1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the code that handles AST -> LLVM type lowering. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenTypes.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGRecordLayout.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Module.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm) 33 : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()), 34 TheDataLayout(cgm.getDataLayout()), 35 Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()), 36 TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) { 37 SkippedLayout = false; 38 } 39 40 CodeGenTypes::~CodeGenTypes() { 41 llvm::DeleteContainerSeconds(CGRecordLayouts); 42 43 for (llvm::FoldingSet<CGFunctionInfo>::iterator 44 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; ) 45 delete &*I++; 46 } 47 48 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD, 49 llvm::StructType *Ty, 50 StringRef suffix) { 51 SmallString<256> TypeName; 52 llvm::raw_svector_ostream OS(TypeName); 53 OS << RD->getKindName() << '.'; 54 55 // Name the codegen type after the typedef name 56 // if there is no tag type name available 57 if (RD->getIdentifier()) { 58 // FIXME: We should not have to check for a null decl context here. 59 // Right now we do it because the implicit Obj-C decls don't have one. 60 if (RD->getDeclContext()) 61 RD->printQualifiedName(OS); 62 else 63 RD->printName(OS); 64 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) { 65 // FIXME: We should not have to check for a null decl context here. 66 // Right now we do it because the implicit Obj-C decls don't have one. 67 if (TDD->getDeclContext()) 68 TDD->printQualifiedName(OS); 69 else 70 TDD->printName(OS); 71 } else 72 OS << "anon"; 73 74 if (!suffix.empty()) 75 OS << suffix; 76 77 Ty->setName(OS.str()); 78 } 79 80 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from 81 /// ConvertType in that it is used to convert to the memory representation for 82 /// a type. For example, the scalar representation for _Bool is i1, but the 83 /// memory representation is usually i8 or i32, depending on the target. 84 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){ 85 llvm::Type *R = ConvertType(T); 86 87 // If this is a non-bool type, don't map it. 88 if (!R->isIntegerTy(1)) 89 return R; 90 91 // Otherwise, return an integer of the target-specified size. 92 return llvm::IntegerType::get(getLLVMContext(), 93 (unsigned)Context.getTypeSize(T)); 94 } 95 96 97 /// isRecordLayoutComplete - Return true if the specified type is already 98 /// completely laid out. 99 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const { 100 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I = 101 RecordDeclTypes.find(Ty); 102 return I != RecordDeclTypes.end() && !I->second->isOpaque(); 103 } 104 105 static bool 106 isSafeToConvert(QualType T, CodeGenTypes &CGT, 107 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked); 108 109 110 /// isSafeToConvert - Return true if it is safe to convert the specified record 111 /// decl to IR and lay it out, false if doing so would cause us to get into a 112 /// recursive compilation mess. 113 static bool 114 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT, 115 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { 116 // If we have already checked this type (maybe the same type is used by-value 117 // multiple times in multiple structure fields, don't check again. 118 if (!AlreadyChecked.insert(RD)) return true; 119 120 const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr(); 121 122 // If this type is already laid out, converting it is a noop. 123 if (CGT.isRecordLayoutComplete(Key)) return true; 124 125 // If this type is currently being laid out, we can't recursively compile it. 126 if (CGT.isRecordBeingLaidOut(Key)) 127 return false; 128 129 // If this type would require laying out bases that are currently being laid 130 // out, don't do it. This includes virtual base classes which get laid out 131 // when a class is translated, even though they aren't embedded by-value into 132 // the class. 133 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 134 for (const auto &I : CRD->bases()) 135 if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(), 136 CGT, AlreadyChecked)) 137 return false; 138 } 139 140 // If this type would require laying out members that are currently being laid 141 // out, don't do it. 142 for (const auto *I : RD->fields()) 143 if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked)) 144 return false; 145 146 // If there are no problems, lets do it. 147 return true; 148 } 149 150 /// isSafeToConvert - Return true if it is safe to convert this field type, 151 /// which requires the structure elements contained by-value to all be 152 /// recursively safe to convert. 153 static bool 154 isSafeToConvert(QualType T, CodeGenTypes &CGT, 155 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { 156 T = T.getCanonicalType(); 157 158 // If this is a record, check it. 159 if (const RecordType *RT = dyn_cast<RecordType>(T)) 160 return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked); 161 162 // If this is an array, check the elements, which are embedded inline. 163 if (const ArrayType *AT = dyn_cast<ArrayType>(T)) 164 return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked); 165 166 // Otherwise, there is no concern about transforming this. We only care about 167 // things that are contained by-value in a structure that can have another 168 // structure as a member. 169 return true; 170 } 171 172 173 /// isSafeToConvert - Return true if it is safe to convert the specified record 174 /// decl to IR and lay it out, false if doing so would cause us to get into a 175 /// recursive compilation mess. 176 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) { 177 // If no structs are being laid out, we can certainly do this one. 178 if (CGT.noRecordsBeingLaidOut()) return true; 179 180 llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked; 181 return isSafeToConvert(RD, CGT, AlreadyChecked); 182 } 183 184 /// isFuncParamTypeConvertible - Return true if the specified type in a 185 /// function parameter or result position can be converted to an IR type at this 186 /// point. This boils down to being whether it is complete, as well as whether 187 /// we've temporarily deferred expanding the type because we're in a recursive 188 /// context. 189 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) { 190 // If this isn't a tagged type, we can convert it! 191 const TagType *TT = Ty->getAs<TagType>(); 192 if (TT == 0) return true; 193 194 // Incomplete types cannot be converted. 195 if (TT->isIncompleteType()) 196 return false; 197 198 // If this is an enum, then it is always safe to convert. 199 const RecordType *RT = dyn_cast<RecordType>(TT); 200 if (RT == 0) return true; 201 202 // Otherwise, we have to be careful. If it is a struct that we're in the 203 // process of expanding, then we can't convert the function type. That's ok 204 // though because we must be in a pointer context under the struct, so we can 205 // just convert it to a dummy type. 206 // 207 // We decide this by checking whether ConvertRecordDeclType returns us an 208 // opaque type for a struct that we know is defined. 209 return isSafeToConvert(RT->getDecl(), *this); 210 } 211 212 213 /// Code to verify a given function type is complete, i.e. the return type 214 /// and all of the parameter types are complete. Also check to see if we are in 215 /// a RS_StructPointer context, and if so whether any struct types have been 216 /// pended. If so, we don't want to ask the ABI lowering code to handle a type 217 /// that cannot be converted to an IR type. 218 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) { 219 if (!isFuncParamTypeConvertible(FT->getReturnType())) 220 return false; 221 222 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 223 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 224 if (!isFuncParamTypeConvertible(FPT->getParamType(i))) 225 return false; 226 227 return true; 228 } 229 230 /// UpdateCompletedType - When we find the full definition for a TagDecl, 231 /// replace the 'opaque' type we previously made for it if applicable. 232 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) { 233 // If this is an enum being completed, then we flush all non-struct types from 234 // the cache. This allows function types and other things that may be derived 235 // from the enum to be recomputed. 236 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) { 237 // Only flush the cache if we've actually already converted this type. 238 if (TypeCache.count(ED->getTypeForDecl())) { 239 // Okay, we formed some types based on this. We speculated that the enum 240 // would be lowered to i32, so we only need to flush the cache if this 241 // didn't happen. 242 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32)) 243 TypeCache.clear(); 244 } 245 return; 246 } 247 248 // If we completed a RecordDecl that we previously used and converted to an 249 // anonymous type, then go ahead and complete it now. 250 const RecordDecl *RD = cast<RecordDecl>(TD); 251 if (RD->isDependentType()) return; 252 253 // Only complete it if we converted it already. If we haven't converted it 254 // yet, we'll just do it lazily. 255 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr())) 256 ConvertRecordDeclType(RD); 257 258 // If necessary, provide the full definition of a type only used with a 259 // declaration so far. 260 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 261 DI->completeType(RD); 262 } 263 264 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext, 265 const llvm::fltSemantics &format, 266 bool UseNativeHalf = false) { 267 if (&format == &llvm::APFloat::IEEEhalf) { 268 if (UseNativeHalf) 269 return llvm::Type::getHalfTy(VMContext); 270 else 271 return llvm::Type::getInt16Ty(VMContext); 272 } 273 if (&format == &llvm::APFloat::IEEEsingle) 274 return llvm::Type::getFloatTy(VMContext); 275 if (&format == &llvm::APFloat::IEEEdouble) 276 return llvm::Type::getDoubleTy(VMContext); 277 if (&format == &llvm::APFloat::IEEEquad) 278 return llvm::Type::getFP128Ty(VMContext); 279 if (&format == &llvm::APFloat::PPCDoubleDouble) 280 return llvm::Type::getPPC_FP128Ty(VMContext); 281 if (&format == &llvm::APFloat::x87DoubleExtended) 282 return llvm::Type::getX86_FP80Ty(VMContext); 283 llvm_unreachable("Unknown float format!"); 284 } 285 286 /// ConvertType - Convert the specified type to its LLVM form. 287 llvm::Type *CodeGenTypes::ConvertType(QualType T) { 288 T = Context.getCanonicalType(T); 289 290 const Type *Ty = T.getTypePtr(); 291 292 // RecordTypes are cached and processed specially. 293 if (const RecordType *RT = dyn_cast<RecordType>(Ty)) 294 return ConvertRecordDeclType(RT->getDecl()); 295 296 // See if type is already cached. 297 llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty); 298 // If type is found in map then use it. Otherwise, convert type T. 299 if (TCI != TypeCache.end()) 300 return TCI->second; 301 302 // If we don't have it in the cache, convert it now. 303 llvm::Type *ResultType = 0; 304 switch (Ty->getTypeClass()) { 305 case Type::Record: // Handled above. 306 #define TYPE(Class, Base) 307 #define ABSTRACT_TYPE(Class, Base) 308 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 309 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 310 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 311 #include "clang/AST/TypeNodes.def" 312 llvm_unreachable("Non-canonical or dependent types aren't possible."); 313 314 case Type::Builtin: { 315 switch (cast<BuiltinType>(Ty)->getKind()) { 316 case BuiltinType::Void: 317 case BuiltinType::ObjCId: 318 case BuiltinType::ObjCClass: 319 case BuiltinType::ObjCSel: 320 // LLVM void type can only be used as the result of a function call. Just 321 // map to the same as char. 322 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 323 break; 324 325 case BuiltinType::Bool: 326 // Note that we always return bool as i1 for use as a scalar type. 327 ResultType = llvm::Type::getInt1Ty(getLLVMContext()); 328 break; 329 330 case BuiltinType::Char_S: 331 case BuiltinType::Char_U: 332 case BuiltinType::SChar: 333 case BuiltinType::UChar: 334 case BuiltinType::Short: 335 case BuiltinType::UShort: 336 case BuiltinType::Int: 337 case BuiltinType::UInt: 338 case BuiltinType::Long: 339 case BuiltinType::ULong: 340 case BuiltinType::LongLong: 341 case BuiltinType::ULongLong: 342 case BuiltinType::WChar_S: 343 case BuiltinType::WChar_U: 344 case BuiltinType::Char16: 345 case BuiltinType::Char32: 346 ResultType = llvm::IntegerType::get(getLLVMContext(), 347 static_cast<unsigned>(Context.getTypeSize(T))); 348 break; 349 350 case BuiltinType::Half: 351 // Half FP can either be storage-only (lowered to i16) or native. 352 ResultType = getTypeForFormat(getLLVMContext(), 353 Context.getFloatTypeSemantics(T), 354 Context.getLangOpts().NativeHalfType); 355 break; 356 case BuiltinType::Float: 357 case BuiltinType::Double: 358 case BuiltinType::LongDouble: 359 ResultType = getTypeForFormat(getLLVMContext(), 360 Context.getFloatTypeSemantics(T), 361 /* UseNativeHalf = */ false); 362 break; 363 364 case BuiltinType::NullPtr: 365 // Model std::nullptr_t as i8* 366 ResultType = llvm::Type::getInt8PtrTy(getLLVMContext()); 367 break; 368 369 case BuiltinType::UInt128: 370 case BuiltinType::Int128: 371 ResultType = llvm::IntegerType::get(getLLVMContext(), 128); 372 break; 373 374 case BuiltinType::OCLImage1d: 375 case BuiltinType::OCLImage1dArray: 376 case BuiltinType::OCLImage1dBuffer: 377 case BuiltinType::OCLImage2d: 378 case BuiltinType::OCLImage2dArray: 379 case BuiltinType::OCLImage3d: 380 case BuiltinType::OCLSampler: 381 case BuiltinType::OCLEvent: 382 ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty); 383 break; 384 385 case BuiltinType::Dependent: 386 #define BUILTIN_TYPE(Id, SingletonId) 387 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 388 case BuiltinType::Id: 389 #include "clang/AST/BuiltinTypes.def" 390 llvm_unreachable("Unexpected placeholder builtin type!"); 391 } 392 break; 393 } 394 case Type::Auto: 395 llvm_unreachable("Unexpected undeduced auto type!"); 396 case Type::Complex: { 397 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType()); 398 ResultType = llvm::StructType::get(EltTy, EltTy, NULL); 399 break; 400 } 401 case Type::LValueReference: 402 case Type::RValueReference: { 403 const ReferenceType *RTy = cast<ReferenceType>(Ty); 404 QualType ETy = RTy->getPointeeType(); 405 llvm::Type *PointeeType = ConvertTypeForMem(ETy); 406 unsigned AS = Context.getTargetAddressSpace(ETy); 407 ResultType = llvm::PointerType::get(PointeeType, AS); 408 break; 409 } 410 case Type::Pointer: { 411 const PointerType *PTy = cast<PointerType>(Ty); 412 QualType ETy = PTy->getPointeeType(); 413 llvm::Type *PointeeType = ConvertTypeForMem(ETy); 414 if (PointeeType->isVoidTy()) 415 PointeeType = llvm::Type::getInt8Ty(getLLVMContext()); 416 unsigned AS = Context.getTargetAddressSpace(ETy); 417 ResultType = llvm::PointerType::get(PointeeType, AS); 418 break; 419 } 420 421 case Type::VariableArray: { 422 const VariableArrayType *A = cast<VariableArrayType>(Ty); 423 assert(A->getIndexTypeCVRQualifiers() == 0 && 424 "FIXME: We only handle trivial array types so far!"); 425 // VLAs resolve to the innermost element type; this matches 426 // the return of alloca, and there isn't any obviously better choice. 427 ResultType = ConvertTypeForMem(A->getElementType()); 428 break; 429 } 430 case Type::IncompleteArray: { 431 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty); 432 assert(A->getIndexTypeCVRQualifiers() == 0 && 433 "FIXME: We only handle trivial array types so far!"); 434 // int X[] -> [0 x int], unless the element type is not sized. If it is 435 // unsized (e.g. an incomplete struct) just use [0 x i8]. 436 ResultType = ConvertTypeForMem(A->getElementType()); 437 if (!ResultType->isSized()) { 438 SkippedLayout = true; 439 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 440 } 441 ResultType = llvm::ArrayType::get(ResultType, 0); 442 break; 443 } 444 case Type::ConstantArray: { 445 const ConstantArrayType *A = cast<ConstantArrayType>(Ty); 446 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType()); 447 448 // Lower arrays of undefined struct type to arrays of i8 just to have a 449 // concrete type. 450 if (!EltTy->isSized()) { 451 SkippedLayout = true; 452 EltTy = llvm::Type::getInt8Ty(getLLVMContext()); 453 } 454 455 ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue()); 456 break; 457 } 458 case Type::ExtVector: 459 case Type::Vector: { 460 const VectorType *VT = cast<VectorType>(Ty); 461 ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()), 462 VT->getNumElements()); 463 break; 464 } 465 case Type::FunctionNoProto: 466 case Type::FunctionProto: { 467 const FunctionType *FT = cast<FunctionType>(Ty); 468 // First, check whether we can build the full function type. If the 469 // function type depends on an incomplete type (e.g. a struct or enum), we 470 // cannot lower the function type. 471 if (!isFuncTypeConvertible(FT)) { 472 // This function's type depends on an incomplete tag type. 473 474 // Force conversion of all the relevant record types, to make sure 475 // we re-convert the FunctionType when appropriate. 476 if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>()) 477 ConvertRecordDeclType(RT->getDecl()); 478 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 479 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 480 if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>()) 481 ConvertRecordDeclType(RT->getDecl()); 482 483 // Return a placeholder type. 484 ResultType = llvm::StructType::get(getLLVMContext()); 485 486 SkippedLayout = true; 487 break; 488 } 489 490 // While we're converting the parameter types for a function, we don't want 491 // to recursively convert any pointed-to structs. Converting directly-used 492 // structs is ok though. 493 if (!RecordsBeingLaidOut.insert(Ty)) { 494 ResultType = llvm::StructType::get(getLLVMContext()); 495 496 SkippedLayout = true; 497 break; 498 } 499 500 // The function type can be built; call the appropriate routines to 501 // build it. 502 const CGFunctionInfo *FI; 503 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { 504 FI = &arrangeFreeFunctionType( 505 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0))); 506 } else { 507 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT); 508 FI = &arrangeFreeFunctionType( 509 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0))); 510 } 511 512 // If there is something higher level prodding our CGFunctionInfo, then 513 // don't recurse into it again. 514 if (FunctionsBeingProcessed.count(FI)) { 515 516 ResultType = llvm::StructType::get(getLLVMContext()); 517 SkippedLayout = true; 518 } else { 519 520 // Otherwise, we're good to go, go ahead and convert it. 521 ResultType = GetFunctionType(*FI); 522 } 523 524 RecordsBeingLaidOut.erase(Ty); 525 526 if (SkippedLayout) 527 TypeCache.clear(); 528 529 if (RecordsBeingLaidOut.empty()) 530 while (!DeferredRecords.empty()) 531 ConvertRecordDeclType(DeferredRecords.pop_back_val()); 532 break; 533 } 534 535 case Type::ObjCObject: 536 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType()); 537 break; 538 539 case Type::ObjCInterface: { 540 // Objective-C interfaces are always opaque (outside of the 541 // runtime, which can do whatever it likes); we never refine 542 // these. 543 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)]; 544 if (!T) 545 T = llvm::StructType::create(getLLVMContext()); 546 ResultType = T; 547 break; 548 } 549 550 case Type::ObjCObjectPointer: { 551 // Protocol qualifications do not influence the LLVM type, we just return a 552 // pointer to the underlying interface type. We don't need to worry about 553 // recursive conversion. 554 llvm::Type *T = 555 ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType()); 556 ResultType = T->getPointerTo(); 557 break; 558 } 559 560 case Type::Enum: { 561 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl(); 562 if (ED->isCompleteDefinition() || ED->isFixed()) 563 return ConvertType(ED->getIntegerType()); 564 // Return a placeholder 'i32' type. This can be changed later when the 565 // type is defined (see UpdateCompletedType), but is likely to be the 566 // "right" answer. 567 ResultType = llvm::Type::getInt32Ty(getLLVMContext()); 568 break; 569 } 570 571 case Type::BlockPointer: { 572 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType(); 573 llvm::Type *PointeeType = ConvertTypeForMem(FTy); 574 unsigned AS = Context.getTargetAddressSpace(FTy); 575 ResultType = llvm::PointerType::get(PointeeType, AS); 576 break; 577 } 578 579 case Type::MemberPointer: { 580 ResultType = 581 getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty)); 582 break; 583 } 584 585 case Type::Atomic: { 586 QualType valueType = cast<AtomicType>(Ty)->getValueType(); 587 ResultType = ConvertTypeForMem(valueType); 588 589 // Pad out to the inflated size if necessary. 590 uint64_t valueSize = Context.getTypeSize(valueType); 591 uint64_t atomicSize = Context.getTypeSize(Ty); 592 if (valueSize != atomicSize) { 593 assert(valueSize < atomicSize); 594 llvm::Type *elts[] = { 595 ResultType, 596 llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8) 597 }; 598 ResultType = llvm::StructType::get(getLLVMContext(), 599 llvm::makeArrayRef(elts)); 600 } 601 break; 602 } 603 } 604 605 assert(ResultType && "Didn't convert a type?"); 606 607 TypeCache[Ty] = ResultType; 608 return ResultType; 609 } 610 611 bool CodeGenModule::isPaddedAtomicType(QualType type) { 612 return isPaddedAtomicType(type->castAs<AtomicType>()); 613 } 614 615 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) { 616 return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType()); 617 } 618 619 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. 620 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) { 621 // TagDecl's are not necessarily unique, instead use the (clang) 622 // type connected to the decl. 623 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 624 625 llvm::StructType *&Entry = RecordDeclTypes[Key]; 626 627 // If we don't have a StructType at all yet, create the forward declaration. 628 if (Entry == 0) { 629 Entry = llvm::StructType::create(getLLVMContext()); 630 addRecordTypeName(RD, Entry, ""); 631 } 632 llvm::StructType *Ty = Entry; 633 634 // If this is still a forward declaration, or the LLVM type is already 635 // complete, there's nothing more to do. 636 RD = RD->getDefinition(); 637 if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque()) 638 return Ty; 639 640 // If converting this type would cause us to infinitely loop, don't do it! 641 if (!isSafeToConvert(RD, *this)) { 642 DeferredRecords.push_back(RD); 643 return Ty; 644 } 645 646 // Okay, this is a definition of a type. Compile the implementation now. 647 bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult; 648 assert(InsertResult && "Recursively compiling a struct?"); 649 650 // Force conversion of non-virtual base classes recursively. 651 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 652 for (const auto &I : CRD->bases()) { 653 if (I.isVirtual()) continue; 654 655 ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl()); 656 } 657 } 658 659 // Layout fields. 660 CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty); 661 CGRecordLayouts[Key] = Layout; 662 663 // We're done laying out this struct. 664 bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult; 665 assert(EraseResult && "struct not in RecordsBeingLaidOut set?"); 666 667 // If this struct blocked a FunctionType conversion, then recompute whatever 668 // was derived from that. 669 // FIXME: This is hugely overconservative. 670 if (SkippedLayout) 671 TypeCache.clear(); 672 673 // If we're done converting the outer-most record, then convert any deferred 674 // structs as well. 675 if (RecordsBeingLaidOut.empty()) 676 while (!DeferredRecords.empty()) 677 ConvertRecordDeclType(DeferredRecords.pop_back_val()); 678 679 return Ty; 680 } 681 682 /// getCGRecordLayout - Return record layout info for the given record decl. 683 const CGRecordLayout & 684 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) { 685 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 686 687 const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key); 688 if (!Layout) { 689 // Compute the type information. 690 ConvertRecordDeclType(RD); 691 692 // Now try again. 693 Layout = CGRecordLayouts.lookup(Key); 694 } 695 696 assert(Layout && "Unable to find record layout information for type"); 697 return *Layout; 698 } 699 700 bool CodeGenTypes::isZeroInitializable(QualType T) { 701 // No need to check for member pointers when not compiling C++. 702 if (!Context.getLangOpts().CPlusPlus) 703 return true; 704 705 T = Context.getBaseElementType(T); 706 707 // Records are non-zero-initializable if they contain any 708 // non-zero-initializable subobjects. 709 if (const RecordType *RT = T->getAs<RecordType>()) { 710 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 711 return isZeroInitializable(RD); 712 } 713 714 // We have to ask the ABI about member pointers. 715 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) 716 return getCXXABI().isZeroInitializable(MPT); 717 718 // Everything else is okay. 719 return true; 720 } 721 722 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) { 723 return getCGRecordLayout(RD).isZeroInitializable(); 724 } 725