1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-module state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenModule.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenFunction.h"
17 #include "CGCall.h"
18 #include "CGObjCRuntime.h"
19 #include "Mangle.h"
20 #include "clang/Frontend/CompileOptions.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/Basic/Diagnostic.h"
25 #include "clang/Basic/SourceManager.h"
26 #include "clang/Basic/TargetInfo.h"
27 #include "clang/Basic/ConvertUTF.h"
28 #include "llvm/CallingConv.h"
29 #include "llvm/Module.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Target/TargetData.h"
32 using namespace clang;
33 using namespace CodeGen;
34 
35 
36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                              llvm::Module &M, const llvm::TargetData &TD,
38                              Diagnostic &diags)
39   : BlockModule(C, M, TD, Types, *this), Context(C),
40     Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41     TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42     MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43 
44   if (!Features.ObjC1)
45     Runtime = 0;
46   else if (!Features.NeXTRuntime)
47     Runtime = CreateGNUObjCRuntime(*this);
48   else if (Features.ObjCNonFragileABI)
49     Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50   else
51     Runtime = CreateMacObjCRuntime(*this);
52 
53   // If debug info generation is enabled, create the CGDebugInfo object.
54   DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55 }
56 
57 CodeGenModule::~CodeGenModule() {
58   delete Runtime;
59   delete DebugInfo;
60 }
61 
62 void CodeGenModule::Release() {
63   EmitDeferred();
64   if (Runtime)
65     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66       AddGlobalCtor(ObjCInitFunction);
67   EmitCtorList(GlobalCtors, "llvm.global_ctors");
68   EmitCtorList(GlobalDtors, "llvm.global_dtors");
69   EmitAnnotations();
70   EmitLLVMUsed();
71 }
72 
73 /// ErrorUnsupported - Print out an error that codegen doesn't support the
74 /// specified stmt yet.
75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                      bool OmitOnError) {
77   if (OmitOnError && getDiags().hasErrorOccurred())
78     return;
79   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                                "cannot compile this %0 yet");
81   std::string Msg = Type;
82   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83     << Msg << S->getSourceRange();
84 }
85 
86 /// ErrorUnsupported - Print out an error that codegen doesn't support the
87 /// specified decl yet.
88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                      bool OmitOnError) {
90   if (OmitOnError && getDiags().hasErrorOccurred())
91     return;
92   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                                "cannot compile this %0 yet");
94   std::string Msg = Type;
95   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96 }
97 
98 LangOptions::VisibilityMode
99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100   if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101     if (VD->getStorageClass() == VarDecl::PrivateExtern)
102       return LangOptions::Hidden;
103 
104   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105     switch (attr->getVisibility()) {
106     default: assert(0 && "Unknown visibility!");
107     case VisibilityAttr::DefaultVisibility:
108       return LangOptions::Default;
109     case VisibilityAttr::HiddenVisibility:
110       return LangOptions::Hidden;
111     case VisibilityAttr::ProtectedVisibility:
112       return LangOptions::Protected;
113     }
114   }
115 
116   return getLangOptions().getVisibilityMode();
117 }
118 
119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                         const Decl *D) const {
121   // Internal definitions always have default visibility.
122   if (GV->hasLocalLinkage()) {
123     GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124     return;
125   }
126 
127   switch (getDeclVisibilityMode(D)) {
128   default: assert(0 && "Unknown visibility!");
129   case LangOptions::Default:
130     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131   case LangOptions::Hidden:
132     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133   case LangOptions::Protected:
134     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135   }
136 }
137 
138 /// \brief Retrieves the mangled name for the given declaration.
139 ///
140 /// If the given declaration requires a mangled name, returns an
141 /// const char* containing the mangled name.  Otherwise, returns
142 /// the unmangled name.
143 ///
144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
145   // In C, functions with no attributes never need to be mangled. Fastpath them.
146   if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
147     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
148     return ND->getNameAsCString();
149   }
150 
151   llvm::SmallString<256> Name;
152   llvm::raw_svector_ostream Out(Name);
153   if (!mangleName(ND, Context, Out)) {
154     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
155     return ND->getNameAsCString();
156   }
157 
158   Name += '\0';
159   return UniqueMangledName(Name.begin(), Name.end());
160 }
161 
162 const char *CodeGenModule::UniqueMangledName(const char *NameStart,
163                                              const char *NameEnd) {
164   assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
165 
166   return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
167 }
168 
169 /// AddGlobalCtor - Add a function to the list that will be called before
170 /// main() runs.
171 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
172   // FIXME: Type coercion of void()* types.
173   GlobalCtors.push_back(std::make_pair(Ctor, Priority));
174 }
175 
176 /// AddGlobalDtor - Add a function to the list that will be called
177 /// when the module is unloaded.
178 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
179   // FIXME: Type coercion of void()* types.
180   GlobalDtors.push_back(std::make_pair(Dtor, Priority));
181 }
182 
183 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
184   // Ctor function type is void()*.
185   llvm::FunctionType* CtorFTy =
186     llvm::FunctionType::get(llvm::Type::VoidTy,
187                             std::vector<const llvm::Type*>(),
188                             false);
189   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
190 
191   // Get the type of a ctor entry, { i32, void ()* }.
192   llvm::StructType* CtorStructTy =
193     llvm::StructType::get(llvm::Type::Int32Ty,
194                           llvm::PointerType::getUnqual(CtorFTy), NULL);
195 
196   // Construct the constructor and destructor arrays.
197   std::vector<llvm::Constant*> Ctors;
198   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
199     std::vector<llvm::Constant*> S;
200     S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
201     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
202     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
203   }
204 
205   if (!Ctors.empty()) {
206     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
207     new llvm::GlobalVariable(AT, false,
208                              llvm::GlobalValue::AppendingLinkage,
209                              llvm::ConstantArray::get(AT, Ctors),
210                              GlobalName,
211                              &TheModule);
212   }
213 }
214 
215 void CodeGenModule::EmitAnnotations() {
216   if (Annotations.empty())
217     return;
218 
219   // Create a new global variable for the ConstantStruct in the Module.
220   llvm::Constant *Array =
221   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
222                                                 Annotations.size()),
223                            Annotations);
224   llvm::GlobalValue *gv =
225   new llvm::GlobalVariable(Array->getType(), false,
226                            llvm::GlobalValue::AppendingLinkage, Array,
227                            "llvm.global.annotations", &TheModule);
228   gv->setSection("llvm.metadata");
229 }
230 
231 static CodeGenModule::GVALinkage
232 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) {
233   // "static" and attr(always_inline) functions get internal linkage.
234   if (FD->getStorageClass() == FunctionDecl::Static ||
235       FD->hasAttr<AlwaysInlineAttr>())
236     return CodeGenModule::GVA_Internal;
237 
238   if (!FD->isInline())
239     return CodeGenModule::GVA_StrongExternal;
240 
241   // If the inline function explicitly has the GNU inline attribute on it, then
242   // force to GNUC semantics (which is strong external), regardless of language.
243   if (FD->hasAttr<GNUInlineAttr>())
244     return CodeGenModule::GVA_StrongExternal;
245 
246   // The definition of inline changes based on the language.  Note that we
247   // have already handled "static inline" above, with the GVA_Internal case.
248   if (Features.CPlusPlus)  // inline and extern inline.
249     return CodeGenModule::GVA_CXXInline;
250 
251   if (FD->getStorageClass() == FunctionDecl::Extern) {
252     // extern inline in C99 is a strong definition. In C89, it is extern inline.
253     if (Features.C99)
254       return CodeGenModule::GVA_StrongExternal;
255 
256     // In C89 mode, an 'extern inline' works like a C99 inline function.
257     return CodeGenModule::GVA_C99Inline;
258   }
259 
260   if (Features.C99)
261     return CodeGenModule::GVA_C99Inline;
262 
263   // Otherwise, this is the GNU inline extension in K&R and GNU C89 mode.
264   return CodeGenModule::GVA_StrongExternal;
265 }
266 
267 /// SetFunctionDefinitionAttributes - Set attributes for a global.
268 ///
269 /// FIXME: This is currently only done for aliases and functions, but
270 /// not for variables (these details are set in
271 /// EmitGlobalVarDefinition for variables).
272 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
273                                                     llvm::GlobalValue *GV) {
274   GVALinkage Linkage = GetLinkageForFunction(D, Features);
275 
276   if (Linkage == GVA_Internal) {
277     GV->setLinkage(llvm::Function::InternalLinkage);
278   } else if (D->hasAttr<DLLExportAttr>()) {
279     GV->setLinkage(llvm::Function::DLLExportLinkage);
280   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
281     GV->setLinkage(llvm::Function::WeakAnyLinkage);
282   } else if (Linkage == GVA_C99Inline) {
283     // In C99 mode, 'inline' functions are guaranteed to have a strong
284     // definition somewhere else, so we can use available_externally linkage.
285     GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
286   } else if (Linkage == GVA_CXXInline) {
287     // In C++, the compiler has to emit a definition in every translation unit
288     // that references the function.  We should use linkonce_odr because
289     // a) if all references in this translation unit are optimized away, we
290     // don't need to codegen it.  b) if the function persists, it needs to be
291     // merged with other definitions. c) C++ has the ODR, so we know the
292     // definition is dependable.
293     GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
294   } else {
295     assert(Linkage == GVA_StrongExternal);
296     // Otherwise, we have strong external linkage.
297     GV->setLinkage(llvm::Function::ExternalLinkage);
298   }
299 
300   SetCommonAttributes(D, GV);
301 }
302 
303 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
304                                               const CGFunctionInfo &Info,
305                                               llvm::Function *F) {
306   AttributeListType AttributeList;
307   ConstructAttributeList(Info, D, AttributeList);
308 
309   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
310                                         AttributeList.size()));
311 
312   // Set the appropriate calling convention for the Function.
313   if (D->hasAttr<FastCallAttr>())
314     F->setCallingConv(llvm::CallingConv::X86_FastCall);
315 
316   if (D->hasAttr<StdCallAttr>())
317     F->setCallingConv(llvm::CallingConv::X86_StdCall);
318 }
319 
320 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
321                                                            llvm::Function *F) {
322   if (!Features.Exceptions && !Features.ObjCNonFragileABI)
323     F->addFnAttr(llvm::Attribute::NoUnwind);
324 
325   if (D->hasAttr<AlwaysInlineAttr>())
326     F->addFnAttr(llvm::Attribute::AlwaysInline);
327 
328   if (D->hasAttr<NoinlineAttr>())
329     F->addFnAttr(llvm::Attribute::NoInline);
330 }
331 
332 void CodeGenModule::SetCommonAttributes(const Decl *D,
333                                         llvm::GlobalValue *GV) {
334   setGlobalVisibility(GV, D);
335 
336   if (D->hasAttr<UsedAttr>())
337     AddUsedGlobal(GV);
338 
339   if (const SectionAttr *SA = D->getAttr<SectionAttr>())
340     GV->setSection(SA->getName());
341 }
342 
343 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
344                                                   llvm::Function *F,
345                                                   const CGFunctionInfo &FI) {
346   SetLLVMFunctionAttributes(D, FI, F);
347   SetLLVMFunctionAttributesForDefinition(D, F);
348 
349   F->setLinkage(llvm::Function::InternalLinkage);
350 
351   SetCommonAttributes(D, F);
352 }
353 
354 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
355                                           llvm::Function *F) {
356   SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
357 
358   // Only a few attributes are set on declarations; these may later be
359   // overridden by a definition.
360 
361   if (FD->hasAttr<DLLImportAttr>()) {
362     F->setLinkage(llvm::Function::DLLImportLinkage);
363   } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) {
364     // "extern_weak" is overloaded in LLVM; we probably should have
365     // separate linkage types for this.
366     F->setLinkage(llvm::Function::ExternalWeakLinkage);
367   } else {
368     F->setLinkage(llvm::Function::ExternalLinkage);
369   }
370 
371   if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
372     F->setSection(SA->getName());
373 }
374 
375 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
376   assert(!GV->isDeclaration() &&
377          "Only globals with definition can force usage.");
378   LLVMUsed.push_back(GV);
379 }
380 
381 void CodeGenModule::EmitLLVMUsed() {
382   // Don't create llvm.used if there is no need.
383   if (LLVMUsed.empty())
384     return;
385 
386   llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
387   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
388 
389   // Convert LLVMUsed to what ConstantArray needs.
390   std::vector<llvm::Constant*> UsedArray;
391   UsedArray.resize(LLVMUsed.size());
392   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
393     UsedArray[i] =
394      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
395   }
396 
397   llvm::GlobalVariable *GV =
398     new llvm::GlobalVariable(ATy, false,
399                              llvm::GlobalValue::AppendingLinkage,
400                              llvm::ConstantArray::get(ATy, UsedArray),
401                              "llvm.used", &getModule());
402 
403   GV->setSection("llvm.metadata");
404 }
405 
406 void CodeGenModule::EmitDeferred() {
407   // Emit code for any potentially referenced deferred decls.  Since a
408   // previously unused static decl may become used during the generation of code
409   // for a static function, iterate until no  changes are made.
410   while (!DeferredDeclsToEmit.empty()) {
411     const ValueDecl *D = DeferredDeclsToEmit.back();
412     DeferredDeclsToEmit.pop_back();
413 
414     // The mangled name for the decl must have been emitted in GlobalDeclMap.
415     // Look it up to see if it was defined with a stronger definition (e.g. an
416     // extern inline function with a strong function redefinition).  If so,
417     // just ignore the deferred decl.
418     llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
419     assert(CGRef && "Deferred decl wasn't referenced?");
420 
421     if (!CGRef->isDeclaration())
422       continue;
423 
424     // Otherwise, emit the definition and move on to the next one.
425     EmitGlobalDefinition(D);
426   }
427 }
428 
429 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
430 /// annotation information for a given GlobalValue.  The annotation struct is
431 /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
432 /// GlobalValue being annotated.  The second field is the constant string
433 /// created from the AnnotateAttr's annotation.  The third field is a constant
434 /// string containing the name of the translation unit.  The fourth field is
435 /// the line number in the file of the annotated value declaration.
436 ///
437 /// FIXME: this does not unique the annotation string constants, as llvm-gcc
438 ///        appears to.
439 ///
440 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
441                                                 const AnnotateAttr *AA,
442                                                 unsigned LineNo) {
443   llvm::Module *M = &getModule();
444 
445   // get [N x i8] constants for the annotation string, and the filename string
446   // which are the 2nd and 3rd elements of the global annotation structure.
447   const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
448   llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
449   llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
450                                                   true);
451 
452   // Get the two global values corresponding to the ConstantArrays we just
453   // created to hold the bytes of the strings.
454   const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
455   llvm::GlobalValue *annoGV =
456   new llvm::GlobalVariable(anno->getType(), false,
457                            llvm::GlobalValue::InternalLinkage, anno,
458                            GV->getName() + StringPrefix, M);
459   // translation unit name string, emitted into the llvm.metadata section.
460   llvm::GlobalValue *unitGV =
461   new llvm::GlobalVariable(unit->getType(), false,
462                            llvm::GlobalValue::InternalLinkage, unit,
463                            StringPrefix, M);
464 
465   // Create the ConstantStruct for the global annotation.
466   llvm::Constant *Fields[4] = {
467     llvm::ConstantExpr::getBitCast(GV, SBP),
468     llvm::ConstantExpr::getBitCast(annoGV, SBP),
469     llvm::ConstantExpr::getBitCast(unitGV, SBP),
470     llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
471   };
472   return llvm::ConstantStruct::get(Fields, 4, false);
473 }
474 
475 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
476   // Never defer when EmitAllDecls is specified or the decl has
477   // attribute used.
478   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
479     return false;
480 
481   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
482     // Constructors and destructors should never be deferred.
483     if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
484       return false;
485 
486     GVALinkage Linkage = GetLinkageForFunction(FD, Features);
487 
488     // static, static inline, always_inline, and extern inline functions can
489     // always be deferred.  Normal inline functions can be deferred in C99/C++.
490     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
491         Linkage == GVA_CXXInline)
492       return true;
493     return false;
494   }
495 
496   const VarDecl *VD = cast<VarDecl>(Global);
497   assert(VD->isFileVarDecl() && "Invalid decl");
498 
499   return VD->getStorageClass() == VarDecl::Static;
500 }
501 
502 void CodeGenModule::EmitGlobal(const ValueDecl *Global) {
503   // If this is an alias definition (which otherwise looks like a declaration)
504   // emit it now.
505   if (Global->hasAttr<AliasAttr>())
506     return EmitAliasDefinition(Global);
507 
508   // Ignore declarations, they will be emitted on their first use.
509   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
510     // Forward declarations are emitted lazily on first use.
511     if (!FD->isThisDeclarationADefinition())
512       return;
513   } else {
514     const VarDecl *VD = cast<VarDecl>(Global);
515     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
516 
517     // In C++, if this is marked "extern", defer code generation.
518     if (getLangOptions().CPlusPlus &&
519         VD->getStorageClass() == VarDecl::Extern && !VD->getInit())
520       return;
521 
522     // In C, if this isn't a definition, defer code generation.
523     if (!getLangOptions().CPlusPlus && !VD->getInit())
524       return;
525   }
526 
527   // Defer code generation when possible if this is a static definition, inline
528   // function etc.  These we only want to emit if they are used.
529   if (MayDeferGeneration(Global)) {
530     // If the value has already been used, add it directly to the
531     // DeferredDeclsToEmit list.
532     const char *MangledName = getMangledName(Global);
533     if (GlobalDeclMap.count(MangledName))
534       DeferredDeclsToEmit.push_back(Global);
535     else {
536       // Otherwise, remember that we saw a deferred decl with this name.  The
537       // first use of the mangled name will cause it to move into
538       // DeferredDeclsToEmit.
539       DeferredDecls[MangledName] = Global;
540     }
541     return;
542   }
543 
544   // Otherwise emit the definition.
545   EmitGlobalDefinition(Global);
546 }
547 
548 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) {
549   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
550     EmitGlobalFunctionDefinition(FD);
551   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
552     EmitGlobalVarDefinition(VD);
553   } else {
554     assert(0 && "Invalid argument to EmitGlobalDefinition()");
555   }
556 }
557 
558 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the
559 /// module, create and return an llvm Function with the specified type. If there
560 /// is something in the module with the specified name, return it potentially
561 /// bitcasted to the right type.
562 ///
563 /// If D is non-null, it specifies a decl that correspond to this.  This is used
564 /// to set the attributes on the function when it is first created.
565 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
566                                                        const llvm::Type *Ty,
567                                                        const FunctionDecl *D) {
568   // Lookup the entry, lazily creating it if necessary.
569   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
570   if (Entry) {
571     if (Entry->getType()->getElementType() == Ty)
572       return Entry;
573 
574     // Make sure the result is of the correct type.
575     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
576     return llvm::ConstantExpr::getBitCast(Entry, PTy);
577   }
578 
579   // This is the first use or definition of a mangled name.  If there is a
580   // deferred decl with this name, remember that we need to emit it at the end
581   // of the file.
582   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
583   DeferredDecls.find(MangledName);
584   if (DDI != DeferredDecls.end()) {
585     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
586     // list, and remove it from DeferredDecls (since we don't need it anymore).
587     DeferredDeclsToEmit.push_back(DDI->second);
588     DeferredDecls.erase(DDI);
589   }
590 
591   // This function doesn't have a complete type (for example, the return
592   // type is an incomplete struct). Use a fake type instead, and make
593   // sure not to try to set attributes.
594   bool ShouldSetAttributes = true;
595   if (!isa<llvm::FunctionType>(Ty)) {
596     Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
597                                  std::vector<const llvm::Type*>(), false);
598     ShouldSetAttributes = false;
599   }
600   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
601                                              llvm::Function::ExternalLinkage,
602                                              "", &getModule());
603   F->setName(MangledName);
604   if (D && ShouldSetAttributes)
605     SetFunctionAttributes(D, F);
606   Entry = F;
607   return F;
608 }
609 
610 /// GetAddrOfFunction - Return the address of the given function.  If Ty is
611 /// non-null, then this function will use the specified type if it has to
612 /// create it (this occurs when we see a definition of the function).
613 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
614                                                  const llvm::Type *Ty) {
615   // If there was no specific requested type, just convert it now.
616   if (!Ty)
617     Ty = getTypes().ConvertType(D->getType());
618   return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
619 }
620 
621 /// CreateRuntimeFunction - Create a new runtime function with the specified
622 /// type and name.
623 llvm::Constant *
624 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
625                                      const char *Name) {
626   // Convert Name to be a uniqued string from the IdentifierInfo table.
627   Name = getContext().Idents.get(Name).getName();
628   return GetOrCreateLLVMFunction(Name, FTy, 0);
629 }
630 
631 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
632 /// create and return an llvm GlobalVariable with the specified type.  If there
633 /// is something in the module with the specified name, return it potentially
634 /// bitcasted to the right type.
635 ///
636 /// If D is non-null, it specifies a decl that correspond to this.  This is used
637 /// to set the attributes on the global when it is first created.
638 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
639                                                      const llvm::PointerType*Ty,
640                                                      const VarDecl *D) {
641   // Lookup the entry, lazily creating it if necessary.
642   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
643   if (Entry) {
644     if (Entry->getType() == Ty)
645       return Entry;
646 
647     // Make sure the result is of the correct type.
648     return llvm::ConstantExpr::getBitCast(Entry, Ty);
649   }
650 
651   // This is the first use or definition of a mangled name.  If there is a
652   // deferred decl with this name, remember that we need to emit it at the end
653   // of the file.
654   llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
655     DeferredDecls.find(MangledName);
656   if (DDI != DeferredDecls.end()) {
657     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
658     // list, and remove it from DeferredDecls (since we don't need it anymore).
659     DeferredDeclsToEmit.push_back(DDI->second);
660     DeferredDecls.erase(DDI);
661   }
662 
663   llvm::GlobalVariable *GV =
664     new llvm::GlobalVariable(Ty->getElementType(), false,
665                              llvm::GlobalValue::ExternalLinkage,
666                              0, "", &getModule(),
667                              false, Ty->getAddressSpace());
668   GV->setName(MangledName);
669 
670   // Handle things which are present even on external declarations.
671   if (D) {
672     // FIXME: This code is overly simple and should be merged with
673     // other global handling.
674     GV->setConstant(D->getType().isConstant(Context));
675 
676     // FIXME: Merge with other attribute handling code.
677     if (D->getStorageClass() == VarDecl::PrivateExtern)
678       GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
679 
680     if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
681       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
682 
683     GV->setThreadLocal(D->isThreadSpecified());
684   }
685 
686   return Entry = GV;
687 }
688 
689 
690 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
691 /// given global variable.  If Ty is non-null and if the global doesn't exist,
692 /// then it will be greated with the specified type instead of whatever the
693 /// normal requested type would be.
694 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
695                                                   const llvm::Type *Ty) {
696   assert(D->hasGlobalStorage() && "Not a global variable");
697   QualType ASTTy = D->getType();
698   if (Ty == 0)
699     Ty = getTypes().ConvertTypeForMem(ASTTy);
700 
701   const llvm::PointerType *PTy =
702     llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
703   return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
704 }
705 
706 /// CreateRuntimeVariable - Create a new runtime global variable with the
707 /// specified type and name.
708 llvm::Constant *
709 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
710                                      const char *Name) {
711   // Convert Name to be a uniqued string from the IdentifierInfo table.
712   Name = getContext().Idents.get(Name).getName();
713   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
714 }
715 
716 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
717   assert(!D->getInit() && "Cannot emit definite definitions here!");
718 
719   if (MayDeferGeneration(D)) {
720     // If we have not seen a reference to this variable yet, place it
721     // into the deferred declarations table to be emitted if needed
722     // later.
723     const char *MangledName = getMangledName(D);
724     if (GlobalDeclMap.count(MangledName) == 0) {
725       DeferredDecls[MangledName] = D;
726       return;
727     }
728   }
729 
730   // The tentative definition is the only definition.
731   EmitGlobalVarDefinition(D);
732 }
733 
734 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
735   llvm::Constant *Init = 0;
736   QualType ASTTy = D->getType();
737 
738   if (D->getInit() == 0) {
739     // This is a tentative definition; tentative definitions are
740     // implicitly initialized with { 0 }.
741     //
742     // Note that tentative definitions are only emitted at the end of
743     // a translation unit, so they should never have incomplete
744     // type. In addition, EmitTentativeDefinition makes sure that we
745     // never attempt to emit a tentative definition if a real one
746     // exists. A use may still exists, however, so we still may need
747     // to do a RAUW.
748     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
749     Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
750   } else {
751     Init = EmitConstantExpr(D->getInit(), D->getType());
752     if (!Init) {
753       ErrorUnsupported(D, "static initializer");
754       QualType T = D->getInit()->getType();
755       Init = llvm::UndefValue::get(getTypes().ConvertType(T));
756     }
757   }
758 
759   const llvm::Type* InitType = Init->getType();
760   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
761 
762   // Strip off a bitcast if we got one back.
763   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
764     assert(CE->getOpcode() == llvm::Instruction::BitCast);
765     Entry = CE->getOperand(0);
766   }
767 
768   // Entry is now either a Function or GlobalVariable.
769   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
770 
771   // We have a definition after a declaration with the wrong type.
772   // We must make a new GlobalVariable* and update everything that used OldGV
773   // (a declaration or tentative definition) with the new GlobalVariable*
774   // (which will be a definition).
775   //
776   // This happens if there is a prototype for a global (e.g.
777   // "extern int x[];") and then a definition of a different type (e.g.
778   // "int x[10];"). This also happens when an initializer has a different type
779   // from the type of the global (this happens with unions).
780   if (GV == 0 ||
781       GV->getType()->getElementType() != InitType ||
782       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
783 
784     // Remove the old entry from GlobalDeclMap so that we'll create a new one.
785     GlobalDeclMap.erase(getMangledName(D));
786 
787     // Make a new global with the correct type, this is now guaranteed to work.
788     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
789     GV->takeName(cast<llvm::GlobalValue>(Entry));
790 
791     // Replace all uses of the old global with the new global
792     llvm::Constant *NewPtrForOldDecl =
793         llvm::ConstantExpr::getBitCast(GV, Entry->getType());
794     Entry->replaceAllUsesWith(NewPtrForOldDecl);
795 
796     // Erase the old global, since it is no longer used.
797     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
798   }
799 
800   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
801     SourceManager &SM = Context.getSourceManager();
802     AddAnnotation(EmitAnnotateAttr(GV, AA,
803                               SM.getInstantiationLineNumber(D->getLocation())));
804   }
805 
806   GV->setInitializer(Init);
807   GV->setConstant(D->getType().isConstant(Context));
808   GV->setAlignment(getContext().getDeclAlignInBytes(D));
809 
810   // Set the llvm linkage type as appropriate.
811   if (D->getStorageClass() == VarDecl::Static)
812     GV->setLinkage(llvm::Function::InternalLinkage);
813   else if (D->hasAttr<DLLImportAttr>())
814     GV->setLinkage(llvm::Function::DLLImportLinkage);
815   else if (D->hasAttr<DLLExportAttr>())
816     GV->setLinkage(llvm::Function::DLLExportLinkage);
817   else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
818     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
819   else if (!CompileOpts.NoCommon &&
820            (!D->hasExternalStorage() && !D->getInit()))
821     GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
822   else
823     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
824 
825   SetCommonAttributes(D, GV);
826 
827   // Emit global variable debug information.
828   if (CGDebugInfo *DI = getDebugInfo()) {
829     DI->setLocation(D->getLocation());
830     DI->EmitGlobalVariable(GV, D);
831   }
832 }
833 
834 
835 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
836   const llvm::FunctionType *Ty;
837 
838   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
839     bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
840 
841     Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
842   } else {
843     Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
844 
845     // As a special case, make sure that definitions of K&R function
846     // "type foo()" aren't declared as varargs (which forces the backend
847     // to do unnecessary work).
848     if (D->getType()->isFunctionNoProtoType()) {
849       assert(Ty->isVarArg() && "Didn't lower type as expected");
850       // Due to stret, the lowered function could have arguments.
851       // Just create the same type as was lowered by ConvertType
852       // but strip off the varargs bit.
853       std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
854       Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
855     }
856   }
857 
858   // Get or create the prototype for teh function.
859   llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
860 
861   // Strip off a bitcast if we got one back.
862   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
863     assert(CE->getOpcode() == llvm::Instruction::BitCast);
864     Entry = CE->getOperand(0);
865   }
866 
867 
868   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
869     // If the types mismatch then we have to rewrite the definition.
870     assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() &&
871            "Shouldn't replace non-declaration");
872 
873     // F is the Function* for the one with the wrong type, we must make a new
874     // Function* and update everything that used F (a declaration) with the new
875     // Function* (which will be a definition).
876     //
877     // This happens if there is a prototype for a function
878     // (e.g. "int f()") and then a definition of a different type
879     // (e.g. "int f(int x)").  Start by making a new function of the
880     // correct type, RAUW, then steal the name.
881     GlobalDeclMap.erase(getMangledName(D));
882     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
883     NewFn->takeName(cast<llvm::GlobalValue>(Entry));
884 
885     // Replace uses of F with the Function we will endow with a body.
886     llvm::Constant *NewPtrForOldDecl =
887       llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
888     Entry->replaceAllUsesWith(NewPtrForOldDecl);
889 
890     // Ok, delete the old function now, which is dead.
891     cast<llvm::GlobalValue>(Entry)->eraseFromParent();
892 
893     Entry = NewFn;
894   }
895 
896   llvm::Function *Fn = cast<llvm::Function>(Entry);
897 
898   CodeGenFunction(*this).GenerateCode(D, Fn);
899 
900   SetFunctionDefinitionAttributes(D, Fn);
901   SetLLVMFunctionAttributesForDefinition(D, Fn);
902 
903   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
904     AddGlobalCtor(Fn, CA->getPriority());
905   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
906     AddGlobalDtor(Fn, DA->getPriority());
907 }
908 
909 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
910   const AliasAttr *AA = D->getAttr<AliasAttr>();
911   assert(AA && "Not an alias?");
912 
913   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
914 
915   // Unique the name through the identifier table.
916   const char *AliaseeName = AA->getAliasee().c_str();
917   AliaseeName = getContext().Idents.get(AliaseeName).getName();
918 
919   // Create a reference to the named value.  This ensures that it is emitted
920   // if a deferred decl.
921   llvm::Constant *Aliasee;
922   if (isa<llvm::FunctionType>(DeclTy))
923     Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
924   else
925     Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
926                                     llvm::PointerType::getUnqual(DeclTy), 0);
927 
928   // Create the new alias itself, but don't set a name yet.
929   llvm::GlobalValue *GA =
930     new llvm::GlobalAlias(Aliasee->getType(),
931                           llvm::Function::ExternalLinkage,
932                           "", Aliasee, &getModule());
933 
934   // See if there is already something with the alias' name in the module.
935   const char *MangledName = getMangledName(D);
936   llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
937 
938   if (Entry && !Entry->isDeclaration()) {
939     // If there is a definition in the module, then it wins over the alias.
940     // This is dubious, but allow it to be safe.  Just ignore the alias.
941     GA->eraseFromParent();
942     return;
943   }
944 
945   if (Entry) {
946     // If there is a declaration in the module, then we had an extern followed
947     // by the alias, as in:
948     //   extern int test6();
949     //   ...
950     //   int test6() __attribute__((alias("test7")));
951     //
952     // Remove it and replace uses of it with the alias.
953 
954     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
955                                                           Entry->getType()));
956     Entry->eraseFromParent();
957   }
958 
959   // Now we know that there is no conflict, set the name.
960   Entry = GA;
961   GA->setName(MangledName);
962 
963   // Set attributes which are particular to an alias; this is a
964   // specialization of the attributes which may be set on a global
965   // variable/function.
966   if (D->hasAttr<DLLExportAttr>()) {
967     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
968       // The dllexport attribute is ignored for undefined symbols.
969       if (FD->getBody(getContext()))
970         GA->setLinkage(llvm::Function::DLLExportLinkage);
971     } else {
972       GA->setLinkage(llvm::Function::DLLExportLinkage);
973     }
974   } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
975     GA->setLinkage(llvm::Function::WeakAnyLinkage);
976   }
977 
978   SetCommonAttributes(D, GA);
979 }
980 
981 /// getBuiltinLibFunction - Given a builtin id for a function like
982 /// "__builtin_fabsf", return a Function* for "fabsf".
983 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
984   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
985           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
986          "isn't a lib fn");
987 
988   // Get the name, skip over the __builtin_ prefix (if necessary).
989   const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
990   if (Context.BuiltinInfo.isLibFunction(BuiltinID))
991     Name += 10;
992 
993   // Get the type for the builtin.
994   Builtin::Context::GetBuiltinTypeError Error;
995   QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
996   assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
997 
998   const llvm::FunctionType *Ty =
999     cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1000 
1001   // Unique the name through the identifier table.
1002   Name = getContext().Idents.get(Name).getName();
1003   // FIXME: param attributes for sext/zext etc.
1004   return GetOrCreateLLVMFunction(Name, Ty, 0);
1005 }
1006 
1007 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1008                                             unsigned NumTys) {
1009   return llvm::Intrinsic::getDeclaration(&getModule(),
1010                                          (llvm::Intrinsic::ID)IID, Tys, NumTys);
1011 }
1012 
1013 llvm::Function *CodeGenModule::getMemCpyFn() {
1014   if (MemCpyFn) return MemCpyFn;
1015   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1016   return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1017 }
1018 
1019 llvm::Function *CodeGenModule::getMemMoveFn() {
1020   if (MemMoveFn) return MemMoveFn;
1021   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1022   return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1023 }
1024 
1025 llvm::Function *CodeGenModule::getMemSetFn() {
1026   if (MemSetFn) return MemSetFn;
1027   const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1028   return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1029 }
1030 
1031 static void appendFieldAndPadding(CodeGenModule &CGM,
1032                                   std::vector<llvm::Constant*>& Fields,
1033                                   FieldDecl *FieldD, FieldDecl *NextFieldD,
1034                                   llvm::Constant* Field,
1035                                   RecordDecl* RD, const llvm::StructType *STy) {
1036   // Append the field.
1037   Fields.push_back(Field);
1038 
1039   int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1040 
1041   int NextStructFieldNo;
1042   if (!NextFieldD) {
1043     NextStructFieldNo = STy->getNumElements();
1044   } else {
1045     NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1046   }
1047 
1048   // Append padding
1049   for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1050     llvm::Constant *C =
1051       llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1052 
1053     Fields.push_back(C);
1054   }
1055 }
1056 
1057 llvm::Constant *CodeGenModule::
1058 GetAddrOfConstantCFString(const StringLiteral *Literal) {
1059   std::string str;
1060   unsigned StringLength = 0;
1061 
1062   bool isUTF16 = false;
1063   if (Literal->containsNonAsciiOrNull()) {
1064     // Convert from UTF-8 to UTF-16.
1065     llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1066     const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1067     UTF16 *ToPtr = &ToBuf[0];
1068 
1069     ConversionResult Result;
1070     Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1071                                 &ToPtr, ToPtr+Literal->getByteLength(),
1072                                 strictConversion);
1073     if (Result == conversionOK) {
1074       // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1075       // without doing more surgery to this routine. Since we aren't explicitly
1076       // checking for endianness here, it's also a bug (when generating code for
1077       // a target that doesn't match the host endianness). Modeling this as an
1078       // i16 array is likely the cleanest solution.
1079       StringLength = ToPtr-&ToBuf[0];
1080       str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1081       isUTF16 = true;
1082     } else if (Result == sourceIllegal) {
1083       // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1084       str.assign(Literal->getStrData(), Literal->getByteLength());
1085       StringLength = str.length();
1086     } else
1087       assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1088 
1089   } else {
1090     str.assign(Literal->getStrData(), Literal->getByteLength());
1091     StringLength = str.length();
1092   }
1093   llvm::StringMapEntry<llvm::Constant *> &Entry =
1094     CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1095 
1096   if (llvm::Constant *C = Entry.getValue())
1097     return C;
1098 
1099   llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1100   llvm::Constant *Zeros[] = { Zero, Zero };
1101 
1102   if (!CFConstantStringClassRef) {
1103     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1104     Ty = llvm::ArrayType::get(Ty, 0);
1105 
1106     // FIXME: This is fairly broken if
1107     // __CFConstantStringClassReference is already defined, in that it
1108     // will get renamed and the user will most likely see an opaque
1109     // error message. This is a general issue with relying on
1110     // particular names.
1111     llvm::GlobalVariable *GV =
1112       new llvm::GlobalVariable(Ty, false,
1113                                llvm::GlobalVariable::ExternalLinkage, 0,
1114                                "__CFConstantStringClassReference",
1115                                &getModule());
1116 
1117     // Decay array -> ptr
1118     CFConstantStringClassRef =
1119       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1120   }
1121 
1122   QualType CFTy = getContext().getCFConstantStringType();
1123   RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1124 
1125   const llvm::StructType *STy =
1126     cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1127 
1128   std::vector<llvm::Constant*> Fields;
1129   RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1130 
1131   // Class pointer.
1132   FieldDecl *CurField = *Field++;
1133   FieldDecl *NextField = *Field++;
1134   appendFieldAndPadding(*this, Fields, CurField, NextField,
1135                         CFConstantStringClassRef, CFRD, STy);
1136 
1137   // Flags.
1138   CurField = NextField;
1139   NextField = *Field++;
1140   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1141   appendFieldAndPadding(*this, Fields, CurField, NextField,
1142                         isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1143                                 : llvm::ConstantInt::get(Ty, 0x07C8),
1144                         CFRD, STy);
1145 
1146   // String pointer.
1147   CurField = NextField;
1148   NextField = *Field++;
1149   llvm::Constant *C = llvm::ConstantArray::get(str);
1150 
1151   const char *Sect, *Prefix;
1152   bool isConstant;
1153   if (isUTF16) {
1154     Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1155     Sect = getContext().Target.getUnicodeStringSection();
1156     // FIXME: Why does GCC not set constant here?
1157     isConstant = false;
1158   } else {
1159     Prefix = getContext().Target.getStringSymbolPrefix(true);
1160     Sect = getContext().Target.getCFStringDataSection();
1161     // FIXME: -fwritable-strings should probably affect this, but we
1162     // are following gcc here.
1163     isConstant = true;
1164   }
1165   llvm::GlobalVariable *GV =
1166     new llvm::GlobalVariable(C->getType(), isConstant,
1167                              llvm::GlobalValue::InternalLinkage,
1168                              C, Prefix, &getModule());
1169   if (Sect)
1170     GV->setSection(Sect);
1171   if (isUTF16) {
1172     unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1173     GV->setAlignment(Align);
1174   }
1175   appendFieldAndPadding(*this, Fields, CurField, NextField,
1176                         llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1177                         CFRD, STy);
1178 
1179   // String length.
1180   CurField = NextField;
1181   NextField = 0;
1182   Ty = getTypes().ConvertType(getContext().LongTy);
1183   appendFieldAndPadding(*this, Fields, CurField, NextField,
1184                         llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1185 
1186   // The struct.
1187   C = llvm::ConstantStruct::get(STy, Fields);
1188   GV = new llvm::GlobalVariable(C->getType(), true,
1189                                 llvm::GlobalVariable::InternalLinkage, C,
1190                                 getContext().Target.getCFStringSymbolPrefix(),
1191                                 &getModule());
1192   if (const char *Sect = getContext().Target.getCFStringSection())
1193     GV->setSection(Sect);
1194   Entry.setValue(GV);
1195 
1196   return GV;
1197 }
1198 
1199 /// GetStringForStringLiteral - Return the appropriate bytes for a
1200 /// string literal, properly padded to match the literal type.
1201 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1202   const char *StrData = E->getStrData();
1203   unsigned Len = E->getByteLength();
1204 
1205   const ConstantArrayType *CAT =
1206     getContext().getAsConstantArrayType(E->getType());
1207   assert(CAT && "String isn't pointer or array!");
1208 
1209   // Resize the string to the right size.
1210   std::string Str(StrData, StrData+Len);
1211   uint64_t RealLen = CAT->getSize().getZExtValue();
1212 
1213   if (E->isWide())
1214     RealLen *= getContext().Target.getWCharWidth()/8;
1215 
1216   Str.resize(RealLen, '\0');
1217 
1218   return Str;
1219 }
1220 
1221 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1222 /// constant array for the given string literal.
1223 llvm::Constant *
1224 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1225   // FIXME: This can be more efficient.
1226   return GetAddrOfConstantString(GetStringForStringLiteral(S));
1227 }
1228 
1229 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1230 /// array for the given ObjCEncodeExpr node.
1231 llvm::Constant *
1232 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1233   std::string Str;
1234   getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1235 
1236   return GetAddrOfConstantCString(Str);
1237 }
1238 
1239 
1240 /// GenerateWritableString -- Creates storage for a string literal.
1241 static llvm::Constant *GenerateStringLiteral(const std::string &str,
1242                                              bool constant,
1243                                              CodeGenModule &CGM,
1244                                              const char *GlobalName) {
1245   // Create Constant for this string literal. Don't add a '\0'.
1246   llvm::Constant *C = llvm::ConstantArray::get(str, false);
1247 
1248   // Create a global variable for this string
1249   return new llvm::GlobalVariable(C->getType(), constant,
1250                                   llvm::GlobalValue::InternalLinkage,
1251                                   C, GlobalName, &CGM.getModule());
1252 }
1253 
1254 /// GetAddrOfConstantString - Returns a pointer to a character array
1255 /// containing the literal. This contents are exactly that of the
1256 /// given string, i.e. it will not be null terminated automatically;
1257 /// see GetAddrOfConstantCString. Note that whether the result is
1258 /// actually a pointer to an LLVM constant depends on
1259 /// Feature.WriteableStrings.
1260 ///
1261 /// The result has pointer to array type.
1262 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1263                                                        const char *GlobalName) {
1264   bool IsConstant = !Features.WritableStrings;
1265 
1266   // Get the default prefix if a name wasn't specified.
1267   if (!GlobalName)
1268     GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1269 
1270   // Don't share any string literals if strings aren't constant.
1271   if (!IsConstant)
1272     return GenerateStringLiteral(str, false, *this, GlobalName);
1273 
1274   llvm::StringMapEntry<llvm::Constant *> &Entry =
1275   ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1276 
1277   if (Entry.getValue())
1278     return Entry.getValue();
1279 
1280   // Create a global variable for this.
1281   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1282   Entry.setValue(C);
1283   return C;
1284 }
1285 
1286 /// GetAddrOfConstantCString - Returns a pointer to a character
1287 /// array containing the literal and a terminating '\-'
1288 /// character. The result has pointer to array type.
1289 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1290                                                         const char *GlobalName){
1291   return GetAddrOfConstantString(str + '\0', GlobalName);
1292 }
1293 
1294 /// EmitObjCPropertyImplementations - Emit information for synthesized
1295 /// properties for an implementation.
1296 void CodeGenModule::EmitObjCPropertyImplementations(const
1297                                                     ObjCImplementationDecl *D) {
1298   for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(),
1299          e = D->propimpl_end(); i != e; ++i) {
1300     ObjCPropertyImplDecl *PID = *i;
1301 
1302     // Dynamic is just for type-checking.
1303     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1304       ObjCPropertyDecl *PD = PID->getPropertyDecl();
1305 
1306       // Determine which methods need to be implemented, some may have
1307       // been overridden. Note that ::isSynthesized is not the method
1308       // we want, that just indicates if the decl came from a
1309       // property. What we want to know is if the method is defined in
1310       // this implementation.
1311       if (!D->getInstanceMethod(PD->getGetterName()))
1312         CodeGenFunction(*this).GenerateObjCGetter(
1313                                  const_cast<ObjCImplementationDecl *>(D), PID);
1314       if (!PD->isReadOnly() &&
1315           !D->getInstanceMethod(PD->getSetterName()))
1316         CodeGenFunction(*this).GenerateObjCSetter(
1317                                  const_cast<ObjCImplementationDecl *>(D), PID);
1318     }
1319   }
1320 }
1321 
1322 /// EmitNamespace - Emit all declarations in a namespace.
1323 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1324   for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1325          E = ND->decls_end(getContext());
1326        I != E; ++I)
1327     EmitTopLevelDecl(*I);
1328 }
1329 
1330 // EmitLinkageSpec - Emit all declarations in a linkage spec.
1331 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1332   if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1333     ErrorUnsupported(LSD, "linkage spec");
1334     return;
1335   }
1336 
1337   for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1338          E = LSD->decls_end(getContext());
1339        I != E; ++I)
1340     EmitTopLevelDecl(*I);
1341 }
1342 
1343 /// EmitTopLevelDecl - Emit code for a single top level declaration.
1344 void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1345   // If an error has occurred, stop code generation, but continue
1346   // parsing and semantic analysis (to ensure all warnings and errors
1347   // are emitted).
1348   if (Diags.hasErrorOccurred())
1349     return;
1350 
1351   switch (D->getKind()) {
1352   case Decl::CXXMethod:
1353   case Decl::Function:
1354   case Decl::Var:
1355     EmitGlobal(cast<ValueDecl>(D));
1356     break;
1357 
1358   // C++ Decls
1359   case Decl::Namespace:
1360     EmitNamespace(cast<NamespaceDecl>(D));
1361     break;
1362   case Decl::CXXConstructor:
1363     EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1364     break;
1365   case Decl::CXXDestructor:
1366     EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1367     break;
1368 
1369   // Objective-C Decls
1370 
1371   // Forward declarations, no (immediate) code generation.
1372   case Decl::ObjCClass:
1373   case Decl::ObjCForwardProtocol:
1374   case Decl::ObjCCategory:
1375     break;
1376   case Decl::ObjCInterface:
1377     // If we already laid out this interface due to an @class, and if we
1378     // codegen'd a reference it, update the 'opaque' type to be a real type now.
1379     Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D));
1380     break;
1381 
1382   case Decl::ObjCProtocol:
1383     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1384     break;
1385 
1386   case Decl::ObjCCategoryImpl:
1387     // Categories have properties but don't support synthesize so we
1388     // can ignore them here.
1389     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1390     break;
1391 
1392   case Decl::ObjCImplementation: {
1393     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1394     EmitObjCPropertyImplementations(OMD);
1395     Runtime->GenerateClass(OMD);
1396     break;
1397   }
1398   case Decl::ObjCMethod: {
1399     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1400     // If this is not a prototype, emit the body.
1401     if (OMD->getBody(getContext()))
1402       CodeGenFunction(*this).GenerateObjCMethod(OMD);
1403     break;
1404   }
1405   case Decl::ObjCCompatibleAlias:
1406     // compatibility-alias is a directive and has no code gen.
1407     break;
1408 
1409   case Decl::LinkageSpec:
1410     EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1411     break;
1412 
1413   case Decl::FileScopeAsm: {
1414     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1415     std::string AsmString(AD->getAsmString()->getStrData(),
1416                           AD->getAsmString()->getByteLength());
1417 
1418     const std::string &S = getModule().getModuleInlineAsm();
1419     if (S.empty())
1420       getModule().setModuleInlineAsm(AsmString);
1421     else
1422       getModule().setModuleInlineAsm(S + '\n' + AsmString);
1423     break;
1424   }
1425 
1426   default:
1427     // Make sure we handled everything we should, every other kind is
1428     // a non-top-level decl.  FIXME: Would be nice to have an
1429     // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1430     // that easily.
1431     assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1432   }
1433 }
1434