1 //===--- CodeGenTypes.cpp - Type translation for LLVM CodeGen -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the code that handles AST -> LLVM type lowering. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenTypes.h" 15 #include "CGCXXABI.h" 16 #include "CGCall.h" 17 #include "CGOpenCLRuntime.h" 18 #include "CGRecordLayout.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Module.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 CodeGenTypes::CodeGenTypes(CodeGenModule &cgm) 33 : CGM(cgm), Context(cgm.getContext()), TheModule(cgm.getModule()), 34 Target(cgm.getTarget()), TheCXXABI(cgm.getCXXABI()), 35 TheABIInfo(cgm.getTargetCodeGenInfo().getABIInfo()) { 36 SkippedLayout = false; 37 } 38 39 CodeGenTypes::~CodeGenTypes() { 40 llvm::DeleteContainerSeconds(CGRecordLayouts); 41 42 for (llvm::FoldingSet<CGFunctionInfo>::iterator 43 I = FunctionInfos.begin(), E = FunctionInfos.end(); I != E; ) 44 delete &*I++; 45 } 46 47 const CodeGenOptions &CodeGenTypes::getCodeGenOpts() const { 48 return CGM.getCodeGenOpts(); 49 } 50 51 void CodeGenTypes::addRecordTypeName(const RecordDecl *RD, 52 llvm::StructType *Ty, 53 StringRef suffix) { 54 SmallString<256> TypeName; 55 llvm::raw_svector_ostream OS(TypeName); 56 OS << RD->getKindName() << '.'; 57 58 // Name the codegen type after the typedef name 59 // if there is no tag type name available 60 if (RD->getIdentifier()) { 61 // FIXME: We should not have to check for a null decl context here. 62 // Right now we do it because the implicit Obj-C decls don't have one. 63 if (RD->getDeclContext()) 64 RD->printQualifiedName(OS); 65 else 66 RD->printName(OS); 67 } else if (const TypedefNameDecl *TDD = RD->getTypedefNameForAnonDecl()) { 68 // FIXME: We should not have to check for a null decl context here. 69 // Right now we do it because the implicit Obj-C decls don't have one. 70 if (TDD->getDeclContext()) 71 TDD->printQualifiedName(OS); 72 else 73 TDD->printName(OS); 74 } else 75 OS << "anon"; 76 77 if (!suffix.empty()) 78 OS << suffix; 79 80 Ty->setName(OS.str()); 81 } 82 83 /// ConvertTypeForMem - Convert type T into a llvm::Type. This differs from 84 /// ConvertType in that it is used to convert to the memory representation for 85 /// a type. For example, the scalar representation for _Bool is i1, but the 86 /// memory representation is usually i8 or i32, depending on the target. 87 llvm::Type *CodeGenTypes::ConvertTypeForMem(QualType T) { 88 llvm::Type *R = ConvertType(T); 89 90 // If this is a non-bool type, don't map it. 91 if (!R->isIntegerTy(1)) 92 return R; 93 94 // Otherwise, return an integer of the target-specified size. 95 return llvm::IntegerType::get(getLLVMContext(), 96 (unsigned)Context.getTypeSize(T)); 97 } 98 99 100 /// isRecordLayoutComplete - Return true if the specified type is already 101 /// completely laid out. 102 bool CodeGenTypes::isRecordLayoutComplete(const Type *Ty) const { 103 llvm::DenseMap<const Type*, llvm::StructType *>::const_iterator I = 104 RecordDeclTypes.find(Ty); 105 return I != RecordDeclTypes.end() && !I->second->isOpaque(); 106 } 107 108 static bool 109 isSafeToConvert(QualType T, CodeGenTypes &CGT, 110 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked); 111 112 113 /// isSafeToConvert - Return true if it is safe to convert the specified record 114 /// decl to IR and lay it out, false if doing so would cause us to get into a 115 /// recursive compilation mess. 116 static bool 117 isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT, 118 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { 119 // If we have already checked this type (maybe the same type is used by-value 120 // multiple times in multiple structure fields, don't check again. 121 if (!AlreadyChecked.insert(RD).second) 122 return true; 123 124 const Type *Key = CGT.getContext().getTagDeclType(RD).getTypePtr(); 125 126 // If this type is already laid out, converting it is a noop. 127 if (CGT.isRecordLayoutComplete(Key)) return true; 128 129 // If this type is currently being laid out, we can't recursively compile it. 130 if (CGT.isRecordBeingLaidOut(Key)) 131 return false; 132 133 // If this type would require laying out bases that are currently being laid 134 // out, don't do it. This includes virtual base classes which get laid out 135 // when a class is translated, even though they aren't embedded by-value into 136 // the class. 137 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 138 for (const auto &I : CRD->bases()) 139 if (!isSafeToConvert(I.getType()->getAs<RecordType>()->getDecl(), 140 CGT, AlreadyChecked)) 141 return false; 142 } 143 144 // If this type would require laying out members that are currently being laid 145 // out, don't do it. 146 for (const auto *I : RD->fields()) 147 if (!isSafeToConvert(I->getType(), CGT, AlreadyChecked)) 148 return false; 149 150 // If there are no problems, lets do it. 151 return true; 152 } 153 154 /// isSafeToConvert - Return true if it is safe to convert this field type, 155 /// which requires the structure elements contained by-value to all be 156 /// recursively safe to convert. 157 static bool 158 isSafeToConvert(QualType T, CodeGenTypes &CGT, 159 llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) { 160 // Strip off atomic type sugar. 161 if (const auto *AT = T->getAs<AtomicType>()) 162 T = AT->getValueType(); 163 164 // If this is a record, check it. 165 if (const auto *RT = T->getAs<RecordType>()) 166 return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked); 167 168 // If this is an array, check the elements, which are embedded inline. 169 if (const auto *AT = CGT.getContext().getAsArrayType(T)) 170 return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked); 171 172 // Otherwise, there is no concern about transforming this. We only care about 173 // things that are contained by-value in a structure that can have another 174 // structure as a member. 175 return true; 176 } 177 178 179 /// isSafeToConvert - Return true if it is safe to convert the specified record 180 /// decl to IR and lay it out, false if doing so would cause us to get into a 181 /// recursive compilation mess. 182 static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) { 183 // If no structs are being laid out, we can certainly do this one. 184 if (CGT.noRecordsBeingLaidOut()) return true; 185 186 llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked; 187 return isSafeToConvert(RD, CGT, AlreadyChecked); 188 } 189 190 /// isFuncParamTypeConvertible - Return true if the specified type in a 191 /// function parameter or result position can be converted to an IR type at this 192 /// point. This boils down to being whether it is complete, as well as whether 193 /// we've temporarily deferred expanding the type because we're in a recursive 194 /// context. 195 bool CodeGenTypes::isFuncParamTypeConvertible(QualType Ty) { 196 // Some ABIs cannot have their member pointers represented in IR unless 197 // certain circumstances have been reached. 198 if (const auto *MPT = Ty->getAs<MemberPointerType>()) 199 return getCXXABI().isMemberPointerConvertible(MPT); 200 201 // If this isn't a tagged type, we can convert it! 202 const TagType *TT = Ty->getAs<TagType>(); 203 if (!TT) return true; 204 205 // Incomplete types cannot be converted. 206 if (TT->isIncompleteType()) 207 return false; 208 209 // If this is an enum, then it is always safe to convert. 210 const RecordType *RT = dyn_cast<RecordType>(TT); 211 if (!RT) return true; 212 213 // Otherwise, we have to be careful. If it is a struct that we're in the 214 // process of expanding, then we can't convert the function type. That's ok 215 // though because we must be in a pointer context under the struct, so we can 216 // just convert it to a dummy type. 217 // 218 // We decide this by checking whether ConvertRecordDeclType returns us an 219 // opaque type for a struct that we know is defined. 220 return isSafeToConvert(RT->getDecl(), *this); 221 } 222 223 224 /// Code to verify a given function type is complete, i.e. the return type 225 /// and all of the parameter types are complete. Also check to see if we are in 226 /// a RS_StructPointer context, and if so whether any struct types have been 227 /// pended. If so, we don't want to ask the ABI lowering code to handle a type 228 /// that cannot be converted to an IR type. 229 bool CodeGenTypes::isFuncTypeConvertible(const FunctionType *FT) { 230 if (!isFuncParamTypeConvertible(FT->getReturnType())) 231 return false; 232 233 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 234 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 235 if (!isFuncParamTypeConvertible(FPT->getParamType(i))) 236 return false; 237 238 return true; 239 } 240 241 /// UpdateCompletedType - When we find the full definition for a TagDecl, 242 /// replace the 'opaque' type we previously made for it if applicable. 243 void CodeGenTypes::UpdateCompletedType(const TagDecl *TD) { 244 // If this is an enum being completed, then we flush all non-struct types from 245 // the cache. This allows function types and other things that may be derived 246 // from the enum to be recomputed. 247 if (const EnumDecl *ED = dyn_cast<EnumDecl>(TD)) { 248 // Only flush the cache if we've actually already converted this type. 249 if (TypeCache.count(ED->getTypeForDecl())) { 250 // Okay, we formed some types based on this. We speculated that the enum 251 // would be lowered to i32, so we only need to flush the cache if this 252 // didn't happen. 253 if (!ConvertType(ED->getIntegerType())->isIntegerTy(32)) 254 TypeCache.clear(); 255 } 256 // If necessary, provide the full definition of a type only used with a 257 // declaration so far. 258 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 259 DI->completeType(ED); 260 return; 261 } 262 263 // If we completed a RecordDecl that we previously used and converted to an 264 // anonymous type, then go ahead and complete it now. 265 const RecordDecl *RD = cast<RecordDecl>(TD); 266 if (RD->isDependentType()) return; 267 268 // Only complete it if we converted it already. If we haven't converted it 269 // yet, we'll just do it lazily. 270 if (RecordDeclTypes.count(Context.getTagDeclType(RD).getTypePtr())) 271 ConvertRecordDeclType(RD); 272 273 // If necessary, provide the full definition of a type only used with a 274 // declaration so far. 275 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 276 DI->completeType(RD); 277 } 278 279 void CodeGenTypes::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 280 QualType T = Context.getRecordType(RD); 281 T = Context.getCanonicalType(T); 282 283 const Type *Ty = T.getTypePtr(); 284 if (RecordsWithOpaqueMemberPointers.count(Ty)) { 285 TypeCache.clear(); 286 RecordsWithOpaqueMemberPointers.clear(); 287 } 288 } 289 290 static llvm::Type *getTypeForFormat(llvm::LLVMContext &VMContext, 291 const llvm::fltSemantics &format, 292 bool UseNativeHalf = false) { 293 if (&format == &llvm::APFloat::IEEEhalf()) { 294 if (UseNativeHalf) 295 return llvm::Type::getHalfTy(VMContext); 296 else 297 return llvm::Type::getInt16Ty(VMContext); 298 } 299 if (&format == &llvm::APFloat::IEEEsingle()) 300 return llvm::Type::getFloatTy(VMContext); 301 if (&format == &llvm::APFloat::IEEEdouble()) 302 return llvm::Type::getDoubleTy(VMContext); 303 if (&format == &llvm::APFloat::IEEEquad()) 304 return llvm::Type::getFP128Ty(VMContext); 305 if (&format == &llvm::APFloat::PPCDoubleDouble()) 306 return llvm::Type::getPPC_FP128Ty(VMContext); 307 if (&format == &llvm::APFloat::x87DoubleExtended()) 308 return llvm::Type::getX86_FP80Ty(VMContext); 309 llvm_unreachable("Unknown float format!"); 310 } 311 312 llvm::Type *CodeGenTypes::ConvertFunctionType(QualType QFT, 313 const FunctionDecl *FD) { 314 assert(QFT.isCanonical()); 315 const Type *Ty = QFT.getTypePtr(); 316 const FunctionType *FT = cast<FunctionType>(QFT.getTypePtr()); 317 // First, check whether we can build the full function type. If the 318 // function type depends on an incomplete type (e.g. a struct or enum), we 319 // cannot lower the function type. 320 if (!isFuncTypeConvertible(FT)) { 321 // This function's type depends on an incomplete tag type. 322 323 // Force conversion of all the relevant record types, to make sure 324 // we re-convert the FunctionType when appropriate. 325 if (const RecordType *RT = FT->getReturnType()->getAs<RecordType>()) 326 ConvertRecordDeclType(RT->getDecl()); 327 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) 328 for (unsigned i = 0, e = FPT->getNumParams(); i != e; i++) 329 if (const RecordType *RT = FPT->getParamType(i)->getAs<RecordType>()) 330 ConvertRecordDeclType(RT->getDecl()); 331 332 SkippedLayout = true; 333 334 // Return a placeholder type. 335 return llvm::StructType::get(getLLVMContext()); 336 } 337 338 // While we're converting the parameter types for a function, we don't want 339 // to recursively convert any pointed-to structs. Converting directly-used 340 // structs is ok though. 341 if (!RecordsBeingLaidOut.insert(Ty).second) { 342 SkippedLayout = true; 343 return llvm::StructType::get(getLLVMContext()); 344 } 345 346 // The function type can be built; call the appropriate routines to 347 // build it. 348 const CGFunctionInfo *FI; 349 if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(FT)) { 350 FI = &arrangeFreeFunctionType( 351 CanQual<FunctionProtoType>::CreateUnsafe(QualType(FPT, 0)), FD); 352 } else { 353 const FunctionNoProtoType *FNPT = cast<FunctionNoProtoType>(FT); 354 FI = &arrangeFreeFunctionType( 355 CanQual<FunctionNoProtoType>::CreateUnsafe(QualType(FNPT, 0))); 356 } 357 358 llvm::Type *ResultType = nullptr; 359 // If there is something higher level prodding our CGFunctionInfo, then 360 // don't recurse into it again. 361 if (FunctionsBeingProcessed.count(FI)) { 362 363 ResultType = llvm::StructType::get(getLLVMContext()); 364 SkippedLayout = true; 365 } else { 366 367 // Otherwise, we're good to go, go ahead and convert it. 368 ResultType = GetFunctionType(*FI); 369 } 370 371 RecordsBeingLaidOut.erase(Ty); 372 373 if (SkippedLayout) 374 TypeCache.clear(); 375 376 if (RecordsBeingLaidOut.empty()) 377 while (!DeferredRecords.empty()) 378 ConvertRecordDeclType(DeferredRecords.pop_back_val()); 379 return ResultType; 380 } 381 382 /// ConvertType - Convert the specified type to its LLVM form. 383 llvm::Type *CodeGenTypes::ConvertType(QualType T) { 384 T = Context.getCanonicalType(T); 385 386 const Type *Ty = T.getTypePtr(); 387 388 // RecordTypes are cached and processed specially. 389 if (const RecordType *RT = dyn_cast<RecordType>(Ty)) 390 return ConvertRecordDeclType(RT->getDecl()); 391 392 // See if type is already cached. 393 llvm::DenseMap<const Type *, llvm::Type *>::iterator TCI = TypeCache.find(Ty); 394 // If type is found in map then use it. Otherwise, convert type T. 395 if (TCI != TypeCache.end()) 396 return TCI->second; 397 398 // If we don't have it in the cache, convert it now. 399 llvm::Type *ResultType = nullptr; 400 switch (Ty->getTypeClass()) { 401 case Type::Record: // Handled above. 402 #define TYPE(Class, Base) 403 #define ABSTRACT_TYPE(Class, Base) 404 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 405 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 406 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: 407 #include "clang/AST/TypeNodes.def" 408 llvm_unreachable("Non-canonical or dependent types aren't possible."); 409 410 case Type::Builtin: { 411 switch (cast<BuiltinType>(Ty)->getKind()) { 412 case BuiltinType::Void: 413 case BuiltinType::ObjCId: 414 case BuiltinType::ObjCClass: 415 case BuiltinType::ObjCSel: 416 // LLVM void type can only be used as the result of a function call. Just 417 // map to the same as char. 418 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 419 break; 420 421 case BuiltinType::Bool: 422 // Note that we always return bool as i1 for use as a scalar type. 423 ResultType = llvm::Type::getInt1Ty(getLLVMContext()); 424 break; 425 426 case BuiltinType::Char_S: 427 case BuiltinType::Char_U: 428 case BuiltinType::SChar: 429 case BuiltinType::UChar: 430 case BuiltinType::Short: 431 case BuiltinType::UShort: 432 case BuiltinType::Int: 433 case BuiltinType::UInt: 434 case BuiltinType::Long: 435 case BuiltinType::ULong: 436 case BuiltinType::LongLong: 437 case BuiltinType::ULongLong: 438 case BuiltinType::WChar_S: 439 case BuiltinType::WChar_U: 440 case BuiltinType::Char16: 441 case BuiltinType::Char32: 442 ResultType = llvm::IntegerType::get(getLLVMContext(), 443 static_cast<unsigned>(Context.getTypeSize(T))); 444 break; 445 446 case BuiltinType::Half: 447 // Half FP can either be storage-only (lowered to i16) or native. 448 ResultType = 449 getTypeForFormat(getLLVMContext(), Context.getFloatTypeSemantics(T), 450 Context.getLangOpts().NativeHalfType || 451 Context.getLangOpts().HalfArgsAndReturns); 452 break; 453 case BuiltinType::Float: 454 case BuiltinType::Double: 455 case BuiltinType::LongDouble: 456 case BuiltinType::Float128: 457 ResultType = getTypeForFormat(getLLVMContext(), 458 Context.getFloatTypeSemantics(T), 459 /* UseNativeHalf = */ false); 460 break; 461 462 case BuiltinType::NullPtr: 463 // Model std::nullptr_t as i8* 464 ResultType = llvm::Type::getInt8PtrTy(getLLVMContext()); 465 break; 466 467 case BuiltinType::UInt128: 468 case BuiltinType::Int128: 469 ResultType = llvm::IntegerType::get(getLLVMContext(), 128); 470 break; 471 472 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ 473 case BuiltinType::Id: 474 #include "clang/Basic/OpenCLImageTypes.def" 475 case BuiltinType::OCLSampler: 476 case BuiltinType::OCLEvent: 477 case BuiltinType::OCLClkEvent: 478 case BuiltinType::OCLQueue: 479 case BuiltinType::OCLReserveID: 480 ResultType = CGM.getOpenCLRuntime().convertOpenCLSpecificType(Ty); 481 break; 482 483 case BuiltinType::Dependent: 484 #define BUILTIN_TYPE(Id, SingletonId) 485 #define PLACEHOLDER_TYPE(Id, SingletonId) \ 486 case BuiltinType::Id: 487 #include "clang/AST/BuiltinTypes.def" 488 llvm_unreachable("Unexpected placeholder builtin type!"); 489 } 490 break; 491 } 492 case Type::Auto: 493 case Type::DeducedTemplateSpecialization: 494 llvm_unreachable("Unexpected undeduced type!"); 495 case Type::Complex: { 496 llvm::Type *EltTy = ConvertType(cast<ComplexType>(Ty)->getElementType()); 497 ResultType = llvm::StructType::get(EltTy, EltTy); 498 break; 499 } 500 case Type::LValueReference: 501 case Type::RValueReference: { 502 const ReferenceType *RTy = cast<ReferenceType>(Ty); 503 QualType ETy = RTy->getPointeeType(); 504 llvm::Type *PointeeType = ConvertTypeForMem(ETy); 505 unsigned AS = Context.getTargetAddressSpace(ETy); 506 ResultType = llvm::PointerType::get(PointeeType, AS); 507 break; 508 } 509 case Type::Pointer: { 510 const PointerType *PTy = cast<PointerType>(Ty); 511 QualType ETy = PTy->getPointeeType(); 512 llvm::Type *PointeeType = ConvertTypeForMem(ETy); 513 if (PointeeType->isVoidTy()) 514 PointeeType = llvm::Type::getInt8Ty(getLLVMContext()); 515 unsigned AS = Context.getTargetAddressSpace(ETy); 516 ResultType = llvm::PointerType::get(PointeeType, AS); 517 break; 518 } 519 520 case Type::VariableArray: { 521 const VariableArrayType *A = cast<VariableArrayType>(Ty); 522 assert(A->getIndexTypeCVRQualifiers() == 0 && 523 "FIXME: We only handle trivial array types so far!"); 524 // VLAs resolve to the innermost element type; this matches 525 // the return of alloca, and there isn't any obviously better choice. 526 ResultType = ConvertTypeForMem(A->getElementType()); 527 break; 528 } 529 case Type::IncompleteArray: { 530 const IncompleteArrayType *A = cast<IncompleteArrayType>(Ty); 531 assert(A->getIndexTypeCVRQualifiers() == 0 && 532 "FIXME: We only handle trivial array types so far!"); 533 // int X[] -> [0 x int], unless the element type is not sized. If it is 534 // unsized (e.g. an incomplete struct) just use [0 x i8]. 535 ResultType = ConvertTypeForMem(A->getElementType()); 536 if (!ResultType->isSized()) { 537 SkippedLayout = true; 538 ResultType = llvm::Type::getInt8Ty(getLLVMContext()); 539 } 540 ResultType = llvm::ArrayType::get(ResultType, 0); 541 break; 542 } 543 case Type::ConstantArray: { 544 const ConstantArrayType *A = cast<ConstantArrayType>(Ty); 545 llvm::Type *EltTy = ConvertTypeForMem(A->getElementType()); 546 547 // Lower arrays of undefined struct type to arrays of i8 just to have a 548 // concrete type. 549 if (!EltTy->isSized()) { 550 SkippedLayout = true; 551 EltTy = llvm::Type::getInt8Ty(getLLVMContext()); 552 } 553 554 ResultType = llvm::ArrayType::get(EltTy, A->getSize().getZExtValue()); 555 break; 556 } 557 case Type::ExtVector: 558 case Type::Vector: { 559 const VectorType *VT = cast<VectorType>(Ty); 560 ResultType = llvm::VectorType::get(ConvertType(VT->getElementType()), 561 VT->getNumElements()); 562 break; 563 } 564 case Type::FunctionNoProto: 565 case Type::FunctionProto: 566 ResultType = ConvertFunctionType(T); 567 break; 568 case Type::ObjCObject: 569 ResultType = ConvertType(cast<ObjCObjectType>(Ty)->getBaseType()); 570 break; 571 572 case Type::ObjCInterface: { 573 // Objective-C interfaces are always opaque (outside of the 574 // runtime, which can do whatever it likes); we never refine 575 // these. 576 llvm::Type *&T = InterfaceTypes[cast<ObjCInterfaceType>(Ty)]; 577 if (!T) 578 T = llvm::StructType::create(getLLVMContext()); 579 ResultType = T; 580 break; 581 } 582 583 case Type::ObjCObjectPointer: { 584 // Protocol qualifications do not influence the LLVM type, we just return a 585 // pointer to the underlying interface type. We don't need to worry about 586 // recursive conversion. 587 llvm::Type *T = 588 ConvertTypeForMem(cast<ObjCObjectPointerType>(Ty)->getPointeeType()); 589 ResultType = T->getPointerTo(); 590 break; 591 } 592 593 case Type::Enum: { 594 const EnumDecl *ED = cast<EnumType>(Ty)->getDecl(); 595 if (ED->isCompleteDefinition() || ED->isFixed()) 596 return ConvertType(ED->getIntegerType()); 597 // Return a placeholder 'i32' type. This can be changed later when the 598 // type is defined (see UpdateCompletedType), but is likely to be the 599 // "right" answer. 600 ResultType = llvm::Type::getInt32Ty(getLLVMContext()); 601 break; 602 } 603 604 case Type::BlockPointer: { 605 const QualType FTy = cast<BlockPointerType>(Ty)->getPointeeType(); 606 llvm::Type *PointeeType = ConvertTypeForMem(FTy); 607 unsigned AS = Context.getTargetAddressSpace(FTy); 608 ResultType = llvm::PointerType::get(PointeeType, AS); 609 break; 610 } 611 612 case Type::MemberPointer: { 613 auto *MPTy = cast<MemberPointerType>(Ty); 614 if (!getCXXABI().isMemberPointerConvertible(MPTy)) { 615 RecordsWithOpaqueMemberPointers.insert(MPTy->getClass()); 616 ResultType = llvm::StructType::create(getLLVMContext()); 617 } else { 618 ResultType = getCXXABI().ConvertMemberPointerType(MPTy); 619 } 620 break; 621 } 622 623 case Type::Atomic: { 624 QualType valueType = cast<AtomicType>(Ty)->getValueType(); 625 ResultType = ConvertTypeForMem(valueType); 626 627 // Pad out to the inflated size if necessary. 628 uint64_t valueSize = Context.getTypeSize(valueType); 629 uint64_t atomicSize = Context.getTypeSize(Ty); 630 if (valueSize != atomicSize) { 631 assert(valueSize < atomicSize); 632 llvm::Type *elts[] = { 633 ResultType, 634 llvm::ArrayType::get(CGM.Int8Ty, (atomicSize - valueSize) / 8) 635 }; 636 ResultType = llvm::StructType::get(getLLVMContext(), 637 llvm::makeArrayRef(elts)); 638 } 639 break; 640 } 641 case Type::Pipe: { 642 ResultType = CGM.getOpenCLRuntime().getPipeType(cast<PipeType>(Ty)); 643 break; 644 } 645 } 646 647 assert(ResultType && "Didn't convert a type?"); 648 649 TypeCache[Ty] = ResultType; 650 return ResultType; 651 } 652 653 bool CodeGenModule::isPaddedAtomicType(QualType type) { 654 return isPaddedAtomicType(type->castAs<AtomicType>()); 655 } 656 657 bool CodeGenModule::isPaddedAtomicType(const AtomicType *type) { 658 return Context.getTypeSize(type) != Context.getTypeSize(type->getValueType()); 659 } 660 661 /// ConvertRecordDeclType - Lay out a tagged decl type like struct or union. 662 llvm::StructType *CodeGenTypes::ConvertRecordDeclType(const RecordDecl *RD) { 663 // TagDecl's are not necessarily unique, instead use the (clang) 664 // type connected to the decl. 665 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 666 667 llvm::StructType *&Entry = RecordDeclTypes[Key]; 668 669 // If we don't have a StructType at all yet, create the forward declaration. 670 if (!Entry) { 671 Entry = llvm::StructType::create(getLLVMContext()); 672 addRecordTypeName(RD, Entry, ""); 673 } 674 llvm::StructType *Ty = Entry; 675 676 // If this is still a forward declaration, or the LLVM type is already 677 // complete, there's nothing more to do. 678 RD = RD->getDefinition(); 679 if (!RD || !RD->isCompleteDefinition() || !Ty->isOpaque()) 680 return Ty; 681 682 // If converting this type would cause us to infinitely loop, don't do it! 683 if (!isSafeToConvert(RD, *this)) { 684 DeferredRecords.push_back(RD); 685 return Ty; 686 } 687 688 // Okay, this is a definition of a type. Compile the implementation now. 689 bool InsertResult = RecordsBeingLaidOut.insert(Key).second; 690 (void)InsertResult; 691 assert(InsertResult && "Recursively compiling a struct?"); 692 693 // Force conversion of non-virtual base classes recursively. 694 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) { 695 for (const auto &I : CRD->bases()) { 696 if (I.isVirtual()) continue; 697 698 ConvertRecordDeclType(I.getType()->getAs<RecordType>()->getDecl()); 699 } 700 } 701 702 // Layout fields. 703 CGRecordLayout *Layout = ComputeRecordLayout(RD, Ty); 704 CGRecordLayouts[Key] = Layout; 705 706 // We're done laying out this struct. 707 bool EraseResult = RecordsBeingLaidOut.erase(Key); (void)EraseResult; 708 assert(EraseResult && "struct not in RecordsBeingLaidOut set?"); 709 710 // If this struct blocked a FunctionType conversion, then recompute whatever 711 // was derived from that. 712 // FIXME: This is hugely overconservative. 713 if (SkippedLayout) 714 TypeCache.clear(); 715 716 // If we're done converting the outer-most record, then convert any deferred 717 // structs as well. 718 if (RecordsBeingLaidOut.empty()) 719 while (!DeferredRecords.empty()) 720 ConvertRecordDeclType(DeferredRecords.pop_back_val()); 721 722 return Ty; 723 } 724 725 /// getCGRecordLayout - Return record layout info for the given record decl. 726 const CGRecordLayout & 727 CodeGenTypes::getCGRecordLayout(const RecordDecl *RD) { 728 const Type *Key = Context.getTagDeclType(RD).getTypePtr(); 729 730 const CGRecordLayout *Layout = CGRecordLayouts.lookup(Key); 731 if (!Layout) { 732 // Compute the type information. 733 ConvertRecordDeclType(RD); 734 735 // Now try again. 736 Layout = CGRecordLayouts.lookup(Key); 737 } 738 739 assert(Layout && "Unable to find record layout information for type"); 740 return *Layout; 741 } 742 743 bool CodeGenTypes::isPointerZeroInitializable(QualType T) { 744 assert((T->isAnyPointerType() || T->isBlockPointerType()) && "Invalid type"); 745 return isZeroInitializable(T); 746 } 747 748 bool CodeGenTypes::isZeroInitializable(QualType T) { 749 if (T->getAs<PointerType>()) 750 return Context.getTargetNullPointerValue(T) == 0; 751 752 if (const auto *AT = Context.getAsArrayType(T)) { 753 if (isa<IncompleteArrayType>(AT)) 754 return true; 755 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) 756 if (Context.getConstantArrayElementCount(CAT) == 0) 757 return true; 758 T = Context.getBaseElementType(T); 759 } 760 761 // Records are non-zero-initializable if they contain any 762 // non-zero-initializable subobjects. 763 if (const RecordType *RT = T->getAs<RecordType>()) { 764 auto RD = cast<RecordDecl>(RT->getDecl()); 765 return isZeroInitializable(RD); 766 } 767 768 // We have to ask the ABI about member pointers. 769 if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) 770 return getCXXABI().isZeroInitializable(MPT); 771 772 // Everything else is okay. 773 return true; 774 } 775 776 bool CodeGenTypes::isZeroInitializable(const RecordDecl *RD) { 777 return getCGRecordLayout(RD).isZeroInitializable(); 778 } 779