1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenTypes.h"
15 #include "CGCall.h"
16 #include "CGRecordLayout.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/Module.h"
24 #include "llvm/Target/TargetData.h"
25 using namespace clang;
26 using namespace CodeGen;
27 
28 CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
29                            const llvm::TargetData &TD, const ABIInfo &Info)
30   : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD),
31     TheABIInfo(Info) {
32 }
33 
34 CodeGenTypes::~CodeGenTypes() {
35   for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
36          I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
37       I != E; ++I)
38     delete I->second;
39 
40   for (llvm::FoldingSet<CGFunctionInfo>::iterator
41        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
42     delete &*I++;
43 }
44 
45 /// ConvertType - Convert the specified type to its LLVM form.
46 const llvm::Type *CodeGenTypes::ConvertType(QualType T, bool IsRecursive) {
47   const llvm::Type *RawResult = ConvertTypeRecursive(T);
48 
49   if (IsRecursive || PointersToResolve.empty())
50     return RawResult;
51 
52   llvm::PATypeHolder Result = RawResult;
53 
54   // Any pointers that were converted deferred evaluation of their pointee type,
55   // creating an opaque type instead.  This is in order to avoid problems with
56   // circular types.  Loop through all these defered pointees, if any, and
57   // resolve them now.
58   while (!PointersToResolve.empty()) {
59     std::pair<QualType, llvm::OpaqueType*> P = PointersToResolve.pop_back_val();
60 
61     // We can handle bare pointers here because we know that the only pointers
62     // to the Opaque type are P.second and from other types.  Refining the
63     // opqaue type away will invalidate P.second, but we don't mind :).
64     const llvm::Type *NT = ConvertTypeForMemRecursive(P.first);
65     P.second->refineAbstractTypeTo(NT);
66   }
67 
68   return Result;
69 }
70 
71 const llvm::Type *CodeGenTypes::ConvertTypeRecursive(QualType T) {
72   T = Context.getCanonicalType(T);
73 
74   // See if type is already cached.
75   llvm::DenseMap<Type *, llvm::PATypeHolder>::iterator
76     I = TypeCache.find(T.getTypePtr());
77   // If type is found in map and this is not a definition for a opaque
78   // place holder type then use it. Otherwise, convert type T.
79   if (I != TypeCache.end())
80     return I->second.get();
81 
82   const llvm::Type *ResultType = ConvertNewType(T);
83   TypeCache.insert(std::make_pair(T.getTypePtr(),
84                                   llvm::PATypeHolder(ResultType)));
85   return ResultType;
86 }
87 
88 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
89 /// ConvertType in that it is used to convert to the memory representation for
90 /// a type.  For example, the scalar representation for _Bool is i1, but the
91 /// memory representation is usually i8 or i32, depending on the target.
92 const llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T, bool IsRecursive){
93   const llvm::Type *R = ConvertType(T, IsRecursive);
94 
95   // If this is a non-bool type, don't map it.
96   if (!R->isIntegerTy(1))
97     return R;
98 
99   // Otherwise, return an integer of the target-specified size.
100   return llvm::IntegerType::get(getLLVMContext(),
101                                 (unsigned)Context.getTypeSize(T));
102 
103 }
104 
105 // Code to verify a given function type is complete, i.e. the return type
106 // and all of the argument types are complete.
107 const TagType *CodeGenTypes::VerifyFuncTypeComplete(const Type* T) {
108   const FunctionType *FT = cast<FunctionType>(T);
109   if (const TagType* TT = FT->getResultType()->getAs<TagType>())
110     if (!TT->getDecl()->isDefinition())
111       return TT;
112   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(T))
113     for (unsigned i = 0; i < FPT->getNumArgs(); i++)
114       if (const TagType* TT = FPT->getArgType(i)->getAs<TagType>())
115         if (!TT->getDecl()->isDefinition())
116           return TT;
117   return 0;
118 }
119 
120 /// UpdateCompletedType - When we find the full definition for a TagDecl,
121 /// replace the 'opaque' type we previously made for it if applicable.
122 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
123   const Type *Key = Context.getTagDeclType(TD).getTypePtr();
124   llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator TDTI =
125     TagDeclTypes.find(Key);
126   if (TDTI == TagDeclTypes.end()) return;
127 
128   // Remember the opaque LLVM type for this tagdecl.
129   llvm::PATypeHolder OpaqueHolder = TDTI->second;
130   assert(isa<llvm::OpaqueType>(OpaqueHolder.get()) &&
131          "Updating compilation of an already non-opaque type?");
132 
133   // Remove it from TagDeclTypes so that it will be regenerated.
134   TagDeclTypes.erase(TDTI);
135 
136   // Generate the new type.
137   const llvm::Type *NT = ConvertTagDeclType(TD);
138 
139   // Refine the old opaque type to its new definition.
140   cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NT);
141 
142   // Since we just completed a tag type, check to see if any function types
143   // were completed along with the tag type.
144   // FIXME: This is very inefficient; if we track which function types depend
145   // on which tag types, though, it should be reasonably efficient.
146   llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator i;
147   for (i = FunctionTypes.begin(); i != FunctionTypes.end(); ++i) {
148     if (const TagType* TT = VerifyFuncTypeComplete(i->first)) {
149       // This function type still depends on an incomplete tag type; make sure
150       // that tag type has an associated opaque type.
151       ConvertTagDeclType(TT->getDecl());
152     } else {
153       // This function no longer depends on an incomplete tag type; create the
154       // function type, and refine the opaque type to the new function type.
155       llvm::PATypeHolder OpaqueHolder = i->second;
156       const llvm::Type *NFT = ConvertNewType(QualType(i->first, 0));
157       cast<llvm::OpaqueType>(OpaqueHolder.get())->refineAbstractTypeTo(NFT);
158       FunctionTypes.erase(i);
159     }
160   }
161 }
162 
163 static const llvm::Type* getTypeForFormat(llvm::LLVMContext &VMContext,
164                                           const llvm::fltSemantics &format) {
165   if (&format == &llvm::APFloat::IEEEsingle)
166     return llvm::Type::getFloatTy(VMContext);
167   if (&format == &llvm::APFloat::IEEEdouble)
168     return llvm::Type::getDoubleTy(VMContext);
169   if (&format == &llvm::APFloat::IEEEquad)
170     return llvm::Type::getFP128Ty(VMContext);
171   if (&format == &llvm::APFloat::PPCDoubleDouble)
172     return llvm::Type::getPPC_FP128Ty(VMContext);
173   if (&format == &llvm::APFloat::x87DoubleExtended)
174     return llvm::Type::getX86_FP80Ty(VMContext);
175   assert(0 && "Unknown float format!");
176   return 0;
177 }
178 
179 const llvm::Type *CodeGenTypes::ConvertNewType(QualType T) {
180   const clang::Type &Ty = *Context.getCanonicalType(T).getTypePtr();
181 
182   switch (Ty.getTypeClass()) {
183 #define TYPE(Class, Base)
184 #define ABSTRACT_TYPE(Class, Base)
185 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
186 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
187 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
188 #include "clang/AST/TypeNodes.def"
189     assert(false && "Non-canonical or dependent types aren't possible.");
190     break;
191 
192   case Type::Builtin: {
193     switch (cast<BuiltinType>(Ty).getKind()) {
194     case BuiltinType::Void:
195     case BuiltinType::ObjCId:
196     case BuiltinType::ObjCClass:
197     case BuiltinType::ObjCSel:
198       // LLVM void type can only be used as the result of a function call.  Just
199       // map to the same as char.
200       return llvm::Type::getInt8Ty(getLLVMContext());
201 
202     case BuiltinType::Bool:
203       // Note that we always return bool as i1 for use as a scalar type.
204       return llvm::Type::getInt1Ty(getLLVMContext());
205 
206     case BuiltinType::Char_S:
207     case BuiltinType::Char_U:
208     case BuiltinType::SChar:
209     case BuiltinType::UChar:
210     case BuiltinType::Short:
211     case BuiltinType::UShort:
212     case BuiltinType::Int:
213     case BuiltinType::UInt:
214     case BuiltinType::Long:
215     case BuiltinType::ULong:
216     case BuiltinType::LongLong:
217     case BuiltinType::ULongLong:
218     case BuiltinType::WChar:
219     case BuiltinType::Char16:
220     case BuiltinType::Char32:
221       return llvm::IntegerType::get(getLLVMContext(),
222         static_cast<unsigned>(Context.getTypeSize(T)));
223 
224     case BuiltinType::Float:
225     case BuiltinType::Double:
226     case BuiltinType::LongDouble:
227       return getTypeForFormat(getLLVMContext(),
228                               Context.getFloatTypeSemantics(T));
229 
230     case BuiltinType::NullPtr: {
231       // Model std::nullptr_t as i8*
232       const llvm::Type *Ty = llvm::Type::getInt8Ty(getLLVMContext());
233       return llvm::PointerType::getUnqual(Ty);
234     }
235 
236     case BuiltinType::UInt128:
237     case BuiltinType::Int128:
238       return llvm::IntegerType::get(getLLVMContext(), 128);
239 
240     case BuiltinType::Overload:
241     case BuiltinType::Dependent:
242     case BuiltinType::UndeducedAuto:
243       assert(0 && "Unexpected builtin type!");
244       break;
245     }
246     assert(0 && "Unknown builtin type!");
247     break;
248   }
249   case Type::Complex: {
250     const llvm::Type *EltTy =
251       ConvertTypeRecursive(cast<ComplexType>(Ty).getElementType());
252     return llvm::StructType::get(TheModule.getContext(), EltTy, EltTy, NULL);
253   }
254   case Type::LValueReference:
255   case Type::RValueReference: {
256     const ReferenceType &RTy = cast<ReferenceType>(Ty);
257     QualType ETy = RTy.getPointeeType();
258     llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext());
259     PointersToResolve.push_back(std::make_pair(ETy, PointeeType));
260     return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
261   }
262   case Type::Pointer: {
263     const PointerType &PTy = cast<PointerType>(Ty);
264     QualType ETy = PTy.getPointeeType();
265     llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext());
266     PointersToResolve.push_back(std::make_pair(ETy, PointeeType));
267     return llvm::PointerType::get(PointeeType, ETy.getAddressSpace());
268   }
269 
270   case Type::VariableArray: {
271     const VariableArrayType &A = cast<VariableArrayType>(Ty);
272     assert(A.getIndexTypeCVRQualifiers() == 0 &&
273            "FIXME: We only handle trivial array types so far!");
274     // VLAs resolve to the innermost element type; this matches
275     // the return of alloca, and there isn't any obviously better choice.
276     return ConvertTypeForMemRecursive(A.getElementType());
277   }
278   case Type::IncompleteArray: {
279     const IncompleteArrayType &A = cast<IncompleteArrayType>(Ty);
280     assert(A.getIndexTypeCVRQualifiers() == 0 &&
281            "FIXME: We only handle trivial array types so far!");
282     // int X[] -> [0 x int]
283     return llvm::ArrayType::get(ConvertTypeForMemRecursive(A.getElementType()),
284                                 0);
285   }
286   case Type::ConstantArray: {
287     const ConstantArrayType &A = cast<ConstantArrayType>(Ty);
288     const llvm::Type *EltTy = ConvertTypeForMemRecursive(A.getElementType());
289     return llvm::ArrayType::get(EltTy, A.getSize().getZExtValue());
290   }
291   case Type::ExtVector:
292   case Type::Vector: {
293     const VectorType &VT = cast<VectorType>(Ty);
294     return llvm::VectorType::get(ConvertTypeRecursive(VT.getElementType()),
295                                  VT.getNumElements());
296   }
297   case Type::FunctionNoProto:
298   case Type::FunctionProto: {
299     // First, check whether we can build the full function type.  If the
300     // function type depends on an incomplete type (e.g. a struct or enum), we
301     // cannot lower the function type.  Instead, turn it into an Opaque pointer
302     // and have UpdateCompletedType revisit the function type when/if the opaque
303     // argument type is defined.
304     if (const TagType *TT = VerifyFuncTypeComplete(&Ty)) {
305       // This function's type depends on an incomplete tag type; make sure
306       // we have an opaque type corresponding to the tag type.
307       ConvertTagDeclType(TT->getDecl());
308       // Create an opaque type for this function type, save it, and return it.
309       llvm::Type *ResultType = llvm::OpaqueType::get(getLLVMContext());
310       FunctionTypes.insert(std::make_pair(&Ty, ResultType));
311       return ResultType;
312     }
313 
314     // The function type can be built; call the appropriate routines to
315     // build it.
316     const CGFunctionInfo *FI;
317     bool isVariadic;
318     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(&Ty)) {
319       FI = &getFunctionInfo(
320                    CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)),
321                             true /*Recursive*/);
322       isVariadic = FPT->isVariadic();
323     } else {
324       const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(&Ty);
325       FI = &getFunctionInfo(
326                 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)),
327                             true /*Recursive*/);
328       isVariadic = true;
329     }
330 
331     return GetFunctionType(*FI, isVariadic, true);
332   }
333 
334   case Type::ObjCObject:
335     return ConvertTypeRecursive(cast<ObjCObjectType>(Ty).getBaseType());
336 
337   case Type::ObjCInterface: {
338     // Objective-C interfaces are always opaque (outside of the
339     // runtime, which can do whatever it likes); we never refine
340     // these.
341     const llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(&Ty)];
342     if (!T)
343         T = llvm::OpaqueType::get(getLLVMContext());
344     return T;
345   }
346 
347   case Type::ObjCObjectPointer: {
348     // Protocol qualifications do not influence the LLVM type, we just return a
349     // pointer to the underlying interface type. We don't need to worry about
350     // recursive conversion.
351     const llvm::Type *T =
352       ConvertTypeRecursive(cast<ObjCObjectPointerType>(Ty).getPointeeType());
353     return llvm::PointerType::getUnqual(T);
354   }
355 
356   case Type::Record:
357   case Type::Enum: {
358     const TagDecl *TD = cast<TagType>(Ty).getDecl();
359     const llvm::Type *Res = ConvertTagDeclType(TD);
360 
361     std::string TypeName(TD->getKindName());
362     TypeName += '.';
363 
364     // Name the codegen type after the typedef name
365     // if there is no tag type name available
366     if (TD->getIdentifier())
367       // FIXME: We should not have to check for a null decl context here.
368       // Right now we do it because the implicit Obj-C decls don't have one.
369       TypeName += TD->getDeclContext() ? TD->getQualifiedNameAsString() :
370         TD->getNameAsString();
371     else if (const TypedefType *TdT = dyn_cast<TypedefType>(T))
372       // FIXME: We should not have to check for a null decl context here.
373       // Right now we do it because the implicit Obj-C decls don't have one.
374       TypeName += TdT->getDecl()->getDeclContext() ?
375         TdT->getDecl()->getQualifiedNameAsString() :
376         TdT->getDecl()->getNameAsString();
377     else
378       TypeName += "anon";
379 
380     TheModule.addTypeName(TypeName, Res);
381     return Res;
382   }
383 
384   case Type::BlockPointer: {
385     const QualType FTy = cast<BlockPointerType>(Ty).getPointeeType();
386     llvm::OpaqueType *PointeeType = llvm::OpaqueType::get(getLLVMContext());
387     PointersToResolve.push_back(std::make_pair(FTy, PointeeType));
388     return llvm::PointerType::get(PointeeType, FTy.getAddressSpace());
389   }
390 
391   case Type::MemberPointer: {
392     // FIXME: This is ABI dependent. We use the Itanium C++ ABI.
393     // http://www.codesourcery.com/public/cxx-abi/abi.html#member-pointers
394     // If we ever want to support other ABIs this needs to be abstracted.
395 
396     QualType ETy = cast<MemberPointerType>(Ty).getPointeeType();
397     const llvm::Type *PtrDiffTy =
398         ConvertTypeRecursive(Context.getPointerDiffType());
399     if (ETy->isFunctionType())
400       return llvm::StructType::get(TheModule.getContext(), PtrDiffTy, PtrDiffTy,
401                                    NULL);
402     return PtrDiffTy;
403   }
404   }
405 
406   // FIXME: implement.
407   return llvm::OpaqueType::get(getLLVMContext());
408 }
409 
410 /// ConvertTagDeclType - Lay out a tagged decl type like struct or union or
411 /// enum.
412 const llvm::Type *CodeGenTypes::ConvertTagDeclType(const TagDecl *TD) {
413   // TagDecl's are not necessarily unique, instead use the (clang)
414   // type connected to the decl.
415   const Type *Key =
416     Context.getTagDeclType(TD).getTypePtr();
417   llvm::DenseMap<const Type*, llvm::PATypeHolder>::iterator TDTI =
418     TagDeclTypes.find(Key);
419 
420   // If we've already compiled this tag type, use the previous definition.
421   if (TDTI != TagDeclTypes.end())
422     return TDTI->second;
423 
424   // If this is still a forward declaration, just define an opaque
425   // type to use for this tagged decl.
426   if (!TD->isDefinition()) {
427     llvm::Type *ResultType = llvm::OpaqueType::get(getLLVMContext());
428     TagDeclTypes.insert(std::make_pair(Key, ResultType));
429     return ResultType;
430   }
431 
432   // Okay, this is a definition of a type.  Compile the implementation now.
433 
434   if (TD->isEnum())  // Don't bother storing enums in TagDeclTypes.
435     return ConvertTypeRecursive(cast<EnumDecl>(TD)->getIntegerType());
436 
437   // This decl could well be recursive.  In this case, insert an opaque
438   // definition of this type, which the recursive uses will get.  We will then
439   // refine this opaque version later.
440 
441   // Create new OpaqueType now for later use in case this is a recursive
442   // type.  This will later be refined to the actual type.
443   llvm::PATypeHolder ResultHolder = llvm::OpaqueType::get(getLLVMContext());
444   TagDeclTypes.insert(std::make_pair(Key, ResultHolder));
445 
446   const RecordDecl *RD = cast<const RecordDecl>(TD);
447 
448   // Force conversion of non-virtual base classes recursively.
449   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
450     for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
451          e = RD->bases_end(); i != e; ++i) {
452       if (!i->isVirtual()) {
453         const CXXRecordDecl *Base =
454           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
455         ConvertTagDeclType(Base);
456       }
457     }
458   }
459 
460   // Layout fields.
461   CGRecordLayout *Layout = ComputeRecordLayout(RD);
462 
463   CGRecordLayouts[Key] = Layout;
464   const llvm::Type *ResultType = Layout->getLLVMType();
465 
466   // Refine our Opaque type to ResultType.  This can invalidate ResultType, so
467   // make sure to read the result out of the holder.
468   cast<llvm::OpaqueType>(ResultHolder.get())
469     ->refineAbstractTypeTo(ResultType);
470 
471   return ResultHolder.get();
472 }
473 
474 /// getCGRecordLayout - Return record layout info for the given llvm::Type.
475 const CGRecordLayout &
476 CodeGenTypes::getCGRecordLayout(const RecordDecl *TD) const {
477   const Type *Key = Context.getTagDeclType(TD).getTypePtr();
478   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
479   assert(Layout && "Unable to find record layout information for type");
480   return *Layout;
481 }
482 
483 bool CodeGenTypes::ContainsPointerToDataMember(QualType T) {
484   // No need to check for member pointers when not compiling C++.
485   if (!Context.getLangOptions().CPlusPlus)
486     return false;
487 
488   T = Context.getBaseElementType(T);
489 
490   if (const RecordType *RT = T->getAs<RecordType>()) {
491     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
492 
493     return ContainsPointerToDataMember(RD);
494   }
495 
496   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
497     return !MPT->getPointeeType()->isFunctionType();
498 
499   return false;
500 }
501 
502 bool CodeGenTypes::ContainsPointerToDataMember(const CXXRecordDecl *RD) {
503 
504   // FIXME: It would be better if there was a way to explicitly compute the
505   // record layout instead of converting to a type.
506   ConvertTagDeclType(RD);
507 
508   const CGRecordLayout &Layout = getCGRecordLayout(RD);
509   return Layout.containsPointerToDataMember();
510 }
511