1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenTypes.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Module.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
33   : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
34     Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
35     TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
36   SkippedLayout = false;
37 }
38 
39 CodeGenTypes::~CodeGenTypes() {
40   llvm::DeleteContainerSeconds(CGRecordLayouts);
41 
42   for (llvm::FoldingSet<CGFunctionInfo>::iterator
43        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
44     delete &*I++;
45 }
46 
47 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
48                                      llvm::StructType *Ty,
49                                      StringRef suffix) {
50   SmallString<256> TypeName;
51   llvm::raw_svector_ostream OS(TypeName);
52   OS << RD->getKindName() << '.';
53 
54   // Name the codegen type after the typedef name
55   // if there is no tag type name available
56   if (RD->getIdentifier()) {
57     // FIXME: We should not have to check for a null decl context here.
58     // Right now we do it because the implicit Obj-C decls don't have one.
59     if (RD->getDeclContext())
60       RD->printQualifiedName(OS);
61     else
62       RD->printName(OS);
63   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
64     // FIXME: We should not have to check for a null decl context here.
65     // Right now we do it because the implicit Obj-C decls don't have one.
66     if (TDD->getDeclContext())
67       TDD->printQualifiedName(OS);
68     else
69       TDD->printName(OS);
70   } else
71     OS << "anon";
72 
73   if (!suffix.empty())
74     OS << suffix;
75 
76   Ty->setName(OS.str());
77 }
78 
79 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
80 /// ConvertType in that it is used to convert to the memory representation for
81 /// a type.  For example, the scalar representation for _Bool is i1, but the
82 /// memory representation is usually i8 or i32, depending on the target.
83 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
84   llvm::Type *R = ConvertType(T);
85 
86   // If this is a non-bool type, don't map it.
87   if (!R->isIntegerTy(1))
88     return R;
89 
90   // Otherwise, return an integer of the target-specified size.
91   return llvm::IntegerType::get(getLLVMContext(),
92                                 (unsigned)Context.getTypeSize(T));
93 }
94 
95 
96 /// isRecordLayoutComplete - Return true if the specified type is already
97 /// completely laid out.
98 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
99   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
100   RecordDeclTypes.find(Ty);
101   return I != RecordDeclTypes.end() && !I->second->isOpaque();
102 }
103 
104 static bool
105 isSafeToConvert(QualType T, CodeGenTypes &CGT,
106                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
107 
108 
109 /// isSafeToConvert - Return true if it is safe to convert the specified record
110 /// decl to IR and lay it out, false if doing so would cause us to get into a
111 /// recursive compilation mess.
112 static bool
113 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
114                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
115   // If we have already checked this type (maybe the same type is used by-value
116   // multiple times in multiple structure fields, don't check again.
117   if (!AlreadyChecked.insert(RD).second)
118     return true;
119 
120   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
121 
122   // If this type is already laid out, converting it is a noop.
123   if (CGT.isRecordLayoutComplete(Key)) return true;
124 
125   // If this type is currently being laid out, we can't recursively compile it.
126   if (CGT.isRecordBeingLaidOut(Key))
127     return false;
128 
129   // If this type would require laying out bases that are currently being laid
130   // out, don't do it.  This includes virtual base classes which get laid out
131   // when a class is translated, even though they aren't embedded by-value into
132   // the class.
133   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
134     for (const auto &I : CRD->bases())
135       if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(),
136                            CGT, AlreadyChecked))
137         return false;
138   }
139 
140   // If this type would require laying out members that are currently being laid
141   // out, don't do it.
142   for (const auto *I : RD->fields())
143     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
144       return false;
145 
146   // If there are no problems, lets do it.
147   return true;
148 }
149 
150 /// isSafeToConvert - Return true if it is safe to convert this field type,
151 /// which requires the structure elements contained by-value to all be
152 /// recursively safe to convert.
153 static bool
154 isSafeToConvert(QualType T, CodeGenTypes &CGT,
155                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
156   // Strip off atomic type sugar.
157   if (const auto *AT = T->getAs<AtomicType>())
158     T = AT->getValueType();
159 
160   // If this is a record, check it.
161   if (const auto *RT = T->getAs<RecordType>())
162     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
163 
164   // If this is an array, check the elements, which are embedded inline.
165   if (const auto *AT = CGT.getContext().getAsArrayType(T))
166     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
167 
168   // Otherwise, there is no concern about transforming this.  We only care about
169   // things that are contained by-value in a structure that can have another
170   // structure as a member.
171   return true;
172 }
173 
174 
175 /// isSafeToConvert - Return true if it is safe to convert the specified record
176 /// decl to IR and lay it out, false if doing so would cause us to get into a
177 /// recursive compilation mess.
178 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
179   // If no structs are being laid out, we can certainly do this one.
180   if (CGT.noRecordsBeingLaidOut()) return true;
181 
182   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
183   return isSafeToConvert(RD, CGT, AlreadyChecked);
184 }
185 
186 /// isFuncParamTypeConvertible - Return true if the specified type in a
187 /// function parameter or result position can be converted to an IR type at this
188 /// point.  This boils down to being whether it is complete, as well as whether
189 /// we've temporarily deferred expanding the type because we're in a recursive
190 /// context.
191 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
192   // Some ABIs cannot have their member pointers represented in IR unless
193   // certain circumstances have been reached.
194   if (const auto *MPT = Ty->getAs<MemberPointerType>())
195     return getCXXABI().isMemberPointerConvertible(MPT);
196 
197   // If this isn't a tagged type, we can convert it!
198   const TagType *TT = Ty->getAs<TagType>();
199   if (!TT) return true;
200 
201   // Incomplete types cannot be converted.
202   if (TT->isIncompleteType())
203     return false;
204 
205   // If this is an enum, then it is always safe to convert.
206   const RecordType *RT = dyn_cast<RecordType>(TT);
207   if (!RT) return true;
208 
209   // Otherwise, we have to be careful.  If it is a struct that we're in the
210   // process of expanding, then we can't convert the function type.  That's ok
211   // though because we must be in a pointer context under the struct, so we can
212   // just convert it to a dummy type.
213   //
214   // We decide this by checking whether ConvertRecordDeclType returns us an
215   // opaque type for a struct that we know is defined.
216   return isSafeToConvert(RT->getDecl(), *this);
217 }
218 
219 
220 /// Code to verify a given function type is complete, i.e. the return type
221 /// and all of the parameter types are complete.  Also check to see if we are in
222 /// a RS_StructPointer context, and if so whether any struct types have been
223 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
224 /// that cannot be converted to an IR type.
225 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
226   if (!isFuncParamTypeConvertible(FT->getReturnType()))
227     return false;
228 
229   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
230     for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
231       if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
232         return false;
233 
234   return true;
235 }
236 
237 /// UpdateCompletedType - When we find the full definition for a TagDecl,
238 /// replace the 'opaque' type we previously made for it if applicable.
239 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
240   // If this is an enum being completed, then we flush all non-struct types from
241   // the cache.  This allows function types and other things that may be derived
242   // from the enum to be recomputed.
243   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
244     // Only flush the cache if we've actually already converted this type.
245     if (TypeCache.count(ED->getTypeForDecl())) {
246       // Okay, we formed some types based on this.  We speculated that the enum
247       // would be lowered to i32, so we only need to flush the cache if this
248       // didn't happen.
249       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
250         TypeCache.clear();
251     }
252     // If necessary, provide the full definition of a type only used with a
253     // declaration so far.
254     if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
255       DI->completeType(ED);
256     return;
257   }
258 
259   // If we completed a RecordDecl that we previously used and converted to an
260   // anonymous type, then go ahead and complete it now.
261   const RecordDecl *RD = cast<RecordDecl>(TD);
262   if (RD->isDependentType()) return;
263 
264   // Only complete it if we converted it already.  If we haven't converted it
265   // yet, we'll just do it lazily.
266   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
267     ConvertRecordDeclType(RD);
268 
269   // If necessary, provide the full definition of a type only used with a
270   // declaration so far.
271   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
272     DI->completeType(RD);
273 }
274 
275 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
276                                     const llvm::fltSemantics &format,
277                                     bool UseNativeHalf = false) {
278   if (&format == &llvm::APFloat::IEEEhalf) {
279     if (UseNativeHalf)
280       return llvm::Type::getHalfTy(VMContext);
281     else
282       return llvm::Type::getInt16Ty(VMContext);
283   }
284   if (&format == &llvm::APFloat::IEEEsingle)
285     return llvm::Type::getFloatTy(VMContext);
286   if (&format == &llvm::APFloat::IEEEdouble)
287     return llvm::Type::getDoubleTy(VMContext);
288   if (&format == &llvm::APFloat::IEEEquad)
289     return llvm::Type::getFP128Ty(VMContext);
290   if (&format == &llvm::APFloat::PPCDoubleDouble)
291     return llvm::Type::getPPC_FP128Ty(VMContext);
292   if (&format == &llvm::APFloat::x87DoubleExtended)
293     return llvm::Type::getX86_FP80Ty(VMContext);
294   llvm_unreachable("Unknown float format!");
295 }
296 
297 /// ConvertType - Convert the specified type to its LLVM form.
298 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
299   T = Context.getCanonicalType(T);
300 
301   const Type *Ty = T.getTypePtr();
302 
303   // RecordTypes are cached and processed specially.
304   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
305     return ConvertRecordDeclType(RT->getDecl());
306 
307   // See if type is already cached.
308   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
309   // If type is found in map then use it. Otherwise, convert type T.
310   if (TCI != TypeCache.end())
311     return TCI->second;
312 
313   // If we don't have it in the cache, convert it now.
314   llvm::Type *ResultType = nullptr;
315   switch (Ty->getTypeClass()) {
316   case Type::Record: // Handled above.
317 #define TYPE(Class, Base)
318 #define ABSTRACT_TYPE(Class, Base)
319 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
320 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
321 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
322 #include "clang/AST/TypeNodes.def"
323     llvm_unreachable("Non-canonical or dependent types aren't possible.");
324 
325   case Type::Builtin: {
326     switch (cast<BuiltinType>(Ty)->getKind()) {
327     case BuiltinType::Void:
328     case BuiltinType::ObjCId:
329     case BuiltinType::ObjCClass:
330     case BuiltinType::ObjCSel:
331       // LLVM void type can only be used as the result of a function call.  Just
332       // map to the same as char.
333       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
334       break;
335 
336     case BuiltinType::Bool:
337       // Note that we always return bool as i1 for use as a scalar type.
338       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
339       break;
340 
341     case BuiltinType::Char_S:
342     case BuiltinType::Char_U:
343     case BuiltinType::SChar:
344     case BuiltinType::UChar:
345     case BuiltinType::Short:
346     case BuiltinType::UShort:
347     case BuiltinType::Int:
348     case BuiltinType::UInt:
349     case BuiltinType::Long:
350     case BuiltinType::ULong:
351     case BuiltinType::LongLong:
352     case BuiltinType::ULongLong:
353     case BuiltinType::WChar_S:
354     case BuiltinType::WChar_U:
355     case BuiltinType::Char16:
356     case BuiltinType::Char32:
357       ResultType = llvm::IntegerType::get(getLLVMContext(),
358                                  static_cast<unsigned>(Context.getTypeSize(T)));
359       break;
360 
361     case BuiltinType::Half:
362       // Half FP can either be storage-only (lowered to i16) or native.
363       ResultType =
364           getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
365                            Context.getLangOpts().NativeHalfType ||
366                                Context.getLangOpts().HalfArgsAndReturns);
367       break;
368     case BuiltinType::Float:
369     case BuiltinType::Double:
370     case BuiltinType::LongDouble:
371       ResultType = getTypeForFormat(getLLVMContext(),
372                                     Context.getFloatTypeSemantics(T),
373                                     /* UseNativeHalf = */ false);
374       break;
375 
376     case BuiltinType::NullPtr:
377       // Model std::nullptr_t as i8*
378       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
379       break;
380 
381     case BuiltinType::UInt128:
382     case BuiltinType::Int128:
383       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
384       break;
385 
386     case BuiltinType::OCLImage1d:
387     case BuiltinType::OCLImage1dArray:
388     case BuiltinType::OCLImage1dBuffer:
389     case BuiltinType::OCLImage2d:
390     case BuiltinType::OCLImage2dArray:
391     case BuiltinType::OCLImage2dDepth:
392     case BuiltinType::OCLImage2dArrayDepth:
393     case BuiltinType::OCLImage2dMSAA:
394     case BuiltinType::OCLImage2dArrayMSAA:
395     case BuiltinType::OCLImage2dMSAADepth:
396     case BuiltinType::OCLImage2dArrayMSAADepth:
397     case BuiltinType::OCLImage3d:
398     case BuiltinType::OCLSampler:
399     case BuiltinType::OCLEvent:
400     case BuiltinType::OCLClkEvent:
401     case BuiltinType::OCLQueue:
402     case BuiltinType::OCLNDRange:
403     case BuiltinType::OCLReserveID:
404       ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
405       break;
406 
407     case BuiltinType::Dependent:
408 #define BUILTIN_TYPE(Id, SingletonId)
409 #define PLACEHOLDER_TYPE(Id, SingletonId) \
410     case BuiltinType::Id:
411 #include "clang/AST/BuiltinTypes.def"
412       llvm_unreachable("Unexpected placeholder builtin type!");
413     }
414     break;
415   }
416   case Type::Auto:
417     llvm_unreachable("Unexpected undeduced auto type!");
418   case Type::Complex: {
419     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
420     ResultType = llvm::StructType::get(EltTy, EltTy, nullptr);
421     break;
422   }
423   case Type::LValueReference:
424   case Type::RValueReference: {
425     const ReferenceType *RTy = cast<ReferenceType>(Ty);
426     QualType ETy = RTy->getPointeeType();
427     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
428     unsigned AS = Context.getTargetAddressSpace(ETy);
429     ResultType = llvm::PointerType::get(PointeeType, AS);
430     break;
431   }
432   case Type::Pointer: {
433     const PointerType *PTy = cast<PointerType>(Ty);
434     QualType ETy = PTy->getPointeeType();
435     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
436     if (PointeeType->isVoidTy())
437       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
438     unsigned AS = Context.getTargetAddressSpace(ETy);
439     ResultType = llvm::PointerType::get(PointeeType, AS);
440     break;
441   }
442 
443   case Type::VariableArray: {
444     const VariableArrayType *A = cast<VariableArrayType>(Ty);
445     assert(A->getIndexTypeCVRQualifiers() == 0 &&
446            "FIXME: We only handle trivial array types so far!");
447     // VLAs resolve to the innermost element type; this matches
448     // the return of alloca, and there isn't any obviously better choice.
449     ResultType = ConvertTypeForMem(A->getElementType());
450     break;
451   }
452   case Type::IncompleteArray: {
453     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
454     assert(A->getIndexTypeCVRQualifiers() == 0 &&
455            "FIXME: We only handle trivial array types so far!");
456     // int X[] -> [0 x int], unless the element type is not sized.  If it is
457     // unsized (e.g. an incomplete struct) just use [0 x i8].
458     ResultType = ConvertTypeForMem(A->getElementType());
459     if (!ResultType->isSized()) {
460       SkippedLayout = true;
461       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
462     }
463     ResultType = llvm::ArrayType::get(ResultType, 0);
464     break;
465   }
466   case Type::ConstantArray: {
467     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
468     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
469 
470     // Lower arrays of undefined struct type to arrays of i8 just to have a
471     // concrete type.
472     if (!EltTy->isSized()) {
473       SkippedLayout = true;
474       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
475     }
476 
477     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
478     break;
479   }
480   case Type::ExtVector:
481   case Type::Vector: {
482     const VectorType *VT = cast<VectorType>(Ty);
483     ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
484                                        VT->getNumElements());
485     break;
486   }
487   case Type::FunctionNoProto:
488   case Type::FunctionProto: {
489     const FunctionType *FT = cast<FunctionType>(Ty);
490     // First, check whether we can build the full function type.  If the
491     // function type depends on an incomplete type (e.g. a struct or enum), we
492     // cannot lower the function type.
493     if (!isFuncTypeConvertible(FT)) {
494       // This function's type depends on an incomplete tag type.
495 
496       // Force conversion of all the relevant record types, to make sure
497       // we re-convert the FunctionType when appropriate.
498       if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
499         ConvertRecordDeclType(RT->getDecl());
500       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
501         for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
502           if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
503             ConvertRecordDeclType(RT->getDecl());
504 
505       // Return a placeholder type.
506       ResultType = llvm::StructType::get(getLLVMContext());
507 
508       SkippedLayout = true;
509       break;
510     }
511 
512     // While we're converting the parameter types for a function, we don't want
513     // to recursively convert any pointed-to structs.  Converting directly-used
514     // structs is ok though.
515     if (!RecordsBeingLaidOut.insert(Ty).second) {
516       ResultType = llvm::StructType::get(getLLVMContext());
517 
518       SkippedLayout = true;
519       break;
520     }
521 
522     // The function type can be built; call the appropriate routines to
523     // build it.
524     const CGFunctionInfo *FI;
525     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
526       FI = &arrangeFreeFunctionType(
527                    CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
528     } else {
529       const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
530       FI = &arrangeFreeFunctionType(
531                 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
532     }
533 
534     // If there is something higher level prodding our CGFunctionInfo, then
535     // don't recurse into it again.
536     if (FunctionsBeingProcessed.count(FI)) {
537 
538       ResultType = llvm::StructType::get(getLLVMContext());
539       SkippedLayout = true;
540     } else {
541 
542       // Otherwise, we're good to go, go ahead and convert it.
543       ResultType = GetFunctionType(*FI);
544     }
545 
546     RecordsBeingLaidOut.erase(Ty);
547 
548     if (SkippedLayout)
549       TypeCache.clear();
550 
551     if (RecordsBeingLaidOut.empty())
552       while (!DeferredRecords.empty())
553         ConvertRecordDeclType(DeferredRecords.pop_back_val());
554     break;
555   }
556 
557   case Type::ObjCObject:
558     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
559     break;
560 
561   case Type::ObjCInterface: {
562     // Objective-C interfaces are always opaque (outside of the
563     // runtime, which can do whatever it likes); we never refine
564     // these.
565     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
566     if (!T)
567       T = llvm::StructType::create(getLLVMContext());
568     ResultType = T;
569     break;
570   }
571 
572   case Type::ObjCObjectPointer: {
573     // Protocol qualifications do not influence the LLVM type, we just return a
574     // pointer to the underlying interface type. We don't need to worry about
575     // recursive conversion.
576     llvm::Type *T =
577       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
578     ResultType = T->getPointerTo();
579     break;
580   }
581 
582   case Type::Enum: {
583     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
584     if (ED->isCompleteDefinition() || ED->isFixed())
585       return ConvertType(ED->getIntegerType());
586     // Return a placeholder 'i32' type.  This can be changed later when the
587     // type is defined (see UpdateCompletedType), but is likely to be the
588     // "right" answer.
589     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
590     break;
591   }
592 
593   case Type::BlockPointer: {
594     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
595     llvm::Type *PointeeType = ConvertTypeForMem(FTy);
596     unsigned AS = Context.getTargetAddressSpace(FTy);
597     ResultType = llvm::PointerType::get(PointeeType, AS);
598     break;
599   }
600 
601   case Type::MemberPointer: {
602     if (!getCXXABI().isMemberPointerConvertible(cast<MemberPointerType>(Ty)))
603       return llvm::StructType::create(getLLVMContext());
604     ResultType =
605       getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
606     break;
607   }
608 
609   case Type::Atomic: {
610     QualType valueType = cast<AtomicType>(Ty)->getValueType();
611     ResultType = ConvertTypeForMem(valueType);
612 
613     // Pad out to the inflated size if necessary.
614     uint64_t valueSize = Context.getTypeSize(valueType);
615     uint64_t atomicSize = Context.getTypeSize(Ty);
616     if (valueSize != atomicSize) {
617       assert(valueSize < atomicSize);
618       llvm::Type *elts[] = {
619         ResultType,
620         llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
621       };
622       ResultType = llvm::StructType::get(getLLVMContext(),
623                                          llvm::makeArrayRef(elts));
624     }
625     break;
626   }
627   }
628 
629   assert(ResultType && "Didn't convert a type?");
630 
631   TypeCache[Ty] = ResultType;
632   return ResultType;
633 }
634 
635 bool CodeGenModule::isPaddedAtomicType(QualType type) {
636   return isPaddedAtomicType(type->castAs<AtomicType>());
637 }
638 
639 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
640   return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
641 }
642 
643 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
644 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
645   // TagDecl's are not necessarily unique, instead use the (clang)
646   // type connected to the decl.
647   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
648 
649   llvm::StructType *&Entry = RecordDeclTypes[Key];
650 
651   // If we don't have a StructType at all yet, create the forward declaration.
652   if (!Entry) {
653     Entry = llvm::StructType::create(getLLVMContext());
654     addRecordTypeName(RD, Entry, "");
655   }
656   llvm::StructType *Ty = Entry;
657 
658   // If this is still a forward declaration, or the LLVM type is already
659   // complete, there's nothing more to do.
660   RD = RD->getDefinition();
661   if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
662     return Ty;
663 
664   // If converting this type would cause us to infinitely loop, don't do it!
665   if (!isSafeToConvert(RD, *this)) {
666     DeferredRecords.push_back(RD);
667     return Ty;
668   }
669 
670   // Okay, this is a definition of a type.  Compile the implementation now.
671   bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
672   (void)InsertResult;
673   assert(InsertResult && "Recursively compiling a struct?");
674 
675   // Force conversion of non-virtual base classes recursively.
676   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
677     for (const auto &I : CRD->bases()) {
678       if (I.isVirtual()) continue;
679 
680       ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl());
681     }
682   }
683 
684   // Layout fields.
685   CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
686   CGRecordLayouts[Key] = Layout;
687 
688   // We're done laying out this struct.
689   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
690   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
691 
692   // If this struct blocked a FunctionType conversion, then recompute whatever
693   // was derived from that.
694   // FIXME: This is hugely overconservative.
695   if (SkippedLayout)
696     TypeCache.clear();
697 
698   // If we're done converting the outer-most record, then convert any deferred
699   // structs as well.
700   if (RecordsBeingLaidOut.empty())
701     while (!DeferredRecords.empty())
702       ConvertRecordDeclType(DeferredRecords.pop_back_val());
703 
704   return Ty;
705 }
706 
707 /// getCGRecordLayout - Return record layout info for the given record decl.
708 const CGRecordLayout &
709 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
710   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
711 
712   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
713   if (!Layout) {
714     // Compute the type information.
715     ConvertRecordDeclType(RD);
716 
717     // Now try again.
718     Layout = CGRecordLayouts.lookup(Key);
719   }
720 
721   assert(Layout && "Unable to find record layout information for type");
722   return *Layout;
723 }
724 
725 bool CodeGenTypes::isZeroInitializable(QualType T) {
726   // No need to check for member pointers when not compiling C++.
727   if (!Context.getLangOpts().CPlusPlus)
728     return true;
729 
730   if (const auto *AT = Context.getAsArrayType(T)) {
731     if (isa<IncompleteArrayType>(AT))
732       return true;
733     if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
734       if (Context.getConstantArrayElementCount(CAT) == 0)
735         return true;
736     T = Context.getBaseElementType(T);
737   }
738 
739   // Records are non-zero-initializable if they contain any
740   // non-zero-initializable subobjects.
741   if (const RecordType *RT = T->getAs<RecordType>()) {
742     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
743     return isZeroInitializable(RD);
744   }
745 
746   // We have to ask the ABI about member pointers.
747   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
748     return getCXXABI().isZeroInitializable(MPT);
749 
750   // Everything else is okay.
751   return true;
752 }
753 
754 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) {
755   return getCGRecordLayout(RD).isZeroInitializable();
756 }
757