1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenTypes.h"
15 #include "CGCall.h"
16 #include "CGCXXABI.h"
17 #include "CGRecordLayout.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/Module.h"
25 #include "llvm/Target/TargetData.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
30                            const llvm::TargetData &TD, const ABIInfo &Info,
31                            CGCXXABI &CXXABI, const CodeGenOptions &CGO)
32   : Context(Ctx), Target(Ctx.getTargetInfo()), TheModule(M), TheTargetData(TD),
33     TheABIInfo(Info), TheCXXABI(CXXABI), CodeGenOpts(CGO) {
34   SkippedLayout = false;
35 }
36 
37 CodeGenTypes::~CodeGenTypes() {
38   for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
39          I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
40       I != E; ++I)
41     delete I->second;
42 
43   for (llvm::FoldingSet<CGFunctionInfo>::iterator
44        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
45     delete &*I++;
46 }
47 
48 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
49                                      llvm::StructType *Ty,
50                                      StringRef suffix) {
51   llvm::SmallString<256> TypeName;
52   llvm::raw_svector_ostream OS(TypeName);
53   OS << RD->getKindName() << '.';
54 
55   // Name the codegen type after the typedef name
56   // if there is no tag type name available
57   if (RD->getIdentifier()) {
58     // FIXME: We should not have to check for a null decl context here.
59     // Right now we do it because the implicit Obj-C decls don't have one.
60     if (RD->getDeclContext())
61       OS << RD->getQualifiedNameAsString();
62     else
63       RD->printName(OS);
64   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
65     // FIXME: We should not have to check for a null decl context here.
66     // Right now we do it because the implicit Obj-C decls don't have one.
67     if (TDD->getDeclContext())
68       OS << TDD->getQualifiedNameAsString();
69     else
70       TDD->printName(OS);
71   } else
72     OS << "anon";
73 
74   if (!suffix.empty())
75     OS << suffix;
76 
77   Ty->setName(OS.str());
78 }
79 
80 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
81 /// ConvertType in that it is used to convert to the memory representation for
82 /// a type.  For example, the scalar representation for _Bool is i1, but the
83 /// memory representation is usually i8 or i32, depending on the target.
84 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
85   llvm::Type *R = ConvertType(T);
86 
87   // If this is a non-bool type, don't map it.
88   if (!R->isIntegerTy(1))
89     return R;
90 
91   // Otherwise, return an integer of the target-specified size.
92   return llvm::IntegerType::get(getLLVMContext(),
93                                 (unsigned)Context.getTypeSize(T));
94 }
95 
96 
97 /// isRecordLayoutComplete - Return true if the specified type is already
98 /// completely laid out.
99 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
100   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
101   RecordDeclTypes.find(Ty);
102   return I != RecordDeclTypes.end() && !I->second->isOpaque();
103 }
104 
105 static bool
106 isSafeToConvert(QualType T, CodeGenTypes &CGT,
107                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
108 
109 
110 /// isSafeToConvert - Return true if it is safe to convert the specified record
111 /// decl to IR and lay it out, false if doing so would cause us to get into a
112 /// recursive compilation mess.
113 static bool
114 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
115                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
116   // If we have already checked this type (maybe the same type is used by-value
117   // multiple times in multiple structure fields, don't check again.
118   if (!AlreadyChecked.insert(RD)) return true;
119 
120   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
121 
122   // If this type is already laid out, converting it is a noop.
123   if (CGT.isRecordLayoutComplete(Key)) return true;
124 
125   // If this type is currently being laid out, we can't recursively compile it.
126   if (CGT.isRecordBeingLaidOut(Key))
127     return false;
128 
129   // If this type would require laying out bases that are currently being laid
130   // out, don't do it.  This includes virtual base classes which get laid out
131   // when a class is translated, even though they aren't embedded by-value into
132   // the class.
133   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
134     for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(),
135          E = CRD->bases_end(); I != E; ++I)
136       if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(),
137                            CGT, AlreadyChecked))
138         return false;
139   }
140 
141   // If this type would require laying out members that are currently being laid
142   // out, don't do it.
143   for (RecordDecl::field_iterator I = RD->field_begin(),
144        E = RD->field_end(); I != E; ++I)
145     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
146       return false;
147 
148   // If there are no problems, lets do it.
149   return true;
150 }
151 
152 /// isSafeToConvert - Return true if it is safe to convert this field type,
153 /// which requires the structure elements contained by-value to all be
154 /// recursively safe to convert.
155 static bool
156 isSafeToConvert(QualType T, CodeGenTypes &CGT,
157                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
158   T = T.getCanonicalType();
159 
160   // If this is a record, check it.
161   if (const RecordType *RT = dyn_cast<RecordType>(T))
162     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
163 
164   // If this is an array, check the elements, which are embedded inline.
165   if (const ArrayType *AT = dyn_cast<ArrayType>(T))
166     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
167 
168   // Otherwise, there is no concern about transforming this.  We only care about
169   // things that are contained by-value in a structure that can have another
170   // structure as a member.
171   return true;
172 }
173 
174 
175 /// isSafeToConvert - Return true if it is safe to convert the specified record
176 /// decl to IR and lay it out, false if doing so would cause us to get into a
177 /// recursive compilation mess.
178 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
179   // If no structs are being laid out, we can certainly do this one.
180   if (CGT.noRecordsBeingLaidOut()) return true;
181 
182   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
183   return isSafeToConvert(RD, CGT, AlreadyChecked);
184 }
185 
186 
187 /// isFuncTypeArgumentConvertible - Return true if the specified type in a
188 /// function argument or result position can be converted to an IR type at this
189 /// point.  This boils down to being whether it is complete, as well as whether
190 /// we've temporarily deferred expanding the type because we're in a recursive
191 /// context.
192 bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) {
193   // If this isn't a tagged type, we can convert it!
194   const TagType *TT = Ty->getAs<TagType>();
195   if (TT == 0) return true;
196 
197 
198   // If it's a tagged type used by-value, but is just a forward decl, we can't
199   // convert it.  Note that getDefinition()==0 is not the same as !isDefinition.
200   if (TT->getDecl()->getDefinition() == 0)
201     return false;
202 
203   // If this is an enum, then it is always safe to convert.
204   const RecordType *RT = dyn_cast<RecordType>(TT);
205   if (RT == 0) return true;
206 
207   // Otherwise, we have to be careful.  If it is a struct that we're in the
208   // process of expanding, then we can't convert the function type.  That's ok
209   // though because we must be in a pointer context under the struct, so we can
210   // just convert it to a dummy type.
211   //
212   // We decide this by checking whether ConvertRecordDeclType returns us an
213   // opaque type for a struct that we know is defined.
214   return isSafeToConvert(RT->getDecl(), *this);
215 }
216 
217 
218 /// Code to verify a given function type is complete, i.e. the return type
219 /// and all of the argument types are complete.  Also check to see if we are in
220 /// a RS_StructPointer context, and if so whether any struct types have been
221 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
222 /// that cannot be converted to an IR type.
223 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
224   if (!isFuncTypeArgumentConvertible(FT->getResultType()))
225     return false;
226 
227   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
228     for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
229       if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
230         return false;
231 
232   return true;
233 }
234 
235 /// UpdateCompletedType - When we find the full definition for a TagDecl,
236 /// replace the 'opaque' type we previously made for it if applicable.
237 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
238   // If this is an enum being completed, then we flush all non-struct types from
239   // the cache.  This allows function types and other things that may be derived
240   // from the enum to be recomputed.
241   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
242     // Only flush the cache if we've actually already converted this type.
243     if (TypeCache.count(ED->getTypeForDecl())) {
244       // Okay, we formed some types based on this.  We speculated that the enum
245       // would be lowered to i32, so we only need to flush the cache if this
246       // didn't happen.
247       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
248         TypeCache.clear();
249     }
250     return;
251   }
252 
253   // If we completed a RecordDecl that we previously used and converted to an
254   // anonymous type, then go ahead and complete it now.
255   const RecordDecl *RD = cast<RecordDecl>(TD);
256   if (RD->isDependentType()) return;
257 
258   // Only complete it if we converted it already.  If we haven't converted it
259   // yet, we'll just do it lazily.
260   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
261     ConvertRecordDeclType(RD);
262 }
263 
264 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
265                                     const llvm::fltSemantics &format) {
266   if (&format == &llvm::APFloat::IEEEhalf)
267     return llvm::Type::getInt16Ty(VMContext);
268   if (&format == &llvm::APFloat::IEEEsingle)
269     return llvm::Type::getFloatTy(VMContext);
270   if (&format == &llvm::APFloat::IEEEdouble)
271     return llvm::Type::getDoubleTy(VMContext);
272   if (&format == &llvm::APFloat::IEEEquad)
273     return llvm::Type::getFP128Ty(VMContext);
274   if (&format == &llvm::APFloat::PPCDoubleDouble)
275     return llvm::Type::getPPC_FP128Ty(VMContext);
276   if (&format == &llvm::APFloat::x87DoubleExtended)
277     return llvm::Type::getX86_FP80Ty(VMContext);
278   llvm_unreachable("Unknown float format!");
279 }
280 
281 /// ConvertType - Convert the specified type to its LLVM form.
282 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
283   T = Context.getCanonicalType(T);
284 
285   const Type *Ty = T.getTypePtr();
286 
287   // RecordTypes are cached and processed specially.
288   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
289     return ConvertRecordDeclType(RT->getDecl());
290 
291   // See if type is already cached.
292   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
293   // If type is found in map then use it. Otherwise, convert type T.
294   if (TCI != TypeCache.end())
295     return TCI->second;
296 
297   // If we don't have it in the cache, convert it now.
298   llvm::Type *ResultType = 0;
299   switch (Ty->getTypeClass()) {
300   case Type::Record: // Handled above.
301 #define TYPE(Class, Base)
302 #define ABSTRACT_TYPE(Class, Base)
303 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
304 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
305 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
306 #include "clang/AST/TypeNodes.def"
307     llvm_unreachable("Non-canonical or dependent types aren't possible.");
308     break;
309 
310   case Type::Builtin: {
311     switch (cast<BuiltinType>(Ty)->getKind()) {
312     case BuiltinType::Void:
313     case BuiltinType::ObjCId:
314     case BuiltinType::ObjCClass:
315     case BuiltinType::ObjCSel:
316       // LLVM void type can only be used as the result of a function call.  Just
317       // map to the same as char.
318       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
319       break;
320 
321     case BuiltinType::Bool:
322       // Note that we always return bool as i1 for use as a scalar type.
323       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
324       break;
325 
326     case BuiltinType::Char_S:
327     case BuiltinType::Char_U:
328     case BuiltinType::SChar:
329     case BuiltinType::UChar:
330     case BuiltinType::Short:
331     case BuiltinType::UShort:
332     case BuiltinType::Int:
333     case BuiltinType::UInt:
334     case BuiltinType::Long:
335     case BuiltinType::ULong:
336     case BuiltinType::LongLong:
337     case BuiltinType::ULongLong:
338     case BuiltinType::WChar_S:
339     case BuiltinType::WChar_U:
340     case BuiltinType::Char16:
341     case BuiltinType::Char32:
342       ResultType = llvm::IntegerType::get(getLLVMContext(),
343                                  static_cast<unsigned>(Context.getTypeSize(T)));
344       break;
345 
346     case BuiltinType::Half:
347       // Half is special: it might be lowered to i16 (and will be storage-only
348       // type),. or can be represented as a set of native operations.
349 
350       // FIXME: Ask target which kind of half FP it prefers (storage only vs
351       // native).
352       ResultType = llvm::Type::getInt16Ty(getLLVMContext());
353       break;
354     case BuiltinType::Float:
355     case BuiltinType::Double:
356     case BuiltinType::LongDouble:
357       ResultType = getTypeForFormat(getLLVMContext(),
358                                     Context.getFloatTypeSemantics(T));
359       break;
360 
361     case BuiltinType::NullPtr:
362       // Model std::nullptr_t as i8*
363       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
364       break;
365 
366     case BuiltinType::UInt128:
367     case BuiltinType::Int128:
368       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
369       break;
370 
371     case BuiltinType::Dependent:
372 #define BUILTIN_TYPE(Id, SingletonId)
373 #define PLACEHOLDER_TYPE(Id, SingletonId) \
374     case BuiltinType::Id:
375 #include "clang/AST/BuiltinTypes.def"
376       llvm_unreachable("Unexpected placeholder builtin type!");
377       break;
378     }
379     break;
380   }
381   case Type::Complex: {
382     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
383     ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
384     break;
385   }
386   case Type::LValueReference:
387   case Type::RValueReference: {
388     const ReferenceType *RTy = cast<ReferenceType>(Ty);
389     QualType ETy = RTy->getPointeeType();
390     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
391     unsigned AS = Context.getTargetAddressSpace(ETy);
392     ResultType = llvm::PointerType::get(PointeeType, AS);
393     break;
394   }
395   case Type::Pointer: {
396     const PointerType *PTy = cast<PointerType>(Ty);
397     QualType ETy = PTy->getPointeeType();
398     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
399     if (PointeeType->isVoidTy())
400       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
401     unsigned AS = Context.getTargetAddressSpace(ETy);
402     ResultType = llvm::PointerType::get(PointeeType, AS);
403     break;
404   }
405 
406   case Type::VariableArray: {
407     const VariableArrayType *A = cast<VariableArrayType>(Ty);
408     assert(A->getIndexTypeCVRQualifiers() == 0 &&
409            "FIXME: We only handle trivial array types so far!");
410     // VLAs resolve to the innermost element type; this matches
411     // the return of alloca, and there isn't any obviously better choice.
412     ResultType = ConvertTypeForMem(A->getElementType());
413     break;
414   }
415   case Type::IncompleteArray: {
416     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
417     assert(A->getIndexTypeCVRQualifiers() == 0 &&
418            "FIXME: We only handle trivial array types so far!");
419     // int X[] -> [0 x int], unless the element type is not sized.  If it is
420     // unsized (e.g. an incomplete struct) just use [0 x i8].
421     ResultType = ConvertTypeForMem(A->getElementType());
422     if (!ResultType->isSized()) {
423       SkippedLayout = true;
424       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
425     }
426     ResultType = llvm::ArrayType::get(ResultType, 0);
427     break;
428   }
429   case Type::ConstantArray: {
430     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
431     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
432 
433     // Lower arrays of undefined struct type to arrays of i8 just to have a
434     // concrete type.
435     if (!EltTy->isSized()) {
436       SkippedLayout = true;
437       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
438     }
439 
440     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
441     break;
442   }
443   case Type::ExtVector:
444   case Type::Vector: {
445     const VectorType *VT = cast<VectorType>(Ty);
446     ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
447                                        VT->getNumElements());
448     break;
449   }
450   case Type::FunctionNoProto:
451   case Type::FunctionProto: {
452     const FunctionType *FT = cast<FunctionType>(Ty);
453     // First, check whether we can build the full function type.  If the
454     // function type depends on an incomplete type (e.g. a struct or enum), we
455     // cannot lower the function type.
456     if (!isFuncTypeConvertible(FT)) {
457       // This function's type depends on an incomplete tag type.
458       // Return a placeholder type.
459       ResultType = llvm::StructType::get(getLLVMContext());
460 
461       SkippedLayout = true;
462       break;
463     }
464 
465     // While we're converting the argument types for a function, we don't want
466     // to recursively convert any pointed-to structs.  Converting directly-used
467     // structs is ok though.
468     if (!RecordsBeingLaidOut.insert(Ty)) {
469       ResultType = llvm::StructType::get(getLLVMContext());
470 
471       SkippedLayout = true;
472       break;
473     }
474 
475     // The function type can be built; call the appropriate routines to
476     // build it.
477     const CGFunctionInfo *FI;
478     bool isVariadic;
479     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
480       FI = &getFunctionInfo(
481                    CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
482       isVariadic = FPT->isVariadic();
483     } else {
484       const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
485       FI = &getFunctionInfo(
486                 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
487       isVariadic = true;
488     }
489 
490     // If there is something higher level prodding our CGFunctionInfo, then
491     // don't recurse into it again.
492     if (FunctionsBeingProcessed.count(FI)) {
493 
494       ResultType = llvm::StructType::get(getLLVMContext());
495       SkippedLayout = true;
496     } else {
497 
498       // Otherwise, we're good to go, go ahead and convert it.
499       ResultType = GetFunctionType(*FI, isVariadic);
500     }
501 
502     RecordsBeingLaidOut.erase(Ty);
503 
504     if (SkippedLayout)
505       TypeCache.clear();
506 
507     if (RecordsBeingLaidOut.empty())
508       while (!DeferredRecords.empty())
509         ConvertRecordDeclType(DeferredRecords.pop_back_val());
510     break;
511   }
512 
513   case Type::ObjCObject:
514     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
515     break;
516 
517   case Type::ObjCInterface: {
518     // Objective-C interfaces are always opaque (outside of the
519     // runtime, which can do whatever it likes); we never refine
520     // these.
521     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
522     if (!T)
523       T = llvm::StructType::create(getLLVMContext());
524     ResultType = T;
525     break;
526   }
527 
528   case Type::ObjCObjectPointer: {
529     // Protocol qualifications do not influence the LLVM type, we just return a
530     // pointer to the underlying interface type. We don't need to worry about
531     // recursive conversion.
532     llvm::Type *T =
533       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
534     ResultType = T->getPointerTo();
535     break;
536   }
537 
538   case Type::Enum: {
539     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
540     if (ED->isCompleteDefinition() || ED->isFixed())
541       return ConvertType(ED->getIntegerType());
542     // Return a placeholder 'i32' type.  This can be changed later when the
543     // type is defined (see UpdateCompletedType), but is likely to be the
544     // "right" answer.
545     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
546     break;
547   }
548 
549   case Type::BlockPointer: {
550     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
551     llvm::Type *PointeeType = ConvertTypeForMem(FTy);
552     unsigned AS = Context.getTargetAddressSpace(FTy);
553     ResultType = llvm::PointerType::get(PointeeType, AS);
554     break;
555   }
556 
557   case Type::MemberPointer: {
558     ResultType =
559       getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
560     break;
561   }
562 
563   case Type::Atomic: {
564     ResultType = ConvertTypeForMem(cast<AtomicType>(Ty)->getValueType());
565     break;
566   }
567   }
568 
569   assert(ResultType && "Didn't convert a type?");
570 
571   TypeCache[Ty] = ResultType;
572   return ResultType;
573 }
574 
575 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
576 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
577   // TagDecl's are not necessarily unique, instead use the (clang)
578   // type connected to the decl.
579   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
580 
581   llvm::StructType *&Entry = RecordDeclTypes[Key];
582 
583   // If we don't have a StructType at all yet, create the forward declaration.
584   if (Entry == 0) {
585     Entry = llvm::StructType::create(getLLVMContext());
586     addRecordTypeName(RD, Entry, "");
587   }
588   llvm::StructType *Ty = Entry;
589 
590   // If this is still a forward declaration, or the LLVM type is already
591   // complete, there's nothing more to do.
592   RD = RD->getDefinition();
593   if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque())
594     return Ty;
595 
596   // If converting this type would cause us to infinitely loop, don't do it!
597   if (!isSafeToConvert(RD, *this)) {
598     DeferredRecords.push_back(RD);
599     return Ty;
600   }
601 
602   // Okay, this is a definition of a type.  Compile the implementation now.
603   bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult;
604   assert(InsertResult && "Recursively compiling a struct?");
605 
606   // Force conversion of non-virtual base classes recursively.
607   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
608     for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
609          e = CRD->bases_end(); i != e; ++i) {
610       if (i->isVirtual()) continue;
611 
612       ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl());
613     }
614   }
615 
616   // Layout fields.
617   CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
618   CGRecordLayouts[Key] = Layout;
619 
620   // We're done laying out this struct.
621   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
622   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
623 
624   // If this struct blocked a FunctionType conversion, then recompute whatever
625   // was derived from that.
626   // FIXME: This is hugely overconservative.
627   if (SkippedLayout)
628     TypeCache.clear();
629 
630   // If we're done converting the outer-most record, then convert any deferred
631   // structs as well.
632   if (RecordsBeingLaidOut.empty())
633     while (!DeferredRecords.empty())
634       ConvertRecordDeclType(DeferredRecords.pop_back_val());
635 
636   return Ty;
637 }
638 
639 /// getCGRecordLayout - Return record layout info for the given record decl.
640 const CGRecordLayout &
641 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
642   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
643 
644   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
645   if (!Layout) {
646     // Compute the type information.
647     ConvertRecordDeclType(RD);
648 
649     // Now try again.
650     Layout = CGRecordLayouts.lookup(Key);
651   }
652 
653   assert(Layout && "Unable to find record layout information for type");
654   return *Layout;
655 }
656 
657 bool CodeGenTypes::isZeroInitializable(QualType T) {
658   // No need to check for member pointers when not compiling C++.
659   if (!Context.getLangOptions().CPlusPlus)
660     return true;
661 
662   T = Context.getBaseElementType(T);
663 
664   // Records are non-zero-initializable if they contain any
665   // non-zero-initializable subobjects.
666   if (const RecordType *RT = T->getAs<RecordType>()) {
667     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
668     return isZeroInitializable(RD);
669   }
670 
671   // We have to ask the ABI about member pointers.
672   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
673     return getCXXABI().isZeroInitializable(MPT);
674 
675   // Everything else is okay.
676   return true;
677 }
678 
679 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
680   return getCGRecordLayout(RD).isZeroInitializable();
681 }
682