1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the code that handles AST -> LLVM type lowering. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenTypes.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGRecordLayout.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Module.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm) 33 : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()), 34 Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()), 35 TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) { 36 SkippedLayout = false; 37 } 38 39 CodeGenTypes::~CodeGenTypes() { 40 llvm::DeleteContainerSeconds(CGRecordLayouts); 41 42 for (llvm::FoldingSet<CGFunctionInfo>::iterator 43 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; ) 44 delete &*I++; 45 } 46 47 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD, 48 llvm::StructType *Ty, 49 StringRef suffix) { 50 SmallString<256> TypeName; 51 llvm::raw_svector_ostream OS(TypeName); 52 OS << RD->getKindName() << '.'; 53 54 // Name the codegen type after the typedef name 55 // if there is no tag type name available 56 if (RD->getIdentifier()) { 57 // FIXME: We should not have to check for a null decl context here. 58 // Right now we do it because the implicit Obj-C decls don't have one. 59 if (RD->getDeclContext()) 60 RD->printQualifiedName(OS); 61 else 62 RD->printName(OS); 63 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) { 64 // FIXME: We should not have to check for a null decl context here. 65 // Right now we do it because the implicit Obj-C decls don't have one. 66 if (TDD->getDeclContext()) 67 TDD->printQualifiedName(OS); 68 else 69 TDD->printName(OS); 70 } else 71 OS << "anon"; 72 73 if (!suffix.empty()) 74 OS << suffix; 75 76 Ty->setName(OS.str()); 77 } 78 79 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from 80 /// ConvertType in that it is used to convert to the memory representation for 81 /// a type. For example, the scalar representation for _Bool is i1, but the 82 /// memory representation is usually i8 or i32, depending on the target. 83 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) { 84 llvm::Type *R = ConvertType(T); 85 86 // If this is a non-bool type, don't map it. 87 if (!R->isIntegerTy(1)) 88 return R; 89 90 // Otherwise, return an integer of the target-specified size. 91 return llvm::IntegerType::get(getLLVMContext(), 92 (unsigned)Context.getTypeSize(T)); 93 } 94 95 96 /// isRecordLayoutComplete - Return true if the specified type is already 97 /// completely laid out. 98 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const { 99 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I = 100 RecordDeclTypes.find(Ty); 101 return I != RecordDeclTypes.end() && !I->second->isOpaque(); 102 } 103 104 static bool 105 isSafeToConvert(QualType T, CodeGenTypes &CGT, 106 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked); 107 108 109 /// isSafeToConvert - Return true if it is safe to convert the specified record 110 /// decl to IR and lay it out, false if doing so would cause us to get into a 111 /// recursive compilation mess. 112 static bool 113 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT, 114 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { 115 // If we have already checked this type (maybe the same type is used by-value 116 // multiple times in multiple structure fields, don't check again. 117 if (!AlreadyChecked.insert(RD).second) 118 return true; 119 120 const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr(); 121 122 // If this type is already laid out, converting it is a noop. 123 if (CGT.isRecordLayoutComplete(Key)) return true; 124 125 // If this type is currently being laid out, we can't recursively compile it. 126 if (CGT.isRecordBeingLaidOut(Key)) 127 return false; 128 129 // If this type would require laying out bases that are currently being laid 130 // out, don't do it. This includes virtual base classes which get laid out 131 // when a class is translated, even though they aren't embedded by-value into 132 // the class. 133 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 134 for (const auto &I : CRD->bases()) 135 if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(), 136 CGT, AlreadyChecked)) 137 return false; 138 } 139 140 // If this type would require laying out members that are currently being laid 141 // out, don't do it. 142 for (const auto *I : RD->fields()) 143 if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked)) 144 return false; 145 146 // If there are no problems, lets do it. 147 return true; 148 } 149 150 /// isSafeToConvert - Return true if it is safe to convert this field type, 151 /// which requires the structure elements contained by-value to all be 152 /// recursively safe to convert. 153 static bool 154 isSafeToConvert(QualType T, CodeGenTypes &CGT, 155 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { 156 // Strip off atomic type sugar. 157 if (const auto *AT = T->getAs<AtomicType>()) 158 T = AT->getValueType(); 159 160 // If this is a record, check it. 161 if (const auto *RT = T->getAs<RecordType>()) 162 return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked); 163 164 // If this is an array, check the elements, which are embedded inline. 165 if (const auto *AT = CGT.getContext().getAsArrayType(T)) 166 return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked); 167 168 // Otherwise, there is no concern about transforming this. We only care about 169 // things that are contained by-value in a structure that can have another 170 // structure as a member. 171 return true; 172 } 173 174 175 /// isSafeToConvert - Return true if it is safe to convert the specified record 176 /// decl to IR and lay it out, false if doing so would cause us to get into a 177 /// recursive compilation mess. 178 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) { 179 // If no structs are being laid out, we can certainly do this one. 180 if (CGT.noRecordsBeingLaidOut()) return true; 181 182 llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked; 183 return isSafeToConvert(RD, CGT, AlreadyChecked); 184 } 185 186 /// isFuncParamTypeConvertible - Return true if the specified type in a 187 /// function parameter or result position can be converted to an IR type at this 188 /// point. This boils down to being whether it is complete, as well as whether 189 /// we've temporarily deferred expanding the type because we're in a recursive 190 /// context. 191 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) { 192 // Some ABIs cannot have their member pointers represented in IR unless 193 // certain circumstances have been reached. 194 if (const auto *MPT = Ty->getAs<MemberPointerType>()) 195 return getCXXABI().isMemberPointerConvertible(MPT); 196 197 // If this isn't a tagged type, we can convert it! 198 const TagType *TT = Ty->getAs<TagType>(); 199 if (!TT) return true; 200 201 // Incomplete types cannot be converted. 202 if (TT->isIncompleteType()) 203 return false; 204 205 // If this is an enum, then it is always safe to convert. 206 const RecordType *RT = dyn_cast<RecordType>(TT); 207 if (!RT) return true; 208 209 // Otherwise, we have to be careful. If it is a struct that we're in the 210 // process of expanding, then we can't convert the function type. That's ok 211 // though because we must be in a pointer context under the struct, so we can 212 // just convert it to a dummy type. 213 // 214 // We decide this by checking whether ConvertRecordDeclType returns us an 215 // opaque type for a struct that we know is defined. 216 return isSafeToConvert(RT->getDecl(), *this); 217 } 218 219 220 /// Code to verify a given function type is complete, i.e. the return type 221 /// and all of the parameter types are complete. Also check to see if we are in 222 /// a RS_StructPointer context, and if so whether any struct types have been 223 /// pended. If so, we don't want to ask the ABI lowering code to handle a type 224 /// that cannot be converted to an IR type. 225 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) { 226 if (!isFuncParamTypeConvertible(FT->getReturnType())) 227 return false; 228 229 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 230 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 231 if (!isFuncParamTypeConvertible(FPT->getParamType(i))) 232 return false; 233 234 return true; 235 } 236 237 /// UpdateCompletedType - When we find the full definition for a TagDecl, 238 /// replace the 'opaque' type we previously made for it if applicable. 239 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) { 240 // If this is an enum being completed, then we flush all non-struct types from 241 // the cache. This allows function types and other things that may be derived 242 // from the enum to be recomputed. 243 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) { 244 // Only flush the cache if we've actually already converted this type. 245 if (TypeCache.count(ED->getTypeForDecl())) { 246 // Okay, we formed some types based on this. We speculated that the enum 247 // would be lowered to i32, so we only need to flush the cache if this 248 // didn't happen. 249 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32)) 250 TypeCache.clear(); 251 } 252 // If necessary, provide the full definition of a type only used with a 253 // declaration so far. 254 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 255 DI->completeType(ED); 256 return; 257 } 258 259 // If we completed a RecordDecl that we previously used and converted to an 260 // anonymous type, then go ahead and complete it now. 261 const RecordDecl *RD = cast<RecordDecl>(TD); 262 if (RD->isDependentType()) return; 263 264 // Only complete it if we converted it already. If we haven't converted it 265 // yet, we'll just do it lazily. 266 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr())) 267 ConvertRecordDeclType(RD); 268 269 // If necessary, provide the full definition of a type only used with a 270 // declaration so far. 271 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 272 DI->completeType(RD); 273 } 274 275 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 276 QualType T = Context.getRecordType(RD); 277 T = Context.getCanonicalType(T); 278 279 const Type *Ty = T.getTypePtr(); 280 if (RecordsWithOpaqueMemberPointers.count(Ty)) { 281 TypeCache.clear(); 282 RecordsWithOpaqueMemberPointers.clear(); 283 } 284 } 285 286 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext, 287 const llvm::fltSemantics &format, 288 bool UseNativeHalf = false) { 289 if (&format == &llvm::APFloat::IEEEhalf) { 290 if (UseNativeHalf) 291 return llvm::Type::getHalfTy(VMContext); 292 else 293 return llvm::Type::getInt16Ty(VMContext); 294 } 295 if (&format == &llvm::APFloat::IEEEsingle) 296 return llvm::Type::getFloatTy(VMContext); 297 if (&format == &llvm::APFloat::IEEEdouble) 298 return llvm::Type::getDoubleTy(VMContext); 299 if (&format == &llvm::APFloat::IEEEquad) 300 return llvm::Type::getFP128Ty(VMContext); 301 if (&format == &llvm::APFloat::PPCDoubleDouble) 302 return llvm::Type::getPPC_FP128Ty(VMContext); 303 if (&format == &llvm::APFloat::x87DoubleExtended) 304 return llvm::Type::getX86_FP80Ty(VMContext); 305 llvm_unreachable("Unknown float format!"); 306 } 307 308 llvm::Type *CodeGenTypes::ConvertFunctionType(QualType QFT, 309 const FunctionDecl *FD) { 310 assert(QFT.isCanonical()); 311 const Type *Ty = QFT.getTypePtr(); 312 const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr()); 313 // First, check whether we can build the full function type. If the 314 // function type depends on an incomplete type (e.g. a struct or enum), we 315 // cannot lower the function type. 316 if (!isFuncTypeConvertible(FT)) { 317 // This function's type depends on an incomplete tag type. 318 319 // Force conversion of all the relevant record types, to make sure 320 // we re-convert the FunctionType when appropriate. 321 if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>()) 322 ConvertRecordDeclType(RT->getDecl()); 323 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 324 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 325 if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>()) 326 ConvertRecordDeclType(RT->getDecl()); 327 328 SkippedLayout = true; 329 330 // Return a placeholder type. 331 return llvm::StructType::get(getLLVMContext()); 332 } 333 334 // While we're converting the parameter types for a function, we don't want 335 // to recursively convert any pointed-to structs. Converting directly-used 336 // structs is ok though. 337 if (!RecordsBeingLaidOut.insert(Ty).second) { 338 SkippedLayout = true; 339 return llvm::StructType::get(getLLVMContext()); 340 } 341 342 // The function type can be built; call the appropriate routines to 343 // build it. 344 const CGFunctionInfo *FI; 345 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { 346 FI = &arrangeFreeFunctionType( 347 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)), FD); 348 } else { 349 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT); 350 FI = &arrangeFreeFunctionType( 351 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0))); 352 } 353 354 llvm::Type *ResultType = nullptr; 355 // If there is something higher level prodding our CGFunctionInfo, then 356 // don't recurse into it again. 357 if (FunctionsBeingProcessed.count(FI)) { 358 359 ResultType = llvm::StructType::get(getLLVMContext()); 360 SkippedLayout = true; 361 } else { 362 363 // Otherwise, we're good to go, go ahead and convert it. 364 ResultType = GetFunctionType(*FI); 365 } 366 367 RecordsBeingLaidOut.erase(Ty); 368 369 if (SkippedLayout) 370 TypeCache.clear(); 371 372 if (RecordsBeingLaidOut.empty()) 373 while (!DeferredRecords.empty()) 374 ConvertRecordDeclType(DeferredRecords.pop_back_val()); 375 return ResultType; 376 } 377 378 /// ConvertType - Convert the specified type to its LLVM form. 379 llvm::Type *CodeGenTypes::ConvertType(QualType T) { 380 T = Context.getCanonicalType(T); 381 382 const Type *Ty = T.getTypePtr(); 383 384 // RecordTypes are cached and processed specially. 385 if (const RecordType *RT = dyn_cast<RecordType>(Ty)) 386 return ConvertRecordDeclType(RT->getDecl()); 387 388 // See if type is already cached. 389 llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty); 390 // If type is found in map then use it. Otherwise, convert type T. 391 if (TCI != TypeCache.end()) 392 return TCI->second; 393 394 // If we don't have it in the cache, convert it now. 395 llvm::Type *ResultType = nullptr; 396 switch (Ty->getTypeClass()) { 397 case Type::Record: // Handled above. 398 #define TYPE(Class, Base) 399 #define ABSTRACT_TYPE(Class, Base) 400 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 401 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 402 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 403 #include "clang/AST/TypeNodes.def" 404 llvm_unreachable("Non-canonical or dependent types aren't possible."); 405 406 case Type::Builtin: { 407 switch (cast<BuiltinType>(Ty)->getKind()) { 408 case BuiltinType::Void: 409 case BuiltinType::ObjCId: 410 case BuiltinType::ObjCClass: 411 case BuiltinType::ObjCSel: 412 // LLVM void type can only be used as the result of a function call. Just 413 // map to the same as char. 414 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 415 break; 416 417 case BuiltinType::Bool: 418 // Note that we always return bool as i1 for use as a scalar type. 419 ResultType = llvm::Type::getInt1Ty(getLLVMContext()); 420 break; 421 422 case BuiltinType::Char_S: 423 case BuiltinType::Char_U: 424 case BuiltinType::SChar: 425 case BuiltinType::UChar: 426 case BuiltinType::Short: 427 case BuiltinType::UShort: 428 case BuiltinType::Int: 429 case BuiltinType::UInt: 430 case BuiltinType::Long: 431 case BuiltinType::ULong: 432 case BuiltinType::LongLong: 433 case BuiltinType::ULongLong: 434 case BuiltinType::WChar_S: 435 case BuiltinType::WChar_U: 436 case BuiltinType::Char16: 437 case BuiltinType::Char32: 438 ResultType = llvm::IntegerType::get(getLLVMContext(), 439 static_cast<unsigned>(Context.getTypeSize(T))); 440 break; 441 442 case BuiltinType::Half: 443 // Half FP can either be storage-only (lowered to i16) or native. 444 ResultType = 445 getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T), 446 Context.getLangOpts().NativeHalfType || 447 Context.getLangOpts().HalfArgsAndReturns); 448 break; 449 case BuiltinType::Float: 450 case BuiltinType::Double: 451 case BuiltinType::LongDouble: 452 ResultType = getTypeForFormat(getLLVMContext(), 453 Context.getFloatTypeSemantics(T), 454 /* UseNativeHalf = */ false); 455 break; 456 457 case BuiltinType::NullPtr: 458 // Model std::nullptr_t as i8* 459 ResultType = llvm::Type::getInt8PtrTy(getLLVMContext()); 460 break; 461 462 case BuiltinType::UInt128: 463 case BuiltinType::Int128: 464 ResultType = llvm::IntegerType::get(getLLVMContext(), 128); 465 break; 466 467 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 468 case BuiltinType::Id: 469 #include "clang/Basic/OpenCLImageTypes.def" 470 case BuiltinType::OCLSampler: 471 case BuiltinType::OCLEvent: 472 case BuiltinType::OCLClkEvent: 473 case BuiltinType::OCLQueue: 474 case BuiltinType::OCLNDRange: 475 case BuiltinType::OCLReserveID: 476 ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty); 477 break; 478 479 case BuiltinType::Dependent: 480 #define BUILTIN_TYPE(Id, SingletonId) 481 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 482 case BuiltinType::Id: 483 #include "clang/AST/BuiltinTypes.def" 484 llvm_unreachable("Unexpected placeholder builtin type!"); 485 } 486 break; 487 } 488 case Type::Auto: 489 llvm_unreachable("Unexpected undeduced auto type!"); 490 case Type::Complex: { 491 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType()); 492 ResultType = llvm::StructType::get(EltTy, EltTy, nullptr); 493 break; 494 } 495 case Type::LValueReference: 496 case Type::RValueReference: { 497 const ReferenceType *RTy = cast<ReferenceType>(Ty); 498 QualType ETy = RTy->getPointeeType(); 499 llvm::Type *PointeeType = ConvertTypeForMem(ETy); 500 unsigned AS = Context.getTargetAddressSpace(ETy); 501 ResultType = llvm::PointerType::get(PointeeType, AS); 502 break; 503 } 504 case Type::Pointer: { 505 const PointerType *PTy = cast<PointerType>(Ty); 506 QualType ETy = PTy->getPointeeType(); 507 llvm::Type *PointeeType = ConvertTypeForMem(ETy); 508 if (PointeeType->isVoidTy()) 509 PointeeType = llvm::Type::getInt8Ty(getLLVMContext()); 510 unsigned AS = Context.getTargetAddressSpace(ETy); 511 ResultType = llvm::PointerType::get(PointeeType, AS); 512 break; 513 } 514 515 case Type::VariableArray: { 516 const VariableArrayType *A = cast<VariableArrayType>(Ty); 517 assert(A->getIndexTypeCVRQualifiers() == 0 && 518 "FIXME: We only handle trivial array types so far!"); 519 // VLAs resolve to the innermost element type; this matches 520 // the return of alloca, and there isn't any obviously better choice. 521 ResultType = ConvertTypeForMem(A->getElementType()); 522 break; 523 } 524 case Type::IncompleteArray: { 525 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty); 526 assert(A->getIndexTypeCVRQualifiers() == 0 && 527 "FIXME: We only handle trivial array types so far!"); 528 // int X[] -> [0 x int], unless the element type is not sized. If it is 529 // unsized (e.g. an incomplete struct) just use [0 x i8]. 530 ResultType = ConvertTypeForMem(A->getElementType()); 531 if (!ResultType->isSized()) { 532 SkippedLayout = true; 533 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 534 } 535 ResultType = llvm::ArrayType::get(ResultType, 0); 536 break; 537 } 538 case Type::ConstantArray: { 539 const ConstantArrayType *A = cast<ConstantArrayType>(Ty); 540 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType()); 541 542 // Lower arrays of undefined struct type to arrays of i8 just to have a 543 // concrete type. 544 if (!EltTy->isSized()) { 545 SkippedLayout = true; 546 EltTy = llvm::Type::getInt8Ty(getLLVMContext()); 547 } 548 549 ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue()); 550 break; 551 } 552 case Type::ExtVector: 553 case Type::Vector: { 554 const VectorType *VT = cast<VectorType>(Ty); 555 ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()), 556 VT->getNumElements()); 557 break; 558 } 559 case Type::FunctionNoProto: 560 case Type::FunctionProto: 561 ResultType = ConvertFunctionType(T); 562 break; 563 case Type::ObjCObject: 564 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType()); 565 break; 566 567 case Type::ObjCInterface: { 568 // Objective-C interfaces are always opaque (outside of the 569 // runtime, which can do whatever it likes); we never refine 570 // these. 571 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)]; 572 if (!T) 573 T = llvm::StructType::create(getLLVMContext()); 574 ResultType = T; 575 break; 576 } 577 578 case Type::ObjCObjectPointer: { 579 // Protocol qualifications do not influence the LLVM type, we just return a 580 // pointer to the underlying interface type. We don't need to worry about 581 // recursive conversion. 582 llvm::Type *T = 583 ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType()); 584 ResultType = T->getPointerTo(); 585 break; 586 } 587 588 case Type::Enum: { 589 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl(); 590 if (ED->isCompleteDefinition() || ED->isFixed()) 591 return ConvertType(ED->getIntegerType()); 592 // Return a placeholder 'i32' type. This can be changed later when the 593 // type is defined (see UpdateCompletedType), but is likely to be the 594 // "right" answer. 595 ResultType = llvm::Type::getInt32Ty(getLLVMContext()); 596 break; 597 } 598 599 case Type::BlockPointer: { 600 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType(); 601 llvm::Type *PointeeType = ConvertTypeForMem(FTy); 602 unsigned AS = Context.getTargetAddressSpace(FTy); 603 ResultType = llvm::PointerType::get(PointeeType, AS); 604 break; 605 } 606 607 case Type::MemberPointer: { 608 auto *MPTy = cast<MemberPointerType>(Ty); 609 if (!getCXXABI().isMemberPointerConvertible(MPTy)) { 610 RecordsWithOpaqueMemberPointers.insert(MPTy->getClass()); 611 ResultType = llvm::StructType::create(getLLVMContext()); 612 } else { 613 ResultType = getCXXABI().ConvertMemberPointerType(MPTy); 614 } 615 break; 616 } 617 618 case Type::Atomic: { 619 QualType valueType = cast<AtomicType>(Ty)->getValueType(); 620 ResultType = ConvertTypeForMem(valueType); 621 622 // Pad out to the inflated size if necessary. 623 uint64_t valueSize = Context.getTypeSize(valueType); 624 uint64_t atomicSize = Context.getTypeSize(Ty); 625 if (valueSize != atomicSize) { 626 assert(valueSize < atomicSize); 627 llvm::Type *elts[] = { 628 ResultType, 629 llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8) 630 }; 631 ResultType = llvm::StructType::get(getLLVMContext(), 632 llvm::makeArrayRef(elts)); 633 } 634 break; 635 } 636 case Type::Pipe: { 637 ResultType = CGM.getOpenCLRuntime().getPipeType(); 638 break; 639 } 640 } 641 642 assert(ResultType && "Didn't convert a type?"); 643 644 TypeCache[Ty] = ResultType; 645 return ResultType; 646 } 647 648 bool CodeGenModule::isPaddedAtomicType(QualType type) { 649 return isPaddedAtomicType(type->castAs<AtomicType>()); 650 } 651 652 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) { 653 return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType()); 654 } 655 656 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. 657 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) { 658 // TagDecl's are not necessarily unique, instead use the (clang) 659 // type connected to the decl. 660 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 661 662 llvm::StructType *&Entry = RecordDeclTypes[Key]; 663 664 // If we don't have a StructType at all yet, create the forward declaration. 665 if (!Entry) { 666 Entry = llvm::StructType::create(getLLVMContext()); 667 addRecordTypeName(RD, Entry, ""); 668 } 669 llvm::StructType *Ty = Entry; 670 671 // If this is still a forward declaration, or the LLVM type is already 672 // complete, there's nothing more to do. 673 RD = RD->getDefinition(); 674 if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque()) 675 return Ty; 676 677 // If converting this type would cause us to infinitely loop, don't do it! 678 if (!isSafeToConvert(RD, *this)) { 679 DeferredRecords.push_back(RD); 680 return Ty; 681 } 682 683 // Okay, this is a definition of a type. Compile the implementation now. 684 bool InsertResult = RecordsBeingLaidOut.insert(Key).second; 685 (void)InsertResult; 686 assert(InsertResult && "Recursively compiling a struct?"); 687 688 // Force conversion of non-virtual base classes recursively. 689 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 690 for (const auto &I : CRD->bases()) { 691 if (I.isVirtual()) continue; 692 693 ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl()); 694 } 695 } 696 697 // Layout fields. 698 CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty); 699 CGRecordLayouts[Key] = Layout; 700 701 // We're done laying out this struct. 702 bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult; 703 assert(EraseResult && "struct not in RecordsBeingLaidOut set?"); 704 705 // If this struct blocked a FunctionType conversion, then recompute whatever 706 // was derived from that. 707 // FIXME: This is hugely overconservative. 708 if (SkippedLayout) 709 TypeCache.clear(); 710 711 // If we're done converting the outer-most record, then convert any deferred 712 // structs as well. 713 if (RecordsBeingLaidOut.empty()) 714 while (!DeferredRecords.empty()) 715 ConvertRecordDeclType(DeferredRecords.pop_back_val()); 716 717 return Ty; 718 } 719 720 /// getCGRecordLayout - Return record layout info for the given record decl. 721 const CGRecordLayout & 722 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) { 723 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 724 725 const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key); 726 if (!Layout) { 727 // Compute the type information. 728 ConvertRecordDeclType(RD); 729 730 // Now try again. 731 Layout = CGRecordLayouts.lookup(Key); 732 } 733 734 assert(Layout && "Unable to find record layout information for type"); 735 return *Layout; 736 } 737 738 bool CodeGenTypes::isZeroInitializable(QualType T) { 739 // No need to check for member pointers when not compiling C++. 740 if (!Context.getLangOpts().CPlusPlus) 741 return true; 742 743 if (const auto *AT = Context.getAsArrayType(T)) { 744 if (isa<IncompleteArrayType>(AT)) 745 return true; 746 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 747 if (Context.getConstantArrayElementCount(CAT) == 0) 748 return true; 749 T = Context.getBaseElementType(T); 750 } 751 752 // Records are non-zero-initializable if they contain any 753 // non-zero-initializable subobjects. 754 if (const RecordType *RT = T->getAs<RecordType>()) { 755 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 756 return isZeroInitializable(RD); 757 } 758 759 // We have to ask the ABI about member pointers. 760 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) 761 return getCXXABI().isZeroInitializable(MPT); 762 763 // Everything else is okay. 764 return true; 765 } 766 767 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) { 768 return getCGRecordLayout(RD).isZeroInitializable(); 769 } 770