1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/Frontend/CompileOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/Basic/Diagnostic.h" 25 #include "clang/Basic/SourceManager.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Basic/ConvertUTF.h" 28 #include "llvm/CallingConv.h" 29 #include "llvm/Module.h" 30 #include "llvm/Intrinsics.h" 31 #include "llvm/Target/TargetData.h" 32 using namespace clang; 33 using namespace CodeGen; 34 35 36 CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, 37 llvm::Module &M, const llvm::TargetData &TD, 38 Diagnostic &diags) 39 : BlockModule(C, M, TD, Types, *this), Context(C), 40 Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), 41 TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), 42 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { 43 44 if (!Features.ObjC1) 45 Runtime = 0; 46 else if (!Features.NeXTRuntime) 47 Runtime = CreateGNUObjCRuntime(*this); 48 else if (Features.ObjCNonFragileABI) 49 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 50 else 51 Runtime = CreateMacObjCRuntime(*this); 52 53 // If debug info generation is enabled, create the CGDebugInfo object. 54 DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; 55 } 56 57 CodeGenModule::~CodeGenModule() { 58 delete Runtime; 59 delete DebugInfo; 60 } 61 62 void CodeGenModule::Release() { 63 EmitDeferred(); 64 if (Runtime) 65 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 66 AddGlobalCtor(ObjCInitFunction); 67 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 68 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 69 EmitAnnotations(); 70 EmitLLVMUsed(); 71 } 72 73 /// ErrorUnsupported - Print out an error that codegen doesn't support the 74 /// specified stmt yet. 75 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 76 bool OmitOnError) { 77 if (OmitOnError && getDiags().hasErrorOccurred()) 78 return; 79 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 80 "cannot compile this %0 yet"); 81 std::string Msg = Type; 82 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 83 << Msg << S->getSourceRange(); 84 } 85 86 /// ErrorUnsupported - Print out an error that codegen doesn't support the 87 /// specified decl yet. 88 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 89 bool OmitOnError) { 90 if (OmitOnError && getDiags().hasErrorOccurred()) 91 return; 92 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 93 "cannot compile this %0 yet"); 94 std::string Msg = Type; 95 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 96 } 97 98 LangOptions::VisibilityMode 99 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 100 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 101 if (VD->getStorageClass() == VarDecl::PrivateExtern) 102 return LangOptions::Hidden; 103 104 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 105 switch (attr->getVisibility()) { 106 default: assert(0 && "Unknown visibility!"); 107 case VisibilityAttr::DefaultVisibility: 108 return LangOptions::Default; 109 case VisibilityAttr::HiddenVisibility: 110 return LangOptions::Hidden; 111 case VisibilityAttr::ProtectedVisibility: 112 return LangOptions::Protected; 113 } 114 } 115 116 return getLangOptions().getVisibilityMode(); 117 } 118 119 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 120 const Decl *D) const { 121 // Internal definitions always have default visibility. 122 if (GV->hasLocalLinkage()) { 123 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 124 return; 125 } 126 127 switch (getDeclVisibilityMode(D)) { 128 default: assert(0 && "Unknown visibility!"); 129 case LangOptions::Default: 130 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 131 case LangOptions::Hidden: 132 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 133 case LangOptions::Protected: 134 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 135 } 136 } 137 138 /// \brief Retrieves the mangled name for the given declaration. 139 /// 140 /// If the given declaration requires a mangled name, returns an 141 /// const char* containing the mangled name. Otherwise, returns 142 /// the unmangled name. 143 /// 144 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 145 // In C, functions with no attributes never need to be mangled. Fastpath them. 146 if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { 147 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 148 return ND->getNameAsCString(); 149 } 150 151 llvm::SmallString<256> Name; 152 llvm::raw_svector_ostream Out(Name); 153 if (!mangleName(ND, Context, Out)) { 154 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 155 return ND->getNameAsCString(); 156 } 157 158 Name += '\0'; 159 return UniqueMangledName(Name.begin(), Name.end()); 160 } 161 162 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 163 const char *NameEnd) { 164 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 165 166 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 167 } 168 169 /// AddGlobalCtor - Add a function to the list that will be called before 170 /// main() runs. 171 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 172 // FIXME: Type coercion of void()* types. 173 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 174 } 175 176 /// AddGlobalDtor - Add a function to the list that will be called 177 /// when the module is unloaded. 178 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 179 // FIXME: Type coercion of void()* types. 180 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 181 } 182 183 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 184 // Ctor function type is void()*. 185 llvm::FunctionType* CtorFTy = 186 llvm::FunctionType::get(llvm::Type::VoidTy, 187 std::vector<const llvm::Type*>(), 188 false); 189 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 190 191 // Get the type of a ctor entry, { i32, void ()* }. 192 llvm::StructType* CtorStructTy = 193 llvm::StructType::get(llvm::Type::Int32Ty, 194 llvm::PointerType::getUnqual(CtorFTy), NULL); 195 196 // Construct the constructor and destructor arrays. 197 std::vector<llvm::Constant*> Ctors; 198 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 199 std::vector<llvm::Constant*> S; 200 S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); 201 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 202 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 203 } 204 205 if (!Ctors.empty()) { 206 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 207 new llvm::GlobalVariable(AT, false, 208 llvm::GlobalValue::AppendingLinkage, 209 llvm::ConstantArray::get(AT, Ctors), 210 GlobalName, 211 &TheModule); 212 } 213 } 214 215 void CodeGenModule::EmitAnnotations() { 216 if (Annotations.empty()) 217 return; 218 219 // Create a new global variable for the ConstantStruct in the Module. 220 llvm::Constant *Array = 221 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 222 Annotations.size()), 223 Annotations); 224 llvm::GlobalValue *gv = 225 new llvm::GlobalVariable(Array->getType(), false, 226 llvm::GlobalValue::AppendingLinkage, Array, 227 "llvm.global.annotations", &TheModule); 228 gv->setSection("llvm.metadata"); 229 } 230 231 static CodeGenModule::GVALinkage 232 GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) { 233 // "static" and attr(always_inline) functions get internal linkage. 234 if (FD->getStorageClass() == FunctionDecl::Static || 235 FD->hasAttr<AlwaysInlineAttr>()) 236 return CodeGenModule::GVA_Internal; 237 238 if (!FD->isInline()) 239 return CodeGenModule::GVA_StrongExternal; 240 241 // If the inline function explicitly has the GNU inline attribute on it, then 242 // force to GNUC semantics (which is strong external), regardless of language. 243 if (FD->hasAttr<GNUCInlineAttr>()) 244 return CodeGenModule::GVA_StrongExternal; 245 246 // The definition of inline changes based on the language. Note that we 247 // have already handled "static inline" above, with the GVA_Internal case. 248 if (Features.CPlusPlus) // inline and extern inline. 249 return CodeGenModule::GVA_CXXInline; 250 251 if (FD->getStorageClass() == FunctionDecl::Extern) { 252 // extern inline in C99 is a strong definition. In C89, it is extern inline. 253 if (Features.C99) 254 return CodeGenModule::GVA_StrongExternal; 255 256 // In C89 mode, an 'extern inline' works like a C99 inline function. 257 return CodeGenModule::GVA_C99Inline; 258 } 259 260 if (Features.C99) 261 return CodeGenModule::GVA_C99Inline; 262 263 // Otherwise, this is the GNU inline extension in K&R and GNU C89 mode. 264 return CodeGenModule::GVA_StrongExternal; 265 } 266 267 /// SetFunctionDefinitionAttributes - Set attributes for a global. 268 /// 269 /// FIXME: This is currently only done for aliases and functions, but 270 /// not for variables (these details are set in 271 /// EmitGlobalVarDefinition for variables). 272 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 273 llvm::GlobalValue *GV) { 274 GVALinkage Linkage = GetLinkageForFunction(D, Features); 275 276 if (Linkage == GVA_Internal) { 277 GV->setLinkage(llvm::Function::InternalLinkage); 278 } else if (D->hasAttr<DLLExportAttr>()) { 279 GV->setLinkage(llvm::Function::DLLExportLinkage); 280 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 281 GV->setLinkage(llvm::Function::WeakAnyLinkage); 282 } else if (Linkage == GVA_C99Inline) { 283 // In C99 mode, 'inline' functions are guaranteed to have a strong 284 // definition somewhere else, so we can use available_externally linkage. 285 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 286 } else if (Linkage == GVA_CXXInline) { 287 // In C++, the compiler has to emit a definition in every translation unit 288 // that references the function. We should use linkonce_odr because 289 // a) if all references in this translation unit are optimized away, we 290 // don't need to codegen it. b) if the function persists, it needs to be 291 // merged with other definitions. c) C++ has the ODR, so we know the 292 // definition is dependable. 293 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 294 } else { 295 assert(Linkage == GVA_StrongExternal); 296 // Otherwise, we have strong external linkage. 297 GV->setLinkage(llvm::Function::ExternalLinkage); 298 } 299 300 SetCommonAttributes(D, GV); 301 } 302 303 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 304 const CGFunctionInfo &Info, 305 llvm::Function *F) { 306 AttributeListType AttributeList; 307 ConstructAttributeList(Info, D, AttributeList); 308 309 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 310 AttributeList.size())); 311 312 // Set the appropriate calling convention for the Function. 313 if (D->hasAttr<FastCallAttr>()) 314 F->setCallingConv(llvm::CallingConv::X86_FastCall); 315 316 if (D->hasAttr<StdCallAttr>()) 317 F->setCallingConv(llvm::CallingConv::X86_StdCall); 318 } 319 320 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 321 llvm::Function *F) { 322 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 323 F->addFnAttr(llvm::Attribute::NoUnwind); 324 325 if (D->hasAttr<AlwaysInlineAttr>()) 326 F->addFnAttr(llvm::Attribute::AlwaysInline); 327 328 if (D->hasAttr<NoinlineAttr>()) 329 F->addFnAttr(llvm::Attribute::NoInline); 330 } 331 332 void CodeGenModule::SetCommonAttributes(const Decl *D, 333 llvm::GlobalValue *GV) { 334 setGlobalVisibility(GV, D); 335 336 if (D->hasAttr<UsedAttr>()) 337 AddUsedGlobal(GV); 338 339 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 340 GV->setSection(SA->getName()); 341 } 342 343 void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, 344 llvm::Function *F) { 345 SetLLVMFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); 346 SetLLVMFunctionAttributesForDefinition(MD, F); 347 348 F->setLinkage(llvm::Function::InternalLinkage); 349 350 SetCommonAttributes(MD, F); 351 } 352 353 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 354 llvm::Function *F) { 355 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 356 357 // Only a few attributes are set on declarations; these may later be 358 // overridden by a definition. 359 360 if (FD->hasAttr<DLLImportAttr>()) { 361 F->setLinkage(llvm::Function::DLLImportLinkage); 362 } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) { 363 // "extern_weak" is overloaded in LLVM; we probably should have 364 // separate linkage types for this. 365 F->setLinkage(llvm::Function::ExternalWeakLinkage); 366 } else { 367 F->setLinkage(llvm::Function::ExternalLinkage); 368 } 369 370 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 371 F->setSection(SA->getName()); 372 } 373 374 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 375 assert(!GV->isDeclaration() && 376 "Only globals with definition can force usage."); 377 LLVMUsed.push_back(GV); 378 } 379 380 void CodeGenModule::EmitLLVMUsed() { 381 // Don't create llvm.used if there is no need. 382 if (LLVMUsed.empty()) 383 return; 384 385 llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 386 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size()); 387 388 // Convert LLVMUsed to what ConstantArray needs. 389 std::vector<llvm::Constant*> UsedArray; 390 UsedArray.resize(LLVMUsed.size()); 391 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 392 UsedArray[i] = 393 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy); 394 } 395 396 llvm::GlobalVariable *GV = 397 new llvm::GlobalVariable(ATy, false, 398 llvm::GlobalValue::AppendingLinkage, 399 llvm::ConstantArray::get(ATy, UsedArray), 400 "llvm.used", &getModule()); 401 402 GV->setSection("llvm.metadata"); 403 } 404 405 void CodeGenModule::EmitDeferred() { 406 // Emit code for any potentially referenced deferred decls. Since a 407 // previously unused static decl may become used during the generation of code 408 // for a static function, iterate until no changes are made. 409 while (!DeferredDeclsToEmit.empty()) { 410 const ValueDecl *D = DeferredDeclsToEmit.back(); 411 DeferredDeclsToEmit.pop_back(); 412 413 // The mangled name for the decl must have been emitted in GlobalDeclMap. 414 // Look it up to see if it was defined with a stronger definition (e.g. an 415 // extern inline function with a strong function redefinition). If so, 416 // just ignore the deferred decl. 417 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 418 assert(CGRef && "Deferred decl wasn't referenced?"); 419 420 if (!CGRef->isDeclaration()) 421 continue; 422 423 // Otherwise, emit the definition and move on to the next one. 424 EmitGlobalDefinition(D); 425 } 426 } 427 428 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 429 /// annotation information for a given GlobalValue. The annotation struct is 430 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 431 /// GlobalValue being annotated. The second field is the constant string 432 /// created from the AnnotateAttr's annotation. The third field is a constant 433 /// string containing the name of the translation unit. The fourth field is 434 /// the line number in the file of the annotated value declaration. 435 /// 436 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 437 /// appears to. 438 /// 439 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 440 const AnnotateAttr *AA, 441 unsigned LineNo) { 442 llvm::Module *M = &getModule(); 443 444 // get [N x i8] constants for the annotation string, and the filename string 445 // which are the 2nd and 3rd elements of the global annotation structure. 446 const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); 447 llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); 448 llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), 449 true); 450 451 // Get the two global values corresponding to the ConstantArrays we just 452 // created to hold the bytes of the strings. 453 const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true); 454 llvm::GlobalValue *annoGV = 455 new llvm::GlobalVariable(anno->getType(), false, 456 llvm::GlobalValue::InternalLinkage, anno, 457 GV->getName() + StringPrefix, M); 458 // translation unit name string, emitted into the llvm.metadata section. 459 llvm::GlobalValue *unitGV = 460 new llvm::GlobalVariable(unit->getType(), false, 461 llvm::GlobalValue::InternalLinkage, unit, 462 StringPrefix, M); 463 464 // Create the ConstantStruct for the global annotation. 465 llvm::Constant *Fields[4] = { 466 llvm::ConstantExpr::getBitCast(GV, SBP), 467 llvm::ConstantExpr::getBitCast(annoGV, SBP), 468 llvm::ConstantExpr::getBitCast(unitGV, SBP), 469 llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) 470 }; 471 return llvm::ConstantStruct::get(Fields, 4, false); 472 } 473 474 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 475 // Never defer when EmitAllDecls is specified or the decl has 476 // attribute used. 477 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 478 return false; 479 480 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 481 // Constructors and destructors should never be deferred. 482 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>()) 483 return false; 484 485 GVALinkage Linkage = GetLinkageForFunction(FD, Features); 486 487 // static, static inline, always_inline, and extern inline functions can 488 // always be deferred. Normal inline functions can be deferred in C99/C++. 489 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 490 Linkage == GVA_CXXInline) 491 return true; 492 return false; 493 } 494 495 const VarDecl *VD = cast<VarDecl>(Global); 496 assert(VD->isFileVarDecl() && "Invalid decl"); 497 return VD->getStorageClass() == VarDecl::Static; 498 } 499 500 void CodeGenModule::EmitGlobal(const ValueDecl *Global) { 501 // If this is an alias definition (which otherwise looks like a declaration) 502 // emit it now. 503 if (Global->hasAttr<AliasAttr>()) 504 return EmitAliasDefinition(Global); 505 506 // Ignore declarations, they will be emitted on their first use. 507 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 508 // Forward declarations are emitted lazily on first use. 509 if (!FD->isThisDeclarationADefinition()) 510 return; 511 } else { 512 const VarDecl *VD = cast<VarDecl>(Global); 513 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 514 515 // Forward declarations are emitted lazily on first use. 516 if (!VD->getInit() && VD->hasExternalStorage()) 517 return; 518 } 519 520 // Defer code generation when possible if this is a static definition, inline 521 // function etc. These we only want to emit if they are used. 522 if (MayDeferGeneration(Global)) { 523 // If the value has already been used, add it directly to the 524 // DeferredDeclsToEmit list. 525 const char *MangledName = getMangledName(Global); 526 if (GlobalDeclMap.count(MangledName)) 527 DeferredDeclsToEmit.push_back(Global); 528 else { 529 // Otherwise, remember that we saw a deferred decl with this name. The 530 // first use of the mangled name will cause it to move into 531 // DeferredDeclsToEmit. 532 DeferredDecls[MangledName] = Global; 533 } 534 return; 535 } 536 537 // Otherwise emit the definition. 538 EmitGlobalDefinition(Global); 539 } 540 541 void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { 542 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 543 EmitGlobalFunctionDefinition(FD); 544 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 545 EmitGlobalVarDefinition(VD); 546 } else { 547 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 548 } 549 } 550 551 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 552 /// module, create and return an llvm Function with the specified type. If there 553 /// is something in the module with the specified name, return it potentially 554 /// bitcasted to the right type. 555 /// 556 /// If D is non-null, it specifies a decl that correspond to this. This is used 557 /// to set the attributes on the function when it is first created. 558 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 559 const llvm::Type *Ty, 560 const FunctionDecl *D) { 561 // Lookup the entry, lazily creating it if necessary. 562 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 563 if (Entry) { 564 if (Entry->getType()->getElementType() == Ty) 565 return Entry; 566 567 // Make sure the result is of the correct type. 568 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 569 return llvm::ConstantExpr::getBitCast(Entry, PTy); 570 } 571 572 // This is the first use or definition of a mangled name. If there is a 573 // deferred decl with this name, remember that we need to emit it at the end 574 // of the file. 575 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 576 DeferredDecls.find(MangledName); 577 if (DDI != DeferredDecls.end()) { 578 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 579 // list, and remove it from DeferredDecls (since we don't need it anymore). 580 DeferredDeclsToEmit.push_back(DDI->second); 581 DeferredDecls.erase(DDI); 582 } 583 584 // This function doesn't have a complete type (for example, the return 585 // type is an incomplete struct). Use a fake type instead, and make 586 // sure not to try to set attributes. 587 bool ShouldSetAttributes = true; 588 if (!isa<llvm::FunctionType>(Ty)) { 589 Ty = llvm::FunctionType::get(llvm::Type::VoidTy, 590 std::vector<const llvm::Type*>(), false); 591 ShouldSetAttributes = false; 592 } 593 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 594 llvm::Function::ExternalLinkage, 595 "", &getModule()); 596 F->setName(MangledName); 597 if (D && ShouldSetAttributes) 598 SetFunctionAttributes(D, F); 599 Entry = F; 600 return F; 601 } 602 603 /// GetAddrOfFunction - Return the address of the given function. If Ty is 604 /// non-null, then this function will use the specified type if it has to 605 /// create it (this occurs when we see a definition of the function). 606 llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D, 607 const llvm::Type *Ty) { 608 // If there was no specific requested type, just convert it now. 609 if (!Ty) 610 Ty = getTypes().ConvertType(D->getType()); 611 return GetOrCreateLLVMFunction(getMangledName(D), Ty, D); 612 } 613 614 /// CreateRuntimeFunction - Create a new runtime function with the specified 615 /// type and name. 616 llvm::Constant * 617 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 618 const char *Name) { 619 // Convert Name to be a uniqued string from the IdentifierInfo table. 620 Name = getContext().Idents.get(Name).getName(); 621 return GetOrCreateLLVMFunction(Name, FTy, 0); 622 } 623 624 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 625 /// create and return an llvm GlobalVariable with the specified type. If there 626 /// is something in the module with the specified name, return it potentially 627 /// bitcasted to the right type. 628 /// 629 /// If D is non-null, it specifies a decl that correspond to this. This is used 630 /// to set the attributes on the global when it is first created. 631 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 632 const llvm::PointerType*Ty, 633 const VarDecl *D) { 634 // Lookup the entry, lazily creating it if necessary. 635 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 636 if (Entry) { 637 if (Entry->getType() == Ty) 638 return Entry; 639 640 // Make sure the result is of the correct type. 641 return llvm::ConstantExpr::getBitCast(Entry, Ty); 642 } 643 644 // We don't support __thread yet. 645 if (D && D->isThreadSpecified()) 646 ErrorUnsupported(D, "thread local ('__thread') variable", true); 647 648 // This is the first use or definition of a mangled name. If there is a 649 // deferred decl with this name, remember that we need to emit it at the end 650 // of the file. 651 llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI = 652 DeferredDecls.find(MangledName); 653 if (DDI != DeferredDecls.end()) { 654 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 655 // list, and remove it from DeferredDecls (since we don't need it anymore). 656 DeferredDeclsToEmit.push_back(DDI->second); 657 DeferredDecls.erase(DDI); 658 } 659 660 llvm::GlobalVariable *GV = 661 new llvm::GlobalVariable(Ty->getElementType(), false, 662 llvm::GlobalValue::ExternalLinkage, 663 0, "", &getModule(), 664 0, Ty->getAddressSpace()); 665 GV->setName(MangledName); 666 667 // Handle things which are present even on external declarations. 668 if (D) { 669 // FIXME: This code is overly simple and should be merged with 670 // other global handling. 671 GV->setConstant(D->getType().isConstant(Context)); 672 673 // FIXME: Merge with other attribute handling code. 674 if (D->getStorageClass() == VarDecl::PrivateExtern) 675 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 676 677 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 678 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 679 } 680 681 return Entry = GV; 682 } 683 684 685 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 686 /// given global variable. If Ty is non-null and if the global doesn't exist, 687 /// then it will be greated with the specified type instead of whatever the 688 /// normal requested type would be. 689 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 690 const llvm::Type *Ty) { 691 assert(D->hasGlobalStorage() && "Not a global variable"); 692 QualType ASTTy = D->getType(); 693 if (Ty == 0) 694 Ty = getTypes().ConvertTypeForMem(ASTTy); 695 696 const llvm::PointerType *PTy = 697 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 698 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 699 } 700 701 /// CreateRuntimeVariable - Create a new runtime global variable with the 702 /// specified type and name. 703 llvm::Constant * 704 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 705 const char *Name) { 706 // Convert Name to be a uniqued string from the IdentifierInfo table. 707 Name = getContext().Idents.get(Name).getName(); 708 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 709 } 710 711 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 712 llvm::Constant *Init = 0; 713 QualType ASTTy = D->getType(); 714 715 if (D->getInit() == 0) { 716 // This is a tentative definition; tentative definitions are 717 // implicitly initialized with { 0 } 718 const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy); 719 if (ASTTy->isIncompleteArrayType()) { 720 // An incomplete array is normally [ TYPE x 0 ], but we need 721 // to fix it to [ TYPE x 1 ]. 722 const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy); 723 InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); 724 } 725 Init = llvm::Constant::getNullValue(InitTy); 726 } else { 727 Init = EmitConstantExpr(D->getInit(), D->getType()); 728 if (!Init) { 729 ErrorUnsupported(D, "static initializer"); 730 QualType T = D->getInit()->getType(); 731 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 732 } 733 } 734 735 const llvm::Type* InitType = Init->getType(); 736 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 737 738 // Strip off a bitcast if we got one back. 739 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 740 assert(CE->getOpcode() == llvm::Instruction::BitCast); 741 Entry = CE->getOperand(0); 742 } 743 744 // Entry is now either a Function or GlobalVariable. 745 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 746 747 // If we already have this global and it has an initializer, then 748 // we are in the rare situation where we emitted the defining 749 // declaration of the global and are now being asked to emit a 750 // definition which would be common. This occurs, for example, in 751 // the following situation because statics can be emitted out of 752 // order: 753 // 754 // static int x; 755 // static int *y = &x; 756 // static int x = 10; 757 // int **z = &y; 758 // 759 // Bail here so we don't blow away the definition. Note that if we 760 // can't distinguish here if we emitted a definition with a null 761 // initializer, but this case is safe. 762 if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { 763 assert(!D->getInit() && "Emitting multiple definitions of a decl!"); 764 return; 765 } 766 767 // We have a definition after a declaration with the wrong type. 768 // We must make a new GlobalVariable* and update everything that used OldGV 769 // (a declaration or tentative definition) with the new GlobalVariable* 770 // (which will be a definition). 771 // 772 // This happens if there is a prototype for a global (e.g. 773 // "extern int x[];") and then a definition of a different type (e.g. 774 // "int x[10];"). This also happens when an initializer has a different type 775 // from the type of the global (this happens with unions). 776 if (GV == 0 || 777 GV->getType()->getElementType() != InitType || 778 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 779 780 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 781 GlobalDeclMap.erase(getMangledName(D)); 782 783 // Make a new global with the correct type, this is now guaranteed to work. 784 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 785 GV->takeName(cast<llvm::GlobalValue>(Entry)); 786 787 // Replace all uses of the old global with the new global 788 llvm::Constant *NewPtrForOldDecl = 789 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 790 Entry->replaceAllUsesWith(NewPtrForOldDecl); 791 792 // Erase the old global, since it is no longer used. 793 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 794 } 795 796 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 797 SourceManager &SM = Context.getSourceManager(); 798 AddAnnotation(EmitAnnotateAttr(GV, AA, 799 SM.getInstantiationLineNumber(D->getLocation()))); 800 } 801 802 GV->setInitializer(Init); 803 GV->setConstant(D->getType().isConstant(Context)); 804 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 805 806 // Set the llvm linkage type as appropriate. 807 if (D->getStorageClass() == VarDecl::Static) 808 GV->setLinkage(llvm::Function::InternalLinkage); 809 else if (D->hasAttr<DLLImportAttr>()) 810 GV->setLinkage(llvm::Function::DLLImportLinkage); 811 else if (D->hasAttr<DLLExportAttr>()) 812 GV->setLinkage(llvm::Function::DLLExportLinkage); 813 else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) 814 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 815 else if (!CompileOpts.NoCommon && 816 (!D->hasExternalStorage() && !D->getInit())) 817 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 818 else 819 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 820 821 SetCommonAttributes(D, GV); 822 823 // Emit global variable debug information. 824 if (CGDebugInfo *DI = getDebugInfo()) { 825 DI->setLocation(D->getLocation()); 826 DI->EmitGlobalVariable(GV, D); 827 } 828 } 829 830 831 void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { 832 const llvm::FunctionType *Ty; 833 834 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 835 bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); 836 837 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 838 } else { 839 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 840 841 // As a special case, make sure that definitions of K&R function 842 // "type foo()" aren't declared as varargs (which forces the backend 843 // to do unnecessary work). 844 if (D->getType()->isFunctionNoProtoType()) { 845 assert(Ty->isVarArg() && "Didn't lower type as expected"); 846 // Due to stret, the lowered function could have arguments. 847 // Just create the same type as was lowered by ConvertType 848 // but strip off the varargs bit. 849 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 850 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 851 } 852 } 853 854 // Get or create the prototype for teh function. 855 llvm::Constant *Entry = GetAddrOfFunction(D, Ty); 856 857 // Strip off a bitcast if we got one back. 858 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 859 assert(CE->getOpcode() == llvm::Instruction::BitCast); 860 Entry = CE->getOperand(0); 861 } 862 863 864 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 865 // If the types mismatch then we have to rewrite the definition. 866 assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() && 867 "Shouldn't replace non-declaration"); 868 869 // F is the Function* for the one with the wrong type, we must make a new 870 // Function* and update everything that used F (a declaration) with the new 871 // Function* (which will be a definition). 872 // 873 // This happens if there is a prototype for a function 874 // (e.g. "int f()") and then a definition of a different type 875 // (e.g. "int f(int x)"). Start by making a new function of the 876 // correct type, RAUW, then steal the name. 877 GlobalDeclMap.erase(getMangledName(D)); 878 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty)); 879 NewFn->takeName(cast<llvm::GlobalValue>(Entry)); 880 881 // Replace uses of F with the Function we will endow with a body. 882 llvm::Constant *NewPtrForOldDecl = 883 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 884 Entry->replaceAllUsesWith(NewPtrForOldDecl); 885 886 // Ok, delete the old function now, which is dead. 887 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 888 889 Entry = NewFn; 890 } 891 892 llvm::Function *Fn = cast<llvm::Function>(Entry); 893 894 CodeGenFunction(*this).GenerateCode(D, Fn); 895 896 SetFunctionDefinitionAttributes(D, Fn); 897 SetLLVMFunctionAttributesForDefinition(D, Fn); 898 899 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 900 AddGlobalCtor(Fn, CA->getPriority()); 901 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 902 AddGlobalDtor(Fn, DA->getPriority()); 903 } 904 905 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 906 const AliasAttr *AA = D->getAttr<AliasAttr>(); 907 assert(AA && "Not an alias?"); 908 909 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 910 911 // Unique the name through the identifier table. 912 const char *AliaseeName = AA->getAliasee().c_str(); 913 AliaseeName = getContext().Idents.get(AliaseeName).getName(); 914 915 // Create a reference to the named value. This ensures that it is emitted 916 // if a deferred decl. 917 llvm::Constant *Aliasee; 918 if (isa<llvm::FunctionType>(DeclTy)) 919 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0); 920 else 921 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 922 llvm::PointerType::getUnqual(DeclTy), 0); 923 924 // Create the new alias itself, but don't set a name yet. 925 llvm::GlobalValue *GA = 926 new llvm::GlobalAlias(Aliasee->getType(), 927 llvm::Function::ExternalLinkage, 928 "", Aliasee, &getModule()); 929 930 // See if there is already something with the alias' name in the module. 931 const char *MangledName = getMangledName(D); 932 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 933 934 if (Entry && !Entry->isDeclaration()) { 935 // If there is a definition in the module, then it wins over the alias. 936 // This is dubious, but allow it to be safe. Just ignore the alias. 937 GA->eraseFromParent(); 938 return; 939 } 940 941 if (Entry) { 942 // If there is a declaration in the module, then we had an extern followed 943 // by the alias, as in: 944 // extern int test6(); 945 // ... 946 // int test6() __attribute__((alias("test7"))); 947 // 948 // Remove it and replace uses of it with the alias. 949 950 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 951 Entry->getType())); 952 Entry->eraseFromParent(); 953 } 954 955 // Now we know that there is no conflict, set the name. 956 Entry = GA; 957 GA->setName(MangledName); 958 959 // Set attributes which are particular to an alias; this is a 960 // specialization of the attributes which may be set on a global 961 // variable/function. 962 if (D->hasAttr<DLLExportAttr>()) { 963 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 964 // The dllexport attribute is ignored for undefined symbols. 965 if (FD->getBody()) 966 GA->setLinkage(llvm::Function::DLLExportLinkage); 967 } else { 968 GA->setLinkage(llvm::Function::DLLExportLinkage); 969 } 970 } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) { 971 GA->setLinkage(llvm::Function::WeakAnyLinkage); 972 } 973 974 SetCommonAttributes(D, GA); 975 } 976 977 /// getBuiltinLibFunction - Given a builtin id for a function like 978 /// "__builtin_fabsf", return a Function* for "fabsf". 979 llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { 980 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 981 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 982 "isn't a lib fn"); 983 984 // Get the name, skip over the __builtin_ prefix (if necessary). 985 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 986 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 987 Name += 10; 988 989 // Get the type for the builtin. 990 Builtin::Context::GetBuiltinTypeError Error; 991 QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); 992 assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); 993 994 const llvm::FunctionType *Ty = 995 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 996 997 // Unique the name through the identifier table. 998 Name = getContext().Idents.get(Name).getName(); 999 // FIXME: param attributes for sext/zext etc. 1000 return GetOrCreateLLVMFunction(Name, Ty, 0); 1001 } 1002 1003 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1004 unsigned NumTys) { 1005 return llvm::Intrinsic::getDeclaration(&getModule(), 1006 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1007 } 1008 1009 llvm::Function *CodeGenModule::getMemCpyFn() { 1010 if (MemCpyFn) return MemCpyFn; 1011 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1012 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1013 } 1014 1015 llvm::Function *CodeGenModule::getMemMoveFn() { 1016 if (MemMoveFn) return MemMoveFn; 1017 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1018 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1019 } 1020 1021 llvm::Function *CodeGenModule::getMemSetFn() { 1022 if (MemSetFn) return MemSetFn; 1023 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); 1024 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1025 } 1026 1027 static void appendFieldAndPadding(CodeGenModule &CGM, 1028 std::vector<llvm::Constant*>& Fields, 1029 FieldDecl *FieldD, FieldDecl *NextFieldD, 1030 llvm::Constant* Field, 1031 RecordDecl* RD, const llvm::StructType *STy) { 1032 // Append the field. 1033 Fields.push_back(Field); 1034 1035 int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); 1036 1037 int NextStructFieldNo; 1038 if (!NextFieldD) { 1039 NextStructFieldNo = STy->getNumElements(); 1040 } else { 1041 NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); 1042 } 1043 1044 // Append padding 1045 for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { 1046 llvm::Constant *C = 1047 llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); 1048 1049 Fields.push_back(C); 1050 } 1051 } 1052 1053 llvm::Constant *CodeGenModule:: 1054 GetAddrOfConstantCFString(const StringLiteral *Literal) { 1055 std::string str; 1056 unsigned StringLength; 1057 1058 bool isUTF16 = false; 1059 if (Literal->containsNonAsciiOrNull()) { 1060 // Convert from UTF-8 to UTF-16. 1061 llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength()); 1062 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1063 UTF16 *ToPtr = &ToBuf[0]; 1064 1065 ConversionResult Result; 1066 Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(), 1067 &ToPtr, ToPtr+Literal->getByteLength(), 1068 strictConversion); 1069 if (Result == conversionOK) { 1070 // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings 1071 // without doing more surgery to this routine. Since we aren't explicitly 1072 // checking for endianness here, it's also a bug (when generating code for 1073 // a target that doesn't match the host endianness). Modeling this as an 1074 // i16 array is likely the cleanest solution. 1075 StringLength = ToPtr-&ToBuf[0]; 1076 str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars. 1077 isUTF16 = true; 1078 } else if (Result == sourceIllegal) { 1079 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string. 1080 str.assign(Literal->getStrData(), Literal->getByteLength()); 1081 StringLength = str.length(); 1082 } else 1083 assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed"); 1084 1085 } else { 1086 str.assign(Literal->getStrData(), Literal->getByteLength()); 1087 StringLength = str.length(); 1088 } 1089 llvm::StringMapEntry<llvm::Constant *> &Entry = 1090 CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1091 1092 if (llvm::Constant *C = Entry.getValue()) 1093 return C; 1094 1095 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); 1096 llvm::Constant *Zeros[] = { Zero, Zero }; 1097 1098 if (!CFConstantStringClassRef) { 1099 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1100 Ty = llvm::ArrayType::get(Ty, 0); 1101 1102 // FIXME: This is fairly broken if 1103 // __CFConstantStringClassReference is already defined, in that it 1104 // will get renamed and the user will most likely see an opaque 1105 // error message. This is a general issue with relying on 1106 // particular names. 1107 llvm::GlobalVariable *GV = 1108 new llvm::GlobalVariable(Ty, false, 1109 llvm::GlobalVariable::ExternalLinkage, 0, 1110 "__CFConstantStringClassReference", 1111 &getModule()); 1112 1113 // Decay array -> ptr 1114 CFConstantStringClassRef = 1115 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1116 } 1117 1118 QualType CFTy = getContext().getCFConstantStringType(); 1119 RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); 1120 1121 const llvm::StructType *STy = 1122 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1123 1124 std::vector<llvm::Constant*> Fields; 1125 RecordDecl::field_iterator Field = CFRD->field_begin(getContext()); 1126 1127 // Class pointer. 1128 FieldDecl *CurField = *Field++; 1129 FieldDecl *NextField = *Field++; 1130 appendFieldAndPadding(*this, Fields, CurField, NextField, 1131 CFConstantStringClassRef, CFRD, STy); 1132 1133 // Flags. 1134 CurField = NextField; 1135 NextField = *Field++; 1136 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1137 appendFieldAndPadding(*this, Fields, CurField, NextField, 1138 isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) 1139 : llvm::ConstantInt::get(Ty, 0x07C8), 1140 CFRD, STy); 1141 1142 // String pointer. 1143 CurField = NextField; 1144 NextField = *Field++; 1145 llvm::Constant *C = llvm::ConstantArray::get(str); 1146 1147 const char *Sect, *Prefix; 1148 bool isConstant; 1149 if (isUTF16) { 1150 Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); 1151 Sect = getContext().Target.getUnicodeStringSection(); 1152 // FIXME: Why does GCC not set constant here? 1153 isConstant = false; 1154 } else { 1155 Prefix = getContext().Target.getStringSymbolPrefix(true); 1156 Sect = getContext().Target.getCFStringDataSection(); 1157 // FIXME: -fwritable-strings should probably affect this, but we 1158 // are following gcc here. 1159 isConstant = true; 1160 } 1161 llvm::GlobalVariable *GV = 1162 new llvm::GlobalVariable(C->getType(), isConstant, 1163 llvm::GlobalValue::InternalLinkage, 1164 C, Prefix, &getModule()); 1165 if (Sect) 1166 GV->setSection(Sect); 1167 if (isUTF16) { 1168 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1169 GV->setAlignment(Align); 1170 } 1171 appendFieldAndPadding(*this, Fields, CurField, NextField, 1172 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2), 1173 CFRD, STy); 1174 1175 // String length. 1176 CurField = NextField; 1177 NextField = 0; 1178 Ty = getTypes().ConvertType(getContext().LongTy); 1179 appendFieldAndPadding(*this, Fields, CurField, NextField, 1180 llvm::ConstantInt::get(Ty, StringLength), CFRD, STy); 1181 1182 // The struct. 1183 C = llvm::ConstantStruct::get(STy, Fields); 1184 GV = new llvm::GlobalVariable(C->getType(), true, 1185 llvm::GlobalVariable::InternalLinkage, C, 1186 getContext().Target.getCFStringSymbolPrefix(), 1187 &getModule()); 1188 if (const char *Sect = getContext().Target.getCFStringSection()) 1189 GV->setSection(Sect); 1190 Entry.setValue(GV); 1191 1192 return GV; 1193 } 1194 1195 /// GetStringForStringLiteral - Return the appropriate bytes for a 1196 /// string literal, properly padded to match the literal type. 1197 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1198 const char *StrData = E->getStrData(); 1199 unsigned Len = E->getByteLength(); 1200 1201 const ConstantArrayType *CAT = 1202 getContext().getAsConstantArrayType(E->getType()); 1203 assert(CAT && "String isn't pointer or array!"); 1204 1205 // Resize the string to the right size. 1206 std::string Str(StrData, StrData+Len); 1207 uint64_t RealLen = CAT->getSize().getZExtValue(); 1208 1209 if (E->isWide()) 1210 RealLen *= getContext().Target.getWCharWidth()/8; 1211 1212 Str.resize(RealLen, '\0'); 1213 1214 return Str; 1215 } 1216 1217 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1218 /// constant array for the given string literal. 1219 llvm::Constant * 1220 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1221 // FIXME: This can be more efficient. 1222 return GetAddrOfConstantString(GetStringForStringLiteral(S)); 1223 } 1224 1225 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1226 /// array for the given ObjCEncodeExpr node. 1227 llvm::Constant * 1228 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1229 std::string Str; 1230 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1231 1232 return GetAddrOfConstantCString(Str); 1233 } 1234 1235 1236 /// GenerateWritableString -- Creates storage for a string literal. 1237 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1238 bool constant, 1239 CodeGenModule &CGM, 1240 const char *GlobalName) { 1241 // Create Constant for this string literal. Don't add a '\0'. 1242 llvm::Constant *C = llvm::ConstantArray::get(str, false); 1243 1244 // Create a global variable for this string 1245 return new llvm::GlobalVariable(C->getType(), constant, 1246 llvm::GlobalValue::InternalLinkage, 1247 C, GlobalName, &CGM.getModule()); 1248 } 1249 1250 /// GetAddrOfConstantString - Returns a pointer to a character array 1251 /// containing the literal. This contents are exactly that of the 1252 /// given string, i.e. it will not be null terminated automatically; 1253 /// see GetAddrOfConstantCString. Note that whether the result is 1254 /// actually a pointer to an LLVM constant depends on 1255 /// Feature.WriteableStrings. 1256 /// 1257 /// The result has pointer to array type. 1258 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1259 const char *GlobalName) { 1260 bool IsConstant = !Features.WritableStrings; 1261 1262 // Get the default prefix if a name wasn't specified. 1263 if (!GlobalName) 1264 GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant); 1265 1266 // Don't share any string literals if strings aren't constant. 1267 if (!IsConstant) 1268 return GenerateStringLiteral(str, false, *this, GlobalName); 1269 1270 llvm::StringMapEntry<llvm::Constant *> &Entry = 1271 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1272 1273 if (Entry.getValue()) 1274 return Entry.getValue(); 1275 1276 // Create a global variable for this. 1277 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1278 Entry.setValue(C); 1279 return C; 1280 } 1281 1282 /// GetAddrOfConstantCString - Returns a pointer to a character 1283 /// array containing the literal and a terminating '\-' 1284 /// character. The result has pointer to array type. 1285 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1286 const char *GlobalName){ 1287 return GetAddrOfConstantString(str + '\0', GlobalName); 1288 } 1289 1290 /// EmitObjCPropertyImplementations - Emit information for synthesized 1291 /// properties for an implementation. 1292 void CodeGenModule::EmitObjCPropertyImplementations(const 1293 ObjCImplementationDecl *D) { 1294 for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), 1295 e = D->propimpl_end(); i != e; ++i) { 1296 ObjCPropertyImplDecl *PID = *i; 1297 1298 // Dynamic is just for type-checking. 1299 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1300 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1301 1302 // Determine which methods need to be implemented, some may have 1303 // been overridden. Note that ::isSynthesized is not the method 1304 // we want, that just indicates if the decl came from a 1305 // property. What we want to know is if the method is defined in 1306 // this implementation. 1307 if (!D->getInstanceMethod(PD->getGetterName())) 1308 CodeGenFunction(*this).GenerateObjCGetter( 1309 const_cast<ObjCImplementationDecl *>(D), PID); 1310 if (!PD->isReadOnly() && 1311 !D->getInstanceMethod(PD->getSetterName())) 1312 CodeGenFunction(*this).GenerateObjCSetter( 1313 const_cast<ObjCImplementationDecl *>(D), PID); 1314 } 1315 } 1316 } 1317 1318 /// EmitNamespace - Emit all declarations in a namespace. 1319 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1320 for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()), 1321 E = ND->decls_end(getContext()); 1322 I != E; ++I) 1323 EmitTopLevelDecl(*I); 1324 } 1325 1326 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1327 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1328 if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { 1329 ErrorUnsupported(LSD, "linkage spec"); 1330 return; 1331 } 1332 1333 for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()), 1334 E = LSD->decls_end(getContext()); 1335 I != E; ++I) 1336 EmitTopLevelDecl(*I); 1337 } 1338 1339 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1340 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1341 // If an error has occurred, stop code generation, but continue 1342 // parsing and semantic analysis (to ensure all warnings and errors 1343 // are emitted). 1344 if (Diags.hasErrorOccurred()) 1345 return; 1346 1347 switch (D->getKind()) { 1348 case Decl::CXXMethod: 1349 case Decl::Function: 1350 case Decl::Var: 1351 EmitGlobal(cast<ValueDecl>(D)); 1352 break; 1353 1354 // C++ Decls 1355 case Decl::Namespace: 1356 EmitNamespace(cast<NamespaceDecl>(D)); 1357 break; 1358 case Decl::CXXConstructor: 1359 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1360 break; 1361 1362 // Objective-C Decls 1363 1364 // Forward declarations, no (immediate) code generation. 1365 case Decl::ObjCClass: 1366 case Decl::ObjCForwardProtocol: 1367 case Decl::ObjCCategory: 1368 break; 1369 case Decl::ObjCInterface: 1370 // If we already laid out this interface due to an @class, and if we 1371 // codegen'd a reference it, update the 'opaque' type to be a real type now. 1372 Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D)); 1373 break; 1374 1375 case Decl::ObjCProtocol: 1376 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1377 break; 1378 1379 case Decl::ObjCCategoryImpl: 1380 // Categories have properties but don't support synthesize so we 1381 // can ignore them here. 1382 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1383 break; 1384 1385 case Decl::ObjCImplementation: { 1386 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1387 EmitObjCPropertyImplementations(OMD); 1388 Runtime->GenerateClass(OMD); 1389 break; 1390 } 1391 case Decl::ObjCMethod: { 1392 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1393 // If this is not a prototype, emit the body. 1394 if (OMD->getBody()) 1395 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1396 break; 1397 } 1398 case Decl::ObjCCompatibleAlias: 1399 // compatibility-alias is a directive and has no code gen. 1400 break; 1401 1402 case Decl::LinkageSpec: 1403 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1404 break; 1405 1406 case Decl::FileScopeAsm: { 1407 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1408 std::string AsmString(AD->getAsmString()->getStrData(), 1409 AD->getAsmString()->getByteLength()); 1410 1411 const std::string &S = getModule().getModuleInlineAsm(); 1412 if (S.empty()) 1413 getModule().setModuleInlineAsm(AsmString); 1414 else 1415 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1416 break; 1417 } 1418 1419 default: 1420 // Make sure we handled everything we should, every other kind is 1421 // a non-top-level decl. FIXME: Would be nice to have an 1422 // isTopLevelDeclKind function. Need to recode Decl::Kind to do 1423 // that easily. 1424 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1425 } 1426 } 1427