1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the code that handles AST -> LLVM type lowering. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenTypes.h" 15 #include "CGCall.h" 16 #include "CGCXXABI.h" 17 #include "CGRecordLayout.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/DeclObjC.h" 20 #include "clang/AST/DeclCXX.h" 21 #include "clang/AST/Expr.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "llvm/DerivedTypes.h" 24 #include "llvm/Module.h" 25 #include "llvm/Target/TargetData.h" 26 using namespace clang; 27 using namespace CodeGen; 28 29 CodeGenTypes::CodeGenTypes(ASTContext &Ctx, llvm::Module& M, 30 const llvm::TargetData &TD, const ABIInfo &Info, 31 CGCXXABI &CXXABI, const CodeGenOptions &CGO) 32 : Context(Ctx), Target(Ctx.getTargetInfo()), TheModule(M), TheTargetData(TD), 33 TheABIInfo(Info), TheCXXABI(CXXABI), CodeGenOpts(CGO) { 34 SkippedLayout = false; 35 } 36 37 CodeGenTypes::~CodeGenTypes() { 38 for (llvm::DenseMap<const Type *, CGRecordLayout *>::iterator 39 I = CGRecordLayouts.begin(), E = CGRecordLayouts.end(); 40 I != E; ++I) 41 delete I->second; 42 43 for (llvm::FoldingSet<CGFunctionInfo>::iterator 44 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; ) 45 delete &*I++; 46 } 47 48 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD, 49 llvm::StructType *Ty, 50 StringRef suffix) { 51 llvm::SmallString<256> TypeName; 52 llvm::raw_svector_ostream OS(TypeName); 53 OS << RD->getKindName() << '.'; 54 55 // Name the codegen type after the typedef name 56 // if there is no tag type name available 57 if (RD->getIdentifier()) { 58 // FIXME: We should not have to check for a null decl context here. 59 // Right now we do it because the implicit Obj-C decls don't have one. 60 if (RD->getDeclContext()) 61 OS << RD->getQualifiedNameAsString(); 62 else 63 RD->printName(OS); 64 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) { 65 // FIXME: We should not have to check for a null decl context here. 66 // Right now we do it because the implicit Obj-C decls don't have one. 67 if (TDD->getDeclContext()) 68 OS << TDD->getQualifiedNameAsString(); 69 else 70 TDD->printName(OS); 71 } else 72 OS << "anon"; 73 74 if (!suffix.empty()) 75 OS << suffix; 76 77 Ty->setName(OS.str()); 78 } 79 80 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from 81 /// ConvertType in that it is used to convert to the memory representation for 82 /// a type. For example, the scalar representation for _Bool is i1, but the 83 /// memory representation is usually i8 or i32, depending on the target. 84 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T){ 85 llvm::Type *R = ConvertType(T); 86 87 // If this is a non-bool type, don't map it. 88 if (!R->isIntegerTy(1)) 89 return R; 90 91 // Otherwise, return an integer of the target-specified size. 92 return llvm::IntegerType::get(getLLVMContext(), 93 (unsigned)Context.getTypeSize(T)); 94 } 95 96 97 /// isRecordLayoutComplete - Return true if the specified type is already 98 /// completely laid out. 99 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const { 100 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I = 101 RecordDeclTypes.find(Ty); 102 return I != RecordDeclTypes.end() && !I->second->isOpaque(); 103 } 104 105 static bool 106 isSafeToConvert(QualType T, CodeGenTypes &CGT, 107 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked); 108 109 110 /// isSafeToConvert - Return true if it is safe to convert the specified record 111 /// decl to IR and lay it out, false if doing so would cause us to get into a 112 /// recursive compilation mess. 113 static bool 114 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT, 115 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { 116 // If we have already checked this type (maybe the same type is used by-value 117 // multiple times in multiple structure fields, don't check again. 118 if (!AlreadyChecked.insert(RD)) return true; 119 120 const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr(); 121 122 // If this type is already laid out, converting it is a noop. 123 if (CGT.isRecordLayoutComplete(Key)) return true; 124 125 // If this type is currently being laid out, we can't recursively compile it. 126 if (CGT.isRecordBeingLaidOut(Key)) 127 return false; 128 129 // If this type would require laying out bases that are currently being laid 130 // out, don't do it. This includes virtual base classes which get laid out 131 // when a class is translated, even though they aren't embedded by-value into 132 // the class. 133 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 134 for (CXXRecordDecl::base_class_const_iterator I = CRD->bases_begin(), 135 E = CRD->bases_end(); I != E; ++I) 136 if (!isSafeToConvert(I->getType()->getAs<RecordType>()->getDecl(), 137 CGT, AlreadyChecked)) 138 return false; 139 } 140 141 // If this type would require laying out members that are currently being laid 142 // out, don't do it. 143 for (RecordDecl::field_iterator I = RD->field_begin(), 144 E = RD->field_end(); I != E; ++I) 145 if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked)) 146 return false; 147 148 // If there are no problems, lets do it. 149 return true; 150 } 151 152 /// isSafeToConvert - Return true if it is safe to convert this field type, 153 /// which requires the structure elements contained by-value to all be 154 /// recursively safe to convert. 155 static bool 156 isSafeToConvert(QualType T, CodeGenTypes &CGT, 157 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { 158 T = T.getCanonicalType(); 159 160 // If this is a record, check it. 161 if (const RecordType *RT = dyn_cast<RecordType>(T)) 162 return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked); 163 164 // If this is an array, check the elements, which are embedded inline. 165 if (const ArrayType *AT = dyn_cast<ArrayType>(T)) 166 return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked); 167 168 // Otherwise, there is no concern about transforming this. We only care about 169 // things that are contained by-value in a structure that can have another 170 // structure as a member. 171 return true; 172 } 173 174 175 /// isSafeToConvert - Return true if it is safe to convert the specified record 176 /// decl to IR and lay it out, false if doing so would cause us to get into a 177 /// recursive compilation mess. 178 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) { 179 // If no structs are being laid out, we can certainly do this one. 180 if (CGT.noRecordsBeingLaidOut()) return true; 181 182 llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked; 183 return isSafeToConvert(RD, CGT, AlreadyChecked); 184 } 185 186 187 /// isFuncTypeArgumentConvertible - Return true if the specified type in a 188 /// function argument or result position can be converted to an IR type at this 189 /// point. This boils down to being whether it is complete, as well as whether 190 /// we've temporarily deferred expanding the type because we're in a recursive 191 /// context. 192 bool CodeGenTypes::isFuncTypeArgumentConvertible(QualType Ty) { 193 // If this isn't a tagged type, we can convert it! 194 const TagType *TT = Ty->getAs<TagType>(); 195 if (TT == 0) return true; 196 197 198 // If it's a tagged type used by-value, but is just a forward decl, we can't 199 // convert it. Note that getDefinition()==0 is not the same as !isDefinition. 200 if (TT->getDecl()->getDefinition() == 0) 201 return false; 202 203 // If this is an enum, then it is always safe to convert. 204 const RecordType *RT = dyn_cast<RecordType>(TT); 205 if (RT == 0) return true; 206 207 // Otherwise, we have to be careful. If it is a struct that we're in the 208 // process of expanding, then we can't convert the function type. That's ok 209 // though because we must be in a pointer context under the struct, so we can 210 // just convert it to a dummy type. 211 // 212 // We decide this by checking whether ConvertRecordDeclType returns us an 213 // opaque type for a struct that we know is defined. 214 return isSafeToConvert(RT->getDecl(), *this); 215 } 216 217 218 /// Code to verify a given function type is complete, i.e. the return type 219 /// and all of the argument types are complete. Also check to see if we are in 220 /// a RS_StructPointer context, and if so whether any struct types have been 221 /// pended. If so, we don't want to ask the ABI lowering code to handle a type 222 /// that cannot be converted to an IR type. 223 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) { 224 if (!isFuncTypeArgumentConvertible(FT->getResultType())) 225 return false; 226 227 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 228 for (unsigned i = 0, e = FPT->getNumArgs(); i != e; i++) 229 if (!isFuncTypeArgumentConvertible(FPT->getArgType(i))) 230 return false; 231 232 return true; 233 } 234 235 /// UpdateCompletedType - When we find the full definition for a TagDecl, 236 /// replace the 'opaque' type we previously made for it if applicable. 237 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) { 238 // If this is an enum being completed, then we flush all non-struct types from 239 // the cache. This allows function types and other things that may be derived 240 // from the enum to be recomputed. 241 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) { 242 // Only flush the cache if we've actually already converted this type. 243 if (TypeCache.count(ED->getTypeForDecl())) { 244 // Okay, we formed some types based on this. We speculated that the enum 245 // would be lowered to i32, so we only need to flush the cache if this 246 // didn't happen. 247 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32)) 248 TypeCache.clear(); 249 } 250 return; 251 } 252 253 // If we completed a RecordDecl that we previously used and converted to an 254 // anonymous type, then go ahead and complete it now. 255 const RecordDecl *RD = cast<RecordDecl>(TD); 256 if (RD->isDependentType()) return; 257 258 // Only complete it if we converted it already. If we haven't converted it 259 // yet, we'll just do it lazily. 260 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr())) 261 ConvertRecordDeclType(RD); 262 } 263 264 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext, 265 const llvm::fltSemantics &format) { 266 if (&format == &llvm::APFloat::IEEEhalf) 267 return llvm::Type::getInt16Ty(VMContext); 268 if (&format == &llvm::APFloat::IEEEsingle) 269 return llvm::Type::getFloatTy(VMContext); 270 if (&format == &llvm::APFloat::IEEEdouble) 271 return llvm::Type::getDoubleTy(VMContext); 272 if (&format == &llvm::APFloat::IEEEquad) 273 return llvm::Type::getFP128Ty(VMContext); 274 if (&format == &llvm::APFloat::PPCDoubleDouble) 275 return llvm::Type::getPPC_FP128Ty(VMContext); 276 if (&format == &llvm::APFloat::x87DoubleExtended) 277 return llvm::Type::getX86_FP80Ty(VMContext); 278 llvm_unreachable("Unknown float format!"); 279 } 280 281 /// ConvertType - Convert the specified type to its LLVM form. 282 llvm::Type *CodeGenTypes::ConvertType(QualType T) { 283 T = Context.getCanonicalType(T); 284 285 const Type *Ty = T.getTypePtr(); 286 287 // RecordTypes are cached and processed specially. 288 if (const RecordType *RT = dyn_cast<RecordType>(Ty)) 289 return ConvertRecordDeclType(RT->getDecl()); 290 291 // See if type is already cached. 292 llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty); 293 // If type is found in map then use it. Otherwise, convert type T. 294 if (TCI != TypeCache.end()) 295 return TCI->second; 296 297 // If we don't have it in the cache, convert it now. 298 llvm::Type *ResultType = 0; 299 switch (Ty->getTypeClass()) { 300 case Type::Record: // Handled above. 301 #define TYPE(Class, Base) 302 #define ABSTRACT_TYPE(Class, Base) 303 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 304 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 305 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 306 #include "clang/AST/TypeNodes.def" 307 llvm_unreachable("Non-canonical or dependent types aren't possible."); 308 309 case Type::Builtin: { 310 switch (cast<BuiltinType>(Ty)->getKind()) { 311 case BuiltinType::Void: 312 case BuiltinType::ObjCId: 313 case BuiltinType::ObjCClass: 314 case BuiltinType::ObjCSel: 315 // LLVM void type can only be used as the result of a function call. Just 316 // map to the same as char. 317 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 318 break; 319 320 case BuiltinType::Bool: 321 // Note that we always return bool as i1 for use as a scalar type. 322 ResultType = llvm::Type::getInt1Ty(getLLVMContext()); 323 break; 324 325 case BuiltinType::Char_S: 326 case BuiltinType::Char_U: 327 case BuiltinType::SChar: 328 case BuiltinType::UChar: 329 case BuiltinType::Short: 330 case BuiltinType::UShort: 331 case BuiltinType::Int: 332 case BuiltinType::UInt: 333 case BuiltinType::Long: 334 case BuiltinType::ULong: 335 case BuiltinType::LongLong: 336 case BuiltinType::ULongLong: 337 case BuiltinType::WChar_S: 338 case BuiltinType::WChar_U: 339 case BuiltinType::Char16: 340 case BuiltinType::Char32: 341 ResultType = llvm::IntegerType::get(getLLVMContext(), 342 static_cast<unsigned>(Context.getTypeSize(T))); 343 break; 344 345 case BuiltinType::Half: 346 // Half is special: it might be lowered to i16 (and will be storage-only 347 // type),. or can be represented as a set of native operations. 348 349 // FIXME: Ask target which kind of half FP it prefers (storage only vs 350 // native). 351 ResultType = llvm::Type::getInt16Ty(getLLVMContext()); 352 break; 353 case BuiltinType::Float: 354 case BuiltinType::Double: 355 case BuiltinType::LongDouble: 356 ResultType = getTypeForFormat(getLLVMContext(), 357 Context.getFloatTypeSemantics(T)); 358 break; 359 360 case BuiltinType::NullPtr: 361 // Model std::nullptr_t as i8* 362 ResultType = llvm::Type::getInt8PtrTy(getLLVMContext()); 363 break; 364 365 case BuiltinType::UInt128: 366 case BuiltinType::Int128: 367 ResultType = llvm::IntegerType::get(getLLVMContext(), 128); 368 break; 369 370 case BuiltinType::Dependent: 371 #define BUILTIN_TYPE(Id, SingletonId) 372 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 373 case BuiltinType::Id: 374 #include "clang/AST/BuiltinTypes.def" 375 llvm_unreachable("Unexpected placeholder builtin type!"); 376 } 377 break; 378 } 379 case Type::Complex: { 380 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType()); 381 ResultType = llvm::StructType::get(EltTy, EltTy, NULL); 382 break; 383 } 384 case Type::LValueReference: 385 case Type::RValueReference: { 386 const ReferenceType *RTy = cast<ReferenceType>(Ty); 387 QualType ETy = RTy->getPointeeType(); 388 llvm::Type *PointeeType = ConvertTypeForMem(ETy); 389 unsigned AS = Context.getTargetAddressSpace(ETy); 390 ResultType = llvm::PointerType::get(PointeeType, AS); 391 break; 392 } 393 case Type::Pointer: { 394 const PointerType *PTy = cast<PointerType>(Ty); 395 QualType ETy = PTy->getPointeeType(); 396 llvm::Type *PointeeType = ConvertTypeForMem(ETy); 397 if (PointeeType->isVoidTy()) 398 PointeeType = llvm::Type::getInt8Ty(getLLVMContext()); 399 unsigned AS = Context.getTargetAddressSpace(ETy); 400 ResultType = llvm::PointerType::get(PointeeType, AS); 401 break; 402 } 403 404 case Type::VariableArray: { 405 const VariableArrayType *A = cast<VariableArrayType>(Ty); 406 assert(A->getIndexTypeCVRQualifiers() == 0 && 407 "FIXME: We only handle trivial array types so far!"); 408 // VLAs resolve to the innermost element type; this matches 409 // the return of alloca, and there isn't any obviously better choice. 410 ResultType = ConvertTypeForMem(A->getElementType()); 411 break; 412 } 413 case Type::IncompleteArray: { 414 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty); 415 assert(A->getIndexTypeCVRQualifiers() == 0 && 416 "FIXME: We only handle trivial array types so far!"); 417 // int X[] -> [0 x int], unless the element type is not sized. If it is 418 // unsized (e.g. an incomplete struct) just use [0 x i8]. 419 ResultType = ConvertTypeForMem(A->getElementType()); 420 if (!ResultType->isSized()) { 421 SkippedLayout = true; 422 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 423 } 424 ResultType = llvm::ArrayType::get(ResultType, 0); 425 break; 426 } 427 case Type::ConstantArray: { 428 const ConstantArrayType *A = cast<ConstantArrayType>(Ty); 429 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType()); 430 431 // Lower arrays of undefined struct type to arrays of i8 just to have a 432 // concrete type. 433 if (!EltTy->isSized()) { 434 SkippedLayout = true; 435 EltTy = llvm::Type::getInt8Ty(getLLVMContext()); 436 } 437 438 ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue()); 439 break; 440 } 441 case Type::ExtVector: 442 case Type::Vector: { 443 const VectorType *VT = cast<VectorType>(Ty); 444 ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()), 445 VT->getNumElements()); 446 break; 447 } 448 case Type::FunctionNoProto: 449 case Type::FunctionProto: { 450 const FunctionType *FT = cast<FunctionType>(Ty); 451 // First, check whether we can build the full function type. If the 452 // function type depends on an incomplete type (e.g. a struct or enum), we 453 // cannot lower the function type. 454 if (!isFuncTypeConvertible(FT)) { 455 // This function's type depends on an incomplete tag type. 456 // Return a placeholder type. 457 ResultType = llvm::StructType::get(getLLVMContext()); 458 459 SkippedLayout = true; 460 break; 461 } 462 463 // While we're converting the argument types for a function, we don't want 464 // to recursively convert any pointed-to structs. Converting directly-used 465 // structs is ok though. 466 if (!RecordsBeingLaidOut.insert(Ty)) { 467 ResultType = llvm::StructType::get(getLLVMContext()); 468 469 SkippedLayout = true; 470 break; 471 } 472 473 // The function type can be built; call the appropriate routines to 474 // build it. 475 const CGFunctionInfo *FI; 476 bool isVariadic; 477 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { 478 FI = &getFunctionInfo( 479 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0))); 480 isVariadic = FPT->isVariadic(); 481 } else { 482 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT); 483 FI = &getFunctionInfo( 484 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0))); 485 isVariadic = true; 486 } 487 488 // If there is something higher level prodding our CGFunctionInfo, then 489 // don't recurse into it again. 490 if (FunctionsBeingProcessed.count(FI)) { 491 492 ResultType = llvm::StructType::get(getLLVMContext()); 493 SkippedLayout = true; 494 } else { 495 496 // Otherwise, we're good to go, go ahead and convert it. 497 ResultType = GetFunctionType(*FI, isVariadic); 498 } 499 500 RecordsBeingLaidOut.erase(Ty); 501 502 if (SkippedLayout) 503 TypeCache.clear(); 504 505 if (RecordsBeingLaidOut.empty()) 506 while (!DeferredRecords.empty()) 507 ConvertRecordDeclType(DeferredRecords.pop_back_val()); 508 break; 509 } 510 511 case Type::ObjCObject: 512 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType()); 513 break; 514 515 case Type::ObjCInterface: { 516 // Objective-C interfaces are always opaque (outside of the 517 // runtime, which can do whatever it likes); we never refine 518 // these. 519 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)]; 520 if (!T) 521 T = llvm::StructType::create(getLLVMContext()); 522 ResultType = T; 523 break; 524 } 525 526 case Type::ObjCObjectPointer: { 527 // Protocol qualifications do not influence the LLVM type, we just return a 528 // pointer to the underlying interface type. We don't need to worry about 529 // recursive conversion. 530 llvm::Type *T = 531 ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType()); 532 ResultType = T->getPointerTo(); 533 break; 534 } 535 536 case Type::Enum: { 537 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl(); 538 if (ED->isCompleteDefinition() || ED->isFixed()) 539 return ConvertType(ED->getIntegerType()); 540 // Return a placeholder 'i32' type. This can be changed later when the 541 // type is defined (see UpdateCompletedType), but is likely to be the 542 // "right" answer. 543 ResultType = llvm::Type::getInt32Ty(getLLVMContext()); 544 break; 545 } 546 547 case Type::BlockPointer: { 548 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType(); 549 llvm::Type *PointeeType = ConvertTypeForMem(FTy); 550 unsigned AS = Context.getTargetAddressSpace(FTy); 551 ResultType = llvm::PointerType::get(PointeeType, AS); 552 break; 553 } 554 555 case Type::MemberPointer: { 556 ResultType = 557 getCXXABI().ConvertMemberPointerType(cast<MemberPointerType>(Ty)); 558 break; 559 } 560 561 case Type::Atomic: { 562 ResultType = ConvertTypeForMem(cast<AtomicType>(Ty)->getValueType()); 563 break; 564 } 565 } 566 567 assert(ResultType && "Didn't convert a type?"); 568 569 TypeCache[Ty] = ResultType; 570 return ResultType; 571 } 572 573 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. 574 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) { 575 // TagDecl's are not necessarily unique, instead use the (clang) 576 // type connected to the decl. 577 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 578 579 llvm::StructType *&Entry = RecordDeclTypes[Key]; 580 581 // If we don't have a StructType at all yet, create the forward declaration. 582 if (Entry == 0) { 583 Entry = llvm::StructType::create(getLLVMContext()); 584 addRecordTypeName(RD, Entry, ""); 585 } 586 llvm::StructType *Ty = Entry; 587 588 // If this is still a forward declaration, or the LLVM type is already 589 // complete, there's nothing more to do. 590 RD = RD->getDefinition(); 591 if (RD == 0 || !RD->isCompleteDefinition() || !Ty->isOpaque()) 592 return Ty; 593 594 // If converting this type would cause us to infinitely loop, don't do it! 595 if (!isSafeToConvert(RD, *this)) { 596 DeferredRecords.push_back(RD); 597 return Ty; 598 } 599 600 // Okay, this is a definition of a type. Compile the implementation now. 601 bool InsertResult = RecordsBeingLaidOut.insert(Key); (void)InsertResult; 602 assert(InsertResult && "Recursively compiling a struct?"); 603 604 // Force conversion of non-virtual base classes recursively. 605 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 606 for (CXXRecordDecl::base_class_const_iterator i = CRD->bases_begin(), 607 e = CRD->bases_end(); i != e; ++i) { 608 if (i->isVirtual()) continue; 609 610 ConvertRecordDeclType(i->getType()->getAs<RecordType>()->getDecl()); 611 } 612 } 613 614 // Layout fields. 615 CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty); 616 CGRecordLayouts[Key] = Layout; 617 618 // We're done laying out this struct. 619 bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult; 620 assert(EraseResult && "struct not in RecordsBeingLaidOut set?"); 621 622 // If this struct blocked a FunctionType conversion, then recompute whatever 623 // was derived from that. 624 // FIXME: This is hugely overconservative. 625 if (SkippedLayout) 626 TypeCache.clear(); 627 628 // If we're done converting the outer-most record, then convert any deferred 629 // structs as well. 630 if (RecordsBeingLaidOut.empty()) 631 while (!DeferredRecords.empty()) 632 ConvertRecordDeclType(DeferredRecords.pop_back_val()); 633 634 return Ty; 635 } 636 637 /// getCGRecordLayout - Return record layout info for the given record decl. 638 const CGRecordLayout & 639 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) { 640 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 641 642 const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key); 643 if (!Layout) { 644 // Compute the type information. 645 ConvertRecordDeclType(RD); 646 647 // Now try again. 648 Layout = CGRecordLayouts.lookup(Key); 649 } 650 651 assert(Layout && "Unable to find record layout information for type"); 652 return *Layout; 653 } 654 655 bool CodeGenTypes::isZeroInitializable(QualType T) { 656 // No need to check for member pointers when not compiling C++. 657 if (!Context.getLangOptions().CPlusPlus) 658 return true; 659 660 T = Context.getBaseElementType(T); 661 662 // Records are non-zero-initializable if they contain any 663 // non-zero-initializable subobjects. 664 if (const RecordType *RT = T->getAs<RecordType>()) { 665 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 666 return isZeroInitializable(RD); 667 } 668 669 // We have to ask the ABI about member pointers. 670 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) 671 return getCXXABI().isZeroInitializable(MPT); 672 673 // Everything else is okay. 674 return true; 675 } 676 677 bool CodeGenTypes::isZeroInitializable(const CXXRecordDecl *RD) { 678 return getCGRecordLayout(RD).isZeroInitializable(); 679 } 680