1 //===--- CompilerInstance.cpp ---------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/Frontend/CompilerInstance.h" 11 #include "clang/AST/ASTConsumer.h" 12 #include "clang/AST/ASTContext.h" 13 #include "clang/AST/Decl.h" 14 #include "clang/Basic/CharInfo.h" 15 #include "clang/Basic/Diagnostic.h" 16 #include "clang/Basic/FileManager.h" 17 #include "clang/Basic/MemoryBufferCache.h" 18 #include "clang/Basic/SourceManager.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/Basic/Version.h" 21 #include "clang/Config/config.h" 22 #include "clang/Frontend/ChainedDiagnosticConsumer.h" 23 #include "clang/Frontend/FrontendAction.h" 24 #include "clang/Frontend/FrontendActions.h" 25 #include "clang/Frontend/FrontendDiagnostic.h" 26 #include "clang/Frontend/LogDiagnosticPrinter.h" 27 #include "clang/Frontend/SerializedDiagnosticPrinter.h" 28 #include "clang/Frontend/TextDiagnosticPrinter.h" 29 #include "clang/Frontend/Utils.h" 30 #include "clang/Frontend/VerifyDiagnosticConsumer.h" 31 #include "clang/Lex/HeaderSearch.h" 32 #include "clang/Lex/PTHManager.h" 33 #include "clang/Lex/Preprocessor.h" 34 #include "clang/Lex/PreprocessorOptions.h" 35 #include "clang/Sema/CodeCompleteConsumer.h" 36 #include "clang/Sema/Sema.h" 37 #include "clang/Serialization/ASTReader.h" 38 #include "clang/Serialization/GlobalModuleIndex.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/Support/CrashRecoveryContext.h" 41 #include "llvm/Support/Errc.h" 42 #include "llvm/Support/FileSystem.h" 43 #include "llvm/Support/Host.h" 44 #include "llvm/Support/LockFileManager.h" 45 #include "llvm/Support/MemoryBuffer.h" 46 #include "llvm/Support/Path.h" 47 #include "llvm/Support/Program.h" 48 #include "llvm/Support/Signals.h" 49 #include "llvm/Support/Timer.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include <sys/stat.h> 52 #include <system_error> 53 #include <time.h> 54 #include <utility> 55 56 using namespace clang; 57 58 CompilerInstance::CompilerInstance( 59 std::shared_ptr<PCHContainerOperations> PCHContainerOps, 60 MemoryBufferCache *SharedPCMCache) 61 : ModuleLoader(/* BuildingModule = */ SharedPCMCache), 62 Invocation(new CompilerInvocation()), 63 PCMCache(SharedPCMCache ? SharedPCMCache : new MemoryBufferCache), 64 ThePCHContainerOperations(std::move(PCHContainerOps)) { 65 // Don't allow this to invalidate buffers in use by others. 66 if (SharedPCMCache) 67 getPCMCache().finalizeCurrentBuffers(); 68 } 69 70 CompilerInstance::~CompilerInstance() { 71 assert(OutputFiles.empty() && "Still output files in flight?"); 72 } 73 74 void CompilerInstance::setInvocation( 75 std::shared_ptr<CompilerInvocation> Value) { 76 Invocation = std::move(Value); 77 } 78 79 bool CompilerInstance::shouldBuildGlobalModuleIndex() const { 80 return (BuildGlobalModuleIndex || 81 (ModuleManager && ModuleManager->isGlobalIndexUnavailable() && 82 getFrontendOpts().GenerateGlobalModuleIndex)) && 83 !ModuleBuildFailed; 84 } 85 86 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) { 87 Diagnostics = Value; 88 } 89 90 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; } 91 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; } 92 93 void CompilerInstance::setFileManager(FileManager *Value) { 94 FileMgr = Value; 95 if (Value) 96 VirtualFileSystem = Value->getVirtualFileSystem(); 97 else 98 VirtualFileSystem.reset(); 99 } 100 101 void CompilerInstance::setSourceManager(SourceManager *Value) { 102 SourceMgr = Value; 103 } 104 105 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) { 106 PP = std::move(Value); 107 } 108 109 void CompilerInstance::setASTContext(ASTContext *Value) { 110 Context = Value; 111 112 if (Context && Consumer) 113 getASTConsumer().Initialize(getASTContext()); 114 } 115 116 void CompilerInstance::setSema(Sema *S) { 117 TheSema.reset(S); 118 } 119 120 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) { 121 Consumer = std::move(Value); 122 123 if (Context && Consumer) 124 getASTConsumer().Initialize(getASTContext()); 125 } 126 127 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) { 128 CompletionConsumer.reset(Value); 129 } 130 131 std::unique_ptr<Sema> CompilerInstance::takeSema() { 132 return std::move(TheSema); 133 } 134 135 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getModuleManager() const { 136 return ModuleManager; 137 } 138 void CompilerInstance::setModuleManager(IntrusiveRefCntPtr<ASTReader> Reader) { 139 assert(PCMCache.get() == &Reader->getModuleManager().getPCMCache() && 140 "Expected ASTReader to use the same PCM cache"); 141 ModuleManager = std::move(Reader); 142 } 143 144 std::shared_ptr<ModuleDependencyCollector> 145 CompilerInstance::getModuleDepCollector() const { 146 return ModuleDepCollector; 147 } 148 149 void CompilerInstance::setModuleDepCollector( 150 std::shared_ptr<ModuleDependencyCollector> Collector) { 151 ModuleDepCollector = std::move(Collector); 152 } 153 154 static void collectHeaderMaps(const HeaderSearch &HS, 155 std::shared_ptr<ModuleDependencyCollector> MDC) { 156 SmallVector<std::string, 4> HeaderMapFileNames; 157 HS.getHeaderMapFileNames(HeaderMapFileNames); 158 for (auto &Name : HeaderMapFileNames) 159 MDC->addFile(Name); 160 } 161 162 static void collectIncludePCH(CompilerInstance &CI, 163 std::shared_ptr<ModuleDependencyCollector> MDC) { 164 const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts(); 165 if (PPOpts.ImplicitPCHInclude.empty()) 166 return; 167 168 StringRef PCHInclude = PPOpts.ImplicitPCHInclude; 169 FileManager &FileMgr = CI.getFileManager(); 170 const DirectoryEntry *PCHDir = FileMgr.getDirectory(PCHInclude); 171 if (!PCHDir) { 172 MDC->addFile(PCHInclude); 173 return; 174 } 175 176 std::error_code EC; 177 SmallString<128> DirNative; 178 llvm::sys::path::native(PCHDir->getName(), DirNative); 179 vfs::FileSystem &FS = *FileMgr.getVirtualFileSystem(); 180 SimpleASTReaderListener Validator(CI.getPreprocessor()); 181 for (vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd; 182 Dir != DirEnd && !EC; Dir.increment(EC)) { 183 // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not 184 // used here since we're not interested in validating the PCH at this time, 185 // but only to check whether this is a file containing an AST. 186 if (!ASTReader::readASTFileControlBlock( 187 Dir->getName(), FileMgr, CI.getPCHContainerReader(), 188 /*FindModuleFileExtensions=*/false, Validator, 189 /*ValidateDiagnosticOptions=*/false)) 190 MDC->addFile(Dir->getName()); 191 } 192 } 193 194 static void collectVFSEntries(CompilerInstance &CI, 195 std::shared_ptr<ModuleDependencyCollector> MDC) { 196 if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty()) 197 return; 198 199 // Collect all VFS found. 200 SmallVector<vfs::YAMLVFSEntry, 16> VFSEntries; 201 for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) { 202 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer = 203 llvm::MemoryBuffer::getFile(VFSFile); 204 if (!Buffer) 205 return; 206 vfs::collectVFSFromYAML(std::move(Buffer.get()), /*DiagHandler*/ nullptr, 207 VFSFile, VFSEntries); 208 } 209 210 for (auto &E : VFSEntries) 211 MDC->addFile(E.VPath, E.RPath); 212 } 213 214 // Diagnostics 215 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts, 216 const CodeGenOptions *CodeGenOpts, 217 DiagnosticsEngine &Diags) { 218 std::error_code EC; 219 std::unique_ptr<raw_ostream> StreamOwner; 220 raw_ostream *OS = &llvm::errs(); 221 if (DiagOpts->DiagnosticLogFile != "-") { 222 // Create the output stream. 223 auto FileOS = llvm::make_unique<llvm::raw_fd_ostream>( 224 DiagOpts->DiagnosticLogFile, EC, 225 llvm::sys::fs::F_Append | llvm::sys::fs::F_Text); 226 if (EC) { 227 Diags.Report(diag::warn_fe_cc_log_diagnostics_failure) 228 << DiagOpts->DiagnosticLogFile << EC.message(); 229 } else { 230 FileOS->SetUnbuffered(); 231 OS = FileOS.get(); 232 StreamOwner = std::move(FileOS); 233 } 234 } 235 236 // Chain in the diagnostic client which will log the diagnostics. 237 auto Logger = llvm::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts, 238 std::move(StreamOwner)); 239 if (CodeGenOpts) 240 Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags); 241 assert(Diags.ownsClient()); 242 Diags.setClient( 243 new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger))); 244 } 245 246 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts, 247 DiagnosticsEngine &Diags, 248 StringRef OutputFile) { 249 auto SerializedConsumer = 250 clang::serialized_diags::create(OutputFile, DiagOpts); 251 252 if (Diags.ownsClient()) { 253 Diags.setClient(new ChainedDiagnosticConsumer( 254 Diags.takeClient(), std::move(SerializedConsumer))); 255 } else { 256 Diags.setClient(new ChainedDiagnosticConsumer( 257 Diags.getClient(), std::move(SerializedConsumer))); 258 } 259 } 260 261 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client, 262 bool ShouldOwnClient) { 263 Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client, 264 ShouldOwnClient, &getCodeGenOpts()); 265 } 266 267 IntrusiveRefCntPtr<DiagnosticsEngine> 268 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts, 269 DiagnosticConsumer *Client, 270 bool ShouldOwnClient, 271 const CodeGenOptions *CodeGenOpts) { 272 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 273 IntrusiveRefCntPtr<DiagnosticsEngine> 274 Diags(new DiagnosticsEngine(DiagID, Opts)); 275 276 // Create the diagnostic client for reporting errors or for 277 // implementing -verify. 278 if (Client) { 279 Diags->setClient(Client, ShouldOwnClient); 280 } else 281 Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts)); 282 283 // Chain in -verify checker, if requested. 284 if (Opts->VerifyDiagnostics) 285 Diags->setClient(new VerifyDiagnosticConsumer(*Diags)); 286 287 // Chain in -diagnostic-log-file dumper, if requested. 288 if (!Opts->DiagnosticLogFile.empty()) 289 SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags); 290 291 if (!Opts->DiagnosticSerializationFile.empty()) 292 SetupSerializedDiagnostics(Opts, *Diags, 293 Opts->DiagnosticSerializationFile); 294 295 // Configure our handling of diagnostics. 296 ProcessWarningOptions(*Diags, *Opts); 297 298 return Diags; 299 } 300 301 // File Manager 302 303 FileManager *CompilerInstance::createFileManager() { 304 if (!hasVirtualFileSystem()) { 305 if (IntrusiveRefCntPtr<vfs::FileSystem> VFS = 306 createVFSFromCompilerInvocation(getInvocation(), getDiagnostics())) 307 setVirtualFileSystem(VFS); 308 else 309 return nullptr; 310 } 311 FileMgr = new FileManager(getFileSystemOpts(), VirtualFileSystem); 312 return FileMgr.get(); 313 } 314 315 // Source Manager 316 317 void CompilerInstance::createSourceManager(FileManager &FileMgr) { 318 SourceMgr = new SourceManager(getDiagnostics(), FileMgr); 319 } 320 321 // Initialize the remapping of files to alternative contents, e.g., 322 // those specified through other files. 323 static void InitializeFileRemapping(DiagnosticsEngine &Diags, 324 SourceManager &SourceMgr, 325 FileManager &FileMgr, 326 const PreprocessorOptions &InitOpts) { 327 // Remap files in the source manager (with buffers). 328 for (const auto &RB : InitOpts.RemappedFileBuffers) { 329 // Create the file entry for the file that we're mapping from. 330 const FileEntry *FromFile = 331 FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0); 332 if (!FromFile) { 333 Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first; 334 if (!InitOpts.RetainRemappedFileBuffers) 335 delete RB.second; 336 continue; 337 } 338 339 // Override the contents of the "from" file with the contents of 340 // the "to" file. 341 SourceMgr.overrideFileContents(FromFile, RB.second, 342 InitOpts.RetainRemappedFileBuffers); 343 } 344 345 // Remap files in the source manager (with other files). 346 for (const auto &RF : InitOpts.RemappedFiles) { 347 // Find the file that we're mapping to. 348 const FileEntry *ToFile = FileMgr.getFile(RF.second); 349 if (!ToFile) { 350 Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second; 351 continue; 352 } 353 354 // Create the file entry for the file that we're mapping from. 355 const FileEntry *FromFile = 356 FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0); 357 if (!FromFile) { 358 Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first; 359 continue; 360 } 361 362 // Override the contents of the "from" file with the contents of 363 // the "to" file. 364 SourceMgr.overrideFileContents(FromFile, ToFile); 365 } 366 367 SourceMgr.setOverridenFilesKeepOriginalName( 368 InitOpts.RemappedFilesKeepOriginalName); 369 } 370 371 // Preprocessor 372 373 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) { 374 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 375 376 // Create a PTH manager if we are using some form of a token cache. 377 PTHManager *PTHMgr = nullptr; 378 if (!PPOpts.TokenCache.empty()) 379 PTHMgr = PTHManager::Create(PPOpts.TokenCache, getDiagnostics()); 380 381 // Create the Preprocessor. 382 HeaderSearch *HeaderInfo = 383 new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(), 384 getDiagnostics(), getLangOpts(), &getTarget()); 385 PP = std::make_shared<Preprocessor>( 386 Invocation->getPreprocessorOptsPtr(), getDiagnostics(), getLangOpts(), 387 getSourceManager(), getPCMCache(), *HeaderInfo, *this, PTHMgr, 388 /*OwnsHeaderSearch=*/true, TUKind); 389 PP->Initialize(getTarget(), getAuxTarget()); 390 391 // Note that this is different then passing PTHMgr to Preprocessor's ctor. 392 // That argument is used as the IdentifierInfoLookup argument to 393 // IdentifierTable's ctor. 394 if (PTHMgr) { 395 PTHMgr->setPreprocessor(&*PP); 396 PP->setPTHManager(PTHMgr); 397 } 398 399 if (PPOpts.DetailedRecord) 400 PP->createPreprocessingRecord(); 401 402 // Apply remappings to the source manager. 403 InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(), 404 PP->getFileManager(), PPOpts); 405 406 // Predefine macros and configure the preprocessor. 407 InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(), 408 getFrontendOpts()); 409 410 // Initialize the header search object. In CUDA compilations, we use the aux 411 // triple (the host triple) to initialize our header search, since we need to 412 // find the host headers in order to compile the CUDA code. 413 const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple(); 414 if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA && 415 PP->getAuxTargetInfo()) 416 HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple(); 417 418 ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(), 419 PP->getLangOpts(), *HeaderSearchTriple); 420 421 PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP); 422 423 if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules) 424 PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath()); 425 426 // Handle generating dependencies, if requested. 427 const DependencyOutputOptions &DepOpts = getDependencyOutputOpts(); 428 if (!DepOpts.OutputFile.empty()) 429 TheDependencyFileGenerator.reset( 430 DependencyFileGenerator::CreateAndAttachToPreprocessor(*PP, DepOpts)); 431 if (!DepOpts.DOTOutputFile.empty()) 432 AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile, 433 getHeaderSearchOpts().Sysroot); 434 435 // If we don't have a collector, but we are collecting module dependencies, 436 // then we're the top level compiler instance and need to create one. 437 if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) { 438 ModuleDepCollector = std::make_shared<ModuleDependencyCollector>( 439 DepOpts.ModuleDependencyOutputDir); 440 } 441 442 // If there is a module dep collector, register with other dep collectors 443 // and also (a) collect header maps and (b) TODO: input vfs overlay files. 444 if (ModuleDepCollector) { 445 addDependencyCollector(ModuleDepCollector); 446 collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector); 447 collectIncludePCH(*this, ModuleDepCollector); 448 collectVFSEntries(*this, ModuleDepCollector); 449 } 450 451 for (auto &Listener : DependencyCollectors) 452 Listener->attachToPreprocessor(*PP); 453 454 // Handle generating header include information, if requested. 455 if (DepOpts.ShowHeaderIncludes) 456 AttachHeaderIncludeGen(*PP, DepOpts); 457 if (!DepOpts.HeaderIncludeOutputFile.empty()) { 458 StringRef OutputPath = DepOpts.HeaderIncludeOutputFile; 459 if (OutputPath == "-") 460 OutputPath = ""; 461 AttachHeaderIncludeGen(*PP, DepOpts, 462 /*ShowAllHeaders=*/true, OutputPath, 463 /*ShowDepth=*/false); 464 } 465 466 if (DepOpts.PrintShowIncludes) { 467 AttachHeaderIncludeGen(*PP, DepOpts, 468 /*ShowAllHeaders=*/true, /*OutputPath=*/"", 469 /*ShowDepth=*/true, /*MSStyle=*/true); 470 } 471 } 472 473 std::string CompilerInstance::getSpecificModuleCachePath() { 474 // Set up the module path, including the hash for the 475 // module-creation options. 476 SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath); 477 if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash) 478 llvm::sys::path::append(SpecificModuleCache, 479 getInvocation().getModuleHash()); 480 return SpecificModuleCache.str(); 481 } 482 483 // ASTContext 484 485 void CompilerInstance::createASTContext() { 486 Preprocessor &PP = getPreprocessor(); 487 auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(), 488 PP.getIdentifierTable(), PP.getSelectorTable(), 489 PP.getBuiltinInfo()); 490 Context->InitBuiltinTypes(getTarget(), getAuxTarget()); 491 setASTContext(Context); 492 } 493 494 // ExternalASTSource 495 496 void CompilerInstance::createPCHExternalASTSource( 497 StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors, 498 void *DeserializationListener, bool OwnDeserializationListener) { 499 bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; 500 ModuleManager = createPCHExternalASTSource( 501 Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation, 502 AllowPCHWithCompilerErrors, getPreprocessor(), getASTContext(), 503 getPCHContainerReader(), 504 getFrontendOpts().ModuleFileExtensions, 505 TheDependencyFileGenerator.get(), 506 DependencyCollectors, 507 DeserializationListener, 508 OwnDeserializationListener, Preamble, 509 getFrontendOpts().UseGlobalModuleIndex); 510 } 511 512 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource( 513 StringRef Path, StringRef Sysroot, bool DisablePCHValidation, 514 bool AllowPCHWithCompilerErrors, Preprocessor &PP, ASTContext &Context, 515 const PCHContainerReader &PCHContainerRdr, 516 ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions, 517 DependencyFileGenerator *DependencyFile, 518 ArrayRef<std::shared_ptr<DependencyCollector>> DependencyCollectors, 519 void *DeserializationListener, bool OwnDeserializationListener, 520 bool Preamble, bool UseGlobalModuleIndex) { 521 HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); 522 523 IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader( 524 PP, &Context, PCHContainerRdr, Extensions, 525 Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation, 526 AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false, 527 HSOpts.ModulesValidateSystemHeaders, UseGlobalModuleIndex)); 528 529 // We need the external source to be set up before we read the AST, because 530 // eagerly-deserialized declarations may use it. 531 Context.setExternalSource(Reader.get()); 532 533 Reader->setDeserializationListener( 534 static_cast<ASTDeserializationListener *>(DeserializationListener), 535 /*TakeOwnership=*/OwnDeserializationListener); 536 537 if (DependencyFile) 538 DependencyFile->AttachToASTReader(*Reader); 539 for (auto &Listener : DependencyCollectors) 540 Listener->attachToASTReader(*Reader); 541 542 switch (Reader->ReadAST(Path, 543 Preamble ? serialization::MK_Preamble 544 : serialization::MK_PCH, 545 SourceLocation(), 546 ASTReader::ARR_None)) { 547 case ASTReader::Success: 548 // Set the predefines buffer as suggested by the PCH reader. Typically, the 549 // predefines buffer will be empty. 550 PP.setPredefines(Reader->getSuggestedPredefines()); 551 return Reader; 552 553 case ASTReader::Failure: 554 // Unrecoverable failure: don't even try to process the input file. 555 break; 556 557 case ASTReader::Missing: 558 case ASTReader::OutOfDate: 559 case ASTReader::VersionMismatch: 560 case ASTReader::ConfigurationMismatch: 561 case ASTReader::HadErrors: 562 // No suitable PCH file could be found. Return an error. 563 break; 564 } 565 566 Context.setExternalSource(nullptr); 567 return nullptr; 568 } 569 570 // Code Completion 571 572 static bool EnableCodeCompletion(Preprocessor &PP, 573 StringRef Filename, 574 unsigned Line, 575 unsigned Column) { 576 // Tell the source manager to chop off the given file at a specific 577 // line and column. 578 const FileEntry *Entry = PP.getFileManager().getFile(Filename); 579 if (!Entry) { 580 PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file) 581 << Filename; 582 return true; 583 } 584 585 // Truncate the named file at the given line/column. 586 PP.SetCodeCompletionPoint(Entry, Line, Column); 587 return false; 588 } 589 590 void CompilerInstance::createCodeCompletionConsumer() { 591 const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt; 592 if (!CompletionConsumer) { 593 setCodeCompletionConsumer( 594 createCodeCompletionConsumer(getPreprocessor(), 595 Loc.FileName, Loc.Line, Loc.Column, 596 getFrontendOpts().CodeCompleteOpts, 597 llvm::outs())); 598 if (!CompletionConsumer) 599 return; 600 } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName, 601 Loc.Line, Loc.Column)) { 602 setCodeCompletionConsumer(nullptr); 603 return; 604 } 605 606 if (CompletionConsumer->isOutputBinary() && 607 llvm::sys::ChangeStdoutToBinary()) { 608 getPreprocessor().getDiagnostics().Report(diag::err_fe_stdout_binary); 609 setCodeCompletionConsumer(nullptr); 610 } 611 } 612 613 void CompilerInstance::createFrontendTimer() { 614 FrontendTimerGroup.reset( 615 new llvm::TimerGroup("frontend", "Clang front-end time report")); 616 FrontendTimer.reset( 617 new llvm::Timer("frontend", "Clang front-end timer", 618 *FrontendTimerGroup)); 619 } 620 621 CodeCompleteConsumer * 622 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP, 623 StringRef Filename, 624 unsigned Line, 625 unsigned Column, 626 const CodeCompleteOptions &Opts, 627 raw_ostream &OS) { 628 if (EnableCodeCompletion(PP, Filename, Line, Column)) 629 return nullptr; 630 631 // Set up the creation routine for code-completion. 632 return new PrintingCodeCompleteConsumer(Opts, OS); 633 } 634 635 void CompilerInstance::createSema(TranslationUnitKind TUKind, 636 CodeCompleteConsumer *CompletionConsumer) { 637 TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(), 638 TUKind, CompletionConsumer)); 639 // Attach the external sema source if there is any. 640 if (ExternalSemaSrc) { 641 TheSema->addExternalSource(ExternalSemaSrc.get()); 642 ExternalSemaSrc->InitializeSema(*TheSema); 643 } 644 } 645 646 // Output Files 647 648 void CompilerInstance::addOutputFile(OutputFile &&OutFile) { 649 OutputFiles.push_back(std::move(OutFile)); 650 } 651 652 void CompilerInstance::clearOutputFiles(bool EraseFiles) { 653 for (OutputFile &OF : OutputFiles) { 654 if (!OF.TempFilename.empty()) { 655 if (EraseFiles) { 656 llvm::sys::fs::remove(OF.TempFilename); 657 } else { 658 SmallString<128> NewOutFile(OF.Filename); 659 660 // If '-working-directory' was passed, the output filename should be 661 // relative to that. 662 FileMgr->FixupRelativePath(NewOutFile); 663 if (std::error_code ec = 664 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) { 665 getDiagnostics().Report(diag::err_unable_to_rename_temp) 666 << OF.TempFilename << OF.Filename << ec.message(); 667 668 llvm::sys::fs::remove(OF.TempFilename); 669 } 670 } 671 } else if (!OF.Filename.empty() && EraseFiles) 672 llvm::sys::fs::remove(OF.Filename); 673 } 674 OutputFiles.clear(); 675 if (DeleteBuiltModules) { 676 for (auto &Module : BuiltModules) 677 llvm::sys::fs::remove(Module.second); 678 BuiltModules.clear(); 679 } 680 NonSeekStream.reset(); 681 } 682 683 std::unique_ptr<raw_pwrite_stream> 684 CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile, 685 StringRef Extension) { 686 return createOutputFile(getFrontendOpts().OutputFile, Binary, 687 /*RemoveFileOnSignal=*/true, InFile, Extension, 688 /*UseTemporary=*/true); 689 } 690 691 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() { 692 return llvm::make_unique<llvm::raw_null_ostream>(); 693 } 694 695 std::unique_ptr<raw_pwrite_stream> 696 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary, 697 bool RemoveFileOnSignal, StringRef InFile, 698 StringRef Extension, bool UseTemporary, 699 bool CreateMissingDirectories) { 700 std::string OutputPathName, TempPathName; 701 std::error_code EC; 702 std::unique_ptr<raw_pwrite_stream> OS = createOutputFile( 703 OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension, 704 UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName); 705 if (!OS) { 706 getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath 707 << EC.message(); 708 return nullptr; 709 } 710 711 // Add the output file -- but don't try to remove "-", since this means we are 712 // using stdin. 713 addOutputFile( 714 OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName)); 715 716 return OS; 717 } 718 719 std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile( 720 StringRef OutputPath, std::error_code &Error, bool Binary, 721 bool RemoveFileOnSignal, StringRef InFile, StringRef Extension, 722 bool UseTemporary, bool CreateMissingDirectories, 723 std::string *ResultPathName, std::string *TempPathName) { 724 assert((!CreateMissingDirectories || UseTemporary) && 725 "CreateMissingDirectories is only allowed when using temporary files"); 726 727 std::string OutFile, TempFile; 728 if (!OutputPath.empty()) { 729 OutFile = OutputPath; 730 } else if (InFile == "-") { 731 OutFile = "-"; 732 } else if (!Extension.empty()) { 733 SmallString<128> Path(InFile); 734 llvm::sys::path::replace_extension(Path, Extension); 735 OutFile = Path.str(); 736 } else { 737 OutFile = "-"; 738 } 739 740 std::unique_ptr<llvm::raw_fd_ostream> OS; 741 std::string OSFile; 742 743 if (UseTemporary) { 744 if (OutFile == "-") 745 UseTemporary = false; 746 else { 747 llvm::sys::fs::file_status Status; 748 llvm::sys::fs::status(OutputPath, Status); 749 if (llvm::sys::fs::exists(Status)) { 750 // Fail early if we can't write to the final destination. 751 if (!llvm::sys::fs::can_write(OutputPath)) { 752 Error = make_error_code(llvm::errc::operation_not_permitted); 753 return nullptr; 754 } 755 756 // Don't use a temporary if the output is a special file. This handles 757 // things like '-o /dev/null' 758 if (!llvm::sys::fs::is_regular_file(Status)) 759 UseTemporary = false; 760 } 761 } 762 } 763 764 if (UseTemporary) { 765 // Create a temporary file. 766 // Insert -%%%%%%%% before the extension (if any), and because some tools 767 // (noticeable, clang's own GlobalModuleIndex.cpp) glob for build 768 // artifacts, also append .tmp. 769 StringRef OutputExtension = llvm::sys::path::extension(OutFile); 770 SmallString<128> TempPath = 771 StringRef(OutFile).drop_back(OutputExtension.size()); 772 TempPath += "-%%%%%%%%"; 773 TempPath += OutputExtension; 774 TempPath += ".tmp"; 775 int fd; 776 std::error_code EC = 777 llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 778 779 if (CreateMissingDirectories && 780 EC == llvm::errc::no_such_file_or_directory) { 781 StringRef Parent = llvm::sys::path::parent_path(OutputPath); 782 EC = llvm::sys::fs::create_directories(Parent); 783 if (!EC) { 784 EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 785 } 786 } 787 788 if (!EC) { 789 OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true)); 790 OSFile = TempFile = TempPath.str(); 791 } 792 // If we failed to create the temporary, fallback to writing to the file 793 // directly. This handles the corner case where we cannot write to the 794 // directory, but can write to the file. 795 } 796 797 if (!OS) { 798 OSFile = OutFile; 799 OS.reset(new llvm::raw_fd_ostream( 800 OSFile, Error, 801 (Binary ? llvm::sys::fs::F_None : llvm::sys::fs::F_Text))); 802 if (Error) 803 return nullptr; 804 } 805 806 // Make sure the out stream file gets removed if we crash. 807 if (RemoveFileOnSignal) 808 llvm::sys::RemoveFileOnSignal(OSFile); 809 810 if (ResultPathName) 811 *ResultPathName = OutFile; 812 if (TempPathName) 813 *TempPathName = TempFile; 814 815 if (!Binary || OS->supportsSeeking()) 816 return std::move(OS); 817 818 auto B = llvm::make_unique<llvm::buffer_ostream>(*OS); 819 assert(!NonSeekStream); 820 NonSeekStream = std::move(OS); 821 return std::move(B); 822 } 823 824 // Initialization Utilities 825 826 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){ 827 return InitializeSourceManager( 828 Input, getDiagnostics(), getFileManager(), getSourceManager(), 829 hasPreprocessor() ? &getPreprocessor().getHeaderSearchInfo() : nullptr, 830 getDependencyOutputOpts(), getFrontendOpts()); 831 } 832 833 // static 834 bool CompilerInstance::InitializeSourceManager( 835 const FrontendInputFile &Input, DiagnosticsEngine &Diags, 836 FileManager &FileMgr, SourceManager &SourceMgr, HeaderSearch *HS, 837 DependencyOutputOptions &DepOpts, const FrontendOptions &Opts) { 838 SrcMgr::CharacteristicKind Kind = 839 Input.getKind().getFormat() == InputKind::ModuleMap 840 ? Input.isSystem() ? SrcMgr::C_System_ModuleMap 841 : SrcMgr::C_User_ModuleMap 842 : Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User; 843 844 if (Input.isBuffer()) { 845 SourceMgr.setMainFileID(SourceMgr.createFileID(SourceManager::Unowned, 846 Input.getBuffer(), Kind)); 847 assert(SourceMgr.getMainFileID().isValid() && 848 "Couldn't establish MainFileID!"); 849 return true; 850 } 851 852 StringRef InputFile = Input.getFile(); 853 854 // Figure out where to get and map in the main file. 855 if (InputFile != "-") { 856 const FileEntry *File; 857 if (Opts.FindPchSource.empty()) { 858 File = FileMgr.getFile(InputFile, /*OpenFile=*/true); 859 } else { 860 // When building a pch file in clang-cl mode, the .h file is built as if 861 // it was included by a cc file. Since the driver doesn't know about 862 // all include search directories, the frontend must search the input 863 // file through HeaderSearch here, as if it had been included by the 864 // cc file at Opts.FindPchSource. 865 const FileEntry *FindFile = FileMgr.getFile(Opts.FindPchSource); 866 if (!FindFile) { 867 Diags.Report(diag::err_fe_error_reading) << Opts.FindPchSource; 868 return false; 869 } 870 const DirectoryLookup *UnusedCurDir; 871 SmallVector<std::pair<const FileEntry *, const DirectoryEntry *>, 16> 872 Includers; 873 Includers.push_back(std::make_pair(FindFile, FindFile->getDir())); 874 File = HS->LookupFile(InputFile, SourceLocation(), /*isAngled=*/false, 875 /*FromDir=*/nullptr, 876 /*CurDir=*/UnusedCurDir, Includers, 877 /*SearchPath=*/nullptr, 878 /*RelativePath=*/nullptr, 879 /*RequestingModule=*/nullptr, 880 /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr, 881 /*SkipCache=*/true); 882 // Also add the header to /showIncludes output. 883 if (File) 884 DepOpts.ShowIncludesPretendHeader = File->getName(); 885 } 886 if (!File) { 887 Diags.Report(diag::err_fe_error_reading) << InputFile; 888 return false; 889 } 890 891 // The natural SourceManager infrastructure can't currently handle named 892 // pipes, but we would at least like to accept them for the main 893 // file. Detect them here, read them with the volatile flag so FileMgr will 894 // pick up the correct size, and simply override their contents as we do for 895 // STDIN. 896 if (File->isNamedPipe()) { 897 auto MB = FileMgr.getBufferForFile(File, /*isVolatile=*/true); 898 if (MB) { 899 // Create a new virtual file that will have the correct size. 900 File = FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0); 901 SourceMgr.overrideFileContents(File, std::move(*MB)); 902 } else { 903 Diags.Report(diag::err_cannot_open_file) << InputFile 904 << MB.getError().message(); 905 return false; 906 } 907 } 908 909 SourceMgr.setMainFileID( 910 SourceMgr.createFileID(File, SourceLocation(), Kind)); 911 } else { 912 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr = 913 llvm::MemoryBuffer::getSTDIN(); 914 if (std::error_code EC = SBOrErr.getError()) { 915 Diags.Report(diag::err_fe_error_reading_stdin) << EC.message(); 916 return false; 917 } 918 std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get()); 919 920 const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(), 921 SB->getBufferSize(), 0); 922 SourceMgr.setMainFileID( 923 SourceMgr.createFileID(File, SourceLocation(), Kind)); 924 SourceMgr.overrideFileContents(File, std::move(SB)); 925 } 926 927 assert(SourceMgr.getMainFileID().isValid() && 928 "Couldn't establish MainFileID!"); 929 return true; 930 } 931 932 // High-Level Operations 933 934 bool CompilerInstance::ExecuteAction(FrontendAction &Act) { 935 assert(hasDiagnostics() && "Diagnostics engine is not initialized!"); 936 assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!"); 937 assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!"); 938 939 // FIXME: Take this as an argument, once all the APIs we used have moved to 940 // taking it as an input instead of hard-coding llvm::errs. 941 raw_ostream &OS = llvm::errs(); 942 943 // Create the target instance. 944 setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), 945 getInvocation().TargetOpts)); 946 if (!hasTarget()) 947 return false; 948 949 // Create TargetInfo for the other side of CUDA and OpenMP compilation. 950 if ((getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) && 951 !getFrontendOpts().AuxTriple.empty()) { 952 auto TO = std::make_shared<TargetOptions>(); 953 TO->Triple = getFrontendOpts().AuxTriple; 954 TO->HostTriple = getTarget().getTriple().str(); 955 setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO)); 956 } 957 958 // Inform the target of the language options. 959 // 960 // FIXME: We shouldn't need to do this, the target should be immutable once 961 // created. This complexity should be lifted elsewhere. 962 getTarget().adjust(getLangOpts()); 963 964 // Adjust target options based on codegen options. 965 getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts()); 966 967 // rewriter project will change target built-in bool type from its default. 968 if (getFrontendOpts().ProgramAction == frontend::RewriteObjC) 969 getTarget().noSignedCharForObjCBool(); 970 971 // Validate/process some options. 972 if (getHeaderSearchOpts().Verbose) 973 OS << "clang -cc1 version " CLANG_VERSION_STRING 974 << " based upon " << BACKEND_PACKAGE_STRING 975 << " default target " << llvm::sys::getDefaultTargetTriple() << "\n"; 976 977 if (getFrontendOpts().ShowTimers) 978 createFrontendTimer(); 979 980 if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty()) 981 llvm::EnableStatistics(false); 982 983 for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) { 984 // Reset the ID tables if we are reusing the SourceManager and parsing 985 // regular files. 986 if (hasSourceManager() && !Act.isModelParsingAction()) 987 getSourceManager().clearIDTables(); 988 989 if (Act.BeginSourceFile(*this, FIF)) { 990 Act.Execute(); 991 Act.EndSourceFile(); 992 } 993 } 994 995 // Notify the diagnostic client that all files were processed. 996 getDiagnostics().getClient()->finish(); 997 998 if (getDiagnosticOpts().ShowCarets) { 999 // We can have multiple diagnostics sharing one diagnostic client. 1000 // Get the total number of warnings/errors from the client. 1001 unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings(); 1002 unsigned NumErrors = getDiagnostics().getClient()->getNumErrors(); 1003 1004 if (NumWarnings) 1005 OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s"); 1006 if (NumWarnings && NumErrors) 1007 OS << " and "; 1008 if (NumErrors) 1009 OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s"); 1010 if (NumWarnings || NumErrors) { 1011 OS << " generated"; 1012 if (getLangOpts().CUDA) { 1013 if (!getLangOpts().CUDAIsDevice) { 1014 OS << " when compiling for host"; 1015 } else { 1016 OS << " when compiling for " << getTargetOpts().CPU; 1017 } 1018 } 1019 OS << ".\n"; 1020 } 1021 } 1022 1023 if (getFrontendOpts().ShowStats) { 1024 if (hasFileManager()) { 1025 getFileManager().PrintStats(); 1026 OS << '\n'; 1027 } 1028 llvm::PrintStatistics(OS); 1029 } 1030 StringRef StatsFile = getFrontendOpts().StatsFile; 1031 if (!StatsFile.empty()) { 1032 std::error_code EC; 1033 auto StatS = llvm::make_unique<llvm::raw_fd_ostream>(StatsFile, EC, 1034 llvm::sys::fs::F_Text); 1035 if (EC) { 1036 getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file) 1037 << StatsFile << EC.message(); 1038 } else { 1039 llvm::PrintStatisticsJSON(*StatS); 1040 } 1041 } 1042 1043 return !getDiagnostics().getClient()->getNumErrors(); 1044 } 1045 1046 /// \brief Determine the appropriate source input kind based on language 1047 /// options. 1048 static InputKind::Language getLanguageFromOptions(const LangOptions &LangOpts) { 1049 if (LangOpts.OpenCL) 1050 return InputKind::OpenCL; 1051 if (LangOpts.CUDA) 1052 return InputKind::CUDA; 1053 if (LangOpts.ObjC1) 1054 return LangOpts.CPlusPlus ? InputKind::ObjCXX : InputKind::ObjC; 1055 return LangOpts.CPlusPlus ? InputKind::CXX : InputKind::C; 1056 } 1057 1058 /// \brief Compile a module file for the given module, using the options 1059 /// provided by the importing compiler instance. Returns true if the module 1060 /// was built without errors. 1061 static bool 1062 compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, 1063 StringRef ModuleName, FrontendInputFile Input, 1064 StringRef OriginalModuleMapFile, StringRef ModuleFileName, 1065 llvm::function_ref<void(CompilerInstance &)> PreBuildStep = 1066 [](CompilerInstance &) {}, 1067 llvm::function_ref<void(CompilerInstance &)> PostBuildStep = 1068 [](CompilerInstance &) {}) { 1069 // Construct a compiler invocation for creating this module. 1070 auto Invocation = 1071 std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation()); 1072 1073 PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); 1074 1075 // For any options that aren't intended to affect how a module is built, 1076 // reset them to their default values. 1077 Invocation->getLangOpts()->resetNonModularOptions(); 1078 PPOpts.resetNonModularOptions(); 1079 1080 // Remove any macro definitions that are explicitly ignored by the module. 1081 // They aren't supposed to affect how the module is built anyway. 1082 HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts(); 1083 PPOpts.Macros.erase( 1084 std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(), 1085 [&HSOpts](const std::pair<std::string, bool> &def) { 1086 StringRef MacroDef = def.first; 1087 return HSOpts.ModulesIgnoreMacros.count( 1088 llvm::CachedHashString(MacroDef.split('=').first)) > 0; 1089 }), 1090 PPOpts.Macros.end()); 1091 1092 // Note the name of the module we're building. 1093 Invocation->getLangOpts()->CurrentModule = ModuleName; 1094 1095 // Make sure that the failed-module structure has been allocated in 1096 // the importing instance, and propagate the pointer to the newly-created 1097 // instance. 1098 PreprocessorOptions &ImportingPPOpts 1099 = ImportingInstance.getInvocation().getPreprocessorOpts(); 1100 if (!ImportingPPOpts.FailedModules) 1101 ImportingPPOpts.FailedModules = 1102 std::make_shared<PreprocessorOptions::FailedModulesSet>(); 1103 PPOpts.FailedModules = ImportingPPOpts.FailedModules; 1104 1105 // If there is a module map file, build the module using the module map. 1106 // Set up the inputs/outputs so that we build the module from its umbrella 1107 // header. 1108 FrontendOptions &FrontendOpts = Invocation->getFrontendOpts(); 1109 FrontendOpts.OutputFile = ModuleFileName.str(); 1110 FrontendOpts.DisableFree = false; 1111 FrontendOpts.GenerateGlobalModuleIndex = false; 1112 FrontendOpts.BuildingImplicitModule = true; 1113 FrontendOpts.OriginalModuleMap = OriginalModuleMapFile; 1114 // Force implicitly-built modules to hash the content of the module file. 1115 HSOpts.ModulesHashContent = true; 1116 FrontendOpts.Inputs = {Input}; 1117 1118 // Don't free the remapped file buffers; they are owned by our caller. 1119 PPOpts.RetainRemappedFileBuffers = true; 1120 1121 Invocation->getDiagnosticOpts().VerifyDiagnostics = 0; 1122 assert(ImportingInstance.getInvocation().getModuleHash() == 1123 Invocation->getModuleHash() && "Module hash mismatch!"); 1124 1125 // Construct a compiler instance that will be used to actually create the 1126 // module. Since we're sharing a PCMCache, 1127 // CompilerInstance::CompilerInstance is responsible for finalizing the 1128 // buffers to prevent use-after-frees. 1129 CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(), 1130 &ImportingInstance.getPreprocessor().getPCMCache()); 1131 auto &Inv = *Invocation; 1132 Instance.setInvocation(std::move(Invocation)); 1133 1134 Instance.createDiagnostics(new ForwardingDiagnosticConsumer( 1135 ImportingInstance.getDiagnosticClient()), 1136 /*ShouldOwnClient=*/true); 1137 1138 Instance.setVirtualFileSystem(&ImportingInstance.getVirtualFileSystem()); 1139 1140 // Note that this module is part of the module build stack, so that we 1141 // can detect cycles in the module graph. 1142 Instance.setFileManager(&ImportingInstance.getFileManager()); 1143 Instance.createSourceManager(Instance.getFileManager()); 1144 SourceManager &SourceMgr = Instance.getSourceManager(); 1145 SourceMgr.setModuleBuildStack( 1146 ImportingInstance.getSourceManager().getModuleBuildStack()); 1147 SourceMgr.pushModuleBuildStack(ModuleName, 1148 FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager())); 1149 1150 // If we're collecting module dependencies, we need to share a collector 1151 // between all of the module CompilerInstances. Other than that, we don't 1152 // want to produce any dependency output from the module build. 1153 Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector()); 1154 Inv.getDependencyOutputOpts() = DependencyOutputOptions(); 1155 1156 ImportingInstance.getDiagnostics().Report(ImportLoc, 1157 diag::remark_module_build) 1158 << ModuleName << ModuleFileName; 1159 1160 PreBuildStep(Instance); 1161 1162 // Execute the action to actually build the module in-place. Use a separate 1163 // thread so that we get a stack large enough. 1164 const unsigned ThreadStackSize = 8 << 20; 1165 llvm::CrashRecoveryContext CRC; 1166 CRC.RunSafelyOnThread( 1167 [&]() { 1168 GenerateModuleFromModuleMapAction Action; 1169 Instance.ExecuteAction(Action); 1170 }, 1171 ThreadStackSize); 1172 1173 PostBuildStep(Instance); 1174 1175 ImportingInstance.getDiagnostics().Report(ImportLoc, 1176 diag::remark_module_build_done) 1177 << ModuleName; 1178 1179 // Delete the temporary module map file. 1180 // FIXME: Even though we're executing under crash protection, it would still 1181 // be nice to do this with RemoveFileOnSignal when we can. However, that 1182 // doesn't make sense for all clients, so clean this up manually. 1183 Instance.clearOutputFiles(/*EraseFiles=*/true); 1184 1185 return !Instance.getDiagnostics().hasErrorOccurred(); 1186 } 1187 1188 /// \brief Compile a module file for the given module, using the options 1189 /// provided by the importing compiler instance. Returns true if the module 1190 /// was built without errors. 1191 static bool compileModuleImpl(CompilerInstance &ImportingInstance, 1192 SourceLocation ImportLoc, 1193 Module *Module, 1194 StringRef ModuleFileName) { 1195 InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()), 1196 InputKind::ModuleMap); 1197 1198 // Get or create the module map that we'll use to build this module. 1199 ModuleMap &ModMap 1200 = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1201 bool Result; 1202 if (const FileEntry *ModuleMapFile = 1203 ModMap.getContainingModuleMapFile(Module)) { 1204 // Use the module map where this module resides. 1205 Result = compileModuleImpl( 1206 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1207 FrontendInputFile(ModuleMapFile->getName(), IK, +Module->IsSystem), 1208 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1209 ModuleFileName); 1210 } else { 1211 // FIXME: We only need to fake up an input file here as a way of 1212 // transporting the module's directory to the module map parser. We should 1213 // be able to do that more directly, and parse from a memory buffer without 1214 // inventing this file. 1215 SmallString<128> FakeModuleMapFile(Module->Directory->getName()); 1216 llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map"); 1217 1218 std::string InferredModuleMapContent; 1219 llvm::raw_string_ostream OS(InferredModuleMapContent); 1220 Module->print(OS); 1221 OS.flush(); 1222 1223 Result = compileModuleImpl( 1224 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1225 FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem), 1226 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1227 ModuleFileName, 1228 [&](CompilerInstance &Instance) { 1229 std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer = 1230 llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent); 1231 ModuleMapFile = Instance.getFileManager().getVirtualFile( 1232 FakeModuleMapFile, InferredModuleMapContent.size(), 0); 1233 Instance.getSourceManager().overrideFileContents( 1234 ModuleMapFile, std::move(ModuleMapBuffer)); 1235 }); 1236 } 1237 1238 // We've rebuilt a module. If we're allowed to generate or update the global 1239 // module index, record that fact in the importing compiler instance. 1240 if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) { 1241 ImportingInstance.setBuildGlobalModuleIndex(true); 1242 } 1243 1244 return Result; 1245 } 1246 1247 static bool compileAndLoadModule(CompilerInstance &ImportingInstance, 1248 SourceLocation ImportLoc, 1249 SourceLocation ModuleNameLoc, Module *Module, 1250 StringRef ModuleFileName) { 1251 DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); 1252 1253 auto diagnoseBuildFailure = [&] { 1254 Diags.Report(ModuleNameLoc, diag::err_module_not_built) 1255 << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); 1256 }; 1257 1258 // FIXME: have LockFileManager return an error_code so that we can 1259 // avoid the mkdir when the directory already exists. 1260 StringRef Dir = llvm::sys::path::parent_path(ModuleFileName); 1261 llvm::sys::fs::create_directories(Dir); 1262 1263 while (1) { 1264 unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing; 1265 llvm::LockFileManager Locked(ModuleFileName); 1266 switch (Locked) { 1267 case llvm::LockFileManager::LFS_Error: 1268 // PCMCache takes care of correctness and locks are only necessary for 1269 // performance. Fallback to building the module in case of any lock 1270 // related errors. 1271 Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure) 1272 << Module->Name << Locked.getErrorMessage(); 1273 // Clear out any potential leftover. 1274 Locked.unsafeRemoveLockFile(); 1275 // FALLTHROUGH 1276 case llvm::LockFileManager::LFS_Owned: 1277 // We're responsible for building the module ourselves. 1278 if (!compileModuleImpl(ImportingInstance, ModuleNameLoc, Module, 1279 ModuleFileName)) { 1280 diagnoseBuildFailure(); 1281 return false; 1282 } 1283 break; 1284 1285 case llvm::LockFileManager::LFS_Shared: 1286 // Someone else is responsible for building the module. Wait for them to 1287 // finish. 1288 switch (Locked.waitForUnlock()) { 1289 case llvm::LockFileManager::Res_Success: 1290 ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate; 1291 break; 1292 case llvm::LockFileManager::Res_OwnerDied: 1293 continue; // try again to get the lock. 1294 case llvm::LockFileManager::Res_Timeout: 1295 // Since PCMCache takes care of correctness, we try waiting for another 1296 // process to complete the build so clang does not do it done twice. If 1297 // case of timeout, build it ourselves. 1298 Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout) 1299 << Module->Name; 1300 // Clear the lock file so that future invokations can make progress. 1301 Locked.unsafeRemoveLockFile(); 1302 continue; 1303 } 1304 break; 1305 } 1306 1307 // Try to read the module file, now that we've compiled it. 1308 ASTReader::ASTReadResult ReadResult = 1309 ImportingInstance.getModuleManager()->ReadAST( 1310 ModuleFileName, serialization::MK_ImplicitModule, ImportLoc, 1311 ModuleLoadCapabilities); 1312 1313 if (ReadResult == ASTReader::OutOfDate && 1314 Locked == llvm::LockFileManager::LFS_Shared) { 1315 // The module may be out of date in the presence of file system races, 1316 // or if one of its imports depends on header search paths that are not 1317 // consistent with this ImportingInstance. Try again... 1318 continue; 1319 } else if (ReadResult == ASTReader::Missing) { 1320 diagnoseBuildFailure(); 1321 } else if (ReadResult != ASTReader::Success && 1322 !Diags.hasErrorOccurred()) { 1323 // The ASTReader didn't diagnose the error, so conservatively report it. 1324 diagnoseBuildFailure(); 1325 } 1326 return ReadResult == ASTReader::Success; 1327 } 1328 } 1329 1330 /// \brief Diagnose differences between the current definition of the given 1331 /// configuration macro and the definition provided on the command line. 1332 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro, 1333 Module *Mod, SourceLocation ImportLoc) { 1334 IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro); 1335 SourceManager &SourceMgr = PP.getSourceManager(); 1336 1337 // If this identifier has never had a macro definition, then it could 1338 // not have changed. 1339 if (!Id->hadMacroDefinition()) 1340 return; 1341 auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id); 1342 1343 // Find the macro definition from the command line. 1344 MacroInfo *CmdLineDefinition = nullptr; 1345 for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) { 1346 // We only care about the predefines buffer. 1347 FileID FID = SourceMgr.getFileID(MD->getLocation()); 1348 if (FID.isInvalid() || FID != PP.getPredefinesFileID()) 1349 continue; 1350 if (auto *DMD = dyn_cast<DefMacroDirective>(MD)) 1351 CmdLineDefinition = DMD->getMacroInfo(); 1352 break; 1353 } 1354 1355 auto *CurrentDefinition = PP.getMacroInfo(Id); 1356 if (CurrentDefinition == CmdLineDefinition) { 1357 // Macro matches. Nothing to do. 1358 } else if (!CurrentDefinition) { 1359 // This macro was defined on the command line, then #undef'd later. 1360 // Complain. 1361 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1362 << true << ConfigMacro << Mod->getFullModuleName(); 1363 auto LatestDef = LatestLocalMD->getDefinition(); 1364 assert(LatestDef.isUndefined() && 1365 "predefined macro went away with no #undef?"); 1366 PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here) 1367 << true; 1368 return; 1369 } else if (!CmdLineDefinition) { 1370 // There was no definition for this macro in the predefines buffer, 1371 // but there was a local definition. Complain. 1372 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1373 << false << ConfigMacro << Mod->getFullModuleName(); 1374 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1375 diag::note_module_def_undef_here) 1376 << false; 1377 } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP, 1378 /*Syntactically=*/true)) { 1379 // The macro definitions differ. 1380 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1381 << false << ConfigMacro << Mod->getFullModuleName(); 1382 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1383 diag::note_module_def_undef_here) 1384 << false; 1385 } 1386 } 1387 1388 /// \brief Write a new timestamp file with the given path. 1389 static void writeTimestampFile(StringRef TimestampFile) { 1390 std::error_code EC; 1391 llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::F_None); 1392 } 1393 1394 /// \brief Prune the module cache of modules that haven't been accessed in 1395 /// a long time. 1396 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) { 1397 struct stat StatBuf; 1398 llvm::SmallString<128> TimestampFile; 1399 TimestampFile = HSOpts.ModuleCachePath; 1400 assert(!TimestampFile.empty()); 1401 llvm::sys::path::append(TimestampFile, "modules.timestamp"); 1402 1403 // Try to stat() the timestamp file. 1404 if (::stat(TimestampFile.c_str(), &StatBuf)) { 1405 // If the timestamp file wasn't there, create one now. 1406 if (errno == ENOENT) { 1407 writeTimestampFile(TimestampFile); 1408 } 1409 return; 1410 } 1411 1412 // Check whether the time stamp is older than our pruning interval. 1413 // If not, do nothing. 1414 time_t TimeStampModTime = StatBuf.st_mtime; 1415 time_t CurrentTime = time(nullptr); 1416 if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval)) 1417 return; 1418 1419 // Write a new timestamp file so that nobody else attempts to prune. 1420 // There is a benign race condition here, if two Clang instances happen to 1421 // notice at the same time that the timestamp is out-of-date. 1422 writeTimestampFile(TimestampFile); 1423 1424 // Walk the entire module cache, looking for unused module files and module 1425 // indices. 1426 std::error_code EC; 1427 SmallString<128> ModuleCachePathNative; 1428 llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative); 1429 for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd; 1430 Dir != DirEnd && !EC; Dir.increment(EC)) { 1431 // If we don't have a directory, there's nothing to look into. 1432 if (!llvm::sys::fs::is_directory(Dir->path())) 1433 continue; 1434 1435 // Walk all of the files within this directory. 1436 for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd; 1437 File != FileEnd && !EC; File.increment(EC)) { 1438 // We only care about module and global module index files. 1439 StringRef Extension = llvm::sys::path::extension(File->path()); 1440 if (Extension != ".pcm" && Extension != ".timestamp" && 1441 llvm::sys::path::filename(File->path()) != "modules.idx") 1442 continue; 1443 1444 // Look at this file. If we can't stat it, there's nothing interesting 1445 // there. 1446 if (::stat(File->path().c_str(), &StatBuf)) 1447 continue; 1448 1449 // If the file has been used recently enough, leave it there. 1450 time_t FileAccessTime = StatBuf.st_atime; 1451 if (CurrentTime - FileAccessTime <= 1452 time_t(HSOpts.ModuleCachePruneAfter)) { 1453 continue; 1454 } 1455 1456 // Remove the file. 1457 llvm::sys::fs::remove(File->path()); 1458 1459 // Remove the timestamp file. 1460 std::string TimpestampFilename = File->path() + ".timestamp"; 1461 llvm::sys::fs::remove(TimpestampFilename); 1462 } 1463 1464 // If we removed all of the files in the directory, remove the directory 1465 // itself. 1466 if (llvm::sys::fs::directory_iterator(Dir->path(), EC) == 1467 llvm::sys::fs::directory_iterator() && !EC) 1468 llvm::sys::fs::remove(Dir->path()); 1469 } 1470 } 1471 1472 void CompilerInstance::createModuleManager() { 1473 if (!ModuleManager) { 1474 if (!hasASTContext()) 1475 createASTContext(); 1476 1477 // If we're implicitly building modules but not currently recursively 1478 // building a module, check whether we need to prune the module cache. 1479 if (getSourceManager().getModuleBuildStack().empty() && 1480 !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() && 1481 getHeaderSearchOpts().ModuleCachePruneInterval > 0 && 1482 getHeaderSearchOpts().ModuleCachePruneAfter > 0) { 1483 pruneModuleCache(getHeaderSearchOpts()); 1484 } 1485 1486 HeaderSearchOptions &HSOpts = getHeaderSearchOpts(); 1487 std::string Sysroot = HSOpts.Sysroot; 1488 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 1489 std::unique_ptr<llvm::Timer> ReadTimer; 1490 if (FrontendTimerGroup) 1491 ReadTimer = llvm::make_unique<llvm::Timer>("reading_modules", 1492 "Reading modules", 1493 *FrontendTimerGroup); 1494 ModuleManager = new ASTReader( 1495 getPreprocessor(), &getASTContext(), getPCHContainerReader(), 1496 getFrontendOpts().ModuleFileExtensions, 1497 Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation, 1498 /*AllowASTWithCompilerErrors=*/false, 1499 /*AllowConfigurationMismatch=*/false, 1500 HSOpts.ModulesValidateSystemHeaders, 1501 getFrontendOpts().UseGlobalModuleIndex, 1502 std::move(ReadTimer)); 1503 if (hasASTConsumer()) { 1504 ModuleManager->setDeserializationListener( 1505 getASTConsumer().GetASTDeserializationListener()); 1506 getASTContext().setASTMutationListener( 1507 getASTConsumer().GetASTMutationListener()); 1508 } 1509 getASTContext().setExternalSource(ModuleManager); 1510 if (hasSema()) 1511 ModuleManager->InitializeSema(getSema()); 1512 if (hasASTConsumer()) 1513 ModuleManager->StartTranslationUnit(&getASTConsumer()); 1514 1515 if (TheDependencyFileGenerator) 1516 TheDependencyFileGenerator->AttachToASTReader(*ModuleManager); 1517 for (auto &Listener : DependencyCollectors) 1518 Listener->attachToASTReader(*ModuleManager); 1519 } 1520 } 1521 1522 bool CompilerInstance::loadModuleFile(StringRef FileName) { 1523 llvm::Timer Timer; 1524 if (FrontendTimerGroup) 1525 Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(), 1526 *FrontendTimerGroup); 1527 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1528 1529 // Helper to recursively read the module names for all modules we're adding. 1530 // We mark these as known and redirect any attempt to load that module to 1531 // the files we were handed. 1532 struct ReadModuleNames : ASTReaderListener { 1533 CompilerInstance &CI; 1534 llvm::SmallVector<IdentifierInfo*, 8> LoadedModules; 1535 1536 ReadModuleNames(CompilerInstance &CI) : CI(CI) {} 1537 1538 void ReadModuleName(StringRef ModuleName) override { 1539 LoadedModules.push_back( 1540 CI.getPreprocessor().getIdentifierInfo(ModuleName)); 1541 } 1542 1543 void registerAll() { 1544 for (auto *II : LoadedModules) { 1545 CI.KnownModules[II] = CI.getPreprocessor() 1546 .getHeaderSearchInfo() 1547 .getModuleMap() 1548 .findModule(II->getName()); 1549 } 1550 LoadedModules.clear(); 1551 } 1552 1553 void markAllUnavailable() { 1554 for (auto *II : LoadedModules) { 1555 if (Module *M = CI.getPreprocessor() 1556 .getHeaderSearchInfo() 1557 .getModuleMap() 1558 .findModule(II->getName())) { 1559 M->HasIncompatibleModuleFile = true; 1560 1561 // Mark module as available if the only reason it was unavailable 1562 // was missing headers. 1563 SmallVector<Module *, 2> Stack; 1564 Stack.push_back(M); 1565 while (!Stack.empty()) { 1566 Module *Current = Stack.pop_back_val(); 1567 if (Current->IsMissingRequirement) continue; 1568 Current->IsAvailable = true; 1569 Stack.insert(Stack.end(), 1570 Current->submodule_begin(), Current->submodule_end()); 1571 } 1572 } 1573 } 1574 LoadedModules.clear(); 1575 } 1576 }; 1577 1578 // If we don't already have an ASTReader, create one now. 1579 if (!ModuleManager) 1580 createModuleManager(); 1581 1582 auto Listener = llvm::make_unique<ReadModuleNames>(*this); 1583 auto &ListenerRef = *Listener; 1584 ASTReader::ListenerScope ReadModuleNamesListener(*ModuleManager, 1585 std::move(Listener)); 1586 1587 // Try to load the module file. 1588 switch (ModuleManager->ReadAST(FileName, serialization::MK_ExplicitModule, 1589 SourceLocation(), 1590 ASTReader::ARR_ConfigurationMismatch)) { 1591 case ASTReader::Success: 1592 // We successfully loaded the module file; remember the set of provided 1593 // modules so that we don't try to load implicit modules for them. 1594 ListenerRef.registerAll(); 1595 return true; 1596 1597 case ASTReader::ConfigurationMismatch: 1598 // Ignore unusable module files. 1599 getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) 1600 << FileName; 1601 // All modules provided by any files we tried and failed to load are now 1602 // unavailable; includes of those modules should now be handled textually. 1603 ListenerRef.markAllUnavailable(); 1604 return true; 1605 1606 default: 1607 return false; 1608 } 1609 } 1610 1611 ModuleLoadResult 1612 CompilerInstance::loadModule(SourceLocation ImportLoc, 1613 ModuleIdPath Path, 1614 Module::NameVisibilityKind Visibility, 1615 bool IsInclusionDirective) { 1616 // Determine what file we're searching from. 1617 // FIXME: Should we be deciding whether this is a submodule (here and 1618 // below) based on -fmodules-ts or should we pass a flag and make the 1619 // caller decide? 1620 std::string ModuleName; 1621 if (getLangOpts().ModulesTS) { 1622 // FIXME: Same code as Sema::ActOnModuleDecl() so there is probably a 1623 // better place/way to do this. 1624 for (auto &Piece : Path) { 1625 if (!ModuleName.empty()) 1626 ModuleName += "."; 1627 ModuleName += Piece.first->getName(); 1628 } 1629 } 1630 else 1631 ModuleName = Path[0].first->getName(); 1632 1633 SourceLocation ModuleNameLoc = Path[0].second; 1634 1635 // If we've already handled this import, just return the cached result. 1636 // This one-element cache is important to eliminate redundant diagnostics 1637 // when both the preprocessor and parser see the same import declaration. 1638 if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) { 1639 // Make the named module visible. 1640 if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule) 1641 ModuleManager->makeModuleVisible(LastModuleImportResult, Visibility, 1642 ImportLoc); 1643 return LastModuleImportResult; 1644 } 1645 1646 clang::Module *Module = nullptr; 1647 1648 // If we don't already have information on this module, load the module now. 1649 llvm::DenseMap<const IdentifierInfo *, clang::Module *>::iterator Known 1650 = KnownModules.find(Path[0].first); 1651 if (Known != KnownModules.end()) { 1652 // Retrieve the cached top-level module. 1653 Module = Known->second; 1654 } else if (ModuleName == getLangOpts().CurrentModule) { 1655 // This is the module we're building. 1656 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1657 /// FIXME: perhaps we should (a) look for a module using the module name 1658 // to file map (PrebuiltModuleFiles) and (b) diagnose if still not found? 1659 //if (Module == nullptr) { 1660 // getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1661 // << ModuleName; 1662 // ModuleBuildFailed = true; 1663 // return ModuleLoadResult(); 1664 //} 1665 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1666 } else { 1667 // Search for a module with the given name. 1668 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1669 HeaderSearchOptions &HSOpts = 1670 PP->getHeaderSearchInfo().getHeaderSearchOpts(); 1671 1672 std::string ModuleFileName; 1673 enum ModuleSource { 1674 ModuleNotFound, ModuleCache, PrebuiltModulePath, ModuleBuildPragma 1675 } Source = ModuleNotFound; 1676 1677 // Check to see if the module has been built as part of this compilation 1678 // via a module build pragma. 1679 auto BuiltModuleIt = BuiltModules.find(ModuleName); 1680 if (BuiltModuleIt != BuiltModules.end()) { 1681 ModuleFileName = BuiltModuleIt->second; 1682 Source = ModuleBuildPragma; 1683 } 1684 1685 // Try to load the module from the prebuilt module path. 1686 if (Source == ModuleNotFound && (!HSOpts.PrebuiltModuleFiles.empty() || 1687 !HSOpts.PrebuiltModulePaths.empty())) { 1688 ModuleFileName = 1689 PP->getHeaderSearchInfo().getPrebuiltModuleFileName(ModuleName); 1690 if (!ModuleFileName.empty()) 1691 Source = PrebuiltModulePath; 1692 } 1693 1694 // Try to load the module from the module cache. 1695 if (Source == ModuleNotFound && Module) { 1696 ModuleFileName = PP->getHeaderSearchInfo().getCachedModuleFileName(Module); 1697 Source = ModuleCache; 1698 } 1699 1700 if (Source == ModuleNotFound) { 1701 // We can't find a module, error out here. 1702 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1703 << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); 1704 ModuleBuildFailed = true; 1705 return ModuleLoadResult(); 1706 } 1707 1708 if (ModuleFileName.empty()) { 1709 if (Module && Module->HasIncompatibleModuleFile) { 1710 // We tried and failed to load a module file for this module. Fall 1711 // back to textual inclusion for its headers. 1712 return ModuleLoadResult::ConfigMismatch; 1713 } 1714 1715 getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled) 1716 << ModuleName; 1717 ModuleBuildFailed = true; 1718 return ModuleLoadResult(); 1719 } 1720 1721 // If we don't already have an ASTReader, create one now. 1722 if (!ModuleManager) 1723 createModuleManager(); 1724 1725 llvm::Timer Timer; 1726 if (FrontendTimerGroup) 1727 Timer.init("loading." + ModuleFileName, "Loading " + ModuleFileName, 1728 *FrontendTimerGroup); 1729 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1730 1731 // Try to load the module file. If we are not trying to load from the 1732 // module cache, we don't know how to rebuild modules. 1733 unsigned ARRFlags = Source == ModuleCache ? 1734 ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing : 1735 ASTReader::ARR_ConfigurationMismatch; 1736 switch (ModuleManager->ReadAST(ModuleFileName, 1737 Source == PrebuiltModulePath 1738 ? serialization::MK_PrebuiltModule 1739 : Source == ModuleBuildPragma 1740 ? serialization::MK_ExplicitModule 1741 : serialization::MK_ImplicitModule, 1742 ImportLoc, ARRFlags)) { 1743 case ASTReader::Success: { 1744 if (Source != ModuleCache && !Module) { 1745 Module = PP->getHeaderSearchInfo().lookupModule(ModuleName); 1746 if (!Module || !Module->getASTFile() || 1747 FileMgr->getFile(ModuleFileName) != Module->getASTFile()) { 1748 // Error out if Module does not refer to the file in the prebuilt 1749 // module path. 1750 getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt) 1751 << ModuleName; 1752 ModuleBuildFailed = true; 1753 KnownModules[Path[0].first] = nullptr; 1754 return ModuleLoadResult(); 1755 } 1756 } 1757 break; 1758 } 1759 1760 case ASTReader::OutOfDate: 1761 case ASTReader::Missing: { 1762 if (Source != ModuleCache) { 1763 // We don't know the desired configuration for this module and don't 1764 // necessarily even have a module map. Since ReadAST already produces 1765 // diagnostics for these two cases, we simply error out here. 1766 ModuleBuildFailed = true; 1767 KnownModules[Path[0].first] = nullptr; 1768 return ModuleLoadResult(); 1769 } 1770 1771 // The module file is missing or out-of-date. Build it. 1772 assert(Module && "missing module file"); 1773 // Check whether there is a cycle in the module graph. 1774 ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack(); 1775 ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end(); 1776 for (; Pos != PosEnd; ++Pos) { 1777 if (Pos->first == ModuleName) 1778 break; 1779 } 1780 1781 if (Pos != PosEnd) { 1782 SmallString<256> CyclePath; 1783 for (; Pos != PosEnd; ++Pos) { 1784 CyclePath += Pos->first; 1785 CyclePath += " -> "; 1786 } 1787 CyclePath += ModuleName; 1788 1789 getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle) 1790 << ModuleName << CyclePath; 1791 return ModuleLoadResult(); 1792 } 1793 1794 // Check whether we have already attempted to build this module (but 1795 // failed). 1796 if (getPreprocessorOpts().FailedModules && 1797 getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) { 1798 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) 1799 << ModuleName 1800 << SourceRange(ImportLoc, ModuleNameLoc); 1801 ModuleBuildFailed = true; 1802 return ModuleLoadResult(); 1803 } 1804 1805 // Try to compile and then load the module. 1806 if (!compileAndLoadModule(*this, ImportLoc, ModuleNameLoc, Module, 1807 ModuleFileName)) { 1808 assert(getDiagnostics().hasErrorOccurred() && 1809 "undiagnosed error in compileAndLoadModule"); 1810 if (getPreprocessorOpts().FailedModules) 1811 getPreprocessorOpts().FailedModules->addFailed(ModuleName); 1812 KnownModules[Path[0].first] = nullptr; 1813 ModuleBuildFailed = true; 1814 return ModuleLoadResult(); 1815 } 1816 1817 // Okay, we've rebuilt and now loaded the module. 1818 break; 1819 } 1820 1821 case ASTReader::ConfigurationMismatch: 1822 if (Source == PrebuiltModulePath) 1823 // FIXME: We shouldn't be setting HadFatalFailure below if we only 1824 // produce a warning here! 1825 getDiagnostics().Report(SourceLocation(), 1826 diag::warn_module_config_mismatch) 1827 << ModuleFileName; 1828 // Fall through to error out. 1829 LLVM_FALLTHROUGH; 1830 case ASTReader::VersionMismatch: 1831 case ASTReader::HadErrors: 1832 ModuleLoader::HadFatalFailure = true; 1833 // FIXME: The ASTReader will already have complained, but can we shoehorn 1834 // that diagnostic information into a more useful form? 1835 KnownModules[Path[0].first] = nullptr; 1836 return ModuleLoadResult(); 1837 1838 case ASTReader::Failure: 1839 ModuleLoader::HadFatalFailure = true; 1840 // Already complained, but note now that we failed. 1841 KnownModules[Path[0].first] = nullptr; 1842 ModuleBuildFailed = true; 1843 return ModuleLoadResult(); 1844 } 1845 1846 // Cache the result of this top-level module lookup for later. 1847 Known = KnownModules.insert(std::make_pair(Path[0].first, Module)).first; 1848 } 1849 1850 // If we never found the module, fail. 1851 if (!Module) 1852 return ModuleLoadResult(); 1853 1854 // Verify that the rest of the module path actually corresponds to 1855 // a submodule. 1856 if (!getLangOpts().ModulesTS && Path.size() > 1) { 1857 for (unsigned I = 1, N = Path.size(); I != N; ++I) { 1858 StringRef Name = Path[I].first->getName(); 1859 clang::Module *Sub = Module->findSubmodule(Name); 1860 1861 if (!Sub) { 1862 // Attempt to perform typo correction to find a module name that works. 1863 SmallVector<StringRef, 2> Best; 1864 unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)(); 1865 1866 for (clang::Module::submodule_iterator J = Module->submodule_begin(), 1867 JEnd = Module->submodule_end(); 1868 J != JEnd; ++J) { 1869 unsigned ED = Name.edit_distance((*J)->Name, 1870 /*AllowReplacements=*/true, 1871 BestEditDistance); 1872 if (ED <= BestEditDistance) { 1873 if (ED < BestEditDistance) { 1874 Best.clear(); 1875 BestEditDistance = ED; 1876 } 1877 1878 Best.push_back((*J)->Name); 1879 } 1880 } 1881 1882 // If there was a clear winner, user it. 1883 if (Best.size() == 1) { 1884 getDiagnostics().Report(Path[I].second, 1885 diag::err_no_submodule_suggest) 1886 << Path[I].first << Module->getFullModuleName() << Best[0] 1887 << SourceRange(Path[0].second, Path[I-1].second) 1888 << FixItHint::CreateReplacement(SourceRange(Path[I].second), 1889 Best[0]); 1890 1891 Sub = Module->findSubmodule(Best[0]); 1892 } 1893 } 1894 1895 if (!Sub) { 1896 // No submodule by this name. Complain, and don't look for further 1897 // submodules. 1898 getDiagnostics().Report(Path[I].second, diag::err_no_submodule) 1899 << Path[I].first << Module->getFullModuleName() 1900 << SourceRange(Path[0].second, Path[I-1].second); 1901 break; 1902 } 1903 1904 Module = Sub; 1905 } 1906 } 1907 1908 // Make the named module visible, if it's not already part of the module 1909 // we are parsing. 1910 if (ModuleName != getLangOpts().CurrentModule) { 1911 if (!Module->IsFromModuleFile) { 1912 // We have an umbrella header or directory that doesn't actually include 1913 // all of the headers within the directory it covers. Complain about 1914 // this missing submodule and recover by forgetting that we ever saw 1915 // this submodule. 1916 // FIXME: Should we detect this at module load time? It seems fairly 1917 // expensive (and rare). 1918 getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule) 1919 << Module->getFullModuleName() 1920 << SourceRange(Path.front().second, Path.back().second); 1921 1922 return ModuleLoadResult::MissingExpected; 1923 } 1924 1925 // Check whether this module is available. 1926 if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(), 1927 getDiagnostics(), Module)) { 1928 getDiagnostics().Report(ImportLoc, diag::note_module_import_here) 1929 << SourceRange(Path.front().second, Path.back().second); 1930 LastModuleImportLoc = ImportLoc; 1931 LastModuleImportResult = ModuleLoadResult(); 1932 return ModuleLoadResult(); 1933 } 1934 1935 ModuleManager->makeModuleVisible(Module, Visibility, ImportLoc); 1936 } 1937 1938 // Check for any configuration macros that have changed. 1939 clang::Module *TopModule = Module->getTopLevelModule(); 1940 for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) { 1941 checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I], 1942 Module, ImportLoc); 1943 } 1944 1945 LastModuleImportLoc = ImportLoc; 1946 LastModuleImportResult = ModuleLoadResult(Module); 1947 return LastModuleImportResult; 1948 } 1949 1950 void CompilerInstance::loadModuleFromSource(SourceLocation ImportLoc, 1951 StringRef ModuleName, 1952 StringRef Source) { 1953 // Avoid creating filenames with special characters. 1954 SmallString<128> CleanModuleName(ModuleName); 1955 for (auto &C : CleanModuleName) 1956 if (!isAlphanumeric(C)) 1957 C = '_'; 1958 1959 // FIXME: Using a randomized filename here means that our intermediate .pcm 1960 // output is nondeterministic (as .pcm files refer to each other by name). 1961 // Can this affect the output in any way? 1962 SmallString<128> ModuleFileName; 1963 if (std::error_code EC = llvm::sys::fs::createTemporaryFile( 1964 CleanModuleName, "pcm", ModuleFileName)) { 1965 getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output) 1966 << ModuleFileName << EC.message(); 1967 return; 1968 } 1969 std::string ModuleMapFileName = (CleanModuleName + ".map").str(); 1970 1971 FrontendInputFile Input( 1972 ModuleMapFileName, 1973 InputKind(getLanguageFromOptions(*Invocation->getLangOpts()), 1974 InputKind::ModuleMap, /*Preprocessed*/true)); 1975 1976 std::string NullTerminatedSource(Source.str()); 1977 1978 auto PreBuildStep = [&](CompilerInstance &Other) { 1979 // Create a virtual file containing our desired source. 1980 // FIXME: We shouldn't need to do this. 1981 const FileEntry *ModuleMapFile = Other.getFileManager().getVirtualFile( 1982 ModuleMapFileName, NullTerminatedSource.size(), 0); 1983 Other.getSourceManager().overrideFileContents( 1984 ModuleMapFile, 1985 llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource.c_str())); 1986 1987 Other.BuiltModules = std::move(BuiltModules); 1988 Other.DeleteBuiltModules = false; 1989 }; 1990 1991 auto PostBuildStep = [this](CompilerInstance &Other) { 1992 BuiltModules = std::move(Other.BuiltModules); 1993 }; 1994 1995 // Build the module, inheriting any modules that we've built locally. 1996 if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(), 1997 ModuleFileName, PreBuildStep, PostBuildStep)) { 1998 BuiltModules[ModuleName] = ModuleFileName.str(); 1999 llvm::sys::RemoveFileOnSignal(ModuleFileName); 2000 } 2001 } 2002 2003 void CompilerInstance::makeModuleVisible(Module *Mod, 2004 Module::NameVisibilityKind Visibility, 2005 SourceLocation ImportLoc) { 2006 if (!ModuleManager) 2007 createModuleManager(); 2008 if (!ModuleManager) 2009 return; 2010 2011 ModuleManager->makeModuleVisible(Mod, Visibility, ImportLoc); 2012 } 2013 2014 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex( 2015 SourceLocation TriggerLoc) { 2016 if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty()) 2017 return nullptr; 2018 if (!ModuleManager) 2019 createModuleManager(); 2020 // Can't do anything if we don't have the module manager. 2021 if (!ModuleManager) 2022 return nullptr; 2023 // Get an existing global index. This loads it if not already 2024 // loaded. 2025 ModuleManager->loadGlobalIndex(); 2026 GlobalModuleIndex *GlobalIndex = ModuleManager->getGlobalIndex(); 2027 // If the global index doesn't exist, create it. 2028 if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() && 2029 hasPreprocessor()) { 2030 llvm::sys::fs::create_directories( 2031 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 2032 GlobalModuleIndex::writeIndex( 2033 getFileManager(), getPCHContainerReader(), 2034 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 2035 ModuleManager->resetForReload(); 2036 ModuleManager->loadGlobalIndex(); 2037 GlobalIndex = ModuleManager->getGlobalIndex(); 2038 } 2039 // For finding modules needing to be imported for fixit messages, 2040 // we need to make the global index cover all modules, so we do that here. 2041 if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) { 2042 ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 2043 bool RecreateIndex = false; 2044 for (ModuleMap::module_iterator I = MMap.module_begin(), 2045 E = MMap.module_end(); I != E; ++I) { 2046 Module *TheModule = I->second; 2047 const FileEntry *Entry = TheModule->getASTFile(); 2048 if (!Entry) { 2049 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 2050 Path.push_back(std::make_pair( 2051 getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc)); 2052 std::reverse(Path.begin(), Path.end()); 2053 // Load a module as hidden. This also adds it to the global index. 2054 loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false); 2055 RecreateIndex = true; 2056 } 2057 } 2058 if (RecreateIndex) { 2059 GlobalModuleIndex::writeIndex( 2060 getFileManager(), getPCHContainerReader(), 2061 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 2062 ModuleManager->resetForReload(); 2063 ModuleManager->loadGlobalIndex(); 2064 GlobalIndex = ModuleManager->getGlobalIndex(); 2065 } 2066 HaveFullGlobalModuleIndex = true; 2067 } 2068 return GlobalIndex; 2069 } 2070 2071 // Check global module index for missing imports. 2072 bool 2073 CompilerInstance::lookupMissingImports(StringRef Name, 2074 SourceLocation TriggerLoc) { 2075 // Look for the symbol in non-imported modules, but only if an error 2076 // actually occurred. 2077 if (!buildingModule()) { 2078 // Load global module index, or retrieve a previously loaded one. 2079 GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex( 2080 TriggerLoc); 2081 2082 // Only if we have a global index. 2083 if (GlobalIndex) { 2084 GlobalModuleIndex::HitSet FoundModules; 2085 2086 // Find the modules that reference the identifier. 2087 // Note that this only finds top-level modules. 2088 // We'll let diagnoseTypo find the actual declaration module. 2089 if (GlobalIndex->lookupIdentifier(Name, FoundModules)) 2090 return true; 2091 } 2092 } 2093 2094 return false; 2095 } 2096 void CompilerInstance::resetAndLeakSema() { BuryPointer(takeSema()); } 2097 2098 void CompilerInstance::setExternalSemaSource( 2099 IntrusiveRefCntPtr<ExternalSemaSource> ESS) { 2100 ExternalSemaSrc = std::move(ESS); 2101 } 2102