1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Builtins.h"
25 #include "clang/Basic/Diagnostic.h"
26 #include "clang/Basic/SourceManager.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Basic/ConvertUTF.h"
29 #include "llvm/CallingConv.h"
30 #include "llvm/Module.h"
31 #include "llvm/Intrinsics.h"
32 #include "llvm/Target/TargetData.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 
37 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                              llvm::Module &M, const llvm::TargetData &TD,
39                              Diagnostic &diags)
40   : BlockModule(C, M, TD, Types, *this), Context(C),
41     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
44 
45   if (!Features.ObjC1)
46     Runtime = 0;
47   else if (!Features.NeXTRuntime)
48     Runtime = CreateGNUObjCRuntime(*this);
49   else if (Features.ObjCNonFragileABI)
50     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
51   else
52     Runtime = CreateMacObjCRuntime(*this);
53 
54   // If debug info generation is enabled, create the CGDebugInfo object.
55   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
56 }
57 
58 CodeGenModule::~CodeGenModule() {
59   delete Runtime;
60   delete DebugInfo;
61 }
62 
63 void CodeGenModule::Release() {
64   EmitDeferred();
65   if (Runtime)
66     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
67       AddGlobalCtor(ObjCInitFunction);
68   EmitCtorList(GlobalCtors, "llvm.global_ctors");
69   EmitCtorList(GlobalDtors, "llvm.global_dtors");
70   EmitAnnotations();
71   EmitLLVMUsed();
72 }
73 
74 /// ErrorUnsupported - Print out an error that codegen doesn't support the
75 /// specified stmt yet.
76 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
77                                      bool OmitOnError) {
78   if (OmitOnError && getDiags().hasErrorOccurred())
79     return;
80   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
81                                                "cannot compile this %0 yet");
82   std::string Msg = Type;
83   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
84     << Msg << S->getSourceRange();
85 }
86 
87 /// ErrorUnsupported - Print out an error that codegen doesn't support the
88 /// specified decl yet.
89 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
90                                      bool OmitOnError) {
91   if (OmitOnError && getDiags().hasErrorOccurred())
92     return;
93   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
94                                                "cannot compile this %0 yet");
95   std::string Msg = Type;
96   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
97 }
98 
99 LangOptions::VisibilityMode
100 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
101   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
102     if (VD->getStorageClass() == VarDecl::PrivateExtern)
103       return LangOptions::Hidden;
104 
105   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>(getContext())) {
106     switch (attr->getVisibility()) {
107     default: assert(0 && "Unknown visibility!");
108     case VisibilityAttr::DefaultVisibility:
109       return LangOptions::Default;
110     case VisibilityAttr::HiddenVisibility:
111       return LangOptions::Hidden;
112     case VisibilityAttr::ProtectedVisibility:
113       return LangOptions::Protected;
114     }
115   }
116 
117   return getLangOptions().getVisibilityMode();
118 }
119 
120 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
121                                         const Decl *D) const {
122   // Internal definitions always have default visibility.
123   if (GV->hasLocalLinkage()) {
124     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
125     return;
126   }
127 
128   switch (getDeclVisibilityMode(D)) {
129   default: assert(0 && "Unknown visibility!");
130   case LangOptions::Default:
131     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
132   case LangOptions::Hidden:
133     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
134   case LangOptions::Protected:
135     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
136   }
137 }
138 
139 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
140   const NamedDecl *ND = GD.getDecl();
141 
142   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
143     return getMangledCXXCtorName(D, GD.getCtorType());
144   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
145     return getMangledCXXDtorName(D, GD.getDtorType());
146 
147   return getMangledName(ND);
148 }
149 
150 /// \brief Retrieves the mangled name for the given declaration.
151 ///
152 /// If the given declaration requires a mangled name, returns an
153 /// const char* containing the mangled name.  Otherwise, returns
154 /// the unmangled name.
155 ///
156 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
157   // In C, functions with no attributes never need to be mangled. Fastpath them.
158   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
159     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
160     return ND->getNameAsCString();
161   }
162 
163   llvm::SmallString<256> Name;
164   llvm::raw_svector_ostream Out(Name);
165   if (!mangleName(ND, Context, Out)) {
166     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
167     return ND->getNameAsCString();
168   }
169 
170   Name += '\0';
171   return UniqueMangledName(Name.begin(), Name.end());
172 }
173 
174 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
175                                              const char *NameEnd) {
176   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
177 
178   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
179 }
180 
181 /// AddGlobalCtor - Add a function to the list that will be called before
182 /// main() runs.
183 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
184   // FIXME: Type coercion of void()* types.
185   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
186 }
187 
188 /// AddGlobalDtor - Add a function to the list that will be called
189 /// when the module is unloaded.
190 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
191   // FIXME: Type coercion of void()* types.
192   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
193 }
194 
195 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
196   // Ctor function type is void()*.
197   llvm::FunctionType* CtorFTy =
198     llvm::FunctionType::get(llvm::Type::VoidTy,
199                             std::vector<const llvm::Type*>(),
200                             false);
201   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
202 
203   // Get the type of a ctor entry, { i32, void ()* }.
204   llvm::StructType* CtorStructTy =
205     llvm::StructType::get(llvm::Type::Int32Ty,
206                           llvm::PointerType::getUnqual(CtorFTy), NULL);
207 
208   // Construct the constructor and destructor arrays.
209   std::vector<llvm::Constant*> Ctors;
210   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
211     std::vector<llvm::Constant*> S;
212     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
213     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
214     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
215   }
216 
217   if (!Ctors.empty()) {
218     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
219     new llvm::GlobalVariable(AT, false,
220                              llvm::GlobalValue::AppendingLinkage,
221                              llvm::ConstantArray::get(AT, Ctors),
222                              GlobalName,
223                              &TheModule);
224   }
225 }
226 
227 void CodeGenModule::EmitAnnotations() {
228   if (Annotations.empty())
229     return;
230 
231   // Create a new global variable for the ConstantStruct in the Module.
232   llvm::Constant *Array =
233   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
234                                                 Annotations.size()),
235                            Annotations);
236   llvm::GlobalValue *gv =
237   new llvm::GlobalVariable(Array->getType(), false,
238                            llvm::GlobalValue::AppendingLinkage, Array,
239                            "llvm.global.annotations", &TheModule);
240   gv->setSection("llvm.metadata");
241 }
242 
243 static CodeGenModule::GVALinkage
244 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
245                       const LangOptions &Features) {
246   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
247     // C++ member functions defined inside the class are always inline.
248     if (MD->isInline() || !MD->isOutOfLine())
249       return CodeGenModule::GVA_CXXInline;
250 
251     return CodeGenModule::GVA_StrongExternal;
252   }
253 
254   // "static" functions get internal linkage.
255   if (FD->getStorageClass() == FunctionDecl::Static)
256     return CodeGenModule::GVA_Internal;
257 
258   if (!FD->isInline())
259     return CodeGenModule::GVA_StrongExternal;
260 
261   // If the inline function explicitly has the GNU inline attribute on it, or if
262   // this is C89 mode, we use to GNU semantics.
263   if (!Features.C99 && !Features.CPlusPlus) {
264     // extern inline in GNU mode is like C99 inline.
265     if (FD->getStorageClass() == FunctionDecl::Extern)
266       return CodeGenModule::GVA_C99Inline;
267     // Normal inline is a strong symbol.
268     return CodeGenModule::GVA_StrongExternal;
269   } else if (FD->hasActiveGNUInlineAttribute(Context)) {
270     // GCC in C99 mode seems to use a different decision-making
271     // process for extern inline, which factors in previous
272     // declarations.
273     if (FD->isExternGNUInline(Context))
274       return CodeGenModule::GVA_C99Inline;
275     // Normal inline is a strong symbol.
276     return CodeGenModule::GVA_StrongExternal;
277   }
278 
279   // The definition of inline changes based on the language.  Note that we
280   // have already handled "static inline" above, with the GVA_Internal case.
281   if (Features.CPlusPlus)  // inline and extern inline.
282     return CodeGenModule::GVA_CXXInline;
283 
284   assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
285   if (FD->isC99InlineDefinition())
286     return CodeGenModule::GVA_C99Inline;
287 
288   return CodeGenModule::GVA_StrongExternal;
289 }
290 
291 /// SetFunctionDefinitionAttributes - Set attributes for a global.
292 ///
293 /// FIXME: This is currently only done for aliases and functions, but not for
294 /// variables (these details are set in EmitGlobalVarDefinition for variables).
295 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
296                                                     llvm::GlobalValue *GV) {
297   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
298 
299   if (Linkage == GVA_Internal) {
300     GV->setLinkage(llvm::Function::InternalLinkage);
301   } else if (D->hasAttr<DLLExportAttr>(getContext())) {
302     GV->setLinkage(llvm::Function::DLLExportLinkage);
303   } else if (D->hasAttr<WeakAttr>(getContext())) {
304     GV->setLinkage(llvm::Function::WeakAnyLinkage);
305   } else if (Linkage == GVA_C99Inline) {
306     // In C99 mode, 'inline' functions are guaranteed to have a strong
307     // definition somewhere else, so we can use available_externally linkage.
308     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
309   } else if (Linkage == GVA_CXXInline) {
310     // In C++, the compiler has to emit a definition in every translation unit
311     // that references the function.  We should use linkonce_odr because
312     // a) if all references in this translation unit are optimized away, we
313     // don't need to codegen it.  b) if the function persists, it needs to be
314     // merged with other definitions. c) C++ has the ODR, so we know the
315     // definition is dependable.
316     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
317   } else {
318     assert(Linkage == GVA_StrongExternal);
319     // Otherwise, we have strong external linkage.
320     GV->setLinkage(llvm::Function::ExternalLinkage);
321   }
322 
323   SetCommonAttributes(D, GV);
324 }
325 
326 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
327                                               const CGFunctionInfo &Info,
328                                               llvm::Function *F) {
329   AttributeListType AttributeList;
330   ConstructAttributeList(Info, D, AttributeList);
331 
332   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
333                                         AttributeList.size()));
334 
335   // Set the appropriate calling convention for the Function.
336   if (D->hasAttr<FastCallAttr>(getContext()))
337     F->setCallingConv(llvm::CallingConv::X86_FastCall);
338 
339   if (D->hasAttr<StdCallAttr>(getContext()))
340     F->setCallingConv(llvm::CallingConv::X86_StdCall);
341 }
342 
343 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
344                                                            llvm::Function *F) {
345   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
346     F->addFnAttr(llvm::Attribute::NoUnwind);
347 
348   if (D->hasAttr<AlwaysInlineAttr>(getContext()))
349     F->addFnAttr(llvm::Attribute::AlwaysInline);
350 
351   if (D->hasAttr<NoinlineAttr>(getContext()))
352     F->addFnAttr(llvm::Attribute::NoInline);
353 }
354 
355 void CodeGenModule::SetCommonAttributes(const Decl *D,
356                                         llvm::GlobalValue *GV) {
357   setGlobalVisibility(GV, D);
358 
359   if (D->hasAttr<UsedAttr>(getContext()))
360     AddUsedGlobal(GV);
361 
362   if (const SectionAttr *SA = D->getAttr<SectionAttr>(getContext()))
363     GV->setSection(SA->getName());
364 }
365 
366 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
367                                                   llvm::Function *F,
368                                                   const CGFunctionInfo &FI) {
369   SetLLVMFunctionAttributes(D, FI, F);
370   SetLLVMFunctionAttributesForDefinition(D, F);
371 
372   F->setLinkage(llvm::Function::InternalLinkage);
373 
374   SetCommonAttributes(D, F);
375 }
376 
377 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
378                                           llvm::Function *F,
379                                           bool IsIncompleteFunction) {
380   if (!IsIncompleteFunction)
381     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
382 
383   // Only a few attributes are set on declarations; these may later be
384   // overridden by a definition.
385 
386   if (FD->hasAttr<DLLImportAttr>(getContext())) {
387     F->setLinkage(llvm::Function::DLLImportLinkage);
388   } else if (FD->hasAttr<WeakAttr>(getContext()) ||
389              FD->hasAttr<WeakImportAttr>(getContext())) {
390     // "extern_weak" is overloaded in LLVM; we probably should have
391     // separate linkage types for this.
392     F->setLinkage(llvm::Function::ExternalWeakLinkage);
393   } else {
394     F->setLinkage(llvm::Function::ExternalLinkage);
395   }
396 
397   if (const SectionAttr *SA = FD->getAttr<SectionAttr>(getContext()))
398     F->setSection(SA->getName());
399 }
400 
401 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
402   assert(!GV->isDeclaration() &&
403          "Only globals with definition can force usage.");
404   LLVMUsed.push_back(GV);
405 }
406 
407 void CodeGenModule::EmitLLVMUsed() {
408   // Don't create llvm.used if there is no need.
409   if (LLVMUsed.empty())
410     return;
411 
412   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
413   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
414 
415   // Convert LLVMUsed to what ConstantArray needs.
416   std::vector<llvm::Constant*> UsedArray;
417   UsedArray.resize(LLVMUsed.size());
418   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
419     UsedArray[i] =
420      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
421   }
422 
423   llvm::GlobalVariable *GV =
424     new llvm::GlobalVariable(ATy, false,
425                              llvm::GlobalValue::AppendingLinkage,
426                              llvm::ConstantArray::get(ATy, UsedArray),
427                              "llvm.used", &getModule());
428 
429   GV->setSection("llvm.metadata");
430 }
431 
432 void CodeGenModule::EmitDeferred() {
433   // Emit code for any potentially referenced deferred decls.  Since a
434   // previously unused static decl may become used during the generation of code
435   // for a static function, iterate until no  changes are made.
436   while (!DeferredDeclsToEmit.empty()) {
437     GlobalDecl D = DeferredDeclsToEmit.back();
438     DeferredDeclsToEmit.pop_back();
439 
440     // The mangled name for the decl must have been emitted in GlobalDeclMap.
441     // Look it up to see if it was defined with a stronger definition (e.g. an
442     // extern inline function with a strong function redefinition).  If so,
443     // just ignore the deferred decl.
444     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
445     assert(CGRef && "Deferred decl wasn't referenced?");
446 
447     if (!CGRef->isDeclaration())
448       continue;
449 
450     // Otherwise, emit the definition and move on to the next one.
451     EmitGlobalDefinition(D);
452   }
453 }
454 
455 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
456 /// annotation information for a given GlobalValue.  The annotation struct is
457 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
458 /// GlobalValue being annotated.  The second field is the constant string
459 /// created from the AnnotateAttr's annotation.  The third field is a constant
460 /// string containing the name of the translation unit.  The fourth field is
461 /// the line number in the file of the annotated value declaration.
462 ///
463 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
464 ///        appears to.
465 ///
466 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
467                                                 const AnnotateAttr *AA,
468                                                 unsigned LineNo) {
469   llvm::Module *M = &getModule();
470 
471   // get [N x i8] constants for the annotation string, and the filename string
472   // which are the 2nd and 3rd elements of the global annotation structure.
473   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
474   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
475   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
476                                                   true);
477 
478   // Get the two global values corresponding to the ConstantArrays we just
479   // created to hold the bytes of the strings.
480   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
481   llvm::GlobalValue *annoGV =
482   new llvm::GlobalVariable(anno->getType(), false,
483                            llvm::GlobalValue::InternalLinkage, anno,
484                            GV->getName() + StringPrefix, M);
485   // translation unit name string, emitted into the llvm.metadata section.
486   llvm::GlobalValue *unitGV =
487   new llvm::GlobalVariable(unit->getType(), false,
488                            llvm::GlobalValue::InternalLinkage, unit,
489                            StringPrefix, M);
490 
491   // Create the ConstantStruct for the global annotation.
492   llvm::Constant *Fields[4] = {
493     llvm::ConstantExpr::getBitCast(GV, SBP),
494     llvm::ConstantExpr::getBitCast(annoGV, SBP),
495     llvm::ConstantExpr::getBitCast(unitGV, SBP),
496     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
497   };
498   return llvm::ConstantStruct::get(Fields, 4, false);
499 }
500 
501 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
502   // Never defer when EmitAllDecls is specified or the decl has
503   // attribute used.
504   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>(getContext()))
505     return false;
506 
507   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
508     // Constructors and destructors should never be deferred.
509     if (FD->hasAttr<ConstructorAttr>(getContext()) ||
510         FD->hasAttr<DestructorAttr>(getContext()))
511       return false;
512 
513     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
514 
515     // static, static inline, always_inline, and extern inline functions can
516     // always be deferred.  Normal inline functions can be deferred in C99/C++.
517     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
518         Linkage == GVA_CXXInline)
519       return true;
520     return false;
521   }
522 
523   const VarDecl *VD = cast<VarDecl>(Global);
524   assert(VD->isFileVarDecl() && "Invalid decl");
525 
526   return VD->getStorageClass() == VarDecl::Static;
527 }
528 
529 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
530   const ValueDecl *Global = GD.getDecl();
531 
532   // If this is an alias definition (which otherwise looks like a declaration)
533   // emit it now.
534   if (Global->hasAttr<AliasAttr>(getContext()))
535     return EmitAliasDefinition(Global);
536 
537   // Ignore declarations, they will be emitted on their first use.
538   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
539     // Forward declarations are emitted lazily on first use.
540     if (!FD->isThisDeclarationADefinition())
541       return;
542   } else {
543     const VarDecl *VD = cast<VarDecl>(Global);
544     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
545 
546     // In C++, if this is marked "extern", defer code generation.
547     if (getLangOptions().CPlusPlus && !VD->getInit() &&
548         (VD->getStorageClass() == VarDecl::Extern ||
549          VD->isExternC(getContext())))
550       return;
551 
552     // In C, if this isn't a definition, defer code generation.
553     if (!getLangOptions().CPlusPlus && !VD->getInit())
554       return;
555   }
556 
557   // Defer code generation when possible if this is a static definition, inline
558   // function etc.  These we only want to emit if they are used.
559   if (MayDeferGeneration(Global)) {
560     // If the value has already been used, add it directly to the
561     // DeferredDeclsToEmit list.
562     const char *MangledName = getMangledName(GD);
563     if (GlobalDeclMap.count(MangledName))
564       DeferredDeclsToEmit.push_back(GD);
565     else {
566       // Otherwise, remember that we saw a deferred decl with this name.  The
567       // first use of the mangled name will cause it to move into
568       // DeferredDeclsToEmit.
569       DeferredDecls[MangledName] = GD;
570     }
571     return;
572   }
573 
574   // Otherwise emit the definition.
575   EmitGlobalDefinition(GD);
576 }
577 
578 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
579   const ValueDecl *D = GD.getDecl();
580 
581   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
582     EmitCXXConstructor(CD, GD.getCtorType());
583   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
584     EmitCXXDestructor(DD, GD.getDtorType());
585   else if (isa<FunctionDecl>(D))
586     EmitGlobalFunctionDefinition(GD);
587   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
588     EmitGlobalVarDefinition(VD);
589   else {
590     assert(0 && "Invalid argument to EmitGlobalDefinition()");
591   }
592 }
593 
594 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
595 /// module, create and return an llvm Function with the specified type. If there
596 /// is something in the module with the specified name, return it potentially
597 /// bitcasted to the right type.
598 ///
599 /// If D is non-null, it specifies a decl that correspond to this.  This is used
600 /// to set the attributes on the function when it is first created.
601 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
602                                                        const llvm::Type *Ty,
603                                                        GlobalDecl D) {
604   // Lookup the entry, lazily creating it if necessary.
605   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
606   if (Entry) {
607     if (Entry->getType()->getElementType() == Ty)
608       return Entry;
609 
610     // Make sure the result is of the correct type.
611     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
612     return llvm::ConstantExpr::getBitCast(Entry, PTy);
613   }
614 
615   // This is the first use or definition of a mangled name.  If there is a
616   // deferred decl with this name, remember that we need to emit it at the end
617   // of the file.
618   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
619     DeferredDecls.find(MangledName);
620   if (DDI != DeferredDecls.end()) {
621     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
622     // list, and remove it from DeferredDecls (since we don't need it anymore).
623     DeferredDeclsToEmit.push_back(DDI->second);
624     DeferredDecls.erase(DDI);
625   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
626     // If this the first reference to a C++ inline function in a class, queue up
627     // the deferred function body for emission.  These are not seen as
628     // top-level declarations.
629     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
630       DeferredDeclsToEmit.push_back(D);
631   }
632 
633   // This function doesn't have a complete type (for example, the return
634   // type is an incomplete struct). Use a fake type instead, and make
635   // sure not to try to set attributes.
636   bool IsIncompleteFunction = false;
637   if (!isa<llvm::FunctionType>(Ty)) {
638     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
639                                  std::vector<const llvm::Type*>(), false);
640     IsIncompleteFunction = true;
641   }
642   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
643                                              llvm::Function::ExternalLinkage,
644                                              "", &getModule());
645   F->setName(MangledName);
646   if (D.getDecl())
647     SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
648                           IsIncompleteFunction);
649   Entry = F;
650   return F;
651 }
652 
653 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
654 /// non-null, then this function will use the specified type if it has to
655 /// create it (this occurs when we see a definition of the function).
656 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
657                                                  const llvm::Type *Ty) {
658   // If there was no specific requested type, just convert it now.
659   if (!Ty)
660     Ty = getTypes().ConvertType(GD.getDecl()->getType());
661   return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
662 }
663 
664 /// CreateRuntimeFunction - Create a new runtime function with the specified
665 /// type and name.
666 llvm::Constant *
667 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
668                                      const char *Name) {
669   // Convert Name to be a uniqued string from the IdentifierInfo table.
670   Name = getContext().Idents.get(Name).getName();
671   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
672 }
673 
674 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
675 /// create and return an llvm GlobalVariable with the specified type.  If there
676 /// is something in the module with the specified name, return it potentially
677 /// bitcasted to the right type.
678 ///
679 /// If D is non-null, it specifies a decl that correspond to this.  This is used
680 /// to set the attributes on the global when it is first created.
681 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
682                                                      const llvm::PointerType*Ty,
683                                                      const VarDecl *D) {
684   // Lookup the entry, lazily creating it if necessary.
685   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
686   if (Entry) {
687     if (Entry->getType() == Ty)
688       return Entry;
689 
690     // Make sure the result is of the correct type.
691     return llvm::ConstantExpr::getBitCast(Entry, Ty);
692   }
693 
694   // This is the first use or definition of a mangled name.  If there is a
695   // deferred decl with this name, remember that we need to emit it at the end
696   // of the file.
697   llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
698     DeferredDecls.find(MangledName);
699   if (DDI != DeferredDecls.end()) {
700     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
701     // list, and remove it from DeferredDecls (since we don't need it anymore).
702     DeferredDeclsToEmit.push_back(DDI->second);
703     DeferredDecls.erase(DDI);
704   }
705 
706   llvm::GlobalVariable *GV =
707     new llvm::GlobalVariable(Ty->getElementType(), false,
708                              llvm::GlobalValue::ExternalLinkage,
709                              0, "", &getModule(),
710                              false, Ty->getAddressSpace());
711   GV->setName(MangledName);
712 
713   // Handle things which are present even on external declarations.
714   if (D) {
715     // FIXME: This code is overly simple and should be merged with other global
716     // handling.
717     GV->setConstant(D->getType().isConstant(Context));
718 
719     // FIXME: Merge with other attribute handling code.
720     if (D->getStorageClass() == VarDecl::PrivateExtern)
721       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
722 
723     if (D->hasAttr<WeakAttr>(getContext()) ||
724         D->hasAttr<WeakImportAttr>(getContext()))
725       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
726 
727     GV->setThreadLocal(D->isThreadSpecified());
728   }
729 
730   return Entry = GV;
731 }
732 
733 
734 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
735 /// given global variable.  If Ty is non-null and if the global doesn't exist,
736 /// then it will be greated with the specified type instead of whatever the
737 /// normal requested type would be.
738 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
739                                                   const llvm::Type *Ty) {
740   assert(D->hasGlobalStorage() && "Not a global variable");
741   QualType ASTTy = D->getType();
742   if (Ty == 0)
743     Ty = getTypes().ConvertTypeForMem(ASTTy);
744 
745   const llvm::PointerType *PTy =
746     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
747   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
748 }
749 
750 /// CreateRuntimeVariable - Create a new runtime global variable with the
751 /// specified type and name.
752 llvm::Constant *
753 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
754                                      const char *Name) {
755   // Convert Name to be a uniqued string from the IdentifierInfo table.
756   Name = getContext().Idents.get(Name).getName();
757   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
758 }
759 
760 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
761   assert(!D->getInit() && "Cannot emit definite definitions here!");
762 
763   if (MayDeferGeneration(D)) {
764     // If we have not seen a reference to this variable yet, place it
765     // into the deferred declarations table to be emitted if needed
766     // later.
767     const char *MangledName = getMangledName(D);
768     if (GlobalDeclMap.count(MangledName) == 0) {
769       DeferredDecls[MangledName] = GlobalDecl(D);
770       return;
771     }
772   }
773 
774   // The tentative definition is the only definition.
775   EmitGlobalVarDefinition(D);
776 }
777 
778 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
779   llvm::Constant *Init = 0;
780   QualType ASTTy = D->getType();
781 
782   if (D->getInit() == 0) {
783     // This is a tentative definition; tentative definitions are
784     // implicitly initialized with { 0 }.
785     //
786     // Note that tentative definitions are only emitted at the end of
787     // a translation unit, so they should never have incomplete
788     // type. In addition, EmitTentativeDefinition makes sure that we
789     // never attempt to emit a tentative definition if a real one
790     // exists. A use may still exists, however, so we still may need
791     // to do a RAUW.
792     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
793     Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
794   } else {
795     Init = EmitConstantExpr(D->getInit(), D->getType());
796     if (!Init) {
797       ErrorUnsupported(D, "static initializer");
798       QualType T = D->getInit()->getType();
799       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
800     }
801   }
802 
803   const llvm::Type* InitType = Init->getType();
804   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
805 
806   // Strip off a bitcast if we got one back.
807   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
808     assert(CE->getOpcode() == llvm::Instruction::BitCast);
809     Entry = CE->getOperand(0);
810   }
811 
812   // Entry is now either a Function or GlobalVariable.
813   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
814 
815   // We have a definition after a declaration with the wrong type.
816   // We must make a new GlobalVariable* and update everything that used OldGV
817   // (a declaration or tentative definition) with the new GlobalVariable*
818   // (which will be a definition).
819   //
820   // This happens if there is a prototype for a global (e.g.
821   // "extern int x[];") and then a definition of a different type (e.g.
822   // "int x[10];"). This also happens when an initializer has a different type
823   // from the type of the global (this happens with unions).
824   if (GV == 0 ||
825       GV->getType()->getElementType() != InitType ||
826       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
827 
828     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
829     GlobalDeclMap.erase(getMangledName(D));
830 
831     // Make a new global with the correct type, this is now guaranteed to work.
832     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
833     GV->takeName(cast<llvm::GlobalValue>(Entry));
834 
835     // Replace all uses of the old global with the new global
836     llvm::Constant *NewPtrForOldDecl =
837         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
838     Entry->replaceAllUsesWith(NewPtrForOldDecl);
839 
840     // Erase the old global, since it is no longer used.
841     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
842   }
843 
844   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>(getContext())) {
845     SourceManager &SM = Context.getSourceManager();
846     AddAnnotation(EmitAnnotateAttr(GV, AA,
847                               SM.getInstantiationLineNumber(D->getLocation())));
848   }
849 
850   GV->setInitializer(Init);
851   GV->setConstant(D->getType().isConstant(Context));
852   GV->setAlignment(getContext().getDeclAlignInBytes(D));
853 
854   // Set the llvm linkage type as appropriate.
855   if (D->getStorageClass() == VarDecl::Static)
856     GV->setLinkage(llvm::Function::InternalLinkage);
857   else if (D->hasAttr<DLLImportAttr>(getContext()))
858     GV->setLinkage(llvm::Function::DLLImportLinkage);
859   else if (D->hasAttr<DLLExportAttr>(getContext()))
860     GV->setLinkage(llvm::Function::DLLExportLinkage);
861   else if (D->hasAttr<WeakAttr>(getContext()))
862     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
863   else if (!CompileOpts.NoCommon &&
864            (!D->hasExternalStorage() && !D->getInit()))
865     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
866   else
867     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
868 
869   SetCommonAttributes(D, GV);
870 
871   // Emit global variable debug information.
872   if (CGDebugInfo *DI = getDebugInfo()) {
873     DI->setLocation(D->getLocation());
874     DI->EmitGlobalVariable(GV, D);
875   }
876 }
877 
878 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
879 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
880 /// existing call uses of the old function in the module, this adjusts them to
881 /// call the new function directly.
882 ///
883 /// This is not just a cleanup: the always_inline pass requires direct calls to
884 /// functions to be able to inline them.  If there is a bitcast in the way, it
885 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
886 /// run at -O0.
887 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
888                                                       llvm::Function *NewFn) {
889   // If we're redefining a global as a function, don't transform it.
890   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
891   if (OldFn == 0) return;
892 
893   const llvm::Type *NewRetTy = NewFn->getReturnType();
894   llvm::SmallVector<llvm::Value*, 4> ArgList;
895 
896   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
897        UI != E; ) {
898     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
899     unsigned OpNo = UI.getOperandNo();
900     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
901     if (!CI || OpNo != 0) continue;
902 
903     // If the return types don't match exactly, and if the call isn't dead, then
904     // we can't transform this call.
905     if (CI->getType() != NewRetTy && !CI->use_empty())
906       continue;
907 
908     // If the function was passed too few arguments, don't transform.  If extra
909     // arguments were passed, we silently drop them.  If any of the types
910     // mismatch, we don't transform.
911     unsigned ArgNo = 0;
912     bool DontTransform = false;
913     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
914          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
915       if (CI->getNumOperands()-1 == ArgNo ||
916           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
917         DontTransform = true;
918         break;
919       }
920     }
921     if (DontTransform)
922       continue;
923 
924     // Okay, we can transform this.  Create the new call instruction and copy
925     // over the required information.
926     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
927     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
928                                                      ArgList.end(), "", CI);
929     ArgList.clear();
930     if (NewCall->getType() != llvm::Type::VoidTy)
931       NewCall->takeName(CI);
932     NewCall->setCallingConv(CI->getCallingConv());
933     NewCall->setAttributes(CI->getAttributes());
934 
935     // Finally, remove the old call, replacing any uses with the new one.
936     if (!CI->use_empty())
937       CI->replaceAllUsesWith(NewCall);
938     CI->eraseFromParent();
939   }
940 }
941 
942 
943 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
944   const llvm::FunctionType *Ty;
945   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
946 
947   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
948     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
949 
950     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
951   } else {
952     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
953 
954     // As a special case, make sure that definitions of K&R function
955     // "type foo()" aren't declared as varargs (which forces the backend
956     // to do unnecessary work).
957     if (D->getType()->isFunctionNoProtoType()) {
958       assert(Ty->isVarArg() && "Didn't lower type as expected");
959       // Due to stret, the lowered function could have arguments.
960       // Just create the same type as was lowered by ConvertType
961       // but strip off the varargs bit.
962       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
963       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
964     }
965   }
966 
967   // Get or create the prototype for the function.
968   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
969 
970   // Strip off a bitcast if we got one back.
971   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
972     assert(CE->getOpcode() == llvm::Instruction::BitCast);
973     Entry = CE->getOperand(0);
974   }
975 
976 
977   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
978     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
979 
980     // If the types mismatch then we have to rewrite the definition.
981     assert(OldFn->isDeclaration() &&
982            "Shouldn't replace non-declaration");
983 
984     // F is the Function* for the one with the wrong type, we must make a new
985     // Function* and update everything that used F (a declaration) with the new
986     // Function* (which will be a definition).
987     //
988     // This happens if there is a prototype for a function
989     // (e.g. "int f()") and then a definition of a different type
990     // (e.g. "int f(int x)").  Start by making a new function of the
991     // correct type, RAUW, then steal the name.
992     GlobalDeclMap.erase(getMangledName(D));
993     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
994     NewFn->takeName(OldFn);
995 
996     // If this is an implementation of a function without a prototype, try to
997     // replace any existing uses of the function (which may be calls) with uses
998     // of the new function
999     if (D->getType()->isFunctionNoProtoType()) {
1000       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1001       OldFn->removeDeadConstantUsers();
1002     }
1003 
1004     // Replace uses of F with the Function we will endow with a body.
1005     if (!Entry->use_empty()) {
1006       llvm::Constant *NewPtrForOldDecl =
1007         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1008       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1009     }
1010 
1011     // Ok, delete the old function now, which is dead.
1012     OldFn->eraseFromParent();
1013 
1014     Entry = NewFn;
1015   }
1016 
1017   llvm::Function *Fn = cast<llvm::Function>(Entry);
1018 
1019   CodeGenFunction(*this).GenerateCode(D, Fn);
1020 
1021   SetFunctionDefinitionAttributes(D, Fn);
1022   SetLLVMFunctionAttributesForDefinition(D, Fn);
1023 
1024   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>(getContext()))
1025     AddGlobalCtor(Fn, CA->getPriority());
1026   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>(getContext()))
1027     AddGlobalDtor(Fn, DA->getPriority());
1028 }
1029 
1030 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1031   const AliasAttr *AA = D->getAttr<AliasAttr>(getContext());
1032   assert(AA && "Not an alias?");
1033 
1034   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1035 
1036   // Unique the name through the identifier table.
1037   const char *AliaseeName = AA->getAliasee().c_str();
1038   AliaseeName = getContext().Idents.get(AliaseeName).getName();
1039 
1040   // Create a reference to the named value.  This ensures that it is emitted
1041   // if a deferred decl.
1042   llvm::Constant *Aliasee;
1043   if (isa<llvm::FunctionType>(DeclTy))
1044     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1045   else
1046     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1047                                     llvm::PointerType::getUnqual(DeclTy), 0);
1048 
1049   // Create the new alias itself, but don't set a name yet.
1050   llvm::GlobalValue *GA =
1051     new llvm::GlobalAlias(Aliasee->getType(),
1052                           llvm::Function::ExternalLinkage,
1053                           "", Aliasee, &getModule());
1054 
1055   // See if there is already something with the alias' name in the module.
1056   const char *MangledName = getMangledName(D);
1057   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1058 
1059   if (Entry && !Entry->isDeclaration()) {
1060     // If there is a definition in the module, then it wins over the alias.
1061     // This is dubious, but allow it to be safe.  Just ignore the alias.
1062     GA->eraseFromParent();
1063     return;
1064   }
1065 
1066   if (Entry) {
1067     // If there is a declaration in the module, then we had an extern followed
1068     // by the alias, as in:
1069     //   extern int test6();
1070     //   ...
1071     //   int test6() __attribute__((alias("test7")));
1072     //
1073     // Remove it and replace uses of it with the alias.
1074 
1075     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1076                                                           Entry->getType()));
1077     Entry->eraseFromParent();
1078   }
1079 
1080   // Now we know that there is no conflict, set the name.
1081   Entry = GA;
1082   GA->setName(MangledName);
1083 
1084   // Set attributes which are particular to an alias; this is a
1085   // specialization of the attributes which may be set on a global
1086   // variable/function.
1087   if (D->hasAttr<DLLExportAttr>(getContext())) {
1088     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1089       // The dllexport attribute is ignored for undefined symbols.
1090       if (FD->getBody(getContext()))
1091         GA->setLinkage(llvm::Function::DLLExportLinkage);
1092     } else {
1093       GA->setLinkage(llvm::Function::DLLExportLinkage);
1094     }
1095   } else if (D->hasAttr<WeakAttr>(getContext()) ||
1096              D->hasAttr<WeakImportAttr>(getContext())) {
1097     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1098   }
1099 
1100   SetCommonAttributes(D, GA);
1101 }
1102 
1103 /// getBuiltinLibFunction - Given a builtin id for a function like
1104 /// "__builtin_fabsf", return a Function* for "fabsf".
1105 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1106   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1107           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1108          "isn't a lib fn");
1109 
1110   // Get the name, skip over the __builtin_ prefix (if necessary).
1111   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1112   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1113     Name += 10;
1114 
1115   // Get the type for the builtin.
1116   ASTContext::GetBuiltinTypeError Error;
1117   QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1118   assert(Error == ASTContext::GE_None && "Can't get builtin type");
1119 
1120   const llvm::FunctionType *Ty =
1121     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1122 
1123   // Unique the name through the identifier table.
1124   Name = getContext().Idents.get(Name).getName();
1125   // FIXME: param attributes for sext/zext etc.
1126   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1127 }
1128 
1129 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1130                                             unsigned NumTys) {
1131   return llvm::Intrinsic::getDeclaration(&getModule(),
1132                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1133 }
1134 
1135 llvm::Function *CodeGenModule::getMemCpyFn() {
1136   if (MemCpyFn) return MemCpyFn;
1137   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1138   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1139 }
1140 
1141 llvm::Function *CodeGenModule::getMemMoveFn() {
1142   if (MemMoveFn) return MemMoveFn;
1143   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1144   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1145 }
1146 
1147 llvm::Function *CodeGenModule::getMemSetFn() {
1148   if (MemSetFn) return MemSetFn;
1149   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1150   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1151 }
1152 
1153 static void appendFieldAndPadding(CodeGenModule &CGM,
1154                                   std::vector<llvm::Constant*>& Fields,
1155                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1156                                   llvm::Constant* Field,
1157                                   RecordDecl* RD, const llvm::StructType *STy) {
1158   // Append the field.
1159   Fields.push_back(Field);
1160 
1161   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1162 
1163   int NextStructFieldNo;
1164   if (!NextFieldD) {
1165     NextStructFieldNo = STy->getNumElements();
1166   } else {
1167     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1168   }
1169 
1170   // Append padding
1171   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1172     llvm::Constant *C =
1173       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1174 
1175     Fields.push_back(C);
1176   }
1177 }
1178 
1179 llvm::Constant *CodeGenModule::
1180 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1181   std::string str;
1182   unsigned StringLength = 0;
1183 
1184   bool isUTF16 = false;
1185   if (Literal->containsNonAsciiOrNull()) {
1186     // Convert from UTF-8 to UTF-16.
1187     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1188     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1189     UTF16 *ToPtr = &ToBuf[0];
1190 
1191     ConversionResult Result;
1192     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1193                                 &ToPtr, ToPtr+Literal->getByteLength(),
1194                                 strictConversion);
1195     if (Result == conversionOK) {
1196       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1197       // without doing more surgery to this routine. Since we aren't explicitly
1198       // checking for endianness here, it's also a bug (when generating code for
1199       // a target that doesn't match the host endianness). Modeling this as an
1200       // i16 array is likely the cleanest solution.
1201       StringLength = ToPtr-&ToBuf[0];
1202       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1203       isUTF16 = true;
1204     } else if (Result == sourceIllegal) {
1205       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1206       str.assign(Literal->getStrData(), Literal->getByteLength());
1207       StringLength = str.length();
1208     } else
1209       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1210 
1211   } else {
1212     str.assign(Literal->getStrData(), Literal->getByteLength());
1213     StringLength = str.length();
1214   }
1215   llvm::StringMapEntry<llvm::Constant *> &Entry =
1216     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1217 
1218   if (llvm::Constant *C = Entry.getValue())
1219     return C;
1220 
1221   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1222   llvm::Constant *Zeros[] = { Zero, Zero };
1223 
1224   if (!CFConstantStringClassRef) {
1225     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1226     Ty = llvm::ArrayType::get(Ty, 0);
1227 
1228     // FIXME: This is fairly broken if __CFConstantStringClassReference is
1229     // already defined, in that it will get renamed and the user will most
1230     // likely see an opaque error message. This is a general issue with relying
1231     // on particular names.
1232     llvm::GlobalVariable *GV =
1233       new llvm::GlobalVariable(Ty, false,
1234                                llvm::GlobalVariable::ExternalLinkage, 0,
1235                                "__CFConstantStringClassReference",
1236                                &getModule());
1237 
1238     // Decay array -> ptr
1239     CFConstantStringClassRef =
1240       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1241   }
1242 
1243   QualType CFTy = getContext().getCFConstantStringType();
1244   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1245 
1246   const llvm::StructType *STy =
1247     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1248 
1249   std::vector<llvm::Constant*> Fields;
1250   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1251 
1252   // Class pointer.
1253   FieldDecl *CurField = *Field++;
1254   FieldDecl *NextField = *Field++;
1255   appendFieldAndPadding(*this, Fields, CurField, NextField,
1256                         CFConstantStringClassRef, CFRD, STy);
1257 
1258   // Flags.
1259   CurField = NextField;
1260   NextField = *Field++;
1261   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1262   appendFieldAndPadding(*this, Fields, CurField, NextField,
1263                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1264                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1265                         CFRD, STy);
1266 
1267   // String pointer.
1268   CurField = NextField;
1269   NextField = *Field++;
1270   llvm::Constant *C = llvm::ConstantArray::get(str);
1271 
1272   const char *Sect, *Prefix;
1273   bool isConstant;
1274   if (isUTF16) {
1275     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1276     Sect = getContext().Target.getUnicodeStringSection();
1277     // FIXME: Why does GCC not set constant here?
1278     isConstant = false;
1279   } else {
1280     Prefix = getContext().Target.getStringSymbolPrefix(true);
1281     Sect = getContext().Target.getCFStringDataSection();
1282     // FIXME: -fwritable-strings should probably affect this, but we
1283     // are following gcc here.
1284     isConstant = true;
1285   }
1286   llvm::GlobalVariable *GV =
1287     new llvm::GlobalVariable(C->getType(), isConstant,
1288                              llvm::GlobalValue::InternalLinkage,
1289                              C, Prefix, &getModule());
1290   if (Sect)
1291     GV->setSection(Sect);
1292   if (isUTF16) {
1293     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1294     GV->setAlignment(Align);
1295   }
1296   appendFieldAndPadding(*this, Fields, CurField, NextField,
1297                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1298                         CFRD, STy);
1299 
1300   // String length.
1301   CurField = NextField;
1302   NextField = 0;
1303   Ty = getTypes().ConvertType(getContext().LongTy);
1304   appendFieldAndPadding(*this, Fields, CurField, NextField,
1305                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1306 
1307   // The struct.
1308   C = llvm::ConstantStruct::get(STy, Fields);
1309   GV = new llvm::GlobalVariable(C->getType(), true,
1310                                 llvm::GlobalVariable::InternalLinkage, C,
1311                                 getContext().Target.getCFStringSymbolPrefix(),
1312                                 &getModule());
1313   if (const char *Sect = getContext().Target.getCFStringSection())
1314     GV->setSection(Sect);
1315   Entry.setValue(GV);
1316 
1317   return GV;
1318 }
1319 
1320 /// GetStringForStringLiteral - Return the appropriate bytes for a
1321 /// string literal, properly padded to match the literal type.
1322 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1323   const char *StrData = E->getStrData();
1324   unsigned Len = E->getByteLength();
1325 
1326   const ConstantArrayType *CAT =
1327     getContext().getAsConstantArrayType(E->getType());
1328   assert(CAT && "String isn't pointer or array!");
1329 
1330   // Resize the string to the right size.
1331   std::string Str(StrData, StrData+Len);
1332   uint64_t RealLen = CAT->getSize().getZExtValue();
1333 
1334   if (E->isWide())
1335     RealLen *= getContext().Target.getWCharWidth()/8;
1336 
1337   Str.resize(RealLen, '\0');
1338 
1339   return Str;
1340 }
1341 
1342 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1343 /// constant array for the given string literal.
1344 llvm::Constant *
1345 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1346   // FIXME: This can be more efficient.
1347   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1348 }
1349 
1350 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1351 /// array for the given ObjCEncodeExpr node.
1352 llvm::Constant *
1353 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1354   std::string Str;
1355   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1356 
1357   return GetAddrOfConstantCString(Str);
1358 }
1359 
1360 
1361 /// GenerateWritableString -- Creates storage for a string literal.
1362 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1363                                              bool constant,
1364                                              CodeGenModule &CGM,
1365                                              const char *GlobalName) {
1366   // Create Constant for this string literal. Don't add a '\0'.
1367   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1368 
1369   // Create a global variable for this string
1370   return new llvm::GlobalVariable(C->getType(), constant,
1371                                   llvm::GlobalValue::InternalLinkage,
1372                                   C, GlobalName, &CGM.getModule());
1373 }
1374 
1375 /// GetAddrOfConstantString - Returns a pointer to a character array
1376 /// containing the literal. This contents are exactly that of the
1377 /// given string, i.e. it will not be null terminated automatically;
1378 /// see GetAddrOfConstantCString. Note that whether the result is
1379 /// actually a pointer to an LLVM constant depends on
1380 /// Feature.WriteableStrings.
1381 ///
1382 /// The result has pointer to array type.
1383 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1384                                                        const char *GlobalName) {
1385   bool IsConstant = !Features.WritableStrings;
1386 
1387   // Get the default prefix if a name wasn't specified.
1388   if (!GlobalName)
1389     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1390 
1391   // Don't share any string literals if strings aren't constant.
1392   if (!IsConstant)
1393     return GenerateStringLiteral(str, false, *this, GlobalName);
1394 
1395   llvm::StringMapEntry<llvm::Constant *> &Entry =
1396   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1397 
1398   if (Entry.getValue())
1399     return Entry.getValue();
1400 
1401   // Create a global variable for this.
1402   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1403   Entry.setValue(C);
1404   return C;
1405 }
1406 
1407 /// GetAddrOfConstantCString - Returns a pointer to a character
1408 /// array containing the literal and a terminating '\-'
1409 /// character. The result has pointer to array type.
1410 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1411                                                         const char *GlobalName){
1412   return GetAddrOfConstantString(str + '\0', GlobalName);
1413 }
1414 
1415 /// EmitObjCPropertyImplementations - Emit information for synthesized
1416 /// properties for an implementation.
1417 void CodeGenModule::EmitObjCPropertyImplementations(const
1418                                                     ObjCImplementationDecl *D) {
1419   for (ObjCImplementationDecl::propimpl_iterator
1420          i = D->propimpl_begin(getContext()),
1421          e = D->propimpl_end(getContext()); i != e; ++i) {
1422     ObjCPropertyImplDecl *PID = *i;
1423 
1424     // Dynamic is just for type-checking.
1425     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1426       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1427 
1428       // Determine which methods need to be implemented, some may have
1429       // been overridden. Note that ::isSynthesized is not the method
1430       // we want, that just indicates if the decl came from a
1431       // property. What we want to know is if the method is defined in
1432       // this implementation.
1433       if (!D->getInstanceMethod(getContext(), PD->getGetterName()))
1434         CodeGenFunction(*this).GenerateObjCGetter(
1435                                  const_cast<ObjCImplementationDecl *>(D), PID);
1436       if (!PD->isReadOnly() &&
1437           !D->getInstanceMethod(getContext(), PD->getSetterName()))
1438         CodeGenFunction(*this).GenerateObjCSetter(
1439                                  const_cast<ObjCImplementationDecl *>(D), PID);
1440     }
1441   }
1442 }
1443 
1444 /// EmitNamespace - Emit all declarations in a namespace.
1445 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1446   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1447          E = ND->decls_end(getContext());
1448        I != E; ++I)
1449     EmitTopLevelDecl(*I);
1450 }
1451 
1452 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1453 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1454   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1455     ErrorUnsupported(LSD, "linkage spec");
1456     return;
1457   }
1458 
1459   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1460          E = LSD->decls_end(getContext());
1461        I != E; ++I)
1462     EmitTopLevelDecl(*I);
1463 }
1464 
1465 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1466 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1467   // If an error has occurred, stop code generation, but continue
1468   // parsing and semantic analysis (to ensure all warnings and errors
1469   // are emitted).
1470   if (Diags.hasErrorOccurred())
1471     return;
1472 
1473   switch (D->getKind()) {
1474   case Decl::CXXMethod:
1475   case Decl::Function:
1476   case Decl::Var:
1477     EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1478     break;
1479 
1480   // C++ Decls
1481   case Decl::Namespace:
1482     EmitNamespace(cast<NamespaceDecl>(D));
1483     break;
1484     // No code generation needed.
1485   case Decl::Using:
1486     break;
1487   case Decl::CXXConstructor:
1488     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1489     break;
1490   case Decl::CXXDestructor:
1491     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1492     break;
1493 
1494   case Decl::StaticAssert:
1495     // Nothing to do.
1496     break;
1497 
1498   // Objective-C Decls
1499 
1500   // Forward declarations, no (immediate) code generation.
1501   case Decl::ObjCClass:
1502   case Decl::ObjCForwardProtocol:
1503   case Decl::ObjCCategory:
1504   case Decl::ObjCInterface:
1505     break;
1506 
1507   case Decl::ObjCProtocol:
1508     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1509     break;
1510 
1511   case Decl::ObjCCategoryImpl:
1512     // Categories have properties but don't support synthesize so we
1513     // can ignore them here.
1514     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1515     break;
1516 
1517   case Decl::ObjCImplementation: {
1518     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1519     EmitObjCPropertyImplementations(OMD);
1520     Runtime->GenerateClass(OMD);
1521     break;
1522   }
1523   case Decl::ObjCMethod: {
1524     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1525     // If this is not a prototype, emit the body.
1526     if (OMD->getBody(getContext()))
1527       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1528     break;
1529   }
1530   case Decl::ObjCCompatibleAlias:
1531     // compatibility-alias is a directive and has no code gen.
1532     break;
1533 
1534   case Decl::LinkageSpec:
1535     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1536     break;
1537 
1538   case Decl::FileScopeAsm: {
1539     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1540     std::string AsmString(AD->getAsmString()->getStrData(),
1541                           AD->getAsmString()->getByteLength());
1542 
1543     const std::string &S = getModule().getModuleInlineAsm();
1544     if (S.empty())
1545       getModule().setModuleInlineAsm(AsmString);
1546     else
1547       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1548     break;
1549   }
1550 
1551   default:
1552     // Make sure we handled everything we should, every other kind is a
1553     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1554     // function. Need to recode Decl::Kind to do that easily.
1555     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1556   }
1557 }
1558