1 //===--- CompilerInstance.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/Frontend/CompilerInstance.h" 10 #include "clang/AST/ASTConsumer.h" 11 #include "clang/AST/ASTContext.h" 12 #include "clang/AST/Decl.h" 13 #include "clang/Basic/CharInfo.h" 14 #include "clang/Basic/Diagnostic.h" 15 #include "clang/Basic/FileManager.h" 16 #include "clang/Basic/LangStandard.h" 17 #include "clang/Basic/SourceManager.h" 18 #include "clang/Basic/Stack.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "clang/Basic/Version.h" 21 #include "clang/Config/config.h" 22 #include "clang/Frontend/ChainedDiagnosticConsumer.h" 23 #include "clang/Frontend/FrontendAction.h" 24 #include "clang/Frontend/FrontendActions.h" 25 #include "clang/Frontend/FrontendDiagnostic.h" 26 #include "clang/Frontend/LogDiagnosticPrinter.h" 27 #include "clang/Frontend/SerializedDiagnosticPrinter.h" 28 #include "clang/Frontend/TextDiagnosticPrinter.h" 29 #include "clang/Frontend/Utils.h" 30 #include "clang/Frontend/VerifyDiagnosticConsumer.h" 31 #include "clang/Lex/HeaderSearch.h" 32 #include "clang/Lex/Preprocessor.h" 33 #include "clang/Lex/PreprocessorOptions.h" 34 #include "clang/Sema/CodeCompleteConsumer.h" 35 #include "clang/Sema/Sema.h" 36 #include "clang/Serialization/ASTReader.h" 37 #include "clang/Serialization/GlobalModuleIndex.h" 38 #include "clang/Serialization/InMemoryModuleCache.h" 39 #include "llvm/ADT/Statistic.h" 40 #include "llvm/Support/BuryPointer.h" 41 #include "llvm/Support/CrashRecoveryContext.h" 42 #include "llvm/Support/Errc.h" 43 #include "llvm/Support/FileSystem.h" 44 #include "llvm/Support/Host.h" 45 #include "llvm/Support/LockFileManager.h" 46 #include "llvm/Support/MemoryBuffer.h" 47 #include "llvm/Support/Path.h" 48 #include "llvm/Support/Program.h" 49 #include "llvm/Support/Signals.h" 50 #include "llvm/Support/TimeProfiler.h" 51 #include "llvm/Support/Timer.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include <time.h> 54 #include <utility> 55 56 using namespace clang; 57 58 CompilerInstance::CompilerInstance( 59 std::shared_ptr<PCHContainerOperations> PCHContainerOps, 60 InMemoryModuleCache *SharedModuleCache) 61 : ModuleLoader(/* BuildingModule = */ SharedModuleCache), 62 Invocation(new CompilerInvocation()), 63 ModuleCache(SharedModuleCache ? SharedModuleCache 64 : new InMemoryModuleCache), 65 ThePCHContainerOperations(std::move(PCHContainerOps)) {} 66 67 CompilerInstance::~CompilerInstance() { 68 assert(OutputFiles.empty() && "Still output files in flight?"); 69 } 70 71 void CompilerInstance::setInvocation( 72 std::shared_ptr<CompilerInvocation> Value) { 73 Invocation = std::move(Value); 74 } 75 76 bool CompilerInstance::shouldBuildGlobalModuleIndex() const { 77 return (BuildGlobalModuleIndex || 78 (TheASTReader && TheASTReader->isGlobalIndexUnavailable() && 79 getFrontendOpts().GenerateGlobalModuleIndex)) && 80 !ModuleBuildFailed; 81 } 82 83 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) { 84 Diagnostics = Value; 85 } 86 87 void CompilerInstance::setVerboseOutputStream(raw_ostream &Value) { 88 OwnedVerboseOutputStream.release(); 89 VerboseOutputStream = &Value; 90 } 91 92 void CompilerInstance::setVerboseOutputStream(std::unique_ptr<raw_ostream> Value) { 93 OwnedVerboseOutputStream.swap(Value); 94 VerboseOutputStream = OwnedVerboseOutputStream.get(); 95 } 96 97 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; } 98 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; } 99 100 llvm::vfs::FileSystem &CompilerInstance::getVirtualFileSystem() const { 101 return getFileManager().getVirtualFileSystem(); 102 } 103 104 void CompilerInstance::setFileManager(FileManager *Value) { 105 FileMgr = Value; 106 } 107 108 void CompilerInstance::setSourceManager(SourceManager *Value) { 109 SourceMgr = Value; 110 } 111 112 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) { 113 PP = std::move(Value); 114 } 115 116 void CompilerInstance::setASTContext(ASTContext *Value) { 117 Context = Value; 118 119 if (Context && Consumer) 120 getASTConsumer().Initialize(getASTContext()); 121 } 122 123 void CompilerInstance::setSema(Sema *S) { 124 TheSema.reset(S); 125 } 126 127 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) { 128 Consumer = std::move(Value); 129 130 if (Context && Consumer) 131 getASTConsumer().Initialize(getASTContext()); 132 } 133 134 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) { 135 CompletionConsumer.reset(Value); 136 } 137 138 std::unique_ptr<Sema> CompilerInstance::takeSema() { 139 return std::move(TheSema); 140 } 141 142 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getASTReader() const { 143 return TheASTReader; 144 } 145 void CompilerInstance::setASTReader(IntrusiveRefCntPtr<ASTReader> Reader) { 146 assert(ModuleCache.get() == &Reader->getModuleManager().getModuleCache() && 147 "Expected ASTReader to use the same PCM cache"); 148 TheASTReader = std::move(Reader); 149 } 150 151 std::shared_ptr<ModuleDependencyCollector> 152 CompilerInstance::getModuleDepCollector() const { 153 return ModuleDepCollector; 154 } 155 156 void CompilerInstance::setModuleDepCollector( 157 std::shared_ptr<ModuleDependencyCollector> Collector) { 158 ModuleDepCollector = std::move(Collector); 159 } 160 161 static void collectHeaderMaps(const HeaderSearch &HS, 162 std::shared_ptr<ModuleDependencyCollector> MDC) { 163 SmallVector<std::string, 4> HeaderMapFileNames; 164 HS.getHeaderMapFileNames(HeaderMapFileNames); 165 for (auto &Name : HeaderMapFileNames) 166 MDC->addFile(Name); 167 } 168 169 static void collectIncludePCH(CompilerInstance &CI, 170 std::shared_ptr<ModuleDependencyCollector> MDC) { 171 const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts(); 172 if (PPOpts.ImplicitPCHInclude.empty()) 173 return; 174 175 StringRef PCHInclude = PPOpts.ImplicitPCHInclude; 176 FileManager &FileMgr = CI.getFileManager(); 177 auto PCHDir = FileMgr.getDirectory(PCHInclude); 178 if (!PCHDir) { 179 MDC->addFile(PCHInclude); 180 return; 181 } 182 183 std::error_code EC; 184 SmallString<128> DirNative; 185 llvm::sys::path::native((*PCHDir)->getName(), DirNative); 186 llvm::vfs::FileSystem &FS = FileMgr.getVirtualFileSystem(); 187 SimpleASTReaderListener Validator(CI.getPreprocessor()); 188 for (llvm::vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd; 189 Dir != DirEnd && !EC; Dir.increment(EC)) { 190 // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not 191 // used here since we're not interested in validating the PCH at this time, 192 // but only to check whether this is a file containing an AST. 193 if (!ASTReader::readASTFileControlBlock( 194 Dir->path(), FileMgr, CI.getPCHContainerReader(), 195 /*FindModuleFileExtensions=*/false, Validator, 196 /*ValidateDiagnosticOptions=*/false)) 197 MDC->addFile(Dir->path()); 198 } 199 } 200 201 static void collectVFSEntries(CompilerInstance &CI, 202 std::shared_ptr<ModuleDependencyCollector> MDC) { 203 if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty()) 204 return; 205 206 // Collect all VFS found. 207 SmallVector<llvm::vfs::YAMLVFSEntry, 16> VFSEntries; 208 for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) { 209 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer = 210 llvm::MemoryBuffer::getFile(VFSFile); 211 if (!Buffer) 212 return; 213 llvm::vfs::collectVFSFromYAML(std::move(Buffer.get()), 214 /*DiagHandler*/ nullptr, VFSFile, VFSEntries); 215 } 216 217 for (auto &E : VFSEntries) 218 MDC->addFile(E.VPath, E.RPath); 219 } 220 221 // Diagnostics 222 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts, 223 const CodeGenOptions *CodeGenOpts, 224 DiagnosticsEngine &Diags) { 225 std::error_code EC; 226 std::unique_ptr<raw_ostream> StreamOwner; 227 raw_ostream *OS = &llvm::errs(); 228 if (DiagOpts->DiagnosticLogFile != "-") { 229 // Create the output stream. 230 auto FileOS = std::make_unique<llvm::raw_fd_ostream>( 231 DiagOpts->DiagnosticLogFile, EC, 232 llvm::sys::fs::OF_Append | llvm::sys::fs::OF_Text); 233 if (EC) { 234 Diags.Report(diag::warn_fe_cc_log_diagnostics_failure) 235 << DiagOpts->DiagnosticLogFile << EC.message(); 236 } else { 237 FileOS->SetUnbuffered(); 238 OS = FileOS.get(); 239 StreamOwner = std::move(FileOS); 240 } 241 } 242 243 // Chain in the diagnostic client which will log the diagnostics. 244 auto Logger = std::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts, 245 std::move(StreamOwner)); 246 if (CodeGenOpts) 247 Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags); 248 if (Diags.ownsClient()) { 249 Diags.setClient( 250 new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger))); 251 } else { 252 Diags.setClient( 253 new ChainedDiagnosticConsumer(Diags.getClient(), std::move(Logger))); 254 } 255 } 256 257 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts, 258 DiagnosticsEngine &Diags, 259 StringRef OutputFile) { 260 auto SerializedConsumer = 261 clang::serialized_diags::create(OutputFile, DiagOpts); 262 263 if (Diags.ownsClient()) { 264 Diags.setClient(new ChainedDiagnosticConsumer( 265 Diags.takeClient(), std::move(SerializedConsumer))); 266 } else { 267 Diags.setClient(new ChainedDiagnosticConsumer( 268 Diags.getClient(), std::move(SerializedConsumer))); 269 } 270 } 271 272 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client, 273 bool ShouldOwnClient) { 274 Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client, 275 ShouldOwnClient, &getCodeGenOpts()); 276 } 277 278 IntrusiveRefCntPtr<DiagnosticsEngine> 279 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts, 280 DiagnosticConsumer *Client, 281 bool ShouldOwnClient, 282 const CodeGenOptions *CodeGenOpts) { 283 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 284 IntrusiveRefCntPtr<DiagnosticsEngine> 285 Diags(new DiagnosticsEngine(DiagID, Opts)); 286 287 // Create the diagnostic client for reporting errors or for 288 // implementing -verify. 289 if (Client) { 290 Diags->setClient(Client, ShouldOwnClient); 291 } else 292 Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts)); 293 294 // Chain in -verify checker, if requested. 295 if (Opts->VerifyDiagnostics) 296 Diags->setClient(new VerifyDiagnosticConsumer(*Diags)); 297 298 // Chain in -diagnostic-log-file dumper, if requested. 299 if (!Opts->DiagnosticLogFile.empty()) 300 SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags); 301 302 if (!Opts->DiagnosticSerializationFile.empty()) 303 SetupSerializedDiagnostics(Opts, *Diags, 304 Opts->DiagnosticSerializationFile); 305 306 // Configure our handling of diagnostics. 307 ProcessWarningOptions(*Diags, *Opts); 308 309 return Diags; 310 } 311 312 // File Manager 313 314 FileManager *CompilerInstance::createFileManager( 315 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) { 316 if (!VFS) 317 VFS = FileMgr ? &FileMgr->getVirtualFileSystem() 318 : createVFSFromCompilerInvocation(getInvocation(), 319 getDiagnostics()); 320 assert(VFS && "FileManager has no VFS?"); 321 FileMgr = new FileManager(getFileSystemOpts(), std::move(VFS)); 322 return FileMgr.get(); 323 } 324 325 // Source Manager 326 327 void CompilerInstance::createSourceManager(FileManager &FileMgr) { 328 SourceMgr = new SourceManager(getDiagnostics(), FileMgr); 329 } 330 331 // Initialize the remapping of files to alternative contents, e.g., 332 // those specified through other files. 333 static void InitializeFileRemapping(DiagnosticsEngine &Diags, 334 SourceManager &SourceMgr, 335 FileManager &FileMgr, 336 const PreprocessorOptions &InitOpts) { 337 // Remap files in the source manager (with buffers). 338 for (const auto &RB : InitOpts.RemappedFileBuffers) { 339 // Create the file entry for the file that we're mapping from. 340 const FileEntry *FromFile = 341 FileMgr.getVirtualFile(RB.first, RB.second->getBufferSize(), 0); 342 if (!FromFile) { 343 Diags.Report(diag::err_fe_remap_missing_from_file) << RB.first; 344 if (!InitOpts.RetainRemappedFileBuffers) 345 delete RB.second; 346 continue; 347 } 348 349 // Override the contents of the "from" file with the contents of 350 // the "to" file. 351 SourceMgr.overrideFileContents(FromFile, RB.second, 352 InitOpts.RetainRemappedFileBuffers); 353 } 354 355 // Remap files in the source manager (with other files). 356 for (const auto &RF : InitOpts.RemappedFiles) { 357 // Find the file that we're mapping to. 358 auto ToFile = FileMgr.getFile(RF.second); 359 if (!ToFile) { 360 Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second; 361 continue; 362 } 363 364 // Create the file entry for the file that we're mapping from. 365 const FileEntry *FromFile = 366 FileMgr.getVirtualFile(RF.first, (*ToFile)->getSize(), 0); 367 if (!FromFile) { 368 Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first; 369 continue; 370 } 371 372 // Override the contents of the "from" file with the contents of 373 // the "to" file. 374 SourceMgr.overrideFileContents(FromFile, *ToFile); 375 } 376 377 SourceMgr.setOverridenFilesKeepOriginalName( 378 InitOpts.RemappedFilesKeepOriginalName); 379 } 380 381 // Preprocessor 382 383 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) { 384 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 385 386 // The AST reader holds a reference to the old preprocessor (if any). 387 TheASTReader.reset(); 388 389 // Create the Preprocessor. 390 HeaderSearch *HeaderInfo = 391 new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(), 392 getDiagnostics(), getLangOpts(), &getTarget()); 393 PP = std::make_shared<Preprocessor>(Invocation->getPreprocessorOptsPtr(), 394 getDiagnostics(), getLangOpts(), 395 getSourceManager(), *HeaderInfo, *this, 396 /*IdentifierInfoLookup=*/nullptr, 397 /*OwnsHeaderSearch=*/true, TUKind); 398 getTarget().adjust(getLangOpts()); 399 PP->Initialize(getTarget(), getAuxTarget()); 400 401 if (PPOpts.DetailedRecord) 402 PP->createPreprocessingRecord(); 403 404 // Apply remappings to the source manager. 405 InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(), 406 PP->getFileManager(), PPOpts); 407 408 // Predefine macros and configure the preprocessor. 409 InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(), 410 getFrontendOpts()); 411 412 // Initialize the header search object. In CUDA compilations, we use the aux 413 // triple (the host triple) to initialize our header search, since we need to 414 // find the host headers in order to compile the CUDA code. 415 const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple(); 416 if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA && 417 PP->getAuxTargetInfo()) 418 HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple(); 419 420 ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(), 421 PP->getLangOpts(), *HeaderSearchTriple); 422 423 PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP); 424 425 if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules) 426 PP->getHeaderSearchInfo().setModuleCachePath(getSpecificModuleCachePath()); 427 428 // Handle generating dependencies, if requested. 429 const DependencyOutputOptions &DepOpts = getDependencyOutputOpts(); 430 if (!DepOpts.OutputFile.empty()) 431 addDependencyCollector(std::make_shared<DependencyFileGenerator>(DepOpts)); 432 if (!DepOpts.DOTOutputFile.empty()) 433 AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile, 434 getHeaderSearchOpts().Sysroot); 435 436 // If we don't have a collector, but we are collecting module dependencies, 437 // then we're the top level compiler instance and need to create one. 438 if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) { 439 ModuleDepCollector = std::make_shared<ModuleDependencyCollector>( 440 DepOpts.ModuleDependencyOutputDir); 441 } 442 443 // If there is a module dep collector, register with other dep collectors 444 // and also (a) collect header maps and (b) TODO: input vfs overlay files. 445 if (ModuleDepCollector) { 446 addDependencyCollector(ModuleDepCollector); 447 collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector); 448 collectIncludePCH(*this, ModuleDepCollector); 449 collectVFSEntries(*this, ModuleDepCollector); 450 } 451 452 for (auto &Listener : DependencyCollectors) 453 Listener->attachToPreprocessor(*PP); 454 455 // Handle generating header include information, if requested. 456 if (DepOpts.ShowHeaderIncludes) 457 AttachHeaderIncludeGen(*PP, DepOpts); 458 if (!DepOpts.HeaderIncludeOutputFile.empty()) { 459 StringRef OutputPath = DepOpts.HeaderIncludeOutputFile; 460 if (OutputPath == "-") 461 OutputPath = ""; 462 AttachHeaderIncludeGen(*PP, DepOpts, 463 /*ShowAllHeaders=*/true, OutputPath, 464 /*ShowDepth=*/false); 465 } 466 467 if (DepOpts.ShowIncludesDest != ShowIncludesDestination::None) { 468 AttachHeaderIncludeGen(*PP, DepOpts, 469 /*ShowAllHeaders=*/true, /*OutputPath=*/"", 470 /*ShowDepth=*/true, /*MSStyle=*/true); 471 } 472 } 473 474 std::string CompilerInstance::getSpecificModuleCachePath() { 475 // Set up the module path, including the hash for the 476 // module-creation options. 477 SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath); 478 if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash) 479 llvm::sys::path::append(SpecificModuleCache, 480 getInvocation().getModuleHash()); 481 return std::string(SpecificModuleCache.str()); 482 } 483 484 // ASTContext 485 486 void CompilerInstance::createASTContext() { 487 Preprocessor &PP = getPreprocessor(); 488 auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(), 489 PP.getIdentifierTable(), PP.getSelectorTable(), 490 PP.getBuiltinInfo()); 491 Context->InitBuiltinTypes(getTarget(), getAuxTarget()); 492 setASTContext(Context); 493 } 494 495 // ExternalASTSource 496 497 void CompilerInstance::createPCHExternalASTSource( 498 StringRef Path, bool DisablePCHValidation, bool AllowPCHWithCompilerErrors, 499 void *DeserializationListener, bool OwnDeserializationListener) { 500 bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; 501 TheASTReader = createPCHExternalASTSource( 502 Path, getHeaderSearchOpts().Sysroot, DisablePCHValidation, 503 AllowPCHWithCompilerErrors, getPreprocessor(), getModuleCache(), 504 getASTContext(), getPCHContainerReader(), 505 getFrontendOpts().ModuleFileExtensions, DependencyCollectors, 506 DeserializationListener, OwnDeserializationListener, Preamble, 507 getFrontendOpts().UseGlobalModuleIndex); 508 } 509 510 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource( 511 StringRef Path, StringRef Sysroot, bool DisablePCHValidation, 512 bool AllowPCHWithCompilerErrors, Preprocessor &PP, 513 InMemoryModuleCache &ModuleCache, ASTContext &Context, 514 const PCHContainerReader &PCHContainerRdr, 515 ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions, 516 ArrayRef<std::shared_ptr<DependencyCollector>> DependencyCollectors, 517 void *DeserializationListener, bool OwnDeserializationListener, 518 bool Preamble, bool UseGlobalModuleIndex) { 519 HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); 520 521 IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader( 522 PP, ModuleCache, &Context, PCHContainerRdr, Extensions, 523 Sysroot.empty() ? "" : Sysroot.data(), DisablePCHValidation, 524 AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false, 525 HSOpts.ModulesValidateSystemHeaders, HSOpts.ValidateASTInputFilesContent, 526 UseGlobalModuleIndex)); 527 528 // We need the external source to be set up before we read the AST, because 529 // eagerly-deserialized declarations may use it. 530 Context.setExternalSource(Reader.get()); 531 532 Reader->setDeserializationListener( 533 static_cast<ASTDeserializationListener *>(DeserializationListener), 534 /*TakeOwnership=*/OwnDeserializationListener); 535 536 for (auto &Listener : DependencyCollectors) 537 Listener->attachToASTReader(*Reader); 538 539 switch (Reader->ReadAST(Path, 540 Preamble ? serialization::MK_Preamble 541 : serialization::MK_PCH, 542 SourceLocation(), 543 ASTReader::ARR_None)) { 544 case ASTReader::Success: 545 // Set the predefines buffer as suggested by the PCH reader. Typically, the 546 // predefines buffer will be empty. 547 PP.setPredefines(Reader->getSuggestedPredefines()); 548 return Reader; 549 550 case ASTReader::Failure: 551 // Unrecoverable failure: don't even try to process the input file. 552 break; 553 554 case ASTReader::Missing: 555 case ASTReader::OutOfDate: 556 case ASTReader::VersionMismatch: 557 case ASTReader::ConfigurationMismatch: 558 case ASTReader::HadErrors: 559 // No suitable PCH file could be found. Return an error. 560 break; 561 } 562 563 Context.setExternalSource(nullptr); 564 return nullptr; 565 } 566 567 // Code Completion 568 569 static bool EnableCodeCompletion(Preprocessor &PP, 570 StringRef Filename, 571 unsigned Line, 572 unsigned Column) { 573 // Tell the source manager to chop off the given file at a specific 574 // line and column. 575 auto Entry = PP.getFileManager().getFile(Filename); 576 if (!Entry) { 577 PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file) 578 << Filename; 579 return true; 580 } 581 582 // Truncate the named file at the given line/column. 583 PP.SetCodeCompletionPoint(*Entry, Line, Column); 584 return false; 585 } 586 587 void CompilerInstance::createCodeCompletionConsumer() { 588 const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt; 589 if (!CompletionConsumer) { 590 setCodeCompletionConsumer( 591 createCodeCompletionConsumer(getPreprocessor(), 592 Loc.FileName, Loc.Line, Loc.Column, 593 getFrontendOpts().CodeCompleteOpts, 594 llvm::outs())); 595 if (!CompletionConsumer) 596 return; 597 } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName, 598 Loc.Line, Loc.Column)) { 599 setCodeCompletionConsumer(nullptr); 600 return; 601 } 602 } 603 604 void CompilerInstance::createFrontendTimer() { 605 FrontendTimerGroup.reset( 606 new llvm::TimerGroup("frontend", "Clang front-end time report")); 607 FrontendTimer.reset( 608 new llvm::Timer("frontend", "Clang front-end timer", 609 *FrontendTimerGroup)); 610 } 611 612 CodeCompleteConsumer * 613 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP, 614 StringRef Filename, 615 unsigned Line, 616 unsigned Column, 617 const CodeCompleteOptions &Opts, 618 raw_ostream &OS) { 619 if (EnableCodeCompletion(PP, Filename, Line, Column)) 620 return nullptr; 621 622 // Set up the creation routine for code-completion. 623 return new PrintingCodeCompleteConsumer(Opts, OS); 624 } 625 626 void CompilerInstance::createSema(TranslationUnitKind TUKind, 627 CodeCompleteConsumer *CompletionConsumer) { 628 TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(), 629 TUKind, CompletionConsumer)); 630 // Attach the external sema source if there is any. 631 if (ExternalSemaSrc) { 632 TheSema->addExternalSource(ExternalSemaSrc.get()); 633 ExternalSemaSrc->InitializeSema(*TheSema); 634 } 635 } 636 637 // Output Files 638 639 void CompilerInstance::addOutputFile(OutputFile &&OutFile) { 640 OutputFiles.push_back(std::move(OutFile)); 641 } 642 643 void CompilerInstance::clearOutputFiles(bool EraseFiles) { 644 for (OutputFile &OF : OutputFiles) { 645 if (!OF.TempFilename.empty()) { 646 if (EraseFiles) { 647 llvm::sys::fs::remove(OF.TempFilename); 648 } else { 649 SmallString<128> NewOutFile(OF.Filename); 650 651 // If '-working-directory' was passed, the output filename should be 652 // relative to that. 653 FileMgr->FixupRelativePath(NewOutFile); 654 if (std::error_code ec = 655 llvm::sys::fs::rename(OF.TempFilename, NewOutFile)) { 656 getDiagnostics().Report(diag::err_unable_to_rename_temp) 657 << OF.TempFilename << OF.Filename << ec.message(); 658 659 llvm::sys::fs::remove(OF.TempFilename); 660 } 661 } 662 } else if (!OF.Filename.empty() && EraseFiles) 663 llvm::sys::fs::remove(OF.Filename); 664 } 665 OutputFiles.clear(); 666 if (DeleteBuiltModules) { 667 for (auto &Module : BuiltModules) 668 llvm::sys::fs::remove(Module.second); 669 BuiltModules.clear(); 670 } 671 NonSeekStream.reset(); 672 } 673 674 std::unique_ptr<raw_pwrite_stream> 675 CompilerInstance::createDefaultOutputFile(bool Binary, StringRef InFile, 676 StringRef Extension) { 677 return createOutputFile(getFrontendOpts().OutputFile, Binary, 678 /*RemoveFileOnSignal=*/true, InFile, Extension, 679 getFrontendOpts().UseTemporary); 680 } 681 682 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() { 683 return std::make_unique<llvm::raw_null_ostream>(); 684 } 685 686 std::unique_ptr<raw_pwrite_stream> 687 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary, 688 bool RemoveFileOnSignal, StringRef InFile, 689 StringRef Extension, bool UseTemporary, 690 bool CreateMissingDirectories) { 691 std::string OutputPathName, TempPathName; 692 std::error_code EC; 693 std::unique_ptr<raw_pwrite_stream> OS = createOutputFile( 694 OutputPath, EC, Binary, RemoveFileOnSignal, InFile, Extension, 695 UseTemporary, CreateMissingDirectories, &OutputPathName, &TempPathName); 696 if (!OS) { 697 getDiagnostics().Report(diag::err_fe_unable_to_open_output) << OutputPath 698 << EC.message(); 699 return nullptr; 700 } 701 702 // Add the output file -- but don't try to remove "-", since this means we are 703 // using stdin. 704 addOutputFile( 705 OutputFile((OutputPathName != "-") ? OutputPathName : "", TempPathName)); 706 707 return OS; 708 } 709 710 std::unique_ptr<llvm::raw_pwrite_stream> CompilerInstance::createOutputFile( 711 StringRef OutputPath, std::error_code &Error, bool Binary, 712 bool RemoveFileOnSignal, StringRef InFile, StringRef Extension, 713 bool UseTemporary, bool CreateMissingDirectories, 714 std::string *ResultPathName, std::string *TempPathName) { 715 assert((!CreateMissingDirectories || UseTemporary) && 716 "CreateMissingDirectories is only allowed when using temporary files"); 717 718 std::string OutFile, TempFile; 719 if (!OutputPath.empty()) { 720 OutFile = std::string(OutputPath); 721 } else if (InFile == "-") { 722 OutFile = "-"; 723 } else if (!Extension.empty()) { 724 SmallString<128> Path(InFile); 725 llvm::sys::path::replace_extension(Path, Extension); 726 OutFile = std::string(Path.str()); 727 } else { 728 OutFile = "-"; 729 } 730 731 std::unique_ptr<llvm::raw_fd_ostream> OS; 732 std::string OSFile; 733 734 if (UseTemporary) { 735 if (OutFile == "-") 736 UseTemporary = false; 737 else { 738 llvm::sys::fs::file_status Status; 739 llvm::sys::fs::status(OutputPath, Status); 740 if (llvm::sys::fs::exists(Status)) { 741 // Fail early if we can't write to the final destination. 742 if (!llvm::sys::fs::can_write(OutputPath)) { 743 Error = make_error_code(llvm::errc::operation_not_permitted); 744 return nullptr; 745 } 746 747 // Don't use a temporary if the output is a special file. This handles 748 // things like '-o /dev/null' 749 if (!llvm::sys::fs::is_regular_file(Status)) 750 UseTemporary = false; 751 } 752 } 753 } 754 755 if (UseTemporary) { 756 // Create a temporary file. 757 // Insert -%%%%%%%% before the extension (if any), and because some tools 758 // (noticeable, clang's own GlobalModuleIndex.cpp) glob for build 759 // artifacts, also append .tmp. 760 StringRef OutputExtension = llvm::sys::path::extension(OutFile); 761 SmallString<128> TempPath = 762 StringRef(OutFile).drop_back(OutputExtension.size()); 763 TempPath += "-%%%%%%%%"; 764 TempPath += OutputExtension; 765 TempPath += ".tmp"; 766 int fd; 767 std::error_code EC = 768 llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 769 770 if (CreateMissingDirectories && 771 EC == llvm::errc::no_such_file_or_directory) { 772 StringRef Parent = llvm::sys::path::parent_path(OutputPath); 773 EC = llvm::sys::fs::create_directories(Parent); 774 if (!EC) { 775 EC = llvm::sys::fs::createUniqueFile(TempPath, fd, TempPath); 776 } 777 } 778 779 if (!EC) { 780 OS.reset(new llvm::raw_fd_ostream(fd, /*shouldClose=*/true)); 781 OSFile = TempFile = std::string(TempPath.str()); 782 } 783 // If we failed to create the temporary, fallback to writing to the file 784 // directly. This handles the corner case where we cannot write to the 785 // directory, but can write to the file. 786 } 787 788 if (!OS) { 789 OSFile = OutFile; 790 OS.reset(new llvm::raw_fd_ostream( 791 OSFile, Error, 792 (Binary ? llvm::sys::fs::OF_None : llvm::sys::fs::OF_Text))); 793 if (Error) 794 return nullptr; 795 } 796 797 // Make sure the out stream file gets removed if we crash. 798 if (RemoveFileOnSignal) 799 llvm::sys::RemoveFileOnSignal(OSFile); 800 801 if (ResultPathName) 802 *ResultPathName = OutFile; 803 if (TempPathName) 804 *TempPathName = TempFile; 805 806 if (!Binary || OS->supportsSeeking()) 807 return std::move(OS); 808 809 auto B = std::make_unique<llvm::buffer_ostream>(*OS); 810 assert(!NonSeekStream); 811 NonSeekStream = std::move(OS); 812 return std::move(B); 813 } 814 815 // Initialization Utilities 816 817 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){ 818 return InitializeSourceManager( 819 Input, getDiagnostics(), getFileManager(), getSourceManager(), 820 hasPreprocessor() ? &getPreprocessor().getHeaderSearchInfo() : nullptr, 821 getDependencyOutputOpts(), getFrontendOpts()); 822 } 823 824 // static 825 bool CompilerInstance::InitializeSourceManager( 826 const FrontendInputFile &Input, DiagnosticsEngine &Diags, 827 FileManager &FileMgr, SourceManager &SourceMgr, HeaderSearch *HS, 828 DependencyOutputOptions &DepOpts, const FrontendOptions &Opts) { 829 SrcMgr::CharacteristicKind Kind = 830 Input.getKind().getFormat() == InputKind::ModuleMap 831 ? Input.isSystem() ? SrcMgr::C_System_ModuleMap 832 : SrcMgr::C_User_ModuleMap 833 : Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User; 834 835 if (Input.isBuffer()) { 836 SourceMgr.setMainFileID(SourceMgr.createFileID(SourceManager::Unowned, 837 Input.getBuffer(), Kind)); 838 assert(SourceMgr.getMainFileID().isValid() && 839 "Couldn't establish MainFileID!"); 840 return true; 841 } 842 843 StringRef InputFile = Input.getFile(); 844 845 // Figure out where to get and map in the main file. 846 if (InputFile != "-") { 847 auto FileOrErr = FileMgr.getFileRef(InputFile, /*OpenFile=*/true); 848 if (!FileOrErr) { 849 // FIXME: include the error in the diagnostic. 850 consumeError(FileOrErr.takeError()); 851 Diags.Report(diag::err_fe_error_reading) << InputFile; 852 return false; 853 } 854 FileEntryRef File = *FileOrErr; 855 856 // The natural SourceManager infrastructure can't currently handle named 857 // pipes, but we would at least like to accept them for the main 858 // file. Detect them here, read them with the volatile flag so FileMgr will 859 // pick up the correct size, and simply override their contents as we do for 860 // STDIN. 861 if (File.getFileEntry().isNamedPipe()) { 862 auto MB = 863 FileMgr.getBufferForFile(&File.getFileEntry(), /*isVolatile=*/true); 864 if (MB) { 865 // Create a new virtual file that will have the correct size. 866 const FileEntry *FE = 867 FileMgr.getVirtualFile(InputFile, (*MB)->getBufferSize(), 0); 868 SourceMgr.overrideFileContents(FE, std::move(*MB)); 869 SourceMgr.setMainFileID( 870 SourceMgr.createFileID(FE, SourceLocation(), Kind)); 871 } else { 872 Diags.Report(diag::err_cannot_open_file) << InputFile 873 << MB.getError().message(); 874 return false; 875 } 876 } else { 877 SourceMgr.setMainFileID( 878 SourceMgr.createFileID(File, SourceLocation(), Kind)); 879 } 880 } else { 881 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> SBOrErr = 882 llvm::MemoryBuffer::getSTDIN(); 883 if (std::error_code EC = SBOrErr.getError()) { 884 Diags.Report(diag::err_fe_error_reading_stdin) << EC.message(); 885 return false; 886 } 887 std::unique_ptr<llvm::MemoryBuffer> SB = std::move(SBOrErr.get()); 888 889 const FileEntry *File = FileMgr.getVirtualFile(SB->getBufferIdentifier(), 890 SB->getBufferSize(), 0); 891 SourceMgr.setMainFileID( 892 SourceMgr.createFileID(File, SourceLocation(), Kind)); 893 SourceMgr.overrideFileContents(File, std::move(SB)); 894 } 895 896 assert(SourceMgr.getMainFileID().isValid() && 897 "Couldn't establish MainFileID!"); 898 return true; 899 } 900 901 // High-Level Operations 902 903 bool CompilerInstance::ExecuteAction(FrontendAction &Act) { 904 assert(hasDiagnostics() && "Diagnostics engine is not initialized!"); 905 assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!"); 906 assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!"); 907 908 // Mark this point as the bottom of the stack if we don't have somewhere 909 // better. We generally expect frontend actions to be invoked with (nearly) 910 // DesiredStackSpace available. 911 noteBottomOfStack(); 912 913 raw_ostream &OS = getVerboseOutputStream(); 914 915 if (!Act.PrepareToExecute(*this)) 916 return false; 917 918 // Create the target instance. 919 setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), 920 getInvocation().TargetOpts)); 921 if (!hasTarget()) 922 return false; 923 924 // Create TargetInfo for the other side of CUDA/OpenMP/SYCL compilation. 925 if ((getLangOpts().CUDA || getLangOpts().OpenMPIsDevice || 926 getLangOpts().SYCLIsDevice) && 927 !getFrontendOpts().AuxTriple.empty()) { 928 auto TO = std::make_shared<TargetOptions>(); 929 TO->Triple = llvm::Triple::normalize(getFrontendOpts().AuxTriple); 930 if (getFrontendOpts().AuxTargetCPU) 931 TO->CPU = getFrontendOpts().AuxTargetCPU.getValue(); 932 if (getFrontendOpts().AuxTargetFeatures) 933 TO->FeaturesAsWritten = getFrontendOpts().AuxTargetFeatures.getValue(); 934 TO->HostTriple = getTarget().getTriple().str(); 935 setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO)); 936 } 937 938 // Inform the target of the language options. 939 // 940 // FIXME: We shouldn't need to do this, the target should be immutable once 941 // created. This complexity should be lifted elsewhere. 942 getTarget().adjust(getLangOpts()); 943 944 // Adjust target options based on codegen options. 945 getTarget().adjustTargetOptions(getCodeGenOpts(), getTargetOpts()); 946 947 if (auto *Aux = getAuxTarget()) 948 getTarget().setAuxTarget(Aux); 949 950 // rewriter project will change target built-in bool type from its default. 951 if (getFrontendOpts().ProgramAction == frontend::RewriteObjC) 952 getTarget().noSignedCharForObjCBool(); 953 954 // Validate/process some options. 955 if (getHeaderSearchOpts().Verbose) 956 OS << "clang -cc1 version " CLANG_VERSION_STRING 957 << " based upon " << BACKEND_PACKAGE_STRING 958 << " default target " << llvm::sys::getDefaultTargetTriple() << "\n"; 959 960 if (getFrontendOpts().ShowTimers) 961 createFrontendTimer(); 962 963 if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty()) 964 llvm::EnableStatistics(false); 965 966 for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) { 967 // Reset the ID tables if we are reusing the SourceManager and parsing 968 // regular files. 969 if (hasSourceManager() && !Act.isModelParsingAction()) 970 getSourceManager().clearIDTables(); 971 972 if (Act.BeginSourceFile(*this, FIF)) { 973 if (llvm::Error Err = Act.Execute()) { 974 consumeError(std::move(Err)); // FIXME this drops errors on the floor. 975 } 976 Act.EndSourceFile(); 977 } 978 } 979 980 // Notify the diagnostic client that all files were processed. 981 getDiagnostics().getClient()->finish(); 982 983 if (getDiagnosticOpts().ShowCarets) { 984 // We can have multiple diagnostics sharing one diagnostic client. 985 // Get the total number of warnings/errors from the client. 986 unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings(); 987 unsigned NumErrors = getDiagnostics().getClient()->getNumErrors(); 988 989 if (NumWarnings) 990 OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s"); 991 if (NumWarnings && NumErrors) 992 OS << " and "; 993 if (NumErrors) 994 OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s"); 995 if (NumWarnings || NumErrors) { 996 OS << " generated"; 997 if (getLangOpts().CUDA) { 998 if (!getLangOpts().CUDAIsDevice) { 999 OS << " when compiling for host"; 1000 } else { 1001 OS << " when compiling for " << getTargetOpts().CPU; 1002 } 1003 } 1004 OS << ".\n"; 1005 } 1006 } 1007 1008 if (getFrontendOpts().ShowStats) { 1009 if (hasFileManager()) { 1010 getFileManager().PrintStats(); 1011 OS << '\n'; 1012 } 1013 llvm::PrintStatistics(OS); 1014 } 1015 StringRef StatsFile = getFrontendOpts().StatsFile; 1016 if (!StatsFile.empty()) { 1017 std::error_code EC; 1018 auto StatS = std::make_unique<llvm::raw_fd_ostream>( 1019 StatsFile, EC, llvm::sys::fs::OF_Text); 1020 if (EC) { 1021 getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file) 1022 << StatsFile << EC.message(); 1023 } else { 1024 llvm::PrintStatisticsJSON(*StatS); 1025 } 1026 } 1027 1028 return !getDiagnostics().getClient()->getNumErrors(); 1029 } 1030 1031 /// Determine the appropriate source input kind based on language 1032 /// options. 1033 static Language getLanguageFromOptions(const LangOptions &LangOpts) { 1034 if (LangOpts.OpenCL) 1035 return Language::OpenCL; 1036 if (LangOpts.CUDA) 1037 return Language::CUDA; 1038 if (LangOpts.ObjC) 1039 return LangOpts.CPlusPlus ? Language::ObjCXX : Language::ObjC; 1040 return LangOpts.CPlusPlus ? Language::CXX : Language::C; 1041 } 1042 1043 /// Compile a module file for the given module, using the options 1044 /// provided by the importing compiler instance. Returns true if the module 1045 /// was built without errors. 1046 static bool 1047 compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, 1048 StringRef ModuleName, FrontendInputFile Input, 1049 StringRef OriginalModuleMapFile, StringRef ModuleFileName, 1050 llvm::function_ref<void(CompilerInstance &)> PreBuildStep = 1051 [](CompilerInstance &) {}, 1052 llvm::function_ref<void(CompilerInstance &)> PostBuildStep = 1053 [](CompilerInstance &) {}) { 1054 llvm::TimeTraceScope TimeScope("Module Compile", ModuleName); 1055 1056 // Construct a compiler invocation for creating this module. 1057 auto Invocation = 1058 std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation()); 1059 1060 PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); 1061 1062 // For any options that aren't intended to affect how a module is built, 1063 // reset them to their default values. 1064 Invocation->getLangOpts()->resetNonModularOptions(); 1065 PPOpts.resetNonModularOptions(); 1066 1067 // Remove any macro definitions that are explicitly ignored by the module. 1068 // They aren't supposed to affect how the module is built anyway. 1069 HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts(); 1070 PPOpts.Macros.erase( 1071 std::remove_if(PPOpts.Macros.begin(), PPOpts.Macros.end(), 1072 [&HSOpts](const std::pair<std::string, bool> &def) { 1073 StringRef MacroDef = def.first; 1074 return HSOpts.ModulesIgnoreMacros.count( 1075 llvm::CachedHashString(MacroDef.split('=').first)) > 0; 1076 }), 1077 PPOpts.Macros.end()); 1078 1079 // If the original compiler invocation had -fmodule-name, pass it through. 1080 Invocation->getLangOpts()->ModuleName = 1081 ImportingInstance.getInvocation().getLangOpts()->ModuleName; 1082 1083 // Note the name of the module we're building. 1084 Invocation->getLangOpts()->CurrentModule = std::string(ModuleName); 1085 1086 // Make sure that the failed-module structure has been allocated in 1087 // the importing instance, and propagate the pointer to the newly-created 1088 // instance. 1089 PreprocessorOptions &ImportingPPOpts 1090 = ImportingInstance.getInvocation().getPreprocessorOpts(); 1091 if (!ImportingPPOpts.FailedModules) 1092 ImportingPPOpts.FailedModules = 1093 std::make_shared<PreprocessorOptions::FailedModulesSet>(); 1094 PPOpts.FailedModules = ImportingPPOpts.FailedModules; 1095 1096 // If there is a module map file, build the module using the module map. 1097 // Set up the inputs/outputs so that we build the module from its umbrella 1098 // header. 1099 FrontendOptions &FrontendOpts = Invocation->getFrontendOpts(); 1100 FrontendOpts.OutputFile = ModuleFileName.str(); 1101 FrontendOpts.DisableFree = false; 1102 FrontendOpts.GenerateGlobalModuleIndex = false; 1103 FrontendOpts.BuildingImplicitModule = true; 1104 FrontendOpts.OriginalModuleMap = std::string(OriginalModuleMapFile); 1105 // Force implicitly-built modules to hash the content of the module file. 1106 HSOpts.ModulesHashContent = true; 1107 FrontendOpts.Inputs = {Input}; 1108 1109 // Don't free the remapped file buffers; they are owned by our caller. 1110 PPOpts.RetainRemappedFileBuffers = true; 1111 1112 Invocation->getDiagnosticOpts().VerifyDiagnostics = 0; 1113 assert(ImportingInstance.getInvocation().getModuleHash() == 1114 Invocation->getModuleHash() && "Module hash mismatch!"); 1115 1116 // Construct a compiler instance that will be used to actually create the 1117 // module. Since we're sharing an in-memory module cache, 1118 // CompilerInstance::CompilerInstance is responsible for finalizing the 1119 // buffers to prevent use-after-frees. 1120 CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(), 1121 &ImportingInstance.getModuleCache()); 1122 auto &Inv = *Invocation; 1123 Instance.setInvocation(std::move(Invocation)); 1124 1125 Instance.createDiagnostics(new ForwardingDiagnosticConsumer( 1126 ImportingInstance.getDiagnosticClient()), 1127 /*ShouldOwnClient=*/true); 1128 1129 // Note that this module is part of the module build stack, so that we 1130 // can detect cycles in the module graph. 1131 Instance.setFileManager(&ImportingInstance.getFileManager()); 1132 Instance.createSourceManager(Instance.getFileManager()); 1133 SourceManager &SourceMgr = Instance.getSourceManager(); 1134 SourceMgr.setModuleBuildStack( 1135 ImportingInstance.getSourceManager().getModuleBuildStack()); 1136 SourceMgr.pushModuleBuildStack(ModuleName, 1137 FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager())); 1138 1139 // If we're collecting module dependencies, we need to share a collector 1140 // between all of the module CompilerInstances. Other than that, we don't 1141 // want to produce any dependency output from the module build. 1142 Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector()); 1143 Inv.getDependencyOutputOpts() = DependencyOutputOptions(); 1144 1145 ImportingInstance.getDiagnostics().Report(ImportLoc, 1146 diag::remark_module_build) 1147 << ModuleName << ModuleFileName; 1148 1149 PreBuildStep(Instance); 1150 1151 // Execute the action to actually build the module in-place. Use a separate 1152 // thread so that we get a stack large enough. 1153 llvm::CrashRecoveryContext CRC; 1154 CRC.RunSafelyOnThread( 1155 [&]() { 1156 GenerateModuleFromModuleMapAction Action; 1157 Instance.ExecuteAction(Action); 1158 }, 1159 DesiredStackSize); 1160 1161 PostBuildStep(Instance); 1162 1163 ImportingInstance.getDiagnostics().Report(ImportLoc, 1164 diag::remark_module_build_done) 1165 << ModuleName; 1166 1167 // Delete the temporary module map file. 1168 // FIXME: Even though we're executing under crash protection, it would still 1169 // be nice to do this with RemoveFileOnSignal when we can. However, that 1170 // doesn't make sense for all clients, so clean this up manually. 1171 Instance.clearOutputFiles(/*EraseFiles=*/true); 1172 1173 return !Instance.getDiagnostics().hasErrorOccurred(); 1174 } 1175 1176 static const FileEntry *getPublicModuleMap(const FileEntry *File, 1177 FileManager &FileMgr) { 1178 StringRef Filename = llvm::sys::path::filename(File->getName()); 1179 SmallString<128> PublicFilename(File->getDir()->getName()); 1180 if (Filename == "module_private.map") 1181 llvm::sys::path::append(PublicFilename, "module.map"); 1182 else if (Filename == "module.private.modulemap") 1183 llvm::sys::path::append(PublicFilename, "module.modulemap"); 1184 else 1185 return nullptr; 1186 if (auto FE = FileMgr.getFile(PublicFilename)) 1187 return *FE; 1188 return nullptr; 1189 } 1190 1191 /// Compile a module file for the given module in a separate compiler instance, 1192 /// using the options provided by the importing compiler instance. Returns true 1193 /// if the module was built without errors. 1194 static bool compileModule(CompilerInstance &ImportingInstance, 1195 SourceLocation ImportLoc, Module *Module, 1196 StringRef ModuleFileName) { 1197 InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()), 1198 InputKind::ModuleMap); 1199 1200 // Get or create the module map that we'll use to build this module. 1201 ModuleMap &ModMap 1202 = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1203 bool Result; 1204 if (const FileEntry *ModuleMapFile = 1205 ModMap.getContainingModuleMapFile(Module)) { 1206 // Canonicalize compilation to start with the public module map. This is 1207 // vital for submodules declarations in the private module maps to be 1208 // correctly parsed when depending on a top level module in the public one. 1209 if (const FileEntry *PublicMMFile = getPublicModuleMap( 1210 ModuleMapFile, ImportingInstance.getFileManager())) 1211 ModuleMapFile = PublicMMFile; 1212 1213 // Use the module map where this module resides. 1214 Result = compileModuleImpl( 1215 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1216 FrontendInputFile(ModuleMapFile->getName(), IK, +Module->IsSystem), 1217 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1218 ModuleFileName); 1219 } else { 1220 // FIXME: We only need to fake up an input file here as a way of 1221 // transporting the module's directory to the module map parser. We should 1222 // be able to do that more directly, and parse from a memory buffer without 1223 // inventing this file. 1224 SmallString<128> FakeModuleMapFile(Module->Directory->getName()); 1225 llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map"); 1226 1227 std::string InferredModuleMapContent; 1228 llvm::raw_string_ostream OS(InferredModuleMapContent); 1229 Module->print(OS); 1230 OS.flush(); 1231 1232 Result = compileModuleImpl( 1233 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1234 FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem), 1235 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1236 ModuleFileName, 1237 [&](CompilerInstance &Instance) { 1238 std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer = 1239 llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent); 1240 ModuleMapFile = Instance.getFileManager().getVirtualFile( 1241 FakeModuleMapFile, InferredModuleMapContent.size(), 0); 1242 Instance.getSourceManager().overrideFileContents( 1243 ModuleMapFile, std::move(ModuleMapBuffer)); 1244 }); 1245 } 1246 1247 // We've rebuilt a module. If we're allowed to generate or update the global 1248 // module index, record that fact in the importing compiler instance. 1249 if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) { 1250 ImportingInstance.setBuildGlobalModuleIndex(true); 1251 } 1252 1253 return Result; 1254 } 1255 1256 /// Compile a module in a separate compiler instance and read the AST, 1257 /// returning true if the module compiles without errors. 1258 /// 1259 /// Uses a lock file manager and exponential backoff to reduce the chances that 1260 /// multiple instances will compete to create the same module. On timeout, 1261 /// deletes the lock file in order to avoid deadlock from crashing processes or 1262 /// bugs in the lock file manager. 1263 static bool compileModuleAndReadAST(CompilerInstance &ImportingInstance, 1264 SourceLocation ImportLoc, 1265 SourceLocation ModuleNameLoc, 1266 Module *Module, StringRef ModuleFileName) { 1267 DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); 1268 1269 auto diagnoseBuildFailure = [&] { 1270 Diags.Report(ModuleNameLoc, diag::err_module_not_built) 1271 << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); 1272 }; 1273 1274 // FIXME: have LockFileManager return an error_code so that we can 1275 // avoid the mkdir when the directory already exists. 1276 StringRef Dir = llvm::sys::path::parent_path(ModuleFileName); 1277 llvm::sys::fs::create_directories(Dir); 1278 1279 while (1) { 1280 unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing; 1281 llvm::LockFileManager Locked(ModuleFileName); 1282 switch (Locked) { 1283 case llvm::LockFileManager::LFS_Error: 1284 // ModuleCache takes care of correctness and locks are only necessary for 1285 // performance. Fallback to building the module in case of any lock 1286 // related errors. 1287 Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure) 1288 << Module->Name << Locked.getErrorMessage(); 1289 // Clear out any potential leftover. 1290 Locked.unsafeRemoveLockFile(); 1291 LLVM_FALLTHROUGH; 1292 case llvm::LockFileManager::LFS_Owned: 1293 // We're responsible for building the module ourselves. 1294 if (!compileModule(ImportingInstance, ModuleNameLoc, Module, 1295 ModuleFileName)) { 1296 diagnoseBuildFailure(); 1297 return false; 1298 } 1299 break; 1300 1301 case llvm::LockFileManager::LFS_Shared: 1302 // Someone else is responsible for building the module. Wait for them to 1303 // finish. 1304 switch (Locked.waitForUnlock()) { 1305 case llvm::LockFileManager::Res_Success: 1306 ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate; 1307 break; 1308 case llvm::LockFileManager::Res_OwnerDied: 1309 continue; // try again to get the lock. 1310 case llvm::LockFileManager::Res_Timeout: 1311 // Since ModuleCache takes care of correctness, we try waiting for 1312 // another process to complete the build so clang does not do it done 1313 // twice. If case of timeout, build it ourselves. 1314 Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout) 1315 << Module->Name; 1316 // Clear the lock file so that future invocations can make progress. 1317 Locked.unsafeRemoveLockFile(); 1318 continue; 1319 } 1320 break; 1321 } 1322 1323 // Try to read the module file, now that we've compiled it. 1324 ASTReader::ASTReadResult ReadResult = 1325 ImportingInstance.getASTReader()->ReadAST( 1326 ModuleFileName, serialization::MK_ImplicitModule, ImportLoc, 1327 ModuleLoadCapabilities); 1328 1329 if (ReadResult == ASTReader::OutOfDate && 1330 Locked == llvm::LockFileManager::LFS_Shared) { 1331 // The module may be out of date in the presence of file system races, 1332 // or if one of its imports depends on header search paths that are not 1333 // consistent with this ImportingInstance. Try again... 1334 continue; 1335 } else if (ReadResult == ASTReader::Missing) { 1336 diagnoseBuildFailure(); 1337 } else if (ReadResult != ASTReader::Success && 1338 !Diags.hasErrorOccurred()) { 1339 // The ASTReader didn't diagnose the error, so conservatively report it. 1340 diagnoseBuildFailure(); 1341 } 1342 return ReadResult == ASTReader::Success; 1343 } 1344 } 1345 1346 /// Diagnose differences between the current definition of the given 1347 /// configuration macro and the definition provided on the command line. 1348 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro, 1349 Module *Mod, SourceLocation ImportLoc) { 1350 IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro); 1351 SourceManager &SourceMgr = PP.getSourceManager(); 1352 1353 // If this identifier has never had a macro definition, then it could 1354 // not have changed. 1355 if (!Id->hadMacroDefinition()) 1356 return; 1357 auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id); 1358 1359 // Find the macro definition from the command line. 1360 MacroInfo *CmdLineDefinition = nullptr; 1361 for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) { 1362 // We only care about the predefines buffer. 1363 FileID FID = SourceMgr.getFileID(MD->getLocation()); 1364 if (FID.isInvalid() || FID != PP.getPredefinesFileID()) 1365 continue; 1366 if (auto *DMD = dyn_cast<DefMacroDirective>(MD)) 1367 CmdLineDefinition = DMD->getMacroInfo(); 1368 break; 1369 } 1370 1371 auto *CurrentDefinition = PP.getMacroInfo(Id); 1372 if (CurrentDefinition == CmdLineDefinition) { 1373 // Macro matches. Nothing to do. 1374 } else if (!CurrentDefinition) { 1375 // This macro was defined on the command line, then #undef'd later. 1376 // Complain. 1377 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1378 << true << ConfigMacro << Mod->getFullModuleName(); 1379 auto LatestDef = LatestLocalMD->getDefinition(); 1380 assert(LatestDef.isUndefined() && 1381 "predefined macro went away with no #undef?"); 1382 PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here) 1383 << true; 1384 return; 1385 } else if (!CmdLineDefinition) { 1386 // There was no definition for this macro in the predefines buffer, 1387 // but there was a local definition. Complain. 1388 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1389 << false << ConfigMacro << Mod->getFullModuleName(); 1390 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1391 diag::note_module_def_undef_here) 1392 << false; 1393 } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP, 1394 /*Syntactically=*/true)) { 1395 // The macro definitions differ. 1396 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1397 << false << ConfigMacro << Mod->getFullModuleName(); 1398 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1399 diag::note_module_def_undef_here) 1400 << false; 1401 } 1402 } 1403 1404 /// Write a new timestamp file with the given path. 1405 static void writeTimestampFile(StringRef TimestampFile) { 1406 std::error_code EC; 1407 llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::OF_None); 1408 } 1409 1410 /// Prune the module cache of modules that haven't been accessed in 1411 /// a long time. 1412 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) { 1413 llvm::sys::fs::file_status StatBuf; 1414 llvm::SmallString<128> TimestampFile; 1415 TimestampFile = HSOpts.ModuleCachePath; 1416 assert(!TimestampFile.empty()); 1417 llvm::sys::path::append(TimestampFile, "modules.timestamp"); 1418 1419 // Try to stat() the timestamp file. 1420 if (std::error_code EC = llvm::sys::fs::status(TimestampFile, StatBuf)) { 1421 // If the timestamp file wasn't there, create one now. 1422 if (EC == std::errc::no_such_file_or_directory) { 1423 writeTimestampFile(TimestampFile); 1424 } 1425 return; 1426 } 1427 1428 // Check whether the time stamp is older than our pruning interval. 1429 // If not, do nothing. 1430 time_t TimeStampModTime = 1431 llvm::sys::toTimeT(StatBuf.getLastModificationTime()); 1432 time_t CurrentTime = time(nullptr); 1433 if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval)) 1434 return; 1435 1436 // Write a new timestamp file so that nobody else attempts to prune. 1437 // There is a benign race condition here, if two Clang instances happen to 1438 // notice at the same time that the timestamp is out-of-date. 1439 writeTimestampFile(TimestampFile); 1440 1441 // Walk the entire module cache, looking for unused module files and module 1442 // indices. 1443 std::error_code EC; 1444 SmallString<128> ModuleCachePathNative; 1445 llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative); 1446 for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd; 1447 Dir != DirEnd && !EC; Dir.increment(EC)) { 1448 // If we don't have a directory, there's nothing to look into. 1449 if (!llvm::sys::fs::is_directory(Dir->path())) 1450 continue; 1451 1452 // Walk all of the files within this directory. 1453 for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd; 1454 File != FileEnd && !EC; File.increment(EC)) { 1455 // We only care about module and global module index files. 1456 StringRef Extension = llvm::sys::path::extension(File->path()); 1457 if (Extension != ".pcm" && Extension != ".timestamp" && 1458 llvm::sys::path::filename(File->path()) != "modules.idx") 1459 continue; 1460 1461 // Look at this file. If we can't stat it, there's nothing interesting 1462 // there. 1463 if (llvm::sys::fs::status(File->path(), StatBuf)) 1464 continue; 1465 1466 // If the file has been used recently enough, leave it there. 1467 time_t FileAccessTime = llvm::sys::toTimeT(StatBuf.getLastAccessedTime()); 1468 if (CurrentTime - FileAccessTime <= 1469 time_t(HSOpts.ModuleCachePruneAfter)) { 1470 continue; 1471 } 1472 1473 // Remove the file. 1474 llvm::sys::fs::remove(File->path()); 1475 1476 // Remove the timestamp file. 1477 std::string TimpestampFilename = File->path() + ".timestamp"; 1478 llvm::sys::fs::remove(TimpestampFilename); 1479 } 1480 1481 // If we removed all of the files in the directory, remove the directory 1482 // itself. 1483 if (llvm::sys::fs::directory_iterator(Dir->path(), EC) == 1484 llvm::sys::fs::directory_iterator() && !EC) 1485 llvm::sys::fs::remove(Dir->path()); 1486 } 1487 } 1488 1489 void CompilerInstance::createASTReader() { 1490 if (TheASTReader) 1491 return; 1492 1493 if (!hasASTContext()) 1494 createASTContext(); 1495 1496 // If we're implicitly building modules but not currently recursively 1497 // building a module, check whether we need to prune the module cache. 1498 if (getSourceManager().getModuleBuildStack().empty() && 1499 !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() && 1500 getHeaderSearchOpts().ModuleCachePruneInterval > 0 && 1501 getHeaderSearchOpts().ModuleCachePruneAfter > 0) { 1502 pruneModuleCache(getHeaderSearchOpts()); 1503 } 1504 1505 HeaderSearchOptions &HSOpts = getHeaderSearchOpts(); 1506 std::string Sysroot = HSOpts.Sysroot; 1507 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 1508 std::unique_ptr<llvm::Timer> ReadTimer; 1509 if (FrontendTimerGroup) 1510 ReadTimer = std::make_unique<llvm::Timer>("reading_modules", 1511 "Reading modules", 1512 *FrontendTimerGroup); 1513 TheASTReader = new ASTReader( 1514 getPreprocessor(), getModuleCache(), &getASTContext(), 1515 getPCHContainerReader(), getFrontendOpts().ModuleFileExtensions, 1516 Sysroot.empty() ? "" : Sysroot.c_str(), PPOpts.DisablePCHValidation, 1517 /*AllowASTWithCompilerErrors=*/false, 1518 /*AllowConfigurationMismatch=*/false, HSOpts.ModulesValidateSystemHeaders, 1519 HSOpts.ValidateASTInputFilesContent, 1520 getFrontendOpts().UseGlobalModuleIndex, std::move(ReadTimer)); 1521 if (hasASTConsumer()) { 1522 TheASTReader->setDeserializationListener( 1523 getASTConsumer().GetASTDeserializationListener()); 1524 getASTContext().setASTMutationListener( 1525 getASTConsumer().GetASTMutationListener()); 1526 } 1527 getASTContext().setExternalSource(TheASTReader); 1528 if (hasSema()) 1529 TheASTReader->InitializeSema(getSema()); 1530 if (hasASTConsumer()) 1531 TheASTReader->StartTranslationUnit(&getASTConsumer()); 1532 1533 for (auto &Listener : DependencyCollectors) 1534 Listener->attachToASTReader(*TheASTReader); 1535 } 1536 1537 bool CompilerInstance::loadModuleFile(StringRef FileName) { 1538 llvm::Timer Timer; 1539 if (FrontendTimerGroup) 1540 Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(), 1541 *FrontendTimerGroup); 1542 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1543 1544 // Helper to recursively read the module names for all modules we're adding. 1545 // We mark these as known and redirect any attempt to load that module to 1546 // the files we were handed. 1547 struct ReadModuleNames : ASTReaderListener { 1548 CompilerInstance &CI; 1549 llvm::SmallVector<IdentifierInfo*, 8> LoadedModules; 1550 1551 ReadModuleNames(CompilerInstance &CI) : CI(CI) {} 1552 1553 void ReadModuleName(StringRef ModuleName) override { 1554 LoadedModules.push_back( 1555 CI.getPreprocessor().getIdentifierInfo(ModuleName)); 1556 } 1557 1558 void registerAll() { 1559 ModuleMap &MM = CI.getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1560 for (auto *II : LoadedModules) 1561 MM.cacheModuleLoad(*II, MM.findModule(II->getName())); 1562 LoadedModules.clear(); 1563 } 1564 1565 void markAllUnavailable() { 1566 for (auto *II : LoadedModules) { 1567 if (Module *M = CI.getPreprocessor() 1568 .getHeaderSearchInfo() 1569 .getModuleMap() 1570 .findModule(II->getName())) { 1571 M->HasIncompatibleModuleFile = true; 1572 1573 // Mark module as available if the only reason it was unavailable 1574 // was missing headers. 1575 SmallVector<Module *, 2> Stack; 1576 Stack.push_back(M); 1577 while (!Stack.empty()) { 1578 Module *Current = Stack.pop_back_val(); 1579 if (Current->IsUnimportable) continue; 1580 Current->IsAvailable = true; 1581 Stack.insert(Stack.end(), 1582 Current->submodule_begin(), Current->submodule_end()); 1583 } 1584 } 1585 } 1586 LoadedModules.clear(); 1587 } 1588 }; 1589 1590 // If we don't already have an ASTReader, create one now. 1591 if (!TheASTReader) 1592 createASTReader(); 1593 1594 // If -Wmodule-file-config-mismatch is mapped as an error or worse, allow the 1595 // ASTReader to diagnose it, since it can produce better errors that we can. 1596 bool ConfigMismatchIsRecoverable = 1597 getDiagnostics().getDiagnosticLevel(diag::warn_module_config_mismatch, 1598 SourceLocation()) 1599 <= DiagnosticsEngine::Warning; 1600 1601 auto Listener = std::make_unique<ReadModuleNames>(*this); 1602 auto &ListenerRef = *Listener; 1603 ASTReader::ListenerScope ReadModuleNamesListener(*TheASTReader, 1604 std::move(Listener)); 1605 1606 // Try to load the module file. 1607 switch (TheASTReader->ReadAST( 1608 FileName, serialization::MK_ExplicitModule, SourceLocation(), 1609 ConfigMismatchIsRecoverable ? ASTReader::ARR_ConfigurationMismatch : 0)) { 1610 case ASTReader::Success: 1611 // We successfully loaded the module file; remember the set of provided 1612 // modules so that we don't try to load implicit modules for them. 1613 ListenerRef.registerAll(); 1614 return true; 1615 1616 case ASTReader::ConfigurationMismatch: 1617 // Ignore unusable module files. 1618 getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) 1619 << FileName; 1620 // All modules provided by any files we tried and failed to load are now 1621 // unavailable; includes of those modules should now be handled textually. 1622 ListenerRef.markAllUnavailable(); 1623 return true; 1624 1625 default: 1626 return false; 1627 } 1628 } 1629 1630 namespace { 1631 enum ModuleSource { 1632 MS_ModuleNotFound, 1633 MS_ModuleCache, 1634 MS_PrebuiltModulePath, 1635 MS_ModuleBuildPragma 1636 }; 1637 } // end namespace 1638 1639 /// Select a source for loading the named module and compute the filename to 1640 /// load it from. 1641 static ModuleSource selectModuleSource( 1642 Module *M, StringRef ModuleName, std::string &ModuleFilename, 1643 const std::map<std::string, std::string, std::less<>> &BuiltModules, 1644 HeaderSearch &HS) { 1645 assert(ModuleFilename.empty() && "Already has a module source?"); 1646 1647 // Check to see if the module has been built as part of this compilation 1648 // via a module build pragma. 1649 auto BuiltModuleIt = BuiltModules.find(ModuleName); 1650 if (BuiltModuleIt != BuiltModules.end()) { 1651 ModuleFilename = BuiltModuleIt->second; 1652 return MS_ModuleBuildPragma; 1653 } 1654 1655 // Try to load the module from the prebuilt module path. 1656 const HeaderSearchOptions &HSOpts = HS.getHeaderSearchOpts(); 1657 if (!HSOpts.PrebuiltModuleFiles.empty() || 1658 !HSOpts.PrebuiltModulePaths.empty()) { 1659 ModuleFilename = HS.getPrebuiltModuleFileName(ModuleName); 1660 if (!ModuleFilename.empty()) 1661 return MS_PrebuiltModulePath; 1662 } 1663 1664 // Try to load the module from the module cache. 1665 if (M) { 1666 ModuleFilename = HS.getCachedModuleFileName(M); 1667 return MS_ModuleCache; 1668 } 1669 1670 return MS_ModuleNotFound; 1671 } 1672 1673 ModuleLoadResult CompilerInstance::findOrCompileModuleAndReadAST( 1674 StringRef ModuleName, SourceLocation ImportLoc, 1675 SourceLocation ModuleNameLoc, bool IsInclusionDirective) { 1676 // Search for a module with the given name. 1677 HeaderSearch &HS = PP->getHeaderSearchInfo(); 1678 Module *M = HS.lookupModule(ModuleName, true, !IsInclusionDirective); 1679 1680 // Select the source and filename for loading the named module. 1681 std::string ModuleFilename; 1682 ModuleSource Source = 1683 selectModuleSource(M, ModuleName, ModuleFilename, BuiltModules, HS); 1684 if (Source == MS_ModuleNotFound) { 1685 // We can't find a module, error out here. 1686 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1687 << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); 1688 ModuleBuildFailed = true; 1689 // FIXME: Why is this not cached? 1690 return ModuleLoadResult::OtherUncachedFailure; 1691 } 1692 if (ModuleFilename.empty()) { 1693 if (M && M->HasIncompatibleModuleFile) { 1694 // We tried and failed to load a module file for this module. Fall 1695 // back to textual inclusion for its headers. 1696 return ModuleLoadResult::ConfigMismatch; 1697 } 1698 1699 getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled) 1700 << ModuleName; 1701 ModuleBuildFailed = true; 1702 // FIXME: Why is this not cached? 1703 return ModuleLoadResult::OtherUncachedFailure; 1704 } 1705 1706 // Create an ASTReader on demand. 1707 if (!getASTReader()) 1708 createASTReader(); 1709 1710 // Time how long it takes to load the module. 1711 llvm::Timer Timer; 1712 if (FrontendTimerGroup) 1713 Timer.init("loading." + ModuleFilename, "Loading " + ModuleFilename, 1714 *FrontendTimerGroup); 1715 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1716 llvm::TimeTraceScope TimeScope("Module Load", ModuleName); 1717 1718 // Try to load the module file. If we are not trying to load from the 1719 // module cache, we don't know how to rebuild modules. 1720 unsigned ARRFlags = Source == MS_ModuleCache 1721 ? ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing 1722 : Source == MS_PrebuiltModulePath 1723 ? 0 1724 : ASTReader::ARR_ConfigurationMismatch; 1725 switch (getASTReader()->ReadAST(ModuleFilename, 1726 Source == MS_PrebuiltModulePath 1727 ? serialization::MK_PrebuiltModule 1728 : Source == MS_ModuleBuildPragma 1729 ? serialization::MK_ExplicitModule 1730 : serialization::MK_ImplicitModule, 1731 ImportLoc, ARRFlags)) { 1732 case ASTReader::Success: { 1733 if (M) 1734 return M; 1735 assert(Source != MS_ModuleCache && 1736 "missing module, but file loaded from cache"); 1737 1738 // A prebuilt module is indexed as a ModuleFile; the Module does not exist 1739 // until the first call to ReadAST. Look it up now. 1740 M = HS.lookupModule(ModuleName, true, !IsInclusionDirective); 1741 1742 // Check whether M refers to the file in the prebuilt module path. 1743 if (M && M->getASTFile()) 1744 if (auto ModuleFile = FileMgr->getFile(ModuleFilename)) 1745 if (*ModuleFile == M->getASTFile()) 1746 return M; 1747 1748 ModuleBuildFailed = true; 1749 getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt) 1750 << ModuleName; 1751 return ModuleLoadResult(); 1752 } 1753 1754 case ASTReader::OutOfDate: 1755 case ASTReader::Missing: 1756 // The most interesting case. 1757 break; 1758 1759 case ASTReader::ConfigurationMismatch: 1760 if (Source == MS_PrebuiltModulePath) 1761 // FIXME: We shouldn't be setting HadFatalFailure below if we only 1762 // produce a warning here! 1763 getDiagnostics().Report(SourceLocation(), 1764 diag::warn_module_config_mismatch) 1765 << ModuleFilename; 1766 // Fall through to error out. 1767 LLVM_FALLTHROUGH; 1768 case ASTReader::VersionMismatch: 1769 case ASTReader::HadErrors: 1770 // FIXME: Should this set ModuleBuildFailed = true? 1771 ModuleLoader::HadFatalFailure = true; 1772 // FIXME: The ASTReader will already have complained, but can we shoehorn 1773 // that diagnostic information into a more useful form? 1774 return ModuleLoadResult(); 1775 1776 case ASTReader::Failure: 1777 // FIXME: Should this set ModuleBuildFailed = true? 1778 ModuleLoader::HadFatalFailure = true; 1779 return ModuleLoadResult(); 1780 } 1781 1782 // ReadAST returned Missing or OutOfDate. 1783 if (Source != MS_ModuleCache) { 1784 // We don't know the desired configuration for this module and don't 1785 // necessarily even have a module map. Since ReadAST already produces 1786 // diagnostics for these two cases, we simply error out here. 1787 ModuleBuildFailed = true; 1788 return ModuleLoadResult(); 1789 } 1790 1791 // The module file is missing or out-of-date. Build it. 1792 assert(M && "missing module, but trying to compile for cache"); 1793 1794 // Check whether there is a cycle in the module graph. 1795 ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack(); 1796 ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end(); 1797 for (; Pos != PosEnd; ++Pos) { 1798 if (Pos->first == ModuleName) 1799 break; 1800 } 1801 1802 if (Pos != PosEnd) { 1803 SmallString<256> CyclePath; 1804 for (; Pos != PosEnd; ++Pos) { 1805 CyclePath += Pos->first; 1806 CyclePath += " -> "; 1807 } 1808 CyclePath += ModuleName; 1809 1810 getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle) 1811 << ModuleName << CyclePath; 1812 // FIXME: Should this set ModuleBuildFailed = true? 1813 // FIXME: Why is this not cached? 1814 return ModuleLoadResult::OtherUncachedFailure; 1815 } 1816 1817 // Check whether we have already attempted to build this module (but 1818 // failed). 1819 if (getPreprocessorOpts().FailedModules && 1820 getPreprocessorOpts().FailedModules->hasAlreadyFailed(ModuleName)) { 1821 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) 1822 << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); 1823 ModuleBuildFailed = true; 1824 // FIXME: Why is this not cached? 1825 return ModuleLoadResult::OtherUncachedFailure; 1826 } 1827 1828 // Try to compile and then read the AST. 1829 if (!compileModuleAndReadAST(*this, ImportLoc, ModuleNameLoc, M, 1830 ModuleFilename)) { 1831 assert(getDiagnostics().hasErrorOccurred() && 1832 "undiagnosed error in compileModuleAndReadAST"); 1833 if (getPreprocessorOpts().FailedModules) 1834 getPreprocessorOpts().FailedModules->addFailed(ModuleName); 1835 ModuleBuildFailed = true; 1836 // FIXME: Why is this not cached? 1837 return ModuleLoadResult::OtherUncachedFailure; 1838 } 1839 1840 // Okay, we've rebuilt and now loaded the module. 1841 return M; 1842 } 1843 1844 ModuleLoadResult 1845 CompilerInstance::loadModule(SourceLocation ImportLoc, 1846 ModuleIdPath Path, 1847 Module::NameVisibilityKind Visibility, 1848 bool IsInclusionDirective) { 1849 // Determine what file we're searching from. 1850 StringRef ModuleName = Path[0].first->getName(); 1851 SourceLocation ModuleNameLoc = Path[0].second; 1852 1853 // If we've already handled this import, just return the cached result. 1854 // This one-element cache is important to eliminate redundant diagnostics 1855 // when both the preprocessor and parser see the same import declaration. 1856 if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) { 1857 // Make the named module visible. 1858 if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule) 1859 TheASTReader->makeModuleVisible(LastModuleImportResult, Visibility, 1860 ImportLoc); 1861 return LastModuleImportResult; 1862 } 1863 1864 // If we don't already have information on this module, load the module now. 1865 Module *Module = nullptr; 1866 ModuleMap &MM = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1867 if (auto MaybeModule = MM.getCachedModuleLoad(*Path[0].first)) { 1868 // Use the cached result, which may be nullptr. 1869 Module = *MaybeModule; 1870 } else if (ModuleName == getLangOpts().CurrentModule) { 1871 // This is the module we're building. 1872 Module = PP->getHeaderSearchInfo().lookupModule( 1873 ModuleName, /*AllowSearch*/ true, 1874 /*AllowExtraModuleMapSearch*/ !IsInclusionDirective); 1875 /// FIXME: perhaps we should (a) look for a module using the module name 1876 // to file map (PrebuiltModuleFiles) and (b) diagnose if still not found? 1877 //if (Module == nullptr) { 1878 // getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1879 // << ModuleName; 1880 // ModuleBuildFailed = true; 1881 // return ModuleLoadResult(); 1882 //} 1883 MM.cacheModuleLoad(*Path[0].first, Module); 1884 } else { 1885 ModuleLoadResult Result = findOrCompileModuleAndReadAST( 1886 ModuleName, ImportLoc, ModuleNameLoc, IsInclusionDirective); 1887 // FIXME: Can we pull 'ModuleBuildFailed = true' out of the return 1888 // sequences for findOrCompileModuleAndReadAST and do it here (as long as 1889 // the result is not a config mismatch)? See FIXMEs there. 1890 if (!Result.isNormal()) 1891 return Result; 1892 Module = Result; 1893 MM.cacheModuleLoad(*Path[0].first, Module); 1894 if (!Module) 1895 return Module; 1896 } 1897 1898 // If we never found the module, fail. Otherwise, verify the module and link 1899 // it up. 1900 if (!Module) 1901 return ModuleLoadResult(); 1902 1903 // Verify that the rest of the module path actually corresponds to 1904 // a submodule. 1905 bool MapPrivateSubModToTopLevel = false; 1906 if (Path.size() > 1) { 1907 for (unsigned I = 1, N = Path.size(); I != N; ++I) { 1908 StringRef Name = Path[I].first->getName(); 1909 clang::Module *Sub = Module->findSubmodule(Name); 1910 1911 // If the user is requesting Foo.Private and it doesn't exist, try to 1912 // match Foo_Private and emit a warning asking for the user to write 1913 // @import Foo_Private instead. FIXME: remove this when existing clients 1914 // migrate off of Foo.Private syntax. 1915 if (!Sub && PP->getLangOpts().ImplicitModules && Name == "Private" && 1916 Module == Module->getTopLevelModule()) { 1917 SmallString<128> PrivateModule(Module->Name); 1918 PrivateModule.append("_Private"); 1919 1920 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> PrivPath; 1921 auto &II = PP->getIdentifierTable().get( 1922 PrivateModule, PP->getIdentifierInfo(Module->Name)->getTokenID()); 1923 PrivPath.push_back(std::make_pair(&II, Path[0].second)); 1924 1925 if (PP->getHeaderSearchInfo().lookupModule(PrivateModule, true, 1926 !IsInclusionDirective)) 1927 Sub = 1928 loadModule(ImportLoc, PrivPath, Visibility, IsInclusionDirective); 1929 if (Sub) { 1930 MapPrivateSubModToTopLevel = true; 1931 if (!getDiagnostics().isIgnored( 1932 diag::warn_no_priv_submodule_use_toplevel, ImportLoc)) { 1933 getDiagnostics().Report(Path[I].second, 1934 diag::warn_no_priv_submodule_use_toplevel) 1935 << Path[I].first << Module->getFullModuleName() << PrivateModule 1936 << SourceRange(Path[0].second, Path[I].second) 1937 << FixItHint::CreateReplacement(SourceRange(Path[0].second), 1938 PrivateModule); 1939 getDiagnostics().Report(Sub->DefinitionLoc, 1940 diag::note_private_top_level_defined); 1941 } 1942 } 1943 } 1944 1945 if (!Sub) { 1946 // Attempt to perform typo correction to find a module name that works. 1947 SmallVector<StringRef, 2> Best; 1948 unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)(); 1949 1950 for (clang::Module::submodule_iterator J = Module->submodule_begin(), 1951 JEnd = Module->submodule_end(); 1952 J != JEnd; ++J) { 1953 unsigned ED = Name.edit_distance((*J)->Name, 1954 /*AllowReplacements=*/true, 1955 BestEditDistance); 1956 if (ED <= BestEditDistance) { 1957 if (ED < BestEditDistance) { 1958 Best.clear(); 1959 BestEditDistance = ED; 1960 } 1961 1962 Best.push_back((*J)->Name); 1963 } 1964 } 1965 1966 // If there was a clear winner, user it. 1967 if (Best.size() == 1) { 1968 getDiagnostics().Report(Path[I].second, 1969 diag::err_no_submodule_suggest) 1970 << Path[I].first << Module->getFullModuleName() << Best[0] 1971 << SourceRange(Path[0].second, Path[I-1].second) 1972 << FixItHint::CreateReplacement(SourceRange(Path[I].second), 1973 Best[0]); 1974 1975 Sub = Module->findSubmodule(Best[0]); 1976 } 1977 } 1978 1979 if (!Sub) { 1980 // No submodule by this name. Complain, and don't look for further 1981 // submodules. 1982 getDiagnostics().Report(Path[I].second, diag::err_no_submodule) 1983 << Path[I].first << Module->getFullModuleName() 1984 << SourceRange(Path[0].second, Path[I-1].second); 1985 break; 1986 } 1987 1988 Module = Sub; 1989 } 1990 } 1991 1992 // Make the named module visible, if it's not already part of the module 1993 // we are parsing. 1994 if (ModuleName != getLangOpts().CurrentModule) { 1995 if (!Module->IsFromModuleFile && !MapPrivateSubModToTopLevel) { 1996 // We have an umbrella header or directory that doesn't actually include 1997 // all of the headers within the directory it covers. Complain about 1998 // this missing submodule and recover by forgetting that we ever saw 1999 // this submodule. 2000 // FIXME: Should we detect this at module load time? It seems fairly 2001 // expensive (and rare). 2002 getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule) 2003 << Module->getFullModuleName() 2004 << SourceRange(Path.front().second, Path.back().second); 2005 2006 return ModuleLoadResult::MissingExpected; 2007 } 2008 2009 // Check whether this module is available. 2010 if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(), 2011 getDiagnostics(), Module)) { 2012 getDiagnostics().Report(ImportLoc, diag::note_module_import_here) 2013 << SourceRange(Path.front().second, Path.back().second); 2014 LastModuleImportLoc = ImportLoc; 2015 LastModuleImportResult = ModuleLoadResult(); 2016 return ModuleLoadResult(); 2017 } 2018 2019 TheASTReader->makeModuleVisible(Module, Visibility, ImportLoc); 2020 } 2021 2022 // Check for any configuration macros that have changed. 2023 clang::Module *TopModule = Module->getTopLevelModule(); 2024 for (unsigned I = 0, N = TopModule->ConfigMacros.size(); I != N; ++I) { 2025 checkConfigMacro(getPreprocessor(), TopModule->ConfigMacros[I], 2026 Module, ImportLoc); 2027 } 2028 2029 // Resolve any remaining module using export_as for this one. 2030 getPreprocessor() 2031 .getHeaderSearchInfo() 2032 .getModuleMap() 2033 .resolveLinkAsDependencies(TopModule); 2034 2035 LastModuleImportLoc = ImportLoc; 2036 LastModuleImportResult = ModuleLoadResult(Module); 2037 return LastModuleImportResult; 2038 } 2039 2040 void CompilerInstance::createModuleFromSource(SourceLocation ImportLoc, 2041 StringRef ModuleName, 2042 StringRef Source) { 2043 // Avoid creating filenames with special characters. 2044 SmallString<128> CleanModuleName(ModuleName); 2045 for (auto &C : CleanModuleName) 2046 if (!isAlphanumeric(C)) 2047 C = '_'; 2048 2049 // FIXME: Using a randomized filename here means that our intermediate .pcm 2050 // output is nondeterministic (as .pcm files refer to each other by name). 2051 // Can this affect the output in any way? 2052 SmallString<128> ModuleFileName; 2053 if (std::error_code EC = llvm::sys::fs::createTemporaryFile( 2054 CleanModuleName, "pcm", ModuleFileName)) { 2055 getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output) 2056 << ModuleFileName << EC.message(); 2057 return; 2058 } 2059 std::string ModuleMapFileName = (CleanModuleName + ".map").str(); 2060 2061 FrontendInputFile Input( 2062 ModuleMapFileName, 2063 InputKind(getLanguageFromOptions(*Invocation->getLangOpts()), 2064 InputKind::ModuleMap, /*Preprocessed*/true)); 2065 2066 std::string NullTerminatedSource(Source.str()); 2067 2068 auto PreBuildStep = [&](CompilerInstance &Other) { 2069 // Create a virtual file containing our desired source. 2070 // FIXME: We shouldn't need to do this. 2071 const FileEntry *ModuleMapFile = Other.getFileManager().getVirtualFile( 2072 ModuleMapFileName, NullTerminatedSource.size(), 0); 2073 Other.getSourceManager().overrideFileContents( 2074 ModuleMapFile, 2075 llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource.c_str())); 2076 2077 Other.BuiltModules = std::move(BuiltModules); 2078 Other.DeleteBuiltModules = false; 2079 }; 2080 2081 auto PostBuildStep = [this](CompilerInstance &Other) { 2082 BuiltModules = std::move(Other.BuiltModules); 2083 }; 2084 2085 // Build the module, inheriting any modules that we've built locally. 2086 if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(), 2087 ModuleFileName, PreBuildStep, PostBuildStep)) { 2088 BuiltModules[std::string(ModuleName)] = std::string(ModuleFileName.str()); 2089 llvm::sys::RemoveFileOnSignal(ModuleFileName); 2090 } 2091 } 2092 2093 void CompilerInstance::makeModuleVisible(Module *Mod, 2094 Module::NameVisibilityKind Visibility, 2095 SourceLocation ImportLoc) { 2096 if (!TheASTReader) 2097 createASTReader(); 2098 if (!TheASTReader) 2099 return; 2100 2101 TheASTReader->makeModuleVisible(Mod, Visibility, ImportLoc); 2102 } 2103 2104 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex( 2105 SourceLocation TriggerLoc) { 2106 if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty()) 2107 return nullptr; 2108 if (!TheASTReader) 2109 createASTReader(); 2110 // Can't do anything if we don't have the module manager. 2111 if (!TheASTReader) 2112 return nullptr; 2113 // Get an existing global index. This loads it if not already 2114 // loaded. 2115 TheASTReader->loadGlobalIndex(); 2116 GlobalModuleIndex *GlobalIndex = TheASTReader->getGlobalIndex(); 2117 // If the global index doesn't exist, create it. 2118 if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() && 2119 hasPreprocessor()) { 2120 llvm::sys::fs::create_directories( 2121 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 2122 if (llvm::Error Err = GlobalModuleIndex::writeIndex( 2123 getFileManager(), getPCHContainerReader(), 2124 getPreprocessor().getHeaderSearchInfo().getModuleCachePath())) { 2125 // FIXME this drops the error on the floor. This code is only used for 2126 // typo correction and drops more than just this one source of errors 2127 // (such as the directory creation failure above). It should handle the 2128 // error. 2129 consumeError(std::move(Err)); 2130 return nullptr; 2131 } 2132 TheASTReader->resetForReload(); 2133 TheASTReader->loadGlobalIndex(); 2134 GlobalIndex = TheASTReader->getGlobalIndex(); 2135 } 2136 // For finding modules needing to be imported for fixit messages, 2137 // we need to make the global index cover all modules, so we do that here. 2138 if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) { 2139 ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 2140 bool RecreateIndex = false; 2141 for (ModuleMap::module_iterator I = MMap.module_begin(), 2142 E = MMap.module_end(); I != E; ++I) { 2143 Module *TheModule = I->second; 2144 const FileEntry *Entry = TheModule->getASTFile(); 2145 if (!Entry) { 2146 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 2147 Path.push_back(std::make_pair( 2148 getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc)); 2149 std::reverse(Path.begin(), Path.end()); 2150 // Load a module as hidden. This also adds it to the global index. 2151 loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false); 2152 RecreateIndex = true; 2153 } 2154 } 2155 if (RecreateIndex) { 2156 if (llvm::Error Err = GlobalModuleIndex::writeIndex( 2157 getFileManager(), getPCHContainerReader(), 2158 getPreprocessor().getHeaderSearchInfo().getModuleCachePath())) { 2159 // FIXME As above, this drops the error on the floor. 2160 consumeError(std::move(Err)); 2161 return nullptr; 2162 } 2163 TheASTReader->resetForReload(); 2164 TheASTReader->loadGlobalIndex(); 2165 GlobalIndex = TheASTReader->getGlobalIndex(); 2166 } 2167 HaveFullGlobalModuleIndex = true; 2168 } 2169 return GlobalIndex; 2170 } 2171 2172 // Check global module index for missing imports. 2173 bool 2174 CompilerInstance::lookupMissingImports(StringRef Name, 2175 SourceLocation TriggerLoc) { 2176 // Look for the symbol in non-imported modules, but only if an error 2177 // actually occurred. 2178 if (!buildingModule()) { 2179 // Load global module index, or retrieve a previously loaded one. 2180 GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex( 2181 TriggerLoc); 2182 2183 // Only if we have a global index. 2184 if (GlobalIndex) { 2185 GlobalModuleIndex::HitSet FoundModules; 2186 2187 // Find the modules that reference the identifier. 2188 // Note that this only finds top-level modules. 2189 // We'll let diagnoseTypo find the actual declaration module. 2190 if (GlobalIndex->lookupIdentifier(Name, FoundModules)) 2191 return true; 2192 } 2193 } 2194 2195 return false; 2196 } 2197 void CompilerInstance::resetAndLeakSema() { llvm::BuryPointer(takeSema()); } 2198 2199 void CompilerInstance::setExternalSemaSource( 2200 IntrusiveRefCntPtr<ExternalSemaSource> ESS) { 2201 ExternalSemaSrc = std::move(ESS); 2202 } 2203