1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the code that handles AST -> LLVM type lowering. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenTypes.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGRecordLayout.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Module.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm) 33 : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()), 34 TheDataLayout(cgm.getDataLayout()), 35 Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()), 36 TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) { 37 SkippedLayout = false; 38 } 39 40 CodeGenTypes::~CodeGenTypes() { 41 for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator 42 I = CGRecordLayouts.begin(), E = CGRecordLayouts.end(); 43 I != E; ++I) 44 delete I->second; 45 46 for (llvm::FoldingSet<CGFunctionInfo>::iterator 47 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; ) 48 delete &*I++; 49 } 50 51 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD, 52 llvm::StructType *Ty, 53 StringRef suffix) { 54 SmallString<256> TypeName; 55 llvm::raw_svector_ostream OS(TypeName); 56 OS << RD->getKindName() << '.'; 57 58 // Name the codegen type after the typedef name 59 // if there is no tag type name available 60 if (RD->getIdentifier()) { 61 // FIXME: We should not have to check for a null decl context here. 62 // Right now we do it because the implicit Obj-C decls don't have one. 63 if (RD->getDeclContext()) 64 RD->printQualifiedName(OS); 65 else 66 RD->printName(OS); 67 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) { 68 // FIXME: We should not have to check for a null decl context here. 69 // Right now we do it because the implicit Obj-C decls don't have one. 70 if (TDD->getDeclContext()) 71 TDD->printQualifiedName(OS); 72 else 73 TDD->printName(OS); 74 } else 75 OS << "anon"; 76 77 if (!suffix.empty()) 78 OS << suffix; 79 80 Ty->setName(OS.str()); 81 } 82 83 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from 84 /// ConvertType in that it is used to convert to the memory representation for 85 /// a type. For example, the scalar representation for _Bool is i1, but the 86 /// memory representation is usually i8 or i32, depending on the target. 87 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){ 88 llvm::Type *R = ConvertType(T); 89 90 // If this is a non-bool type, don't map it. 91 if (!R->isIntegerTy(1)) 92 return R; 93 94 // Otherwise, return an integer of the target-specified size. 95 return llvm::IntegerType::get(getLLVMContext(), 96 (unsigned)Context.getTypeSize(T)); 97 } 98 99 100 /// isRecordLayoutComplete - Return true if the specified type is already 101 /// completely laid out. 102 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const { 103 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I = 104 RecordDeclTypes.find(Ty); 105 return I != RecordDeclTypes.end() && !I->second->isOpaque(); 106 } 107 108 static bool 109 isSafeToConvert(QualType T, CodeGenTypes &CGT, 110 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked); 111 112 113 /// isSafeToConvert - Return true if it is safe to convert the specified record 114 /// decl to IR and lay it out, false if doing so would cause us to get into a 115 /// recursive compilation mess. 116 static bool 117 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT, 118 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { 119 // If we have already checked this type (maybe the same type is used by-value 120 // multiple times in multiple structure fields, don't check again. 121 if (!AlreadyChecked.insert(RD)) return true; 122 123 const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr(); 124 125 // If this type is already laid out, converting it is a noop. 126 if (CGT.isRecordLayoutComplete(Key)) return true; 127 128 // If this type is currently being laid out, we can't recursively compile it. 129 if (CGT.isRecordBeingLaidOut(Key)) 130 return false; 131 132 // If this type would require laying out bases that are currently being laid 133 // out, don't do it. This includes virtual base classes which get laid out 134 // when a class is translated, even though they aren't embedded by-value into 135 // the class. 136 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 137 for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(), 138 E = CRD->bases_end(); I != E; ++I) 139 if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(), 140 CGT, AlreadyChecked)) 141 return false; 142 } 143 144 // If this type would require laying out members that are currently being laid 145 // out, don't do it. 146 for (RecordDecl::field_iterator I = RD->field_begin(), 147 E = RD->field_end(); I != E; ++I) 148 if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked)) 149 return false; 150 151 // If there are no problems, lets do it. 152 return true; 153 } 154 155 /// isSafeToConvert - Return true if it is safe to convert this field type, 156 /// which requires the structure elements contained by-value to all be 157 /// recursively safe to convert. 158 static bool 159 isSafeToConvert(QualType T, CodeGenTypes &CGT, 160 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { 161 T = T.getCanonicalType(); 162 163 // If this is a record, check it. 164 if (const RecordType *RT = dyn_cast<RecordType>(T)) 165 return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked); 166 167 // If this is an array, check the elements, which are embedded inline. 168 if (const ArrayType *AT = dyn_cast<ArrayType>(T)) 169 return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked); 170 171 // Otherwise, there is no concern about transforming this. We only care about 172 // things that are contained by-value in a structure that can have another 173 // structure as a member. 174 return true; 175 } 176 177 178 /// isSafeToConvert - Return true if it is safe to convert the specified record 179 /// decl to IR and lay it out, false if doing so would cause us to get into a 180 /// recursive compilation mess. 181 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) { 182 // If no structs are being laid out, we can certainly do this one. 183 if (CGT.noRecordsBeingLaidOut()) return true; 184 185 llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked; 186 return isSafeToConvert(RD, CGT, AlreadyChecked); 187 } 188 189 /// isFuncParamTypeConvertible - Return true if the specified type in a 190 /// function parameter or result position can be converted to an IR type at this 191 /// point. This boils down to being whether it is complete, as well as whether 192 /// we've temporarily deferred expanding the type because we're in a recursive 193 /// context. 194 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) { 195 // If this isn't a tagged type, we can convert it! 196 const TagType *TT = Ty->getAs<TagType>(); 197 if (TT == 0) return true; 198 199 // Incomplete types cannot be converted. 200 if (TT->isIncompleteType()) 201 return false; 202 203 // If this is an enum, then it is always safe to convert. 204 const RecordType *RT = dyn_cast<RecordType>(TT); 205 if (RT == 0) return true; 206 207 // Otherwise, we have to be careful. If it is a struct that we're in the 208 // process of expanding, then we can't convert the function type. That's ok 209 // though because we must be in a pointer context under the struct, so we can 210 // just convert it to a dummy type. 211 // 212 // We decide this by checking whether ConvertRecordDeclType returns us an 213 // opaque type for a struct that we know is defined. 214 return isSafeToConvert(RT->getDecl(), *this); 215 } 216 217 218 /// Code to verify a given function type is complete, i.e. the return type 219 /// and all of the parameter types are complete. Also check to see if we are in 220 /// a RS_StructPointer context, and if so whether any struct types have been 221 /// pended. If so, we don't want to ask the ABI lowering code to handle a type 222 /// that cannot be converted to an IR type. 223 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) { 224 if (!isFuncParamTypeConvertible(FT->getReturnType())) 225 return false; 226 227 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 228 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 229 if (!isFuncParamTypeConvertible(FPT->getParamType(i))) 230 return false; 231 232 return true; 233 } 234 235 /// UpdateCompletedType - When we find the full definition for a TagDecl, 236 /// replace the 'opaque' type we previously made for it if applicable. 237 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) { 238 // If this is an enum being completed, then we flush all non-struct types from 239 // the cache. This allows function types and other things that may be derived 240 // from the enum to be recomputed. 241 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) { 242 // Only flush the cache if we've actually already converted this type. 243 if (TypeCache.count(ED->getTypeForDecl())) { 244 // Okay, we formed some types based on this. We speculated that the enum 245 // would be lowered to i32, so we only need to flush the cache if this 246 // didn't happen. 247 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32)) 248 TypeCache.clear(); 249 } 250 return; 251 } 252 253 // If we completed a RecordDecl that we previously used and converted to an 254 // anonymous type, then go ahead and complete it now. 255 const RecordDecl *RD = cast<RecordDecl>(TD); 256 if (RD->isDependentType()) return; 257 258 // Only complete it if we converted it already. If we haven't converted it 259 // yet, we'll just do it lazily. 260 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr())) 261 ConvertRecordDeclType(RD); 262 263 // If necessary, provide the full definition of a type only used with a 264 // declaration so far. 265 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 266 DI->completeType(RD); 267 } 268 269 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext, 270 const llvm::fltSemantics &format, 271 bool UseNativeHalf = false) { 272 if (&format == &llvm::APFloat::IEEEhalf) { 273 if (UseNativeHalf) 274 return llvm::Type::getHalfTy(VMContext); 275 else 276 return llvm::Type::getInt16Ty(VMContext); 277 } 278 if (&format == &llvm::APFloat::IEEEsingle) 279 return llvm::Type::getFloatTy(VMContext); 280 if (&format == &llvm::APFloat::IEEEdouble) 281 return llvm::Type::getDoubleTy(VMContext); 282 if (&format == &llvm::APFloat::IEEEquad) 283 return llvm::Type::getFP128Ty(VMContext); 284 if (&format == &llvm::APFloat::PPCDoubleDouble) 285 return llvm::Type::getPPC_FP128Ty(VMContext); 286 if (&format == &llvm::APFloat::x87DoubleExtended) 287 return llvm::Type::getX86_FP80Ty(VMContext); 288 llvm_unreachable("Unknown float format!"); 289 } 290 291 /// ConvertType - Convert the specified type to its LLVM form. 292 llvm::Type *CodeGenTypes::ConvertType(QualType T) { 293 T = Context.getCanonicalType(T); 294 295 const Type *Ty = T.getTypePtr(); 296 297 // RecordTypes are cached and processed specially. 298 if (const RecordType *RT = dyn_cast<RecordType>(Ty)) 299 return ConvertRecordDeclType(RT->getDecl()); 300 301 // See if type is already cached. 302 llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty); 303 // If type is found in map then use it. Otherwise, convert type T. 304 if (TCI != TypeCache.end()) 305 return TCI->second; 306 307 // If we don't have it in the cache, convert it now. 308 llvm::Type *ResultType = 0; 309 switch (Ty->getTypeClass()) { 310 case Type::Record: // Handled above. 311 #define TYPE(Class, Base) 312 #define ABSTRACT_TYPE(Class, Base) 313 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 314 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 315 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 316 #include "clang/AST/TypeNodes.def" 317 llvm_unreachable("Non-canonical or dependent types aren't possible."); 318 319 case Type::Builtin: { 320 switch (cast<BuiltinType>(Ty)->getKind()) { 321 case BuiltinType::Void: 322 case BuiltinType::ObjCId: 323 case BuiltinType::ObjCClass: 324 case BuiltinType::ObjCSel: 325 // LLVM void type can only be used as the result of a function call. Just 326 // map to the same as char. 327 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 328 break; 329 330 case BuiltinType::Bool: 331 // Note that we always return bool as i1 for use as a scalar type. 332 ResultType = llvm::Type::getInt1Ty(getLLVMContext()); 333 break; 334 335 case BuiltinType::Char_S: 336 case BuiltinType::Char_U: 337 case BuiltinType::SChar: 338 case BuiltinType::UChar: 339 case BuiltinType::Short: 340 case BuiltinType::UShort: 341 case BuiltinType::Int: 342 case BuiltinType::UInt: 343 case BuiltinType::Long: 344 case BuiltinType::ULong: 345 case BuiltinType::LongLong: 346 case BuiltinType::ULongLong: 347 case BuiltinType::WChar_S: 348 case BuiltinType::WChar_U: 349 case BuiltinType::Char16: 350 case BuiltinType::Char32: 351 ResultType = llvm::IntegerType::get(getLLVMContext(), 352 static_cast<unsigned>(Context.getTypeSize(T))); 353 break; 354 355 case BuiltinType::Half: 356 // Half FP can either be storage-only (lowered to i16) or native. 357 ResultType = getTypeForFormat(getLLVMContext(), 358 Context.getFloatTypeSemantics(T), 359 Context.getLangOpts().NativeHalfType); 360 break; 361 case BuiltinType::Float: 362 case BuiltinType::Double: 363 case BuiltinType::LongDouble: 364 ResultType = getTypeForFormat(getLLVMContext(), 365 Context.getFloatTypeSemantics(T), 366 /* UseNativeHalf = */ false); 367 break; 368 369 case BuiltinType::NullPtr: 370 // Model std::nullptr_t as i8* 371 ResultType = llvm::Type::getInt8PtrTy(getLLVMContext()); 372 break; 373 374 case BuiltinType::UInt128: 375 case BuiltinType::Int128: 376 ResultType = llvm::IntegerType::get(getLLVMContext(), 128); 377 break; 378 379 case BuiltinType::OCLImage1d: 380 case BuiltinType::OCLImage1dArray: 381 case BuiltinType::OCLImage1dBuffer: 382 case BuiltinType::OCLImage2d: 383 case BuiltinType::OCLImage2dArray: 384 case BuiltinType::OCLImage3d: 385 case BuiltinType::OCLSampler: 386 case BuiltinType::OCLEvent: 387 ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty); 388 break; 389 390 case BuiltinType::Dependent: 391 #define BUILTIN_TYPE(Id, SingletonId) 392 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 393 case BuiltinType::Id: 394 #include "clang/AST/BuiltinTypes.def" 395 llvm_unreachable("Unexpected placeholder builtin type!"); 396 } 397 break; 398 } 399 case Type::Auto: 400 llvm_unreachable("Unexpected undeduced auto type!"); 401 case Type::Complex: { 402 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType()); 403 ResultType = llvm::StructType::get(EltTy, EltTy, NULL); 404 break; 405 } 406 case Type::LValueReference: 407 case Type::RValueReference: { 408 const ReferenceType *RTy = cast<ReferenceType>(Ty); 409 QualType ETy = RTy->getPointeeType(); 410 llvm::Type *PointeeType = ConvertTypeForMem(ETy); 411 unsigned AS = Context.getTargetAddressSpace(ETy); 412 ResultType = llvm::PointerType::get(PointeeType, AS); 413 break; 414 } 415 case Type::Pointer: { 416 const PointerType *PTy = cast<PointerType>(Ty); 417 QualType ETy = PTy->getPointeeType(); 418 llvm::Type *PointeeType = ConvertTypeForMem(ETy); 419 if (PointeeType->isVoidTy()) 420 PointeeType = llvm::Type::getInt8Ty(getLLVMContext()); 421 unsigned AS = Context.getTargetAddressSpace(ETy); 422 ResultType = llvm::PointerType::get(PointeeType, AS); 423 break; 424 } 425 426 case Type::VariableArray: { 427 const VariableArrayType *A = cast<VariableArrayType>(Ty); 428 assert(A->getIndexTypeCVRQualifiers() == 0 && 429 "FIXME: We only handle trivial array types so far!"); 430 // VLAs resolve to the innermost element type; this matches 431 // the return of alloca, and there isn't any obviously better choice. 432 ResultType = ConvertTypeForMem(A->getElementType()); 433 break; 434 } 435 case Type::IncompleteArray: { 436 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty); 437 assert(A->getIndexTypeCVRQualifiers() == 0 && 438 "FIXME: We only handle trivial array types so far!"); 439 // int X[] -> [0 x int], unless the element type is not sized. If it is 440 // unsized (e.g. an incomplete struct) just use [0 x i8]. 441 ResultType = ConvertTypeForMem(A->getElementType()); 442 if (!ResultType->isSized()) { 443 SkippedLayout = true; 444 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 445 } 446 ResultType = llvm::ArrayType::get(ResultType, 0); 447 break; 448 } 449 case Type::ConstantArray: { 450 const ConstantArrayType *A = cast<ConstantArrayType>(Ty); 451 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType()); 452 453 // Lower arrays of undefined struct type to arrays of i8 just to have a 454 // concrete type. 455 if (!EltTy->isSized()) { 456 SkippedLayout = true; 457 EltTy = llvm::Type::getInt8Ty(getLLVMContext()); 458 } 459 460 ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue()); 461 break; 462 } 463 case Type::ExtVector: 464 case Type::Vector: { 465 const VectorType *VT = cast<VectorType>(Ty); 466 ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()), 467 VT->getNumElements()); 468 break; 469 } 470 case Type::FunctionNoProto: 471 case Type::FunctionProto: { 472 const FunctionType *FT = cast<FunctionType>(Ty); 473 // First, check whether we can build the full function type. If the 474 // function type depends on an incomplete type (e.g. a struct or enum), we 475 // cannot lower the function type. 476 if (!isFuncTypeConvertible(FT)) { 477 // This function's type depends on an incomplete tag type. 478 479 // Force conversion of all the relevant record types, to make sure 480 // we re-convert the FunctionType when appropriate. 481 if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>()) 482 ConvertRecordDeclType(RT->getDecl()); 483 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 484 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 485 if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>()) 486 ConvertRecordDeclType(RT->getDecl()); 487 488 // Return a placeholder type. 489 ResultType = llvm::StructType::get(getLLVMContext()); 490 491 SkippedLayout = true; 492 break; 493 } 494 495 // While we're converting the parameter types for a function, we don't want 496 // to recursively convert any pointed-to structs. Converting directly-used 497 // structs is ok though. 498 if (!RecordsBeingLaidOut.insert(Ty)) { 499 ResultType = llvm::StructType::get(getLLVMContext()); 500 501 SkippedLayout = true; 502 break; 503 } 504 505 // The function type can be built; call the appropriate routines to 506 // build it. 507 const CGFunctionInfo *FI; 508 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { 509 FI = &arrangeFreeFunctionType( 510 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0))); 511 } else { 512 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT); 513 FI = &arrangeFreeFunctionType( 514 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0))); 515 } 516 517 // If there is something higher level prodding our CGFunctionInfo, then 518 // don't recurse into it again. 519 if (FunctionsBeingProcessed.count(FI)) { 520 521 ResultType = llvm::StructType::get(getLLVMContext()); 522 SkippedLayout = true; 523 } else { 524 525 // Otherwise, we're good to go, go ahead and convert it. 526 ResultType = GetFunctionType(*FI); 527 } 528 529 RecordsBeingLaidOut.erase(Ty); 530 531 if (SkippedLayout) 532 TypeCache.clear(); 533 534 if (RecordsBeingLaidOut.empty()) 535 while (!DeferredRecords.empty()) 536 ConvertRecordDeclType(DeferredRecords.pop_back_val()); 537 break; 538 } 539 540 case Type::ObjCObject: 541 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType()); 542 break; 543 544 case Type::ObjCInterface: { 545 // Objective-C interfaces are always opaque (outside of the 546 // runtime, which can do whatever it likes); we never refine 547 // these. 548 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)]; 549 if (!T) 550 T = llvm::StructType::create(getLLVMContext()); 551 ResultType = T; 552 break; 553 } 554 555 case Type::ObjCObjectPointer: { 556 // Protocol qualifications do not influence the LLVM type, we just return a 557 // pointer to the underlying interface type. We don't need to worry about 558 // recursive conversion. 559 llvm::Type *T = 560 ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType()); 561 ResultType = T->getPointerTo(); 562 break; 563 } 564 565 case Type::Enum: { 566 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl(); 567 if (ED->isCompleteDefinition() || ED->isFixed()) 568 return ConvertType(ED->getIntegerType()); 569 // Return a placeholder 'i32' type. This can be changed later when the 570 // type is defined (see UpdateCompletedType), but is likely to be the 571 // "right" answer. 572 ResultType = llvm::Type::getInt32Ty(getLLVMContext()); 573 break; 574 } 575 576 case Type::BlockPointer: { 577 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType(); 578 llvm::Type *PointeeType = ConvertTypeForMem(FTy); 579 unsigned AS = Context.getTargetAddressSpace(FTy); 580 ResultType = llvm::PointerType::get(PointeeType, AS); 581 break; 582 } 583 584 case Type::MemberPointer: { 585 ResultType = 586 getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty)); 587 break; 588 } 589 590 case Type::Atomic: { 591 QualType valueType = cast<AtomicType>(Ty)->getValueType(); 592 ResultType = ConvertTypeForMem(valueType); 593 594 // Pad out to the inflated size if necessary. 595 uint64_t valueSize = Context.getTypeSize(valueType); 596 uint64_t atomicSize = Context.getTypeSize(Ty); 597 if (valueSize != atomicSize) { 598 assert(valueSize < atomicSize); 599 llvm::Type *elts[] = { 600 ResultType, 601 llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8) 602 }; 603 ResultType = llvm::StructType::get(getLLVMContext(), 604 llvm::makeArrayRef(elts)); 605 } 606 break; 607 } 608 } 609 610 assert(ResultType && "Didn't convert a type?"); 611 612 TypeCache[Ty] = ResultType; 613 return ResultType; 614 } 615 616 bool CodeGenModule::isPaddedAtomicType(QualType type) { 617 return isPaddedAtomicType(type->castAs<AtomicType>()); 618 } 619 620 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) { 621 return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType()); 622 } 623 624 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. 625 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) { 626 // TagDecl's are not necessarily unique, instead use the (clang) 627 // type connected to the decl. 628 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 629 630 llvm::StructType *&Entry = RecordDeclTypes[Key]; 631 632 // If we don't have a StructType at all yet, create the forward declaration. 633 if (Entry == 0) { 634 Entry = llvm::StructType::create(getLLVMContext()); 635 addRecordTypeName(RD, Entry, ""); 636 } 637 llvm::StructType *Ty = Entry; 638 639 // If this is still a forward declaration, or the LLVM type is already 640 // complete, there's nothing more to do. 641 RD = RD->getDefinition(); 642 if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque()) 643 return Ty; 644 645 // If converting this type would cause us to infinitely loop, don't do it! 646 if (!isSafeToConvert(RD, *this)) { 647 DeferredRecords.push_back(RD); 648 return Ty; 649 } 650 651 // Okay, this is a definition of a type. Compile the implementation now. 652 bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult; 653 assert(InsertResult && "Recursively compiling a struct?"); 654 655 // Force conversion of non-virtual base classes recursively. 656 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 657 for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(), 658 e = CRD->bases_end(); i != e; ++i) { 659 if (i->isVirtual()) continue; 660 661 ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl()); 662 } 663 } 664 665 // Layout fields. 666 CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty); 667 CGRecordLayouts[Key] = Layout; 668 669 // We're done laying out this struct. 670 bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult; 671 assert(EraseResult && "struct not in RecordsBeingLaidOut set?"); 672 673 // If this struct blocked a FunctionType conversion, then recompute whatever 674 // was derived from that. 675 // FIXME: This is hugely overconservative. 676 if (SkippedLayout) 677 TypeCache.clear(); 678 679 // If we're done converting the outer-most record, then convert any deferred 680 // structs as well. 681 if (RecordsBeingLaidOut.empty()) 682 while (!DeferredRecords.empty()) 683 ConvertRecordDeclType(DeferredRecords.pop_back_val()); 684 685 return Ty; 686 } 687 688 /// getCGRecordLayout - Return record layout info for the given record decl. 689 const CGRecordLayout & 690 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) { 691 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 692 693 const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key); 694 if (!Layout) { 695 // Compute the type information. 696 ConvertRecordDeclType(RD); 697 698 // Now try again. 699 Layout = CGRecordLayouts.lookup(Key); 700 } 701 702 assert(Layout && "Unable to find record layout information for type"); 703 return *Layout; 704 } 705 706 bool CodeGenTypes::isZeroInitializable(QualType T) { 707 // No need to check for member pointers when not compiling C++. 708 if (!Context.getLangOpts().CPlusPlus) 709 return true; 710 711 T = Context.getBaseElementType(T); 712 713 // Records are non-zero-initializable if they contain any 714 // non-zero-initializable subobjects. 715 if (const RecordType *RT = T->getAs<RecordType>()) { 716 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 717 return isZeroInitializable(RD); 718 } 719 720 // We have to ask the ABI about member pointers. 721 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) 722 return getCXXABI().isZeroInitializable(MPT); 723 724 // Everything else is okay. 725 return true; 726 } 727 728 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) { 729 return getCGRecordLayout(RD).isZeroInitializable(); 730 } 731