1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the code that handles AST -> LLVM type lowering. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenTypes.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGRecordLayout.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Module.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm) 33 : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()), 34 Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()), 35 TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) { 36 SkippedLayout = false; 37 } 38 39 CodeGenTypes::~CodeGenTypes() { 40 llvm::DeleteContainerSeconds(CGRecordLayouts); 41 42 for (llvm::FoldingSet<CGFunctionInfo>::iterator 43 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; ) 44 delete &*I++; 45 } 46 47 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD, 48 llvm::StructType *Ty, 49 StringRef suffix) { 50 SmallString<256> TypeName; 51 llvm::raw_svector_ostream OS(TypeName); 52 OS << RD->getKindName() << '.'; 53 54 // Name the codegen type after the typedef name 55 // if there is no tag type name available 56 if (RD->getIdentifier()) { 57 // FIXME: We should not have to check for a null decl context here. 58 // Right now we do it because the implicit Obj-C decls don't have one. 59 if (RD->getDeclContext()) 60 RD->printQualifiedName(OS); 61 else 62 RD->printName(OS); 63 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) { 64 // FIXME: We should not have to check for a null decl context here. 65 // Right now we do it because the implicit Obj-C decls don't have one. 66 if (TDD->getDeclContext()) 67 TDD->printQualifiedName(OS); 68 else 69 TDD->printName(OS); 70 } else 71 OS << "anon"; 72 73 if (!suffix.empty()) 74 OS << suffix; 75 76 Ty->setName(OS.str()); 77 } 78 79 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from 80 /// ConvertType in that it is used to convert to the memory representation for 81 /// a type. For example, the scalar representation for _Bool is i1, but the 82 /// memory representation is usually i8 or i32, depending on the target. 83 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) { 84 llvm::Type *R = ConvertType(T); 85 86 // If this is a non-bool type, don't map it. 87 if (!R->isIntegerTy(1)) 88 return R; 89 90 // Otherwise, return an integer of the target-specified size. 91 return llvm::IntegerType::get(getLLVMContext(), 92 (unsigned)Context.getTypeSize(T)); 93 } 94 95 96 /// isRecordLayoutComplete - Return true if the specified type is already 97 /// completely laid out. 98 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const { 99 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I = 100 RecordDeclTypes.find(Ty); 101 return I != RecordDeclTypes.end() && !I->second->isOpaque(); 102 } 103 104 static bool 105 isSafeToConvert(QualType T, CodeGenTypes &CGT, 106 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked); 107 108 109 /// isSafeToConvert - Return true if it is safe to convert the specified record 110 /// decl to IR and lay it out, false if doing so would cause us to get into a 111 /// recursive compilation mess. 112 static bool 113 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT, 114 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { 115 // If we have already checked this type (maybe the same type is used by-value 116 // multiple times in multiple structure fields, don't check again. 117 if (!AlreadyChecked.insert(RD).second) 118 return true; 119 120 const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr(); 121 122 // If this type is already laid out, converting it is a noop. 123 if (CGT.isRecordLayoutComplete(Key)) return true; 124 125 // If this type is currently being laid out, we can't recursively compile it. 126 if (CGT.isRecordBeingLaidOut(Key)) 127 return false; 128 129 // If this type would require laying out bases that are currently being laid 130 // out, don't do it. This includes virtual base classes which get laid out 131 // when a class is translated, even though they aren't embedded by-value into 132 // the class. 133 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 134 for (const auto &I : CRD->bases()) 135 if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(), 136 CGT, AlreadyChecked)) 137 return false; 138 } 139 140 // If this type would require laying out members that are currently being laid 141 // out, don't do it. 142 for (const auto *I : RD->fields()) 143 if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked)) 144 return false; 145 146 // If there are no problems, lets do it. 147 return true; 148 } 149 150 /// isSafeToConvert - Return true if it is safe to convert this field type, 151 /// which requires the structure elements contained by-value to all be 152 /// recursively safe to convert. 153 static bool 154 isSafeToConvert(QualType T, CodeGenTypes &CGT, 155 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { 156 // Strip off atomic type sugar. 157 if (const auto *AT = T->getAs<AtomicType>()) 158 T = AT->getValueType(); 159 160 // If this is a record, check it. 161 if (const auto *RT = T->getAs<RecordType>()) 162 return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked); 163 164 // If this is an array, check the elements, which are embedded inline. 165 if (const auto *AT = CGT.getContext().getAsArrayType(T)) 166 return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked); 167 168 // Otherwise, there is no concern about transforming this. We only care about 169 // things that are contained by-value in a structure that can have another 170 // structure as a member. 171 return true; 172 } 173 174 175 /// isSafeToConvert - Return true if it is safe to convert the specified record 176 /// decl to IR and lay it out, false if doing so would cause us to get into a 177 /// recursive compilation mess. 178 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) { 179 // If no structs are being laid out, we can certainly do this one. 180 if (CGT.noRecordsBeingLaidOut()) return true; 181 182 llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked; 183 return isSafeToConvert(RD, CGT, AlreadyChecked); 184 } 185 186 /// isFuncParamTypeConvertible - Return true if the specified type in a 187 /// function parameter or result position can be converted to an IR type at this 188 /// point. This boils down to being whether it is complete, as well as whether 189 /// we've temporarily deferred expanding the type because we're in a recursive 190 /// context. 191 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) { 192 // Some ABIs cannot have their member pointers represented in IR unless 193 // certain circumstances have been reached. 194 if (const auto *MPT = Ty->getAs<MemberPointerType>()) 195 return getCXXABI().isMemberPointerConvertible(MPT); 196 197 // If this isn't a tagged type, we can convert it! 198 const TagType *TT = Ty->getAs<TagType>(); 199 if (!TT) return true; 200 201 // Incomplete types cannot be converted. 202 if (TT->isIncompleteType()) 203 return false; 204 205 // If this is an enum, then it is always safe to convert. 206 const RecordType *RT = dyn_cast<RecordType>(TT); 207 if (!RT) return true; 208 209 // Otherwise, we have to be careful. If it is a struct that we're in the 210 // process of expanding, then we can't convert the function type. That's ok 211 // though because we must be in a pointer context under the struct, so we can 212 // just convert it to a dummy type. 213 // 214 // We decide this by checking whether ConvertRecordDeclType returns us an 215 // opaque type for a struct that we know is defined. 216 return isSafeToConvert(RT->getDecl(), *this); 217 } 218 219 220 /// Code to verify a given function type is complete, i.e. the return type 221 /// and all of the parameter types are complete. Also check to see if we are in 222 /// a RS_StructPointer context, and if so whether any struct types have been 223 /// pended. If so, we don't want to ask the ABI lowering code to handle a type 224 /// that cannot be converted to an IR type. 225 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) { 226 if (!isFuncParamTypeConvertible(FT->getReturnType())) 227 return false; 228 229 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 230 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 231 if (!isFuncParamTypeConvertible(FPT->getParamType(i))) 232 return false; 233 234 return true; 235 } 236 237 /// UpdateCompletedType - When we find the full definition for a TagDecl, 238 /// replace the 'opaque' type we previously made for it if applicable. 239 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) { 240 // If this is an enum being completed, then we flush all non-struct types from 241 // the cache. This allows function types and other things that may be derived 242 // from the enum to be recomputed. 243 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) { 244 // Only flush the cache if we've actually already converted this type. 245 if (TypeCache.count(ED->getTypeForDecl())) { 246 // Okay, we formed some types based on this. We speculated that the enum 247 // would be lowered to i32, so we only need to flush the cache if this 248 // didn't happen. 249 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32)) 250 TypeCache.clear(); 251 } 252 // If necessary, provide the full definition of a type only used with a 253 // declaration so far. 254 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 255 DI->completeType(ED); 256 return; 257 } 258 259 // If we completed a RecordDecl that we previously used and converted to an 260 // anonymous type, then go ahead and complete it now. 261 const RecordDecl *RD = cast<RecordDecl>(TD); 262 if (RD->isDependentType()) return; 263 264 // Only complete it if we converted it already. If we haven't converted it 265 // yet, we'll just do it lazily. 266 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr())) 267 ConvertRecordDeclType(RD); 268 269 // If necessary, provide the full definition of a type only used with a 270 // declaration so far. 271 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 272 DI->completeType(RD); 273 } 274 275 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext, 276 const llvm::fltSemantics &format, 277 bool UseNativeHalf = false) { 278 if (&format == &llvm::APFloat::IEEEhalf) { 279 if (UseNativeHalf) 280 return llvm::Type::getHalfTy(VMContext); 281 else 282 return llvm::Type::getInt16Ty(VMContext); 283 } 284 if (&format == &llvm::APFloat::IEEEsingle) 285 return llvm::Type::getFloatTy(VMContext); 286 if (&format == &llvm::APFloat::IEEEdouble) 287 return llvm::Type::getDoubleTy(VMContext); 288 if (&format == &llvm::APFloat::IEEEquad) 289 return llvm::Type::getFP128Ty(VMContext); 290 if (&format == &llvm::APFloat::PPCDoubleDouble) 291 return llvm::Type::getPPC_FP128Ty(VMContext); 292 if (&format == &llvm::APFloat::x87DoubleExtended) 293 return llvm::Type::getX86_FP80Ty(VMContext); 294 llvm_unreachable("Unknown float format!"); 295 } 296 297 /// ConvertType - Convert the specified type to its LLVM form. 298 llvm::Type *CodeGenTypes::ConvertType(QualType T) { 299 T = Context.getCanonicalType(T); 300 301 const Type *Ty = T.getTypePtr(); 302 303 // RecordTypes are cached and processed specially. 304 if (const RecordType *RT = dyn_cast<RecordType>(Ty)) 305 return ConvertRecordDeclType(RT->getDecl()); 306 307 // See if type is already cached. 308 llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty); 309 // If type is found in map then use it. Otherwise, convert type T. 310 if (TCI != TypeCache.end()) 311 return TCI->second; 312 313 // If we don't have it in the cache, convert it now. 314 llvm::Type *ResultType = nullptr; 315 switch (Ty->getTypeClass()) { 316 case Type::Record: // Handled above. 317 #define TYPE(Class, Base) 318 #define ABSTRACT_TYPE(Class, Base) 319 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 320 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 321 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 322 #include "clang/AST/TypeNodes.def" 323 llvm_unreachable("Non-canonical or dependent types aren't possible."); 324 325 case Type::Builtin: { 326 switch (cast<BuiltinType>(Ty)->getKind()) { 327 case BuiltinType::Void: 328 case BuiltinType::ObjCId: 329 case BuiltinType::ObjCClass: 330 case BuiltinType::ObjCSel: 331 // LLVM void type can only be used as the result of a function call. Just 332 // map to the same as char. 333 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 334 break; 335 336 case BuiltinType::Bool: 337 // Note that we always return bool as i1 for use as a scalar type. 338 ResultType = llvm::Type::getInt1Ty(getLLVMContext()); 339 break; 340 341 case BuiltinType::Char_S: 342 case BuiltinType::Char_U: 343 case BuiltinType::SChar: 344 case BuiltinType::UChar: 345 case BuiltinType::Short: 346 case BuiltinType::UShort: 347 case BuiltinType::Int: 348 case BuiltinType::UInt: 349 case BuiltinType::Long: 350 case BuiltinType::ULong: 351 case BuiltinType::LongLong: 352 case BuiltinType::ULongLong: 353 case BuiltinType::WChar_S: 354 case BuiltinType::WChar_U: 355 case BuiltinType::Char16: 356 case BuiltinType::Char32: 357 ResultType = llvm::IntegerType::get(getLLVMContext(), 358 static_cast<unsigned>(Context.getTypeSize(T))); 359 break; 360 361 case BuiltinType::Half: 362 // Half FP can either be storage-only (lowered to i16) or native. 363 ResultType = 364 getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T), 365 Context.getLangOpts().NativeHalfType || 366 Context.getLangOpts().HalfArgsAndReturns); 367 break; 368 case BuiltinType::Float: 369 case BuiltinType::Double: 370 case BuiltinType::LongDouble: 371 ResultType = getTypeForFormat(getLLVMContext(), 372 Context.getFloatTypeSemantics(T), 373 /* UseNativeHalf = */ false); 374 break; 375 376 case BuiltinType::NullPtr: 377 // Model std::nullptr_t as i8* 378 ResultType = llvm::Type::getInt8PtrTy(getLLVMContext()); 379 break; 380 381 case BuiltinType::UInt128: 382 case BuiltinType::Int128: 383 ResultType = llvm::IntegerType::get(getLLVMContext(), 128); 384 break; 385 386 case BuiltinType::OCLImage1d: 387 case BuiltinType::OCLImage1dArray: 388 case BuiltinType::OCLImage1dBuffer: 389 case BuiltinType::OCLImage2d: 390 case BuiltinType::OCLImage2dArray: 391 case BuiltinType::OCLImage2dDepth: 392 case BuiltinType::OCLImage2dArrayDepth: 393 case BuiltinType::OCLImage2dMSAA: 394 case BuiltinType::OCLImage2dArrayMSAA: 395 case BuiltinType::OCLImage2dMSAADepth: 396 case BuiltinType::OCLImage2dArrayMSAADepth: 397 case BuiltinType::OCLImage3d: 398 case BuiltinType::OCLSampler: 399 case BuiltinType::OCLEvent: 400 case BuiltinType::OCLClkEvent: 401 case BuiltinType::OCLQueue: 402 case BuiltinType::OCLNDRange: 403 case BuiltinType::OCLReserveID: 404 ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty); 405 break; 406 407 case BuiltinType::Dependent: 408 #define BUILTIN_TYPE(Id, SingletonId) 409 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 410 case BuiltinType::Id: 411 #include "clang/AST/BuiltinTypes.def" 412 llvm_unreachable("Unexpected placeholder builtin type!"); 413 } 414 break; 415 } 416 case Type::Auto: 417 llvm_unreachable("Unexpected undeduced auto type!"); 418 case Type::Complex: { 419 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType()); 420 ResultType = llvm::StructType::get(EltTy, EltTy, nullptr); 421 break; 422 } 423 case Type::LValueReference: 424 case Type::RValueReference: { 425 const ReferenceType *RTy = cast<ReferenceType>(Ty); 426 QualType ETy = RTy->getPointeeType(); 427 llvm::Type *PointeeType = ConvertTypeForMem(ETy); 428 unsigned AS = Context.getTargetAddressSpace(ETy); 429 ResultType = llvm::PointerType::get(PointeeType, AS); 430 break; 431 } 432 case Type::Pointer: { 433 const PointerType *PTy = cast<PointerType>(Ty); 434 QualType ETy = PTy->getPointeeType(); 435 llvm::Type *PointeeType = ConvertTypeForMem(ETy); 436 if (PointeeType->isVoidTy()) 437 PointeeType = llvm::Type::getInt8Ty(getLLVMContext()); 438 unsigned AS = Context.getTargetAddressSpace(ETy); 439 ResultType = llvm::PointerType::get(PointeeType, AS); 440 break; 441 } 442 443 case Type::VariableArray: { 444 const VariableArrayType *A = cast<VariableArrayType>(Ty); 445 assert(A->getIndexTypeCVRQualifiers() == 0 && 446 "FIXME: We only handle trivial array types so far!"); 447 // VLAs resolve to the innermost element type; this matches 448 // the return of alloca, and there isn't any obviously better choice. 449 ResultType = ConvertTypeForMem(A->getElementType()); 450 break; 451 } 452 case Type::IncompleteArray: { 453 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty); 454 assert(A->getIndexTypeCVRQualifiers() == 0 && 455 "FIXME: We only handle trivial array types so far!"); 456 // int X[] -> [0 x int], unless the element type is not sized. If it is 457 // unsized (e.g. an incomplete struct) just use [0 x i8]. 458 ResultType = ConvertTypeForMem(A->getElementType()); 459 if (!ResultType->isSized()) { 460 SkippedLayout = true; 461 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 462 } 463 ResultType = llvm::ArrayType::get(ResultType, 0); 464 break; 465 } 466 case Type::ConstantArray: { 467 const ConstantArrayType *A = cast<ConstantArrayType>(Ty); 468 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType()); 469 470 // Lower arrays of undefined struct type to arrays of i8 just to have a 471 // concrete type. 472 if (!EltTy->isSized()) { 473 SkippedLayout = true; 474 EltTy = llvm::Type::getInt8Ty(getLLVMContext()); 475 } 476 477 ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue()); 478 break; 479 } 480 case Type::ExtVector: 481 case Type::Vector: { 482 const VectorType *VT = cast<VectorType>(Ty); 483 ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()), 484 VT->getNumElements()); 485 break; 486 } 487 case Type::FunctionNoProto: 488 case Type::FunctionProto: { 489 const FunctionType *FT = cast<FunctionType>(Ty); 490 // First, check whether we can build the full function type. If the 491 // function type depends on an incomplete type (e.g. a struct or enum), we 492 // cannot lower the function type. 493 if (!isFuncTypeConvertible(FT)) { 494 // This function's type depends on an incomplete tag type. 495 496 // Force conversion of all the relevant record types, to make sure 497 // we re-convert the FunctionType when appropriate. 498 if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>()) 499 ConvertRecordDeclType(RT->getDecl()); 500 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 501 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 502 if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>()) 503 ConvertRecordDeclType(RT->getDecl()); 504 505 // Return a placeholder type. 506 ResultType = llvm::StructType::get(getLLVMContext()); 507 508 SkippedLayout = true; 509 break; 510 } 511 512 // While we're converting the parameter types for a function, we don't want 513 // to recursively convert any pointed-to structs. Converting directly-used 514 // structs is ok though. 515 if (!RecordsBeingLaidOut.insert(Ty).second) { 516 ResultType = llvm::StructType::get(getLLVMContext()); 517 518 SkippedLayout = true; 519 break; 520 } 521 522 // The function type can be built; call the appropriate routines to 523 // build it. 524 const CGFunctionInfo *FI; 525 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { 526 FI = &arrangeFreeFunctionType( 527 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0))); 528 } else { 529 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT); 530 FI = &arrangeFreeFunctionType( 531 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0))); 532 } 533 534 // If there is something higher level prodding our CGFunctionInfo, then 535 // don't recurse into it again. 536 if (FunctionsBeingProcessed.count(FI)) { 537 538 ResultType = llvm::StructType::get(getLLVMContext()); 539 SkippedLayout = true; 540 } else { 541 542 // Otherwise, we're good to go, go ahead and convert it. 543 ResultType = GetFunctionType(*FI); 544 } 545 546 RecordsBeingLaidOut.erase(Ty); 547 548 if (SkippedLayout) 549 TypeCache.clear(); 550 551 if (RecordsBeingLaidOut.empty()) 552 while (!DeferredRecords.empty()) 553 ConvertRecordDeclType(DeferredRecords.pop_back_val()); 554 break; 555 } 556 557 case Type::ObjCObject: 558 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType()); 559 break; 560 561 case Type::ObjCInterface: { 562 // Objective-C interfaces are always opaque (outside of the 563 // runtime, which can do whatever it likes); we never refine 564 // these. 565 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)]; 566 if (!T) 567 T = llvm::StructType::create(getLLVMContext()); 568 ResultType = T; 569 break; 570 } 571 572 case Type::ObjCObjectPointer: { 573 // Protocol qualifications do not influence the LLVM type, we just return a 574 // pointer to the underlying interface type. We don't need to worry about 575 // recursive conversion. 576 llvm::Type *T = 577 ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType()); 578 ResultType = T->getPointerTo(); 579 break; 580 } 581 582 case Type::Enum: { 583 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl(); 584 if (ED->isCompleteDefinition() || ED->isFixed()) 585 return ConvertType(ED->getIntegerType()); 586 // Return a placeholder 'i32' type. This can be changed later when the 587 // type is defined (see UpdateCompletedType), but is likely to be the 588 // "right" answer. 589 ResultType = llvm::Type::getInt32Ty(getLLVMContext()); 590 break; 591 } 592 593 case Type::BlockPointer: { 594 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType(); 595 llvm::Type *PointeeType = ConvertTypeForMem(FTy); 596 unsigned AS = Context.getTargetAddressSpace(FTy); 597 ResultType = llvm::PointerType::get(PointeeType, AS); 598 break; 599 } 600 601 case Type::MemberPointer: { 602 if (!getCXXABI().isMemberPointerConvertible(cast<MemberPointerType>(Ty))) 603 return llvm::StructType::create(getLLVMContext()); 604 ResultType = 605 getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty)); 606 break; 607 } 608 609 case Type::Atomic: { 610 QualType valueType = cast<AtomicType>(Ty)->getValueType(); 611 ResultType = ConvertTypeForMem(valueType); 612 613 // Pad out to the inflated size if necessary. 614 uint64_t valueSize = Context.getTypeSize(valueType); 615 uint64_t atomicSize = Context.getTypeSize(Ty); 616 if (valueSize != atomicSize) { 617 assert(valueSize < atomicSize); 618 llvm::Type *elts[] = { 619 ResultType, 620 llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8) 621 }; 622 ResultType = llvm::StructType::get(getLLVMContext(), 623 llvm::makeArrayRef(elts)); 624 } 625 break; 626 } 627 } 628 629 assert(ResultType && "Didn't convert a type?"); 630 631 TypeCache[Ty] = ResultType; 632 return ResultType; 633 } 634 635 bool CodeGenModule::isPaddedAtomicType(QualType type) { 636 return isPaddedAtomicType(type->castAs<AtomicType>()); 637 } 638 639 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) { 640 return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType()); 641 } 642 643 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. 644 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) { 645 // TagDecl's are not necessarily unique, instead use the (clang) 646 // type connected to the decl. 647 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 648 649 llvm::StructType *&Entry = RecordDeclTypes[Key]; 650 651 // If we don't have a StructType at all yet, create the forward declaration. 652 if (!Entry) { 653 Entry = llvm::StructType::create(getLLVMContext()); 654 addRecordTypeName(RD, Entry, ""); 655 } 656 llvm::StructType *Ty = Entry; 657 658 // If this is still a forward declaration, or the LLVM type is already 659 // complete, there's nothing more to do. 660 RD = RD->getDefinition(); 661 if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque()) 662 return Ty; 663 664 // If converting this type would cause us to infinitely loop, don't do it! 665 if (!isSafeToConvert(RD, *this)) { 666 DeferredRecords.push_back(RD); 667 return Ty; 668 } 669 670 // Okay, this is a definition of a type. Compile the implementation now. 671 bool InsertResult = RecordsBeingLaidOut.insert(Key).second; 672 (void)InsertResult; 673 assert(InsertResult && "Recursively compiling a struct?"); 674 675 // Force conversion of non-virtual base classes recursively. 676 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 677 for (const auto &I : CRD->bases()) { 678 if (I.isVirtual()) continue; 679 680 ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl()); 681 } 682 } 683 684 // Layout fields. 685 CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty); 686 CGRecordLayouts[Key] = Layout; 687 688 // We're done laying out this struct. 689 bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult; 690 assert(EraseResult && "struct not in RecordsBeingLaidOut set?"); 691 692 // If this struct blocked a FunctionType conversion, then recompute whatever 693 // was derived from that. 694 // FIXME: This is hugely overconservative. 695 if (SkippedLayout) 696 TypeCache.clear(); 697 698 // If we're done converting the outer-most record, then convert any deferred 699 // structs as well. 700 if (RecordsBeingLaidOut.empty()) 701 while (!DeferredRecords.empty()) 702 ConvertRecordDeclType(DeferredRecords.pop_back_val()); 703 704 return Ty; 705 } 706 707 /// getCGRecordLayout - Return record layout info for the given record decl. 708 const CGRecordLayout & 709 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) { 710 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 711 712 const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key); 713 if (!Layout) { 714 // Compute the type information. 715 ConvertRecordDeclType(RD); 716 717 // Now try again. 718 Layout = CGRecordLayouts.lookup(Key); 719 } 720 721 assert(Layout && "Unable to find record layout information for type"); 722 return *Layout; 723 } 724 725 bool CodeGenTypes::isZeroInitializable(QualType T) { 726 // No need to check for member pointers when not compiling C++. 727 if (!Context.getLangOpts().CPlusPlus) 728 return true; 729 730 if (const auto *AT = Context.getAsArrayType(T)) { 731 if (isa<IncompleteArrayType>(AT)) 732 return true; 733 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 734 if (Context.getConstantArrayElementCount(CAT) == 0) 735 return true; 736 T = Context.getBaseElementType(T); 737 } 738 739 // Records are non-zero-initializable if they contain any 740 // non-zero-initializable subobjects. 741 if (const RecordType *RT = T->getAs<RecordType>()) { 742 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 743 return isZeroInitializable(RD); 744 } 745 746 // We have to ask the ABI about member pointers. 747 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) 748 return getCXXABI().isZeroInitializable(MPT); 749 750 // Everything else is okay. 751 return true; 752 } 753 754 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) { 755 return getCGRecordLayout(RD).isZeroInitializable(); 756 } 757