1 //===- Lexer.cpp - C Language Family Lexer --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Lexer and Token interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Lex/Lexer.h" 14 #include "UnicodeCharSets.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/IdentifierTable.h" 18 #include "clang/Basic/LLVM.h" 19 #include "clang/Basic/LangOptions.h" 20 #include "clang/Basic/SourceLocation.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "clang/Basic/TokenKinds.h" 23 #include "clang/Lex/LexDiagnostic.h" 24 #include "clang/Lex/LiteralSupport.h" 25 #include "clang/Lex/MultipleIncludeOpt.h" 26 #include "clang/Lex/Preprocessor.h" 27 #include "clang/Lex/PreprocessorOptions.h" 28 #include "clang/Lex/Token.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/Optional.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/ADT/StringSwitch.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/MemoryBufferRef.h" 39 #include "llvm/Support/NativeFormatting.h" 40 #include "llvm/Support/UnicodeCharRanges.h" 41 #include <algorithm> 42 #include <cassert> 43 #include <cstddef> 44 #include <cstdint> 45 #include <cstring> 46 #include <string> 47 #include <tuple> 48 #include <utility> 49 50 using namespace clang; 51 52 //===----------------------------------------------------------------------===// 53 // Token Class Implementation 54 //===----------------------------------------------------------------------===// 55 56 /// isObjCAtKeyword - Return true if we have an ObjC keyword identifier. 57 bool Token::isObjCAtKeyword(tok::ObjCKeywordKind objcKey) const { 58 if (isAnnotation()) 59 return false; 60 if (IdentifierInfo *II = getIdentifierInfo()) 61 return II->getObjCKeywordID() == objcKey; 62 return false; 63 } 64 65 /// getObjCKeywordID - Return the ObjC keyword kind. 66 tok::ObjCKeywordKind Token::getObjCKeywordID() const { 67 if (isAnnotation()) 68 return tok::objc_not_keyword; 69 IdentifierInfo *specId = getIdentifierInfo(); 70 return specId ? specId->getObjCKeywordID() : tok::objc_not_keyword; 71 } 72 73 //===----------------------------------------------------------------------===// 74 // Lexer Class Implementation 75 //===----------------------------------------------------------------------===// 76 77 void Lexer::anchor() {} 78 79 void Lexer::InitLexer(const char *BufStart, const char *BufPtr, 80 const char *BufEnd) { 81 BufferStart = BufStart; 82 BufferPtr = BufPtr; 83 BufferEnd = BufEnd; 84 85 assert(BufEnd[0] == 0 && 86 "We assume that the input buffer has a null character at the end" 87 " to simplify lexing!"); 88 89 // Check whether we have a BOM in the beginning of the buffer. If yes - act 90 // accordingly. Right now we support only UTF-8 with and without BOM, so, just 91 // skip the UTF-8 BOM if it's present. 92 if (BufferStart == BufferPtr) { 93 // Determine the size of the BOM. 94 StringRef Buf(BufferStart, BufferEnd - BufferStart); 95 size_t BOMLength = llvm::StringSwitch<size_t>(Buf) 96 .StartsWith("\xEF\xBB\xBF", 3) // UTF-8 BOM 97 .Default(0); 98 99 // Skip the BOM. 100 BufferPtr += BOMLength; 101 } 102 103 Is_PragmaLexer = false; 104 CurrentConflictMarkerState = CMK_None; 105 106 // Start of the file is a start of line. 107 IsAtStartOfLine = true; 108 IsAtPhysicalStartOfLine = true; 109 110 HasLeadingSpace = false; 111 HasLeadingEmptyMacro = false; 112 113 // We are not after parsing a #. 114 ParsingPreprocessorDirective = false; 115 116 // We are not after parsing #include. 117 ParsingFilename = false; 118 119 // We are not in raw mode. Raw mode disables diagnostics and interpretation 120 // of tokens (e.g. identifiers, thus disabling macro expansion). It is used 121 // to quickly lex the tokens of the buffer, e.g. when handling a "#if 0" block 122 // or otherwise skipping over tokens. 123 LexingRawMode = false; 124 125 // Default to not keeping comments. 126 ExtendedTokenMode = 0; 127 128 NewLinePtr = nullptr; 129 } 130 131 /// Lexer constructor - Create a new lexer object for the specified buffer 132 /// with the specified preprocessor managing the lexing process. This lexer 133 /// assumes that the associated file buffer and Preprocessor objects will 134 /// outlive it, so it doesn't take ownership of either of them. 135 Lexer::Lexer(FileID FID, const llvm::MemoryBufferRef &InputFile, 136 Preprocessor &PP, bool IsFirstIncludeOfFile) 137 : PreprocessorLexer(&PP, FID), 138 FileLoc(PP.getSourceManager().getLocForStartOfFile(FID)), 139 LangOpts(PP.getLangOpts()), LineComment(LangOpts.LineComment), 140 IsFirstTimeLexingFile(IsFirstIncludeOfFile) { 141 InitLexer(InputFile.getBufferStart(), InputFile.getBufferStart(), 142 InputFile.getBufferEnd()); 143 144 resetExtendedTokenMode(); 145 } 146 147 /// Lexer constructor - Create a new raw lexer object. This object is only 148 /// suitable for calls to 'LexFromRawLexer'. This lexer assumes that the text 149 /// range will outlive it, so it doesn't take ownership of it. 150 Lexer::Lexer(SourceLocation fileloc, const LangOptions &langOpts, 151 const char *BufStart, const char *BufPtr, const char *BufEnd, 152 bool IsFirstIncludeOfFile) 153 : FileLoc(fileloc), LangOpts(langOpts), LineComment(LangOpts.LineComment), 154 IsFirstTimeLexingFile(IsFirstIncludeOfFile) { 155 InitLexer(BufStart, BufPtr, BufEnd); 156 157 // We *are* in raw mode. 158 LexingRawMode = true; 159 } 160 161 /// Lexer constructor - Create a new raw lexer object. This object is only 162 /// suitable for calls to 'LexFromRawLexer'. This lexer assumes that the text 163 /// range will outlive it, so it doesn't take ownership of it. 164 Lexer::Lexer(FileID FID, const llvm::MemoryBufferRef &FromFile, 165 const SourceManager &SM, const LangOptions &langOpts, 166 bool IsFirstIncludeOfFile) 167 : Lexer(SM.getLocForStartOfFile(FID), langOpts, FromFile.getBufferStart(), 168 FromFile.getBufferStart(), FromFile.getBufferEnd(), 169 IsFirstIncludeOfFile) {} 170 171 void Lexer::resetExtendedTokenMode() { 172 assert(PP && "Cannot reset token mode without a preprocessor"); 173 if (LangOpts.TraditionalCPP) 174 SetKeepWhitespaceMode(true); 175 else 176 SetCommentRetentionState(PP->getCommentRetentionState()); 177 } 178 179 /// Create_PragmaLexer: Lexer constructor - Create a new lexer object for 180 /// _Pragma expansion. This has a variety of magic semantics that this method 181 /// sets up. It returns a new'd Lexer that must be delete'd when done. 182 /// 183 /// On entrance to this routine, TokStartLoc is a macro location which has a 184 /// spelling loc that indicates the bytes to be lexed for the token and an 185 /// expansion location that indicates where all lexed tokens should be 186 /// "expanded from". 187 /// 188 /// TODO: It would really be nice to make _Pragma just be a wrapper around a 189 /// normal lexer that remaps tokens as they fly by. This would require making 190 /// Preprocessor::Lex virtual. Given that, we could just dump in a magic lexer 191 /// interface that could handle this stuff. This would pull GetMappedTokenLoc 192 /// out of the critical path of the lexer! 193 /// 194 Lexer *Lexer::Create_PragmaLexer(SourceLocation SpellingLoc, 195 SourceLocation ExpansionLocStart, 196 SourceLocation ExpansionLocEnd, 197 unsigned TokLen, Preprocessor &PP) { 198 SourceManager &SM = PP.getSourceManager(); 199 200 // Create the lexer as if we were going to lex the file normally. 201 FileID SpellingFID = SM.getFileID(SpellingLoc); 202 llvm::MemoryBufferRef InputFile = SM.getBufferOrFake(SpellingFID); 203 Lexer *L = new Lexer(SpellingFID, InputFile, PP); 204 205 // Now that the lexer is created, change the start/end locations so that we 206 // just lex the subsection of the file that we want. This is lexing from a 207 // scratch buffer. 208 const char *StrData = SM.getCharacterData(SpellingLoc); 209 210 L->BufferPtr = StrData; 211 L->BufferEnd = StrData+TokLen; 212 assert(L->BufferEnd[0] == 0 && "Buffer is not nul terminated!"); 213 214 // Set the SourceLocation with the remapping information. This ensures that 215 // GetMappedTokenLoc will remap the tokens as they are lexed. 216 L->FileLoc = SM.createExpansionLoc(SM.getLocForStartOfFile(SpellingFID), 217 ExpansionLocStart, 218 ExpansionLocEnd, TokLen); 219 220 // Ensure that the lexer thinks it is inside a directive, so that end \n will 221 // return an EOD token. 222 L->ParsingPreprocessorDirective = true; 223 224 // This lexer really is for _Pragma. 225 L->Is_PragmaLexer = true; 226 return L; 227 } 228 229 void Lexer::seek(unsigned Offset, bool IsAtStartOfLine) { 230 this->IsAtPhysicalStartOfLine = IsAtStartOfLine; 231 this->IsAtStartOfLine = IsAtStartOfLine; 232 assert((BufferStart + Offset) <= BufferEnd); 233 BufferPtr = BufferStart + Offset; 234 } 235 236 template <typename T> static void StringifyImpl(T &Str, char Quote) { 237 typename T::size_type i = 0, e = Str.size(); 238 while (i < e) { 239 if (Str[i] == '\\' || Str[i] == Quote) { 240 Str.insert(Str.begin() + i, '\\'); 241 i += 2; 242 ++e; 243 } else if (Str[i] == '\n' || Str[i] == '\r') { 244 // Replace '\r\n' and '\n\r' to '\\' followed by 'n'. 245 if ((i < e - 1) && (Str[i + 1] == '\n' || Str[i + 1] == '\r') && 246 Str[i] != Str[i + 1]) { 247 Str[i] = '\\'; 248 Str[i + 1] = 'n'; 249 } else { 250 // Replace '\n' and '\r' to '\\' followed by 'n'. 251 Str[i] = '\\'; 252 Str.insert(Str.begin() + i + 1, 'n'); 253 ++e; 254 } 255 i += 2; 256 } else 257 ++i; 258 } 259 } 260 261 std::string Lexer::Stringify(StringRef Str, bool Charify) { 262 std::string Result = std::string(Str); 263 char Quote = Charify ? '\'' : '"'; 264 StringifyImpl(Result, Quote); 265 return Result; 266 } 267 268 void Lexer::Stringify(SmallVectorImpl<char> &Str) { StringifyImpl(Str, '"'); } 269 270 //===----------------------------------------------------------------------===// 271 // Token Spelling 272 //===----------------------------------------------------------------------===// 273 274 /// Slow case of getSpelling. Extract the characters comprising the 275 /// spelling of this token from the provided input buffer. 276 static size_t getSpellingSlow(const Token &Tok, const char *BufPtr, 277 const LangOptions &LangOpts, char *Spelling) { 278 assert(Tok.needsCleaning() && "getSpellingSlow called on simple token"); 279 280 size_t Length = 0; 281 const char *BufEnd = BufPtr + Tok.getLength(); 282 283 if (tok::isStringLiteral(Tok.getKind())) { 284 // Munch the encoding-prefix and opening double-quote. 285 while (BufPtr < BufEnd) { 286 unsigned Size; 287 Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts); 288 BufPtr += Size; 289 290 if (Spelling[Length - 1] == '"') 291 break; 292 } 293 294 // Raw string literals need special handling; trigraph expansion and line 295 // splicing do not occur within their d-char-sequence nor within their 296 // r-char-sequence. 297 if (Length >= 2 && 298 Spelling[Length - 2] == 'R' && Spelling[Length - 1] == '"') { 299 // Search backwards from the end of the token to find the matching closing 300 // quote. 301 const char *RawEnd = BufEnd; 302 do --RawEnd; while (*RawEnd != '"'); 303 size_t RawLength = RawEnd - BufPtr + 1; 304 305 // Everything between the quotes is included verbatim in the spelling. 306 memcpy(Spelling + Length, BufPtr, RawLength); 307 Length += RawLength; 308 BufPtr += RawLength; 309 310 // The rest of the token is lexed normally. 311 } 312 } 313 314 while (BufPtr < BufEnd) { 315 unsigned Size; 316 Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts); 317 BufPtr += Size; 318 } 319 320 assert(Length < Tok.getLength() && 321 "NeedsCleaning flag set on token that didn't need cleaning!"); 322 return Length; 323 } 324 325 /// getSpelling() - Return the 'spelling' of this token. The spelling of a 326 /// token are the characters used to represent the token in the source file 327 /// after trigraph expansion and escaped-newline folding. In particular, this 328 /// wants to get the true, uncanonicalized, spelling of things like digraphs 329 /// UCNs, etc. 330 StringRef Lexer::getSpelling(SourceLocation loc, 331 SmallVectorImpl<char> &buffer, 332 const SourceManager &SM, 333 const LangOptions &options, 334 bool *invalid) { 335 // Break down the source location. 336 std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(loc); 337 338 // Try to the load the file buffer. 339 bool invalidTemp = false; 340 StringRef file = SM.getBufferData(locInfo.first, &invalidTemp); 341 if (invalidTemp) { 342 if (invalid) *invalid = true; 343 return {}; 344 } 345 346 const char *tokenBegin = file.data() + locInfo.second; 347 348 // Lex from the start of the given location. 349 Lexer lexer(SM.getLocForStartOfFile(locInfo.first), options, 350 file.begin(), tokenBegin, file.end()); 351 Token token; 352 lexer.LexFromRawLexer(token); 353 354 unsigned length = token.getLength(); 355 356 // Common case: no need for cleaning. 357 if (!token.needsCleaning()) 358 return StringRef(tokenBegin, length); 359 360 // Hard case, we need to relex the characters into the string. 361 buffer.resize(length); 362 buffer.resize(getSpellingSlow(token, tokenBegin, options, buffer.data())); 363 return StringRef(buffer.data(), buffer.size()); 364 } 365 366 /// getSpelling() - Return the 'spelling' of this token. The spelling of a 367 /// token are the characters used to represent the token in the source file 368 /// after trigraph expansion and escaped-newline folding. In particular, this 369 /// wants to get the true, uncanonicalized, spelling of things like digraphs 370 /// UCNs, etc. 371 std::string Lexer::getSpelling(const Token &Tok, const SourceManager &SourceMgr, 372 const LangOptions &LangOpts, bool *Invalid) { 373 assert((int)Tok.getLength() >= 0 && "Token character range is bogus!"); 374 375 bool CharDataInvalid = false; 376 const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation(), 377 &CharDataInvalid); 378 if (Invalid) 379 *Invalid = CharDataInvalid; 380 if (CharDataInvalid) 381 return {}; 382 383 // If this token contains nothing interesting, return it directly. 384 if (!Tok.needsCleaning()) 385 return std::string(TokStart, TokStart + Tok.getLength()); 386 387 std::string Result; 388 Result.resize(Tok.getLength()); 389 Result.resize(getSpellingSlow(Tok, TokStart, LangOpts, &*Result.begin())); 390 return Result; 391 } 392 393 /// getSpelling - This method is used to get the spelling of a token into a 394 /// preallocated buffer, instead of as an std::string. The caller is required 395 /// to allocate enough space for the token, which is guaranteed to be at least 396 /// Tok.getLength() bytes long. The actual length of the token is returned. 397 /// 398 /// Note that this method may do two possible things: it may either fill in 399 /// the buffer specified with characters, or it may *change the input pointer* 400 /// to point to a constant buffer with the data already in it (avoiding a 401 /// copy). The caller is not allowed to modify the returned buffer pointer 402 /// if an internal buffer is returned. 403 unsigned Lexer::getSpelling(const Token &Tok, const char *&Buffer, 404 const SourceManager &SourceMgr, 405 const LangOptions &LangOpts, bool *Invalid) { 406 assert((int)Tok.getLength() >= 0 && "Token character range is bogus!"); 407 408 const char *TokStart = nullptr; 409 // NOTE: this has to be checked *before* testing for an IdentifierInfo. 410 if (Tok.is(tok::raw_identifier)) 411 TokStart = Tok.getRawIdentifier().data(); 412 else if (!Tok.hasUCN()) { 413 if (const IdentifierInfo *II = Tok.getIdentifierInfo()) { 414 // Just return the string from the identifier table, which is very quick. 415 Buffer = II->getNameStart(); 416 return II->getLength(); 417 } 418 } 419 420 // NOTE: this can be checked even after testing for an IdentifierInfo. 421 if (Tok.isLiteral()) 422 TokStart = Tok.getLiteralData(); 423 424 if (!TokStart) { 425 // Compute the start of the token in the input lexer buffer. 426 bool CharDataInvalid = false; 427 TokStart = SourceMgr.getCharacterData(Tok.getLocation(), &CharDataInvalid); 428 if (Invalid) 429 *Invalid = CharDataInvalid; 430 if (CharDataInvalid) { 431 Buffer = ""; 432 return 0; 433 } 434 } 435 436 // If this token contains nothing interesting, return it directly. 437 if (!Tok.needsCleaning()) { 438 Buffer = TokStart; 439 return Tok.getLength(); 440 } 441 442 // Otherwise, hard case, relex the characters into the string. 443 return getSpellingSlow(Tok, TokStart, LangOpts, const_cast<char*>(Buffer)); 444 } 445 446 /// MeasureTokenLength - Relex the token at the specified location and return 447 /// its length in bytes in the input file. If the token needs cleaning (e.g. 448 /// includes a trigraph or an escaped newline) then this count includes bytes 449 /// that are part of that. 450 unsigned Lexer::MeasureTokenLength(SourceLocation Loc, 451 const SourceManager &SM, 452 const LangOptions &LangOpts) { 453 Token TheTok; 454 if (getRawToken(Loc, TheTok, SM, LangOpts)) 455 return 0; 456 return TheTok.getLength(); 457 } 458 459 /// Relex the token at the specified location. 460 /// \returns true if there was a failure, false on success. 461 bool Lexer::getRawToken(SourceLocation Loc, Token &Result, 462 const SourceManager &SM, 463 const LangOptions &LangOpts, 464 bool IgnoreWhiteSpace) { 465 // TODO: this could be special cased for common tokens like identifiers, ')', 466 // etc to make this faster, if it mattered. Just look at StrData[0] to handle 467 // all obviously single-char tokens. This could use 468 // Lexer::isObviouslySimpleCharacter for example to handle identifiers or 469 // something. 470 471 // If this comes from a macro expansion, we really do want the macro name, not 472 // the token this macro expanded to. 473 Loc = SM.getExpansionLoc(Loc); 474 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); 475 bool Invalid = false; 476 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 477 if (Invalid) 478 return true; 479 480 const char *StrData = Buffer.data()+LocInfo.second; 481 482 if (!IgnoreWhiteSpace && isWhitespace(StrData[0])) 483 return true; 484 485 // Create a lexer starting at the beginning of this token. 486 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts, 487 Buffer.begin(), StrData, Buffer.end()); 488 TheLexer.SetCommentRetentionState(true); 489 TheLexer.LexFromRawLexer(Result); 490 return false; 491 } 492 493 /// Returns the pointer that points to the beginning of line that contains 494 /// the given offset, or null if the offset if invalid. 495 static const char *findBeginningOfLine(StringRef Buffer, unsigned Offset) { 496 const char *BufStart = Buffer.data(); 497 if (Offset >= Buffer.size()) 498 return nullptr; 499 500 const char *LexStart = BufStart + Offset; 501 for (; LexStart != BufStart; --LexStart) { 502 if (isVerticalWhitespace(LexStart[0]) && 503 !Lexer::isNewLineEscaped(BufStart, LexStart)) { 504 // LexStart should point at first character of logical line. 505 ++LexStart; 506 break; 507 } 508 } 509 return LexStart; 510 } 511 512 static SourceLocation getBeginningOfFileToken(SourceLocation Loc, 513 const SourceManager &SM, 514 const LangOptions &LangOpts) { 515 assert(Loc.isFileID()); 516 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); 517 if (LocInfo.first.isInvalid()) 518 return Loc; 519 520 bool Invalid = false; 521 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 522 if (Invalid) 523 return Loc; 524 525 // Back up from the current location until we hit the beginning of a line 526 // (or the buffer). We'll relex from that point. 527 const char *StrData = Buffer.data() + LocInfo.second; 528 const char *LexStart = findBeginningOfLine(Buffer, LocInfo.second); 529 if (!LexStart || LexStart == StrData) 530 return Loc; 531 532 // Create a lexer starting at the beginning of this token. 533 SourceLocation LexerStartLoc = Loc.getLocWithOffset(-LocInfo.second); 534 Lexer TheLexer(LexerStartLoc, LangOpts, Buffer.data(), LexStart, 535 Buffer.end()); 536 TheLexer.SetCommentRetentionState(true); 537 538 // Lex tokens until we find the token that contains the source location. 539 Token TheTok; 540 do { 541 TheLexer.LexFromRawLexer(TheTok); 542 543 if (TheLexer.getBufferLocation() > StrData) { 544 // Lexing this token has taken the lexer past the source location we're 545 // looking for. If the current token encompasses our source location, 546 // return the beginning of that token. 547 if (TheLexer.getBufferLocation() - TheTok.getLength() <= StrData) 548 return TheTok.getLocation(); 549 550 // We ended up skipping over the source location entirely, which means 551 // that it points into whitespace. We're done here. 552 break; 553 } 554 } while (TheTok.getKind() != tok::eof); 555 556 // We've passed our source location; just return the original source location. 557 return Loc; 558 } 559 560 SourceLocation Lexer::GetBeginningOfToken(SourceLocation Loc, 561 const SourceManager &SM, 562 const LangOptions &LangOpts) { 563 if (Loc.isFileID()) 564 return getBeginningOfFileToken(Loc, SM, LangOpts); 565 566 if (!SM.isMacroArgExpansion(Loc)) 567 return Loc; 568 569 SourceLocation FileLoc = SM.getSpellingLoc(Loc); 570 SourceLocation BeginFileLoc = getBeginningOfFileToken(FileLoc, SM, LangOpts); 571 std::pair<FileID, unsigned> FileLocInfo = SM.getDecomposedLoc(FileLoc); 572 std::pair<FileID, unsigned> BeginFileLocInfo = 573 SM.getDecomposedLoc(BeginFileLoc); 574 assert(FileLocInfo.first == BeginFileLocInfo.first && 575 FileLocInfo.second >= BeginFileLocInfo.second); 576 return Loc.getLocWithOffset(BeginFileLocInfo.second - FileLocInfo.second); 577 } 578 579 namespace { 580 581 enum PreambleDirectiveKind { 582 PDK_Skipped, 583 PDK_Unknown 584 }; 585 586 } // namespace 587 588 PreambleBounds Lexer::ComputePreamble(StringRef Buffer, 589 const LangOptions &LangOpts, 590 unsigned MaxLines) { 591 // Create a lexer starting at the beginning of the file. Note that we use a 592 // "fake" file source location at offset 1 so that the lexer will track our 593 // position within the file. 594 const SourceLocation::UIntTy StartOffset = 1; 595 SourceLocation FileLoc = SourceLocation::getFromRawEncoding(StartOffset); 596 Lexer TheLexer(FileLoc, LangOpts, Buffer.begin(), Buffer.begin(), 597 Buffer.end()); 598 TheLexer.SetCommentRetentionState(true); 599 600 bool InPreprocessorDirective = false; 601 Token TheTok; 602 SourceLocation ActiveCommentLoc; 603 604 unsigned MaxLineOffset = 0; 605 if (MaxLines) { 606 const char *CurPtr = Buffer.begin(); 607 unsigned CurLine = 0; 608 while (CurPtr != Buffer.end()) { 609 char ch = *CurPtr++; 610 if (ch == '\n') { 611 ++CurLine; 612 if (CurLine == MaxLines) 613 break; 614 } 615 } 616 if (CurPtr != Buffer.end()) 617 MaxLineOffset = CurPtr - Buffer.begin(); 618 } 619 620 do { 621 TheLexer.LexFromRawLexer(TheTok); 622 623 if (InPreprocessorDirective) { 624 // If we've hit the end of the file, we're done. 625 if (TheTok.getKind() == tok::eof) { 626 break; 627 } 628 629 // If we haven't hit the end of the preprocessor directive, skip this 630 // token. 631 if (!TheTok.isAtStartOfLine()) 632 continue; 633 634 // We've passed the end of the preprocessor directive, and will look 635 // at this token again below. 636 InPreprocessorDirective = false; 637 } 638 639 // Keep track of the # of lines in the preamble. 640 if (TheTok.isAtStartOfLine()) { 641 unsigned TokOffset = TheTok.getLocation().getRawEncoding() - StartOffset; 642 643 // If we were asked to limit the number of lines in the preamble, 644 // and we're about to exceed that limit, we're done. 645 if (MaxLineOffset && TokOffset >= MaxLineOffset) 646 break; 647 } 648 649 // Comments are okay; skip over them. 650 if (TheTok.getKind() == tok::comment) { 651 if (ActiveCommentLoc.isInvalid()) 652 ActiveCommentLoc = TheTok.getLocation(); 653 continue; 654 } 655 656 if (TheTok.isAtStartOfLine() && TheTok.getKind() == tok::hash) { 657 // This is the start of a preprocessor directive. 658 Token HashTok = TheTok; 659 InPreprocessorDirective = true; 660 ActiveCommentLoc = SourceLocation(); 661 662 // Figure out which directive this is. Since we're lexing raw tokens, 663 // we don't have an identifier table available. Instead, just look at 664 // the raw identifier to recognize and categorize preprocessor directives. 665 TheLexer.LexFromRawLexer(TheTok); 666 if (TheTok.getKind() == tok::raw_identifier && !TheTok.needsCleaning()) { 667 StringRef Keyword = TheTok.getRawIdentifier(); 668 PreambleDirectiveKind PDK 669 = llvm::StringSwitch<PreambleDirectiveKind>(Keyword) 670 .Case("include", PDK_Skipped) 671 .Case("__include_macros", PDK_Skipped) 672 .Case("define", PDK_Skipped) 673 .Case("undef", PDK_Skipped) 674 .Case("line", PDK_Skipped) 675 .Case("error", PDK_Skipped) 676 .Case("pragma", PDK_Skipped) 677 .Case("import", PDK_Skipped) 678 .Case("include_next", PDK_Skipped) 679 .Case("warning", PDK_Skipped) 680 .Case("ident", PDK_Skipped) 681 .Case("sccs", PDK_Skipped) 682 .Case("assert", PDK_Skipped) 683 .Case("unassert", PDK_Skipped) 684 .Case("if", PDK_Skipped) 685 .Case("ifdef", PDK_Skipped) 686 .Case("ifndef", PDK_Skipped) 687 .Case("elif", PDK_Skipped) 688 .Case("elifdef", PDK_Skipped) 689 .Case("elifndef", PDK_Skipped) 690 .Case("else", PDK_Skipped) 691 .Case("endif", PDK_Skipped) 692 .Default(PDK_Unknown); 693 694 switch (PDK) { 695 case PDK_Skipped: 696 continue; 697 698 case PDK_Unknown: 699 // We don't know what this directive is; stop at the '#'. 700 break; 701 } 702 } 703 704 // We only end up here if we didn't recognize the preprocessor 705 // directive or it was one that can't occur in the preamble at this 706 // point. Roll back the current token to the location of the '#'. 707 TheTok = HashTok; 708 } 709 710 // We hit a token that we don't recognize as being in the 711 // "preprocessing only" part of the file, so we're no longer in 712 // the preamble. 713 break; 714 } while (true); 715 716 SourceLocation End; 717 if (ActiveCommentLoc.isValid()) 718 End = ActiveCommentLoc; // don't truncate a decl comment. 719 else 720 End = TheTok.getLocation(); 721 722 return PreambleBounds(End.getRawEncoding() - FileLoc.getRawEncoding(), 723 TheTok.isAtStartOfLine()); 724 } 725 726 unsigned Lexer::getTokenPrefixLength(SourceLocation TokStart, unsigned CharNo, 727 const SourceManager &SM, 728 const LangOptions &LangOpts) { 729 // Figure out how many physical characters away the specified expansion 730 // character is. This needs to take into consideration newlines and 731 // trigraphs. 732 bool Invalid = false; 733 const char *TokPtr = SM.getCharacterData(TokStart, &Invalid); 734 735 // If they request the first char of the token, we're trivially done. 736 if (Invalid || (CharNo == 0 && Lexer::isObviouslySimpleCharacter(*TokPtr))) 737 return 0; 738 739 unsigned PhysOffset = 0; 740 741 // The usual case is that tokens don't contain anything interesting. Skip 742 // over the uninteresting characters. If a token only consists of simple 743 // chars, this method is extremely fast. 744 while (Lexer::isObviouslySimpleCharacter(*TokPtr)) { 745 if (CharNo == 0) 746 return PhysOffset; 747 ++TokPtr; 748 --CharNo; 749 ++PhysOffset; 750 } 751 752 // If we have a character that may be a trigraph or escaped newline, use a 753 // lexer to parse it correctly. 754 for (; CharNo; --CharNo) { 755 unsigned Size; 756 Lexer::getCharAndSizeNoWarn(TokPtr, Size, LangOpts); 757 TokPtr += Size; 758 PhysOffset += Size; 759 } 760 761 // Final detail: if we end up on an escaped newline, we want to return the 762 // location of the actual byte of the token. For example foo\<newline>bar 763 // advanced by 3 should return the location of b, not of \\. One compounding 764 // detail of this is that the escape may be made by a trigraph. 765 if (!Lexer::isObviouslySimpleCharacter(*TokPtr)) 766 PhysOffset += Lexer::SkipEscapedNewLines(TokPtr)-TokPtr; 767 768 return PhysOffset; 769 } 770 771 /// Computes the source location just past the end of the 772 /// token at this source location. 773 /// 774 /// This routine can be used to produce a source location that 775 /// points just past the end of the token referenced by \p Loc, and 776 /// is generally used when a diagnostic needs to point just after a 777 /// token where it expected something different that it received. If 778 /// the returned source location would not be meaningful (e.g., if 779 /// it points into a macro), this routine returns an invalid 780 /// source location. 781 /// 782 /// \param Offset an offset from the end of the token, where the source 783 /// location should refer to. The default offset (0) produces a source 784 /// location pointing just past the end of the token; an offset of 1 produces 785 /// a source location pointing to the last character in the token, etc. 786 SourceLocation Lexer::getLocForEndOfToken(SourceLocation Loc, unsigned Offset, 787 const SourceManager &SM, 788 const LangOptions &LangOpts) { 789 if (Loc.isInvalid()) 790 return {}; 791 792 if (Loc.isMacroID()) { 793 if (Offset > 0 || !isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc)) 794 return {}; // Points inside the macro expansion. 795 } 796 797 unsigned Len = Lexer::MeasureTokenLength(Loc, SM, LangOpts); 798 if (Len > Offset) 799 Len = Len - Offset; 800 else 801 return Loc; 802 803 return Loc.getLocWithOffset(Len); 804 } 805 806 /// Returns true if the given MacroID location points at the first 807 /// token of the macro expansion. 808 bool Lexer::isAtStartOfMacroExpansion(SourceLocation loc, 809 const SourceManager &SM, 810 const LangOptions &LangOpts, 811 SourceLocation *MacroBegin) { 812 assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc"); 813 814 SourceLocation expansionLoc; 815 if (!SM.isAtStartOfImmediateMacroExpansion(loc, &expansionLoc)) 816 return false; 817 818 if (expansionLoc.isFileID()) { 819 // No other macro expansions, this is the first. 820 if (MacroBegin) 821 *MacroBegin = expansionLoc; 822 return true; 823 } 824 825 return isAtStartOfMacroExpansion(expansionLoc, SM, LangOpts, MacroBegin); 826 } 827 828 /// Returns true if the given MacroID location points at the last 829 /// token of the macro expansion. 830 bool Lexer::isAtEndOfMacroExpansion(SourceLocation loc, 831 const SourceManager &SM, 832 const LangOptions &LangOpts, 833 SourceLocation *MacroEnd) { 834 assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc"); 835 836 SourceLocation spellLoc = SM.getSpellingLoc(loc); 837 unsigned tokLen = MeasureTokenLength(spellLoc, SM, LangOpts); 838 if (tokLen == 0) 839 return false; 840 841 SourceLocation afterLoc = loc.getLocWithOffset(tokLen); 842 SourceLocation expansionLoc; 843 if (!SM.isAtEndOfImmediateMacroExpansion(afterLoc, &expansionLoc)) 844 return false; 845 846 if (expansionLoc.isFileID()) { 847 // No other macro expansions. 848 if (MacroEnd) 849 *MacroEnd = expansionLoc; 850 return true; 851 } 852 853 return isAtEndOfMacroExpansion(expansionLoc, SM, LangOpts, MacroEnd); 854 } 855 856 static CharSourceRange makeRangeFromFileLocs(CharSourceRange Range, 857 const SourceManager &SM, 858 const LangOptions &LangOpts) { 859 SourceLocation Begin = Range.getBegin(); 860 SourceLocation End = Range.getEnd(); 861 assert(Begin.isFileID() && End.isFileID()); 862 if (Range.isTokenRange()) { 863 End = Lexer::getLocForEndOfToken(End, 0, SM,LangOpts); 864 if (End.isInvalid()) 865 return {}; 866 } 867 868 // Break down the source locations. 869 FileID FID; 870 unsigned BeginOffs; 871 std::tie(FID, BeginOffs) = SM.getDecomposedLoc(Begin); 872 if (FID.isInvalid()) 873 return {}; 874 875 unsigned EndOffs; 876 if (!SM.isInFileID(End, FID, &EndOffs) || 877 BeginOffs > EndOffs) 878 return {}; 879 880 return CharSourceRange::getCharRange(Begin, End); 881 } 882 883 // Assumes that `Loc` is in an expansion. 884 static bool isInExpansionTokenRange(const SourceLocation Loc, 885 const SourceManager &SM) { 886 return SM.getSLocEntry(SM.getFileID(Loc)) 887 .getExpansion() 888 .isExpansionTokenRange(); 889 } 890 891 CharSourceRange Lexer::makeFileCharRange(CharSourceRange Range, 892 const SourceManager &SM, 893 const LangOptions &LangOpts) { 894 SourceLocation Begin = Range.getBegin(); 895 SourceLocation End = Range.getEnd(); 896 if (Begin.isInvalid() || End.isInvalid()) 897 return {}; 898 899 if (Begin.isFileID() && End.isFileID()) 900 return makeRangeFromFileLocs(Range, SM, LangOpts); 901 902 if (Begin.isMacroID() && End.isFileID()) { 903 if (!isAtStartOfMacroExpansion(Begin, SM, LangOpts, &Begin)) 904 return {}; 905 Range.setBegin(Begin); 906 return makeRangeFromFileLocs(Range, SM, LangOpts); 907 } 908 909 if (Begin.isFileID() && End.isMacroID()) { 910 if (Range.isTokenRange()) { 911 if (!isAtEndOfMacroExpansion(End, SM, LangOpts, &End)) 912 return {}; 913 // Use the *original* end, not the expanded one in `End`. 914 Range.setTokenRange(isInExpansionTokenRange(Range.getEnd(), SM)); 915 } else if (!isAtStartOfMacroExpansion(End, SM, LangOpts, &End)) 916 return {}; 917 Range.setEnd(End); 918 return makeRangeFromFileLocs(Range, SM, LangOpts); 919 } 920 921 assert(Begin.isMacroID() && End.isMacroID()); 922 SourceLocation MacroBegin, MacroEnd; 923 if (isAtStartOfMacroExpansion(Begin, SM, LangOpts, &MacroBegin) && 924 ((Range.isTokenRange() && isAtEndOfMacroExpansion(End, SM, LangOpts, 925 &MacroEnd)) || 926 (Range.isCharRange() && isAtStartOfMacroExpansion(End, SM, LangOpts, 927 &MacroEnd)))) { 928 Range.setBegin(MacroBegin); 929 Range.setEnd(MacroEnd); 930 // Use the *original* `End`, not the expanded one in `MacroEnd`. 931 if (Range.isTokenRange()) 932 Range.setTokenRange(isInExpansionTokenRange(End, SM)); 933 return makeRangeFromFileLocs(Range, SM, LangOpts); 934 } 935 936 bool Invalid = false; 937 const SrcMgr::SLocEntry &BeginEntry = SM.getSLocEntry(SM.getFileID(Begin), 938 &Invalid); 939 if (Invalid) 940 return {}; 941 942 if (BeginEntry.getExpansion().isMacroArgExpansion()) { 943 const SrcMgr::SLocEntry &EndEntry = SM.getSLocEntry(SM.getFileID(End), 944 &Invalid); 945 if (Invalid) 946 return {}; 947 948 if (EndEntry.getExpansion().isMacroArgExpansion() && 949 BeginEntry.getExpansion().getExpansionLocStart() == 950 EndEntry.getExpansion().getExpansionLocStart()) { 951 Range.setBegin(SM.getImmediateSpellingLoc(Begin)); 952 Range.setEnd(SM.getImmediateSpellingLoc(End)); 953 return makeFileCharRange(Range, SM, LangOpts); 954 } 955 } 956 957 return {}; 958 } 959 960 StringRef Lexer::getSourceText(CharSourceRange Range, 961 const SourceManager &SM, 962 const LangOptions &LangOpts, 963 bool *Invalid) { 964 Range = makeFileCharRange(Range, SM, LangOpts); 965 if (Range.isInvalid()) { 966 if (Invalid) *Invalid = true; 967 return {}; 968 } 969 970 // Break down the source location. 971 std::pair<FileID, unsigned> beginInfo = SM.getDecomposedLoc(Range.getBegin()); 972 if (beginInfo.first.isInvalid()) { 973 if (Invalid) *Invalid = true; 974 return {}; 975 } 976 977 unsigned EndOffs; 978 if (!SM.isInFileID(Range.getEnd(), beginInfo.first, &EndOffs) || 979 beginInfo.second > EndOffs) { 980 if (Invalid) *Invalid = true; 981 return {}; 982 } 983 984 // Try to the load the file buffer. 985 bool invalidTemp = false; 986 StringRef file = SM.getBufferData(beginInfo.first, &invalidTemp); 987 if (invalidTemp) { 988 if (Invalid) *Invalid = true; 989 return {}; 990 } 991 992 if (Invalid) *Invalid = false; 993 return file.substr(beginInfo.second, EndOffs - beginInfo.second); 994 } 995 996 StringRef Lexer::getImmediateMacroName(SourceLocation Loc, 997 const SourceManager &SM, 998 const LangOptions &LangOpts) { 999 assert(Loc.isMacroID() && "Only reasonable to call this on macros"); 1000 1001 // Find the location of the immediate macro expansion. 1002 while (true) { 1003 FileID FID = SM.getFileID(Loc); 1004 const SrcMgr::SLocEntry *E = &SM.getSLocEntry(FID); 1005 const SrcMgr::ExpansionInfo &Expansion = E->getExpansion(); 1006 Loc = Expansion.getExpansionLocStart(); 1007 if (!Expansion.isMacroArgExpansion()) 1008 break; 1009 1010 // For macro arguments we need to check that the argument did not come 1011 // from an inner macro, e.g: "MAC1( MAC2(foo) )" 1012 1013 // Loc points to the argument id of the macro definition, move to the 1014 // macro expansion. 1015 Loc = SM.getImmediateExpansionRange(Loc).getBegin(); 1016 SourceLocation SpellLoc = Expansion.getSpellingLoc(); 1017 if (SpellLoc.isFileID()) 1018 break; // No inner macro. 1019 1020 // If spelling location resides in the same FileID as macro expansion 1021 // location, it means there is no inner macro. 1022 FileID MacroFID = SM.getFileID(Loc); 1023 if (SM.isInFileID(SpellLoc, MacroFID)) 1024 break; 1025 1026 // Argument came from inner macro. 1027 Loc = SpellLoc; 1028 } 1029 1030 // Find the spelling location of the start of the non-argument expansion 1031 // range. This is where the macro name was spelled in order to begin 1032 // expanding this macro. 1033 Loc = SM.getSpellingLoc(Loc); 1034 1035 // Dig out the buffer where the macro name was spelled and the extents of the 1036 // name so that we can render it into the expansion note. 1037 std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc); 1038 unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts); 1039 StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first); 1040 return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength); 1041 } 1042 1043 StringRef Lexer::getImmediateMacroNameForDiagnostics( 1044 SourceLocation Loc, const SourceManager &SM, const LangOptions &LangOpts) { 1045 assert(Loc.isMacroID() && "Only reasonable to call this on macros"); 1046 // Walk past macro argument expansions. 1047 while (SM.isMacroArgExpansion(Loc)) 1048 Loc = SM.getImmediateExpansionRange(Loc).getBegin(); 1049 1050 // If the macro's spelling has no FileID, then it's actually a token paste 1051 // or stringization (or similar) and not a macro at all. 1052 if (!SM.getFileEntryForID(SM.getFileID(SM.getSpellingLoc(Loc)))) 1053 return {}; 1054 1055 // Find the spelling location of the start of the non-argument expansion 1056 // range. This is where the macro name was spelled in order to begin 1057 // expanding this macro. 1058 Loc = SM.getSpellingLoc(SM.getImmediateExpansionRange(Loc).getBegin()); 1059 1060 // Dig out the buffer where the macro name was spelled and the extents of the 1061 // name so that we can render it into the expansion note. 1062 std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc); 1063 unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts); 1064 StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first); 1065 return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength); 1066 } 1067 1068 bool Lexer::isAsciiIdentifierContinueChar(char c, const LangOptions &LangOpts) { 1069 return isAsciiIdentifierContinue(c, LangOpts.DollarIdents); 1070 } 1071 1072 bool Lexer::isNewLineEscaped(const char *BufferStart, const char *Str) { 1073 assert(isVerticalWhitespace(Str[0])); 1074 if (Str - 1 < BufferStart) 1075 return false; 1076 1077 if ((Str[0] == '\n' && Str[-1] == '\r') || 1078 (Str[0] == '\r' && Str[-1] == '\n')) { 1079 if (Str - 2 < BufferStart) 1080 return false; 1081 --Str; 1082 } 1083 --Str; 1084 1085 // Rewind to first non-space character: 1086 while (Str > BufferStart && isHorizontalWhitespace(*Str)) 1087 --Str; 1088 1089 return *Str == '\\'; 1090 } 1091 1092 StringRef Lexer::getIndentationForLine(SourceLocation Loc, 1093 const SourceManager &SM) { 1094 if (Loc.isInvalid() || Loc.isMacroID()) 1095 return {}; 1096 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); 1097 if (LocInfo.first.isInvalid()) 1098 return {}; 1099 bool Invalid = false; 1100 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1101 if (Invalid) 1102 return {}; 1103 const char *Line = findBeginningOfLine(Buffer, LocInfo.second); 1104 if (!Line) 1105 return {}; 1106 StringRef Rest = Buffer.substr(Line - Buffer.data()); 1107 size_t NumWhitespaceChars = Rest.find_first_not_of(" \t"); 1108 return NumWhitespaceChars == StringRef::npos 1109 ? "" 1110 : Rest.take_front(NumWhitespaceChars); 1111 } 1112 1113 //===----------------------------------------------------------------------===// 1114 // Diagnostics forwarding code. 1115 //===----------------------------------------------------------------------===// 1116 1117 /// GetMappedTokenLoc - If lexing out of a 'mapped buffer', where we pretend the 1118 /// lexer buffer was all expanded at a single point, perform the mapping. 1119 /// This is currently only used for _Pragma implementation, so it is the slow 1120 /// path of the hot getSourceLocation method. Do not allow it to be inlined. 1121 static LLVM_ATTRIBUTE_NOINLINE SourceLocation GetMappedTokenLoc( 1122 Preprocessor &PP, SourceLocation FileLoc, unsigned CharNo, unsigned TokLen); 1123 static SourceLocation GetMappedTokenLoc(Preprocessor &PP, 1124 SourceLocation FileLoc, 1125 unsigned CharNo, unsigned TokLen) { 1126 assert(FileLoc.isMacroID() && "Must be a macro expansion"); 1127 1128 // Otherwise, we're lexing "mapped tokens". This is used for things like 1129 // _Pragma handling. Combine the expansion location of FileLoc with the 1130 // spelling location. 1131 SourceManager &SM = PP.getSourceManager(); 1132 1133 // Create a new SLoc which is expanded from Expansion(FileLoc) but whose 1134 // characters come from spelling(FileLoc)+Offset. 1135 SourceLocation SpellingLoc = SM.getSpellingLoc(FileLoc); 1136 SpellingLoc = SpellingLoc.getLocWithOffset(CharNo); 1137 1138 // Figure out the expansion loc range, which is the range covered by the 1139 // original _Pragma(...) sequence. 1140 CharSourceRange II = SM.getImmediateExpansionRange(FileLoc); 1141 1142 return SM.createExpansionLoc(SpellingLoc, II.getBegin(), II.getEnd(), TokLen); 1143 } 1144 1145 /// getSourceLocation - Return a source location identifier for the specified 1146 /// offset in the current file. 1147 SourceLocation Lexer::getSourceLocation(const char *Loc, 1148 unsigned TokLen) const { 1149 assert(Loc >= BufferStart && Loc <= BufferEnd && 1150 "Location out of range for this buffer!"); 1151 1152 // In the normal case, we're just lexing from a simple file buffer, return 1153 // the file id from FileLoc with the offset specified. 1154 unsigned CharNo = Loc-BufferStart; 1155 if (FileLoc.isFileID()) 1156 return FileLoc.getLocWithOffset(CharNo); 1157 1158 // Otherwise, this is the _Pragma lexer case, which pretends that all of the 1159 // tokens are lexed from where the _Pragma was defined. 1160 assert(PP && "This doesn't work on raw lexers"); 1161 return GetMappedTokenLoc(*PP, FileLoc, CharNo, TokLen); 1162 } 1163 1164 /// Diag - Forwarding function for diagnostics. This translate a source 1165 /// position in the current buffer into a SourceLocation object for rendering. 1166 DiagnosticBuilder Lexer::Diag(const char *Loc, unsigned DiagID) const { 1167 return PP->Diag(getSourceLocation(Loc), DiagID); 1168 } 1169 1170 //===----------------------------------------------------------------------===// 1171 // Trigraph and Escaped Newline Handling Code. 1172 //===----------------------------------------------------------------------===// 1173 1174 /// GetTrigraphCharForLetter - Given a character that occurs after a ?? pair, 1175 /// return the decoded trigraph letter it corresponds to, or '\0' if nothing. 1176 static char GetTrigraphCharForLetter(char Letter) { 1177 switch (Letter) { 1178 default: return 0; 1179 case '=': return '#'; 1180 case ')': return ']'; 1181 case '(': return '['; 1182 case '!': return '|'; 1183 case '\'': return '^'; 1184 case '>': return '}'; 1185 case '/': return '\\'; 1186 case '<': return '{'; 1187 case '-': return '~'; 1188 } 1189 } 1190 1191 /// DecodeTrigraphChar - If the specified character is a legal trigraph when 1192 /// prefixed with ??, emit a trigraph warning. If trigraphs are enabled, 1193 /// return the result character. Finally, emit a warning about trigraph use 1194 /// whether trigraphs are enabled or not. 1195 static char DecodeTrigraphChar(const char *CP, Lexer *L, bool Trigraphs) { 1196 char Res = GetTrigraphCharForLetter(*CP); 1197 if (!Res || !L) return Res; 1198 1199 if (!Trigraphs) { 1200 if (!L->isLexingRawMode()) 1201 L->Diag(CP-2, diag::trigraph_ignored); 1202 return 0; 1203 } 1204 1205 if (!L->isLexingRawMode()) 1206 L->Diag(CP-2, diag::trigraph_converted) << StringRef(&Res, 1); 1207 return Res; 1208 } 1209 1210 /// getEscapedNewLineSize - Return the size of the specified escaped newline, 1211 /// or 0 if it is not an escaped newline. P[-1] is known to be a "\" or a 1212 /// trigraph equivalent on entry to this function. 1213 unsigned Lexer::getEscapedNewLineSize(const char *Ptr) { 1214 unsigned Size = 0; 1215 while (isWhitespace(Ptr[Size])) { 1216 ++Size; 1217 1218 if (Ptr[Size-1] != '\n' && Ptr[Size-1] != '\r') 1219 continue; 1220 1221 // If this is a \r\n or \n\r, skip the other half. 1222 if ((Ptr[Size] == '\r' || Ptr[Size] == '\n') && 1223 Ptr[Size-1] != Ptr[Size]) 1224 ++Size; 1225 1226 return Size; 1227 } 1228 1229 // Not an escaped newline, must be a \t or something else. 1230 return 0; 1231 } 1232 1233 /// SkipEscapedNewLines - If P points to an escaped newline (or a series of 1234 /// them), skip over them and return the first non-escaped-newline found, 1235 /// otherwise return P. 1236 const char *Lexer::SkipEscapedNewLines(const char *P) { 1237 while (true) { 1238 const char *AfterEscape; 1239 if (*P == '\\') { 1240 AfterEscape = P+1; 1241 } else if (*P == '?') { 1242 // If not a trigraph for escape, bail out. 1243 if (P[1] != '?' || P[2] != '/') 1244 return P; 1245 // FIXME: Take LangOpts into account; the language might not 1246 // support trigraphs. 1247 AfterEscape = P+3; 1248 } else { 1249 return P; 1250 } 1251 1252 unsigned NewLineSize = Lexer::getEscapedNewLineSize(AfterEscape); 1253 if (NewLineSize == 0) return P; 1254 P = AfterEscape+NewLineSize; 1255 } 1256 } 1257 1258 Optional<Token> Lexer::findNextToken(SourceLocation Loc, 1259 const SourceManager &SM, 1260 const LangOptions &LangOpts) { 1261 if (Loc.isMacroID()) { 1262 if (!Lexer::isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc)) 1263 return None; 1264 } 1265 Loc = Lexer::getLocForEndOfToken(Loc, 0, SM, LangOpts); 1266 1267 // Break down the source location. 1268 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); 1269 1270 // Try to load the file buffer. 1271 bool InvalidTemp = false; 1272 StringRef File = SM.getBufferData(LocInfo.first, &InvalidTemp); 1273 if (InvalidTemp) 1274 return None; 1275 1276 const char *TokenBegin = File.data() + LocInfo.second; 1277 1278 // Lex from the start of the given location. 1279 Lexer lexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts, File.begin(), 1280 TokenBegin, File.end()); 1281 // Find the token. 1282 Token Tok; 1283 lexer.LexFromRawLexer(Tok); 1284 return Tok; 1285 } 1286 1287 /// Checks that the given token is the first token that occurs after the 1288 /// given location (this excludes comments and whitespace). Returns the location 1289 /// immediately after the specified token. If the token is not found or the 1290 /// location is inside a macro, the returned source location will be invalid. 1291 SourceLocation Lexer::findLocationAfterToken( 1292 SourceLocation Loc, tok::TokenKind TKind, const SourceManager &SM, 1293 const LangOptions &LangOpts, bool SkipTrailingWhitespaceAndNewLine) { 1294 Optional<Token> Tok = findNextToken(Loc, SM, LangOpts); 1295 if (!Tok || Tok->isNot(TKind)) 1296 return {}; 1297 SourceLocation TokenLoc = Tok->getLocation(); 1298 1299 // Calculate how much whitespace needs to be skipped if any. 1300 unsigned NumWhitespaceChars = 0; 1301 if (SkipTrailingWhitespaceAndNewLine) { 1302 const char *TokenEnd = SM.getCharacterData(TokenLoc) + Tok->getLength(); 1303 unsigned char C = *TokenEnd; 1304 while (isHorizontalWhitespace(C)) { 1305 C = *(++TokenEnd); 1306 NumWhitespaceChars++; 1307 } 1308 1309 // Skip \r, \n, \r\n, or \n\r 1310 if (C == '\n' || C == '\r') { 1311 char PrevC = C; 1312 C = *(++TokenEnd); 1313 NumWhitespaceChars++; 1314 if ((C == '\n' || C == '\r') && C != PrevC) 1315 NumWhitespaceChars++; 1316 } 1317 } 1318 1319 return TokenLoc.getLocWithOffset(Tok->getLength() + NumWhitespaceChars); 1320 } 1321 1322 /// getCharAndSizeSlow - Peek a single 'character' from the specified buffer, 1323 /// get its size, and return it. This is tricky in several cases: 1324 /// 1. If currently at the start of a trigraph, we warn about the trigraph, 1325 /// then either return the trigraph (skipping 3 chars) or the '?', 1326 /// depending on whether trigraphs are enabled or not. 1327 /// 2. If this is an escaped newline (potentially with whitespace between 1328 /// the backslash and newline), implicitly skip the newline and return 1329 /// the char after it. 1330 /// 1331 /// This handles the slow/uncommon case of the getCharAndSize method. Here we 1332 /// know that we can accumulate into Size, and that we have already incremented 1333 /// Ptr by Size bytes. 1334 /// 1335 /// NOTE: When this method is updated, getCharAndSizeSlowNoWarn (below) should 1336 /// be updated to match. 1337 char Lexer::getCharAndSizeSlow(const char *Ptr, unsigned &Size, 1338 Token *Tok) { 1339 // If we have a slash, look for an escaped newline. 1340 if (Ptr[0] == '\\') { 1341 ++Size; 1342 ++Ptr; 1343 Slash: 1344 // Common case, backslash-char where the char is not whitespace. 1345 if (!isWhitespace(Ptr[0])) return '\\'; 1346 1347 // See if we have optional whitespace characters between the slash and 1348 // newline. 1349 if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) { 1350 // Remember that this token needs to be cleaned. 1351 if (Tok) Tok->setFlag(Token::NeedsCleaning); 1352 1353 // Warn if there was whitespace between the backslash and newline. 1354 if (Ptr[0] != '\n' && Ptr[0] != '\r' && Tok && !isLexingRawMode()) 1355 Diag(Ptr, diag::backslash_newline_space); 1356 1357 // Found backslash<whitespace><newline>. Parse the char after it. 1358 Size += EscapedNewLineSize; 1359 Ptr += EscapedNewLineSize; 1360 1361 // Use slow version to accumulate a correct size field. 1362 return getCharAndSizeSlow(Ptr, Size, Tok); 1363 } 1364 1365 // Otherwise, this is not an escaped newline, just return the slash. 1366 return '\\'; 1367 } 1368 1369 // If this is a trigraph, process it. 1370 if (Ptr[0] == '?' && Ptr[1] == '?') { 1371 // If this is actually a legal trigraph (not something like "??x"), emit 1372 // a trigraph warning. If so, and if trigraphs are enabled, return it. 1373 if (char C = DecodeTrigraphChar(Ptr + 2, Tok ? this : nullptr, 1374 LangOpts.Trigraphs)) { 1375 // Remember that this token needs to be cleaned. 1376 if (Tok) Tok->setFlag(Token::NeedsCleaning); 1377 1378 Ptr += 3; 1379 Size += 3; 1380 if (C == '\\') goto Slash; 1381 return C; 1382 } 1383 } 1384 1385 // If this is neither, return a single character. 1386 ++Size; 1387 return *Ptr; 1388 } 1389 1390 /// getCharAndSizeSlowNoWarn - Handle the slow/uncommon case of the 1391 /// getCharAndSizeNoWarn method. Here we know that we can accumulate into Size, 1392 /// and that we have already incremented Ptr by Size bytes. 1393 /// 1394 /// NOTE: When this method is updated, getCharAndSizeSlow (above) should 1395 /// be updated to match. 1396 char Lexer::getCharAndSizeSlowNoWarn(const char *Ptr, unsigned &Size, 1397 const LangOptions &LangOpts) { 1398 // If we have a slash, look for an escaped newline. 1399 if (Ptr[0] == '\\') { 1400 ++Size; 1401 ++Ptr; 1402 Slash: 1403 // Common case, backslash-char where the char is not whitespace. 1404 if (!isWhitespace(Ptr[0])) return '\\'; 1405 1406 // See if we have optional whitespace characters followed by a newline. 1407 if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) { 1408 // Found backslash<whitespace><newline>. Parse the char after it. 1409 Size += EscapedNewLineSize; 1410 Ptr += EscapedNewLineSize; 1411 1412 // Use slow version to accumulate a correct size field. 1413 return getCharAndSizeSlowNoWarn(Ptr, Size, LangOpts); 1414 } 1415 1416 // Otherwise, this is not an escaped newline, just return the slash. 1417 return '\\'; 1418 } 1419 1420 // If this is a trigraph, process it. 1421 if (LangOpts.Trigraphs && Ptr[0] == '?' && Ptr[1] == '?') { 1422 // If this is actually a legal trigraph (not something like "??x"), return 1423 // it. 1424 if (char C = GetTrigraphCharForLetter(Ptr[2])) { 1425 Ptr += 3; 1426 Size += 3; 1427 if (C == '\\') goto Slash; 1428 return C; 1429 } 1430 } 1431 1432 // If this is neither, return a single character. 1433 ++Size; 1434 return *Ptr; 1435 } 1436 1437 //===----------------------------------------------------------------------===// 1438 // Helper methods for lexing. 1439 //===----------------------------------------------------------------------===// 1440 1441 /// Routine that indiscriminately sets the offset into the source file. 1442 void Lexer::SetByteOffset(unsigned Offset, bool StartOfLine) { 1443 BufferPtr = BufferStart + Offset; 1444 if (BufferPtr > BufferEnd) 1445 BufferPtr = BufferEnd; 1446 // FIXME: What exactly does the StartOfLine bit mean? There are two 1447 // possible meanings for the "start" of the line: the first token on the 1448 // unexpanded line, or the first token on the expanded line. 1449 IsAtStartOfLine = StartOfLine; 1450 IsAtPhysicalStartOfLine = StartOfLine; 1451 } 1452 1453 static bool isUnicodeWhitespace(uint32_t Codepoint) { 1454 static const llvm::sys::UnicodeCharSet UnicodeWhitespaceChars( 1455 UnicodeWhitespaceCharRanges); 1456 return UnicodeWhitespaceChars.contains(Codepoint); 1457 } 1458 1459 static bool isAllowedIDChar(uint32_t C, const LangOptions &LangOpts) { 1460 if (LangOpts.AsmPreprocessor) { 1461 return false; 1462 } else if (LangOpts.DollarIdents && '$' == C) { 1463 return true; 1464 } else if (LangOpts.CPlusPlus) { 1465 // A non-leading codepoint must have the XID_Continue property. 1466 // XIDContinueRanges doesn't contains characters also in XIDStartRanges, 1467 // so we need to check both tables. 1468 // '_' doesn't have the XID_Continue property but is allowed in C++. 1469 static const llvm::sys::UnicodeCharSet XIDStartChars(XIDStartRanges); 1470 static const llvm::sys::UnicodeCharSet XIDContinueChars(XIDContinueRanges); 1471 return C == '_' || XIDStartChars.contains(C) || 1472 XIDContinueChars.contains(C); 1473 } else if (LangOpts.C11) { 1474 static const llvm::sys::UnicodeCharSet C11AllowedIDChars( 1475 C11AllowedIDCharRanges); 1476 return C11AllowedIDChars.contains(C); 1477 } else { 1478 static const llvm::sys::UnicodeCharSet C99AllowedIDChars( 1479 C99AllowedIDCharRanges); 1480 return C99AllowedIDChars.contains(C); 1481 } 1482 } 1483 1484 static bool isAllowedInitiallyIDChar(uint32_t C, const LangOptions &LangOpts) { 1485 if (LangOpts.AsmPreprocessor) { 1486 return false; 1487 } 1488 if (LangOpts.CPlusPlus) { 1489 static const llvm::sys::UnicodeCharSet XIDStartChars(XIDStartRanges); 1490 // '_' doesn't have the XID_Start property but is allowed in C++. 1491 return C == '_' || XIDStartChars.contains(C); 1492 } 1493 if (!isAllowedIDChar(C, LangOpts)) 1494 return false; 1495 if (LangOpts.C11) { 1496 static const llvm::sys::UnicodeCharSet C11DisallowedInitialIDChars( 1497 C11DisallowedInitialIDCharRanges); 1498 return !C11DisallowedInitialIDChars.contains(C); 1499 } 1500 static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars( 1501 C99DisallowedInitialIDCharRanges); 1502 return !C99DisallowedInitialIDChars.contains(C); 1503 } 1504 1505 static inline CharSourceRange makeCharRange(Lexer &L, const char *Begin, 1506 const char *End) { 1507 return CharSourceRange::getCharRange(L.getSourceLocation(Begin), 1508 L.getSourceLocation(End)); 1509 } 1510 1511 static void maybeDiagnoseIDCharCompat(DiagnosticsEngine &Diags, uint32_t C, 1512 CharSourceRange Range, bool IsFirst) { 1513 // Check C99 compatibility. 1514 if (!Diags.isIgnored(diag::warn_c99_compat_unicode_id, Range.getBegin())) { 1515 enum { 1516 CannotAppearInIdentifier = 0, 1517 CannotStartIdentifier 1518 }; 1519 1520 static const llvm::sys::UnicodeCharSet C99AllowedIDChars( 1521 C99AllowedIDCharRanges); 1522 static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars( 1523 C99DisallowedInitialIDCharRanges); 1524 if (!C99AllowedIDChars.contains(C)) { 1525 Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id) 1526 << Range 1527 << CannotAppearInIdentifier; 1528 } else if (IsFirst && C99DisallowedInitialIDChars.contains(C)) { 1529 Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id) 1530 << Range 1531 << CannotStartIdentifier; 1532 } 1533 } 1534 } 1535 1536 /// After encountering UTF-8 character C and interpreting it as an identifier 1537 /// character, check whether it's a homoglyph for a common non-identifier 1538 /// source character that is unlikely to be an intentional identifier 1539 /// character and warn if so. 1540 static void maybeDiagnoseUTF8Homoglyph(DiagnosticsEngine &Diags, uint32_t C, 1541 CharSourceRange Range) { 1542 // FIXME: Handle Unicode quotation marks (smart quotes, fullwidth quotes). 1543 struct HomoglyphPair { 1544 uint32_t Character; 1545 char LooksLike; 1546 bool operator<(HomoglyphPair R) const { return Character < R.Character; } 1547 }; 1548 static constexpr HomoglyphPair SortedHomoglyphs[] = { 1549 {U'\u00ad', 0}, // SOFT HYPHEN 1550 {U'\u01c3', '!'}, // LATIN LETTER RETROFLEX CLICK 1551 {U'\u037e', ';'}, // GREEK QUESTION MARK 1552 {U'\u200b', 0}, // ZERO WIDTH SPACE 1553 {U'\u200c', 0}, // ZERO WIDTH NON-JOINER 1554 {U'\u200d', 0}, // ZERO WIDTH JOINER 1555 {U'\u2060', 0}, // WORD JOINER 1556 {U'\u2061', 0}, // FUNCTION APPLICATION 1557 {U'\u2062', 0}, // INVISIBLE TIMES 1558 {U'\u2063', 0}, // INVISIBLE SEPARATOR 1559 {U'\u2064', 0}, // INVISIBLE PLUS 1560 {U'\u2212', '-'}, // MINUS SIGN 1561 {U'\u2215', '/'}, // DIVISION SLASH 1562 {U'\u2216', '\\'}, // SET MINUS 1563 {U'\u2217', '*'}, // ASTERISK OPERATOR 1564 {U'\u2223', '|'}, // DIVIDES 1565 {U'\u2227', '^'}, // LOGICAL AND 1566 {U'\u2236', ':'}, // RATIO 1567 {U'\u223c', '~'}, // TILDE OPERATOR 1568 {U'\ua789', ':'}, // MODIFIER LETTER COLON 1569 {U'\ufeff', 0}, // ZERO WIDTH NO-BREAK SPACE 1570 {U'\uff01', '!'}, // FULLWIDTH EXCLAMATION MARK 1571 {U'\uff03', '#'}, // FULLWIDTH NUMBER SIGN 1572 {U'\uff04', '$'}, // FULLWIDTH DOLLAR SIGN 1573 {U'\uff05', '%'}, // FULLWIDTH PERCENT SIGN 1574 {U'\uff06', '&'}, // FULLWIDTH AMPERSAND 1575 {U'\uff08', '('}, // FULLWIDTH LEFT PARENTHESIS 1576 {U'\uff09', ')'}, // FULLWIDTH RIGHT PARENTHESIS 1577 {U'\uff0a', '*'}, // FULLWIDTH ASTERISK 1578 {U'\uff0b', '+'}, // FULLWIDTH ASTERISK 1579 {U'\uff0c', ','}, // FULLWIDTH COMMA 1580 {U'\uff0d', '-'}, // FULLWIDTH HYPHEN-MINUS 1581 {U'\uff0e', '.'}, // FULLWIDTH FULL STOP 1582 {U'\uff0f', '/'}, // FULLWIDTH SOLIDUS 1583 {U'\uff1a', ':'}, // FULLWIDTH COLON 1584 {U'\uff1b', ';'}, // FULLWIDTH SEMICOLON 1585 {U'\uff1c', '<'}, // FULLWIDTH LESS-THAN SIGN 1586 {U'\uff1d', '='}, // FULLWIDTH EQUALS SIGN 1587 {U'\uff1e', '>'}, // FULLWIDTH GREATER-THAN SIGN 1588 {U'\uff1f', '?'}, // FULLWIDTH QUESTION MARK 1589 {U'\uff20', '@'}, // FULLWIDTH COMMERCIAL AT 1590 {U'\uff3b', '['}, // FULLWIDTH LEFT SQUARE BRACKET 1591 {U'\uff3c', '\\'}, // FULLWIDTH REVERSE SOLIDUS 1592 {U'\uff3d', ']'}, // FULLWIDTH RIGHT SQUARE BRACKET 1593 {U'\uff3e', '^'}, // FULLWIDTH CIRCUMFLEX ACCENT 1594 {U'\uff5b', '{'}, // FULLWIDTH LEFT CURLY BRACKET 1595 {U'\uff5c', '|'}, // FULLWIDTH VERTICAL LINE 1596 {U'\uff5d', '}'}, // FULLWIDTH RIGHT CURLY BRACKET 1597 {U'\uff5e', '~'}, // FULLWIDTH TILDE 1598 {0, 0} 1599 }; 1600 auto Homoglyph = 1601 std::lower_bound(std::begin(SortedHomoglyphs), 1602 std::end(SortedHomoglyphs) - 1, HomoglyphPair{C, '\0'}); 1603 if (Homoglyph->Character == C) { 1604 llvm::SmallString<5> CharBuf; 1605 { 1606 llvm::raw_svector_ostream CharOS(CharBuf); 1607 llvm::write_hex(CharOS, C, llvm::HexPrintStyle::Upper, 4); 1608 } 1609 if (Homoglyph->LooksLike) { 1610 const char LooksLikeStr[] = {Homoglyph->LooksLike, 0}; 1611 Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_homoglyph) 1612 << Range << CharBuf << LooksLikeStr; 1613 } else { 1614 Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_zero_width) 1615 << Range << CharBuf; 1616 } 1617 } 1618 } 1619 1620 static void diagnoseInvalidUnicodeCodepointInIdentifier( 1621 DiagnosticsEngine &Diags, const LangOptions &LangOpts, uint32_t CodePoint, 1622 CharSourceRange Range, bool IsFirst) { 1623 if (isASCII(CodePoint)) 1624 return; 1625 1626 bool IsIDStart = isAllowedInitiallyIDChar(CodePoint, LangOpts); 1627 bool IsIDContinue = IsIDStart || isAllowedIDChar(CodePoint, LangOpts); 1628 1629 if ((IsFirst && IsIDStart) || (!IsFirst && IsIDContinue)) 1630 return; 1631 1632 bool InvalidOnlyAtStart = IsFirst && !IsIDStart && IsIDContinue; 1633 1634 llvm::SmallString<5> CharBuf; 1635 llvm::raw_svector_ostream CharOS(CharBuf); 1636 llvm::write_hex(CharOS, CodePoint, llvm::HexPrintStyle::Upper, 4); 1637 1638 if (!IsFirst || InvalidOnlyAtStart) { 1639 Diags.Report(Range.getBegin(), diag::err_character_not_allowed_identifier) 1640 << Range << CharBuf << int(InvalidOnlyAtStart) 1641 << FixItHint::CreateRemoval(Range); 1642 } else { 1643 Diags.Report(Range.getBegin(), diag::err_character_not_allowed) 1644 << Range << CharBuf << FixItHint::CreateRemoval(Range); 1645 } 1646 } 1647 1648 bool Lexer::tryConsumeIdentifierUCN(const char *&CurPtr, unsigned Size, 1649 Token &Result) { 1650 const char *UCNPtr = CurPtr + Size; 1651 uint32_t CodePoint = tryReadUCN(UCNPtr, CurPtr, /*Token=*/nullptr); 1652 if (CodePoint == 0) { 1653 return false; 1654 } 1655 1656 if (!isAllowedIDChar(CodePoint, LangOpts)) { 1657 if (isASCII(CodePoint) || isUnicodeWhitespace(CodePoint)) 1658 return false; 1659 if (!isLexingRawMode() && !ParsingPreprocessorDirective && 1660 !PP->isPreprocessedOutput()) 1661 diagnoseInvalidUnicodeCodepointInIdentifier( 1662 PP->getDiagnostics(), LangOpts, CodePoint, 1663 makeCharRange(*this, CurPtr, UCNPtr), 1664 /*IsFirst=*/false); 1665 1666 // We got a unicode codepoint that is neither a space nor a 1667 // a valid identifier part. 1668 // Carry on as if the codepoint was valid for recovery purposes. 1669 } else if (!isLexingRawMode()) 1670 maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint, 1671 makeCharRange(*this, CurPtr, UCNPtr), 1672 /*IsFirst=*/false); 1673 1674 Result.setFlag(Token::HasUCN); 1675 if ((UCNPtr - CurPtr == 6 && CurPtr[1] == 'u') || 1676 (UCNPtr - CurPtr == 10 && CurPtr[1] == 'U')) 1677 CurPtr = UCNPtr; 1678 else 1679 while (CurPtr != UCNPtr) 1680 (void)getAndAdvanceChar(CurPtr, Result); 1681 return true; 1682 } 1683 1684 bool Lexer::tryConsumeIdentifierUTF8Char(const char *&CurPtr) { 1685 const char *UnicodePtr = CurPtr; 1686 llvm::UTF32 CodePoint; 1687 llvm::ConversionResult Result = 1688 llvm::convertUTF8Sequence((const llvm::UTF8 **)&UnicodePtr, 1689 (const llvm::UTF8 *)BufferEnd, 1690 &CodePoint, 1691 llvm::strictConversion); 1692 if (Result != llvm::conversionOK) 1693 return false; 1694 1695 if (!isAllowedIDChar(static_cast<uint32_t>(CodePoint), LangOpts)) { 1696 if (isASCII(CodePoint) || isUnicodeWhitespace(CodePoint)) 1697 return false; 1698 1699 if (!isLexingRawMode() && !ParsingPreprocessorDirective && 1700 !PP->isPreprocessedOutput()) 1701 diagnoseInvalidUnicodeCodepointInIdentifier( 1702 PP->getDiagnostics(), LangOpts, CodePoint, 1703 makeCharRange(*this, CurPtr, UnicodePtr), /*IsFirst=*/false); 1704 // We got a unicode codepoint that is neither a space nor a 1705 // a valid identifier part. Carry on as if the codepoint was 1706 // valid for recovery purposes. 1707 } else if (!isLexingRawMode()) { 1708 maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint, 1709 makeCharRange(*this, CurPtr, UnicodePtr), 1710 /*IsFirst=*/false); 1711 maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), CodePoint, 1712 makeCharRange(*this, CurPtr, UnicodePtr)); 1713 } 1714 1715 CurPtr = UnicodePtr; 1716 return true; 1717 } 1718 1719 bool Lexer::LexUnicodeIdentifierStart(Token &Result, uint32_t C, 1720 const char *CurPtr) { 1721 if (isAllowedInitiallyIDChar(C, LangOpts)) { 1722 if (!isLexingRawMode() && !ParsingPreprocessorDirective && 1723 !PP->isPreprocessedOutput()) { 1724 maybeDiagnoseIDCharCompat(PP->getDiagnostics(), C, 1725 makeCharRange(*this, BufferPtr, CurPtr), 1726 /*IsFirst=*/true); 1727 maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), C, 1728 makeCharRange(*this, BufferPtr, CurPtr)); 1729 } 1730 1731 MIOpt.ReadToken(); 1732 return LexIdentifierContinue(Result, CurPtr); 1733 } 1734 1735 if (!isLexingRawMode() && !ParsingPreprocessorDirective && 1736 !PP->isPreprocessedOutput() && !isASCII(*BufferPtr) && 1737 !isAllowedInitiallyIDChar(C, LangOpts) && !isUnicodeWhitespace(C)) { 1738 // Non-ASCII characters tend to creep into source code unintentionally. 1739 // Instead of letting the parser complain about the unknown token, 1740 // just drop the character. 1741 // Note that we can /only/ do this when the non-ASCII character is actually 1742 // spelled as Unicode, not written as a UCN. The standard requires that 1743 // we not throw away any possible preprocessor tokens, but there's a 1744 // loophole in the mapping of Unicode characters to basic character set 1745 // characters that allows us to map these particular characters to, say, 1746 // whitespace. 1747 diagnoseInvalidUnicodeCodepointInIdentifier( 1748 PP->getDiagnostics(), LangOpts, C, 1749 makeCharRange(*this, BufferPtr, CurPtr), /*IsStart*/ true); 1750 BufferPtr = CurPtr; 1751 return false; 1752 } 1753 1754 // Otherwise, we have an explicit UCN or a character that's unlikely to show 1755 // up by accident. 1756 MIOpt.ReadToken(); 1757 FormTokenWithChars(Result, CurPtr, tok::unknown); 1758 return true; 1759 } 1760 1761 bool Lexer::LexIdentifierContinue(Token &Result, const char *CurPtr) { 1762 // Match [_A-Za-z0-9]*, we have already matched an identifier start. 1763 while (true) { 1764 unsigned char C = *CurPtr; 1765 // Fast path. 1766 if (isAsciiIdentifierContinue(C)) { 1767 ++CurPtr; 1768 continue; 1769 } 1770 1771 unsigned Size; 1772 // Slow path: handle trigraph, unicode codepoints, UCNs. 1773 C = getCharAndSize(CurPtr, Size); 1774 if (isAsciiIdentifierContinue(C)) { 1775 CurPtr = ConsumeChar(CurPtr, Size, Result); 1776 continue; 1777 } 1778 if (C == '$') { 1779 // If we hit a $ and they are not supported in identifiers, we are done. 1780 if (!LangOpts.DollarIdents) 1781 break; 1782 // Otherwise, emit a diagnostic and continue. 1783 if (!isLexingRawMode()) 1784 Diag(CurPtr, diag::ext_dollar_in_identifier); 1785 CurPtr = ConsumeChar(CurPtr, Size, Result); 1786 continue; 1787 } 1788 if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) 1789 continue; 1790 if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) 1791 continue; 1792 // Neither an expected Unicode codepoint nor a UCN. 1793 break; 1794 } 1795 1796 const char *IdStart = BufferPtr; 1797 FormTokenWithChars(Result, CurPtr, tok::raw_identifier); 1798 Result.setRawIdentifierData(IdStart); 1799 1800 // If we are in raw mode, return this identifier raw. There is no need to 1801 // look up identifier information or attempt to macro expand it. 1802 if (LexingRawMode) 1803 return true; 1804 1805 // Fill in Result.IdentifierInfo and update the token kind, 1806 // looking up the identifier in the identifier table. 1807 IdentifierInfo *II = PP->LookUpIdentifierInfo(Result); 1808 // Note that we have to call PP->LookUpIdentifierInfo() even for code 1809 // completion, it writes IdentifierInfo into Result, and callers rely on it. 1810 1811 // If the completion point is at the end of an identifier, we want to treat 1812 // the identifier as incomplete even if it resolves to a macro or a keyword. 1813 // This allows e.g. 'class^' to complete to 'classifier'. 1814 if (isCodeCompletionPoint(CurPtr)) { 1815 // Return the code-completion token. 1816 Result.setKind(tok::code_completion); 1817 // Skip the code-completion char and all immediate identifier characters. 1818 // This ensures we get consistent behavior when completing at any point in 1819 // an identifier (i.e. at the start, in the middle, at the end). Note that 1820 // only simple cases (i.e. [a-zA-Z0-9_]) are supported to keep the code 1821 // simpler. 1822 assert(*CurPtr == 0 && "Completion character must be 0"); 1823 ++CurPtr; 1824 // Note that code completion token is not added as a separate character 1825 // when the completion point is at the end of the buffer. Therefore, we need 1826 // to check if the buffer has ended. 1827 if (CurPtr < BufferEnd) { 1828 while (isAsciiIdentifierContinue(*CurPtr)) 1829 ++CurPtr; 1830 } 1831 BufferPtr = CurPtr; 1832 return true; 1833 } 1834 1835 // Finally, now that we know we have an identifier, pass this off to the 1836 // preprocessor, which may macro expand it or something. 1837 if (II->isHandleIdentifierCase()) 1838 return PP->HandleIdentifier(Result); 1839 1840 return true; 1841 } 1842 1843 /// isHexaLiteral - Return true if Start points to a hex constant. 1844 /// in microsoft mode (where this is supposed to be several different tokens). 1845 bool Lexer::isHexaLiteral(const char *Start, const LangOptions &LangOpts) { 1846 unsigned Size; 1847 char C1 = Lexer::getCharAndSizeNoWarn(Start, Size, LangOpts); 1848 if (C1 != '0') 1849 return false; 1850 char C2 = Lexer::getCharAndSizeNoWarn(Start + Size, Size, LangOpts); 1851 return (C2 == 'x' || C2 == 'X'); 1852 } 1853 1854 /// LexNumericConstant - Lex the remainder of a integer or floating point 1855 /// constant. From[-1] is the first character lexed. Return the end of the 1856 /// constant. 1857 bool Lexer::LexNumericConstant(Token &Result, const char *CurPtr) { 1858 unsigned Size; 1859 char C = getCharAndSize(CurPtr, Size); 1860 char PrevCh = 0; 1861 while (isPreprocessingNumberBody(C)) { 1862 CurPtr = ConsumeChar(CurPtr, Size, Result); 1863 PrevCh = C; 1864 C = getCharAndSize(CurPtr, Size); 1865 } 1866 1867 // If we fell out, check for a sign, due to 1e+12. If we have one, continue. 1868 if ((C == '-' || C == '+') && (PrevCh == 'E' || PrevCh == 'e')) { 1869 // If we are in Microsoft mode, don't continue if the constant is hex. 1870 // For example, MSVC will accept the following as 3 tokens: 0x1234567e+1 1871 if (!LangOpts.MicrosoftExt || !isHexaLiteral(BufferPtr, LangOpts)) 1872 return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result)); 1873 } 1874 1875 // If we have a hex FP constant, continue. 1876 if ((C == '-' || C == '+') && (PrevCh == 'P' || PrevCh == 'p')) { 1877 // Outside C99 and C++17, we accept hexadecimal floating point numbers as a 1878 // not-quite-conforming extension. Only do so if this looks like it's 1879 // actually meant to be a hexfloat, and not if it has a ud-suffix. 1880 bool IsHexFloat = true; 1881 if (!LangOpts.C99) { 1882 if (!isHexaLiteral(BufferPtr, LangOpts)) 1883 IsHexFloat = false; 1884 else if (!LangOpts.CPlusPlus17 && 1885 std::find(BufferPtr, CurPtr, '_') != CurPtr) 1886 IsHexFloat = false; 1887 } 1888 if (IsHexFloat) 1889 return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result)); 1890 } 1891 1892 // If we have a digit separator, continue. 1893 if (C == '\'' && (LangOpts.CPlusPlus14 || LangOpts.C2x)) { 1894 unsigned NextSize; 1895 char Next = getCharAndSizeNoWarn(CurPtr + Size, NextSize, LangOpts); 1896 if (isAsciiIdentifierContinue(Next)) { 1897 if (!isLexingRawMode()) 1898 Diag(CurPtr, LangOpts.CPlusPlus 1899 ? diag::warn_cxx11_compat_digit_separator 1900 : diag::warn_c2x_compat_digit_separator); 1901 CurPtr = ConsumeChar(CurPtr, Size, Result); 1902 CurPtr = ConsumeChar(CurPtr, NextSize, Result); 1903 return LexNumericConstant(Result, CurPtr); 1904 } 1905 } 1906 1907 // If we have a UCN or UTF-8 character (perhaps in a ud-suffix), continue. 1908 if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) 1909 return LexNumericConstant(Result, CurPtr); 1910 if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) 1911 return LexNumericConstant(Result, CurPtr); 1912 1913 // Update the location of token as well as BufferPtr. 1914 const char *TokStart = BufferPtr; 1915 FormTokenWithChars(Result, CurPtr, tok::numeric_constant); 1916 Result.setLiteralData(TokStart); 1917 return true; 1918 } 1919 1920 /// LexUDSuffix - Lex the ud-suffix production for user-defined literal suffixes 1921 /// in C++11, or warn on a ud-suffix in C++98. 1922 const char *Lexer::LexUDSuffix(Token &Result, const char *CurPtr, 1923 bool IsStringLiteral) { 1924 assert(LangOpts.CPlusPlus); 1925 1926 // Maximally munch an identifier. 1927 unsigned Size; 1928 char C = getCharAndSize(CurPtr, Size); 1929 bool Consumed = false; 1930 1931 if (!isAsciiIdentifierStart(C)) { 1932 if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) 1933 Consumed = true; 1934 else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) 1935 Consumed = true; 1936 else 1937 return CurPtr; 1938 } 1939 1940 if (!LangOpts.CPlusPlus11) { 1941 if (!isLexingRawMode()) 1942 Diag(CurPtr, 1943 C == '_' ? diag::warn_cxx11_compat_user_defined_literal 1944 : diag::warn_cxx11_compat_reserved_user_defined_literal) 1945 << FixItHint::CreateInsertion(getSourceLocation(CurPtr), " "); 1946 return CurPtr; 1947 } 1948 1949 // C++11 [lex.ext]p10, [usrlit.suffix]p1: A program containing a ud-suffix 1950 // that does not start with an underscore is ill-formed. As a conforming 1951 // extension, we treat all such suffixes as if they had whitespace before 1952 // them. We assume a suffix beginning with a UCN or UTF-8 character is more 1953 // likely to be a ud-suffix than a macro, however, and accept that. 1954 if (!Consumed) { 1955 bool IsUDSuffix = false; 1956 if (C == '_') 1957 IsUDSuffix = true; 1958 else if (IsStringLiteral && LangOpts.CPlusPlus14) { 1959 // In C++1y, we need to look ahead a few characters to see if this is a 1960 // valid suffix for a string literal or a numeric literal (this could be 1961 // the 'operator""if' defining a numeric literal operator). 1962 const unsigned MaxStandardSuffixLength = 3; 1963 char Buffer[MaxStandardSuffixLength] = { C }; 1964 unsigned Consumed = Size; 1965 unsigned Chars = 1; 1966 while (true) { 1967 unsigned NextSize; 1968 char Next = getCharAndSizeNoWarn(CurPtr + Consumed, NextSize, LangOpts); 1969 if (!isAsciiIdentifierContinue(Next)) { 1970 // End of suffix. Check whether this is on the allowed list. 1971 const StringRef CompleteSuffix(Buffer, Chars); 1972 IsUDSuffix = 1973 StringLiteralParser::isValidUDSuffix(LangOpts, CompleteSuffix); 1974 break; 1975 } 1976 1977 if (Chars == MaxStandardSuffixLength) 1978 // Too long: can't be a standard suffix. 1979 break; 1980 1981 Buffer[Chars++] = Next; 1982 Consumed += NextSize; 1983 } 1984 } 1985 1986 if (!IsUDSuffix) { 1987 if (!isLexingRawMode()) 1988 Diag(CurPtr, LangOpts.MSVCCompat 1989 ? diag::ext_ms_reserved_user_defined_literal 1990 : diag::ext_reserved_user_defined_literal) 1991 << FixItHint::CreateInsertion(getSourceLocation(CurPtr), " "); 1992 return CurPtr; 1993 } 1994 1995 CurPtr = ConsumeChar(CurPtr, Size, Result); 1996 } 1997 1998 Result.setFlag(Token::HasUDSuffix); 1999 while (true) { 2000 C = getCharAndSize(CurPtr, Size); 2001 if (isAsciiIdentifierContinue(C)) { 2002 CurPtr = ConsumeChar(CurPtr, Size, Result); 2003 } else if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) { 2004 } else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) { 2005 } else 2006 break; 2007 } 2008 2009 return CurPtr; 2010 } 2011 2012 /// LexStringLiteral - Lex the remainder of a string literal, after having lexed 2013 /// either " or L" or u8" or u" or U". 2014 bool Lexer::LexStringLiteral(Token &Result, const char *CurPtr, 2015 tok::TokenKind Kind) { 2016 const char *AfterQuote = CurPtr; 2017 // Does this string contain the \0 character? 2018 const char *NulCharacter = nullptr; 2019 2020 if (!isLexingRawMode() && 2021 (Kind == tok::utf8_string_literal || 2022 Kind == tok::utf16_string_literal || 2023 Kind == tok::utf32_string_literal)) 2024 Diag(BufferPtr, LangOpts.CPlusPlus ? diag::warn_cxx98_compat_unicode_literal 2025 : diag::warn_c99_compat_unicode_literal); 2026 2027 char C = getAndAdvanceChar(CurPtr, Result); 2028 while (C != '"') { 2029 // Skip escaped characters. Escaped newlines will already be processed by 2030 // getAndAdvanceChar. 2031 if (C == '\\') 2032 C = getAndAdvanceChar(CurPtr, Result); 2033 2034 if (C == '\n' || C == '\r' || // Newline. 2035 (C == 0 && CurPtr-1 == BufferEnd)) { // End of file. 2036 if (!isLexingRawMode() && !LangOpts.AsmPreprocessor) 2037 Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 1; 2038 FormTokenWithChars(Result, CurPtr-1, tok::unknown); 2039 return true; 2040 } 2041 2042 if (C == 0) { 2043 if (isCodeCompletionPoint(CurPtr-1)) { 2044 if (ParsingFilename) 2045 codeCompleteIncludedFile(AfterQuote, CurPtr - 1, /*IsAngled=*/false); 2046 else 2047 PP->CodeCompleteNaturalLanguage(); 2048 FormTokenWithChars(Result, CurPtr - 1, tok::unknown); 2049 cutOffLexing(); 2050 return true; 2051 } 2052 2053 NulCharacter = CurPtr-1; 2054 } 2055 C = getAndAdvanceChar(CurPtr, Result); 2056 } 2057 2058 // If we are in C++11, lex the optional ud-suffix. 2059 if (LangOpts.CPlusPlus) 2060 CurPtr = LexUDSuffix(Result, CurPtr, true); 2061 2062 // If a nul character existed in the string, warn about it. 2063 if (NulCharacter && !isLexingRawMode()) 2064 Diag(NulCharacter, diag::null_in_char_or_string) << 1; 2065 2066 // Update the location of the token as well as the BufferPtr instance var. 2067 const char *TokStart = BufferPtr; 2068 FormTokenWithChars(Result, CurPtr, Kind); 2069 Result.setLiteralData(TokStart); 2070 return true; 2071 } 2072 2073 /// LexRawStringLiteral - Lex the remainder of a raw string literal, after 2074 /// having lexed R", LR", u8R", uR", or UR". 2075 bool Lexer::LexRawStringLiteral(Token &Result, const char *CurPtr, 2076 tok::TokenKind Kind) { 2077 // This function doesn't use getAndAdvanceChar because C++0x [lex.pptoken]p3: 2078 // Between the initial and final double quote characters of the raw string, 2079 // any transformations performed in phases 1 and 2 (trigraphs, 2080 // universal-character-names, and line splicing) are reverted. 2081 2082 if (!isLexingRawMode()) 2083 Diag(BufferPtr, diag::warn_cxx98_compat_raw_string_literal); 2084 2085 unsigned PrefixLen = 0; 2086 2087 while (PrefixLen != 16 && isRawStringDelimBody(CurPtr[PrefixLen])) 2088 ++PrefixLen; 2089 2090 // If the last character was not a '(', then we didn't lex a valid delimiter. 2091 if (CurPtr[PrefixLen] != '(') { 2092 if (!isLexingRawMode()) { 2093 const char *PrefixEnd = &CurPtr[PrefixLen]; 2094 if (PrefixLen == 16) { 2095 Diag(PrefixEnd, diag::err_raw_delim_too_long); 2096 } else { 2097 Diag(PrefixEnd, diag::err_invalid_char_raw_delim) 2098 << StringRef(PrefixEnd, 1); 2099 } 2100 } 2101 2102 // Search for the next '"' in hopes of salvaging the lexer. Unfortunately, 2103 // it's possible the '"' was intended to be part of the raw string, but 2104 // there's not much we can do about that. 2105 while (true) { 2106 char C = *CurPtr++; 2107 2108 if (C == '"') 2109 break; 2110 if (C == 0 && CurPtr-1 == BufferEnd) { 2111 --CurPtr; 2112 break; 2113 } 2114 } 2115 2116 FormTokenWithChars(Result, CurPtr, tok::unknown); 2117 return true; 2118 } 2119 2120 // Save prefix and move CurPtr past it 2121 const char *Prefix = CurPtr; 2122 CurPtr += PrefixLen + 1; // skip over prefix and '(' 2123 2124 while (true) { 2125 char C = *CurPtr++; 2126 2127 if (C == ')') { 2128 // Check for prefix match and closing quote. 2129 if (strncmp(CurPtr, Prefix, PrefixLen) == 0 && CurPtr[PrefixLen] == '"') { 2130 CurPtr += PrefixLen + 1; // skip over prefix and '"' 2131 break; 2132 } 2133 } else if (C == 0 && CurPtr-1 == BufferEnd) { // End of file. 2134 if (!isLexingRawMode()) 2135 Diag(BufferPtr, diag::err_unterminated_raw_string) 2136 << StringRef(Prefix, PrefixLen); 2137 FormTokenWithChars(Result, CurPtr-1, tok::unknown); 2138 return true; 2139 } 2140 } 2141 2142 // If we are in C++11, lex the optional ud-suffix. 2143 if (LangOpts.CPlusPlus) 2144 CurPtr = LexUDSuffix(Result, CurPtr, true); 2145 2146 // Update the location of token as well as BufferPtr. 2147 const char *TokStart = BufferPtr; 2148 FormTokenWithChars(Result, CurPtr, Kind); 2149 Result.setLiteralData(TokStart); 2150 return true; 2151 } 2152 2153 /// LexAngledStringLiteral - Lex the remainder of an angled string literal, 2154 /// after having lexed the '<' character. This is used for #include filenames. 2155 bool Lexer::LexAngledStringLiteral(Token &Result, const char *CurPtr) { 2156 // Does this string contain the \0 character? 2157 const char *NulCharacter = nullptr; 2158 const char *AfterLessPos = CurPtr; 2159 char C = getAndAdvanceChar(CurPtr, Result); 2160 while (C != '>') { 2161 // Skip escaped characters. Escaped newlines will already be processed by 2162 // getAndAdvanceChar. 2163 if (C == '\\') 2164 C = getAndAdvanceChar(CurPtr, Result); 2165 2166 if (isVerticalWhitespace(C) || // Newline. 2167 (C == 0 && (CurPtr - 1 == BufferEnd))) { // End of file. 2168 // If the filename is unterminated, then it must just be a lone < 2169 // character. Return this as such. 2170 FormTokenWithChars(Result, AfterLessPos, tok::less); 2171 return true; 2172 } 2173 2174 if (C == 0) { 2175 if (isCodeCompletionPoint(CurPtr - 1)) { 2176 codeCompleteIncludedFile(AfterLessPos, CurPtr - 1, /*IsAngled=*/true); 2177 cutOffLexing(); 2178 FormTokenWithChars(Result, CurPtr - 1, tok::unknown); 2179 return true; 2180 } 2181 NulCharacter = CurPtr-1; 2182 } 2183 C = getAndAdvanceChar(CurPtr, Result); 2184 } 2185 2186 // If a nul character existed in the string, warn about it. 2187 if (NulCharacter && !isLexingRawMode()) 2188 Diag(NulCharacter, diag::null_in_char_or_string) << 1; 2189 2190 // Update the location of token as well as BufferPtr. 2191 const char *TokStart = BufferPtr; 2192 FormTokenWithChars(Result, CurPtr, tok::header_name); 2193 Result.setLiteralData(TokStart); 2194 return true; 2195 } 2196 2197 void Lexer::codeCompleteIncludedFile(const char *PathStart, 2198 const char *CompletionPoint, 2199 bool IsAngled) { 2200 // Completion only applies to the filename, after the last slash. 2201 StringRef PartialPath(PathStart, CompletionPoint - PathStart); 2202 llvm::StringRef SlashChars = LangOpts.MSVCCompat ? "/\\" : "/"; 2203 auto Slash = PartialPath.find_last_of(SlashChars); 2204 StringRef Dir = 2205 (Slash == StringRef::npos) ? "" : PartialPath.take_front(Slash); 2206 const char *StartOfFilename = 2207 (Slash == StringRef::npos) ? PathStart : PathStart + Slash + 1; 2208 // Code completion filter range is the filename only, up to completion point. 2209 PP->setCodeCompletionIdentifierInfo(&PP->getIdentifierTable().get( 2210 StringRef(StartOfFilename, CompletionPoint - StartOfFilename))); 2211 // We should replace the characters up to the closing quote or closest slash, 2212 // if any. 2213 while (CompletionPoint < BufferEnd) { 2214 char Next = *(CompletionPoint + 1); 2215 if (Next == 0 || Next == '\r' || Next == '\n') 2216 break; 2217 ++CompletionPoint; 2218 if (Next == (IsAngled ? '>' : '"')) 2219 break; 2220 if (llvm::is_contained(SlashChars, Next)) 2221 break; 2222 } 2223 2224 PP->setCodeCompletionTokenRange( 2225 FileLoc.getLocWithOffset(StartOfFilename - BufferStart), 2226 FileLoc.getLocWithOffset(CompletionPoint - BufferStart)); 2227 PP->CodeCompleteIncludedFile(Dir, IsAngled); 2228 } 2229 2230 /// LexCharConstant - Lex the remainder of a character constant, after having 2231 /// lexed either ' or L' or u8' or u' or U'. 2232 bool Lexer::LexCharConstant(Token &Result, const char *CurPtr, 2233 tok::TokenKind Kind) { 2234 // Does this character contain the \0 character? 2235 const char *NulCharacter = nullptr; 2236 2237 if (!isLexingRawMode()) { 2238 if (Kind == tok::utf16_char_constant || Kind == tok::utf32_char_constant) 2239 Diag(BufferPtr, LangOpts.CPlusPlus 2240 ? diag::warn_cxx98_compat_unicode_literal 2241 : diag::warn_c99_compat_unicode_literal); 2242 else if (Kind == tok::utf8_char_constant) 2243 Diag(BufferPtr, diag::warn_cxx14_compat_u8_character_literal); 2244 } 2245 2246 char C = getAndAdvanceChar(CurPtr, Result); 2247 if (C == '\'') { 2248 if (!isLexingRawMode() && !LangOpts.AsmPreprocessor) 2249 Diag(BufferPtr, diag::ext_empty_character); 2250 FormTokenWithChars(Result, CurPtr, tok::unknown); 2251 return true; 2252 } 2253 2254 while (C != '\'') { 2255 // Skip escaped characters. 2256 if (C == '\\') 2257 C = getAndAdvanceChar(CurPtr, Result); 2258 2259 if (C == '\n' || C == '\r' || // Newline. 2260 (C == 0 && CurPtr-1 == BufferEnd)) { // End of file. 2261 if (!isLexingRawMode() && !LangOpts.AsmPreprocessor) 2262 Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 0; 2263 FormTokenWithChars(Result, CurPtr-1, tok::unknown); 2264 return true; 2265 } 2266 2267 if (C == 0) { 2268 if (isCodeCompletionPoint(CurPtr-1)) { 2269 PP->CodeCompleteNaturalLanguage(); 2270 FormTokenWithChars(Result, CurPtr-1, tok::unknown); 2271 cutOffLexing(); 2272 return true; 2273 } 2274 2275 NulCharacter = CurPtr-1; 2276 } 2277 C = getAndAdvanceChar(CurPtr, Result); 2278 } 2279 2280 // If we are in C++11, lex the optional ud-suffix. 2281 if (LangOpts.CPlusPlus) 2282 CurPtr = LexUDSuffix(Result, CurPtr, false); 2283 2284 // If a nul character existed in the character, warn about it. 2285 if (NulCharacter && !isLexingRawMode()) 2286 Diag(NulCharacter, diag::null_in_char_or_string) << 0; 2287 2288 // Update the location of token as well as BufferPtr. 2289 const char *TokStart = BufferPtr; 2290 FormTokenWithChars(Result, CurPtr, Kind); 2291 Result.setLiteralData(TokStart); 2292 return true; 2293 } 2294 2295 /// SkipWhitespace - Efficiently skip over a series of whitespace characters. 2296 /// Update BufferPtr to point to the next non-whitespace character and return. 2297 /// 2298 /// This method forms a token and returns true if KeepWhitespaceMode is enabled. 2299 bool Lexer::SkipWhitespace(Token &Result, const char *CurPtr, 2300 bool &TokAtPhysicalStartOfLine) { 2301 // Whitespace - Skip it, then return the token after the whitespace. 2302 bool SawNewline = isVerticalWhitespace(CurPtr[-1]); 2303 2304 unsigned char Char = *CurPtr; 2305 2306 const char *lastNewLine = nullptr; 2307 auto setLastNewLine = [&](const char *Ptr) { 2308 lastNewLine = Ptr; 2309 if (!NewLinePtr) 2310 NewLinePtr = Ptr; 2311 }; 2312 if (SawNewline) 2313 setLastNewLine(CurPtr - 1); 2314 2315 // Skip consecutive spaces efficiently. 2316 while (true) { 2317 // Skip horizontal whitespace very aggressively. 2318 while (isHorizontalWhitespace(Char)) 2319 Char = *++CurPtr; 2320 2321 // Otherwise if we have something other than whitespace, we're done. 2322 if (!isVerticalWhitespace(Char)) 2323 break; 2324 2325 if (ParsingPreprocessorDirective) { 2326 // End of preprocessor directive line, let LexTokenInternal handle this. 2327 BufferPtr = CurPtr; 2328 return false; 2329 } 2330 2331 // OK, but handle newline. 2332 if (*CurPtr == '\n') 2333 setLastNewLine(CurPtr); 2334 SawNewline = true; 2335 Char = *++CurPtr; 2336 } 2337 2338 // If the client wants us to return whitespace, return it now. 2339 if (isKeepWhitespaceMode()) { 2340 FormTokenWithChars(Result, CurPtr, tok::unknown); 2341 if (SawNewline) { 2342 IsAtStartOfLine = true; 2343 IsAtPhysicalStartOfLine = true; 2344 } 2345 // FIXME: The next token will not have LeadingSpace set. 2346 return true; 2347 } 2348 2349 // If this isn't immediately after a newline, there is leading space. 2350 char PrevChar = CurPtr[-1]; 2351 bool HasLeadingSpace = !isVerticalWhitespace(PrevChar); 2352 2353 Result.setFlagValue(Token::LeadingSpace, HasLeadingSpace); 2354 if (SawNewline) { 2355 Result.setFlag(Token::StartOfLine); 2356 TokAtPhysicalStartOfLine = true; 2357 2358 if (NewLinePtr && lastNewLine && NewLinePtr != lastNewLine && PP) { 2359 if (auto *Handler = PP->getEmptylineHandler()) 2360 Handler->HandleEmptyline(SourceRange(getSourceLocation(NewLinePtr + 1), 2361 getSourceLocation(lastNewLine))); 2362 } 2363 } 2364 2365 BufferPtr = CurPtr; 2366 return false; 2367 } 2368 2369 /// We have just read the // characters from input. Skip until we find the 2370 /// newline character that terminates the comment. Then update BufferPtr and 2371 /// return. 2372 /// 2373 /// If we're in KeepCommentMode or any CommentHandler has inserted 2374 /// some tokens, this will store the first token and return true. 2375 bool Lexer::SkipLineComment(Token &Result, const char *CurPtr, 2376 bool &TokAtPhysicalStartOfLine) { 2377 // If Line comments aren't explicitly enabled for this language, emit an 2378 // extension warning. 2379 if (!LineComment) { 2380 if (!isLexingRawMode()) // There's no PP in raw mode, so can't emit diags. 2381 Diag(BufferPtr, diag::ext_line_comment); 2382 2383 // Mark them enabled so we only emit one warning for this translation 2384 // unit. 2385 LineComment = true; 2386 } 2387 2388 // Scan over the body of the comment. The common case, when scanning, is that 2389 // the comment contains normal ascii characters with nothing interesting in 2390 // them. As such, optimize for this case with the inner loop. 2391 // 2392 // This loop terminates with CurPtr pointing at the newline (or end of buffer) 2393 // character that ends the line comment. 2394 char C; 2395 while (true) { 2396 C = *CurPtr; 2397 // Skip over characters in the fast loop. 2398 while (C != 0 && // Potentially EOF. 2399 C != '\n' && C != '\r') // Newline or DOS-style newline. 2400 C = *++CurPtr; 2401 2402 const char *NextLine = CurPtr; 2403 if (C != 0) { 2404 // We found a newline, see if it's escaped. 2405 const char *EscapePtr = CurPtr-1; 2406 bool HasSpace = false; 2407 while (isHorizontalWhitespace(*EscapePtr)) { // Skip whitespace. 2408 --EscapePtr; 2409 HasSpace = true; 2410 } 2411 2412 if (*EscapePtr == '\\') 2413 // Escaped newline. 2414 CurPtr = EscapePtr; 2415 else if (EscapePtr[0] == '/' && EscapePtr[-1] == '?' && 2416 EscapePtr[-2] == '?' && LangOpts.Trigraphs) 2417 // Trigraph-escaped newline. 2418 CurPtr = EscapePtr-2; 2419 else 2420 break; // This is a newline, we're done. 2421 2422 // If there was space between the backslash and newline, warn about it. 2423 if (HasSpace && !isLexingRawMode()) 2424 Diag(EscapePtr, diag::backslash_newline_space); 2425 } 2426 2427 // Otherwise, this is a hard case. Fall back on getAndAdvanceChar to 2428 // properly decode the character. Read it in raw mode to avoid emitting 2429 // diagnostics about things like trigraphs. If we see an escaped newline, 2430 // we'll handle it below. 2431 const char *OldPtr = CurPtr; 2432 bool OldRawMode = isLexingRawMode(); 2433 LexingRawMode = true; 2434 C = getAndAdvanceChar(CurPtr, Result); 2435 LexingRawMode = OldRawMode; 2436 2437 // If we only read only one character, then no special handling is needed. 2438 // We're done and can skip forward to the newline. 2439 if (C != 0 && CurPtr == OldPtr+1) { 2440 CurPtr = NextLine; 2441 break; 2442 } 2443 2444 // If we read multiple characters, and one of those characters was a \r or 2445 // \n, then we had an escaped newline within the comment. Emit diagnostic 2446 // unless the next line is also a // comment. 2447 if (CurPtr != OldPtr + 1 && C != '/' && 2448 (CurPtr == BufferEnd + 1 || CurPtr[0] != '/')) { 2449 for (; OldPtr != CurPtr; ++OldPtr) 2450 if (OldPtr[0] == '\n' || OldPtr[0] == '\r') { 2451 // Okay, we found a // comment that ends in a newline, if the next 2452 // line is also a // comment, but has spaces, don't emit a diagnostic. 2453 if (isWhitespace(C)) { 2454 const char *ForwardPtr = CurPtr; 2455 while (isWhitespace(*ForwardPtr)) // Skip whitespace. 2456 ++ForwardPtr; 2457 if (ForwardPtr[0] == '/' && ForwardPtr[1] == '/') 2458 break; 2459 } 2460 2461 if (!isLexingRawMode()) 2462 Diag(OldPtr-1, diag::ext_multi_line_line_comment); 2463 break; 2464 } 2465 } 2466 2467 if (C == '\r' || C == '\n' || CurPtr == BufferEnd + 1) { 2468 --CurPtr; 2469 break; 2470 } 2471 2472 if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) { 2473 PP->CodeCompleteNaturalLanguage(); 2474 cutOffLexing(); 2475 return false; 2476 } 2477 } 2478 2479 // Found but did not consume the newline. Notify comment handlers about the 2480 // comment unless we're in a #if 0 block. 2481 if (PP && !isLexingRawMode() && 2482 PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr), 2483 getSourceLocation(CurPtr)))) { 2484 BufferPtr = CurPtr; 2485 return true; // A token has to be returned. 2486 } 2487 2488 // If we are returning comments as tokens, return this comment as a token. 2489 if (inKeepCommentMode()) 2490 return SaveLineComment(Result, CurPtr); 2491 2492 // If we are inside a preprocessor directive and we see the end of line, 2493 // return immediately, so that the lexer can return this as an EOD token. 2494 if (ParsingPreprocessorDirective || CurPtr == BufferEnd) { 2495 BufferPtr = CurPtr; 2496 return false; 2497 } 2498 2499 // Otherwise, eat the \n character. We don't care if this is a \n\r or 2500 // \r\n sequence. This is an efficiency hack (because we know the \n can't 2501 // contribute to another token), it isn't needed for correctness. Note that 2502 // this is ok even in KeepWhitespaceMode, because we would have returned the 2503 /// comment above in that mode. 2504 NewLinePtr = CurPtr++; 2505 2506 // The next returned token is at the start of the line. 2507 Result.setFlag(Token::StartOfLine); 2508 TokAtPhysicalStartOfLine = true; 2509 // No leading whitespace seen so far. 2510 Result.clearFlag(Token::LeadingSpace); 2511 BufferPtr = CurPtr; 2512 return false; 2513 } 2514 2515 /// If in save-comment mode, package up this Line comment in an appropriate 2516 /// way and return it. 2517 bool Lexer::SaveLineComment(Token &Result, const char *CurPtr) { 2518 // If we're not in a preprocessor directive, just return the // comment 2519 // directly. 2520 FormTokenWithChars(Result, CurPtr, tok::comment); 2521 2522 if (!ParsingPreprocessorDirective || LexingRawMode) 2523 return true; 2524 2525 // If this Line-style comment is in a macro definition, transmogrify it into 2526 // a C-style block comment. 2527 bool Invalid = false; 2528 std::string Spelling = PP->getSpelling(Result, &Invalid); 2529 if (Invalid) 2530 return true; 2531 2532 assert(Spelling[0] == '/' && Spelling[1] == '/' && "Not line comment?"); 2533 Spelling[1] = '*'; // Change prefix to "/*". 2534 Spelling += "*/"; // add suffix. 2535 2536 Result.setKind(tok::comment); 2537 PP->CreateString(Spelling, Result, 2538 Result.getLocation(), Result.getLocation()); 2539 return true; 2540 } 2541 2542 /// isBlockCommentEndOfEscapedNewLine - Return true if the specified newline 2543 /// character (either \\n or \\r) is part of an escaped newline sequence. Issue 2544 /// a diagnostic if so. We know that the newline is inside of a block comment. 2545 static bool isEndOfBlockCommentWithEscapedNewLine(const char *CurPtr, Lexer *L, 2546 bool Trigraphs) { 2547 assert(CurPtr[0] == '\n' || CurPtr[0] == '\r'); 2548 2549 // Position of the first trigraph in the ending sequence. 2550 const char *TrigraphPos = nullptr; 2551 // Position of the first whitespace after a '\' in the ending sequence. 2552 const char *SpacePos = nullptr; 2553 2554 while (true) { 2555 // Back up off the newline. 2556 --CurPtr; 2557 2558 // If this is a two-character newline sequence, skip the other character. 2559 if (CurPtr[0] == '\n' || CurPtr[0] == '\r') { 2560 // \n\n or \r\r -> not escaped newline. 2561 if (CurPtr[0] == CurPtr[1]) 2562 return false; 2563 // \n\r or \r\n -> skip the newline. 2564 --CurPtr; 2565 } 2566 2567 // If we have horizontal whitespace, skip over it. We allow whitespace 2568 // between the slash and newline. 2569 while (isHorizontalWhitespace(*CurPtr) || *CurPtr == 0) { 2570 SpacePos = CurPtr; 2571 --CurPtr; 2572 } 2573 2574 // If we have a slash, this is an escaped newline. 2575 if (*CurPtr == '\\') { 2576 --CurPtr; 2577 } else if (CurPtr[0] == '/' && CurPtr[-1] == '?' && CurPtr[-2] == '?') { 2578 // This is a trigraph encoding of a slash. 2579 TrigraphPos = CurPtr - 2; 2580 CurPtr -= 3; 2581 } else { 2582 return false; 2583 } 2584 2585 // If the character preceding the escaped newline is a '*', then after line 2586 // splicing we have a '*/' ending the comment. 2587 if (*CurPtr == '*') 2588 break; 2589 2590 if (*CurPtr != '\n' && *CurPtr != '\r') 2591 return false; 2592 } 2593 2594 if (TrigraphPos) { 2595 // If no trigraphs are enabled, warn that we ignored this trigraph and 2596 // ignore this * character. 2597 if (!Trigraphs) { 2598 if (!L->isLexingRawMode()) 2599 L->Diag(TrigraphPos, diag::trigraph_ignored_block_comment); 2600 return false; 2601 } 2602 if (!L->isLexingRawMode()) 2603 L->Diag(TrigraphPos, diag::trigraph_ends_block_comment); 2604 } 2605 2606 // Warn about having an escaped newline between the */ characters. 2607 if (!L->isLexingRawMode()) 2608 L->Diag(CurPtr + 1, diag::escaped_newline_block_comment_end); 2609 2610 // If there was space between the backslash and newline, warn about it. 2611 if (SpacePos && !L->isLexingRawMode()) 2612 L->Diag(SpacePos, diag::backslash_newline_space); 2613 2614 return true; 2615 } 2616 2617 #ifdef __SSE2__ 2618 #include <emmintrin.h> 2619 #elif __ALTIVEC__ 2620 #include <altivec.h> 2621 #undef bool 2622 #endif 2623 2624 /// We have just read from input the / and * characters that started a comment. 2625 /// Read until we find the * and / characters that terminate the comment. 2626 /// Note that we don't bother decoding trigraphs or escaped newlines in block 2627 /// comments, because they cannot cause the comment to end. The only thing 2628 /// that can happen is the comment could end with an escaped newline between 2629 /// the terminating * and /. 2630 /// 2631 /// If we're in KeepCommentMode or any CommentHandler has inserted 2632 /// some tokens, this will store the first token and return true. 2633 bool Lexer::SkipBlockComment(Token &Result, const char *CurPtr, 2634 bool &TokAtPhysicalStartOfLine) { 2635 // Scan one character past where we should, looking for a '/' character. Once 2636 // we find it, check to see if it was preceded by a *. This common 2637 // optimization helps people who like to put a lot of * characters in their 2638 // comments. 2639 2640 // The first character we get with newlines and trigraphs skipped to handle 2641 // the degenerate /*/ case below correctly if the * has an escaped newline 2642 // after it. 2643 unsigned CharSize; 2644 unsigned char C = getCharAndSize(CurPtr, CharSize); 2645 CurPtr += CharSize; 2646 if (C == 0 && CurPtr == BufferEnd+1) { 2647 if (!isLexingRawMode()) 2648 Diag(BufferPtr, diag::err_unterminated_block_comment); 2649 --CurPtr; 2650 2651 // KeepWhitespaceMode should return this broken comment as a token. Since 2652 // it isn't a well formed comment, just return it as an 'unknown' token. 2653 if (isKeepWhitespaceMode()) { 2654 FormTokenWithChars(Result, CurPtr, tok::unknown); 2655 return true; 2656 } 2657 2658 BufferPtr = CurPtr; 2659 return false; 2660 } 2661 2662 // Check to see if the first character after the '/*' is another /. If so, 2663 // then this slash does not end the block comment, it is part of it. 2664 if (C == '/') 2665 C = *CurPtr++; 2666 2667 while (true) { 2668 // Skip over all non-interesting characters until we find end of buffer or a 2669 // (probably ending) '/' character. 2670 if (CurPtr + 24 < BufferEnd && 2671 // If there is a code-completion point avoid the fast scan because it 2672 // doesn't check for '\0'. 2673 !(PP && PP->getCodeCompletionFileLoc() == FileLoc)) { 2674 // While not aligned to a 16-byte boundary. 2675 while (C != '/' && ((intptr_t)CurPtr & 0x0F) != 0) 2676 C = *CurPtr++; 2677 2678 if (C == '/') goto FoundSlash; 2679 2680 #ifdef __SSE2__ 2681 __m128i Slashes = _mm_set1_epi8('/'); 2682 while (CurPtr+16 <= BufferEnd) { 2683 int cmp = _mm_movemask_epi8(_mm_cmpeq_epi8(*(const __m128i*)CurPtr, 2684 Slashes)); 2685 if (cmp != 0) { 2686 // Adjust the pointer to point directly after the first slash. It's 2687 // not necessary to set C here, it will be overwritten at the end of 2688 // the outer loop. 2689 CurPtr += llvm::countTrailingZeros<unsigned>(cmp) + 1; 2690 goto FoundSlash; 2691 } 2692 CurPtr += 16; 2693 } 2694 #elif __ALTIVEC__ 2695 __vector unsigned char Slashes = { 2696 '/', '/', '/', '/', '/', '/', '/', '/', 2697 '/', '/', '/', '/', '/', '/', '/', '/' 2698 }; 2699 while (CurPtr + 16 <= BufferEnd && 2700 !vec_any_eq(*(const __vector unsigned char *)CurPtr, Slashes)) 2701 CurPtr += 16; 2702 #else 2703 // Scan for '/' quickly. Many block comments are very large. 2704 while (CurPtr[0] != '/' && 2705 CurPtr[1] != '/' && 2706 CurPtr[2] != '/' && 2707 CurPtr[3] != '/' && 2708 CurPtr+4 < BufferEnd) { 2709 CurPtr += 4; 2710 } 2711 #endif 2712 2713 // It has to be one of the bytes scanned, increment to it and read one. 2714 C = *CurPtr++; 2715 } 2716 2717 // Loop to scan the remainder. 2718 while (C != '/' && C != '\0') 2719 C = *CurPtr++; 2720 2721 if (C == '/') { 2722 FoundSlash: 2723 if (CurPtr[-2] == '*') // We found the final */. We're done! 2724 break; 2725 2726 if ((CurPtr[-2] == '\n' || CurPtr[-2] == '\r')) { 2727 if (isEndOfBlockCommentWithEscapedNewLine(CurPtr - 2, this, 2728 LangOpts.Trigraphs)) { 2729 // We found the final */, though it had an escaped newline between the 2730 // * and /. We're done! 2731 break; 2732 } 2733 } 2734 if (CurPtr[0] == '*' && CurPtr[1] != '/') { 2735 // If this is a /* inside of the comment, emit a warning. Don't do this 2736 // if this is a /*/, which will end the comment. This misses cases with 2737 // embedded escaped newlines, but oh well. 2738 if (!isLexingRawMode()) 2739 Diag(CurPtr-1, diag::warn_nested_block_comment); 2740 } 2741 } else if (C == 0 && CurPtr == BufferEnd+1) { 2742 if (!isLexingRawMode()) 2743 Diag(BufferPtr, diag::err_unterminated_block_comment); 2744 // Note: the user probably forgot a */. We could continue immediately 2745 // after the /*, but this would involve lexing a lot of what really is the 2746 // comment, which surely would confuse the parser. 2747 --CurPtr; 2748 2749 // KeepWhitespaceMode should return this broken comment as a token. Since 2750 // it isn't a well formed comment, just return it as an 'unknown' token. 2751 if (isKeepWhitespaceMode()) { 2752 FormTokenWithChars(Result, CurPtr, tok::unknown); 2753 return true; 2754 } 2755 2756 BufferPtr = CurPtr; 2757 return false; 2758 } else if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) { 2759 PP->CodeCompleteNaturalLanguage(); 2760 cutOffLexing(); 2761 return false; 2762 } 2763 2764 C = *CurPtr++; 2765 } 2766 2767 // Notify comment handlers about the comment unless we're in a #if 0 block. 2768 if (PP && !isLexingRawMode() && 2769 PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr), 2770 getSourceLocation(CurPtr)))) { 2771 BufferPtr = CurPtr; 2772 return true; // A token has to be returned. 2773 } 2774 2775 // If we are returning comments as tokens, return this comment as a token. 2776 if (inKeepCommentMode()) { 2777 FormTokenWithChars(Result, CurPtr, tok::comment); 2778 return true; 2779 } 2780 2781 // It is common for the tokens immediately after a /**/ comment to be 2782 // whitespace. Instead of going through the big switch, handle it 2783 // efficiently now. This is safe even in KeepWhitespaceMode because we would 2784 // have already returned above with the comment as a token. 2785 if (isHorizontalWhitespace(*CurPtr)) { 2786 SkipWhitespace(Result, CurPtr+1, TokAtPhysicalStartOfLine); 2787 return false; 2788 } 2789 2790 // Otherwise, just return so that the next character will be lexed as a token. 2791 BufferPtr = CurPtr; 2792 Result.setFlag(Token::LeadingSpace); 2793 return false; 2794 } 2795 2796 //===----------------------------------------------------------------------===// 2797 // Primary Lexing Entry Points 2798 //===----------------------------------------------------------------------===// 2799 2800 /// ReadToEndOfLine - Read the rest of the current preprocessor line as an 2801 /// uninterpreted string. This switches the lexer out of directive mode. 2802 void Lexer::ReadToEndOfLine(SmallVectorImpl<char> *Result) { 2803 assert(ParsingPreprocessorDirective && ParsingFilename == false && 2804 "Must be in a preprocessing directive!"); 2805 Token Tmp; 2806 Tmp.startToken(); 2807 2808 // CurPtr - Cache BufferPtr in an automatic variable. 2809 const char *CurPtr = BufferPtr; 2810 while (true) { 2811 char Char = getAndAdvanceChar(CurPtr, Tmp); 2812 switch (Char) { 2813 default: 2814 if (Result) 2815 Result->push_back(Char); 2816 break; 2817 case 0: // Null. 2818 // Found end of file? 2819 if (CurPtr-1 != BufferEnd) { 2820 if (isCodeCompletionPoint(CurPtr-1)) { 2821 PP->CodeCompleteNaturalLanguage(); 2822 cutOffLexing(); 2823 return; 2824 } 2825 2826 // Nope, normal character, continue. 2827 if (Result) 2828 Result->push_back(Char); 2829 break; 2830 } 2831 // FALL THROUGH. 2832 LLVM_FALLTHROUGH; 2833 case '\r': 2834 case '\n': 2835 // Okay, we found the end of the line. First, back up past the \0, \r, \n. 2836 assert(CurPtr[-1] == Char && "Trigraphs for newline?"); 2837 BufferPtr = CurPtr-1; 2838 2839 // Next, lex the character, which should handle the EOD transition. 2840 Lex(Tmp); 2841 if (Tmp.is(tok::code_completion)) { 2842 if (PP) 2843 PP->CodeCompleteNaturalLanguage(); 2844 Lex(Tmp); 2845 } 2846 assert(Tmp.is(tok::eod) && "Unexpected token!"); 2847 2848 // Finally, we're done; 2849 return; 2850 } 2851 } 2852 } 2853 2854 /// LexEndOfFile - CurPtr points to the end of this file. Handle this 2855 /// condition, reporting diagnostics and handling other edge cases as required. 2856 /// This returns true if Result contains a token, false if PP.Lex should be 2857 /// called again. 2858 bool Lexer::LexEndOfFile(Token &Result, const char *CurPtr) { 2859 // If we hit the end of the file while parsing a preprocessor directive, 2860 // end the preprocessor directive first. The next token returned will 2861 // then be the end of file. 2862 if (ParsingPreprocessorDirective) { 2863 // Done parsing the "line". 2864 ParsingPreprocessorDirective = false; 2865 // Update the location of token as well as BufferPtr. 2866 FormTokenWithChars(Result, CurPtr, tok::eod); 2867 2868 // Restore comment saving mode, in case it was disabled for directive. 2869 if (PP) 2870 resetExtendedTokenMode(); 2871 return true; // Have a token. 2872 } 2873 2874 // If we are in raw mode, return this event as an EOF token. Let the caller 2875 // that put us in raw mode handle the event. 2876 if (isLexingRawMode()) { 2877 Result.startToken(); 2878 BufferPtr = BufferEnd; 2879 FormTokenWithChars(Result, BufferEnd, tok::eof); 2880 return true; 2881 } 2882 2883 if (PP->isRecordingPreamble() && PP->isInPrimaryFile()) { 2884 PP->setRecordedPreambleConditionalStack(ConditionalStack); 2885 // If the preamble cuts off the end of a header guard, consider it guarded. 2886 // The guard is valid for the preamble content itself, and for tools the 2887 // most useful answer is "yes, this file has a header guard". 2888 if (!ConditionalStack.empty()) 2889 MIOpt.ExitTopLevelConditional(); 2890 ConditionalStack.clear(); 2891 } 2892 2893 // Issue diagnostics for unterminated #if and missing newline. 2894 2895 // If we are in a #if directive, emit an error. 2896 while (!ConditionalStack.empty()) { 2897 if (PP->getCodeCompletionFileLoc() != FileLoc) 2898 PP->Diag(ConditionalStack.back().IfLoc, 2899 diag::err_pp_unterminated_conditional); 2900 ConditionalStack.pop_back(); 2901 } 2902 2903 // C99 5.1.1.2p2: If the file is non-empty and didn't end in a newline, issue 2904 // a pedwarn. 2905 if (CurPtr != BufferStart && (CurPtr[-1] != '\n' && CurPtr[-1] != '\r')) { 2906 DiagnosticsEngine &Diags = PP->getDiagnostics(); 2907 SourceLocation EndLoc = getSourceLocation(BufferEnd); 2908 unsigned DiagID; 2909 2910 if (LangOpts.CPlusPlus11) { 2911 // C++11 [lex.phases] 2.2 p2 2912 // Prefer the C++98 pedantic compatibility warning over the generic, 2913 // non-extension, user-requested "missing newline at EOF" warning. 2914 if (!Diags.isIgnored(diag::warn_cxx98_compat_no_newline_eof, EndLoc)) { 2915 DiagID = diag::warn_cxx98_compat_no_newline_eof; 2916 } else { 2917 DiagID = diag::warn_no_newline_eof; 2918 } 2919 } else { 2920 DiagID = diag::ext_no_newline_eof; 2921 } 2922 2923 Diag(BufferEnd, DiagID) 2924 << FixItHint::CreateInsertion(EndLoc, "\n"); 2925 } 2926 2927 BufferPtr = CurPtr; 2928 2929 // Finally, let the preprocessor handle this. 2930 return PP->HandleEndOfFile(Result, isPragmaLexer()); 2931 } 2932 2933 /// isNextPPTokenLParen - Return 1 if the next unexpanded token lexed from 2934 /// the specified lexer will return a tok::l_paren token, 0 if it is something 2935 /// else and 2 if there are no more tokens in the buffer controlled by the 2936 /// lexer. 2937 unsigned Lexer::isNextPPTokenLParen() { 2938 assert(!LexingRawMode && "How can we expand a macro from a skipping buffer?"); 2939 2940 if (isDependencyDirectivesLexer()) { 2941 if (NextDepDirectiveTokenIndex == DepDirectives.front().Tokens.size()) 2942 return 2; 2943 return DepDirectives.front().Tokens[NextDepDirectiveTokenIndex].is( 2944 tok::l_paren); 2945 } 2946 2947 // Switch to 'skipping' mode. This will ensure that we can lex a token 2948 // without emitting diagnostics, disables macro expansion, and will cause EOF 2949 // to return an EOF token instead of popping the include stack. 2950 LexingRawMode = true; 2951 2952 // Save state that can be changed while lexing so that we can restore it. 2953 const char *TmpBufferPtr = BufferPtr; 2954 bool inPPDirectiveMode = ParsingPreprocessorDirective; 2955 bool atStartOfLine = IsAtStartOfLine; 2956 bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine; 2957 bool leadingSpace = HasLeadingSpace; 2958 2959 Token Tok; 2960 Lex(Tok); 2961 2962 // Restore state that may have changed. 2963 BufferPtr = TmpBufferPtr; 2964 ParsingPreprocessorDirective = inPPDirectiveMode; 2965 HasLeadingSpace = leadingSpace; 2966 IsAtStartOfLine = atStartOfLine; 2967 IsAtPhysicalStartOfLine = atPhysicalStartOfLine; 2968 2969 // Restore the lexer back to non-skipping mode. 2970 LexingRawMode = false; 2971 2972 if (Tok.is(tok::eof)) 2973 return 2; 2974 return Tok.is(tok::l_paren); 2975 } 2976 2977 /// Find the end of a version control conflict marker. 2978 static const char *FindConflictEnd(const char *CurPtr, const char *BufferEnd, 2979 ConflictMarkerKind CMK) { 2980 const char *Terminator = CMK == CMK_Perforce ? "<<<<\n" : ">>>>>>>"; 2981 size_t TermLen = CMK == CMK_Perforce ? 5 : 7; 2982 auto RestOfBuffer = StringRef(CurPtr, BufferEnd - CurPtr).substr(TermLen); 2983 size_t Pos = RestOfBuffer.find(Terminator); 2984 while (Pos != StringRef::npos) { 2985 // Must occur at start of line. 2986 if (Pos == 0 || 2987 (RestOfBuffer[Pos - 1] != '\r' && RestOfBuffer[Pos - 1] != '\n')) { 2988 RestOfBuffer = RestOfBuffer.substr(Pos+TermLen); 2989 Pos = RestOfBuffer.find(Terminator); 2990 continue; 2991 } 2992 return RestOfBuffer.data()+Pos; 2993 } 2994 return nullptr; 2995 } 2996 2997 /// IsStartOfConflictMarker - If the specified pointer is the start of a version 2998 /// control conflict marker like '<<<<<<<', recognize it as such, emit an error 2999 /// and recover nicely. This returns true if it is a conflict marker and false 3000 /// if not. 3001 bool Lexer::IsStartOfConflictMarker(const char *CurPtr) { 3002 // Only a conflict marker if it starts at the beginning of a line. 3003 if (CurPtr != BufferStart && 3004 CurPtr[-1] != '\n' && CurPtr[-1] != '\r') 3005 return false; 3006 3007 // Check to see if we have <<<<<<< or >>>>. 3008 if (!StringRef(CurPtr, BufferEnd - CurPtr).startswith("<<<<<<<") && 3009 !StringRef(CurPtr, BufferEnd - CurPtr).startswith(">>>> ")) 3010 return false; 3011 3012 // If we have a situation where we don't care about conflict markers, ignore 3013 // it. 3014 if (CurrentConflictMarkerState || isLexingRawMode()) 3015 return false; 3016 3017 ConflictMarkerKind Kind = *CurPtr == '<' ? CMK_Normal : CMK_Perforce; 3018 3019 // Check to see if there is an ending marker somewhere in the buffer at the 3020 // start of a line to terminate this conflict marker. 3021 if (FindConflictEnd(CurPtr, BufferEnd, Kind)) { 3022 // We found a match. We are really in a conflict marker. 3023 // Diagnose this, and ignore to the end of line. 3024 Diag(CurPtr, diag::err_conflict_marker); 3025 CurrentConflictMarkerState = Kind; 3026 3027 // Skip ahead to the end of line. We know this exists because the 3028 // end-of-conflict marker starts with \r or \n. 3029 while (*CurPtr != '\r' && *CurPtr != '\n') { 3030 assert(CurPtr != BufferEnd && "Didn't find end of line"); 3031 ++CurPtr; 3032 } 3033 BufferPtr = CurPtr; 3034 return true; 3035 } 3036 3037 // No end of conflict marker found. 3038 return false; 3039 } 3040 3041 /// HandleEndOfConflictMarker - If this is a '====' or '||||' or '>>>>', or if 3042 /// it is '<<<<' and the conflict marker started with a '>>>>' marker, then it 3043 /// is the end of a conflict marker. Handle it by ignoring up until the end of 3044 /// the line. This returns true if it is a conflict marker and false if not. 3045 bool Lexer::HandleEndOfConflictMarker(const char *CurPtr) { 3046 // Only a conflict marker if it starts at the beginning of a line. 3047 if (CurPtr != BufferStart && 3048 CurPtr[-1] != '\n' && CurPtr[-1] != '\r') 3049 return false; 3050 3051 // If we have a situation where we don't care about conflict markers, ignore 3052 // it. 3053 if (!CurrentConflictMarkerState || isLexingRawMode()) 3054 return false; 3055 3056 // Check to see if we have the marker (4 characters in a row). 3057 for (unsigned i = 1; i != 4; ++i) 3058 if (CurPtr[i] != CurPtr[0]) 3059 return false; 3060 3061 // If we do have it, search for the end of the conflict marker. This could 3062 // fail if it got skipped with a '#if 0' or something. Note that CurPtr might 3063 // be the end of conflict marker. 3064 if (const char *End = FindConflictEnd(CurPtr, BufferEnd, 3065 CurrentConflictMarkerState)) { 3066 CurPtr = End; 3067 3068 // Skip ahead to the end of line. 3069 while (CurPtr != BufferEnd && *CurPtr != '\r' && *CurPtr != '\n') 3070 ++CurPtr; 3071 3072 BufferPtr = CurPtr; 3073 3074 // No longer in the conflict marker. 3075 CurrentConflictMarkerState = CMK_None; 3076 return true; 3077 } 3078 3079 return false; 3080 } 3081 3082 static const char *findPlaceholderEnd(const char *CurPtr, 3083 const char *BufferEnd) { 3084 if (CurPtr == BufferEnd) 3085 return nullptr; 3086 BufferEnd -= 1; // Scan until the second last character. 3087 for (; CurPtr != BufferEnd; ++CurPtr) { 3088 if (CurPtr[0] == '#' && CurPtr[1] == '>') 3089 return CurPtr + 2; 3090 } 3091 return nullptr; 3092 } 3093 3094 bool Lexer::lexEditorPlaceholder(Token &Result, const char *CurPtr) { 3095 assert(CurPtr[-1] == '<' && CurPtr[0] == '#' && "Not a placeholder!"); 3096 if (!PP || !PP->getPreprocessorOpts().LexEditorPlaceholders || LexingRawMode) 3097 return false; 3098 const char *End = findPlaceholderEnd(CurPtr + 1, BufferEnd); 3099 if (!End) 3100 return false; 3101 const char *Start = CurPtr - 1; 3102 if (!LangOpts.AllowEditorPlaceholders) 3103 Diag(Start, diag::err_placeholder_in_source); 3104 Result.startToken(); 3105 FormTokenWithChars(Result, End, tok::raw_identifier); 3106 Result.setRawIdentifierData(Start); 3107 PP->LookUpIdentifierInfo(Result); 3108 Result.setFlag(Token::IsEditorPlaceholder); 3109 BufferPtr = End; 3110 return true; 3111 } 3112 3113 bool Lexer::isCodeCompletionPoint(const char *CurPtr) const { 3114 if (PP && PP->isCodeCompletionEnabled()) { 3115 SourceLocation Loc = FileLoc.getLocWithOffset(CurPtr-BufferStart); 3116 return Loc == PP->getCodeCompletionLoc(); 3117 } 3118 3119 return false; 3120 } 3121 3122 uint32_t Lexer::tryReadUCN(const char *&StartPtr, const char *SlashLoc, 3123 Token *Result) { 3124 unsigned CharSize; 3125 char Kind = getCharAndSize(StartPtr, CharSize); 3126 bool Delimited = false; 3127 bool FoundEndDelimiter = false; 3128 unsigned Count = 0; 3129 bool Diagnose = Result && !isLexingRawMode(); 3130 3131 unsigned NumHexDigits; 3132 if (Kind == 'u') 3133 NumHexDigits = 4; 3134 else if (Kind == 'U') 3135 NumHexDigits = 8; 3136 else 3137 return 0; 3138 3139 if (!LangOpts.CPlusPlus && !LangOpts.C99) { 3140 if (Diagnose) 3141 Diag(SlashLoc, diag::warn_ucn_not_valid_in_c89); 3142 return 0; 3143 } 3144 3145 const char *CurPtr = StartPtr + CharSize; 3146 const char *KindLoc = &CurPtr[-1]; 3147 3148 uint32_t CodePoint = 0; 3149 while (Count != NumHexDigits || Delimited) { 3150 char C = getCharAndSize(CurPtr, CharSize); 3151 if (!Delimited && C == '{') { 3152 Delimited = true; 3153 CurPtr += CharSize; 3154 continue; 3155 } 3156 3157 if (Delimited && C == '}') { 3158 CurPtr += CharSize; 3159 FoundEndDelimiter = true; 3160 break; 3161 } 3162 3163 unsigned Value = llvm::hexDigitValue(C); 3164 if (Value == -1U) { 3165 if (!Delimited) 3166 break; 3167 if (Diagnose) 3168 Diag(BufferPtr, diag::warn_delimited_ucn_incomplete) 3169 << StringRef(&C, 1); 3170 return 0; 3171 } 3172 3173 if (CodePoint & 0xF000'0000) { 3174 if (Diagnose) 3175 Diag(KindLoc, diag::err_escape_too_large) << 0; 3176 return 0; 3177 } 3178 3179 CodePoint <<= 4; 3180 CodePoint |= Value; 3181 CurPtr += CharSize; 3182 Count++; 3183 } 3184 3185 if (Count == 0) { 3186 if (Diagnose) 3187 Diag(StartPtr, FoundEndDelimiter ? diag::warn_delimited_ucn_empty 3188 : diag::warn_ucn_escape_no_digits) 3189 << StringRef(KindLoc, 1); 3190 return 0; 3191 } 3192 3193 if (!Delimited && Count != NumHexDigits) { 3194 if (Diagnose) { 3195 Diag(BufferPtr, diag::warn_ucn_escape_incomplete); 3196 // If the user wrote \U1234, suggest a fixit to \u. 3197 if (Count == 4 && NumHexDigits == 8) { 3198 CharSourceRange URange = makeCharRange(*this, KindLoc, KindLoc + 1); 3199 Diag(KindLoc, diag::note_ucn_four_not_eight) 3200 << FixItHint::CreateReplacement(URange, "u"); 3201 } 3202 } 3203 return 0; 3204 } 3205 3206 if (Delimited && PP) { 3207 Diag(BufferPtr, diag::ext_delimited_escape_sequence); 3208 } 3209 3210 if (Result) { 3211 Result->setFlag(Token::HasUCN); 3212 if (CurPtr - StartPtr == (ptrdiff_t)(Count + 2 + (Delimited ? 2 : 0))) 3213 StartPtr = CurPtr; 3214 else 3215 while (StartPtr != CurPtr) 3216 (void)getAndAdvanceChar(StartPtr, *Result); 3217 } else { 3218 StartPtr = CurPtr; 3219 } 3220 3221 // Don't apply C family restrictions to UCNs in assembly mode 3222 if (LangOpts.AsmPreprocessor) 3223 return CodePoint; 3224 3225 // C99 6.4.3p2: A universal character name shall not specify a character whose 3226 // short identifier is less than 00A0 other than 0024 ($), 0040 (@), or 3227 // 0060 (`), nor one in the range D800 through DFFF inclusive.) 3228 // C++11 [lex.charset]p2: If the hexadecimal value for a 3229 // universal-character-name corresponds to a surrogate code point (in the 3230 // range 0xD800-0xDFFF, inclusive), the program is ill-formed. Additionally, 3231 // if the hexadecimal value for a universal-character-name outside the 3232 // c-char-sequence, s-char-sequence, or r-char-sequence of a character or 3233 // string literal corresponds to a control character (in either of the 3234 // ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a character in the 3235 // basic source character set, the program is ill-formed. 3236 if (CodePoint < 0xA0) { 3237 if (CodePoint == 0x24 || CodePoint == 0x40 || CodePoint == 0x60) 3238 return CodePoint; 3239 3240 // We don't use isLexingRawMode() here because we need to warn about bad 3241 // UCNs even when skipping preprocessing tokens in a #if block. 3242 if (Result && PP) { 3243 if (CodePoint < 0x20 || CodePoint >= 0x7F) 3244 Diag(BufferPtr, diag::err_ucn_control_character); 3245 else { 3246 char C = static_cast<char>(CodePoint); 3247 Diag(BufferPtr, diag::err_ucn_escape_basic_scs) << StringRef(&C, 1); 3248 } 3249 } 3250 3251 return 0; 3252 } else if (CodePoint >= 0xD800 && CodePoint <= 0xDFFF) { 3253 // C++03 allows UCNs representing surrogate characters. C99 and C++11 don't. 3254 // We don't use isLexingRawMode() here because we need to diagnose bad 3255 // UCNs even when skipping preprocessing tokens in a #if block. 3256 if (Result && PP) { 3257 if (LangOpts.CPlusPlus && !LangOpts.CPlusPlus11) 3258 Diag(BufferPtr, diag::warn_ucn_escape_surrogate); 3259 else 3260 Diag(BufferPtr, diag::err_ucn_escape_invalid); 3261 } 3262 return 0; 3263 } 3264 3265 return CodePoint; 3266 } 3267 3268 bool Lexer::CheckUnicodeWhitespace(Token &Result, uint32_t C, 3269 const char *CurPtr) { 3270 if (!isLexingRawMode() && !PP->isPreprocessedOutput() && 3271 isUnicodeWhitespace(C)) { 3272 Diag(BufferPtr, diag::ext_unicode_whitespace) 3273 << makeCharRange(*this, BufferPtr, CurPtr); 3274 3275 Result.setFlag(Token::LeadingSpace); 3276 return true; 3277 } 3278 return false; 3279 } 3280 3281 void Lexer::PropagateLineStartLeadingSpaceInfo(Token &Result) { 3282 IsAtStartOfLine = Result.isAtStartOfLine(); 3283 HasLeadingSpace = Result.hasLeadingSpace(); 3284 HasLeadingEmptyMacro = Result.hasLeadingEmptyMacro(); 3285 // Note that this doesn't affect IsAtPhysicalStartOfLine. 3286 } 3287 3288 bool Lexer::Lex(Token &Result) { 3289 assert(!isDependencyDirectivesLexer()); 3290 3291 // Start a new token. 3292 Result.startToken(); 3293 3294 // Set up misc whitespace flags for LexTokenInternal. 3295 if (IsAtStartOfLine) { 3296 Result.setFlag(Token::StartOfLine); 3297 IsAtStartOfLine = false; 3298 } 3299 3300 if (HasLeadingSpace) { 3301 Result.setFlag(Token::LeadingSpace); 3302 HasLeadingSpace = false; 3303 } 3304 3305 if (HasLeadingEmptyMacro) { 3306 Result.setFlag(Token::LeadingEmptyMacro); 3307 HasLeadingEmptyMacro = false; 3308 } 3309 3310 bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine; 3311 IsAtPhysicalStartOfLine = false; 3312 bool isRawLex = isLexingRawMode(); 3313 (void) isRawLex; 3314 bool returnedToken = LexTokenInternal(Result, atPhysicalStartOfLine); 3315 // (After the LexTokenInternal call, the lexer might be destroyed.) 3316 assert((returnedToken || !isRawLex) && "Raw lex must succeed"); 3317 return returnedToken; 3318 } 3319 3320 /// LexTokenInternal - This implements a simple C family lexer. It is an 3321 /// extremely performance critical piece of code. This assumes that the buffer 3322 /// has a null character at the end of the file. This returns a preprocessing 3323 /// token, not a normal token, as such, it is an internal interface. It assumes 3324 /// that the Flags of result have been cleared before calling this. 3325 bool Lexer::LexTokenInternal(Token &Result, bool TokAtPhysicalStartOfLine) { 3326 LexNextToken: 3327 // New token, can't need cleaning yet. 3328 Result.clearFlag(Token::NeedsCleaning); 3329 Result.setIdentifierInfo(nullptr); 3330 3331 // CurPtr - Cache BufferPtr in an automatic variable. 3332 const char *CurPtr = BufferPtr; 3333 3334 // Small amounts of horizontal whitespace is very common between tokens. 3335 if (isHorizontalWhitespace(*CurPtr)) { 3336 do { 3337 ++CurPtr; 3338 } while (isHorizontalWhitespace(*CurPtr)); 3339 3340 // If we are keeping whitespace and other tokens, just return what we just 3341 // skipped. The next lexer invocation will return the token after the 3342 // whitespace. 3343 if (isKeepWhitespaceMode()) { 3344 FormTokenWithChars(Result, CurPtr, tok::unknown); 3345 // FIXME: The next token will not have LeadingSpace set. 3346 return true; 3347 } 3348 3349 BufferPtr = CurPtr; 3350 Result.setFlag(Token::LeadingSpace); 3351 } 3352 3353 unsigned SizeTmp, SizeTmp2; // Temporaries for use in cases below. 3354 3355 // Read a character, advancing over it. 3356 char Char = getAndAdvanceChar(CurPtr, Result); 3357 tok::TokenKind Kind; 3358 3359 if (!isVerticalWhitespace(Char)) 3360 NewLinePtr = nullptr; 3361 3362 switch (Char) { 3363 case 0: // Null. 3364 // Found end of file? 3365 if (CurPtr-1 == BufferEnd) 3366 return LexEndOfFile(Result, CurPtr-1); 3367 3368 // Check if we are performing code completion. 3369 if (isCodeCompletionPoint(CurPtr-1)) { 3370 // Return the code-completion token. 3371 Result.startToken(); 3372 FormTokenWithChars(Result, CurPtr, tok::code_completion); 3373 return true; 3374 } 3375 3376 if (!isLexingRawMode()) 3377 Diag(CurPtr-1, diag::null_in_file); 3378 Result.setFlag(Token::LeadingSpace); 3379 if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) 3380 return true; // KeepWhitespaceMode 3381 3382 // We know the lexer hasn't changed, so just try again with this lexer. 3383 // (We manually eliminate the tail call to avoid recursion.) 3384 goto LexNextToken; 3385 3386 case 26: // DOS & CP/M EOF: "^Z". 3387 // If we're in Microsoft extensions mode, treat this as end of file. 3388 if (LangOpts.MicrosoftExt) { 3389 if (!isLexingRawMode()) 3390 Diag(CurPtr-1, diag::ext_ctrl_z_eof_microsoft); 3391 return LexEndOfFile(Result, CurPtr-1); 3392 } 3393 3394 // If Microsoft extensions are disabled, this is just random garbage. 3395 Kind = tok::unknown; 3396 break; 3397 3398 case '\r': 3399 if (CurPtr[0] == '\n') 3400 (void)getAndAdvanceChar(CurPtr, Result); 3401 LLVM_FALLTHROUGH; 3402 case '\n': 3403 // If we are inside a preprocessor directive and we see the end of line, 3404 // we know we are done with the directive, so return an EOD token. 3405 if (ParsingPreprocessorDirective) { 3406 // Done parsing the "line". 3407 ParsingPreprocessorDirective = false; 3408 3409 // Restore comment saving mode, in case it was disabled for directive. 3410 if (PP) 3411 resetExtendedTokenMode(); 3412 3413 // Since we consumed a newline, we are back at the start of a line. 3414 IsAtStartOfLine = true; 3415 IsAtPhysicalStartOfLine = true; 3416 NewLinePtr = CurPtr - 1; 3417 3418 Kind = tok::eod; 3419 break; 3420 } 3421 3422 // No leading whitespace seen so far. 3423 Result.clearFlag(Token::LeadingSpace); 3424 3425 if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) 3426 return true; // KeepWhitespaceMode 3427 3428 // We only saw whitespace, so just try again with this lexer. 3429 // (We manually eliminate the tail call to avoid recursion.) 3430 goto LexNextToken; 3431 case ' ': 3432 case '\t': 3433 case '\f': 3434 case '\v': 3435 SkipHorizontalWhitespace: 3436 Result.setFlag(Token::LeadingSpace); 3437 if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) 3438 return true; // KeepWhitespaceMode 3439 3440 SkipIgnoredUnits: 3441 CurPtr = BufferPtr; 3442 3443 // If the next token is obviously a // or /* */ comment, skip it efficiently 3444 // too (without going through the big switch stmt). 3445 if (CurPtr[0] == '/' && CurPtr[1] == '/' && !inKeepCommentMode() && 3446 LineComment && (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP)) { 3447 if (SkipLineComment(Result, CurPtr+2, TokAtPhysicalStartOfLine)) 3448 return true; // There is a token to return. 3449 goto SkipIgnoredUnits; 3450 } else if (CurPtr[0] == '/' && CurPtr[1] == '*' && !inKeepCommentMode()) { 3451 if (SkipBlockComment(Result, CurPtr+2, TokAtPhysicalStartOfLine)) 3452 return true; // There is a token to return. 3453 goto SkipIgnoredUnits; 3454 } else if (isHorizontalWhitespace(*CurPtr)) { 3455 goto SkipHorizontalWhitespace; 3456 } 3457 // We only saw whitespace, so just try again with this lexer. 3458 // (We manually eliminate the tail call to avoid recursion.) 3459 goto LexNextToken; 3460 3461 // C99 6.4.4.1: Integer Constants. 3462 // C99 6.4.4.2: Floating Constants. 3463 case '0': case '1': case '2': case '3': case '4': 3464 case '5': case '6': case '7': case '8': case '9': 3465 // Notify MIOpt that we read a non-whitespace/non-comment token. 3466 MIOpt.ReadToken(); 3467 return LexNumericConstant(Result, CurPtr); 3468 3469 // Identifier (e.g., uber), or 3470 // UTF-8 (C2x/C++17) or UTF-16 (C11/C++11) character literal, or 3471 // UTF-8 or UTF-16 string literal (C11/C++11). 3472 case 'u': 3473 // Notify MIOpt that we read a non-whitespace/non-comment token. 3474 MIOpt.ReadToken(); 3475 3476 if (LangOpts.CPlusPlus11 || LangOpts.C11) { 3477 Char = getCharAndSize(CurPtr, SizeTmp); 3478 3479 // UTF-16 string literal 3480 if (Char == '"') 3481 return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result), 3482 tok::utf16_string_literal); 3483 3484 // UTF-16 character constant 3485 if (Char == '\'') 3486 return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result), 3487 tok::utf16_char_constant); 3488 3489 // UTF-16 raw string literal 3490 if (Char == 'R' && LangOpts.CPlusPlus11 && 3491 getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"') 3492 return LexRawStringLiteral(Result, 3493 ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3494 SizeTmp2, Result), 3495 tok::utf16_string_literal); 3496 3497 if (Char == '8') { 3498 char Char2 = getCharAndSize(CurPtr + SizeTmp, SizeTmp2); 3499 3500 // UTF-8 string literal 3501 if (Char2 == '"') 3502 return LexStringLiteral(Result, 3503 ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3504 SizeTmp2, Result), 3505 tok::utf8_string_literal); 3506 if (Char2 == '\'' && (LangOpts.CPlusPlus17 || LangOpts.C2x)) 3507 return LexCharConstant( 3508 Result, ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3509 SizeTmp2, Result), 3510 tok::utf8_char_constant); 3511 3512 if (Char2 == 'R' && LangOpts.CPlusPlus11) { 3513 unsigned SizeTmp3; 3514 char Char3 = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3); 3515 // UTF-8 raw string literal 3516 if (Char3 == '"') { 3517 return LexRawStringLiteral(Result, 3518 ConsumeChar(ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3519 SizeTmp2, Result), 3520 SizeTmp3, Result), 3521 tok::utf8_string_literal); 3522 } 3523 } 3524 } 3525 } 3526 3527 // treat u like the start of an identifier. 3528 return LexIdentifierContinue(Result, CurPtr); 3529 3530 case 'U': // Identifier (e.g. Uber) or C11/C++11 UTF-32 string literal 3531 // Notify MIOpt that we read a non-whitespace/non-comment token. 3532 MIOpt.ReadToken(); 3533 3534 if (LangOpts.CPlusPlus11 || LangOpts.C11) { 3535 Char = getCharAndSize(CurPtr, SizeTmp); 3536 3537 // UTF-32 string literal 3538 if (Char == '"') 3539 return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result), 3540 tok::utf32_string_literal); 3541 3542 // UTF-32 character constant 3543 if (Char == '\'') 3544 return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result), 3545 tok::utf32_char_constant); 3546 3547 // UTF-32 raw string literal 3548 if (Char == 'R' && LangOpts.CPlusPlus11 && 3549 getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"') 3550 return LexRawStringLiteral(Result, 3551 ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3552 SizeTmp2, Result), 3553 tok::utf32_string_literal); 3554 } 3555 3556 // treat U like the start of an identifier. 3557 return LexIdentifierContinue(Result, CurPtr); 3558 3559 case 'R': // Identifier or C++0x raw string literal 3560 // Notify MIOpt that we read a non-whitespace/non-comment token. 3561 MIOpt.ReadToken(); 3562 3563 if (LangOpts.CPlusPlus11) { 3564 Char = getCharAndSize(CurPtr, SizeTmp); 3565 3566 if (Char == '"') 3567 return LexRawStringLiteral(Result, 3568 ConsumeChar(CurPtr, SizeTmp, Result), 3569 tok::string_literal); 3570 } 3571 3572 // treat R like the start of an identifier. 3573 return LexIdentifierContinue(Result, CurPtr); 3574 3575 case 'L': // Identifier (Loony) or wide literal (L'x' or L"xyz"). 3576 // Notify MIOpt that we read a non-whitespace/non-comment token. 3577 MIOpt.ReadToken(); 3578 Char = getCharAndSize(CurPtr, SizeTmp); 3579 3580 // Wide string literal. 3581 if (Char == '"') 3582 return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result), 3583 tok::wide_string_literal); 3584 3585 // Wide raw string literal. 3586 if (LangOpts.CPlusPlus11 && Char == 'R' && 3587 getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"') 3588 return LexRawStringLiteral(Result, 3589 ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3590 SizeTmp2, Result), 3591 tok::wide_string_literal); 3592 3593 // Wide character constant. 3594 if (Char == '\'') 3595 return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result), 3596 tok::wide_char_constant); 3597 // FALL THROUGH, treating L like the start of an identifier. 3598 LLVM_FALLTHROUGH; 3599 3600 // C99 6.4.2: Identifiers. 3601 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G': 3602 case 'H': case 'I': case 'J': case 'K': /*'L'*/case 'M': case 'N': 3603 case 'O': case 'P': case 'Q': /*'R'*/case 'S': case 'T': /*'U'*/ 3604 case 'V': case 'W': case 'X': case 'Y': case 'Z': 3605 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g': 3606 case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n': 3607 case 'o': case 'p': case 'q': case 'r': case 's': case 't': /*'u'*/ 3608 case 'v': case 'w': case 'x': case 'y': case 'z': 3609 case '_': 3610 // Notify MIOpt that we read a non-whitespace/non-comment token. 3611 MIOpt.ReadToken(); 3612 return LexIdentifierContinue(Result, CurPtr); 3613 3614 case '$': // $ in identifiers. 3615 if (LangOpts.DollarIdents) { 3616 if (!isLexingRawMode()) 3617 Diag(CurPtr-1, diag::ext_dollar_in_identifier); 3618 // Notify MIOpt that we read a non-whitespace/non-comment token. 3619 MIOpt.ReadToken(); 3620 return LexIdentifierContinue(Result, CurPtr); 3621 } 3622 3623 Kind = tok::unknown; 3624 break; 3625 3626 // C99 6.4.4: Character Constants. 3627 case '\'': 3628 // Notify MIOpt that we read a non-whitespace/non-comment token. 3629 MIOpt.ReadToken(); 3630 return LexCharConstant(Result, CurPtr, tok::char_constant); 3631 3632 // C99 6.4.5: String Literals. 3633 case '"': 3634 // Notify MIOpt that we read a non-whitespace/non-comment token. 3635 MIOpt.ReadToken(); 3636 return LexStringLiteral(Result, CurPtr, 3637 ParsingFilename ? tok::header_name 3638 : tok::string_literal); 3639 3640 // C99 6.4.6: Punctuators. 3641 case '?': 3642 Kind = tok::question; 3643 break; 3644 case '[': 3645 Kind = tok::l_square; 3646 break; 3647 case ']': 3648 Kind = tok::r_square; 3649 break; 3650 case '(': 3651 Kind = tok::l_paren; 3652 break; 3653 case ')': 3654 Kind = tok::r_paren; 3655 break; 3656 case '{': 3657 Kind = tok::l_brace; 3658 break; 3659 case '}': 3660 Kind = tok::r_brace; 3661 break; 3662 case '.': 3663 Char = getCharAndSize(CurPtr, SizeTmp); 3664 if (Char >= '0' && Char <= '9') { 3665 // Notify MIOpt that we read a non-whitespace/non-comment token. 3666 MIOpt.ReadToken(); 3667 3668 return LexNumericConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result)); 3669 } else if (LangOpts.CPlusPlus && Char == '*') { 3670 Kind = tok::periodstar; 3671 CurPtr += SizeTmp; 3672 } else if (Char == '.' && 3673 getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '.') { 3674 Kind = tok::ellipsis; 3675 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3676 SizeTmp2, Result); 3677 } else { 3678 Kind = tok::period; 3679 } 3680 break; 3681 case '&': 3682 Char = getCharAndSize(CurPtr, SizeTmp); 3683 if (Char == '&') { 3684 Kind = tok::ampamp; 3685 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3686 } else if (Char == '=') { 3687 Kind = tok::ampequal; 3688 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3689 } else { 3690 Kind = tok::amp; 3691 } 3692 break; 3693 case '*': 3694 if (getCharAndSize(CurPtr, SizeTmp) == '=') { 3695 Kind = tok::starequal; 3696 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3697 } else { 3698 Kind = tok::star; 3699 } 3700 break; 3701 case '+': 3702 Char = getCharAndSize(CurPtr, SizeTmp); 3703 if (Char == '+') { 3704 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3705 Kind = tok::plusplus; 3706 } else if (Char == '=') { 3707 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3708 Kind = tok::plusequal; 3709 } else { 3710 Kind = tok::plus; 3711 } 3712 break; 3713 case '-': 3714 Char = getCharAndSize(CurPtr, SizeTmp); 3715 if (Char == '-') { // -- 3716 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3717 Kind = tok::minusminus; 3718 } else if (Char == '>' && LangOpts.CPlusPlus && 3719 getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '*') { // C++ ->* 3720 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3721 SizeTmp2, Result); 3722 Kind = tok::arrowstar; 3723 } else if (Char == '>') { // -> 3724 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3725 Kind = tok::arrow; 3726 } else if (Char == '=') { // -= 3727 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3728 Kind = tok::minusequal; 3729 } else { 3730 Kind = tok::minus; 3731 } 3732 break; 3733 case '~': 3734 Kind = tok::tilde; 3735 break; 3736 case '!': 3737 if (getCharAndSize(CurPtr, SizeTmp) == '=') { 3738 Kind = tok::exclaimequal; 3739 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3740 } else { 3741 Kind = tok::exclaim; 3742 } 3743 break; 3744 case '/': 3745 // 6.4.9: Comments 3746 Char = getCharAndSize(CurPtr, SizeTmp); 3747 if (Char == '/') { // Line comment. 3748 // Even if Line comments are disabled (e.g. in C89 mode), we generally 3749 // want to lex this as a comment. There is one problem with this though, 3750 // that in one particular corner case, this can change the behavior of the 3751 // resultant program. For example, In "foo //**/ bar", C89 would lex 3752 // this as "foo / bar" and languages with Line comments would lex it as 3753 // "foo". Check to see if the character after the second slash is a '*'. 3754 // If so, we will lex that as a "/" instead of the start of a comment. 3755 // However, we never do this if we are just preprocessing. 3756 bool TreatAsComment = 3757 LineComment && (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP); 3758 if (!TreatAsComment) 3759 if (!(PP && PP->isPreprocessedOutput())) 3760 TreatAsComment = getCharAndSize(CurPtr+SizeTmp, SizeTmp2) != '*'; 3761 3762 if (TreatAsComment) { 3763 if (SkipLineComment(Result, ConsumeChar(CurPtr, SizeTmp, Result), 3764 TokAtPhysicalStartOfLine)) 3765 return true; // There is a token to return. 3766 3767 // It is common for the tokens immediately after a // comment to be 3768 // whitespace (indentation for the next line). Instead of going through 3769 // the big switch, handle it efficiently now. 3770 goto SkipIgnoredUnits; 3771 } 3772 } 3773 3774 if (Char == '*') { // /**/ comment. 3775 if (SkipBlockComment(Result, ConsumeChar(CurPtr, SizeTmp, Result), 3776 TokAtPhysicalStartOfLine)) 3777 return true; // There is a token to return. 3778 3779 // We only saw whitespace, so just try again with this lexer. 3780 // (We manually eliminate the tail call to avoid recursion.) 3781 goto LexNextToken; 3782 } 3783 3784 if (Char == '=') { 3785 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3786 Kind = tok::slashequal; 3787 } else { 3788 Kind = tok::slash; 3789 } 3790 break; 3791 case '%': 3792 Char = getCharAndSize(CurPtr, SizeTmp); 3793 if (Char == '=') { 3794 Kind = tok::percentequal; 3795 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3796 } else if (LangOpts.Digraphs && Char == '>') { 3797 Kind = tok::r_brace; // '%>' -> '}' 3798 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3799 } else if (LangOpts.Digraphs && Char == ':') { 3800 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3801 Char = getCharAndSize(CurPtr, SizeTmp); 3802 if (Char == '%' && getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == ':') { 3803 Kind = tok::hashhash; // '%:%:' -> '##' 3804 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3805 SizeTmp2, Result); 3806 } else if (Char == '@' && LangOpts.MicrosoftExt) {// %:@ -> #@ -> Charize 3807 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3808 if (!isLexingRawMode()) 3809 Diag(BufferPtr, diag::ext_charize_microsoft); 3810 Kind = tok::hashat; 3811 } else { // '%:' -> '#' 3812 // We parsed a # character. If this occurs at the start of the line, 3813 // it's actually the start of a preprocessing directive. Callback to 3814 // the preprocessor to handle it. 3815 // TODO: -fpreprocessed mode?? 3816 if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer) 3817 goto HandleDirective; 3818 3819 Kind = tok::hash; 3820 } 3821 } else { 3822 Kind = tok::percent; 3823 } 3824 break; 3825 case '<': 3826 Char = getCharAndSize(CurPtr, SizeTmp); 3827 if (ParsingFilename) { 3828 return LexAngledStringLiteral(Result, CurPtr); 3829 } else if (Char == '<') { 3830 char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2); 3831 if (After == '=') { 3832 Kind = tok::lesslessequal; 3833 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3834 SizeTmp2, Result); 3835 } else if (After == '<' && IsStartOfConflictMarker(CurPtr-1)) { 3836 // If this is actually a '<<<<<<<' version control conflict marker, 3837 // recognize it as such and recover nicely. 3838 goto LexNextToken; 3839 } else if (After == '<' && HandleEndOfConflictMarker(CurPtr-1)) { 3840 // If this is '<<<<' and we're in a Perforce-style conflict marker, 3841 // ignore it. 3842 goto LexNextToken; 3843 } else if (LangOpts.CUDA && After == '<') { 3844 Kind = tok::lesslessless; 3845 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3846 SizeTmp2, Result); 3847 } else { 3848 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3849 Kind = tok::lessless; 3850 } 3851 } else if (Char == '=') { 3852 char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2); 3853 if (After == '>') { 3854 if (LangOpts.CPlusPlus20) { 3855 if (!isLexingRawMode()) 3856 Diag(BufferPtr, diag::warn_cxx17_compat_spaceship); 3857 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3858 SizeTmp2, Result); 3859 Kind = tok::spaceship; 3860 break; 3861 } 3862 // Suggest adding a space between the '<=' and the '>' to avoid a 3863 // change in semantics if this turns up in C++ <=17 mode. 3864 if (LangOpts.CPlusPlus && !isLexingRawMode()) { 3865 Diag(BufferPtr, diag::warn_cxx20_compat_spaceship) 3866 << FixItHint::CreateInsertion( 3867 getSourceLocation(CurPtr + SizeTmp, SizeTmp2), " "); 3868 } 3869 } 3870 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3871 Kind = tok::lessequal; 3872 } else if (LangOpts.Digraphs && Char == ':') { // '<:' -> '[' 3873 if (LangOpts.CPlusPlus11 && 3874 getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == ':') { 3875 // C++0x [lex.pptoken]p3: 3876 // Otherwise, if the next three characters are <:: and the subsequent 3877 // character is neither : nor >, the < is treated as a preprocessor 3878 // token by itself and not as the first character of the alternative 3879 // token <:. 3880 unsigned SizeTmp3; 3881 char After = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3); 3882 if (After != ':' && After != '>') { 3883 Kind = tok::less; 3884 if (!isLexingRawMode()) 3885 Diag(BufferPtr, diag::warn_cxx98_compat_less_colon_colon); 3886 break; 3887 } 3888 } 3889 3890 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3891 Kind = tok::l_square; 3892 } else if (LangOpts.Digraphs && Char == '%') { // '<%' -> '{' 3893 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3894 Kind = tok::l_brace; 3895 } else if (Char == '#' && /*Not a trigraph*/ SizeTmp == 1 && 3896 lexEditorPlaceholder(Result, CurPtr)) { 3897 return true; 3898 } else { 3899 Kind = tok::less; 3900 } 3901 break; 3902 case '>': 3903 Char = getCharAndSize(CurPtr, SizeTmp); 3904 if (Char == '=') { 3905 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3906 Kind = tok::greaterequal; 3907 } else if (Char == '>') { 3908 char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2); 3909 if (After == '=') { 3910 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3911 SizeTmp2, Result); 3912 Kind = tok::greatergreaterequal; 3913 } else if (After == '>' && IsStartOfConflictMarker(CurPtr-1)) { 3914 // If this is actually a '>>>>' conflict marker, recognize it as such 3915 // and recover nicely. 3916 goto LexNextToken; 3917 } else if (After == '>' && HandleEndOfConflictMarker(CurPtr-1)) { 3918 // If this is '>>>>>>>' and we're in a conflict marker, ignore it. 3919 goto LexNextToken; 3920 } else if (LangOpts.CUDA && After == '>') { 3921 Kind = tok::greatergreatergreater; 3922 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3923 SizeTmp2, Result); 3924 } else { 3925 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3926 Kind = tok::greatergreater; 3927 } 3928 } else { 3929 Kind = tok::greater; 3930 } 3931 break; 3932 case '^': 3933 Char = getCharAndSize(CurPtr, SizeTmp); 3934 if (Char == '=') { 3935 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3936 Kind = tok::caretequal; 3937 } else if (LangOpts.OpenCL && Char == '^') { 3938 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3939 Kind = tok::caretcaret; 3940 } else { 3941 Kind = tok::caret; 3942 } 3943 break; 3944 case '|': 3945 Char = getCharAndSize(CurPtr, SizeTmp); 3946 if (Char == '=') { 3947 Kind = tok::pipeequal; 3948 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3949 } else if (Char == '|') { 3950 // If this is '|||||||' and we're in a conflict marker, ignore it. 3951 if (CurPtr[1] == '|' && HandleEndOfConflictMarker(CurPtr-1)) 3952 goto LexNextToken; 3953 Kind = tok::pipepipe; 3954 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3955 } else { 3956 Kind = tok::pipe; 3957 } 3958 break; 3959 case ':': 3960 Char = getCharAndSize(CurPtr, SizeTmp); 3961 if (LangOpts.Digraphs && Char == '>') { 3962 Kind = tok::r_square; // ':>' -> ']' 3963 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3964 } else if ((LangOpts.CPlusPlus || 3965 LangOpts.DoubleSquareBracketAttributes) && 3966 Char == ':') { 3967 Kind = tok::coloncolon; 3968 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3969 } else { 3970 Kind = tok::colon; 3971 } 3972 break; 3973 case ';': 3974 Kind = tok::semi; 3975 break; 3976 case '=': 3977 Char = getCharAndSize(CurPtr, SizeTmp); 3978 if (Char == '=') { 3979 // If this is '====' and we're in a conflict marker, ignore it. 3980 if (CurPtr[1] == '=' && HandleEndOfConflictMarker(CurPtr-1)) 3981 goto LexNextToken; 3982 3983 Kind = tok::equalequal; 3984 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3985 } else { 3986 Kind = tok::equal; 3987 } 3988 break; 3989 case ',': 3990 Kind = tok::comma; 3991 break; 3992 case '#': 3993 Char = getCharAndSize(CurPtr, SizeTmp); 3994 if (Char == '#') { 3995 Kind = tok::hashhash; 3996 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3997 } else if (Char == '@' && LangOpts.MicrosoftExt) { // #@ -> Charize 3998 Kind = tok::hashat; 3999 if (!isLexingRawMode()) 4000 Diag(BufferPtr, diag::ext_charize_microsoft); 4001 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4002 } else { 4003 // We parsed a # character. If this occurs at the start of the line, 4004 // it's actually the start of a preprocessing directive. Callback to 4005 // the preprocessor to handle it. 4006 // TODO: -fpreprocessed mode?? 4007 if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer) 4008 goto HandleDirective; 4009 4010 Kind = tok::hash; 4011 } 4012 break; 4013 4014 case '@': 4015 // Objective C support. 4016 if (CurPtr[-1] == '@' && LangOpts.ObjC) 4017 Kind = tok::at; 4018 else 4019 Kind = tok::unknown; 4020 break; 4021 4022 // UCNs (C99 6.4.3, C++11 [lex.charset]p2) 4023 case '\\': 4024 if (!LangOpts.AsmPreprocessor) { 4025 if (uint32_t CodePoint = tryReadUCN(CurPtr, BufferPtr, &Result)) { 4026 if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) { 4027 if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) 4028 return true; // KeepWhitespaceMode 4029 4030 // We only saw whitespace, so just try again with this lexer. 4031 // (We manually eliminate the tail call to avoid recursion.) 4032 goto LexNextToken; 4033 } 4034 4035 return LexUnicodeIdentifierStart(Result, CodePoint, CurPtr); 4036 } 4037 } 4038 4039 Kind = tok::unknown; 4040 break; 4041 4042 default: { 4043 if (isASCII(Char)) { 4044 Kind = tok::unknown; 4045 break; 4046 } 4047 4048 llvm::UTF32 CodePoint; 4049 4050 // We can't just reset CurPtr to BufferPtr because BufferPtr may point to 4051 // an escaped newline. 4052 --CurPtr; 4053 llvm::ConversionResult Status = 4054 llvm::convertUTF8Sequence((const llvm::UTF8 **)&CurPtr, 4055 (const llvm::UTF8 *)BufferEnd, 4056 &CodePoint, 4057 llvm::strictConversion); 4058 if (Status == llvm::conversionOK) { 4059 if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) { 4060 if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) 4061 return true; // KeepWhitespaceMode 4062 4063 // We only saw whitespace, so just try again with this lexer. 4064 // (We manually eliminate the tail call to avoid recursion.) 4065 goto LexNextToken; 4066 } 4067 return LexUnicodeIdentifierStart(Result, CodePoint, CurPtr); 4068 } 4069 4070 if (isLexingRawMode() || ParsingPreprocessorDirective || 4071 PP->isPreprocessedOutput()) { 4072 ++CurPtr; 4073 Kind = tok::unknown; 4074 break; 4075 } 4076 4077 // Non-ASCII characters tend to creep into source code unintentionally. 4078 // Instead of letting the parser complain about the unknown token, 4079 // just diagnose the invalid UTF-8, then drop the character. 4080 Diag(CurPtr, diag::err_invalid_utf8); 4081 4082 BufferPtr = CurPtr+1; 4083 // We're pretending the character didn't exist, so just try again with 4084 // this lexer. 4085 // (We manually eliminate the tail call to avoid recursion.) 4086 goto LexNextToken; 4087 } 4088 } 4089 4090 // Notify MIOpt that we read a non-whitespace/non-comment token. 4091 MIOpt.ReadToken(); 4092 4093 // Update the location of token as well as BufferPtr. 4094 FormTokenWithChars(Result, CurPtr, Kind); 4095 return true; 4096 4097 HandleDirective: 4098 // We parsed a # character and it's the start of a preprocessing directive. 4099 4100 FormTokenWithChars(Result, CurPtr, tok::hash); 4101 PP->HandleDirective(Result); 4102 4103 if (PP->hadModuleLoaderFatalFailure()) { 4104 // With a fatal failure in the module loader, we abort parsing. 4105 assert(Result.is(tok::eof) && "Preprocessor did not set tok:eof"); 4106 return true; 4107 } 4108 4109 // We parsed the directive; lex a token with the new state. 4110 return false; 4111 } 4112 4113 const char *Lexer::convertDependencyDirectiveToken( 4114 const dependency_directives_scan::Token &DDTok, Token &Result) { 4115 const char *TokPtr = BufferStart + DDTok.Offset; 4116 Result.startToken(); 4117 Result.setLocation(getSourceLocation(TokPtr)); 4118 Result.setKind(DDTok.Kind); 4119 Result.setFlag((Token::TokenFlags)DDTok.Flags); 4120 Result.setLength(DDTok.Length); 4121 BufferPtr = TokPtr + DDTok.Length; 4122 return TokPtr; 4123 } 4124 4125 bool Lexer::LexDependencyDirectiveToken(Token &Result) { 4126 assert(isDependencyDirectivesLexer()); 4127 4128 using namespace dependency_directives_scan; 4129 4130 while (NextDepDirectiveTokenIndex == DepDirectives.front().Tokens.size()) { 4131 if (DepDirectives.front().Kind == pp_eof) 4132 return LexEndOfFile(Result, BufferEnd); 4133 NextDepDirectiveTokenIndex = 0; 4134 DepDirectives = DepDirectives.drop_front(); 4135 } 4136 4137 const dependency_directives_scan::Token &DDTok = 4138 DepDirectives.front().Tokens[NextDepDirectiveTokenIndex++]; 4139 4140 const char *TokPtr = convertDependencyDirectiveToken(DDTok, Result); 4141 4142 if (Result.is(tok::hash) && Result.isAtStartOfLine()) { 4143 PP->HandleDirective(Result); 4144 return false; 4145 } 4146 if (Result.is(tok::raw_identifier)) { 4147 Result.setRawIdentifierData(TokPtr); 4148 if (!isLexingRawMode()) { 4149 IdentifierInfo *II = PP->LookUpIdentifierInfo(Result); 4150 if (II->isHandleIdentifierCase()) 4151 return PP->HandleIdentifier(Result); 4152 } 4153 return true; 4154 } 4155 if (Result.isLiteral()) { 4156 Result.setLiteralData(TokPtr); 4157 return true; 4158 } 4159 if (Result.is(tok::colon) && 4160 (LangOpts.CPlusPlus || LangOpts.DoubleSquareBracketAttributes)) { 4161 // Convert consecutive colons to 'tok::coloncolon'. 4162 if (*BufferPtr == ':') { 4163 assert(DepDirectives.front().Tokens[NextDepDirectiveTokenIndex].is( 4164 tok::colon)); 4165 ++NextDepDirectiveTokenIndex; 4166 Result.setKind(tok::coloncolon); 4167 } 4168 return true; 4169 } 4170 if (Result.is(tok::eod)) 4171 ParsingPreprocessorDirective = false; 4172 4173 return true; 4174 } 4175 4176 bool Lexer::LexDependencyDirectiveTokenWhileSkipping(Token &Result) { 4177 assert(isDependencyDirectivesLexer()); 4178 4179 using namespace dependency_directives_scan; 4180 4181 bool Stop = false; 4182 unsigned NestedIfs = 0; 4183 do { 4184 DepDirectives = DepDirectives.drop_front(); 4185 switch (DepDirectives.front().Kind) { 4186 case pp_none: 4187 llvm_unreachable("unexpected 'pp_none'"); 4188 case pp_include: 4189 case pp___include_macros: 4190 case pp_define: 4191 case pp_undef: 4192 case pp_import: 4193 case pp_pragma_import: 4194 case pp_pragma_once: 4195 case pp_pragma_push_macro: 4196 case pp_pragma_pop_macro: 4197 case pp_pragma_include_alias: 4198 case pp_include_next: 4199 case decl_at_import: 4200 case cxx_module_decl: 4201 case cxx_import_decl: 4202 case cxx_export_module_decl: 4203 case cxx_export_import_decl: 4204 break; 4205 case pp_if: 4206 case pp_ifdef: 4207 case pp_ifndef: 4208 ++NestedIfs; 4209 break; 4210 case pp_elif: 4211 case pp_elifdef: 4212 case pp_elifndef: 4213 case pp_else: 4214 if (!NestedIfs) { 4215 Stop = true; 4216 } 4217 break; 4218 case pp_endif: 4219 if (!NestedIfs) { 4220 Stop = true; 4221 } else { 4222 --NestedIfs; 4223 } 4224 break; 4225 case pp_eof: 4226 NextDepDirectiveTokenIndex = 0; 4227 return LexEndOfFile(Result, BufferEnd); 4228 } 4229 } while (!Stop); 4230 4231 const dependency_directives_scan::Token &DDTok = 4232 DepDirectives.front().Tokens.front(); 4233 assert(DDTok.is(tok::hash)); 4234 NextDepDirectiveTokenIndex = 1; 4235 4236 convertDependencyDirectiveToken(DDTok, Result); 4237 return false; 4238 } 4239