1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the code that handles AST -> LLVM type lowering. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenTypes.h" 15 #include "CGCall.h" 16 #include "CGCXXABI.h" 17 #include "CGRecordLayout.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "llvm/DerivedTypes.h" 24 #include "llvm/Module.h" 25 #include "llvm/Target/TargetData.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M, 30 const llvm::TargetData &TD, const ABIInfo &Info, 31 CGCXXABI &CXXABI) 32 : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD), 33 TheABIInfo(Info), TheCXXABI(CXXABI) { 34 } 35 36 CodeGenTypes::~CodeGenTypes() { 37 for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator 38 I = CGRecordLayouts.begin(), E = CGRecordLayouts.end(); 39 I != E; ++I) 40 delete I->second; 41 42 for (llvm::FoldingSet<CGFunctionInfo>::iterator 43 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; ) 44 delete &*I++; 45 } 46 47 /// HandleLateResolvedPointers - For top-level ConvertType calls, this handles 48 /// pointers that are referenced but have not been converted yet. This is used 49 /// to handle cyclic structures properly. 50 void CodeGenTypes::HandleLateResolvedPointers() { 51 assert(!PointersToResolve.empty() && "No pointers to resolve!"); 52 53 // Any pointers that were converted deferred evaluation of their pointee type, 54 // creating an opaque type instead. This is in order to avoid problems with 55 // circular types. Loop through all these defered pointees, if any, and 56 // resolve them now. 57 while (!PointersToResolve.empty()) { 58 std::pair<QualType, llvm::OpaqueType*> P = PointersToResolve.pop_back_val(); 59 60 // We can handle bare pointers here because we know that the only pointers 61 // to the Opaque type are P.second and from other types. Refining the 62 // opqaue type away will invalidate P.second, but we don't mind :). 63 const llvm::Type *NT = ConvertTypeForMemRecursive(P.first); 64 P.second->refineAbstractTypeTo(NT); 65 } 66 } 67 68 69 /// ConvertType - Convert the specified type to its LLVM form. 70 const llvm::Type *CodeGenTypes::ConvertType(QualType T, bool IsRecursive) { 71 const llvm::Type *Result = ConvertTypeRecursive(T); 72 73 // If this is a top-level call to ConvertType and sub-conversions caused 74 // pointers to get lazily built as opaque types, resolve the pointers, which 75 // might cause Result to be merged away. 76 if (!IsRecursive && !PointersToResolve.empty()) { 77 llvm::PATypeHolder ResultHandle = Result; 78 HandleLateResolvedPointers(); 79 Result = ResultHandle; 80 } 81 return Result; 82 } 83 84 const llvm::Type *CodeGenTypes::ConvertTypeRecursive(QualType T) { 85 T = Context.getCanonicalType(T); 86 87 // See if type is already cached. 88 llvm::DenseMap<const Type *, llvm::PATypeHolder>::iterator 89 I = TypeCache.find(T.getTypePtr()); 90 // If type is found in map and this is not a definition for a opaque 91 // place holder type then use it. Otherwise, convert type T. 92 if (I != TypeCache.end()) 93 return I->second.get(); 94 95 const llvm::Type *ResultType = ConvertNewType(T); 96 TypeCache.insert(std::make_pair(T.getTypePtr(), 97 llvm::PATypeHolder(ResultType))); 98 return ResultType; 99 } 100 101 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from 102 /// ConvertType in that it is used to convert to the memory representation for 103 /// a type. For example, the scalar representation for _Bool is i1, but the 104 /// memory representation is usually i8 or i32, depending on the target. 105 const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T, bool IsRecursive){ 106 const llvm::Type *R = ConvertType(T, IsRecursive); 107 108 // If this is a non-bool type, don't map it. 109 if (!R->isIntegerTy(1)) 110 return R; 111 112 // Otherwise, return an integer of the target-specified size. 113 return llvm::IntegerType::get(getLLVMContext(), 114 (unsigned)Context.getTypeSize(T)); 115 116 } 117 118 // Code to verify a given function type is complete, i.e. the return type 119 // and all of the argument types are complete. 120 const TagType *CodeGenTypes::VerifyFuncTypeComplete(const Type* T) { 121 const FunctionType *FT = cast<FunctionType>(T); 122 if (const TagType* TT = FT->getResultType()->getAs<TagType>()) 123 if (!TT->getDecl()->isDefinition()) 124 return TT; 125 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(T)) 126 for (unsigned i = 0; i < FPT->getNumArgs(); i++) 127 if (const TagType* TT = FPT->getArgType(i)->getAs<TagType>()) 128 if (!TT->getDecl()->isDefinition()) 129 return TT; 130 return 0; 131 } 132 133 /// UpdateCompletedType - When we find the full definition for a TagDecl, 134 /// replace the 'opaque' type we previously made for it if applicable. 135 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) { 136 const Type *Key = Context.getTagDeclType(TD).getTypePtr(); 137 llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator TDTI = 138 TagDeclTypes.find(Key); 139 if (TDTI == TagDeclTypes.end()) return; 140 141 // Remember the opaque LLVM type for this tagdecl. 142 llvm::PATypeHolder OpaqueHolder = TDTI->second; 143 assert(isa<llvm::OpaqueType>(OpaqueHolder.get()) && 144 "Updating compilation of an already non-opaque type?"); 145 146 // Remove it from TagDeclTypes so that it will be regenerated. 147 TagDeclTypes.erase(TDTI); 148 149 // Generate the new type. 150 const llvm::Type *NT = ConvertTagDeclType(TD); 151 152 // Refine the old opaque type to its new definition. 153 cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NT); 154 155 // Since we just completed a tag type, check to see if any function types 156 // were completed along with the tag type. 157 // FIXME: This is very inefficient; if we track which function types depend 158 // on which tag types, though, it should be reasonably efficient. 159 llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator i; 160 for (i = FunctionTypes.begin(); i != FunctionTypes.end(); ++i) { 161 if (const TagType* TT = VerifyFuncTypeComplete(i->first)) { 162 // This function type still depends on an incomplete tag type; make sure 163 // that tag type has an associated opaque type. 164 ConvertTagDeclType(TT->getDecl()); 165 } else { 166 // This function no longer depends on an incomplete tag type; create the 167 // function type, and refine the opaque type to the new function type. 168 llvm::PATypeHolder OpaqueHolder = i->second; 169 const llvm::Type *NFT = ConvertNewType(QualType(i->first, 0)); 170 cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NFT); 171 FunctionTypes.erase(i); 172 } 173 } 174 } 175 176 static const llvm::Type* getTypeForFormat(llvm::LLVMContext &VMContext, 177 const llvm::fltSemantics &format) { 178 if (&format == &llvm::APFloat::IEEEsingle) 179 return llvm::Type::getFloatTy(VMContext); 180 if (&format == &llvm::APFloat::IEEEdouble) 181 return llvm::Type::getDoubleTy(VMContext); 182 if (&format == &llvm::APFloat::IEEEquad) 183 return llvm::Type::getFP128Ty(VMContext); 184 if (&format == &llvm::APFloat::PPCDoubleDouble) 185 return llvm::Type::getPPC_FP128Ty(VMContext); 186 if (&format == &llvm::APFloat::x87DoubleExtended) 187 return llvm::Type::getX86_FP80Ty(VMContext); 188 assert(0 && "Unknown float format!"); 189 return 0; 190 } 191 192 const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) { 193 const clang::Type &Ty = *Context.getCanonicalType(T).getTypePtr(); 194 195 switch (Ty.getTypeClass()) { 196 #define TYPE(Class, Base) 197 #define ABSTRACT_TYPE(Class, Base) 198 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 199 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 200 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 201 #include "clang/AST/TypeNodes.def" 202 assert(false && "Non-canonical or dependent types aren't possible."); 203 break; 204 205 case Type::Builtin: { 206 switch (cast<BuiltinType>(Ty).getKind()) { 207 case BuiltinType::Void: 208 case BuiltinType::ObjCId: 209 case BuiltinType::ObjCClass: 210 case BuiltinType::ObjCSel: 211 // LLVM void type can only be used as the result of a function call. Just 212 // map to the same as char. 213 return llvm::Type::getInt8Ty(getLLVMContext()); 214 215 case BuiltinType::Bool: 216 // Note that we always return bool as i1 for use as a scalar type. 217 return llvm::Type::getInt1Ty(getLLVMContext()); 218 219 case BuiltinType::Char_S: 220 case BuiltinType::Char_U: 221 case BuiltinType::SChar: 222 case BuiltinType::UChar: 223 case BuiltinType::Short: 224 case BuiltinType::UShort: 225 case BuiltinType::Int: 226 case BuiltinType::UInt: 227 case BuiltinType::Long: 228 case BuiltinType::ULong: 229 case BuiltinType::LongLong: 230 case BuiltinType::ULongLong: 231 case BuiltinType::WChar_S: 232 case BuiltinType::WChar_U: 233 case BuiltinType::Char16: 234 case BuiltinType::Char32: 235 return llvm::IntegerType::get(getLLVMContext(), 236 static_cast<unsigned>(Context.getTypeSize(T))); 237 238 case BuiltinType::Float: 239 case BuiltinType::Double: 240 case BuiltinType::LongDouble: 241 return getTypeForFormat(getLLVMContext(), 242 Context.getFloatTypeSemantics(T)); 243 244 case BuiltinType::NullPtr: { 245 // Model std::nullptr_t as i8* 246 const llvm::Type *Ty = llvm::Type::getInt8Ty(getLLVMContext()); 247 return llvm::PointerType::getUnqual(Ty); 248 } 249 250 case BuiltinType::UInt128: 251 case BuiltinType::Int128: 252 return llvm::IntegerType::get(getLLVMContext(), 128); 253 254 case BuiltinType::Overload: 255 case BuiltinType::Dependent: 256 case BuiltinType::UndeducedAuto: 257 assert(0 && "Unexpected builtin type!"); 258 break; 259 } 260 assert(0 && "Unknown builtin type!"); 261 break; 262 } 263 case Type::Complex: { 264 const llvm::Type *EltTy = 265 ConvertTypeRecursive(cast<ComplexType>(Ty).getElementType()); 266 return llvm::StructType::get(TheModule.getContext(), EltTy, EltTy, NULL); 267 } 268 case Type::LValueReference: 269 case Type::RValueReference: { 270 const ReferenceType &RTy = cast<ReferenceType>(Ty); 271 QualType ETy = RTy.getPointeeType(); 272 llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext()); 273 PointersToResolve.push_back(std::make_pair(ETy, PointeeType)); 274 return llvm::PointerType::get(PointeeType, ETy.getAddressSpace()); 275 } 276 case Type::Pointer: { 277 const PointerType &PTy = cast<PointerType>(Ty); 278 QualType ETy = PTy.getPointeeType(); 279 llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext()); 280 PointersToResolve.push_back(std::make_pair(ETy, PointeeType)); 281 return llvm::PointerType::get(PointeeType, ETy.getAddressSpace()); 282 } 283 284 case Type::VariableArray: { 285 const VariableArrayType &A = cast<VariableArrayType>(Ty); 286 assert(A.getIndexTypeCVRQualifiers() == 0 && 287 "FIXME: We only handle trivial array types so far!"); 288 // VLAs resolve to the innermost element type; this matches 289 // the return of alloca, and there isn't any obviously better choice. 290 return ConvertTypeForMemRecursive(A.getElementType()); 291 } 292 case Type::IncompleteArray: { 293 const IncompleteArrayType &A = cast<IncompleteArrayType>(Ty); 294 assert(A.getIndexTypeCVRQualifiers() == 0 && 295 "FIXME: We only handle trivial array types so far!"); 296 // int X[] -> [0 x int] 297 return llvm::ArrayType::get(ConvertTypeForMemRecursive(A.getElementType()), 298 0); 299 } 300 case Type::ConstantArray: { 301 const ConstantArrayType &A = cast<ConstantArrayType>(Ty); 302 const llvm::Type *EltTy = ConvertTypeForMemRecursive(A.getElementType()); 303 return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue()); 304 } 305 case Type::ExtVector: 306 case Type::Vector: { 307 const VectorType &VT = cast<VectorType>(Ty); 308 return llvm::VectorType::get(ConvertTypeRecursive(VT.getElementType()), 309 VT.getNumElements()); 310 } 311 case Type::FunctionNoProto: 312 case Type::FunctionProto: { 313 // First, check whether we can build the full function type. If the 314 // function type depends on an incomplete type (e.g. a struct or enum), we 315 // cannot lower the function type. Instead, turn it into an Opaque pointer 316 // and have UpdateCompletedType revisit the function type when/if the opaque 317 // argument type is defined. 318 if (const TagType *TT = VerifyFuncTypeComplete(&Ty)) { 319 // This function's type depends on an incomplete tag type; make sure 320 // we have an opaque type corresponding to the tag type. 321 ConvertTagDeclType(TT->getDecl()); 322 // Create an opaque type for this function type, save it, and return it. 323 llvm::Type *ResultType = llvm::OpaqueType::get(getLLVMContext()); 324 FunctionTypes.insert(std::make_pair(&Ty, ResultType)); 325 return ResultType; 326 } 327 328 // The function type can be built; call the appropriate routines to 329 // build it. 330 const CGFunctionInfo *FI; 331 bool isVariadic; 332 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(&Ty)) { 333 FI = &getFunctionInfo( 334 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)), 335 true /*Recursive*/); 336 isVariadic = FPT->isVariadic(); 337 } else { 338 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(&Ty); 339 FI = &getFunctionInfo( 340 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)), 341 true /*Recursive*/); 342 isVariadic = true; 343 } 344 345 return GetFunctionType(*FI, isVariadic, true); 346 } 347 348 case Type::ObjCObject: 349 return ConvertTypeRecursive(cast<ObjCObjectType>(Ty).getBaseType()); 350 351 case Type::ObjCInterface: { 352 // Objective-C interfaces are always opaque (outside of the 353 // runtime, which can do whatever it likes); we never refine 354 // these. 355 const llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(&Ty)]; 356 if (!T) 357 T = llvm::OpaqueType::get(getLLVMContext()); 358 return T; 359 } 360 361 case Type::ObjCObjectPointer: { 362 // Protocol qualifications do not influence the LLVM type, we just return a 363 // pointer to the underlying interface type. We don't need to worry about 364 // recursive conversion. 365 const llvm::Type *T = 366 ConvertTypeRecursive(cast<ObjCObjectPointerType>(Ty).getPointeeType()); 367 return llvm::PointerType::getUnqual(T); 368 } 369 370 case Type::Record: 371 case Type::Enum: { 372 const TagDecl *TD = cast<TagType>(Ty).getDecl(); 373 const llvm::Type *Res = ConvertTagDeclType(TD); 374 375 llvm::SmallString<256> TypeName; 376 llvm::raw_svector_ostream OS(TypeName); 377 OS << TD->getKindName() << '.'; 378 379 // Name the codegen type after the typedef name 380 // if there is no tag type name available 381 if (TD->getIdentifier()) { 382 // FIXME: We should not have to check for a null decl context here. 383 // Right now we do it because the implicit Obj-C decls don't have one. 384 if (TD->getDeclContext()) 385 OS << TD->getQualifiedNameAsString(); 386 else 387 TD->printName(OS); 388 } else if (const TypedefDecl *TDD = TD->getTypedefForAnonDecl()) { 389 // FIXME: We should not have to check for a null decl context here. 390 // Right now we do it because the implicit Obj-C decls don't have one. 391 if (TDD->getDeclContext()) 392 OS << TDD->getQualifiedNameAsString(); 393 else 394 TDD->printName(OS); 395 } else 396 OS << "anon"; 397 398 TheModule.addTypeName(OS.str(), Res); 399 return Res; 400 } 401 402 case Type::BlockPointer: { 403 const QualType FTy = cast<BlockPointerType>(Ty).getPointeeType(); 404 llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext()); 405 PointersToResolve.push_back(std::make_pair(FTy, PointeeType)); 406 return llvm::PointerType::get(PointeeType, FTy.getAddressSpace()); 407 } 408 409 case Type::MemberPointer: { 410 return getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(&Ty)); 411 } 412 } 413 414 // FIXME: implement. 415 return llvm::OpaqueType::get(getLLVMContext()); 416 } 417 418 /// ConvertTagDeclType - Lay out a tagged decl type like struct or union or 419 /// enum. 420 const llvm::Type *CodeGenTypes::ConvertTagDeclType(const TagDecl *TD) { 421 // TagDecl's are not necessarily unique, instead use the (clang) 422 // type connected to the decl. 423 const Type *Key = 424 Context.getTagDeclType(TD).getTypePtr(); 425 llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator TDTI = 426 TagDeclTypes.find(Key); 427 428 // If we've already compiled this tag type, use the previous definition. 429 if (TDTI != TagDeclTypes.end()) 430 return TDTI->second; 431 432 const EnumDecl *ED = dyn_cast<EnumDecl>(TD); 433 434 // If this is still a forward declaration, just define an opaque 435 // type to use for this tagged decl. 436 // C++0x: If this is a enumeration type with fixed underlying type, 437 // consider it complete. 438 if (!TD->isDefinition() && !(ED && ED->isFixed())) { 439 llvm::Type *ResultType = llvm::OpaqueType::get(getLLVMContext()); 440 TagDeclTypes.insert(std::make_pair(Key, ResultType)); 441 return ResultType; 442 } 443 444 // Okay, this is a definition of a type. Compile the implementation now. 445 446 if (ED) // Don't bother storing enums in TagDeclTypes. 447 return ConvertTypeRecursive(ED->getIntegerType()); 448 449 // This decl could well be recursive. In this case, insert an opaque 450 // definition of this type, which the recursive uses will get. We will then 451 // refine this opaque version later. 452 453 // Create new OpaqueType now for later use in case this is a recursive 454 // type. This will later be refined to the actual type. 455 llvm::PATypeHolder ResultHolder = llvm::OpaqueType::get(getLLVMContext()); 456 TagDeclTypes.insert(std::make_pair(Key, ResultHolder)); 457 458 const RecordDecl *RD = cast<const RecordDecl>(TD); 459 460 // Force conversion of non-virtual base classes recursively. 461 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) { 462 for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(), 463 e = RD->bases_end(); i != e; ++i) { 464 if (!i->isVirtual()) { 465 const CXXRecordDecl *Base = 466 cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl()); 467 ConvertTagDeclType(Base); 468 } 469 } 470 } 471 472 // Layout fields. 473 CGRecordLayout *Layout = ComputeRecordLayout(RD); 474 475 CGRecordLayouts[Key] = Layout; 476 const llvm::Type *ResultType = Layout->getLLVMType(); 477 478 // Refine our Opaque type to ResultType. This can invalidate ResultType, so 479 // make sure to read the result out of the holder. 480 cast<llvm::OpaqueType>(ResultHolder.get()) 481 ->refineAbstractTypeTo(ResultType); 482 483 return ResultHolder.get(); 484 } 485 486 /// getCGRecordLayout - Return record layout info for the given record decl. 487 const CGRecordLayout & 488 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) { 489 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 490 491 const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key); 492 if (!Layout) { 493 // Compute the type information. 494 ConvertTagDeclType(RD); 495 496 // Now try again. 497 Layout = CGRecordLayouts.lookup(Key); 498 } 499 500 assert(Layout && "Unable to find record layout information for type"); 501 return *Layout; 502 } 503 504 bool CodeGenTypes::isZeroInitializable(QualType T) { 505 // No need to check for member pointers when not compiling C++. 506 if (!Context.getLangOptions().CPlusPlus) 507 return true; 508 509 T = Context.getBaseElementType(T); 510 511 // Records are non-zero-initializable if they contain any 512 // non-zero-initializable subobjects. 513 if (const RecordType *RT = T->getAs<RecordType>()) { 514 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 515 return isZeroInitializable(RD); 516 } 517 518 // We have to ask the ABI about member pointers. 519 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) 520 return getCXXABI().isZeroInitializable(MPT); 521 522 // Everything else is okay. 523 return true; 524 } 525 526 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) { 527 return getCGRecordLayout(RD).isZeroInitializable(); 528 } 529