1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenFunction.h" 17 #include "CGCall.h" 18 #include "CGObjCRuntime.h" 19 #include "Mangle.h" 20 #include "clang/CodeGen/CodeGenOptions.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/Basic/Builtins.h" 26 #include "clang/Basic/Diagnostic.h" 27 #include "clang/Basic/SourceManager.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/Basic/ConvertUTF.h" 30 #include "llvm/CallingConv.h" 31 #include "llvm/Module.h" 32 #include "llvm/Intrinsics.h" 33 #include "llvm/Target/TargetData.h" 34 #include "llvm/Support/ErrorHandling.h" 35 using namespace clang; 36 using namespace CodeGen; 37 38 39 CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, 40 llvm::Module &M, const llvm::TargetData &TD, 41 Diagnostic &diags) 42 : BlockModule(C, M, TD, Types, *this), Context(C), 43 Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), 44 TheTargetData(TD), Diags(diags), Types(C, M, TD), MangleCtx(C), 45 VtableInfo(*this), Runtime(0), 46 MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), 47 VMContext(M.getContext()) { 48 49 if (!Features.ObjC1) 50 Runtime = 0; 51 else if (!Features.NeXTRuntime) 52 Runtime = CreateGNUObjCRuntime(*this); 53 else if (Features.ObjCNonFragileABI) 54 Runtime = CreateMacNonFragileABIObjCRuntime(*this); 55 else 56 Runtime = CreateMacObjCRuntime(*this); 57 58 // If debug info generation is enabled, create the CGDebugInfo object. 59 DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; 60 } 61 62 CodeGenModule::~CodeGenModule() { 63 delete Runtime; 64 delete DebugInfo; 65 } 66 67 void CodeGenModule::Release() { 68 // We need to call this first because it can add deferred declarations. 69 EmitCXXGlobalInitFunc(); 70 71 EmitDeferred(); 72 if (Runtime) 73 if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) 74 AddGlobalCtor(ObjCInitFunction); 75 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 76 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 77 EmitAnnotations(); 78 EmitLLVMUsed(); 79 } 80 81 /// ErrorUnsupported - Print out an error that codegen doesn't support the 82 /// specified stmt yet. 83 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, 84 bool OmitOnError) { 85 if (OmitOnError && getDiags().hasErrorOccurred()) 86 return; 87 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 88 "cannot compile this %0 yet"); 89 std::string Msg = Type; 90 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 91 << Msg << S->getSourceRange(); 92 } 93 94 /// ErrorUnsupported - Print out an error that codegen doesn't support the 95 /// specified decl yet. 96 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, 97 bool OmitOnError) { 98 if (OmitOnError && getDiags().hasErrorOccurred()) 99 return; 100 unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, 101 "cannot compile this %0 yet"); 102 std::string Msg = Type; 103 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 104 } 105 106 LangOptions::VisibilityMode 107 CodeGenModule::getDeclVisibilityMode(const Decl *D) const { 108 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 109 if (VD->getStorageClass() == VarDecl::PrivateExtern) 110 return LangOptions::Hidden; 111 112 if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { 113 switch (attr->getVisibility()) { 114 default: assert(0 && "Unknown visibility!"); 115 case VisibilityAttr::DefaultVisibility: 116 return LangOptions::Default; 117 case VisibilityAttr::HiddenVisibility: 118 return LangOptions::Hidden; 119 case VisibilityAttr::ProtectedVisibility: 120 return LangOptions::Protected; 121 } 122 } 123 124 return getLangOptions().getVisibilityMode(); 125 } 126 127 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 128 const Decl *D) const { 129 // Internal definitions always have default visibility. 130 if (GV->hasLocalLinkage()) { 131 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 132 return; 133 } 134 135 switch (getDeclVisibilityMode(D)) { 136 default: assert(0 && "Unknown visibility!"); 137 case LangOptions::Default: 138 return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 139 case LangOptions::Hidden: 140 return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 141 case LangOptions::Protected: 142 return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 143 } 144 } 145 146 const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { 147 const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); 148 149 if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) 150 return getMangledCXXCtorName(D, GD.getCtorType()); 151 if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) 152 return getMangledCXXDtorName(D, GD.getDtorType()); 153 154 return getMangledName(ND); 155 } 156 157 /// \brief Retrieves the mangled name for the given declaration. 158 /// 159 /// If the given declaration requires a mangled name, returns an 160 /// const char* containing the mangled name. Otherwise, returns 161 /// the unmangled name. 162 /// 163 const char *CodeGenModule::getMangledName(const NamedDecl *ND) { 164 if (!getMangleContext().shouldMangleDeclName(ND)) { 165 assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); 166 return ND->getNameAsCString(); 167 } 168 169 llvm::SmallString<256> Name; 170 getMangleContext().mangleName(ND, Name); 171 Name += '\0'; 172 return UniqueMangledName(Name.begin(), Name.end()); 173 } 174 175 const char *CodeGenModule::UniqueMangledName(const char *NameStart, 176 const char *NameEnd) { 177 assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); 178 179 return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); 180 } 181 182 /// AddGlobalCtor - Add a function to the list that will be called before 183 /// main() runs. 184 void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { 185 // FIXME: Type coercion of void()* types. 186 GlobalCtors.push_back(std::make_pair(Ctor, Priority)); 187 } 188 189 /// AddGlobalDtor - Add a function to the list that will be called 190 /// when the module is unloaded. 191 void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { 192 // FIXME: Type coercion of void()* types. 193 GlobalDtors.push_back(std::make_pair(Dtor, Priority)); 194 } 195 196 void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { 197 // Ctor function type is void()*. 198 llvm::FunctionType* CtorFTy = 199 llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 200 std::vector<const llvm::Type*>(), 201 false); 202 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 203 204 // Get the type of a ctor entry, { i32, void ()* }. 205 llvm::StructType* CtorStructTy = 206 llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), 207 llvm::PointerType::getUnqual(CtorFTy), NULL); 208 209 // Construct the constructor and destructor arrays. 210 std::vector<llvm::Constant*> Ctors; 211 for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { 212 std::vector<llvm::Constant*> S; 213 S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 214 I->second, false)); 215 S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); 216 Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); 217 } 218 219 if (!Ctors.empty()) { 220 llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); 221 new llvm::GlobalVariable(TheModule, AT, false, 222 llvm::GlobalValue::AppendingLinkage, 223 llvm::ConstantArray::get(AT, Ctors), 224 GlobalName); 225 } 226 } 227 228 void CodeGenModule::EmitAnnotations() { 229 if (Annotations.empty()) 230 return; 231 232 // Create a new global variable for the ConstantStruct in the Module. 233 llvm::Constant *Array = 234 llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), 235 Annotations.size()), 236 Annotations); 237 llvm::GlobalValue *gv = 238 new llvm::GlobalVariable(TheModule, Array->getType(), false, 239 llvm::GlobalValue::AppendingLinkage, Array, 240 "llvm.global.annotations"); 241 gv->setSection("llvm.metadata"); 242 } 243 244 static CodeGenModule::GVALinkage 245 GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, 246 const LangOptions &Features) { 247 // Everything located semantically within an anonymous namespace is 248 // always internal. 249 if (FD->isInAnonymousNamespace()) 250 return CodeGenModule::GVA_Internal; 251 252 // "static" functions get internal linkage. 253 if (FD->getStorageClass() == FunctionDecl::Static && !isa<CXXMethodDecl>(FD)) 254 return CodeGenModule::GVA_Internal; 255 256 // The kind of external linkage this function will have, if it is not 257 // inline or static. 258 CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; 259 if (Context.getLangOptions().CPlusPlus && 260 FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 261 External = CodeGenModule::GVA_TemplateInstantiation; 262 263 if (!FD->isInlined()) 264 return External; 265 266 if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { 267 // GNU or C99 inline semantics. Determine whether this symbol should be 268 // externally visible. 269 if (FD->isInlineDefinitionExternallyVisible()) 270 return External; 271 272 // C99 inline semantics, where the symbol is not externally visible. 273 return CodeGenModule::GVA_C99Inline; 274 } 275 276 // C++0x [temp.explicit]p9: 277 // [ Note: The intent is that an inline function that is the subject of 278 // an explicit instantiation declaration will still be implicitly 279 // instantiated when used so that the body can be considered for 280 // inlining, but that no out-of-line copy of the inline function would be 281 // generated in the translation unit. -- end note ] 282 if (FD->getTemplateSpecializationKind() 283 == TSK_ExplicitInstantiationDeclaration) 284 return CodeGenModule::GVA_C99Inline; 285 286 return CodeGenModule::GVA_CXXInline; 287 } 288 289 /// SetFunctionDefinitionAttributes - Set attributes for a global. 290 /// 291 /// FIXME: This is currently only done for aliases and functions, but not for 292 /// variables (these details are set in EmitGlobalVarDefinition for variables). 293 void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, 294 llvm::GlobalValue *GV) { 295 GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); 296 297 if (Linkage == GVA_Internal) { 298 GV->setLinkage(llvm::Function::InternalLinkage); 299 } else if (D->hasAttr<DLLExportAttr>()) { 300 GV->setLinkage(llvm::Function::DLLExportLinkage); 301 } else if (D->hasAttr<WeakAttr>()) { 302 GV->setLinkage(llvm::Function::WeakAnyLinkage); 303 } else if (Linkage == GVA_C99Inline) { 304 // In C99 mode, 'inline' functions are guaranteed to have a strong 305 // definition somewhere else, so we can use available_externally linkage. 306 GV->setLinkage(llvm::Function::AvailableExternallyLinkage); 307 } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { 308 // In C++, the compiler has to emit a definition in every translation unit 309 // that references the function. We should use linkonce_odr because 310 // a) if all references in this translation unit are optimized away, we 311 // don't need to codegen it. b) if the function persists, it needs to be 312 // merged with other definitions. c) C++ has the ODR, so we know the 313 // definition is dependable. 314 GV->setLinkage(llvm::Function::LinkOnceODRLinkage); 315 } else { 316 assert(Linkage == GVA_StrongExternal); 317 // Otherwise, we have strong external linkage. 318 GV->setLinkage(llvm::Function::ExternalLinkage); 319 } 320 321 SetCommonAttributes(D, GV); 322 } 323 324 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 325 const CGFunctionInfo &Info, 326 llvm::Function *F) { 327 unsigned CallingConv; 328 AttributeListType AttributeList; 329 ConstructAttributeList(Info, D, AttributeList, CallingConv); 330 F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), 331 AttributeList.size())); 332 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 333 } 334 335 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 336 llvm::Function *F) { 337 if (!Features.Exceptions && !Features.ObjCNonFragileABI) 338 F->addFnAttr(llvm::Attribute::NoUnwind); 339 340 if (D->hasAttr<AlwaysInlineAttr>()) 341 F->addFnAttr(llvm::Attribute::AlwaysInline); 342 343 if (D->hasAttr<NoInlineAttr>()) 344 F->addFnAttr(llvm::Attribute::NoInline); 345 346 if (Features.getStackProtectorMode() == LangOptions::SSPOn) 347 F->addFnAttr(llvm::Attribute::StackProtect); 348 else if (Features.getStackProtectorMode() == LangOptions::SSPReq) 349 F->addFnAttr(llvm::Attribute::StackProtectReq); 350 351 if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { 352 unsigned width = Context.Target.getCharWidth(); 353 F->setAlignment(AA->getAlignment() / width); 354 while ((AA = AA->getNext<AlignedAttr>())) 355 F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); 356 } 357 // C++ ABI requires 2-byte alignment for member functions. 358 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 359 F->setAlignment(2); 360 } 361 362 void CodeGenModule::SetCommonAttributes(const Decl *D, 363 llvm::GlobalValue *GV) { 364 setGlobalVisibility(GV, D); 365 366 if (D->hasAttr<UsedAttr>()) 367 AddUsedGlobal(GV); 368 369 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 370 GV->setSection(SA->getName()); 371 } 372 373 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 374 llvm::Function *F, 375 const CGFunctionInfo &FI) { 376 SetLLVMFunctionAttributes(D, FI, F); 377 SetLLVMFunctionAttributesForDefinition(D, F); 378 379 F->setLinkage(llvm::Function::InternalLinkage); 380 381 SetCommonAttributes(D, F); 382 } 383 384 void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, 385 llvm::Function *F, 386 bool IsIncompleteFunction) { 387 if (!IsIncompleteFunction) 388 SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); 389 390 // Only a few attributes are set on declarations; these may later be 391 // overridden by a definition. 392 393 if (FD->hasAttr<DLLImportAttr>()) { 394 F->setLinkage(llvm::Function::DLLImportLinkage); 395 } else if (FD->hasAttr<WeakAttr>() || 396 FD->hasAttr<WeakImportAttr>()) { 397 // "extern_weak" is overloaded in LLVM; we probably should have 398 // separate linkage types for this. 399 F->setLinkage(llvm::Function::ExternalWeakLinkage); 400 } else { 401 F->setLinkage(llvm::Function::ExternalLinkage); 402 } 403 404 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 405 F->setSection(SA->getName()); 406 } 407 408 void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { 409 assert(!GV->isDeclaration() && 410 "Only globals with definition can force usage."); 411 LLVMUsed.push_back(GV); 412 } 413 414 void CodeGenModule::EmitLLVMUsed() { 415 // Don't create llvm.used if there is no need. 416 if (LLVMUsed.empty()) 417 return; 418 419 const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); 420 421 // Convert LLVMUsed to what ConstantArray needs. 422 std::vector<llvm::Constant*> UsedArray; 423 UsedArray.resize(LLVMUsed.size()); 424 for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { 425 UsedArray[i] = 426 llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), 427 i8PTy); 428 } 429 430 if (UsedArray.empty()) 431 return; 432 llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); 433 434 llvm::GlobalVariable *GV = 435 new llvm::GlobalVariable(getModule(), ATy, false, 436 llvm::GlobalValue::AppendingLinkage, 437 llvm::ConstantArray::get(ATy, UsedArray), 438 "llvm.used"); 439 440 GV->setSection("llvm.metadata"); 441 } 442 443 void CodeGenModule::EmitDeferred() { 444 // Emit code for any potentially referenced deferred decls. Since a 445 // previously unused static decl may become used during the generation of code 446 // for a static function, iterate until no changes are made. 447 while (!DeferredDeclsToEmit.empty()) { 448 GlobalDecl D = DeferredDeclsToEmit.back(); 449 DeferredDeclsToEmit.pop_back(); 450 451 // The mangled name for the decl must have been emitted in GlobalDeclMap. 452 // Look it up to see if it was defined with a stronger definition (e.g. an 453 // extern inline function with a strong function redefinition). If so, 454 // just ignore the deferred decl. 455 llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; 456 assert(CGRef && "Deferred decl wasn't referenced?"); 457 458 if (!CGRef->isDeclaration()) 459 continue; 460 461 // Otherwise, emit the definition and move on to the next one. 462 EmitGlobalDefinition(D); 463 } 464 } 465 466 /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the 467 /// annotation information for a given GlobalValue. The annotation struct is 468 /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the 469 /// GlobalValue being annotated. The second field is the constant string 470 /// created from the AnnotateAttr's annotation. The third field is a constant 471 /// string containing the name of the translation unit. The fourth field is 472 /// the line number in the file of the annotated value declaration. 473 /// 474 /// FIXME: this does not unique the annotation string constants, as llvm-gcc 475 /// appears to. 476 /// 477 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 478 const AnnotateAttr *AA, 479 unsigned LineNo) { 480 llvm::Module *M = &getModule(); 481 482 // get [N x i8] constants for the annotation string, and the filename string 483 // which are the 2nd and 3rd elements of the global annotation structure. 484 const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); 485 llvm::Constant *anno = llvm::ConstantArray::get(VMContext, 486 AA->getAnnotation(), true); 487 llvm::Constant *unit = llvm::ConstantArray::get(VMContext, 488 M->getModuleIdentifier(), 489 true); 490 491 // Get the two global values corresponding to the ConstantArrays we just 492 // created to hold the bytes of the strings. 493 llvm::GlobalValue *annoGV = 494 new llvm::GlobalVariable(*M, anno->getType(), false, 495 llvm::GlobalValue::PrivateLinkage, anno, 496 GV->getName()); 497 // translation unit name string, emitted into the llvm.metadata section. 498 llvm::GlobalValue *unitGV = 499 new llvm::GlobalVariable(*M, unit->getType(), false, 500 llvm::GlobalValue::PrivateLinkage, unit, 501 ".str"); 502 503 // Create the ConstantStruct for the global annotation. 504 llvm::Constant *Fields[4] = { 505 llvm::ConstantExpr::getBitCast(GV, SBP), 506 llvm::ConstantExpr::getBitCast(annoGV, SBP), 507 llvm::ConstantExpr::getBitCast(unitGV, SBP), 508 llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) 509 }; 510 return llvm::ConstantStruct::get(VMContext, Fields, 4, false); 511 } 512 513 bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { 514 // Never defer when EmitAllDecls is specified or the decl has 515 // attribute used. 516 if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) 517 return false; 518 519 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 520 // Constructors and destructors should never be deferred. 521 if (FD->hasAttr<ConstructorAttr>() || 522 FD->hasAttr<DestructorAttr>()) 523 return false; 524 525 // The key function for a class must never be deferred. 526 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { 527 const CXXRecordDecl *RD = MD->getParent(); 528 if (MD->isOutOfLine() && RD->isDynamicClass()) { 529 const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); 530 if (KeyFunction == MD->getCanonicalDecl()) 531 return false; 532 } 533 } 534 535 GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); 536 537 // static, static inline, always_inline, and extern inline functions can 538 // always be deferred. Normal inline functions can be deferred in C99/C++. 539 if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || 540 Linkage == GVA_CXXInline) 541 return true; 542 return false; 543 } 544 545 const VarDecl *VD = cast<VarDecl>(Global); 546 assert(VD->isFileVarDecl() && "Invalid decl"); 547 548 // We never want to defer structs that have non-trivial constructors or 549 // destructors. 550 551 // FIXME: Handle references. 552 if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { 553 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 554 if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) 555 return false; 556 } 557 } 558 559 // Static data may be deferred, but out-of-line static data members 560 // cannot be. 561 if (VD->isInAnonymousNamespace()) 562 return true; 563 if (VD->getLinkage() == VarDecl::InternalLinkage) { 564 // Initializer has side effects? 565 if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) 566 return false; 567 return !(VD->isStaticDataMember() && VD->isOutOfLine()); 568 } 569 return false; 570 } 571 572 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 573 const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); 574 575 // If this is an alias definition (which otherwise looks like a declaration) 576 // emit it now. 577 if (Global->hasAttr<AliasAttr>()) 578 return EmitAliasDefinition(Global); 579 580 // Ignore declarations, they will be emitted on their first use. 581 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { 582 // Forward declarations are emitted lazily on first use. 583 if (!FD->isThisDeclarationADefinition()) 584 return; 585 } else { 586 const VarDecl *VD = cast<VarDecl>(Global); 587 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 588 589 if (getLangOptions().CPlusPlus && !VD->getInit()) { 590 // In C++, if this is marked "extern", defer code generation. 591 if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC()) 592 return; 593 594 // If this is a declaration of an explicit specialization of a static 595 // data member in a class template, don't emit it. 596 if (VD->isStaticDataMember() && 597 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) 598 return; 599 } 600 601 // In C, if this isn't a definition, defer code generation. 602 if (!getLangOptions().CPlusPlus && !VD->getInit()) 603 return; 604 } 605 606 // Defer code generation when possible if this is a static definition, inline 607 // function etc. These we only want to emit if they are used. 608 if (MayDeferGeneration(Global)) { 609 // If the value has already been used, add it directly to the 610 // DeferredDeclsToEmit list. 611 const char *MangledName = getMangledName(GD); 612 if (GlobalDeclMap.count(MangledName)) 613 DeferredDeclsToEmit.push_back(GD); 614 else { 615 // Otherwise, remember that we saw a deferred decl with this name. The 616 // first use of the mangled name will cause it to move into 617 // DeferredDeclsToEmit. 618 DeferredDecls[MangledName] = GD; 619 } 620 return; 621 } 622 623 // Otherwise emit the definition. 624 EmitGlobalDefinition(GD); 625 } 626 627 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { 628 const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); 629 630 PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(), 631 Context.getSourceManager(), 632 "Generating code for declaration"); 633 634 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 635 getVtableInfo().MaybeEmitVtable(GD); 636 if (MD->isVirtual() && MD->isOutOfLine() && 637 (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) { 638 if (isa<CXXDestructorDecl>(D)) { 639 GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()), 640 GD.getDtorType()); 641 BuildThunksForVirtual(CanonGD); 642 } else { 643 BuildThunksForVirtual(MD->getCanonicalDecl()); 644 } 645 } 646 } 647 648 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) 649 EmitCXXConstructor(CD, GD.getCtorType()); 650 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) 651 EmitCXXDestructor(DD, GD.getDtorType()); 652 else if (isa<FunctionDecl>(D)) 653 EmitGlobalFunctionDefinition(GD); 654 else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) 655 EmitGlobalVarDefinition(VD); 656 else { 657 assert(0 && "Invalid argument to EmitGlobalDefinition()"); 658 } 659 } 660 661 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 662 /// module, create and return an llvm Function with the specified type. If there 663 /// is something in the module with the specified name, return it potentially 664 /// bitcasted to the right type. 665 /// 666 /// If D is non-null, it specifies a decl that correspond to this. This is used 667 /// to set the attributes on the function when it is first created. 668 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, 669 const llvm::Type *Ty, 670 GlobalDecl D) { 671 // Lookup the entry, lazily creating it if necessary. 672 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 673 if (Entry) { 674 if (Entry->getType()->getElementType() == Ty) 675 return Entry; 676 677 // Make sure the result is of the correct type. 678 const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 679 return llvm::ConstantExpr::getBitCast(Entry, PTy); 680 } 681 682 // This function doesn't have a complete type (for example, the return 683 // type is an incomplete struct). Use a fake type instead, and make 684 // sure not to try to set attributes. 685 bool IsIncompleteFunction = false; 686 if (!isa<llvm::FunctionType>(Ty)) { 687 Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), 688 std::vector<const llvm::Type*>(), false); 689 IsIncompleteFunction = true; 690 } 691 llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), 692 llvm::Function::ExternalLinkage, 693 "", &getModule()); 694 F->setName(MangledName); 695 if (D.getDecl()) 696 SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, 697 IsIncompleteFunction); 698 Entry = F; 699 700 // This is the first use or definition of a mangled name. If there is a 701 // deferred decl with this name, remember that we need to emit it at the end 702 // of the file. 703 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 704 DeferredDecls.find(MangledName); 705 if (DDI != DeferredDecls.end()) { 706 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 707 // list, and remove it from DeferredDecls (since we don't need it anymore). 708 DeferredDeclsToEmit.push_back(DDI->second); 709 DeferredDecls.erase(DDI); 710 } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { 711 // If this the first reference to a C++ inline function in a class, queue up 712 // the deferred function body for emission. These are not seen as 713 // top-level declarations. 714 if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) 715 DeferredDeclsToEmit.push_back(D); 716 // A called constructor which has no definition or declaration need be 717 // synthesized. 718 else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { 719 if (CD->isImplicit()) 720 DeferredDeclsToEmit.push_back(D); 721 } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { 722 if (DD->isImplicit()) 723 DeferredDeclsToEmit.push_back(D); 724 } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { 725 if (MD->isCopyAssignment() && MD->isImplicit()) 726 DeferredDeclsToEmit.push_back(D); 727 } 728 } 729 730 return F; 731 } 732 733 /// GetAddrOfFunction - Return the address of the given function. If Ty is 734 /// non-null, then this function will use the specified type if it has to 735 /// create it (this occurs when we see a definition of the function). 736 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 737 const llvm::Type *Ty) { 738 // If there was no specific requested type, just convert it now. 739 if (!Ty) 740 Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); 741 return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD); 742 } 743 744 /// CreateRuntimeFunction - Create a new runtime function with the specified 745 /// type and name. 746 llvm::Constant * 747 CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, 748 const char *Name) { 749 // Convert Name to be a uniqued string from the IdentifierInfo table. 750 Name = getContext().Idents.get(Name).getNameStart(); 751 return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); 752 } 753 754 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 755 /// create and return an llvm GlobalVariable with the specified type. If there 756 /// is something in the module with the specified name, return it potentially 757 /// bitcasted to the right type. 758 /// 759 /// If D is non-null, it specifies a decl that correspond to this. This is used 760 /// to set the attributes on the global when it is first created. 761 llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, 762 const llvm::PointerType*Ty, 763 const VarDecl *D) { 764 // Lookup the entry, lazily creating it if necessary. 765 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 766 if (Entry) { 767 if (Entry->getType() == Ty) 768 return Entry; 769 770 // Make sure the result is of the correct type. 771 return llvm::ConstantExpr::getBitCast(Entry, Ty); 772 } 773 774 // This is the first use or definition of a mangled name. If there is a 775 // deferred decl with this name, remember that we need to emit it at the end 776 // of the file. 777 llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = 778 DeferredDecls.find(MangledName); 779 if (DDI != DeferredDecls.end()) { 780 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 781 // list, and remove it from DeferredDecls (since we don't need it anymore). 782 DeferredDeclsToEmit.push_back(DDI->second); 783 DeferredDecls.erase(DDI); 784 } 785 786 llvm::GlobalVariable *GV = 787 new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, 788 llvm::GlobalValue::ExternalLinkage, 789 0, "", 0, 790 false, Ty->getAddressSpace()); 791 GV->setName(MangledName); 792 793 // Handle things which are present even on external declarations. 794 if (D) { 795 // FIXME: This code is overly simple and should be merged with other global 796 // handling. 797 GV->setConstant(D->getType().isConstant(Context)); 798 799 // FIXME: Merge with other attribute handling code. 800 if (D->getStorageClass() == VarDecl::PrivateExtern) 801 GV->setVisibility(llvm::GlobalValue::HiddenVisibility); 802 803 if (D->hasAttr<WeakAttr>() || 804 D->hasAttr<WeakImportAttr>()) 805 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 806 807 GV->setThreadLocal(D->isThreadSpecified()); 808 } 809 810 return Entry = GV; 811 } 812 813 814 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 815 /// given global variable. If Ty is non-null and if the global doesn't exist, 816 /// then it will be greated with the specified type instead of whatever the 817 /// normal requested type would be. 818 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 819 const llvm::Type *Ty) { 820 assert(D->hasGlobalStorage() && "Not a global variable"); 821 QualType ASTTy = D->getType(); 822 if (Ty == 0) 823 Ty = getTypes().ConvertTypeForMem(ASTTy); 824 825 const llvm::PointerType *PTy = 826 llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); 827 return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); 828 } 829 830 /// CreateRuntimeVariable - Create a new runtime global variable with the 831 /// specified type and name. 832 llvm::Constant * 833 CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, 834 const char *Name) { 835 // Convert Name to be a uniqued string from the IdentifierInfo table. 836 Name = getContext().Idents.get(Name).getNameStart(); 837 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); 838 } 839 840 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 841 assert(!D->getInit() && "Cannot emit definite definitions here!"); 842 843 if (MayDeferGeneration(D)) { 844 // If we have not seen a reference to this variable yet, place it 845 // into the deferred declarations table to be emitted if needed 846 // later. 847 const char *MangledName = getMangledName(D); 848 if (GlobalDeclMap.count(MangledName) == 0) { 849 DeferredDecls[MangledName] = D; 850 return; 851 } 852 } 853 854 // The tentative definition is the only definition. 855 EmitGlobalVarDefinition(D); 856 } 857 858 static CodeGenModule::GVALinkage 859 GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { 860 // Everything located semantically within an anonymous namespace is 861 // always internal. 862 if (VD->isInAnonymousNamespace()) 863 return CodeGenModule::GVA_Internal; 864 865 // Handle linkage for static data members. 866 if (VD->isStaticDataMember()) { 867 switch (VD->getTemplateSpecializationKind()) { 868 case TSK_Undeclared: 869 case TSK_ExplicitSpecialization: 870 case TSK_ExplicitInstantiationDefinition: 871 return CodeGenModule::GVA_StrongExternal; 872 873 case TSK_ExplicitInstantiationDeclaration: 874 llvm::llvm_unreachable("Variable should not be instantiated"); 875 // Fall through to treat this like any other instantiation. 876 877 case TSK_ImplicitInstantiation: 878 return CodeGenModule::GVA_TemplateInstantiation; 879 } 880 } 881 882 if (VD->getLinkage() == VarDecl::InternalLinkage) 883 return CodeGenModule::GVA_Internal; 884 885 return CodeGenModule::GVA_StrongExternal; 886 } 887 888 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { 889 llvm::Constant *Init = 0; 890 QualType ASTTy = D->getType(); 891 892 if (D->getInit() == 0) { 893 // This is a tentative definition; tentative definitions are 894 // implicitly initialized with { 0 }. 895 // 896 // Note that tentative definitions are only emitted at the end of 897 // a translation unit, so they should never have incomplete 898 // type. In addition, EmitTentativeDefinition makes sure that we 899 // never attempt to emit a tentative definition if a real one 900 // exists. A use may still exists, however, so we still may need 901 // to do a RAUW. 902 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 903 Init = EmitNullConstant(D->getType()); 904 } else { 905 Init = EmitConstantExpr(D->getInit(), D->getType()); 906 907 if (!Init) { 908 QualType T = D->getInit()->getType(); 909 if (getLangOptions().CPlusPlus) { 910 CXXGlobalInits.push_back(D); 911 Init = EmitNullConstant(T); 912 } else { 913 ErrorUnsupported(D, "static initializer"); 914 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 915 } 916 } 917 } 918 919 const llvm::Type* InitType = Init->getType(); 920 llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); 921 922 // Strip off a bitcast if we got one back. 923 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 924 assert(CE->getOpcode() == llvm::Instruction::BitCast || 925 // all zero index gep. 926 CE->getOpcode() == llvm::Instruction::GetElementPtr); 927 Entry = CE->getOperand(0); 928 } 929 930 // Entry is now either a Function or GlobalVariable. 931 llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); 932 933 // We have a definition after a declaration with the wrong type. 934 // We must make a new GlobalVariable* and update everything that used OldGV 935 // (a declaration or tentative definition) with the new GlobalVariable* 936 // (which will be a definition). 937 // 938 // This happens if there is a prototype for a global (e.g. 939 // "extern int x[];") and then a definition of a different type (e.g. 940 // "int x[10];"). This also happens when an initializer has a different type 941 // from the type of the global (this happens with unions). 942 if (GV == 0 || 943 GV->getType()->getElementType() != InitType || 944 GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { 945 946 // Remove the old entry from GlobalDeclMap so that we'll create a new one. 947 GlobalDeclMap.erase(getMangledName(D)); 948 949 // Make a new global with the correct type, this is now guaranteed to work. 950 GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); 951 GV->takeName(cast<llvm::GlobalValue>(Entry)); 952 953 // Replace all uses of the old global with the new global 954 llvm::Constant *NewPtrForOldDecl = 955 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 956 Entry->replaceAllUsesWith(NewPtrForOldDecl); 957 958 // Erase the old global, since it is no longer used. 959 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 960 } 961 962 if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { 963 SourceManager &SM = Context.getSourceManager(); 964 AddAnnotation(EmitAnnotateAttr(GV, AA, 965 SM.getInstantiationLineNumber(D->getLocation()))); 966 } 967 968 GV->setInitializer(Init); 969 970 // If it is safe to mark the global 'constant', do so now. 971 GV->setConstant(false); 972 if (D->getType().isConstant(Context)) { 973 // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable 974 // members, it cannot be declared "LLVM const". 975 GV->setConstant(true); 976 } 977 978 GV->setAlignment(getContext().getDeclAlignInBytes(D)); 979 980 // Set the llvm linkage type as appropriate. 981 GVALinkage Linkage = GetLinkageForVariable(getContext(), D); 982 if (Linkage == GVA_Internal) 983 GV->setLinkage(llvm::Function::InternalLinkage); 984 else if (D->hasAttr<DLLImportAttr>()) 985 GV->setLinkage(llvm::Function::DLLImportLinkage); 986 else if (D->hasAttr<DLLExportAttr>()) 987 GV->setLinkage(llvm::Function::DLLExportLinkage); 988 else if (D->hasAttr<WeakAttr>()) { 989 if (GV->isConstant()) 990 GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); 991 else 992 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 993 } else if (Linkage == GVA_TemplateInstantiation) 994 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 995 else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && 996 !D->hasExternalStorage() && !D->getInit() && 997 !D->getAttr<SectionAttr>()) { 998 GV->setLinkage(llvm::GlobalVariable::CommonLinkage); 999 // common vars aren't constant even if declared const. 1000 GV->setConstant(false); 1001 } else 1002 GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); 1003 1004 SetCommonAttributes(D, GV); 1005 1006 // Emit global variable debug information. 1007 if (CGDebugInfo *DI = getDebugInfo()) { 1008 DI->setLocation(D->getLocation()); 1009 DI->EmitGlobalVariable(GV, D); 1010 } 1011 } 1012 1013 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 1014 /// implement a function with no prototype, e.g. "int foo() {}". If there are 1015 /// existing call uses of the old function in the module, this adjusts them to 1016 /// call the new function directly. 1017 /// 1018 /// This is not just a cleanup: the always_inline pass requires direct calls to 1019 /// functions to be able to inline them. If there is a bitcast in the way, it 1020 /// won't inline them. Instcombine normally deletes these calls, but it isn't 1021 /// run at -O0. 1022 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 1023 llvm::Function *NewFn) { 1024 // If we're redefining a global as a function, don't transform it. 1025 llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); 1026 if (OldFn == 0) return; 1027 1028 const llvm::Type *NewRetTy = NewFn->getReturnType(); 1029 llvm::SmallVector<llvm::Value*, 4> ArgList; 1030 1031 for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); 1032 UI != E; ) { 1033 // TODO: Do invokes ever occur in C code? If so, we should handle them too. 1034 unsigned OpNo = UI.getOperandNo(); 1035 llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); 1036 if (!CI || OpNo != 0) continue; 1037 1038 // If the return types don't match exactly, and if the call isn't dead, then 1039 // we can't transform this call. 1040 if (CI->getType() != NewRetTy && !CI->use_empty()) 1041 continue; 1042 1043 // If the function was passed too few arguments, don't transform. If extra 1044 // arguments were passed, we silently drop them. If any of the types 1045 // mismatch, we don't transform. 1046 unsigned ArgNo = 0; 1047 bool DontTransform = false; 1048 for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), 1049 E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { 1050 if (CI->getNumOperands()-1 == ArgNo || 1051 CI->getOperand(ArgNo+1)->getType() != AI->getType()) { 1052 DontTransform = true; 1053 break; 1054 } 1055 } 1056 if (DontTransform) 1057 continue; 1058 1059 // Okay, we can transform this. Create the new call instruction and copy 1060 // over the required information. 1061 ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); 1062 llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), 1063 ArgList.end(), "", CI); 1064 ArgList.clear(); 1065 if (!NewCall->getType()->isVoidTy()) 1066 NewCall->takeName(CI); 1067 NewCall->setAttributes(CI->getAttributes()); 1068 NewCall->setCallingConv(CI->getCallingConv()); 1069 1070 // Finally, remove the old call, replacing any uses with the new one. 1071 if (!CI->use_empty()) 1072 CI->replaceAllUsesWith(NewCall); 1073 1074 // Copy any custom metadata attached with CI. 1075 llvm::MetadataContext &TheMetadata = CI->getContext().getMetadata(); 1076 TheMetadata.copyMD(CI, NewCall); 1077 1078 CI->eraseFromParent(); 1079 } 1080 } 1081 1082 1083 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { 1084 const llvm::FunctionType *Ty; 1085 const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); 1086 1087 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { 1088 bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic(); 1089 1090 Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); 1091 } else { 1092 Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); 1093 1094 // As a special case, make sure that definitions of K&R function 1095 // "type foo()" aren't declared as varargs (which forces the backend 1096 // to do unnecessary work). 1097 if (D->getType()->isFunctionNoProtoType()) { 1098 assert(Ty->isVarArg() && "Didn't lower type as expected"); 1099 // Due to stret, the lowered function could have arguments. 1100 // Just create the same type as was lowered by ConvertType 1101 // but strip off the varargs bit. 1102 std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); 1103 Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false); 1104 } 1105 } 1106 1107 // Get or create the prototype for the function. 1108 llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); 1109 1110 // Strip off a bitcast if we got one back. 1111 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 1112 assert(CE->getOpcode() == llvm::Instruction::BitCast); 1113 Entry = CE->getOperand(0); 1114 } 1115 1116 1117 if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { 1118 llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); 1119 1120 // If the types mismatch then we have to rewrite the definition. 1121 assert(OldFn->isDeclaration() && 1122 "Shouldn't replace non-declaration"); 1123 1124 // F is the Function* for the one with the wrong type, we must make a new 1125 // Function* and update everything that used F (a declaration) with the new 1126 // Function* (which will be a definition). 1127 // 1128 // This happens if there is a prototype for a function 1129 // (e.g. "int f()") and then a definition of a different type 1130 // (e.g. "int f(int x)"). Start by making a new function of the 1131 // correct type, RAUW, then steal the name. 1132 GlobalDeclMap.erase(getMangledName(D)); 1133 llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); 1134 NewFn->takeName(OldFn); 1135 1136 // If this is an implementation of a function without a prototype, try to 1137 // replace any existing uses of the function (which may be calls) with uses 1138 // of the new function 1139 if (D->getType()->isFunctionNoProtoType()) { 1140 ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); 1141 OldFn->removeDeadConstantUsers(); 1142 } 1143 1144 // Replace uses of F with the Function we will endow with a body. 1145 if (!Entry->use_empty()) { 1146 llvm::Constant *NewPtrForOldDecl = 1147 llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); 1148 Entry->replaceAllUsesWith(NewPtrForOldDecl); 1149 } 1150 1151 // Ok, delete the old function now, which is dead. 1152 OldFn->eraseFromParent(); 1153 1154 Entry = NewFn; 1155 } 1156 1157 llvm::Function *Fn = cast<llvm::Function>(Entry); 1158 1159 CodeGenFunction(*this).GenerateCode(D, Fn); 1160 1161 SetFunctionDefinitionAttributes(D, Fn); 1162 SetLLVMFunctionAttributesForDefinition(D, Fn); 1163 1164 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 1165 AddGlobalCtor(Fn, CA->getPriority()); 1166 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 1167 AddGlobalDtor(Fn, DA->getPriority()); 1168 } 1169 1170 void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { 1171 const AliasAttr *AA = D->getAttr<AliasAttr>(); 1172 assert(AA && "Not an alias?"); 1173 1174 const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 1175 1176 // Unique the name through the identifier table. 1177 const char *AliaseeName = AA->getAliasee().c_str(); 1178 AliaseeName = getContext().Idents.get(AliaseeName).getNameStart(); 1179 1180 // Create a reference to the named value. This ensures that it is emitted 1181 // if a deferred decl. 1182 llvm::Constant *Aliasee; 1183 if (isa<llvm::FunctionType>(DeclTy)) 1184 Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); 1185 else 1186 Aliasee = GetOrCreateLLVMGlobal(AliaseeName, 1187 llvm::PointerType::getUnqual(DeclTy), 0); 1188 1189 // Create the new alias itself, but don't set a name yet. 1190 llvm::GlobalValue *GA = 1191 new llvm::GlobalAlias(Aliasee->getType(), 1192 llvm::Function::ExternalLinkage, 1193 "", Aliasee, &getModule()); 1194 1195 // See if there is already something with the alias' name in the module. 1196 const char *MangledName = getMangledName(D); 1197 llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; 1198 1199 if (Entry && !Entry->isDeclaration()) { 1200 // If there is a definition in the module, then it wins over the alias. 1201 // This is dubious, but allow it to be safe. Just ignore the alias. 1202 GA->eraseFromParent(); 1203 return; 1204 } 1205 1206 if (Entry) { 1207 // If there is a declaration in the module, then we had an extern followed 1208 // by the alias, as in: 1209 // extern int test6(); 1210 // ... 1211 // int test6() __attribute__((alias("test7"))); 1212 // 1213 // Remove it and replace uses of it with the alias. 1214 1215 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 1216 Entry->getType())); 1217 Entry->eraseFromParent(); 1218 } 1219 1220 // Now we know that there is no conflict, set the name. 1221 Entry = GA; 1222 GA->setName(MangledName); 1223 1224 // Set attributes which are particular to an alias; this is a 1225 // specialization of the attributes which may be set on a global 1226 // variable/function. 1227 if (D->hasAttr<DLLExportAttr>()) { 1228 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 1229 // The dllexport attribute is ignored for undefined symbols. 1230 if (FD->getBody()) 1231 GA->setLinkage(llvm::Function::DLLExportLinkage); 1232 } else { 1233 GA->setLinkage(llvm::Function::DLLExportLinkage); 1234 } 1235 } else if (D->hasAttr<WeakAttr>() || 1236 D->hasAttr<WeakImportAttr>()) { 1237 GA->setLinkage(llvm::Function::WeakAnyLinkage); 1238 } 1239 1240 SetCommonAttributes(D, GA); 1241 } 1242 1243 /// getBuiltinLibFunction - Given a builtin id for a function like 1244 /// "__builtin_fabsf", return a Function* for "fabsf". 1245 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 1246 unsigned BuiltinID) { 1247 assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || 1248 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && 1249 "isn't a lib fn"); 1250 1251 // Get the name, skip over the __builtin_ prefix (if necessary). 1252 const char *Name = Context.BuiltinInfo.GetName(BuiltinID); 1253 if (Context.BuiltinInfo.isLibFunction(BuiltinID)) 1254 Name += 10; 1255 1256 // Get the type for the builtin. 1257 ASTContext::GetBuiltinTypeError Error; 1258 QualType Type = Context.GetBuiltinType(BuiltinID, Error); 1259 assert(Error == ASTContext::GE_None && "Can't get builtin type"); 1260 1261 const llvm::FunctionType *Ty = 1262 cast<llvm::FunctionType>(getTypes().ConvertType(Type)); 1263 1264 // Unique the name through the identifier table. 1265 Name = getContext().Idents.get(Name).getNameStart(); 1266 return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); 1267 } 1268 1269 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, 1270 unsigned NumTys) { 1271 return llvm::Intrinsic::getDeclaration(&getModule(), 1272 (llvm::Intrinsic::ID)IID, Tys, NumTys); 1273 } 1274 1275 llvm::Function *CodeGenModule::getMemCpyFn() { 1276 if (MemCpyFn) return MemCpyFn; 1277 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1278 return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); 1279 } 1280 1281 llvm::Function *CodeGenModule::getMemMoveFn() { 1282 if (MemMoveFn) return MemMoveFn; 1283 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1284 return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); 1285 } 1286 1287 llvm::Function *CodeGenModule::getMemSetFn() { 1288 if (MemSetFn) return MemSetFn; 1289 const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext); 1290 return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); 1291 } 1292 1293 static llvm::StringMapEntry<llvm::Constant*> & 1294 GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, 1295 const StringLiteral *Literal, 1296 bool TargetIsLSB, 1297 bool &IsUTF16, 1298 unsigned &StringLength) { 1299 unsigned NumBytes = Literal->getByteLength(); 1300 1301 // Check for simple case. 1302 if (!Literal->containsNonAsciiOrNull()) { 1303 StringLength = NumBytes; 1304 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1305 StringLength)); 1306 } 1307 1308 // Otherwise, convert the UTF8 literals into a byte string. 1309 llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); 1310 const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); 1311 UTF16 *ToPtr = &ToBuf[0]; 1312 1313 ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, 1314 &ToPtr, ToPtr + NumBytes, 1315 strictConversion); 1316 1317 // Check for conversion failure. 1318 if (Result != conversionOK) { 1319 // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove 1320 // this duplicate code. 1321 assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); 1322 StringLength = NumBytes; 1323 return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), 1324 StringLength)); 1325 } 1326 1327 // ConvertUTF8toUTF16 returns the length in ToPtr. 1328 StringLength = ToPtr - &ToBuf[0]; 1329 1330 // Render the UTF-16 string into a byte array and convert to the target byte 1331 // order. 1332 // 1333 // FIXME: This isn't something we should need to do here. 1334 llvm::SmallString<128> AsBytes; 1335 AsBytes.reserve(StringLength * 2); 1336 for (unsigned i = 0; i != StringLength; ++i) { 1337 unsigned short Val = ToBuf[i]; 1338 if (TargetIsLSB) { 1339 AsBytes.push_back(Val & 0xFF); 1340 AsBytes.push_back(Val >> 8); 1341 } else { 1342 AsBytes.push_back(Val >> 8); 1343 AsBytes.push_back(Val & 0xFF); 1344 } 1345 } 1346 // Append one extra null character, the second is automatically added by our 1347 // caller. 1348 AsBytes.push_back(0); 1349 1350 IsUTF16 = true; 1351 return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); 1352 } 1353 1354 llvm::Constant * 1355 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 1356 unsigned StringLength = 0; 1357 bool isUTF16 = false; 1358 llvm::StringMapEntry<llvm::Constant*> &Entry = 1359 GetConstantCFStringEntry(CFConstantStringMap, Literal, 1360 getTargetData().isLittleEndian(), 1361 isUTF16, StringLength); 1362 1363 if (llvm::Constant *C = Entry.getValue()) 1364 return C; 1365 1366 llvm::Constant *Zero = 1367 llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); 1368 llvm::Constant *Zeros[] = { Zero, Zero }; 1369 1370 // If we don't already have it, get __CFConstantStringClassReference. 1371 if (!CFConstantStringClassRef) { 1372 const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 1373 Ty = llvm::ArrayType::get(Ty, 0); 1374 llvm::Constant *GV = CreateRuntimeVariable(Ty, 1375 "__CFConstantStringClassReference"); 1376 // Decay array -> ptr 1377 CFConstantStringClassRef = 1378 llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1379 } 1380 1381 QualType CFTy = getContext().getCFConstantStringType(); 1382 1383 const llvm::StructType *STy = 1384 cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 1385 1386 std::vector<llvm::Constant*> Fields(4); 1387 1388 // Class pointer. 1389 Fields[0] = CFConstantStringClassRef; 1390 1391 // Flags. 1392 const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); 1393 Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : 1394 llvm::ConstantInt::get(Ty, 0x07C8); 1395 1396 // String pointer. 1397 llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); 1398 1399 const char *Sect = 0; 1400 llvm::GlobalValue::LinkageTypes Linkage; 1401 bool isConstant; 1402 if (isUTF16) { 1403 Sect = getContext().Target.getUnicodeStringSection(); 1404 // FIXME: why do utf strings get "_" labels instead of "L" labels? 1405 Linkage = llvm::GlobalValue::InternalLinkage; 1406 // Note: -fwritable-strings doesn't make unicode CFStrings writable, but 1407 // does make plain ascii ones writable. 1408 isConstant = true; 1409 } else { 1410 Linkage = llvm::GlobalValue::PrivateLinkage; 1411 isConstant = !Features.WritableStrings; 1412 } 1413 1414 llvm::GlobalVariable *GV = 1415 new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, 1416 ".str"); 1417 if (Sect) 1418 GV->setSection(Sect); 1419 if (isUTF16) { 1420 unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; 1421 GV->setAlignment(Align); 1422 } 1423 Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); 1424 1425 // String length. 1426 Ty = getTypes().ConvertType(getContext().LongTy); 1427 Fields[3] = llvm::ConstantInt::get(Ty, StringLength); 1428 1429 // The struct. 1430 C = llvm::ConstantStruct::get(STy, Fields); 1431 GV = new llvm::GlobalVariable(getModule(), C->getType(), true, 1432 llvm::GlobalVariable::PrivateLinkage, C, 1433 "_unnamed_cfstring_"); 1434 if (const char *Sect = getContext().Target.getCFStringSection()) 1435 GV->setSection(Sect); 1436 Entry.setValue(GV); 1437 1438 return GV; 1439 } 1440 1441 /// GetStringForStringLiteral - Return the appropriate bytes for a 1442 /// string literal, properly padded to match the literal type. 1443 std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { 1444 const char *StrData = E->getStrData(); 1445 unsigned Len = E->getByteLength(); 1446 1447 const ConstantArrayType *CAT = 1448 getContext().getAsConstantArrayType(E->getType()); 1449 assert(CAT && "String isn't pointer or array!"); 1450 1451 // Resize the string to the right size. 1452 std::string Str(StrData, StrData+Len); 1453 uint64_t RealLen = CAT->getSize().getZExtValue(); 1454 1455 if (E->isWide()) 1456 RealLen *= getContext().Target.getWCharWidth()/8; 1457 1458 Str.resize(RealLen, '\0'); 1459 1460 return Str; 1461 } 1462 1463 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 1464 /// constant array for the given string literal. 1465 llvm::Constant * 1466 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { 1467 // FIXME: This can be more efficient. 1468 // FIXME: We shouldn't need to bitcast the constant in the wide string case. 1469 llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); 1470 if (S->isWide()) { 1471 llvm::Type *DestTy = 1472 llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); 1473 C = llvm::ConstantExpr::getBitCast(C, DestTy); 1474 } 1475 return C; 1476 } 1477 1478 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 1479 /// array for the given ObjCEncodeExpr node. 1480 llvm::Constant * 1481 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 1482 std::string Str; 1483 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 1484 1485 return GetAddrOfConstantCString(Str); 1486 } 1487 1488 1489 /// GenerateWritableString -- Creates storage for a string literal. 1490 static llvm::Constant *GenerateStringLiteral(const std::string &str, 1491 bool constant, 1492 CodeGenModule &CGM, 1493 const char *GlobalName) { 1494 // Create Constant for this string literal. Don't add a '\0'. 1495 llvm::Constant *C = 1496 llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); 1497 1498 // Create a global variable for this string 1499 return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, 1500 llvm::GlobalValue::PrivateLinkage, 1501 C, GlobalName); 1502 } 1503 1504 /// GetAddrOfConstantString - Returns a pointer to a character array 1505 /// containing the literal. This contents are exactly that of the 1506 /// given string, i.e. it will not be null terminated automatically; 1507 /// see GetAddrOfConstantCString. Note that whether the result is 1508 /// actually a pointer to an LLVM constant depends on 1509 /// Feature.WriteableStrings. 1510 /// 1511 /// The result has pointer to array type. 1512 llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, 1513 const char *GlobalName) { 1514 bool IsConstant = !Features.WritableStrings; 1515 1516 // Get the default prefix if a name wasn't specified. 1517 if (!GlobalName) 1518 GlobalName = ".str"; 1519 1520 // Don't share any string literals if strings aren't constant. 1521 if (!IsConstant) 1522 return GenerateStringLiteral(str, false, *this, GlobalName); 1523 1524 llvm::StringMapEntry<llvm::Constant *> &Entry = 1525 ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); 1526 1527 if (Entry.getValue()) 1528 return Entry.getValue(); 1529 1530 // Create a global variable for this. 1531 llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); 1532 Entry.setValue(C); 1533 return C; 1534 } 1535 1536 /// GetAddrOfConstantCString - Returns a pointer to a character 1537 /// array containing the literal and a terminating '\-' 1538 /// character. The result has pointer to array type. 1539 llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, 1540 const char *GlobalName){ 1541 return GetAddrOfConstantString(str + '\0', GlobalName); 1542 } 1543 1544 /// EmitObjCPropertyImplementations - Emit information for synthesized 1545 /// properties for an implementation. 1546 void CodeGenModule::EmitObjCPropertyImplementations(const 1547 ObjCImplementationDecl *D) { 1548 for (ObjCImplementationDecl::propimpl_iterator 1549 i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { 1550 ObjCPropertyImplDecl *PID = *i; 1551 1552 // Dynamic is just for type-checking. 1553 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 1554 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 1555 1556 // Determine which methods need to be implemented, some may have 1557 // been overridden. Note that ::isSynthesized is not the method 1558 // we want, that just indicates if the decl came from a 1559 // property. What we want to know is if the method is defined in 1560 // this implementation. 1561 if (!D->getInstanceMethod(PD->getGetterName())) 1562 CodeGenFunction(*this).GenerateObjCGetter( 1563 const_cast<ObjCImplementationDecl *>(D), PID); 1564 if (!PD->isReadOnly() && 1565 !D->getInstanceMethod(PD->getSetterName())) 1566 CodeGenFunction(*this).GenerateObjCSetter( 1567 const_cast<ObjCImplementationDecl *>(D), PID); 1568 } 1569 } 1570 } 1571 1572 /// EmitNamespace - Emit all declarations in a namespace. 1573 void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { 1574 for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); 1575 I != E; ++I) 1576 EmitTopLevelDecl(*I); 1577 } 1578 1579 // EmitLinkageSpec - Emit all declarations in a linkage spec. 1580 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 1581 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 1582 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 1583 ErrorUnsupported(LSD, "linkage spec"); 1584 return; 1585 } 1586 1587 for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); 1588 I != E; ++I) 1589 EmitTopLevelDecl(*I); 1590 } 1591 1592 /// EmitTopLevelDecl - Emit code for a single top level declaration. 1593 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 1594 // If an error has occurred, stop code generation, but continue 1595 // parsing and semantic analysis (to ensure all warnings and errors 1596 // are emitted). 1597 if (Diags.hasErrorOccurred()) 1598 return; 1599 1600 // Ignore dependent declarations. 1601 if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) 1602 return; 1603 1604 switch (D->getKind()) { 1605 case Decl::CXXConversion: 1606 case Decl::CXXMethod: 1607 case Decl::Function: 1608 // Skip function templates 1609 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1610 return; 1611 1612 EmitGlobal(cast<FunctionDecl>(D)); 1613 break; 1614 1615 case Decl::Var: 1616 EmitGlobal(cast<VarDecl>(D)); 1617 break; 1618 1619 // C++ Decls 1620 case Decl::Namespace: 1621 EmitNamespace(cast<NamespaceDecl>(D)); 1622 break; 1623 // No code generation needed. 1624 case Decl::UsingShadow: 1625 case Decl::Using: 1626 case Decl::UsingDirective: 1627 case Decl::ClassTemplate: 1628 case Decl::FunctionTemplate: 1629 case Decl::NamespaceAlias: 1630 break; 1631 case Decl::CXXConstructor: 1632 // Skip function templates 1633 if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) 1634 return; 1635 1636 EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 1637 break; 1638 case Decl::CXXDestructor: 1639 EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 1640 break; 1641 1642 case Decl::StaticAssert: 1643 // Nothing to do. 1644 break; 1645 1646 // Objective-C Decls 1647 1648 // Forward declarations, no (immediate) code generation. 1649 case Decl::ObjCClass: 1650 case Decl::ObjCForwardProtocol: 1651 case Decl::ObjCCategory: 1652 case Decl::ObjCInterface: 1653 break; 1654 1655 case Decl::ObjCProtocol: 1656 Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); 1657 break; 1658 1659 case Decl::ObjCCategoryImpl: 1660 // Categories have properties but don't support synthesize so we 1661 // can ignore them here. 1662 Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 1663 break; 1664 1665 case Decl::ObjCImplementation: { 1666 ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); 1667 EmitObjCPropertyImplementations(OMD); 1668 Runtime->GenerateClass(OMD); 1669 break; 1670 } 1671 case Decl::ObjCMethod: { 1672 ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); 1673 // If this is not a prototype, emit the body. 1674 if (OMD->getBody()) 1675 CodeGenFunction(*this).GenerateObjCMethod(OMD); 1676 break; 1677 } 1678 case Decl::ObjCCompatibleAlias: 1679 // compatibility-alias is a directive and has no code gen. 1680 break; 1681 1682 case Decl::LinkageSpec: 1683 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 1684 break; 1685 1686 case Decl::FileScopeAsm: { 1687 FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); 1688 std::string AsmString(AD->getAsmString()->getStrData(), 1689 AD->getAsmString()->getByteLength()); 1690 1691 const std::string &S = getModule().getModuleInlineAsm(); 1692 if (S.empty()) 1693 getModule().setModuleInlineAsm(AsmString); 1694 else 1695 getModule().setModuleInlineAsm(S + '\n' + AsmString); 1696 break; 1697 } 1698 1699 default: 1700 // Make sure we handled everything we should, every other kind is a 1701 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 1702 // function. Need to recode Decl::Kind to do that easily. 1703 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 1704 } 1705 } 1706