1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenTypes.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Module.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
33   : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
34     Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
35     TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
36   SkippedLayout = false;
37 }
38 
39 CodeGenTypes::~CodeGenTypes() {
40   llvm::DeleteContainerSeconds(CGRecordLayouts);
41 
42   for (llvm::FoldingSet<CGFunctionInfo>::iterator
43        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
44     delete &*I++;
45 }
46 
47 const CodeGenOptions &CodeGenTypes::getCodeGenOpts() const {
48   return CGM.getCodeGenOpts();
49 }
50 
51 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
52                                      llvm::StructType *Ty,
53                                      StringRef suffix) {
54   SmallString<256> TypeName;
55   llvm::raw_svector_ostream OS(TypeName);
56   OS << RD->getKindName() << '.';
57 
58   // Name the codegen type after the typedef name
59   // if there is no tag type name available
60   if (RD->getIdentifier()) {
61     // FIXME: We should not have to check for a null decl context here.
62     // Right now we do it because the implicit Obj-C decls don't have one.
63     if (RD->getDeclContext())
64       RD->printQualifiedName(OS);
65     else
66       RD->printName(OS);
67   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
68     // FIXME: We should not have to check for a null decl context here.
69     // Right now we do it because the implicit Obj-C decls don't have one.
70     if (TDD->getDeclContext())
71       TDD->printQualifiedName(OS);
72     else
73       TDD->printName(OS);
74   } else
75     OS << "anon";
76 
77   if (!suffix.empty())
78     OS << suffix;
79 
80   Ty->setName(OS.str());
81 }
82 
83 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
84 /// ConvertType in that it is used to convert to the memory representation for
85 /// a type.  For example, the scalar representation for _Bool is i1, but the
86 /// memory representation is usually i8 or i32, depending on the target.
87 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
88   llvm::Type *R = ConvertType(T);
89 
90   // If this is a non-bool type, don't map it.
91   if (!R->isIntegerTy(1))
92     return R;
93 
94   // Otherwise, return an integer of the target-specified size.
95   return llvm::IntegerType::get(getLLVMContext(),
96                                 (unsigned)Context.getTypeSize(T));
97 }
98 
99 
100 /// isRecordLayoutComplete - Return true if the specified type is already
101 /// completely laid out.
102 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
103   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
104   RecordDeclTypes.find(Ty);
105   return I != RecordDeclTypes.end() && !I->second->isOpaque();
106 }
107 
108 static bool
109 isSafeToConvert(QualType T, CodeGenTypes &CGT,
110                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
111 
112 
113 /// isSafeToConvert - Return true if it is safe to convert the specified record
114 /// decl to IR and lay it out, false if doing so would cause us to get into a
115 /// recursive compilation mess.
116 static bool
117 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
118                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
119   // If we have already checked this type (maybe the same type is used by-value
120   // multiple times in multiple structure fields, don't check again.
121   if (!AlreadyChecked.insert(RD).second)
122     return true;
123 
124   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
125 
126   // If this type is already laid out, converting it is a noop.
127   if (CGT.isRecordLayoutComplete(Key)) return true;
128 
129   // If this type is currently being laid out, we can't recursively compile it.
130   if (CGT.isRecordBeingLaidOut(Key))
131     return false;
132 
133   // If this type would require laying out bases that are currently being laid
134   // out, don't do it.  This includes virtual base classes which get laid out
135   // when a class is translated, even though they aren't embedded by-value into
136   // the class.
137   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
138     for (const auto &I : CRD->bases())
139       if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(),
140                            CGT, AlreadyChecked))
141         return false;
142   }
143 
144   // If this type would require laying out members that are currently being laid
145   // out, don't do it.
146   for (const auto *I : RD->fields())
147     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
148       return false;
149 
150   // If there are no problems, lets do it.
151   return true;
152 }
153 
154 /// isSafeToConvert - Return true if it is safe to convert this field type,
155 /// which requires the structure elements contained by-value to all be
156 /// recursively safe to convert.
157 static bool
158 isSafeToConvert(QualType T, CodeGenTypes &CGT,
159                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
160   // Strip off atomic type sugar.
161   if (const auto *AT = T->getAs<AtomicType>())
162     T = AT->getValueType();
163 
164   // If this is a record, check it.
165   if (const auto *RT = T->getAs<RecordType>())
166     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
167 
168   // If this is an array, check the elements, which are embedded inline.
169   if (const auto *AT = CGT.getContext().getAsArrayType(T))
170     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
171 
172   // Otherwise, there is no concern about transforming this.  We only care about
173   // things that are contained by-value in a structure that can have another
174   // structure as a member.
175   return true;
176 }
177 
178 
179 /// isSafeToConvert - Return true if it is safe to convert the specified record
180 /// decl to IR and lay it out, false if doing so would cause us to get into a
181 /// recursive compilation mess.
182 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
183   // If no structs are being laid out, we can certainly do this one.
184   if (CGT.noRecordsBeingLaidOut()) return true;
185 
186   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
187   return isSafeToConvert(RD, CGT, AlreadyChecked);
188 }
189 
190 /// isFuncParamTypeConvertible - Return true if the specified type in a
191 /// function parameter or result position can be converted to an IR type at this
192 /// point.  This boils down to being whether it is complete, as well as whether
193 /// we've temporarily deferred expanding the type because we're in a recursive
194 /// context.
195 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
196   // Some ABIs cannot have their member pointers represented in IR unless
197   // certain circumstances have been reached.
198   if (const auto *MPT = Ty->getAs<MemberPointerType>())
199     return getCXXABI().isMemberPointerConvertible(MPT);
200 
201   // If this isn't a tagged type, we can convert it!
202   const TagType *TT = Ty->getAs<TagType>();
203   if (!TT) return true;
204 
205   // Incomplete types cannot be converted.
206   if (TT->isIncompleteType())
207     return false;
208 
209   // If this is an enum, then it is always safe to convert.
210   const RecordType *RT = dyn_cast<RecordType>(TT);
211   if (!RT) return true;
212 
213   // Otherwise, we have to be careful.  If it is a struct that we're in the
214   // process of expanding, then we can't convert the function type.  That's ok
215   // though because we must be in a pointer context under the struct, so we can
216   // just convert it to a dummy type.
217   //
218   // We decide this by checking whether ConvertRecordDeclType returns us an
219   // opaque type for a struct that we know is defined.
220   return isSafeToConvert(RT->getDecl(), *this);
221 }
222 
223 
224 /// Code to verify a given function type is complete, i.e. the return type
225 /// and all of the parameter types are complete.  Also check to see if we are in
226 /// a RS_StructPointer context, and if so whether any struct types have been
227 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
228 /// that cannot be converted to an IR type.
229 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
230   if (!isFuncParamTypeConvertible(FT->getReturnType()))
231     return false;
232 
233   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
234     for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
235       if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
236         return false;
237 
238   return true;
239 }
240 
241 /// UpdateCompletedType - When we find the full definition for a TagDecl,
242 /// replace the 'opaque' type we previously made for it if applicable.
243 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
244   // If this is an enum being completed, then we flush all non-struct types from
245   // the cache.  This allows function types and other things that may be derived
246   // from the enum to be recomputed.
247   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
248     // Only flush the cache if we've actually already converted this type.
249     if (TypeCache.count(ED->getTypeForDecl())) {
250       // Okay, we formed some types based on this.  We speculated that the enum
251       // would be lowered to i32, so we only need to flush the cache if this
252       // didn't happen.
253       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
254         TypeCache.clear();
255     }
256     // If necessary, provide the full definition of a type only used with a
257     // declaration so far.
258     if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
259       DI->completeType(ED);
260     return;
261   }
262 
263   // If we completed a RecordDecl that we previously used and converted to an
264   // anonymous type, then go ahead and complete it now.
265   const RecordDecl *RD = cast<RecordDecl>(TD);
266   if (RD->isDependentType()) return;
267 
268   // Only complete it if we converted it already.  If we haven't converted it
269   // yet, we'll just do it lazily.
270   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
271     ConvertRecordDeclType(RD);
272 
273   // If necessary, provide the full definition of a type only used with a
274   // declaration so far.
275   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
276     DI->completeType(RD);
277 }
278 
279 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
280   QualType T = Context.getRecordType(RD);
281   T = Context.getCanonicalType(T);
282 
283   const Type *Ty = T.getTypePtr();
284   if (RecordsWithOpaqueMemberPointers.count(Ty)) {
285     TypeCache.clear();
286     RecordsWithOpaqueMemberPointers.clear();
287   }
288 }
289 
290 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
291                                     const llvm::fltSemantics &format,
292                                     bool UseNativeHalf = false) {
293   if (&format == &llvm::APFloat::IEEEhalf()) {
294     if (UseNativeHalf)
295       return llvm::Type::getHalfTy(VMContext);
296     else
297       return llvm::Type::getInt16Ty(VMContext);
298   }
299   if (&format == &llvm::APFloat::IEEEsingle())
300     return llvm::Type::getFloatTy(VMContext);
301   if (&format == &llvm::APFloat::IEEEdouble())
302     return llvm::Type::getDoubleTy(VMContext);
303   if (&format == &llvm::APFloat::IEEEquad())
304     return llvm::Type::getFP128Ty(VMContext);
305   if (&format == &llvm::APFloat::PPCDoubleDouble())
306     return llvm::Type::getPPC_FP128Ty(VMContext);
307   if (&format == &llvm::APFloat::x87DoubleExtended())
308     return llvm::Type::getX86_FP80Ty(VMContext);
309   llvm_unreachable("Unknown float format!");
310 }
311 
312 llvm::Type *CodeGenTypes::ConvertFunctionType(QualType QFT,
313                                               const FunctionDecl *FD) {
314   assert(QFT.isCanonical());
315   const Type *Ty = QFT.getTypePtr();
316   const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr());
317   // First, check whether we can build the full function type.  If the
318   // function type depends on an incomplete type (e.g. a struct or enum), we
319   // cannot lower the function type.
320   if (!isFuncTypeConvertible(FT)) {
321     // This function's type depends on an incomplete tag type.
322 
323     // Force conversion of all the relevant record types, to make sure
324     // we re-convert the FunctionType when appropriate.
325     if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
326       ConvertRecordDeclType(RT->getDecl());
327     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
328       for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
329         if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
330           ConvertRecordDeclType(RT->getDecl());
331 
332     SkippedLayout = true;
333 
334     // Return a placeholder type.
335     return llvm::StructType::get(getLLVMContext());
336   }
337 
338   // While we're converting the parameter types for a function, we don't want
339   // to recursively convert any pointed-to structs.  Converting directly-used
340   // structs is ok though.
341   if (!RecordsBeingLaidOut.insert(Ty).second) {
342     SkippedLayout = true;
343     return llvm::StructType::get(getLLVMContext());
344   }
345 
346   // The function type can be built; call the appropriate routines to
347   // build it.
348   const CGFunctionInfo *FI;
349   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
350     FI = &arrangeFreeFunctionType(
351         CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)), FD);
352   } else {
353     const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
354     FI = &arrangeFreeFunctionType(
355         CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
356   }
357 
358   llvm::Type *ResultType = nullptr;
359   // If there is something higher level prodding our CGFunctionInfo, then
360   // don't recurse into it again.
361   if (FunctionsBeingProcessed.count(FI)) {
362 
363     ResultType = llvm::StructType::get(getLLVMContext());
364     SkippedLayout = true;
365   } else {
366 
367     // Otherwise, we're good to go, go ahead and convert it.
368     ResultType = GetFunctionType(*FI);
369   }
370 
371   RecordsBeingLaidOut.erase(Ty);
372 
373   if (SkippedLayout)
374     TypeCache.clear();
375 
376   if (RecordsBeingLaidOut.empty())
377     while (!DeferredRecords.empty())
378       ConvertRecordDeclType(DeferredRecords.pop_back_val());
379   return ResultType;
380 }
381 
382 /// ConvertType - Convert the specified type to its LLVM form.
383 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
384   T = Context.getCanonicalType(T);
385 
386   const Type *Ty = T.getTypePtr();
387 
388   // RecordTypes are cached and processed specially.
389   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
390     return ConvertRecordDeclType(RT->getDecl());
391 
392   // See if type is already cached.
393   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
394   // If type is found in map then use it. Otherwise, convert type T.
395   if (TCI != TypeCache.end())
396     return TCI->second;
397 
398   // If we don't have it in the cache, convert it now.
399   llvm::Type *ResultType = nullptr;
400   switch (Ty->getTypeClass()) {
401   case Type::Record: // Handled above.
402 #define TYPE(Class, Base)
403 #define ABSTRACT_TYPE(Class, Base)
404 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
405 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
406 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
407 #include "clang/AST/TypeNodes.def"
408     llvm_unreachable("Non-canonical or dependent types aren't possible.");
409 
410   case Type::Builtin: {
411     switch (cast<BuiltinType>(Ty)->getKind()) {
412     case BuiltinType::Void:
413     case BuiltinType::ObjCId:
414     case BuiltinType::ObjCClass:
415     case BuiltinType::ObjCSel:
416       // LLVM void type can only be used as the result of a function call.  Just
417       // map to the same as char.
418       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
419       break;
420 
421     case BuiltinType::Bool:
422       // Note that we always return bool as i1 for use as a scalar type.
423       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
424       break;
425 
426     case BuiltinType::Char_S:
427     case BuiltinType::Char_U:
428     case BuiltinType::SChar:
429     case BuiltinType::UChar:
430     case BuiltinType::Short:
431     case BuiltinType::UShort:
432     case BuiltinType::Int:
433     case BuiltinType::UInt:
434     case BuiltinType::Long:
435     case BuiltinType::ULong:
436     case BuiltinType::LongLong:
437     case BuiltinType::ULongLong:
438     case BuiltinType::WChar_S:
439     case BuiltinType::WChar_U:
440     case BuiltinType::Char8:
441     case BuiltinType::Char16:
442     case BuiltinType::Char32:
443       ResultType = llvm::IntegerType::get(getLLVMContext(),
444                                  static_cast<unsigned>(Context.getTypeSize(T)));
445       break;
446 
447     case BuiltinType::Float16:
448       ResultType =
449           getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
450                            /* UseNativeHalf = */ true);
451       break;
452 
453     case BuiltinType::Half:
454       // Half FP can either be storage-only (lowered to i16) or native.
455       ResultType = getTypeForFormat(
456           getLLVMContext(), Context.getFloatTypeSemantics(T),
457           Context.getLangOpts().NativeHalfType ||
458               !Context.getTargetInfo().useFP16ConversionIntrinsics());
459       break;
460     case BuiltinType::Float:
461     case BuiltinType::Double:
462     case BuiltinType::LongDouble:
463     case BuiltinType::Float128:
464       ResultType = getTypeForFormat(getLLVMContext(),
465                                     Context.getFloatTypeSemantics(T),
466                                     /* UseNativeHalf = */ false);
467       break;
468 
469     case BuiltinType::NullPtr:
470       // Model std::nullptr_t as i8*
471       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
472       break;
473 
474     case BuiltinType::UInt128:
475     case BuiltinType::Int128:
476       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
477       break;
478 
479 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
480     case BuiltinType::Id:
481 #include "clang/Basic/OpenCLImageTypes.def"
482     case BuiltinType::OCLSampler:
483     case BuiltinType::OCLEvent:
484     case BuiltinType::OCLClkEvent:
485     case BuiltinType::OCLQueue:
486     case BuiltinType::OCLReserveID:
487       ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
488       break;
489 
490     case BuiltinType::Dependent:
491 #define BUILTIN_TYPE(Id, SingletonId)
492 #define PLACEHOLDER_TYPE(Id, SingletonId) \
493     case BuiltinType::Id:
494 #include "clang/AST/BuiltinTypes.def"
495       llvm_unreachable("Unexpected placeholder builtin type!");
496     }
497     break;
498   }
499   case Type::Auto:
500   case Type::DeducedTemplateSpecialization:
501     llvm_unreachable("Unexpected undeduced type!");
502   case Type::Complex: {
503     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
504     ResultType = llvm::StructType::get(EltTy, EltTy);
505     break;
506   }
507   case Type::LValueReference:
508   case Type::RValueReference: {
509     const ReferenceType *RTy = cast<ReferenceType>(Ty);
510     QualType ETy = RTy->getPointeeType();
511     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
512     unsigned AS = Context.getTargetAddressSpace(ETy);
513     ResultType = llvm::PointerType::get(PointeeType, AS);
514     break;
515   }
516   case Type::Pointer: {
517     const PointerType *PTy = cast<PointerType>(Ty);
518     QualType ETy = PTy->getPointeeType();
519     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
520     if (PointeeType->isVoidTy())
521       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
522     unsigned AS = Context.getTargetAddressSpace(ETy);
523     ResultType = llvm::PointerType::get(PointeeType, AS);
524     break;
525   }
526 
527   case Type::VariableArray: {
528     const VariableArrayType *A = cast<VariableArrayType>(Ty);
529     assert(A->getIndexTypeCVRQualifiers() == 0 &&
530            "FIXME: We only handle trivial array types so far!");
531     // VLAs resolve to the innermost element type; this matches
532     // the return of alloca, and there isn't any obviously better choice.
533     ResultType = ConvertTypeForMem(A->getElementType());
534     break;
535   }
536   case Type::IncompleteArray: {
537     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
538     assert(A->getIndexTypeCVRQualifiers() == 0 &&
539            "FIXME: We only handle trivial array types so far!");
540     // int X[] -> [0 x int], unless the element type is not sized.  If it is
541     // unsized (e.g. an incomplete struct) just use [0 x i8].
542     ResultType = ConvertTypeForMem(A->getElementType());
543     if (!ResultType->isSized()) {
544       SkippedLayout = true;
545       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
546     }
547     ResultType = llvm::ArrayType::get(ResultType, 0);
548     break;
549   }
550   case Type::ConstantArray: {
551     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
552     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
553 
554     // Lower arrays of undefined struct type to arrays of i8 just to have a
555     // concrete type.
556     if (!EltTy->isSized()) {
557       SkippedLayout = true;
558       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
559     }
560 
561     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
562     break;
563   }
564   case Type::ExtVector:
565   case Type::Vector: {
566     const VectorType *VT = cast<VectorType>(Ty);
567     ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
568                                        VT->getNumElements());
569     break;
570   }
571   case Type::FunctionNoProto:
572   case Type::FunctionProto:
573     ResultType = ConvertFunctionType(T);
574     break;
575   case Type::ObjCObject:
576     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
577     break;
578 
579   case Type::ObjCInterface: {
580     // Objective-C interfaces are always opaque (outside of the
581     // runtime, which can do whatever it likes); we never refine
582     // these.
583     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
584     if (!T)
585       T = llvm::StructType::create(getLLVMContext());
586     ResultType = T;
587     break;
588   }
589 
590   case Type::ObjCObjectPointer: {
591     // Protocol qualifications do not influence the LLVM type, we just return a
592     // pointer to the underlying interface type. We don't need to worry about
593     // recursive conversion.
594     llvm::Type *T =
595       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
596     ResultType = T->getPointerTo();
597     break;
598   }
599 
600   case Type::Enum: {
601     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
602     if (ED->isCompleteDefinition() || ED->isFixed())
603       return ConvertType(ED->getIntegerType());
604     // Return a placeholder 'i32' type.  This can be changed later when the
605     // type is defined (see UpdateCompletedType), but is likely to be the
606     // "right" answer.
607     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
608     break;
609   }
610 
611   case Type::BlockPointer: {
612     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
613     llvm::Type *PointeeType = ConvertTypeForMem(FTy);
614     unsigned AS = Context.getTargetAddressSpace(FTy);
615     ResultType = llvm::PointerType::get(PointeeType, AS);
616     break;
617   }
618 
619   case Type::MemberPointer: {
620     auto *MPTy = cast<MemberPointerType>(Ty);
621     if (!getCXXABI().isMemberPointerConvertible(MPTy)) {
622       RecordsWithOpaqueMemberPointers.insert(MPTy->getClass());
623       ResultType = llvm::StructType::create(getLLVMContext());
624     } else {
625       ResultType = getCXXABI().ConvertMemberPointerType(MPTy);
626     }
627     break;
628   }
629 
630   case Type::Atomic: {
631     QualType valueType = cast<AtomicType>(Ty)->getValueType();
632     ResultType = ConvertTypeForMem(valueType);
633 
634     // Pad out to the inflated size if necessary.
635     uint64_t valueSize = Context.getTypeSize(valueType);
636     uint64_t atomicSize = Context.getTypeSize(Ty);
637     if (valueSize != atomicSize) {
638       assert(valueSize < atomicSize);
639       llvm::Type *elts[] = {
640         ResultType,
641         llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
642       };
643       ResultType = llvm::StructType::get(getLLVMContext(),
644                                          llvm::makeArrayRef(elts));
645     }
646     break;
647   }
648   case Type::Pipe: {
649     ResultType = CGM.getOpenCLRuntime().getPipeType(cast<PipeType>(Ty));
650     break;
651   }
652   }
653 
654   assert(ResultType && "Didn't convert a type?");
655 
656   TypeCache[Ty] = ResultType;
657   return ResultType;
658 }
659 
660 bool CodeGenModule::isPaddedAtomicType(QualType type) {
661   return isPaddedAtomicType(type->castAs<AtomicType>());
662 }
663 
664 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
665   return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
666 }
667 
668 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
669 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
670   // TagDecl's are not necessarily unique, instead use the (clang)
671   // type connected to the decl.
672   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
673 
674   llvm::StructType *&Entry = RecordDeclTypes[Key];
675 
676   // If we don't have a StructType at all yet, create the forward declaration.
677   if (!Entry) {
678     Entry = llvm::StructType::create(getLLVMContext());
679     addRecordTypeName(RD, Entry, "");
680   }
681   llvm::StructType *Ty = Entry;
682 
683   // If this is still a forward declaration, or the LLVM type is already
684   // complete, there's nothing more to do.
685   RD = RD->getDefinition();
686   if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
687     return Ty;
688 
689   // If converting this type would cause us to infinitely loop, don't do it!
690   if (!isSafeToConvert(RD, *this)) {
691     DeferredRecords.push_back(RD);
692     return Ty;
693   }
694 
695   // Okay, this is a definition of a type.  Compile the implementation now.
696   bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
697   (void)InsertResult;
698   assert(InsertResult && "Recursively compiling a struct?");
699 
700   // Force conversion of non-virtual base classes recursively.
701   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
702     for (const auto &I : CRD->bases()) {
703       if (I.isVirtual()) continue;
704 
705       ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl());
706     }
707   }
708 
709   // Layout fields.
710   CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
711   CGRecordLayouts[Key] = Layout;
712 
713   // We're done laying out this struct.
714   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
715   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
716 
717   // If this struct blocked a FunctionType conversion, then recompute whatever
718   // was derived from that.
719   // FIXME: This is hugely overconservative.
720   if (SkippedLayout)
721     TypeCache.clear();
722 
723   // If we're done converting the outer-most record, then convert any deferred
724   // structs as well.
725   if (RecordsBeingLaidOut.empty())
726     while (!DeferredRecords.empty())
727       ConvertRecordDeclType(DeferredRecords.pop_back_val());
728 
729   return Ty;
730 }
731 
732 /// getCGRecordLayout - Return record layout info for the given record decl.
733 const CGRecordLayout &
734 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
735   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
736 
737   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
738   if (!Layout) {
739     // Compute the type information.
740     ConvertRecordDeclType(RD);
741 
742     // Now try again.
743     Layout = CGRecordLayouts.lookup(Key);
744   }
745 
746   assert(Layout && "Unable to find record layout information for type");
747   return *Layout;
748 }
749 
750 bool CodeGenTypes::isPointerZeroInitializable(QualType T) {
751   assert((T->isAnyPointerType() || T->isBlockPointerType()) && "Invalid type");
752   return isZeroInitializable(T);
753 }
754 
755 bool CodeGenTypes::isZeroInitializable(QualType T) {
756   if (T->getAs<PointerType>())
757     return Context.getTargetNullPointerValue(T) == 0;
758 
759   if (const auto *AT = Context.getAsArrayType(T)) {
760     if (isa<IncompleteArrayType>(AT))
761       return true;
762     if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
763       if (Context.getConstantArrayElementCount(CAT) == 0)
764         return true;
765     T = Context.getBaseElementType(T);
766   }
767 
768   // Records are non-zero-initializable if they contain any
769   // non-zero-initializable subobjects.
770   if (const RecordType *RT = T->getAs<RecordType>()) {
771     const RecordDecl *RD = RT->getDecl();
772     return isZeroInitializable(RD);
773   }
774 
775   // We have to ask the ABI about member pointers.
776   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
777     return getCXXABI().isZeroInitializable(MPT);
778 
779   // Everything else is okay.
780   return true;
781 }
782 
783 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) {
784   return getCGRecordLayout(RD).isZeroInitializable();
785 }
786