1 //===--- CodeGenTypes.cpp - TBAA information for LLVM CodeGen -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the code that manages TBAA information and defines the TBAA policy
11 // for the optimizer to use. Relevant standards text includes:
12 //
13 //   C99 6.5p7
14 //   C++ [basic.lval] (p10 in n3126, p15 in some earlier versions)
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "CodeGenTBAA.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/Mangle.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Metadata.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Type.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 CodeGenTBAA::CodeGenTBAA(ASTContext &Ctx, llvm::Module &M,
34                          const CodeGenOptions &CGO,
35                          const LangOptions &Features, MangleContext &MContext)
36   : Context(Ctx), Module(M), CodeGenOpts(CGO),
37     Features(Features), MContext(MContext), MDHelper(M.getContext()),
38     Root(nullptr), Char(nullptr)
39 {}
40 
41 CodeGenTBAA::~CodeGenTBAA() {
42 }
43 
44 llvm::MDNode *CodeGenTBAA::getRoot() {
45   // Define the root of the tree. This identifies the tree, so that
46   // if our LLVM IR is linked with LLVM IR from a different front-end
47   // (or a different version of this front-end), their TBAA trees will
48   // remain distinct, and the optimizer will treat them conservatively.
49   if (!Root) {
50     if (Features.CPlusPlus)
51       Root = MDHelper.createTBAARoot("Simple C++ TBAA");
52     else
53       Root = MDHelper.createTBAARoot("Simple C/C++ TBAA");
54   }
55 
56   return Root;
57 }
58 
59 llvm::MDNode *CodeGenTBAA::createScalarTypeNode(StringRef Name,
60                                                 llvm::MDNode *Parent,
61                                                 uint64_t Size) {
62   if (CodeGenOpts.NewStructPathTBAA) {
63     llvm::Metadata *Id = MDHelper.createString(Name);
64     return MDHelper.createTBAATypeNode(Parent, Size, Id);
65   }
66   return MDHelper.createTBAAScalarTypeNode(Name, Parent);
67 }
68 
69 llvm::MDNode *CodeGenTBAA::getChar() {
70   // Define the root of the tree for user-accessible memory. C and C++
71   // give special powers to char and certain similar types. However,
72   // these special powers only cover user-accessible memory, and doesn't
73   // include things like vtables.
74   if (!Char)
75     Char = createScalarTypeNode("omnipotent char", getRoot(), /* Size= */ 1);
76 
77   return Char;
78 }
79 
80 static bool TypeHasMayAlias(QualType QTy) {
81   // Tagged types have declarations, and therefore may have attributes.
82   if (const TagType *TTy = dyn_cast<TagType>(QTy))
83     return TTy->getDecl()->hasAttr<MayAliasAttr>();
84 
85   // Typedef types have declarations, and therefore may have attributes.
86   if (const TypedefType *TTy = dyn_cast<TypedefType>(QTy)) {
87     if (TTy->getDecl()->hasAttr<MayAliasAttr>())
88       return true;
89     // Also, their underlying types may have relevant attributes.
90     return TypeHasMayAlias(TTy->desugar());
91   }
92 
93   return false;
94 }
95 
96 /// Check if the given type is a valid base type to be used in access tags.
97 static bool isValidBaseType(QualType QTy) {
98   if (QTy->isReferenceType())
99     return false;
100   if (const RecordType *TTy = QTy->getAs<RecordType>()) {
101     const RecordDecl *RD = TTy->getDecl()->getDefinition();
102     // Incomplete types are not valid base access types.
103     if (!RD)
104       return false;
105     if (RD->hasFlexibleArrayMember())
106       return false;
107     // RD can be struct, union, class, interface or enum.
108     // For now, we only handle struct and class.
109     if (RD->isStruct() || RD->isClass())
110       return true;
111   }
112   return false;
113 }
114 
115 llvm::MDNode *CodeGenTBAA::getTypeInfoHelper(const Type *Ty) {
116   uint64_t Size = Context.getTypeSizeInChars(Ty).getQuantity();
117 
118   // Handle builtin types.
119   if (const BuiltinType *BTy = dyn_cast<BuiltinType>(Ty)) {
120     switch (BTy->getKind()) {
121     // Character types are special and can alias anything.
122     // In C++, this technically only includes "char" and "unsigned char",
123     // and not "signed char". In C, it includes all three. For now,
124     // the risk of exploiting this detail in C++ seems likely to outweigh
125     // the benefit.
126     case BuiltinType::Char_U:
127     case BuiltinType::Char_S:
128     case BuiltinType::UChar:
129     case BuiltinType::SChar:
130       return getChar();
131 
132     // Unsigned types can alias their corresponding signed types.
133     case BuiltinType::UShort:
134       return getTypeInfo(Context.ShortTy);
135     case BuiltinType::UInt:
136       return getTypeInfo(Context.IntTy);
137     case BuiltinType::ULong:
138       return getTypeInfo(Context.LongTy);
139     case BuiltinType::ULongLong:
140       return getTypeInfo(Context.LongLongTy);
141     case BuiltinType::UInt128:
142       return getTypeInfo(Context.Int128Ty);
143 
144     // Treat all other builtin types as distinct types. This includes
145     // treating wchar_t, char16_t, and char32_t as distinct from their
146     // "underlying types".
147     default:
148       return createScalarTypeNode(BTy->getName(Features), getChar(), Size);
149     }
150   }
151 
152   // C++1z [basic.lval]p10: "If a program attempts to access the stored value of
153   // an object through a glvalue of other than one of the following types the
154   // behavior is undefined: [...] a char, unsigned char, or std::byte type."
155   if (Ty->isStdByteType())
156     return getChar();
157 
158   // Handle pointers and references.
159   // TODO: Implement C++'s type "similarity" and consider dis-"similar"
160   // pointers distinct.
161   if (Ty->isPointerType() || Ty->isReferenceType())
162     return createScalarTypeNode("any pointer", getChar(), Size);
163 
164   // Enum types are distinct types. In C++ they have "underlying types",
165   // however they aren't related for TBAA.
166   if (const EnumType *ETy = dyn_cast<EnumType>(Ty)) {
167     // In C++ mode, types have linkage, so we can rely on the ODR and
168     // on their mangled names, if they're external.
169     // TODO: Is there a way to get a program-wide unique name for a
170     // decl with local linkage or no linkage?
171     if (!Features.CPlusPlus || !ETy->getDecl()->isExternallyVisible())
172       return getChar();
173 
174     SmallString<256> OutName;
175     llvm::raw_svector_ostream Out(OutName);
176     MContext.mangleTypeName(QualType(ETy, 0), Out);
177     return createScalarTypeNode(OutName, getChar(), Size);
178   }
179 
180   // For now, handle any other kind of type conservatively.
181   return getChar();
182 }
183 
184 llvm::MDNode *CodeGenTBAA::getTypeInfo(QualType QTy) {
185   // At -O0 or relaxed aliasing, TBAA is not emitted for regular types.
186   if (CodeGenOpts.OptimizationLevel == 0 || CodeGenOpts.RelaxedAliasing)
187     return nullptr;
188 
189   // If the type has the may_alias attribute (even on a typedef), it is
190   // effectively in the general char alias class.
191   if (TypeHasMayAlias(QTy))
192     return getChar();
193 
194   // We need this function to not fall back to returning the "omnipotent char"
195   // type node for aggregate and union types. Otherwise, any dereference of an
196   // aggregate will result into the may-alias access descriptor, meaning all
197   // subsequent accesses to direct and indirect members of that aggregate will
198   // be considered may-alias too.
199   // TODO: Combine getTypeInfo() and getBaseTypeInfo() into a single function.
200   if (isValidBaseType(QTy))
201     return getBaseTypeInfo(QTy);
202 
203   const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
204   if (llvm::MDNode *N = MetadataCache[Ty])
205     return N;
206 
207   // Note that the following helper call is allowed to add new nodes to the
208   // cache, which invalidates all its previously obtained iterators. So we
209   // first generate the node for the type and then add that node to the cache.
210   llvm::MDNode *TypeNode = getTypeInfoHelper(Ty);
211   return MetadataCache[Ty] = TypeNode;
212 }
213 
214 TBAAAccessInfo CodeGenTBAA::getVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
215   llvm::DataLayout DL(&Module);
216   unsigned Size = DL.getPointerTypeSize(VTablePtrType);
217   return TBAAAccessInfo(createScalarTypeNode("vtable pointer", getRoot(), Size),
218                         Size);
219 }
220 
221 bool
222 CodeGenTBAA::CollectFields(uint64_t BaseOffset,
223                            QualType QTy,
224                            SmallVectorImpl<llvm::MDBuilder::TBAAStructField> &
225                              Fields,
226                            bool MayAlias) {
227   /* Things not handled yet include: C++ base classes, bitfields, */
228 
229   if (const RecordType *TTy = QTy->getAs<RecordType>()) {
230     const RecordDecl *RD = TTy->getDecl()->getDefinition();
231     if (RD->hasFlexibleArrayMember())
232       return false;
233 
234     // TODO: Handle C++ base classes.
235     if (const CXXRecordDecl *Decl = dyn_cast<CXXRecordDecl>(RD))
236       if (Decl->bases_begin() != Decl->bases_end())
237         return false;
238 
239     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
240 
241     unsigned idx = 0;
242     for (RecordDecl::field_iterator i = RD->field_begin(),
243          e = RD->field_end(); i != e; ++i, ++idx) {
244       uint64_t Offset = BaseOffset +
245                         Layout.getFieldOffset(idx) / Context.getCharWidth();
246       QualType FieldQTy = i->getType();
247       if (!CollectFields(Offset, FieldQTy, Fields,
248                          MayAlias || TypeHasMayAlias(FieldQTy)))
249         return false;
250     }
251     return true;
252   }
253 
254   /* Otherwise, treat whatever it is as a field. */
255   uint64_t Offset = BaseOffset;
256   uint64_t Size = Context.getTypeSizeInChars(QTy).getQuantity();
257   llvm::MDNode *TBAAType = MayAlias ? getChar() : getTypeInfo(QTy);
258   llvm::MDNode *TBAATag = getAccessTagInfo(TBAAAccessInfo(TBAAType, Size));
259   Fields.push_back(llvm::MDBuilder::TBAAStructField(Offset, Size, TBAATag));
260   return true;
261 }
262 
263 llvm::MDNode *
264 CodeGenTBAA::getTBAAStructInfo(QualType QTy) {
265   const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
266 
267   if (llvm::MDNode *N = StructMetadataCache[Ty])
268     return N;
269 
270   SmallVector<llvm::MDBuilder::TBAAStructField, 4> Fields;
271   if (CollectFields(0, QTy, Fields, TypeHasMayAlias(QTy)))
272     return MDHelper.createTBAAStructNode(Fields);
273 
274   // For now, handle any other kind of type conservatively.
275   return StructMetadataCache[Ty] = nullptr;
276 }
277 
278 llvm::MDNode *CodeGenTBAA::getBaseTypeInfoHelper(const Type *Ty) {
279   if (auto *TTy = dyn_cast<RecordType>(Ty)) {
280     const RecordDecl *RD = TTy->getDecl()->getDefinition();
281     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
282     SmallVector<llvm::MDBuilder::TBAAStructField, 4> Fields;
283     for (FieldDecl *Field : RD->fields()) {
284       QualType FieldQTy = Field->getType();
285       llvm::MDNode *TypeNode = isValidBaseType(FieldQTy) ?
286           getBaseTypeInfo(FieldQTy) : getTypeInfo(FieldQTy);
287       if (!TypeNode)
288         return BaseTypeMetadataCache[Ty] = nullptr;
289 
290       uint64_t BitOffset = Layout.getFieldOffset(Field->getFieldIndex());
291       uint64_t Offset = Context.toCharUnitsFromBits(BitOffset).getQuantity();
292       uint64_t Size = Context.getTypeSizeInChars(FieldQTy).getQuantity();
293       Fields.push_back(llvm::MDBuilder::TBAAStructField(Offset, Size,
294                                                         TypeNode));
295     }
296 
297     SmallString<256> OutName;
298     if (Features.CPlusPlus) {
299       // Don't use the mangler for C code.
300       llvm::raw_svector_ostream Out(OutName);
301       MContext.mangleTypeName(QualType(Ty, 0), Out);
302     } else {
303       OutName = RD->getName();
304     }
305 
306     if (CodeGenOpts.NewStructPathTBAA) {
307       llvm::MDNode *Parent = getChar();
308       uint64_t Size = Context.getTypeSizeInChars(Ty).getQuantity();
309       llvm::Metadata *Id = MDHelper.createString(OutName);
310       return MDHelper.createTBAATypeNode(Parent, Size, Id, Fields);
311     }
312 
313     // Create the struct type node with a vector of pairs (offset, type).
314     SmallVector<std::pair<llvm::MDNode*, uint64_t>, 4> OffsetsAndTypes;
315     for (const auto &Field : Fields)
316         OffsetsAndTypes.push_back(std::make_pair(Field.Type, Field.Offset));
317     return MDHelper.createTBAAStructTypeNode(OutName, OffsetsAndTypes);
318   }
319 
320   return nullptr;
321 }
322 
323 llvm::MDNode *CodeGenTBAA::getBaseTypeInfo(QualType QTy) {
324   if (!isValidBaseType(QTy))
325     return nullptr;
326 
327   const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
328   if (llvm::MDNode *N = BaseTypeMetadataCache[Ty])
329     return N;
330 
331   // Note that the following helper call is allowed to add new nodes to the
332   // cache, which invalidates all its previously obtained iterators. So we
333   // first generate the node for the type and then add that node to the cache.
334   llvm::MDNode *TypeNode = getBaseTypeInfoHelper(Ty);
335   return BaseTypeMetadataCache[Ty] = TypeNode;
336 }
337 
338 llvm::MDNode *CodeGenTBAA::getAccessTagInfo(TBAAAccessInfo Info) {
339   assert(!Info.isIncomplete() && "Access to an object of an incomplete type!");
340 
341   if (Info.isMayAlias())
342     Info = TBAAAccessInfo(getChar(), Info.Size);
343 
344   if (!Info.AccessType)
345     return nullptr;
346 
347   if (!CodeGenOpts.StructPathTBAA)
348     Info = TBAAAccessInfo(Info.AccessType, Info.Size);
349 
350   llvm::MDNode *&N = AccessTagMetadataCache[Info];
351   if (N)
352     return N;
353 
354   if (!Info.BaseType) {
355     Info.BaseType = Info.AccessType;
356     assert(!Info.Offset && "Nonzero offset for an access with no base type!");
357   }
358   if (CodeGenOpts.NewStructPathTBAA) {
359     return N = MDHelper.createTBAAAccessTag(Info.BaseType, Info.AccessType,
360                                             Info.Offset, Info.Size);
361   }
362   return N = MDHelper.createTBAAStructTagNode(Info.BaseType, Info.AccessType,
363                                               Info.Offset);
364 }
365 
366 TBAAAccessInfo CodeGenTBAA::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
367                                                  TBAAAccessInfo TargetInfo) {
368   if (SourceInfo.isMayAlias() || TargetInfo.isMayAlias())
369     return TBAAAccessInfo::getMayAliasInfo();
370   return TargetInfo;
371 }
372 
373 TBAAAccessInfo
374 CodeGenTBAA::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
375                                                  TBAAAccessInfo InfoB) {
376   if (InfoA == InfoB)
377     return InfoA;
378 
379   if (!InfoA || !InfoB)
380     return TBAAAccessInfo();
381 
382   if (InfoA.isMayAlias() || InfoB.isMayAlias())
383     return TBAAAccessInfo::getMayAliasInfo();
384 
385   // TODO: Implement the rest of the logic here. For example, two accesses
386   // with same final access types result in an access to an object of that final
387   // access type regardless of their base types.
388   return TBAAAccessInfo::getMayAliasInfo();
389 }
390