1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that handles AST -> LLVM type lowering.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenTypes.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CGRecordLayout.h"
19 #include "TargetInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Module.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
33   : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
34     Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
35     TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
36   SkippedLayout = false;
37 }
38 
39 CodeGenTypes::~CodeGenTypes() {
40   llvm::DeleteContainerSeconds(CGRecordLayouts);
41 
42   for (llvm::FoldingSet<CGFunctionInfo>::iterator
43        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
44     delete &*I++;
45 }
46 
47 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
48                                      llvm::StructType *Ty,
49                                      StringRef suffix) {
50   SmallString<256> TypeName;
51   llvm::raw_svector_ostream OS(TypeName);
52   OS << RD->getKindName() << '.';
53 
54   // Name the codegen type after the typedef name
55   // if there is no tag type name available
56   if (RD->getIdentifier()) {
57     // FIXME: We should not have to check for a null decl context here.
58     // Right now we do it because the implicit Obj-C decls don't have one.
59     if (RD->getDeclContext())
60       RD->printQualifiedName(OS);
61     else
62       RD->printName(OS);
63   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
64     // FIXME: We should not have to check for a null decl context here.
65     // Right now we do it because the implicit Obj-C decls don't have one.
66     if (TDD->getDeclContext())
67       TDD->printQualifiedName(OS);
68     else
69       TDD->printName(OS);
70   } else
71     OS << "anon";
72 
73   if (!suffix.empty())
74     OS << suffix;
75 
76   Ty->setName(OS.str());
77 }
78 
79 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
80 /// ConvertType in that it is used to convert to the memory representation for
81 /// a type.  For example, the scalar representation for _Bool is i1, but the
82 /// memory representation is usually i8 or i32, depending on the target.
83 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) {
84   llvm::Type *R = ConvertType(T);
85 
86   // If this is a non-bool type, don't map it.
87   if (!R->isIntegerTy(1))
88     return R;
89 
90   // Otherwise, return an integer of the target-specified size.
91   return llvm::IntegerType::get(getLLVMContext(),
92                                 (unsigned)Context.getTypeSize(T));
93 }
94 
95 
96 /// isRecordLayoutComplete - Return true if the specified type is already
97 /// completely laid out.
98 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
99   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
100   RecordDeclTypes.find(Ty);
101   return I != RecordDeclTypes.end() && !I->second->isOpaque();
102 }
103 
104 static bool
105 isSafeToConvert(QualType T, CodeGenTypes &CGT,
106                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
107 
108 
109 /// isSafeToConvert - Return true if it is safe to convert the specified record
110 /// decl to IR and lay it out, false if doing so would cause us to get into a
111 /// recursive compilation mess.
112 static bool
113 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
114                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
115   // If we have already checked this type (maybe the same type is used by-value
116   // multiple times in multiple structure fields, don't check again.
117   if (!AlreadyChecked.insert(RD).second)
118     return true;
119 
120   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
121 
122   // If this type is already laid out, converting it is a noop.
123   if (CGT.isRecordLayoutComplete(Key)) return true;
124 
125   // If this type is currently being laid out, we can't recursively compile it.
126   if (CGT.isRecordBeingLaidOut(Key))
127     return false;
128 
129   // If this type would require laying out bases that are currently being laid
130   // out, don't do it.  This includes virtual base classes which get laid out
131   // when a class is translated, even though they aren't embedded by-value into
132   // the class.
133   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
134     for (const auto &I : CRD->bases())
135       if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(),
136                            CGT, AlreadyChecked))
137         return false;
138   }
139 
140   // If this type would require laying out members that are currently being laid
141   // out, don't do it.
142   for (const auto *I : RD->fields())
143     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
144       return false;
145 
146   // If there are no problems, lets do it.
147   return true;
148 }
149 
150 /// isSafeToConvert - Return true if it is safe to convert this field type,
151 /// which requires the structure elements contained by-value to all be
152 /// recursively safe to convert.
153 static bool
154 isSafeToConvert(QualType T, CodeGenTypes &CGT,
155                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
156   // Strip off atomic type sugar.
157   if (const auto *AT = T->getAs<AtomicType>())
158     T = AT->getValueType();
159 
160   // If this is a record, check it.
161   if (const auto *RT = T->getAs<RecordType>())
162     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
163 
164   // If this is an array, check the elements, which are embedded inline.
165   if (const auto *AT = CGT.getContext().getAsArrayType(T))
166     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
167 
168   // Otherwise, there is no concern about transforming this.  We only care about
169   // things that are contained by-value in a structure that can have another
170   // structure as a member.
171   return true;
172 }
173 
174 
175 /// isSafeToConvert - Return true if it is safe to convert the specified record
176 /// decl to IR and lay it out, false if doing so would cause us to get into a
177 /// recursive compilation mess.
178 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
179   // If no structs are being laid out, we can certainly do this one.
180   if (CGT.noRecordsBeingLaidOut()) return true;
181 
182   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
183   return isSafeToConvert(RD, CGT, AlreadyChecked);
184 }
185 
186 /// isFuncParamTypeConvertible - Return true if the specified type in a
187 /// function parameter or result position can be converted to an IR type at this
188 /// point.  This boils down to being whether it is complete, as well as whether
189 /// we've temporarily deferred expanding the type because we're in a recursive
190 /// context.
191 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
192   // Some ABIs cannot have their member pointers represented in IR unless
193   // certain circumstances have been reached.
194   if (const auto *MPT = Ty->getAs<MemberPointerType>())
195     return getCXXABI().isMemberPointerConvertible(MPT);
196 
197   // If this isn't a tagged type, we can convert it!
198   const TagType *TT = Ty->getAs<TagType>();
199   if (!TT) return true;
200 
201   // Incomplete types cannot be converted.
202   if (TT->isIncompleteType())
203     return false;
204 
205   // If this is an enum, then it is always safe to convert.
206   const RecordType *RT = dyn_cast<RecordType>(TT);
207   if (!RT) return true;
208 
209   // Otherwise, we have to be careful.  If it is a struct that we're in the
210   // process of expanding, then we can't convert the function type.  That's ok
211   // though because we must be in a pointer context under the struct, so we can
212   // just convert it to a dummy type.
213   //
214   // We decide this by checking whether ConvertRecordDeclType returns us an
215   // opaque type for a struct that we know is defined.
216   return isSafeToConvert(RT->getDecl(), *this);
217 }
218 
219 
220 /// Code to verify a given function type is complete, i.e. the return type
221 /// and all of the parameter types are complete.  Also check to see if we are in
222 /// a RS_StructPointer context, and if so whether any struct types have been
223 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
224 /// that cannot be converted to an IR type.
225 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
226   if (!isFuncParamTypeConvertible(FT->getReturnType()))
227     return false;
228 
229   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
230     for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
231       if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
232         return false;
233 
234   return true;
235 }
236 
237 /// UpdateCompletedType - When we find the full definition for a TagDecl,
238 /// replace the 'opaque' type we previously made for it if applicable.
239 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
240   // If this is an enum being completed, then we flush all non-struct types from
241   // the cache.  This allows function types and other things that may be derived
242   // from the enum to be recomputed.
243   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
244     // Only flush the cache if we've actually already converted this type.
245     if (TypeCache.count(ED->getTypeForDecl())) {
246       // Okay, we formed some types based on this.  We speculated that the enum
247       // would be lowered to i32, so we only need to flush the cache if this
248       // didn't happen.
249       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
250         TypeCache.clear();
251     }
252     // If necessary, provide the full definition of a type only used with a
253     // declaration so far.
254     if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
255       DI->completeType(ED);
256     return;
257   }
258 
259   // If we completed a RecordDecl that we previously used and converted to an
260   // anonymous type, then go ahead and complete it now.
261   const RecordDecl *RD = cast<RecordDecl>(TD);
262   if (RD->isDependentType()) return;
263 
264   // Only complete it if we converted it already.  If we haven't converted it
265   // yet, we'll just do it lazily.
266   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
267     ConvertRecordDeclType(RD);
268 
269   // If necessary, provide the full definition of a type only used with a
270   // declaration so far.
271   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
272     DI->completeType(RD);
273 }
274 
275 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
276                                     const llvm::fltSemantics &format,
277                                     bool UseNativeHalf = false) {
278   if (&format == &llvm::APFloat::IEEEhalf) {
279     if (UseNativeHalf)
280       return llvm::Type::getHalfTy(VMContext);
281     else
282       return llvm::Type::getInt16Ty(VMContext);
283   }
284   if (&format == &llvm::APFloat::IEEEsingle)
285     return llvm::Type::getFloatTy(VMContext);
286   if (&format == &llvm::APFloat::IEEEdouble)
287     return llvm::Type::getDoubleTy(VMContext);
288   if (&format == &llvm::APFloat::IEEEquad)
289     return llvm::Type::getFP128Ty(VMContext);
290   if (&format == &llvm::APFloat::PPCDoubleDouble)
291     return llvm::Type::getPPC_FP128Ty(VMContext);
292   if (&format == &llvm::APFloat::x87DoubleExtended)
293     return llvm::Type::getX86_FP80Ty(VMContext);
294   llvm_unreachable("Unknown float format!");
295 }
296 
297 /// ConvertType - Convert the specified type to its LLVM form.
298 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
299   T = Context.getCanonicalType(T);
300 
301   const Type *Ty = T.getTypePtr();
302 
303   // RecordTypes are cached and processed specially.
304   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
305     return ConvertRecordDeclType(RT->getDecl());
306 
307   // See if type is already cached.
308   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
309   // If type is found in map then use it. Otherwise, convert type T.
310   if (TCI != TypeCache.end())
311     return TCI->second;
312 
313   // If we don't have it in the cache, convert it now.
314   llvm::Type *ResultType = nullptr;
315   switch (Ty->getTypeClass()) {
316   case Type::Record: // Handled above.
317 #define TYPE(Class, Base)
318 #define ABSTRACT_TYPE(Class, Base)
319 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
320 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
321 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
322 #include "clang/AST/TypeNodes.def"
323     llvm_unreachable("Non-canonical or dependent types aren't possible.");
324 
325   case Type::Builtin: {
326     switch (cast<BuiltinType>(Ty)->getKind()) {
327     case BuiltinType::Void:
328     case BuiltinType::ObjCId:
329     case BuiltinType::ObjCClass:
330     case BuiltinType::ObjCSel:
331       // LLVM void type can only be used as the result of a function call.  Just
332       // map to the same as char.
333       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
334       break;
335 
336     case BuiltinType::Bool:
337       // Note that we always return bool as i1 for use as a scalar type.
338       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
339       break;
340 
341     case BuiltinType::Char_S:
342     case BuiltinType::Char_U:
343     case BuiltinType::SChar:
344     case BuiltinType::UChar:
345     case BuiltinType::Short:
346     case BuiltinType::UShort:
347     case BuiltinType::Int:
348     case BuiltinType::UInt:
349     case BuiltinType::Long:
350     case BuiltinType::ULong:
351     case BuiltinType::LongLong:
352     case BuiltinType::ULongLong:
353     case BuiltinType::WChar_S:
354     case BuiltinType::WChar_U:
355     case BuiltinType::Char16:
356     case BuiltinType::Char32:
357       ResultType = llvm::IntegerType::get(getLLVMContext(),
358                                  static_cast<unsigned>(Context.getTypeSize(T)));
359       break;
360 
361     case BuiltinType::Half:
362       // Half FP can either be storage-only (lowered to i16) or native.
363       ResultType =
364           getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
365                            Context.getLangOpts().NativeHalfType ||
366                                Context.getLangOpts().HalfArgsAndReturns);
367       break;
368     case BuiltinType::Float:
369     case BuiltinType::Double:
370     case BuiltinType::LongDouble:
371       ResultType = getTypeForFormat(getLLVMContext(),
372                                     Context.getFloatTypeSemantics(T),
373                                     /* UseNativeHalf = */ false);
374       break;
375 
376     case BuiltinType::NullPtr:
377       // Model std::nullptr_t as i8*
378       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
379       break;
380 
381     case BuiltinType::UInt128:
382     case BuiltinType::Int128:
383       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
384       break;
385 
386     case BuiltinType::OCLImage1d:
387     case BuiltinType::OCLImage1dArray:
388     case BuiltinType::OCLImage1dBuffer:
389     case BuiltinType::OCLImage2d:
390     case BuiltinType::OCLImage2dArray:
391     case BuiltinType::OCLImage3d:
392     case BuiltinType::OCLSampler:
393     case BuiltinType::OCLEvent:
394       ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
395       break;
396 
397     case BuiltinType::Dependent:
398 #define BUILTIN_TYPE(Id, SingletonId)
399 #define PLACEHOLDER_TYPE(Id, SingletonId) \
400     case BuiltinType::Id:
401 #include "clang/AST/BuiltinTypes.def"
402       llvm_unreachable("Unexpected placeholder builtin type!");
403     }
404     break;
405   }
406   case Type::Auto:
407     llvm_unreachable("Unexpected undeduced auto type!");
408   case Type::Complex: {
409     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
410     ResultType = llvm::StructType::get(EltTy, EltTy, nullptr);
411     break;
412   }
413   case Type::LValueReference:
414   case Type::RValueReference: {
415     const ReferenceType *RTy = cast<ReferenceType>(Ty);
416     QualType ETy = RTy->getPointeeType();
417     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
418     unsigned AS = Context.getTargetAddressSpace(ETy);
419     ResultType = llvm::PointerType::get(PointeeType, AS);
420     break;
421   }
422   case Type::Pointer: {
423     const PointerType *PTy = cast<PointerType>(Ty);
424     QualType ETy = PTy->getPointeeType();
425     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
426     if (PointeeType->isVoidTy())
427       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
428     unsigned AS = Context.getTargetAddressSpace(ETy);
429     ResultType = llvm::PointerType::get(PointeeType, AS);
430     break;
431   }
432 
433   case Type::VariableArray: {
434     const VariableArrayType *A = cast<VariableArrayType>(Ty);
435     assert(A->getIndexTypeCVRQualifiers() == 0 &&
436            "FIXME: We only handle trivial array types so far!");
437     // VLAs resolve to the innermost element type; this matches
438     // the return of alloca, and there isn't any obviously better choice.
439     ResultType = ConvertTypeForMem(A->getElementType());
440     break;
441   }
442   case Type::IncompleteArray: {
443     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
444     assert(A->getIndexTypeCVRQualifiers() == 0 &&
445            "FIXME: We only handle trivial array types so far!");
446     // int X[] -> [0 x int], unless the element type is not sized.  If it is
447     // unsized (e.g. an incomplete struct) just use [0 x i8].
448     ResultType = ConvertTypeForMem(A->getElementType());
449     if (!ResultType->isSized()) {
450       SkippedLayout = true;
451       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
452     }
453     ResultType = llvm::ArrayType::get(ResultType, 0);
454     break;
455   }
456   case Type::ConstantArray: {
457     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
458     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
459 
460     // Lower arrays of undefined struct type to arrays of i8 just to have a
461     // concrete type.
462     if (!EltTy->isSized()) {
463       SkippedLayout = true;
464       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
465     }
466 
467     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
468     break;
469   }
470   case Type::ExtVector:
471   case Type::Vector: {
472     const VectorType *VT = cast<VectorType>(Ty);
473     ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()),
474                                        VT->getNumElements());
475     break;
476   }
477   case Type::FunctionNoProto:
478   case Type::FunctionProto: {
479     const FunctionType *FT = cast<FunctionType>(Ty);
480     // First, check whether we can build the full function type.  If the
481     // function type depends on an incomplete type (e.g. a struct or enum), we
482     // cannot lower the function type.
483     if (!isFuncTypeConvertible(FT)) {
484       // This function's type depends on an incomplete tag type.
485 
486       // Force conversion of all the relevant record types, to make sure
487       // we re-convert the FunctionType when appropriate.
488       if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
489         ConvertRecordDeclType(RT->getDecl());
490       if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
491         for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
492           if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
493             ConvertRecordDeclType(RT->getDecl());
494 
495       // Return a placeholder type.
496       ResultType = llvm::StructType::get(getLLVMContext());
497 
498       SkippedLayout = true;
499       break;
500     }
501 
502     // While we're converting the parameter types for a function, we don't want
503     // to recursively convert any pointed-to structs.  Converting directly-used
504     // structs is ok though.
505     if (!RecordsBeingLaidOut.insert(Ty).second) {
506       ResultType = llvm::StructType::get(getLLVMContext());
507 
508       SkippedLayout = true;
509       break;
510     }
511 
512     // The function type can be built; call the appropriate routines to
513     // build it.
514     const CGFunctionInfo *FI;
515     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
516       FI = &arrangeFreeFunctionType(
517                    CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
518     } else {
519       const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
520       FI = &arrangeFreeFunctionType(
521                 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
522     }
523 
524     // If there is something higher level prodding our CGFunctionInfo, then
525     // don't recurse into it again.
526     if (FunctionsBeingProcessed.count(FI)) {
527 
528       ResultType = llvm::StructType::get(getLLVMContext());
529       SkippedLayout = true;
530     } else {
531 
532       // Otherwise, we're good to go, go ahead and convert it.
533       ResultType = GetFunctionType(*FI);
534     }
535 
536     RecordsBeingLaidOut.erase(Ty);
537 
538     if (SkippedLayout)
539       TypeCache.clear();
540 
541     if (RecordsBeingLaidOut.empty())
542       while (!DeferredRecords.empty())
543         ConvertRecordDeclType(DeferredRecords.pop_back_val());
544     break;
545   }
546 
547   case Type::ObjCObject:
548     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
549     break;
550 
551   case Type::ObjCInterface: {
552     // Objective-C interfaces are always opaque (outside of the
553     // runtime, which can do whatever it likes); we never refine
554     // these.
555     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
556     if (!T)
557       T = llvm::StructType::create(getLLVMContext());
558     ResultType = T;
559     break;
560   }
561 
562   case Type::ObjCObjectPointer: {
563     // Protocol qualifications do not influence the LLVM type, we just return a
564     // pointer to the underlying interface type. We don't need to worry about
565     // recursive conversion.
566     llvm::Type *T =
567       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
568     ResultType = T->getPointerTo();
569     break;
570   }
571 
572   case Type::Enum: {
573     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
574     if (ED->isCompleteDefinition() || ED->isFixed())
575       return ConvertType(ED->getIntegerType());
576     // Return a placeholder 'i32' type.  This can be changed later when the
577     // type is defined (see UpdateCompletedType), but is likely to be the
578     // "right" answer.
579     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
580     break;
581   }
582 
583   case Type::BlockPointer: {
584     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
585     llvm::Type *PointeeType = ConvertTypeForMem(FTy);
586     unsigned AS = Context.getTargetAddressSpace(FTy);
587     ResultType = llvm::PointerType::get(PointeeType, AS);
588     break;
589   }
590 
591   case Type::MemberPointer: {
592     if (!getCXXABI().isMemberPointerConvertible(cast<MemberPointerType>(Ty)))
593       return llvm::StructType::create(getLLVMContext());
594     ResultType =
595       getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty));
596     break;
597   }
598 
599   case Type::Atomic: {
600     QualType valueType = cast<AtomicType>(Ty)->getValueType();
601     ResultType = ConvertTypeForMem(valueType);
602 
603     // Pad out to the inflated size if necessary.
604     uint64_t valueSize = Context.getTypeSize(valueType);
605     uint64_t atomicSize = Context.getTypeSize(Ty);
606     if (valueSize != atomicSize) {
607       assert(valueSize < atomicSize);
608       llvm::Type *elts[] = {
609         ResultType,
610         llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
611       };
612       ResultType = llvm::StructType::get(getLLVMContext(),
613                                          llvm::makeArrayRef(elts));
614     }
615     break;
616   }
617   }
618 
619   assert(ResultType && "Didn't convert a type?");
620 
621   TypeCache[Ty] = ResultType;
622   return ResultType;
623 }
624 
625 bool CodeGenModule::isPaddedAtomicType(QualType type) {
626   return isPaddedAtomicType(type->castAs<AtomicType>());
627 }
628 
629 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
630   return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
631 }
632 
633 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
634 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
635   // TagDecl's are not necessarily unique, instead use the (clang)
636   // type connected to the decl.
637   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
638 
639   llvm::StructType *&Entry = RecordDeclTypes[Key];
640 
641   // If we don't have a StructType at all yet, create the forward declaration.
642   if (!Entry) {
643     Entry = llvm::StructType::create(getLLVMContext());
644     addRecordTypeName(RD, Entry, "");
645   }
646   llvm::StructType *Ty = Entry;
647 
648   // If this is still a forward declaration, or the LLVM type is already
649   // complete, there's nothing more to do.
650   RD = RD->getDefinition();
651   if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
652     return Ty;
653 
654   // If converting this type would cause us to infinitely loop, don't do it!
655   if (!isSafeToConvert(RD, *this)) {
656     DeferredRecords.push_back(RD);
657     return Ty;
658   }
659 
660   // Okay, this is a definition of a type.  Compile the implementation now.
661   bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
662   (void)InsertResult;
663   assert(InsertResult && "Recursively compiling a struct?");
664 
665   // Force conversion of non-virtual base classes recursively.
666   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
667     for (const auto &I : CRD->bases()) {
668       if (I.isVirtual()) continue;
669 
670       ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl());
671     }
672   }
673 
674   // Layout fields.
675   CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty);
676   CGRecordLayouts[Key] = Layout;
677 
678   // We're done laying out this struct.
679   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
680   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
681 
682   // If this struct blocked a FunctionType conversion, then recompute whatever
683   // was derived from that.
684   // FIXME: This is hugely overconservative.
685   if (SkippedLayout)
686     TypeCache.clear();
687 
688   // If we're done converting the outer-most record, then convert any deferred
689   // structs as well.
690   if (RecordsBeingLaidOut.empty())
691     while (!DeferredRecords.empty())
692       ConvertRecordDeclType(DeferredRecords.pop_back_val());
693 
694   return Ty;
695 }
696 
697 /// getCGRecordLayout - Return record layout info for the given record decl.
698 const CGRecordLayout &
699 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
700   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
701 
702   const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key);
703   if (!Layout) {
704     // Compute the type information.
705     ConvertRecordDeclType(RD);
706 
707     // Now try again.
708     Layout = CGRecordLayouts.lookup(Key);
709   }
710 
711   assert(Layout && "Unable to find record layout information for type");
712   return *Layout;
713 }
714 
715 bool CodeGenTypes::isZeroInitializable(QualType T) {
716   // No need to check for member pointers when not compiling C++.
717   if (!Context.getLangOpts().CPlusPlus)
718     return true;
719 
720   if (const auto *AT = Context.getAsArrayType(T)) {
721     if (isa<IncompleteArrayType>(AT))
722       return true;
723     if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
724       if (Context.getConstantArrayElementCount(CAT) == 0)
725         return true;
726     T = Context.getBaseElementType(T);
727   }
728 
729   // Records are non-zero-initializable if they contain any
730   // non-zero-initializable subobjects.
731   if (const RecordType *RT = T->getAs<RecordType>()) {
732     const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
733     return isZeroInitializable(RD);
734   }
735 
736   // We have to ask the ABI about member pointers.
737   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
738     return getCXXABI().isZeroInitializable(MPT);
739 
740   // Everything else is okay.
741   return true;
742 }
743 
744 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) {
745   return getCGRecordLayout(RD).isZeroInitializable();
746 }
747