1 //===--- CodeGenTypes.h - Type translation for LLVM CodeGen -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the code that handles AST -> LLVM type lowering. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENTYPES_H 16 17 #include "CGCall.h" 18 #include "clang/AST/GlobalDecl.h" 19 #include "clang/CodeGen/CGFunctionInfo.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/IR/Module.h" 22 #include <vector> 23 24 namespace llvm { 25 class FunctionType; 26 class Module; 27 class DataLayout; 28 class Type; 29 class LLVMContext; 30 class StructType; 31 } 32 33 namespace clang { 34 class ASTContext; 35 template <typename> class CanQual; 36 class CXXConstructorDecl; 37 class CXXDestructorDecl; 38 class CXXMethodDecl; 39 class CodeGenOptions; 40 class FieldDecl; 41 class FunctionProtoType; 42 class ObjCInterfaceDecl; 43 class ObjCIvarDecl; 44 class PointerType; 45 class QualType; 46 class RecordDecl; 47 class TagDecl; 48 class TargetInfo; 49 class Type; 50 typedef CanQual<Type> CanQualType; 51 52 namespace CodeGen { 53 class ABIInfo; 54 class CGCXXABI; 55 class CGRecordLayout; 56 class CodeGenModule; 57 class RequiredArgs; 58 59 enum class StructorType { 60 Complete, // constructor or destructor 61 Base, // constructor or destructor 62 Deleting // destructor only 63 }; 64 65 inline CXXCtorType toCXXCtorType(StructorType T) { 66 switch (T) { 67 case StructorType::Complete: 68 return Ctor_Complete; 69 case StructorType::Base: 70 return Ctor_Base; 71 case StructorType::Deleting: 72 llvm_unreachable("cannot have a deleting ctor"); 73 } 74 llvm_unreachable("not a StructorType"); 75 } 76 77 inline StructorType getFromCtorType(CXXCtorType T) { 78 switch (T) { 79 case Ctor_Complete: 80 return StructorType::Complete; 81 case Ctor_Base: 82 return StructorType::Base; 83 case Ctor_Comdat: 84 llvm_unreachable("not expecting a COMDAT"); 85 case Ctor_CopyingClosure: 86 case Ctor_DefaultClosure: 87 llvm_unreachable("not expecting a closure"); 88 } 89 llvm_unreachable("not a CXXCtorType"); 90 } 91 92 inline CXXDtorType toCXXDtorType(StructorType T) { 93 switch (T) { 94 case StructorType::Complete: 95 return Dtor_Complete; 96 case StructorType::Base: 97 return Dtor_Base; 98 case StructorType::Deleting: 99 return Dtor_Deleting; 100 } 101 llvm_unreachable("not a StructorType"); 102 } 103 104 inline StructorType getFromDtorType(CXXDtorType T) { 105 switch (T) { 106 case Dtor_Deleting: 107 return StructorType::Deleting; 108 case Dtor_Complete: 109 return StructorType::Complete; 110 case Dtor_Base: 111 return StructorType::Base; 112 case Dtor_Comdat: 113 llvm_unreachable("not expecting a COMDAT"); 114 } 115 llvm_unreachable("not a CXXDtorType"); 116 } 117 118 /// This class organizes the cross-module state that is used while lowering 119 /// AST types to LLVM types. 120 class CodeGenTypes { 121 CodeGenModule &CGM; 122 // Some of this stuff should probably be left on the CGM. 123 ASTContext &Context; 124 llvm::Module &TheModule; 125 const TargetInfo &Target; 126 CGCXXABI &TheCXXABI; 127 128 // This should not be moved earlier, since its initialization depends on some 129 // of the previous reference members being already initialized 130 const ABIInfo &TheABIInfo; 131 132 /// The opaque type map for Objective-C interfaces. All direct 133 /// manipulation is done by the runtime interfaces, which are 134 /// responsible for coercing to the appropriate type; these opaque 135 /// types are never refined. 136 llvm::DenseMap<const ObjCInterfaceType*, llvm::Type *> InterfaceTypes; 137 138 /// Maps clang struct type with corresponding record layout info. 139 llvm::DenseMap<const Type*, CGRecordLayout *> CGRecordLayouts; 140 141 /// Contains the LLVM IR type for any converted RecordDecl. 142 llvm::DenseMap<const Type*, llvm::StructType *> RecordDeclTypes; 143 144 /// Hold memoized CGFunctionInfo results. 145 llvm::FoldingSet<CGFunctionInfo> FunctionInfos; 146 147 /// This set keeps track of records that we're currently converting 148 /// to an IR type. For example, when converting: 149 /// struct A { struct B { int x; } } when processing 'x', the 'A' and 'B' 150 /// types will be in this set. 151 llvm::SmallPtrSet<const Type*, 4> RecordsBeingLaidOut; 152 153 llvm::SmallPtrSet<const CGFunctionInfo*, 4> FunctionsBeingProcessed; 154 155 /// True if we didn't layout a function due to a being inside 156 /// a recursive struct conversion, set this to true. 157 bool SkippedLayout; 158 159 SmallVector<const RecordDecl *, 8> DeferredRecords; 160 161 /// This map keeps cache of llvm::Types and maps clang::Type to 162 /// corresponding llvm::Type. 163 llvm::DenseMap<const Type *, llvm::Type *> TypeCache; 164 165 llvm::SmallSet<const Type *, 8> RecordsWithOpaqueMemberPointers; 166 167 public: 168 CodeGenTypes(CodeGenModule &cgm); 169 ~CodeGenTypes(); 170 171 const llvm::DataLayout &getDataLayout() const { 172 return TheModule.getDataLayout(); 173 } 174 ASTContext &getContext() const { return Context; } 175 const ABIInfo &getABIInfo() const { return TheABIInfo; } 176 const TargetInfo &getTarget() const { return Target; } 177 CGCXXABI &getCXXABI() const { return TheCXXABI; } 178 llvm::LLVMContext &getLLVMContext() { return TheModule.getContext(); } 179 180 /// ConvertType - Convert type T into a llvm::Type. 181 llvm::Type *ConvertType(QualType T); 182 183 /// \brief Converts the GlobalDecl into an llvm::Type. This should be used 184 /// when we know the target of the function we want to convert. This is 185 /// because some functions (explicitly, those with pass_object_size 186 /// parameters) may not have the same signature as their type portrays, and 187 /// can only be called directly. 188 llvm::Type *ConvertFunctionType(QualType FT, 189 const FunctionDecl *FD = nullptr); 190 191 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from 192 /// ConvertType in that it is used to convert to the memory representation for 193 /// a type. For example, the scalar representation for _Bool is i1, but the 194 /// memory representation is usually i8 or i32, depending on the target. 195 llvm::Type *ConvertTypeForMem(QualType T); 196 197 /// GetFunctionType - Get the LLVM function type for \arg Info. 198 llvm::FunctionType *GetFunctionType(const CGFunctionInfo &Info); 199 200 llvm::FunctionType *GetFunctionType(GlobalDecl GD); 201 202 /// isFuncTypeConvertible - Utility to check whether a function type can 203 /// be converted to an LLVM type (i.e. doesn't depend on an incomplete tag 204 /// type). 205 bool isFuncTypeConvertible(const FunctionType *FT); 206 bool isFuncParamTypeConvertible(QualType Ty); 207 208 /// GetFunctionTypeForVTable - Get the LLVM function type for use in a vtable, 209 /// given a CXXMethodDecl. If the method to has an incomplete return type, 210 /// and/or incomplete argument types, this will return the opaque type. 211 llvm::Type *GetFunctionTypeForVTable(GlobalDecl GD); 212 213 const CGRecordLayout &getCGRecordLayout(const RecordDecl*); 214 215 /// UpdateCompletedType - When we find the full definition for a TagDecl, 216 /// replace the 'opaque' type we previously made for it if applicable. 217 void UpdateCompletedType(const TagDecl *TD); 218 219 /// \brief Remove stale types from the type cache when an inheritance model 220 /// gets assigned to a class. 221 void RefreshTypeCacheForClass(const CXXRecordDecl *RD); 222 223 // The arrangement methods are split into three families: 224 // - those meant to drive the signature and prologue/epilogue 225 // of a function declaration or definition, 226 // - those meant for the computation of the LLVM type for an abstract 227 // appearance of a function, and 228 // - those meant for performing the IR-generation of a call. 229 // They differ mainly in how they deal with optional (i.e. variadic) 230 // arguments, as well as unprototyped functions. 231 // 232 // Key points: 233 // - The CGFunctionInfo for emitting a specific call site must include 234 // entries for the optional arguments. 235 // - The function type used at the call site must reflect the formal 236 // signature of the declaration being called, or else the call will 237 // go awry. 238 // - For the most part, unprototyped functions are called by casting to 239 // a formal signature inferred from the specific argument types used 240 // at the call-site. However, some targets (e.g. x86-64) screw with 241 // this for compatibility reasons. 242 243 const CGFunctionInfo &arrangeGlobalDeclaration(GlobalDecl GD); 244 245 /// Given a function info for a declaration, return the function info 246 /// for a call with the given arguments. 247 /// 248 /// Often this will be able to simply return the declaration info. 249 const CGFunctionInfo &arrangeCall(const CGFunctionInfo &declFI, 250 const CallArgList &args); 251 252 /// Free functions are functions that are compatible with an ordinary 253 /// C function pointer type. 254 const CGFunctionInfo &arrangeFunctionDeclaration(const FunctionDecl *FD); 255 const CGFunctionInfo &arrangeFreeFunctionCall(const CallArgList &Args, 256 const FunctionType *Ty, 257 bool ChainCall); 258 const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionProtoType> Ty, 259 const FunctionDecl *FD); 260 const CGFunctionInfo &arrangeFreeFunctionType(CanQual<FunctionNoProtoType> Ty); 261 262 /// A nullary function is a freestanding function of type 'void ()'. 263 /// This method works for both calls and declarations. 264 const CGFunctionInfo &arrangeNullaryFunction(); 265 266 /// A builtin function is a freestanding function using the default 267 /// C conventions. 268 const CGFunctionInfo & 269 arrangeBuiltinFunctionDeclaration(QualType resultType, 270 const FunctionArgList &args); 271 const CGFunctionInfo & 272 arrangeBuiltinFunctionDeclaration(CanQualType resultType, 273 ArrayRef<CanQualType> argTypes); 274 const CGFunctionInfo &arrangeBuiltinFunctionCall(QualType resultType, 275 const CallArgList &args); 276 277 /// Objective-C methods are C functions with some implicit parameters. 278 const CGFunctionInfo &arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD); 279 const CGFunctionInfo &arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 280 QualType receiverType); 281 const CGFunctionInfo &arrangeUnprototypedObjCMessageSend( 282 QualType returnType, 283 const CallArgList &args); 284 285 /// Block invocation functions are C functions with an implicit parameter. 286 const CGFunctionInfo &arrangeBlockFunctionDeclaration( 287 const FunctionProtoType *type, 288 const FunctionArgList &args); 289 const CGFunctionInfo &arrangeBlockFunctionCall(const CallArgList &args, 290 const FunctionType *type); 291 292 /// C++ methods have some special rules and also have implicit parameters. 293 const CGFunctionInfo &arrangeCXXMethodDeclaration(const CXXMethodDecl *MD); 294 const CGFunctionInfo &arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 295 StructorType Type); 296 const CGFunctionInfo &arrangeCXXConstructorCall(const CallArgList &Args, 297 const CXXConstructorDecl *D, 298 CXXCtorType CtorKind, 299 unsigned ExtraArgs); 300 301 const CGFunctionInfo &arrangeCXXMethodCall(const CallArgList &args, 302 const FunctionProtoType *type, 303 RequiredArgs required); 304 const CGFunctionInfo &arrangeMSMemberPointerThunk(const CXXMethodDecl *MD); 305 const CGFunctionInfo &arrangeMSCtorClosure(const CXXConstructorDecl *CD, 306 CXXCtorType CT); 307 const CGFunctionInfo &arrangeCXXMethodType(const CXXRecordDecl *RD, 308 const FunctionProtoType *FTP, 309 const CXXMethodDecl *MD); 310 311 /// "Arrange" the LLVM information for a call or type with the given 312 /// signature. This is largely an internal method; other clients 313 /// should use one of the above routines, which ultimately defer to 314 /// this. 315 /// 316 /// \param argTypes - must all actually be canonical as params 317 const CGFunctionInfo &arrangeLLVMFunctionInfo(CanQualType returnType, 318 bool instanceMethod, 319 bool chainCall, 320 ArrayRef<CanQualType> argTypes, 321 FunctionType::ExtInfo info, 322 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 323 RequiredArgs args); 324 325 /// \brief Compute a new LLVM record layout object for the given record. 326 CGRecordLayout *ComputeRecordLayout(const RecordDecl *D, 327 llvm::StructType *Ty); 328 329 /// addRecordTypeName - Compute a name from the given record decl with an 330 /// optional suffix and name the given LLVM type using it. 331 void addRecordTypeName(const RecordDecl *RD, llvm::StructType *Ty, 332 StringRef suffix); 333 334 335 public: // These are internal details of CGT that shouldn't be used externally. 336 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. 337 llvm::StructType *ConvertRecordDeclType(const RecordDecl *TD); 338 339 /// getExpandedTypes - Expand the type \arg Ty into the LLVM 340 /// argument types it would be passed as. See ABIArgInfo::Expand. 341 void getExpandedTypes(QualType Ty, 342 SmallVectorImpl<llvm::Type *>::iterator &TI); 343 344 /// IsZeroInitializable - Return whether a type can be 345 /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer. 346 bool isZeroInitializable(QualType T); 347 348 /// IsZeroInitializable - Return whether a record type can be 349 /// zero-initialized (in the C++ sense) with an LLVM zeroinitializer. 350 bool isZeroInitializable(const RecordDecl *RD); 351 352 bool isRecordLayoutComplete(const Type *Ty) const; 353 bool noRecordsBeingLaidOut() const { 354 return RecordsBeingLaidOut.empty(); 355 } 356 bool isRecordBeingLaidOut(const Type *Ty) const { 357 return RecordsBeingLaidOut.count(Ty); 358 } 359 360 }; 361 362 } // end namespace CodeGen 363 } // end namespace clang 364 365 #endif 366