1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the code that handles AST -> LLVM type lowering.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenTypes.h"
14 #include "CGCXXABI.h"
15 #include "CGCall.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Module.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm)
32   : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()),
33     Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()),
34     TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) {
35   SkippedLayout = false;
36 }
37 
38 CodeGenTypes::~CodeGenTypes() {
39   for (llvm::FoldingSet<CGFunctionInfo>::iterator
40        I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; )
41     delete &*I++;
42 }
43 
44 const CodeGenOptions &CodeGenTypes::getCodeGenOpts() const {
45   return CGM.getCodeGenOpts();
46 }
47 
48 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD,
49                                      llvm::StructType *Ty,
50                                      StringRef suffix) {
51   SmallString<256> TypeName;
52   llvm::raw_svector_ostream OS(TypeName);
53   OS << RD->getKindName() << '.';
54 
55   // Name the codegen type after the typedef name
56   // if there is no tag type name available
57   if (RD->getIdentifier()) {
58     // FIXME: We should not have to check for a null decl context here.
59     // Right now we do it because the implicit Obj-C decls don't have one.
60     if (RD->getDeclContext())
61       RD->printQualifiedName(OS);
62     else
63       RD->printName(OS);
64   } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) {
65     // FIXME: We should not have to check for a null decl context here.
66     // Right now we do it because the implicit Obj-C decls don't have one.
67     if (TDD->getDeclContext())
68       TDD->printQualifiedName(OS);
69     else
70       TDD->printName(OS);
71   } else
72     OS << "anon";
73 
74   if (!suffix.empty())
75     OS << suffix;
76 
77   Ty->setName(OS.str());
78 }
79 
80 /// ConvertTypeForMem - Convert type T into a llvm::Type.  This differs from
81 /// ConvertType in that it is used to convert to the memory representation for
82 /// a type.  For example, the scalar representation for _Bool is i1, but the
83 /// memory representation is usually i8 or i32, depending on the target.
84 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T, bool ForBitField) {
85   if (T->isConstantMatrixType()) {
86     const Type *Ty = Context.getCanonicalType(T).getTypePtr();
87     const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty);
88     return llvm::ArrayType::get(ConvertType(MT->getElementType()),
89                                 MT->getNumRows() * MT->getNumColumns());
90   }
91 
92   llvm::Type *R = ConvertType(T);
93 
94   // If this is a bool type, or an ExtIntType in a bitfield representation,
95   // map this integer to the target-specified size.
96   if ((ForBitField && T->isExtIntType()) || R->isIntegerTy(1))
97     return llvm::IntegerType::get(getLLVMContext(),
98                                   (unsigned)Context.getTypeSize(T));
99 
100   // Else, don't map it.
101   return R;
102 }
103 
104 /// isRecordLayoutComplete - Return true if the specified type is already
105 /// completely laid out.
106 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const {
107   llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I =
108   RecordDeclTypes.find(Ty);
109   return I != RecordDeclTypes.end() && !I->second->isOpaque();
110 }
111 
112 static bool
113 isSafeToConvert(QualType T, CodeGenTypes &CGT,
114                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked);
115 
116 
117 /// isSafeToConvert - Return true if it is safe to convert the specified record
118 /// decl to IR and lay it out, false if doing so would cause us to get into a
119 /// recursive compilation mess.
120 static bool
121 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT,
122                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
123   // If we have already checked this type (maybe the same type is used by-value
124   // multiple times in multiple structure fields, don't check again.
125   if (!AlreadyChecked.insert(RD).second)
126     return true;
127 
128   const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr();
129 
130   // If this type is already laid out, converting it is a noop.
131   if (CGT.isRecordLayoutComplete(Key)) return true;
132 
133   // If this type is currently being laid out, we can't recursively compile it.
134   if (CGT.isRecordBeingLaidOut(Key))
135     return false;
136 
137   // If this type would require laying out bases that are currently being laid
138   // out, don't do it.  This includes virtual base classes which get laid out
139   // when a class is translated, even though they aren't embedded by-value into
140   // the class.
141   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
142     for (const auto &I : CRD->bases())
143       if (!isSafeToConvert(I.getType()->castAs<RecordType>()->getDecl(), CGT,
144                            AlreadyChecked))
145         return false;
146   }
147 
148   // If this type would require laying out members that are currently being laid
149   // out, don't do it.
150   for (const auto *I : RD->fields())
151     if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked))
152       return false;
153 
154   // If there are no problems, lets do it.
155   return true;
156 }
157 
158 /// isSafeToConvert - Return true if it is safe to convert this field type,
159 /// which requires the structure elements contained by-value to all be
160 /// recursively safe to convert.
161 static bool
162 isSafeToConvert(QualType T, CodeGenTypes &CGT,
163                 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
164   // Strip off atomic type sugar.
165   if (const auto *AT = T->getAs<AtomicType>())
166     T = AT->getValueType();
167 
168   // If this is a record, check it.
169   if (const auto *RT = T->getAs<RecordType>())
170     return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
171 
172   // If this is an array, check the elements, which are embedded inline.
173   if (const auto *AT = CGT.getContext().getAsArrayType(T))
174     return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
175 
176   // Otherwise, there is no concern about transforming this.  We only care about
177   // things that are contained by-value in a structure that can have another
178   // structure as a member.
179   return true;
180 }
181 
182 
183 /// isSafeToConvert - Return true if it is safe to convert the specified record
184 /// decl to IR and lay it out, false if doing so would cause us to get into a
185 /// recursive compilation mess.
186 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
187   // If no structs are being laid out, we can certainly do this one.
188   if (CGT.noRecordsBeingLaidOut()) return true;
189 
190   llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
191   return isSafeToConvert(RD, CGT, AlreadyChecked);
192 }
193 
194 /// isFuncParamTypeConvertible - Return true if the specified type in a
195 /// function parameter or result position can be converted to an IR type at this
196 /// point.  This boils down to being whether it is complete, as well as whether
197 /// we've temporarily deferred expanding the type because we're in a recursive
198 /// context.
199 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) {
200   // Some ABIs cannot have their member pointers represented in IR unless
201   // certain circumstances have been reached.
202   if (const auto *MPT = Ty->getAs<MemberPointerType>())
203     return getCXXABI().isMemberPointerConvertible(MPT);
204 
205   // If this isn't a tagged type, we can convert it!
206   const TagType *TT = Ty->getAs<TagType>();
207   if (!TT) return true;
208 
209   // Incomplete types cannot be converted.
210   if (TT->isIncompleteType())
211     return false;
212 
213   // If this is an enum, then it is always safe to convert.
214   const RecordType *RT = dyn_cast<RecordType>(TT);
215   if (!RT) return true;
216 
217   // Otherwise, we have to be careful.  If it is a struct that we're in the
218   // process of expanding, then we can't convert the function type.  That's ok
219   // though because we must be in a pointer context under the struct, so we can
220   // just convert it to a dummy type.
221   //
222   // We decide this by checking whether ConvertRecordDeclType returns us an
223   // opaque type for a struct that we know is defined.
224   return isSafeToConvert(RT->getDecl(), *this);
225 }
226 
227 
228 /// Code to verify a given function type is complete, i.e. the return type
229 /// and all of the parameter types are complete.  Also check to see if we are in
230 /// a RS_StructPointer context, and if so whether any struct types have been
231 /// pended.  If so, we don't want to ask the ABI lowering code to handle a type
232 /// that cannot be converted to an IR type.
233 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) {
234   if (!isFuncParamTypeConvertible(FT->getReturnType()))
235     return false;
236 
237   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
238     for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
239       if (!isFuncParamTypeConvertible(FPT->getParamType(i)))
240         return false;
241 
242   return true;
243 }
244 
245 /// UpdateCompletedType - When we find the full definition for a TagDecl,
246 /// replace the 'opaque' type we previously made for it if applicable.
247 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) {
248   // If this is an enum being completed, then we flush all non-struct types from
249   // the cache.  This allows function types and other things that may be derived
250   // from the enum to be recomputed.
251   if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) {
252     // Only flush the cache if we've actually already converted this type.
253     if (TypeCache.count(ED->getTypeForDecl())) {
254       // Okay, we formed some types based on this.  We speculated that the enum
255       // would be lowered to i32, so we only need to flush the cache if this
256       // didn't happen.
257       if (!ConvertType(ED->getIntegerType())->isIntegerTy(32))
258         TypeCache.clear();
259     }
260     // If necessary, provide the full definition of a type only used with a
261     // declaration so far.
262     if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
263       DI->completeType(ED);
264     return;
265   }
266 
267   // If we completed a RecordDecl that we previously used and converted to an
268   // anonymous type, then go ahead and complete it now.
269   const RecordDecl *RD = cast<RecordDecl>(TD);
270   if (RD->isDependentType()) return;
271 
272   // Only complete it if we converted it already.  If we haven't converted it
273   // yet, we'll just do it lazily.
274   if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr()))
275     ConvertRecordDeclType(RD);
276 
277   // If necessary, provide the full definition of a type only used with a
278   // declaration so far.
279   if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
280     DI->completeType(RD);
281 }
282 
283 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
284   QualType T = Context.getRecordType(RD);
285   T = Context.getCanonicalType(T);
286 
287   const Type *Ty = T.getTypePtr();
288   if (RecordsWithOpaqueMemberPointers.count(Ty)) {
289     TypeCache.clear();
290     RecordsWithOpaqueMemberPointers.clear();
291   }
292 }
293 
294 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext,
295                                     const llvm::fltSemantics &format,
296                                     bool UseNativeHalf = false) {
297   if (&format == &llvm::APFloat::IEEEhalf()) {
298     if (UseNativeHalf)
299       return llvm::Type::getHalfTy(VMContext);
300     else
301       return llvm::Type::getInt16Ty(VMContext);
302   }
303   if (&format == &llvm::APFloat::IEEEsingle())
304     return llvm::Type::getFloatTy(VMContext);
305   if (&format == &llvm::APFloat::IEEEdouble())
306     return llvm::Type::getDoubleTy(VMContext);
307   if (&format == &llvm::APFloat::IEEEquad())
308     return llvm::Type::getFP128Ty(VMContext);
309   if (&format == &llvm::APFloat::PPCDoubleDouble())
310     return llvm::Type::getPPC_FP128Ty(VMContext);
311   if (&format == &llvm::APFloat::x87DoubleExtended())
312     return llvm::Type::getX86_FP80Ty(VMContext);
313   llvm_unreachable("Unknown float format!");
314 }
315 
316 llvm::Type *CodeGenTypes::ConvertFunctionTypeInternal(QualType QFT) {
317   assert(QFT.isCanonical());
318   const Type *Ty = QFT.getTypePtr();
319   const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr());
320   // First, check whether we can build the full function type.  If the
321   // function type depends on an incomplete type (e.g. a struct or enum), we
322   // cannot lower the function type.
323   if (!isFuncTypeConvertible(FT)) {
324     // This function's type depends on an incomplete tag type.
325 
326     // Force conversion of all the relevant record types, to make sure
327     // we re-convert the FunctionType when appropriate.
328     if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>())
329       ConvertRecordDeclType(RT->getDecl());
330     if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT))
331       for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++)
332         if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>())
333           ConvertRecordDeclType(RT->getDecl());
334 
335     SkippedLayout = true;
336 
337     // Return a placeholder type.
338     return llvm::StructType::get(getLLVMContext());
339   }
340 
341   // While we're converting the parameter types for a function, we don't want
342   // to recursively convert any pointed-to structs.  Converting directly-used
343   // structs is ok though.
344   if (!RecordsBeingLaidOut.insert(Ty).second) {
345     SkippedLayout = true;
346     return llvm::StructType::get(getLLVMContext());
347   }
348 
349   // The function type can be built; call the appropriate routines to
350   // build it.
351   const CGFunctionInfo *FI;
352   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) {
353     FI = &arrangeFreeFunctionType(
354         CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)));
355   } else {
356     const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT);
357     FI = &arrangeFreeFunctionType(
358         CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0)));
359   }
360 
361   llvm::Type *ResultType = nullptr;
362   // If there is something higher level prodding our CGFunctionInfo, then
363   // don't recurse into it again.
364   if (FunctionsBeingProcessed.count(FI)) {
365 
366     ResultType = llvm::StructType::get(getLLVMContext());
367     SkippedLayout = true;
368   } else {
369 
370     // Otherwise, we're good to go, go ahead and convert it.
371     ResultType = GetFunctionType(*FI);
372   }
373 
374   RecordsBeingLaidOut.erase(Ty);
375 
376   if (SkippedLayout)
377     TypeCache.clear();
378 
379   if (RecordsBeingLaidOut.empty())
380     while (!DeferredRecords.empty())
381       ConvertRecordDeclType(DeferredRecords.pop_back_val());
382   return ResultType;
383 }
384 
385 /// ConvertType - Convert the specified type to its LLVM form.
386 llvm::Type *CodeGenTypes::ConvertType(QualType T) {
387   T = Context.getCanonicalType(T);
388 
389   const Type *Ty = T.getTypePtr();
390 
391   // For the device-side compilation, CUDA device builtin surface/texture types
392   // may be represented in different types.
393   if (Context.getLangOpts().CUDAIsDevice) {
394     if (T->isCUDADeviceBuiltinSurfaceType()) {
395       if (auto *Ty = CGM.getTargetCodeGenInfo()
396                          .getCUDADeviceBuiltinSurfaceDeviceType())
397         return Ty;
398     } else if (T->isCUDADeviceBuiltinTextureType()) {
399       if (auto *Ty = CGM.getTargetCodeGenInfo()
400                          .getCUDADeviceBuiltinTextureDeviceType())
401         return Ty;
402     }
403   }
404 
405   // RecordTypes are cached and processed specially.
406   if (const RecordType *RT = dyn_cast<RecordType>(Ty))
407     return ConvertRecordDeclType(RT->getDecl());
408 
409   // See if type is already cached.
410   llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty);
411   // If type is found in map then use it. Otherwise, convert type T.
412   if (TCI != TypeCache.end())
413     return TCI->second;
414 
415   // If we don't have it in the cache, convert it now.
416   llvm::Type *ResultType = nullptr;
417   switch (Ty->getTypeClass()) {
418   case Type::Record: // Handled above.
419 #define TYPE(Class, Base)
420 #define ABSTRACT_TYPE(Class, Base)
421 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
422 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
423 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
424 #include "clang/AST/TypeNodes.inc"
425     llvm_unreachable("Non-canonical or dependent types aren't possible.");
426 
427   case Type::Builtin: {
428     switch (cast<BuiltinType>(Ty)->getKind()) {
429     case BuiltinType::Void:
430     case BuiltinType::ObjCId:
431     case BuiltinType::ObjCClass:
432     case BuiltinType::ObjCSel:
433       // LLVM void type can only be used as the result of a function call.  Just
434       // map to the same as char.
435       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
436       break;
437 
438     case BuiltinType::Bool:
439       // Note that we always return bool as i1 for use as a scalar type.
440       ResultType = llvm::Type::getInt1Ty(getLLVMContext());
441       break;
442 
443     case BuiltinType::Char_S:
444     case BuiltinType::Char_U:
445     case BuiltinType::SChar:
446     case BuiltinType::UChar:
447     case BuiltinType::Short:
448     case BuiltinType::UShort:
449     case BuiltinType::Int:
450     case BuiltinType::UInt:
451     case BuiltinType::Long:
452     case BuiltinType::ULong:
453     case BuiltinType::LongLong:
454     case BuiltinType::ULongLong:
455     case BuiltinType::WChar_S:
456     case BuiltinType::WChar_U:
457     case BuiltinType::Char8:
458     case BuiltinType::Char16:
459     case BuiltinType::Char32:
460     case BuiltinType::ShortAccum:
461     case BuiltinType::Accum:
462     case BuiltinType::LongAccum:
463     case BuiltinType::UShortAccum:
464     case BuiltinType::UAccum:
465     case BuiltinType::ULongAccum:
466     case BuiltinType::ShortFract:
467     case BuiltinType::Fract:
468     case BuiltinType::LongFract:
469     case BuiltinType::UShortFract:
470     case BuiltinType::UFract:
471     case BuiltinType::ULongFract:
472     case BuiltinType::SatShortAccum:
473     case BuiltinType::SatAccum:
474     case BuiltinType::SatLongAccum:
475     case BuiltinType::SatUShortAccum:
476     case BuiltinType::SatUAccum:
477     case BuiltinType::SatULongAccum:
478     case BuiltinType::SatShortFract:
479     case BuiltinType::SatFract:
480     case BuiltinType::SatLongFract:
481     case BuiltinType::SatUShortFract:
482     case BuiltinType::SatUFract:
483     case BuiltinType::SatULongFract:
484       ResultType = llvm::IntegerType::get(getLLVMContext(),
485                                  static_cast<unsigned>(Context.getTypeSize(T)));
486       break;
487 
488     case BuiltinType::Float16:
489       ResultType =
490           getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T),
491                            /* UseNativeHalf = */ true);
492       break;
493 
494     case BuiltinType::Half:
495       // Half FP can either be storage-only (lowered to i16) or native.
496       ResultType = getTypeForFormat(
497           getLLVMContext(), Context.getFloatTypeSemantics(T),
498           Context.getLangOpts().NativeHalfType ||
499               !Context.getTargetInfo().useFP16ConversionIntrinsics());
500       break;
501     case BuiltinType::Float:
502     case BuiltinType::Double:
503     case BuiltinType::LongDouble:
504     case BuiltinType::Float128:
505       ResultType = getTypeForFormat(getLLVMContext(),
506                                     Context.getFloatTypeSemantics(T),
507                                     /* UseNativeHalf = */ false);
508       break;
509 
510     case BuiltinType::NullPtr:
511       // Model std::nullptr_t as i8*
512       ResultType = llvm::Type::getInt8PtrTy(getLLVMContext());
513       break;
514 
515     case BuiltinType::UInt128:
516     case BuiltinType::Int128:
517       ResultType = llvm::IntegerType::get(getLLVMContext(), 128);
518       break;
519 
520 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
521     case BuiltinType::Id:
522 #include "clang/Basic/OpenCLImageTypes.def"
523 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
524     case BuiltinType::Id:
525 #include "clang/Basic/OpenCLExtensionTypes.def"
526     case BuiltinType::OCLSampler:
527     case BuiltinType::OCLEvent:
528     case BuiltinType::OCLClkEvent:
529     case BuiltinType::OCLQueue:
530     case BuiltinType::OCLReserveID:
531       ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty);
532       break;
533     case BuiltinType::SveInt8:
534     case BuiltinType::SveUint8:
535       return llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 8),
536                                    {16, true});
537     case BuiltinType::SveInt16:
538     case BuiltinType::SveUint16:
539       return llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 16),
540                                    {8, true});
541     case BuiltinType::SveInt32:
542     case BuiltinType::SveUint32:
543       return llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 32),
544                                    {4, true});
545     case BuiltinType::SveInt64:
546     case BuiltinType::SveUint64:
547       return llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 64),
548                                    {2, true});
549     case BuiltinType::SveFloat16:
550       return llvm::VectorType::get(
551           getTypeForFormat(getLLVMContext(),
552                            Context.getFloatTypeSemantics(Context.HalfTy),
553                            /* UseNativeHalf = */ true),
554           {8, true});
555     case BuiltinType::SveFloat32:
556       return llvm::VectorType::get(
557           getTypeForFormat(getLLVMContext(),
558                            Context.getFloatTypeSemantics(Context.FloatTy),
559                            /* UseNativeHalf = */ false),
560           {4, true});
561     case BuiltinType::SveFloat64:
562       return llvm::VectorType::get(
563           getTypeForFormat(getLLVMContext(),
564                            Context.getFloatTypeSemantics(Context.DoubleTy),
565                            /* UseNativeHalf = */ false),
566           {2, true});
567     case BuiltinType::SveBool:
568       return llvm::VectorType::get(llvm::IntegerType::get(getLLVMContext(), 1),
569                                    {16, true});
570       break;
571     case BuiltinType::Dependent:
572 #define BUILTIN_TYPE(Id, SingletonId)
573 #define PLACEHOLDER_TYPE(Id, SingletonId) \
574     case BuiltinType::Id:
575 #include "clang/AST/BuiltinTypes.def"
576       llvm_unreachable("Unexpected placeholder builtin type!");
577     }
578     break;
579   }
580   case Type::Auto:
581   case Type::DeducedTemplateSpecialization:
582     llvm_unreachable("Unexpected undeduced type!");
583   case Type::Complex: {
584     llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType());
585     ResultType = llvm::StructType::get(EltTy, EltTy);
586     break;
587   }
588   case Type::LValueReference:
589   case Type::RValueReference: {
590     const ReferenceType *RTy = cast<ReferenceType>(Ty);
591     QualType ETy = RTy->getPointeeType();
592     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
593     unsigned AS = Context.getTargetAddressSpace(ETy);
594     ResultType = llvm::PointerType::get(PointeeType, AS);
595     break;
596   }
597   case Type::Pointer: {
598     const PointerType *PTy = cast<PointerType>(Ty);
599     QualType ETy = PTy->getPointeeType();
600     llvm::Type *PointeeType = ConvertTypeForMem(ETy);
601     if (PointeeType->isVoidTy())
602       PointeeType = llvm::Type::getInt8Ty(getLLVMContext());
603 
604     unsigned AS = PointeeType->isFunctionTy()
605                       ? getDataLayout().getProgramAddressSpace()
606                       : Context.getTargetAddressSpace(ETy);
607 
608     ResultType = llvm::PointerType::get(PointeeType, AS);
609     break;
610   }
611 
612   case Type::VariableArray: {
613     const VariableArrayType *A = cast<VariableArrayType>(Ty);
614     assert(A->getIndexTypeCVRQualifiers() == 0 &&
615            "FIXME: We only handle trivial array types so far!");
616     // VLAs resolve to the innermost element type; this matches
617     // the return of alloca, and there isn't any obviously better choice.
618     ResultType = ConvertTypeForMem(A->getElementType());
619     break;
620   }
621   case Type::IncompleteArray: {
622     const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty);
623     assert(A->getIndexTypeCVRQualifiers() == 0 &&
624            "FIXME: We only handle trivial array types so far!");
625     // int X[] -> [0 x int], unless the element type is not sized.  If it is
626     // unsized (e.g. an incomplete struct) just use [0 x i8].
627     ResultType = ConvertTypeForMem(A->getElementType());
628     if (!ResultType->isSized()) {
629       SkippedLayout = true;
630       ResultType = llvm::Type::getInt8Ty(getLLVMContext());
631     }
632     ResultType = llvm::ArrayType::get(ResultType, 0);
633     break;
634   }
635   case Type::ConstantArray: {
636     const ConstantArrayType *A = cast<ConstantArrayType>(Ty);
637     llvm::Type *EltTy = ConvertTypeForMem(A->getElementType());
638 
639     // Lower arrays of undefined struct type to arrays of i8 just to have a
640     // concrete type.
641     if (!EltTy->isSized()) {
642       SkippedLayout = true;
643       EltTy = llvm::Type::getInt8Ty(getLLVMContext());
644     }
645 
646     ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue());
647     break;
648   }
649   case Type::ExtVector:
650   case Type::Vector: {
651     const VectorType *VT = cast<VectorType>(Ty);
652     ResultType = llvm::FixedVectorType::get(ConvertType(VT->getElementType()),
653                                             VT->getNumElements());
654     break;
655   }
656   case Type::ConstantMatrix: {
657     const ConstantMatrixType *MT = cast<ConstantMatrixType>(Ty);
658     ResultType =
659         llvm::FixedVectorType::get(ConvertType(MT->getElementType()),
660                                    MT->getNumRows() * MT->getNumColumns());
661     break;
662   }
663   case Type::FunctionNoProto:
664   case Type::FunctionProto:
665     ResultType = ConvertFunctionTypeInternal(T);
666     break;
667   case Type::ObjCObject:
668     ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType());
669     break;
670 
671   case Type::ObjCInterface: {
672     // Objective-C interfaces are always opaque (outside of the
673     // runtime, which can do whatever it likes); we never refine
674     // these.
675     llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)];
676     if (!T)
677       T = llvm::StructType::create(getLLVMContext());
678     ResultType = T;
679     break;
680   }
681 
682   case Type::ObjCObjectPointer: {
683     // Protocol qualifications do not influence the LLVM type, we just return a
684     // pointer to the underlying interface type. We don't need to worry about
685     // recursive conversion.
686     llvm::Type *T =
687       ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
688     ResultType = T->getPointerTo();
689     break;
690   }
691 
692   case Type::Enum: {
693     const EnumDecl *ED = cast<EnumType>(Ty)->getDecl();
694     if (ED->isCompleteDefinition() || ED->isFixed())
695       return ConvertType(ED->getIntegerType());
696     // Return a placeholder 'i32' type.  This can be changed later when the
697     // type is defined (see UpdateCompletedType), but is likely to be the
698     // "right" answer.
699     ResultType = llvm::Type::getInt32Ty(getLLVMContext());
700     break;
701   }
702 
703   case Type::BlockPointer: {
704     const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType();
705     llvm::Type *PointeeType = CGM.getLangOpts().OpenCL
706                                   ? CGM.getGenericBlockLiteralType()
707                                   : ConvertTypeForMem(FTy);
708     unsigned AS = Context.getTargetAddressSpace(FTy);
709     ResultType = llvm::PointerType::get(PointeeType, AS);
710     break;
711   }
712 
713   case Type::MemberPointer: {
714     auto *MPTy = cast<MemberPointerType>(Ty);
715     if (!getCXXABI().isMemberPointerConvertible(MPTy)) {
716       RecordsWithOpaqueMemberPointers.insert(MPTy->getClass());
717       ResultType = llvm::StructType::create(getLLVMContext());
718     } else {
719       ResultType = getCXXABI().ConvertMemberPointerType(MPTy);
720     }
721     break;
722   }
723 
724   case Type::Atomic: {
725     QualType valueType = cast<AtomicType>(Ty)->getValueType();
726     ResultType = ConvertTypeForMem(valueType);
727 
728     // Pad out to the inflated size if necessary.
729     uint64_t valueSize = Context.getTypeSize(valueType);
730     uint64_t atomicSize = Context.getTypeSize(Ty);
731     if (valueSize != atomicSize) {
732       assert(valueSize < atomicSize);
733       llvm::Type *elts[] = {
734         ResultType,
735         llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8)
736       };
737       ResultType = llvm::StructType::get(getLLVMContext(),
738                                          llvm::makeArrayRef(elts));
739     }
740     break;
741   }
742   case Type::Pipe: {
743     ResultType = CGM.getOpenCLRuntime().getPipeType(cast<PipeType>(Ty));
744     break;
745   }
746   case Type::ExtInt: {
747     const auto &EIT = cast<ExtIntType>(Ty);
748     ResultType = llvm::Type::getIntNTy(getLLVMContext(), EIT->getNumBits());
749     break;
750   }
751   }
752 
753   assert(ResultType && "Didn't convert a type?");
754 
755   TypeCache[Ty] = ResultType;
756   return ResultType;
757 }
758 
759 bool CodeGenModule::isPaddedAtomicType(QualType type) {
760   return isPaddedAtomicType(type->castAs<AtomicType>());
761 }
762 
763 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) {
764   return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType());
765 }
766 
767 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union.
768 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) {
769   // TagDecl's are not necessarily unique, instead use the (clang)
770   // type connected to the decl.
771   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
772 
773   llvm::StructType *&Entry = RecordDeclTypes[Key];
774 
775   // If we don't have a StructType at all yet, create the forward declaration.
776   if (!Entry) {
777     Entry = llvm::StructType::create(getLLVMContext());
778     addRecordTypeName(RD, Entry, "");
779   }
780   llvm::StructType *Ty = Entry;
781 
782   // If this is still a forward declaration, or the LLVM type is already
783   // complete, there's nothing more to do.
784   RD = RD->getDefinition();
785   if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque())
786     return Ty;
787 
788   // If converting this type would cause us to infinitely loop, don't do it!
789   if (!isSafeToConvert(RD, *this)) {
790     DeferredRecords.push_back(RD);
791     return Ty;
792   }
793 
794   // Okay, this is a definition of a type.  Compile the implementation now.
795   bool InsertResult = RecordsBeingLaidOut.insert(Key).second;
796   (void)InsertResult;
797   assert(InsertResult && "Recursively compiling a struct?");
798 
799   // Force conversion of non-virtual base classes recursively.
800   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
801     for (const auto &I : CRD->bases()) {
802       if (I.isVirtual()) continue;
803       ConvertRecordDeclType(I.getType()->castAs<RecordType>()->getDecl());
804     }
805   }
806 
807   // Layout fields.
808   std::unique_ptr<CGRecordLayout> Layout = ComputeRecordLayout(RD, Ty);
809   CGRecordLayouts[Key] = std::move(Layout);
810 
811   // We're done laying out this struct.
812   bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult;
813   assert(EraseResult && "struct not in RecordsBeingLaidOut set?");
814 
815   // If this struct blocked a FunctionType conversion, then recompute whatever
816   // was derived from that.
817   // FIXME: This is hugely overconservative.
818   if (SkippedLayout)
819     TypeCache.clear();
820 
821   // If we're done converting the outer-most record, then convert any deferred
822   // structs as well.
823   if (RecordsBeingLaidOut.empty())
824     while (!DeferredRecords.empty())
825       ConvertRecordDeclType(DeferredRecords.pop_back_val());
826 
827   return Ty;
828 }
829 
830 /// getCGRecordLayout - Return record layout info for the given record decl.
831 const CGRecordLayout &
832 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) {
833   const Type *Key = Context.getTagDeclType(RD).getTypePtr();
834 
835   auto I = CGRecordLayouts.find(Key);
836   if (I != CGRecordLayouts.end())
837     return *I->second;
838   // Compute the type information.
839   ConvertRecordDeclType(RD);
840 
841   // Now try again.
842   I = CGRecordLayouts.find(Key);
843 
844   assert(I != CGRecordLayouts.end() &&
845          "Unable to find record layout information for type");
846   return *I->second;
847 }
848 
849 bool CodeGenTypes::isPointerZeroInitializable(QualType T) {
850   assert((T->isAnyPointerType() || T->isBlockPointerType()) && "Invalid type");
851   return isZeroInitializable(T);
852 }
853 
854 bool CodeGenTypes::isZeroInitializable(QualType T) {
855   if (T->getAs<PointerType>())
856     return Context.getTargetNullPointerValue(T) == 0;
857 
858   if (const auto *AT = Context.getAsArrayType(T)) {
859     if (isa<IncompleteArrayType>(AT))
860       return true;
861     if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
862       if (Context.getConstantArrayElementCount(CAT) == 0)
863         return true;
864     T = Context.getBaseElementType(T);
865   }
866 
867   // Records are non-zero-initializable if they contain any
868   // non-zero-initializable subobjects.
869   if (const RecordType *RT = T->getAs<RecordType>()) {
870     const RecordDecl *RD = RT->getDecl();
871     return isZeroInitializable(RD);
872   }
873 
874   // We have to ask the ABI about member pointers.
875   if (const MemberPointerType *MPT = T->getAs<MemberPointerType>())
876     return getCXXABI().isZeroInitializable(MPT);
877 
878   // Everything else is okay.
879   return true;
880 }
881 
882 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) {
883   return getCGRecordLayout(RD).isZeroInitializable();
884 }
885