1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "TargetInfo.h"
21 #include "clang/CodeGen/CodeGenOptions.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/CharUnits.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/RecordLayout.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/Diagnostic.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "clang/Basic/ConvertUTF.h"
32 #include "llvm/CallingConv.h"
33 #include "llvm/Module.h"
34 #include "llvm/Intrinsics.h"
35 #include "llvm/LLVMContext.h"
36 #include "llvm/ADT/Triple.h"
37 #include "llvm/Target/TargetData.h"
38 #include "llvm/Support/ErrorHandling.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 
43 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
44                              llvm::Module &M, const llvm::TargetData &TD,
45                              Diagnostic &diags)
46   : BlockModule(C, M, TD, Types, *this), Context(C),
47     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
48     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
49     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
50     MangleCtx(C), VtableInfo(*this), Runtime(0),
51     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
52     VMContext(M.getContext()) {
53 
54   if (!Features.ObjC1)
55     Runtime = 0;
56   else if (!Features.NeXTRuntime)
57     Runtime = CreateGNUObjCRuntime(*this);
58   else if (Features.ObjCNonFragileABI)
59     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
60   else
61     Runtime = CreateMacObjCRuntime(*this);
62 
63   // If debug info generation is enabled, create the CGDebugInfo object.
64   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
65 }
66 
67 CodeGenModule::~CodeGenModule() {
68   delete Runtime;
69   delete DebugInfo;
70 }
71 
72 void CodeGenModule::createObjCRuntime() {
73   if (!Features.NeXTRuntime)
74     Runtime = CreateGNUObjCRuntime(*this);
75   else if (Features.ObjCNonFragileABI)
76     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
77   else
78     Runtime = CreateMacObjCRuntime(*this);
79 }
80 
81 void CodeGenModule::Release() {
82   EmitDeferred();
83   EmitCXXGlobalInitFunc();
84   EmitCXXGlobalDtorFunc();
85   if (Runtime)
86     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
87       AddGlobalCtor(ObjCInitFunction);
88   EmitCtorList(GlobalCtors, "llvm.global_ctors");
89   EmitCtorList(GlobalDtors, "llvm.global_dtors");
90   EmitAnnotations();
91   EmitLLVMUsed();
92 }
93 
94 bool CodeGenModule::isTargetDarwin() const {
95   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
96 }
97 
98 /// ErrorUnsupported - Print out an error that codegen doesn't support the
99 /// specified stmt yet.
100 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
101                                      bool OmitOnError) {
102   if (OmitOnError && getDiags().hasErrorOccurred())
103     return;
104   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
105                                                "cannot compile this %0 yet");
106   std::string Msg = Type;
107   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
108     << Msg << S->getSourceRange();
109 }
110 
111 /// ErrorUnsupported - Print out an error that codegen doesn't support the
112 /// specified decl yet.
113 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
114                                      bool OmitOnError) {
115   if (OmitOnError && getDiags().hasErrorOccurred())
116     return;
117   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
118                                                "cannot compile this %0 yet");
119   std::string Msg = Type;
120   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
121 }
122 
123 LangOptions::VisibilityMode
124 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
125   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
126     if (VD->getStorageClass() == VarDecl::PrivateExtern)
127       return LangOptions::Hidden;
128 
129   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
130     switch (attr->getVisibility()) {
131     default: assert(0 && "Unknown visibility!");
132     case VisibilityAttr::DefaultVisibility:
133       return LangOptions::Default;
134     case VisibilityAttr::HiddenVisibility:
135       return LangOptions::Hidden;
136     case VisibilityAttr::ProtectedVisibility:
137       return LangOptions::Protected;
138     }
139   }
140 
141   // This decl should have the same visibility as its parent.
142   if (const DeclContext *DC = D->getDeclContext())
143     return getDeclVisibilityMode(cast<Decl>(DC));
144 
145   return getLangOptions().getVisibilityMode();
146 }
147 
148 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
149                                         const Decl *D) const {
150   // Internal definitions always have default visibility.
151   if (GV->hasLocalLinkage()) {
152     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
153     return;
154   }
155 
156   switch (getDeclVisibilityMode(D)) {
157   default: assert(0 && "Unknown visibility!");
158   case LangOptions::Default:
159     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
160   case LangOptions::Hidden:
161     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
162   case LangOptions::Protected:
163     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
164   }
165 }
166 
167 void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) {
168   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
169 
170   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
171     return getMangledCXXCtorName(Buffer, D, GD.getCtorType());
172   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
173     return getMangledCXXDtorName(Buffer, D, GD.getDtorType());
174 
175   return getMangledName(Buffer, ND);
176 }
177 
178 /// \brief Retrieves the mangled name for the given declaration.
179 ///
180 /// If the given declaration requires a mangled name, returns an
181 /// const char* containing the mangled name.  Otherwise, returns
182 /// the unmangled name.
183 ///
184 void CodeGenModule::getMangledName(MangleBuffer &Buffer,
185                                    const NamedDecl *ND) {
186   if (!getMangleContext().shouldMangleDeclName(ND)) {
187     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
188     Buffer.setString(ND->getNameAsCString());
189     return;
190   }
191 
192   getMangleContext().mangleName(ND, Buffer.getBuffer());
193 }
194 
195 llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
196   return getModule().getNamedValue(Name);
197 }
198 
199 /// AddGlobalCtor - Add a function to the list that will be called before
200 /// main() runs.
201 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
202   // FIXME: Type coercion of void()* types.
203   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
204 }
205 
206 /// AddGlobalDtor - Add a function to the list that will be called
207 /// when the module is unloaded.
208 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
209   // FIXME: Type coercion of void()* types.
210   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
211 }
212 
213 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
214   // Ctor function type is void()*.
215   llvm::FunctionType* CtorFTy =
216     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
217                             std::vector<const llvm::Type*>(),
218                             false);
219   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
220 
221   // Get the type of a ctor entry, { i32, void ()* }.
222   llvm::StructType* CtorStructTy =
223     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
224                           llvm::PointerType::getUnqual(CtorFTy), NULL);
225 
226   // Construct the constructor and destructor arrays.
227   std::vector<llvm::Constant*> Ctors;
228   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
229     std::vector<llvm::Constant*> S;
230     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
231                 I->second, false));
232     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
233     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
234   }
235 
236   if (!Ctors.empty()) {
237     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
238     new llvm::GlobalVariable(TheModule, AT, false,
239                              llvm::GlobalValue::AppendingLinkage,
240                              llvm::ConstantArray::get(AT, Ctors),
241                              GlobalName);
242   }
243 }
244 
245 void CodeGenModule::EmitAnnotations() {
246   if (Annotations.empty())
247     return;
248 
249   // Create a new global variable for the ConstantStruct in the Module.
250   llvm::Constant *Array =
251   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
252                                                 Annotations.size()),
253                            Annotations);
254   llvm::GlobalValue *gv =
255   new llvm::GlobalVariable(TheModule, Array->getType(), false,
256                            llvm::GlobalValue::AppendingLinkage, Array,
257                            "llvm.global.annotations");
258   gv->setSection("llvm.metadata");
259 }
260 
261 static CodeGenModule::GVALinkage
262 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
263                       const LangOptions &Features) {
264   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
265 
266   Linkage L = FD->getLinkage();
267   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
268       FD->getType()->getLinkage() == UniqueExternalLinkage)
269     L = UniqueExternalLinkage;
270 
271   switch (L) {
272   case NoLinkage:
273   case InternalLinkage:
274   case UniqueExternalLinkage:
275     return CodeGenModule::GVA_Internal;
276 
277   case ExternalLinkage:
278     switch (FD->getTemplateSpecializationKind()) {
279     case TSK_Undeclared:
280     case TSK_ExplicitSpecialization:
281       External = CodeGenModule::GVA_StrongExternal;
282       break;
283 
284     case TSK_ExplicitInstantiationDefinition:
285       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
286 
287     case TSK_ExplicitInstantiationDeclaration:
288     case TSK_ImplicitInstantiation:
289       External = CodeGenModule::GVA_TemplateInstantiation;
290       break;
291     }
292   }
293 
294   if (!FD->isInlined())
295     return External;
296 
297   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
298     // GNU or C99 inline semantics. Determine whether this symbol should be
299     // externally visible.
300     if (FD->isInlineDefinitionExternallyVisible())
301       return External;
302 
303     // C99 inline semantics, where the symbol is not externally visible.
304     return CodeGenModule::GVA_C99Inline;
305   }
306 
307   // C++0x [temp.explicit]p9:
308   //   [ Note: The intent is that an inline function that is the subject of
309   //   an explicit instantiation declaration will still be implicitly
310   //   instantiated when used so that the body can be considered for
311   //   inlining, but that no out-of-line copy of the inline function would be
312   //   generated in the translation unit. -- end note ]
313   if (FD->getTemplateSpecializationKind()
314                                        == TSK_ExplicitInstantiationDeclaration)
315     return CodeGenModule::GVA_C99Inline;
316 
317   return CodeGenModule::GVA_CXXInline;
318 }
319 
320 llvm::GlobalValue::LinkageTypes
321 CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
322   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
323 
324   if (Linkage == GVA_Internal) {
325     return llvm::Function::InternalLinkage;
326   } else if (D->hasAttr<DLLExportAttr>()) {
327     return llvm::Function::DLLExportLinkage;
328   } else if (D->hasAttr<WeakAttr>()) {
329     return llvm::Function::WeakAnyLinkage;
330   } else if (Linkage == GVA_C99Inline) {
331     // In C99 mode, 'inline' functions are guaranteed to have a strong
332     // definition somewhere else, so we can use available_externally linkage.
333     return llvm::Function::AvailableExternallyLinkage;
334   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
335     // In C++, the compiler has to emit a definition in every translation unit
336     // that references the function.  We should use linkonce_odr because
337     // a) if all references in this translation unit are optimized away, we
338     // don't need to codegen it.  b) if the function persists, it needs to be
339     // merged with other definitions. c) C++ has the ODR, so we know the
340     // definition is dependable.
341     return llvm::Function::LinkOnceODRLinkage;
342   } else if (Linkage == GVA_ExplicitTemplateInstantiation) {
343     // An explicit instantiation of a template has weak linkage, since
344     // explicit instantiations can occur in multiple translation units
345     // and must all be equivalent. However, we are not allowed to
346     // throw away these explicit instantiations.
347     return llvm::Function::WeakODRLinkage;
348   } else {
349     assert(Linkage == GVA_StrongExternal);
350     // Otherwise, we have strong external linkage.
351     return llvm::Function::ExternalLinkage;
352   }
353 }
354 
355 
356 /// SetFunctionDefinitionAttributes - Set attributes for a global.
357 ///
358 /// FIXME: This is currently only done for aliases and functions, but not for
359 /// variables (these details are set in EmitGlobalVarDefinition for variables).
360 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
361                                                     llvm::GlobalValue *GV) {
362   GV->setLinkage(getFunctionLinkage(D));
363   SetCommonAttributes(D, GV);
364 }
365 
366 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
367                                               const CGFunctionInfo &Info,
368                                               llvm::Function *F) {
369   unsigned CallingConv;
370   AttributeListType AttributeList;
371   ConstructAttributeList(Info, D, AttributeList, CallingConv);
372   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
373                                           AttributeList.size()));
374   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
375 }
376 
377 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
378                                                            llvm::Function *F) {
379   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
380     F->addFnAttr(llvm::Attribute::NoUnwind);
381 
382   if (D->hasAttr<AlwaysInlineAttr>())
383     F->addFnAttr(llvm::Attribute::AlwaysInline);
384 
385   if (D->hasAttr<NoInlineAttr>())
386     F->addFnAttr(llvm::Attribute::NoInline);
387 
388   if (Features.getStackProtectorMode() == LangOptions::SSPOn)
389     F->addFnAttr(llvm::Attribute::StackProtect);
390   else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
391     F->addFnAttr(llvm::Attribute::StackProtectReq);
392 
393   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
394     unsigned width = Context.Target.getCharWidth();
395     F->setAlignment(AA->getAlignment() / width);
396     while ((AA = AA->getNext<AlignedAttr>()))
397       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
398   }
399   // C++ ABI requires 2-byte alignment for member functions.
400   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
401     F->setAlignment(2);
402 }
403 
404 void CodeGenModule::SetCommonAttributes(const Decl *D,
405                                         llvm::GlobalValue *GV) {
406   setGlobalVisibility(GV, D);
407 
408   if (D->hasAttr<UsedAttr>())
409     AddUsedGlobal(GV);
410 
411   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
412     GV->setSection(SA->getName());
413 
414   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
415 }
416 
417 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
418                                                   llvm::Function *F,
419                                                   const CGFunctionInfo &FI) {
420   SetLLVMFunctionAttributes(D, FI, F);
421   SetLLVMFunctionAttributesForDefinition(D, F);
422 
423   F->setLinkage(llvm::Function::InternalLinkage);
424 
425   SetCommonAttributes(D, F);
426 }
427 
428 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
429                                           llvm::Function *F,
430                                           bool IsIncompleteFunction) {
431   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
432 
433   if (!IsIncompleteFunction)
434     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
435 
436   // Only a few attributes are set on declarations; these may later be
437   // overridden by a definition.
438 
439   if (FD->hasAttr<DLLImportAttr>()) {
440     F->setLinkage(llvm::Function::DLLImportLinkage);
441   } else if (FD->hasAttr<WeakAttr>() ||
442              FD->hasAttr<WeakImportAttr>()) {
443     // "extern_weak" is overloaded in LLVM; we probably should have
444     // separate linkage types for this.
445     F->setLinkage(llvm::Function::ExternalWeakLinkage);
446   } else {
447     F->setLinkage(llvm::Function::ExternalLinkage);
448   }
449 
450   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
451     F->setSection(SA->getName());
452 }
453 
454 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
455   assert(!GV->isDeclaration() &&
456          "Only globals with definition can force usage.");
457   LLVMUsed.push_back(GV);
458 }
459 
460 void CodeGenModule::EmitLLVMUsed() {
461   // Don't create llvm.used if there is no need.
462   if (LLVMUsed.empty())
463     return;
464 
465   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
466 
467   // Convert LLVMUsed to what ConstantArray needs.
468   std::vector<llvm::Constant*> UsedArray;
469   UsedArray.resize(LLVMUsed.size());
470   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
471     UsedArray[i] =
472      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
473                                       i8PTy);
474   }
475 
476   if (UsedArray.empty())
477     return;
478   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
479 
480   llvm::GlobalVariable *GV =
481     new llvm::GlobalVariable(getModule(), ATy, false,
482                              llvm::GlobalValue::AppendingLinkage,
483                              llvm::ConstantArray::get(ATy, UsedArray),
484                              "llvm.used");
485 
486   GV->setSection("llvm.metadata");
487 }
488 
489 void CodeGenModule::EmitDeferred() {
490   // Emit code for any potentially referenced deferred decls.  Since a
491   // previously unused static decl may become used during the generation of code
492   // for a static function, iterate until no  changes are made.
493 
494   while (!DeferredDeclsToEmit.empty() || !DeferredVtables.empty()) {
495     if (!DeferredVtables.empty()) {
496       const CXXRecordDecl *RD = DeferredVtables.back();
497       DeferredVtables.pop_back();
498       getVtableInfo().GenerateClassData(getVtableLinkage(RD), RD);
499       continue;
500     }
501 
502     GlobalDecl D = DeferredDeclsToEmit.back();
503     DeferredDeclsToEmit.pop_back();
504 
505     // Look it up to see if it was defined with a stronger definition (e.g. an
506     // extern inline function with a strong function redefinition).  If so,
507     // just ignore the deferred decl.
508     MangleBuffer Name;
509     getMangledName(Name, D);
510     llvm::GlobalValue *CGRef = GetGlobalValue(Name);
511     assert(CGRef && "Deferred decl wasn't referenced?");
512 
513     if (!CGRef->isDeclaration())
514       continue;
515 
516     // Otherwise, emit the definition and move on to the next one.
517     EmitGlobalDefinition(D);
518   }
519 }
520 
521 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
522 /// annotation information for a given GlobalValue.  The annotation struct is
523 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
524 /// GlobalValue being annotated.  The second field is the constant string
525 /// created from the AnnotateAttr's annotation.  The third field is a constant
526 /// string containing the name of the translation unit.  The fourth field is
527 /// the line number in the file of the annotated value declaration.
528 ///
529 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
530 ///        appears to.
531 ///
532 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
533                                                 const AnnotateAttr *AA,
534                                                 unsigned LineNo) {
535   llvm::Module *M = &getModule();
536 
537   // get [N x i8] constants for the annotation string, and the filename string
538   // which are the 2nd and 3rd elements of the global annotation structure.
539   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
540   llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
541                                                   AA->getAnnotation(), true);
542   llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
543                                                   M->getModuleIdentifier(),
544                                                   true);
545 
546   // Get the two global values corresponding to the ConstantArrays we just
547   // created to hold the bytes of the strings.
548   llvm::GlobalValue *annoGV =
549     new llvm::GlobalVariable(*M, anno->getType(), false,
550                              llvm::GlobalValue::PrivateLinkage, anno,
551                              GV->getName());
552   // translation unit name string, emitted into the llvm.metadata section.
553   llvm::GlobalValue *unitGV =
554     new llvm::GlobalVariable(*M, unit->getType(), false,
555                              llvm::GlobalValue::PrivateLinkage, unit,
556                              ".str");
557 
558   // Create the ConstantStruct for the global annotation.
559   llvm::Constant *Fields[4] = {
560     llvm::ConstantExpr::getBitCast(GV, SBP),
561     llvm::ConstantExpr::getBitCast(annoGV, SBP),
562     llvm::ConstantExpr::getBitCast(unitGV, SBP),
563     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
564   };
565   return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
566 }
567 
568 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
569   // Never defer when EmitAllDecls is specified or the decl has
570   // attribute used.
571   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
572     return false;
573 
574   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
575     // Constructors and destructors should never be deferred.
576     if (FD->hasAttr<ConstructorAttr>() ||
577         FD->hasAttr<DestructorAttr>())
578       return false;
579 
580     // The key function for a class must never be deferred.
581     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
582       const CXXRecordDecl *RD = MD->getParent();
583       if (MD->isOutOfLine() && RD->isDynamicClass()) {
584         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
585         if (KeyFunction &&
586             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
587           return false;
588       }
589     }
590 
591     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
592 
593     // static, static inline, always_inline, and extern inline functions can
594     // always be deferred.  Normal inline functions can be deferred in C99/C++.
595     // Implicit template instantiations can also be deferred in C++.
596     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
597         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
598       return true;
599     return false;
600   }
601 
602   const VarDecl *VD = cast<VarDecl>(Global);
603   assert(VD->isFileVarDecl() && "Invalid decl");
604 
605   // We never want to defer structs that have non-trivial constructors or
606   // destructors.
607 
608   // FIXME: Handle references.
609   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
610     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
611       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
612         return false;
613     }
614   }
615 
616   // Static data may be deferred, but out-of-line static data members
617   // cannot be.
618   Linkage L = VD->getLinkage();
619   if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus &&
620       VD->getType()->getLinkage() == UniqueExternalLinkage)
621     L = UniqueExternalLinkage;
622 
623   switch (L) {
624   case NoLinkage:
625   case InternalLinkage:
626   case UniqueExternalLinkage:
627     // Initializer has side effects?
628     if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
629       return false;
630     return !(VD->isStaticDataMember() && VD->isOutOfLine());
631 
632   case ExternalLinkage:
633     break;
634   }
635 
636   return false;
637 }
638 
639 llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
640   const AliasAttr *AA = VD->getAttr<AliasAttr>();
641   assert(AA && "No alias?");
642 
643   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
644 
645   // See if there is already something with the target's name in the module.
646   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
647 
648   llvm::Constant *Aliasee;
649   if (isa<llvm::FunctionType>(DeclTy))
650     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
651   else
652     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
653                                     llvm::PointerType::getUnqual(DeclTy), 0);
654   if (!Entry) {
655     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
656     F->setLinkage(llvm::Function::ExternalWeakLinkage);
657     WeakRefReferences.insert(F);
658   }
659 
660   return Aliasee;
661 }
662 
663 void CodeGenModule::EmitGlobal(GlobalDecl GD) {
664   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
665 
666   // Weak references don't produce any output by themselves.
667   if (Global->hasAttr<WeakRefAttr>())
668     return;
669 
670   // If this is an alias definition (which otherwise looks like a declaration)
671   // emit it now.
672   if (Global->hasAttr<AliasAttr>())
673     return EmitAliasDefinition(GD);
674 
675   // Ignore declarations, they will be emitted on their first use.
676   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
677     // Forward declarations are emitted lazily on first use.
678     if (!FD->isThisDeclarationADefinition())
679       return;
680   } else {
681     const VarDecl *VD = cast<VarDecl>(Global);
682     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
683 
684     if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
685       return;
686   }
687 
688   // Defer code generation when possible if this is a static definition, inline
689   // function etc.  These we only want to emit if they are used.
690   if (MayDeferGeneration(Global)) {
691     // If the value has already been used, add it directly to the
692     // DeferredDeclsToEmit list.
693     MangleBuffer MangledName;
694     getMangledName(MangledName, GD);
695     if (GetGlobalValue(MangledName))
696       DeferredDeclsToEmit.push_back(GD);
697     else {
698       // Otherwise, remember that we saw a deferred decl with this name.  The
699       // first use of the mangled name will cause it to move into
700       // DeferredDeclsToEmit.
701       DeferredDecls[MangledName] = GD;
702     }
703     return;
704   }
705 
706   // Otherwise emit the definition.
707   EmitGlobalDefinition(GD);
708 }
709 
710 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
711   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
712 
713   PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
714                                  Context.getSourceManager(),
715                                  "Generating code for declaration");
716 
717   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
718     getVtableInfo().MaybeEmitVtable(GD);
719     if (MD->isVirtual() && MD->isOutOfLine() &&
720         (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
721       if (isa<CXXDestructorDecl>(D)) {
722         GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
723                            GD.getDtorType());
724         BuildThunksForVirtual(CanonGD);
725       } else {
726         BuildThunksForVirtual(MD->getCanonicalDecl());
727       }
728     }
729   }
730 
731   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
732     EmitCXXConstructor(CD, GD.getCtorType());
733   else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
734     EmitCXXDestructor(DD, GD.getDtorType());
735   else if (isa<FunctionDecl>(D))
736     EmitGlobalFunctionDefinition(GD);
737   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
738     EmitGlobalVarDefinition(VD);
739   else {
740     assert(0 && "Invalid argument to EmitGlobalDefinition()");
741   }
742 }
743 
744 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
745 /// module, create and return an llvm Function with the specified type. If there
746 /// is something in the module with the specified name, return it potentially
747 /// bitcasted to the right type.
748 ///
749 /// If D is non-null, it specifies a decl that correspond to this.  This is used
750 /// to set the attributes on the function when it is first created.
751 llvm::Constant *
752 CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
753                                        const llvm::Type *Ty,
754                                        GlobalDecl D) {
755   // Lookup the entry, lazily creating it if necessary.
756   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
757   if (Entry) {
758     if (WeakRefReferences.count(Entry)) {
759       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
760       if (FD && !FD->hasAttr<WeakAttr>())
761 	Entry->setLinkage(llvm::Function::ExternalLinkage);
762 
763       WeakRefReferences.erase(Entry);
764     }
765 
766     if (Entry->getType()->getElementType() == Ty)
767       return Entry;
768 
769     // Make sure the result is of the correct type.
770     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
771     return llvm::ConstantExpr::getBitCast(Entry, PTy);
772   }
773 
774   // This function doesn't have a complete type (for example, the return
775   // type is an incomplete struct). Use a fake type instead, and make
776   // sure not to try to set attributes.
777   bool IsIncompleteFunction = false;
778   if (!isa<llvm::FunctionType>(Ty)) {
779     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
780                                  std::vector<const llvm::Type*>(), false);
781     IsIncompleteFunction = true;
782   }
783   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
784                                              llvm::Function::ExternalLinkage,
785                                              MangledName, &getModule());
786   assert(F->getName() == MangledName && "name was uniqued!");
787   if (D.getDecl())
788     SetFunctionAttributes(D, F, IsIncompleteFunction);
789 
790   // This is the first use or definition of a mangled name.  If there is a
791   // deferred decl with this name, remember that we need to emit it at the end
792   // of the file.
793   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
794   if (DDI != DeferredDecls.end()) {
795     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
796     // list, and remove it from DeferredDecls (since we don't need it anymore).
797     DeferredDeclsToEmit.push_back(DDI->second);
798     DeferredDecls.erase(DDI);
799   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
800     // If this the first reference to a C++ inline function in a class, queue up
801     // the deferred function body for emission.  These are not seen as
802     // top-level declarations.
803     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
804       DeferredDeclsToEmit.push_back(D);
805     // A called constructor which has no definition or declaration need be
806     // synthesized.
807     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
808       if (CD->isImplicit()) {
809         assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
810         DeferredDeclsToEmit.push_back(D);
811       }
812     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
813       if (DD->isImplicit()) {
814         assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
815         DeferredDeclsToEmit.push_back(D);
816       }
817     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
818       if (MD->isCopyAssignment() && MD->isImplicit()) {
819         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
820         DeferredDeclsToEmit.push_back(D);
821       }
822     }
823   }
824 
825   return F;
826 }
827 
828 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
829 /// non-null, then this function will use the specified type if it has to
830 /// create it (this occurs when we see a definition of the function).
831 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
832                                                  const llvm::Type *Ty) {
833   // If there was no specific requested type, just convert it now.
834   if (!Ty)
835     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
836   MangleBuffer MangledName;
837   getMangledName(MangledName, GD);
838   return GetOrCreateLLVMFunction(MangledName, Ty, GD);
839 }
840 
841 /// CreateRuntimeFunction - Create a new runtime function with the specified
842 /// type and name.
843 llvm::Constant *
844 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
845                                      llvm::StringRef Name) {
846   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
847 }
848 
849 static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
850   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
851     return false;
852   if (Context.getLangOptions().CPlusPlus &&
853       Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
854     // FIXME: We should do something fancier here!
855     return false;
856   }
857   return true;
858 }
859 
860 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
861 /// create and return an llvm GlobalVariable with the specified type.  If there
862 /// is something in the module with the specified name, return it potentially
863 /// bitcasted to the right type.
864 ///
865 /// If D is non-null, it specifies a decl that correspond to this.  This is used
866 /// to set the attributes on the global when it is first created.
867 llvm::Constant *
868 CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
869                                      const llvm::PointerType *Ty,
870                                      const VarDecl *D) {
871   // Lookup the entry, lazily creating it if necessary.
872   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
873   if (Entry) {
874     if (WeakRefReferences.count(Entry)) {
875       if (D && !D->hasAttr<WeakAttr>())
876 	Entry->setLinkage(llvm::Function::ExternalLinkage);
877 
878       WeakRefReferences.erase(Entry);
879     }
880 
881     if (Entry->getType() == Ty)
882       return Entry;
883 
884     // Make sure the result is of the correct type.
885     return llvm::ConstantExpr::getBitCast(Entry, Ty);
886   }
887 
888   // This is the first use or definition of a mangled name.  If there is a
889   // deferred decl with this name, remember that we need to emit it at the end
890   // of the file.
891   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
892   if (DDI != DeferredDecls.end()) {
893     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
894     // list, and remove it from DeferredDecls (since we don't need it anymore).
895     DeferredDeclsToEmit.push_back(DDI->second);
896     DeferredDecls.erase(DDI);
897   }
898 
899   llvm::GlobalVariable *GV =
900     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
901                              llvm::GlobalValue::ExternalLinkage,
902                              0, MangledName, 0,
903                              false, Ty->getAddressSpace());
904 
905   // Handle things which are present even on external declarations.
906   if (D) {
907     // FIXME: This code is overly simple and should be merged with other global
908     // handling.
909     GV->setConstant(DeclIsConstantGlobal(Context, D));
910 
911     // FIXME: Merge with other attribute handling code.
912     if (D->getStorageClass() == VarDecl::PrivateExtern)
913       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
914 
915     if (D->hasAttr<WeakAttr>() ||
916         D->hasAttr<WeakImportAttr>())
917       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
918 
919     GV->setThreadLocal(D->isThreadSpecified());
920   }
921 
922   return GV;
923 }
924 
925 
926 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
927 /// given global variable.  If Ty is non-null and if the global doesn't exist,
928 /// then it will be greated with the specified type instead of whatever the
929 /// normal requested type would be.
930 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
931                                                   const llvm::Type *Ty) {
932   assert(D->hasGlobalStorage() && "Not a global variable");
933   QualType ASTTy = D->getType();
934   if (Ty == 0)
935     Ty = getTypes().ConvertTypeForMem(ASTTy);
936 
937   const llvm::PointerType *PTy =
938     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
939 
940   MangleBuffer MangledName;
941   getMangledName(MangledName, D);
942   return GetOrCreateLLVMGlobal(MangledName, PTy, D);
943 }
944 
945 /// CreateRuntimeVariable - Create a new runtime global variable with the
946 /// specified type and name.
947 llvm::Constant *
948 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
949                                      llvm::StringRef Name) {
950   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
951 }
952 
953 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
954   assert(!D->getInit() && "Cannot emit definite definitions here!");
955 
956   if (MayDeferGeneration(D)) {
957     // If we have not seen a reference to this variable yet, place it
958     // into the deferred declarations table to be emitted if needed
959     // later.
960     MangleBuffer MangledName;
961     getMangledName(MangledName, D);
962     if (!GetGlobalValue(MangledName)) {
963       DeferredDecls[MangledName] = D;
964       return;
965     }
966   }
967 
968   // The tentative definition is the only definition.
969   EmitGlobalVarDefinition(D);
970 }
971 
972 llvm::GlobalVariable::LinkageTypes
973 CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
974   if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
975     return llvm::GlobalVariable::InternalLinkage;
976 
977   if (const CXXMethodDecl *KeyFunction
978                                     = RD->getASTContext().getKeyFunction(RD)) {
979     // If this class has a key function, use that to determine the linkage of
980     // the vtable.
981     const FunctionDecl *Def = 0;
982     if (KeyFunction->getBody(Def))
983       KeyFunction = cast<CXXMethodDecl>(Def);
984 
985     switch (KeyFunction->getTemplateSpecializationKind()) {
986       case TSK_Undeclared:
987       case TSK_ExplicitSpecialization:
988         if (KeyFunction->isInlined())
989           return llvm::GlobalVariable::WeakODRLinkage;
990 
991         return llvm::GlobalVariable::ExternalLinkage;
992 
993       case TSK_ImplicitInstantiation:
994       case TSK_ExplicitInstantiationDefinition:
995         return llvm::GlobalVariable::WeakODRLinkage;
996 
997       case TSK_ExplicitInstantiationDeclaration:
998         // FIXME: Use available_externally linkage. However, this currently
999         // breaks LLVM's build due to undefined symbols.
1000         //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1001         return llvm::GlobalVariable::WeakODRLinkage;
1002     }
1003   }
1004 
1005   switch (RD->getTemplateSpecializationKind()) {
1006   case TSK_Undeclared:
1007   case TSK_ExplicitSpecialization:
1008   case TSK_ImplicitInstantiation:
1009   case TSK_ExplicitInstantiationDefinition:
1010     return llvm::GlobalVariable::WeakODRLinkage;
1011 
1012   case TSK_ExplicitInstantiationDeclaration:
1013     // FIXME: Use available_externally linkage. However, this currently
1014     // breaks LLVM's build due to undefined symbols.
1015     //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1016     return llvm::GlobalVariable::WeakODRLinkage;
1017   }
1018 
1019   // Silence GCC warning.
1020   return llvm::GlobalVariable::WeakODRLinkage;
1021 }
1022 
1023 static CodeGenModule::GVALinkage
1024 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
1025   // If this is a static data member, compute the kind of template
1026   // specialization. Otherwise, this variable is not part of a
1027   // template.
1028   TemplateSpecializationKind TSK = TSK_Undeclared;
1029   if (VD->isStaticDataMember())
1030     TSK = VD->getTemplateSpecializationKind();
1031 
1032   Linkage L = VD->getLinkage();
1033   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
1034       VD->getType()->getLinkage() == UniqueExternalLinkage)
1035     L = UniqueExternalLinkage;
1036 
1037   switch (L) {
1038   case NoLinkage:
1039   case InternalLinkage:
1040   case UniqueExternalLinkage:
1041     return CodeGenModule::GVA_Internal;
1042 
1043   case ExternalLinkage:
1044     switch (TSK) {
1045     case TSK_Undeclared:
1046     case TSK_ExplicitSpecialization:
1047       return CodeGenModule::GVA_StrongExternal;
1048 
1049     case TSK_ExplicitInstantiationDeclaration:
1050       llvm_unreachable("Variable should not be instantiated");
1051       // Fall through to treat this like any other instantiation.
1052 
1053     case TSK_ExplicitInstantiationDefinition:
1054       return CodeGenModule::GVA_ExplicitTemplateInstantiation;
1055 
1056     case TSK_ImplicitInstantiation:
1057       return CodeGenModule::GVA_TemplateInstantiation;
1058     }
1059   }
1060 
1061   return CodeGenModule::GVA_StrongExternal;
1062 }
1063 
1064 CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1065     return CharUnits::fromQuantity(
1066       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1067 }
1068 
1069 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1070   llvm::Constant *Init = 0;
1071   QualType ASTTy = D->getType();
1072   bool NonConstInit = false;
1073 
1074   const Expr *InitExpr = D->getAnyInitializer();
1075 
1076   if (!InitExpr) {
1077     // This is a tentative definition; tentative definitions are
1078     // implicitly initialized with { 0 }.
1079     //
1080     // Note that tentative definitions are only emitted at the end of
1081     // a translation unit, so they should never have incomplete
1082     // type. In addition, EmitTentativeDefinition makes sure that we
1083     // never attempt to emit a tentative definition if a real one
1084     // exists. A use may still exists, however, so we still may need
1085     // to do a RAUW.
1086     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1087     Init = EmitNullConstant(D->getType());
1088   } else {
1089     Init = EmitConstantExpr(InitExpr, D->getType());
1090 
1091     if (!Init) {
1092       QualType T = InitExpr->getType();
1093       if (getLangOptions().CPlusPlus) {
1094         EmitCXXGlobalVarDeclInitFunc(D);
1095         Init = EmitNullConstant(T);
1096         NonConstInit = true;
1097       } else {
1098         ErrorUnsupported(D, "static initializer");
1099         Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1100       }
1101     }
1102   }
1103 
1104   const llvm::Type* InitType = Init->getType();
1105   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1106 
1107   // Strip off a bitcast if we got one back.
1108   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1109     assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1110            // all zero index gep.
1111            CE->getOpcode() == llvm::Instruction::GetElementPtr);
1112     Entry = CE->getOperand(0);
1113   }
1114 
1115   // Entry is now either a Function or GlobalVariable.
1116   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1117 
1118   // We have a definition after a declaration with the wrong type.
1119   // We must make a new GlobalVariable* and update everything that used OldGV
1120   // (a declaration or tentative definition) with the new GlobalVariable*
1121   // (which will be a definition).
1122   //
1123   // This happens if there is a prototype for a global (e.g.
1124   // "extern int x[];") and then a definition of a different type (e.g.
1125   // "int x[10];"). This also happens when an initializer has a different type
1126   // from the type of the global (this happens with unions).
1127   if (GV == 0 ||
1128       GV->getType()->getElementType() != InitType ||
1129       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1130 
1131     // Move the old entry aside so that we'll create a new one.
1132     Entry->setName(llvm::StringRef());
1133 
1134     // Make a new global with the correct type, this is now guaranteed to work.
1135     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1136 
1137     // Replace all uses of the old global with the new global
1138     llvm::Constant *NewPtrForOldDecl =
1139         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1140     Entry->replaceAllUsesWith(NewPtrForOldDecl);
1141 
1142     // Erase the old global, since it is no longer used.
1143     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1144   }
1145 
1146   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1147     SourceManager &SM = Context.getSourceManager();
1148     AddAnnotation(EmitAnnotateAttr(GV, AA,
1149                               SM.getInstantiationLineNumber(D->getLocation())));
1150   }
1151 
1152   GV->setInitializer(Init);
1153 
1154   // If it is safe to mark the global 'constant', do so now.
1155   GV->setConstant(false);
1156   if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1157     GV->setConstant(true);
1158 
1159   GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1160 
1161   // Set the llvm linkage type as appropriate.
1162   GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1163   if (Linkage == GVA_Internal)
1164     GV->setLinkage(llvm::Function::InternalLinkage);
1165   else if (D->hasAttr<DLLImportAttr>())
1166     GV->setLinkage(llvm::Function::DLLImportLinkage);
1167   else if (D->hasAttr<DLLExportAttr>())
1168     GV->setLinkage(llvm::Function::DLLExportLinkage);
1169   else if (D->hasAttr<WeakAttr>()) {
1170     if (GV->isConstant())
1171       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1172     else
1173       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1174   } else if (Linkage == GVA_TemplateInstantiation ||
1175              Linkage == GVA_ExplicitTemplateInstantiation)
1176     // FIXME: It seems like we can provide more specific linkage here
1177     // (LinkOnceODR, WeakODR).
1178     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1179   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1180            !D->hasExternalStorage() && !D->getInit() &&
1181            !D->getAttr<SectionAttr>()) {
1182     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1183     // common vars aren't constant even if declared const.
1184     GV->setConstant(false);
1185   } else
1186     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1187 
1188   SetCommonAttributes(D, GV);
1189 
1190   // Emit global variable debug information.
1191   if (CGDebugInfo *DI = getDebugInfo()) {
1192     DI->setLocation(D->getLocation());
1193     DI->EmitGlobalVariable(GV, D);
1194   }
1195 }
1196 
1197 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1198 /// implement a function with no prototype, e.g. "int foo() {}".  If there are
1199 /// existing call uses of the old function in the module, this adjusts them to
1200 /// call the new function directly.
1201 ///
1202 /// This is not just a cleanup: the always_inline pass requires direct calls to
1203 /// functions to be able to inline them.  If there is a bitcast in the way, it
1204 /// won't inline them.  Instcombine normally deletes these calls, but it isn't
1205 /// run at -O0.
1206 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1207                                                       llvm::Function *NewFn) {
1208   // If we're redefining a global as a function, don't transform it.
1209   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1210   if (OldFn == 0) return;
1211 
1212   const llvm::Type *NewRetTy = NewFn->getReturnType();
1213   llvm::SmallVector<llvm::Value*, 4> ArgList;
1214 
1215   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1216        UI != E; ) {
1217     // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1218     unsigned OpNo = UI.getOperandNo();
1219     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1220     if (!CI || OpNo != 0) continue;
1221 
1222     // If the return types don't match exactly, and if the call isn't dead, then
1223     // we can't transform this call.
1224     if (CI->getType() != NewRetTy && !CI->use_empty())
1225       continue;
1226 
1227     // If the function was passed too few arguments, don't transform.  If extra
1228     // arguments were passed, we silently drop them.  If any of the types
1229     // mismatch, we don't transform.
1230     unsigned ArgNo = 0;
1231     bool DontTransform = false;
1232     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1233          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1234       if (CI->getNumOperands()-1 == ArgNo ||
1235           CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1236         DontTransform = true;
1237         break;
1238       }
1239     }
1240     if (DontTransform)
1241       continue;
1242 
1243     // Okay, we can transform this.  Create the new call instruction and copy
1244     // over the required information.
1245     ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1246     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1247                                                      ArgList.end(), "", CI);
1248     ArgList.clear();
1249     if (!NewCall->getType()->isVoidTy())
1250       NewCall->takeName(CI);
1251     NewCall->setAttributes(CI->getAttributes());
1252     NewCall->setCallingConv(CI->getCallingConv());
1253 
1254     // Finally, remove the old call, replacing any uses with the new one.
1255     if (!CI->use_empty())
1256       CI->replaceAllUsesWith(NewCall);
1257 
1258     // Copy any custom metadata attached with CI.
1259     if (llvm::MDNode *DbgNode = CI->getMetadata("dbg"))
1260       NewCall->setMetadata("dbg", DbgNode);
1261     CI->eraseFromParent();
1262   }
1263 }
1264 
1265 
1266 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1267   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1268   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1269   getMangleContext().mangleInitDiscriminator();
1270   // Get or create the prototype for the function.
1271   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1272 
1273   // Strip off a bitcast if we got one back.
1274   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1275     assert(CE->getOpcode() == llvm::Instruction::BitCast);
1276     Entry = CE->getOperand(0);
1277   }
1278 
1279 
1280   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1281     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1282 
1283     // If the types mismatch then we have to rewrite the definition.
1284     assert(OldFn->isDeclaration() &&
1285            "Shouldn't replace non-declaration");
1286 
1287     // F is the Function* for the one with the wrong type, we must make a new
1288     // Function* and update everything that used F (a declaration) with the new
1289     // Function* (which will be a definition).
1290     //
1291     // This happens if there is a prototype for a function
1292     // (e.g. "int f()") and then a definition of a different type
1293     // (e.g. "int f(int x)").  Move the old function aside so that it
1294     // doesn't interfere with GetAddrOfFunction.
1295     OldFn->setName(llvm::StringRef());
1296     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1297 
1298     // If this is an implementation of a function without a prototype, try to
1299     // replace any existing uses of the function (which may be calls) with uses
1300     // of the new function
1301     if (D->getType()->isFunctionNoProtoType()) {
1302       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1303       OldFn->removeDeadConstantUsers();
1304     }
1305 
1306     // Replace uses of F with the Function we will endow with a body.
1307     if (!Entry->use_empty()) {
1308       llvm::Constant *NewPtrForOldDecl =
1309         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1310       Entry->replaceAllUsesWith(NewPtrForOldDecl);
1311     }
1312 
1313     // Ok, delete the old function now, which is dead.
1314     OldFn->eraseFromParent();
1315 
1316     Entry = NewFn;
1317   }
1318 
1319   llvm::Function *Fn = cast<llvm::Function>(Entry);
1320 
1321   CodeGenFunction(*this).GenerateCode(D, Fn);
1322 
1323   SetFunctionDefinitionAttributes(D, Fn);
1324   SetLLVMFunctionAttributesForDefinition(D, Fn);
1325 
1326   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1327     AddGlobalCtor(Fn, CA->getPriority());
1328   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1329     AddGlobalDtor(Fn, DA->getPriority());
1330 }
1331 
1332 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1333   const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1334   const AliasAttr *AA = D->getAttr<AliasAttr>();
1335   assert(AA && "Not an alias?");
1336 
1337   MangleBuffer MangledName;
1338   getMangledName(MangledName, GD);
1339 
1340   // If there is a definition in the module, then it wins over the alias.
1341   // This is dubious, but allow it to be safe.  Just ignore the alias.
1342   llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1343   if (Entry && !Entry->isDeclaration())
1344     return;
1345 
1346   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1347 
1348   // Create a reference to the named value.  This ensures that it is emitted
1349   // if a deferred decl.
1350   llvm::Constant *Aliasee;
1351   if (isa<llvm::FunctionType>(DeclTy))
1352     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1353   else
1354     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1355                                     llvm::PointerType::getUnqual(DeclTy), 0);
1356 
1357   // Create the new alias itself, but don't set a name yet.
1358   llvm::GlobalValue *GA =
1359     new llvm::GlobalAlias(Aliasee->getType(),
1360                           llvm::Function::ExternalLinkage,
1361                           "", Aliasee, &getModule());
1362 
1363   if (Entry) {
1364     assert(Entry->isDeclaration());
1365 
1366     // If there is a declaration in the module, then we had an extern followed
1367     // by the alias, as in:
1368     //   extern int test6();
1369     //   ...
1370     //   int test6() __attribute__((alias("test7")));
1371     //
1372     // Remove it and replace uses of it with the alias.
1373     GA->takeName(Entry);
1374 
1375     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1376                                                           Entry->getType()));
1377     Entry->eraseFromParent();
1378   } else {
1379     GA->setName(MangledName.getString());
1380   }
1381 
1382   // Set attributes which are particular to an alias; this is a
1383   // specialization of the attributes which may be set on a global
1384   // variable/function.
1385   if (D->hasAttr<DLLExportAttr>()) {
1386     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1387       // The dllexport attribute is ignored for undefined symbols.
1388       if (FD->getBody())
1389         GA->setLinkage(llvm::Function::DLLExportLinkage);
1390     } else {
1391       GA->setLinkage(llvm::Function::DLLExportLinkage);
1392     }
1393   } else if (D->hasAttr<WeakAttr>() ||
1394              D->hasAttr<WeakRefAttr>() ||
1395              D->hasAttr<WeakImportAttr>()) {
1396     GA->setLinkage(llvm::Function::WeakAnyLinkage);
1397   }
1398 
1399   SetCommonAttributes(D, GA);
1400 }
1401 
1402 /// getBuiltinLibFunction - Given a builtin id for a function like
1403 /// "__builtin_fabsf", return a Function* for "fabsf".
1404 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1405                                                   unsigned BuiltinID) {
1406   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1407           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1408          "isn't a lib fn");
1409 
1410   // Get the name, skip over the __builtin_ prefix (if necessary).
1411   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1412   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1413     Name += 10;
1414 
1415   const llvm::FunctionType *Ty =
1416     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1417 
1418   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1419 }
1420 
1421 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1422                                             unsigned NumTys) {
1423   return llvm::Intrinsic::getDeclaration(&getModule(),
1424                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1425 }
1426 
1427 llvm::Function *CodeGenModule::getMemCpyFn() {
1428   if (MemCpyFn) return MemCpyFn;
1429   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1430   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1431 }
1432 
1433 llvm::Function *CodeGenModule::getMemMoveFn() {
1434   if (MemMoveFn) return MemMoveFn;
1435   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1436   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1437 }
1438 
1439 llvm::Function *CodeGenModule::getMemSetFn() {
1440   if (MemSetFn) return MemSetFn;
1441   const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1442   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1443 }
1444 
1445 static llvm::StringMapEntry<llvm::Constant*> &
1446 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1447                          const StringLiteral *Literal,
1448                          bool TargetIsLSB,
1449                          bool &IsUTF16,
1450                          unsigned &StringLength) {
1451   unsigned NumBytes = Literal->getByteLength();
1452 
1453   // Check for simple case.
1454   if (!Literal->containsNonAsciiOrNull()) {
1455     StringLength = NumBytes;
1456     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1457                                                 StringLength));
1458   }
1459 
1460   // Otherwise, convert the UTF8 literals into a byte string.
1461   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1462   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1463   UTF16 *ToPtr = &ToBuf[0];
1464 
1465   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1466                                                &ToPtr, ToPtr + NumBytes,
1467                                                strictConversion);
1468 
1469   // Check for conversion failure.
1470   if (Result != conversionOK) {
1471     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1472     // this duplicate code.
1473     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1474     StringLength = NumBytes;
1475     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1476                                                 StringLength));
1477   }
1478 
1479   // ConvertUTF8toUTF16 returns the length in ToPtr.
1480   StringLength = ToPtr - &ToBuf[0];
1481 
1482   // Render the UTF-16 string into a byte array and convert to the target byte
1483   // order.
1484   //
1485   // FIXME: This isn't something we should need to do here.
1486   llvm::SmallString<128> AsBytes;
1487   AsBytes.reserve(StringLength * 2);
1488   for (unsigned i = 0; i != StringLength; ++i) {
1489     unsigned short Val = ToBuf[i];
1490     if (TargetIsLSB) {
1491       AsBytes.push_back(Val & 0xFF);
1492       AsBytes.push_back(Val >> 8);
1493     } else {
1494       AsBytes.push_back(Val >> 8);
1495       AsBytes.push_back(Val & 0xFF);
1496     }
1497   }
1498   // Append one extra null character, the second is automatically added by our
1499   // caller.
1500   AsBytes.push_back(0);
1501 
1502   IsUTF16 = true;
1503   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1504 }
1505 
1506 llvm::Constant *
1507 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1508   unsigned StringLength = 0;
1509   bool isUTF16 = false;
1510   llvm::StringMapEntry<llvm::Constant*> &Entry =
1511     GetConstantCFStringEntry(CFConstantStringMap, Literal,
1512                              getTargetData().isLittleEndian(),
1513                              isUTF16, StringLength);
1514 
1515   if (llvm::Constant *C = Entry.getValue())
1516     return C;
1517 
1518   llvm::Constant *Zero =
1519       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1520   llvm::Constant *Zeros[] = { Zero, Zero };
1521 
1522   // If we don't already have it, get __CFConstantStringClassReference.
1523   if (!CFConstantStringClassRef) {
1524     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1525     Ty = llvm::ArrayType::get(Ty, 0);
1526     llvm::Constant *GV = CreateRuntimeVariable(Ty,
1527                                            "__CFConstantStringClassReference");
1528     // Decay array -> ptr
1529     CFConstantStringClassRef =
1530       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1531   }
1532 
1533   QualType CFTy = getContext().getCFConstantStringType();
1534 
1535   const llvm::StructType *STy =
1536     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1537 
1538   std::vector<llvm::Constant*> Fields(4);
1539 
1540   // Class pointer.
1541   Fields[0] = CFConstantStringClassRef;
1542 
1543   // Flags.
1544   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1545   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1546     llvm::ConstantInt::get(Ty, 0x07C8);
1547 
1548   // String pointer.
1549   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1550 
1551   llvm::GlobalValue::LinkageTypes Linkage;
1552   bool isConstant;
1553   if (isUTF16) {
1554     // FIXME: why do utf strings get "_" labels instead of "L" labels?
1555     Linkage = llvm::GlobalValue::InternalLinkage;
1556     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1557     // does make plain ascii ones writable.
1558     isConstant = true;
1559   } else {
1560     Linkage = llvm::GlobalValue::PrivateLinkage;
1561     isConstant = !Features.WritableStrings;
1562   }
1563 
1564   llvm::GlobalVariable *GV =
1565     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1566                              ".str");
1567   if (isUTF16) {
1568     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1569     GV->setAlignment(Align.getQuantity());
1570   }
1571   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1572 
1573   // String length.
1574   Ty = getTypes().ConvertType(getContext().LongTy);
1575   Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1576 
1577   // The struct.
1578   C = llvm::ConstantStruct::get(STy, Fields);
1579   GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1580                                 llvm::GlobalVariable::PrivateLinkage, C,
1581                                 "_unnamed_cfstring_");
1582   if (const char *Sect = getContext().Target.getCFStringSection())
1583     GV->setSection(Sect);
1584   Entry.setValue(GV);
1585 
1586   return GV;
1587 }
1588 
1589 /// GetStringForStringLiteral - Return the appropriate bytes for a
1590 /// string literal, properly padded to match the literal type.
1591 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1592   const char *StrData = E->getStrData();
1593   unsigned Len = E->getByteLength();
1594 
1595   const ConstantArrayType *CAT =
1596     getContext().getAsConstantArrayType(E->getType());
1597   assert(CAT && "String isn't pointer or array!");
1598 
1599   // Resize the string to the right size.
1600   std::string Str(StrData, StrData+Len);
1601   uint64_t RealLen = CAT->getSize().getZExtValue();
1602 
1603   if (E->isWide())
1604     RealLen *= getContext().Target.getWCharWidth()/8;
1605 
1606   Str.resize(RealLen, '\0');
1607 
1608   return Str;
1609 }
1610 
1611 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1612 /// constant array for the given string literal.
1613 llvm::Constant *
1614 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1615   // FIXME: This can be more efficient.
1616   // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1617   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1618   if (S->isWide()) {
1619     llvm::Type *DestTy =
1620         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1621     C = llvm::ConstantExpr::getBitCast(C, DestTy);
1622   }
1623   return C;
1624 }
1625 
1626 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1627 /// array for the given ObjCEncodeExpr node.
1628 llvm::Constant *
1629 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1630   std::string Str;
1631   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1632 
1633   return GetAddrOfConstantCString(Str);
1634 }
1635 
1636 
1637 /// GenerateWritableString -- Creates storage for a string literal.
1638 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1639                                              bool constant,
1640                                              CodeGenModule &CGM,
1641                                              const char *GlobalName) {
1642   // Create Constant for this string literal. Don't add a '\0'.
1643   llvm::Constant *C =
1644       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1645 
1646   // Create a global variable for this string
1647   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1648                                   llvm::GlobalValue::PrivateLinkage,
1649                                   C, GlobalName);
1650 }
1651 
1652 /// GetAddrOfConstantString - Returns a pointer to a character array
1653 /// containing the literal. This contents are exactly that of the
1654 /// given string, i.e. it will not be null terminated automatically;
1655 /// see GetAddrOfConstantCString. Note that whether the result is
1656 /// actually a pointer to an LLVM constant depends on
1657 /// Feature.WriteableStrings.
1658 ///
1659 /// The result has pointer to array type.
1660 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1661                                                        const char *GlobalName) {
1662   bool IsConstant = !Features.WritableStrings;
1663 
1664   // Get the default prefix if a name wasn't specified.
1665   if (!GlobalName)
1666     GlobalName = ".str";
1667 
1668   // Don't share any string literals if strings aren't constant.
1669   if (!IsConstant)
1670     return GenerateStringLiteral(str, false, *this, GlobalName);
1671 
1672   llvm::StringMapEntry<llvm::Constant *> &Entry =
1673     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1674 
1675   if (Entry.getValue())
1676     return Entry.getValue();
1677 
1678   // Create a global variable for this.
1679   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1680   Entry.setValue(C);
1681   return C;
1682 }
1683 
1684 /// GetAddrOfConstantCString - Returns a pointer to a character
1685 /// array containing the literal and a terminating '\-'
1686 /// character. The result has pointer to array type.
1687 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1688                                                         const char *GlobalName){
1689   return GetAddrOfConstantString(str + '\0', GlobalName);
1690 }
1691 
1692 /// EmitObjCPropertyImplementations - Emit information for synthesized
1693 /// properties for an implementation.
1694 void CodeGenModule::EmitObjCPropertyImplementations(const
1695                                                     ObjCImplementationDecl *D) {
1696   for (ObjCImplementationDecl::propimpl_iterator
1697          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1698     ObjCPropertyImplDecl *PID = *i;
1699 
1700     // Dynamic is just for type-checking.
1701     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1702       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1703 
1704       // Determine which methods need to be implemented, some may have
1705       // been overridden. Note that ::isSynthesized is not the method
1706       // we want, that just indicates if the decl came from a
1707       // property. What we want to know is if the method is defined in
1708       // this implementation.
1709       if (!D->getInstanceMethod(PD->getGetterName()))
1710         CodeGenFunction(*this).GenerateObjCGetter(
1711                                  const_cast<ObjCImplementationDecl *>(D), PID);
1712       if (!PD->isReadOnly() &&
1713           !D->getInstanceMethod(PD->getSetterName()))
1714         CodeGenFunction(*this).GenerateObjCSetter(
1715                                  const_cast<ObjCImplementationDecl *>(D), PID);
1716     }
1717   }
1718 }
1719 
1720 /// EmitNamespace - Emit all declarations in a namespace.
1721 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1722   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1723        I != E; ++I)
1724     EmitTopLevelDecl(*I);
1725 }
1726 
1727 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1728 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1729   if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1730       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1731     ErrorUnsupported(LSD, "linkage spec");
1732     return;
1733   }
1734 
1735   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1736        I != E; ++I)
1737     EmitTopLevelDecl(*I);
1738 }
1739 
1740 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1741 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1742   // If an error has occurred, stop code generation, but continue
1743   // parsing and semantic analysis (to ensure all warnings and errors
1744   // are emitted).
1745   if (Diags.hasErrorOccurred())
1746     return;
1747 
1748   // Ignore dependent declarations.
1749   if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1750     return;
1751 
1752   switch (D->getKind()) {
1753   case Decl::CXXConversion:
1754   case Decl::CXXMethod:
1755   case Decl::Function:
1756     // Skip function templates
1757     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1758       return;
1759 
1760     EmitGlobal(cast<FunctionDecl>(D));
1761     break;
1762 
1763   case Decl::Var:
1764     EmitGlobal(cast<VarDecl>(D));
1765     break;
1766 
1767   // C++ Decls
1768   case Decl::Namespace:
1769     EmitNamespace(cast<NamespaceDecl>(D));
1770     break;
1771     // No code generation needed.
1772   case Decl::UsingShadow:
1773   case Decl::Using:
1774   case Decl::UsingDirective:
1775   case Decl::ClassTemplate:
1776   case Decl::FunctionTemplate:
1777   case Decl::NamespaceAlias:
1778     break;
1779   case Decl::CXXConstructor:
1780     // Skip function templates
1781     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1782       return;
1783 
1784     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1785     break;
1786   case Decl::CXXDestructor:
1787     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1788     break;
1789 
1790   case Decl::StaticAssert:
1791     // Nothing to do.
1792     break;
1793 
1794   // Objective-C Decls
1795 
1796   // Forward declarations, no (immediate) code generation.
1797   case Decl::ObjCClass:
1798   case Decl::ObjCForwardProtocol:
1799   case Decl::ObjCCategory:
1800   case Decl::ObjCInterface:
1801     break;
1802 
1803   case Decl::ObjCProtocol:
1804     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1805     break;
1806 
1807   case Decl::ObjCCategoryImpl:
1808     // Categories have properties but don't support synthesize so we
1809     // can ignore them here.
1810     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1811     break;
1812 
1813   case Decl::ObjCImplementation: {
1814     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1815     EmitObjCPropertyImplementations(OMD);
1816     Runtime->GenerateClass(OMD);
1817     break;
1818   }
1819   case Decl::ObjCMethod: {
1820     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1821     // If this is not a prototype, emit the body.
1822     if (OMD->getBody())
1823       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1824     break;
1825   }
1826   case Decl::ObjCCompatibleAlias:
1827     // compatibility-alias is a directive and has no code gen.
1828     break;
1829 
1830   case Decl::LinkageSpec:
1831     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1832     break;
1833 
1834   case Decl::FileScopeAsm: {
1835     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1836     llvm::StringRef AsmString = AD->getAsmString()->getString();
1837 
1838     const std::string &S = getModule().getModuleInlineAsm();
1839     if (S.empty())
1840       getModule().setModuleInlineAsm(AsmString);
1841     else
1842       getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1843     break;
1844   }
1845 
1846   default:
1847     // Make sure we handled everything we should, every other kind is a
1848     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1849     // function. Need to recode Decl::Kind to do that easily.
1850     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1851   }
1852 }
1853