1 //===--- CodeGenTypes.cpp - TBAA information for LLVM CodeGen -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the code that manages TBAA information and defines the TBAA policy 11 // for the optimizer to use. Relevant standards text includes: 12 // 13 // C99 6.5p7 14 // C++ [basic.lval] (p10 in n3126, p15 in some earlier versions) 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "CodeGenTBAA.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/Mangle.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/Frontend/CodeGenOptions.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Type.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 CodeGenTBAA::CodeGenTBAA(ASTContext &Ctx, llvm::Module &M, 34 const CodeGenOptions &CGO, 35 const LangOptions &Features, MangleContext &MContext) 36 : Context(Ctx), Module(M), CodeGenOpts(CGO), 37 Features(Features), MContext(MContext), MDHelper(M.getContext()), 38 Root(nullptr), Char(nullptr) 39 {} 40 41 CodeGenTBAA::~CodeGenTBAA() { 42 } 43 44 llvm::MDNode *CodeGenTBAA::getRoot() { 45 // Define the root of the tree. This identifies the tree, so that 46 // if our LLVM IR is linked with LLVM IR from a different front-end 47 // (or a different version of this front-end), their TBAA trees will 48 // remain distinct, and the optimizer will treat them conservatively. 49 if (!Root) { 50 if (Features.CPlusPlus) 51 Root = MDHelper.createTBAARoot("Simple C++ TBAA"); 52 else 53 Root = MDHelper.createTBAARoot("Simple C/C++ TBAA"); 54 } 55 56 return Root; 57 } 58 59 llvm::MDNode *CodeGenTBAA::createScalarTypeNode(StringRef Name, 60 llvm::MDNode *Parent, 61 uint64_t Size) { 62 if (CodeGenOpts.NewStructPathTBAA) { 63 llvm::Metadata *Id = MDHelper.createString(Name); 64 return MDHelper.createTBAATypeNode(Parent, Size, Id); 65 } 66 return MDHelper.createTBAAScalarTypeNode(Name, Parent); 67 } 68 69 llvm::MDNode *CodeGenTBAA::getChar() { 70 // Define the root of the tree for user-accessible memory. C and C++ 71 // give special powers to char and certain similar types. However, 72 // these special powers only cover user-accessible memory, and doesn't 73 // include things like vtables. 74 if (!Char) 75 Char = createScalarTypeNode("omnipotent char", getRoot(), /* Size= */ 1); 76 77 return Char; 78 } 79 80 static bool TypeHasMayAlias(QualType QTy) { 81 // Tagged types have declarations, and therefore may have attributes. 82 if (const TagType *TTy = dyn_cast<TagType>(QTy)) 83 return TTy->getDecl()->hasAttr<MayAliasAttr>(); 84 85 // Typedef types have declarations, and therefore may have attributes. 86 if (const TypedefType *TTy = dyn_cast<TypedefType>(QTy)) { 87 if (TTy->getDecl()->hasAttr<MayAliasAttr>()) 88 return true; 89 // Also, their underlying types may have relevant attributes. 90 return TypeHasMayAlias(TTy->desugar()); 91 } 92 93 return false; 94 } 95 96 /// Check if the given type is a valid base type to be used in access tags. 97 static bool isValidBaseType(QualType QTy) { 98 if (QTy->isReferenceType()) 99 return false; 100 if (const RecordType *TTy = QTy->getAs<RecordType>()) { 101 const RecordDecl *RD = TTy->getDecl()->getDefinition(); 102 // Incomplete types are not valid base access types. 103 if (!RD) 104 return false; 105 if (RD->hasFlexibleArrayMember()) 106 return false; 107 // RD can be struct, union, class, interface or enum. 108 // For now, we only handle struct and class. 109 if (RD->isStruct() || RD->isClass()) 110 return true; 111 } 112 return false; 113 } 114 115 llvm::MDNode *CodeGenTBAA::getTypeInfoHelper(const Type *Ty) { 116 uint64_t Size = Context.getTypeSizeInChars(Ty).getQuantity(); 117 118 // Handle builtin types. 119 if (const BuiltinType *BTy = dyn_cast<BuiltinType>(Ty)) { 120 switch (BTy->getKind()) { 121 // Character types are special and can alias anything. 122 // In C++, this technically only includes "char" and "unsigned char", 123 // and not "signed char". In C, it includes all three. For now, 124 // the risk of exploiting this detail in C++ seems likely to outweigh 125 // the benefit. 126 case BuiltinType::Char_U: 127 case BuiltinType::Char_S: 128 case BuiltinType::UChar: 129 case BuiltinType::SChar: 130 return getChar(); 131 132 // Unsigned types can alias their corresponding signed types. 133 case BuiltinType::UShort: 134 return getTypeInfo(Context.ShortTy); 135 case BuiltinType::UInt: 136 return getTypeInfo(Context.IntTy); 137 case BuiltinType::ULong: 138 return getTypeInfo(Context.LongTy); 139 case BuiltinType::ULongLong: 140 return getTypeInfo(Context.LongLongTy); 141 case BuiltinType::UInt128: 142 return getTypeInfo(Context.Int128Ty); 143 144 // Treat all other builtin types as distinct types. This includes 145 // treating wchar_t, char16_t, and char32_t as distinct from their 146 // "underlying types". 147 default: 148 return createScalarTypeNode(BTy->getName(Features), getChar(), Size); 149 } 150 } 151 152 // C++1z [basic.lval]p10: "If a program attempts to access the stored value of 153 // an object through a glvalue of other than one of the following types the 154 // behavior is undefined: [...] a char, unsigned char, or std::byte type." 155 if (Ty->isStdByteType()) 156 return getChar(); 157 158 // Handle pointers and references. 159 // TODO: Implement C++'s type "similarity" and consider dis-"similar" 160 // pointers distinct. 161 if (Ty->isPointerType() || Ty->isReferenceType()) 162 return createScalarTypeNode("any pointer", getChar(), Size); 163 164 // Accesses to arrays are accesses to objects of their element types. 165 if (CodeGenOpts.NewStructPathTBAA && Ty->isArrayType()) 166 return getTypeInfo(cast<ArrayType>(Ty)->getElementType()); 167 168 // Enum types are distinct types. In C++ they have "underlying types", 169 // however they aren't related for TBAA. 170 if (const EnumType *ETy = dyn_cast<EnumType>(Ty)) { 171 // In C++ mode, types have linkage, so we can rely on the ODR and 172 // on their mangled names, if they're external. 173 // TODO: Is there a way to get a program-wide unique name for a 174 // decl with local linkage or no linkage? 175 if (!Features.CPlusPlus || !ETy->getDecl()->isExternallyVisible()) 176 return getChar(); 177 178 SmallString<256> OutName; 179 llvm::raw_svector_ostream Out(OutName); 180 MContext.mangleTypeName(QualType(ETy, 0), Out); 181 return createScalarTypeNode(OutName, getChar(), Size); 182 } 183 184 // For now, handle any other kind of type conservatively. 185 return getChar(); 186 } 187 188 llvm::MDNode *CodeGenTBAA::getTypeInfo(QualType QTy) { 189 // At -O0 or relaxed aliasing, TBAA is not emitted for regular types. 190 if (CodeGenOpts.OptimizationLevel == 0 || CodeGenOpts.RelaxedAliasing) 191 return nullptr; 192 193 // If the type has the may_alias attribute (even on a typedef), it is 194 // effectively in the general char alias class. 195 if (TypeHasMayAlias(QTy)) 196 return getChar(); 197 198 // We need this function to not fall back to returning the "omnipotent char" 199 // type node for aggregate and union types. Otherwise, any dereference of an 200 // aggregate will result into the may-alias access descriptor, meaning all 201 // subsequent accesses to direct and indirect members of that aggregate will 202 // be considered may-alias too. 203 // TODO: Combine getTypeInfo() and getBaseTypeInfo() into a single function. 204 if (isValidBaseType(QTy)) 205 return getBaseTypeInfo(QTy); 206 207 const Type *Ty = Context.getCanonicalType(QTy).getTypePtr(); 208 if (llvm::MDNode *N = MetadataCache[Ty]) 209 return N; 210 211 // Note that the following helper call is allowed to add new nodes to the 212 // cache, which invalidates all its previously obtained iterators. So we 213 // first generate the node for the type and then add that node to the cache. 214 llvm::MDNode *TypeNode = getTypeInfoHelper(Ty); 215 return MetadataCache[Ty] = TypeNode; 216 } 217 218 TBAAAccessInfo CodeGenTBAA::getVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 219 llvm::DataLayout DL(&Module); 220 unsigned Size = DL.getPointerTypeSize(VTablePtrType); 221 return TBAAAccessInfo(createScalarTypeNode("vtable pointer", getRoot(), Size), 222 Size); 223 } 224 225 bool 226 CodeGenTBAA::CollectFields(uint64_t BaseOffset, 227 QualType QTy, 228 SmallVectorImpl<llvm::MDBuilder::TBAAStructField> & 229 Fields, 230 bool MayAlias) { 231 /* Things not handled yet include: C++ base classes, bitfields, */ 232 233 if (const RecordType *TTy = QTy->getAs<RecordType>()) { 234 const RecordDecl *RD = TTy->getDecl()->getDefinition(); 235 if (RD->hasFlexibleArrayMember()) 236 return false; 237 238 // TODO: Handle C++ base classes. 239 if (const CXXRecordDecl *Decl = dyn_cast<CXXRecordDecl>(RD)) 240 if (Decl->bases_begin() != Decl->bases_end()) 241 return false; 242 243 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 244 245 unsigned idx = 0; 246 for (RecordDecl::field_iterator i = RD->field_begin(), 247 e = RD->field_end(); i != e; ++i, ++idx) { 248 uint64_t Offset = BaseOffset + 249 Layout.getFieldOffset(idx) / Context.getCharWidth(); 250 QualType FieldQTy = i->getType(); 251 if (!CollectFields(Offset, FieldQTy, Fields, 252 MayAlias || TypeHasMayAlias(FieldQTy))) 253 return false; 254 } 255 return true; 256 } 257 258 /* Otherwise, treat whatever it is as a field. */ 259 uint64_t Offset = BaseOffset; 260 uint64_t Size = Context.getTypeSizeInChars(QTy).getQuantity(); 261 llvm::MDNode *TBAAType = MayAlias ? getChar() : getTypeInfo(QTy); 262 llvm::MDNode *TBAATag = getAccessTagInfo(TBAAAccessInfo(TBAAType, Size)); 263 Fields.push_back(llvm::MDBuilder::TBAAStructField(Offset, Size, TBAATag)); 264 return true; 265 } 266 267 llvm::MDNode * 268 CodeGenTBAA::getTBAAStructInfo(QualType QTy) { 269 const Type *Ty = Context.getCanonicalType(QTy).getTypePtr(); 270 271 if (llvm::MDNode *N = StructMetadataCache[Ty]) 272 return N; 273 274 SmallVector<llvm::MDBuilder::TBAAStructField, 4> Fields; 275 if (CollectFields(0, QTy, Fields, TypeHasMayAlias(QTy))) 276 return MDHelper.createTBAAStructNode(Fields); 277 278 // For now, handle any other kind of type conservatively. 279 return StructMetadataCache[Ty] = nullptr; 280 } 281 282 llvm::MDNode *CodeGenTBAA::getBaseTypeInfoHelper(const Type *Ty) { 283 if (auto *TTy = dyn_cast<RecordType>(Ty)) { 284 const RecordDecl *RD = TTy->getDecl()->getDefinition(); 285 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 286 SmallVector<llvm::MDBuilder::TBAAStructField, 4> Fields; 287 for (FieldDecl *Field : RD->fields()) { 288 QualType FieldQTy = Field->getType(); 289 llvm::MDNode *TypeNode = isValidBaseType(FieldQTy) ? 290 getBaseTypeInfo(FieldQTy) : getTypeInfo(FieldQTy); 291 if (!TypeNode) 292 return BaseTypeMetadataCache[Ty] = nullptr; 293 294 uint64_t BitOffset = Layout.getFieldOffset(Field->getFieldIndex()); 295 uint64_t Offset = Context.toCharUnitsFromBits(BitOffset).getQuantity(); 296 uint64_t Size = Context.getTypeSizeInChars(FieldQTy).getQuantity(); 297 Fields.push_back(llvm::MDBuilder::TBAAStructField(Offset, Size, 298 TypeNode)); 299 } 300 301 SmallString<256> OutName; 302 if (Features.CPlusPlus) { 303 // Don't use the mangler for C code. 304 llvm::raw_svector_ostream Out(OutName); 305 MContext.mangleTypeName(QualType(Ty, 0), Out); 306 } else { 307 OutName = RD->getName(); 308 } 309 310 if (CodeGenOpts.NewStructPathTBAA) { 311 llvm::MDNode *Parent = getChar(); 312 uint64_t Size = Context.getTypeSizeInChars(Ty).getQuantity(); 313 llvm::Metadata *Id = MDHelper.createString(OutName); 314 return MDHelper.createTBAATypeNode(Parent, Size, Id, Fields); 315 } 316 317 // Create the struct type node with a vector of pairs (offset, type). 318 SmallVector<std::pair<llvm::MDNode*, uint64_t>, 4> OffsetsAndTypes; 319 for (const auto &Field : Fields) 320 OffsetsAndTypes.push_back(std::make_pair(Field.Type, Field.Offset)); 321 return MDHelper.createTBAAStructTypeNode(OutName, OffsetsAndTypes); 322 } 323 324 return nullptr; 325 } 326 327 llvm::MDNode *CodeGenTBAA::getBaseTypeInfo(QualType QTy) { 328 if (!isValidBaseType(QTy)) 329 return nullptr; 330 331 const Type *Ty = Context.getCanonicalType(QTy).getTypePtr(); 332 if (llvm::MDNode *N = BaseTypeMetadataCache[Ty]) 333 return N; 334 335 // Note that the following helper call is allowed to add new nodes to the 336 // cache, which invalidates all its previously obtained iterators. So we 337 // first generate the node for the type and then add that node to the cache. 338 llvm::MDNode *TypeNode = getBaseTypeInfoHelper(Ty); 339 return BaseTypeMetadataCache[Ty] = TypeNode; 340 } 341 342 llvm::MDNode *CodeGenTBAA::getAccessTagInfo(TBAAAccessInfo Info) { 343 assert(!Info.isIncomplete() && "Access to an object of an incomplete type!"); 344 345 if (Info.isMayAlias()) 346 Info = TBAAAccessInfo(getChar(), Info.Size); 347 348 if (!Info.AccessType) 349 return nullptr; 350 351 if (!CodeGenOpts.StructPathTBAA) 352 Info = TBAAAccessInfo(Info.AccessType, Info.Size); 353 354 llvm::MDNode *&N = AccessTagMetadataCache[Info]; 355 if (N) 356 return N; 357 358 if (!Info.BaseType) { 359 Info.BaseType = Info.AccessType; 360 assert(!Info.Offset && "Nonzero offset for an access with no base type!"); 361 } 362 if (CodeGenOpts.NewStructPathTBAA) { 363 return N = MDHelper.createTBAAAccessTag(Info.BaseType, Info.AccessType, 364 Info.Offset, Info.Size); 365 } 366 return N = MDHelper.createTBAAStructTagNode(Info.BaseType, Info.AccessType, 367 Info.Offset); 368 } 369 370 TBAAAccessInfo CodeGenTBAA::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 371 TBAAAccessInfo TargetInfo) { 372 if (SourceInfo.isMayAlias() || TargetInfo.isMayAlias()) 373 return TBAAAccessInfo::getMayAliasInfo(); 374 return TargetInfo; 375 } 376 377 TBAAAccessInfo 378 CodeGenTBAA::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 379 TBAAAccessInfo InfoB) { 380 if (InfoA == InfoB) 381 return InfoA; 382 383 if (!InfoA || !InfoB) 384 return TBAAAccessInfo(); 385 386 if (InfoA.isMayAlias() || InfoB.isMayAlias()) 387 return TBAAAccessInfo::getMayAliasInfo(); 388 389 // TODO: Implement the rest of the logic here. For example, two accesses 390 // with same final access types result in an access to an object of that final 391 // access type regardless of their base types. 392 return TBAAAccessInfo::getMayAliasInfo(); 393 } 394 395 TBAAAccessInfo 396 CodeGenTBAA::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 397 TBAAAccessInfo SrcInfo) { 398 if (DestInfo == SrcInfo) 399 return DestInfo; 400 401 if (!DestInfo || !SrcInfo) 402 return TBAAAccessInfo(); 403 404 if (DestInfo.isMayAlias() || SrcInfo.isMayAlias()) 405 return TBAAAccessInfo::getMayAliasInfo(); 406 407 // TODO: Implement the rest of the logic here. For example, two accesses 408 // with same final access types result in an access to an object of that final 409 // access type regardless of their base types. 410 return TBAAAccessInfo::getMayAliasInfo(); 411 } 412