1 //===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef CLANG_CODEGEN_CODEGENTYPES_H
15 #define CLANG_CODEGEN_CODEGENTYPES_H
16 
17 #include "CGCall.h"
18 #include "clang/AST/GlobalDecl.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/IR/Module.h"
21 #include <vector>
22 
23 namespace llvm {
24   class FunctionType;
25   class Module;
26   class DataLayout;
27   class Type;
28   class LLVMContext;
29   class StructType;
30 }
31 
32 namespace clang {
33   class ABIInfo;
34   class ASTContext;
35   template <typename> class CanQual;
36   class CXXConstructorDecl;
37   class CXXDestructorDecl;
38   class CXXMethodDecl;
39   class CodeGenOptions;
40   class FieldDecl;
41   class FunctionProtoType;
42   class ObjCInterfaceDecl;
43   class ObjCIvarDecl;
44   class PointerType;
45   class QualType;
46   class RecordDecl;
47   class TagDecl;
48   class TargetInfo;
49   class Type;
50   typedef CanQual<Type> CanQualType;
51 
52 namespace CodeGen {
53   class CGCXXABI;
54   class CGRecordLayout;
55   class CodeGenModule;
56   class RequiredArgs;
57 
58 /// CodeGenTypes - This class organizes the cross-module state that is used
59 /// while lowering AST types to LLVM types.
60 class CodeGenTypes {
61   CodeGenModule &CGM;
62   // Some of this stuff should probably be left on the CGM.
63   ASTContext &Context;
64   llvm::Module &TheModule;
65   const llvm::DataLayout &TheDataLayout;
66   const TargetInfo &Target;
67   CGCXXABI &TheCXXABI;
68 
69   // This should not be moved earlier, since its initialization depends on some
70   // of the previous reference members being already initialized
71   const ABIInfo &TheABIInfo;
72 
73   /// The opaque type map for Objective-C interfaces. All direct
74   /// manipulation is done by the runtime interfaces, which are
75   /// responsible for coercing to the appropriate type; these opaque
76   /// types are never refined.
77   llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes;
78 
79   /// CGRecordLayouts - This maps llvm struct type with corresponding
80   /// record layout info.
81   llvm::DenseMap<const Type*, CGRecordLayout *> CGRecordLayouts;
82 
83   /// RecordDeclTypes - This contains the LLVM IR type for any converted
84   /// RecordDecl.
85   llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes;
86 
87   /// FunctionInfos - Hold memoized CGFunctionInfo results.
88   llvm::FoldingSet<CGFunctionInfo> FunctionInfos;
89 
90   /// RecordsBeingLaidOut - This set keeps track of records that we're currently
91   /// converting to an IR type.  For example, when converting:
92   /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B'
93   /// types will be in this set.
94   llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut;
95 
96   llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed;
97 
98   /// SkippedLayout - True if we didn't layout a function due to a being inside
99   /// a recursive struct conversion, set this to true.
100   bool SkippedLayout;
101 
102   SmallVector<const RecordDecl *, 8> DeferredRecords;
103 
104 private:
105   /// TypeCache - This map keeps cache of llvm::Types
106   /// and maps llvm::Types to corresponding clang::Type.
107   llvm::DenseMap<const Type *, llvm::Type *> TypeCache;
108 
109 public:
110   CodeGenTypes(CodeGenModule &cgm);
111   ~CodeGenTypes();
112 
113   const llvm::DataLayout &getDataLayout() const { return TheDataLayout; }
114   ASTContext &getContext() const { return Context; }
115   const ABIInfo &getABIInfo() const { return TheABIInfo; }
116   const TargetInfo &getTarget() const { return Target; }
117   CGCXXABI &getCXXABI() const { return TheCXXABI; }
118   llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); }
119 
120   /// ConvertType - Convert type T into a llvm::Type.
121   llvm::Type *ConvertType(QualType T);
122 
123   /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
124   /// ConvertType in that it is used to convert to the memory representation for
125   /// a type.  For example, the scalar representation for _Bool is i1, but the
126   /// memory representation is usually i8 or i32, depending on the target.
127   llvm::Type *ConvertTypeForMem(QualType T);
128 
129   /// GetFunctionType - Get the LLVM function type for \arg Info.
130   llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info);
131 
132   llvm::FunctionType *GetFunctionType(GlobalDecl GD);
133 
134   /// isFuncTypeConvertible - Utility to check whether a function type can
135   /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag
136   /// type).
137   bool isFuncTypeConvertible(const FunctionType *FT);
138   bool isFuncTypeArgumentConvertible(QualType Ty);
139 
140   /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable,
141   /// given a CXXMethodDecl. If the method to has an incomplete return type,
142   /// and/or incomplete argument types, this will return the opaque type.
143   llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD);
144 
145   const CGRecordLayout &getCGRecordLayout(const RecordDecl*);
146 
147   /// UpdateCompletedType - When we find the full definition for a TagDecl,
148   /// replace the 'opaque' type we previously made for it if applicable.
149   void UpdateCompletedType(const TagDecl *TD);
150 
151   /// getNullaryFunctionInfo - Get the function info for a void()
152   /// function with standard CC.
153   const CGFunctionInfo &arrangeNullaryFunction();
154 
155   // The arrangement methods are split into three families:
156   //   - those meant to drive the signature and prologue/epilogue
157   //     of a function declaration or definition,
158   //   - those meant for the computation of the LLVM type for an abstract
159   //     appearance of a function, and
160   //   - those meant for performing the IR-generation of a call.
161   // They differ mainly in how they deal with optional (i.e. variadic)
162   // arguments, as well as unprototyped functions.
163   //
164   // Key points:
165   // - The CGFunctionInfo for emitting a specific call site must include
166   //   entries for the optional arguments.
167   // - The function type used at the call site must reflect the formal
168   //   signature of the declaration being called, or else the call will
169   //   go awry.
170   // - For the most part, unprototyped functions are called by casting to
171   //   a formal signature inferred from the specific argument types used
172   //   at the call-site.  However, some targets (e.g. x86-64) screw with
173   //   this for compatibility reasons.
174 
175   const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD);
176   const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD);
177   const CGFunctionInfo &arrangeFunctionDeclaration(QualType ResTy,
178                                                    const FunctionArgList &Args,
179                                              const FunctionType::ExtInfo &Info,
180                                                    bool isVariadic);
181 
182   const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD);
183   const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
184                                                         QualType receiverType);
185 
186   const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD);
187   const CGFunctionInfo &arrangeCXXConstructorDeclaration(
188                                                     const CXXConstructorDecl *D,
189                                                     CXXCtorType Type);
190   const CGFunctionInfo &arrangeCXXDestructor(const CXXDestructorDecl *D,
191                                              CXXDtorType Type);
192 
193   const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args,
194                                                 const FunctionType *Ty);
195   const CGFunctionInfo &arrangeFreeFunctionCall(QualType ResTy,
196                                                 const CallArgList &args,
197                                                 FunctionType::ExtInfo info,
198                                                 RequiredArgs required);
199   const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args,
200                                                  const FunctionType *type);
201 
202   const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args,
203                                              const FunctionProtoType *type,
204                                              RequiredArgs required);
205 
206   const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty);
207   const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty);
208   const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD,
209                                              const FunctionProtoType *FTP);
210 
211   /// "Arrange" the LLVM information for a call or type with the given
212   /// signature.  This is largely an internal method; other clients
213   /// should use one of the above routines, which ultimately defer to
214   /// this.
215   ///
216   /// \param argTypes - must all actually be canonical as params
217   const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType,
218                                                 ArrayRef<CanQualType> argTypes,
219                                                 FunctionType::ExtInfo info,
220                                                 RequiredArgs args);
221 
222   /// \brief Compute a new LLVM record layout object for the given record.
223   CGRecordLayout *ComputeRecordLayout(const RecordDecl *D,
224                                       llvm::StructType *Ty);
225 
226   /// addRecordTypeName - Compute a name from the given record decl with an
227   /// optional suffix and name the given LLVM type using it.
228   void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty,
229                          StringRef suffix);
230 
231 
232 public:  // These are internal details of CGT that shouldn't be used externally.
233   /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
234   llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD);
235 
236   /// GetExpandedTypes - Expand the type \arg Ty into the LLVM
237   /// argument types it would be passed as on the provided vector \arg
238   /// ArgTys. See ABIArgInfo::Expand.
239   void GetExpandedTypes(QualType type,
240                         SmallVectorImpl<llvm::Type*> &expanded);
241 
242   /// IsZeroInitializable - Return whether a type can be
243   /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
244   bool isZeroInitializable(QualType T);
245 
246   /// IsZeroInitializable - Return whether a record type can be
247   /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer.
248   bool isZeroInitializable(const CXXRecordDecl *RD);
249 
250   bool isRecordLayoutComplete(const Type *Ty) const;
251   bool noRecordsBeingLaidOut() const {
252     return RecordsBeingLaidOut.empty();
253   }
254   bool isRecordBeingLaidOut(const Type *Ty) const {
255     return RecordsBeingLaidOut.count(Ty);
256   }
257 
258 };
259 
260 }  // end namespace CodeGen
261 }  // end namespace clang
262 
263 #endif
264