1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenTypes.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Module.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
33   : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
34     TheDataLayout(cgm.getDataLayout()),
35     Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
36     TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
37   SkippedLayout = false;
38 }
39 
40 CodeGenTypes::~CodeGenTypes() {
41   llvm::DeleteContainerSeconds(CGRecordLayouts);
42 
43   for (llvm::FoldingSet<CGFunctionInfo>::iterator
44        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
45     delete &*I++;
46 }
47 
48 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
49                                      llvm::StructType *Ty,
50                                      StringRef suffix) {
51   SmallString<256> TypeName;
52   llvm::raw_svector_ostream OS(TypeName);
53   OS << RD->getKindName() << '.';
54 
55   // Name the codegen type after the typedef name
56   // if there is no tag type name available
57   if (RD->getIdentifier()) {
58     // FIXME: We should not have to check for a null decl context here.
59     // Right now we do it because the implicit Obj-C decls don't have one.
60     if (RD->getDeclContext())
61       RD->printQualifiedName(OS);
62     else
63       RD->printName(OS);
64   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
65     // FIXME: We should not have to check for a null decl context here.
66     // Right now we do it because the implicit Obj-C decls don't have one.
67     if (TDD->getDeclContext())
68       TDD->printQualifiedName(OS);
69     else
70       TDD->printName(OS);
71   } else
72     OS << "anon";
73 
74   if (!suffix.empty())
75     OS << suffix;
76 
77   Ty->setName(OS.str());
78 }
79 
80 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
81 /// ConvertType in that it is used to convert to the memory representation for
82 /// a type.  For example, the scalar representation for _Bool is i1, but the
83 /// memory representation is usually i8 or i32, depending on the target.
84 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
85   llvm::Type *R = ConvertType(T);
86 
87   // If this is a non-bool type, don't map it.
88   if (!R->isIntegerTy(1))
89     return R;
90 
91   // Otherwise, return an integer of the target-specified size.
92   return llvm::IntegerType::get(getLLVMContext(),
93                                 (unsigned)Context.getTypeSize(T));
94 }
95 
96 
97 /// isRecordLayoutComplete - Return true if the specified type is already
98 /// completely laid out.
99 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
100   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
101   RecordDeclTypes.find(Ty);
102   return I != RecordDeclTypes.end() && !I->second->isOpaque();
103 }
104 
105 static bool
106 isSafeToConvert(QualType T, CodeGenTypes &CGT,
107                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
108 
109 
110 /// isSafeToConvert - Return true if it is safe to convert the specified record
111 /// decl to IR and lay it out, false if doing so would cause us to get into a
112 /// recursive compilation mess.
113 static bool
114 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
115                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
116   // If we have already checked this type (maybe the same type is used by-value
117   // multiple times in multiple structure fields, don't check again.
118   if (!AlreadyChecked.insert(RD)) return true;
119 
120   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
121 
122   // If this type is already laid out, converting it is a noop.
123   if (CGT.isRecordLayoutComplete(Key)) return true;
124 
125   // If this type is currently being laid out, we can't recursively compile it.
126   if (CGT.isRecordBeingLaidOut(Key))
127     return false;
128 
129   // If this type would require laying out bases that are currently being laid
130   // out, don't do it.  This includes virtual base classes which get laid out
131   // when a class is translated, even though they aren't embedded by-value into
132   // the class.
133   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
134     for (const auto &I : CRD->bases())
135       if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(),
136                            CGT, AlreadyChecked))
137         return false;
138   }
139 
140   // If this type would require laying out members that are currently being laid
141   // out, don't do it.
142   for (const auto *I : RD->fields())
143     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
144       return false;
145 
146   // If there are no problems, lets do it.
147   return true;
148 }
149 
150 /// isSafeToConvert - Return true if it is safe to convert this field type,
151 /// which requires the structure elements contained by-value to all be
152 /// recursively safe to convert.
153 static bool
154 isSafeToConvert(QualType T, CodeGenTypes &CGT,
155                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
156   T = T.getCanonicalType();
157 
158   // If this is a record, check it.
159   if (const RecordType *RT = dyn_cast<RecordType>(T))
160     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
161 
162   // If this is an array, check the elements, which are embedded inline.
163   if (const ArrayType *AT = dyn_cast<ArrayType>(T))
164     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
165 
166   // Otherwise, there is no concern about transforming this.  We only care about
167   // things that are contained by-value in a structure that can have another
168   // structure as a member.
169   return true;
170 }
171 
172 
173 /// isSafeToConvert - Return true if it is safe to convert the specified record
174 /// decl to IR and lay it out, false if doing so would cause us to get into a
175 /// recursive compilation mess.
176 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
177   // If no structs are being laid out, we can certainly do this one.
178   if (CGT.noRecordsBeingLaidOut()) return true;
179 
180   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
181   return isSafeToConvert(RD, CGT, AlreadyChecked);
182 }
183 
184 /// isFuncParamTypeConvertible - Return true if the specified type in a
185 /// function parameter or result position can be converted to an IR type at this
186 /// point.  This boils down to being whether it is complete, as well as whether
187 /// we've temporarily deferred expanding the type because we're in a recursive
188 /// context.
189 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
190   // Some ABIs cannot have their member pointers represented in IR unless
191   // certain circumstances have been reached.
192   if (const auto *MPT = Ty->getAs<MemberPointerType>())
193     return getCXXABI().isMemberPointerConvertible(MPT);
194 
195   // If this isn't a tagged type, we can convert it!
196   const TagType *TT = Ty->getAs<TagType>();
197   if (!TT) return true;
198 
199   // Incomplete types cannot be converted.
200   if (TT->isIncompleteType())
201     return false;
202 
203   // If this is an enum, then it is always safe to convert.
204   const RecordType *RT = dyn_cast<RecordType>(TT);
205   if (!RT) return true;
206 
207   // Otherwise, we have to be careful.  If it is a struct that we're in the
208   // process of expanding, then we can't convert the function type.  That's ok
209   // though because we must be in a pointer context under the struct, so we can
210   // just convert it to a dummy type.
211   //
212   // We decide this by checking whether ConvertRecordDeclType returns us an
213   // opaque type for a struct that we know is defined.
214   return isSafeToConvert(RT->getDecl(), *this);
215 }
216 
217 
218 /// Code to verify a given function type is complete, i.e. the return type
219 /// and all of the parameter types are complete.  Also check to see if we are in
220 /// a RS_StructPointer context, and if so whether any struct types have been
221 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
222 /// that cannot be converted to an IR type.
223 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
224   if (!isFuncParamTypeConvertible(FT->getReturnType()))
225     return false;
226 
227   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
228     for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
229       if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
230         return false;
231 
232   return true;
233 }
234 
235 /// UpdateCompletedType - When we find the full definition for a TagDecl,
236 /// replace the 'opaque' type we previously made for it if applicable.
237 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
238   // If this is an enum being completed, then we flush all non-struct types from
239   // the cache.  This allows function types and other things that may be derived
240   // from the enum to be recomputed.
241   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
242     // Only flush the cache if we've actually already converted this type.
243     if (TypeCache.count(ED->getTypeForDecl())) {
244       // Okay, we formed some types based on this.  We speculated that the enum
245       // would be lowered to i32, so we only need to flush the cache if this
246       // didn't happen.
247       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
248         TypeCache.clear();
249     }
250     // If necessary, provide the full definition of a type only used with a
251     // declaration so far.
252     if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
253       DI->completeType(ED);
254     return;
255   }
256 
257   // If we completed a RecordDecl that we previously used and converted to an
258   // anonymous type, then go ahead and complete it now.
259   const RecordDecl *RD = cast<RecordDecl>(TD);
260   if (RD->isDependentType()) return;
261 
262   // Only complete it if we converted it already.  If we haven't converted it
263   // yet, we'll just do it lazily.
264   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
265     ConvertRecordDeclType(RD);
266 
267   // If necessary, provide the full definition of a type only used with a
268   // declaration so far.
269   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
270     DI->completeType(RD);
271 }
272 
273 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
274                                     const llvm::fltSemantics &format,
275                                     bool UseNativeHalf = false) {
276   if (&format == &llvm::APFloat::IEEEhalf) {
277     if (UseNativeHalf)
278       return llvm::Type::getHalfTy(VMContext);
279     else
280       return llvm::Type::getInt16Ty(VMContext);
281   }
282   if (&format == &llvm::APFloat::IEEEsingle)
283     return llvm::Type::getFloatTy(VMContext);
284   if (&format == &llvm::APFloat::IEEEdouble)
285     return llvm::Type::getDoubleTy(VMContext);
286   if (&format == &llvm::APFloat::IEEEquad)
287     return llvm::Type::getFP128Ty(VMContext);
288   if (&format == &llvm::APFloat::PPCDoubleDouble)
289     return llvm::Type::getPPC_FP128Ty(VMContext);
290   if (&format == &llvm::APFloat::x87DoubleExtended)
291     return llvm::Type::getX86_FP80Ty(VMContext);
292   llvm_unreachable("Unknown float format!");
293 }
294 
295 /// ConvertType - Convert the specified type to its LLVM form.
296 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
297   T = Context.getCanonicalType(T);
298 
299   const Type *Ty = T.getTypePtr();
300 
301   // RecordTypes are cached and processed specially.
302   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
303     return ConvertRecordDeclType(RT->getDecl());
304 
305   // See if type is already cached.
306   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
307   // If type is found in map then use it. Otherwise, convert type T.
308   if (TCI != TypeCache.end())
309     return TCI->second;
310 
311   // If we don't have it in the cache, convert it now.
312   llvm::Type *ResultType = nullptr;
313   switch (Ty->getTypeClass()) {
314   case Type::Record: // Handled above.
315 #define TYPE(Class, Base)
316 #define ABSTRACT_TYPE(Class, Base)
317 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
318 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
319 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
320 #include "clang/AST/TypeNodes.def"
321     llvm_unreachable("Non-canonical or dependent types aren't possible.");
322 
323   case Type::Builtin: {
324     switch (cast<BuiltinType>(Ty)->getKind()) {
325     case BuiltinType::Void:
326     case BuiltinType::ObjCId:
327     case BuiltinType::ObjCClass:
328     case BuiltinType::ObjCSel:
329       // LLVM void type can only be used as the result of a function call.  Just
330       // map to the same as char.
331       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
332       break;
333 
334     case BuiltinType::Bool:
335       // Note that we always return bool as i1 for use as a scalar type.
336       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
337       break;
338 
339     case BuiltinType::Char_S:
340     case BuiltinType::Char_U:
341     case BuiltinType::SChar:
342     case BuiltinType::UChar:
343     case BuiltinType::Short:
344     case BuiltinType::UShort:
345     case BuiltinType::Int:
346     case BuiltinType::UInt:
347     case BuiltinType::Long:
348     case BuiltinType::ULong:
349     case BuiltinType::LongLong:
350     case BuiltinType::ULongLong:
351     case BuiltinType::WChar_S:
352     case BuiltinType::WChar_U:
353     case BuiltinType::Char16:
354     case BuiltinType::Char32:
355       ResultType = llvm::IntegerType::get(getLLVMContext(),
356                                  static_cast<unsigned>(Context.getTypeSize(T)));
357       break;
358 
359     case BuiltinType::Half:
360       // Half FP can either be storage-only (lowered to i16) or native.
361       ResultType =
362           getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
363                            Context.getLangOpts().NativeHalfType ||
364                                Context.getLangOpts().HalfArgsAndReturns);
365       break;
366     case BuiltinType::Float:
367     case BuiltinType::Double:
368     case BuiltinType::LongDouble:
369       ResultType = getTypeForFormat(getLLVMContext(),
370                                     Context.getFloatTypeSemantics(T),
371                                     /* UseNativeHalf = */ false);
372       break;
373 
374     case BuiltinType::NullPtr:
375       // Model std::nullptr_t as i8*
376       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
377       break;
378 
379     case BuiltinType::UInt128:
380     case BuiltinType::Int128:
381       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
382       break;
383 
384     case BuiltinType::OCLImage1d:
385     case BuiltinType::OCLImage1dArray:
386     case BuiltinType::OCLImage1dBuffer:
387     case BuiltinType::OCLImage2d:
388     case BuiltinType::OCLImage2dArray:
389     case BuiltinType::OCLImage3d:
390     case BuiltinType::OCLSampler:
391     case BuiltinType::OCLEvent:
392       ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
393       break;
394 
395     case BuiltinType::Dependent:
396 #define BUILTIN_TYPE(Id, SingletonId)
397 #define PLACEHOLDER_TYPE(Id, SingletonId) \
398     case BuiltinType::Id:
399 #include "clang/AST/BuiltinTypes.def"
400       llvm_unreachable("Unexpected placeholder builtin type!");
401     }
402     break;
403   }
404   case Type::Auto:
405     llvm_unreachable("Unexpected undeduced auto type!");
406   case Type::Complex: {
407     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
408     ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
409     break;
410   }
411   case Type::LValueReference:
412   case Type::RValueReference: {
413     const ReferenceType *RTy = cast<ReferenceType>(Ty);
414     QualType ETy = RTy->getPointeeType();
415     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
416     unsigned AS = Context.getTargetAddressSpace(ETy);
417     ResultType = llvm::PointerType::get(PointeeType, AS);
418     break;
419   }
420   case Type::Pointer: {
421     const PointerType *PTy = cast<PointerType>(Ty);
422     QualType ETy = PTy->getPointeeType();
423     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
424     if (PointeeType->isVoidTy())
425       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
426     unsigned AS = Context.getTargetAddressSpace(ETy);
427     ResultType = llvm::PointerType::get(PointeeType, AS);
428     break;
429   }
430 
431   case Type::VariableArray: {
432     const VariableArrayType *A = cast<VariableArrayType>(Ty);
433     assert(A->getIndexTypeCVRQualifiers() == 0 &&
434            "FIXME: We only handle trivial array types so far!");
435     // VLAs resolve to the innermost element type; this matches
436     // the return of alloca, and there isn't any obviously better choice.
437     ResultType = ConvertTypeForMem(A->getElementType());
438     break;
439   }
440   case Type::IncompleteArray: {
441     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
442     assert(A->getIndexTypeCVRQualifiers() == 0 &&
443            "FIXME: We only handle trivial array types so far!");
444     // int X[] -> [0 x int], unless the element type is not sized.  If it is
445     // unsized (e.g. an incomplete struct) just use [0 x i8].
446     ResultType = ConvertTypeForMem(A->getElementType());
447     if (!ResultType->isSized()) {
448       SkippedLayout = true;
449       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
450     }
451     ResultType = llvm::ArrayType::get(ResultType, 0);
452     break;
453   }
454   case Type::ConstantArray: {
455     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
456     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
457 
458     // Lower arrays of undefined struct type to arrays of i8 just to have a
459     // concrete type.
460     if (!EltTy->isSized()) {
461       SkippedLayout = true;
462       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
463     }
464 
465     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
466     break;
467   }
468   case Type::ExtVector:
469   case Type::Vector: {
470     const VectorType *VT = cast<VectorType>(Ty);
471     ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
472                                        VT->getNumElements());
473     break;
474   }
475   case Type::FunctionNoProto:
476   case Type::FunctionProto: {
477     const FunctionType *FT = cast<FunctionType>(Ty);
478     // First, check whether we can build the full function type.  If the
479     // function type depends on an incomplete type (e.g. a struct or enum), we
480     // cannot lower the function type.
481     if (!isFuncTypeConvertible(FT)) {
482       // This function's type depends on an incomplete tag type.
483 
484       // Force conversion of all the relevant record types, to make sure
485       // we re-convert the FunctionType when appropriate.
486       if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
487         ConvertRecordDeclType(RT->getDecl());
488       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
489         for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
490           if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
491             ConvertRecordDeclType(RT->getDecl());
492 
493       // Return a placeholder type.
494       ResultType = llvm::StructType::get(getLLVMContext());
495 
496       SkippedLayout = true;
497       break;
498     }
499 
500     // While we're converting the parameter types for a function, we don't want
501     // to recursively convert any pointed-to structs.  Converting directly-used
502     // structs is ok though.
503     if (!RecordsBeingLaidOut.insert(Ty)) {
504       ResultType = llvm::StructType::get(getLLVMContext());
505 
506       SkippedLayout = true;
507       break;
508     }
509 
510     // The function type can be built; call the appropriate routines to
511     // build it.
512     const CGFunctionInfo *FI;
513     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
514       FI = &arrangeFreeFunctionType(
515                    CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
516     } else {
517       const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
518       FI = &arrangeFreeFunctionType(
519                 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
520     }
521 
522     // If there is something higher level prodding our CGFunctionInfo, then
523     // don't recurse into it again.
524     if (FunctionsBeingProcessed.count(FI)) {
525 
526       ResultType = llvm::StructType::get(getLLVMContext());
527       SkippedLayout = true;
528     } else {
529 
530       // Otherwise, we're good to go, go ahead and convert it.
531       ResultType = GetFunctionType(*FI);
532     }
533 
534     RecordsBeingLaidOut.erase(Ty);
535 
536     if (SkippedLayout)
537       TypeCache.clear();
538 
539     if (RecordsBeingLaidOut.empty())
540       while (!DeferredRecords.empty())
541         ConvertRecordDeclType(DeferredRecords.pop_back_val());
542     break;
543   }
544 
545   case Type::ObjCObject:
546     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
547     break;
548 
549   case Type::ObjCInterface: {
550     // Objective-C interfaces are always opaque (outside of the
551     // runtime, which can do whatever it likes); we never refine
552     // these.
553     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
554     if (!T)
555       T = llvm::StructType::create(getLLVMContext());
556     ResultType = T;
557     break;
558   }
559 
560   case Type::ObjCObjectPointer: {
561     // Protocol qualifications do not influence the LLVM type, we just return a
562     // pointer to the underlying interface type. We don't need to worry about
563     // recursive conversion.
564     llvm::Type *T =
565       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
566     ResultType = T->getPointerTo();
567     break;
568   }
569 
570   case Type::Enum: {
571     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
572     if (ED->isCompleteDefinition() || ED->isFixed())
573       return ConvertType(ED->getIntegerType());
574     // Return a placeholder 'i32' type.  This can be changed later when the
575     // type is defined (see UpdateCompletedType), but is likely to be the
576     // "right" answer.
577     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
578     break;
579   }
580 
581   case Type::BlockPointer: {
582     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
583     llvm::Type *PointeeType = ConvertTypeForMem(FTy);
584     unsigned AS = Context.getTargetAddressSpace(FTy);
585     ResultType = llvm::PointerType::get(PointeeType, AS);
586     break;
587   }
588 
589   case Type::MemberPointer: {
590     if (!getCXXABI().isMemberPointerConvertible(cast<MemberPointerType>(Ty)))
591       return llvm::StructType::create(getLLVMContext());
592     ResultType =
593       getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
594     break;
595   }
596 
597   case Type::Atomic: {
598     QualType valueType = cast<AtomicType>(Ty)->getValueType();
599     ResultType = ConvertTypeForMem(valueType);
600 
601     // Pad out to the inflated size if necessary.
602     uint64_t valueSize = Context.getTypeSize(valueType);
603     uint64_t atomicSize = Context.getTypeSize(Ty);
604     if (valueSize != atomicSize) {
605       assert(valueSize < atomicSize);
606       llvm::Type *elts[] = {
607         ResultType,
608         llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
609       };
610       ResultType = llvm::StructType::get(getLLVMContext(),
611                                          llvm::makeArrayRef(elts));
612     }
613     break;
614   }
615   }
616 
617   assert(ResultType && "Didn't convert a type?");
618 
619   TypeCache[Ty] = ResultType;
620   return ResultType;
621 }
622 
623 bool CodeGenModule::isPaddedAtomicType(QualType type) {
624   return isPaddedAtomicType(type->castAs<AtomicType>());
625 }
626 
627 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
628   return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
629 }
630 
631 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
632 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
633   // TagDecl's are not necessarily unique, instead use the (clang)
634   // type connected to the decl.
635   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
636 
637   llvm::StructType *&Entry = RecordDeclTypes[Key];
638 
639   // If we don't have a StructType at all yet, create the forward declaration.
640   if (!Entry) {
641     Entry = llvm::StructType::create(getLLVMContext());
642     addRecordTypeName(RD, Entry, "");
643   }
644   llvm::StructType *Ty = Entry;
645 
646   // If this is still a forward declaration, or the LLVM type is already
647   // complete, there's nothing more to do.
648   RD = RD->getDefinition();
649   if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
650     return Ty;
651 
652   // If converting this type would cause us to infinitely loop, don't do it!
653   if (!isSafeToConvert(RD, *this)) {
654     DeferredRecords.push_back(RD);
655     return Ty;
656   }
657 
658   // Okay, this is a definition of a type.  Compile the implementation now.
659   bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
660   assert(InsertResult && "Recursively compiling a struct?");
661 
662   // Force conversion of non-virtual base classes recursively.
663   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
664     for (const auto &I : CRD->bases()) {
665       if (I.isVirtual()) continue;
666 
667       ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl());
668     }
669   }
670 
671   // Layout fields.
672   CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
673   CGRecordLayouts[Key] = Layout;
674 
675   // We're done laying out this struct.
676   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
677   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
678 
679   // If this struct blocked a FunctionType conversion, then recompute whatever
680   // was derived from that.
681   // FIXME: This is hugely overconservative.
682   if (SkippedLayout)
683     TypeCache.clear();
684 
685   // If we're done converting the outer-most record, then convert any deferred
686   // structs as well.
687   if (RecordsBeingLaidOut.empty())
688     while (!DeferredRecords.empty())
689       ConvertRecordDeclType(DeferredRecords.pop_back_val());
690 
691   return Ty;
692 }
693 
694 /// getCGRecordLayout - Return record layout info for the given record decl.
695 const CGRecordLayout &
696 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
697   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
698 
699   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
700   if (!Layout) {
701     // Compute the type information.
702     ConvertRecordDeclType(RD);
703 
704     // Now try again.
705     Layout = CGRecordLayouts.lookup(Key);
706   }
707 
708   assert(Layout && "Unable to find record layout information for type");
709   return *Layout;
710 }
711 
712 bool CodeGenTypes::isZeroInitializable(QualType T) {
713   // No need to check for member pointers when not compiling C++.
714   if (!Context.getLangOpts().CPlusPlus)
715     return true;
716 
717   T = Context.getBaseElementType(T);
718 
719   // Records are non-zero-initializable if they contain any
720   // non-zero-initializable subobjects.
721   if (const RecordType *RT = T->getAs<RecordType>()) {
722     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
723     return isZeroInitializable(RD);
724   }
725 
726   // We have to ask the ABI about member pointers.
727   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
728     return getCXXABI().isZeroInitializable(MPT);
729 
730   // Everything else is okay.
731   return true;
732 }
733 
734 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
735   return getCGRecordLayout(RD).isZeroInitializable();
736 }
737