1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Builtins.h" 25 #include "clang/Basic/Diagnostic.h" 26 #include "clang/Basic/SourceManager.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/Basic/ConvertUTF.h" 29 #include "llvm/CallingConv.h" 30 #include "llvm/Module.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/Target/TargetData.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 38 llvm::Module &M, const llvm::TargetData &TD, 39 Diagnostic &diags) 40 : BlockModule(C, M, TD, Types, *this), Context(C), 41 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 42 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 43 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 44 VMContext(M.getContext()) { 45 46 if (!Features.ObjC1) 47 Runtime = 0; 48 else if (!Features.NeXTRuntime) 49 Runtime = CreateGNUObjCRuntime(*this); 50 else if (Features.ObjCNonFragileABI) 51 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 52 else 53 Runtime = CreateMacObjCRuntime(*this); 54 55 // If debug info generation is enabled, create the CGDebugInfo object. 56 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 57 } 58 59 CodeGenModule::~CodeGenModule() { 60 delete Runtime; 61 delete DebugInfo; 62 } 63 64 void CodeGenModule::Release() { 65 // We need to call this first because it can add deferred declarations. 66 EmitCXXGlobalInitFunc(); 67 68 EmitDeferred(); 69 if (Runtime) 70 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 71 AddGlobalCtor(ObjCInitFunction); 72 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 73 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 74 EmitAnnotations(); 75 EmitLLVMUsed(); 76 } 77 78 /// ErrorUnsupported - Print out an error that codegen doesn't support the 79 /// specified stmt yet. 80 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 81 bool OmitOnError) { 82 if (OmitOnError && getDiags().hasErrorOccurred()) 83 return; 84 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 85 "cannot compile this %0 yet"); 86 std::string Msg = Type; 87 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 88 << Msg << S->getSourceRange(); 89 } 90 91 /// ErrorUnsupported - Print out an error that codegen doesn't support the 92 /// specified decl yet. 93 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 94 bool OmitOnError) { 95 if (OmitOnError && getDiags().hasErrorOccurred()) 96 return; 97 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 98 "cannot compile this %0 yet"); 99 std::string Msg = Type; 100 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 101 } 102 103 LangOptions::VisibilityMode 104 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 105 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 106 if (VD->getStorageClass() == VarDecl::PrivateExtern) 107 return LangOptions::Hidden; 108 109 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 110 switch (attr->getVisibility()) { 111 default: assert(0 && "Unknown visibility!"); 112 case VisibilityAttr::DefaultVisibility: 113 return LangOptions::Default; 114 case VisibilityAttr::HiddenVisibility: 115 return LangOptions::Hidden; 116 case VisibilityAttr::ProtectedVisibility: 117 return LangOptions::Protected; 118 } 119 } 120 121 return getLangOptions().getVisibilityMode(); 122 } 123 124 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 125 const Decl *D) const { 126 // Internal definitions always have default visibility. 127 if (GV->hasLocalLinkage()) { 128 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 129 return; 130 } 131 132 switch (getDeclVisibilityMode(D)) { 133 default: assert(0 && "Unknown visibility!"); 134 case LangOptions::Default: 135 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 136 case LangOptions::Hidden: 137 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 138 case LangOptions::Protected: 139 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 140 } 141 } 142 143 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 144 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 145 146 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 147 return getMangledCXXCtorName(D, GD.getCtorType()); 148 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 149 return getMangledCXXDtorName(D, GD.getDtorType()); 150 151 return getMangledName(ND); 152 } 153 154 /// \brief Retrieves the mangled name for the given declaration. 155 /// 156 /// If the given declaration requires a mangled name, returns an 157 /// const char* containing the mangled name. Otherwise, returns 158 /// the unmangled name. 159 /// 160 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 161 // In C, functions with no attributes never need to be mangled. Fastpath them. 162 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 163 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 164 return ND->getNameAsCString(); 165 } 166 167 llvm::SmallString<256> Name; 168 llvm::raw_svector_ostream Out(Name); 169 if (!mangleName(ND, Context, Out)) { 170 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 171 return ND->getNameAsCString(); 172 } 173 174 Name += '\0'; 175 return UniqueMangledName(Name.begin(), Name.end()); 176 } 177 178 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 179 const char *NameEnd) { 180 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 181 182 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 183 } 184 185 /// AddGlobalCtor - Add a function to the list that will be called before 186 /// main() runs. 187 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 188 // FIXME: Type coercion of void()* types. 189 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 190 } 191 192 /// AddGlobalDtor - Add a function to the list that will be called 193 /// when the module is unloaded. 194 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 195 // FIXME: Type coercion of void()* types. 196 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 197 } 198 199 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 200 // Ctor function type is void()*. 201 llvm::FunctionType* CtorFTy = 202 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 203 std::vector<const llvm::Type*>(), 204 false); 205 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 206 207 // Get the type of a ctor entry, { i32, void ()* }. 208 llvm::StructType* CtorStructTy = 209 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 210 llvm::PointerType::getUnqual(CtorFTy), NULL); 211 212 // Construct the constructor and destructor arrays. 213 std::vector<llvm::Constant*> Ctors; 214 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 215 std::vector<llvm::Constant*> S; 216 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 217 I->second, false)); 218 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 219 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 220 } 221 222 if (!Ctors.empty()) { 223 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 224 new llvm::GlobalVariable(TheModule, AT, false, 225 llvm::GlobalValue::AppendingLinkage, 226 llvm::ConstantArray::get(AT, Ctors), 227 GlobalName); 228 } 229 } 230 231 void CodeGenModule::EmitAnnotations() { 232 if (Annotations.empty()) 233 return; 234 235 // Create a new global variable for the ConstantStruct in the Module. 236 llvm::Constant *Array = 237 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 238 Annotations.size()), 239 Annotations); 240 llvm::GlobalValue *gv = 241 new llvm::GlobalVariable(TheModule, Array->getType(), false, 242 llvm::GlobalValue::AppendingLinkage, Array, 243 "llvm.global.annotations"); 244 gv->setSection("llvm.metadata"); 245 } 246 247 static CodeGenModule::GVALinkage 248 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 249 const LangOptions &Features) { 250 // The kind of external linkage this function will have, if it is not 251 // inline or static. 252 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 253 if (Context.getLangOptions().CPlusPlus && 254 FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 255 External = CodeGenModule::GVA_TemplateInstantiation; 256 257 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 258 // C++ member functions defined inside the class are always inline. 259 if (MD->isInline() || !MD->isOutOfLine()) 260 return CodeGenModule::GVA_CXXInline; 261 262 return External; 263 } 264 265 // "static" functions get internal linkage. 266 if (FD->getStorageClass() == FunctionDecl::Static) 267 return CodeGenModule::GVA_Internal; 268 269 if (!FD->isInline()) 270 return External; 271 272 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 273 // GNU or C99 inline semantics. Determine whether this symbol should be 274 // externally visible. 275 if (FD->isInlineDefinitionExternallyVisible()) 276 return External; 277 278 // C99 inline semantics, where the symbol is not externally visible. 279 return CodeGenModule::GVA_C99Inline; 280 } 281 282 // C++ inline semantics 283 assert(Features.CPlusPlus && "Must be in C++ mode"); 284 return CodeGenModule::GVA_CXXInline; 285 } 286 287 /// SetFunctionDefinitionAttributes - Set attributes for a global. 288 /// 289 /// FIXME: This is currently only done for aliases and functions, but not for 290 /// variables (these details are set in EmitGlobalVarDefinition for variables). 291 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 292 llvm::GlobalValue *GV) { 293 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 294 295 if (Linkage == GVA_Internal) { 296 GV->setLinkage(llvm::Function::InternalLinkage); 297 } else if (D->hasAttr<DLLExportAttr>()) { 298 GV->setLinkage(llvm::Function::DLLExportLinkage); 299 } else if (D->hasAttr<WeakAttr>()) { 300 GV->setLinkage(llvm::Function::WeakAnyLinkage); 301 } else if (Linkage == GVA_C99Inline) { 302 // In C99 mode, 'inline' functions are guaranteed to have a strong 303 // definition somewhere else, so we can use available_externally linkage. 304 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 305 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 306 // In C++, the compiler has to emit a definition in every translation unit 307 // that references the function. We should use linkonce_odr because 308 // a) if all references in this translation unit are optimized away, we 309 // don't need to codegen it. b) if the function persists, it needs to be 310 // merged with other definitions. c) C++ has the ODR, so we know the 311 // definition is dependable. 312 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 313 } else { 314 assert(Linkage == GVA_StrongExternal); 315 // Otherwise, we have strong external linkage. 316 GV->setLinkage(llvm::Function::ExternalLinkage); 317 } 318 319 SetCommonAttributes(D, GV); 320 } 321 322 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 323 const CGFunctionInfo &Info, 324 llvm::Function *F) { 325 unsigned CallingConv; 326 AttributeListType AttributeList; 327 ConstructAttributeList(Info, D, AttributeList, CallingConv); 328 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 329 AttributeList.size())); 330 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 331 } 332 333 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 334 llvm::Function *F) { 335 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 336 F->addFnAttr(llvm::Attribute::NoUnwind); 337 338 if (D->hasAttr<AlwaysInlineAttr>()) 339 F->addFnAttr(llvm::Attribute::AlwaysInline); 340 341 if (D->hasAttr<NoInlineAttr>()) 342 F->addFnAttr(llvm::Attribute::NoInline); 343 } 344 345 void CodeGenModule::SetCommonAttributes(const Decl *D, 346 llvm::GlobalValue *GV) { 347 setGlobalVisibility(GV, D); 348 349 if (D->hasAttr<UsedAttr>()) 350 AddUsedGlobal(GV); 351 352 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 353 GV->setSection(SA->getName()); 354 } 355 356 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 357 llvm::Function *F, 358 const CGFunctionInfo &FI) { 359 SetLLVMFunctionAttributes(D, FI, F); 360 SetLLVMFunctionAttributesForDefinition(D, F); 361 362 F->setLinkage(llvm::Function::InternalLinkage); 363 364 SetCommonAttributes(D, F); 365 } 366 367 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 368 llvm::Function *F, 369 bool IsIncompleteFunction) { 370 if (!IsIncompleteFunction) 371 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 372 373 // Only a few attributes are set on declarations; these may later be 374 // overridden by a definition. 375 376 if (FD->hasAttr<DLLImportAttr>()) { 377 F->setLinkage(llvm::Function::DLLImportLinkage); 378 } else if (FD->hasAttr<WeakAttr>() || 379 FD->hasAttr<WeakImportAttr>()) { 380 // "extern_weak" is overloaded in LLVM; we probably should have 381 // separate linkage types for this. 382 F->setLinkage(llvm::Function::ExternalWeakLinkage); 383 } else { 384 F->setLinkage(llvm::Function::ExternalLinkage); 385 } 386 387 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 388 F->setSection(SA->getName()); 389 } 390 391 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 392 assert(!GV->isDeclaration() && 393 "Only globals with definition can force usage."); 394 LLVMUsed.push_back(GV); 395 } 396 397 void CodeGenModule::EmitLLVMUsed() { 398 // Don't create llvm.used if there is no need. 399 if (LLVMUsed.empty()) 400 return; 401 402 llvm::Type *i8PTy = 403 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 404 405 // Convert LLVMUsed to what ConstantArray needs. 406 std::vector<llvm::Constant*> UsedArray; 407 UsedArray.resize(LLVMUsed.size()); 408 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 409 UsedArray[i] = 410 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 411 i8PTy); 412 } 413 414 if (UsedArray.empty()) 415 return; 416 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 417 418 llvm::GlobalVariable *GV = 419 new llvm::GlobalVariable(getModule(), ATy, false, 420 llvm::GlobalValue::AppendingLinkage, 421 llvm::ConstantArray::get(ATy, UsedArray), 422 "llvm.used"); 423 424 GV->setSection("llvm.metadata"); 425 } 426 427 void CodeGenModule::EmitDeferred() { 428 // Emit code for any potentially referenced deferred decls. Since a 429 // previously unused static decl may become used during the generation of code 430 // for a static function, iterate until no changes are made. 431 while (!DeferredDeclsToEmit.empty()) { 432 GlobalDecl D = DeferredDeclsToEmit.back(); 433 DeferredDeclsToEmit.pop_back(); 434 435 // The mangled name for the decl must have been emitted in GlobalDeclMap. 436 // Look it up to see if it was defined with a stronger definition (e.g. an 437 // extern inline function with a strong function redefinition). If so, 438 // just ignore the deferred decl. 439 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 440 assert(CGRef && "Deferred decl wasn't referenced?"); 441 442 if (!CGRef->isDeclaration()) 443 continue; 444 445 // Otherwise, emit the definition and move on to the next one. 446 EmitGlobalDefinition(D); 447 } 448 } 449 450 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 451 /// annotation information for a given GlobalValue. The annotation struct is 452 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 453 /// GlobalValue being annotated. The second field is the constant string 454 /// created from the AnnotateAttr's annotation. The third field is a constant 455 /// string containing the name of the translation unit. The fourth field is 456 /// the line number in the file of the annotated value declaration. 457 /// 458 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 459 /// appears to. 460 /// 461 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 462 const AnnotateAttr *AA, 463 unsigned LineNo) { 464 llvm::Module *M = &getModule(); 465 466 // get [N x i8] constants for the annotation string, and the filename string 467 // which are the 2nd and 3rd elements of the global annotation structure. 468 const llvm::Type *SBP = 469 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)); 470 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 471 AA->getAnnotation(), true); 472 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 473 M->getModuleIdentifier(), 474 true); 475 476 // Get the two global values corresponding to the ConstantArrays we just 477 // created to hold the bytes of the strings. 478 llvm::GlobalValue *annoGV = 479 new llvm::GlobalVariable(*M, anno->getType(), false, 480 llvm::GlobalValue::PrivateLinkage, anno, 481 GV->getName()); 482 // translation unit name string, emitted into the llvm.metadata section. 483 llvm::GlobalValue *unitGV = 484 new llvm::GlobalVariable(*M, unit->getType(), false, 485 llvm::GlobalValue::PrivateLinkage, unit, 486 ".str"); 487 488 // Create the ConstantStruct for the global annotation. 489 llvm::Constant *Fields[4] = { 490 llvm::ConstantExpr::getBitCast(GV, SBP), 491 llvm::ConstantExpr::getBitCast(annoGV, SBP), 492 llvm::ConstantExpr::getBitCast(unitGV, SBP), 493 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 494 }; 495 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 496 } 497 498 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 499 // Never defer when EmitAllDecls is specified or the decl has 500 // attribute used. 501 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 502 return false; 503 504 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 505 // Constructors and destructors should never be deferred. 506 if (FD->hasAttr<ConstructorAttr>() || 507 FD->hasAttr<DestructorAttr>()) 508 return false; 509 510 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 511 512 // static, static inline, always_inline, and extern inline functions can 513 // always be deferred. Normal inline functions can be deferred in C99/C++. 514 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 515 Linkage == GVA_CXXInline) 516 return true; 517 return false; 518 } 519 520 const VarDecl *VD = cast<VarDecl>(Global); 521 assert(VD->isFileVarDecl() && "Invalid decl"); 522 523 return VD->getStorageClass() == VarDecl::Static; 524 } 525 526 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 527 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 528 529 // If this is an alias definition (which otherwise looks like a declaration) 530 // emit it now. 531 if (Global->hasAttr<AliasAttr>()) 532 return EmitAliasDefinition(Global); 533 534 // Ignore declarations, they will be emitted on their first use. 535 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 536 // Forward declarations are emitted lazily on first use. 537 if (!FD->isThisDeclarationADefinition()) 538 return; 539 } else { 540 const VarDecl *VD = cast<VarDecl>(Global); 541 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 542 543 // In C++, if this is marked "extern", defer code generation. 544 if (getLangOptions().CPlusPlus && !VD->getInit() && 545 (VD->getStorageClass() == VarDecl::Extern || 546 VD->isExternC())) 547 return; 548 549 // In C, if this isn't a definition, defer code generation. 550 if (!getLangOptions().CPlusPlus && !VD->getInit()) 551 return; 552 } 553 554 // Defer code generation when possible if this is a static definition, inline 555 // function etc. These we only want to emit if they are used. 556 if (MayDeferGeneration(Global)) { 557 // If the value has already been used, add it directly to the 558 // DeferredDeclsToEmit list. 559 const char *MangledName = getMangledName(GD); 560 if (GlobalDeclMap.count(MangledName)) 561 DeferredDeclsToEmit.push_back(GD); 562 else { 563 // Otherwise, remember that we saw a deferred decl with this name. The 564 // first use of the mangled name will cause it to move into 565 // DeferredDeclsToEmit. 566 DeferredDecls[MangledName] = GD; 567 } 568 return; 569 } 570 571 // Otherwise emit the definition. 572 EmitGlobalDefinition(GD); 573 } 574 575 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 576 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 577 578 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 579 EmitCXXConstructor(CD, GD.getCtorType()); 580 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 581 EmitCXXDestructor(DD, GD.getDtorType()); 582 else if (isa<FunctionDecl>(D)) 583 EmitGlobalFunctionDefinition(GD); 584 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 585 EmitGlobalVarDefinition(VD); 586 else { 587 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 588 } 589 } 590 591 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 592 /// module, create and return an llvm Function with the specified type. If there 593 /// is something in the module with the specified name, return it potentially 594 /// bitcasted to the right type. 595 /// 596 /// If D is non-null, it specifies a decl that correspond to this. This is used 597 /// to set the attributes on the function when it is first created. 598 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 599 const llvm::Type *Ty, 600 GlobalDecl D) { 601 // Lookup the entry, lazily creating it if necessary. 602 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 603 if (Entry) { 604 if (Entry->getType()->getElementType() == Ty) 605 return Entry; 606 607 // Make sure the result is of the correct type. 608 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 609 return llvm::ConstantExpr::getBitCast(Entry, PTy); 610 } 611 612 // This is the first use or definition of a mangled name. If there is a 613 // deferred decl with this name, remember that we need to emit it at the end 614 // of the file. 615 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 616 DeferredDecls.find(MangledName); 617 if (DDI != DeferredDecls.end()) { 618 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 619 // list, and remove it from DeferredDecls (since we don't need it anymore). 620 DeferredDeclsToEmit.push_back(DDI->second); 621 DeferredDecls.erase(DDI); 622 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 623 // If this the first reference to a C++ inline function in a class, queue up 624 // the deferred function body for emission. These are not seen as 625 // top-level declarations. 626 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 627 DeferredDeclsToEmit.push_back(D); 628 // A called constructor which has no definition or declaration need be 629 // synthesized. 630 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 631 const CXXRecordDecl *ClassDecl = 632 cast<CXXRecordDecl>(CD->getDeclContext()); 633 if (CD->isCopyConstructor(getContext())) 634 DeferredCopyConstructorToEmit(D); 635 else if (!ClassDecl->hasUserDeclaredConstructor()) 636 DeferredDeclsToEmit.push_back(D); 637 } 638 else if (isa<CXXDestructorDecl>(FD)) 639 DeferredDestructorToEmit(D); 640 else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 641 if (MD->isCopyAssignment()) 642 DeferredCopyAssignmentToEmit(D); 643 } 644 645 // This function doesn't have a complete type (for example, the return 646 // type is an incomplete struct). Use a fake type instead, and make 647 // sure not to try to set attributes. 648 bool IsIncompleteFunction = false; 649 if (!isa<llvm::FunctionType>(Ty)) { 650 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 651 std::vector<const llvm::Type*>(), false); 652 IsIncompleteFunction = true; 653 } 654 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 655 llvm::Function::ExternalLinkage, 656 "", &getModule()); 657 F->setName(MangledName); 658 if (D.getDecl()) 659 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 660 IsIncompleteFunction); 661 Entry = F; 662 return F; 663 } 664 665 /// Defer definition of copy constructor(s) which need be implicitly defined. 666 void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) { 667 const CXXConstructorDecl *CD = 668 cast<CXXConstructorDecl>(CopyCtorDecl.getDecl()); 669 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 670 if (ClassDecl->hasTrivialCopyConstructor() || 671 ClassDecl->hasUserDeclaredCopyConstructor()) 672 return; 673 674 // First make sure all direct base classes and virtual bases and non-static 675 // data mebers which need to have their copy constructors implicitly defined 676 // are defined. 12.8.p7 677 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 678 Base != ClassDecl->bases_end(); ++Base) { 679 CXXRecordDecl *BaseClassDecl 680 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 681 if (CXXConstructorDecl *BaseCopyCtor = 682 BaseClassDecl->getCopyConstructor(Context, 0)) 683 GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete); 684 } 685 686 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 687 FieldEnd = ClassDecl->field_end(); 688 Field != FieldEnd; ++Field) { 689 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 690 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 691 FieldType = Array->getElementType(); 692 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 693 if ((*Field)->isAnonymousStructOrUnion()) 694 continue; 695 CXXRecordDecl *FieldClassDecl 696 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 697 if (CXXConstructorDecl *FieldCopyCtor = 698 FieldClassDecl->getCopyConstructor(Context, 0)) 699 GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete); 700 } 701 } 702 DeferredDeclsToEmit.push_back(CopyCtorDecl); 703 } 704 705 /// Defer definition of copy assignments which need be implicitly defined. 706 void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) { 707 const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl()); 708 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext()); 709 710 if (ClassDecl->hasTrivialCopyAssignment() || 711 ClassDecl->hasUserDeclaredCopyAssignment()) 712 return; 713 714 // First make sure all direct base classes and virtual bases and non-static 715 // data mebers which need to have their copy assignments implicitly defined 716 // are defined. 12.8.p12 717 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 718 Base != ClassDecl->bases_end(); ++Base) { 719 CXXRecordDecl *BaseClassDecl 720 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 721 const CXXMethodDecl *MD = 0; 722 if (!BaseClassDecl->hasTrivialCopyAssignment() && 723 !BaseClassDecl->hasUserDeclaredCopyAssignment() && 724 BaseClassDecl->hasConstCopyAssignment(getContext(), MD)) 725 GetAddrOfFunction(MD, 0); 726 } 727 728 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 729 FieldEnd = ClassDecl->field_end(); 730 Field != FieldEnd; ++Field) { 731 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 732 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 733 FieldType = Array->getElementType(); 734 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 735 if ((*Field)->isAnonymousStructOrUnion()) 736 continue; 737 CXXRecordDecl *FieldClassDecl 738 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 739 const CXXMethodDecl *MD = 0; 740 if (!FieldClassDecl->hasTrivialCopyAssignment() && 741 !FieldClassDecl->hasUserDeclaredCopyAssignment() && 742 FieldClassDecl->hasConstCopyAssignment(getContext(), MD)) 743 GetAddrOfFunction(MD, 0); 744 } 745 } 746 DeferredDeclsToEmit.push_back(CopyAssignDecl); 747 } 748 749 void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) { 750 const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl()); 751 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext()); 752 if (ClassDecl->hasTrivialDestructor() || 753 ClassDecl->hasUserDeclaredDestructor()) 754 return; 755 756 for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); 757 Base != ClassDecl->bases_end(); ++Base) { 758 CXXRecordDecl *BaseClassDecl 759 = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 760 if (const CXXDestructorDecl *BaseDtor = 761 BaseClassDecl->getDestructor(Context)) 762 GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete); 763 } 764 765 for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), 766 FieldEnd = ClassDecl->field_end(); 767 Field != FieldEnd; ++Field) { 768 QualType FieldType = Context.getCanonicalType((*Field)->getType()); 769 if (const ArrayType *Array = Context.getAsArrayType(FieldType)) 770 FieldType = Array->getElementType(); 771 if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) { 772 if ((*Field)->isAnonymousStructOrUnion()) 773 continue; 774 CXXRecordDecl *FieldClassDecl 775 = cast<CXXRecordDecl>(FieldClassType->getDecl()); 776 if (const CXXDestructorDecl *FieldDtor = 777 FieldClassDecl->getDestructor(Context)) 778 GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete); 779 } 780 } 781 DeferredDeclsToEmit.push_back(DtorDecl); 782 } 783 784 785 /// GetAddrOfFunction - Return the address of the given function. If Ty is 786 /// non-null, then this function will use the specified type if it has to 787 /// create it (this occurs when we see a definition of the function). 788 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 789 const llvm::Type *Ty) { 790 // If there was no specific requested type, just convert it now. 791 if (!Ty) 792 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 793 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 794 } 795 796 /// CreateRuntimeFunction - Create a new runtime function with the specified 797 /// type and name. 798 llvm::Constant * 799 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 800 const char *Name) { 801 // Convert Name to be a uniqued string from the IdentifierInfo table. 802 Name = getContext().Idents.get(Name).getName(); 803 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 804 } 805 806 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 807 /// create and return an llvm GlobalVariable with the specified type. If there 808 /// is something in the module with the specified name, return it potentially 809 /// bitcasted to the right type. 810 /// 811 /// If D is non-null, it specifies a decl that correspond to this. This is used 812 /// to set the attributes on the global when it is first created. 813 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 814 const llvm::PointerType*Ty, 815 const VarDecl *D) { 816 // Lookup the entry, lazily creating it if necessary. 817 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 818 if (Entry) { 819 if (Entry->getType() == Ty) 820 return Entry; 821 822 // Make sure the result is of the correct type. 823 return llvm::ConstantExpr::getBitCast(Entry, Ty); 824 } 825 826 // This is the first use or definition of a mangled name. If there is a 827 // deferred decl with this name, remember that we need to emit it at the end 828 // of the file. 829 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 830 DeferredDecls.find(MangledName); 831 if (DDI != DeferredDecls.end()) { 832 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 833 // list, and remove it from DeferredDecls (since we don't need it anymore). 834 DeferredDeclsToEmit.push_back(DDI->second); 835 DeferredDecls.erase(DDI); 836 } 837 838 llvm::GlobalVariable *GV = 839 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 840 llvm::GlobalValue::ExternalLinkage, 841 0, "", 0, 842 false, Ty->getAddressSpace()); 843 GV->setName(MangledName); 844 845 // Handle things which are present even on external declarations. 846 if (D) { 847 // FIXME: This code is overly simple and should be merged with other global 848 // handling. 849 GV->setConstant(D->getType().isConstant(Context)); 850 851 // FIXME: Merge with other attribute handling code. 852 if (D->getStorageClass() == VarDecl::PrivateExtern) 853 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 854 855 if (D->hasAttr<WeakAttr>() || 856 D->hasAttr<WeakImportAttr>()) 857 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 858 859 GV->setThreadLocal(D->isThreadSpecified()); 860 } 861 862 return Entry = GV; 863 } 864 865 866 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 867 /// given global variable. If Ty is non-null and if the global doesn't exist, 868 /// then it will be greated with the specified type instead of whatever the 869 /// normal requested type would be. 870 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 871 const llvm::Type *Ty) { 872 assert(D->hasGlobalStorage() && "Not a global variable"); 873 QualType ASTTy = D->getType(); 874 if (Ty == 0) 875 Ty = getTypes().ConvertTypeForMem(ASTTy); 876 877 const llvm::PointerType *PTy = 878 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 879 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 880 } 881 882 /// CreateRuntimeVariable - Create a new runtime global variable with the 883 /// specified type and name. 884 llvm::Constant * 885 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 886 const char *Name) { 887 // Convert Name to be a uniqued string from the IdentifierInfo table. 888 Name = getContext().Idents.get(Name).getName(); 889 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 890 } 891 892 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 893 assert(!D->getInit() && "Cannot emit definite definitions here!"); 894 895 if (MayDeferGeneration(D)) { 896 // If we have not seen a reference to this variable yet, place it 897 // into the deferred declarations table to be emitted if needed 898 // later. 899 const char *MangledName = getMangledName(D); 900 if (GlobalDeclMap.count(MangledName) == 0) { 901 DeferredDecls[MangledName] = D; 902 return; 903 } 904 } 905 906 // The tentative definition is the only definition. 907 EmitGlobalVarDefinition(D); 908 } 909 910 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 911 llvm::Constant *Init = 0; 912 QualType ASTTy = D->getType(); 913 914 if (D->getInit() == 0) { 915 // This is a tentative definition; tentative definitions are 916 // implicitly initialized with { 0 }. 917 // 918 // Note that tentative definitions are only emitted at the end of 919 // a translation unit, so they should never have incomplete 920 // type. In addition, EmitTentativeDefinition makes sure that we 921 // never attempt to emit a tentative definition if a real one 922 // exists. A use may still exists, however, so we still may need 923 // to do a RAUW. 924 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 925 Init = EmitNullConstant(D->getType()); 926 } else { 927 Init = EmitConstantExpr(D->getInit(), D->getType()); 928 929 if (!Init) { 930 QualType T = D->getInit()->getType(); 931 if (getLangOptions().CPlusPlus) { 932 CXXGlobalInits.push_back(D); 933 Init = EmitNullConstant(T); 934 } else { 935 ErrorUnsupported(D, "static initializer"); 936 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 937 } 938 } 939 } 940 941 const llvm::Type* InitType = Init->getType(); 942 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 943 944 // Strip off a bitcast if we got one back. 945 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 946 assert(CE->getOpcode() == llvm::Instruction::BitCast || 947 // all zero index gep. 948 CE->getOpcode() == llvm::Instruction::GetElementPtr); 949 Entry = CE->getOperand(0); 950 } 951 952 // Entry is now either a Function or GlobalVariable. 953 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 954 955 // We have a definition after a declaration with the wrong type. 956 // We must make a new GlobalVariable* and update everything that used OldGV 957 // (a declaration or tentative definition) with the new GlobalVariable* 958 // (which will be a definition). 959 // 960 // This happens if there is a prototype for a global (e.g. 961 // "extern int x[];") and then a definition of a different type (e.g. 962 // "int x[10];"). This also happens when an initializer has a different type 963 // from the type of the global (this happens with unions). 964 if (GV == 0 || 965 GV->getType()->getElementType() != InitType || 966 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 967 968 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 969 GlobalDeclMap.erase(getMangledName(D)); 970 971 // Make a new global with the correct type, this is now guaranteed to work. 972 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 973 GV->takeName(cast<llvm::GlobalValue>(Entry)); 974 975 // Replace all uses of the old global with the new global 976 llvm::Constant *NewPtrForOldDecl = 977 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 978 Entry->replaceAllUsesWith(NewPtrForOldDecl); 979 980 // Erase the old global, since it is no longer used. 981 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 982 } 983 984 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 985 SourceManager &SM = Context.getSourceManager(); 986 AddAnnotation(EmitAnnotateAttr(GV, AA, 987 SM.getInstantiationLineNumber(D->getLocation()))); 988 } 989 990 GV->setInitializer(Init); 991 992 // If it is safe to mark the global 'constant', do so now. 993 GV->setConstant(false); 994 if (D->getType().isConstant(Context)) { 995 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 996 // members, it cannot be declared "LLVM const". 997 GV->setConstant(true); 998 } 999 1000 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 1001 1002 // Set the llvm linkage type as appropriate. 1003 if (D->getStorageClass() == VarDecl::Static) 1004 GV->setLinkage(llvm::Function::InternalLinkage); 1005 else if (D->hasAttr<DLLImportAttr>()) 1006 GV->setLinkage(llvm::Function::DLLImportLinkage); 1007 else if (D->hasAttr<DLLExportAttr>()) 1008 GV->setLinkage(llvm::Function::DLLExportLinkage); 1009 else if (D->hasAttr<WeakAttr>()) { 1010 if (GV->isConstant()) 1011 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 1012 else 1013 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 1014 } else if (!CompileOpts.NoCommon && 1015 !D->hasExternalStorage() && !D->getInit() && 1016 !D->getAttr<SectionAttr>()) { 1017 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 1018 // common vars aren't constant even if declared const. 1019 GV->setConstant(false); 1020 } else 1021 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1022 1023 SetCommonAttributes(D, GV); 1024 1025 // Emit global variable debug information. 1026 if (CGDebugInfo *DI = getDebugInfo()) { 1027 DI->setLocation(D->getLocation()); 1028 DI->EmitGlobalVariable(GV, D); 1029 } 1030 } 1031 1032 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1033 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1034 /// existing call uses of the old function in the module, this adjusts them to 1035 /// call the new function directly. 1036 /// 1037 /// This is not just a cleanup: the always_inline pass requires direct calls to 1038 /// functions to be able to inline them. If there is a bitcast in the way, it 1039 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1040 /// run at -O0. 1041 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1042 llvm::Function *NewFn) { 1043 // If we're redefining a global as a function, don't transform it. 1044 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1045 if (OldFn == 0) return; 1046 1047 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1048 llvm::SmallVector<llvm::Value*, 4> ArgList; 1049 1050 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1051 UI != E; ) { 1052 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1053 unsigned OpNo = UI.getOperandNo(); 1054 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1055 if (!CI || OpNo != 0) continue; 1056 1057 // If the return types don't match exactly, and if the call isn't dead, then 1058 // we can't transform this call. 1059 if (CI->getType() != NewRetTy && !CI->use_empty()) 1060 continue; 1061 1062 // If the function was passed too few arguments, don't transform. If extra 1063 // arguments were passed, we silently drop them. If any of the types 1064 // mismatch, we don't transform. 1065 unsigned ArgNo = 0; 1066 bool DontTransform = false; 1067 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1068 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1069 if (CI->getNumOperands()-1 == ArgNo || 1070 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1071 DontTransform = true; 1072 break; 1073 } 1074 } 1075 if (DontTransform) 1076 continue; 1077 1078 // Okay, we can transform this. Create the new call instruction and copy 1079 // over the required information. 1080 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1081 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1082 ArgList.end(), "", CI); 1083 ArgList.clear(); 1084 if (NewCall->getType() != llvm::Type::getVoidTy(Old->getContext())) 1085 NewCall->takeName(CI); 1086 NewCall->setAttributes(CI->getAttributes()); 1087 NewCall->setCallingConv(CI->getCallingConv()); 1088 1089 // Finally, remove the old call, replacing any uses with the new one. 1090 if (!CI->use_empty()) 1091 CI->replaceAllUsesWith(NewCall); 1092 CI->eraseFromParent(); 1093 } 1094 } 1095 1096 1097 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1098 const llvm::FunctionType *Ty; 1099 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1100 1101 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1102 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 1103 1104 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1105 } else { 1106 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1107 1108 // As a special case, make sure that definitions of K&R function 1109 // "type foo()" aren't declared as varargs (which forces the backend 1110 // to do unnecessary work). 1111 if (D->getType()->isFunctionNoProtoType()) { 1112 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1113 // Due to stret, the lowered function could have arguments. 1114 // Just create the same type as was lowered by ConvertType 1115 // but strip off the varargs bit. 1116 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1117 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1118 } 1119 } 1120 1121 // Get or create the prototype for the function. 1122 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1123 1124 // Strip off a bitcast if we got one back. 1125 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1126 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1127 Entry = CE->getOperand(0); 1128 } 1129 1130 1131 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1132 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1133 1134 // If the types mismatch then we have to rewrite the definition. 1135 assert(OldFn->isDeclaration() && 1136 "Shouldn't replace non-declaration"); 1137 1138 // F is the Function* for the one with the wrong type, we must make a new 1139 // Function* and update everything that used F (a declaration) with the new 1140 // Function* (which will be a definition). 1141 // 1142 // This happens if there is a prototype for a function 1143 // (e.g. "int f()") and then a definition of a different type 1144 // (e.g. "int f(int x)"). Start by making a new function of the 1145 // correct type, RAUW, then steal the name. 1146 GlobalDeclMap.erase(getMangledName(D)); 1147 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1148 NewFn->takeName(OldFn); 1149 1150 // If this is an implementation of a function without a prototype, try to 1151 // replace any existing uses of the function (which may be calls) with uses 1152 // of the new function 1153 if (D->getType()->isFunctionNoProtoType()) { 1154 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1155 OldFn->removeDeadConstantUsers(); 1156 } 1157 1158 // Replace uses of F with the Function we will endow with a body. 1159 if (!Entry->use_empty()) { 1160 llvm::Constant *NewPtrForOldDecl = 1161 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1162 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1163 } 1164 1165 // Ok, delete the old function now, which is dead. 1166 OldFn->eraseFromParent(); 1167 1168 Entry = NewFn; 1169 } 1170 1171 llvm::Function *Fn = cast<llvm::Function>(Entry); 1172 1173 CodeGenFunction(*this).GenerateCode(D, Fn); 1174 1175 SetFunctionDefinitionAttributes(D, Fn); 1176 SetLLVMFunctionAttributesForDefinition(D, Fn); 1177 1178 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1179 AddGlobalCtor(Fn, CA->getPriority()); 1180 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1181 AddGlobalDtor(Fn, DA->getPriority()); 1182 } 1183 1184 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1185 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1186 assert(AA && "Not an alias?"); 1187 1188 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1189 1190 // Unique the name through the identifier table. 1191 const char *AliaseeName = AA->getAliasee().c_str(); 1192 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 1193 1194 // Create a reference to the named value. This ensures that it is emitted 1195 // if a deferred decl. 1196 llvm::Constant *Aliasee; 1197 if (isa<llvm::FunctionType>(DeclTy)) 1198 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1199 else 1200 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1201 llvm::PointerType::getUnqual(DeclTy), 0); 1202 1203 // Create the new alias itself, but don't set a name yet. 1204 llvm::GlobalValue *GA = 1205 new llvm::GlobalAlias(Aliasee->getType(), 1206 llvm::Function::ExternalLinkage, 1207 "", Aliasee, &getModule()); 1208 1209 // See if there is already something with the alias' name in the module. 1210 const char *MangledName = getMangledName(D); 1211 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1212 1213 if (Entry && !Entry->isDeclaration()) { 1214 // If there is a definition in the module, then it wins over the alias. 1215 // This is dubious, but allow it to be safe. Just ignore the alias. 1216 GA->eraseFromParent(); 1217 return; 1218 } 1219 1220 if (Entry) { 1221 // If there is a declaration in the module, then we had an extern followed 1222 // by the alias, as in: 1223 // extern int test6(); 1224 // ... 1225 // int test6() __attribute__((alias("test7"))); 1226 // 1227 // Remove it and replace uses of it with the alias. 1228 1229 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1230 Entry->getType())); 1231 Entry->eraseFromParent(); 1232 } 1233 1234 // Now we know that there is no conflict, set the name. 1235 Entry = GA; 1236 GA->setName(MangledName); 1237 1238 // Set attributes which are particular to an alias; this is a 1239 // specialization of the attributes which may be set on a global 1240 // variable/function. 1241 if (D->hasAttr<DLLExportAttr>()) { 1242 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1243 // The dllexport attribute is ignored for undefined symbols. 1244 if (FD->getBody()) 1245 GA->setLinkage(llvm::Function::DLLExportLinkage); 1246 } else { 1247 GA->setLinkage(llvm::Function::DLLExportLinkage); 1248 } 1249 } else if (D->hasAttr<WeakAttr>() || 1250 D->hasAttr<WeakImportAttr>()) { 1251 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1252 } 1253 1254 SetCommonAttributes(D, GA); 1255 } 1256 1257 /// getBuiltinLibFunction - Given a builtin id for a function like 1258 /// "__builtin_fabsf", return a Function* for "fabsf". 1259 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1260 unsigned BuiltinID) { 1261 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1262 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1263 "isn't a lib fn"); 1264 1265 // Get the name, skip over the __builtin_ prefix (if necessary). 1266 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1267 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1268 Name += 10; 1269 1270 // Get the type for the builtin. 1271 ASTContext::GetBuiltinTypeError Error; 1272 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1273 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1274 1275 const llvm::FunctionType *Ty = 1276 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1277 1278 // Unique the name through the identifier table. 1279 Name = getContext().Idents.get(Name).getName(); 1280 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1281 } 1282 1283 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1284 unsigned NumTys) { 1285 return llvm::Intrinsic::getDeclaration(&getModule(), 1286 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1287 } 1288 1289 llvm::Function *CodeGenModule::getMemCpyFn() { 1290 if (MemCpyFn) return MemCpyFn; 1291 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1292 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1293 } 1294 1295 llvm::Function *CodeGenModule::getMemMoveFn() { 1296 if (MemMoveFn) return MemMoveFn; 1297 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1298 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1299 } 1300 1301 llvm::Function *CodeGenModule::getMemSetFn() { 1302 if (MemSetFn) return MemSetFn; 1303 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1304 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1305 } 1306 1307 static llvm::StringMapEntry<llvm::Constant*> & 1308 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1309 const StringLiteral *Literal, 1310 bool TargetIsLSB, 1311 bool &IsUTF16, 1312 unsigned &StringLength) { 1313 unsigned NumBytes = Literal->getByteLength(); 1314 1315 // Check for simple case. 1316 if (!Literal->containsNonAsciiOrNull()) { 1317 StringLength = NumBytes; 1318 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1319 StringLength)); 1320 } 1321 1322 // Otherwise, convert the UTF8 literals into a byte string. 1323 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1324 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1325 UTF16 *ToPtr = &ToBuf[0]; 1326 1327 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1328 &ToPtr, ToPtr + NumBytes, 1329 strictConversion); 1330 1331 // Check for conversion failure. 1332 if (Result != conversionOK) { 1333 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1334 // this duplicate code. 1335 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1336 StringLength = NumBytes; 1337 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1338 StringLength)); 1339 } 1340 1341 // ConvertUTF8toUTF16 returns the length in ToPtr. 1342 StringLength = ToPtr - &ToBuf[0]; 1343 1344 // Render the UTF-16 string into a byte array and convert to the target byte 1345 // order. 1346 // 1347 // FIXME: This isn't something we should need to do here. 1348 llvm::SmallString<128> AsBytes; 1349 AsBytes.reserve(StringLength * 2); 1350 for (unsigned i = 0; i != StringLength; ++i) { 1351 unsigned short Val = ToBuf[i]; 1352 if (TargetIsLSB) { 1353 AsBytes.push_back(Val & 0xFF); 1354 AsBytes.push_back(Val >> 8); 1355 } else { 1356 AsBytes.push_back(Val >> 8); 1357 AsBytes.push_back(Val & 0xFF); 1358 } 1359 } 1360 // Append one extra null character, the second is automatically added by our 1361 // caller. 1362 AsBytes.push_back(0); 1363 1364 IsUTF16 = true; 1365 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1366 } 1367 1368 llvm::Constant * 1369 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1370 unsigned StringLength = 0; 1371 bool isUTF16 = false; 1372 llvm::StringMapEntry<llvm::Constant*> &Entry = 1373 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1374 getTargetData().isLittleEndian(), 1375 isUTF16, StringLength); 1376 1377 if (llvm::Constant *C = Entry.getValue()) 1378 return C; 1379 1380 llvm::Constant *Zero = 1381 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1382 llvm::Constant *Zeros[] = { Zero, Zero }; 1383 1384 // If we don't already have it, get __CFConstantStringClassReference. 1385 if (!CFConstantStringClassRef) { 1386 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1387 Ty = llvm::ArrayType::get(Ty, 0); 1388 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1389 "__CFConstantStringClassReference"); 1390 // Decay array -> ptr 1391 CFConstantStringClassRef = 1392 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1393 } 1394 1395 QualType CFTy = getContext().getCFConstantStringType(); 1396 1397 const llvm::StructType *STy = 1398 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1399 1400 std::vector<llvm::Constant*> Fields(4); 1401 1402 // Class pointer. 1403 Fields[0] = CFConstantStringClassRef; 1404 1405 // Flags. 1406 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1407 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1408 llvm::ConstantInt::get(Ty, 0x07C8); 1409 1410 // String pointer. 1411 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1412 1413 const char *Sect, *Prefix; 1414 bool isConstant; 1415 llvm::GlobalValue::LinkageTypes Linkage; 1416 if (isUTF16) { 1417 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1418 Sect = getContext().Target.getUnicodeStringSection(); 1419 // FIXME: why do utf strings get "l" labels instead of "L" labels? 1420 Linkage = llvm::GlobalValue::InternalLinkage; 1421 // FIXME: Why does GCC not set constant here? 1422 isConstant = false; 1423 } else { 1424 Prefix = ".str"; 1425 Sect = getContext().Target.getCFStringDataSection(); 1426 Linkage = llvm::GlobalValue::PrivateLinkage; 1427 // FIXME: -fwritable-strings should probably affect this, but we 1428 // are following gcc here. 1429 isConstant = true; 1430 } 1431 llvm::GlobalVariable *GV = 1432 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, 1433 Linkage, C, Prefix); 1434 if (Sect) 1435 GV->setSection(Sect); 1436 if (isUTF16) { 1437 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1438 GV->setAlignment(Align); 1439 } 1440 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1441 1442 // String length. 1443 Ty = getTypes().ConvertType(getContext().LongTy); 1444 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1445 1446 // The struct. 1447 C = llvm::ConstantStruct::get(STy, Fields); 1448 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1449 llvm::GlobalVariable::PrivateLinkage, C, 1450 "_unnamed_cfstring_"); 1451 if (const char *Sect = getContext().Target.getCFStringSection()) 1452 GV->setSection(Sect); 1453 Entry.setValue(GV); 1454 1455 return GV; 1456 } 1457 1458 /// GetStringForStringLiteral - Return the appropriate bytes for a 1459 /// string literal, properly padded to match the literal type. 1460 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1461 const char *StrData = E->getStrData(); 1462 unsigned Len = E->getByteLength(); 1463 1464 const ConstantArrayType *CAT = 1465 getContext().getAsConstantArrayType(E->getType()); 1466 assert(CAT && "String isn't pointer or array!"); 1467 1468 // Resize the string to the right size. 1469 std::string Str(StrData, StrData+Len); 1470 uint64_t RealLen = CAT->getSize().getZExtValue(); 1471 1472 if (E->isWide()) 1473 RealLen *= getContext().Target.getWCharWidth()/8; 1474 1475 Str.resize(RealLen, '\0'); 1476 1477 return Str; 1478 } 1479 1480 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1481 /// constant array for the given string literal. 1482 llvm::Constant * 1483 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1484 // FIXME: This can be more efficient. 1485 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1486 } 1487 1488 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1489 /// array for the given ObjCEncodeExpr node. 1490 llvm::Constant * 1491 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1492 std::string Str; 1493 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1494 1495 return GetAddrOfConstantCString(Str); 1496 } 1497 1498 1499 /// GenerateWritableString -- Creates storage for a string literal. 1500 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1501 bool constant, 1502 CodeGenModule &CGM, 1503 const char *GlobalName) { 1504 // Create Constant for this string literal. Don't add a '\0'. 1505 llvm::Constant *C = 1506 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1507 1508 // Create a global variable for this string 1509 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1510 llvm::GlobalValue::PrivateLinkage, 1511 C, GlobalName); 1512 } 1513 1514 /// GetAddrOfConstantString - Returns a pointer to a character array 1515 /// containing the literal. This contents are exactly that of the 1516 /// given string, i.e. it will not be null terminated automatically; 1517 /// see GetAddrOfConstantCString. Note that whether the result is 1518 /// actually a pointer to an LLVM constant depends on 1519 /// Feature.WriteableStrings. 1520 /// 1521 /// The result has pointer to array type. 1522 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1523 const char *GlobalName) { 1524 bool IsConstant = !Features.WritableStrings; 1525 1526 // Get the default prefix if a name wasn't specified. 1527 if (!GlobalName) 1528 GlobalName = ".str"; 1529 1530 // Don't share any string literals if strings aren't constant. 1531 if (!IsConstant) 1532 return GenerateStringLiteral(str, false, *this, GlobalName); 1533 1534 llvm::StringMapEntry<llvm::Constant *> &Entry = 1535 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1536 1537 if (Entry.getValue()) 1538 return Entry.getValue(); 1539 1540 // Create a global variable for this. 1541 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1542 Entry.setValue(C); 1543 return C; 1544 } 1545 1546 /// GetAddrOfConstantCString - Returns a pointer to a character 1547 /// array containing the literal and a terminating '\-' 1548 /// character. The result has pointer to array type. 1549 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1550 const char *GlobalName){ 1551 return GetAddrOfConstantString(str + '\0', GlobalName); 1552 } 1553 1554 /// EmitObjCPropertyImplementations - Emit information for synthesized 1555 /// properties for an implementation. 1556 void CodeGenModule::EmitObjCPropertyImplementations(const 1557 ObjCImplementationDecl *D) { 1558 for (ObjCImplementationDecl::propimpl_iterator 1559 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1560 ObjCPropertyImplDecl *PID = *i; 1561 1562 // Dynamic is just for type-checking. 1563 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1564 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1565 1566 // Determine which methods need to be implemented, some may have 1567 // been overridden. Note that ::isSynthesized is not the method 1568 // we want, that just indicates if the decl came from a 1569 // property. What we want to know is if the method is defined in 1570 // this implementation. 1571 if (!D->getInstanceMethod(PD->getGetterName())) 1572 CodeGenFunction(*this).GenerateObjCGetter( 1573 const_cast<ObjCImplementationDecl *>(D), PID); 1574 if (!PD->isReadOnly() && 1575 !D->getInstanceMethod(PD->getSetterName())) 1576 CodeGenFunction(*this).GenerateObjCSetter( 1577 const_cast<ObjCImplementationDecl *>(D), PID); 1578 } 1579 } 1580 } 1581 1582 /// EmitNamespace - Emit all declarations in a namespace. 1583 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1584 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1585 I != E; ++I) 1586 EmitTopLevelDecl(*I); 1587 } 1588 1589 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1590 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1591 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1592 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1593 ErrorUnsupported(LSD, "linkage spec"); 1594 return; 1595 } 1596 1597 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1598 I != E; ++I) 1599 EmitTopLevelDecl(*I); 1600 } 1601 1602 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1603 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1604 // If an error has occurred, stop code generation, but continue 1605 // parsing and semantic analysis (to ensure all warnings and errors 1606 // are emitted). 1607 if (Diags.hasErrorOccurred()) 1608 return; 1609 1610 // Ignore dependent declarations. 1611 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1612 return; 1613 1614 switch (D->getKind()) { 1615 case Decl::CXXConversion: 1616 case Decl::CXXMethod: 1617 case Decl::Function: 1618 // Skip function templates 1619 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1620 return; 1621 1622 EmitGlobal(cast<FunctionDecl>(D)); 1623 break; 1624 1625 case Decl::Var: 1626 EmitGlobal(cast<VarDecl>(D)); 1627 break; 1628 1629 // C++ Decls 1630 case Decl::Namespace: 1631 EmitNamespace(cast<NamespaceDecl>(D)); 1632 break; 1633 // No code generation needed. 1634 case Decl::Using: 1635 case Decl::UsingDirective: 1636 case Decl::ClassTemplate: 1637 case Decl::FunctionTemplate: 1638 break; 1639 case Decl::CXXConstructor: 1640 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1641 break; 1642 case Decl::CXXDestructor: 1643 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1644 break; 1645 1646 case Decl::StaticAssert: 1647 // Nothing to do. 1648 break; 1649 1650 // Objective-C Decls 1651 1652 // Forward declarations, no (immediate) code generation. 1653 case Decl::ObjCClass: 1654 case Decl::ObjCForwardProtocol: 1655 case Decl::ObjCCategory: 1656 case Decl::ObjCInterface: 1657 break; 1658 1659 case Decl::ObjCProtocol: 1660 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1661 break; 1662 1663 case Decl::ObjCCategoryImpl: 1664 // Categories have properties but don't support synthesize so we 1665 // can ignore them here. 1666 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1667 break; 1668 1669 case Decl::ObjCImplementation: { 1670 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1671 EmitObjCPropertyImplementations(OMD); 1672 Runtime->GenerateClass(OMD); 1673 break; 1674 } 1675 case Decl::ObjCMethod: { 1676 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1677 // If this is not a prototype, emit the body. 1678 if (OMD->getBody()) 1679 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1680 break; 1681 } 1682 case Decl::ObjCCompatibleAlias: 1683 // compatibility-alias is a directive and has no code gen. 1684 break; 1685 1686 case Decl::LinkageSpec: 1687 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1688 break; 1689 1690 case Decl::FileScopeAsm: { 1691 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1692 std::string AsmString(AD->getAsmString()->getStrData(), 1693 AD->getAsmString()->getByteLength()); 1694 1695 const std::string &S = getModule().getModuleInlineAsm(); 1696 if (S.empty()) 1697 getModule().setModuleInlineAsm(AsmString); 1698 else 1699 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1700 break; 1701 } 1702 1703 default: 1704 // Make sure we handled everything we should, every other kind is a 1705 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1706 // function. Need to recode Decl::Kind to do that easily. 1707 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1708 } 1709 } 1710