldDecl = nullptr;
10878         }
10879       }
10880     }
10881   }
10882 
10883   if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10884                                 MergeTypeWithPrevious, Previous))
10885     return Redeclaration;
10886 
10887   // PPC MMA non-pointer types are not allowed as function return types.
10888   if (Context.getTargetInfo().getTriple().isPPC64() &&
10889       CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) {
10890     NewFD->setInvalidDecl();
10891   }
10892 
10893   // C++11 [dcl.constexpr]p8:
10894   //   A constexpr specifier for a non-static member function that is not
10895   //   a constructor declares that member function to be const.
10896   //
10897   // This needs to be delayed until we know whether this is an out-of-line
10898   // definition of a static member function.
10899   //
10900   // This rule is not present in C++1y, so we produce a backwards
10901   // compatibility warning whenever it happens in C++11.
10902   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10903   if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10904       !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10905       !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
10906     CXXMethodDecl *OldMD = nullptr;
10907     if (OldDecl)
10908       OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10909     if (!OldMD || !OldMD->isStatic()) {
10910       const FunctionProtoType *FPT =
10911         MD->getType()->castAs<FunctionProtoType>();
10912       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10913       EPI.TypeQuals.addConst();
10914       MD->setType(Context.getFunctionType(FPT->getReturnType(),
10915                                           FPT->getParamTypes(), EPI));
10916 
10917       // Warn that we did this, if we're not performing template instantiation.
10918       // In that case, we'll have warned already when the template was defined.
10919       if (!inTemplateInstantiation()) {
10920         SourceLocation AddConstLoc;
10921         if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10922                 .IgnoreParens().getAs<FunctionTypeLoc>())
10923           AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10924 
10925         Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10926           << FixItHint::CreateInsertion(AddConstLoc, " const");
10927       }
10928     }
10929   }
10930 
10931   if (Redeclaration) {
10932     // NewFD and OldDecl represent declarations that need to be
10933     // merged.
10934     if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10935       NewFD->setInvalidDecl();
10936       return Redeclaration;
10937     }
10938 
10939     Previous.clear();
10940     Previous.addDecl(OldDecl);
10941 
10942     if (FunctionTemplateDecl *OldTemplateDecl =
10943             dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10944       auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10945       FunctionTemplateDecl *NewTemplateDecl
10946         = NewFD->getDescribedFunctionTemplate();
10947       assert(NewTemplateDecl && "Template/non-template mismatch");
10948 
10949       // The call to MergeFunctionDecl above may have created some state in
10950       // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10951       // can add it as a redeclaration.
10952       NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10953 
10954       NewFD->setPreviousDeclaration(OldFD);
10955       if (NewFD->isCXXClassMember()) {
10956         NewFD->setAccess(OldTemplateDecl->getAccess());
10957         NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10958       }
10959 
10960       // If this is an explicit specialization of a member that is a function
10961       // template, mark it as a member specialization.
10962       if (IsMemberSpecialization &&
10963           NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10964         NewTemplateDecl->setMemberSpecialization();
10965         assert(OldTemplateDecl->isMemberSpecialization());
10966         // Explicit specializations of a member template do not inherit deleted
10967         // status from the parent member template that they are specializing.
10968         if (OldFD->isDeleted()) {
10969           // FIXME: This assert will not hold in the presence of modules.
10970           assert(OldFD->getCanonicalDecl() == OldFD);
10971           // FIXME: We need an update record for this AST mutation.
10972           OldFD->setDeletedAsWritten(false);
10973         }
10974       }
10975 
10976     } else {
10977       if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10978         auto *OldFD = cast<FunctionDecl>(OldDecl);
10979         // This needs to happen first so that 'inline' propagates.
10980         NewFD->setPreviousDeclaration(OldFD);
10981         if (NewFD->isCXXClassMember())
10982           NewFD->setAccess(OldFD->getAccess());
10983       }
10984     }
10985   } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10986              !NewFD->getAttr<OverloadableAttr>()) {
10987     assert((Previous.empty() ||
10988             llvm::any_of(Previous,
10989                          [](const NamedDecl *ND) {
10990                            return ND->hasAttr<OverloadableAttr>();
10991                          })) &&
10992            "Non-redecls shouldn't happen without overloadable present");
10993 
10994     auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10995       const auto *FD = dyn_cast<FunctionDecl>(ND);
10996       return FD && !FD->hasAttr<OverloadableAttr>();
10997     });
10998 
10999     if (OtherUnmarkedIter != Previous.end()) {
11000       Diag(NewFD->getLocation(),
11001            diag::err_attribute_overloadable_multiple_unmarked_overloads);
11002       Diag((*OtherUnmarkedIter)->getLocation(),
11003            diag::note_attribute_overloadable_prev_overload)
11004           << false;
11005 
11006       NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
11007     }
11008   }
11009 
11010   if (LangOpts.OpenMP)
11011     ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD);
11012 
11013   // Semantic checking for this function declaration (in isolation).
11014 
11015   if (getLangOpts().CPlusPlus) {
11016     // C++-specific checks.
11017     if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
11018       CheckConstructor(Constructor);
11019     } else if (CXXDestructorDecl *Destructor =
11020                 dyn_cast<CXXDestructorDecl>(NewFD)) {
11021       CXXRecordDecl *Record = Destructor->getParent();
11022       QualType ClassType = Context.getTypeDeclType(Record);
11023 
11024       // FIXME: Shouldn't we be able to perform this check even when the class
11025       // type is dependent? Both gcc and edg can handle that.
11026       if (!ClassType->isDependentType()) {
11027         DeclarationName Name
11028           = Context.DeclarationNames.getCXXDestructorName(
11029                                         Context.getCanonicalType(ClassType));
11030         if (NewFD->getDeclName() != Name) {
11031           Diag(NewFD->getLocation(), diag::err_destructor_name);
11032           NewFD->setInvalidDecl();
11033           return Redeclaration;
11034         }
11035       }
11036     } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
11037       if (auto *TD = Guide->getDescribedFunctionTemplate())
11038         CheckDeductionGuideTemplate(TD);
11039 
11040       // A deduction guide is not on the list of entities that can be
11041       // explicitly specialized.
11042       if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
11043         Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
11044             << /*explicit specialization*/ 1;
11045     }
11046 
11047     // Find any virtual functions that this function overrides.
11048     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
11049       if (!Method->isFunctionTemplateSpecialization() &&
11050           !Method->getDescribedFunctionTemplate() &&
11051           Method->isCanonicalDecl()) {
11052         AddOverriddenMethods(Method->getParent(), Method);
11053       }
11054       if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
11055         // C++2a [class.virtual]p6
11056         // A virtual method shall not have a requires-clause.
11057         Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
11058              diag::err_constrained_virtual_method);
11059 
11060       if (Method->isStatic())
11061         checkThisInStaticMemberFunctionType(Method);
11062     }
11063 
11064     if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
11065       ActOnConversionDeclarator(Conversion);
11066 
11067     // Extra checking for C++ overloaded operators (C++ [over.oper]).
11068     if (NewFD->isOverloadedOperator() &&
11069         CheckOverloadedOperatorDeclaration(NewFD)) {
11070       NewFD->setInvalidDecl();
11071       return Redeclaration;
11072     }
11073 
11074     // Extra checking for C++0x literal operators (C++0x [over.literal]).
11075     if (NewFD->getLiteralIdentifier() &&
11076         CheckLiteralOperatorDeclaration(NewFD)) {
11077       NewFD->setInvalidDecl();
11078       return Redeclaration;
11079     }
11080 
11081     // In C++, check default arguments now that we have merged decls. Unless
11082     // the lexical context is the class, because in this case this is done
11083     // during delayed parsing anyway.
11084     if (!CurContext->isRecord())
11085       CheckCXXDefaultArguments(NewFD);
11086 
11087     // If this function is declared as being extern "C", then check to see if
11088     // the function returns a UDT (class, struct, or union type) that is not C
11089     // compatible, and if it does, warn the user.
11090     // But, issue any diagnostic on the first declaration only.
11091     if (Previous.empty() && NewFD->isExternC()) {
11092       QualType R = NewFD->getReturnType();
11093       if (R->isIncompleteType() && !R->isVoidType())
11094         Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
11095             << NewFD << R;
11096       else if (!R.isPODType(Context) && !R->isVoidType() &&
11097                !R->isObjCObjectPointerType())
11098         Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
11099     }
11100 
11101     // C++1z [dcl.fct]p6:
11102     //   [...] whether the function has a non-throwing exception-specification
11103     //   [is] part of the function type
11104     //
11105     // This results in an ABI break between C++14 and C++17 for functions whose
11106     // declared type includes an exception-specification in a parameter or
11107     // return type. (Exception specifications on the function itself are OK in
11108     // most cases, and exception specifications are not permitted in most other
11109     // contexts where they could make it into a mangling.)
11110     if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
11111       auto HasNoexcept = [&](QualType T) -> bool {
11112         // Strip off declarator chunks that could be between us and a function
11113         // type. We don't need to look far, exception specifications are very
11114         // restricted prior to C++17.
11115         if (auto *RT = T->getAs<ReferenceType>())
11116           T = RT->getPointeeType();
11117         else if (T->isAnyPointerType())
11118           T = T->getPointeeType();
11119         else if (auto *MPT = T->getAs<MemberPointerType>())
11120           T = MPT->getPointeeType();
11121         if (auto *FPT = T->getAs<FunctionProtoType>())
11122           if (FPT->isNothrow())
11123             return true;
11124         return false;
11125       };
11126 
11127       auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
11128       bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
11129       for (QualType T : FPT->param_types())
11130         AnyNoexcept |= HasNoexcept(T);
11131       if (AnyNoexcept)
11132         Diag(NewFD->getLocation(),
11133              diag::warn_cxx17_compat_exception_spec_in_signature)
11134             << NewFD;
11135     }
11136 
11137     if (!Redeclaration && LangOpts.CUDA)
11138       checkCUDATargetOverload(NewFD, Previous);
11139   }
11140   return Redeclaration;
11141 }
11142 
11143 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
11144   // C++11 [basic.start.main]p3:
11145   //   A program that [...] declares main to be inline, static or
11146   //   constexpr is ill-formed.
11147   // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
11148   //   appear in a declaration of main.
11149   // static main is not an error under C99, but we should warn about it.
11150   // We accept _Noreturn main as an extension.
11151   if (FD->getStorageClass() == SC_Static)
11152     Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
11153          ? diag::err_static_main : diag::warn_static_main)
11154       << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
11155   if (FD->isInlineSpecified())
11156     Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
11157       << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
11158   if (DS.isNoreturnSpecified()) {
11159     SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
11160     SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
11161     Diag(NoreturnLoc, diag::ext_noreturn_main);
11162     Diag(NoreturnLoc, diag::note_main_remove_noreturn)
11163       << FixItHint::CreateRemoval(NoreturnRange);
11164   }
11165   if (FD->isConstexpr()) {
11166     Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
11167         << FD->isConsteval()
11168         << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
11169     FD->setConstexprKind(ConstexprSpecKind::Unspecified);
11170   }
11171 
11172   if (getLangOpts().OpenCL) {
11173     Diag(FD->getLocation(), diag::err_opencl_no_main)
11174         << FD->hasAttr<OpenCLKernelAttr>();
11175     FD->setInvalidDecl();
11176     return;
11177   }
11178 
11179   QualType T = FD->getType();
11180   assert(T->isFunctionType() && "function decl is not of function type");
11181   const FunctionType* FT = T->castAs<FunctionType>();
11182 
11183   // Set default calling convention for main()
11184   if (FT->getCallConv() != CC_C) {
11185     FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
11186     FD->setType(QualType(FT, 0));
11187     T = Context.getCanonicalType(FD->getType());
11188   }
11189 
11190   if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
11191     // In C with GNU extensions we allow main() to have non-integer return
11192     // type, but we should warn about the extension, and we disable the
11193     // implicit-return-zero rule.
11194 
11195     // GCC in C mode accepts qualified 'int'.
11196     if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
11197       FD->setHasImplicitReturnZero(true);
11198     else {
11199       Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
11200       SourceRange RTRange = FD->getReturnTypeSourceRange();
11201       if (RTRange.isValid())
11202         Diag(RTRange.getBegin(), diag::note_main_change_return_type)
11203             << FixItHint::CreateReplacement(RTRange, "int");
11204     }
11205   } else {
11206     // In C and C++, main magically returns 0 if you fall off the end;
11207     // set the flag which tells us that.
11208     // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
11209 
11210     // All the standards say that main() should return 'int'.
11211     if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
11212       FD->setHasImplicitReturnZero(true);
11213     else {
11214       // Otherwise, this is just a flat-out error.
11215       SourceRange RTRange = FD->getReturnTypeSourceRange();
11216       Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
11217           << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
11218                                 : FixItHint());
11219       FD->setInvalidDecl(true);
11220     }
11221   }
11222 
11223   // Treat protoless main() as nullary.
11224   if (isa<FunctionNoProtoType>(FT)) return;
11225 
11226   const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
11227   unsigned nparams = FTP->getNumParams();
11228   assert(FD->getNumParams() == nparams);
11229 
11230   bool HasExtraParameters = (nparams > 3);
11231 
11232   if (FTP->isVariadic()) {
11233     Diag(FD->getLocation(), diag::ext_variadic_main);
11234     // FIXME: if we had information about the location of the ellipsis, we
11235     // could add a FixIt hint to remove it as a parameter.
11236   }
11237 
11238   // Darwin passes an undocumented fourth argument of type char**.  If
11239   // other platforms start sprouting these, the logic below will start
11240   // getting shifty.
11241   if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
11242     HasExtraParameters = false;
11243 
11244   if (HasExtraParameters) {
11245     Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
11246     FD->setInvalidDecl(true);
11247     nparams = 3;
11248   }
11249 
11250   // FIXME: a lot of the following diagnostics would be improved
11251   // if we had some location information about types.
11252 
11253   QualType CharPP =
11254     Context.getPointerType(Context.getPointerType(Context.CharTy));
11255   QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
11256 
11257   for (unsigned i = 0; i < nparams; ++i) {
11258     QualType AT = FTP->getParamType(i);
11259 
11260     bool mismatch = true;
11261 
11262     if (Context.hasSameUnqualifiedType(AT, Expected[i]))
11263       mismatch = false;
11264     else if (Expected[i] == CharPP) {
11265       // As an extension, the following forms are okay:
11266       //   char const **
11267       //   char const * const *
11268       //   char * const *
11269 
11270       QualifierCollector qs;
11271       const PointerType* PT;
11272       if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
11273           (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
11274           Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
11275                               Context.CharTy)) {
11276         qs.removeConst();
11277         mismatch = !qs.empty();
11278       }
11279     }
11280 
11281     if (mismatch) {
11282       Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
11283       // TODO: suggest replacing given type with expected type
11284       FD->setInvalidDecl(true);
11285     }
11286   }
11287 
11288   if (nparams == 1 && !FD->isInvalidDecl()) {
11289     Diag(FD->getLocation(), diag::warn_main_one_arg);
11290   }
11291 
11292   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11293     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11294     FD->setInvalidDecl();
11295   }
11296 }
11297 
11298 static bool isDefaultStdCall(FunctionDecl *FD, Sema &S) {
11299 
11300   // Default calling convention for main and wmain is __cdecl
11301   if (FD->getName() == "main" || FD->getName() == "wmain")
11302     return false;
11303 
11304   // Default calling convention for MinGW is __cdecl
11305   const llvm::Triple &T = S.Context.getTargetInfo().getTriple();
11306   if (T.isWindowsGNUEnvironment())
11307     return false;
11308 
11309   // Default calling convention for WinMain, wWinMain and DllMain
11310   // is __stdcall on 32 bit Windows
11311   if (T.isOSWindows() && T.getArch() == llvm::Triple::x86)
11312     return true;
11313 
11314   return false;
11315 }
11316 
11317 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
11318   QualType T = FD->getType();
11319   assert(T->isFunctionType() && "function decl is not of function type");
11320   const FunctionType *FT = T->castAs<FunctionType>();
11321 
11322   // Set an implicit return of 'zero' if the function can return some integral,
11323   // enumeration, pointer or nullptr type.
11324   if (FT->getReturnType()->isIntegralOrEnumerationType() ||
11325       FT->getReturnType()->isAnyPointerType() ||
11326       FT->getReturnType()->isNullPtrType())
11327     // DllMain is exempt because a return value of zero means it failed.
11328     if (FD->getName() != "DllMain")
11329       FD->setHasImplicitReturnZero(true);
11330 
11331   // Explicity specified calling conventions are applied to MSVC entry points
11332   if (!hasExplicitCallingConv(T)) {
11333     if (isDefaultStdCall(FD, *this)) {
11334       if (FT->getCallConv() != CC_X86StdCall) {
11335         FT = Context.adjustFunctionType(
11336             FT, FT->getExtInfo().withCallingConv(CC_X86StdCall));
11337         FD->setType(QualType(FT, 0));
11338       }
11339     } else if (FT->getCallConv() != CC_C) {
11340       FT = Context.adjustFunctionType(FT,
11341                                       FT->getExtInfo().withCallingConv(CC_C));
11342       FD->setType(QualType(FT, 0));
11343     }
11344   }
11345 
11346   if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11347     Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11348     FD->setInvalidDecl();
11349   }
11350 }
11351 
11352 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
11353   // FIXME: Need strict checking.  In C89, we need to check for
11354   // any assignment, increment, decrement, function-calls, or
11355   // commas outside of a sizeof.  In C99, it's the same list,
11356   // except that the aforementioned are allowed in unevaluated
11357   // expressions.  Everything else falls under the
11358   // "may accept other forms of constant expressions" exception.
11359   //
11360   // Regular C++ code will not end up here (exceptions: language extensions,
11361   // OpenCL C++ etc), so the constant expression rules there don't matter.
11362   if (Init->isValueDependent()) {
11363     assert(Init->containsErrors() &&
11364            "Dependent code should only occur in error-recovery path.");
11365     return true;
11366   }
11367   const Expr *Culprit;
11368   if (Init->isConstantInitializer(Context, false, &Culprit))
11369     return false;
11370   Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
11371     << Culprit->getSourceRange();
11372   return true;
11373 }
11374 
11375 namespace {
11376   // Visits an initialization expression to see if OrigDecl is evaluated in
11377   // its own initialization and throws a warning if it does.
11378   class SelfReferenceChecker
11379       : public EvaluatedExprVisitor<SelfReferenceChecker> {
11380     Sema &S;
11381     Decl *OrigDecl;
11382     bool isRecordType;
11383     bool isPODType;
11384     bool isReferenceType;
11385 
11386     bool isInitList;
11387     llvm::SmallVector<unsigned, 4> InitFieldIndex;
11388 
11389   public:
11390     typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
11391 
11392     SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
11393                                                     S(S), OrigDecl(OrigDecl) {
11394       isPODType = false;
11395       isRecordType = false;
11396       isReferenceType = false;
11397       isInitList = false;
11398       if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
11399         isPODType = VD->getType().isPODType(S.Context);
11400         isRecordType = VD->getType()->isRecordType();
11401         isReferenceType = VD->getType()->isReferenceType();
11402       }
11403     }
11404 
11405     // For most expressions, just call the visitor.  For initializer lists,
11406     // track the index of the field being initialized since fields are
11407     // initialized in order allowing use of previously initialized fields.
11408     void CheckExpr(Expr *E) {
11409       InitListExpr *InitList = dyn_cast<InitListExpr>(E);
11410       if (!InitList) {
11411         Visit(E);
11412         return;
11413       }
11414 
11415       // Track and increment the index here.
11416       isInitList = true;
11417       InitFieldIndex.push_back(0);
11418       for (auto Child : InitList->children()) {
11419         CheckExpr(cast<Expr>(Child));
11420         ++InitFieldIndex.back();
11421       }
11422       InitFieldIndex.pop_back();
11423     }
11424 
11425     // Returns true if MemberExpr is checked and no further checking is needed.
11426     // Returns false if additional checking is required.
11427     bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
11428       llvm::SmallVector<FieldDecl*, 4> Fields;
11429       Expr *Base = E;
11430       bool ReferenceField = false;
11431 
11432       // Get the field members used.
11433       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11434         FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
11435         if (!FD)
11436           return false;
11437         Fields.push_back(FD);
11438         if (FD->getType()->isReferenceType())
11439           ReferenceField = true;
11440         Base = ME->getBase()->IgnoreParenImpCasts();
11441       }
11442 
11443       // Keep checking only if the base Decl is the same.
11444       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
11445       if (!DRE || DRE->getDecl() != OrigDecl)
11446         return false;
11447 
11448       // A reference field can be bound to an unininitialized field.
11449       if (CheckReference && !ReferenceField)
11450         return true;
11451 
11452       // Convert FieldDecls to their index number.
11453       llvm::SmallVector<unsigned, 4> UsedFieldIndex;
11454       for (const FieldDecl *I : llvm::reverse(Fields))
11455         UsedFieldIndex.push_back(I->getFieldIndex());
11456 
11457       // See if a warning is needed by checking the first difference in index
11458       // numbers.  If field being used has index less than the field being
11459       // initialized, then the use is safe.
11460       for (auto UsedIter = UsedFieldIndex.begin(),
11461                 UsedEnd = UsedFieldIndex.end(),
11462                 OrigIter = InitFieldIndex.begin(),
11463                 OrigEnd = InitFieldIndex.end();
11464            UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
11465         if (*UsedIter < *OrigIter)
11466           return true;
11467         if (*UsedIter > *OrigIter)
11468           break;
11469       }
11470 
11471       // TODO: Add a different warning which will print the field names.
11472       HandleDeclRefExpr(DRE);
11473       return true;
11474     }
11475 
11476     // For most expressions, the cast is directly above the DeclRefExpr.
11477     // For conditional operators, the cast can be outside the conditional
11478     // operator if both expressions are DeclRefExpr's.
11479     void HandleValue(Expr *E) {
11480       E = E->IgnoreParens();
11481       if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
11482         HandleDeclRefExpr(DRE);
11483         return;
11484       }
11485 
11486       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
11487         Visit(CO->getCond());
11488         HandleValue(CO->getTrueExpr());
11489         HandleValue(CO->getFalseExpr());
11490         return;
11491       }
11492 
11493       if (BinaryConditionalOperator *BCO =
11494               dyn_cast<BinaryConditionalOperator>(E)) {
11495         Visit(BCO->getCond());
11496         HandleValue(BCO->getFalseExpr());
11497         return;
11498       }
11499 
11500       if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
11501         HandleValue(OVE->getSourceExpr());
11502         return;
11503       }
11504 
11505       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11506         if (BO->getOpcode() == BO_Comma) {
11507           Visit(BO->getLHS());
11508           HandleValue(BO->getRHS());
11509           return;
11510         }
11511       }
11512 
11513       if (isa<MemberExpr>(E)) {
11514         if (isInitList) {
11515           if (CheckInitListMemberExpr(cast<MemberExpr>(E),
11516                                       false /*CheckReference*/))
11517             return;
11518         }
11519 
11520         Expr *Base = E->IgnoreParenImpCasts();
11521         while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11522           // Check for static member variables and don't warn on them.
11523           if (!isa<FieldDecl>(ME->getMemberDecl()))
11524             return;
11525           Base = ME->getBase()->IgnoreParenImpCasts();
11526         }
11527         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
11528           HandleDeclRefExpr(DRE);
11529         return;
11530       }
11531 
11532       Visit(E);
11533     }
11534 
11535     // Reference types not handled in HandleValue are handled here since all
11536     // uses of references are bad, not just r-value uses.
11537     void VisitDeclRefExpr(DeclRefExpr *E) {
11538       if (isReferenceType)
11539         HandleDeclRefExpr(E);
11540     }
11541 
11542     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11543       if (E->getCastKind() == CK_LValueToRValue) {
11544         HandleValue(E->getSubExpr());
11545         return;
11546       }
11547 
11548       Inherited::VisitImplicitCastExpr(E);
11549     }
11550 
11551     void VisitMemberExpr(MemberExpr *E) {
11552       if (isInitList) {
11553         if (CheckInitListMemberExpr(E, true /*CheckReference*/))
11554           return;
11555       }
11556 
11557       // Don't warn on arrays since they can be treated as pointers.
11558       if (E->getType()->canDecayToPointerType()) return;
11559 
11560       // Warn when a non-static method call is followed by non-static member
11561       // field accesses, which is followed by a DeclRefExpr.
11562       CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
11563       bool Warn = (MD && !MD->isStatic());
11564       Expr *Base = E->getBase()->IgnoreParenImpCasts();
11565       while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11566         if (!isa<FieldDecl>(ME->getMemberDecl()))
11567           Warn = false;
11568         Base = ME->getBase()->IgnoreParenImpCasts();
11569       }
11570 
11571       if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
11572         if (Warn)
11573           HandleDeclRefExpr(DRE);
11574         return;
11575       }
11576 
11577       // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
11578       // Visit that expression.
11579       Visit(Base);
11580     }
11581 
11582     void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
11583       Expr *Callee = E->getCallee();
11584 
11585       if (isa<UnresolvedLookupExpr>(Callee))
11586         return Inherited::VisitCXXOperatorCallExpr(E);
11587 
11588       Visit(Callee);
11589       for (auto Arg: E->arguments())
11590         HandleValue(Arg->IgnoreParenImpCasts());
11591     }
11592 
11593     void VisitUnaryOperator(UnaryOperator *E) {
11594       // For POD record types, addresses of its own members are well-defined.
11595       if (E->getOpcode() == UO_AddrOf && isRecordType &&
11596           isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
11597         if (!isPODType)
11598           HandleValue(E->getSubExpr());
11599         return;
11600       }
11601 
11602       if (E->isIncrementDecrementOp()) {
11603         HandleValue(E->getSubExpr());
11604         return;
11605       }
11606 
11607       Inherited::VisitUnaryOperator(E);
11608     }
11609 
11610     void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
11611 
11612     void VisitCXXConstructExpr(CXXConstructExpr *E) {
11613       if (E->getConstructor()->isCopyConstructor()) {
11614         Expr *ArgExpr = E->getArg(0);
11615         if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
11616           if (ILE->getNumInits() == 1)
11617             ArgExpr = ILE->getInit(0);
11618         if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
11619           if (ICE->getCastKind() == CK_NoOp)
11620             ArgExpr = ICE->getSubExpr();
11621         HandleValue(ArgExpr);
11622         return;
11623       }
11624       Inherited::VisitCXXConstructExpr(E);
11625     }
11626 
11627     void VisitCallExpr(CallExpr *E) {
11628       // Treat std::move as a use.
11629       if (E->isCallToStdMove()) {
11630         HandleValue(E->getArg(0));
11631         return;
11632       }
11633 
11634       Inherited::VisitCallExpr(E);
11635     }
11636 
11637     void VisitBinaryOperator(BinaryOperator *E) {
11638       if (E->isCompoundAssignmentOp()) {
11639         HandleValue(E->getLHS());
11640         Visit(E->getRHS());
11641         return;
11642       }
11643 
11644       Inherited::VisitBinaryOperator(E);
11645     }
11646 
11647     // A custom visitor for BinaryConditionalOperator is needed because the
11648     // regular visitor would check the condition and true expression separately
11649     // but both point to the same place giving duplicate diagnostics.
11650     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
11651       Visit(E->getCond());
11652       Visit(E->getFalseExpr());
11653     }
11654 
11655     void HandleDeclRefExpr(DeclRefExpr *DRE) {
11656       Decl* ReferenceDecl = DRE->getDecl();
11657       if (OrigDecl != ReferenceDecl) return;
11658       unsigned diag;
11659       if (isReferenceType) {
11660         diag = diag::warn_uninit_self_reference_in_reference_init;
11661       } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
11662         diag = diag::warn_static_self_reference_in_init;
11663       } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
11664                  isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
11665                  DRE->getDecl()->getType()->isRecordType()) {
11666         diag = diag::warn_uninit_self_reference_in_init;
11667       } else {
11668         // Local variables will be handled by the CFG analysis.
11669         return;
11670       }
11671 
11672       S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
11673                             S.PDiag(diag)
11674                                 << DRE->getDecl() << OrigDecl->getLocation()
11675                                 << DRE->getSourceRange());
11676     }
11677   };
11678 
11679   /// CheckSelfReference - Warns if OrigDecl is used in expression E.
11680   static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
11681                                  bool DirectInit) {
11682     // Parameters arguments are occassionially constructed with itself,
11683     // for instance, in recursive functions.  Skip them.
11684     if (isa<ParmVarDecl>(OrigDecl))
11685       return;
11686 
11687     E = E->IgnoreParens();
11688 
11689     // Skip checking T a = a where T is not a record or reference type.
11690     // Doing so is a way to silence uninitialized warnings.
11691     if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
11692       if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
11693         if (ICE->getCastKind() == CK_LValueToRValue)
11694           if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
11695             if (DRE->getDecl() == OrigDecl)
11696               return;
11697 
11698     SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
11699   }
11700 } // end anonymous namespace
11701 
11702 namespace {
11703   // Simple wrapper to add the name of a variable or (if no variable is
11704   // available) a DeclarationName into a diagnostic.
11705   struct VarDeclOrName {
11706     VarDecl *VDecl;
11707     DeclarationName Name;
11708 
11709     friend const Sema::SemaDiagnosticBuilder &
11710     operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
11711       return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
11712     }
11713   };
11714 } // end anonymous namespace
11715 
11716 QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
11717                                             DeclarationName Name, QualType Type,
11718                                             TypeSourceInfo *TSI,
11719                                             SourceRange Range, bool DirectInit,
11720                                             Expr *Init) {
11721   bool IsInitCapture = !VDecl;
11722   assert((!VDecl || !VDecl->isInitCapture()) &&
11723          "init captures are expected to be deduced prior to initialization");
11724 
11725   VarDeclOrName VN{VDecl, Name};
11726 
11727   DeducedType *Deduced = Type->getContainedDeducedType();
11728   assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type");
11729 
11730   // C++11 [dcl.spec.auto]p3
11731   if (!Init) {
11732     assert(VDecl && "no init for init capture deduction?");
11733 
11734     // Except for class argument deduction, and then for an initializing
11735     // declaration only, i.e. no static at class scope or extern.
11736     if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
11737         VDecl->hasExternalStorage() ||
11738         VDecl->isStaticDataMember()) {
11739       Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
11740         << VDecl->getDeclName() << Type;
11741       return QualType();
11742     }
11743   }
11744 
11745   ArrayRef<Expr*> DeduceInits;
11746   if (Init)
11747     DeduceInits = Init;
11748 
11749   if (DirectInit) {
11750     if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
11751       DeduceInits = PL->exprs();
11752   }
11753 
11754   if (isa<DeducedTemplateSpecializationType>(Deduced)) {
11755     assert(VDecl && "non-auto type for init capture deduction?");
11756     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11757     InitializationKind Kind = InitializationKind::CreateForInit(
11758         VDecl->getLocation(), DirectInit, Init);
11759     // FIXME: Initialization should not be taking a mutable list of inits.
11760     SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
11761     return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
11762                                                        InitsCopy);
11763   }
11764 
11765   if (DirectInit) {
11766     if (auto *IL = dyn_cast<InitListExpr>(Init))
11767       DeduceInits = IL->inits();
11768   }
11769 
11770   // Deduction only works if we have exactly one source expression.
11771   if (DeduceInits.empty()) {
11772     // It isn't possible to write this directly, but it is possible to
11773     // end up in this situation with "auto x(some_pack...);"
11774     Diag(Init->getBeginLoc(), IsInitCapture
11775                                   ? diag::err_init_capture_no_expression
11776                                   : diag::err_auto_var_init_no_expression)
11777         << VN << Type << Range;
11778     return QualType();
11779   }
11780 
11781   if (DeduceInits.size() > 1) {
11782     Diag(DeduceInits[1]->getBeginLoc(),
11783          IsInitCapture ? diag::err_init_capture_multiple_expressions
11784                        : diag::err_auto_var_init_multiple_expressions)
11785         << VN << Type << Range;
11786     return QualType();
11787   }
11788 
11789   Expr *DeduceInit = DeduceInits[0];
11790   if (DirectInit && isa<InitListExpr>(DeduceInit)) {
11791     Diag(Init->getBeginLoc(), IsInitCapture
11792                                   ? diag::err_init_capture_paren_braces
11793                                   : diag::err_auto_var_init_paren_braces)
11794         << isa<InitListExpr>(Init) << VN << Type << Range;
11795     return QualType();
11796   }
11797 
11798   // Expressions default to 'id' when we're in a debugger.
11799   bool DefaultedAnyToId = false;
11800   if (getLangOpts().DebuggerCastResultToId &&
11801       Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
11802     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11803     if (Result.isInvalid()) {
11804       return QualType();
11805     }
11806     Init = Result.get();
11807     DefaultedAnyToId = true;
11808   }
11809 
11810   // C++ [dcl.decomp]p1:
11811   //   If the assignment-expression [...] has array type A and no ref-qualifier
11812   //   is present, e has type cv A
11813   if (VDecl && isa<DecompositionDecl>(VDecl) &&
11814       Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
11815       DeduceInit->getType()->isConstantArrayType())
11816     return Context.getQualifiedType(DeduceInit->getType(),
11817                                     Type.getQualifiers());
11818 
11819   QualType DeducedType;
11820   if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
11821     if (!IsInitCapture)
11822       DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
11823     else if (isa<InitListExpr>(Init))
11824       Diag(Range.getBegin(),
11825            diag::err_init_capture_deduction_failure_from_init_list)
11826           << VN
11827           << (DeduceInit->getType().isNull() ? TSI->getType()
11828                                              : DeduceInit->getType())
11829           << DeduceInit->getSourceRange();
11830     else
11831       Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
11832           << VN << TSI->getType()
11833           << (DeduceInit->getType().isNull() ? TSI->getType()
11834                                              : DeduceInit->getType())
11835           << DeduceInit->getSourceRange();
11836   }
11837 
11838   // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
11839   // 'id' instead of a specific object type prevents most of our usual
11840   // checks.
11841   // We only want to warn outside of template instantiations, though:
11842   // inside a template, the 'id' could have come from a parameter.
11843   if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
11844       !DeducedType.isNull() && DeducedType->isObjCIdType()) {
11845     SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
11846     Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
11847   }
11848 
11849   return DeducedType;
11850 }
11851 
11852 bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
11853                                          Expr *Init) {
11854   assert(!Init || !Init->containsErrors());
11855   QualType DeducedType = deduceVarTypeFromInitializer(
11856       VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
11857       VDecl->getSourceRange(), DirectInit, Init);
11858   if (DeducedType.isNull()) {
11859     VDecl->setInvalidDecl();
11860     return true;
11861   }
11862 
11863   VDecl->setType(DeducedType);
11864   assert(VDecl->isLinkageValid());
11865 
11866   // In ARC, infer lifetime.
11867   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
11868     VDecl->setInvalidDecl();
11869 
11870   if (getLangOpts().OpenCL)
11871     deduceOpenCLAddressSpace(VDecl);
11872 
11873   // If this is a redeclaration, check that the type we just deduced matches
11874   // the previously declared type.
11875   if (VarDecl *Old = VDecl->getPreviousDecl()) {
11876     // We never need to merge the type, because we cannot form an incomplete
11877     // array of auto, nor deduce such a type.
11878     MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
11879   }
11880 
11881   // Check the deduced type is valid for a variable declaration.
11882   CheckVariableDeclarationType(VDecl);
11883   return VDecl->isInvalidDecl();
11884 }
11885 
11886 void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
11887                                               SourceLocation Loc) {
11888   if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
11889     Init = EWC->getSubExpr();
11890 
11891   if (auto *CE = dyn_cast<ConstantExpr>(Init))
11892     Init = CE->getSubExpr();
11893 
11894   QualType InitType = Init->getType();
11895   assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
11896           InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
11897          "shouldn't be called if type doesn't have a non-trivial C struct");
11898   if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
11899     for (auto I : ILE->inits()) {
11900       if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
11901           !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
11902         continue;
11903       SourceLocation SL = I->getExprLoc();
11904       checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
11905     }
11906     return;
11907   }
11908 
11909   if (isa<ImplicitValueInitExpr>(Init)) {
11910     if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11911       checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
11912                             NTCUK_Init);
11913   } else {
11914     // Assume all other explicit initializers involving copying some existing
11915     // object.
11916     // TODO: ignore any explicit initializers where we can guarantee
11917     // copy-elision.
11918     if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
11919       checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
11920   }
11921 }
11922 
11923 namespace {
11924 
11925 bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
11926   // Ignore unavailable fields. A field can be marked as unavailable explicitly
11927   // in the source code or implicitly by the compiler if it is in a union
11928   // defined in a system header and has non-trivial ObjC ownership
11929   // qualifications. We don't want those fields to participate in determining
11930   // whether the containing union is non-trivial.
11931   return FD->hasAttr<UnavailableAttr>();
11932 }
11933 
11934 struct DiagNonTrivalCUnionDefaultInitializeVisitor
11935     : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11936                                     void> {
11937   using Super =
11938       DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11939                                     void>;
11940 
11941   DiagNonTrivalCUnionDefaultInitializeVisitor(
11942       QualType OrigTy, SourceLocation OrigLoc,
11943       Sema::NonTrivialCUnionContext UseContext, Sema &S)
11944       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11945 
11946   void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
11947                      const FieldDecl *FD, bool InNonTrivialUnion) {
11948     if (const auto *AT = S.Context.getAsArrayType(QT))
11949       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11950                                      InNonTrivialUnion);
11951     return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
11952   }
11953 
11954   void visitARCStrong(QualType QT, const FieldDecl *FD,
11955                       bool InNonTrivialUnion) {
11956     if (InNonTrivialUnion)
11957       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11958           << 1 << 0 << QT << FD->getName();
11959   }
11960 
11961   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11962     if (InNonTrivialUnion)
11963       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11964           << 1 << 0 << QT << FD->getName();
11965   }
11966 
11967   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11968     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11969     if (RD->isUnion()) {
11970       if (OrigLoc.isValid()) {
11971         bool IsUnion = false;
11972         if (auto *OrigRD = OrigTy->getAsRecordDecl())
11973           IsUnion = OrigRD->isUnion();
11974         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11975             << 0 << OrigTy << IsUnion << UseContext;
11976         // Reset OrigLoc so that this diagnostic is emitted only once.
11977         OrigLoc = SourceLocation();
11978       }
11979       InNonTrivialUnion = true;
11980     }
11981 
11982     if (InNonTrivialUnion)
11983       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11984           << 0 << 0 << QT.getUnqualifiedType() << "";
11985 
11986     for (const FieldDecl *FD : RD->fields())
11987       if (!shouldIgnoreForRecordTriviality(FD))
11988         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11989   }
11990 
11991   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11992 
11993   // The non-trivial C union type or the struct/union type that contains a
11994   // non-trivial C union.
11995   QualType OrigTy;
11996   SourceLocation OrigLoc;
11997   Sema::NonTrivialCUnionContext UseContext;
11998   Sema &S;
11999 };
12000 
12001 struct DiagNonTrivalCUnionDestructedTypeVisitor
12002     : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
12003   using Super =
12004       DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
12005 
12006   DiagNonTrivalCUnionDestructedTypeVisitor(
12007       QualType OrigTy, SourceLocation OrigLoc,
12008       Sema::NonTrivialCUnionContext UseContext, Sema &S)
12009       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
12010 
12011   void visitWithKind(QualType::DestructionKind DK, QualType QT,
12012                      const FieldDecl *FD, bool InNonTrivialUnion) {
12013     if (const auto *AT = S.Context.getAsArrayType(QT))
12014       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
12015                                      InNonTrivialUnion);
12016     return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
12017   }
12018 
12019   void visitARCStrong(QualType QT, const FieldDecl *FD,
12020                       bool InNonTrivialUnion) {
12021     if (InNonTrivialUnion)
12022       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12023           << 1 << 1 << QT << FD->getName();
12024   }
12025 
12026   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12027     if (InNonTrivialUnion)
12028       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12029           << 1 << 1 << QT << FD->getName();
12030   }
12031 
12032   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12033     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
12034     if (RD->isUnion()) {
12035       if (OrigLoc.isValid()) {
12036         bool IsUnion = false;
12037         if (auto *OrigRD = OrigTy->getAsRecordDecl())
12038           IsUnion = OrigRD->isUnion();
12039         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
12040             << 1 << OrigTy << IsUnion << UseContext;
12041         // Reset OrigLoc so that this diagnostic is emitted only once.
12042         OrigLoc = SourceLocation();
12043       }
12044       InNonTrivialUnion = true;
12045     }
12046 
12047     if (InNonTrivialUnion)
12048       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
12049           << 0 << 1 << QT.getUnqualifiedType() << "";
12050 
12051     for (const FieldDecl *FD : RD->fields())
12052       if (!shouldIgnoreForRecordTriviality(FD))
12053         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
12054   }
12055 
12056   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
12057   void visitCXXDestructor(QualType QT, const FieldDecl *FD,
12058                           bool InNonTrivialUnion) {}
12059 
12060   // The non-trivial C union type or the struct/union type that contains a
12061   // non-trivial C union.
12062   QualType OrigTy;
12063   SourceLocation OrigLoc;
12064   Sema::NonTrivialCUnionContext UseContext;
12065   Sema &S;
12066 };
12067 
12068 struct DiagNonTrivalCUnionCopyVisitor
12069     : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
12070   using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
12071 
12072   DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
12073                                  Sema::NonTrivialCUnionContext UseContext,
12074                                  Sema &S)
12075       : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
12076 
12077   void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
12078                      const FieldDecl *FD, bool InNonTrivialUnion) {
12079     if (const auto *AT = S.Context.getAsArrayType(QT))
12080       return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
12081                                      InNonTrivialUnion);
12082     return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
12083   }
12084 
12085   void visitARCStrong(QualType QT, const FieldDecl *FD,
12086                       bool InNonTrivialUnion) {
12087     if (InNonTrivialUnion)
12088       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12089           << 1 << 2 << QT << FD->getName();
12090   }
12091 
12092   void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12093     if (InNonTrivialUnion)
12094       S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
12095           << 1 << 2 << QT << FD->getName();
12096   }
12097 
12098   void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
12099     const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
12100     if (RD->isUnion()) {
12101       if (OrigLoc.isValid()) {
12102         bool IsUnion = false;
12103         if (auto *OrigRD = OrigTy->getAsRecordDecl())
12104           IsUnion = OrigRD->isUnion();
12105         S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
12106             << 2 << OrigTy << IsUnion << UseContext;
12107         // Reset OrigLoc so that this diagnostic is emitted only once.
12108         OrigLoc = SourceLocation();
12109       }
12110       InNonTrivialUnion = true;
12111     }
12112 
12113     if (InNonTrivialUnion)
12114       S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
12115           << 0 << 2 << QT.getUnqualifiedType() << "";
12116 
12117     for (const FieldDecl *FD : RD->fields())
12118       if (!shouldIgnoreForRecordTriviality(FD))
12119         asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
12120   }
12121 
12122   void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
12123                 const FieldDecl *FD, bool InNonTrivialUnion) {}
12124   void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
12125   void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
12126                             bool InNonTrivialUnion) {}
12127 
12128   // The non-trivial C union type or the struct/union type that contains a
12129   // non-trivial C union.
12130   QualType OrigTy;
12131   SourceLocation OrigLoc;
12132   Sema::NonTrivialCUnionContext UseContext;
12133   Sema &S;
12134 };
12135 
12136 } // namespace
12137 
12138 void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
12139                                  NonTrivialCUnionContext UseContext,
12140                                  unsigned NonTrivialKind) {
12141   assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
12142           QT.hasNonTrivialToPrimitiveDestructCUnion() ||
12143           QT.hasNonTrivialToPrimitiveCopyCUnion()) &&
12144          "shouldn't be called if type doesn't have a non-trivial C union");
12145 
12146   if ((NonTrivialKind & NTCUK_Init) &&
12147       QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12148     DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
12149         .visit(QT, nullptr, false);
12150   if ((NonTrivialKind & NTCUK_Destruct) &&
12151       QT.hasNonTrivialToPrimitiveDestructCUnion())
12152     DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
12153         .visit(QT, nullptr, false);
12154   if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
12155     DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
12156         .visit(QT, nullptr, false);
12157 }
12158 
12159 /// AddInitializerToDecl - Adds the initializer Init to the
12160 /// declaration dcl. If DirectInit is true, this is C++ direct
12161 /// initialization rather than copy initialization.
12162 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
12163   // If there is no declaration, there was an error parsing it.  Just ignore
12164   // the initializer.
12165   if (!RealDecl || RealDecl->isInvalidDecl()) {
12166     CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
12167     return;
12168   }
12169 
12170   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
12171     // Pure-specifiers are handled in ActOnPureSpecifier.
12172     Diag(Method->getLocation(), diag::err_member_function_initialization)
12173       << Method->getDeclName() << Init->getSourceRange();
12174     Method->setInvalidDecl();
12175     return;
12176   }
12177 
12178   VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
12179   if (!VDecl) {
12180     assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
12181     Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
12182     RealDecl->setInvalidDecl();
12183     return;
12184   }
12185 
12186   // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
12187   if (VDecl->getType()->isUndeducedType()) {
12188     // Attempt typo correction early so that the type of the init expression can
12189     // be deduced based on the chosen correction if the original init contains a
12190     // TypoExpr.
12191     ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
12192     if (!Res.isUsable()) {
12193       // There are unresolved typos in Init, just drop them.
12194       // FIXME: improve the recovery strategy to preserve the Init.
12195       RealDecl->setInvalidDecl();
12196       return;
12197     }
12198     if (Res.get()->containsErrors()) {
12199       // Invalidate the decl as we don't know the type for recovery-expr yet.
12200       RealDecl->setInvalidDecl();
12201       VDecl->setInit(Res.get());
12202       return;
12203     }
12204     Init = Res.get();
12205 
12206     if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
12207       return;
12208   }
12209 
12210   // dllimport cannot be used on variable definitions.
12211   if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
12212     Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
12213     VDecl->setInvalidDecl();
12214     return;
12215   }
12216 
12217   if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
12218     // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
12219     Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
12220     VDecl->setInvalidDecl();
12221     return;
12222   }
12223 
12224   if (!VDecl->getType()->isDependentType()) {
12225     // A definition must end up with a complete type, which means it must be
12226     // complete with the restriction that an array type might be completed by
12227     // the initializer; note that later code assumes this restriction.
12228     QualType BaseDeclType = VDecl->getType();
12229     if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
12230       BaseDeclType = Array->getElementType();
12231     if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
12232                             diag::err_typecheck_decl_incomplete_type)) {
12233       RealDecl->setInvalidDecl();
12234       return;
12235     }
12236 
12237     // The variable can not have an abstract class type.
12238     if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
12239                                diag::err_abstract_type_in_decl,
12240                                AbstractVariableType))
12241       VDecl->setInvalidDecl();
12242   }
12243 
12244   // If adding the initializer will turn this declaration into a definition,
12245   // and we already have a definition for this variable, diagnose or otherwise
12246   // handle the situation.
12247   if (VarDecl *Def = VDecl->getDefinition())
12248     if (Def != VDecl &&
12249         (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
12250         !VDecl->isThisDeclarationADemotedDefinition() &&
12251         checkVarDeclRedefinition(Def, VDecl))
12252       return;
12253 
12254   if (getLangOpts().CPlusPlus) {
12255     // C++ [class.static.data]p4
12256     //   If a static data member is of const integral or const
12257     //   enumeration type, its declaration in the class definition can
12258     //   specify a constant-initializer which shall be an integral
12259     //   constant expression (5.19). In that case, the member can appear
12260     //   in integral constant expressions. The member shall still be
12261     //   defined in a namespace scope if it is used in the program and the
12262     //   namespace scope definition shall not contain an initializer.
12263     //
12264     // We already performed a redefinition check above, but for static
12265     // data members we also need to check whether there was an in-class
12266     // declaration with an initializer.
12267     if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
12268       Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
12269           << VDecl->getDeclName();
12270       Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
12271            diag::note_previous_initializer)
12272           << 0;
12273       return;
12274     }
12275 
12276     if (VDecl->hasLocalStorage())
12277       setFunctionHasBranchProtectedScope();
12278 
12279     if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
12280       VDecl->setInvalidDecl();
12281       return;
12282     }
12283   }
12284 
12285   // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
12286   // a kernel function cannot be initialized."
12287   if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
12288     Diag(VDecl->getLocation(), diag::err_local_cant_init);
12289     VDecl->setInvalidDecl();
12290     return;
12291   }
12292 
12293   // The LoaderUninitialized attribute acts as a definition (of undef).
12294   if (VDecl->hasAttr<LoaderUninitializedAttr>()) {
12295     Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init);
12296     VDecl->setInvalidDecl();
12297     return;
12298   }
12299 
12300   // Get the decls type and save a reference for later, since
12301   // CheckInitializerTypes may change it.
12302   QualType DclT = VDecl->getType(), SavT = DclT;
12303 
12304   // Expressions default to 'id' when we're in a debugger
12305   // and we are assigning it to a variable of Objective-C pointer type.
12306   if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
12307       Init->getType() == Context.UnknownAnyTy) {
12308     ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
12309     if (Result.isInvalid()) {
12310       VDecl->setInvalidDecl();
12311       return;
12312     }
12313     Init = Result.get();
12314   }
12315 
12316   // Perform the initialization.
12317   ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
12318   if (!VDecl->isInvalidDecl()) {
12319     InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
12320     InitializationKind Kind = InitializationKind::CreateForInit(
12321         VDecl->getLocation(), DirectInit, Init);
12322 
12323     MultiExprArg Args = Init;
12324     if (CXXDirectInit)
12325       Args = MultiExprArg(CXXDirectInit->getExprs(),
12326                           CXXDirectInit->getNumExprs());
12327 
12328     // Try to correct any TypoExprs in the initialization arguments.
12329     for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
12330       ExprResult Res = CorrectDelayedTyposInExpr(
12331           Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true,
12332           [this, Entity, Kind](Expr *E) {
12333             InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
12334             return Init.Failed() ? ExprError() : E;
12335           });
12336       if (Res.isInvalid()) {
12337         VDecl->setInvalidDecl();
12338       } else if (Res.get() != Args[Idx]) {
12339         Args[Idx] = Res.get();
12340       }
12341     }
12342     if (VDecl->isInvalidDecl())
12343       return;
12344 
12345     InitializationSequence InitSeq(*this, Entity, Kind, Args,
12346                                    /*TopLevelOfInitList=*/false,
12347                                    /*TreatUnavailableAsInvalid=*/false);
12348     ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
12349     if (Result.isInvalid()) {
12350       // If the provied initializer fails to initialize the var decl,
12351       // we attach a recovery expr for better recovery.
12352       auto RecoveryExpr =
12353           CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args);
12354       if (RecoveryExpr.get())
12355         VDecl->setInit(RecoveryExpr.get());
12356       return;
12357     }
12358 
12359     Init = Result.getAs<Expr>();
12360   }
12361 
12362   // Check for self-references within variable initializers.
12363   // Variables declared within a function/method body (except for references)
12364   // are handled by a dataflow analysis.
12365   // This is undefined behavior in C++, but valid in C.
12366   if (getLangOpts().CPlusPlus)
12367     if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
12368         VDecl->getType()->isReferenceType())
12369       CheckSelfReference(*this, RealDecl, Init, DirectInit);
12370 
12371   // If the type changed, it means we had an incomplete type that was
12372   // completed by the initializer. For example:
12373   //   int ary[] = { 1, 3, 5 };
12374   // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
12375   if (!VDecl->isInvalidDecl() && (DclT != SavT))
12376     VDecl->setType(DclT);
12377 
12378   if (!VDecl->isInvalidDecl()) {
12379     checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
12380 
12381     if (VDecl->hasAttr<BlocksAttr>())
12382       checkRetainCycles(VDecl, Init);
12383 
12384     // It is safe to assign a weak reference into a strong variable.
12385     // Although this code can still have problems:
12386     //   id x = self.weakProp;
12387     //   id y = self.weakProp;
12388     // we do not warn to warn spuriously when 'x' and 'y' are on separate
12389     // paths through the function. This should be revisited if
12390     // -Wrepeated-use-of-weak is made flow-sensitive.
12391     if (FunctionScopeInfo *FSI = getCurFunction())
12392       if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
12393            VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
12394           !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
12395                            Init->getBeginLoc()))
12396         FSI->markSafeWeakUse(Init);
12397   }
12398 
12399   // The initialization is usually a full-expression.
12400   //
12401   // FIXME: If this is a braced initialization of an aggregate, it is not
12402   // an expression, and each individual field initializer is a separate
12403   // full-expression. For instance, in:
12404   //
12405   //   struct Temp { ~Temp(); };
12406   //   struct S { S(Temp); };
12407   //   struct T { S a, b; } t = { Temp(), Temp() }
12408   //
12409   // we should destroy the first Temp before constructing the second.
12410   ExprResult Result =
12411       ActOnFinishFullExpr(Init, VDecl->getLocation(),
12412                           /*DiscardedValue*/ false, VDecl->isConstexpr());
12413   if (Result.isInvalid()) {
12414     VDecl->setInvalidDecl();
12415     return;
12416   }
12417   Init = Result.get();
12418 
12419   // Attach the initializer to the decl.
12420   VDecl->setInit(Init);
12421 
12422   if (VDecl->isLocalVarDecl()) {
12423     // Don't check the initializer if the declaration is malformed.
12424     if (VDecl->isInvalidDecl()) {
12425       // do nothing
12426 
12427     // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
12428     // This is true even in C++ for OpenCL.
12429     } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
12430       CheckForConstantInitializer(Init, DclT);
12431 
12432     // Otherwise, C++ does not restrict the initializer.
12433     } else if (getLangOpts().CPlusPlus) {
12434       // do nothing
12435 
12436     // C99 6.7.8p4: All the expressions in an initializer for an object that has
12437     // static storage duration shall be constant expressions or string literals.
12438     } else if (VDecl->getStorageClass() == SC_Static) {
12439       CheckForConstantInitializer(Init, DclT);
12440 
12441     // C89 is stricter than C99 for aggregate initializers.
12442     // C89 6.5.7p3: All the expressions [...] in an initializer list
12443     // for an object that has aggregate or union type shall be
12444     // constant expressions.
12445     } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
12446                isa<InitListExpr>(Init)) {
12447       const Expr *Culprit;
12448       if (!Init->isConstantInitializer(Context, false, &Culprit)) {
12449         Diag(Culprit->getExprLoc(),
12450              diag::ext_aggregate_init_not_constant)
12451           << Culprit->getSourceRange();
12452       }
12453     }
12454 
12455     if (auto *E = dyn_cast<ExprWithCleanups>(Init))
12456       if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
12457         if (VDecl->hasLocalStorage())
12458           BE->getBlockDecl()->setCanAvoidCopyToHeap();
12459   } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
12460              VDecl->getLexicalDeclContext()->isRecord()) {
12461     // This is an in-class initialization for a static data member, e.g.,
12462     //
12463     // struct S {
12464     //   static const int value = 17;
12465     // };
12466 
12467     // C++ [class.mem]p4:
12468     //   A member-declarator can contain a constant-initializer only
12469     //   if it declares a static member (9.4) of const integral or
12470     //   const enumeration type, see 9.4.2.
12471     //
12472     // C++11 [class.static.data]p3:
12473     //   If a non-volatile non-inline const static data member is of integral
12474     //   or enumeration type, its declaration in the class definition can
12475     //   specify a brace-or-equal-initializer in which every initializer-clause
12476     //   that is an assignment-expression is a constant expression. A static
12477     //   data member of literal type can be declared in the class definition
12478     //   with the constexpr specifier; if so, its declaration shall specify a
12479     //   brace-or-equal-initializer in which every initializer-clause that is
12480     //   an assignment-expression is a constant expression.
12481 
12482     // Do nothing on dependent types.
12483     if (DclT->isDependentType()) {
12484 
12485     // Allow any 'static constexpr' members, whether or not they are of literal
12486     // type. We separately check that every constexpr variable is of literal
12487     // type.
12488     } else if (VDecl->isConstexpr()) {
12489 
12490     // Require constness.
12491     } else if (!DclT.isConstQualified()) {
12492       Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
12493         << Init->getSourceRange();
12494       VDecl->setInvalidDecl();
12495 
12496     // We allow integer constant expressions in all cases.
12497     } else if (DclT->isIntegralOrEnumerationType()) {
12498       // Check whether the expression is a constant expression.
12499       SourceLocation Loc;
12500       if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
12501         // In C++11, a non-constexpr const static data member with an
12502         // in-class initializer cannot be volatile.
12503         Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
12504       else if (Init->isValueDependent())
12505         ; // Nothing to check.
12506       else if (Init->isIntegerConstantExpr(Context, &Loc))
12507         ; // Ok, it's an ICE!
12508       else if (Init->getType()->isScopedEnumeralType() &&
12509                Init->isCXX11ConstantExpr(Context))
12510         ; // Ok, it is a scoped-enum constant expression.
12511       else if (Init->isEvaluatable(Context)) {
12512         // If we can constant fold the initializer through heroics, accept it,
12513         // but report this as a use of an extension for -pedantic.
12514         Diag(Loc, diag::ext_in_class_initializer_non_constant)
12515           << Init->getSourceRange();
12516       } else {
12517         // Otherwise, this is some crazy unknown case.  Report the issue at the
12518         // location provided by the isIntegerConstantExpr failed check.
12519         Diag(Loc, diag::err_in_class_initializer_non_constant)
12520           << Init->getSourceRange();
12521         VDecl->setInvalidDecl();
12522       }
12523 
12524     // We allow foldable floating-point constants as an extension.
12525     } else if (DclT->isFloatingType()) { // also permits complex, which is ok
12526       // In C++98, this is a GNU extension. In C++11, it is not, but we support
12527       // it anyway and provide a fixit to add the 'constexpr'.
12528       if (getLangOpts().CPlusPlus11) {
12529         Diag(VDecl->getLocation(),
12530              diag::ext_in_class_initializer_float_type_cxx11)
12531             << DclT << Init->getSourceRange();
12532         Diag(VDecl->getBeginLoc(),
12533              diag::note_in_class_initializer_float_type_cxx11)
12534             << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12535       } else {
12536         Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
12537           << DclT << Init->getSourceRange();
12538 
12539         if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
12540           Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
12541             << Init->getSourceRange();
12542           VDecl->setInvalidDecl();
12543         }
12544       }
12545 
12546     // Suggest adding 'constexpr' in C++11 for literal types.
12547     } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
12548       Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
12549           << DclT << Init->getSourceRange()
12550           << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12551       VDecl->setConstexpr(true);
12552 
12553     } else {
12554       Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
12555         << DclT << Init->getSourceRange();
12556       VDecl->setInvalidDecl();
12557     }
12558   } else if (VDecl->isFileVarDecl()) {
12559     // In C, extern is typically used to avoid tentative definitions when
12560     // declaring variables in headers, but adding an intializer makes it a
12561     // definition. This is somewhat confusing, so GCC and Clang both warn on it.
12562     // In C++, extern is often used to give implictly static const variables
12563     // external linkage, so don't warn in that case. If selectany is present,
12564     // this might be header code intended for C and C++ inclusion, so apply the
12565     // C++ rules.
12566     if (VDecl->getStorageClass() == SC_Extern &&
12567         ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
12568          !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
12569         !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
12570         !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
12571       Diag(VDecl->getLocation(), diag::warn_extern_init);
12572 
12573     // In Microsoft C++ mode, a const variable defined in namespace scope has
12574     // external linkage by default if the variable is declared with
12575     // __declspec(dllexport).
12576     if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
12577         getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
12578         VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
12579       VDecl->setStorageClass(SC_Extern);
12580 
12581     // C99 6.7.8p4. All file scoped initializers need to be constant.
12582     if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
12583       CheckForConstantInitializer(Init, DclT);
12584   }
12585 
12586   QualType InitType = Init->getType();
12587   if (!InitType.isNull() &&
12588       (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
12589        InitType.hasNonTrivialToPrimitiveCopyCUnion()))
12590     checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
12591 
12592   // We will represent direct-initialization similarly to copy-initialization:
12593   //    int x(1);  -as-> int x = 1;
12594   //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
12595   //
12596   // Clients that want to distinguish between the two forms, can check for
12597   // direct initializer using VarDecl::getInitStyle().
12598   // A major benefit is that clients that don't particularly care about which
12599   // exactly form was it (like the CodeGen) can handle both cases without
12600   // special case code.
12601 
12602   // C++ 8.5p11:
12603   // The form of initialization (using parentheses or '=') is generally
12604   // insignificant, but does matter when the entity being initialized has a
12605   // class type.
12606   if (CXXDirectInit) {
12607     assert(DirectInit && "Call-style initializer must be direct init.");
12608     VDecl->setInitStyle(VarDecl::CallInit);
12609   } else if (DirectInit) {
12610     // This must be list-initialization. No other way is direct-initialization.
12611     VDecl->setInitStyle(VarDecl::ListInit);
12612   }
12613 
12614   if (LangOpts.OpenMP && VDecl->isFileVarDecl())
12615     DeclsToCheckForDeferredDiags.insert(VDecl);
12616   CheckCompleteVariableDeclaration(VDecl);
12617 }
12618 
12619 /// ActOnInitializerError - Given that there was an error parsing an
12620 /// initializer for the given declaration, try to return to some form
12621 /// of sanity.
12622 void Sema::ActOnInitializerError(Decl *D) {
12623   // Our main concern here is re-establishing invariants like "a
12624   // variable's type is either dependent or complete".
12625   if (!D || D->isInvalidDecl()) return;
12626 
12627   VarDecl *VD = dyn_cast<VarDecl>(D);
12628   if (!VD) return;
12629 
12630   // Bindings are not usable if we can't make sense of the initializer.
12631   if (auto *DD = dyn_cast<DecompositionDecl>(D))
12632     for (auto *BD : DD->bindings())
12633       BD->setInvalidDecl();
12634 
12635   // Auto types are meaningless if we can't make sense of the initializer.
12636   if (VD->getType()->isUndeducedType()) {
12637     D->setInvalidDecl();
12638     return;
12639   }
12640 
12641   QualType Ty = VD->getType();
12642   if (Ty->isDependentType()) return;
12643 
12644   // Require a complete type.
12645   if (RequireCompleteType(VD->getLocation(),
12646                           Context.getBaseElementType(Ty),
12647                           diag::err_typecheck_decl_incomplete_type)) {
12648     VD->setInvalidDecl();
12649     return;
12650   }
12651 
12652   // Require a non-abstract type.
12653   if (RequireNonAbstractType(VD->getLocation(), Ty,
12654                              diag::err_abstract_type_in_decl,
12655                              AbstractVariableType)) {
12656     VD->setInvalidDecl();
12657     return;
12658   }
12659 
12660   // Don't bother complaining about constructors or destructors,
12661   // though.
12662 }
12663 
12664 void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
12665   // If there is no declaration, there was an error parsing it. Just ignore it.
12666   if (!RealDecl)
12667     return;
12668 
12669   if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
12670     QualType Type = Var->getType();
12671 
12672     // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
12673     if (isa<DecompositionDecl>(RealDecl)) {
12674       Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
12675       Var->setInvalidDecl();
12676       return;
12677     }
12678 
12679     if (Type->isUndeducedType() &&
12680         DeduceVariableDeclarationType(Var, false, nullptr))
12681       return;
12682 
12683     // C++11 [class.static.data]p3: A static data member can be declared with
12684     // the constexpr specifier; if so, its declaration shall specify
12685     // a brace-or-equal-initializer.
12686     // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
12687     // the definition of a variable [...] or the declaration of a static data
12688     // member.
12689     if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
12690         !Var->isThisDeclarationADemotedDefinition()) {
12691       if (Var->isStaticDataMember()) {
12692         // C++1z removes the relevant rule; the in-class declaration is always
12693         // a definition there.
12694         if (!getLangOpts().CPlusPlus17 &&
12695             !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
12696           Diag(Var->getLocation(),
12697                diag::err_constexpr_static_mem_var_requires_init)
12698               << Var;
12699           Var->setInvalidDecl();
12700           return;
12701         }
12702       } else {
12703         Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
12704         Var->setInvalidDecl();
12705         return;
12706       }
12707     }
12708 
12709     // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
12710     // be initialized.
12711     if (!Var->isInvalidDecl() &&
12712         Var->getType().getAddressSpace() == LangAS::opencl_constant &&
12713         Var->getStorageClass() != SC_Extern && !Var->getInit()) {
12714       bool HasConstExprDefaultConstructor = false;
12715       if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
12716         for (auto *Ctor : RD->ctors()) {
12717           if (Ctor->isConstexpr() && Ctor->getNumParams() == 0 &&
12718               Ctor->getMethodQualifiers().getAddressSpace() ==
12719                   LangAS::opencl_constant) {
12720             HasConstExprDefaultConstructor = true;
12721           }
12722         }
12723       }
12724       if (!HasConstExprDefaultConstructor) {
12725         Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
12726         Var->setInvalidDecl();
12727         return;
12728       }
12729     }
12730 
12731     if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) {
12732       if (Var->getStorageClass() == SC_Extern) {
12733         Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl)
12734             << Var;
12735         Var->setInvalidDecl();
12736         return;
12737       }
12738       if (RequireCompleteType(Var->getLocation(), Var->getType(),
12739                               diag::err_typecheck_decl_incomplete_type)) {
12740         Var->setInvalidDecl();
12741         return;
12742       }
12743       if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
12744         if (!RD->hasTrivialDefaultConstructor()) {
12745           Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor);
12746           Var->setInvalidDecl();
12747           return;
12748         }
12749       }
12750       // The declaration is unitialized, no need for further checks.
12751       return;
12752     }
12753 
12754     VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
12755     if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
12756         Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12757       checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
12758                             NTCUC_DefaultInitializedObject, NTCUK_Init);
12759 
12760 
12761     switch (DefKind) {
12762     case VarDecl::Definition:
12763       if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
12764         break;
12765 
12766       // We have an out-of-line definition of a static data member
12767       // that has an in-class initializer, so we type-check this like
12768       // a declaration.
12769       //
12770       LLVM_FALLTHROUGH;
12771 
12772     case VarDecl::DeclarationOnly:
12773       // It's only a declaration.
12774 
12775       // Block scope. C99 6.7p7: If an identifier for an object is
12776       // declared with no linkage (C99 6.2.2p6), the type for the
12777       // object shall be complete.
12778       if (!Type->isDependentType() && Var->isLocalVarDecl() &&
12779           !Var->hasLinkage() && !Var->isInvalidDecl() &&
12780           RequireCompleteType(Var->getLocation(), Type,
12781                               diag::err_typecheck_decl_incomplete_type))
12782         Var->setInvalidDecl();
12783 
12784       // Make sure that the type is not abstract.
12785       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12786           RequireNonAbstractType(Var->getLocation(), Type,
12787                                  diag::err_abstract_type_in_decl,
12788                                  AbstractVariableType))
12789         Var->setInvalidDecl();
12790       if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12791           Var->getStorageClass() == SC_PrivateExtern) {
12792         Diag(Var->getLocation(), diag::warn_private_extern);
12793         Diag(Var->getLocation(), diag::note_private_extern);
12794       }
12795 
12796       if (Context.getTargetInfo().allowDebugInfoForExternalRef() &&
12797           !Var->isInvalidDecl() && !getLangOpts().CPlusPlus)
12798         ExternalDeclarations.push_back(Var);
12799 
12800       return;
12801 
12802     case VarDecl::TentativeDefinition:
12803       // File scope. C99 6.9.2p2: A declaration of an identifier for an
12804       // object that has file scope without an initializer, and without a
12805       // storage-class specifier or with the storage-class specifier "static",
12806       // constitutes a tentative definition. Note: A tentative definition with
12807       // external linkage is valid (C99 6.2.2p5).
12808       if (!Var->isInvalidDecl()) {
12809         if (const IncompleteArrayType *ArrayT
12810                                     = Context.getAsIncompleteArrayType(Type)) {
12811           if (RequireCompleteSizedType(
12812                   Var->getLocation(), ArrayT->getElementType(),
12813                   diag::err_array_incomplete_or_sizeless_type))
12814             Var->setInvalidDecl();
12815         } else if (Var->getStorageClass() == SC_Static) {
12816           // C99 6.9.2p3: If the declaration of an identifier for an object is
12817           // a tentative definition and has internal linkage (C99 6.2.2p3), the
12818           // declared type shall not be an incomplete type.
12819           // NOTE: code such as the following
12820           //     static struct s;
12821           //     struct s { int a; };
12822           // is accepted by gcc. Hence here we issue a warning instead of
12823           // an error and we do not invalidate the static declaration.
12824           // NOTE: to avoid multiple warnings, only check the first declaration.
12825           if (Var->isFirstDecl())
12826             RequireCompleteType(Var->getLocation(), Type,
12827                                 diag::ext_typecheck_decl_incomplete_type);
12828         }
12829       }
12830 
12831       // Record the tentative definition; we're done.
12832       if (!Var->isInvalidDecl())
12833         TentativeDefinitions.push_back(Var);
12834       return;
12835     }
12836 
12837     // Provide a specific diagnostic for uninitialized variable
12838     // definitions with incomplete array type.
12839     if (Type->isIncompleteArrayType()) {
12840       Diag(Var->getLocation(),
12841            diag::err_typecheck_incomplete_array_needs_initializer);
12842       Var->setInvalidDecl();
12843       return;
12844     }
12845 
12846     // Provide a specific diagnostic for uninitialized variable
12847     // definitions with reference type.
12848     if (Type->isReferenceType()) {
12849       Diag(Var->getLocation(), diag::err_reference_var_requires_init)
12850           << Var << SourceRange(Var->getLocation(), Var->getLocation());
12851       Var->setInvalidDecl();
12852       return;
12853     }
12854 
12855     // Do not attempt to type-check the default initializer for a
12856     // variable with dependent type.
12857     if (Type->isDependentType())
12858       return;
12859 
12860     if (Var->isInvalidDecl())
12861       return;
12862 
12863     if (!Var->hasAttr<AliasAttr>()) {
12864       if (RequireCompleteType(Var->getLocation(),
12865                               Context.getBaseElementType(Type),
12866                               diag::err_typecheck_decl_incomplete_type)) {
12867         Var->setInvalidDecl();
12868         return;
12869       }
12870     } else {
12871       return;
12872     }
12873 
12874     // The variable can not have an abstract class type.
12875     if (RequireNonAbstractType(Var->getLocation(), Type,
12876                                diag::err_abstract_type_in_decl,
12877                                AbstractVariableType)) {
12878       Var->setInvalidDecl();
12879       return;
12880     }
12881 
12882     // Check for jumps past the implicit initializer.  C++0x
12883     // clarifies that this applies to a "variable with automatic
12884     // storage duration", not a "local variable".
12885     // C++11 [stmt.dcl]p3
12886     //   A program that jumps from a point where a variable with automatic
12887     //   storage duration is not in scope to a point where it is in scope is
12888     //   ill-formed unless the variable has scalar type, class type with a
12889     //   trivial default constructor and a trivial destructor, a cv-qualified
12890     //   version of one of these types, or an array of one of the preceding
12891     //   types and is declared without an initializer.
12892     if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
12893       if (const RecordType *Record
12894             = Context.getBaseElementType(Type)->getAs<RecordType>()) {
12895         CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
12896         // Mark the function (if we're in one) for further checking even if the
12897         // looser rules of C++11 do not require such checks, so that we can
12898         // diagnose incompatibilities with C++98.
12899         if (!CXXRecord->isPOD())
12900           setFunctionHasBranchProtectedScope();
12901       }
12902     }
12903     // In OpenCL, we can't initialize objects in the __local address space,
12904     // even implicitly, so don't synthesize an implicit initializer.
12905     if (getLangOpts().OpenCL &&
12906         Var->getType().getAddressSpace() == LangAS::opencl_local)
12907       return;
12908     // C++03 [dcl.init]p9:
12909     //   If no initializer is specified for an object, and the
12910     //   object is of (possibly cv-qualified) non-POD class type (or
12911     //   array thereof), the object shall be default-initialized; if
12912     //   the object is of const-qualified type, the underlying class
12913     //   type shall have a user-declared default
12914     //   constructor. Otherwise, if no initializer is specified for
12915     //   a non- static object, the object and its subobjects, if
12916     //   any, have an indeterminate initial value); if the object
12917     //   or any of its subobjects are of const-qualified type, the
12918     //   program is ill-formed.
12919     // C++0x [dcl.init]p11:
12920     //   If no initializer is specified for an object, the object is
12921     //   default-initialized; [...].
12922     InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
12923     InitializationKind Kind
12924       = InitializationKind::CreateDefault(Var->getLocation());
12925 
12926     InitializationSequence InitSeq(*this, Entity, Kind, None);
12927     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
12928 
12929     if (Init.get()) {
12930       Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
12931       // This is important for template substitution.
12932       Var->setInitStyle(VarDecl::CallInit);
12933     } else if (Init.isInvalid()) {
12934       // If default-init fails, attach a recovery-expr initializer to track
12935       // that initialization was attempted and failed.
12936       auto RecoveryExpr =
12937           CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {});
12938       if (RecoveryExpr.get())
12939         Var->setInit(RecoveryExpr.get());
12940     }
12941 
12942     CheckCompleteVariableDeclaration(Var);
12943   }
12944 }
12945 
12946 void Sema::ActOnCXXForRangeDecl(Decl *D) {
12947   // If there is no declaration, there was an error parsing it. Ignore it.
12948   if (!D)
12949     return;
12950 
12951   VarDecl *VD = dyn_cast<VarDecl>(D);
12952   if (!VD) {
12953     Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
12954     D->setInvalidDecl();
12955     return;
12956   }
12957 
12958   VD->setCXXForRangeDecl(true);
12959 
12960   // for-range-declaration cannot be given a storage class specifier.
12961   int Error = -1;
12962   switch (VD->getStorageClass()) {
12963   case SC_None:
12964     break;
12965   case SC_Extern:
12966     Error = 0;
12967     break;
12968   case SC_Static:
12969     Error = 1;
12970     break;
12971   case SC_PrivateExtern:
12972     Error = 2;
12973     break;
12974   case SC_Auto:
12975     Error = 3;
12976     break;
12977   case SC_Register:
12978     Error = 4;
12979     break;
12980   }
12981 
12982   // for-range-declaration cannot be given a storage class specifier con't.
12983   switch (VD->getTSCSpec()) {
12984   case TSCS_thread_local:
12985     Error = 6;
12986     break;
12987   case TSCS___thread:
12988   case TSCS__Thread_local:
12989   case TSCS_unspecified:
12990     break;
12991   }
12992 
12993   if (Error != -1) {
12994     Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
12995         << VD << Error;
12996     D->setInvalidDecl();
12997   }
12998 }
12999 
13000 StmtResult
13001 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
13002                                  IdentifierInfo *Ident,
13003                                  ParsedAttributes &Attrs,
13004                                  SourceLocation AttrEnd) {
13005   // C++1y [stmt.iter]p1:
13006   //   A range-based for statement of the form
13007   //      for ( for-range-identifier : for-range-initializer ) statement
13008   //   is equivalent to
13009   //      for ( auto&& for-range-identifier : for-range-initializer ) statement
13010   DeclSpec DS(Attrs.getPool().getFactory());
13011 
13012   const char *PrevSpec;
13013   unsigned DiagID;
13014   DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
13015                      getPrintingPolicy());
13016 
13017   Declarator D(DS, DeclaratorContext::ForInit);
13018   D.SetIdentifier(Ident, IdentLoc);
13019   D.takeAttributes(Attrs, AttrEnd);
13020 
13021   D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
13022                 IdentLoc);
13023   Decl *Var = ActOnDeclarator(S, D);
13024   cast<VarDecl>(Var)->setCXXForRangeDecl(true);
13025   FinalizeDeclaration(Var);
13026   return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
13027                        AttrEnd.isValid() ? AttrEnd : IdentLoc);
13028 }
13029 
13030 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
13031   if (var->isInvalidDecl()) return;
13032 
13033   MaybeAddCUDAConstantAttr(var);
13034 
13035   if (getLangOpts().OpenCL) {
13036     // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
13037     // initialiser
13038     if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
13039         !var->hasInit()) {
13040       Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
13041           << 1 /*Init*/;
13042       var->setInvalidDecl();
13043       return;
13044     }
13045   }
13046 
13047   // In Objective-C, don't allow jumps past the implicit initialization of a
13048   // local retaining variable.
13049   if (getLangOpts().ObjC &&
13050       var->hasLocalStorage()) {
13051     switch (var->getType().getObjCLifetime()) {
13052     case Qualifiers::OCL_None:
13053     case Qualifiers::OCL_ExplicitNone:
13054     case Qualifiers::OCL_Autoreleasing:
13055       break;
13056 
13057     case Qualifiers::OCL_Weak:
13058     case Qualifiers::OCL_Strong:
13059       setFunctionHasBranchProtectedScope();
13060       break;
13061     }
13062   }
13063 
13064   if (var->hasLocalStorage() &&
13065       var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
13066     setFunctionHasBranchProtectedScope();
13067 
13068   // Warn about externally-visible variables being defined without a
13069   // prior declaration.  We only want to do this for global
13070   // declarations, but we also specifically need to avoid doing it for
13071   // class members because the linkage of an anonymous class can
13072   // change if it's later given a typedef name.
13073   if (var->isThisDeclarationADefinition() &&
13074       var->getDeclContext()->getRedeclContext()->isFileContext() &&
13075       var->isExternallyVisible() && var->hasLinkage() &&
13076       !var->isInline() && !var->getDescribedVarTemplate() &&
13077       !isa<VarTemplatePartialSpecializationDecl>(var) &&
13078       !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
13079       !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
13080                                   var->getLocation())) {
13081     // Find a previous declaration that's not a definition.
13082     VarDecl *prev = var->getPreviousDecl();
13083     while (prev && prev->isThisDeclarationADefinition())
13084       prev = prev->getPreviousDecl();
13085 
13086     if (!prev) {
13087       Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
13088       Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
13089           << /* variable */ 0;
13090     }
13091   }
13092 
13093   // Cache the result of checking for constant initialization.
13094   Optional<bool> CacheHasConstInit;
13095   const Expr *CacheCulprit = nullptr;
13096   auto checkConstInit = [&]() mutable {
13097     if (!CacheHasConstInit)
13098       CacheHasConstInit = var->getInit()->isConstantInitializer(
13099             Context, var->getType()->isReferenceType(), &CacheCulprit);
13100     return *CacheHasConstInit;
13101   };
13102 
13103   if (var->getTLSKind() == VarDecl::TLS_Static) {
13104     if (var->getType().isDestructedType()) {
13105       // GNU C++98 edits for __thread, [basic.start.term]p3:
13106       //   The type of an object with thread storage duration shall not
13107       //   have a non-trivial destructor.
13108       Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
13109       if (getLangOpts().CPlusPlus11)
13110         Diag(var->getLocation(), diag::note_use_thread_local);
13111     } else if (getLangOpts().CPlusPlus && var->hasInit()) {
13112       if (!checkConstInit()) {
13113         // GNU C++98 edits for __thread, [basic.start.init]p4:
13114         //   An object of thread storage duration shall not require dynamic
13115         //   initialization.
13116         // FIXME: Need strict checking here.
13117         Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
13118           << CacheCulprit->getSourceRange();
13119         if (getLangOpts().CPlusPlus11)
13120           Diag(var->getLocation(), diag::note_use_thread_local);
13121       }
13122     }
13123   }
13124 
13125 
13126   if (!var->getType()->isStructureType() && var->hasInit() &&
13127       isa<InitListExpr>(var->getInit())) {
13128     const auto *ILE = cast<InitListExpr>(var->getInit());
13129     unsigned NumInits = ILE->getNumInits();
13130     if (NumInits > 2)
13131       for (unsigned I = 0; I < NumInits; ++I) {
13132         const auto *Init = ILE->getInit(I);
13133         if (!Init)
13134           break;
13135         const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
13136         if (!SL)
13137           break;
13138 
13139         unsigned NumConcat = SL->getNumConcatenated();
13140         // Diagnose missing comma in string array initialization.
13141         // Do not warn when all the elements in the initializer are concatenated
13142         // together. Do not warn for macros too.
13143         if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) {
13144           bool OnlyOneMissingComma = true;
13145           for (unsigned J = I + 1; J < NumInits; ++J) {
13146             const auto *Init = ILE->getInit(J);
13147             if (!Init)
13148               break;
13149             const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
13150             if (!SLJ || SLJ->getNumConcatenated() > 1) {
13151               OnlyOneMissingComma = false;
13152               break;
13153             }
13154           }
13155 
13156           if (OnlyOneMissingComma) {
13157             SmallVector<FixItHint, 1> Hints;
13158             for (unsigned i = 0; i < NumConcat - 1; ++i)
13159               Hints.push_back(FixItHint::CreateInsertion(
13160                   PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ","));
13161 
13162             Diag(SL->getStrTokenLoc(1),
13163                  diag::warn_concatenated_literal_array_init)
13164                 << Hints;
13165             Diag(SL->getBeginLoc(),
13166                  diag::note_concatenated_string_literal_silence);
13167           }
13168           // In any case, stop now.
13169           break;
13170         }
13171       }
13172   }
13173 
13174 
13175   QualType type = var->getType();
13176 
13177   if (var->hasAttr<BlocksAttr>())
13178     getCurFunction()->addByrefBlockVar(var);
13179 
13180   Expr *Init = var->getInit();
13181   bool GlobalStorage = var->hasGlobalStorage();
13182   bool IsGlobal = GlobalStorage && !var->isStaticLocal();
13183   QualType baseType = Context.getBaseElementType(type);
13184   bool HasConstInit = true;
13185 
13186   // Check whether the initializer is sufficiently constant.
13187   if (getLangOpts().CPlusPlus && !type->isDependentType() && Init &&
13188       !Init->isValueDependent() &&
13189       (GlobalStorage || var->isConstexpr() ||
13190        var->mightBeUsableInConstantExpressions(Context))) {
13191     // If this variable might have a constant initializer or might be usable in
13192     // constant expressions, check whether or not it actually is now.  We can't
13193     // do this lazily, because the result might depend on things that change
13194     // later, such as which constexpr functions happen to be defined.
13195     SmallVector<PartialDiagnosticAt, 8> Notes;
13196     if (!getLangOpts().CPlusPlus11) {
13197       // Prior to C++11, in contexts where a constant initializer is required,
13198       // the set of valid constant initializers is described by syntactic rules
13199       // in [expr.const]p2-6.
13200       // FIXME: Stricter checking for these rules would be useful for constinit /
13201       // -Wglobal-constructors.
13202       HasConstInit = checkConstInit();
13203 
13204       // Compute and cache the constant value, and remember that we have a
13205       // constant initializer.
13206       if (HasConstInit) {
13207         (void)var->checkForConstantInitialization(Notes);
13208         Notes.clear();
13209       } else if (CacheCulprit) {
13210         Notes.emplace_back(CacheCulprit->getExprLoc(),
13211                            PDiag(diag::note_invalid_subexpr_in_const_expr));
13212         Notes.back().second << CacheCulprit->getSourceRange();
13213       }
13214     } else {
13215       // Evaluate the initializer to see if it's a constant initializer.
13216       HasConstInit = var->checkForConstantInitialization(Notes);
13217     }
13218 
13219     if (HasConstInit) {
13220       // FIXME: Consider replacing the initializer with a ConstantExpr.
13221     } else if (var->isConstexpr()) {
13222       SourceLocation DiagLoc = var->getLocation();
13223       // If the note doesn't add any useful information other than a source
13224       // location, fold it into the primary diagnostic.
13225       if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
13226                                    diag::note_invalid_subexpr_in_const_expr) {
13227         DiagLoc = Notes[0].first;
13228         Notes.clear();
13229       }
13230       Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
13231           << var << Init->getSourceRange();
13232       for (unsigned I = 0, N = Notes.size(); I != N; ++I)
13233         Diag(Notes[I].first, Notes[I].second);
13234     } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) {
13235       auto *Attr = var->getAttr<ConstInitAttr>();
13236       Diag(var->getLocation(), diag::err_require_constant_init_failed)
13237           << Init->getSourceRange();
13238       Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here)
13239           << Attr->getRange() << Attr->isConstinit();
13240       for (auto &it : Notes)
13241         Diag(it.first, it.second);
13242     } else if (IsGlobal &&
13243                !getDiagnostics().isIgnored(diag::warn_global_constructor,
13244                                            var->getLocation())) {
13245       // Warn about globals which don't have a constant initializer.  Don't
13246       // warn about globals with a non-trivial destructor because we already
13247       // warned about them.
13248       CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
13249       if (!(RD && !RD->hasTrivialDestructor())) {
13250         // checkConstInit() here permits trivial default initialization even in
13251         // C++11 onwards, where such an initializer is not a constant initializer
13252         // but nonetheless doesn't require a global constructor.
13253         if (!checkConstInit())
13254           Diag(var->getLocation(), diag::warn_global_constructor)
13255               << Init->getSourceRange();
13256       }
13257     }
13258   }
13259 
13260   // Apply section attributes and pragmas to global variables.
13261   if (GlobalStorage && var->isThisDeclarationADefinition() &&
13262       !inTemplateInstantiation()) {
13263     PragmaStack<StringLiteral *> *Stack = nullptr;
13264     int SectionFlags = ASTContext::PSF_Read;
13265     if (var->getType().isConstQualified()) {
13266       if (HasConstInit)
13267         Stack = &ConstSegStack;
13268       else {
13269         Stack = &BSSSegStack;
13270         SectionFlags |= ASTContext::PSF_Write;
13271       }
13272     } else if (var->hasInit() && HasConstInit) {
13273       Stack = &DataSegStack;
13274       SectionFlags |= ASTContext::PSF_Write;
13275     } else {
13276       Stack = &BSSSegStack;
13277       SectionFlags |= ASTContext::PSF_Write;
13278     }
13279     if (const SectionAttr *SA = var->getAttr<SectionAttr>()) {
13280       if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec)
13281         SectionFlags |= ASTContext::PSF_Implicit;
13282       UnifySection(SA->getName(), SectionFlags, var);
13283     } else if (Stack->CurrentValue) {
13284       SectionFlags |= ASTContext::PSF_Implicit;
13285       auto SectionName = Stack->CurrentValue->getString();
13286       var->addAttr(SectionAttr::CreateImplicit(
13287           Context, SectionName, Stack->CurrentPragmaLocation,
13288           AttributeCommonInfo::AS_Pragma, SectionAttr::Declspec_allocate));
13289       if (UnifySection(SectionName, SectionFlags, var))
13290         var->dropAttr<SectionAttr>();
13291     }
13292 
13293     // Apply the init_seg attribute if this has an initializer.  If the
13294     // initializer turns out to not be dynamic, we'll end up ignoring this
13295     // attribute.
13296     if (CurInitSeg && var->getInit())
13297       var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
13298                                                CurInitSegLoc,
13299                                                AttributeCommonInfo::AS_Pragma));
13300   }
13301 
13302   // All the following checks are C++ only.
13303   if (!getLangOpts().CPlusPlus) {
13304     // If this variable must be emitted, add it as an initializer for the
13305     // current module.
13306     if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13307       Context.addModuleInitializer(ModuleScopes.back().Module, var);
13308     return;
13309   }
13310 
13311   // Require the destructor.
13312   if (!type->isDependentType())
13313     if (const RecordType *recordType = baseType->getAs<RecordType>())
13314       FinalizeVarWithDestructor(var, recordType);
13315 
13316   // If this variable must be emitted, add it as an initializer for the current
13317   // module.
13318   if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13319     Context.addModuleInitializer(ModuleScopes.back().Module, var);
13320 
13321   // Build the bindings if this is a structured binding declaration.
13322   if (auto *DD = dyn_cast<DecompositionDecl>(var))
13323     CheckCompleteDecompositionDeclaration(DD);
13324 }
13325 
13326 /// Check if VD needs to be dllexport/dllimport due to being in a
13327 /// dllexport/import function.
13328 void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
13329   assert(VD->isStaticLocal());
13330 
13331   auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13332 
13333   // Find outermost function when VD is in lambda function.
13334   while (FD && !getDLLAttr(FD) &&
13335          !FD->hasAttr<DLLExportStaticLocalAttr>() &&
13336          !FD->hasAttr<DLLImportStaticLocalAttr>()) {
13337     FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
13338   }
13339 
13340   if (!FD)
13341     return;
13342 
13343   // Static locals inherit dll attributes from their function.
13344   if (Attr *A = getDLLAttr(FD)) {
13345     auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
13346     NewAttr->setInherited(true);
13347     VD->addAttr(NewAttr);
13348   } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
13349     auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
13350     NewAttr->setInherited(true);
13351     VD->addAttr(NewAttr);
13352 
13353     // Export this function to enforce exporting this static variable even
13354     // if it is not used in this compilation unit.
13355     if (!FD->hasAttr<DLLExportAttr>())
13356       FD->addAttr(NewAttr);
13357 
13358   } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
13359     auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
13360     NewAttr->setInherited(true);
13361     VD->addAttr(NewAttr);
13362   }
13363 }
13364 
13365 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
13366 /// any semantic actions necessary after any initializer has been attached.
13367 void Sema::FinalizeDeclaration(Decl *ThisDecl) {
13368   // Note that we are no longer parsing the initializer for this declaration.
13369   ParsingInitForAutoVars.erase(ThisDecl);
13370 
13371   VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
13372   if (!VD)
13373     return;
13374 
13375   // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
13376   if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
13377       !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
13378     if (PragmaClangBSSSection.Valid)
13379       VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
13380           Context, PragmaClangBSSSection.SectionName,
13381           PragmaClangBSSSection.PragmaLocation,
13382           AttributeCommonInfo::AS_Pragma));
13383     if (PragmaClangDataSection.Valid)
13384       VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
13385           Context, PragmaClangDataSection.SectionName,
13386           PragmaClangDataSection.PragmaLocation,
13387           AttributeCommonInfo::AS_Pragma));
13388     if (PragmaClangRodataSection.Valid)
13389       VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
13390           Context, PragmaClangRodataSection.SectionName,
13391           PragmaClangRodataSection.PragmaLocation,
13392           AttributeCommonInfo::AS_Pragma));
13393     if (PragmaClangRelroSection.Valid)
13394       VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
13395           Context, PragmaClangRelroSection.SectionName,
13396           PragmaClangRelroSection.PragmaLocation,
13397           AttributeCommonInfo::AS_Pragma));
13398   }
13399 
13400   if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
13401     for (auto *BD : DD->bindings()) {
13402       FinalizeDeclaration(BD);
13403     }
13404   }
13405 
13406   checkAttributesAfterMerging(*this, *VD);
13407 
13408   // Perform TLS alignment check here after attributes attached to the variable
13409   // which may affect the alignment have been processed. Only perform the check
13410   // if the target has a maximum TLS alignment (zero means no constraints).
13411   if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
13412     // Protect the check so that it's not performed on dependent types and
13413     // dependent alignments (we can't determine the alignment in that case).
13414     if (VD->getTLSKind() && !VD->hasDependentAlignment()) {
13415       CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
13416       if (Context.getDeclAlign(VD) > MaxAlignChars) {
13417         Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
13418           << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
13419           << (unsigned)MaxAlignChars.getQuantity();
13420       }
13421     }
13422   }
13423 
13424   if (VD->isStaticLocal())
13425     CheckStaticLocalForDllExport(VD);
13426 
13427   // Perform check for initializers of device-side global variables.
13428   // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
13429   // 7.5). We must also apply the same checks to all __shared__
13430   // variables whether they are local or not. CUDA also allows
13431   // constant initializers for __constant__ and __device__ variables.
13432   if (getLangOpts().CUDA)
13433     checkAllowedCUDAInitializer(VD);
13434 
13435   // Grab the dllimport or dllexport attribute off of the VarDecl.
13436   const InheritableAttr *DLLAttr = getDLLAttr(VD);
13437 
13438   // Imported static data members cannot be defined out-of-line.
13439   if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
13440     if (VD->isStaticDataMember() && VD->isOutOfLine() &&
13441         VD->isThisDeclarationADefinition()) {
13442       // We allow definitions of dllimport class template static data members
13443       // with a warning.
13444       CXXRecordDecl *Context =
13445         cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
13446       bool IsClassTemplateMember =
13447           isa<ClassTemplatePartialSpecializationDecl>(Context) ||
13448           Context->getDescribedClassTemplate();
13449 
13450       Diag(VD->getLocation(),
13451            IsClassTemplateMember
13452                ? diag::warn_attribute_dllimport_static_field_definition
13453                : diag::err_attribute_dllimport_static_field_definition);
13454       Diag(IA->getLocation(), diag::note_attribute);
13455       if (!IsClassTemplateMember)
13456         VD->setInvalidDecl();
13457     }
13458   }
13459 
13460   // dllimport/dllexport variables cannot be thread local, their TLS index
13461   // isn't exported with the variable.
13462   if (DLLAttr && VD->getTLSKind()) {
13463     auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13464     if (F && getDLLAttr(F)) {
13465       assert(VD->isStaticLocal());
13466       // But if this is a static local in a dlimport/dllexport function, the
13467       // function will never be inlined, which means the var would never be
13468       // imported, so having it marked import/export is safe.
13469     } else {
13470       Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
13471                                                                     << DLLAttr;
13472       VD->setInvalidDecl();
13473     }
13474   }
13475 
13476   if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
13477     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
13478       Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
13479           << Attr;
13480       VD->dropAttr<UsedAttr>();
13481     }
13482   }
13483   if (RetainAttr *Attr = VD->getAttr<RetainAttr>()) {
13484     if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
13485       Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition)
13486           << Attr;
13487       VD->dropAttr<RetainAttr>();
13488     }
13489   }
13490 
13491   const DeclContext *DC = VD->getDeclContext();
13492   // If there's a #pragma GCC visibility in scope, and this isn't a class
13493   // member, set the visibility of this variable.
13494   if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
13495     AddPushedVisibilityAttribute(VD);
13496 
13497   // FIXME: Warn on unused var template partial specializations.
13498   if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
13499     MarkUnusedFileScopedDecl(VD);
13500 
13501   // Now we have parsed the initializer and can update the table of magic
13502   // tag values.
13503   if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
13504       !VD->getType()->isIntegralOrEnumerationType())
13505     return;
13506 
13507   for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
13508     const Expr *MagicValueExpr = VD->getInit();
13509     if (!MagicValueExpr) {
13510       continue;
13511     }
13512     Optional<llvm::APSInt> MagicValueInt;
13513     if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) {
13514       Diag(I->getRange().getBegin(),
13515            diag::err_type_tag_for_datatype_not_ice)
13516         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13517       continue;
13518     }
13519     if (MagicValueInt->getActiveBits() > 64) {
13520       Diag(I->getRange().getBegin(),
13521            diag::err_type_tag_for_datatype_too_large)
13522         << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13523       continue;
13524     }
13525     uint64_t MagicValue = MagicValueInt->getZExtValue();
13526     RegisterTypeTagForDatatype(I->getArgumentKind(),
13527                                MagicValue,
13528                                I->getMatchingCType(),
13529                                I->getLayoutCompatible(),
13530                                I->getMustBeNull());
13531   }
13532 }
13533 
13534 static bool hasDeducedAuto(DeclaratorDecl *DD) {
13535   auto *VD = dyn_cast<VarDecl>(DD);
13536   return VD && !VD->getType()->hasAutoForTrailingReturnType();
13537 }
13538 
13539 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
13540                                                    ArrayRef<Decl *> Group) {
13541   SmallVector<Decl*, 8> Decls;
13542 
13543   if (DS.isTypeSpecOwned())
13544     Decls.push_back(DS.getRepAsDecl());
13545 
13546   DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
13547   DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
13548   bool DiagnosedMultipleDecomps = false;
13549   DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
13550   bool DiagnosedNonDeducedAuto = false;
13551 
13552   for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13553     if (Decl *D = Group[i]) {
13554       // For declarators, there are some additional syntactic-ish checks we need
13555       // to perform.
13556       if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
13557         if (!FirstDeclaratorInGroup)
13558           FirstDeclaratorInGroup = DD;
13559         if (!FirstDecompDeclaratorInGroup)
13560           FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
13561         if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
13562             !hasDeducedAuto(DD))
13563           FirstNonDeducedAutoInGroup = DD;
13564 
13565         if (FirstDeclaratorInGroup != DD) {
13566           // A decomposition declaration cannot be combined with any other
13567           // declaration in the same group.
13568           if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
13569             Diag(FirstDecompDeclaratorInGroup->getLocation(),
13570                  diag::err_decomp_decl_not_alone)
13571                 << FirstDeclaratorInGroup->getSourceRange()
13572                 << DD->getSourceRange();
13573             DiagnosedMultipleDecomps = true;
13574           }
13575 
13576           // A declarator that uses 'auto' in any way other than to declare a
13577           // variable with a deduced type cannot be combined with any other
13578           // declarator in the same group.
13579           if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
13580             Diag(FirstNonDeducedAutoInGroup->getLocation(),
13581                  diag::err_auto_non_deduced_not_alone)
13582                 << FirstNonDeducedAutoInGroup->getType()
13583                        ->hasAutoForTrailingReturnType()
13584                 << FirstDeclaratorInGroup->getSourceRange()
13585                 << DD->getSourceRange();
13586             DiagnosedNonDeducedAuto = true;
13587           }
13588         }
13589       }
13590 
13591       Decls.push_back(D);
13592     }
13593   }
13594 
13595   if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
13596     if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
13597       handleTagNumbering(Tag, S);
13598       if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
13599           getLangOpts().CPlusPlus)
13600         Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
13601     }
13602   }
13603 
13604   return BuildDeclaratorGroup(Decls);
13605 }
13606 
13607 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
13608 /// group, performing any necessary semantic checking.
13609 Sema::DeclGroupPtrTy
13610 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
13611   // C++14 [dcl.spec.auto]p7: (DR1347)
13612   //   If the type that replaces the placeholder type is not the same in each
13613   //   deduction, the program is ill-formed.
13614   if (Group.size() > 1) {
13615     QualType Deduced;
13616     VarDecl *DeducedDecl = nullptr;
13617     for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13618       VarDecl *D = dyn_cast<VarDecl>(Group[i]);
13619       if (!D || D->isInvalidDecl())
13620         break;
13621       DeducedType *DT = D->getType()->getContainedDeducedType();
13622       if (!DT || DT->getDeducedType().isNull())
13623         continue;
13624       if (Deduced.isNull()) {
13625         Deduced = DT->getDeducedType();
13626         DeducedDecl = D;
13627       } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
13628         auto *AT = dyn_cast<AutoType>(DT);
13629         auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
13630                         diag::err_auto_different_deductions)
13631                    << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced
13632                    << DeducedDecl->getDeclName() << DT->getDeducedType()
13633                    << D->getDeclName();
13634         if (DeducedDecl->hasInit())
13635           Dia << DeducedDecl->getInit()->getSourceRange();
13636         if (D->getInit())
13637           Dia << D->getInit()->getSourceRange();
13638         D->setInvalidDecl();
13639         break;
13640       }
13641     }
13642   }
13643 
13644   ActOnDocumentableDecls(Group);
13645 
13646   return DeclGroupPtrTy::make(
13647       DeclGroupRef::Create(Context, Group.data(), Group.size()));
13648 }
13649 
13650 void Sema::ActOnDocumentableDecl(Decl *D) {
13651   ActOnDocumentableDecls(D);
13652 }
13653 
13654 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
13655   // Don't parse the comment if Doxygen diagnostics are ignored.
13656   if (Group.empty() || !Group[0])
13657     return;
13658 
13659   if (Diags.isIgnored(diag::warn_doc_param_not_found,
13660                       Group[0]->getLocation()) &&
13661       Diags.isIgnored(diag::warn_unknown_comment_command_name,
13662                       Group[0]->getLocation()))
13663     return;
13664 
13665   if (Group.size() >= 2) {
13666     // This is a decl group.  Normally it will contain only declarations
13667     // produced from declarator list.  But in case we have any definitions or
13668     // additional declaration references:
13669     //   'typedef struct S {} S;'
13670     //   'typedef struct S *S;'
13671     //   'struct S *pS;'
13672     // FinalizeDeclaratorGroup adds these as separate declarations.
13673     Decl *MaybeTagDecl = Group[0];
13674     if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
13675       Group = Group.slice(1);
13676     }
13677   }
13678 
13679   // FIMXE: We assume every Decl in the group is in the same file.
13680   // This is false when preprocessor constructs the group from decls in
13681   // different files (e. g. macros or #include).
13682   Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
13683 }
13684 
13685 /// Common checks for a parameter-declaration that should apply to both function
13686 /// parameters and non-type template parameters.
13687 void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
13688   // Check that there are no default arguments inside the type of this
13689   // parameter.
13690   if (getLangOpts().CPlusPlus)
13691     CheckExtraCXXDefaultArguments(D);
13692 
13693   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
13694   if (D.getCXXScopeSpec().isSet()) {
13695     Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
13696       << D.getCXXScopeSpec().getRange();
13697   }
13698 
13699   // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
13700   // simple identifier except [...irrelevant cases...].
13701   switch (D.getName().getKind()) {
13702   case UnqualifiedIdKind::IK_Identifier:
13703     break;
13704 
13705   case UnqualifiedIdKind::IK_OperatorFunctionId:
13706   case UnqualifiedIdKind::IK_ConversionFunctionId:
13707   case UnqualifiedIdKind::IK_LiteralOperatorId:
13708   case UnqualifiedIdKind::IK_ConstructorName:
13709   case UnqualifiedIdKind::IK_DestructorName:
13710   case UnqualifiedIdKind::IK_ImplicitSelfParam:
13711   case UnqualifiedIdKind::IK_DeductionGuideName:
13712     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
13713       << GetNameForDeclarator(D).getName();
13714     break;
13715 
13716   case UnqualifiedIdKind::IK_TemplateId:
13717   case UnqualifiedIdKind::IK_ConstructorTemplateId:
13718     // GetNameForDeclarator would not produce a useful name in this case.
13719     Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
13720     break;
13721   }
13722 }
13723 
13724 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
13725 /// to introduce parameters into function prototype scope.
13726 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
13727   const DeclSpec &DS = D.getDeclSpec();
13728 
13729   // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
13730 
13731   // C++03 [dcl.stc]p2 also permits 'auto'.
13732   StorageClass SC = SC_None;
13733   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
13734     SC = SC_Register;
13735     // In C++11, the 'register' storage class specifier is deprecated.
13736     // In C++17, it is not allowed, but we tolerate it as an extension.
13737     if (getLangOpts().CPlusPlus11) {
13738       Diag(DS.getStorageClassSpecLoc(),
13739            getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
13740                                      : diag::warn_deprecated_register)
13741         << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
13742     }
13743   } else if (getLangOpts().CPlusPlus &&
13744              DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
13745     SC = SC_Auto;
13746   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
13747     Diag(DS.getStorageClassSpecLoc(),
13748          diag::err_invalid_storage_class_in_func_decl);
13749     D.getMutableDeclSpec().ClearStorageClassSpecs();
13750   }
13751 
13752   if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
13753     Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
13754       << DeclSpec::getSpecifierName(TSCS);
13755   if (DS.isInlineSpecified())
13756     Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
13757         << getLangOpts().CPlusPlus17;
13758   if (DS.hasConstexprSpecifier())
13759     Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
13760         << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
13761 
13762   DiagnoseFunctionSpecifiers(DS);
13763 
13764   CheckFunctionOrTemplateParamDeclarator(S, D);
13765 
13766   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13767   QualType parmDeclType = TInfo->getType();
13768 
13769   // Check for redeclaration of parameters, e.g. int foo(int x, int x);
13770   IdentifierInfo *II = D.getIdentifier();
13771   if (II) {
13772     LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
13773                    ForVisibleRedeclaration);
13774     LookupName(R, S);
13775     if (R.isSingleResult()) {
13776       NamedDecl *PrevDecl = R.getFoundDecl();
13777       if (PrevDecl->isTemplateParameter()) {
13778         // Maybe we will complain about the shadowed template parameter.
13779         DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
13780         // Just pretend that we didn't see the previous declaration.
13781         PrevDecl = nullptr;
13782       } else if (S->isDeclScope(PrevDecl)) {
13783         Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
13784         Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
13785 
13786         // Recover by removing the name
13787         II = nullptr;
13788         D.SetIdentifier(nullptr, D.getIdentifierLoc());
13789         D.setInvalidType(true);
13790       }
13791     }
13792   }
13793 
13794   // Temporarily put parameter variables in the translation unit, not
13795   // the enclosing context.  This prevents them from accidentally
13796   // looking like class members in C++.
13797   ParmVarDecl *New =
13798       CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
13799                      D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
13800 
13801   if (D.isInvalidType())
13802     New->setInvalidDecl();
13803 
13804   assert(S->isFunctionPrototypeScope());
13805   assert(S->getFunctionPrototypeDepth() >= 1);
13806   New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
13807                     S->getNextFunctionPrototypeIndex());
13808 
13809   // Add the parameter declaration into this scope.
13810   S->AddDecl(New);
13811   if (II)
13812     IdResolver.AddDecl(New);
13813 
13814   ProcessDeclAttributes(S, New, D);
13815 
13816   if (D.getDeclSpec().isModulePrivateSpecified())
13817     Diag(New->getLocation(), diag::err_module_private_local)
13818         << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13819         << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13820 
13821   if (New->hasAttr<BlocksAttr>()) {
13822     Diag(New->getLocation(), diag::err_block_on_nonlocal);
13823   }
13824 
13825   if (getLangOpts().OpenCL)
13826     deduceOpenCLAddressSpace(New);
13827 
13828   return New;
13829 }
13830 
13831 /// Synthesizes a variable for a parameter arising from a
13832 /// typedef.
13833 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
13834                                               SourceLocation Loc,
13835                                               QualType T) {
13836   /* FIXME: setting StartLoc == Loc.
13837      Would it be worth to modify callers so as to provide proper source
13838      location for the unnamed parameters, embedding the parameter's type? */
13839   ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
13840                                 T, Context.getTrivialTypeSourceInfo(T, Loc),
13841                                            SC_None, nullptr);
13842   Param->setImplicit();
13843   return Param;
13844 }
13845 
13846 void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
13847   // Don't diagnose unused-parameter errors in template instantiations; we
13848   // will already have done so in the template itself.
13849   if (inTemplateInstantiation())
13850     return;
13851 
13852   for (const ParmVarDecl *Parameter : Parameters) {
13853     if (!Parameter->isReferenced() && Parameter->getDeclName() &&
13854         !Parameter->hasAttr<UnusedAttr>()) {
13855       Diag(Parameter->getLocation(), diag::warn_unused_parameter)
13856         << Parameter->getDeclName();
13857     }
13858   }
13859 }
13860 
13861 void Sema::DiagnoseSizeOfParametersAndReturnValue(
13862     ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
13863   if (LangOpts.NumLargeByValueCopy == 0) // No check.
13864     return;
13865 
13866   // Warn if the return value is pass-by-value and larger than the specified
13867   // threshold.
13868   if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
13869     unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
13870     if (Size > LangOpts.NumLargeByValueCopy)
13871       Diag(D->getLocation(), diag::warn_return_value_size) << D << Size;
13872   }
13873 
13874   // Warn if any parameter is pass-by-value and larger than the specified
13875   // threshold.
13876   for (const ParmVarDecl *Parameter : Parameters) {
13877     QualType T = Parameter->getType();
13878     if (T->isDependentType() || !T.isPODType(Context))
13879       continue;
13880     unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
13881     if (Size > LangOpts.NumLargeByValueCopy)
13882       Diag(Parameter->getLocation(), diag::warn_parameter_size)
13883           << Parameter << Size;
13884   }
13885 }
13886 
13887 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
13888                                   SourceLocation NameLoc, IdentifierInfo *Name,
13889                                   QualType T, TypeSourceInfo *TSInfo,
13890                                   StorageClass SC) {
13891   // In ARC, infer a lifetime qualifier for appropriate parameter types.
13892   if (getLangOpts().ObjCAutoRefCount &&
13893       T.getObjCLifetime() == Qualifiers::OCL_None &&
13894       T->isObjCLifetimeType()) {
13895 
13896     Qualifiers::ObjCLifetime lifetime;
13897 
13898     // Special cases for arrays:
13899     //   - if it's const, use __unsafe_unretained
13900     //   - otherwise, it's an error
13901     if (T->isArrayType()) {
13902       if (!T.isConstQualified()) {
13903         if (DelayedDiagnostics.shouldDelayDiagnostics())
13904           DelayedDiagnostics.add(
13905               sema::DelayedDiagnostic::makeForbiddenType(
13906               NameLoc, diag::err_arc_array_param_no_ownership, T, false));
13907         else
13908           Diag(NameLoc, diag::err_arc_array_param_no_ownership)
13909               << TSInfo->getTypeLoc().getSourceRange();
13910       }
13911       lifetime = Qualifiers::OCL_ExplicitNone;
13912     } else {
13913       lifetime = T->getObjCARCImplicitLifetime();
13914     }
13915     T = Context.getLifetimeQualifiedType(T, lifetime);
13916   }
13917 
13918   ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
13919                                          Context.getAdjustedParameterType(T),
13920                                          TSInfo, SC, nullptr);
13921 
13922   // Make a note if we created a new pack in the scope of a lambda, so that
13923   // we know that references to that pack must also be expanded within the
13924   // lambda scope.
13925   if (New->isParameterPack())
13926     if (auto *LSI = getEnclosingLambda())
13927       LSI->LocalPacks.push_back(New);
13928 
13929   if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
13930       New->getType().hasNonTrivialToPrimitiveCopyCUnion())
13931     checkNonTrivialCUnion(New->getType(), New->getLocation(),
13932                           NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
13933 
13934   // Parameters can not be abstract class types.
13935   // For record types, this is done by the AbstractClassUsageDiagnoser once
13936   // the class has been completely parsed.
13937   if (!CurContext->isRecord() &&
13938       RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
13939                              AbstractParamType))
13940     New->setInvalidDecl();
13941 
13942   // Parameter declarators cannot be interface types. All ObjC objects are
13943   // passed by reference.
13944   if (T->isObjCObjectType()) {
13945     SourceLocation TypeEndLoc =
13946         getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
13947     Diag(NameLoc,
13948          diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
13949       << FixItHint::CreateInsertion(TypeEndLoc, "*");
13950     T = Context.getObjCObjectPointerType(T);
13951     New->setType(T);
13952   }
13953 
13954   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
13955   // duration shall not be qualified by an address-space qualifier."
13956   // Since all parameters have automatic store duration, they can not have
13957   // an address space.
13958   if (T.getAddressSpace() != LangAS::Default &&
13959       // OpenCL allows function arguments declared to be an array of a type
13960       // to be qualified with an address space.
13961       !(getLangOpts().OpenCL &&
13962         (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
13963     Diag(NameLoc, diag::err_arg_with_address_space);
13964     New->setInvalidDecl();
13965   }
13966 
13967   // PPC MMA non-pointer types are not allowed as function argument types.
13968   if (Context.getTargetInfo().getTriple().isPPC64() &&
13969       CheckPPCMMAType(New->getOriginalType(), New->getLocation())) {
13970     New->setInvalidDecl();
13971   }
13972 
13973   return New;
13974 }
13975 
13976 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
13977                                            SourceLocation LocAfterDecls) {
13978   DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
13979 
13980   // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
13981   // for a K&R function.
13982   if (!FTI.hasPrototype) {
13983     for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
13984       --i;
13985       if (FTI.Params[i].Param == nullptr) {
13986         SmallString<256> Code;
13987         llvm::raw_svector_ostream(Code)
13988             << "  int " << FTI.Params[i].Ident->getName() << ";\n";
13989         Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
13990             << FTI.Params[i].Ident
13991             << FixItHint::CreateInsertion(LocAfterDecls, Code);
13992 
13993         // Implicitly declare the argument as type 'int' for lack of a better
13994         // type.
13995         AttributeFactory attrs;
13996         DeclSpec DS(attrs);
13997         const char* PrevSpec; // unused
13998         unsigned DiagID; // unused
13999         DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
14000                            DiagID, Context.getPrintingPolicy());
14001         // Use the identifier location for the type source range.
14002         DS.SetRangeStart(FTI.Params[i].IdentLoc);
14003         DS.SetRangeEnd(FTI.Params[i].IdentLoc);
14004         Declarator ParamD(DS, DeclaratorContext::KNRTypeList);
14005         ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
14006         FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
14007       }
14008     }
14009   }
14010 }
14011 
14012 Decl *
14013 Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
14014                               MultiTemplateParamsArg TemplateParameterLists,
14015                               SkipBodyInfo *SkipBody) {
14016   assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
14017   assert(D.isFunctionDeclarator() && "Not a function declarator!");
14018   Scope *ParentScope = FnBodyScope->getParent();
14019 
14020   // Check if we are in an `omp begin/end declare variant` scope. If we are, and
14021   // we define a non-templated function definition, we will create a declaration
14022   // instead (=BaseFD), and emit the definition with a mangled name afterwards.
14023   // The base function declaration will have the equivalent of an `omp declare
14024   // variant` annotation which specifies the mangled definition as a
14025   // specialization function under the OpenMP context defined as part of the
14026   // `omp begin declare variant`.
14027   SmallVector<FunctionDecl *, 4> Bases;
14028   if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
14029     ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
14030         ParentScope, D, TemplateParameterLists, Bases);
14031 
14032   D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
14033   Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
14034   Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
14035 
14036   if (!Bases.empty())
14037     ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
14038 
14039   return Dcl;
14040 }
14041 
14042 void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
14043   Consumer.HandleInlineFunctionDefinition(D);
14044 }
14045 
14046 static bool
14047 ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
14048                                 const FunctionDecl *&PossiblePrototype) {
14049   // Don't warn about invalid declarations.
14050   if (FD->isInvalidDecl())
14051     return false;
14052 
14053   // Or declarations that aren't global.
14054   if (!FD->isGlobal())
14055     return false;
14056 
14057   // Don't warn about C++ member functions.
14058   if (isa<CXXMethodDecl>(FD))
14059     return false;
14060 
14061   // Don't warn about 'main'.
14062   if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
14063     if (IdentifierInfo *II = FD->getIdentifier())
14064       if (II->isStr("main") || II->isStr("efi_main"))
14065         return false;
14066 
14067   // Don't warn about inline functions.
14068   if (FD->isInlined())
14069     return false;
14070 
14071   // Don't warn about function templates.
14072   if (FD->getDescribedFunctionTemplate())
14073     return false;
14074 
14075   // Don't warn about function template specializations.
14076   if (FD->isFunctionTemplateSpecialization())
14077     return false;
14078 
14079   // Don't warn for OpenCL kernels.
14080   if (FD->hasAttr<OpenCLKernelAttr>())
14081     return false;
14082 
14083   // Don't warn on explicitly deleted functions.
14084   if (FD->isDeleted())
14085     return false;
14086 
14087   for (const FunctionDecl *Prev = FD->getPreviousDecl();
14088        Prev; Prev = Prev->getPreviousDecl()) {
14089     // Ignore any declarations that occur in function or method
14090     // scope, because they aren't visible from the header.
14091     if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
14092       continue;
14093 
14094     PossiblePrototype = Prev;
14095     return Prev->getType()->isFunctionNoProtoType();
14096   }
14097 
14098   return true;
14099 }
14100 
14101 void
14102 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
14103                                    const FunctionDecl *EffectiveDefinition,
14104                                    SkipBodyInfo *SkipBody) {
14105   const FunctionDecl *Definition = EffectiveDefinition;
14106   if (!Definition &&
14107       !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true))
14108     return;
14109 
14110   if (Definition->getFriendObjectKind() != Decl::FOK_None) {
14111     if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) {
14112       if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
14113         // A merged copy of the same function, instantiated as a member of
14114         // the same class, is OK.
14115         if (declaresSameEntity(OrigFD, OrigDef) &&
14116             declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()),
14117                                cast<Decl>(FD->getLexicalDeclContext())))
14118           return;
14119       }
14120     }
14121   }
14122 
14123   if (canRedefineFunction(Definition, getLangOpts()))
14124     return;
14125 
14126   // Don't emit an error when this is redefinition of a typo-corrected
14127   // definition.
14128   if (TypoCorrectedFunctionDefinitions.count(Definition))
14129     return;
14130 
14131   // If we don't have a visible definition of the function, and it's inline or
14132   // a template, skip the new definition.
14133   if (SkipBody && !hasVisibleDefinition(Definition) &&
14134       (Definition->getFormalLinkage() == InternalLinkage ||
14135        Definition->isInlined() ||
14136        Definition->getDescribedFunctionTemplate() ||
14137        Definition->getNumTemplateParameterLists())) {
14138     SkipBody->ShouldSkip = true;
14139     SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
14140     if (auto *TD = Definition->getDescribedFunctionTemplate())
14141       makeMergedDefinitionVisible(TD);
14142     makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
14143     return;
14144   }
14145 
14146   if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
14147       Definition->getStorageClass() == SC_Extern)
14148     Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
14149         << FD << getLangOpts().CPlusPlus;
14150   else
14151     Diag(FD->getLocation(), diag::err_redefinition) << FD;
14152 
14153   Diag(Definition->getLocation(), diag::note_previous_definition);
14154   FD->setInvalidDecl();
14155 }
14156 
14157 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
14158                                    Sema &S) {
14159   CXXRecordDecl *const LambdaClass = CallOperator->getParent();
14160 
14161   LambdaScopeInfo *LSI = S.PushLambdaScope();
14162   LSI->CallOperator = CallOperator;
14163   LSI->Lambda = LambdaClass;
14164   LSI->ReturnType = CallOperator->getReturnType();
14165   const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
14166 
14167   if (LCD == LCD_None)
14168     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
14169   else if (LCD == LCD_ByCopy)
14170     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
14171   else if (LCD == LCD_ByRef)
14172     LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
14173   DeclarationNameInfo DNI = CallOperator->getNameInfo();
14174 
14175   LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
14176   LSI->Mutable = !CallOperator->isConst();
14177 
14178   // Add the captures to the LSI so they can be noted as already
14179   // captured within tryCaptureVar.
14180   auto I = LambdaClass->field_begin();
14181   for (const auto &C : LambdaClass->captures()) {
14182     if (C.capturesVariable()) {
14183       VarDecl *VD = C.getCapturedVar();
14184       if (VD->isInitCapture())
14185         S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
14186       const bool ByRef = C.getCaptureKind() == LCK_ByRef;
14187       LSI->addCapture(VD, /*IsBlock*/false, ByRef,
14188           /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
14189           /*EllipsisLoc*/C.isPackExpansion()
14190                          ? C.getEllipsisLoc() : SourceLocation(),
14191           I->getType(), /*Invalid*/false);
14192 
14193     } else if (C.capturesThis()) {
14194       LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
14195                           C.getCaptureKind() == LCK_StarThis);
14196     } else {
14197       LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
14198                              I->getType());
14199     }
14200     ++I;
14201   }
14202 }
14203 
14204 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
14205                                     SkipBodyInfo *SkipBody) {
14206   if (!D) {
14207     // Parsing the function declaration failed in some way. Push on a fake scope
14208     // anyway so we can try to parse the function body.
14209     PushFunctionScope();
14210     PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
14211     return D;
14212   }
14213 
14214   FunctionDecl *FD = nullptr;
14215 
14216   if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
14217     FD = FunTmpl->getTemplatedDecl();
14218   else
14219     FD = cast<FunctionDecl>(D);
14220 
14221   // Do not push if it is a lambda because one is already pushed when building
14222   // the lambda in ActOnStartOfLambdaDefinition().
14223   if (!isLambdaCallOperator(FD))
14224     PushExpressionEvaluationContext(
14225         FD->isConsteval() ? ExpressionEvaluationContext::ConstantEvaluated
14226                           : ExprEvalContexts.back().Context);
14227 
14228   // Check for defining attributes before the check for redefinition.
14229   if (const auto *Attr = FD->getAttr<AliasAttr>()) {
14230     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
14231     FD->dropAttr<AliasAttr>();
14232     FD->setInvalidDecl();
14233   }
14234   if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
14235     Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
14236     FD->dropAttr<IFuncAttr>();
14237     FD->setInvalidDecl();
14238   }
14239 
14240   if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
14241     if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
14242         Ctor->isDefaultConstructor() &&
14243         Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14244       // If this is an MS ABI dllexport default constructor, instantiate any
14245       // default arguments.
14246       InstantiateDefaultCtorDefaultArgs(Ctor);
14247     }
14248   }
14249 
14250   // See if this is a redefinition. If 'will have body' (or similar) is already
14251   // set, then these checks were already performed when it was set.
14252   if (!FD->willHaveBody() && !FD->isLateTemplateParsed() &&
14253       !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
14254     CheckForFunctionRedefinition(FD, nullptr, SkipBody);
14255 
14256     // If we're skipping the body, we're done. Don't enter the scope.
14257     if (SkipBody && SkipBody->ShouldSkip)
14258       return D;
14259   }
14260 
14261   // Mark this function as "will have a body eventually".  This lets users to
14262   // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
14263   // this function.
14264   FD->setWillHaveBody();
14265 
14266   // If we are instantiating a generic lambda call operator, push
14267   // a LambdaScopeInfo onto the function stack.  But use the information
14268   // that's already been calculated (ActOnLambdaExpr) to prime the current
14269   // LambdaScopeInfo.
14270   // When the template operator is being specialized, the LambdaScopeInfo,
14271   // has to be properly restored so that tryCaptureVariable doesn't try
14272   // and capture any new variables. In addition when calculating potential
14273   // captures during transformation of nested lambdas, it is necessary to
14274   // have the LSI properly restored.
14275   if (isGenericLambdaCallOperatorSpecialization(FD)) {
14276     assert(inTemplateInstantiation() &&
14277            "There should be an active template instantiation on the stack "
14278            "when instantiating a generic lambda!");
14279     RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
14280   } else {
14281     // Enter a new function scope
14282     PushFunctionScope();
14283   }
14284 
14285   // Builtin functions cannot be defined.
14286   if (unsigned BuiltinID = FD->getBuiltinID()) {
14287     if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
14288         !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
14289       Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
14290       FD->setInvalidDecl();
14291     }
14292   }
14293 
14294   // The return type of a function definition must be complete
14295   // (C99 6.9.1p3, C++ [dcl.fct]p6).
14296   QualType ResultType = FD->getReturnType();
14297   if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
14298       !FD->isInvalidDecl() &&
14299       RequireCompleteType(FD->getLocation(), ResultType,
14300                           diag::err_func_def_incomplete_result))
14301     FD->setInvalidDecl();
14302 
14303   if (FnBodyScope)
14304     PushDeclContext(FnBodyScope, FD);
14305 
14306   // Check the validity of our function parameters
14307   CheckParmsForFunctionDef(FD->parameters(),
14308                            /*CheckParameterNames=*/true);
14309 
14310   // Add non-parameter declarations already in the function to the current
14311   // scope.
14312   if (FnBodyScope) {
14313     for (Decl *NPD : FD->decls()) {
14314       auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
14315       if (!NonParmDecl)
14316         continue;
14317       assert(!isa<ParmVarDecl>(NonParmDecl) &&
14318              "parameters should not be in newly created FD yet");
14319 
14320       // If the decl has a name, make it accessible in the current scope.
14321       if (NonParmDecl->getDeclName())
14322         PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
14323 
14324       // Similarly, dive into enums and fish their constants out, making them
14325       // accessible in this scope.
14326       if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
14327         for (auto *EI : ED->enumerators())
14328           PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
14329       }
14330     }
14331   }
14332 
14333   // Introduce our parameters into the function scope
14334   for (auto Param : FD->parameters()) {
14335     Param->setOwningFunction(FD);
14336 
14337     // If this has an identifier, add it to the scope stack.
14338     if (Param->getIdentifier() && FnBodyScope) {
14339       CheckShadow(FnBodyScope, Param);
14340 
14341       PushOnScopeChains(Param, FnBodyScope);
14342     }
14343   }
14344 
14345   // Ensure that the function's exception specification is instantiated.
14346   if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
14347     ResolveExceptionSpec(D->getLocation(), FPT);
14348 
14349   // dllimport cannot be applied to non-inline function definitions.
14350   if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
14351       !FD->isTemplateInstantiation()) {
14352     assert(!FD->hasAttr<DLLExportAttr>());
14353     Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
14354     FD->setInvalidDecl();
14355     return D;
14356   }
14357   // We want to attach documentation to original Decl (which might be
14358   // a function template).
14359   ActOnDocumentableDecl(D);
14360   if (getCurLexicalContext()->isObjCContainer() &&
14361       getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
14362       getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
14363     Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
14364 
14365   return D;
14366 }
14367 
14368 /// Given the set of return statements within a function body,
14369 /// compute the variables that are subject to the named return value
14370 /// optimization.
14371 ///
14372 /// Each of the variables that is subject to the named return value
14373 /// optimization will be marked as NRVO variables in the AST, and any
14374 /// return statement that has a marked NRVO variable as its NRVO candidate can
14375 /// use the named return value optimization.
14376 ///
14377 /// This function applies a very simplistic algorithm for NRVO: if every return
14378 /// statement in the scope of a variable has the same NRVO candidate, that
14379 /// candidate is an NRVO variable.
14380 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
14381   ReturnStmt **Returns = Scope->Returns.data();
14382 
14383   for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
14384     if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
14385       if (!NRVOCandidate->isNRVOVariable())
14386         Returns[I]->setNRVOCandidate(nullptr);
14387     }
14388   }
14389 }
14390 
14391 bool Sema::canDelayFunctionBody(const Declarator &D) {
14392   // We can't delay parsing the body of a constexpr function template (yet).
14393   if (D.getDeclSpec().hasConstexprSpecifier())
14394     return false;
14395 
14396   // We can't delay parsing the body of a function template with a deduced
14397   // return type (yet).
14398   if (D.getDeclSpec().hasAutoTypeSpec()) {
14399     // If the placeholder introduces a non-deduced trailing return type,
14400     // we can still delay parsing it.
14401     if (D.getNumTypeObjects()) {
14402       const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
14403       if (Outer.Kind == DeclaratorChunk::Function &&
14404           Outer.Fun.hasTrailingReturnType()) {
14405         QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
14406         return Ty.isNull() || !Ty->isUndeducedType();
14407       }
14408     }
14409     return false;
14410   }
14411 
14412   return true;
14413 }
14414 
14415 bool Sema::canSkipFunctionBody(Decl *D) {
14416   // We cannot skip the body of a function (or function template) which is
14417   // constexpr, since we may need to evaluate its body in order to parse the
14418   // rest of the file.
14419   // We cannot skip the body of a function with an undeduced return type,
14420   // because any callers of that function need to know the type.
14421   if (const FunctionDecl *FD = D->getAsFunction()) {
14422     if (FD->isConstexpr())
14423       return false;
14424     // We can't simply call Type::isUndeducedType here, because inside template
14425     // auto can be deduced to a dependent type, which is not considered
14426     // "undeduced".
14427     if (FD->getReturnType()->getContainedDeducedType())
14428       return false;
14429   }
14430   return Consumer.shouldSkipFunctionBody(D);
14431 }
14432 
14433 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
14434   if (!Decl)
14435     return nullptr;
14436   if (FunctionDecl *FD = Decl->getAsFunction())
14437     FD->setHasSkippedBody();
14438   else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
14439     MD->setHasSkippedBody();
14440   return Decl;
14441 }
14442 
14443 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
14444   return ActOnFinishFunctionBody(D, BodyArg, false);
14445 }
14446 
14447 /// RAII object that pops an ExpressionEvaluationContext when exiting a function
14448 /// body.
14449 class ExitFunctionBodyRAII {
14450 public:
14451   ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
14452   ~ExitFunctionBodyRAII() {
14453     if (!IsLambda)
14454       S.PopExpressionEvaluationContext();
14455   }
14456 
14457 private:
14458   Sema &S;
14459   bool IsLambda = false;
14460 };
14461 
14462 static void diagnoseImplicitlyRetainedSelf(Sema &S) {
14463   llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
14464 
14465   auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
14466     if (EscapeInfo.count(BD))
14467       return EscapeInfo[BD];
14468 
14469     bool R = false;
14470     const BlockDecl *CurBD = BD;
14471 
14472     do {
14473       R = !CurBD->doesNotEscape();
14474       if (R)
14475         break;
14476       CurBD = CurBD->getParent()->getInnermostBlockDecl();
14477     } while (CurBD);
14478 
14479     return EscapeInfo[BD] = R;
14480   };
14481 
14482   // If the location where 'self' is implicitly retained is inside a escaping
14483   // block, emit a diagnostic.
14484   for (const std::pair<SourceLocation, const BlockDecl *> &P :
14485        S.ImplicitlyRetainedSelfLocs)
14486     if (IsOrNestedInEscapingBlock(P.second))
14487       S.Diag(P.first, diag::warn_implicitly_retains_self)
14488           << FixItHint::CreateInsertion(P.first, "self->");
14489 }
14490 
14491 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
14492                                     bool IsInstantiation) {
14493   FunctionScopeInfo *FSI = getCurFunction();
14494   FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
14495 
14496   if (FSI->UsesFPIntrin && FD && !FD->hasAttr<StrictFPAttr>())
14497     FD->addAttr(StrictFPAttr::CreateImplicit(Context));
14498 
14499   sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
14500   sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
14501 
14502   if (getLangOpts().Coroutines && FSI->isCoroutine())
14503     CheckCompletedCoroutineBody(FD, Body);
14504 
14505   // Do not call PopExpressionEvaluationContext() if it is a lambda because one
14506   // is already popped when finishing the lambda in BuildLambdaExpr(). This is
14507   // meant to pop the context added in ActOnStartOfFunctionDef().
14508   ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
14509 
14510   if (FD) {
14511     FD->setBody(Body);
14512     FD->setWillHaveBody(false);
14513 
14514     if (getLangOpts().CPlusPlus14) {
14515       if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
14516           FD->getReturnType()->isUndeducedType()) {
14517         // If the function has a deduced result type but contains no 'return'
14518         // statements, the result type as written must be exactly 'auto', and
14519         // the deduced result type is 'void'.
14520         if (!FD->getReturnType()->getAs<AutoType>()) {
14521           Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
14522               << FD->getReturnType();
14523           FD->setInvalidDecl();
14524         } else {
14525           // Substitute 'void' for the 'auto' in the type.
14526           TypeLoc ResultType = getReturnTypeLoc(FD);
14527           Context.adjustDeducedFunctionResultType(
14528               FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
14529         }
14530       }
14531     } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
14532       // In C++11, we don't use 'auto' deduction rules for lambda call
14533       // operators because we don't support return type deduction.
14534       auto *LSI = getCurLambda();
14535       if (LSI->HasImplicitReturnType) {
14536         deduceClosureReturnType(*LSI);
14537 
14538         // C++11 [expr.prim.lambda]p4:
14539         //   [...] if there are no return statements in the compound-statement
14540         //   [the deduced type is] the type void
14541         QualType RetType =
14542             LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
14543 
14544         // Update the return type to the deduced type.
14545         const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
14546         FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
14547                                             Proto->getExtProtoInfo()));
14548       }
14549     }
14550 
14551     // If the function implicitly returns zero (like 'main') or is naked,
14552     // don't complain about missing return statements.
14553     if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
14554       WP.disableCheckFallThrough();
14555 
14556     // MSVC permits the use of pure specifier (=0) on function definition,
14557     // defined at class scope, warn about this non-standard construct.
14558     if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
14559       Diag(FD->getLocation(), diag::ext_pure_function_definition);
14560 
14561     if (!FD->isInvalidDecl()) {
14562       // Don't diagnose unused parameters of defaulted or deleted functions.
14563       if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
14564         DiagnoseUnusedParameters(FD->parameters());
14565       DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
14566                                              FD->getReturnType(), FD);
14567 
14568       // If this is a structor, we need a vtable.
14569       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
14570         MarkVTableUsed(FD->getLocation(), Constructor->getParent());
14571       else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
14572         MarkVTableUsed(FD->getLocation(), Destructor->getParent());
14573 
14574       // Try to apply the named return value optimization. We have to check
14575       // if we can do this here because lambdas keep return statements around
14576       // to deduce an implicit return type.
14577       if (FD->getReturnType()->isRecordType() &&
14578           (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
14579         computeNRVO(Body, FSI);
14580     }
14581 
14582     // GNU warning -Wmissing-prototypes:
14583     //   Warn if a global function is defined without a previous
14584     //   prototype declaration. This warning is issued even if the
14585     //   definition itself provides a prototype. The aim is to detect
14586     //   global functions that fail to be declared in header files.
14587     const FunctionDecl *PossiblePrototype = nullptr;
14588     if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
14589       Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
14590 
14591       if (PossiblePrototype) {
14592         // We found a declaration that is not a prototype,
14593         // but that could be a zero-parameter prototype
14594         if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
14595           TypeLoc TL = TI->getTypeLoc();
14596           if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
14597             Diag(PossiblePrototype->getLocation(),
14598                  diag::note_declaration_not_a_prototype)
14599                 << (FD->getNumParams() != 0)
14600                 << (FD->getNumParams() == 0
14601                         ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void")
14602                         : FixItHint{});
14603         }
14604       } else {
14605         // Returns true if the token beginning at this Loc is `const`.
14606         auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM,
14607                                 const LangOptions &LangOpts) {
14608           std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
14609           if (LocInfo.first.isInvalid())
14610             return false;
14611 
14612           bool Invalid = false;
14613           StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
14614           if (Invalid)
14615             return false;
14616 
14617           if (LocInfo.second > Buffer.size())
14618             return false;
14619 
14620           const char *LexStart = Buffer.data() + LocInfo.second;
14621           StringRef StartTok(LexStart, Buffer.size() - LocInfo.second);
14622 
14623           return StartTok.consume_front("const") &&
14624                  (StartTok.empty() || isWhitespace(StartTok[0]) ||
14625                   StartTok.startswith("/*") || StartTok.startswith("//"));
14626         };
14627 
14628         auto findBeginLoc = [&]() {
14629           // If the return type has `const` qualifier, we want to insert
14630           // `static` before `const` (and not before the typename).
14631           if ((FD->getReturnType()->isAnyPointerType() &&
14632                FD->getReturnType()->getPointeeType().isConstQualified()) ||
14633               FD->getReturnType().isConstQualified()) {
14634             // But only do this if we can determine where the `const` is.
14635 
14636             if (isLocAtConst(FD->getBeginLoc(), getSourceManager(),
14637                              getLangOpts()))
14638 
14639               return FD->getBeginLoc();
14640           }
14641           return FD->getTypeSpecStartLoc();
14642         };
14643         Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
14644             << /* function */ 1
14645             << (FD->getStorageClass() == SC_None
14646                     ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
14647                     : FixItHint{});
14648       }
14649 
14650       // GNU warning -Wstrict-prototypes
14651       //   Warn if K&R function is defined without a previous declaration.
14652       //   This warning is issued only if the definition itself does not provide
14653       //   a prototype. Only K&R definitions do not provide a prototype.
14654       if (!FD->hasWrittenPrototype()) {
14655         TypeSourceInfo *TI = FD->getTypeSourceInfo();
14656         TypeLoc TL = TI->getTypeLoc();
14657         FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
14658         Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
14659       }
14660     }
14661 
14662     // Warn on CPUDispatch with an actual body.
14663     if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
14664       if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
14665         if (!CmpndBody->body_empty())
14666           Diag(CmpndBody->body_front()->getBeginLoc(),
14667                diag::warn_dispatch_body_ignored);
14668 
14669     if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
14670       const CXXMethodDecl *KeyFunction;
14671       if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
14672           MD->isVirtual() &&
14673           (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
14674           MD == KeyFunction->getCanonicalDecl()) {
14675         // Update the key-function state if necessary for this ABI.
14676         if (FD->isInlined() &&
14677             !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
14678           Context.setNonKeyFunction(MD);
14679 
14680           // If the newly-chosen key function is already defined, then we
14681           // need to mark the vtable as used retroactively.
14682           KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
14683           const FunctionDecl *Definition;
14684           if (KeyFunction && KeyFunction->isDefined(Definition))
14685             MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
14686         } else {
14687           // We just defined they key function; mark the vtable as used.
14688           MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
14689         }
14690       }
14691     }
14692 
14693     assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
14694            "Function parsing confused");
14695   } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
14696     assert(MD == getCurMethodDecl() && "Method parsing confused");
14697     MD->setBody(Body);
14698     if (!MD->isInvalidDecl()) {
14699       DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
14700                                              MD->getReturnType(), MD);
14701 
14702       if (Body)
14703         computeNRVO(Body, FSI);
14704     }
14705     if (FSI->ObjCShouldCallSuper) {
14706       Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
14707           << MD->getSelector().getAsString();
14708       FSI->ObjCShouldCallSuper = false;
14709     }
14710     if (FSI->ObjCWarnForNoDesignatedInitChain) {
14711       const ObjCMethodDecl *InitMethod = nullptr;
14712       bool isDesignated =
14713           MD->isDesignatedInitializerForTheInterface(&InitMethod);
14714       assert(isDesignated && InitMethod);
14715       (void)isDesignated;
14716 
14717       auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
14718         auto IFace = MD->getClassInterface();
14719         if (!IFace)
14720           return false;
14721         auto SuperD = IFace->getSuperClass();
14722         if (!SuperD)
14723           return false;
14724         return SuperD->getIdentifier() ==
14725             NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
14726       };
14727       // Don't issue this warning for unavailable inits or direct subclasses
14728       // of NSObject.
14729       if (!MD->isUnavailable() && !superIsNSObject(MD)) {
14730         Diag(MD->getLocation(),
14731              diag::warn_objc_designated_init_missing_super_call);
14732         Diag(InitMethod->getLocation(),
14733              diag::note_objc_designated_init_marked_here);
14734       }
14735       FSI->ObjCWarnForNoDesignatedInitChain = false;
14736     }
14737     if (FSI->ObjCWarnForNoInitDelegation) {
14738       // Don't issue this warning for unavaialable inits.
14739       if (!MD->isUnavailable())
14740         Diag(MD->getLocation(),
14741              diag::warn_objc_secondary_init_missing_init_call);
14742       FSI->ObjCWarnForNoInitDelegation = false;
14743     }
14744 
14745     diagnoseImplicitlyRetainedSelf(*this);
14746   } else {
14747     // Parsing the function declaration failed in some way. Pop the fake scope
14748     // we pushed on.
14749     PopFunctionScopeInfo(ActivePolicy, dcl);
14750     return nullptr;
14751   }
14752 
14753   if (Body && FSI->HasPotentialAvailabilityViolations)
14754     DiagnoseUnguardedAvailabilityViolations(dcl);
14755 
14756   assert(!FSI->ObjCShouldCallSuper &&
14757          "This should only be set for ObjC methods, which should have been "
14758          "handled in the block above.");
14759 
14760   // Verify and clean out per-function state.
14761   if (Body && (!FD || !FD->isDefaulted())) {
14762     // C++ constructors that have function-try-blocks can't have return
14763     // statements in the handlers of that block. (C++ [except.handle]p14)
14764     // Verify this.
14765     if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
14766       DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
14767 
14768     // Verify that gotos and switch cases don't jump into scopes illegally.
14769     if (FSI->NeedsScopeChecking() &&
14770         !PP.isCodeCompletionEnabled())
14771       DiagnoseInvalidJumps(Body);
14772 
14773     if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
14774       if (!Destructor->getParent()->isDependentType())
14775         CheckDestructor(Destructor);
14776 
14777       MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
14778                                              Destructor->getParent());
14779     }
14780 
14781     // If any errors have occurred, clear out any temporaries that may have
14782     // been leftover. This ensures that these temporaries won't be picked up for
14783     // deletion in some later function.
14784     if (hasUncompilableErrorOccurred() ||
14785         getDiagnostics().getSuppressAllDiagnostics()) {
14786       DiscardCleanupsInEvaluationContext();
14787     }
14788     if (!hasUncompilableErrorOccurred() &&
14789         !isa<FunctionTemplateDecl>(dcl)) {
14790       // Since the body is valid, issue any analysis-based warnings that are
14791       // enabled.
14792       ActivePolicy = &WP;
14793     }
14794 
14795     if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
14796         !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
14797       FD->setInvalidDecl();
14798 
14799     if (FD && FD->hasAttr<NakedAttr>()) {
14800       for (const Stmt *S : Body->children()) {
14801         // Allow local register variables without initializer as they don't
14802         // require prologue.
14803         bool RegisterVariables = false;
14804         if (auto *DS = dyn_cast<DeclStmt>(S)) {
14805           for (const auto *Decl : DS->decls()) {
14806             if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
14807               RegisterVariables =
14808                   Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
14809               if (!RegisterVariables)
14810                 break;
14811             }
14812           }
14813         }
14814         if (RegisterVariables)
14815           continue;
14816         if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
14817           Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
14818           Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
14819           FD->setInvalidDecl();
14820           break;
14821         }
14822       }
14823     }
14824 
14825     assert(ExprCleanupObjects.size() ==
14826                ExprEvalContexts.back().NumCleanupObjects &&
14827            "Leftover temporaries in function");
14828     assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function");
14829     assert(MaybeODRUseExprs.empty() &&
14830            "Leftover expressions for odr-use checking");
14831   }
14832 
14833   if (!IsInstantiation)
14834     PopDeclContext();
14835 
14836   PopFunctionScopeInfo(ActivePolicy, dcl);
14837   // If any errors have occurred, clear out any temporaries that may have
14838   // been leftover. This ensures that these temporaries won't be picked up for
14839   // deletion in some later function.
14840   if (hasUncompilableErrorOccurred()) {
14841     DiscardCleanupsInEvaluationContext();
14842   }
14843 
14844   if (FD && (LangOpts.OpenMP || LangOpts.CUDA || LangOpts.SYCLIsDevice)) {
14845     auto ES = getEmissionStatus(FD);
14846     if (ES == Sema::FunctionEmissionStatus::Emitted ||
14847         ES == Sema::FunctionEmissionStatus::Unknown)
14848       DeclsToCheckForDeferredDiags.insert(FD);
14849   }
14850 
14851   return dcl;
14852 }
14853 
14854 /// When we finish delayed parsing of an attribute, we must attach it to the
14855 /// relevant Decl.
14856 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
14857                                        ParsedAttributes &Attrs) {
14858   // Always attach attributes to the underlying decl.
14859   if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
14860     D = TD->getTemplatedDecl();
14861   ProcessDeclAttributeList(S, D, Attrs);
14862 
14863   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
14864     if (Method->isStatic())
14865       checkThisInStaticMemberFunctionAttributes(Method);
14866 }
14867 
14868 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
14869 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
14870 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
14871                                           IdentifierInfo &II, Scope *S) {
14872   // Find the scope in which the identifier is injected and the corresponding
14873   // DeclContext.
14874   // FIXME: C89 does not say what happens if there is no enclosing block scope.
14875   // In that case, we inject the declaration into the translation unit scope
14876   // instead.
14877   Scope *BlockScope = S;
14878   while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
14879     BlockScope = BlockScope->getParent();
14880 
14881   Scope *ContextScope = BlockScope;
14882   while (!ContextScope->getEntity())
14883     ContextScope = ContextScope->getParent();
14884   ContextRAII SavedContext(*this, ContextScope->getEntity());
14885 
14886   // Before we produce a declaration for an implicitly defined
14887   // function, see whether there was a locally-scoped declaration of
14888   // this name as a function or variable. If so, use that
14889   // (non-visible) declaration, and complain about it.
14890   NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
14891   if (ExternCPrev) {
14892     // We still need to inject the function into the enclosing block scope so
14893     // that later (non-call) uses can see it.
14894     PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
14895 
14896     // C89 footnote 38:
14897     //   If in fact it is not defined as having type "function returning int",
14898     //   the behavior is undefined.
14899     if (!isa<FunctionDecl>(ExternCPrev) ||
14900         !Context.typesAreCompatible(
14901             cast<FunctionDecl>(ExternCPrev)->getType(),
14902             Context.getFunctionNoProtoType(Context.IntTy))) {
14903       Diag(Loc, diag::ext_use_out_of_scope_declaration)
14904           << ExternCPrev << !getLangOpts().C99;
14905       Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
14906       return ExternCPrev;
14907     }
14908   }
14909 
14910   // Extension in C99.  Legal in C90, but warn about it.
14911   unsigned diag_id;
14912   if (II.getName().startswith("__builtin_"))
14913     diag_id = diag::warn_builtin_unknown;
14914   // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
14915   else if (getLangOpts().OpenCL)
14916     diag_id = diag::err_opencl_implicit_function_decl;
14917   else if (getLangOpts().C99)
14918     diag_id = diag::ext_implicit_function_decl;
14919   else
14920     diag_id = diag::warn_implicit_function_decl;
14921   Diag(Loc, diag_id) << &II;
14922 
14923   // If we found a prior declaration of this function, don't bother building
14924   // another one. We've already pushed that one into scope, so there's nothing
14925   // more to do.
14926   if (ExternCPrev)
14927     return ExternCPrev;
14928 
14929   // Because typo correction is expensive, only do it if the implicit
14930   // function declaration is going to be treated as an error.
14931   if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
14932     TypoCorrection Corrected;
14933     DeclFilterCCC<FunctionDecl> CCC{};
14934     if (S && (Corrected =
14935                   CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
14936                               S, nullptr, CCC, CTK_NonError)))
14937       diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
14938                    /*ErrorRecovery*/false);
14939   }
14940 
14941   // Set a Declarator for the implicit definition: int foo();
14942   const char *Dummy;
14943   AttributeFactory attrFactory;
14944   DeclSpec DS(attrFactory);
14945   unsigned DiagID;
14946   bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
14947                                   Context.getPrintingPolicy());
14948   (void)Error; // Silence warning.
14949   assert(!Error && "Error setting up implicit decl!");
14950   SourceLocation NoLoc;
14951   Declarator D(DS, DeclaratorContext::Block);
14952   D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
14953                                              /*IsAmbiguous=*/false,
14954                                              /*LParenLoc=*/NoLoc,
14955                                              /*Params=*/nullptr,
14956                                              /*NumParams=*/0,
14957                                              /*EllipsisLoc=*/NoLoc,
14958                                              /*RParenLoc=*/NoLoc,
14959                                              /*RefQualifierIsLvalueRef=*/true,
14960                                              /*RefQualifierLoc=*/NoLoc,
14961                                              /*MutableLoc=*/NoLoc, EST_None,
14962                                              /*ESpecRange=*/SourceRange(),
14963                                              /*Exceptions=*/nullptr,
14964                                              /*ExceptionRanges=*/nullptr,
14965                                              /*NumExceptions=*/0,
14966                                              /*NoexceptExpr=*/nullptr,
14967                                              /*ExceptionSpecTokens=*/nullptr,
14968                                              /*DeclsInPrototype=*/None, Loc,
14969                                              Loc, D),
14970                 std::move(DS.getAttributes()), SourceLocation());
14971   D.SetIdentifier(&II, Loc);
14972 
14973   // Insert this function into the enclosing block scope.
14974   FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
14975   FD->setImplicit();
14976 
14977   AddKnownFunctionAttributes(FD);
14978 
14979   return FD;
14980 }
14981 
14982 /// If this function is a C++ replaceable global allocation function
14983 /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
14984 /// adds any function attributes that we know a priori based on the standard.
14985 ///
14986 /// We need to check for duplicate attributes both here and where user-written
14987 /// attributes are applied to declarations.
14988 void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
14989     FunctionDecl *FD) {
14990   if (FD->isInvalidDecl())
14991     return;
14992 
14993   if (FD->getDeclName().getCXXOverloadedOperator() != OO_New &&
14994       FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New)
14995     return;
14996 
14997   Optional<unsigned> AlignmentParam;
14998   bool IsNothrow = false;
14999   if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow))
15000     return;
15001 
15002   // C++2a [basic.stc.dynamic.allocation]p4:
15003   //   An allocation function that has a non-throwing exception specification
15004   //   indicates failure by returning a null pointer value. Any other allocation
15005   //   function never returns a null pointer value and indicates failure only by
15006   //   throwing an exception [...]
15007   if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>())
15008     FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation()));
15009 
15010   // C++2a [basic.stc.dynamic.allocation]p2:
15011   //   An allocation function attempts to allocate the requested amount of
15012   //   storage. [...] If the request succeeds, the value returned by a
15013   //   replaceable allocation function is a [...] pointer value p0 different
15014   //   from any previously returned value p1 [...]
15015   //
15016   // However, this particular information is being added in codegen,
15017   // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
15018 
15019   // C++2a [basic.stc.dynamic.allocation]p2:
15020   //   An allocation function attempts to allocate the requested amount of
15021   //   storage. If it is successful, it returns the address of the start of a
15022   //   block of storage whose length in bytes is at least as large as the
15023   //   requested size.
15024   if (!FD->hasAttr<AllocSizeAttr>()) {
15025     FD->addAttr(AllocSizeAttr::CreateImplicit(
15026         Context, /*ElemSizeParam=*/ParamIdx(1, FD),
15027         /*NumElemsParam=*/ParamIdx(), FD->getLocation()));
15028   }
15029 
15030   // C++2a [basic.stc.dynamic.allocation]p3:
15031   //   For an allocation function [...], the pointer returned on a successful
15032   //   call shall represent the address of storage that is aligned as follows:
15033   //   (3.1) If the allocation function takes an argument of type
15034   //         std​::​align_­val_­t, the storage will have the alignment
15035   //         specified by the value of this argument.
15036   if (AlignmentParam.hasValue() && !FD->hasAttr<AllocAlignAttr>()) {
15037     FD->addAttr(AllocAlignAttr::CreateImplicit(
15038         Context, ParamIdx(AlignmentParam.getValue(), FD), FD->getLocation()));
15039   }
15040 
15041   // FIXME:
15042   // C++2a [basic.stc.dynamic.allocation]p3:
15043   //   For an allocation function [...], the pointer returned on a successful
15044   //   call shall represent the address of storage that is aligned as follows:
15045   //   (3.2) Otherwise, if the allocation function is named operator new[],
15046   //         the storage is aligned for any object that does not have
15047   //         new-extended alignment ([basic.align]) and is no larger than the
15048   //         requested size.
15049   //   (3.3) Otherwise, the storage is aligned for any object that does not
15050   //         have new-extended alignment and is of the requested size.
15051 }
15052 
15053 /// Adds any function attributes that we know a priori based on
15054 /// the declaration of this function.
15055 ///
15056 /// These attributes can apply both to implicitly-declared builtins
15057 /// (like __builtin___printf_chk) or to library-declared functions
15058 /// like NSLog or printf.
15059 ///
15060 /// We need to check for duplicate attributes both here and where user-written
15061 /// attributes are applied to declarations.
15062 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
15063   if (FD->isInvalidDecl())
15064     return;
15065 
15066   // If this is a built-in function, map its builtin attributes to
15067   // actual attributes.
15068   if (unsigned BuiltinID = FD->getBuiltinID()) {
15069     // Handle printf-formatting attributes.
15070     unsigned FormatIdx;
15071     bool HasVAListArg;
15072     if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
15073       if (!FD->hasAttr<FormatAttr>()) {
15074         const char *fmt = "printf";
15075         unsigned int NumParams = FD->getNumParams();
15076         if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
15077             FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
15078           fmt = "NSString";
15079         FD->addAttr(FormatAttr::CreateImplicit(Context,
15080                                                &Context.Idents.get(fmt),
15081                                                FormatIdx+1,
15082                                                HasVAListArg ? 0 : FormatIdx+2,
15083                                                FD->getLocation()));
15084       }
15085     }
15086     if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
15087                                              HasVAListArg)) {
15088      if (!FD->hasAttr<FormatAttr>())
15089        FD->addAttr(FormatAttr::CreateImplicit(Context,
15090                                               &Context.Idents.get("scanf"),
15091                                               FormatIdx+1,
15092                                               HasVAListArg ? 0 : FormatIdx+2,
15093                                               FD->getLocation()));
15094     }
15095 
15096     // Handle automatically recognized callbacks.
15097     SmallVector<int, 4> Encoding;
15098     if (!FD->hasAttr<CallbackAttr>() &&
15099         Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
15100       FD->addAttr(CallbackAttr::CreateImplicit(
15101           Context, Encoding.data(), Encoding.size(), FD->getLocation()));
15102 
15103     // Mark const if we don't care about errno and that is the only thing
15104     // preventing the function from being const. This allows IRgen to use LLVM
15105     // intrinsics for such functions.
15106     if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
15107         Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
15108       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
15109 
15110     // We make "fma" on some platforms const because we know it does not set
15111     // errno in those environments even though it could set errno based on the
15112     // C standard.
15113     const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
15114     if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
15115         !FD->hasAttr<ConstAttr>()) {
15116       switch (BuiltinID) {
15117       case Builtin::BI__builtin_fma:
15118       case Builtin::BI__builtin_fmaf:
15119       case Builtin::BI__builtin_fmal:
15120       case Builtin::BIfma:
15121       case Builtin::BIfmaf:
15122       case Builtin::BIfmal:
15123         FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
15124         break;
15125       default:
15126         break;
15127       }
15128     }
15129 
15130     if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
15131         !FD->hasAttr<ReturnsTwiceAttr>())
15132       FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
15133                                          FD->getLocation()));
15134     if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
15135       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
15136     if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
15137       FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
15138     if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
15139       FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
15140     if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
15141         !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
15142       // Add the appropriate attribute, depending on the CUDA compilation mode
15143       // and which target the builtin belongs to. For example, during host
15144       // compilation, aux builtins are __device__, while the rest are __host__.
15145       if (getLangOpts().CUDAIsDevice !=
15146           Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
15147         FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
15148       else
15149         FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
15150     }
15151 
15152     // Add known guaranteed alignment for allocation functions.
15153     switch (BuiltinID) {
15154     case Builtin::BIaligned_alloc:
15155       if (!FD->hasAttr<AllocAlignAttr>())
15156         FD->addAttr(AllocAlignAttr::CreateImplicit(Context, ParamIdx(1, FD),
15157                                                    FD->getLocation()));
15158       LLVM_FALLTHROUGH;
15159     case Builtin::BIcalloc:
15160     case Builtin::BImalloc:
15161     case Builtin::BImemalign:
15162     case Builtin::BIrealloc:
15163     case Builtin::BIstrdup:
15164     case Builtin::BIstrndup: {
15165       if (!FD->hasAttr<AssumeAlignedAttr>()) {
15166         unsigned NewAlign = Context.getTargetInfo().getNewAlign() /
15167                             Context.getTargetInfo().getCharWidth();
15168         IntegerLiteral *Alignment = IntegerLiteral::Create(
15169             Context, Context.MakeIntValue(NewAlign, Context.UnsignedIntTy),
15170             Context.UnsignedIntTy, FD->getLocation());
15171         FD->addAttr(AssumeAlignedAttr::CreateImplicit(
15172             Context, Alignment, /*Offset=*/nullptr, FD->getLocation()));
15173       }
15174       break;
15175     }
15176     default:
15177       break;
15178     }
15179   }
15180 
15181   AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD);
15182 
15183   // If C++ exceptions are enabled but we are told extern "C" functions cannot
15184   // throw, add an implicit nothrow attribute to any extern "C" function we come
15185   // across.
15186   if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
15187       FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
15188     const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
15189     if (!FPT || FPT->getExceptionSpecType() == EST_None)
15190       FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
15191   }
15192 
15193   IdentifierInfo *Name = FD->getIdentifier();
15194   if (!Name)
15195     return;
15196   if ((!getLangOpts().CPlusPlus &&
15197        FD->getDeclContext()->isTranslationUnit()) ||
15198       (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
15199        cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
15200        LinkageSpecDecl::lang_c)) {
15201     // Okay: this could be a libc/libm/Objective-C function we know
15202     // about.
15203   } else
15204     return;
15205 
15206   if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
15207     // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
15208     // target-specific builtins, perhaps?
15209     if (!FD->hasAttr<FormatAttr>())
15210       FD->addAttr(FormatAttr::CreateImplicit(Context,
15211                                              &Context.Idents.get("printf"), 2,
15212                                              Name->isStr("vasprintf") ? 0 : 3,
15213                                              FD->getLocation()));
15214   }
15215 
15216   if (Name->isStr("__CFStringMakeConstantString")) {
15217     // We already have a __builtin___CFStringMakeConstantString,
15218     // but builds that use -fno-constant-cfstrings don't go through that.
15219     if (!FD->hasAttr<FormatArgAttr>())
15220       FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
15221                                                 FD->getLocation()));
15222   }
15223 }
15224 
15225 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
15226                                     TypeSourceInfo *TInfo) {
15227   assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
15228   assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
15229 
15230   if (!TInfo) {
15231     assert(D.isInvalidType() && "no declarator info for valid type");
15232     TInfo = Context.getTrivialTypeSourceInfo(T);
15233   }
15234 
15235   // Scope manipulation handled by caller.
15236   TypedefDecl *NewTD =
15237       TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
15238                           D.getIdentifierLoc(), D.getIdentifier(), TInfo);
15239 
15240   // Bail out immediately if we have an invalid declaration.
15241   if (D.isInvalidType()) {
15242     NewTD->setInvalidDecl();
15243     return NewTD;
15244   }
15245 
15246   if (D.getDeclSpec().isModulePrivateSpecified()) {
15247     if (CurContext->isFunctionOrMethod())
15248       Diag(NewTD->getLocation(), diag::err_module_private_local)
15249           << 2 << NewTD
15250           << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
15251           << FixItHint::CreateRemoval(
15252                  D.getDeclSpec().getModulePrivateSpecLoc());
15253     else
15254       NewTD->setModulePrivate();
15255   }
15256 
15257   // C++ [dcl.typedef]p8:
15258   //   If the typedef declaration defines an unnamed class (or
15259   //   enum), the first typedef-name declared by the declaration
15260   //   to be that class type (or enum type) is used to denote the
15261   //   class type (or enum type) for linkage purposes only.
15262   // We need to check whether the type was declared in the declaration.
15263   switch (D.getDeclSpec().getTypeSpecType()) {
15264   case TST_enum:
15265   case TST_struct:
15266   case TST_interface:
15267   case TST_union:
15268   case TST_class: {
15269     TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
15270     setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
15271     break;
15272   }
15273 
15274   default:
15275     break;
15276   }
15277 
15278   return NewTD;
15279 }
15280 
15281 /// Check that this is a valid underlying type for an enum declaration.
15282 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
15283   SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
15284   QualType T = TI->getType();
15285 
15286   if (T->isDependentType())
15287     return false;
15288 
15289   // This doesn't use 'isIntegralType' despite the error message mentioning
15290   // integral type because isIntegralType would also allow enum types in C.
15291   if (const BuiltinType *BT = T->getAs<BuiltinType>())
15292     if (BT->isInteger())
15293       return false;
15294 
15295   if (T->isExtIntType())
15296     return false;
15297 
15298   return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
15299 }
15300 
15301 /// Check whether this is a valid redeclaration of a previous enumeration.
15302 /// \return true if the redeclaration was invalid.
15303 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
15304                                   QualType EnumUnderlyingTy, bool IsFixed,
15305                                   const EnumDecl *Prev) {
15306   if (IsScoped != Prev->isScoped()) {
15307     Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
15308       << Prev->isScoped();
15309     Diag(Prev->getLocation(), diag::note_previous_declaration);
15310     return true;
15311   }
15312 
15313   if (IsFixed && Prev->isFixed()) {
15314     if (!EnumUnderlyingTy->isDependentType() &&
15315         !Prev->getIntegerType()->isDependentType() &&
15316         !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
15317                                         Prev->getIntegerType())) {
15318       // TODO: Highlight the underlying type of the redeclaration.
15319       Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
15320         << EnumUnderlyingTy << Prev->getIntegerType();
15321       Diag(Prev->getLocation(), diag::note_previous_declaration)
15322           << Prev->getIntegerTypeRange();
15323       return true;
15324     }
15325   } else if (IsFixed != Prev->isFixed()) {
15326     Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
15327       << Prev->isFixed();
15328     Diag(Prev->getLocation(), diag::note_previous_declaration);
15329     return true;
15330   }
15331 
15332   return false;
15333 }
15334 
15335 /// Get diagnostic %select index for tag kind for
15336 /// redeclaration diagnostic message.
15337 /// WARNING: Indexes apply to particular diagnostics only!
15338 ///
15339 /// \returns diagnostic %select index.
15340 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
15341   switch (Tag) {
15342   case TTK_Struct: return 0;
15343   case TTK_Interface: return 1;
15344   case TTK_Class:  return 2;
15345   default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
15346   }
15347 }
15348 
15349 /// Determine if tag kind is a class-key compatible with
15350 /// class for redeclaration (class, struct, or __interface).
15351 ///
15352 /// \returns true iff the tag kind is compatible.
15353 static bool isClassCompatTagKind(TagTypeKind Tag)
15354 {
15355   return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
15356 }
15357 
15358 Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
15359                                              TagTypeKind TTK) {
15360   if (isa<TypedefDecl>(PrevDecl))
15361     return NTK_Typedef;
15362   else if (isa<TypeAliasDecl>(PrevDecl))
15363     return NTK_TypeAlias;
15364   else if (isa<ClassTemplateDecl>(PrevDecl))
15365     return NTK_Template;
15366   else if (isa<TypeAliasTemplateDecl>(PrevDecl))
15367     return NTK_TypeAliasTemplate;
15368   else if (isa<TemplateTemplateParmDecl>(PrevDecl))
15369     return NTK_TemplateTemplateArgument;
15370   switch (TTK) {
15371   case TTK_Struct:
15372   case TTK_Interface:
15373   case TTK_Class:
15374     return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
15375   case TTK_Union:
15376     return NTK_NonUnion;
15377   case TTK_Enum:
15378     return NTK_NonEnum;
15379   }
15380   llvm_unreachable("invalid TTK");
15381 }
15382 
15383 /// Determine whether a tag with a given kind is acceptable
15384 /// as a redeclaration of the given tag declaration.
15385 ///
15386 /// \returns true if the new tag kind is acceptable, false otherwise.
15387 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
15388                                         TagTypeKind NewTag, bool isDefinition,
15389                                         SourceLocation NewTagLoc,
15390                                         const IdentifierInfo *Name) {
15391   // C++ [dcl.type.elab]p3:
15392   //   The class-key or enum keyword present in the
15393   //   elaborated-type-specifier shall agree in kind with the
15394   //   declaration to which the name in the elaborated-type-specifier
15395   //   refers. This rule also applies to the form of
15396   //   elaborated-type-specifier that declares a class-name or
15397   //   friend class since it can be construed as referring to the
15398   //   definition of the class. Thus, in any
15399   //   elaborated-type-specifier, the enum keyword shall be used to
15400   //   refer to an enumeration (7.2), the union class-key shall be
15401   //   used to refer to a union (clause 9), and either the class or
15402   //   struct class-key shall be used to refer to a class (clause 9)
15403   //   declared using the class or struct class-key.
15404   TagTypeKind OldTag = Previous->getTagKind();
15405   if (OldTag != NewTag &&
15406       !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
15407     return false;
15408 
15409   // Tags are compatible, but we might still want to warn on mismatched tags.
15410   // Non-class tags can't be mismatched at this point.
15411   if (!isClassCompatTagKind(NewTag))
15412     return true;
15413 
15414   // Declarations for which -Wmismatched-tags is disabled are entirely ignored
15415   // by our warning analysis. We don't want to warn about mismatches with (eg)
15416   // declarations in system headers that are designed to be specialized, but if
15417   // a user asks us to warn, we should warn if their code contains mismatched
15418   // declarations.
15419   auto IsIgnoredLoc = [&](SourceLocation Loc) {
15420     return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
15421                                       Loc);
15422   };
15423   if (IsIgnoredLoc(NewTagLoc))
15424     return true;
15425 
15426   auto IsIgnored = [&](const TagDecl *Tag) {
15427     return IsIgnoredLoc(Tag->getLocation());
15428   };
15429   while (IsIgnored(Previous)) {
15430     Previous = Previous->getPreviousDecl();
15431     if (!Previous)
15432       return true;
15433     OldTag = Previous->getTagKind();
15434   }
15435 
15436   bool isTemplate = false;
15437   if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
15438     isTemplate = Record->getDescribedClassTemplate();
15439 
15440   if (inTemplateInstantiation()) {
15441     if (OldTag != NewTag) {
15442       // In a template instantiation, do not offer fix-its for tag mismatches
15443       // since they usually mess up the template instead of fixing the problem.
15444       Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15445         << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15446         << getRedeclDiagFromTagKind(OldTag);
15447       // FIXME: Note previous location?
15448     }
15449     return true;
15450   }
15451 
15452   if (isDefinition) {
15453     // On definitions, check all previous tags and issue a fix-it for each
15454     // one that doesn't match the current tag.
15455     if (Previous->getDefinition()) {
15456       // Don't suggest fix-its for redefinitions.
15457       return true;
15458     }
15459 
15460     bool previousMismatch = false;
15461     for (const TagDecl *I : Previous->redecls()) {
15462       if (I->getTagKind() != NewTag) {
15463         // Ignore previous declarations for which the warning was disabled.
15464         if (IsIgnored(I))
15465           continue;
15466 
15467         if (!previousMismatch) {
15468           previousMismatch = true;
15469           Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
15470             << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15471             << getRedeclDiagFromTagKind(I->getTagKind());
15472         }
15473         Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
15474           << getRedeclDiagFromTagKind(NewTag)
15475           << FixItHint::CreateReplacement(I->getInnerLocStart(),
15476                TypeWithKeyword::getTagTypeKindName(NewTag));
15477       }
15478     }
15479     return true;
15480   }
15481 
15482   // Identify the prevailing tag kind: this is the kind of the definition (if
15483   // there is a non-ignored definition), or otherwise the kind of the prior
15484   // (non-ignored) declaration.
15485   const TagDecl *PrevDef = Previous->getDefinition();
15486   if (PrevDef && IsIgnored(PrevDef))
15487     PrevDef = nullptr;
15488   const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
15489   if (Redecl->getTagKind() != NewTag) {
15490     Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15491       << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15492       << getRedeclDiagFromTagKind(OldTag);
15493     Diag(Redecl->getLocation(), diag::note_previous_use);
15494 
15495     // If there is a previous definition, suggest a fix-it.
15496     if (PrevDef) {
15497       Diag(NewTagLoc, diag::note_struct_class_suggestion)
15498         << getRedeclDiagFromTagKind(Redecl->getTagKind())
15499         << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
15500              TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
15501     }
15502   }
15503 
15504   return true;
15505 }
15506 
15507 /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
15508 /// from an outer enclosing namespace or file scope inside a friend declaration.
15509 /// This should provide the commented out code in the following snippet:
15510 ///   namespace N {
15511 ///     struct X;
15512 ///     namespace M {
15513 ///       struct Y { friend struct /*N::*/ X; };
15514 ///     }
15515 ///   }
15516 static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
15517                                          SourceLocation NameLoc) {
15518   // While the decl is in a namespace, do repeated lookup of that name and see
15519   // if we get the same namespace back.  If we do not, continue until
15520   // translation unit scope, at which point we have a fully qualified NNS.
15521   SmallVector<IdentifierInfo *, 4> Namespaces;
15522   DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15523   for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
15524     // This tag should be declared in a namespace, which can only be enclosed by
15525     // other namespaces.  Bail if there's an anonymous namespace in the chain.
15526     NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
15527     if (!Namespace || Namespace->isAnonymousNamespace())
15528       return FixItHint();
15529     IdentifierInfo *II = Namespace->getIdentifier();
15530     Namespaces.push_back(II);
15531     NamedDecl *Lookup = SemaRef.LookupSingleName(
15532         S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
15533     if (Lookup == Namespace)
15534       break;
15535   }
15536 
15537   // Once we have all the namespaces, reverse them to go outermost first, and
15538   // build an NNS.
15539   SmallString<64> Insertion;
15540   llvm::raw_svector_ostream OS(Insertion);
15541   if (DC->isTranslationUnit())
15542     OS << "::";
15543   std::reverse(Namespaces.begin(), Namespaces.end());
15544   for (auto *II : Namespaces)
15545     OS << II->getName() << "::";
15546   return FixItHint::CreateInsertion(NameLoc, Insertion);
15547 }
15548 
15549 /// Determine whether a tag originally declared in context \p OldDC can
15550 /// be redeclared with an unqualified name in \p NewDC (assuming name lookup
15551 /// found a declaration in \p OldDC as a previous decl, perhaps through a
15552 /// using-declaration).
15553 static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
15554                                          DeclContext *NewDC) {
15555   OldDC = OldDC->getRedeclContext();
15556   NewDC = NewDC->getRedeclContext();
15557 
15558   if (OldDC->Equals(NewDC))
15559     return true;
15560 
15561   // In MSVC mode, we allow a redeclaration if the contexts are related (either
15562   // encloses the other).
15563   if (S.getLangOpts().MSVCCompat &&
15564       (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
15565     return true;
15566 
15567   return false;
15568 }
15569 
15570 /// This is invoked when we see 'struct foo' or 'struct {'.  In the
15571 /// former case, Name will be non-null.  In the later case, Name will be null.
15572 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
15573 /// reference/declaration/definition of a tag.
15574 ///
15575 /// \param IsTypeSpecifier \c true if this is a type-specifier (or
15576 /// trailing-type-specifier) other than one in an alias-declaration.
15577 ///
15578 /// \param SkipBody If non-null, will be set to indicate if the caller should
15579 /// skip the definition of this tag and treat it as if it were a declaration.
15580 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
15581                      SourceLocation KWLoc, CXXScopeSpec &SS,
15582                      IdentifierInfo *Name, SourceLocation NameLoc,
15583                      const ParsedAttributesView &Attrs, AccessSpecifier AS,
15584                      SourceLocation ModulePrivateLoc,
15585                      MultiTemplateParamsArg TemplateParameterLists,
15586                      bool &OwnedDecl, bool &IsDependent,
15587                      SourceLocation ScopedEnumKWLoc,
15588                      bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
15589                      bool IsTypeSpecifier, bool IsTemplateParamOrArg,
15590                      SkipBodyInfo *SkipBody) {
15591   // If this is not a definition, it must have a name.
15592   IdentifierInfo *OrigName = Name;
15593   assert((Name != nullptr || TUK == TUK_Definition) &&
15594          "Nameless record must be a definition!");
15595   assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
15596 
15597   OwnedDecl = false;
15598   TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
15599   bool ScopedEnum = ScopedEnumKWLoc.isValid();
15600 
15601   // FIXME: Check member specializations more carefully.
15602   bool isMemberSpecialization = false;
15603   bool Invalid = false;
15604 
15605   // We only need to do this matching if we have template parameters
15606   // or a scope specifier, which also conveniently avoids this work
15607   // for non-C++ cases.
15608   if (TemplateParameterLists.size() > 0 ||
15609       (SS.isNotEmpty() && TUK != TUK_Reference)) {
15610     if (TemplateParameterList *TemplateParams =
15611             MatchTemplateParametersToScopeSpecifier(
15612                 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
15613                 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
15614       if (Kind == TTK_Enum) {
15615         Diag(KWLoc, diag::err_enum_template);
15616         return nullptr;
15617       }
15618 
15619       if (TemplateParams->size() > 0) {
15620         // This is a declaration or definition of a class template (which may
15621         // be a member of another template).
15622 
15623         if (Invalid)
15624           return nullptr;
15625 
15626         OwnedDecl = false;
15627         DeclResult Result = CheckClassTemplate(
15628             S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
15629             AS, ModulePrivateLoc,
15630             /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
15631             TemplateParameterLists.data(), SkipBody);
15632         return Result.get();
15633       } else {
15634         // The "template<>" header is extraneous.
15635         Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
15636           << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
15637         isMemberSpecialization = true;
15638       }
15639     }
15640 
15641     if (!TemplateParameterLists.empty() && isMemberSpecialization &&
15642         CheckTemplateDeclScope(S, TemplateParameterLists.back()))
15643       return nullptr;
15644   }
15645 
15646   // Figure out the underlying type if this a enum declaration. We need to do
15647   // this early, because it's needed to detect if this is an incompatible
15648   // redeclaration.
15649   llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
15650   bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
15651 
15652   if (Kind == TTK_Enum) {
15653     if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
15654       // No underlying type explicitly specified, or we failed to parse the
15655       // type, default to int.
15656       EnumUnderlying = Context.IntTy.getTypePtr();
15657     } else if (UnderlyingType.get()) {
15658       // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
15659       // integral type; any cv-qualification is ignored.
15660       TypeSourceInfo *TI = nullptr;
15661       GetTypeFromParser(UnderlyingType.get(), &TI);
15662       EnumUnderlying = TI;
15663 
15664       if (CheckEnumUnderlyingType(TI))
15665         // Recover by falling back to int.
15666         EnumUnderlying = Context.IntTy.getTypePtr();
15667 
15668       if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
15669                                           UPPC_FixedUnderlyingType))
15670         EnumUnderlying = Context.IntTy.getTypePtr();
15671 
15672     } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
15673       // For MSVC ABI compatibility, unfixed enums must use an underlying type
15674       // of 'int'. However, if this is an unfixed forward declaration, don't set
15675       // the underlying type unless the user enables -fms-compatibility. This
15676       // makes unfixed forward declared enums incomplete and is more conforming.
15677       if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
15678         EnumUnderlying = Context.IntTy.getTypePtr();
15679     }
15680   }
15681 
15682   DeclContext *SearchDC = CurContext;
15683   DeclContext *DC = CurContext;
15684   bool isStdBadAlloc = false;
15685   bool isStdAlignValT = false;
15686 
15687   RedeclarationKind Redecl = forRedeclarationInCurContext();
15688   if (TUK == TUK_Friend || TUK == TUK_Reference)
15689     Redecl = NotForRedeclaration;
15690 
15691   /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
15692   /// implemented asks for structural equivalence checking, the returned decl
15693   /// here is passed back to the parser, allowing the tag body to be parsed.
15694   auto createTagFromNewDecl = [&]() -> TagDecl * {
15695     assert(!getLangOpts().CPlusPlus && "not meant for C++ usage");
15696     // If there is an identifier, use the location of the identifier as the
15697     // location of the decl, otherwise use the location of the struct/union
15698     // keyword.
15699     SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
15700     TagDecl *New = nullptr;
15701 
15702     if (Kind == TTK_Enum) {
15703       New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
15704                              ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
15705       // If this is an undefined enum, bail.
15706       if (TUK != TUK_Definition && !Invalid)
15707         return nullptr;
15708       if (EnumUnderlying) {
15709         EnumDecl *ED = cast<EnumDecl>(New);
15710         if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
15711           ED->setIntegerTypeSourceInfo(TI);
15712         else
15713           ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
15714         ED->setPromotionType(ED->getIntegerType());
15715       }
15716     } else { // struct/union
15717       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
15718                                nullptr);
15719     }
15720 
15721     if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
15722       // Add alignment attributes if necessary; these attributes are checked
15723       // when the ASTContext lays out the structure.
15724       //
15725       // It is important for implementing the correct semantics that this
15726       // happen here (in ActOnTag). The #pragma pack stack is
15727       // maintained as a result of parser callbacks which can occur at
15728       // many points during the parsing of a struct declaration (because
15729       // the #pragma tokens are effectively skipped over during the
15730       // parsing of the struct).
15731       if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
15732         AddAlignmentAttributesForRecord(RD);
15733         AddMsStructLayoutForRecord(RD);
15734       }
15735     }
15736     New->setLexicalDeclContext(CurContext);
15737     return New;
15738   };
15739 
15740   LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
15741   if (Name && SS.isNotEmpty()) {
15742     // We have a nested-name tag ('struct foo::bar').
15743 
15744     // Check for invalid 'foo::'.
15745     if (SS.isInvalid()) {
15746       Name = nullptr;
15747       goto CreateNewDecl;
15748     }
15749 
15750     // If this is a friend or a reference to a class in a dependent
15751     // context, don't try to make a decl for it.
15752     if (TUK == TUK_Friend || TUK == TUK_Reference) {
15753       DC = computeDeclContext(SS, false);
15754       if (!DC) {
15755         IsDependent = true;
15756         return nullptr;
15757       }
15758     } else {
15759       DC = computeDeclContext(SS, true);
15760       if (!DC) {
15761         Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
15762           << SS.getRange();
15763         return nullptr;
15764       }
15765     }
15766 
15767     if (RequireCompleteDeclContext(SS, DC))
15768       return nullptr;
15769 
15770     SearchDC = DC;
15771     // Look-up name inside 'foo::'.
15772     LookupQualifiedName(Previous, DC);
15773 
15774     if (Previous.isAmbiguous())
15775       return nullptr;
15776 
15777     if (Previous.empty()) {
15778       // Name lookup did not find anything. However, if the
15779       // nested-name-specifier refers to the current instantiation,
15780       // and that current instantiation has any dependent base
15781       // classes, we might find something at instantiation time: treat
15782       // this as a dependent elaborated-type-specifier.
15783       // But this only makes any sense for reference-like lookups.
15784       if (Previous.wasNotFoundInCurrentInstantiation() &&
15785           (TUK == TUK_Reference || TUK == TUK_Friend)) {
15786         IsDependent = true;
15787         return nullptr;
15788       }
15789 
15790       // A tag 'foo::bar' must already exist.
15791       Diag(NameLoc, diag::err_not_tag_in_scope)
15792         << Kind << Name << DC << SS.getRange();
15793       Name = nullptr;
15794       Invalid = true;
15795       goto CreateNewDecl;
15796     }
15797   } else if (Name) {
15798     // C++14 [class.mem]p14:
15799     //   If T is the name of a class, then each of the following shall have a
15800     //   name different from T:
15801     //    -- every member of class T that is itself a type
15802     if (TUK != TUK_Reference && TUK != TUK_Friend &&
15803         DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
15804       return nullptr;
15805 
15806     // If this is a named struct, check to see if there was a previous forward
15807     // declaration or definition.
15808     // FIXME: We're looking into outer scopes here, even when we
15809     // shouldn't be. Doing so can result in ambiguities that we
15810     // shouldn't be diagnosing.
15811     LookupName(Previous, S);
15812 
15813     // When declaring or defining a tag, ignore ambiguities introduced
15814     // by types using'ed into this scope.
15815     if (Previous.isAmbiguous() &&
15816         (TUK == TUK_Definition || TUK == TUK_Declaration)) {
15817       LookupResult::Filter F = Previous.makeFilter();
15818       while (F.hasNext()) {
15819         NamedDecl *ND = F.next();
15820         if (!ND->getDeclContext()->getRedeclContext()->Equals(
15821                 SearchDC->getRedeclContext()))
15822           F.erase();
15823       }
15824       F.done();
15825     }
15826 
15827     // C++11 [namespace.memdef]p3:
15828     //   If the name in a friend declaration is neither qualified nor
15829     //   a template-id and the declaration is a function or an
15830     //   elaborated-type-specifier, the lookup to determine whether
15831     //   the entity has been previously declared shall not consider
15832     //   any scopes outside the innermost enclosing namespace.
15833     //
15834     // MSVC doesn't implement the above rule for types, so a friend tag
15835     // declaration may be a redeclaration of a type declared in an enclosing
15836     // scope.  They do implement this rule for friend functions.
15837     //
15838     // Does it matter that this should be by scope instead of by
15839     // semantic context?
15840     if (!Previous.empty() && TUK == TUK_Friend) {
15841       DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
15842       LookupResult::Filter F = Previous.makeFilter();
15843       bool FriendSawTagOutsideEnclosingNamespace = false;
15844       while (F.hasNext()) {
15845         NamedDecl *ND = F.next();
15846         DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15847         if (DC->isFileContext() &&
15848             !EnclosingNS->Encloses(ND->getDeclContext())) {
15849           if (getLangOpts().MSVCCompat)
15850             FriendSawTagOutsideEnclosingNamespace = true;
15851           else
15852             F.erase();
15853         }
15854       }
15855       F.done();
15856 
15857       // Diagnose this MSVC extension in the easy case where lookup would have
15858       // unambiguously found something outside the enclosing namespace.
15859       if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
15860         NamedDecl *ND = Previous.getFoundDecl();
15861         Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
15862             << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
15863       }
15864     }
15865 
15866     // Note:  there used to be some attempt at recovery here.
15867     if (Previous.isAmbiguous())
15868       return nullptr;
15869 
15870     if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
15871       // FIXME: This makes sure that we ignore the contexts associated
15872       // with C structs, unions, and enums when looking for a matching
15873       // tag declaration or definition. See the similar lookup tweak
15874       // in Sema::LookupName; is there a better way to deal with this?
15875       while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
15876         SearchDC = SearchDC->getParent();
15877     }
15878   }
15879 
15880   if (Previous.isSingleResult() &&
15881       Previous.getFoundDecl()->isTemplateParameter()) {
15882     // Maybe we will complain about the shadowed template parameter.
15883     DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
15884     // Just pretend that we didn't see the previous declaration.
15885     Previous.clear();
15886   }
15887 
15888   if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
15889       DC->Equals(getStdNamespace())) {
15890     if (Name->isStr("bad_alloc")) {
15891       // This is a declaration of or a reference to "std::bad_alloc".
15892       isStdBadAlloc = true;
15893 
15894       // If std::bad_alloc has been implicitly declared (but made invisible to
15895       // name lookup), fill in this implicit declaration as the previous
15896       // declaration, so that the declarations get chained appropriately.
15897       if (Previous.empty() && StdBadAlloc)
15898         Previous.addDecl(getStdBadAlloc());
15899     } else if (Name->isStr("align_val_t")) {
15900       isStdAlignValT = true;
15901       if (Previous.empty() && StdAlignValT)
15902         Previous.addDecl(getStdAlignValT());
15903     }
15904   }
15905 
15906   // If we didn't find a previous declaration, and this is a reference
15907   // (or friend reference), move to the correct scope.  In C++, we
15908   // also need to do a redeclaration lookup there, just in case
15909   // there's a shadow friend decl.
15910   if (Name && Previous.empty() &&
15911       (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
15912     if (Invalid) goto CreateNewDecl;
15913     assert(SS.isEmpty());
15914 
15915     if (TUK == TUK_Reference || IsTemplateParamOrArg) {
15916       // C++ [basic.scope.pdecl]p5:
15917       //   -- for an elaborated-type-specifier of the form
15918       //
15919       //          class-key identifier
15920       //
15921       //      if the elaborated-type-specifier is used in the
15922       //      decl-specifier-seq or parameter-declaration-clause of a
15923       //      function defined in namespace scope, the identifier is
15924       //      declared as a class-name in the namespace that contains
15925       //      the declaration; otherwise, except as a friend
15926       //      declaration, the identifier is declared in the smallest
15927       //      non-class, non-function-prototype scope that contains the
15928       //      declaration.
15929       //
15930       // C99 6.7.2.3p8 has a similar (but not identical!) provision for
15931       // C structs and unions.
15932       //
15933       // It is an error in C++ to declare (rather than define) an enum
15934       // type, including via an elaborated type specifier.  We'll
15935       // diagnose that later; for now, declare the enum in the same
15936       // scope as we would have picked for any other tag type.
15937       //
15938       // GNU C also supports this behavior as part of its incomplete
15939       // enum types extension, while GNU C++ does not.
15940       //
15941       // Find the context where we'll be declaring the tag.
15942       // FIXME: We would like to maintain the current DeclContext as the
15943       // lexical context,
15944       SearchDC = getTagInjectionContext(SearchDC);
15945 
15946       // Find the scope where we'll be declaring the tag.
15947       S = getTagInjectionScope(S, getLangOpts());
15948     } else {
15949       assert(TUK == TUK_Friend);
15950       // C++ [namespace.memdef]p3:
15951       //   If a friend declaration in a non-local class first declares a
15952       //   class or function, the friend class or function is a member of
15953       //   the innermost enclosing namespace.
15954       SearchDC = SearchDC->getEnclosingNamespaceContext();
15955     }
15956 
15957     // In C++, we need to do a redeclaration lookup to properly
15958     // diagnose some problems.
15959     // FIXME: redeclaration lookup is also used (with and without C++) to find a
15960     // hidden declaration so that we don't get ambiguity errors when using a
15961     // type declared by an elaborated-type-specifier.  In C that is not correct
15962     // and we should instead merge compatible types found by lookup.
15963     if (getLangOpts().CPlusPlus) {
15964       // FIXME: This can perform qualified lookups into function contexts,
15965       // which are meaningless.
15966       Previous.setRedeclarationKind(forRedeclarationInCurContext());
15967       LookupQualifiedName(Previous, SearchDC);
15968     } else {
15969       Previous.setRedeclarationKind(forRedeclarationInCurContext());
15970       LookupName(Previous, S);
15971     }
15972   }
15973 
15974   // If we have a known previous declaration to use, then use it.
15975   if (Previous.empty() && SkipBody && SkipBody->Previous)
15976     Previous.addDecl(SkipBody->Previous);
15977 
15978   if (!Previous.empty()) {
15979     NamedDecl *PrevDecl = Previous.getFoundDecl();
15980     NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
15981 
15982     // It's okay to have a tag decl in the same scope as a typedef
15983     // which hides a tag decl in the same scope.  Finding this
15984     // insanity with a redeclaration lookup can only actually happen
15985     // in C++.
15986     //
15987     // This is also okay for elaborated-type-specifiers, which is
15988     // technically forbidden by the current standard but which is
15989     // okay according to the likely resolution of an open issue;
15990     // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
15991     if (getLangOpts().CPlusPlus) {
15992       if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
15993         if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
15994           TagDecl *Tag = TT->getDecl();
15995           if (Tag->getDeclName() == Name &&
15996               Tag->getDeclContext()->getRedeclContext()
15997                           ->Equals(TD->getDeclContext()->getRedeclContext())) {
15998             PrevDecl = Tag;
15999             Previous.clear();
16000             Previous.addDecl(Tag);
16001             Previous.resolveKind();
16002           }
16003         }
16004       }
16005     }
16006 
16007     // If this is a redeclaration of a using shadow declaration, it must
16008     // declare a tag in the same context. In MSVC mode, we allow a
16009     // redefinition if either context is within the other.
16010     if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
16011       auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
16012       if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
16013           isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
16014           !(OldTag && isAcceptableTagRedeclContext(
16015                           *this, OldTag->getDeclContext(), SearchDC))) {
16016         Diag(KWLoc, diag::err_using_decl_conflict_reverse);
16017         Diag(Shadow->getTargetDecl()->getLocation(),
16018              diag::note_using_decl_target);
16019         Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl)
16020             << 0;
16021         // Recover by ignoring the old declaration.
16022         Previous.clear();
16023         goto CreateNewDecl;
16024       }
16025     }
16026 
16027     if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
16028       // If this is a use of a previous tag, or if the tag is already declared
16029       // in the same scope (so that the definition/declaration completes or
16030       // rementions the tag), reuse the decl.
16031       if (TUK == TUK_Reference || TUK == TUK_Friend ||
16032           isDeclInScope(DirectPrevDecl, SearchDC, S,
16033                         SS.isNotEmpty() || isMemberSpecialization)) {
16034         // Make sure that this wasn't declared as an enum and now used as a
16035         // struct or something similar.
16036         if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
16037                                           TUK == TUK_Definition, KWLoc,
16038                                           Name)) {
16039           bool SafeToContinue
16040             = (PrevTagDecl->getTagKind() != TTK_Enum &&
16041                Kind != TTK_Enum);
16042           if (SafeToContinue)
16043             Diag(KWLoc, diag::err_use_with_wrong_tag)
16044               << Name
16045               << FixItHint::CreateReplacement(SourceRange(KWLoc),
16046                                               PrevTagDecl->getKindName());
16047           else
16048             Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
16049           Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
16050 
16051           if (SafeToContinue)
16052             Kind = PrevTagDecl->getTagKind();
16053           else {
16054             // Recover by making this an anonymous redefinition.
16055             Name = nullptr;
16056             Previous.clear();
16057             Invalid = true;
16058           }
16059         }
16060 
16061         if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
16062           const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
16063           if (TUK == TUK_Reference || TUK == TUK_Friend)
16064             return PrevTagDecl;
16065 
16066           QualType EnumUnderlyingTy;
16067           if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
16068             EnumUnderlyingTy = TI->getType().getUnqualifiedType();
16069           else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
16070             EnumUnderlyingTy = QualType(T, 0);
16071 
16072           // All conflicts with previous declarations are recovered by
16073           // returning the previous declaration, unless this is a definition,
16074           // in which case we want the caller to bail out.
16075           if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
16076                                      ScopedEnum, EnumUnderlyingTy,
16077                                      IsFixed, PrevEnum))
16078             return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
16079         }
16080 
16081         // C++11 [class.mem]p1:
16082         //   A member shall not be declared twice in the member-specification,
16083         //   except that a nested class or member class template can be declared
16084         //   and then later defined.
16085         if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
16086             S->isDeclScope(PrevDecl)) {
16087           Diag(NameLoc, diag::ext_member_redeclared);
16088           Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
16089         }
16090 
16091         if (!Invalid) {
16092           // If this is a use, just return the declaration we found, unless
16093           // we have attributes.
16094           if (TUK == TUK_Reference || TUK == TUK_Friend) {
16095             if (!Attrs.empty()) {
16096               // FIXME: Diagnose these attributes. For now, we create a new
16097               // declaration to hold them.
16098             } else if (TUK == TUK_Reference &&
16099                        (PrevTagDecl->getFriendObjectKind() ==
16100                             Decl::FOK_Undeclared ||
16101                         PrevDecl->getOwningModule() != getCurrentModule()) &&
16102                        SS.isEmpty()) {
16103               // This declaration is a reference to an existing entity, but
16104               // has different visibility from that entity: it either makes
16105               // a friend visible or it makes a type visible in a new module.
16106               // In either case, create a new declaration. We only do this if
16107               // the declaration would have meant the same thing if no prior
16108               // declaration were found, that is, if it was found in the same
16109               // scope where we would have injected a declaration.
16110               if (!getTagInjectionContext(CurContext)->getRedeclContext()
16111                        ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
16112                 return PrevTagDecl;
16113               // This is in the injected scope, create a new declaration in
16114               // that scope.
16115               S = getTagInjectionScope(S, getLangOpts());
16116             } else {
16117               return PrevTagDecl;
16118             }
16119           }
16120 
16121           // Diagnose attempts to redefine a tag.
16122           if (TUK == TUK_Definition) {
16123             if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
16124               // If we're defining a specialization and the previous definition
16125               // is from an implicit instantiation, don't emit an error
16126               // here; we'll catch this in the general case below.
16127               bool IsExplicitSpecializationAfterInstantiation = false;
16128               if (isMemberSpecialization) {
16129                 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
16130                   IsExplicitSpecializationAfterInstantiation =
16131                     RD->getTemplateSpecializationKind() !=
16132                     TSK_ExplicitSpecialization;
16133                 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
16134                   IsExplicitSpecializationAfterInstantiation =
16135                     ED->getTemplateSpecializationKind() !=
16136                     TSK_ExplicitSpecialization;
16137               }
16138 
16139               // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
16140               // not keep more that one definition around (merge them). However,
16141               // ensure the decl passes the structural compatibility check in
16142               // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
16143               NamedDecl *Hidden = nullptr;
16144               if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
16145                 // There is a definition of this tag, but it is not visible. We
16146                 // explicitly make use of C++'s one definition rule here, and
16147                 // assume that this definition is identical to the hidden one
16148                 // we already have. Make the existing definition visible and
16149                 // use it in place of this one.
16150                 if (!getLangOpts().CPlusPlus) {
16151                   // Postpone making the old definition visible until after we
16152                   // complete parsing the new one and do the structural
16153                   // comparison.
16154                   SkipBody->CheckSameAsPrevious = true;
16155                   SkipBody->New = createTagFromNewDecl();
16156                   SkipBody->Previous = Def;
16157                   return Def;
16158                 } else {
16159                   SkipBody->ShouldSkip = true;
16160                   SkipBody->Previous = Def;
16161                   makeMergedDefinitionVisible(Hidden);
16162                   // Carry on and handle it like a normal definition. We'll
16163                   // skip starting the definitiion later.
16164                 }
16165               } else if (!IsExplicitSpecializationAfterInstantiation) {
16166                 // A redeclaration in function prototype scope in C isn't
16167                 // visible elsewhere, so merely issue a warning.
16168                 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
16169                   Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
16170                 else
16171                   Diag(NameLoc, diag::err_redefinition) << Name;
16172                 notePreviousDefinition(Def,
16173                                        NameLoc.isValid() ? NameLoc : KWLoc);
16174                 // If this is a redefinition, recover by making this
16175                 // struct be anonymous, which will make any later
16176                 // references get the previous definition.
16177                 Name = nullptr;
16178                 Previous.clear();
16179                 Invalid = true;
16180               }
16181             } else {
16182               // If the type is currently being defined, complain
16183               // about a nested redefinition.
16184               auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
16185               if (TD->isBeingDefined()) {
16186                 Diag(NameLoc, diag::err_nested_redefinition) << Name;
16187                 Diag(PrevTagDecl->getLocation(),
16188                      diag::note_previous_definition);
16189                 Name = nullptr;
16190                 Previous.clear();
16191                 Invalid = true;
16192               }
16193             }
16194 
16195             // Okay, this is definition of a previously declared or referenced
16196             // tag. We're going to create a new Decl for it.
16197           }
16198 
16199           // Okay, we're going to make a redeclaration.  If this is some kind
16200           // of reference, make sure we build the redeclaration in the same DC
16201           // as the original, and ignore the current access specifier.
16202           if (TUK == TUK_Friend || TUK == TUK_Reference) {
16203             SearchDC = PrevTagDecl->getDeclContext();
16204             AS = AS_none;
16205           }
16206         }
16207         // If we get here we have (another) forward declaration or we
16208         // have a definition.  Just create a new decl.
16209 
16210       } else {
16211         // If we get here, this is a definition of a new tag type in a nested
16212         // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
16213         // new decl/type.  We set PrevDecl to NULL so that the entities
16214         // have distinct types.
16215         Previous.clear();
16216       }
16217       // If we get here, we're going to create a new Decl. If PrevDecl
16218       // is non-NULL, it's a definition of the tag declared by
16219       // PrevDecl. If it's NULL, we have a new definition.
16220 
16221     // Otherwise, PrevDecl is not a tag, but was found with tag
16222     // lookup.  This is only actually possible in C++, where a few
16223     // things like templates still live in the tag namespace.
16224     } else {
16225       // Use a better diagnostic if an elaborated-type-specifier
16226       // found the wrong kind of type on the first
16227       // (non-redeclaration) lookup.
16228       if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
16229           !Previous.isForRedeclaration()) {
16230         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16231         Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
16232                                                        << Kind;
16233         Diag(PrevDecl->getLocation(), diag::note_declared_at);
16234         Invalid = true;
16235 
16236       // Otherwise, only diagnose if the declaration is in scope.
16237       } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
16238                                 SS.isNotEmpty() || isMemberSpecialization)) {
16239         // do nothing
16240 
16241       // Diagnose implicit declarations introduced by elaborated types.
16242       } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
16243         NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16244         Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
16245         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16246         Invalid = true;
16247 
16248       // Otherwise it's a declaration.  Call out a particularly common
16249       // case here.
16250       } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
16251         unsigned Kind = 0;
16252         if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
16253         Diag(NameLoc, diag::err_tag_definition_of_typedef)
16254           << Name << Kind << TND->getUnderlyingType();
16255         Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16256         Invalid = true;
16257 
16258       // Otherwise, diagnose.
16259       } else {
16260         // The tag name clashes with something else in the target scope,
16261         // issue an error and recover by making this tag be anonymous.
16262         Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
16263         notePreviousDefinition(PrevDecl, NameLoc);
16264         Name = nullptr;
16265         Invalid = true;
16266       }
16267 
16268       // The existing declaration isn't relevant to us; we're in a
16269       // new scope, so clear out the previous declaration.
16270       Previous.clear();
16271     }
16272   }
16273 
16274 CreateNewDecl:
16275 
16276   TagDecl *PrevDecl = nullptr;
16277   if (Previous.isSingleResult())
16278     PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
16279 
16280   // If there is an identifier, use the location of the identifier as the
16281   // location of the decl, otherwise use the location of the struct/union
16282   // keyword.
16283   SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
16284 
16285   // Otherwise, create a new declaration. If there is a previous
16286   // declaration of the same entity, the two will be linked via
16287   // PrevDecl.
16288   TagDecl *New;
16289 
16290   if (Kind == TTK_Enum) {
16291     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16292     // enum X { A, B, C } D;    D should chain to X.
16293     New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
16294                            cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
16295                            ScopedEnumUsesClassTag, IsFixed);
16296 
16297     if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
16298       StdAlignValT = cast<EnumDecl>(New);
16299 
16300     // If this is an undefined enum, warn.
16301     if (TUK != TUK_Definition && !Invalid) {
16302       TagDecl *Def;
16303       if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
16304         // C++0x: 7.2p2: opaque-enum-declaration.
16305         // Conflicts are diagnosed above. Do nothing.
16306       }
16307       else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
16308         Diag(Loc, diag::ext_forward_ref_enum_def)
16309           << New;
16310         Diag(Def->getLocation(), diag::note_previous_definition);
16311       } else {
16312         unsigned DiagID = diag::ext_forward_ref_enum;
16313         if (getLangOpts().MSVCCompat)
16314           DiagID = diag::ext_ms_forward_ref_enum;
16315         else if (getLangOpts().CPlusPlus)
16316           DiagID = diag::err_forward_ref_enum;
16317         Diag(Loc, DiagID);
16318       }
16319     }
16320 
16321     if (EnumUnderlying) {
16322       EnumDecl *ED = cast<EnumDecl>(New);
16323       if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
16324         ED->setIntegerTypeSourceInfo(TI);
16325       else
16326         ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
16327       ED->setPromotionType(ED->getIntegerType());
16328       assert(ED->isComplete() && "enum with type should be complete");
16329     }
16330   } else {
16331     // struct/union/class
16332 
16333     // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16334     // struct X { int A; } D;    D should chain to X.
16335     if (getLangOpts().CPlusPlus) {
16336       // FIXME: Look for a way to use RecordDecl for simple structs.
16337       New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16338                                   cast_or_null<CXXRecordDecl>(PrevDecl));
16339 
16340       if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
16341         StdBadAlloc = cast<CXXRecordDecl>(New);
16342     } else
16343       New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16344                                cast_or_null<RecordDecl>(PrevDecl));
16345   }
16346 
16347   // C++11 [dcl.type]p3:
16348   //   A type-specifier-seq shall not define a class or enumeration [...].
16349   if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
16350       TUK == TUK_Definition) {
16351     Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
16352       << Context.getTagDeclType(New);
16353     Invalid = true;
16354   }
16355 
16356   if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
16357       DC->getDeclKind() == Decl::Enum) {
16358     Diag(New->getLocation(), diag::err_type_defined_in_enum)
16359       << Context.getTagDeclType(New);
16360     Invalid = true;
16361   }
16362 
16363   // Maybe add qualifier info.
16364   if (SS.isNotEmpty()) {
16365     if (SS.isSet()) {
16366       // If this is either a declaration or a definition, check the
16367       // nested-name-specifier against the current context.
16368       if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
16369           diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
16370                                        isMemberSpecialization))
16371         Invalid = true;
16372 
16373       New->setQualifierInfo(SS.getWithLocInContext(Context));
16374       if (TemplateParameterLists.size() > 0) {
16375         New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
16376       }
16377     }
16378     else
16379       Invalid = true;
16380   }
16381 
16382   if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
16383     // Add alignment attributes if necessary; these attributes are checked when
16384     // the ASTContext lays out the structure.
16385     //
16386     // It is important for implementing the correct semantics that this
16387     // happen here (in ActOnTag). The #pragma pack stack is
16388     // maintained as a result of parser callbacks which can occur at
16389     // many points during the parsing of a struct declaration (because
16390     // the #pragma tokens are effectively skipped over during the
16391     // parsing of the struct).
16392     if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
16393       AddAlignmentAttributesForRecord(RD);
16394       AddMsStructLayoutForRecord(RD);
16395     }
16396   }
16397 
16398   if (ModulePrivateLoc.isValid()) {
16399     if (isMemberSpecialization)
16400       Diag(New->getLocation(), diag::err_module_private_specialization)
16401         << 2
16402         << FixItHint::CreateRemoval(ModulePrivateLoc);
16403     // __module_private__ does not apply to local classes. However, we only
16404     // diagnose this as an error when the declaration specifiers are
16405     // freestanding. Here, we just ignore the __module_private__.
16406     else if (!SearchDC->isFunctionOrMethod())
16407       New->setModulePrivate();
16408   }
16409 
16410   // If this is a specialization of a member class (of a class template),
16411   // check the specialization.
16412   if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
16413     Invalid = true;
16414 
16415   // If we're declaring or defining a tag in function prototype scope in C,
16416   // note that this type can only be used within the function and add it to
16417   // the list of decls to inject into the function definition scope.
16418   if ((Name || Kind == TTK_Enum) &&
16419       getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
16420     if (getLangOpts().CPlusPlus) {
16421       // C++ [dcl.fct]p6:
16422       //   Types shall not be defined in return or parameter types.
16423       if (TUK == TUK_Definition && !IsTypeSpecifier) {
16424         Diag(Loc, diag::err_type_defined_in_param_type)
16425             << Name;
16426         Invalid = true;
16427       }
16428     } else if (!PrevDecl) {
16429       Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
16430     }
16431   }
16432 
16433   if (Invalid)
16434     New->setInvalidDecl();
16435 
16436   // Set the lexical context. If the tag has a C++ scope specifier, the
16437   // lexical context will be different from the semantic context.
16438   New->setLexicalDeclContext(CurContext);
16439 
16440   // Mark this as a friend decl if applicable.
16441   // In Microsoft mode, a friend declaration also acts as a forward
16442   // declaration so we always pass true to setObjectOfFriendDecl to make
16443   // the tag name visible.
16444   if (TUK == TUK_Friend)
16445     New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
16446 
16447   // Set the access specifier.
16448   if (!Invalid && SearchDC->isRecord())
16449     SetMemberAccessSpecifier(New, PrevDecl, AS);
16450 
16451   if (PrevDecl)
16452     CheckRedeclarationModuleOwnership(New, PrevDecl);
16453 
16454   if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
16455     New->startDefinition();
16456 
16457   ProcessDeclAttributeList(S, New, Attrs);
16458   AddPragmaAttributes(S, New);
16459 
16460   // If this has an identifier, add it to the scope stack.
16461   if (TUK == TUK_Friend) {
16462     // We might be replacing an existing declaration in the lookup tables;
16463     // if so, borrow its access specifier.
16464     if (PrevDecl)
16465       New->setAccess(PrevDecl->getAccess());
16466 
16467     DeclContext *DC = New->getDeclContext()->getRedeclContext();
16468     DC->makeDeclVisibleInContext(New);
16469     if (Name) // can be null along some error paths
16470       if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
16471         PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
16472   } else if (Name) {
16473     S = getNonFieldDeclScope(S);
16474     PushOnScopeChains(New, S, true);
16475   } else {
16476     CurContext->addDecl(New);
16477   }
16478 
16479   // If this is the C FILE type, notify the AST context.
16480   if (IdentifierInfo *II = New->getIdentifier())
16481     if (!New->isInvalidDecl() &&
16482         New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
16483         II->isStr("FILE"))
16484       Context.setFILEDecl(New);
16485 
16486   if (PrevDecl)
16487     mergeDeclAttributes(New, PrevDecl);
16488 
16489   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
16490     inferGslOwnerPointerAttribute(CXXRD);
16491 
16492   // If there's a #pragma GCC visibility in scope, set the visibility of this
16493   // record.
16494   AddPushedVisibilityAttribute(New);
16495 
16496   if (isMemberSpecialization && !New->isInvalidDecl())
16497     CompleteMemberSpecialization(New, Previous);
16498 
16499   OwnedDecl = true;
16500   // In C++, don't return an invalid declaration. We can't recover well from
16501   // the cases where we make the type anonymous.
16502   if (Invalid && getLangOpts().CPlusPlus) {
16503     if (New->isBeingDefined())
16504       if (auto RD = dyn_cast<RecordDecl>(New))
16505         RD->completeDefinition();
16506     return nullptr;
16507   } else if (SkipBody && SkipBody->ShouldSkip) {
16508     return SkipBody->Previous;
16509   } else {
16510     return New;
16511   }
16512 }
16513 
16514 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
16515   AdjustDeclIfTemplate(TagD);
16516   TagDecl *Tag = cast<TagDecl>(TagD);
16517 
16518   // Enter the tag context.
16519   PushDeclContext(S, Tag);
16520 
16521   ActOnDocumentableDecl(TagD);
16522 
16523   // If there's a #pragma GCC visibility in scope, set the visibility of this
16524   // record.
16525   AddPushedVisibilityAttribute(Tag);
16526 }
16527 
16528 bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
16529                                     SkipBodyInfo &SkipBody) {
16530   if (!hasStructuralCompatLayout(Prev, SkipBody.New))
16531     return false;
16532 
16533   // Make the previous decl visible.
16534   makeMergedDefinitionVisible(SkipBody.Previous);
16535   return true;
16536 }
16537 
16538 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
16539   assert(isa<ObjCContainerDecl>(IDecl) &&
16540          "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
16541   DeclContext *OCD = cast<DeclContext>(IDecl);
16542   assert(OCD->getLexicalParent() == CurContext &&
16543       "The next DeclContext should be lexically contained in the current one.");
16544   CurContext = OCD;
16545   return IDecl;
16546 }
16547 
16548 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
16549                                            SourceLocation FinalLoc,
16550                                            bool IsFinalSpelledSealed,
16551                                            bool IsAbstract,
16552                                            SourceLocation LBraceLoc) {
16553   AdjustDeclIfTemplate(TagD);
16554   CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
16555 
16556   FieldCollector->StartClass();
16557 
16558   if (!Record->getIdentifier())
16559     return;
16560 
16561   if (IsAbstract)
16562     Record->markAbstract();
16563 
16564   if (FinalLoc.isValid()) {
16565     Record->addAttr(FinalAttr::Create(
16566         Context, FinalLoc, AttributeCommonInfo::AS_Keyword,
16567         static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed)));
16568   }
16569   // C++ [class]p2:
16570   //   [...] The class-name is also inserted into the scope of the
16571   //   class itself; this is known as the injected-class-name. For
16572   //   purposes of access checking, the injected-class-name is treated
16573   //   as if it were a public member name.
16574   CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
16575       Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
16576       Record->getLocation(), Record->getIdentifier(),
16577       /*PrevDecl=*/nullptr,
16578       /*DelayTypeCreation=*/true);
16579   Context.getTypeDeclType(InjectedClassName, Record);
16580   InjectedClassName->setImplicit();
16581   InjectedClassName->setAccess(AS_public);
16582   if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
16583       InjectedClassName->setDescribedClassTemplate(Template);
16584   PushOnScopeChains(InjectedClassName, S);
16585   assert(InjectedClassName->isInjectedClassName() &&
16586          "Broken injected-class-name");
16587 }
16588 
16589 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
16590                                     SourceRange BraceRange) {
16591   AdjustDeclIfTemplate(TagD);
16592   TagDecl *Tag = cast<TagDecl>(TagD);
16593   Tag->setBraceRange(BraceRange);
16594 
16595   // Make sure we "complete" the definition even it is invalid.
16596   if (Tag->isBeingDefined()) {
16597     assert(Tag->isInvalidDecl() && "We should already have completed it");
16598     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
16599       RD->completeDefinition();
16600   }
16601 
16602   if (isa<CXXRecordDecl>(Tag)) {
16603     FieldCollector->FinishClass();
16604   }
16605 
16606   // Exit this scope of this tag's definition.
16607   PopDeclContext();
16608 
16609   if (getCurLexicalContext()->isObjCContainer() &&
16610       Tag->getDeclContext()->isFileContext())
16611     Tag->setTopLevelDeclInObjCContainer();
16612 
16613   // Notify the consumer that we've defined a tag.
16614   if (!Tag->isInvalidDecl())
16615     Consumer.HandleTagDeclDefinition(Tag);
16616 
16617   // Clangs implementation of #pragma align(packed) differs in bitfield layout
16618   // from XLs and instead matches the XL #pragma pack(1) behavior.
16619   if (Context.getTargetInfo().getTriple().isOSAIX() &&
16620       AlignPackStack.hasValue()) {
16621     AlignPackInfo APInfo = AlignPackStack.CurrentValue;
16622     // Only diagnose #pragma align(packed).
16623     if (!APInfo.IsAlignAttr() || APInfo.getAlignMode() != AlignPackInfo::Packed)
16624       return;
16625     const RecordDecl *RD = dyn_cast<RecordDecl>(Tag);
16626     if (!RD)
16627       return;
16628     // Only warn if there is at least 1 bitfield member.
16629     if (llvm::any_of(RD->fields(),
16630                      [](const FieldDecl *FD) { return FD->isBitField(); }))
16631       Diag(BraceRange.getBegin(), diag::warn_pragma_align_not_xl_compatible);
16632   }
16633 }
16634 
16635 void Sema::ActOnObjCContainerFinishDefinition() {
16636   // Exit this scope of this interface definition.
16637   PopDeclContext();
16638 }
16639 
16640 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
16641   assert(DC == CurContext && "Mismatch of container contexts");
16642   OriginalLexicalContext = DC;
16643   ActOnObjCContainerFinishDefinition();
16644 }
16645 
16646 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
16647   ActOnObjCContainerStartDefinition(cast<Decl>(DC));
16648   OriginalLexicalContext = nullptr;
16649 }
16650 
16651 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
16652   AdjustDeclIfTemplate(TagD);
16653   TagDecl *Tag = cast<TagDecl>(TagD);
16654   Tag->setInvalidDecl();
16655 
16656   // Make sure we "complete" the definition even it is invalid.
16657   if (Tag->isBeingDefined()) {
16658     if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
16659       RD->completeDefinition();
16660   }
16661 
16662   // We're undoing ActOnTagStartDefinition here, not
16663   // ActOnStartCXXMemberDeclarations, so we don't have to mess with
16664   // the FieldCollector.
16665 
16666   PopDeclContext();
16667 }
16668 
16669 // Note that FieldName may be null for anonymous bitfields.
16670 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
16671                                 IdentifierInfo *FieldName,
16672                                 QualType FieldTy, bool IsMsStruct,
16673                                 Expr *BitWidth, bool *ZeroWidth) {
16674   assert(BitWidth);
16675   if (BitWidth->containsErrors())
16676     return ExprError();
16677 
16678   // Default to true; that shouldn't confuse checks for emptiness
16679   if (ZeroWidth)
16680     *ZeroWidth = true;
16681 
16682   // C99 6.7.2.1p4 - verify the field type.
16683   // C++ 9.6p3: A bit-field shall have integral or enumeration type.
16684   if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
16685     // Handle incomplete and sizeless types with a specific error.
16686     if (RequireCompleteSizedType(FieldLoc, FieldTy,
16687                                  diag::err_field_incomplete_or_sizeless))
16688       return ExprError();
16689     if (FieldName)
16690       return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
16691         << FieldName << FieldTy << BitWidth->getSourceRange();
16692     return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
16693       << FieldTy << BitWidth->getSourceRange();
16694   } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
16695                                              UPPC_BitFieldWidth))
16696     return ExprError();
16697 
16698   // If the bit-width is type- or value-dependent, don't try to check
16699   // it now.
16700   if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
16701     return BitWidth;
16702 
16703   llvm::APSInt Value;
16704   ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold);
16705   if (ICE.isInvalid())
16706     return ICE;
16707   BitWidth = ICE.get();
16708 
16709   if (Value != 0 && ZeroWidth)
16710     *ZeroWidth = false;
16711 
16712   // Zero-width bitfield is ok for anonymous field.
16713   if (Value == 0 && FieldName)
16714     return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
16715 
16716   if (Value.isSigned() && Value.isNegative()) {
16717     if (FieldName)
16718       return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
16719                << FieldName << toString(Value, 10);
16720     return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
16721       << toString(Value, 10);
16722   }
16723 
16724   // The size of the bit-field must not exceed our maximum permitted object
16725   // size.
16726   if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) {
16727     return Diag(FieldLoc, diag::err_bitfield_too_wide)
16728            << !FieldName << FieldName << toString(Value, 10);
16729   }
16730 
16731   if (!FieldTy->isDependentType()) {
16732     uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
16733     uint64_t TypeWidth = Context.getIntWidth(FieldTy);
16734     bool BitfieldIsOverwide = Value.ugt(TypeWidth);
16735 
16736     // Over-wide bitfields are an error in C or when using the MSVC bitfield
16737     // ABI.
16738     bool CStdConstraintViolation =
16739         BitfieldIsOverwide && !getLangOpts().CPlusPlus;
16740     bool MSBitfieldViolation =
16741         Value.ugt(TypeStorageSize) &&
16742         (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
16743     if (CStdConstraintViolation || MSBitfieldViolation) {
16744       unsigned DiagWidth =
16745           CStdConstraintViolation ? TypeWidth : TypeStorageSize;
16746       return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
16747              << (bool)FieldName << FieldName << toString(Value, 10)
16748              << !CStdConstraintViolation << DiagWidth;
16749     }
16750 
16751     // Warn on types where the user might conceivably expect to get all
16752     // specified bits as value bits: that's all integral types other than
16753     // 'bool'.
16754     if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) {
16755       Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
16756           << FieldName << toString(Value, 10)
16757           << (unsigned)TypeWidth;
16758     }
16759   }
16760 
16761   return BitWidth;
16762 }
16763 
16764 /// ActOnField - Each field of a C struct/union is passed into this in order
16765 /// to create a FieldDecl object for it.
16766 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
16767                        Declarator &D, Expr *BitfieldWidth) {
16768   FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
16769                                DeclStart, D, static_cast<Expr*>(BitfieldWidth),
16770                                /*InitStyle=*/ICIS_NoInit, AS_public);
16771   return Res;
16772 }
16773 
16774 /// HandleField - Analyze a field of a C struct or a C++ data member.
16775 ///
16776 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
16777                              SourceLocation DeclStart,
16778                              Declarator &D, Expr *BitWidth,
16779                              InClassInitStyle InitStyle,
16780                              AccessSpecifier AS) {
16781   if (D.isDecompositionDeclarator()) {
16782     const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
16783     Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
16784       << Decomp.getSourceRange();
16785     return nullptr;
16786   }
16787 
16788   IdentifierInfo *II = D.getIdentifier();
16789   SourceLocation Loc = DeclStart;
16790   if (II) Loc = D.getIdentifierLoc();
16791 
16792   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16793   QualType T = TInfo->getType();
16794   if (getLangOpts().CPlusPlus) {
16795     CheckExtraCXXDefaultArguments(D);
16796 
16797     if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
16798                                         UPPC_DataMemberType)) {
16799       D.setInvalidType();
16800       T = Context.IntTy;
16801       TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
16802     }
16803   }
16804 
16805   DiagnoseFunctionSpecifiers(D.getDeclSpec());
16806 
16807   if (D.getDeclSpec().isInlineSpecified())
16808     Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
16809         << getLangOpts().CPlusPlus17;
16810   if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
16811     Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
16812          diag::err_invalid_thread)
16813       << DeclSpec::getSpecifierName(TSCS);
16814 
16815   // Check to see if this name was declared as a member previously
16816   NamedDecl *PrevDecl = nullptr;
16817   LookupResult Previous(*this, II, Loc, LookupMemberName,
16818                         ForVisibleRedeclaration);
16819   LookupName(Previous, S);
16820   switch (Previous.getResultKind()) {
16821     case LookupResult::Found:
16822     case LookupResult::FoundUnresolvedValue:
16823       PrevDecl = Previous.getAsSingle<NamedDecl>();
16824       break;
16825 
16826     case LookupResult::FoundOverloaded:
16827       PrevDecl = Previous.getRepresentativeDecl();
16828       break;
16829 
16830     case LookupResult::NotFound:
16831     case LookupResult::NotFoundInCurrentInstantiation:
16832     case LookupResult::Ambiguous:
16833       break;
16834   }
16835   Previous.suppressDiagnostics();
16836 
16837   if (PrevDecl && PrevDecl->isTemplateParameter()) {
16838     // Maybe we will complain about the shadowed template parameter.
16839     DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
16840     // Just pretend that we didn't see the previous declaration.
16841     PrevDecl = nullptr;
16842   }
16843 
16844   if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
16845     PrevDecl = nullptr;
16846 
16847   bool Mutable
16848     = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
16849   SourceLocation TSSL = D.getBeginLoc();
16850   FieldDecl *NewFD
16851     = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
16852                      TSSL, AS, PrevDecl, &D);
16853 
16854   if (NewFD->isInvalidDecl())
16855     Record->setInvalidDecl();
16856 
16857   if (D.getDeclSpec().isModulePrivateSpecified())
16858     NewFD->setModulePrivate();
16859 
16860   if (NewFD->isInvalidDecl() && PrevDecl) {
16861     // Don't introduce NewFD into scope; there's already something
16862     // with the same name in the same scope.
16863   } else if (II) {
16864     PushOnScopeChains(NewFD, S);
16865   } else
16866     Record->addDecl(NewFD);
16867 
16868   return NewFD;
16869 }
16870 
16871 /// Build a new FieldDecl and check its well-formedness.
16872 ///
16873 /// This routine builds a new FieldDecl given the fields name, type,
16874 /// record, etc. \p PrevDecl should refer to any previous declaration
16875 /// with the same name and in the same scope as the field to be
16876 /// created.
16877 ///
16878 /// \returns a new FieldDecl.
16879 ///
16880 /// \todo The Declarator argument is a hack. It will be removed once
16881 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
16882                                 TypeSourceInfo *TInfo,
16883                                 RecordDecl *Record, SourceLocation Loc,
16884                                 bool Mutable, Expr *BitWidth,
16885                                 InClassInitStyle InitStyle,
16886                                 SourceLocation TSSL,
16887                                 AccessSpecifier AS, NamedDecl *PrevDecl,
16888                                 Declarator *D) {
16889   IdentifierInfo *II = Name.getAsIdentifierInfo();
16890   bool InvalidDecl = false;
16891   if (D) InvalidDecl = D->isInvalidType();
16892 
16893   // If we receive a broken type, recover by assuming 'int' and
16894   // marking this declaration as invalid.
16895   if (T.isNull() || T->containsErrors()) {
16896     InvalidDecl = true;
16897     T = Context.IntTy;
16898   }
16899 
16900   QualType EltTy = Context.getBaseElementType(T);
16901   if (!EltTy->isDependentType() && !EltTy->containsErrors()) {
16902     if (RequireCompleteSizedType(Loc, EltTy,
16903                                  diag::err_field_incomplete_or_sizeless)) {
16904       // Fields of incomplete type force their record to be invalid.
16905       Record->setInvalidDecl();
16906       InvalidDecl = true;
16907     } else {
16908       NamedDecl *Def;
16909       EltTy->isIncompleteType(&Def);
16910       if (Def && Def->isInvalidDecl()) {
16911         Record->setInvalidDecl();
16912         InvalidDecl = true;
16913       }
16914     }
16915   }
16916 
16917   // TR 18037 does not allow fields to be declared with address space
16918   if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
16919       T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
16920     Diag(Loc, diag::err_field_with_address_space);
16921     Record->setInvalidDecl();
16922     InvalidDecl = true;
16923   }
16924 
16925   if (LangOpts.OpenCL) {
16926     // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
16927     // used as structure or union field: image, sampler, event or block types.
16928     if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
16929         T->isBlockPointerType()) {
16930       Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
16931       Record->setInvalidDecl();
16932       InvalidDecl = true;
16933     }
16934     // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension
16935     // is enabled.
16936     if (BitWidth && !getOpenCLOptions().isAvailableOption(
16937                         "__cl_clang_bitfields", LangOpts)) {
16938       Diag(Loc, diag::err_opencl_bitfields);
16939       InvalidDecl = true;
16940     }
16941   }
16942 
16943   // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
16944   if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
16945       T.hasQualifiers()) {
16946     InvalidDecl = true;
16947     Diag(Loc, diag::err_anon_bitfield_qualifiers);
16948   }
16949 
16950   // C99 6.7.2.1p8: A member of a structure or union may have any type other
16951   // than a variably modified type.
16952   if (!InvalidDecl && T->isVariablyModifiedType()) {
16953     if (!tryToFixVariablyModifiedVarType(
16954             TInfo, T, Loc, diag::err_typecheck_field_variable_size))
16955       InvalidDecl = true;
16956   }
16957 
16958   // Fields can not have abstract class types
16959   if (!InvalidDecl && RequireNonAbstractType(Loc, T,
16960                                              diag::err_abstract_type_in_decl,
16961                                              AbstractFieldType))
16962     InvalidDecl = true;
16963 
16964   bool ZeroWidth = false;
16965   if (InvalidDecl)
16966     BitWidth = nullptr;
16967   // If this is declared as a bit-field, check the bit-field.
16968   if (BitWidth) {
16969     BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
16970                               &ZeroWidth).get();
16971     if (!BitWidth) {
16972       InvalidDecl = true;
16973       BitWidth = nullptr;
16974       ZeroWidth = false;
16975     }
16976   }
16977 
16978   // Check that 'mutable' is consistent with the type of the declaration.
16979   if (!InvalidDecl && Mutable) {
16980     unsigned DiagID = 0;
16981     if (T->isReferenceType())
16982       DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
16983                                         : diag::err_mutable_reference;
16984     else if (T.isConstQualified())
16985       DiagID = diag::err_mutable_const;
16986 
16987     if (DiagID) {
16988       SourceLocation ErrLoc = Loc;
16989       if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
16990         ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
16991       Diag(ErrLoc, DiagID);
16992       if (DiagID != diag::ext_mutable_reference) {
16993         Mutable = false;
16994         InvalidDecl = true;
16995       }
16996     }
16997   }
16998 
16999   // C++11 [class.union]p8 (DR1460):
17000   //   At most one variant member of a union may have a
17001   //   brace-or-equal-initializer.
17002   if (InitStyle != ICIS_NoInit)
17003     checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
17004 
17005   FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
17006                                        BitWidth, Mutable, InitStyle);
17007   if (InvalidDecl)
17008     NewFD->setInvalidDecl();
17009 
17010   if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
17011     Diag(Loc, diag::err_duplicate_member) << II;
17012     Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
17013     NewFD->setInvalidDecl();
17014   }
17015 
17016   if (!InvalidDecl && getLangOpts().CPlusPlus) {
17017     if (Record->isUnion()) {
17018       if (const RecordType *RT = EltTy->getAs<RecordType>()) {
17019         CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
17020         if (RDecl->getDefinition()) {
17021           // C++ [class.union]p1: An object of a class with a non-trivial
17022           // constructor, a non-trivial copy constructor, a non-trivial
17023           // destructor, or a non-trivial copy assignment operator
17024           // cannot be a member of a union, nor can an array of such
17025           // objects.
17026           if (CheckNontrivialField(NewFD))
17027             NewFD->setInvalidDecl();
17028         }
17029       }
17030 
17031       // C++ [class.union]p1: If a union contains a member of reference type,
17032       // the program is ill-formed, except when compiling with MSVC extensions
17033       // enabled.
17034       if (EltTy->isReferenceType()) {
17035         Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
17036                                     diag::ext_union_member_of_reference_type :
17037                                     diag::err_union_member_of_reference_type)
17038           << NewFD->getDeclName() << EltTy;
17039         if (!getLangOpts().MicrosoftExt)
17040           NewFD->setInvalidDecl();
17041       }
17042     }
17043   }
17044 
17045   // FIXME: We need to pass in the attributes given an AST
17046   // representation, not a parser representation.
17047   if (D) {
17048     // FIXME: The current scope is almost... but not entirely... correct here.
17049     ProcessDeclAttributes(getCurScope(), NewFD, *D);
17050 
17051     if (NewFD->hasAttrs())
17052       CheckAlignasUnderalignment(NewFD);
17053   }
17054 
17055   // In auto-retain/release, infer strong retension for fields of
17056   // retainable type.
17057   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
17058     NewFD->setInvalidDecl();
17059 
17060   if (T.isObjCGCWeak())
17061     Diag(Loc, diag::warn_attribute_weak_on_field);
17062 
17063   // PPC MMA non-pointer types are not allowed as field types.
17064   if (Context.getTargetInfo().getTriple().isPPC64() &&
17065       CheckPPCMMAType(T, NewFD->getLocation()))
17066     NewFD->setInvalidDecl();
17067 
17068   NewFD->setAccess(AS);
17069   return NewFD;
17070 }
17071 
17072 bool Sema::CheckNontrivialField(FieldDecl *FD) {
17073   assert(FD);
17074   assert(getLangOpts().CPlusPlus && "valid check only for C++");
17075 
17076   if (FD->isInvalidDecl() || FD->getType()->isDependentType())
17077     return false;
17078 
17079   QualType EltTy = Context.getBaseElementType(FD->getType());
17080   if (const RecordType *RT = EltTy->getAs<RecordType>()) {
17081     CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
17082     if (RDecl->getDefinition()) {
17083       // We check for copy constructors before constructors
17084       // because otherwise we'll never get complaints about
17085       // copy constructors.
17086 
17087       CXXSpecialMember member = CXXInvalid;
17088       // We're required to check for any non-trivial constructors. Since the
17089       // implicit default constructor is suppressed if there are any
17090       // user-declared constructors, we just need to check that there is a
17091       // trivial default constructor and a trivial copy constructor. (We don't
17092       // worry about move constructors here, since this is a C++98 check.)
17093       if (RDecl->hasNonTrivialCopyConstructor())
17094         member = CXXCopyConstructor;
17095       else if (!RDecl->hasTrivialDefaultConstructor())
17096         member = CXXDefaultConstructor;
17097       else if (RDecl->hasNonTrivialCopyAssignment())
17098         member = CXXCopyAssignment;
17099       else if (RDecl->hasNonTrivialDestructor())
17100         member = CXXDestructor;
17101 
17102       if (member != CXXInvalid) {
17103         if (!getLangOpts().CPlusPlus11 &&
17104             getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
17105           // Objective-C++ ARC: it is an error to have a non-trivial field of
17106           // a union. However, system headers in Objective-C programs
17107           // occasionally have Objective-C lifetime objects within unions,
17108           // and rather than cause the program to fail, we make those
17109           // members unavailable.
17110           SourceLocation Loc = FD->getLocation();
17111           if (getSourceManager().isInSystemHeader(Loc)) {
17112             if (!FD->hasAttr<UnavailableAttr>())
17113               FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
17114                             UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
17115             return false;
17116           }
17117         }
17118 
17119         Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
17120                diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
17121                diag::err_illegal_union_or_anon_struct_member)
17122           << FD->getParent()->isUnion() << FD->getDeclName() << member;
17123         DiagnoseNontrivial(RDecl, member);
17124         return !getLangOpts().CPlusPlus11;
17125       }
17126     }
17127   }
17128 
17129   return false;
17130 }
17131 
17132 /// TranslateIvarVisibility - Translate visibility from a token ID to an
17133 ///  AST enum value.
17134 static ObjCIvarDecl::AccessControl
17135 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
17136   switch (ivarVisibility) {
17137   default: llvm_unreachable("Unknown visitibility kind");
17138   case tok::objc_private: return ObjCIvarDecl::Private;
17139   case tok::objc_public: return ObjCIvarDecl::Public;
17140   case tok::objc_protected: return ObjCIvarDecl::Protected;
17141   case tok::objc_package: return ObjCIvarDecl::Package;
17142   }
17143 }
17144 
17145 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
17146 /// in order to create an IvarDecl object for it.
17147 Decl *Sema::ActOnIvar(Scope *S,
17148                                 SourceLocation DeclStart,
17149                                 Declarator &D, Expr *BitfieldWidth,
17150                                 tok::ObjCKeywordKind Visibility) {
17151 
17152   IdentifierInfo *II = D.getIdentifier();
17153   Expr *BitWidth = (Expr*)BitfieldWidth;
17154   SourceLocation Loc = DeclStart;
17155   if (II) Loc = D.getIdentifierLoc();
17156 
17157   // FIXME: Unnamed fields can be handled in various different ways, for
17158   // example, unnamed unions inject all members into the struct namespace!
17159 
17160   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
17161   QualType T = TInfo->getType();
17162 
17163   if (BitWidth) {
17164     // 6.7.2.1p3, 6.7.2.1p4
17165     BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
17166     if (!BitWidth)
17167       D.setInvalidType();
17168   } else {
17169     // Not a bitfield.
17170 
17171     // validate II.
17172 
17173   }
17174   if (T->isReferenceType()) {
17175     Diag(Loc, diag::err_ivar_reference_type);
17176     D.setInvalidType();
17177   }
17178   // C99 6.7.2.1p8: A member of a structure or union may have any type other
17179   // than a variably modified type.
17180   else if (T->isVariablyModifiedType()) {
17181     if (!tryToFixVariablyModifiedVarType(
17182             TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
17183       D.setInvalidType();
17184   }
17185 
17186   // Get the visibility (access control) for this ivar.
17187   ObjCIvarDecl::AccessControl ac =
17188     Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
17189                                         : ObjCIvarDecl::None;
17190   // Must set ivar's DeclContext to its enclosing interface.
17191   ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
17192   if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
17193     return nullptr;
17194   ObjCContainerDecl *EnclosingContext;
17195   if (ObjCImplementationDecl *IMPDecl =
17196       dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
17197     if (LangOpts.ObjCRuntime.isFragile()) {
17198     // Case of ivar declared in an implementation. Context is that of its class.
17199       EnclosingContext = IMPDecl->getClassInterface();
17200       assert(EnclosingContext && "Implementation has no class interface!");
17201     }
17202     else
17203       EnclosingContext = EnclosingDecl;
17204   } else {
17205     if (ObjCCategoryDecl *CDecl =
17206         dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
17207       if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
17208         Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
17209         return nullptr;
17210       }
17211     }
17212     EnclosingContext = EnclosingDecl;
17213   }
17214 
17215   // Construct the decl.
17216   ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
17217                                              DeclStart, Loc, II, T,
17218                                              TInfo, ac, (Expr *)BitfieldWidth);
17219 
17220   if (II) {
17221     NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
17222                                            ForVisibleRedeclaration);
17223     if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
17224         && !isa<TagDecl>(PrevDecl)) {
17225       Diag(Loc, diag::err_duplicate_member) << II;
17226       Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
17227       NewID->setInvalidDecl();
17228     }
17229   }
17230 
17231   // Process attributes attached to the ivar.
17232   ProcessDeclAttributes(S, NewID, D);
17233 
17234   if (D.isInvalidType())
17235     NewID->setInvalidDecl();
17236 
17237   // In ARC, infer 'retaining' for ivars of retainable type.
17238   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
17239     NewID->setInvalidDecl();
17240 
17241   if (D.getDeclSpec().isModulePrivateSpecified())
17242     NewID->setModulePrivate();
17243 
17244   if (II) {
17245     // FIXME: When interfaces are DeclContexts, we'll need to add
17246     // these to the interface.
17247     S->AddDecl(NewID);
17248     IdResolver.AddDecl(NewID);
17249   }
17250 
17251   if (LangOpts.ObjCRuntime.isNonFragile() &&
17252       !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
17253     Diag(Loc, diag::warn_ivars_in_interface);
17254 
17255   return NewID;
17256 }
17257 
17258 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
17259 /// class and class extensions. For every class \@interface and class
17260 /// extension \@interface, if the last ivar is a bitfield of any type,
17261 /// then add an implicit `char :0` ivar to the end of that interface.
17262 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
17263                              SmallVectorImpl<Decl *> &AllIvarDecls) {
17264   if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
17265     return;
17266 
17267   Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
17268   ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
17269 
17270   if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
17271     return;
17272   ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
17273   if (!ID) {
17274     if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
17275       if (!CD->IsClassExtension())
17276         return;
17277     }
17278     // No need to add this to end of @implementation.
17279     else
17280       return;
17281   }
17282   // All conditions are met. Add a new bitfield to the tail end of ivars.
17283   llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
17284   Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
17285 
17286   Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
17287                               DeclLoc, DeclLoc, nullptr,
17288                               Context.CharTy,
17289                               Context.getTrivialTypeSourceInfo(Context.CharTy,
17290                                                                DeclLoc),
17291                               ObjCIvarDecl::Private, BW,
17292                               true);
17293   AllIvarDecls.push_back(Ivar);
17294 }
17295 
17296 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
17297                        ArrayRef<Decl *> Fields, SourceLocation LBrac,
17298                        SourceLocation RBrac,
17299                        const ParsedAttributesView &Attrs) {
17300   assert(EnclosingDecl && "missing record or interface decl");
17301 
17302   // If this is an Objective-C @implementation or category and we have
17303   // new fields here we should reset the layout of the interface since
17304   // it will now change.
17305   if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
17306     ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
17307     switch (DC->getKind()) {
17308     default: break;
17309     case Decl::ObjCCategory:
17310       Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
17311       break;
17312     case Decl::ObjCImplementation:
17313       Context.
17314         ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
17315       break;
17316     }
17317   }
17318 
17319   RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
17320   CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
17321 
17322   // Start counting up the number of named members; make sure to include
17323   // members of anonymous structs and unions in the total.
17324   unsigned NumNamedMembers = 0;
17325   if (Record) {
17326     for (const auto *I : Record->decls()) {
17327       if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
17328         if (IFD->getDeclName())
17329           ++NumNamedMembers;
17330     }
17331   }
17332 
17333   // Verify that all the fields are okay.
17334   SmallVector<FieldDecl*, 32> RecFields;
17335 
17336   for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
17337        i != end; ++i) {
17338     FieldDecl *FD = cast<FieldDecl>(*i);
17339 
17340     // Get the type for the field.
17341     const Type *FDTy = FD->getType().getTypePtr();
17342 
17343     if (!FD->isAnonymousStructOrUnion()) {
17344       // Remember all fields written by the user.
17345       RecFields.push_back(FD);
17346     }
17347 
17348     // If the field is already invalid for some reason, don't emit more
17349     // diagnostics about it.
17350     if (FD->isInvalidDecl()) {
17351       EnclosingDecl->setInvalidDecl();
17352       continue;
17353     }
17354 
17355     // C99 6.7.2.1p2:
17356     //   A structure or union shall not contain a member with
17357     //   incomplete or function type (hence, a structure shall not
17358     //   contain an instance of itself, but may contain a pointer to
17359     //   an instance of itself), except that the last member of a
17360     //   structure with more than one named member may have incomplete
17361     //   array type; such a structure (and any union containing,
17362     //   possibly recursively, a member that is such a structure)
17363     //   shall not be a member of a structure or an element of an
17364     //   array.
17365     bool IsLastField = (i + 1 == Fields.end());
17366     if (FDTy->isFunctionType()) {
17367       // Field declared as a function.
17368       Diag(FD->getLocation(), diag::err_field_declared_as_function)
17369         << FD->getDeclName();
17370       FD->setInvalidDecl();
17371       EnclosingDecl->setInvalidDecl();
17372       continue;
17373     } else if (FDTy->isIncompleteArrayType() &&
17374                (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
17375       if (Record) {
17376         // Flexible array member.
17377         // Microsoft and g++ is more permissive regarding flexible array.
17378         // It will accept flexible array in union and also
17379         // as the sole element of a struct/class.
17380         unsigned DiagID = 0;
17381         if (!Record->isUnion() && !IsLastField) {
17382           Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
17383             << FD->getDeclName() << FD->getType() << Record->getTagKind();
17384           Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
17385           FD->setInvalidDecl();
17386           EnclosingDecl->setInvalidDecl();
17387           continue;
17388         } else if (Record->isUnion())
17389           DiagID = getLangOpts().MicrosoftExt
17390                        ? diag::ext_flexible_array_union_ms
17391                        : getLangOpts().CPlusPlus
17392                              ? diag::ext_flexible_array_union_gnu
17393                              : diag::err_flexible_array_union;
17394         else if (NumNamedMembers < 1)
17395           DiagID = getLangOpts().MicrosoftExt
17396                        ? diag::ext_flexible_array_empty_aggregate_ms
17397                        : getLangOpts().CPlusPlus
17398                              ? diag::ext_flexible_array_empty_aggregate_gnu
17399                              : diag::err_flexible_array_empty_aggregate;
17400 
17401         if (DiagID)
17402           Diag(FD->getLocation(), DiagID) << FD->getDeclName()
17403                                           << Record->getTagKind();
17404         // While the layout of types that contain virtual bases is not specified
17405         // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
17406         // virtual bases after the derived members.  This would make a flexible
17407         // array member declared at the end of an object not adjacent to the end
17408         // of the type.
17409         if (CXXRecord && CXXRecord->getNumVBases() != 0)
17410           Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
17411               << FD->getDeclName() << Record->getTagKind();
17412         if (!getLangOpts().C99)
17413           Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
17414             << FD->getDeclName() << Record->getTagKind();
17415 
17416         // If the element type has a non-trivial destructor, we would not
17417         // implicitly destroy the elements, so disallow it for now.
17418         //
17419         // FIXME: GCC allows this. We should probably either implicitly delete
17420         // the destructor of the containing class, or just allow this.
17421         QualType BaseElem = Context.getBaseElementType(FD->getType());
17422         if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
17423           Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
17424             << FD->getDeclName() << FD->getType();
17425           FD->setInvalidDecl();
17426           EnclosingDecl->setInvalidDecl();
17427           continue;
17428         }
17429         // Okay, we have a legal flexible array member at the end of the struct.
17430         Record->setHasFlexibleArrayMember(true);
17431       } else {
17432         // In ObjCContainerDecl ivars with incomplete array type are accepted,
17433         // unless they are followed by another ivar. That check is done
17434         // elsewhere, after synthesized ivars are known.
17435       }
17436     } else if (!FDTy->isDependentType() &&
17437                RequireCompleteSizedType(
17438                    FD->getLocation(), FD->getType(),
17439                    diag::err_field_incomplete_or_sizeless)) {
17440       // Incomplete type
17441       FD->setInvalidDecl();
17442       EnclosingDecl->setInvalidDecl();
17443       continue;
17444     } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
17445       if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
17446         // A type which contains a flexible array member is considered to be a
17447         // flexible array member.
17448         Record->setHasFlexibleArrayMember(true);
17449         if (!Record->isUnion()) {
17450           // If this is a struct/class and this is not the last element, reject
17451           // it.  Note that GCC supports variable sized arrays in the middle of
17452           // structures.
17453           if (!IsLastField)
17454             Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
17455               << FD->getDeclName() << FD->getType();
17456           else {
17457             // We support flexible arrays at the end of structs in
17458             // other structs as an extension.
17459             Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
17460               << FD->getDeclName();
17461           }
17462         }
17463       }
17464       if (isa<ObjCContainerDecl>(EnclosingDecl) &&
17465           RequireNonAbstractType(FD->getLocation(), FD->getType(),
17466                                  diag::err_abstract_type_in_decl,
17467                                  AbstractIvarType)) {
17468         // Ivars can not have abstract class types
17469         FD->setInvalidDecl();
17470       }
17471       if (Record && FDTTy->getDecl()->hasObjectMember())
17472         Record->setHasObjectMember(true);
17473       if (Record && FDTTy->getDecl()->hasVolatileMember())
17474         Record->setHasVolatileMember(true);
17475     } else if (FDTy->isObjCObjectType()) {
17476       /// A field cannot be an Objective-c object
17477       Diag(FD->getLocation(), diag::err_statically_allocated_object)
17478         << FixItHint::CreateInsertion(FD->getLocation(), "*");
17479       QualType T = Context.getObjCObjectPointerType(FD->getType());
17480       FD->setType(T);
17481     } else if (Record && Record->isUnion() &&
17482                FD->getType().hasNonTrivialObjCLifetime() &&
17483                getSourceManager().isInSystemHeader(FD->getLocation()) &&
17484                !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
17485                (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
17486                 !Context.hasDirectOwnershipQualifier(FD->getType()))) {
17487       // For backward compatibility, fields of C unions declared in system
17488       // headers that have non-trivial ObjC ownership qualifications are marked
17489       // as unavailable unless the qualifier is explicit and __strong. This can
17490       // break ABI compatibility between programs compiled with ARC and MRR, but
17491       // is a better option than rejecting programs using those unions under
17492       // ARC.
17493       FD->addAttr(UnavailableAttr::CreateImplicit(
17494           Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
17495           FD->getLocation()));
17496     } else if (getLangOpts().ObjC &&
17497                getLangOpts().getGC() != LangOptions::NonGC && Record &&
17498                !Record->hasObjectMember()) {
17499       if (FD->getType()->isObjCObjectPointerType() ||
17500           FD->getType().isObjCGCStrong())
17501         Record->setHasObjectMember(true);
17502       else if (Context.getAsArrayType(FD->getType())) {
17503         QualType BaseType = Context.getBaseElementType(FD->getType());
17504         if (BaseType->isRecordType() &&
17505             BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
17506           Record->setHasObjectMember(true);
17507         else if (BaseType->isObjCObjectPointerType() ||
17508                  BaseType.isObjCGCStrong())
17509                Record->setHasObjectMember(true);
17510       }
17511     }
17512 
17513     if (Record && !getLangOpts().CPlusPlus &&
17514         !shouldIgnoreForRecordTriviality(FD)) {
17515       QualType FT = FD->getType();
17516       if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
17517         Record->setNonTrivialToPrimitiveDefaultInitialize(true);
17518         if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
17519             Record->isUnion())
17520           Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
17521       }
17522       QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
17523       if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
17524         Record->setNonTrivialToPrimitiveCopy(true);
17525         if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
17526           Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
17527       }
17528       if (FT.isDestructedType()) {
17529         Record->setNonTrivialToPrimitiveDestroy(true);
17530         Record->setParamDestroyedInCallee(true);
17531         if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
17532           Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
17533       }
17534 
17535       if (const auto *RT = FT->getAs<RecordType>()) {
17536         if (RT->getDecl()->getArgPassingRestrictions() ==
17537             RecordDecl::APK_CanNeverPassInRegs)
17538           Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17539       } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
17540         Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17541     }
17542 
17543     if (Record && FD->getType().isVolatileQualified())
17544       Record->setHasVolatileMember(true);
17545     // Keep track of the number of named members.
17546     if (FD->getIdentifier())
17547       ++NumNamedMembers;
17548   }
17549 
17550   // Okay, we successfully defined 'Record'.
17551   if (Record) {
17552     bool Completed = false;
17553     if (CXXRecord) {
17554       if (!CXXRecord->isInvalidDecl()) {
17555         // Set access bits correctly on the directly-declared conversions.
17556         for (CXXRecordDecl::conversion_iterator
17557                I = CXXRecord->conversion_begin(),
17558                E = CXXRecord->conversion_end(); I != E; ++I)
17559           I.setAccess((*I)->getAccess());
17560       }
17561 
17562       // Add any implicitly-declared members to this class.
17563       AddImplicitlyDeclaredMembersToClass(CXXRecord);
17564 
17565       if (!CXXRecord->isDependentType()) {
17566         if (!CXXRecord->isInvalidDecl()) {
17567           // If we have virtual base classes, we may end up finding multiple
17568           // final overriders for a given virtual function. Check for this
17569           // problem now.
17570           if (CXXRecord->getNumVBases()) {
17571             CXXFinalOverriderMap FinalOverriders;
17572             CXXRecord->getFinalOverriders(FinalOverriders);
17573 
17574             for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
17575                                              MEnd = FinalOverriders.end();
17576                  M != MEnd; ++M) {
17577               for (OverridingMethods::iterator SO = M->second.begin(),
17578                                             SOEnd = M->second.end();
17579                    SO != SOEnd; ++SO) {
17580                 assert(SO->second.size() > 0 &&
17581                        "Virtual function without overriding functions?");
17582                 if (SO->second.size() == 1)
17583                   continue;
17584 
17585                 // C++ [class.virtual]p2:
17586                 //   In a derived class, if a virtual member function of a base
17587                 //   class subobject has more than one final overrider the
17588                 //   program is ill-formed.
17589                 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
17590                   << (const NamedDecl *)M->first << Record;
17591                 Diag(M->first->getLocation(),
17592                      diag::note_overridden_virtual_function);
17593                 for (OverridingMethods::overriding_iterator
17594                           OM = SO->second.begin(),
17595                        OMEnd = SO->second.end();
17596                      OM != OMEnd; ++OM)
17597                   Diag(OM->Method->getLocation(), diag::note_final_overrider)
17598                     << (const NamedDecl *)M->first << OM->Method->getParent();
17599 
17600                 Record->setInvalidDecl();
17601               }
17602             }
17603             CXXRecord->completeDefinition(&FinalOverriders);
17604             Completed = true;
17605           }
17606         }
17607       }
17608     }
17609 
17610     if (!Completed)
17611       Record->completeDefinition();
17612 
17613     // Handle attributes before checking the layout.
17614     ProcessDeclAttributeList(S, Record, Attrs);
17615 
17616     // We may have deferred checking for a deleted destructor. Check now.
17617     if (CXXRecord) {
17618       auto *Dtor = CXXRecord->getDestructor();
17619       if (Dtor && Dtor->isImplicit() &&
17620           ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
17621         CXXRecord->setImplicitDestructorIsDeleted();
17622         SetDeclDeleted(Dtor, CXXRecord->getLocation());
17623       }
17624     }
17625 
17626     if (Record->hasAttrs()) {
17627       CheckAlignasUnderalignment(Record);
17628 
17629       if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
17630         checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
17631                                            IA->getRange(), IA->getBestCase(),
17632                                            IA->getInheritanceModel());
17633     }
17634 
17635     // Check if the structure/union declaration is a type that can have zero
17636     // size in C. For C this is a language extension, for C++ it may cause
17637     // compatibility problems.
17638     bool CheckForZeroSize;
17639     if (!getLangOpts().CPlusPlus) {
17640       CheckForZeroSize = true;
17641     } else {
17642       // For C++ filter out types that cannot be referenced in C code.
17643       CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
17644       CheckForZeroSize =
17645           CXXRecord->getLexicalDeclContext()->isExternCContext() &&
17646           !CXXRecord->isDependentType() && !inTemplateInstantiation() &&
17647           CXXRecord->isCLike();
17648     }
17649     if (CheckForZeroSize) {
17650       bool ZeroSize = true;
17651       bool IsEmpty = true;
17652       unsigned NonBitFields = 0;
17653       for (RecordDecl::field_iterator I = Record->field_begin(),
17654                                       E = Record->field_end();
17655            (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
17656         IsEmpty = false;
17657         if (I->isUnnamedBitfield()) {
17658           if (!I->isZeroLengthBitField(Context))
17659             ZeroSize = false;
17660         } else {
17661           ++NonBitFields;
17662           QualType FieldType = I->getType();
17663           if (FieldType->isIncompleteType() ||
17664               !Context.getTypeSizeInChars(FieldType).isZero())
17665             ZeroSize = false;
17666         }
17667       }
17668 
17669       // Empty structs are an extension in C (C99 6.7.2.1p7). They are
17670       // allowed in C++, but warn if its declaration is inside
17671       // extern "C" block.
17672       if (ZeroSize) {
17673         Diag(RecLoc, getLangOpts().CPlusPlus ?
17674                          diag::warn_zero_size_struct_union_in_extern_c :
17675                          diag::warn_zero_size_struct_union_compat)
17676           << IsEmpty << Record->isUnion() << (NonBitFields > 1);
17677       }
17678 
17679       // Structs without named members are extension in C (C99 6.7.2.1p7),
17680       // but are accepted by GCC.
17681       if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
17682         Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
17683                                diag::ext_no_named_members_in_struct_union)
17684           << Record->isUnion();
17685       }
17686     }
17687   } else {
17688     ObjCIvarDecl **ClsFields =
17689       reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
17690     if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
17691       ID->setEndOfDefinitionLoc(RBrac);
17692       // Add ivar's to class's DeclContext.
17693       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
17694         ClsFields[i]->setLexicalDeclContext(ID);
17695         ID->addDecl(ClsFields[i]);
17696       }
17697       // Must enforce the rule that ivars in the base classes may not be
17698       // duplicates.
17699       if (ID->getSuperClass())
17700         DiagnoseDuplicateIvars(ID, ID->getSuperClass());
17701     } else if (ObjCImplementationDecl *IMPDecl =
17702                   dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
17703       assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
17704       for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
17705         // Ivar declared in @implementation never belongs to the implementation.
17706         // Only it is in implementation's lexical context.
17707         ClsFields[I]->setLexicalDeclContext(IMPDecl);
17708       CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
17709       IMPDecl->setIvarLBraceLoc(LBrac);
17710       IMPDecl->setIvarRBraceLoc(RBrac);
17711     } else if (ObjCCategoryDecl *CDecl =
17712                 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
17713       // case of ivars in class extension; all other cases have been
17714       // reported as errors elsewhere.
17715       // FIXME. Class extension does not have a LocEnd field.
17716       // CDecl->setLocEnd(RBrac);
17717       // Add ivar's to class extension's DeclContext.
17718       // Diagnose redeclaration of private ivars.
17719       ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
17720       for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
17721         if (IDecl) {
17722           if (const ObjCIvarDecl *ClsIvar =
17723               IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
17724             Diag(ClsFields[i]->getLocation(),
17725                  diag::err_duplicate_ivar_declaration);
17726             Diag(ClsIvar->getLocation(), diag::note_previous_definition);
17727             continue;
17728           }
17729           for (const auto *Ext : IDecl->known_extensions()) {
17730             if (const ObjCIvarDecl *ClsExtIvar
17731                   = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
17732               Diag(ClsFields[i]->getLocation(),
17733                    diag::err_duplicate_ivar_declaration);
17734               Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
17735               continue;
17736             }
17737           }
17738         }
17739         ClsFields[i]->setLexicalDeclContext(CDecl);
17740         CDecl->addDecl(ClsFields[i]);
17741       }
17742       CDecl->setIvarLBraceLoc(LBrac);
17743       CDecl->setIvarRBraceLoc(RBrac);
17744     }
17745   }
17746 }
17747 
17748 /// Determine whether the given integral value is representable within
17749 /// the given type T.
17750 static bool isRepresentableIntegerValue(ASTContext &Context,
17751                                         llvm::APSInt &Value,
17752                                         QualType T) {
17753   assert((T->isIntegralType(Context) || T->isEnumeralType()) &&
17754          "Integral type required!");
17755   unsigned BitWidth = Context.getIntWidth(T);
17756 
17757   if (Value.isUnsigned() || Value.isNonNegative()) {
17758     if (T->isSignedIntegerOrEnumerationType())
17759       --BitWidth;
17760     return Value.getActiveBits() <= BitWidth;
17761   }
17762   return Value.getMinSignedBits() <= BitWidth;
17763 }
17764 
17765 // Given an integral type, return the next larger integral type
17766 // (or a NULL type of no such type exists).
17767 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
17768   // FIXME: Int128/UInt128 support, which also needs to be introduced into
17769   // enum checking below.
17770   assert((T->isIntegralType(Context) ||
17771          T->isEnumeralType()) && "Integral type required!");
17772   const unsigned NumTypes = 4;
17773   QualType SignedIntegralTypes[NumTypes] = {
17774     Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
17775   };
17776   QualType UnsignedIntegralTypes[NumTypes] = {
17777     Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
17778     Context.UnsignedLongLongTy
17779   };
17780 
17781   unsigned BitWidth = Context.getTypeSize(T);
17782   QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
17783                                                         : UnsignedIntegralTypes;
17784   for (unsigned I = 0; I != NumTypes; ++I)
17785     if (Context.getTypeSize(Types[I]) > BitWidth)
17786       return Types[I];
17787 
17788   return QualType();
17789 }
17790 
17791 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
17792                                           EnumConstantDecl *LastEnumConst,
17793                                           SourceLocation IdLoc,
17794                                           IdentifierInfo *Id,
17795                                           Expr *Val) {
17796   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
17797   llvm::APSInt EnumVal(IntWidth);
17798   QualType EltTy;
17799 
17800   if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
17801     Val = nullptr;
17802 
17803   if (Val)
17804     Val = DefaultLvalueConversion(Val).get();
17805 
17806   if (Val) {
17807     if (Enum->isDependentType() || Val->isTypeDependent())
17808       EltTy = Context.DependentTy;
17809     else {
17810       // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
17811       // underlying type, but do allow it in all other contexts.
17812       if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
17813         // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
17814         // constant-expression in the enumerator-definition shall be a converted
17815         // constant expression of the underlying type.
17816         EltTy = Enum->getIntegerType();
17817         ExprResult Converted =
17818           CheckConvertedConstantExpression(Val, EltTy, EnumVal,
17819                                            CCEK_Enumerator);
17820         if (Converted.isInvalid())
17821           Val = nullptr;
17822         else
17823           Val = Converted.get();
17824       } else if (!Val->isValueDependent() &&
17825                  !(Val =
17826                        VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold)
17827                            .get())) {
17828         // C99 6.7.2.2p2: Make sure we have an integer constant expression.
17829       } else {
17830         if (Enum->isComplete()) {
17831           EltTy = Enum->getIntegerType();
17832 
17833           // In Obj-C and Microsoft mode, require the enumeration value to be
17834           // representable in the underlying type of the enumeration. In C++11,
17835           // we perform a non-narrowing conversion as part of converted constant
17836           // expression checking.
17837           if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17838             if (Context.getTargetInfo()
17839                     .getTriple()
17840                     .isWindowsMSVCEnvironment()) {
17841               Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
17842             } else {
17843               Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
17844             }
17845           }
17846 
17847           // Cast to the underlying type.
17848           Val = ImpCastExprToType(Val, EltTy,
17849                                   EltTy->isBooleanType() ? CK_IntegralToBoolean
17850                                                          : CK_IntegralCast)
17851                     .get();
17852         } else if (getLangOpts().CPlusPlus) {
17853           // C++11 [dcl.enum]p5:
17854           //   If the underlying type is not fixed, the type of each enumerator
17855           //   is the type of its initializing value:
17856           //     - If an initializer is specified for an enumerator, the
17857           //       initializing value has the same type as the expression.
17858           EltTy = Val->getType();
17859         } else {
17860           // C99 6.7.2.2p2:
17861           //   The expression that defines the value of an enumeration constant
17862           //   shall be an integer constant expression that has a value
17863           //   representable as an int.
17864 
17865           // Complain if the value is not representable in an int.
17866           if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
17867             Diag(IdLoc, diag::ext_enum_value_not_int)
17868               << toString(EnumVal, 10) << Val->getSourceRange()
17869               << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
17870           else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
17871             // Force the type of the expression to 'int'.
17872             Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
17873           }
17874           EltTy = Val->getType();
17875         }
17876       }
17877     }
17878   }
17879 
17880   if (!Val) {
17881     if (Enum->isDependentType())
17882       EltTy = Context.DependentTy;
17883     else if (!LastEnumConst) {
17884       // C++0x [dcl.enum]p5:
17885       //   If the underlying type is not fixed, the type of each enumerator
17886       //   is the type of its initializing value:
17887       //     - If no initializer is specified for the first enumerator, the
17888       //       initializing value has an unspecified integral type.
17889       //
17890       // GCC uses 'int' for its unspecified integral type, as does
17891       // C99 6.7.2.2p3.
17892       if (Enum->isFixed()) {
17893         EltTy = Enum->getIntegerType();
17894       }
17895       else {
17896         EltTy = Context.IntTy;
17897       }
17898     } else {
17899       // Assign the last value + 1.
17900       EnumVal = LastEnumConst->getInitVal();
17901       ++EnumVal;
17902       EltTy = LastEnumConst->getType();
17903 
17904       // Check for overflow on increment.
17905       if (EnumVal < LastEnumConst->getInitVal()) {
17906         // C++0x [dcl.enum]p5:
17907         //   If the underlying type is not fixed, the type of each enumerator
17908         //   is the type of its initializing value:
17909         //
17910         //     - Otherwise the type of the initializing value is the same as
17911         //       the type of the initializing value of the preceding enumerator
17912         //       unless the incremented value is not representable in that type,
17913         //       in which case the type is an unspecified integral type
17914         //       sufficient to contain the incremented value. If no such type
17915         //       exists, the program is ill-formed.
17916         QualType T = getNextLargerIntegralType(Context, EltTy);
17917         if (T.isNull() || Enum->isFixed()) {
17918           // There is no integral type larger enough to represent this
17919           // value. Complain, then allow the value to wrap around.
17920           EnumVal = LastEnumConst->getInitVal();
17921           EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
17922           ++EnumVal;
17923           if (Enum->isFixed())
17924             // When the underlying type is fixed, this is ill-formed.
17925             Diag(IdLoc, diag::err_enumerator_wrapped)
17926               << toString(EnumVal, 10)
17927               << EltTy;
17928           else
17929             Diag(IdLoc, diag::ext_enumerator_increment_too_large)
17930               << toString(EnumVal, 10);
17931         } else {
17932           EltTy = T;
17933         }
17934 
17935         // Retrieve the last enumerator's value, extent that type to the
17936         // type that is supposed to be large enough to represent the incremented
17937         // value, then increment.
17938         EnumVal = LastEnumConst->getInitVal();
17939         EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17940         EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
17941         ++EnumVal;
17942 
17943         // If we're not in C++, diagnose the overflow of enumerator values,
17944         // which in C99 means that the enumerator value is not representable in
17945         // an int (C99 6.7.2.2p2). However, we support GCC's extension that
17946         // permits enumerator values that are representable in some larger
17947         // integral type.
17948         if (!getLangOpts().CPlusPlus && !T.isNull())
17949           Diag(IdLoc, diag::warn_enum_value_overflow);
17950       } else if (!getLangOpts().CPlusPlus &&
17951                  !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17952         // Enforce C99 6.7.2.2p2 even when we compute the next value.
17953         Diag(IdLoc, diag::ext_enum_value_not_int)
17954           << toString(EnumVal, 10) << 1;
17955       }
17956     }
17957   }
17958 
17959   if (!EltTy->isDependentType()) {
17960     // Make the enumerator value match the signedness and size of the
17961     // enumerator's type.
17962     EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
17963     EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17964   }
17965 
17966   return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
17967                                   Val, EnumVal);
17968 }
17969 
17970 Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
17971                                                 SourceLocation IILoc) {
17972   if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
17973       !getLangOpts().CPlusPlus)
17974     return SkipBodyInfo();
17975 
17976   // We have an anonymous enum definition. Look up the first enumerator to
17977   // determine if we should merge the definition with an existing one and
17978   // skip the body.
17979   NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
17980                                          forRedeclarationInCurContext());
17981   auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
17982   if (!PrevECD)
17983     return SkipBodyInfo();
17984 
17985   EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
17986   NamedDecl *Hidden;
17987   if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
17988     SkipBodyInfo Skip;
17989     Skip.Previous = Hidden;
17990     return Skip;
17991   }
17992 
17993   return SkipBodyInfo();
17994 }
17995 
17996 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
17997                               SourceLocation IdLoc, IdentifierInfo *Id,
17998                               const ParsedAttributesView &Attrs,
17999                               SourceLocation EqualLoc, Expr *Val) {
18000   EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
18001   EnumConstantDecl *LastEnumConst =
18002     cast_or_null<EnumConstantDecl>(lastEnumConst);
18003 
18004   // The scope passed in may not be a decl scope.  Zip up the scope tree until
18005   // we find one that is.
18006   S = getNonFieldDeclScope(S);
18007 
18008   // Verify that there isn't already something declared with this name in this
18009   // scope.
18010   LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
18011   LookupName(R, S);
18012   NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
18013 
18014   if (PrevDecl && PrevDecl->isTemplateParameter()) {
18015     // Maybe we will complain about the shadowed template parameter.
18016     DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
18017     // Just pretend that we didn't see the previous declaration.
18018     PrevDecl = nullptr;
18019   }
18020 
18021   // C++ [class.mem]p15:
18022   // If T is the name of a class, then each of the following shall have a name
18023   // different from T:
18024   // - every enumerator of every member of class T that is an unscoped
18025   // enumerated type
18026   if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
18027     DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
18028                             DeclarationNameInfo(Id, IdLoc));
18029 
18030   EnumConstantDecl *New =
18031     CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
18032   if (!New)
18033     return nullptr;
18034 
18035   if (PrevDecl) {
18036     if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
18037       // Check for other kinds of shadowing not already handled.
18038       CheckShadow(New, PrevDecl, R);
18039     }
18040 
18041     // When in C++, we may get a TagDecl with the same name; in this case the
18042     // enum constant will 'hide' the tag.
18043     assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
18044            "Received TagDecl when not in C++!");
18045     if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
18046       if (isa<EnumConstantDecl>(PrevDecl))
18047         Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
18048       else
18049         Diag(IdLoc, diag::err_redefinition) << Id;
18050       notePreviousDefinition(PrevDecl, IdLoc);
18051       return nullptr;
18052     }
18053   }
18054 
18055   // Process attributes.
18056   ProcessDeclAttributeList(S, New, Attrs);
18057   AddPragmaAttributes(S, New);
18058 
18059   // Register this decl in the current scope stack.
18060   New->setAccess(TheEnumDecl->getAccess());
18061   PushOnScopeChains(New, S);
18062 
18063   ActOnDocumentableDecl(New);
18064 
18065   return New;
18066 }
18067 
18068 // Returns true when the enum initial expression does not trigger the
18069 // duplicate enum warning.  A few common cases are exempted as follows:
18070 // Element2 = Element1
18071 // Element2 = Element1 + 1
18072 // Element2 = Element1 - 1
18073 // Where Element2 and Element1 are from the same enum.
18074 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
18075   Expr *InitExpr = ECD->getInitExpr();
18076   if (!InitExpr)
18077     return true;
18078   InitExpr = InitExpr->IgnoreImpCasts();
18079 
18080   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
18081     if (!BO->isAdditiveOp())
18082       return true;
18083     IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
18084     if (!IL)
18085       return true;
18086     if (IL->getValue() != 1)
18087       return true;
18088 
18089     InitExpr = BO->getLHS();
18090   }
18091 
18092   // This checks if the elements are from the same enum.
18093   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
18094   if (!DRE)
18095     return true;
18096 
18097   EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
18098   if (!EnumConstant)
18099     return true;
18100 
18101   if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
18102       Enum)
18103     return true;
18104 
18105   return false;
18106 }
18107 
18108 // Emits a warning when an element is implicitly set a value that
18109 // a previous element has already been set to.
18110 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
18111                                         EnumDecl *Enum, QualType EnumType) {
18112   // Avoid anonymous enums
18113   if (!Enum->getIdentifier())
18114     return;
18115 
18116   // Only check for small enums.
18117   if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
18118     return;
18119 
18120   if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
18121     return;
18122 
18123   typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
18124   typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
18125 
18126   typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
18127 
18128   // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
18129   typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
18130 
18131   // Use int64_t as a key to avoid needing special handling for map keys.
18132   auto EnumConstantToKey = [](const EnumConstantDecl *D) {
18133     llvm::APSInt Val = D->getInitVal();
18134     return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
18135   };
18136 
18137   DuplicatesVector DupVector;
18138   ValueToVectorMap EnumMap;
18139 
18140   // Populate the EnumMap with all values represented by enum constants without
18141   // an initializer.
18142   for (auto *Element : Elements) {
18143     EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
18144 
18145     // Null EnumConstantDecl means a previous diagnostic has been emitted for
18146     // this constant.  Skip this enum since it may be ill-formed.
18147     if (!ECD) {
18148       return;
18149     }
18150 
18151     // Constants with initalizers are handled in the next loop.
18152     if (ECD->getInitExpr())
18153       continue;
18154 
18155     // Duplicate values are handled in the next loop.
18156     EnumMap.insert({EnumConstantToKey(ECD), ECD});
18157   }
18158 
18159   if (EnumMap.size() == 0)
18160     return;
18161 
18162   // Create vectors for any values that has duplicates.
18163   for (auto *Element : Elements) {
18164     // The last loop returned if any constant was null.
18165     EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
18166     if (!ValidDuplicateEnum(ECD, Enum))
18167       continue;
18168 
18169     auto Iter = EnumMap.find(EnumConstantToKey(ECD));
18170     if (Iter == EnumMap.end())
18171       continue;
18172 
18173     DeclOrVector& Entry = Iter->second;
18174     if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
18175       // Ensure constants are different.
18176       if (D == ECD)
18177         continue;
18178 
18179       // Create new vector and push values onto it.
18180       auto Vec = std::make_unique<ECDVector>();
18181       Vec->push_back(D);
18182       Vec->push_back(ECD);
18183 
18184       // Update entry to point to the duplicates vector.
18185       Entry = Vec.get();
18186 
18187       // Store the vector somewhere we can consult later for quick emission of
18188       // diagnostics.
18189       DupVector.emplace_back(std::move(Vec));
18190       continue;
18191     }
18192 
18193     ECDVector *Vec = Entry.get<ECDVector*>();
18194     // Make sure constants are not added more than once.
18195     if (*Vec->begin() == ECD)
18196       continue;
18197 
18198     Vec->push_back(ECD);
18199   }
18200 
18201   // Emit diagnostics.
18202   for (const auto &Vec : DupVector) {
18203     assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
18204 
18205     // Emit warning for one enum constant.
18206     auto *FirstECD = Vec->front();
18207     S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
18208       << FirstECD << toString(FirstECD->getInitVal(), 10)
18209       << FirstECD->getSourceRange();
18210 
18211     // Emit one note for each of the remaining enum constants with
18212     // the same value.
18213     for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
18214       S.Diag(ECD->getLocation(), diag::note_duplicate_element)
18215         << ECD << toString(ECD->getInitVal(), 10)
18216         << ECD->getSourceRange();
18217   }
18218 }
18219 
18220 bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
18221                              bool AllowMask) const {
18222   assert(ED->isClosedFlag() && "looking for value in non-flag or open enum");
18223   assert(ED->isCompleteDefinition() && "expected enum definition");
18224 
18225   auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
18226   llvm::APInt &FlagBits = R.first->second;
18227 
18228   if (R.second) {
18229     for (auto *E : ED->enumerators()) {
18230       const auto &EVal = E->getInitVal();
18231       // Only single-bit enumerators introduce new flag values.
18232       if (EVal.isPowerOf2())
18233         FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
18234     }
18235   }
18236 
18237   // A value is in a flag enum if either its bits are a subset of the enum's
18238   // flag bits (the first condition) or we are allowing masks and the same is
18239   // true of its complement (the second condition). When masks are allowed, we
18240   // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
18241   //
18242   // While it's true that any value could be used as a mask, the assumption is
18243   // that a mask will have all of the insignificant bits set. Anything else is
18244   // likely a logic error.
18245   llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
18246   return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
18247 }
18248 
18249 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
18250                          Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
18251                          const ParsedAttributesView &Attrs) {
18252   EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
18253   QualType EnumType = Context.getTypeDeclType(Enum);
18254 
18255   ProcessDeclAttributeList(S, Enum, Attrs);
18256 
18257   if (Enum->isDependentType()) {
18258     for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
18259       EnumConstantDecl *ECD =
18260         cast_or_null<EnumConstantDecl>(Elements[i]);
18261       if (!ECD) continue;
18262 
18263       ECD->setType(EnumType);
18264     }
18265 
18266     Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
18267     return;
18268   }
18269 
18270   // TODO: If the result value doesn't fit in an int, it must be a long or long
18271   // long value.  ISO C does not support this, but GCC does as an extension,
18272   // emit a warning.
18273   unsigned IntWidth = Context.getTargetInfo().getIntWidth();
18274   unsigned CharWidth = Context.getTargetInfo().getCharWidth();
18275   unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
18276 
18277   // Verify that all the values are okay, compute the size of the values, and
18278   // reverse the list.
18279   unsigned NumNegativeBits = 0;
18280   unsigned NumPositiveBits = 0;
18281 
18282   // Keep track of whether all elements have type int.
18283   bool AllElementsInt = true;
18284 
18285   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
18286     EnumConstantDecl *ECD =
18287       cast_or_null<EnumConstantDecl>(Elements[i]);
18288     if (!ECD) continue;  // Already issued a diagnostic.
18289 
18290     const llvm::APSInt &InitVal = ECD->getInitVal();
18291 
18292     // Keep track of the size of positive and negative values.
18293     if (InitVal.isUnsigned() || InitVal.isNonNegative())
18294       NumPositiveBits = std::max(NumPositiveBits,
18295                                  (unsigned)InitVal.getActiveBits());
18296     else
18297       NumNegativeBits = std::max(NumNegativeBits,
18298                                  (unsigned)InitVal.getMinSignedBits());
18299 
18300     // Keep track of whether every enum element has type int (very common).
18301     if (AllElementsInt)
18302       AllElementsInt = ECD->getType() == Context.IntTy;
18303   }
18304 
18305   // Figure out the type that should be used for this enum.
18306   QualType BestType;
18307   unsigned BestWidth;
18308 
18309   // C++0x N3000 [conv.prom]p3:
18310   //   An rvalue of an unscoped enumeration type whose underlying
18311   //   type is not fixed can be converted to an rvalue of the first
18312   //   of the following types that can represent all the values of
18313   //   the enumeration: int, unsigned int, long int, unsigned long
18314   //   int, long long int, or unsigned long long int.
18315   // C99 6.4.4.3p2:
18316   //   An identifier declared as an enumeration constant has type int.
18317   // The C99 rule is modified by a gcc extension
18318   QualType BestPromotionType;
18319 
18320   bool Packed = Enum->hasAttr<PackedAttr>();
18321   // -fshort-enums is the equivalent to specifying the packed attribute on all
18322   // enum definitions.
18323   if (LangOpts.ShortEnums)
18324     Packed = true;
18325 
18326   // If the enum already has a type because it is fixed or dictated by the
18327   // target, promote that type instead of analyzing the enumerators.
18328   if (Enum->isComplete()) {
18329     BestType = Enum->getIntegerType();
18330     if (BestType->isPromotableIntegerType())
18331       BestPromotionType = Context.getPromotedIntegerType(BestType);
18332     else
18333       BestPromotionType = BestType;
18334 
18335     BestWidth = Context.getIntWidth(BestType);
18336   }
18337   else if (NumNegativeBits) {
18338     // If there is a negative value, figure out the smallest integer type (of
18339     // int/long/longlong) that fits.
18340     // If it's packed, check also if it fits a char or a short.
18341     if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
18342       BestType = Context.SignedCharTy;
18343       BestWidth = CharWidth;
18344     } else if (Packed && NumNegativeBits <= ShortWidth &&
18345                NumPositiveBits < ShortWidth) {
18346       BestType = Context.ShortTy;
18347       BestWidth = ShortWidth;
18348     } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
18349       BestType = Context.IntTy;
18350       BestWidth = IntWidth;
18351     } else {
18352       BestWidth = Context.getTargetInfo().getLongWidth();
18353 
18354       if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
18355         BestType = Context.LongTy;
18356       } else {
18357         BestWidth = Context.getTargetInfo().getLongLongWidth();
18358 
18359         if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
18360           Diag(Enum->getLocation(), diag::ext_enum_too_large);
18361         BestType = Context.LongLongTy;
18362       }
18363     }
18364     BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
18365   } else {
18366     // If there is no negative value, figure out the smallest type that fits
18367     // all of the enumerator values.
18368     // If it's packed, check also if it fits a char or a short.
18369     if (Packed && NumPositiveBits <= CharWidth) {
18370       BestType = Context.UnsignedCharTy;
18371       BestPromotionType = Context.IntTy;
18372       BestWidth = CharWidth;
18373     } else if (Packed && NumPositiveBits <= ShortWidth) {
18374       BestType = Context.UnsignedShortTy;
18375       BestPromotionType = Context.IntTy;
18376       BestWidth = ShortWidth;
18377     } else if (NumPositiveBits <= IntWidth) {
18378       BestType = Context.UnsignedIntTy;
18379       BestWidth = IntWidth;
18380       BestPromotionType
18381         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18382                            ? Context.UnsignedIntTy : Context.IntTy;
18383     } else if (NumPositiveBits <=
18384                (BestWidth = Context.getTargetInfo().getLongWidth())) {
18385       BestType = Context.UnsignedLongTy;
18386       BestPromotionType
18387         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18388                            ? Context.UnsignedLongTy : Context.LongTy;
18389     } else {
18390       BestWidth = Context.getTargetInfo().getLongLongWidth();
18391       assert(NumPositiveBits <= BestWidth &&
18392              "How could an initializer get larger than ULL?");
18393       BestType = Context.UnsignedLongLongTy;
18394       BestPromotionType
18395         = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18396                            ? Context.UnsignedLongLongTy : Context.LongLongTy;
18397     }
18398   }
18399 
18400   // Loop over all of the enumerator constants, changing their types to match
18401   // the type of the enum if needed.
18402   for (auto *D : Elements) {
18403     auto *ECD = cast_or_null<EnumConstantDecl>(D);
18404     if (!ECD) continue;  // Already issued a diagnostic.
18405 
18406     // Standard C says the enumerators have int type, but we allow, as an
18407     // extension, the enumerators to be larger than int size.  If each
18408     // enumerator value fits in an int, type it as an int, otherwise type it the
18409     // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
18410     // that X has type 'int', not 'unsigned'.
18411 
18412     // Determine whether the value fits into an int.
18413     llvm::APSInt InitVal = ECD->getInitVal();
18414 
18415     // If it fits into an integer type, force it.  Otherwise force it to match
18416     // the enum decl type.
18417     QualType NewTy;
18418     unsigned NewWidth;
18419     bool NewSign;
18420     if (!getLangOpts().CPlusPlus &&
18421         !Enum->isFixed() &&
18422         isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
18423       NewTy = Context.IntTy;
18424       NewWidth = IntWidth;
18425       NewSign = true;
18426     } else if (ECD->getType() == BestType) {
18427       // Already the right type!
18428       if (getLangOpts().CPlusPlus)
18429         // C++ [dcl.enum]p4: Following the closing brace of an
18430         // enum-specifier, each enumerator has the type of its
18431         // enumeration.
18432         ECD->setType(EnumType);
18433       continue;
18434     } else {
18435       NewTy = BestType;
18436       NewWidth = BestWidth;
18437       NewSign = BestType->isSignedIntegerOrEnumerationType();
18438     }
18439 
18440     // Adjust the APSInt value.
18441     InitVal = InitVal.extOrTrunc(NewWidth);
18442     InitVal.setIsSigned(NewSign);
18443     ECD->setInitVal(InitVal);
18444 
18445     // Adjust the Expr initializer and type.
18446     if (ECD->getInitExpr() &&
18447         !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
18448       ECD->setInitExpr(ImplicitCastExpr::Create(
18449           Context, NewTy, CK_IntegralCast, ECD->getInitExpr(),
18450           /*base paths*/ nullptr, VK_PRValue, FPOptionsOverride()));
18451     if (getLangOpts().CPlusPlus)
18452       // C++ [dcl.enum]p4: Following the closing brace of an
18453       // enum-specifier, each enumerator has the type of its
18454       // enumeration.
18455       ECD->setType(EnumType);
18456     else
18457       ECD->setType(NewTy);
18458   }
18459 
18460   Enum->completeDefinition(BestType, BestPromotionType,
18461                            NumPositiveBits, NumNegativeBits);
18462 
18463   CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
18464 
18465   if (Enum->isClosedFlag()) {
18466     for (Decl *D : Elements) {
18467       EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
18468       if (!ECD) continue;  // Already issued a diagnostic.
18469 
18470       llvm::APSInt InitVal = ECD->getInitVal();
18471       if (InitVal != 0 && !InitVal.isPowerOf2() &&
18472           !IsValueInFlagEnum(Enum, InitVal, true))
18473         Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
18474           << ECD << Enum;
18475     }
18476   }
18477 
18478   // Now that the enum type is defined, ensure it's not been underaligned.
18479   if (Enum->hasAttrs())
18480     CheckAlignasUnderalignment(Enum);
18481 }
18482 
18483 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
18484                                   SourceLocation StartLoc,
18485                                   SourceLocation EndLoc) {
18486   StringLiteral *AsmString = cast<StringLiteral>(expr);
18487 
18488   FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
18489                                                    AsmString, StartLoc,
18490                                                    EndLoc);
18491   CurContext->addDecl(New);
18492   return New;
18493 }
18494 
18495 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
18496                                       IdentifierInfo* AliasName,
18497                                       SourceLocation PragmaLoc,
18498                                       SourceLocation NameLoc,
18499                                       SourceLocation AliasNameLoc) {
18500   NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
18501                                          LookupOrdinaryName);
18502   AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
18503                            AttributeCommonInfo::AS_Pragma);
18504   AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
18505       Context, AliasName->getName(), /*LiteralLabel=*/true, Info);
18506 
18507   // If a declaration that:
18508   // 1) declares a function or a variable
18509   // 2) has external linkage
18510   // already exists, add a label attribute to it.
18511   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18512     if (isDeclExternC(PrevDecl))
18513       PrevDecl->addAttr(Attr);
18514     else
18515       Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
18516           << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
18517   // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
18518   } else
18519     (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
18520 }
18521 
18522 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
18523                              SourceLocation PragmaLoc,
18524                              SourceLocation NameLoc) {
18525   Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
18526 
18527   if (PrevDecl) {
18528     PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma));
18529   } else {
18530     (void)WeakUndeclaredIdentifiers.insert(
18531       std::pair<IdentifierInfo*,WeakInfo>
18532         (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
18533   }
18534 }
18535 
18536 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
18537                                 IdentifierInfo* AliasName,
18538                                 SourceLocation PragmaLoc,
18539                                 SourceLocation NameLoc,
18540                                 SourceLocation AliasNameLoc) {
18541   Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
18542                                     LookupOrdinaryName);
18543   WeakInfo W = WeakInfo(Name, NameLoc);
18544 
18545   if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18546     if (!PrevDecl->hasAttr<AliasAttr>())
18547       if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
18548         DeclApplyPragmaWeak(TUScope, ND, W);
18549   } else {
18550     (void)WeakUndeclaredIdentifiers.insert(
18551       std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
18552   }
18553 }
18554 
18555 Decl *Sema::getObjCDeclContext() const {
18556   return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
18557 }
18558 
18559 Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD,
18560                                                      bool Final) {
18561   assert(FD && "Expected non-null FunctionDecl");
18562 
18563   // SYCL functions can be template, so we check if they have appropriate
18564   // attribute prior to checking if it is a template.
18565   if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>())
18566     return FunctionEmissionStatus::Emitted;
18567 
18568   // Templates are emitted when they're instantiated.
18569   if (FD->isDependentContext())
18570     return FunctionEmissionStatus::TemplateDiscarded;
18571 
18572   // Check whether this function is an externally visible definition.
18573   auto IsEmittedForExternalSymbol = [this, FD]() {
18574     // We have to check the GVA linkage of the function's *definition* -- if we
18575     // only have a declaration, we don't know whether or not the function will
18576     // be emitted, because (say) the definition could include "inline".
18577     FunctionDecl *Def = FD->getDefinition();
18578 
18579     return Def && !isDiscardableGVALinkage(
18580                       getASTContext().GetGVALinkageForFunction(Def));
18581   };
18582 
18583   if (LangOpts.OpenMPIsDevice) {
18584     // In OpenMP device mode we will not emit host only functions, or functions
18585     // we don't need due to their linkage.
18586     Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
18587         OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
18588     // DevTy may be changed later by
18589     //  #pragma omp declare target to(*) device_type(*).
18590     // Therefore DevTy having no value does not imply host. The emission status
18591     // will be checked again at the end of compilation unit with Final = true.
18592     if (DevTy.hasValue())
18593       if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
18594         return FunctionEmissionStatus::OMPDiscarded;
18595     // If we have an explicit value for the device type, or we are in a target
18596     // declare context, we need to emit all extern and used symbols.
18597     if (isInOpenMPDeclareTargetContext() || DevTy.hasValue())
18598       if (IsEmittedForExternalSymbol())
18599         return FunctionEmissionStatus::Emitted;
18600     // Device mode only emits what it must, if it wasn't tagged yet and needed,
18601     // we'll omit it.
18602     if (Final)
18603       return FunctionEmissionStatus::OMPDiscarded;
18604   } else if (LangOpts.OpenMP > 45) {
18605     // In OpenMP host compilation prior to 5.0 everything was an emitted host
18606     // function. In 5.0, no_host was introduced which might cause a function to
18607     // be ommitted.
18608     Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
18609         OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
18610     if (DevTy.hasValue())
18611       if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
18612         return FunctionEmissionStatus::OMPDiscarded;
18613   }
18614 
18615   if (Final && LangOpts.OpenMP && !LangOpts.CUDA)
18616     return FunctionEmissionStatus::Emitted;
18617 
18618   if (LangOpts.CUDA) {
18619     // When compiling for device, host functions are never emitted.  Similarly,
18620     // when compiling for host, device and global functions are never emitted.
18621     // (Technically, we do emit a host-side stub for global functions, but this
18622     // doesn't count for our purposes here.)
18623     Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD);
18624     if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host)
18625       return FunctionEmissionStatus::CUDADiscarded;
18626     if (!LangOpts.CUDAIsDevice &&
18627         (T == Sema::CFT_Device || T == Sema::CFT_Global))
18628       return FunctionEmissionStatus::CUDADiscarded;
18629 
18630     if (IsEmittedForExternalSymbol())
18631       return FunctionEmissionStatus::Emitted;
18632   }
18633 
18634   // Otherwise, the function is known-emitted if it's in our set of
18635   // known-emitted functions.
18636   return FunctionEmissionStatus::Unknown;
18637 }
18638 
18639 bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
18640   // Host-side references to a __global__ function refer to the stub, so the
18641   // function itself is never emitted and therefore should not be marked.
18642   // If we have host fn calls kernel fn calls host+device, the HD function
18643   // does not get instantiated on the host. We model this by omitting at the
18644   // call to the kernel from the callgraph. This ensures that, when compiling
18645   // for host, only HD functions actually called from the host get marked as
18646   // known-emitted.
18647   return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
18648          IdentifyCUDATarget(Callee) == CFT_Global;
18649 }
18650