1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the NumericLiteralParser, CharLiteralParser, and 10 // StringLiteralParser interfaces. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Lex/LiteralSupport.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/LangOptions.h" 17 #include "clang/Basic/SourceLocation.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "clang/Lex/LexDiagnostic.h" 20 #include "clang/Lex/Lexer.h" 21 #include "clang/Lex/Preprocessor.h" 22 #include "clang/Lex/Token.h" 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/ConvertUTF.h" 28 #include "llvm/Support/Error.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <cstddef> 33 #include <cstdint> 34 #include <cstring> 35 #include <string> 36 37 using namespace clang; 38 39 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) { 40 switch (kind) { 41 default: llvm_unreachable("Unknown token type!"); 42 case tok::char_constant: 43 case tok::string_literal: 44 case tok::utf8_char_constant: 45 case tok::utf8_string_literal: 46 return Target.getCharWidth(); 47 case tok::wide_char_constant: 48 case tok::wide_string_literal: 49 return Target.getWCharWidth(); 50 case tok::utf16_char_constant: 51 case tok::utf16_string_literal: 52 return Target.getChar16Width(); 53 case tok::utf32_char_constant: 54 case tok::utf32_string_literal: 55 return Target.getChar32Width(); 56 } 57 } 58 59 static CharSourceRange MakeCharSourceRange(const LangOptions &Features, 60 FullSourceLoc TokLoc, 61 const char *TokBegin, 62 const char *TokRangeBegin, 63 const char *TokRangeEnd) { 64 SourceLocation Begin = 65 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin, 66 TokLoc.getManager(), Features); 67 SourceLocation End = 68 Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin, 69 TokLoc.getManager(), Features); 70 return CharSourceRange::getCharRange(Begin, End); 71 } 72 73 /// Produce a diagnostic highlighting some portion of a literal. 74 /// 75 /// Emits the diagnostic \p DiagID, highlighting the range of characters from 76 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be 77 /// a substring of a spelling buffer for the token beginning at \p TokBegin. 78 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, 79 const LangOptions &Features, FullSourceLoc TokLoc, 80 const char *TokBegin, const char *TokRangeBegin, 81 const char *TokRangeEnd, unsigned DiagID) { 82 SourceLocation Begin = 83 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin, 84 TokLoc.getManager(), Features); 85 return Diags->Report(Begin, DiagID) << 86 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd); 87 } 88 89 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in 90 /// either a character or a string literal. 91 static unsigned ProcessCharEscape(const char *ThisTokBegin, 92 const char *&ThisTokBuf, 93 const char *ThisTokEnd, bool &HadError, 94 FullSourceLoc Loc, unsigned CharWidth, 95 DiagnosticsEngine *Diags, 96 const LangOptions &Features) { 97 const char *EscapeBegin = ThisTokBuf; 98 bool Delimited = false; 99 bool EndDelimiterFound = false; 100 101 // Skip the '\' char. 102 ++ThisTokBuf; 103 104 // We know that this character can't be off the end of the buffer, because 105 // that would have been \", which would not have been the end of string. 106 unsigned ResultChar = *ThisTokBuf++; 107 switch (ResultChar) { 108 // These map to themselves. 109 case '\\': case '\'': case '"': case '?': break; 110 111 // These have fixed mappings. 112 case 'a': 113 // TODO: K&R: the meaning of '\\a' is different in traditional C 114 ResultChar = 7; 115 break; 116 case 'b': 117 ResultChar = 8; 118 break; 119 case 'e': 120 if (Diags) 121 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 122 diag::ext_nonstandard_escape) << "e"; 123 ResultChar = 27; 124 break; 125 case 'E': 126 if (Diags) 127 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 128 diag::ext_nonstandard_escape) << "E"; 129 ResultChar = 27; 130 break; 131 case 'f': 132 ResultChar = 12; 133 break; 134 case 'n': 135 ResultChar = 10; 136 break; 137 case 'r': 138 ResultChar = 13; 139 break; 140 case 't': 141 ResultChar = 9; 142 break; 143 case 'v': 144 ResultChar = 11; 145 break; 146 case 'x': { // Hex escape. 147 ResultChar = 0; 148 if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') { 149 Delimited = true; 150 ThisTokBuf++; 151 if (*ThisTokBuf == '}') { 152 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 153 diag::err_delimited_escape_empty); 154 return ResultChar; 155 } 156 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) { 157 if (Diags) 158 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 159 diag::err_hex_escape_no_digits) << "x"; 160 return ResultChar; 161 } 162 163 // Hex escapes are a maximal series of hex digits. 164 bool Overflow = false; 165 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) { 166 if (Delimited && *ThisTokBuf == '}') { 167 ThisTokBuf++; 168 EndDelimiterFound = true; 169 break; 170 } 171 int CharVal = llvm::hexDigitValue(*ThisTokBuf); 172 if (CharVal == -1) { 173 // Non delimited hex escape sequences stop at the first non-hex digit. 174 if (!Delimited) 175 break; 176 HadError = true; 177 if (Diags) 178 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 179 diag::err_delimited_escape_invalid) 180 << StringRef(ThisTokBuf, 1); 181 continue; 182 } 183 // About to shift out a digit? 184 if (ResultChar & 0xF0000000) 185 Overflow = true; 186 ResultChar <<= 4; 187 ResultChar |= CharVal; 188 } 189 // See if any bits will be truncated when evaluated as a character. 190 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { 191 Overflow = true; 192 ResultChar &= ~0U >> (32-CharWidth); 193 } 194 195 // Check for overflow. 196 if (!HadError && Overflow) { // Too many digits to fit in 197 HadError = true; 198 if (Diags) 199 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 200 diag::err_escape_too_large) 201 << 0; 202 } 203 break; 204 } 205 case '0': case '1': case '2': case '3': 206 case '4': case '5': case '6': case '7': { 207 // Octal escapes. 208 --ThisTokBuf; 209 ResultChar = 0; 210 211 // Octal escapes are a series of octal digits with maximum length 3. 212 // "\0123" is a two digit sequence equal to "\012" "3". 213 unsigned NumDigits = 0; 214 do { 215 ResultChar <<= 3; 216 ResultChar |= *ThisTokBuf++ - '0'; 217 ++NumDigits; 218 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 && 219 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7'); 220 221 // Check for overflow. Reject '\777', but not L'\777'. 222 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { 223 if (Diags) 224 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 225 diag::err_escape_too_large) << 1; 226 ResultChar &= ~0U >> (32-CharWidth); 227 } 228 break; 229 } 230 case 'o': { 231 bool Overflow = false; 232 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') { 233 HadError = true; 234 if (Diags) 235 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 236 diag::err_delimited_escape_missing_brace); 237 238 break; 239 } 240 ResultChar = 0; 241 Delimited = true; 242 ++ThisTokBuf; 243 if (*ThisTokBuf == '}') { 244 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 245 diag::err_delimited_escape_empty); 246 return ResultChar; 247 } 248 249 while (ThisTokBuf != ThisTokEnd) { 250 if (*ThisTokBuf == '}') { 251 EndDelimiterFound = true; 252 ThisTokBuf++; 253 break; 254 } 255 if (*ThisTokBuf < '0' || *ThisTokBuf > '7') { 256 HadError = true; 257 if (Diags) 258 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 259 diag::err_delimited_escape_invalid) 260 << StringRef(ThisTokBuf, 1); 261 ThisTokBuf++; 262 continue; 263 } 264 if (ResultChar & 0x020000000) 265 Overflow = true; 266 267 ResultChar <<= 3; 268 ResultChar |= *ThisTokBuf++ - '0'; 269 } 270 // Check for overflow. Reject '\777', but not L'\777'. 271 if (!HadError && 272 (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) { 273 HadError = true; 274 if (Diags) 275 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 276 diag::err_escape_too_large) 277 << 1; 278 ResultChar &= ~0U >> (32 - CharWidth); 279 } 280 break; 281 } 282 // Otherwise, these are not valid escapes. 283 case '(': case '{': case '[': case '%': 284 // GCC accepts these as extensions. We warn about them as such though. 285 if (Diags) 286 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 287 diag::ext_nonstandard_escape) 288 << std::string(1, ResultChar); 289 break; 290 default: 291 if (!Diags) 292 break; 293 294 if (isPrintable(ResultChar)) 295 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 296 diag::ext_unknown_escape) 297 << std::string(1, ResultChar); 298 else 299 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 300 diag::ext_unknown_escape) 301 << "x" + llvm::utohexstr(ResultChar); 302 break; 303 } 304 305 if (Delimited && Diags) { 306 if (!EndDelimiterFound) 307 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 308 diag::err_expected) 309 << tok::r_brace; 310 else if (!HadError) { 311 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 312 diag::ext_delimited_escape_sequence); 313 } 314 } 315 316 return ResultChar; 317 } 318 319 static void appendCodePoint(unsigned Codepoint, 320 llvm::SmallVectorImpl<char> &Str) { 321 char ResultBuf[4]; 322 char *ResultPtr = ResultBuf; 323 if (llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr)) 324 Str.append(ResultBuf, ResultPtr); 325 } 326 327 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) { 328 for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) { 329 if (*I != '\\') { 330 Buf.push_back(*I); 331 continue; 332 } 333 334 ++I; 335 char Kind = *I; 336 ++I; 337 338 assert(Kind == 'u' || Kind == 'U'); 339 uint32_t CodePoint = 0; 340 341 if (Kind == 'u' && *I == '{') { 342 for (++I; *I != '}'; ++I) { 343 unsigned Value = llvm::hexDigitValue(*I); 344 assert(Value != -1U); 345 CodePoint <<= 4; 346 CodePoint += Value; 347 } 348 appendCodePoint(CodePoint, Buf); 349 continue; 350 } 351 352 unsigned NumHexDigits; 353 if (Kind == 'u') 354 NumHexDigits = 4; 355 else 356 NumHexDigits = 8; 357 358 assert(I + NumHexDigits <= E); 359 360 for (; NumHexDigits != 0; ++I, --NumHexDigits) { 361 unsigned Value = llvm::hexDigitValue(*I); 362 assert(Value != -1U); 363 364 CodePoint <<= 4; 365 CodePoint += Value; 366 } 367 368 appendCodePoint(CodePoint, Buf); 369 --I; 370 } 371 } 372 373 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and 374 /// return the UTF32. 375 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 376 const char *ThisTokEnd, 377 uint32_t &UcnVal, unsigned short &UcnLen, 378 FullSourceLoc Loc, DiagnosticsEngine *Diags, 379 const LangOptions &Features, 380 bool in_char_string_literal = false) { 381 const char *UcnBegin = ThisTokBuf; 382 383 // Skip the '\u' char's. 384 ThisTokBuf += 2; 385 386 bool Delimited = false; 387 bool EndDelimiterFound = false; 388 bool HasError = false; 389 390 if (UcnBegin[1] == 'u' && in_char_string_literal && 391 ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') { 392 Delimited = true; 393 ThisTokBuf++; 394 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) { 395 if (Diags) 396 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 397 diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1); 398 return false; 399 } 400 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8); 401 402 bool Overflow = false; 403 unsigned short Count = 0; 404 for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen); 405 ++ThisTokBuf) { 406 if (Delimited && *ThisTokBuf == '}') { 407 ++ThisTokBuf; 408 EndDelimiterFound = true; 409 break; 410 } 411 int CharVal = llvm::hexDigitValue(*ThisTokBuf); 412 if (CharVal == -1) { 413 HasError = true; 414 if (!Delimited) 415 break; 416 if (Diags) { 417 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 418 diag::err_delimited_escape_invalid) 419 << StringRef(ThisTokBuf, 1); 420 } 421 Count++; 422 continue; 423 } 424 if (UcnVal & 0xF0000000) { 425 Overflow = true; 426 continue; 427 } 428 UcnVal <<= 4; 429 UcnVal |= CharVal; 430 Count++; 431 } 432 433 if (Overflow) { 434 if (Diags) 435 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 436 diag::err_escape_too_large) 437 << 0; 438 return false; 439 } 440 441 if (Delimited && !EndDelimiterFound) { 442 if (Diags) { 443 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 444 diag::err_expected) 445 << tok::r_brace; 446 } 447 return false; 448 } 449 450 // If we didn't consume the proper number of digits, there is a problem. 451 if (Count == 0 || (!Delimited && Count != UcnLen)) { 452 if (Diags) 453 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 454 Delimited ? diag::err_delimited_escape_empty 455 : diag::err_ucn_escape_incomplete); 456 return false; 457 } 458 459 if (HasError) 460 return false; 461 462 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2] 463 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints 464 UcnVal > 0x10FFFF) { // maximum legal UTF32 value 465 if (Diags) 466 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 467 diag::err_ucn_escape_invalid); 468 return false; 469 } 470 471 // C++11 allows UCNs that refer to control characters and basic source 472 // characters inside character and string literals 473 if (UcnVal < 0xa0 && 474 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, ` 475 bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal); 476 if (Diags) { 477 char BasicSCSChar = UcnVal; 478 if (UcnVal >= 0x20 && UcnVal < 0x7f) 479 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 480 IsError ? diag::err_ucn_escape_basic_scs : 481 diag::warn_cxx98_compat_literal_ucn_escape_basic_scs) 482 << StringRef(&BasicSCSChar, 1); 483 else 484 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 485 IsError ? diag::err_ucn_control_character : 486 diag::warn_cxx98_compat_literal_ucn_control_character); 487 } 488 if (IsError) 489 return false; 490 } 491 492 if (!Features.CPlusPlus && !Features.C99 && Diags) 493 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 494 diag::warn_ucn_not_valid_in_c89_literal); 495 496 if (Delimited && Diags) 497 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 498 diag::ext_delimited_escape_sequence); 499 500 return true; 501 } 502 503 /// MeasureUCNEscape - Determine the number of bytes within the resulting string 504 /// which this UCN will occupy. 505 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 506 const char *ThisTokEnd, unsigned CharByteWidth, 507 const LangOptions &Features, bool &HadError) { 508 // UTF-32: 4 bytes per escape. 509 if (CharByteWidth == 4) 510 return 4; 511 512 uint32_t UcnVal = 0; 513 unsigned short UcnLen = 0; 514 FullSourceLoc Loc; 515 516 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, 517 UcnLen, Loc, nullptr, Features, true)) { 518 HadError = true; 519 return 0; 520 } 521 522 // UTF-16: 2 bytes for BMP, 4 bytes otherwise. 523 if (CharByteWidth == 2) 524 return UcnVal <= 0xFFFF ? 2 : 4; 525 526 // UTF-8. 527 if (UcnVal < 0x80) 528 return 1; 529 if (UcnVal < 0x800) 530 return 2; 531 if (UcnVal < 0x10000) 532 return 3; 533 return 4; 534 } 535 536 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and 537 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of 538 /// StringLiteralParser. When we decide to implement UCN's for identifiers, 539 /// we will likely rework our support for UCN's. 540 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 541 const char *ThisTokEnd, 542 char *&ResultBuf, bool &HadError, 543 FullSourceLoc Loc, unsigned CharByteWidth, 544 DiagnosticsEngine *Diags, 545 const LangOptions &Features) { 546 typedef uint32_t UTF32; 547 UTF32 UcnVal = 0; 548 unsigned short UcnLen = 0; 549 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen, 550 Loc, Diags, Features, true)) { 551 HadError = true; 552 return; 553 } 554 555 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 556 "only character widths of 1, 2, or 4 bytes supported"); 557 558 (void)UcnLen; 559 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported"); 560 561 if (CharByteWidth == 4) { 562 // FIXME: Make the type of the result buffer correct instead of 563 // using reinterpret_cast. 564 llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf); 565 *ResultPtr = UcnVal; 566 ResultBuf += 4; 567 return; 568 } 569 570 if (CharByteWidth == 2) { 571 // FIXME: Make the type of the result buffer correct instead of 572 // using reinterpret_cast. 573 llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf); 574 575 if (UcnVal <= (UTF32)0xFFFF) { 576 *ResultPtr = UcnVal; 577 ResultBuf += 2; 578 return; 579 } 580 581 // Convert to UTF16. 582 UcnVal -= 0x10000; 583 *ResultPtr = 0xD800 + (UcnVal >> 10); 584 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF); 585 ResultBuf += 4; 586 return; 587 } 588 589 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters"); 590 591 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8. 592 // The conversion below was inspired by: 593 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c 594 // First, we determine how many bytes the result will require. 595 typedef uint8_t UTF8; 596 597 unsigned short bytesToWrite = 0; 598 if (UcnVal < (UTF32)0x80) 599 bytesToWrite = 1; 600 else if (UcnVal < (UTF32)0x800) 601 bytesToWrite = 2; 602 else if (UcnVal < (UTF32)0x10000) 603 bytesToWrite = 3; 604 else 605 bytesToWrite = 4; 606 607 const unsigned byteMask = 0xBF; 608 const unsigned byteMark = 0x80; 609 610 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed 611 // into the first byte, depending on how many bytes follow. 612 static const UTF8 firstByteMark[5] = { 613 0x00, 0x00, 0xC0, 0xE0, 0xF0 614 }; 615 // Finally, we write the bytes into ResultBuf. 616 ResultBuf += bytesToWrite; 617 switch (bytesToWrite) { // note: everything falls through. 618 case 4: 619 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 620 LLVM_FALLTHROUGH; 621 case 3: 622 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 623 LLVM_FALLTHROUGH; 624 case 2: 625 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 626 LLVM_FALLTHROUGH; 627 case 1: 628 *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]); 629 } 630 // Update the buffer. 631 ResultBuf += bytesToWrite; 632 } 633 634 /// integer-constant: [C99 6.4.4.1] 635 /// decimal-constant integer-suffix 636 /// octal-constant integer-suffix 637 /// hexadecimal-constant integer-suffix 638 /// binary-literal integer-suffix [GNU, C++1y] 639 /// user-defined-integer-literal: [C++11 lex.ext] 640 /// decimal-literal ud-suffix 641 /// octal-literal ud-suffix 642 /// hexadecimal-literal ud-suffix 643 /// binary-literal ud-suffix [GNU, C++1y] 644 /// decimal-constant: 645 /// nonzero-digit 646 /// decimal-constant digit 647 /// octal-constant: 648 /// 0 649 /// octal-constant octal-digit 650 /// hexadecimal-constant: 651 /// hexadecimal-prefix hexadecimal-digit 652 /// hexadecimal-constant hexadecimal-digit 653 /// hexadecimal-prefix: one of 654 /// 0x 0X 655 /// binary-literal: 656 /// 0b binary-digit 657 /// 0B binary-digit 658 /// binary-literal binary-digit 659 /// integer-suffix: 660 /// unsigned-suffix [long-suffix] 661 /// unsigned-suffix [long-long-suffix] 662 /// long-suffix [unsigned-suffix] 663 /// long-long-suffix [unsigned-sufix] 664 /// nonzero-digit: 665 /// 1 2 3 4 5 6 7 8 9 666 /// octal-digit: 667 /// 0 1 2 3 4 5 6 7 668 /// hexadecimal-digit: 669 /// 0 1 2 3 4 5 6 7 8 9 670 /// a b c d e f 671 /// A B C D E F 672 /// binary-digit: 673 /// 0 674 /// 1 675 /// unsigned-suffix: one of 676 /// u U 677 /// long-suffix: one of 678 /// l L 679 /// long-long-suffix: one of 680 /// ll LL 681 /// 682 /// floating-constant: [C99 6.4.4.2] 683 /// TODO: add rules... 684 /// 685 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling, 686 SourceLocation TokLoc, 687 const SourceManager &SM, 688 const LangOptions &LangOpts, 689 const TargetInfo &Target, 690 DiagnosticsEngine &Diags) 691 : SM(SM), LangOpts(LangOpts), Diags(Diags), 692 ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) { 693 694 s = DigitsBegin = ThisTokBegin; 695 saw_exponent = false; 696 saw_period = false; 697 saw_ud_suffix = false; 698 saw_fixed_point_suffix = false; 699 isLong = false; 700 isUnsigned = false; 701 isLongLong = false; 702 isSizeT = false; 703 isHalf = false; 704 isFloat = false; 705 isImaginary = false; 706 isFloat16 = false; 707 isFloat128 = false; 708 MicrosoftInteger = 0; 709 isFract = false; 710 isAccum = false; 711 hadError = false; 712 isBitInt = false; 713 714 // This routine assumes that the range begin/end matches the regex for integer 715 // and FP constants (specifically, the 'pp-number' regex), and assumes that 716 // the byte at "*end" is both valid and not part of the regex. Because of 717 // this, it doesn't have to check for 'overscan' in various places. 718 if (isPreprocessingNumberBody(*ThisTokEnd)) { 719 Diags.Report(TokLoc, diag::err_lexing_numeric); 720 hadError = true; 721 return; 722 } 723 724 if (*s == '0') { // parse radix 725 ParseNumberStartingWithZero(TokLoc); 726 if (hadError) 727 return; 728 } else { // the first digit is non-zero 729 radix = 10; 730 s = SkipDigits(s); 731 if (s == ThisTokEnd) { 732 // Done. 733 } else { 734 ParseDecimalOrOctalCommon(TokLoc); 735 if (hadError) 736 return; 737 } 738 } 739 740 SuffixBegin = s; 741 checkSeparator(TokLoc, s, CSK_AfterDigits); 742 743 // Initial scan to lookahead for fixed point suffix. 744 if (LangOpts.FixedPoint) { 745 for (const char *c = s; c != ThisTokEnd; ++c) { 746 if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') { 747 saw_fixed_point_suffix = true; 748 break; 749 } 750 } 751 } 752 753 // Parse the suffix. At this point we can classify whether we have an FP or 754 // integer constant. 755 bool isFixedPointConstant = isFixedPointLiteral(); 756 bool isFPConstant = isFloatingLiteral(); 757 bool HasSize = false; 758 759 // Loop over all of the characters of the suffix. If we see something bad, 760 // we break out of the loop. 761 for (; s != ThisTokEnd; ++s) { 762 switch (*s) { 763 case 'R': 764 case 'r': 765 if (!LangOpts.FixedPoint) 766 break; 767 if (isFract || isAccum) break; 768 if (!(saw_period || saw_exponent)) break; 769 isFract = true; 770 continue; 771 case 'K': 772 case 'k': 773 if (!LangOpts.FixedPoint) 774 break; 775 if (isFract || isAccum) break; 776 if (!(saw_period || saw_exponent)) break; 777 isAccum = true; 778 continue; 779 case 'h': // FP Suffix for "half". 780 case 'H': 781 // OpenCL Extension v1.2 s9.5 - h or H suffix for half type. 782 if (!(LangOpts.Half || LangOpts.FixedPoint)) 783 break; 784 if (isIntegerLiteral()) break; // Error for integer constant. 785 if (HasSize) 786 break; 787 HasSize = true; 788 isHalf = true; 789 continue; // Success. 790 case 'f': // FP Suffix for "float" 791 case 'F': 792 if (!isFPConstant) break; // Error for integer constant. 793 if (HasSize) 794 break; 795 HasSize = true; 796 797 // CUDA host and device may have different _Float16 support, therefore 798 // allows f16 literals to avoid false alarm. 799 // ToDo: more precise check for CUDA. 800 if ((Target.hasFloat16Type() || LangOpts.CUDA) && s + 2 < ThisTokEnd && 801 s[1] == '1' && s[2] == '6') { 802 s += 2; // success, eat up 2 characters. 803 isFloat16 = true; 804 continue; 805 } 806 807 isFloat = true; 808 continue; // Success. 809 case 'q': // FP Suffix for "__float128" 810 case 'Q': 811 if (!isFPConstant) break; // Error for integer constant. 812 if (HasSize) 813 break; 814 HasSize = true; 815 isFloat128 = true; 816 continue; // Success. 817 case 'u': 818 case 'U': 819 if (isFPConstant) break; // Error for floating constant. 820 if (isUnsigned) break; // Cannot be repeated. 821 isUnsigned = true; 822 continue; // Success. 823 case 'l': 824 case 'L': 825 if (HasSize) 826 break; 827 HasSize = true; 828 829 // Check for long long. The L's need to be adjacent and the same case. 830 if (s[1] == s[0]) { 831 assert(s + 1 < ThisTokEnd && "didn't maximally munch?"); 832 if (isFPConstant) break; // long long invalid for floats. 833 isLongLong = true; 834 ++s; // Eat both of them. 835 } else { 836 isLong = true; 837 } 838 continue; // Success. 839 case 'z': 840 case 'Z': 841 if (isFPConstant) 842 break; // Invalid for floats. 843 if (HasSize) 844 break; 845 HasSize = true; 846 isSizeT = true; 847 continue; 848 case 'i': 849 case 'I': 850 if (LangOpts.MicrosoftExt && !isFPConstant) { 851 // Allow i8, i16, i32, and i64. First, look ahead and check if 852 // suffixes are Microsoft integers and not the imaginary unit. 853 uint8_t Bits = 0; 854 size_t ToSkip = 0; 855 switch (s[1]) { 856 case '8': // i8 suffix 857 Bits = 8; 858 ToSkip = 2; 859 break; 860 case '1': 861 if (s[2] == '6') { // i16 suffix 862 Bits = 16; 863 ToSkip = 3; 864 } 865 break; 866 case '3': 867 if (s[2] == '2') { // i32 suffix 868 Bits = 32; 869 ToSkip = 3; 870 } 871 break; 872 case '6': 873 if (s[2] == '4') { // i64 suffix 874 Bits = 64; 875 ToSkip = 3; 876 } 877 break; 878 default: 879 break; 880 } 881 if (Bits) { 882 if (HasSize) 883 break; 884 HasSize = true; 885 MicrosoftInteger = Bits; 886 s += ToSkip; 887 assert(s <= ThisTokEnd && "didn't maximally munch?"); 888 break; 889 } 890 } 891 LLVM_FALLTHROUGH; 892 case 'j': 893 case 'J': 894 if (isImaginary) break; // Cannot be repeated. 895 isImaginary = true; 896 continue; // Success. 897 case 'w': 898 case 'W': 899 if (isFPConstant) 900 break; // Invalid for floats. 901 if (HasSize) 902 break; // Invalid if we already have a size for the literal. 903 904 // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We 905 // explicitly do not support the suffix in C++ as an extension because a 906 // library-based UDL that resolves to a library type may be more 907 // appropriate there. 908 if (!LangOpts.CPlusPlus && ((s[0] == 'w' && s[1] == 'b') || 909 (s[0] == 'W' && s[1] == 'B'))) { 910 isBitInt = true; 911 HasSize = true; 912 ++s; // Skip both characters (2nd char skipped on continue). 913 continue; // Success. 914 } 915 } 916 // If we reached here, there was an error or a ud-suffix. 917 break; 918 } 919 920 // "i", "if", and "il" are user-defined suffixes in C++1y. 921 if (s != ThisTokEnd || isImaginary) { 922 // FIXME: Don't bother expanding UCNs if !tok.hasUCN(). 923 expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)); 924 if (isValidUDSuffix(LangOpts, UDSuffixBuf)) { 925 if (!isImaginary) { 926 // Any suffix pieces we might have parsed are actually part of the 927 // ud-suffix. 928 isLong = false; 929 isUnsigned = false; 930 isLongLong = false; 931 isSizeT = false; 932 isFloat = false; 933 isFloat16 = false; 934 isHalf = false; 935 isImaginary = false; 936 isBitInt = false; 937 MicrosoftInteger = 0; 938 saw_fixed_point_suffix = false; 939 isFract = false; 940 isAccum = false; 941 } 942 943 saw_ud_suffix = true; 944 return; 945 } 946 947 if (s != ThisTokEnd) { 948 // Report an error if there are any. 949 Diags.Report(Lexer::AdvanceToTokenCharacter( 950 TokLoc, SuffixBegin - ThisTokBegin, SM, LangOpts), 951 diag::err_invalid_suffix_constant) 952 << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin) 953 << (isFixedPointConstant ? 2 : isFPConstant); 954 hadError = true; 955 } 956 } 957 958 if (!hadError && saw_fixed_point_suffix) { 959 assert(isFract || isAccum); 960 } 961 } 962 963 /// ParseDecimalOrOctalCommon - This method is called for decimal or octal 964 /// numbers. It issues an error for illegal digits, and handles floating point 965 /// parsing. If it detects a floating point number, the radix is set to 10. 966 void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){ 967 assert((radix == 8 || radix == 10) && "Unexpected radix"); 968 969 // If we have a hex digit other than 'e' (which denotes a FP exponent) then 970 // the code is using an incorrect base. 971 if (isHexDigit(*s) && *s != 'e' && *s != 'E' && 972 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) { 973 Diags.Report( 974 Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, LangOpts), 975 diag::err_invalid_digit) 976 << StringRef(s, 1) << (radix == 8 ? 1 : 0); 977 hadError = true; 978 return; 979 } 980 981 if (*s == '.') { 982 checkSeparator(TokLoc, s, CSK_AfterDigits); 983 s++; 984 radix = 10; 985 saw_period = true; 986 checkSeparator(TokLoc, s, CSK_BeforeDigits); 987 s = SkipDigits(s); // Skip suffix. 988 } 989 if (*s == 'e' || *s == 'E') { // exponent 990 checkSeparator(TokLoc, s, CSK_AfterDigits); 991 const char *Exponent = s; 992 s++; 993 radix = 10; 994 saw_exponent = true; 995 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign 996 const char *first_non_digit = SkipDigits(s); 997 if (containsDigits(s, first_non_digit)) { 998 checkSeparator(TokLoc, s, CSK_BeforeDigits); 999 s = first_non_digit; 1000 } else { 1001 if (!hadError) { 1002 Diags.Report(Lexer::AdvanceToTokenCharacter( 1003 TokLoc, Exponent - ThisTokBegin, SM, LangOpts), 1004 diag::err_exponent_has_no_digits); 1005 hadError = true; 1006 } 1007 return; 1008 } 1009 } 1010 } 1011 1012 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved 1013 /// suffixes as ud-suffixes, because the diagnostic experience is better if we 1014 /// treat it as an invalid suffix. 1015 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, 1016 StringRef Suffix) { 1017 if (!LangOpts.CPlusPlus11 || Suffix.empty()) 1018 return false; 1019 1020 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid. 1021 if (Suffix[0] == '_') 1022 return true; 1023 1024 // In C++11, there are no library suffixes. 1025 if (!LangOpts.CPlusPlus14) 1026 return false; 1027 1028 // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library. 1029 // Per tweaked N3660, "il", "i", and "if" are also used in the library. 1030 // In C++2a "d" and "y" are used in the library. 1031 return llvm::StringSwitch<bool>(Suffix) 1032 .Cases("h", "min", "s", true) 1033 .Cases("ms", "us", "ns", true) 1034 .Cases("il", "i", "if", true) 1035 .Cases("d", "y", LangOpts.CPlusPlus20) 1036 .Default(false); 1037 } 1038 1039 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc, 1040 const char *Pos, 1041 CheckSeparatorKind IsAfterDigits) { 1042 if (IsAfterDigits == CSK_AfterDigits) { 1043 if (Pos == ThisTokBegin) 1044 return; 1045 --Pos; 1046 } else if (Pos == ThisTokEnd) 1047 return; 1048 1049 if (isDigitSeparator(*Pos)) { 1050 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin, SM, 1051 LangOpts), 1052 diag::err_digit_separator_not_between_digits) 1053 << IsAfterDigits; 1054 hadError = true; 1055 } 1056 } 1057 1058 /// ParseNumberStartingWithZero - This method is called when the first character 1059 /// of the number is found to be a zero. This means it is either an octal 1060 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or 1061 /// a floating point number (01239.123e4). Eat the prefix, determining the 1062 /// radix etc. 1063 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) { 1064 assert(s[0] == '0' && "Invalid method call"); 1065 s++; 1066 1067 int c1 = s[0]; 1068 1069 // Handle a hex number like 0x1234. 1070 if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) { 1071 s++; 1072 assert(s < ThisTokEnd && "didn't maximally munch?"); 1073 radix = 16; 1074 DigitsBegin = s; 1075 s = SkipHexDigits(s); 1076 bool HasSignificandDigits = containsDigits(DigitsBegin, s); 1077 if (s == ThisTokEnd) { 1078 // Done. 1079 } else if (*s == '.') { 1080 s++; 1081 saw_period = true; 1082 const char *floatDigitsBegin = s; 1083 s = SkipHexDigits(s); 1084 if (containsDigits(floatDigitsBegin, s)) 1085 HasSignificandDigits = true; 1086 if (HasSignificandDigits) 1087 checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits); 1088 } 1089 1090 if (!HasSignificandDigits) { 1091 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1092 LangOpts), 1093 diag::err_hex_constant_requires) 1094 << LangOpts.CPlusPlus << 1; 1095 hadError = true; 1096 return; 1097 } 1098 1099 // A binary exponent can appear with or with a '.'. If dotted, the 1100 // binary exponent is required. 1101 if (*s == 'p' || *s == 'P') { 1102 checkSeparator(TokLoc, s, CSK_AfterDigits); 1103 const char *Exponent = s; 1104 s++; 1105 saw_exponent = true; 1106 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign 1107 const char *first_non_digit = SkipDigits(s); 1108 if (!containsDigits(s, first_non_digit)) { 1109 if (!hadError) { 1110 Diags.Report(Lexer::AdvanceToTokenCharacter( 1111 TokLoc, Exponent - ThisTokBegin, SM, LangOpts), 1112 diag::err_exponent_has_no_digits); 1113 hadError = true; 1114 } 1115 return; 1116 } 1117 checkSeparator(TokLoc, s, CSK_BeforeDigits); 1118 s = first_non_digit; 1119 1120 if (!LangOpts.HexFloats) 1121 Diags.Report(TokLoc, LangOpts.CPlusPlus 1122 ? diag::ext_hex_literal_invalid 1123 : diag::ext_hex_constant_invalid); 1124 else if (LangOpts.CPlusPlus17) 1125 Diags.Report(TokLoc, diag::warn_cxx17_hex_literal); 1126 } else if (saw_period) { 1127 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1128 LangOpts), 1129 diag::err_hex_constant_requires) 1130 << LangOpts.CPlusPlus << 0; 1131 hadError = true; 1132 } 1133 return; 1134 } 1135 1136 // Handle simple binary numbers 0b01010 1137 if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) { 1138 // 0b101010 is a C++1y / GCC extension. 1139 Diags.Report(TokLoc, LangOpts.CPlusPlus14 1140 ? diag::warn_cxx11_compat_binary_literal 1141 : LangOpts.CPlusPlus ? diag::ext_binary_literal_cxx14 1142 : diag::ext_binary_literal); 1143 ++s; 1144 assert(s < ThisTokEnd && "didn't maximally munch?"); 1145 radix = 2; 1146 DigitsBegin = s; 1147 s = SkipBinaryDigits(s); 1148 if (s == ThisTokEnd) { 1149 // Done. 1150 } else if (isHexDigit(*s) && 1151 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) { 1152 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1153 LangOpts), 1154 diag::err_invalid_digit) 1155 << StringRef(s, 1) << 2; 1156 hadError = true; 1157 } 1158 // Other suffixes will be diagnosed by the caller. 1159 return; 1160 } 1161 1162 // For now, the radix is set to 8. If we discover that we have a 1163 // floating point constant, the radix will change to 10. Octal floating 1164 // point constants are not permitted (only decimal and hexadecimal). 1165 radix = 8; 1166 const char *PossibleNewDigitStart = s; 1167 s = SkipOctalDigits(s); 1168 // When the value is 0 followed by a suffix (like 0wb), we want to leave 0 1169 // as the start of the digits. So if skipping octal digits does not skip 1170 // anything, we leave the digit start where it was. 1171 if (s != PossibleNewDigitStart) 1172 DigitsBegin = PossibleNewDigitStart; 1173 1174 if (s == ThisTokEnd) 1175 return; // Done, simple octal number like 01234 1176 1177 // If we have some other non-octal digit that *is* a decimal digit, see if 1178 // this is part of a floating point number like 094.123 or 09e1. 1179 if (isDigit(*s)) { 1180 const char *EndDecimal = SkipDigits(s); 1181 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') { 1182 s = EndDecimal; 1183 radix = 10; 1184 } 1185 } 1186 1187 ParseDecimalOrOctalCommon(TokLoc); 1188 } 1189 1190 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) { 1191 switch (Radix) { 1192 case 2: 1193 return NumDigits <= 64; 1194 case 8: 1195 return NumDigits <= 64 / 3; // Digits are groups of 3 bits. 1196 case 10: 1197 return NumDigits <= 19; // floor(log10(2^64)) 1198 case 16: 1199 return NumDigits <= 64 / 4; // Digits are groups of 4 bits. 1200 default: 1201 llvm_unreachable("impossible Radix"); 1202 } 1203 } 1204 1205 /// GetIntegerValue - Convert this numeric literal value to an APInt that 1206 /// matches Val's input width. If there is an overflow, set Val to the low bits 1207 /// of the result and return true. Otherwise, return false. 1208 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) { 1209 // Fast path: Compute a conservative bound on the maximum number of 1210 // bits per digit in this radix. If we can't possibly overflow a 1211 // uint64 based on that bound then do the simple conversion to 1212 // integer. This avoids the expensive overflow checking below, and 1213 // handles the common cases that matter (small decimal integers and 1214 // hex/octal values which don't overflow). 1215 const unsigned NumDigits = SuffixBegin - DigitsBegin; 1216 if (alwaysFitsInto64Bits(radix, NumDigits)) { 1217 uint64_t N = 0; 1218 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr) 1219 if (!isDigitSeparator(*Ptr)) 1220 N = N * radix + llvm::hexDigitValue(*Ptr); 1221 1222 // This will truncate the value to Val's input width. Simply check 1223 // for overflow by comparing. 1224 Val = N; 1225 return Val.getZExtValue() != N; 1226 } 1227 1228 Val = 0; 1229 const char *Ptr = DigitsBegin; 1230 1231 llvm::APInt RadixVal(Val.getBitWidth(), radix); 1232 llvm::APInt CharVal(Val.getBitWidth(), 0); 1233 llvm::APInt OldVal = Val; 1234 1235 bool OverflowOccurred = false; 1236 while (Ptr < SuffixBegin) { 1237 if (isDigitSeparator(*Ptr)) { 1238 ++Ptr; 1239 continue; 1240 } 1241 1242 unsigned C = llvm::hexDigitValue(*Ptr++); 1243 1244 // If this letter is out of bound for this radix, reject it. 1245 assert(C < radix && "NumericLiteralParser ctor should have rejected this"); 1246 1247 CharVal = C; 1248 1249 // Add the digit to the value in the appropriate radix. If adding in digits 1250 // made the value smaller, then this overflowed. 1251 OldVal = Val; 1252 1253 // Multiply by radix, did overflow occur on the multiply? 1254 Val *= RadixVal; 1255 OverflowOccurred |= Val.udiv(RadixVal) != OldVal; 1256 1257 // Add value, did overflow occur on the value? 1258 // (a + b) ult b <=> overflow 1259 Val += CharVal; 1260 OverflowOccurred |= Val.ult(CharVal); 1261 } 1262 return OverflowOccurred; 1263 } 1264 1265 llvm::APFloat::opStatus 1266 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) { 1267 using llvm::APFloat; 1268 1269 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin); 1270 1271 llvm::SmallString<16> Buffer; 1272 StringRef Str(ThisTokBegin, n); 1273 if (Str.contains('\'')) { 1274 Buffer.reserve(n); 1275 std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer), 1276 &isDigitSeparator); 1277 Str = Buffer; 1278 } 1279 1280 auto StatusOrErr = 1281 Result.convertFromString(Str, APFloat::rmNearestTiesToEven); 1282 assert(StatusOrErr && "Invalid floating point representation"); 1283 return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr 1284 : APFloat::opInvalidOp; 1285 } 1286 1287 static inline bool IsExponentPart(char c) { 1288 return c == 'p' || c == 'P' || c == 'e' || c == 'E'; 1289 } 1290 1291 bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) { 1292 assert(radix == 16 || radix == 10); 1293 1294 // Find how many digits are needed to store the whole literal. 1295 unsigned NumDigits = SuffixBegin - DigitsBegin; 1296 if (saw_period) --NumDigits; 1297 1298 // Initial scan of the exponent if it exists 1299 bool ExpOverflowOccurred = false; 1300 bool NegativeExponent = false; 1301 const char *ExponentBegin; 1302 uint64_t Exponent = 0; 1303 int64_t BaseShift = 0; 1304 if (saw_exponent) { 1305 const char *Ptr = DigitsBegin; 1306 1307 while (!IsExponentPart(*Ptr)) ++Ptr; 1308 ExponentBegin = Ptr; 1309 ++Ptr; 1310 NegativeExponent = *Ptr == '-'; 1311 if (NegativeExponent) ++Ptr; 1312 1313 unsigned NumExpDigits = SuffixBegin - Ptr; 1314 if (alwaysFitsInto64Bits(radix, NumExpDigits)) { 1315 llvm::StringRef ExpStr(Ptr, NumExpDigits); 1316 llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10); 1317 Exponent = ExpInt.getZExtValue(); 1318 } else { 1319 ExpOverflowOccurred = true; 1320 } 1321 1322 if (NegativeExponent) BaseShift -= Exponent; 1323 else BaseShift += Exponent; 1324 } 1325 1326 // Number of bits needed for decimal literal is 1327 // ceil(NumDigits * log2(10)) Integral part 1328 // + Scale Fractional part 1329 // + ceil(Exponent * log2(10)) Exponent 1330 // -------------------------------------------------- 1331 // ceil((NumDigits + Exponent) * log2(10)) + Scale 1332 // 1333 // But for simplicity in handling integers, we can round up log2(10) to 4, 1334 // making: 1335 // 4 * (NumDigits + Exponent) + Scale 1336 // 1337 // Number of digits needed for hexadecimal literal is 1338 // 4 * NumDigits Integral part 1339 // + Scale Fractional part 1340 // + Exponent Exponent 1341 // -------------------------------------------------- 1342 // (4 * NumDigits) + Scale + Exponent 1343 uint64_t NumBitsNeeded; 1344 if (radix == 10) 1345 NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale; 1346 else 1347 NumBitsNeeded = 4 * NumDigits + Exponent + Scale; 1348 1349 if (NumBitsNeeded > std::numeric_limits<unsigned>::max()) 1350 ExpOverflowOccurred = true; 1351 llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false); 1352 1353 bool FoundDecimal = false; 1354 1355 int64_t FractBaseShift = 0; 1356 const char *End = saw_exponent ? ExponentBegin : SuffixBegin; 1357 for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) { 1358 if (*Ptr == '.') { 1359 FoundDecimal = true; 1360 continue; 1361 } 1362 1363 // Normal reading of an integer 1364 unsigned C = llvm::hexDigitValue(*Ptr); 1365 assert(C < radix && "NumericLiteralParser ctor should have rejected this"); 1366 1367 Val *= radix; 1368 Val += C; 1369 1370 if (FoundDecimal) 1371 // Keep track of how much we will need to adjust this value by from the 1372 // number of digits past the radix point. 1373 --FractBaseShift; 1374 } 1375 1376 // For a radix of 16, we will be multiplying by 2 instead of 16. 1377 if (radix == 16) FractBaseShift *= 4; 1378 BaseShift += FractBaseShift; 1379 1380 Val <<= Scale; 1381 1382 uint64_t Base = (radix == 16) ? 2 : 10; 1383 if (BaseShift > 0) { 1384 for (int64_t i = 0; i < BaseShift; ++i) { 1385 Val *= Base; 1386 } 1387 } else if (BaseShift < 0) { 1388 for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i) 1389 Val = Val.udiv(Base); 1390 } 1391 1392 bool IntOverflowOccurred = false; 1393 auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth()); 1394 if (Val.getBitWidth() > StoreVal.getBitWidth()) { 1395 IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth())); 1396 StoreVal = Val.trunc(StoreVal.getBitWidth()); 1397 } else if (Val.getBitWidth() < StoreVal.getBitWidth()) { 1398 IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal); 1399 StoreVal = Val.zext(StoreVal.getBitWidth()); 1400 } else { 1401 StoreVal = Val; 1402 } 1403 1404 return IntOverflowOccurred || ExpOverflowOccurred; 1405 } 1406 1407 /// \verbatim 1408 /// user-defined-character-literal: [C++11 lex.ext] 1409 /// character-literal ud-suffix 1410 /// ud-suffix: 1411 /// identifier 1412 /// character-literal: [C++11 lex.ccon] 1413 /// ' c-char-sequence ' 1414 /// u' c-char-sequence ' 1415 /// U' c-char-sequence ' 1416 /// L' c-char-sequence ' 1417 /// u8' c-char-sequence ' [C++1z lex.ccon] 1418 /// c-char-sequence: 1419 /// c-char 1420 /// c-char-sequence c-char 1421 /// c-char: 1422 /// any member of the source character set except the single-quote ', 1423 /// backslash \, or new-line character 1424 /// escape-sequence 1425 /// universal-character-name 1426 /// escape-sequence: 1427 /// simple-escape-sequence 1428 /// octal-escape-sequence 1429 /// hexadecimal-escape-sequence 1430 /// simple-escape-sequence: 1431 /// one of \' \" \? \\ \a \b \f \n \r \t \v 1432 /// octal-escape-sequence: 1433 /// \ octal-digit 1434 /// \ octal-digit octal-digit 1435 /// \ octal-digit octal-digit octal-digit 1436 /// hexadecimal-escape-sequence: 1437 /// \x hexadecimal-digit 1438 /// hexadecimal-escape-sequence hexadecimal-digit 1439 /// universal-character-name: [C++11 lex.charset] 1440 /// \u hex-quad 1441 /// \U hex-quad hex-quad 1442 /// hex-quad: 1443 /// hex-digit hex-digit hex-digit hex-digit 1444 /// \endverbatim 1445 /// 1446 CharLiteralParser::CharLiteralParser(const char *begin, const char *end, 1447 SourceLocation Loc, Preprocessor &PP, 1448 tok::TokenKind kind) { 1449 // At this point we know that the character matches the regex "(L|u|U)?'.*'". 1450 HadError = false; 1451 1452 Kind = kind; 1453 1454 const char *TokBegin = begin; 1455 1456 // Skip over wide character determinant. 1457 if (Kind != tok::char_constant) 1458 ++begin; 1459 if (Kind == tok::utf8_char_constant) 1460 ++begin; 1461 1462 // Skip over the entry quote. 1463 if (begin[0] != '\'') { 1464 PP.Diag(Loc, diag::err_lexing_char); 1465 HadError = true; 1466 return; 1467 } 1468 1469 ++begin; 1470 1471 // Remove an optional ud-suffix. 1472 if (end[-1] != '\'') { 1473 const char *UDSuffixEnd = end; 1474 do { 1475 --end; 1476 } while (end[-1] != '\''); 1477 // FIXME: Don't bother with this if !tok.hasUCN(). 1478 expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end)); 1479 UDSuffixOffset = end - TokBegin; 1480 } 1481 1482 // Trim the ending quote. 1483 assert(end != begin && "Invalid token lexed"); 1484 --end; 1485 1486 // FIXME: The "Value" is an uint64_t so we can handle char literals of 1487 // up to 64-bits. 1488 // FIXME: This extensively assumes that 'char' is 8-bits. 1489 assert(PP.getTargetInfo().getCharWidth() == 8 && 1490 "Assumes char is 8 bits"); 1491 assert(PP.getTargetInfo().getIntWidth() <= 64 && 1492 (PP.getTargetInfo().getIntWidth() & 7) == 0 && 1493 "Assumes sizeof(int) on target is <= 64 and a multiple of char"); 1494 assert(PP.getTargetInfo().getWCharWidth() <= 64 && 1495 "Assumes sizeof(wchar) on target is <= 64"); 1496 1497 SmallVector<uint32_t, 4> codepoint_buffer; 1498 codepoint_buffer.resize(end - begin); 1499 uint32_t *buffer_begin = &codepoint_buffer.front(); 1500 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size(); 1501 1502 // Unicode escapes representing characters that cannot be correctly 1503 // represented in a single code unit are disallowed in character literals 1504 // by this implementation. 1505 uint32_t largest_character_for_kind; 1506 if (tok::wide_char_constant == Kind) { 1507 largest_character_for_kind = 1508 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth()); 1509 } else if (tok::utf8_char_constant == Kind) { 1510 largest_character_for_kind = 0x7F; 1511 } else if (tok::utf16_char_constant == Kind) { 1512 largest_character_for_kind = 0xFFFF; 1513 } else if (tok::utf32_char_constant == Kind) { 1514 largest_character_for_kind = 0x10FFFF; 1515 } else { 1516 largest_character_for_kind = 0x7Fu; 1517 } 1518 1519 while (begin != end) { 1520 // Is this a span of non-escape characters? 1521 if (begin[0] != '\\') { 1522 char const *start = begin; 1523 do { 1524 ++begin; 1525 } while (begin != end && *begin != '\\'); 1526 1527 char const *tmp_in_start = start; 1528 uint32_t *tmp_out_start = buffer_begin; 1529 llvm::ConversionResult res = 1530 llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start), 1531 reinterpret_cast<llvm::UTF8 const *>(begin), 1532 &buffer_begin, buffer_end, llvm::strictConversion); 1533 if (res != llvm::conversionOK) { 1534 // If we see bad encoding for unprefixed character literals, warn and 1535 // simply copy the byte values, for compatibility with gcc and 1536 // older versions of clang. 1537 bool NoErrorOnBadEncoding = isAscii(); 1538 unsigned Msg = diag::err_bad_character_encoding; 1539 if (NoErrorOnBadEncoding) 1540 Msg = diag::warn_bad_character_encoding; 1541 PP.Diag(Loc, Msg); 1542 if (NoErrorOnBadEncoding) { 1543 start = tmp_in_start; 1544 buffer_begin = tmp_out_start; 1545 for (; start != begin; ++start, ++buffer_begin) 1546 *buffer_begin = static_cast<uint8_t>(*start); 1547 } else { 1548 HadError = true; 1549 } 1550 } else { 1551 for (; tmp_out_start < buffer_begin; ++tmp_out_start) { 1552 if (*tmp_out_start > largest_character_for_kind) { 1553 HadError = true; 1554 PP.Diag(Loc, diag::err_character_too_large); 1555 } 1556 } 1557 } 1558 1559 continue; 1560 } 1561 // Is this a Universal Character Name escape? 1562 if (begin[1] == 'u' || begin[1] == 'U') { 1563 unsigned short UcnLen = 0; 1564 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen, 1565 FullSourceLoc(Loc, PP.getSourceManager()), 1566 &PP.getDiagnostics(), PP.getLangOpts(), true)) { 1567 HadError = true; 1568 } else if (*buffer_begin > largest_character_for_kind) { 1569 HadError = true; 1570 PP.Diag(Loc, diag::err_character_too_large); 1571 } 1572 1573 ++buffer_begin; 1574 continue; 1575 } 1576 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo()); 1577 uint64_t result = 1578 ProcessCharEscape(TokBegin, begin, end, HadError, 1579 FullSourceLoc(Loc,PP.getSourceManager()), 1580 CharWidth, &PP.getDiagnostics(), PP.getLangOpts()); 1581 *buffer_begin++ = result; 1582 } 1583 1584 unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front(); 1585 1586 if (NumCharsSoFar > 1) { 1587 if (isAscii() && NumCharsSoFar == 4) 1588 PP.Diag(Loc, diag::warn_four_char_character_literal); 1589 else if (isAscii()) 1590 PP.Diag(Loc, diag::warn_multichar_character_literal); 1591 else { 1592 PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1); 1593 HadError = true; 1594 } 1595 IsMultiChar = true; 1596 } else { 1597 IsMultiChar = false; 1598 } 1599 1600 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0); 1601 1602 // Narrow character literals act as though their value is concatenated 1603 // in this implementation, but warn on overflow. 1604 bool multi_char_too_long = false; 1605 if (isAscii() && isMultiChar()) { 1606 LitVal = 0; 1607 for (size_t i = 0; i < NumCharsSoFar; ++i) { 1608 // check for enough leading zeros to shift into 1609 multi_char_too_long |= (LitVal.countLeadingZeros() < 8); 1610 LitVal <<= 8; 1611 LitVal = LitVal + (codepoint_buffer[i] & 0xFF); 1612 } 1613 } else if (NumCharsSoFar > 0) { 1614 // otherwise just take the last character 1615 LitVal = buffer_begin[-1]; 1616 } 1617 1618 if (!HadError && multi_char_too_long) { 1619 PP.Diag(Loc, diag::warn_char_constant_too_large); 1620 } 1621 1622 // Transfer the value from APInt to uint64_t 1623 Value = LitVal.getZExtValue(); 1624 1625 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1") 1626 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple 1627 // character constants are not sign extended in the this implementation: 1628 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC. 1629 if (isAscii() && NumCharsSoFar == 1 && (Value & 128) && 1630 PP.getLangOpts().CharIsSigned) 1631 Value = (signed char)Value; 1632 } 1633 1634 /// \verbatim 1635 /// string-literal: [C++0x lex.string] 1636 /// encoding-prefix " [s-char-sequence] " 1637 /// encoding-prefix R raw-string 1638 /// encoding-prefix: 1639 /// u8 1640 /// u 1641 /// U 1642 /// L 1643 /// s-char-sequence: 1644 /// s-char 1645 /// s-char-sequence s-char 1646 /// s-char: 1647 /// any member of the source character set except the double-quote ", 1648 /// backslash \, or new-line character 1649 /// escape-sequence 1650 /// universal-character-name 1651 /// raw-string: 1652 /// " d-char-sequence ( r-char-sequence ) d-char-sequence " 1653 /// r-char-sequence: 1654 /// r-char 1655 /// r-char-sequence r-char 1656 /// r-char: 1657 /// any member of the source character set, except a right parenthesis ) 1658 /// followed by the initial d-char-sequence (which may be empty) 1659 /// followed by a double quote ". 1660 /// d-char-sequence: 1661 /// d-char 1662 /// d-char-sequence d-char 1663 /// d-char: 1664 /// any member of the basic source character set except: 1665 /// space, the left parenthesis (, the right parenthesis ), 1666 /// the backslash \, and the control characters representing horizontal 1667 /// tab, vertical tab, form feed, and newline. 1668 /// escape-sequence: [C++0x lex.ccon] 1669 /// simple-escape-sequence 1670 /// octal-escape-sequence 1671 /// hexadecimal-escape-sequence 1672 /// simple-escape-sequence: 1673 /// one of \' \" \? \\ \a \b \f \n \r \t \v 1674 /// octal-escape-sequence: 1675 /// \ octal-digit 1676 /// \ octal-digit octal-digit 1677 /// \ octal-digit octal-digit octal-digit 1678 /// hexadecimal-escape-sequence: 1679 /// \x hexadecimal-digit 1680 /// hexadecimal-escape-sequence hexadecimal-digit 1681 /// universal-character-name: 1682 /// \u hex-quad 1683 /// \U hex-quad hex-quad 1684 /// hex-quad: 1685 /// hex-digit hex-digit hex-digit hex-digit 1686 /// \endverbatim 1687 /// 1688 StringLiteralParser:: 1689 StringLiteralParser(ArrayRef<Token> StringToks, 1690 Preprocessor &PP) 1691 : SM(PP.getSourceManager()), Features(PP.getLangOpts()), 1692 Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()), 1693 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown), 1694 ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) { 1695 init(StringToks); 1696 } 1697 1698 void StringLiteralParser::init(ArrayRef<Token> StringToks){ 1699 // The literal token may have come from an invalid source location (e.g. due 1700 // to a PCH error), in which case the token length will be 0. 1701 if (StringToks.empty() || StringToks[0].getLength() < 2) 1702 return DiagnoseLexingError(SourceLocation()); 1703 1704 // Scan all of the string portions, remember the max individual token length, 1705 // computing a bound on the concatenated string length, and see whether any 1706 // piece is a wide-string. If any of the string portions is a wide-string 1707 // literal, the result is a wide-string literal [C99 6.4.5p4]. 1708 assert(!StringToks.empty() && "expected at least one token"); 1709 MaxTokenLength = StringToks[0].getLength(); 1710 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!"); 1711 SizeBound = StringToks[0].getLength()-2; // -2 for "". 1712 Kind = StringToks[0].getKind(); 1713 1714 hadError = false; 1715 1716 // Implement Translation Phase #6: concatenation of string literals 1717 /// (C99 5.1.1.2p1). The common case is only one string fragment. 1718 for (unsigned i = 1; i != StringToks.size(); ++i) { 1719 if (StringToks[i].getLength() < 2) 1720 return DiagnoseLexingError(StringToks[i].getLocation()); 1721 1722 // The string could be shorter than this if it needs cleaning, but this is a 1723 // reasonable bound, which is all we need. 1724 assert(StringToks[i].getLength() >= 2 && "literal token is invalid!"); 1725 SizeBound += StringToks[i].getLength()-2; // -2 for "". 1726 1727 // Remember maximum string piece length. 1728 if (StringToks[i].getLength() > MaxTokenLength) 1729 MaxTokenLength = StringToks[i].getLength(); 1730 1731 // Remember if we see any wide or utf-8/16/32 strings. 1732 // Also check for illegal concatenations. 1733 if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) { 1734 if (isAscii()) { 1735 Kind = StringToks[i].getKind(); 1736 } else { 1737 if (Diags) 1738 Diags->Report(StringToks[i].getLocation(), 1739 diag::err_unsupported_string_concat); 1740 hadError = true; 1741 } 1742 } 1743 } 1744 1745 // Include space for the null terminator. 1746 ++SizeBound; 1747 1748 // TODO: K&R warning: "traditional C rejects string constant concatenation" 1749 1750 // Get the width in bytes of char/wchar_t/char16_t/char32_t 1751 CharByteWidth = getCharWidth(Kind, Target); 1752 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1753 CharByteWidth /= 8; 1754 1755 // The output buffer size needs to be large enough to hold wide characters. 1756 // This is a worst-case assumption which basically corresponds to L"" "long". 1757 SizeBound *= CharByteWidth; 1758 1759 // Size the temporary buffer to hold the result string data. 1760 ResultBuf.resize(SizeBound); 1761 1762 // Likewise, but for each string piece. 1763 SmallString<512> TokenBuf; 1764 TokenBuf.resize(MaxTokenLength); 1765 1766 // Loop over all the strings, getting their spelling, and expanding them to 1767 // wide strings as appropriate. 1768 ResultPtr = &ResultBuf[0]; // Next byte to fill in. 1769 1770 Pascal = false; 1771 1772 SourceLocation UDSuffixTokLoc; 1773 1774 for (unsigned i = 0, e = StringToks.size(); i != e; ++i) { 1775 const char *ThisTokBuf = &TokenBuf[0]; 1776 // Get the spelling of the token, which eliminates trigraphs, etc. We know 1777 // that ThisTokBuf points to a buffer that is big enough for the whole token 1778 // and 'spelled' tokens can only shrink. 1779 bool StringInvalid = false; 1780 unsigned ThisTokLen = 1781 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features, 1782 &StringInvalid); 1783 if (StringInvalid) 1784 return DiagnoseLexingError(StringToks[i].getLocation()); 1785 1786 const char *ThisTokBegin = ThisTokBuf; 1787 const char *ThisTokEnd = ThisTokBuf+ThisTokLen; 1788 1789 // Remove an optional ud-suffix. 1790 if (ThisTokEnd[-1] != '"') { 1791 const char *UDSuffixEnd = ThisTokEnd; 1792 do { 1793 --ThisTokEnd; 1794 } while (ThisTokEnd[-1] != '"'); 1795 1796 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd); 1797 1798 if (UDSuffixBuf.empty()) { 1799 if (StringToks[i].hasUCN()) 1800 expandUCNs(UDSuffixBuf, UDSuffix); 1801 else 1802 UDSuffixBuf.assign(UDSuffix); 1803 UDSuffixToken = i; 1804 UDSuffixOffset = ThisTokEnd - ThisTokBuf; 1805 UDSuffixTokLoc = StringToks[i].getLocation(); 1806 } else { 1807 SmallString<32> ExpandedUDSuffix; 1808 if (StringToks[i].hasUCN()) { 1809 expandUCNs(ExpandedUDSuffix, UDSuffix); 1810 UDSuffix = ExpandedUDSuffix; 1811 } 1812 1813 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the 1814 // result of a concatenation involving at least one user-defined-string- 1815 // literal, all the participating user-defined-string-literals shall 1816 // have the same ud-suffix. 1817 if (UDSuffixBuf != UDSuffix) { 1818 if (Diags) { 1819 SourceLocation TokLoc = StringToks[i].getLocation(); 1820 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix) 1821 << UDSuffixBuf << UDSuffix 1822 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc) 1823 << SourceRange(TokLoc, TokLoc); 1824 } 1825 hadError = true; 1826 } 1827 } 1828 } 1829 1830 // Strip the end quote. 1831 --ThisTokEnd; 1832 1833 // TODO: Input character set mapping support. 1834 1835 // Skip marker for wide or unicode strings. 1836 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') { 1837 ++ThisTokBuf; 1838 // Skip 8 of u8 marker for utf8 strings. 1839 if (ThisTokBuf[0] == '8') 1840 ++ThisTokBuf; 1841 } 1842 1843 // Check for raw string 1844 if (ThisTokBuf[0] == 'R') { 1845 if (ThisTokBuf[1] != '"') { 1846 // The file may have come from PCH and then changed after loading the 1847 // PCH; Fail gracefully. 1848 return DiagnoseLexingError(StringToks[i].getLocation()); 1849 } 1850 ThisTokBuf += 2; // skip R" 1851 1852 // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16 1853 // characters. 1854 constexpr unsigned MaxRawStrDelimLen = 16; 1855 1856 const char *Prefix = ThisTokBuf; 1857 while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen && 1858 ThisTokBuf[0] != '(') 1859 ++ThisTokBuf; 1860 if (ThisTokBuf[0] != '(') 1861 return DiagnoseLexingError(StringToks[i].getLocation()); 1862 ++ThisTokBuf; // skip '(' 1863 1864 // Remove same number of characters from the end 1865 ThisTokEnd -= ThisTokBuf - Prefix; 1866 if (ThisTokEnd < ThisTokBuf) 1867 return DiagnoseLexingError(StringToks[i].getLocation()); 1868 1869 // C++14 [lex.string]p4: A source-file new-line in a raw string literal 1870 // results in a new-line in the resulting execution string-literal. 1871 StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf); 1872 while (!RemainingTokenSpan.empty()) { 1873 // Split the string literal on \r\n boundaries. 1874 size_t CRLFPos = RemainingTokenSpan.find("\r\n"); 1875 StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos); 1876 StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos); 1877 1878 // Copy everything before the \r\n sequence into the string literal. 1879 if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF)) 1880 hadError = true; 1881 1882 // Point into the \n inside the \r\n sequence and operate on the 1883 // remaining portion of the literal. 1884 RemainingTokenSpan = AfterCRLF.substr(1); 1885 } 1886 } else { 1887 if (ThisTokBuf[0] != '"') { 1888 // The file may have come from PCH and then changed after loading the 1889 // PCH; Fail gracefully. 1890 return DiagnoseLexingError(StringToks[i].getLocation()); 1891 } 1892 ++ThisTokBuf; // skip " 1893 1894 // Check if this is a pascal string 1895 if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd && 1896 ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') { 1897 1898 // If the \p sequence is found in the first token, we have a pascal string 1899 // Otherwise, if we already have a pascal string, ignore the first \p 1900 if (i == 0) { 1901 ++ThisTokBuf; 1902 Pascal = true; 1903 } else if (Pascal) 1904 ThisTokBuf += 2; 1905 } 1906 1907 while (ThisTokBuf != ThisTokEnd) { 1908 // Is this a span of non-escape characters? 1909 if (ThisTokBuf[0] != '\\') { 1910 const char *InStart = ThisTokBuf; 1911 do { 1912 ++ThisTokBuf; 1913 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\'); 1914 1915 // Copy the character span over. 1916 if (CopyStringFragment(StringToks[i], ThisTokBegin, 1917 StringRef(InStart, ThisTokBuf - InStart))) 1918 hadError = true; 1919 continue; 1920 } 1921 // Is this a Universal Character Name escape? 1922 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') { 1923 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, 1924 ResultPtr, hadError, 1925 FullSourceLoc(StringToks[i].getLocation(), SM), 1926 CharByteWidth, Diags, Features); 1927 continue; 1928 } 1929 // Otherwise, this is a non-UCN escape character. Process it. 1930 unsigned ResultChar = 1931 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError, 1932 FullSourceLoc(StringToks[i].getLocation(), SM), 1933 CharByteWidth*8, Diags, Features); 1934 1935 if (CharByteWidth == 4) { 1936 // FIXME: Make the type of the result buffer correct instead of 1937 // using reinterpret_cast. 1938 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr); 1939 *ResultWidePtr = ResultChar; 1940 ResultPtr += 4; 1941 } else if (CharByteWidth == 2) { 1942 // FIXME: Make the type of the result buffer correct instead of 1943 // using reinterpret_cast. 1944 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr); 1945 *ResultWidePtr = ResultChar & 0xFFFF; 1946 ResultPtr += 2; 1947 } else { 1948 assert(CharByteWidth == 1 && "Unexpected char width"); 1949 *ResultPtr++ = ResultChar & 0xFF; 1950 } 1951 } 1952 } 1953 } 1954 1955 if (Pascal) { 1956 if (CharByteWidth == 4) { 1957 // FIXME: Make the type of the result buffer correct instead of 1958 // using reinterpret_cast. 1959 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data()); 1960 ResultWidePtr[0] = GetNumStringChars() - 1; 1961 } else if (CharByteWidth == 2) { 1962 // FIXME: Make the type of the result buffer correct instead of 1963 // using reinterpret_cast. 1964 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data()); 1965 ResultWidePtr[0] = GetNumStringChars() - 1; 1966 } else { 1967 assert(CharByteWidth == 1 && "Unexpected char width"); 1968 ResultBuf[0] = GetNumStringChars() - 1; 1969 } 1970 1971 // Verify that pascal strings aren't too large. 1972 if (GetStringLength() > 256) { 1973 if (Diags) 1974 Diags->Report(StringToks.front().getLocation(), 1975 diag::err_pascal_string_too_long) 1976 << SourceRange(StringToks.front().getLocation(), 1977 StringToks.back().getLocation()); 1978 hadError = true; 1979 return; 1980 } 1981 } else if (Diags) { 1982 // Complain if this string literal has too many characters. 1983 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509; 1984 1985 if (GetNumStringChars() > MaxChars) 1986 Diags->Report(StringToks.front().getLocation(), 1987 diag::ext_string_too_long) 1988 << GetNumStringChars() << MaxChars 1989 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0) 1990 << SourceRange(StringToks.front().getLocation(), 1991 StringToks.back().getLocation()); 1992 } 1993 } 1994 1995 static const char *resyncUTF8(const char *Err, const char *End) { 1996 if (Err == End) 1997 return End; 1998 End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err); 1999 while (++Err != End && (*Err & 0xC0) == 0x80) 2000 ; 2001 return Err; 2002 } 2003 2004 /// This function copies from Fragment, which is a sequence of bytes 2005 /// within Tok's contents (which begin at TokBegin) into ResultPtr. 2006 /// Performs widening for multi-byte characters. 2007 bool StringLiteralParser::CopyStringFragment(const Token &Tok, 2008 const char *TokBegin, 2009 StringRef Fragment) { 2010 const llvm::UTF8 *ErrorPtrTmp; 2011 if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp)) 2012 return false; 2013 2014 // If we see bad encoding for unprefixed string literals, warn and 2015 // simply copy the byte values, for compatibility with gcc and older 2016 // versions of clang. 2017 bool NoErrorOnBadEncoding = isAscii(); 2018 if (NoErrorOnBadEncoding) { 2019 memcpy(ResultPtr, Fragment.data(), Fragment.size()); 2020 ResultPtr += Fragment.size(); 2021 } 2022 2023 if (Diags) { 2024 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); 2025 2026 FullSourceLoc SourceLoc(Tok.getLocation(), SM); 2027 const DiagnosticBuilder &Builder = 2028 Diag(Diags, Features, SourceLoc, TokBegin, 2029 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()), 2030 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding 2031 : diag::err_bad_string_encoding); 2032 2033 const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end()); 2034 StringRef NextFragment(NextStart, Fragment.end()-NextStart); 2035 2036 // Decode into a dummy buffer. 2037 SmallString<512> Dummy; 2038 Dummy.reserve(Fragment.size() * CharByteWidth); 2039 char *Ptr = Dummy.data(); 2040 2041 while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) { 2042 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); 2043 NextStart = resyncUTF8(ErrorPtr, Fragment.end()); 2044 Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin, 2045 ErrorPtr, NextStart); 2046 NextFragment = StringRef(NextStart, Fragment.end()-NextStart); 2047 } 2048 } 2049 return !NoErrorOnBadEncoding; 2050 } 2051 2052 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) { 2053 hadError = true; 2054 if (Diags) 2055 Diags->Report(Loc, diag::err_lexing_string); 2056 } 2057 2058 /// getOffsetOfStringByte - This function returns the offset of the 2059 /// specified byte of the string data represented by Token. This handles 2060 /// advancing over escape sequences in the string. 2061 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok, 2062 unsigned ByteNo) const { 2063 // Get the spelling of the token. 2064 SmallString<32> SpellingBuffer; 2065 SpellingBuffer.resize(Tok.getLength()); 2066 2067 bool StringInvalid = false; 2068 const char *SpellingPtr = &SpellingBuffer[0]; 2069 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features, 2070 &StringInvalid); 2071 if (StringInvalid) 2072 return 0; 2073 2074 const char *SpellingStart = SpellingPtr; 2075 const char *SpellingEnd = SpellingPtr+TokLen; 2076 2077 // Handle UTF-8 strings just like narrow strings. 2078 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8') 2079 SpellingPtr += 2; 2080 2081 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' && 2082 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet"); 2083 2084 // For raw string literals, this is easy. 2085 if (SpellingPtr[0] == 'R') { 2086 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!"); 2087 // Skip 'R"'. 2088 SpellingPtr += 2; 2089 while (*SpellingPtr != '(') { 2090 ++SpellingPtr; 2091 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal"); 2092 } 2093 // Skip '('. 2094 ++SpellingPtr; 2095 return SpellingPtr - SpellingStart + ByteNo; 2096 } 2097 2098 // Skip over the leading quote 2099 assert(SpellingPtr[0] == '"' && "Should be a string literal!"); 2100 ++SpellingPtr; 2101 2102 // Skip over bytes until we find the offset we're looking for. 2103 while (ByteNo) { 2104 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!"); 2105 2106 // Step over non-escapes simply. 2107 if (*SpellingPtr != '\\') { 2108 ++SpellingPtr; 2109 --ByteNo; 2110 continue; 2111 } 2112 2113 // Otherwise, this is an escape character. Advance over it. 2114 bool HadError = false; 2115 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') { 2116 const char *EscapePtr = SpellingPtr; 2117 unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd, 2118 1, Features, HadError); 2119 if (Len > ByteNo) { 2120 // ByteNo is somewhere within the escape sequence. 2121 SpellingPtr = EscapePtr; 2122 break; 2123 } 2124 ByteNo -= Len; 2125 } else { 2126 ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError, 2127 FullSourceLoc(Tok.getLocation(), SM), 2128 CharByteWidth*8, Diags, Features); 2129 --ByteNo; 2130 } 2131 assert(!HadError && "This method isn't valid on erroneous strings"); 2132 } 2133 2134 return SpellingPtr-SpellingStart; 2135 } 2136 2137 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved 2138 /// suffixes as ud-suffixes, because the diagnostic experience is better if we 2139 /// treat it as an invalid suffix. 2140 bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, 2141 StringRef Suffix) { 2142 return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) || 2143 Suffix == "sv"; 2144 } 2145