1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenTypes.h"
15 #include "CGCall.h"
16 #include "CGCXXABI.h"
17 #include "CGRecordLayout.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "llvm/DerivedTypes.h"
24 #include "llvm/Module.h"
25 #include "llvm/Target/TargetData.h"
26 using namespace clang;
27 using namespace CodeGen;
28 
29 CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M,
30                            const llvm::TargetData &TD, const ABIInfo &Info,
31                            CGCXXABI &CXXABI, const CodeGenOptions &CGO)
32   : Context(Ctx), Target(Ctx.Target), TheModule(M), TheTargetData(TD),
33     TheABIInfo(Info), TheCXXABI(CXXABI), CodeGenOpts(CGO) {
34   RecursionState = RS_Normal;
35   SkippedLayout = false;
36 }
37 
38 CodeGenTypes::~CodeGenTypes() {
39   for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator
40          I = CGRecordLayouts.begin(), E = CGRecordLayouts.end();
41       I != E; ++I)
42     delete I->second;
43 
44   for (llvm::FoldingSet<CGFunctionInfo>::iterator
45        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
46     delete &*I++;
47 }
48 
49 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
50                                      llvm::StructType *Ty,
51                                      llvm::StringRef suffix) {
52   llvm::SmallString<256> TypeName;
53   llvm::raw_svector_ostream OS(TypeName);
54   OS << RD->getKindName() << '.';
55 
56   // Name the codegen type after the typedef name
57   // if there is no tag type name available
58   if (RD->getIdentifier()) {
59     // FIXME: We should not have to check for a null decl context here.
60     // Right now we do it because the implicit Obj-C decls don't have one.
61     if (RD->getDeclContext())
62       OS << RD->getQualifiedNameAsString();
63     else
64       RD->printName(OS);
65   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
66     // FIXME: We should not have to check for a null decl context here.
67     // Right now we do it because the implicit Obj-C decls don't have one.
68     if (TDD->getDeclContext())
69       OS << TDD->getQualifiedNameAsString();
70     else
71       TDD->printName(OS);
72   } else
73     OS << "anon";
74 
75   if (!suffix.empty())
76     OS << suffix;
77 
78   Ty->setName(OS.str());
79 }
80 
81 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
82 /// ConvertType in that it is used to convert to the memory representation for
83 /// a type.  For example, the scalar representation for _Bool is i1, but the
84 /// memory representation is usually i8 or i32, depending on the target.
85 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){
86   llvm::Type *R = ConvertType(T);
87 
88   // If this is a non-bool type, don't map it.
89   if (!R->isIntegerTy(1))
90     return R;
91 
92   // Otherwise, return an integer of the target-specified size.
93   return llvm::IntegerType::get(getLLVMContext(),
94                                 (unsigned)Context.getTypeSize(T));
95 }
96 
97 /// isFuncTypeArgumentConvertible - Return true if the specified type in a
98 /// function argument or result position can be converted to an IR type at this
99 /// point.  This boils down to being whether it is complete, as well as whether
100 /// we've temporarily deferred expanding the type because we're in a recursive
101 /// context.
102 bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty){
103   // If this isn't a tagged type, we can convert it!
104   const TagType *TT = Ty->getAs<TagType>();
105   if (TT == 0) return true;
106 
107 
108   // If it's a tagged type, but is a forward decl, we can't convert it.
109   if (!TT->getDecl()->isDefinition())
110     return false;
111 
112   // If we're not under a pointer under a struct, then we can convert it if
113   // needed.
114   if (RecursionState != RS_StructPointer)
115     return true;
116 
117   // If this is an enum, then it is safe to convert.
118   const RecordType *RT = dyn_cast<RecordType>(TT);
119   if (RT == 0) return true;
120 
121   // Otherwise, we have to be careful.  If it is a struct that we're in the
122   // process of expanding, then we can't convert the function type.  That's ok
123   // though because we must be in a pointer context under the struct, so we can
124   // just convert it to a dummy type.
125   //
126   // We decide this by checking whether ConvertRecordDeclType returns us an
127   // opaque type for a struct that we know is defined.
128   return !ConvertRecordDeclType(RT->getDecl())->isOpaque();
129 }
130 
131 
132 /// Code to verify a given function type is complete, i.e. the return type
133 /// and all of the argument types are complete.  Also check to see if we are in
134 /// a RS_StructPointer context, and if so whether any struct types have been
135 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
136 /// that cannot be converted to an IR type.
137 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
138   if (!isFuncTypeArgumentConvertible(FT->getResultType()))
139     return false;
140 
141   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
142     for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++)
143       if (!isFuncTypeArgumentConvertible(FPT->getArgType(i)))
144         return false;
145 
146   return true;
147 }
148 
149 /// UpdateCompletedType - When we find the full definition for a TagDecl,
150 /// replace the 'opaque' type we previously made for it if applicable.
151 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
152   // If this is an enum being completed, then we flush all non-struct types from
153   // the cache.  This allows function types and other things that may be derived
154   // from the enum to be recomputed.
155   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
156     // Only flush the cache if we've actually already converted this type.
157     if (TypeCache.count(ED->getTypeForDecl()))
158       TypeCache.clear();
159     return;
160   }
161 
162   // If we completed a RecordDecl that we previously used and converted to an
163   // anonymous type, then go ahead and complete it now.
164   const RecordDecl *RD = cast<RecordDecl>(TD);
165   if (RD->isDependentType()) return;
166 
167   // Only complete it if we converted it already.  If we haven't converted it
168   // yet, we'll just do it lazily.
169   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
170     ConvertRecordDeclType(RD);
171 }
172 
173 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
174                                     const llvm::fltSemantics &format) {
175   if (&format == &llvm::APFloat::IEEEsingle)
176     return llvm::Type::getFloatTy(VMContext);
177   if (&format == &llvm::APFloat::IEEEdouble)
178     return llvm::Type::getDoubleTy(VMContext);
179   if (&format == &llvm::APFloat::IEEEquad)
180     return llvm::Type::getFP128Ty(VMContext);
181   if (&format == &llvm::APFloat::PPCDoubleDouble)
182     return llvm::Type::getPPC_FP128Ty(VMContext);
183   if (&format == &llvm::APFloat::x87DoubleExtended)
184     return llvm::Type::getX86_FP80Ty(VMContext);
185   assert(0 && "Unknown float format!");
186   return 0;
187 }
188 
189 /// ConvertType - Convert the specified type to its LLVM form.
190 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
191   T = Context.getCanonicalType(T);
192 
193   const Type *Ty = T.getTypePtr();
194 
195   // RecordTypes are cached and processed specially.
196   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
197     return ConvertRecordDeclType(RT->getDecl());
198 
199   // See if type is already cached.
200   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
201   // If type is found in map then use it. Otherwise, convert type T.
202   if (TCI != TypeCache.end())
203     return TCI->second;
204 
205   // If we don't have it in the cache, convert it now.
206   llvm::Type *ResultType = 0;
207   switch (Ty->getTypeClass()) {
208   case Type::Record: // Handled above.
209 #define TYPE(Class, Base)
210 #define ABSTRACT_TYPE(Class, Base)
211 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
212 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
213 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
214 #include "clang/AST/TypeNodes.def"
215     llvm_unreachable("Non-canonical or dependent types aren't possible.");
216     break;
217 
218   case Type::Builtin: {
219     switch (cast<BuiltinType>(Ty)->getKind()) {
220     case BuiltinType::Void:
221     case BuiltinType::ObjCId:
222     case BuiltinType::ObjCClass:
223     case BuiltinType::ObjCSel:
224       // LLVM void type can only be used as the result of a function call.  Just
225       // map to the same as char.
226       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
227       break;
228 
229     case BuiltinType::Bool:
230       // Note that we always return bool as i1 for use as a scalar type.
231       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
232       break;
233 
234     case BuiltinType::Char_S:
235     case BuiltinType::Char_U:
236     case BuiltinType::SChar:
237     case BuiltinType::UChar:
238     case BuiltinType::Short:
239     case BuiltinType::UShort:
240     case BuiltinType::Int:
241     case BuiltinType::UInt:
242     case BuiltinType::Long:
243     case BuiltinType::ULong:
244     case BuiltinType::LongLong:
245     case BuiltinType::ULongLong:
246     case BuiltinType::WChar_S:
247     case BuiltinType::WChar_U:
248     case BuiltinType::Char16:
249     case BuiltinType::Char32:
250       ResultType = llvm::IntegerType::get(getLLVMContext(),
251                                  static_cast<unsigned>(Context.getTypeSize(T)));
252       break;
253 
254     case BuiltinType::Float:
255     case BuiltinType::Double:
256     case BuiltinType::LongDouble:
257       ResultType = getTypeForFormat(getLLVMContext(),
258                                     Context.getFloatTypeSemantics(T));
259       break;
260 
261     case BuiltinType::NullPtr:
262       // Model std::nullptr_t as i8*
263       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
264       break;
265 
266     case BuiltinType::UInt128:
267     case BuiltinType::Int128:
268       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
269       break;
270 
271     case BuiltinType::Overload:
272     case BuiltinType::Dependent:
273     case BuiltinType::BoundMember:
274     case BuiltinType::UnknownAny:
275       llvm_unreachable("Unexpected placeholder builtin type!");
276       break;
277     }
278     break;
279   }
280   case Type::Complex: {
281     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
282     ResultType = llvm::StructType::get(EltTy, EltTy, NULL);
283     break;
284   }
285   case Type::LValueReference:
286   case Type::RValueReference: {
287     RecursionStatePointerRAII X(RecursionState);
288     const ReferenceType *RTy = cast<ReferenceType>(Ty);
289     QualType ETy = RTy->getPointeeType();
290     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
291     unsigned AS = Context.getTargetAddressSpace(ETy);
292     ResultType = llvm::PointerType::get(PointeeType, AS);
293     break;
294   }
295   case Type::Pointer: {
296     RecursionStatePointerRAII X(RecursionState);
297     const PointerType *PTy = cast<PointerType>(Ty);
298     QualType ETy = PTy->getPointeeType();
299     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
300     if (PointeeType->isVoidTy())
301       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
302     unsigned AS = Context.getTargetAddressSpace(ETy);
303     ResultType = llvm::PointerType::get(PointeeType, AS);
304     break;
305   }
306 
307   case Type::VariableArray: {
308     const VariableArrayType *A = cast<VariableArrayType>(Ty);
309     assert(A->getIndexTypeCVRQualifiers() == 0 &&
310            "FIXME: We only handle trivial array types so far!");
311     // VLAs resolve to the innermost element type; this matches
312     // the return of alloca, and there isn't any obviously better choice.
313     ResultType = ConvertTypeForMem(A->getElementType());
314     break;
315   }
316   case Type::IncompleteArray: {
317     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
318     assert(A->getIndexTypeCVRQualifiers() == 0 &&
319            "FIXME: We only handle trivial array types so far!");
320     // int X[] -> [0 x int], unless the element type is not sized.  If it is
321     // unsized (e.g. an incomplete struct) just use [0 x i8].
322     ResultType = ConvertTypeForMem(A->getElementType());
323     if (!ResultType->isSized()) {
324       SkippedLayout = true;
325       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
326     }
327     ResultType = llvm::ArrayType::get(ResultType, 0);
328     break;
329   }
330   case Type::ConstantArray: {
331     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
332     const llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
333     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
334     break;
335   }
336   case Type::ExtVector:
337   case Type::Vector: {
338     const VectorType *VT = cast<VectorType>(Ty);
339     ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
340                                        VT->getNumElements());
341     break;
342   }
343   case Type::FunctionNoProto:
344   case Type::FunctionProto: {
345     // First, check whether we can build the full function type.  If the
346     // function type depends on an incomplete type (e.g. a struct or enum), we
347     // cannot lower the function type.
348     if (RecursionState == RS_StructPointer ||
349         !isFuncTypeConvertible(cast<FunctionType>(Ty))) {
350       // This function's type depends on an incomplete tag type.
351       // Return a placeholder type.
352       ResultType = llvm::StructType::get(getLLVMContext());
353 
354       SkippedLayout |= RecursionState == RS_StructPointer;
355       break;
356     }
357 
358     // While we're converting the argument types for a function, we don't want
359     // to recursively convert any pointed-to structs.  Converting directly-used
360     // structs is ok though.
361     RecursionStateTy SavedRecursionState = RecursionState;
362     RecursionState = RS_Struct;
363 
364     // The function type can be built; call the appropriate routines to
365     // build it.
366     const CGFunctionInfo *FI;
367     bool isVariadic;
368     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(Ty)) {
369       FI = &getFunctionInfo(
370                    CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
371       isVariadic = FPT->isVariadic();
372     } else {
373       const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(Ty);
374       FI = &getFunctionInfo(
375                 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
376       isVariadic = true;
377     }
378 
379     ResultType = GetFunctionType(*FI, isVariadic);
380 
381     // Restore our recursion state.
382     RecursionState = SavedRecursionState;
383 
384     if (SkippedLayout)
385       TypeCache.clear();
386 
387     if (RecursionState == RS_Normal)
388       while (!DeferredRecords.empty())
389         ConvertRecordDeclType(DeferredRecords.pop_back_val());
390     break;
391   }
392 
393   case Type::ObjCObject:
394     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
395     break;
396 
397   case Type::ObjCInterface: {
398     // Objective-C interfaces are always opaque (outside of the
399     // runtime, which can do whatever it likes); we never refine
400     // these.
401     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
402     if (!T)
403       T = llvm::StructType::createNamed(getLLVMContext(), "");
404     ResultType = T;
405     break;
406   }
407 
408   case Type::ObjCObjectPointer: {
409     RecursionStatePointerRAII X(RecursionState);
410     // Protocol qualifications do not influence the LLVM type, we just return a
411     // pointer to the underlying interface type. We don't need to worry about
412     // recursive conversion.
413     const llvm::Type *T =
414       ConvertType(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
415     ResultType = T->getPointerTo();
416     break;
417   }
418 
419    case Type::Enum: {
420     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
421     if (ED->isDefinition() || ED->isFixed())
422       return ConvertType(ED->getIntegerType());
423     // Return a placeholder '{}' type.
424     ResultType = llvm::StructType::get(getLLVMContext());
425     break;
426   }
427 
428   case Type::BlockPointer: {
429     RecursionStatePointerRAII X(RecursionState);
430     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
431     llvm::Type *PointeeType = ConvertTypeForMem(FTy);
432     unsigned AS = Context.getTargetAddressSpace(FTy);
433     ResultType = llvm::PointerType::get(PointeeType, AS);
434     break;
435   }
436 
437   case Type::MemberPointer: {
438     ResultType =
439       getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
440     break;
441   }
442   }
443 
444   assert(ResultType && "Didn't convert a type?");
445 
446   TypeCache[Ty] = ResultType;
447   return ResultType;
448 }
449 
450 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
451 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
452   // TagDecl's are not necessarily unique, instead use the (clang)
453   // type connected to the decl.
454   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
455 
456   llvm::StructType *&Entry = RecordDeclTypes[Key];
457 
458   // If we don't have a StructType at all yet, create the forward declaration.
459   if (Entry == 0) {
460     Entry = llvm::StructType::createNamed(getLLVMContext(), "");
461     addRecordTypeName(RD, Entry, "");
462   }
463   llvm::StructType *Ty = Entry;
464 
465   // If this is still a forward declaration, or the LLVM type is already
466   // complete, there's nothing more to do.
467   if (!RD->isDefinition() || !Ty->isOpaque())
468     return Ty;
469 
470   // If we're recursively nested inside the conversion of a pointer inside the
471   // struct, defer conversion.
472   if (RecursionState == RS_StructPointer) {
473     DeferredRecords.push_back(RD);
474     return Ty;
475   }
476 
477   // Okay, this is a definition of a type.  Compile the implementation now.
478   RecursionStateTy SavedRecursionState = RecursionState;
479   RecursionState = RS_Struct;
480 
481   // Force conversion of non-virtual base classes recursively.
482   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
483     for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(),
484          e = CRD->bases_end(); i != e; ++i) {
485       if (!i->isVirtual()) {
486         const CXXRecordDecl *Base =
487           cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
488         ConvertRecordDeclType(Base);
489       }
490     }
491   }
492 
493   // Layout fields.
494   CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
495   CGRecordLayouts[Key] = Layout;
496 
497   // If this struct blocked a FunctionType conversion, then recompute whatever
498   // was derived from that.
499   // FIXME: This is hugely overconservative.
500   if (SkippedLayout)
501     TypeCache.clear();
502 
503 
504   // Restore our recursion state.  If we're done converting the outer-most
505   // record, then convert any deferred structs as well.
506   RecursionState = SavedRecursionState;
507 
508   if (RecursionState == RS_Normal)
509     while (!DeferredRecords.empty())
510       ConvertRecordDeclType(DeferredRecords.pop_back_val());
511 
512   return Ty;
513 }
514 
515 /// getCGRecordLayout - Return record layout info for the given record decl.
516 const CGRecordLayout &
517 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
518   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
519 
520   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
521   if (!Layout) {
522     // Compute the type information.
523     ConvertRecordDeclType(RD);
524 
525     // Now try again.
526     Layout = CGRecordLayouts.lookup(Key);
527   }
528 
529   assert(Layout && "Unable to find record layout information for type");
530   return *Layout;
531 }
532 
533 bool CodeGenTypes::isZeroInitializable(QualType T) {
534   // No need to check for member pointers when not compiling C++.
535   if (!Context.getLangOptions().CPlusPlus)
536     return true;
537 
538   T = Context.getBaseElementType(T);
539 
540   // Records are non-zero-initializable if they contain any
541   // non-zero-initializable subobjects.
542   if (const RecordType *RT = T->getAs<RecordType>()) {
543     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
544     return isZeroInitializable(RD);
545   }
546 
547   // We have to ask the ABI about member pointers.
548   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
549     return getCXXABI().isZeroInitializable(MPT);
550 
551   // Everything else is okay.
552   return true;
553 }
554 
555 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) {
556   return getCGRecordLayout(RD).isZeroInitializable();
557 }
558