1 //===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the code that handles AST -> LLVM type lowering. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H 16 17 #include "CGCall.h" 18 #include "clang/Basic/ABI.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/IR/Module.h" 22 23 namespace llvm { 24 class FunctionType; 25 class DataLayout; 26 class Type; 27 class LLVMContext; 28 class StructType; 29 } 30 31 namespace clang { 32 class ASTContext; 33 template <typename> class CanQual; 34 class CXXConstructorDecl; 35 class CXXDestructorDecl; 36 class CXXMethodDecl; 37 class CodeGenOptions; 38 class FieldDecl; 39 class FunctionProtoType; 40 class ObjCInterfaceDecl; 41 class ObjCIvarDecl; 42 class PointerType; 43 class QualType; 44 class RecordDecl; 45 class TagDecl; 46 class TargetInfo; 47 class Type; 48 typedef CanQual<Type> CanQualType; 49 class GlobalDecl; 50 51 namespace CodeGen { 52 class ABIInfo; 53 class CGCXXABI; 54 class CGRecordLayout; 55 class CodeGenModule; 56 class RequiredArgs; 57 58 enum class StructorType { 59 Complete, // constructor or destructor 60 Base, // constructor or destructor 61 Deleting // destructor only 62 }; 63 64 inline CXXCtorType toCXXCtorType(StructorType T) { 65 switch (T) { 66 case StructorType::Complete: 67 return Ctor_Complete; 68 case StructorType::Base: 69 return Ctor_Base; 70 case StructorType::Deleting: 71 llvm_unreachable("cannot have a deleting ctor"); 72 } 73 llvm_unreachable("not a StructorType"); 74 } 75 76 inline StructorType getFromCtorType(CXXCtorType T) { 77 switch (T) { 78 case Ctor_Complete: 79 return StructorType::Complete; 80 case Ctor_Base: 81 return StructorType::Base; 82 case Ctor_Comdat: 83 llvm_unreachable("not expecting a COMDAT"); 84 case Ctor_CopyingClosure: 85 case Ctor_DefaultClosure: 86 llvm_unreachable("not expecting a closure"); 87 } 88 llvm_unreachable("not a CXXCtorType"); 89 } 90 91 inline CXXDtorType toCXXDtorType(StructorType T) { 92 switch (T) { 93 case StructorType::Complete: 94 return Dtor_Complete; 95 case StructorType::Base: 96 return Dtor_Base; 97 case StructorType::Deleting: 98 return Dtor_Deleting; 99 } 100 llvm_unreachable("not a StructorType"); 101 } 102 103 inline StructorType getFromDtorType(CXXDtorType T) { 104 switch (T) { 105 case Dtor_Deleting: 106 return StructorType::Deleting; 107 case Dtor_Complete: 108 return StructorType::Complete; 109 case Dtor_Base: 110 return StructorType::Base; 111 case Dtor_Comdat: 112 llvm_unreachable("not expecting a COMDAT"); 113 } 114 llvm_unreachable("not a CXXDtorType"); 115 } 116 117 /// This class organizes the cross-module state that is used while lowering 118 /// AST types to LLVM types. 119 class CodeGenTypes { 120 CodeGenModule &CGM; 121 // Some of this stuff should probably be left on the CGM. 122 ASTContext &Context; 123 llvm::Module &TheModule; 124 const TargetInfo &Target; 125 CGCXXABI &TheCXXABI; 126 127 // This should not be moved earlier, since its initialization depends on some 128 // of the previous reference members being already initialized 129 const ABIInfo &TheABIInfo; 130 131 /// The opaque type map for Objective-C interfaces. All direct 132 /// manipulation is done by the runtime interfaces, which are 133 /// responsible for coercing to the appropriate type; these opaque 134 /// types are never refined. 135 llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes; 136 137 /// Maps clang struct type with corresponding record layout info. 138 llvm::DenseMap<const Type*, CGRecordLayout *> CGRecordLayouts; 139 140 /// Contains the LLVM IR type for any converted RecordDecl. 141 llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes; 142 143 /// Hold memoized CGFunctionInfo results. 144 llvm::FoldingSet<CGFunctionInfo> FunctionInfos; 145 146 /// This set keeps track of records that we're currently converting 147 /// to an IR type. For example, when converting: 148 /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B' 149 /// types will be in this set. 150 llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut; 151 152 llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed; 153 154 /// True if we didn't layout a function due to a being inside 155 /// a recursive struct conversion, set this to true. 156 bool SkippedLayout; 157 158 SmallVector<const RecordDecl *, 8> DeferredRecords; 159 160 /// This map keeps cache of llvm::Types and maps clang::Type to 161 /// corresponding llvm::Type. 162 llvm::DenseMap<const Type *, llvm::Type *> TypeCache; 163 164 llvm::SmallSet<const Type *, 8> RecordsWithOpaqueMemberPointers; 165 166 public: 167 CodeGenTypes(CodeGenModule &cgm); 168 ~CodeGenTypes(); 169 170 const llvm::DataLayout &getDataLayout() const { 171 return TheModule.getDataLayout(); 172 } 173 ASTContext &getContext() const { return Context; } 174 const ABIInfo &getABIInfo() const { return TheABIInfo; } 175 const TargetInfo &getTarget() const { return Target; } 176 CGCXXABI &getCXXABI() const { return TheCXXABI; } 177 llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); } 178 const CodeGenOptions &getCodeGenOpts() const; 179 180 /// Convert clang calling convention to LLVM callilng convention. 181 unsigned ClangCallConvToLLVMCallConv(CallingConv CC); 182 183 /// ConvertType - Convert type T into a llvm::Type. 184 llvm::Type *ConvertType(QualType T); 185 186 /// Converts the GlobalDecl into an llvm::Type. This should be used 187 /// when we know the target of the function we want to convert. This is 188 /// because some functions (explicitly, those with pass_object_size 189 /// parameters) may not have the same signature as their type portrays, and 190 /// can only be called directly. 191 llvm::Type *ConvertFunctionType(QualType FT, 192 const FunctionDecl *FD = nullptr); 193 194 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from 195 /// ConvertType in that it is used to convert to the memory representation for 196 /// a type. For example, the scalar representation for _Bool is i1, but the 197 /// memory representation is usually i8 or i32, depending on the target. 198 llvm::Type *ConvertTypeForMem(QualType T); 199 200 /// GetFunctionType - Get the LLVM function type for \arg Info. 201 llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info); 202 203 llvm::FunctionType *GetFunctionType(GlobalDecl GD); 204 205 /// isFuncTypeConvertible - Utility to check whether a function type can 206 /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag 207 /// type). 208 bool isFuncTypeConvertible(const FunctionType *FT); 209 bool isFuncParamTypeConvertible(QualType Ty); 210 211 /// Determine if a C++ inheriting constructor should have parameters matching 212 /// those of its inherited constructor. 213 bool inheritingCtorHasParams(const InheritedConstructor &Inherited, 214 CXXCtorType Type); 215 216 /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable, 217 /// given a CXXMethodDecl. If the method to has an incomplete return type, 218 /// and/or incomplete argument types, this will return the opaque type. 219 llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD); 220 221 const CGRecordLayout &getCGRecordLayout(const RecordDecl*); 222 223 /// UpdateCompletedType - When we find the full definition for a TagDecl, 224 /// replace the 'opaque' type we previously made for it if applicable. 225 void UpdateCompletedType(const TagDecl *TD); 226 227 /// Remove stale types from the type cache when an inheritance model 228 /// gets assigned to a class. 229 void RefreshTypeCacheForClass(const CXXRecordDecl *RD); 230 231 // The arrangement methods are split into three families: 232 // - those meant to drive the signature and prologue/epilogue 233 // of a function declaration or definition, 234 // - those meant for the computation of the LLVM type for an abstract 235 // appearance of a function, and 236 // - those meant for performing the IR-generation of a call. 237 // They differ mainly in how they deal with optional (i.e. variadic) 238 // arguments, as well as unprototyped functions. 239 // 240 // Key points: 241 // - The CGFunctionInfo for emitting a specific call site must include 242 // entries for the optional arguments. 243 // - The function type used at the call site must reflect the formal 244 // signature of the declaration being called, or else the call will 245 // go awry. 246 // - For the most part, unprototyped functions are called by casting to 247 // a formal signature inferred from the specific argument types used 248 // at the call-site. However, some targets (e.g. x86-64) screw with 249 // this for compatibility reasons. 250 251 const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD); 252 253 /// Given a function info for a declaration, return the function info 254 /// for a call with the given arguments. 255 /// 256 /// Often this will be able to simply return the declaration info. 257 const CGFunctionInfo &arrangeCall(const CGFunctionInfo &declFI, 258 const CallArgList &args); 259 260 /// Free functions are functions that are compatible with an ordinary 261 /// C function pointer type. 262 const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD); 263 const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args, 264 const FunctionType *Ty, 265 bool ChainCall); 266 const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty, 267 const FunctionDecl *FD); 268 const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty); 269 270 /// A nullary function is a freestanding function of type 'void ()'. 271 /// This method works for both calls and declarations. 272 const CGFunctionInfo &arrangeNullaryFunction(); 273 274 /// A builtin function is a freestanding function using the default 275 /// C conventions. 276 const CGFunctionInfo & 277 arrangeBuiltinFunctionDeclaration(QualType resultType, 278 const FunctionArgList &args); 279 const CGFunctionInfo & 280 arrangeBuiltinFunctionDeclaration(CanQualType resultType, 281 ArrayRef<CanQualType> argTypes); 282 const CGFunctionInfo &arrangeBuiltinFunctionCall(QualType resultType, 283 const CallArgList &args); 284 285 /// Objective-C methods are C functions with some implicit parameters. 286 const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD); 287 const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 288 QualType receiverType); 289 const CGFunctionInfo &arrangeUnprototypedObjCMessageSend( 290 QualType returnType, 291 const CallArgList &args); 292 293 /// Block invocation functions are C functions with an implicit parameter. 294 const CGFunctionInfo &arrangeBlockFunctionDeclaration( 295 const FunctionProtoType *type, 296 const FunctionArgList &args); 297 const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args, 298 const FunctionType *type); 299 300 /// C++ methods have some special rules and also have implicit parameters. 301 const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD); 302 const CGFunctionInfo &arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 303 StructorType Type); 304 const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args, 305 const CXXConstructorDecl *D, 306 CXXCtorType CtorKind, 307 unsigned ExtraPrefixArgs, 308 unsigned ExtraSuffixArgs, 309 bool PassProtoArgs = true); 310 311 const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args, 312 const FunctionProtoType *type, 313 RequiredArgs required, 314 unsigned numPrefixArgs); 315 const CGFunctionInfo & 316 arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD); 317 const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD, 318 CXXCtorType CT); 319 const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD, 320 const FunctionProtoType *FTP, 321 const CXXMethodDecl *MD); 322 323 /// "Arrange" the LLVM information for a call or type with the given 324 /// signature. This is largely an internal method; other clients 325 /// should use one of the above routines, which ultimately defer to 326 /// this. 327 /// 328 /// \param argTypes - must all actually be canonical as params 329 const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType, 330 bool instanceMethod, 331 bool chainCall, 332 ArrayRef<CanQualType> argTypes, 333 FunctionType::ExtInfo info, 334 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 335 RequiredArgs args); 336 337 /// Compute a new LLVM record layout object for the given record. 338 CGRecordLayout *ComputeRecordLayout(const RecordDecl *D, 339 llvm::StructType *Ty); 340 341 /// addRecordTypeName - Compute a name from the given record decl with an 342 /// optional suffix and name the given LLVM type using it. 343 void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty, 344 StringRef suffix); 345 346 347 public: // These are internal details of CGT that shouldn't be used externally. 348 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. 349 llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD); 350 351 /// getExpandedTypes - Expand the type \arg Ty into the LLVM 352 /// argument types it would be passed as. See ABIArgInfo::Expand. 353 void getExpandedTypes(QualType Ty, 354 SmallVectorImpl<llvm::Type *>::iterator &TI); 355 356 /// IsZeroInitializable - Return whether a type can be 357 /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer. 358 bool isZeroInitializable(QualType T); 359 360 /// Check if the pointer type can be zero-initialized (in the C++ sense) 361 /// with an LLVM zeroinitializer. 362 bool isPointerZeroInitializable(QualType T); 363 364 /// IsZeroInitializable - Return whether a record type can be 365 /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer. 366 bool isZeroInitializable(const RecordDecl *RD); 367 368 bool isRecordLayoutComplete(const Type *Ty) const; 369 bool noRecordsBeingLaidOut() const { 370 return RecordsBeingLaidOut.empty(); 371 } 372 bool isRecordBeingLaidOut(const Type *Ty) const { 373 return RecordsBeingLaidOut.count(Ty); 374 } 375 376 }; 377 378 } // end namespace CodeGen 379 } // end namespace clang 380 381 #endif 382