1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the code that handles AST -> LLVM type lowering. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenTypes.h" 14 #include "CGCXXABI.h" 15 #include "CGCall.h" 16 #include "CGOpenCLRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "TargetInfo.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/RecordLayout.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/Module.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm) 32 : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()), 33 Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()), 34 TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) { 35 SkippedLayout = false; 36 } 37 38 CodeGenTypes::~CodeGenTypes() { 39 for (llvm::FoldingSet<CGFunctionInfo>::iterator 40 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; ) 41 delete &*I++; 42 } 43 44 const CodeGenOptions &CodeGenTypes::getCodeGenOpts() const { 45 return CGM.getCodeGenOpts(); 46 } 47 48 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD, 49 llvm::StructType *Ty, 50 StringRef suffix) { 51 SmallString<256> TypeName; 52 llvm::raw_svector_ostream OS(TypeName); 53 OS << RD->getKindName() << '.'; 54 55 // Name the codegen type after the typedef name 56 // if there is no tag type name available 57 if (RD->getIdentifier()) { 58 // FIXME: We should not have to check for a null decl context here. 59 // Right now we do it because the implicit Obj-C decls don't have one. 60 if (RD->getDeclContext()) 61 RD->printQualifiedName(OS); 62 else 63 RD->printName(OS); 64 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) { 65 // FIXME: We should not have to check for a null decl context here. 66 // Right now we do it because the implicit Obj-C decls don't have one. 67 if (TDD->getDeclContext()) 68 TDD->printQualifiedName(OS); 69 else 70 TDD->printName(OS); 71 } else 72 OS << "anon"; 73 74 if (!suffix.empty()) 75 OS << suffix; 76 77 Ty->setName(OS.str()); 78 } 79 80 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from 81 /// ConvertType in that it is used to convert to the memory representation for 82 /// a type. For example, the scalar representation for _Bool is i1, but the 83 /// memory representation is usually i8 or i32, depending on the target. 84 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T, bool ForBitField) { 85 llvm::Type *R = ConvertType(T); 86 87 // If this is a bool type, or an ExtIntType in a bitfield representation, 88 // map this integer to the target-specified size. 89 if ((ForBitField && T->isExtIntType()) || R->isIntegerTy(1)) 90 return llvm::IntegerType::get(getLLVMContext(), 91 (unsigned)Context.getTypeSize(T)); 92 93 // Else, don't map it. 94 return R; 95 } 96 97 /// isRecordLayoutComplete - Return true if the specified type is already 98 /// completely laid out. 99 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const { 100 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I = 101 RecordDeclTypes.find(Ty); 102 return I != RecordDeclTypes.end() && !I->second->isOpaque(); 103 } 104 105 static bool 106 isSafeToConvert(QualType T, CodeGenTypes &CGT, 107 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked); 108 109 110 /// isSafeToConvert - Return true if it is safe to convert the specified record 111 /// decl to IR and lay it out, false if doing so would cause us to get into a 112 /// recursive compilation mess. 113 static bool 114 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT, 115 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { 116 // If we have already checked this type (maybe the same type is used by-value 117 // multiple times in multiple structure fields, don't check again. 118 if (!AlreadyChecked.insert(RD).second) 119 return true; 120 121 const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr(); 122 123 // If this type is already laid out, converting it is a noop. 124 if (CGT.isRecordLayoutComplete(Key)) return true; 125 126 // If this type is currently being laid out, we can't recursively compile it. 127 if (CGT.isRecordBeingLaidOut(Key)) 128 return false; 129 130 // If this type would require laying out bases that are currently being laid 131 // out, don't do it. This includes virtual base classes which get laid out 132 // when a class is translated, even though they aren't embedded by-value into 133 // the class. 134 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 135 for (const auto &I : CRD->bases()) 136 if (!isSafeToConvert(I.getType()->castAs<RecordType>()->getDecl(), CGT, 137 AlreadyChecked)) 138 return false; 139 } 140 141 // If this type would require laying out members that are currently being laid 142 // out, don't do it. 143 for (const auto *I : RD->fields()) 144 if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked)) 145 return false; 146 147 // If there are no problems, lets do it. 148 return true; 149 } 150 151 /// isSafeToConvert - Return true if it is safe to convert this field type, 152 /// which requires the structure elements contained by-value to all be 153 /// recursively safe to convert. 154 static bool 155 isSafeToConvert(QualType T, CodeGenTypes &CGT, 156 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { 157 // Strip off atomic type sugar. 158 if (const auto *AT = T->getAs<AtomicType>()) 159 T = AT->getValueType(); 160 161 // If this is a record, check it. 162 if (const auto *RT = T->getAs<RecordType>()) 163 return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked); 164 165 // If this is an array, check the elements, which are embedded inline. 166 if (const auto *AT = CGT.getContext().getAsArrayType(T)) 167 return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked); 168 169 // Otherwise, there is no concern about transforming this. We only care about 170 // things that are contained by-value in a structure that can have another 171 // structure as a member. 172 return true; 173 } 174 175 176 /// isSafeToConvert - Return true if it is safe to convert the specified record 177 /// decl to IR and lay it out, false if doing so would cause us to get into a 178 /// recursive compilation mess. 179 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) { 180 // If no structs are being laid out, we can certainly do this one. 181 if (CGT.noRecordsBeingLaidOut()) return true; 182 183 llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked; 184 return isSafeToConvert(RD, CGT, AlreadyChecked); 185 } 186 187 /// isFuncParamTypeConvertible - Return true if the specified type in a 188 /// function parameter or result position can be converted to an IR type at this 189 /// point. This boils down to being whether it is complete, as well as whether 190 /// we've temporarily deferred expanding the type because we're in a recursive 191 /// context. 192 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) { 193 // Some ABIs cannot have their member pointers represented in IR unless 194 // certain circumstances have been reached. 195 if (const auto *MPT = Ty->getAs<MemberPointerType>()) 196 return getCXXABI().isMemberPointerConvertible(MPT); 197 198 // If this isn't a tagged type, we can convert it! 199 const TagType *TT = Ty->getAs<TagType>(); 200 if (!TT) return true; 201 202 // Incomplete types cannot be converted. 203 if (TT->isIncompleteType()) 204 return false; 205 206 // If this is an enum, then it is always safe to convert. 207 const RecordType *RT = dyn_cast<RecordType>(TT); 208 if (!RT) return true; 209 210 // Otherwise, we have to be careful. If it is a struct that we're in the 211 // process of expanding, then we can't convert the function type. That's ok 212 // though because we must be in a pointer context under the struct, so we can 213 // just convert it to a dummy type. 214 // 215 // We decide this by checking whether ConvertRecordDeclType returns us an 216 // opaque type for a struct that we know is defined. 217 return isSafeToConvert(RT->getDecl(), *this); 218 } 219 220 221 /// Code to verify a given function type is complete, i.e. the return type 222 /// and all of the parameter types are complete. Also check to see if we are in 223 /// a RS_StructPointer context, and if so whether any struct types have been 224 /// pended. If so, we don't want to ask the ABI lowering code to handle a type 225 /// that cannot be converted to an IR type. 226 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) { 227 if (!isFuncParamTypeConvertible(FT->getReturnType())) 228 return false; 229 230 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 231 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 232 if (!isFuncParamTypeConvertible(FPT->getParamType(i))) 233 return false; 234 235 return true; 236 } 237 238 /// UpdateCompletedType - When we find the full definition for a TagDecl, 239 /// replace the 'opaque' type we previously made for it if applicable. 240 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) { 241 // If this is an enum being completed, then we flush all non-struct types from 242 // the cache. This allows function types and other things that may be derived 243 // from the enum to be recomputed. 244 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) { 245 // Only flush the cache if we've actually already converted this type. 246 if (TypeCache.count(ED->getTypeForDecl())) { 247 // Okay, we formed some types based on this. We speculated that the enum 248 // would be lowered to i32, so we only need to flush the cache if this 249 // didn't happen. 250 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32)) 251 TypeCache.clear(); 252 } 253 // If necessary, provide the full definition of a type only used with a 254 // declaration so far. 255 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 256 DI->completeType(ED); 257 return; 258 } 259 260 // If we completed a RecordDecl that we previously used and converted to an 261 // anonymous type, then go ahead and complete it now. 262 const RecordDecl *RD = cast<RecordDecl>(TD); 263 if (RD->isDependentType()) return; 264 265 // Only complete it if we converted it already. If we haven't converted it 266 // yet, we'll just do it lazily. 267 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr())) 268 ConvertRecordDeclType(RD); 269 270 // If necessary, provide the full definition of a type only used with a 271 // declaration so far. 272 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 273 DI->completeType(RD); 274 } 275 276 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 277 QualType T = Context.getRecordType(RD); 278 T = Context.getCanonicalType(T); 279 280 const Type *Ty = T.getTypePtr(); 281 if (RecordsWithOpaqueMemberPointers.count(Ty)) { 282 TypeCache.clear(); 283 RecordsWithOpaqueMemberPointers.clear(); 284 } 285 } 286 287 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext, 288 const llvm::fltSemantics &format, 289 bool UseNativeHalf = false) { 290 if (&format == &llvm::APFloat::IEEEhalf()) { 291 if (UseNativeHalf) 292 return llvm::Type::getHalfTy(VMContext); 293 else 294 return llvm::Type::getInt16Ty(VMContext); 295 } 296 if (&format == &llvm::APFloat::IEEEsingle()) 297 return llvm::Type::getFloatTy(VMContext); 298 if (&format == &llvm::APFloat::IEEEdouble()) 299 return llvm::Type::getDoubleTy(VMContext); 300 if (&format == &llvm::APFloat::IEEEquad()) 301 return llvm::Type::getFP128Ty(VMContext); 302 if (&format == &llvm::APFloat::PPCDoubleDouble()) 303 return llvm::Type::getPPC_FP128Ty(VMContext); 304 if (&format == &llvm::APFloat::x87DoubleExtended()) 305 return llvm::Type::getX86_FP80Ty(VMContext); 306 llvm_unreachable("Unknown float format!"); 307 } 308 309 llvm::Type *CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT) { 310 assert(QFT.isCanonical()); 311 const Type *Ty = QFT.getTypePtr(); 312 const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr()); 313 // First, check whether we can build the full function type. If the 314 // function type depends on an incomplete type (e.g. a struct or enum), we 315 // cannot lower the function type. 316 if (!isFuncTypeConvertible(FT)) { 317 // This function's type depends on an incomplete tag type. 318 319 // Force conversion of all the relevant record types, to make sure 320 // we re-convert the FunctionType when appropriate. 321 if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>()) 322 ConvertRecordDeclType(RT->getDecl()); 323 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 324 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 325 if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>()) 326 ConvertRecordDeclType(RT->getDecl()); 327 328 SkippedLayout = true; 329 330 // Return a placeholder type. 331 return llvm::StructType::get(getLLVMContext()); 332 } 333 334 // While we're converting the parameter types for a function, we don't want 335 // to recursively convert any pointed-to structs. Converting directly-used 336 // structs is ok though. 337 if (!RecordsBeingLaidOut.insert(Ty).second) { 338 SkippedLayout = true; 339 return llvm::StructType::get(getLLVMContext()); 340 } 341 342 // The function type can be built; call the appropriate routines to 343 // build it. 344 const CGFunctionInfo *FI; 345 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { 346 FI = &arrangeFreeFunctionType( 347 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0))); 348 } else { 349 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT); 350 FI = &arrangeFreeFunctionType( 351 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0))); 352 } 353 354 llvm::Type *ResultType = nullptr; 355 // If there is something higher level prodding our CGFunctionInfo, then 356 // don't recurse into it again. 357 if (FunctionsBeingProcessed.count(FI)) { 358 359 ResultType = llvm::StructType::get(getLLVMContext()); 360 SkippedLayout = true; 361 } else { 362 363 // Otherwise, we're good to go, go ahead and convert it. 364 ResultType = GetFunctionType(*FI); 365 } 366 367 RecordsBeingLaidOut.erase(Ty); 368 369 if (SkippedLayout) 370 TypeCache.clear(); 371 372 if (RecordsBeingLaidOut.empty()) 373 while (!DeferredRecords.empty()) 374 ConvertRecordDeclType(DeferredRecords.pop_back_val()); 375 return ResultType; 376 } 377 378 /// ConvertType - Convert the specified type to its LLVM form. 379 llvm::Type *CodeGenTypes::ConvertType(QualType T) { 380 T = Context.getCanonicalType(T); 381 382 const Type *Ty = T.getTypePtr(); 383 384 // For the device-side compilation, CUDA device builtin surface/texture types 385 // may be represented in different types. 386 if (Context.getLangOpts().CUDAIsDevice) { 387 if (T->isCUDADeviceBuiltinSurfaceType()) { 388 if (auto *Ty = CGM.getTargetCodeGenInfo() 389 .getCUDADeviceBuiltinSurfaceDeviceType()) 390 return Ty; 391 } else if (T->isCUDADeviceBuiltinTextureType()) { 392 if (auto *Ty = CGM.getTargetCodeGenInfo() 393 .getCUDADeviceBuiltinTextureDeviceType()) 394 return Ty; 395 } 396 } 397 398 // RecordTypes are cached and processed specially. 399 if (const RecordType *RT = dyn_cast<RecordType>(Ty)) 400 return ConvertRecordDeclType(RT->getDecl()); 401 402 // See if type is already cached. 403 llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty); 404 // If type is found in map then use it. Otherwise, convert type T. 405 if (TCI != TypeCache.end()) 406 return TCI->second; 407 408 // If we don't have it in the cache, convert it now. 409 llvm::Type *ResultType = nullptr; 410 switch (Ty->getTypeClass()) { 411 case Type::Record: // Handled above. 412 #define TYPE(Class, Base) 413 #define ABSTRACT_TYPE(Class, Base) 414 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 415 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 416 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 417 #include "clang/AST/TypeNodes.inc" 418 llvm_unreachable("Non-canonical or dependent types aren't possible."); 419 420 case Type::Builtin: { 421 switch (cast<BuiltinType>(Ty)->getKind()) { 422 case BuiltinType::Void: 423 case BuiltinType::ObjCId: 424 case BuiltinType::ObjCClass: 425 case BuiltinType::ObjCSel: 426 // LLVM void type can only be used as the result of a function call. Just 427 // map to the same as char. 428 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 429 break; 430 431 case BuiltinType::Bool: 432 // Note that we always return bool as i1 for use as a scalar type. 433 ResultType = llvm::Type::getInt1Ty(getLLVMContext()); 434 break; 435 436 case BuiltinType::Char_S: 437 case BuiltinType::Char_U: 438 case BuiltinType::SChar: 439 case BuiltinType::UChar: 440 case BuiltinType::Short: 441 case BuiltinType::UShort: 442 case BuiltinType::Int: 443 case BuiltinType::UInt: 444 case BuiltinType::Long: 445 case BuiltinType::ULong: 446 case BuiltinType::LongLong: 447 case BuiltinType::ULongLong: 448 case BuiltinType::WChar_S: 449 case BuiltinType::WChar_U: 450 case BuiltinType::Char8: 451 case BuiltinType::Char16: 452 case BuiltinType::Char32: 453 case BuiltinType::ShortAccum: 454 case BuiltinType::Accum: 455 case BuiltinType::LongAccum: 456 case BuiltinType::UShortAccum: 457 case BuiltinType::UAccum: 458 case BuiltinType::ULongAccum: 459 case BuiltinType::ShortFract: 460 case BuiltinType::Fract: 461 case BuiltinType::LongFract: 462 case BuiltinType::UShortFract: 463 case BuiltinType::UFract: 464 case BuiltinType::ULongFract: 465 case BuiltinType::SatShortAccum: 466 case BuiltinType::SatAccum: 467 case BuiltinType::SatLongAccum: 468 case BuiltinType::SatUShortAccum: 469 case BuiltinType::SatUAccum: 470 case BuiltinType::SatULongAccum: 471 case BuiltinType::SatShortFract: 472 case BuiltinType::SatFract: 473 case BuiltinType::SatLongFract: 474 case BuiltinType::SatUShortFract: 475 case BuiltinType::SatUFract: 476 case BuiltinType::SatULongFract: 477 ResultType = llvm::IntegerType::get(getLLVMContext(), 478 static_cast<unsigned>(Context.getTypeSize(T))); 479 break; 480 481 case BuiltinType::Float16: 482 ResultType = 483 getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T), 484 /* UseNativeHalf = */ true); 485 break; 486 487 case BuiltinType::Half: 488 // Half FP can either be storage-only (lowered to i16) or native. 489 ResultType = getTypeForFormat( 490 getLLVMContext(), Context.getFloatTypeSemantics(T), 491 Context.getLangOpts().NativeHalfType || 492 !Context.getTargetInfo().useFP16ConversionIntrinsics()); 493 break; 494 case BuiltinType::Float: 495 case BuiltinType::Double: 496 case BuiltinType::LongDouble: 497 case BuiltinType::Float128: 498 ResultType = getTypeForFormat(getLLVMContext(), 499 Context.getFloatTypeSemantics(T), 500 /* UseNativeHalf = */ false); 501 break; 502 503 case BuiltinType::NullPtr: 504 // Model std::nullptr_t as i8* 505 ResultType = llvm::Type::getInt8PtrTy(getLLVMContext()); 506 break; 507 508 case BuiltinType::UInt128: 509 case BuiltinType::Int128: 510 ResultType = llvm::IntegerType::get(getLLVMContext(), 128); 511 break; 512 513 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 514 case BuiltinType::Id: 515 #include "clang/Basic/OpenCLImageTypes.def" 516 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ 517 case BuiltinType::Id: 518 #include "clang/Basic/OpenCLExtensionTypes.def" 519 case BuiltinType::OCLSampler: 520 case BuiltinType::OCLEvent: 521 case BuiltinType::OCLClkEvent: 522 case BuiltinType::OCLQueue: 523 case BuiltinType::OCLReserveID: 524 ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty); 525 break; 526 case BuiltinType::SveInt8: 527 case BuiltinType::SveUint8: 528 return llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8), 529 {16, true}); 530 case BuiltinType::SveInt16: 531 case BuiltinType::SveUint16: 532 return llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16), 533 {8, true}); 534 case BuiltinType::SveInt32: 535 case BuiltinType::SveUint32: 536 return llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 32), 537 {4, true}); 538 case BuiltinType::SveInt64: 539 case BuiltinType::SveUint64: 540 return llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 64), 541 {2, true}); 542 case BuiltinType::SveFloat16: 543 return llvm::VectorType::get( 544 getTypeForFormat(getLLVMContext(), 545 Context.getFloatTypeSemantics(Context.HalfTy), 546 /* UseNativeHalf = */ true), 547 {8, true}); 548 case BuiltinType::SveFloat32: 549 return llvm::VectorType::get( 550 getTypeForFormat(getLLVMContext(), 551 Context.getFloatTypeSemantics(Context.FloatTy), 552 /* UseNativeHalf = */ false), 553 {4, true}); 554 case BuiltinType::SveFloat64: 555 return llvm::VectorType::get( 556 getTypeForFormat(getLLVMContext(), 557 Context.getFloatTypeSemantics(Context.DoubleTy), 558 /* UseNativeHalf = */ false), 559 {2, true}); 560 case BuiltinType::SveBool: 561 return llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 1), 562 {16, true}); 563 break; 564 case BuiltinType::Dependent: 565 #define BUILTIN_TYPE(Id, SingletonId) 566 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 567 case BuiltinType::Id: 568 #include "clang/AST/BuiltinTypes.def" 569 llvm_unreachable("Unexpected placeholder builtin type!"); 570 } 571 break; 572 } 573 case Type::Auto: 574 case Type::DeducedTemplateSpecialization: 575 llvm_unreachable("Unexpected undeduced type!"); 576 case Type::Complex: { 577 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType()); 578 ResultType = llvm::StructType::get(EltTy, EltTy); 579 break; 580 } 581 case Type::LValueReference: 582 case Type::RValueReference: { 583 const ReferenceType *RTy = cast<ReferenceType>(Ty); 584 QualType ETy = RTy->getPointeeType(); 585 llvm::Type *PointeeType = ConvertTypeForMem(ETy); 586 unsigned AS = Context.getTargetAddressSpace(ETy); 587 ResultType = llvm::PointerType::get(PointeeType, AS); 588 break; 589 } 590 case Type::Pointer: { 591 const PointerType *PTy = cast<PointerType>(Ty); 592 QualType ETy = PTy->getPointeeType(); 593 llvm::Type *PointeeType = ConvertTypeForMem(ETy); 594 if (PointeeType->isVoidTy()) 595 PointeeType = llvm::Type::getInt8Ty(getLLVMContext()); 596 597 unsigned AS = PointeeType->isFunctionTy() 598 ? getDataLayout().getProgramAddressSpace() 599 : Context.getTargetAddressSpace(ETy); 600 601 ResultType = llvm::PointerType::get(PointeeType, AS); 602 break; 603 } 604 605 case Type::VariableArray: { 606 const VariableArrayType *A = cast<VariableArrayType>(Ty); 607 assert(A->getIndexTypeCVRQualifiers() == 0 && 608 "FIXME: We only handle trivial array types so far!"); 609 // VLAs resolve to the innermost element type; this matches 610 // the return of alloca, and there isn't any obviously better choice. 611 ResultType = ConvertTypeForMem(A->getElementType()); 612 break; 613 } 614 case Type::IncompleteArray: { 615 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty); 616 assert(A->getIndexTypeCVRQualifiers() == 0 && 617 "FIXME: We only handle trivial array types so far!"); 618 // int X[] -> [0 x int], unless the element type is not sized. If it is 619 // unsized (e.g. an incomplete struct) just use [0 x i8]. 620 ResultType = ConvertTypeForMem(A->getElementType()); 621 if (!ResultType->isSized()) { 622 SkippedLayout = true; 623 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 624 } 625 ResultType = llvm::ArrayType::get(ResultType, 0); 626 break; 627 } 628 case Type::ConstantArray: { 629 const ConstantArrayType *A = cast<ConstantArrayType>(Ty); 630 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType()); 631 632 // Lower arrays of undefined struct type to arrays of i8 just to have a 633 // concrete type. 634 if (!EltTy->isSized()) { 635 SkippedLayout = true; 636 EltTy = llvm::Type::getInt8Ty(getLLVMContext()); 637 } 638 639 ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue()); 640 break; 641 } 642 case Type::ExtVector: 643 case Type::Vector: { 644 const VectorType *VT = cast<VectorType>(Ty); 645 ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()), 646 VT->getNumElements()); 647 break; 648 } 649 case Type::FunctionNoProto: 650 case Type::FunctionProto: 651 ResultType = ConvertFunctionTypeInternal(T); 652 break; 653 case Type::ObjCObject: 654 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType()); 655 break; 656 657 case Type::ObjCInterface: { 658 // Objective-C interfaces are always opaque (outside of the 659 // runtime, which can do whatever it likes); we never refine 660 // these. 661 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)]; 662 if (!T) 663 T = llvm::StructType::create(getLLVMContext()); 664 ResultType = T; 665 break; 666 } 667 668 case Type::ObjCObjectPointer: { 669 // Protocol qualifications do not influence the LLVM type, we just return a 670 // pointer to the underlying interface type. We don't need to worry about 671 // recursive conversion. 672 llvm::Type *T = 673 ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType()); 674 ResultType = T->getPointerTo(); 675 break; 676 } 677 678 case Type::Enum: { 679 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl(); 680 if (ED->isCompleteDefinition() || ED->isFixed()) 681 return ConvertType(ED->getIntegerType()); 682 // Return a placeholder 'i32' type. This can be changed later when the 683 // type is defined (see UpdateCompletedType), but is likely to be the 684 // "right" answer. 685 ResultType = llvm::Type::getInt32Ty(getLLVMContext()); 686 break; 687 } 688 689 case Type::BlockPointer: { 690 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType(); 691 llvm::Type *PointeeType = CGM.getLangOpts().OpenCL 692 ? CGM.getGenericBlockLiteralType() 693 : ConvertTypeForMem(FTy); 694 unsigned AS = Context.getTargetAddressSpace(FTy); 695 ResultType = llvm::PointerType::get(PointeeType, AS); 696 break; 697 } 698 699 case Type::MemberPointer: { 700 auto *MPTy = cast<MemberPointerType>(Ty); 701 if (!getCXXABI().isMemberPointerConvertible(MPTy)) { 702 RecordsWithOpaqueMemberPointers.insert(MPTy->getClass()); 703 ResultType = llvm::StructType::create(getLLVMContext()); 704 } else { 705 ResultType = getCXXABI().ConvertMemberPointerType(MPTy); 706 } 707 break; 708 } 709 710 case Type::Atomic: { 711 QualType valueType = cast<AtomicType>(Ty)->getValueType(); 712 ResultType = ConvertTypeForMem(valueType); 713 714 // Pad out to the inflated size if necessary. 715 uint64_t valueSize = Context.getTypeSize(valueType); 716 uint64_t atomicSize = Context.getTypeSize(Ty); 717 if (valueSize != atomicSize) { 718 assert(valueSize < atomicSize); 719 llvm::Type *elts[] = { 720 ResultType, 721 llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8) 722 }; 723 ResultType = llvm::StructType::get(getLLVMContext(), 724 llvm::makeArrayRef(elts)); 725 } 726 break; 727 } 728 case Type::Pipe: { 729 ResultType = CGM.getOpenCLRuntime().getPipeType(cast<PipeType>(Ty)); 730 break; 731 } 732 case Type::ExtInt: { 733 const auto &EIT = cast<ExtIntType>(Ty); 734 ResultType = llvm::Type::getIntNTy(getLLVMContext(), EIT->getNumBits()); 735 break; 736 } 737 } 738 739 assert(ResultType && "Didn't convert a type?"); 740 741 TypeCache[Ty] = ResultType; 742 return ResultType; 743 } 744 745 bool CodeGenModule::isPaddedAtomicType(QualType type) { 746 return isPaddedAtomicType(type->castAs<AtomicType>()); 747 } 748 749 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) { 750 return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType()); 751 } 752 753 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. 754 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) { 755 // TagDecl's are not necessarily unique, instead use the (clang) 756 // type connected to the decl. 757 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 758 759 llvm::StructType *&Entry = RecordDeclTypes[Key]; 760 761 // If we don't have a StructType at all yet, create the forward declaration. 762 if (!Entry) { 763 Entry = llvm::StructType::create(getLLVMContext()); 764 addRecordTypeName(RD, Entry, ""); 765 } 766 llvm::StructType *Ty = Entry; 767 768 // If this is still a forward declaration, or the LLVM type is already 769 // complete, there's nothing more to do. 770 RD = RD->getDefinition(); 771 if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque()) 772 return Ty; 773 774 // If converting this type would cause us to infinitely loop, don't do it! 775 if (!isSafeToConvert(RD, *this)) { 776 DeferredRecords.push_back(RD); 777 return Ty; 778 } 779 780 // Okay, this is a definition of a type. Compile the implementation now. 781 bool InsertResult = RecordsBeingLaidOut.insert(Key).second; 782 (void)InsertResult; 783 assert(InsertResult && "Recursively compiling a struct?"); 784 785 // Force conversion of non-virtual base classes recursively. 786 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 787 for (const auto &I : CRD->bases()) { 788 if (I.isVirtual()) continue; 789 ConvertRecordDeclType(I.getType()->castAs<RecordType>()->getDecl()); 790 } 791 } 792 793 // Layout fields. 794 std::unique_ptr<CGRecordLayout> Layout = ComputeRecordLayout(RD, Ty); 795 CGRecordLayouts[Key] = std::move(Layout); 796 797 // We're done laying out this struct. 798 bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult; 799 assert(EraseResult && "struct not in RecordsBeingLaidOut set?"); 800 801 // If this struct blocked a FunctionType conversion, then recompute whatever 802 // was derived from that. 803 // FIXME: This is hugely overconservative. 804 if (SkippedLayout) 805 TypeCache.clear(); 806 807 // If we're done converting the outer-most record, then convert any deferred 808 // structs as well. 809 if (RecordsBeingLaidOut.empty()) 810 while (!DeferredRecords.empty()) 811 ConvertRecordDeclType(DeferredRecords.pop_back_val()); 812 813 return Ty; 814 } 815 816 /// getCGRecordLayout - Return record layout info for the given record decl. 817 const CGRecordLayout & 818 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) { 819 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 820 821 auto I = CGRecordLayouts.find(Key); 822 if (I != CGRecordLayouts.end()) 823 return *I->second; 824 // Compute the type information. 825 ConvertRecordDeclType(RD); 826 827 // Now try again. 828 I = CGRecordLayouts.find(Key); 829 830 assert(I != CGRecordLayouts.end() && 831 "Unable to find record layout information for type"); 832 return *I->second; 833 } 834 835 bool CodeGenTypes::isPointerZeroInitializable(QualType T) { 836 assert((T->isAnyPointerType() || T->isBlockPointerType()) && "Invalid type"); 837 return isZeroInitializable(T); 838 } 839 840 bool CodeGenTypes::isZeroInitializable(QualType T) { 841 if (T->getAs<PointerType>()) 842 return Context.getTargetNullPointerValue(T) == 0; 843 844 if (const auto *AT = Context.getAsArrayType(T)) { 845 if (isa<IncompleteArrayType>(AT)) 846 return true; 847 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 848 if (Context.getConstantArrayElementCount(CAT) == 0) 849 return true; 850 T = Context.getBaseElementType(T); 851 } 852 853 // Records are non-zero-initializable if they contain any 854 // non-zero-initializable subobjects. 855 if (const RecordType *RT = T->getAs<RecordType>()) { 856 const RecordDecl *RD = RT->getDecl(); 857 return isZeroInitializable(RD); 858 } 859 860 // We have to ask the ABI about member pointers. 861 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) 862 return getCXXABI().isZeroInitializable(MPT); 863 864 // Everything else is okay. 865 return true; 866 } 867 868 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) { 869 return getCGRecordLayout(RD).isZeroInitializable(); 870 } 871