1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 LangOptions::VisibilityMode 99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 100 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 101 if (VD->getStorageClass() == VarDecl::PrivateExtern) 102 return LangOptions::Hidden; 103 104 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 105 switch (attr->getVisibility()) { 106 default: assert(0 && "Unknown visibility!"); 107 case VisibilityAttr::DefaultVisibility: 108 return LangOptions::Default; 109 case VisibilityAttr::HiddenVisibility: 110 return LangOptions::Hidden; 111 case VisibilityAttr::ProtectedVisibility: 112 return LangOptions::Protected; 113 } 114 } 115 116 return getLangOptions().getVisibilityMode(); 117 } 118 119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 120 const Decl *D) const { 121 // Internal definitions always have default visibility. 122 if (GV->hasLocalLinkage()) { 123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 124 return; 125 } 126 127 switch (getDeclVisibilityMode(D)) { 128 default: assert(0 && "Unknown visibility!"); 129 case LangOptions::Default: 130 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 case LangOptions::Hidden: 132 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 133 case LangOptions::Protected: 134 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 135 } 136 } 137 138 /// \brief Retrieves the mangled name for the given declaration. 139 /// 140 /// If the given declaration requires a mangled name, returns an 141 /// const char* containing the mangled name. Otherwise, returns 142 /// the unmangled name. 143 /// 144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 145 // In C, functions with no attributes never need to be mangled. Fastpath them. 146 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 147 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 148 return ND->getNameAsCString(); 149 } 150 151 llvm::SmallString<256> Name; 152 llvm::raw_svector_ostream Out(Name); 153 if (!mangleName(ND, Context, Out)) { 154 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 155 return ND->getNameAsCString(); 156 } 157 158 Name += '\0'; 159 return UniqueMangledName(Name.begin(), Name.end()); 160 } 161 162 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 163 const char *NameEnd) { 164 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 165 166 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 167 } 168 169 /// AddGlobalCtor - Add a function to the list that will be called before 170 /// main() runs. 171 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 172 // FIXME: Type coercion of void()* types. 173 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 174 } 175 176 /// AddGlobalDtor - Add a function to the list that will be called 177 /// when the module is unloaded. 178 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 179 // FIXME: Type coercion of void()* types. 180 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 181 } 182 183 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 184 // Ctor function type is void()*. 185 llvm::FunctionType* CtorFTy = 186 llvm::FunctionType::get(llvm::Type::VoidTy, 187 std::vector<const llvm::Type*>(), 188 false); 189 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 190 191 // Get the type of a ctor entry, { i32, void ()* }. 192 llvm::StructType* CtorStructTy = 193 llvm::StructType::get(llvm::Type::Int32Ty, 194 llvm::PointerType::getUnqual(CtorFTy), NULL); 195 196 // Construct the constructor and destructor arrays. 197 std::vector<llvm::Constant*> Ctors; 198 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 199 std::vector<llvm::Constant*> S; 200 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 201 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 202 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 203 } 204 205 if (!Ctors.empty()) { 206 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 207 new llvm::GlobalVariable(AT, false, 208 llvm::GlobalValue::AppendingLinkage, 209 llvm::ConstantArray::get(AT, Ctors), 210 GlobalName, 211 &TheModule); 212 } 213 } 214 215 void CodeGenModule::EmitAnnotations() { 216 if (Annotations.empty()) 217 return; 218 219 // Create a new global variable for the ConstantStruct in the Module. 220 llvm::Constant *Array = 221 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 222 Annotations.size()), 223 Annotations); 224 llvm::GlobalValue *gv = 225 new llvm::GlobalVariable(Array->getType(), false, 226 llvm::GlobalValue::AppendingLinkage, Array, 227 "llvm.global.annotations", &TheModule); 228 gv->setSection("llvm.metadata"); 229 } 230 231 static CodeGenModule::GVALinkage 232 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) { 233 // "static" and attr(always_inline) functions get internal linkage. 234 if (FD->getStorageClass() == FunctionDecl::Static || 235 FD->hasAttr<AlwaysInlineAttr>()) 236 return CodeGenModule::GVA_Internal; 237 238 if (!FD->isInline()) 239 return CodeGenModule::GVA_StrongExternal; 240 241 // If the inline function explicitly has the GNU inline attribute on it, then 242 // force to GNUC semantics (which is strong external), regardless of language. 243 if (FD->hasAttr<GNUInlineAttr>()) 244 return CodeGenModule::GVA_StrongExternal; 245 246 // The definition of inline changes based on the language. Note that we 247 // have already handled "static inline" above, with the GVA_Internal case. 248 if (Features.CPlusPlus) // inline and extern inline. 249 return CodeGenModule::GVA_CXXInline; 250 251 if (FD->getStorageClass() == FunctionDecl::Extern) { 252 // extern inline in C99 is a strong definition. In C89, it is extern inline. 253 if (Features.C99) 254 return CodeGenModule::GVA_StrongExternal; 255 256 // In C89 mode, an 'extern inline' works like a C99 inline function. 257 return CodeGenModule::GVA_C99Inline; 258 } 259 260 if (Features.C99) 261 return CodeGenModule::GVA_C99Inline; 262 263 // Otherwise, this is the GNU inline extension in K&R and GNU C89 mode. 264 return CodeGenModule::GVA_StrongExternal; 265 } 266 267 /// SetFunctionDefinitionAttributes - Set attributes for a global. 268 /// 269 /// FIXME: This is currently only done for aliases and functions, but 270 /// not for variables (these details are set in 271 /// EmitGlobalVarDefinition for variables). 272 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 273 llvm::GlobalValue *GV) { 274 GVALinkage Linkage = GetLinkageForFunction(D, Features); 275 276 if (Linkage == GVA_Internal) { 277 GV->setLinkage(llvm::Function::InternalLinkage); 278 } else if (D->hasAttr<DLLExportAttr>()) { 279 GV->setLinkage(llvm::Function::DLLExportLinkage); 280 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 281 GV->setLinkage(llvm::Function::WeakAnyLinkage); 282 } else if (Linkage == GVA_C99Inline) { 283 // In C99 mode, 'inline' functions are guaranteed to have a strong 284 // definition somewhere else, so we can use available_externally linkage. 285 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 286 } else if (Linkage == GVA_CXXInline) { 287 // In C++, the compiler has to emit a definition in every translation unit 288 // that references the function. We should use linkonce_odr because 289 // a) if all references in this translation unit are optimized away, we 290 // don't need to codegen it. b) if the function persists, it needs to be 291 // merged with other definitions. c) C++ has the ODR, so we know the 292 // definition is dependable. 293 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 294 } else { 295 assert(Linkage == GVA_StrongExternal); 296 // Otherwise, we have strong external linkage. 297 GV->setLinkage(llvm::Function::ExternalLinkage); 298 } 299 300 SetCommonAttributes(D, GV); 301 } 302 303 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 304 const CGFunctionInfo &Info, 305 llvm::Function *F) { 306 AttributeListType AttributeList; 307 ConstructAttributeList(Info, D, AttributeList); 308 309 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 310 AttributeList.size())); 311 312 // Set the appropriate calling convention for the Function. 313 if (D->hasAttr<FastCallAttr>()) 314 F->setCallingConv(llvm::CallingConv::X86_FastCall); 315 316 if (D->hasAttr<StdCallAttr>()) 317 F->setCallingConv(llvm::CallingConv::X86_StdCall); 318 } 319 320 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 321 llvm::Function *F) { 322 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 323 F->addFnAttr(llvm::Attribute::NoUnwind); 324 325 if (D->hasAttr<AlwaysInlineAttr>()) 326 F->addFnAttr(llvm::Attribute::AlwaysInline); 327 328 if (D->hasAttr<NoinlineAttr>()) 329 F->addFnAttr(llvm::Attribute::NoInline); 330 } 331 332 void CodeGenModule::SetCommonAttributes(const Decl *D, 333 llvm::GlobalValue *GV) { 334 setGlobalVisibility(GV, D); 335 336 if (D->hasAttr<UsedAttr>()) 337 AddUsedGlobal(GV); 338 339 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 340 GV->setSection(SA->getName()); 341 } 342 343 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 344 llvm::Function *F, 345 const CGFunctionInfo &FI) { 346 SetLLVMFunctionAttributes(D, FI, F); 347 SetLLVMFunctionAttributesForDefinition(D, F); 348 349 F->setLinkage(llvm::Function::InternalLinkage); 350 351 SetCommonAttributes(D, F); 352 } 353 354 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 355 llvm::Function *F) { 356 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 357 358 // Only a few attributes are set on declarations; these may later be 359 // overridden by a definition. 360 361 if (FD->hasAttr<DLLImportAttr>()) { 362 F->setLinkage(llvm::Function::DLLImportLinkage); 363 } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) { 364 // "extern_weak" is overloaded in LLVM; we probably should have 365 // separate linkage types for this. 366 F->setLinkage(llvm::Function::ExternalWeakLinkage); 367 } else { 368 F->setLinkage(llvm::Function::ExternalLinkage); 369 } 370 371 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 372 F->setSection(SA->getName()); 373 } 374 375 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 376 assert(!GV->isDeclaration() && 377 "Only globals with definition can force usage."); 378 LLVMUsed.push_back(GV); 379 } 380 381 void CodeGenModule::EmitLLVMUsed() { 382 // Don't create llvm.used if there is no need. 383 if (LLVMUsed.empty()) 384 return; 385 386 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 387 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 388 389 // Convert LLVMUsed to what ConstantArray needs. 390 std::vector<llvm::Constant*> UsedArray; 391 UsedArray.resize(LLVMUsed.size()); 392 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 393 UsedArray[i] = 394 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 395 } 396 397 llvm::GlobalVariable *GV = 398 new llvm::GlobalVariable(ATy, false, 399 llvm::GlobalValue::AppendingLinkage, 400 llvm::ConstantArray::get(ATy, UsedArray), 401 "llvm.used", &getModule()); 402 403 GV->setSection("llvm.metadata"); 404 } 405 406 void CodeGenModule::EmitDeferred() { 407 // Emit code for any potentially referenced deferred decls. Since a 408 // previously unused static decl may become used during the generation of code 409 // for a static function, iterate until no changes are made. 410 while (!DeferredDeclsToEmit.empty()) { 411 const ValueDecl *D = DeferredDeclsToEmit.back(); 412 DeferredDeclsToEmit.pop_back(); 413 414 // The mangled name for the decl must have been emitted in GlobalDeclMap. 415 // Look it up to see if it was defined with a stronger definition (e.g. an 416 // extern inline function with a strong function redefinition). If so, 417 // just ignore the deferred decl. 418 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 419 assert(CGRef && "Deferred decl wasn't referenced?"); 420 421 if (!CGRef->isDeclaration()) 422 continue; 423 424 // Otherwise, emit the definition and move on to the next one. 425 EmitGlobalDefinition(D); 426 } 427 } 428 429 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 430 /// annotation information for a given GlobalValue. The annotation struct is 431 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 432 /// GlobalValue being annotated. The second field is the constant string 433 /// created from the AnnotateAttr's annotation. The third field is a constant 434 /// string containing the name of the translation unit. The fourth field is 435 /// the line number in the file of the annotated value declaration. 436 /// 437 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 438 /// appears to. 439 /// 440 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 441 const AnnotateAttr *AA, 442 unsigned LineNo) { 443 llvm::Module *M = &getModule(); 444 445 // get [N x i8] constants for the annotation string, and the filename string 446 // which are the 2nd and 3rd elements of the global annotation structure. 447 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 448 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 449 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 450 true); 451 452 // Get the two global values corresponding to the ConstantArrays we just 453 // created to hold the bytes of the strings. 454 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 455 llvm::GlobalValue *annoGV = 456 new llvm::GlobalVariable(anno->getType(), false, 457 llvm::GlobalValue::InternalLinkage, anno, 458 GV->getName() + StringPrefix, M); 459 // translation unit name string, emitted into the llvm.metadata section. 460 llvm::GlobalValue *unitGV = 461 new llvm::GlobalVariable(unit->getType(), false, 462 llvm::GlobalValue::InternalLinkage, unit, 463 StringPrefix, M); 464 465 // Create the ConstantStruct for the global annotation. 466 llvm::Constant *Fields[4] = { 467 llvm::ConstantExpr::getBitCast(GV, SBP), 468 llvm::ConstantExpr::getBitCast(annoGV, SBP), 469 llvm::ConstantExpr::getBitCast(unitGV, SBP), 470 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 471 }; 472 return llvm::ConstantStruct::get(Fields, 4, false); 473 } 474 475 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 476 // Never defer when EmitAllDecls is specified or the decl has 477 // attribute used. 478 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 479 return false; 480 481 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 482 // Constructors and destructors should never be deferred. 483 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 484 return false; 485 486 GVALinkage Linkage = GetLinkageForFunction(FD, Features); 487 488 // static, static inline, always_inline, and extern inline functions can 489 // always be deferred. Normal inline functions can be deferred in C99/C++. 490 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 491 Linkage == GVA_CXXInline) 492 return true; 493 return false; 494 } 495 496 const VarDecl *VD = cast<VarDecl>(Global); 497 assert(VD->isFileVarDecl() && "Invalid decl"); 498 499 return VD->getStorageClass() == VarDecl::Static; 500 } 501 502 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 503 // If this is an alias definition (which otherwise looks like a declaration) 504 // emit it now. 505 if (Global->hasAttr<AliasAttr>()) 506 return EmitAliasDefinition(Global); 507 508 // Ignore declarations, they will be emitted on their first use. 509 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 510 // Forward declarations are emitted lazily on first use. 511 if (!FD->isThisDeclarationADefinition()) 512 return; 513 } else { 514 const VarDecl *VD = cast<VarDecl>(Global); 515 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 516 517 // In C++, if this is marked "extern", defer code generation. 518 if (getLangOptions().CPlusPlus && 519 VD->getStorageClass() == VarDecl::Extern && !VD->getInit()) 520 return; 521 522 // In C, if this isn't a definition, defer code generation. 523 if (!getLangOptions().CPlusPlus && !VD->getInit()) 524 return; 525 } 526 527 // Defer code generation when possible if this is a static definition, inline 528 // function etc. These we only want to emit if they are used. 529 if (MayDeferGeneration(Global)) { 530 // If the value has already been used, add it directly to the 531 // DeferredDeclsToEmit list. 532 const char *MangledName = getMangledName(Global); 533 if (GlobalDeclMap.count(MangledName)) 534 DeferredDeclsToEmit.push_back(Global); 535 else { 536 // Otherwise, remember that we saw a deferred decl with this name. The 537 // first use of the mangled name will cause it to move into 538 // DeferredDeclsToEmit. 539 DeferredDecls[MangledName] = Global; 540 } 541 return; 542 } 543 544 // Otherwise emit the definition. 545 EmitGlobalDefinition(Global); 546 } 547 548 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 549 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 550 EmitGlobalFunctionDefinition(FD); 551 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 552 EmitGlobalVarDefinition(VD); 553 } else { 554 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 555 } 556 } 557 558 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 559 /// module, create and return an llvm Function with the specified type. If there 560 /// is something in the module with the specified name, return it potentially 561 /// bitcasted to the right type. 562 /// 563 /// If D is non-null, it specifies a decl that correspond to this. This is used 564 /// to set the attributes on the function when it is first created. 565 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 566 const llvm::Type *Ty, 567 const FunctionDecl *D) { 568 // Lookup the entry, lazily creating it if necessary. 569 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 570 if (Entry) { 571 if (Entry->getType()->getElementType() == Ty) 572 return Entry; 573 574 // Make sure the result is of the correct type. 575 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 576 return llvm::ConstantExpr::getBitCast(Entry, PTy); 577 } 578 579 // This is the first use or definition of a mangled name. If there is a 580 // deferred decl with this name, remember that we need to emit it at the end 581 // of the file. 582 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 583 DeferredDecls.find(MangledName); 584 if (DDI != DeferredDecls.end()) { 585 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 586 // list, and remove it from DeferredDecls (since we don't need it anymore). 587 DeferredDeclsToEmit.push_back(DDI->second); 588 DeferredDecls.erase(DDI); 589 } 590 591 // This function doesn't have a complete type (for example, the return 592 // type is an incomplete struct). Use a fake type instead, and make 593 // sure not to try to set attributes. 594 bool ShouldSetAttributes = true; 595 if (!isa<llvm::FunctionType>(Ty)) { 596 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 597 std::vector<const llvm::Type*>(), false); 598 ShouldSetAttributes = false; 599 } 600 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 601 llvm::Function::ExternalLinkage, 602 "", &getModule()); 603 F->setName(MangledName); 604 if (D && ShouldSetAttributes) 605 SetFunctionAttributes(D, F); 606 Entry = F; 607 return F; 608 } 609 610 /// GetAddrOfFunction - Return the address of the given function. If Ty is 611 /// non-null, then this function will use the specified type if it has to 612 /// create it (this occurs when we see a definition of the function). 613 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 614 const llvm::Type *Ty) { 615 // If there was no specific requested type, just convert it now. 616 if (!Ty) 617 Ty = getTypes().ConvertType(D->getType()); 618 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 619 } 620 621 /// CreateRuntimeFunction - Create a new runtime function with the specified 622 /// type and name. 623 llvm::Constant * 624 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 625 const char *Name) { 626 // Convert Name to be a uniqued string from the IdentifierInfo table. 627 Name = getContext().Idents.get(Name).getName(); 628 return GetOrCreateLLVMFunction(Name, FTy, 0); 629 } 630 631 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 632 /// create and return an llvm GlobalVariable with the specified type. If there 633 /// is something in the module with the specified name, return it potentially 634 /// bitcasted to the right type. 635 /// 636 /// If D is non-null, it specifies a decl that correspond to this. This is used 637 /// to set the attributes on the global when it is first created. 638 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 639 const llvm::PointerType*Ty, 640 const VarDecl *D) { 641 // Lookup the entry, lazily creating it if necessary. 642 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 643 if (Entry) { 644 if (Entry->getType() == Ty) 645 return Entry; 646 647 // Make sure the result is of the correct type. 648 return llvm::ConstantExpr::getBitCast(Entry, Ty); 649 } 650 651 // This is the first use or definition of a mangled name. If there is a 652 // deferred decl with this name, remember that we need to emit it at the end 653 // of the file. 654 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 655 DeferredDecls.find(MangledName); 656 if (DDI != DeferredDecls.end()) { 657 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 658 // list, and remove it from DeferredDecls (since we don't need it anymore). 659 DeferredDeclsToEmit.push_back(DDI->second); 660 DeferredDecls.erase(DDI); 661 } 662 663 llvm::GlobalVariable *GV = 664 new llvm::GlobalVariable(Ty->getElementType(), false, 665 llvm::GlobalValue::ExternalLinkage, 666 0, "", &getModule(), 667 false, Ty->getAddressSpace()); 668 GV->setName(MangledName); 669 670 // Handle things which are present even on external declarations. 671 if (D) { 672 // FIXME: This code is overly simple and should be merged with 673 // other global handling. 674 GV->setConstant(D->getType().isConstant(Context)); 675 676 // FIXME: Merge with other attribute handling code. 677 if (D->getStorageClass() == VarDecl::PrivateExtern) 678 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 679 680 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 681 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 682 683 GV->setThreadLocal(D->isThreadSpecified()); 684 } 685 686 return Entry = GV; 687 } 688 689 690 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 691 /// given global variable. If Ty is non-null and if the global doesn't exist, 692 /// then it will be greated with the specified type instead of whatever the 693 /// normal requested type would be. 694 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 695 const llvm::Type *Ty) { 696 assert(D->hasGlobalStorage() && "Not a global variable"); 697 QualType ASTTy = D->getType(); 698 if (Ty == 0) 699 Ty = getTypes().ConvertTypeForMem(ASTTy); 700 701 const llvm::PointerType *PTy = 702 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 703 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 704 } 705 706 /// CreateRuntimeVariable - Create a new runtime global variable with the 707 /// specified type and name. 708 llvm::Constant * 709 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 710 const char *Name) { 711 // Convert Name to be a uniqued string from the IdentifierInfo table. 712 Name = getContext().Idents.get(Name).getName(); 713 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 714 } 715 716 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 717 assert(!D->getInit() && "Cannot emit definite definitions here!"); 718 719 if (MayDeferGeneration(D)) { 720 // If we have not seen a reference to this variable yet, place it 721 // into the deferred declarations table to be emitted if needed 722 // later. 723 const char *MangledName = getMangledName(D); 724 if (GlobalDeclMap.count(MangledName) == 0) { 725 DeferredDecls[MangledName] = D; 726 return; 727 } 728 } 729 730 // The tentative definition is the only definition. 731 EmitGlobalVarDefinition(D); 732 } 733 734 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 735 llvm::Constant *Init = 0; 736 QualType ASTTy = D->getType(); 737 738 if (D->getInit() == 0) { 739 // This is a tentative definition; tentative definitions are 740 // implicitly initialized with { 0 }. 741 // 742 // Note that tentative definitions are only emitted at the end of 743 // a translation unit, so they should never have incomplete 744 // type. In addition, EmitTentativeDefinition makes sure that we 745 // never attempt to emit a tentative definition if a real one 746 // exists. A use may still exists, however, so we still may need 747 // to do a RAUW. 748 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 749 Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy)); 750 } else { 751 Init = EmitConstantExpr(D->getInit(), D->getType()); 752 if (!Init) { 753 ErrorUnsupported(D, "static initializer"); 754 QualType T = D->getInit()->getType(); 755 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 756 } 757 } 758 759 const llvm::Type* InitType = Init->getType(); 760 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 761 762 // Strip off a bitcast if we got one back. 763 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 764 assert(CE->getOpcode() == llvm::Instruction::BitCast); 765 Entry = CE->getOperand(0); 766 } 767 768 // Entry is now either a Function or GlobalVariable. 769 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 770 771 // We have a definition after a declaration with the wrong type. 772 // We must make a new GlobalVariable* and update everything that used OldGV 773 // (a declaration or tentative definition) with the new GlobalVariable* 774 // (which will be a definition). 775 // 776 // This happens if there is a prototype for a global (e.g. 777 // "extern int x[];") and then a definition of a different type (e.g. 778 // "int x[10];"). This also happens when an initializer has a different type 779 // from the type of the global (this happens with unions). 780 if (GV == 0 || 781 GV->getType()->getElementType() != InitType || 782 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 783 784 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 785 GlobalDeclMap.erase(getMangledName(D)); 786 787 // Make a new global with the correct type, this is now guaranteed to work. 788 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 789 GV->takeName(cast<llvm::GlobalValue>(Entry)); 790 791 // Replace all uses of the old global with the new global 792 llvm::Constant *NewPtrForOldDecl = 793 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 794 Entry->replaceAllUsesWith(NewPtrForOldDecl); 795 796 // Erase the old global, since it is no longer used. 797 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 798 } 799 800 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 801 SourceManager &SM = Context.getSourceManager(); 802 AddAnnotation(EmitAnnotateAttr(GV, AA, 803 SM.getInstantiationLineNumber(D->getLocation()))); 804 } 805 806 GV->setInitializer(Init); 807 GV->setConstant(D->getType().isConstant(Context)); 808 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 809 810 // Set the llvm linkage type as appropriate. 811 if (D->getStorageClass() == VarDecl::Static) 812 GV->setLinkage(llvm::Function::InternalLinkage); 813 else if (D->hasAttr<DLLImportAttr>()) 814 GV->setLinkage(llvm::Function::DLLImportLinkage); 815 else if (D->hasAttr<DLLExportAttr>()) 816 GV->setLinkage(llvm::Function::DLLExportLinkage); 817 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 818 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 819 else if (!CompileOpts.NoCommon && 820 (!D->hasExternalStorage() && !D->getInit())) 821 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 822 else 823 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 824 825 SetCommonAttributes(D, GV); 826 827 // Emit global variable debug information. 828 if (CGDebugInfo *DI = getDebugInfo()) { 829 DI->setLocation(D->getLocation()); 830 DI->EmitGlobalVariable(GV, D); 831 } 832 } 833 834 835 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 836 const llvm::FunctionType *Ty; 837 838 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 839 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 840 841 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 842 } else { 843 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 844 845 // As a special case, make sure that definitions of K&R function 846 // "type foo()" aren't declared as varargs (which forces the backend 847 // to do unnecessary work). 848 if (D->getType()->isFunctionNoProtoType()) { 849 assert(Ty->isVarArg() && "Didn't lower type as expected"); 850 // Due to stret, the lowered function could have arguments. 851 // Just create the same type as was lowered by ConvertType 852 // but strip off the varargs bit. 853 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 854 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 855 } 856 } 857 858 // Get or create the prototype for teh function. 859 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 860 861 // Strip off a bitcast if we got one back. 862 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 863 assert(CE->getOpcode() == llvm::Instruction::BitCast); 864 Entry = CE->getOperand(0); 865 } 866 867 868 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 869 // If the types mismatch then we have to rewrite the definition. 870 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 871 "Shouldn't replace non-declaration"); 872 873 // F is the Function* for the one with the wrong type, we must make a new 874 // Function* and update everything that used F (a declaration) with the new 875 // Function* (which will be a definition). 876 // 877 // This happens if there is a prototype for a function 878 // (e.g. "int f()") and then a definition of a different type 879 // (e.g. "int f(int x)"). Start by making a new function of the 880 // correct type, RAUW, then steal the name. 881 GlobalDeclMap.erase(getMangledName(D)); 882 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 883 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 884 885 // Replace uses of F with the Function we will endow with a body. 886 llvm::Constant *NewPtrForOldDecl = 887 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 888 Entry->replaceAllUsesWith(NewPtrForOldDecl); 889 890 // Ok, delete the old function now, which is dead. 891 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 892 893 Entry = NewFn; 894 } 895 896 llvm::Function *Fn = cast<llvm::Function>(Entry); 897 898 CodeGenFunction(*this).GenerateCode(D, Fn); 899 900 SetFunctionDefinitionAttributes(D, Fn); 901 SetLLVMFunctionAttributesForDefinition(D, Fn); 902 903 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 904 AddGlobalCtor(Fn, CA->getPriority()); 905 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 906 AddGlobalDtor(Fn, DA->getPriority()); 907 } 908 909 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 910 const AliasAttr *AA = D->getAttr<AliasAttr>(); 911 assert(AA && "Not an alias?"); 912 913 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 914 915 // Unique the name through the identifier table. 916 const char *AliaseeName = AA->getAliasee().c_str(); 917 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 918 919 // Create a reference to the named value. This ensures that it is emitted 920 // if a deferred decl. 921 llvm::Constant *Aliasee; 922 if (isa<llvm::FunctionType>(DeclTy)) 923 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 924 else 925 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 926 llvm::PointerType::getUnqual(DeclTy), 0); 927 928 // Create the new alias itself, but don't set a name yet. 929 llvm::GlobalValue *GA = 930 new llvm::GlobalAlias(Aliasee->getType(), 931 llvm::Function::ExternalLinkage, 932 "", Aliasee, &getModule()); 933 934 // See if there is already something with the alias' name in the module. 935 const char *MangledName = getMangledName(D); 936 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 937 938 if (Entry && !Entry->isDeclaration()) { 939 // If there is a definition in the module, then it wins over the alias. 940 // This is dubious, but allow it to be safe. Just ignore the alias. 941 GA->eraseFromParent(); 942 return; 943 } 944 945 if (Entry) { 946 // If there is a declaration in the module, then we had an extern followed 947 // by the alias, as in: 948 // extern int test6(); 949 // ... 950 // int test6() __attribute__((alias("test7"))); 951 // 952 // Remove it and replace uses of it with the alias. 953 954 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 955 Entry->getType())); 956 Entry->eraseFromParent(); 957 } 958 959 // Now we know that there is no conflict, set the name. 960 Entry = GA; 961 GA->setName(MangledName); 962 963 // Set attributes which are particular to an alias; this is a 964 // specialization of the attributes which may be set on a global 965 // variable/function. 966 if (D->hasAttr<DLLExportAttr>()) { 967 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 968 // The dllexport attribute is ignored for undefined symbols. 969 if (FD->getBody(getContext())) 970 GA->setLinkage(llvm::Function::DLLExportLinkage); 971 } else { 972 GA->setLinkage(llvm::Function::DLLExportLinkage); 973 } 974 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 975 GA->setLinkage(llvm::Function::WeakAnyLinkage); 976 } 977 978 SetCommonAttributes(D, GA); 979 } 980 981 /// getBuiltinLibFunction - Given a builtin id for a function like 982 /// "__builtin_fabsf", return a Function* for "fabsf". 983 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 984 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 985 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 986 "isn't a lib fn"); 987 988 // Get the name, skip over the __builtin_ prefix (if necessary). 989 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 990 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 991 Name += 10; 992 993 // Get the type for the builtin. 994 Builtin::Context::GetBuiltinTypeError Error; 995 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 996 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 997 998 const llvm::FunctionType *Ty = 999 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1000 1001 // Unique the name through the identifier table. 1002 Name = getContext().Idents.get(Name).getName(); 1003 // FIXME: param attributes for sext/zext etc. 1004 return GetOrCreateLLVMFunction(Name, Ty, 0); 1005 } 1006 1007 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1008 unsigned NumTys) { 1009 return llvm::Intrinsic::getDeclaration(&getModule(), 1010 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1011 } 1012 1013 llvm::Function *CodeGenModule::getMemCpyFn() { 1014 if (MemCpyFn) return MemCpyFn; 1015 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1016 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1017 } 1018 1019 llvm::Function *CodeGenModule::getMemMoveFn() { 1020 if (MemMoveFn) return MemMoveFn; 1021 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1022 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1023 } 1024 1025 llvm::Function *CodeGenModule::getMemSetFn() { 1026 if (MemSetFn) return MemSetFn; 1027 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1028 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1029 } 1030 1031 static void appendFieldAndPadding(CodeGenModule &CGM, 1032 std::vector<llvm::Constant*>& Fields, 1033 FieldDecl *FieldD, FieldDecl *NextFieldD, 1034 llvm::Constant* Field, 1035 RecordDecl* RD, const llvm::StructType *STy) { 1036 // Append the field. 1037 Fields.push_back(Field); 1038 1039 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1040 1041 int NextStructFieldNo; 1042 if (!NextFieldD) { 1043 NextStructFieldNo = STy->getNumElements(); 1044 } else { 1045 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1046 } 1047 1048 // Append padding 1049 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1050 llvm::Constant *C = 1051 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1052 1053 Fields.push_back(C); 1054 } 1055 } 1056 1057 llvm::Constant *CodeGenModule:: 1058 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1059 std::string str; 1060 unsigned StringLength = 0; 1061 1062 bool isUTF16 = false; 1063 if (Literal->containsNonAsciiOrNull()) { 1064 // Convert from UTF-8 to UTF-16. 1065 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1066 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1067 UTF16 *ToPtr = &ToBuf[0]; 1068 1069 ConversionResult Result; 1070 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1071 &ToPtr, ToPtr+Literal->getByteLength(), 1072 strictConversion); 1073 if (Result == conversionOK) { 1074 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1075 // without doing more surgery to this routine. Since we aren't explicitly 1076 // checking for endianness here, it's also a bug (when generating code for 1077 // a target that doesn't match the host endianness). Modeling this as an 1078 // i16 array is likely the cleanest solution. 1079 StringLength = ToPtr-&ToBuf[0]; 1080 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1081 isUTF16 = true; 1082 } else if (Result == sourceIllegal) { 1083 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1084 str.assign(Literal->getStrData(), Literal->getByteLength()); 1085 StringLength = str.length(); 1086 } else 1087 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1088 1089 } else { 1090 str.assign(Literal->getStrData(), Literal->getByteLength()); 1091 StringLength = str.length(); 1092 } 1093 llvm::StringMapEntry<llvm::Constant *> &Entry = 1094 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1095 1096 if (llvm::Constant *C = Entry.getValue()) 1097 return C; 1098 1099 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1100 llvm::Constant *Zeros[] = { Zero, Zero }; 1101 1102 if (!CFConstantStringClassRef) { 1103 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1104 Ty = llvm::ArrayType::get(Ty, 0); 1105 1106 // FIXME: This is fairly broken if 1107 // __CFConstantStringClassReference is already defined, in that it 1108 // will get renamed and the user will most likely see an opaque 1109 // error message. This is a general issue with relying on 1110 // particular names. 1111 llvm::GlobalVariable *GV = 1112 new llvm::GlobalVariable(Ty, false, 1113 llvm::GlobalVariable::ExternalLinkage, 0, 1114 "__CFConstantStringClassReference", 1115 &getModule()); 1116 1117 // Decay array -> ptr 1118 CFConstantStringClassRef = 1119 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1120 } 1121 1122 QualType CFTy = getContext().getCFConstantStringType(); 1123 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1124 1125 const llvm::StructType *STy = 1126 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1127 1128 std::vector<llvm::Constant*> Fields; 1129 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1130 1131 // Class pointer. 1132 FieldDecl *CurField = *Field++; 1133 FieldDecl *NextField = *Field++; 1134 appendFieldAndPadding(*this, Fields, CurField, NextField, 1135 CFConstantStringClassRef, CFRD, STy); 1136 1137 // Flags. 1138 CurField = NextField; 1139 NextField = *Field++; 1140 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1141 appendFieldAndPadding(*this, Fields, CurField, NextField, 1142 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1143 : llvm::ConstantInt::get(Ty, 0x07C8), 1144 CFRD, STy); 1145 1146 // String pointer. 1147 CurField = NextField; 1148 NextField = *Field++; 1149 llvm::Constant *C = llvm::ConstantArray::get(str); 1150 1151 const char *Sect, *Prefix; 1152 bool isConstant; 1153 if (isUTF16) { 1154 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1155 Sect = getContext().Target.getUnicodeStringSection(); 1156 // FIXME: Why does GCC not set constant here? 1157 isConstant = false; 1158 } else { 1159 Prefix = getContext().Target.getStringSymbolPrefix(true); 1160 Sect = getContext().Target.getCFStringDataSection(); 1161 // FIXME: -fwritable-strings should probably affect this, but we 1162 // are following gcc here. 1163 isConstant = true; 1164 } 1165 llvm::GlobalVariable *GV = 1166 new llvm::GlobalVariable(C->getType(), isConstant, 1167 llvm::GlobalValue::InternalLinkage, 1168 C, Prefix, &getModule()); 1169 if (Sect) 1170 GV->setSection(Sect); 1171 if (isUTF16) { 1172 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1173 GV->setAlignment(Align); 1174 } 1175 appendFieldAndPadding(*this, Fields, CurField, NextField, 1176 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1177 CFRD, STy); 1178 1179 // String length. 1180 CurField = NextField; 1181 NextField = 0; 1182 Ty = getTypes().ConvertType(getContext().LongTy); 1183 appendFieldAndPadding(*this, Fields, CurField, NextField, 1184 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1185 1186 // The struct. 1187 C = llvm::ConstantStruct::get(STy, Fields); 1188 GV = new llvm::GlobalVariable(C->getType(), true, 1189 llvm::GlobalVariable::InternalLinkage, C, 1190 getContext().Target.getCFStringSymbolPrefix(), 1191 &getModule()); 1192 if (const char *Sect = getContext().Target.getCFStringSection()) 1193 GV->setSection(Sect); 1194 Entry.setValue(GV); 1195 1196 return GV; 1197 } 1198 1199 /// GetStringForStringLiteral - Return the appropriate bytes for a 1200 /// string literal, properly padded to match the literal type. 1201 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1202 const char *StrData = E->getStrData(); 1203 unsigned Len = E->getByteLength(); 1204 1205 const ConstantArrayType *CAT = 1206 getContext().getAsConstantArrayType(E->getType()); 1207 assert(CAT && "String isn't pointer or array!"); 1208 1209 // Resize the string to the right size. 1210 std::string Str(StrData, StrData+Len); 1211 uint64_t RealLen = CAT->getSize().getZExtValue(); 1212 1213 if (E->isWide()) 1214 RealLen *= getContext().Target.getWCharWidth()/8; 1215 1216 Str.resize(RealLen, '\0'); 1217 1218 return Str; 1219 } 1220 1221 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1222 /// constant array for the given string literal. 1223 llvm::Constant * 1224 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1225 // FIXME: This can be more efficient. 1226 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1227 } 1228 1229 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1230 /// array for the given ObjCEncodeExpr node. 1231 llvm::Constant * 1232 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1233 std::string Str; 1234 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1235 1236 return GetAddrOfConstantCString(Str); 1237 } 1238 1239 1240 /// GenerateWritableString -- Creates storage for a string literal. 1241 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1242 bool constant, 1243 CodeGenModule &CGM, 1244 const char *GlobalName) { 1245 // Create Constant for this string literal. Don't add a '\0'. 1246 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1247 1248 // Create a global variable for this string 1249 return new llvm::GlobalVariable(C->getType(), constant, 1250 llvm::GlobalValue::InternalLinkage, 1251 C, GlobalName, &CGM.getModule()); 1252 } 1253 1254 /// GetAddrOfConstantString - Returns a pointer to a character array 1255 /// containing the literal. This contents are exactly that of the 1256 /// given string, i.e. it will not be null terminated automatically; 1257 /// see GetAddrOfConstantCString. Note that whether the result is 1258 /// actually a pointer to an LLVM constant depends on 1259 /// Feature.WriteableStrings. 1260 /// 1261 /// The result has pointer to array type. 1262 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1263 const char *GlobalName) { 1264 bool IsConstant = !Features.WritableStrings; 1265 1266 // Get the default prefix if a name wasn't specified. 1267 if (!GlobalName) 1268 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1269 1270 // Don't share any string literals if strings aren't constant. 1271 if (!IsConstant) 1272 return GenerateStringLiteral(str, false, *this, GlobalName); 1273 1274 llvm::StringMapEntry<llvm::Constant *> &Entry = 1275 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1276 1277 if (Entry.getValue()) 1278 return Entry.getValue(); 1279 1280 // Create a global variable for this. 1281 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1282 Entry.setValue(C); 1283 return C; 1284 } 1285 1286 /// GetAddrOfConstantCString - Returns a pointer to a character 1287 /// array containing the literal and a terminating '\-' 1288 /// character. The result has pointer to array type. 1289 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1290 const char *GlobalName){ 1291 return GetAddrOfConstantString(str + '\0', GlobalName); 1292 } 1293 1294 /// EmitObjCPropertyImplementations - Emit information for synthesized 1295 /// properties for an implementation. 1296 void CodeGenModule::EmitObjCPropertyImplementations(const 1297 ObjCImplementationDecl *D) { 1298 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1299 e = D->propimpl_end(); i != e; ++i) { 1300 ObjCPropertyImplDecl *PID = *i; 1301 1302 // Dynamic is just for type-checking. 1303 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1304 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1305 1306 // Determine which methods need to be implemented, some may have 1307 // been overridden. Note that ::isSynthesized is not the method 1308 // we want, that just indicates if the decl came from a 1309 // property. What we want to know is if the method is defined in 1310 // this implementation. 1311 if (!D->getInstanceMethod(PD->getGetterName())) 1312 CodeGenFunction(*this).GenerateObjCGetter( 1313 const_cast<ObjCImplementationDecl *>(D), PID); 1314 if (!PD->isReadOnly() && 1315 !D->getInstanceMethod(PD->getSetterName())) 1316 CodeGenFunction(*this).GenerateObjCSetter( 1317 const_cast<ObjCImplementationDecl *>(D), PID); 1318 } 1319 } 1320 } 1321 1322 /// EmitNamespace - Emit all declarations in a namespace. 1323 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1324 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1325 E = ND->decls_end(getContext()); 1326 I != E; ++I) 1327 EmitTopLevelDecl(*I); 1328 } 1329 1330 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1331 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1332 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1333 ErrorUnsupported(LSD, "linkage spec"); 1334 return; 1335 } 1336 1337 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1338 E = LSD->decls_end(getContext()); 1339 I != E; ++I) 1340 EmitTopLevelDecl(*I); 1341 } 1342 1343 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1344 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1345 // If an error has occurred, stop code generation, but continue 1346 // parsing and semantic analysis (to ensure all warnings and errors 1347 // are emitted). 1348 if (Diags.hasErrorOccurred()) 1349 return; 1350 1351 switch (D->getKind()) { 1352 case Decl::CXXMethod: 1353 case Decl::Function: 1354 case Decl::Var: 1355 EmitGlobal(cast<ValueDecl>(D)); 1356 break; 1357 1358 // C++ Decls 1359 case Decl::Namespace: 1360 EmitNamespace(cast<NamespaceDecl>(D)); 1361 break; 1362 case Decl::CXXConstructor: 1363 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1364 break; 1365 case Decl::CXXDestructor: 1366 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1367 break; 1368 1369 // Objective-C Decls 1370 1371 // Forward declarations, no (immediate) code generation. 1372 case Decl::ObjCClass: 1373 case Decl::ObjCForwardProtocol: 1374 case Decl::ObjCCategory: 1375 break; 1376 case Decl::ObjCInterface: 1377 // If we already laid out this interface due to an @class, and if we 1378 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1379 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1380 break; 1381 1382 case Decl::ObjCProtocol: 1383 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1384 break; 1385 1386 case Decl::ObjCCategoryImpl: 1387 // Categories have properties but don't support synthesize so we 1388 // can ignore them here. 1389 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1390 break; 1391 1392 case Decl::ObjCImplementation: { 1393 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1394 EmitObjCPropertyImplementations(OMD); 1395 Runtime->GenerateClass(OMD); 1396 break; 1397 } 1398 case Decl::ObjCMethod: { 1399 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1400 // If this is not a prototype, emit the body. 1401 if (OMD->getBody(getContext())) 1402 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1403 break; 1404 } 1405 case Decl::ObjCCompatibleAlias: 1406 // compatibility-alias is a directive and has no code gen. 1407 break; 1408 1409 case Decl::LinkageSpec: 1410 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1411 break; 1412 1413 case Decl::FileScopeAsm: { 1414 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1415 std::string AsmString(AD->getAsmString()->getStrData(), 1416 AD->getAsmString()->getByteLength()); 1417 1418 const std::string &S = getModule().getModuleInlineAsm(); 1419 if (S.empty()) 1420 getModule().setModuleInlineAsm(AsmString); 1421 else 1422 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1423 break; 1424 } 1425 1426 default: 1427 // Make sure we handled everything we should, every other kind is 1428 // a non-top-level decl. FIXME: Would be nice to have an 1429 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1430 // that easily. 1431 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1432 } 1433 } 1434